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Abstract

Division algebras and extended Frobenius structures in monoidal categories

by

Jacob Garrett Kesten

Due to the wide range of applications in logic, programming, and quantum physics,

adapting algebraic objects to the monoidal setting has become an active area of cur-

rent inquiry. This thesis adds to this field of categorical algebra by exploring general-

izations of division algebras and extended Frobenius algebras in monoidal categories.

Division algebras were first introduced to the categorical setting in attempts to

generalize structure results from classical algebra. Extended Frobenius algebras were

introduced by Turaev and Turner in 2006 as a way to extend the correspondence

between oriented 2-dimensional topological quantum field theories and commutative

Frobenius algebras to the unoriented case. In this thesis, we explore the monoidal

analogues of these objects. Concerning division algebras, we are especially interested

in determining how analogues of the equivalent definitions of division algebras over

a field relate in a variety of monoidal settings. We also find categorical and functo-

rial constructions that interact well with division algebras and extended Frobenius

algebras, and we use these constructions to produce examples.
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Chapter 1

Introduction

Category theory, first introduced by Eilenberg and MacLane [EM45], is a branch of

mathematics that focuses on the relationships between abstract objects. The basic

structures of categories and functors emphasize the importance of maps, or mor-

phisms, between objects. Categories are defined as collections of objects with the

morphisms between them, and functors are nice maps between categories that move

both objects and morphisms. Eilenberg and MacLane used this setting to formalize

the concept of naturality. They defined natural transformations as maps between

functors that respect the full structure of the categories involved, both objects and

morphsims. This allowed the naturality of isomorphisms from many disparate areas

of mathematics to be coherently understood; for examples, see [EM45, Section 2.10].

Category theory has since been used in many areas of mathematics, notably in

algebraic topology (e.g. [Ler45, Car51, ES52]) and algebraic geometry (e.g. [Ser55,

Ser56, Gro57a, Gro57b, DG71]). An important development from this is the concept

of adjoint functors, which stemmed from a desire to simplify homological computa-

tions. Adjunctions, first introduced by Kan [Kan58], are functors satisfying a natural

morphism set correspondence mimicking that of the tensor and Hom functors for mod-

ules over rings. Adjunctions were also shown to be equivalent to the concept of monads

[Hub61, EM65, Kle65]. Understanding the equivalence of adjunctions and monads

led to the natural constructions of Eilenberg-Moore and Kleisli categories associated

to every monad. Monads have since found a place in many applications, especially

functional programming and logic; see, for example, [Mog89, PJW93, Wad95, Mul98,

WZ99, FLF21].
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Adjunctions are also used to define a number of categorical constructions. For

example, free objects are constructed by defining the free functor as the left adjoint

of the forgetful functor [Mac50]. Because adjunctions are a correspondence between

morphisms, free objects could be defined explicitly by specifying the morphism prop-

erty that they satisfy. Many categorical objects can also be defined by such a universal

property, including (co)images, (co)kernels, and (co)products. Categories where all

such objects exist are called abelian, coined by Bushbaum and Grothendieck during

their work generalizing the algebraic concept of exact sequences [Buc55, Gro57b].

Generalizing the objects and results of classical algebra became a major goal of

category theorists. Bénabou and MacLane adapted the structure of monoids from

classical algebra by defining monoidal categories as categories equipped with a prod-

uct functor and unit object [Bén63, ML63]. The ability to “multiply” objects of a cat-

egory was necessary in defining algebraic objects internal to categories, thus birthing

the field of categorical, or universal, algebra [Bén64, Wal70]. Algebras, coalgebras,

bialgebras, Hopf algebras, and Frobenius algebras could all be defined as objects

within a monoidal category equipped with morphisms mimicking the structure of the

corresponding objects over a field [AM10]. Monoidal categories and algebraic objects

therein have many applications, including logic, condensed matter physics, and quan-

tum field theories; see, for example, [Lam68, Lam69, Min81, Koc04, ABK21, BB22].

Due to the wide range of applications, understanding algebraic objects in monoidal

categories is an active area of current research. This thesis, based on the pair of papers

[KW25, CKQW24], adds to the field of categorical algebra by exploring division

algebras and extended Frobenius algebras in the monoidal setting. Both of these

have been previously introduced to the categorical setting (see [GS16, Gro19, KZ19]

and [TT06], respectively), but lack a substantial body of results and examples. We

aim to remedy this, especially by investigating constructions that can lead to new

examples of these algebras. Below, we give a more detailed introduction to these

objects and the results included in this thesis.
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In all that follows, k denotes an algebraically closed field of characteristic zero,

and categories C are assumed to be locally small, unless otherwise stated.

1.1 Division algebras

Division algebras are fundamental objects in classical algebra. They were originally

introduced in conjunction with the study of quaternions and octonions by Hamilton

[Ham53], Graves [Gra45], and Cayley [Cay45]. This led to the famous classification

theorems of Frobenius [Fro78], Hurwitz [Hur98, Hur22], and Zorn [Zor30], as they

sought to list all examples of finite dimensional real division algebras. Division alge-

bras also played a role in the classification of simple and semisimple algebras over a

field. The work of Cartan [Car98] and the theorem of Artin and Wedderburn [Wed08]

showed that a simple algebra is precisely a matrix algebra over a division algebra, and

hence that semisimple algebras are finite products of matrix algebras over division

algebras.

With the goal of extending the Artin-Wedderburn Theorem and similar results

to the categorical setting, Kong and Zheng defined division algebras in multifusion

categories [KZ19]. Grossman and Snyder also introduced a similar definition of di-

vision algebras in fusion categories as tools for studying Morita equivalence classes

and autoequivalences [Gro19, GS16]. However, over a field there are a number of

equivalent definitions of division algebras which had yet to be adapted and explored

categorically. We recall the definitions over a field below.

Definition 1.1.1 (Definition 2.1.1). Let A be a non-zero, associative, unital k-

algebra. We say that A is a division algebra over k if it satisfies any, and hence

all, of the following equivalent conditions.

(i) Every non-zero element of A is left (or right) invertible.

(ii) Every left (or right) A-module is free.

(iii) The regular left (or right) A-module is a simple module.
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Kong, Zheng, Grossman, and Snyder all adapted Definition 1.1.1(iii). In this the-

sis, as in the paper [KW25], we generalize Definition 1.1.1(ii) for the monoidal setting,

create also a monad-theoretic description of division algebras, and then explore how

these different definitions of division algebras relate to one another. The definitions of

categorical division algebras used throughout the thesis are briefly presented below.

Definition 1.1.2 (Definitions 3.1.1, 3.1.2, 3.2.2). Take C to be an abelian monoidal

category.

(i) A non-zero algebra in C is called a right (left) monadic division algebra if its as-

sociated “tensor on the right (left) monad” has equivalent Kleisli and Eilenberg-

Moore categories.

(ii) A non-zero algebra in C is called a right (left) essential division algebra if the

right (left) free-module functor is essentially surjective.

(iii) A non-zero algebra is called a right (left) simplistic division algebra if the right

(left) regular module is simple.

The following theorem and Figure 1.1 summarize the relationships found between

the different division algebra structures introduced by Definition 1.1.2.

Theorem 1.1.3 (Propositions 3.1.4, 3.1.16, 3.2.3). Let A be a non-zero algebra in an

abelian monoidal category C.

(i) A is a monadic division algebra in C precisely when it is an essential division

algebra in C.

(ii) Suppose that C is rigid with simple unit, and A has a simple module in C. If A

is an essential division algebra, then A is a simplistic division algebra.

(iii) When C is a pivotal multifusion category, then each left version of a division

algebra in C is equivalent to its right version in C.
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The hypothesis on A in part (ii) holds in many settings, including in semisimple

categories [Remark 3.1.5]. Also, C need be abelian only when working with simplistic

division algebras. Results on essential and monadic division algebras can be given in

not-necessarily-abelian monoidal categories by replacing “non-zero” with the condition

that the algebra admits more than one isoclass of modules in C; see Lemma 2.3.4.

Throughout the thesis, we also supply several examples for the division algebras of

Definition 1.1.2, especially to show how the types differ in various monoidal categories.

‚ We provide a sufficient condition for a monad T on a monoidal category C to

ensure that T p1q is a monadic division algebra in C [Proposition 3.2.7]. We use

this to produce a monadic division algebra in the non-abelian monoidal category

Set [Example 3.2.9].

‚ For certain semisimple, rigid, abelian monoidal categories with simple unit, we

show that simplistic œ essential [Examples 3.1.8, 3.1.9]; cf. Theorem 1.1.3(ii).

‚ For a monoidal category C with non-simple unit, we show that the unit is an

essential division algebra in C that is not a simplistic division algebra in C

[Example 3.1.3]; cf. Theorem 1.1.3(ii).

‚ In rigid categories C, take the algebras X bX˚ and ˚X bX, for X P C. These

are simplistic division algebras in C precisely when X is a simple object in C,

and are essential division algebras in C precisely when X is a one-sided invertible

object in C [Proposition 3.1.6].

Regarding the last item, one-sided invertibility implies simplicity under certain

conditions on C [Lemma 2.2.2], so this item illustrates Theorem 1.1.3(ii) (see Re-

mark 3.1.7). The algebras in the last item are also examples of internal End algebras,

and the result there holds in settings where Ostrik’s Theorem [Theorem 2.4.4] is

valid (e.g., in multifusion categories); see Lemma 2.2.1, Propositions 3.1.10, 3.1.12.

This yields more examples of simplistic and essential division algebras in monoidal

categories.
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In a Monoidal Category In a Rigid, Abelian Monoidal
Category w/ Simple Unit In a Pivotal Multifusion Category

Monadic
Division Algebra

Property

Essential
Division Algebra

Property

Simplistic
Division Algebra

Property

Left version of
Division Algebra

Property

Right version of
Division Algebra

Property

D simple module

Figure 1.1 : Summary of connections between division algebra properties.

1.2 Extended Frobenius algebras

Topological quantum field theories (TQFTs) are certain categorical constructions that

yield topological invariants. Loosely speaking, a TQFT is a functor from a category of

topological data to a target category with extra structure. In the 2-dimensional case,

2-TQFTs are symmetric monoidal functors from the symmetric monoidal category of

1-manifolds and 2-cobordisms to a chosen symmetric monoidal category C. Often, C

is taken to be the symmetric monoidal category Vec of k-vector spaces. A classical

result is that a 2-TQFT with values in C is classified by where it sends the circle,

which in the oriented setting, is a commutative Frobenius algebra in C; see, e.g.,

[Koc04]. Turaev and Turner expanded this correspondence to the unoriented setting

by introducing the concept of extended Frobenius algebras [TT06, Section 2].

Turaev and Turner’s 2-TQFT Result p‹q: Isomorphism classes of unoriented

2-dimensional TQFTs in Vec are in 1-1 correspondence with isomorphism classes of

commutative extended Frobenius algebras over k.

Since then, extended Frobenius algebras have appeared in many works, such as in

an adaptation of p‹q to compute virtual link homologies [Tub14], in an analogue of

p‹q for homotopy quantum field theories [Tag12], in a modification of p‹q to examine

linearized TQFTs [Cze24], in a categorical expansion of p‹q [Oca24], and in a study

of topological invariants of ribbon graphs [CL24].
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We expect that extended Frobenius algebras will continue to play a crucial role

in the TQFT program. Thus, we focus on the algebraic side and study extended

Frobenius algebras in detail– producing numerous examples, classification results,

and general constructions. We first work in Vec. Consider the terminology below.

Definition 1.2.1 (Definitions 2.1.5, 4.1.1). (a) A Frobenius algebra over k is a vec-

tor space equipped both with the structure of an associative, unital k-algebra

and the structure of a coassociative, counital k-coalgebra, which are compatible

via the Frobenius law.

(b) [TT06, Definition 2.5] A Frobenius algebra A over k is an extended Frobenius

algebra over k if it is equipped with a Frobenius algebra involution ϕ : A Ñ A

and a special element θ P A that satisfy certain axioms. We call the pair pϕ, θq

the extended structure of the Frobenius algebra.

Our first main result is the classification of extended structures for various well-

known examples of Frobenius algebras over k.

Theorem 1.2.2 (Propositions 4.1.10–4.1.12, 4.1.14–4.1.16, 4.1.18–4.1.19). The ex-

tended structures for the following Frobenius algebras are classified: k over itself; C

over R; the polynomial algebra krxs{xn for n ě 2; the group algebras kC2, kC3, kC4,

and kpC2 ˆ C2q; and the Sweedler algebra T2p´1q.

Next, we move to the general monoidal setting. Following [TT06, Section 2.2],

we adapt Definition 1.2.1 to the categorical setting [Definition 4.2.1] and explore

some preliminary results. Particularly interesting is the connection between separable

Frobenius algebras [Definition 4.2.4] and extended Frobenius algebras. Separability

(or specialness) is a widely used condition in quantum theory (see, e.g., [M0̈3, RFFS07,

HV19]). In particular, it is used to construct state sum 2-TQFTs [NR15]. We produce

the following result.

Proposition 1.2.3 (Proposition 4.2.5). A separable Frobenius algebra in a monoidal

category is always extendable.
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Then, letting ExtFrobAlgpCq denote the category of extended Frobenius algebras

in C, we establish monoidal structures on ExtFrobAlgpCq. Namely, if C is also sym-

metric, then ExtFrobAlgpCq is monoidal with b “ bC and 1 “ 1
C [Proposition 4.2.7].

Moreover, if C is additive monoidal, then ExtFrobAlgpCq is monoidal with b being the

biproduct of C and 1 being the zero object of C [Proposition 4.2.8].

Next, we explore functors that preserve extended Frobenius algebras in monoidal

categories. To start, take monoidal categories C and C 1, and note that a Frobenius

monoidal functor C Ñ C 1 [Definition 2.5.1] sends Frobenius algebras in C to those in

C 1. It is also known that the separability condition is preserved when such a functor

is separable, see [DP08] and [B1̈8, Chapter 6] for more details. We extend this theory

of Frobenius monoidal functors by introducing the notion of an extended Frobenius

monoidal functor [Definition 4.3.1]. We establish that this construction satisfies many

desirable conditions as discussed below.

Theorem 1.2.4 (Propositions 4.3.2 and 4.3.4, Theorem 4.3.5). The following state-

ments hold.

(a) A separable Frobenius monoidal functor is extended Frobenius monoidal.

(b) Extended Frobenius monoidal functors preserve extended Frobenius algebras.

(c) The composition of two extended Frobenius monoidal functors is extended Frobe-

nius monoidal.

Various separable Frobenius monoidal functors appear in the literature; see, e.g.,

[Szl05, MS10, Mor12, BT15, HLRC23, FHL23, Yad24]. So, parts (a,b) above imply

that each of these constructions produce extended Frobenius algebras in monoidal

categories. There are also extended Frobenius monoidal functors that are not neces-

sarily separable [Examples 4.3.7, 4.3.8].

Finally, we turn our attention to Hopf algebras, which also play a role in quan-

tum theory and TQFTs (see, e.g., [KL01, BBG21, CCC22]). It is well-known that
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finite-dimensional Hopf algebras over k admit a Frobenius structure. A lesser known

result is that in a symmetric monoidal category C, integral Hopf algebras in C [Def-

inition 2.3.3] are Frobenius [Proposition 4.4.3]. A graphical proof of this result is

in Appendix B. Building on this, we introduce extended Hopf algebras in symmetric

monoidal categories [Definition 4.4.7], and obtain the result below.

Proposition 1.2.5 (Proposition 4.4.8). If an integral Hopf algebra in a symmetric

monoidal category is extendable, then so is its corresponding Frobenius structure (via

Proposition 4.4.3).

We also explore functorial constructions that preserve extended Hopf algebras,

as we did with extended Frobenius algebras. This leads to the construction of inte-

gral Hopf monoidal functors [Definition 4.4.11] and extended Hopf monoidal functors

[Definition 4.4.15], which preserve integral Hopf algebras and extended Hopf algebras,

respectively [Propositions 4.4.12 and 4.4.16].

1.3 Organization

We give a brief overview of the structure of this thesis. Chapter 2 is dedicated to

providing all necessary background on monoidal categories, the algebraic structures

of interest both over a field and in a monoidal category, and the major results that

will be used throughout. Chapter 3 is based on the paper [KW25], presenting results

on division algebras in monoidal categories. Chapter 4 gives the results on extended

Frobenius algebras, including the functorial constructions that preserve such struc-

tures. Many of the longer commutative diagram arguments from Chapter 4 are pre-

sented in Appendix A. Finally, Appendix B is dedicated to the proof that integral

Hopf algebras admit Frobenius algebra stuctures, a result that is used in Section 4.4.

Chapter 4 and Appendices A and B all follow [CKQW24].
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Chapter 2

Background material

We begin in Section 2.1 by recalling the definitions and major results pertaining to

different types of algebras over a field that will be considered throughout the thesis.

We give background on monoidal categories and functors in Section 2.2, and define

basic algebraic objects in this setting in Section 2.3. The tools necessary for, and the

statements of, the major theorems of Morita and of Ostrik are presented in Section 2.4.

Finally, we discuss functorial analogues of algebraic objects in Section 2.5.

Sometimes, we impose that categories are abelian. In this case, the zero object

is denoted by 0, the biproduct is denoted by \, and an object is called simple if its

only subobjects are itself and 0.

2.1 Preliminary definitions and results over a field

We use this section to present the classical definitions and results related to the

structures considered in this thesis. Division algebras are explored in §2.1.1; Frobenius

and Hopf algebras are in §2.1.2.

The information on division algebras below can be found in any noncommutative

algebra textbook. See, for example, [Coh02, Coh04, GW04, Bre14]. For Frobenius

and Hopf algebras over a field, we refer the reader to [Koc04] and [Rad12], respectively.

Recall that in all that follows, k denotes an algebraically closed field of character-

istic zero.

2.1.1 Division algebras over a field

We begin with the definition.
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Definition 2.1.1. Let A be a non-zero, associative, unital k-algebra. We say that A

is a division algebra over k if it satisfies any, and hence all, of the following equivalent

conditions.

(i) Every non-zero element of A is left (or right) invertible.

(ii) Every left (or right) A-module is free.

(iii) The regular left (or right) A-module is a simple module.

These are instrumental in a number important classical results. Below is one such

result, due to Schur [Sch05].

Lemma 2.1.2 (Schur’s Lemma). Let A be an algebra, and let M and N be simple

left A-modules. Then, any element in HomA-ModpM,Nq is either the zero map or an

isomorphism. In particular, EndA-ModpMq is a division algebra.

Also, we have the following structure theorem, originally stated in the finite dimen-

sional case by Wedderburn in 1908 [Wed08]. Improvements were then done by Artin

[Art27], Noether [Noe29], and Hopkins [Hop39], resulting in the statement below.

Theorem 2.1.3 (Artin-Wedderburn Theorem). An algebra A over k is a semisimple

algebra if and only if A is a product of matrix algebras over division algebras.

Finally, we have a classification theorem of Frobenius [Fro78].

Theorem 2.1.4 (Frobenius Theorem). The only finite dimensional division algebras

over R are the real numbers R, the complex numbers C, or the quaternions H.

2.1.2 Frobenius and Hopf algebras over a field

Again, we start with the relevant definitions.

Definition 2.1.5. A Frobenius algebra over k is a tuple pA,m, 1A,∆, εq, where

pA,m, 1Aq is an associative, unital k-algebra, where pA,∆, εq is a coassociative, couni-

tal k-coalgebra, and which satisfies the Frobenius law:

pa b 1Aq∆pbq “ ∆pabq “ ∆paqp1A b bq for all a, b P A.
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We note that every Frobenius algebra must be finite dimensional over k. Moreover,

Frobenius algebras should not be confused with bialgebras over k, defined below.

Definition 2.1.6. A bialgebra over k is a tuple pA,m, 1A,∆, εq, where pA,m, 1Aq

is an associative, unital k-algebra, where pA,∆, εq is a coassociative, counital k-

coalgebra, and which satisfies the condition that its comultiplication ∆ and counit ε

are morphisms of algebras. In particular, for any a, b P A, we have

∆pabq “ ap1qbp1q b ap2qbp2q; εpabq “ εpaqεpbq

∆p1Aq “ 1A b 1A; εp1Aq “ 1k

where the comultiplication ∆ is defined by ∆pxq :“ xp1q b xp2q for any x P A.

By equipping a bialgebra over a field with an extra property, we obtain the concept

of a Hopf algebra over a field.

Definition 2.1.7. A Hopf algebra over k is a bialgebra H over k, together with a

k-linear antipode map S : H Ñ H which, for any a P H, satisfies the antipode axiom

Spap1qqap2q “ εpaq1H “ ap1qSpap2qq,

where the comultiplication ∆ is again defined by ∆paq :“ ap1q b ap2q, and the counit

is denoted by ε : H Ñ k.

Frobenius and Hopf algebras over a field are connected via the following theorem.

Theorem 2.1.8. [LS69], [Par71, Theorem 1] Every finite dimensional Hopf algebra

over k admits the structure of a Frobenius algebra.

2.2 Monoidal categories and monoidal functors

In this section we recall the basics of monoidal categories. In §§2.2.1, 2.2.2, the

definitions of monoidal categories, monoidal functors, and monoidal natural transfor-

mations are presented. We discuss rigidity in §2.2.3 and other properties of monoidal

categories in §2.2.4. Finally, invertible objects are introduced in §2.2.5.
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The standard reference for background on monoidal categories is [EGNO15]. We

also refer the reader to [Wal24, Chapter 3] for a pedagogical introduction.

2.2.1 Monoidal categories

A monoidal category consists of a category C equipped with a bifunctor b : CˆC Ñ C,

an associator natural isomorphism a :“ taX,Y,Z : pXbY qbZ „Ñ XbpY bZquX,Y,ZPC,

a unit object 1 P C, and unitality natural isomorphisms ℓ :“ tℓX : 1 b X „Ñ XuXPC

and r :“ trX : X b 1 „Ñ XuXPC, such that the diagrams in Figure 2.1 commute.

ppW b Xq b Y q b Z

pW b pX b Y qq b Z pW b Xq b pY b Zq

W b ppX b Y q b Zq W b pX b pY b Zqq

aWbX,Y,ZaW,X,Y bidZ

aW,XbY,Z aW,X,Y bZ

idW baX,Y,Z

Figure 2.1 : Pentagon axiom for a monoidal category.

pX b 1q b Y X b p1 b Y q

X b Y

aX,1,Y

rXbidY idXbℓY

Figure 2.2 : Triangle axiom for a monoidal category.

Unless stated otherwise, by MacLane’s strictness theorem [ML98, §VII.2], we as-

sume that all monoidal categories are strict in the sense that

X b Y b Z :“ pX b Y q b Z “ X b pY b Zq, X :“ 1 b X “ X b 1,

for all X, Y, Z P C; that is, a, ℓ, and r are identity natural isomorphisms.
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2.2.2 Monoidal functors and monoidal natural transformations

To move between monoidal categories, we want to consider functors that respect the

monoidal structures of the two categories. Specifically, given monoidal categories

pC,b,1q and pC 1,b1,11q, a monoidal functor between them is a tuple pF, F p2q, F p0qq,

where F : C Ñ C 1 is a functor, F p2q :“ tF
p2q

X,Y : F pXq b1 F pY q Ñ F pX b Y qu is

a natural transformation, and F p0q : 11 Ñ F p1q is a morphism in C 1, which satisfy

associativity and unitality axioms.

A monoidal functor pF, F p2q, F p0qq : C Ñ C 1 is said to be strict if F p2q is an identity

natural transformation and F p0q is an identity morphism. The monoidal functor

pF, F p2q, F p0qq is called strong if F p2q is a natural isomorphism and F p0q is an iso in C 1.

We say that two monoidal categories pC,b,1q and pC 1,b1,11q are equivalent as

monoidal categories, or monoidally equivalent, if there exists a monoidal functor

pF, F p2q, F p0qq : C Ñ C 1 whose underlying functor F is an equivalence of categories.

Now, take two monoidal functors pF, F p2q, F p0qq and pG,Gp2q, Gp0qq from C to

C 1. A monoidal natural transformation (resp., monoidal natural isomorphism) from

pF, F p2q, F p0qq to pG,Gp2q, Gp0qq is a natural transformation ϕ : F ñ G (resp., natural

isomorphism ϕ : F
„
ñ G) such that the diagrams in Figure 2.3 commute for all objects

X, Y P C.

F pXq b1 F pY q F pX b Y q 1
1 F p1q

GpXq b1 GpY q GpX b Y q Gp1q

F
p2q

X,Y

ϕXbϕY ϕXbY
Gp0q

F p0q

ϕ1

G
p2q

XbY

Figure 2.3 : Compatibility requirements for monoidal natural transformations.
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2.2.3 Rigidity and pivotality

We say that C is rigid if each X P C has a left dual X˚ P C with (co)evaluation

maps evL
X : X˚ b X Ñ 1 and coevL

X : 1 Ñ X b X˚, and a right dual ˚X P C with

(co)evaluation maps evR
X : X b ˚X Ñ 1, coevR

X : 1 Ñ ˚X b X, satisfying coherence

conditions. Here, pX˚q˚ – X – p X˚ q˚ in C.

For a morphism f : X Ñ Y in a rigid category C, one can define the left dual

morphism f˚ : Y ˚ Ñ X˚ and right dual morphism f˚ : Y˚ Ñ X˚ . This gives that

p´q˚ and p´q˚ are contravariant (strong monoidal) autoequivalences of C, called the

left and right duality functors, respectively.

A rigid category is called pivotal if every object is naturally isomorphic to its dou-

ble duals. More specifically, this means there exists a monoidal natural isomorphism

j : IdC
„ñ p´q˚˚. We note that this is equivalent to there existing a monoidal natural

isomorphism ȷ̂ : p´q˚ „ñ p´q˚ .

2.2.4 Types of monoidal categories

A monoidal category C is symmetric if it is equipped with a natural isomorphism

c :“ tcX,Y : X b Y
„
Ñ Y b XuX,Y PC which satisfies cY,X ˝ cX,Y “ idXbY for all

X, Y P C, and which obeys the hexagon axioms. The component cX,Y of c, the

c2 “ id property, the naturality of c at a morphism f P C, and unit coherence of c are

all depicted in Figure 2.4 with string diagrams.

= = =

cX,Y (S1) (S2) (S3) (S4) (S5)

f

f

f

f

= =

Figure 2.4 : Some axioms for a symmetric monoidal category.

We say that C is additive monoidal if its underlying category is additive and the

endofunctors pX b ´q and p´ b Xq of C are additive, for each X P C. It is abelian

monoidal if is additive monoidal, and moreover, its underlying category is abelian.
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Let k denote an algebraically closed field of characteristic 0. A category is k-linear

if all Hom-sets are k-vector spaces, where composition distributes over addition and

scalar multiplication. We say that C is (k-)linear monoidal if the underlying category

is k-linear, and the endofunctors pXb´q and p´bXq of C are linear, for each X P C.

A k-linear abelian category C is locally finite if every object has finite length and

each Hom-space is finite dimensional. It is finite if it is locally finite, has enough

projectives, and has only finitely many isoclasses of simple objects. We say that

C is fusion if it is abelian, k-linear monoidal, finite, rigid, semisimple, and satisfies

EndCp1q – k. When the last condition is omitted, C is multifusion.

2.2.5 Invertible objects in monoidal categories

There are a few notions of invertible objects in monoidal categories. Here, X P C is

left invertible if there exists XL P C such that XL b X – 1, and is right invertible if

there exists XR P C such that X b XR – 1. We also say that X is invertible if it is

both left and right invertible; here, XL – XR.

The result below is straightforward to verify.

Lemma 2.2.1. Consider an object X P C.

(i) X is left invertible if and only if p´ b Xq : C Ñ C is essentially surjective.

(ii) X is right invertible if and only if pX b ´q : C Ñ C is essentially surjective.

(iii) If X P C is invertible, then both functors p´ bXq : C Ñ C and pX b ´q : C Ñ C

are equivalences.

In a rigid category C, a stronger notion of invertibility for X P C is to require

that it is invertible via (co)evaluation morphisms [EGNO15, §2.11]. Next, we connect

invertibility here with simplicity.

Lemma 2.2.2. Take an abelian monoidal category C with simple 1, and where all

objects have finite length. If X P C is left or right invertible, then X is simple.
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Proof. This follows since lengthpX b Y q ě lengthpXq lengthpY q when X, Y P C have

finite length [EGNO15, Exercise 4.3.11(1,2)], and objects of length 1 are precisely the

simple objects of C.

2.3 Algebraic structures in monoidal categories

Here, we adapt algebraic objects from §2.1 to the monoidal setting. We start with

algebras and coalgebras in monoidal categories is §2.3.1. Modules are introduced in

§2.3.2, and their properties and operations are discussed in §§2.3.3, 2.3.4.

For details on algebras in monoidal categories, see, for example, [Koc04, Chap-

ter 3], [TV17, Parts I and II], or [Wal24, Chapter 4]. The first of these also includes

an introduction to Frobenius algebras in monoidal categories, and the last also in-

cludes background on modules in monoidal categories. For background on coalgebras,

bialgebras, and Hopf algebras in monoidal categories, see [AM10, Section 1.2], noting

that the term monoid is used instead of the term algebra for all of these structures.

2.3.1 Algebraic objects in monoidal categories

Let C :“ pC,b,1q be a monoidal category. An algebra in C is an object A P C,

equipped with morphisms m : A b A Ñ A and u : 1 Ñ A in C, subject to the

associativity and unitality axioms given below.

mpm b idAq “ mpidA b mq, mpu b idAq “ idA “ mpidA b uq.

Algebras in C form a category, AlgpCq, where a morphism pA,mA, uAq Ñ pB,mB, uBq

is a morphism f : A Ñ B in C such that f mA “ mBpf b fq and f uA “ uB.

For example, 1 P AlgpCq, with m1 : 1 b 1 Ñ 1 being the unitor isomorphism,

and u1 “ id1. In an abelian monoidal category, 0 P AlgpCq with m0 : 0 b 0 Ñ 0 and

u0 : 1 Ñ 0 coming from 0 being terminal.
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A coalgebra in C is an object A P C, equipped with morphisms ∆ : A Ñ A b A

and ε : A Ñ 1 in C, subject to coassociativity and counitality axioms:

p∆ b idAq∆ “ pidA b ∆q∆, pε b idAq∆ “ idA “ εpidA b uq∆.

Coalgebras in C form a category, where a morphism pA,∆A, εAq Ñ pB,∆B, εBq is a

morphism f : A Ñ B in C such that ∆B f “ pf bfq∆A and εB f “ εA. This category

is denoted CoalgpCq.

We continue our examples of 1 and 0. Specifically, for any monoidal category C,

we have that 1 is a coalgebra in C with ∆1 : 1 Ñ 1b1 being the inverse of the unitor

isomorphism, and ε1 “ id1. If C is abelian, then 0 P CoalgpCq with ∆0 : 0 Ñ 0 b 0

and ε0 : 0 Ñ 1 both coming from 0 being initial.

We now explore ways in which objects in C can be simultaneously an algebra and a

coalgebra. The first, which requires no additional structure on the monoidal category

C is given in the following definition.

Definition 2.3.1. A Frobenius algebra in C is a tuple pA,m, u,∆, εq where pA,m, uq

is an algebra in C, pA,∆, εq is a coalgebra in C, and which satisfies the Frobenius law:

pm b idAqpidA b ∆q “ ∆m “ pidA b mqp∆ b idAq.

A morphism of Frobenius algebras in C is a morphism of the underlying algebras and

coalgebras in C. The above objects and morphisms then form a category, FrobAlgpCq.

When the monoidal category C is symmetric via natural isomorphism c, as dis-

cussed in §2.2.4, we can also define bialgebras and Hopf algebras.

Definition 2.3.2. A bialgebra in a symmetric monoidal category C is a tuple

pA,m, u,∆, εq where pA,m, uq P AlgpCq, where pA,∆, εq P CoalgpCq, and which sat-

isfies the condition that ∆ and ε are morphisms of algebras, or equivalently that m

and u are morphisms of coalgebras. Again, together with morphisms that are simul-

taneously algebra and coalgebra morphisms, these objects form a category, BialgpCq.
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Imposing further structure on bialgebras produces Hopf algebras, which are de-

fined below.

Definition 2.3.3. A Hopf algebra in a symmetric monoidal category C is a bialgebra

pH,m, u,∆, εq, equipped with a morphism S : H Ñ H in C, called the antipode,

satisfying the antipode axiom:

mpS b idHq∆ “ uε “ mpidH b Sq∆.

Again, we obtain a category, HopfAlgpCq, whose objects are Hopf algebras and whose

morphisms are those morphisms of C which are simultaneously algebra and coalgebra

morphisms.

As elementary examples, we note that it is easy to verify that 1 is a Frobenius al-

gebra in any monoidal category, and is a bialgebra and Hopf algebra in any symmetric

monoidal category. In the Hopf case, the antipode is given by S “ id1. Similarly, in

the case that the (symmetric) monoidal category is abelian, one can check that 0 is

a Frobenius algebra, bialgebra, and Hopf algebra with antipode S “ id0.

Note also that all of these above definitions coincide with the corresponding defi-

nitions over a field k from Section 2.1 when we take C “ Veck.

2.3.2 Modules in monoidal categories

Fix an algebra pA,mA, uAq in C. A right A-module in C is a pair pM,Ÿq, where

M P C and Ÿ : M b A Ñ M in C satisfying associativity and unitality axioms.

These structures form a category Mod-ApCq, where morphisms are those morphisms

in C that respect the right module structures. Left A-modules pN,Źq in C and the

category A-ModpCq are defined likewise.

If pB,mB, uBq is another algebra in C, an pA,Bq-bimodule in C is a tuple pQ,Ź,Ÿq

such that pQ,Źq P A-ModpCq, pQ,Ÿq P Mod-BpCq, satisfying a middle associativity

axiom. With morphisms that are simultaneously left and right module morphisms,

we obtain the category pA,Bq-BimodpCq.
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For example, for any algebra A in an abelian monoidal category C, we have that

0 P A-ModpCq, with Ź : A b 0 Ñ 0 coming from 0 being terminal.

A left ideal of an algebra A in C is a subobject of Areg P A-ModpCq. In other words,

it is an object pI, λq with a mono ιAI : pI, λq ãÑ pA,mAq in A-ModpCq. Similarly, a

right ideal of A is a subobject of Areg P Mod-ApCq, and a (two-sided) ideal of A is a

subobject of Areg P pA,Aq-BimodpCq.

In an abelian monoidal category C, a non-zero algebra A is simple if its only ideals

are itself and zero (i.e., Areg is a simple object in pA,Aq-BimodpCq). Next, consider

the preliminary result below.

Lemma 2.3.4. In an abelian monoidal category C, an algebra A in C is the zero

algebra 0 if and only if A-ModpCq and Mod-ApCq each have one object, namely the

zero module, up to isomorphism.

Proof. If A “ 0 and pM,Źq P 0-ModpCq, then idM “ Ź ˝ pu0 b idMq is a zero

morphism. Hence, M is both initial and terminal, and M – 0. Similarly, all right

modules over A “ 0 are also zero. On the other hand, if A is non-zero, then A-ModpCq

(or Mod-ApCq) contains the zero module and the regular module, and these are not

isomorphic.

2.3.3 Properties of modules

A non-zero right module M P Mod-ApCq is called simple if it is a simple object in the

category Mod-ApCq; a similar notion holds for right modules and bimodules in C.

The regular right (resp., left) A-module in C is pA,mAq in Mod-ApCq (resp., in

A-ModpCq), and the regular pA,Aq-bimodule in C is pA,mA,mAq in pA,Aq-BimodpCq,

which is denoted by Areg or A.

Moreover, a right A-module pM,Ÿq in C is said to be free if there is an objectX P C

so that pM,Ÿq – pX bA, idX bmAq in Mod-ApCq. Similarly, a left A-module pN,Źq

in C is said to be free if there is an object Y P C so that pN,Źq – pAb Y,mA b idY q
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in A-ModpCq. For instance, the regular left and right A-modules are the free modules

over A on the object 1 P C.

2.3.4 Operations on modules

Now let pM,Ÿq P Mod-ApCq. If M˚ exists in C, then M˚ is a left A-module in C.

Similarly, given pN,Źq P A-ModpCq, if N˚ exists in C, then N˚ is a right A-module

in C. When C is rigid, restricting the duality functors from §2.2.3 to categories of

modules, we obtain the equivalences of categories p´q˚ : A-ModpCq
„
ÝÑ Mod-ApCq and

p˚ ´q : Mod-ApCq
„
ÝÑ A-ModpCq, for any A P AlgpCq.

Given pM,Ÿq P Mod-ApCq and pN,Źq P A-ModpCq, the tensor product of M and N

over A is the coequalizer of the morphisms idM bŹ and Ÿb idN , denoted by MbAN ,

if it exists in C. In any case, for any Q P pA,Bq-BimodpCq and P P pB,Cq-BimodpCq,

we get that Q bB P is in pA,Cq-BimodpCq. Here, pA,Aq-BimodpCq is monoidal with

b :“ bA and 1 :“ Areg.

2.4 Morita’s and Ostrik’s theorems

Here, instead of doing algebra in monoidal categories, we do algebra on monoidal

categories, thinking of monoidal categories as the analogue of algebras. We introduce

module categories and functors in §2.4.1. Internal Homs and Ends are in §2.4.2.

Finally, Morita’s Theorem and Ostrik’s Theorem are presented in §§2.4.3, 2.4.4.

For further details see [EGNO15, Chapter 7] or [Wal24, Chapters 3 and 4].

2.4.1 Module categories and functors

A left C-module category is a category M with a left action bifunctor Ź : CˆM Ñ M

and associativity and unitality natural isomorphisms which satisfy the pentagon and

triangle axioms. Right C-module categories pN ,Ÿq are defined likewise.

The regular left (resp. right) C-module category is given by C, with action bifunctor

Ź :“ b (resp. Ÿ :“ b). We also have that for any algebra A P AlgpCq, the category
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Mod-ApCq is a left C-module category and A-ModpCq is a right C-module category,

again with action bifunctors given by b.

A left C-module functor is a tuple pF, sq where F is a functor between left C-module

categories pM,Źq and pM1,Ź1q and s :“ tsX,M : F pXŹMq
„
ÝÑ XŹ1F pMquXPC,MPM is

a natural isomorphism satisfying a pentagon and triangle axiom. One can analogously

define a right C-module functor.

We say two left C-module categories are equivalent as left C-module categories if

there is a left C-module functor between them such that the underlying functor is an

equivalence. Right C-module equivalence of categories is defined analogously.

2.4.2 Internal Homs

A left C-module category M :“ pM,Źq is closed if, for each M P M (resp,. N P N ),

the functor p´ Ź Mq : C Ñ M has a right adjoint: HomMpM,´q : M Ñ C. We call

HomMpM,Nq the internal Hom of M and N . Also, EndMpMq :“ HomMpM,Mq is

called the internal End of M . Similar notions hold for right C-module categories.

For any M P pM,Źq and any N P pN ,Ÿq, the objects EndMpMq and EndN pNq

are algebras in C. Given M 1 P M and N 1 P N , we obtain that HomMpM,M 1q is a

right EndMpMq-module in C. Similarly, HomN pN,N 1q is a left EndN pN 1q-module in

C. From this, we obtain the functors HomMpM,´q : M Ñ Mod-EndMpMqpCq and

HomN p´, N 1q : N Ñ EndN pN 1q-ModpCq.

As an example, if the category C is rigid, the regular left C-module category is

closed, with HomCpX, Y q – Y b X˚. The algebra and module structures on these

internal Homs and Ends are then given by appropriate (co)evaluation maps.

Given an algebra A P C, we see that the left C-module category Mod-ApCq and

the right C-module category A-ModpCq are both closed, with internal Homs given by

HomMod-ApCqpM,M 1q – pM bA p˚ M 1qq˚ and HomA-ModpCqpN,N
1q – p˚ pN 1q˚ bA Nq in

C. The next result is also useful.
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Lemma 2.4.1. For C rigid with A P AlgpCq, we have that A – EndA-ModpCqpAq and

A – EndMod-ApCqpAq as algebras in C.

Proof. Take the projection π : A˚bA Ñ A˚bAA from the coequalizer property. Next,

note thatmEndA-ModpCqpAq “ ˚µ where µ :“ idA˚ bAcoevL
A bAidA, and uEndA-ModpCqpAq “ ˚η

such that evL
A “ η π. Moreover, the isomorphism A˚ bA A – A˚ in C is given by

mutually inverse morphisms ϕ : A˚ bA A Ñ A˚ and ψ : A˚ Ñ A˚ bA A in C, where

ϕπ “ ŸA˚ “ pevL
AbidA˚qpidA˚ bmAbidA˚qpidA˚ bidAbcoevL

Aq and ψ “ π pidA˚ buAq.

Now one can check that pmAq˚ “ pϕbϕqµψ and puAq˚ “ η ψ. Thus, ˚ψ yields the

first algebra isomorphism in C. Similarly, A – EndMod-ApCqpAq as algebras in C.

2.4.3 Morita’s Theorem

We say that algebras A and B in C are Morita equivalent in C if their categories

of modules are equivalent as C-module categories. The following gives the formal

definition, as well as a useful characterization of this notion in terms of bimodules.

Theorem 2.4.2 (Generalized Morita’s Theorem). Let C be an abelian monoidal cat-

egory such that the functors ´ bX and X b ´ are right exact for each X P C. Take

algebras A,B P AlgpCq. Then the following statements are equivalent.

(a) A-ModpCq and B-ModpCq are equivalent as right C-module categories.

(b) Mod-ApCq and Mod-BpCq are equivalent as left C-module categories.

(c) There exists bimodules P P pA,Bq-BimodpCq and Q P pB,Aq-BimodpCq such

that P bB Q – Areg as A-bimodules and Q bA P – Breg as B-bimodules.

In particular, the proof of this theorem shows that if we have the bimodules P

and Q, then the equivalences of module categories are given by

Q bA ´ : A-ModpCq Ñ B-ModpCq; P bB ´ : B-ModpCq Ñ A-ModpCq

´ bA P : Mod-ApCq Ñ Mod-BpCq; ´ bB Q : Mod-BpCq Ñ Mod-ApCq.



24

For instance, let C be abelian rigid monoidal with simple unit. Then, for any

non-zero X P C, the internal End of X, given by X b X˚, is Morita equivalent to 1

in C via one of the functors below:

p´ b X˚
q : C „

ÝÑ Mod-pX b X˚
qpCq; pX b ´q : C „

ÝÑ pX b X˚
q-ModpCq. (2.4.3)

Their respective quasi-inverses are given by:

p´ bXbX˚ Xq : Mod-pX bX˚
qpCq Ñ C; pX˚

bXbX˚ ´q : pX bX˚
q-ModpCq Ñ C.

See, e.g., [Wal24, Example 4.58]. Similarly, the algebra ˚X bX is also Morita equiv-

alent to 1 in C.

2.4.4 Ostrik’s Theorem

The categories A-ModpCq and Mod-ApCq are the prototypical examples of C-module

categories, and the following theorem from [Ost03] addresses when any given C-

module category is of this form.

Theorem 2.4.4 (Ostrik’s Theorem). Let C be a multifusion category, with M and

N non-zero, indecomposable left and right C-module categories, respectively. Then,

for any non-zero M P M and any non-zero N 1 P N , we have that

M » Mod-EndMpMqpCq and N » EndN pN 1
q-ModpCq,

as left and right C-module categories, respectively, via the functors

HomMpM,´q : M „
ÝÑ Mod-EndMpMqpCq and

HomN p´, N 1
q : N „

ÝÑ EndN pN 1
q-ModpCq.

2.5 Functorial constructions

In this section, we begin by expanding the analogy between algebras in monoidal

categories and monoidal functors to include all the different algebraic structures in-



25

troduced in §2.3.1. This is done in §2.5.1. Then we introduce Monads and the

Eilenberg-Moore and Kleisli categories corresponding to them in §§2.5.2, 2.5.3.

A good overview of the material concerning functorial preservation of algebra

objects can be found in [AM10, Chapter 3]. Further information can be found in

[Wal24, DP08, B1̈8], with specific locations provided at the beginning of the theorems

below. References on monads include [Rie17, Chapter 5] and [Wal24, §§4.3.2, 4.4.3].

2.5.1 Functors preserving algebraic objects

Algebras in monoidal categories and monoidal functors are linked by the fact that

monoidal functors preserve algebras (see Proposition 2.5.4 below). Similarly, there

are specific types of functors between (symmetric) monoidal categories that preserve

coalgebras, Frobenius algebras, bialgebras, and Hopf algebras.

First, A functor F : C Ñ C 1 is a comonoidal functor if it is equipped with a natural

transformation Fp2q :“ tFX,Y
p2q

: F pX b Y q Ñ F pXq b1 F pY quX,Y PC and a morphism

Fp0q : F p1q Ñ 1
1 in C 1 which satisfy coassociativity and counitality constraints.

To ease notation when working with a monoidal functor pF, F p2q, F p0qq : C Ñ C 1,

we will write F p2q

X,Y,Z : F pXq b1 F pY q b1 F pZq Ñ F pX b Y b Zq for the composition

F p2q ˝F p2q, which is unambiguous by associativity. Similarly, for comonoidal functors,

we will write FX,Y,Z
p2q

: F pX b Y b Zq Ñ F pXq b1 F pY q b1 F pZq by coassociativity.

Definition 2.5.1. A Frobenius monoidal functor between monoidal categories C and

C 1 is a tuple pF, F p2q, F p0q, Fp2q, Fp0qq such that pF, F p2q, F p0qq is a monoidal functor

between C and C 1, and pF, Fp2q, Fp0qq is a comonoidal functor between C and C 1, and

which satisfies the Frobenius conditions given below, for all X, Y, Z P C.

´

F
p2q

X,Y b
1 idF pZq

¯ ´

idF pXq b
1 F Y,Z

p2q

¯

“ FXbY,Z
p2q

˝ F
p2q

X,Y bZ ,

´

idF pXq b
1 F

p2q

Y,Z

¯ ´

F Y,Z
p2q

b
1 idF pZq

¯

“ FX,Y bZ
p2q

˝ F
p2q

XbY,Z .

In the case that F p2q ˝ Fp2q “ id, we call F a separable Frobenius monoidal functor.
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As with bialgebras and Hopf algebras, to define corresponding functors we must

require that we are working in symmetric monoidal categories.

Definition 2.5.2. A bi-monoidal functor between the symmetric monoidal cate-

gories pC, cq and pC 1, c1q is a tuple pF, F p2q, F p0q, Fp2q, Fp0qq such that pF, F p2q, F p0qq

is a monoidal functor between C and C 1, and pF, Fp2q, Fp0qq is a comonoidal functor

between C and C 1, and which satisfies the three unitality axioms given below and the

braiding axiom shown in Figure 2.5 for any X, Y, Z,W P C:

F 1,1
p2q

˝ F p0q
“ F p0q

b
1 F p0q; Fp0q ˝ F

p2q

1,1 “ Fp0q b
1 Fp0q; Fp0q ˝ F p0q

“ id11 .

F pX b Y q b1 F pZ b W q

F pX b Y b Z b W q F pXq b1 F pY q b1 F pZq b1 F pW q

F pX b Z b Y b W q F pXq b1 F pZq b1 F pY q b1 F pW q

F pX b Zq b1 F pY b W q

F
p2q

XbY,ZbW

F pidX b cY,Z b idW q

FXbZ,Y bW
p2q

FX,Y
p2q

b1FZ,W
p2q

idF pXq b1 cF pY q,F pZq b1 idF pW q

F
p2q

X,Zb1F
p2q

Y,W

Figure 2.5 : Braiding axiom for bi-monoidal functors.

Lastly, we define Hopf monoidal functors.

Definition 2.5.3. A Hopf monoidal functor between symmetric monoidal categories

pC, cq and pC 1, c1q is a tuple pF, F p2q, F p0q, Fp2q, Fp0q,Υq where pF, F p2q, F p0q, Fp2q, Fp0qq

is a bi-monoidal functor, and Υ : F ñ F is a natural transformation, again called

the antipode, such that the following conditions are satisfied for any X, Y, Z P C.

F
p2q

X,Y,Z

`

idF pXq b
1 ΥY b

1 idF pZq

˘

FX,Y,Z
p2q

“ idF pXbY bZq,

F
p2q

X,Y,Z

`

ΥX b
1 idF pY q b

1 ΥZ

˘

FX,Y,Z
p2q

“ ΥXbY bZ ,

F
p2q

1,1

`

idF p1q b
1 Υ1

˘

F 1,1
p2q

“ F p0q Fp0q “ F
p2q

1,1

`

Υ1 b
1 idF p1q

˘

F 1,1
p2q
.



27

Now, with all these definitions we obtain the following results.

Proposition 2.5.4. [Wal24, Proposition 4.3] [DP08, Corollary 5] [B1̈8, Lemma 6.10]

[AM10, Proposition 3.31 and Theorem 3.70] Take monoidal categories C and C 1.

(a) Given a monoidal functor pF, F p2q, F p0qq : C Ñ C 1 and an algebra pA,mA, uAq in

C, we obtain that

`

F pAq, mF pAq :“ F pmAqF
p2q

A,A, uF pAq :“ F puAqF p0q
˘

P AlgpC 1
q.

In particular, F induces a functor AlgpCq Ñ AlgpC 1q.

(b) Given A comonoidal functor pF, Fp2q, Fp0qq : C Ñ C 1 and a coalgebra pA,∆A, εAq

in C, we obtain that

`

F pAq, ∆F pAq :“ FA,A
p2q

F p∆Aq, εF pAq :“ Fp0qF pεAq
˘

P CoalgpC 1
q.

In particular, F induces a functor ColgpCq Ñ CoalgpC 1q.

(c) Moreover, given a Frobenius monoidal functor pF, F p2q, F p0q, Fp2q, Fp0qq : C Ñ C 1

and Frobenius algebra pA,mA, uA,∆A, εAq in C, we have that F pAq is a Frobe-

nius algebra in C 1 by using the formulas from parts (a) and (b).

In particular, F induces a functor FrobAlgpCq Ñ FrobAlgpC 1q.

(d) Now, letting C and C 1 be symmetric monoidal, given a bi-monoidal functor

pF, F p2q, F p0q, Fp2q, Fp0qq : C Ñ C 1 and bialgebra pA,mA, uA,∆A, εAq in C, we

have that F pAq is a bialgebra in C 1 via the formulas from parts (a) and (b).

In particular, F induces a functor BialgpCq Ñ BialgpC 1q.

(e) Likewise, given a Hopf monoidal functor pF, F p2q, F p0q, Fp2q, Fp0q,Υq : C Ñ C 1 be-

tween symmetric monoidal categories, and a Hopf algebra pA,mA, uA,∆A, εA, Sq

in C, it follows that F pAq is a Hopf algebra in C 1 using the formulas from (a) and

(b), and with antipode given by SF pAq :“ ΥHF pSq “ F pSqΥH .

In particular, F induces a functor HopfAlgpCq Ñ HopfAlgpC 1q.

Another nice feature of these functors is that they are closed under composition.
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Proposition 2.5.5. [Wal24, Exercise 3.4] [DP08, Proposition 4] [B1̈8, Exercise 3.10

and 6.4] [AM10, Proposition 3.10 and Theorem 3.72] Take monoidal categories C, C 1,

and C2.

(a) Let pF, F p2q, F p0qq : C Ñ C 1 and pG,Gp2q, Gp0qq : C 1 Ñ C2 be monoidal functors.

Then, the composition GF : C Ñ C2 is monoidal, with pGF qp2q and pGF qp0q

defined by:

pGF q
p2q

X,Y :“ GpF
p2q

X,Y q ˝ G
p2q

F pXq,F pY q
@X, Y P C, pGF q

p0q :“ GpF p0q
q ˝ Gp0q.

(b) Let pF, Fp2q, Fp0qq : C Ñ C 1 and pG,Gp2q, Gp0qq : C 1 Ñ C2 be comonoidal functors.

Then, the composition GF : C Ñ C2 is comonoidal, with pGF qp2q and pGF qp0q

defined by:

pGF q
X,Y
p2q

:“ G
F pXq,F pY q

p2q
˝ GpFX,Y

p2q
q @X, Y P C, pGF qp0q :“ Gp0q ˝ GpFp0qq.

(c) Let pF, F p2q, F p0q, Fp2q, Fp0qq : C Ñ C 1 and pG,Gp2q, Gp0q, Gp2q, Gp0qq : C 1 Ñ C2 be

Frobenius monoidal functors. Then, the composition GF : C Ñ C2 is Frobenius

monoidal by using the formulas from parts (a) and (b).

(d) Now, letting C, C 1, and C2 all be symmetric, the composition of two bi-monoidal

functors is also bi-monoidal, using the formulas from parts (a) and (b).

(e) Similarly, the composition, GF , of two Hopf monoidal functors F and G, with

antipodes ΥF and ΥG respectively, is also a Hopf monoidal functor, with an-

tipode ΥGF
X :“ ΥG

F pXq
˝ GpΥF

Xq “ GpΥF
Xq ˝ ΥG

F pXq
for any X P C.

2.5.2 Monads

Let A be any category. A monad on A is an algebra in the monoidal category

pEndpAq, ˝, IdAq. More explicitly, a monad is a tuple pT, µ, ηq where T : A Ñ A is

an endofunctor, and µ : T ˝ T ñ T and η : IdA ñ T are natural transformations

satisfying associativity and unitality axioms.
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For example, given an adjunction, pF : A Ñ Bq % pG : B Ñ Aq with unit η and

counit ε, we get that pGF,GεF, ηq is a monad on A.

2.5.3 Eilenberg-Moore and Kleisli categories

Next, for a monad pT, µ, ηq on A, the Eilenberg-Moore category AT of T is the category

with objects pY, ξY q where Y P A and ξY : T pY q Ñ Y P A. In AT , a morphism

f : pY, ξY q Ñ pZ, ξZq is a morphism f : Y Ñ Z P A, satisfying f ˝ ξY “ ξZ ˝ T pfq.

This construction produces an adjunction

pFreeT : A Ñ AT
q % pForgT : AT

Ñ Aq,

where the functor FreeT is defined by FreeT pY q :“ pT pY q, µY q, FreeT pfq :“ T pfq, and

ForgT is defined by ForgT pY, ξY q :“ Y , ForgT pfq :“ f . The monad associated to this

adjunction coincides with the original monad T .

Alternatively, the Kleisli category AT of T is the category whose objects are the

objects of A, where HomAT
pX, Y q “ HomApX,T pY qq. The composition of morphisms

f P HomAT
pX, Y q and g P HomAT

pY, Zq in AT is given by g ˝T f :“ µZ ˝ T pgq ˝ f ,

which is in HomApX,T pZqq. Again, this produces an adjunction:

pFT : A Ñ AT q % pUT : AT Ñ Aq,

where the functor FT is defined by FT pY q :“ Y , FT pf : Y Ñ Zq :“ ηZ ˝ f , and the

functor UT is defined by UT pY q :“ T pY q, UT pf : Y Ñ Zq :“ µZ ˝ T pfq. Again, the

monad associated to this adjunction coincides with the original monad T .

The category AT can be identified with the essential image of FreeT in AT , via the

embedding K : AT Ñ AT given by KpY q “ T pY q and Kpf : Y Ñ Zq “ µZ ˝ T pfq.

Hence, the objects of the Kleisli category of T are considered as the free objects of

the Eilenberg-Moore category of T .

The Eilenberg-Moore and Kleilsi categories are, respectively, the terminal and

initial solutions to the problem of finding an adjunction which gives rise to a certain
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monad. Namely, given a monad T on A, consider the category AdjT , whose objects are

adjunctions pF : A Ñ Bq % pG : B Ñ Aq which induce the monad T . Morphisms in

AdjT are defined as follows. Given adjunctions A1 :“ pF1 : A Ñ B1q % pG1 : B1 Ñ Aq

and A2 :“ pF2 : A Ñ B2q % pG2 : B2 Ñ Aq in AdjT , a morphism K : A1 Ñ A2 is a

functor K : B1 Ñ B2 which satisfies K ˝ F1 “ F2 and G2 ˝ K “ G1.

In this category AdjT , the Eilenberg-Moore adjunction is terminal and the Kleisli

adjunction is initial. This produces a unique functor KT : AT Ñ AT which satisfies

KT ˝FT “ FreeT and ForgT ˝KT “ UT . This functor is called the comparison functor,

and it coincides with the embedding K of AT into AT mentioned above.
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Chapter 3

Division algebras in monoidal categories

This chapter of the thesis is based on the paper [KW25]. Our goal is to adapt the

equivalent definitions of division algebras over a field, given in Defintion 2.1.1, to the

monoidal setting. In Section 3.1 we use module-theoretic techniques to accomplish

this, and explore how these definitions relate in a variety of monoidal categories. In

Section 3.2, we instead use monads to define division algebras and examine their

connection to the previously proposed definitions. Finally, we discuss possible future

directions that may be of interest in Section 3.3.

3.1 Module-theoretic division algebras

In this part, we adapt Definition 2.1.1(ii,iii) to the abelian monoidal setting via module

theoretic techniques. In §3.1.1, we introduce module-theoretic definitions of division

algebras in abelian monoidal categories. We then explore these structures in rigid,

multifusion, and pivotal multifusion categories in §§3.1.2, 3.1.3, 3.1.4, respectively.

3.1.1 In abelian monoidal categories

Let C denote an abelian monoidal category.

Definition 3.1.1. A non-zero algebra A P AlgpCq is a left (resp., right) simplistic

division algebra in C if the regular module Areg in A-ModpCq (resp., in Mod-ApCq) is

simple, and we say that A is a simplistic division algebra in C if both conditions hold.

The full subcategories of AlgpCq on these objects are denoted by ℓ.SimpDivAlgpCq,

by r.SimpDivAlgpCq, and by SimpDivAlgpCq, respectively.
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Definition 3.1.2. A non-zero algebra A P AlgpCq is a left (resp., right) essential

division algebra in C if the functor pA b ´q : C Ñ A-ModpCq (resp., the functor

p´ b Aq : C Ñ Mod-ApCq) is essentially surjective. We say that A is an essential

division algebra in C if both conditions hold.

The full subcategories of AlgpCq on these objects are denoted by ℓ.EssDivAlgpCq,

by r.EssDivAlgpCq, and by EssDivAlgpCq, respectively.

Note that Definition 3.1.1 was used in previous works involving division algebras in

abelian monoidal categories [GS16, Gro19, KZ19], as this recovers Definition 2.1.1(iii)

when C is the monoidal category of k-vector spaces, pVec,bk, kq. On the other hand,

Definition 3.1.2 recovers Definition 2.1.1(ii) when C is Vec since if the functor p´ bAq

is essentially surjective, then every right A-module in C is isomorphic to one in the

image of p´ b Aq, hence free. Similarly, if pA b ´q is essentially surjective, then

every left A-module in C is free. Moreover, the hypothesis that A is non-zero in the

terminology above is needed; else, by Lemma 2.3.4, the conditions in Definitions 3.1.1

and 3.1.2 hold vacuously.

Example 3.1.3. If 1 ‰ 0, then 1 is a simplistic division algebra precisely when 1 is

a simple object in C. But, 1 is always an essential division algebra since, by unitality,

the functors p1 b ´q : C Ñ C and p´ b 1q : C Ñ C are essentially surjective.

With the quick example above, we see that these two types of division algebras

differ in the general abelian monoidal setting beyond Vec.

3.1.2 In rigid, abelian monoidal categories with simple unit

In this part, assume that C is a rigid, abelian monoidal category with simple 1. We

will show that essential division algebras in C are simplistic division algebras in C. We

will also present examples of simplistic, non-essential division algebras in C, showing

that these definitions remain distinct in this setting.
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Proposition 3.1.4. Take A P AlgpCq where A admits a simple left (resp., right)

module in C. If A is in ℓ.{r.EssDivAlgpCq, then A is in ℓ.{r.SimpDivAlgpCq.

Proof. We start with A P AlgpCq that is a left essential division algebra admitting a

simple left A-module S in C. We aim to show that Areg P A-ModpCq is simple. Now

take a non-zero left ideal ι : I Ñ A in C; it suffices to show that the mono ι is an

isomorphism in C.

Since A is a left essential division algebra, the module S is free. So, there is

an object X P C such that S – A b X P A-ModpCq. By exactness of the functor

p´ b Xq, a consequence of rigidity, we have that monos are preserved. Thus, we

obtain a submodule ι b idX : I b X Ñ A b X. By simplicity of S – A b X, either

I b X “ 0 or ι b idX is an isomorphism.

Next, note that p´ b Xq : C Ñ Mod-p X˚ b XqpCq is an equivalence of categories

via the right dual version of (2.4.3). Since I ‰ 0, we conclude that I b X, the

image of I under the equivalence p´ b Xq, is also non-zero. Hence, ι b idX is an

isomorphism in C, and hence in p X˚ b Xq-ModpCq. But, equivalences of categories

reflect isomorphisms, so ι must be an isomorphism, as desired.

The right version argument is similar, using instead the equivalence of categories

pX b ´q : C „
ÝÑ pX b X˚q-ModpCq.

Remark 3.1.5. The hypothesis on A in Proposition 3.1.4 holds when the regular

module in A-ModpCq (resp., Mod-ApCq) is left (resp., right) Artinian, is left (resp.,

right) Noetherian, or is semisimple.

Next, we construct simplistic, non-essential division algebras in C. To do this, we

study when the internal End algebras of the regular left and right C-module categories

are division algebras in C.
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Proposition 3.1.6. Take C as above, and take an object X in C.

(i) X b X˚ is a simplistic division algebra in C if and only if X is simple.

(ii) ˚X b X is a simplistic division algebra in C if and only if X is simple.

(iii) X b X˚ is an essential division algebra in C if and only if X is left invertible.

(iv) ˚X bX is an essential division algebra in C if and only if X is right invertible.

Proof. For (i), recall the equivalence p´ bX˚q : C „
ÝÑ Mod-pX bX˚qpCq from (2.4.3).

Applying this to X, we obtain that X is simple in C if and only if XbX˚ is simple in

Mod-pX bX˚qpCq, if and only if X bX˚ is a right simplistic division algebra. Again,

using (2.4.3), we get an equivalence X b p´q˚ : C „
ÝÑ pX bX˚q-ModpCq, and applying

this to X, we obtain that X is simple in C if and only if X b X˚ is a left simplistic

division algebra. The proof of part (ii) follows likewise.

For (iii), by way of Lemma 2.2.1(i), we first show that X bX˚ is a right essential

division algebra if and only if p´bXq : C Ñ C is essentially surjective. For the forward

direction, assume that X b X˚ is a right essential division algebra, and let Z P C be

any object. Take the module Z b X˚ in Mod-pX b X˚qpCq, and by the assumption,

there is an object Z̃ P C such that Z̃bXbX˚ – ZbX˚ in Mod-pXbX˚qpCq. Again,

p´ bX˚q : C „
ÝÑ Mod-pX bX˚qpCq is an equivalence, so apply its quasi-inverse to get

that Z̃ b X – Z in C. Thus, Z is in the essential image of p´ b Xq.

Conversely, assume that p´ b Xq : C Ñ C is essentially surjective, and take

any right module M P Mod-pX b X˚qpCq. Since p´ b X˚q is essentially surjective

onto Mod-pX b X˚qpCq, there exists an object M̃ P C such that M̃ b X˚ – M in

Mod-pX b X˚qpCq. Moreover, since p´ b Xq is essentially surjective onto C, there

exists an object X̃ P C such that X̃ b X – 1 in C. Then, pM̃ b X̃q b pX b X˚q –

M̃ bX˚ – M in Mod-pX bX˚qpCq, so that M is in the essential image of the functor

p´ b pX b X˚qq : C Ñ Mod-pX b X˚qpCq, completing the direction.

Likewise, X bX˚ is a left essential division algebra if and only if p´ bXq : C Ñ C

is essentially surjective, by the equivalence pX b ´q : C „
ÝÑ Mod-pX b X˚qpCq from
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(2.4.3), and by duality functors. Now apply Lemma 2.2.1(i) to conclude part (iii).

The proof of part (iv) follows similarly.

Remark 3.1.7. We can recover Proposition 3.1.4 for the algebras XbX˚ and ˚XbX

in C, in the finite length case. First, applying (2.4.3) to the simple object 1 P C, we get

simple modulesX˚ P Mod-pXbX˚qpCq andX P pXbX˚q-ModpCq. So, the hypotheses

of Proposition 3.1.4 hold for the algebra X b X˚ in C. Now assume that X b X˚ is

an essential division algebra in C. Then, X is left invertible [Proposition 3.1.6(iii)],

so X is simple [Lemma 2.2.2], and hence X b X˚ is a simplistic division algebra

[Proposition 3.1.6(i)]. Similar arguments work for the algebra ˚X b X in C.

Next, we provide examples of simplistic, non-essential division algebras in certain

fusion categories. Indeed, fusion categories satisfy the hypotheses on C here, including

those in Remark 3.1.7.

Example 3.1.8. Take the Fibonacci fusion category, Fib, which has simple objects 1

and τ satisfying the fusion rules: 1b1 – 1, and 1bτ – τ – τ b1, and τ bτ – 1\τ.

See e.g., [Wal24, §3.9] or [BD12]. We have that τ b τ˚ – 1 \ τ . Since τ is simple in

C, Proposition 3.1.6(i) implies that 1 \ τ is a simplistic division algebra in Fib.

But, p´ b τq : Fib Ñ Fib is not essentially surjective. Indeed, since Fib is semisim-

ple, each object in Fib is isomorphic to 1n\τm, for some m,n ě 0. Then, the essential

image of p´ b τq has objects p1n \ τmq b τ – 1
m \ τm`n, for m,n ě 0. So, 1 is not

in the essential image of p´ b τq, and by Lemma 2.2.1(i) with Proposition 3.1.6(iii),

1 \ τ is not an essential division algebra in Fib.

Example 3.1.9. Take a finite non-abelian group G, and take its (fusion) category

FdReppGq of finite-dimensional representations over k. Here, b :“ bk and 1 :“ k.

Now FdReppGq has a simple object Z with dimkpZq ą 1. So, Z b Z˚ is a simplistic

division algebra in FdReppGq [Proposition 3.1.6(i)].

But, dimkp1q “ 1, and dimkpX b Y q “ dimkpXq dimkpY q for X, Y P FdReppGq.

So, Z above is not left invertible, and Z b Z˚ is not an essential division algebra in

FdReppGq [Proposition 3.1.6(iii)].
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3.1.3 In multifusion categories

Proposition 3.1.6 used the Morita equivalence of 1 and X b X˚ for any non-zero

X P C. More generally, the results below use a Morita equivalence from Ostrik’s

Theorem [Theorem 2.4.4].

Proposition 3.1.10. Let C be multifusion with A P AlgpCq whose categories of mod-

ules in C satisfy the hypothesis of Ostrik’s Theorem.

(i) EndMod-ApCqpMq is a right simplistic division algebra if and only if M is simple

in Mod-ApCq.

(ii) EndA-ModpCqpNq is a left simplistic division algebra if and only if N is simple in

A-ModpCq.

Proof. Applying Ostrik’s Theorem first to Mod-ApCq, we obtain an equivalence of

categories HomMod-ApCqpM,´q : Mod-ApCq Ñ Mod-EndMod-ApCqpMqpCq for any non-

zero M P Mod-ApCq. Applying this equivalence to M P Mod-ApCq, it follows that

EndMod-ApCqpMq is simple in Mod-EndMod-ApCqpMqpCq if and only if M is simple in

Mod-ApCq, proving (i). Similarly, applying Ostrik’s Theorem to the right C-module

category A-ModpCq gives (ii).

Remark 3.1.11. Deriving simplistic division algebras from internal End algebras of

simple objects was considered in [Gro19, Theorem 2.5], [GS16, Theorem 2.8], and

[KZ19, Lemma 3.6(4)], without considering the converse statement.

Proposition 3.1.12. Let C be multifusion with A P AlgpCq whose categories of mod-

ules in C satisfy the hypothesis of Ostrik’s Theorem.

(i) For any M P Mod-ApCq, we have that EndMod-ApCqpMq is a right essential divi-

sion algebra if and only if p´ b Mq : C Ñ Mod-ApCq is essentially surjective.

(ii) For any N P A-ModpCq, we have that EndA-ModpCqpNq is a left essential division

algebra if and only if pN b ´q : C Ñ A-ModpCq is essentially surjective.
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Proof. To prove (i), note that X b HomMod-ApCqpM,M 1q – HomMod-ApCqpM,X bM 1q,

for any X P C and M,M 1 P Mod-ApCq; see [EGNO15, Lemma 7.9.4]. Therefore, we

get that

p´ b EndMod-ApCqpMqq – HomMod-ApCqpM,´ b Mq

as functors from C to Mod-EndMod-ApCqpMqpCq. Moreover, HomMod-ApCqpM,´ b Mq

is the composition of the functor p´ b Mq : C Ñ Mod-ApCq with the functor

HomMod-ApCqpM,´q : Mod-ApCq Ñ Mod-EndMod-ApCqpMqpCq, where the second is an

equivalence of categories by Ostrik’s Theorem. Hence

p´ b EndMod-ApCqpMqq – HomMod-ApCqpM,´q ˝ p´ b Mq

is essentially surjective if and only if p´ b Mq is essentially surjective, and we are

done. The proof of (ii) is analogous.

Remark 3.1.13. Propositions 3.1.10 and 3.1.12 are analogues of Schur’s Lemma

[Lemma 2.1.2].

Example 3.1.14. Let A P AlgpCq such that Mod-ApCq satisfies the hypothesis of

Ostrik’s Theorem. Also, let M P Mod-ApCq be a left invertible module, i.e., there is

some N P A-ModpCq satisfying N bM – Areg P pA,Aq-BimodpCq. Then we have that

M 1 – M 1 bA Areg – M 1 bA N b M in Mod-ApCq, for any M 1 P Mod-ApCq. Hence,

p´ b Mq : C Ñ Mod-ApCq is essentially surjective, and Proposition 3.1.12 gives that

EndMod-ApCqpMq – pM bA M˚ q˚ is a right essential division algebra in C.

When A “ 1, we recover Proposition 3.1.6(iii): namely, if an object X P C is left

invertible, then pX b X˚ q˚ – X b X˚ is a right essential division algebra in C.

3.1.4 In pivotal multifusion categories

We now address whether the distinction between left and right division algebras is

necessary, and we find that in a pivotal multifusion category, the distinction is not

needed. Note that such categories are abundant, as it is conjectured that every fusion



38

category must be pivotal [ENO05, Conjecture 2.8].

Lemma 3.1.15. Let C be a pivotal abelian monoidal category with A P AlgpCq. Then,

for any M P Mod-ApCq, the algebras EndMod-ApCqpMq and EndA-ModpCqp M
˚ q are iso-

morphic as algebras in C.

Proof. We have the following isomorphism:

EndMod-ApCqpMq – pM bA M˚
q

˚
ȷ̂MbA M˚

ÝÝÝÝÝÑ p
˚ M bA M˚

q – EndA-ModpCqp M
˚

q.

Thus, it is suffices to show that ȷ̂MbA M˚ is an algebra map. To do this, recall that

the algebra structure maps of pM bA M˚ q˚ are given by m “ pµq˚ and u “ pηq˚,

while the algebra structure maps of p˚ M bA M˚ q are given by m1 “ µ˚ and u1 “ η˚ ,

where µ :“ idM bA coevRM bA id M˚ . Then, η is defined as the map from M bA M˚ to

1 satisfying evR
M “ η π, where π is the coequalizer projection morphism associated to

MbA M˚ “ coeqpŸb id M˚ , idM bŹq. Using this structure on the internal Ends, and

the fact that ȷ̂ is a monoidal natural transformation, it is straightforward to verify

that ȷ̂ is an algebra isomorphism.

Proposition 3.1.16. Let C be a pivotal multifusion category with A P AlgpCq.

(i) A P ℓ.SimpDivAlgpCq if and only if A P r.SimpDivAlgpCq.

(ii) A P ℓ.EssDivAlgpCq if and only if A P r.EssDivAlgpCq.

Proof. Start with algebras A and B in C that are a left simplistic division algebra and

left essential division algebra, respectively. Using the equivalence of categories p´q˚

from left modules to right modules we obtain that A˚ is simple in Mod-ApCq, and that

p´ b B˚q : C Ñ Mod-BpCq is essentially surjective. Proposition 3.1.10(i) then gives

that EndMod-ApCqpA
˚q is a right simplistic division algebra, and Proposition 3.1.12(i)

gives that EndMod-BpCqpB
˚q is a right essential division algebra. By Lemmas 2.4.1

and 3.1.15, we get that as algebras,

EndMod-ApCqpA
˚
q – EndA-ModpCqp p

˚ A˚
qq – EndA-ModpCqpAq – A.



39

Similarly, EndMod-BpCqpB
˚q – B. Thus, A is a right simplistic division algebra, and B

is a right essential division algebra. The backwards direction is analogous.

3.2 Monad-theoretic division algebras

Previously, we were restricted to working in abelian monoidal and (multi)fusion cat-

egories to study simplistic division algebras. But essential division algebras can be

defined in any monoidal category; we will see here that they can be examined via

monads. Monadic division algebras are introduced in §3.2.1, and connections to es-

sential division algebras are discussed there. We provide examples of monadic division

algebras in §3.2.2.

3.2.1 Monadic division algebras

We first direct the reader to §2.5.3 to recall the Eilenberg-Moore and Kleisli categories

of a monad, along with the comparison functor between these categories.

Definition 3.2.1. Let T : A Ñ A be a monad on any monoidal category A. We say

that T is adjunction-trivial if the comparison functor KT : AT Ñ AT is an equivalence

of categories.

The term adjunction-trivial was chosen to describe such a monad because when

this condition is satisfied, the category AdjT has only one object, up to isomorphism.

Thinking of the Kleisli category as the free modules over the monad T , this condi-

tion is an analogue of the division algebra property that all modules over a division

algebra are free. We use this analogue to define monad-theoretic division algebras in

Definition 3.2.2 below.

Now, let C be a strict monoidal category. For any A P AlgpCq, we obtain two mon-

ads on C:
`

pA b ´q, mA b idp´q, uA b idp´q

˘

and
`

p´ b Aq, idp´q b mA, idp´q b uA
˘

.
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To be consistent with the exclusion of the zero algebra as a division algebra in abelian

monoidal categories, via Lemma 2.3.4, we will consider the condition below:

A P AlgpCq satisfies that A-ModpCq and Mod-ApCq

both have more than one isoclass of objects.
(‹)

Definition 3.2.2. An algebra A in C subject to p‹q is called a left (resp., right)

monadic division algebra if the monad pA b ´q (resp., p´ b Aq) on C is adjunction-

trivial.

The full subcategory of AlgpCq on these algebras is denoted by ℓ.MonDivAlgpCq

(resp., r.MonDivAlgpCq).

Note that essential division algebras can also be defined in C by replacing the

non-zero condition on A with (‹). The connection to monadic division algebras in C

is given below.

Proposition 3.2.3. Take A P AlgpCq subject to p‹q. Then, A P ℓ.{r.MonDivAlgpCq if

and only if A P ℓ.{r.EssDivAlgpCq.

Proof. This follows as CpAb´q » A-ModpCq and Cp´bAq » Mod-ApCq, and because

under these equivalences, CpAb´q and Cp´bAq are the left and right free A-modules in

C, respectively.

Example 3.2.4. For the monoidal category of k-vector spaces, pVec,bk,kq, with

A P AlgpVecq, consider the monad p´ bk Aq on Vec. Then, Vecp´bkAq
» Vecp´bkAq if

and only if every right A-module over k is free, which happens precisely when A is a

division algebra over k. So, monadic division algebras in Vec again recover division

algebras over k.

3.2.2 Examples of monadic division algebras

To construct more examples of monadic division algebras, we use monads that satisfy

the following property. For further information, see [Mog91] or [MU22].
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Definition 3.2.5. A monad pT, µ, ηq on C is left strong if it is equipped with a natural

transformation θ :“ tθX,Y : X b T pY q Ñ T pX b Y quX,Y PC (left strength) such that

for all X, Y, Z P C:

(i) θX,Y bZpidX b θY,Zq “ θXbY,Z ; (iii) θX,Y pidX b µY q “ µXbY T pθX,Y qθX,T pY q;

(ii) θ1,X “ idT pXq; (iv) θX,Y pidX b ηY q “ ηXbY .

A left strong monad pT, µ, η, θq is said to be left very strong if θ is a natural isomor-

phism. Right strong and right very strong monads on C are defined analogously.

The next result is straightforward to verify.

Lemma 3.2.6. If pT, µ, η, θq is left (resp., right) strong, then T p1q P AlgpCq. Here,

mT p1q :“ µ1 θT p1q,1 (resp., µ1 θ1,T p1q), and uT p1q :“ η1.

Proposition 3.2.7. Let T be a monad on a strict monoidal category C.

(i) If T is left very strong, then T is adjunction-trivial if and only if T p1q is a right

monadic division algebra.

(ii) If T is right very strong, then T is adjunction-trivial if and only if T p1q is a

left monadic division algebra.

Proof. In both cases, T p1q is an algebra in C by Lemma 3.2.6. Next, let T be left very

strong, with left strength θ. Then, T – p´ bT p1qq via the natural isomorphism θ´1
´,1.

It follows that T is adjunction-trivial if and only if p´ b T p1qq is adjunction-trivial,

if and only if T p1q P r.MonDivAlgpCq by definition. Similarly, when T is right very

strong, T – pT p1q b ´q, and part (ii) holds.

Example 3.2.8. Continuing Example 3.2.4 for C “ Vec and A P AlgpVecq, we have

that p´bkAq is a left very strong monad on Vec with strength being the associativity

of bk. Now, Vecp´bkAq
» Vecp´bkAq if and only if k bk A – A is a right monadic

division algebra in Vec (which happens precisely when A is a division algebra over k).
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Example 3.2.9. Here, we consider the maybe monad T on pSet,\,Hq, given by

T p´q :“ p´\t˚uq, where \ is disjoint union. See [Rie17, Examples 5.1.4(i) and 5.3.2]

for details; in particular, it is adjunction-trivial. Also, T is left very strong by the

associativity of \. Proposition 3.2.7 implies that T pHq – t˚u is a right monadic

division algebra in pSet,\,Hq. Using that X \ Y – Y \ X for X, Y P Set, we see

that T is right very strong. Hence, t˚u is also a left monadic division algebra in

pSet,\,Hq.

Example 3.2.10. Consider the free vector space monad T on pSet,ˆ, t˚uq, given

by T pXq :“ kX , consisting of finitely supported functions f : X Ñ k. See [Rie17,

Example 5.1.4(iii)]. We obtain that SetT » Vec » SetT . However, T is not left very

strong as, in general, X ˆ kY fl kXˆY as sets. So, we cannot use Proposition 3.2.7 to

get a left monadic division algebra in Set. Still, see §3.3.1 below.

3.3 Discussion

We briefly discuss here potential research directions that may be of interest to the

reader.

3.3.1 On division monads

One may want to refer to a monad T on A as a “division monad” when AT » AT ,

instead of calling such monads adjunction-trivial. This would include monads that

are not necessarily very strong, such as in Example 3.2.10. We inquire whether the

scarcity of these types of monads mirrors the scarcity of division k-algebras among

the collection of k-algebras.

3.3.2 On structural results for algebras in monoidal categories

There are several classical results using division k-algebras that could be expanded

to general monoidal settings, e.g., Artin-Wedderburn Theorem. Moreover, the clas-

sification of division algebras in various monoidal settings is open. For example, we
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expect an analogue of Frobenius’s Theorem (i.e., the only finite-dimensional division

algebra over an algebraically closed field is the field itself) to hold in finite monoidal

settings.

3.3.3 On the essential condition versus the simplistic condition

If one uses simplistic division algebras as done in previous works (e.g., in [GS16,

Gro19, KZ19]), then the supply of division algebras may be too abundant to make

satisfactory progress. For instance, any simple module over a finite group G yields

a simplistic division algebra in the monoidal category of G-modules [Example 3.1.9].

We propose it is that better to use the more restrictive class of essential/monadic

division algebras to examine pertinent results for algebras in monoidal categories.

3.3.4 On the left versus right division algebra conditions

In Proposition 3.1.16, we proved that a left simplistic (resp., essential) division algebra

in a pivotal multifusion category C is a right simplistic (resp., essential) division

algebra in C, and vice versa. It is shown in recent work of Nakamura, Shibata, and

Shimizu that the result in the simplistic case holds when C is a finite tensor category

[NSS25, Lemma 2.12]. There, the more common terminology, left/right simple algebra

in C, is used instead of our terminology here. We all expect that such “Left ô Right”

results hold in more general monoidal settings [Shi25].
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Chapter 4

Extended Frobenius algebras in monoidal categories

This chapter follows the paper [CKQW24]. We begin by exploring extended Frobenius

algebras over a field in Section 4.1 and in a monoidal category in Section 4.2. We

define functors that preserve extended Frobenius algebras in Section 4.3. Section 4.4

is dedicated to using the connection between Frobenius algebras and Hopf algebras

to create more extended Frobenius algebras by extending Hopf algebras and defining

functors that preserve these structures. We end with a discussion on some possible

future research directions in Section 4.5.

4.1 Extended Frobenius algebras over a field

In this section, we study extended Frobenius algebras over a field k, originally defined

in [TT06] as follows.

Definition 4.1.1. (a) [TT06, Definition 2.5] A Frobenius algebra pA,m, u,∆, εq

(see Definition 2.1.5) is an extended Frobenius algebra over k if it is equipped

with a morphism ϕ : A Ñ A and an element θ P A such that:

(i) ϕ : A Ñ A is an involution of Frobenius algebras,

(ii) θ P A satisfies ϕpθaq “ θa, for all a P A,

(iii) mpϕ b idAq∆p1Aq “ θ2.

A morphism f : pA, ϕA, θAq Ñ pB, ϕB, θBq of extended Frobenius algebras over

k is a morphism f : A Ñ B of k-Frobenius algebras such that f ϕA “ ϕB f and

fpθAq “ θB.
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(b) We refer to pϕ, θq in part (b) as the extended structure of the underlying Frobe-

nius algebra A, and say that A is extendable when ϕ and θ exist. We also call

an extended structure pϕ, θq on A ϕ-trivial when ϕ “ idA, and call it θ-trivial

when θ “ 0.

The roman numerals (i), (ii), (iii) in this section will refer to the

conditions in Definition 4.1.1(a).

We provide many examples of, and preliminary results for, such structures in

§4.1.1. Then, §4.1.2 is dedicated to establishing the following theorem classifying

extended structures for several Frobenius algebras over k.

Theorem 4.1.2 (Propositions 4.1.10–4.1.12, 4.1.14–4.1.16, 4.1.18–4.1.19). Take an

integer n ě 2, and ωn P k an n-th root of unity. The extended structures for the

Frobenius algebras below are classified, recapped as follows.

(a) k : all extensions are ϕ-trivial.

(b) C over R: all extensions are ϕ-trivial or θ-trivial.

(c) krxs{pxnq: all extensions are ϕ trivial when n is odd, and is not extendable when

n is even.

(d) kC2: all extensions are ϕ-trivial or θ-trivial.

(e) kC3: all extensions are ϕ-trivial or ϕ maps a generator g of C3 to ω3g
2.

(f) kC4: all extensions are ϕ-trivial, or θ-trivial, or ϕ takes a generator g of C4

to ω4g
3.

(g) kpC2 ˆ C2q: here, ϕ maps g to ω2g
1, where g, g1 are generators of C2 ˆ C2.

(h) T2p´1q :“ kxg, xy{pg2 ´ 1, x2, gx ` xgq : all extensions are ϕ-trivial.
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4.1.1 Preliminary results and examples

We begin with some useful preliminary results on (extended) Frobenius algebras A

over k. First, the Frobenius law from Definition 2.1.5 implies that

∆paq “ ap1Aq
1

b p1Aq
2, where ∆p1Aq :“ p1Aq

1
b p1Aq

2, (4.1.3)

for any a P A. So, ∆p1Aq determines the Frobenius structure of A.

Lemma 4.1.4. If A is a Frobenius algebra that is also a domain, then an extended

structure of A (if it exists) must be either ϕ-trivial or θ-trivial.

Proof. Suppose that an extended structure pA, ϕ, θq exists. Then, for all a P A we

have that θϕpaq “ ϕpθqϕpaq “ ϕpθaq “ θa, by condition (i). Hence, θpϕpaq ´ aq “ 0

for all a P A, and the result follows from A being a domain.

Lemma 4.1.5. Let A be a Frobenius algebra over k, and let pA, ϕ, θq and pA, ϕ1, θ1q

be two extended structures of A. If θ P k1A and θ ‰ θ1, then an extended Frobenius

algebra morphism from pA, ϕ, θq to pA, ϕ1, θ1q does not exist.

Proof. Suppose by way of contrapositive that θ “ λ1A for some λ P k and there is a

morphism f : pA, ϕ, θq Ñ pA, ϕ1, θ1q of extended Frobenius algebras. Since f is unital

and preserves the extended structure, θ “ λ1A “ λfp1Aq “ fpλ1Aq “ fpθq “ θ1, as

desired.

We will see in Proposition 4.1.14 that Lemma 4.1.5 fails when θ R k1A. We now

include some examples of extended structures for well-known Frobenius algebras.

Example 4.1.6. Let G be a finite group. Its group algebra kG has a Frobenius

algebra structure determined by ∆peGq “
ř

hPG h b h´1. Then,

ϕ “ idkG, θ “ ˘
a

|G| ¨ eG

yield extended structures of kG. Now, conditions (i) and (ii) are trivially satisfied.

Condition (iii) holds as mpϕ b idkGq∆peGq “ m p
ř

hPG h b h´1q “ |G| ¨ eG “ θ2 .
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Example 4.1.7. Let Cn denote the cyclic group of order n ě 2, and let g denote a

generator of Cn. Consider the Frobenius structure on kCn from Example 4.1.6. Then,

ϕpgq “ ωng
´1, θ “ ˘ 1?

n

řn´1
j“0 ω

j
ng

´2j

are extended structures of kCn for any n-th root of unity ωn P k. It is a quick check

that condition (i) holds. Towards condition (ii), let a :“
řn´1

i“0 aig
i be an element in

kCn. Then,

ϕpaθq “ ˘ 1?
n

řn´1
i,j“0 aiω

j
nϕpgqi´2j “ ˘ 1?

n

řn´1
i,j“0 aiω

i´j
n g´i`2j

“ ˘ 1?
n

řn´1
i,k“0 aiω

k
ng

i´2k “ aθ.

For condition (iii), we compute:

mpϕ b idkGq∆peCnq “ mpϕ b idkCnq

´

řn´1
j“0 g

j b g´j
¯

“
řn´1

j“0 ω
j
ng

´2j “ 1
n

řn´1
i“0

řn´1
k“0 ω

k
ng

´2k

“ 1
n

řn´1
i,j“0 ω

i`j
n g´2pi`jq “ 1

n

´

řn´1
j“0 ω

j
ng

´2j
¯2

“ θ2.

Example 4.1.8. Let ω :“ ωn be a primitive n-th root of unity, for n ě 2. Con-

sider the Taft algebra, Tnpωq :“ kxg, xy{pgn ´ 1, xn, gx´ ωxgq, with Frobenius struc-

ture defined by ∆p1Tnpωqq “
řn´1

j“0

`

´ωjgj`1 b g´pj`1qx ` gjx b g´j
˘

. This Frobenius

structure on Tnpωq can be extended via

ϕ “ idTnpωq, θ P
Àn´1

j“0,k“1 kgjxk.

To show this, we compute: mpϕ b idTnpωqq∆p1q “ 0 “ θ2, so condition (iii) holds.

Conditions (i) and (ii) are trivially satisfied.

Example 4.1.9. Let Matnpkq be the algebra of n ˆ n matrices over k, with basis

tEi,ju
n
i,j“1 of elementary matrices. Consider the Frobenius structure determined by

∆pEi,jq “
řn

ℓ“1Ei,ℓ b Eℓ,j, for all 1 ď i, j ď n. Then,

ϕ “ idMatnpkq, θ “ ˘
?
n ¨ In

give extended structures of Matnpkq.
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Indeed, mpϕ b idMatnpkqq∆pInq “
řn

i,ℓ“1Ei,ℓEℓ,i “ n ¨ In “ θ2, so condition (iii)

holds. Moreover, conditions (i) and (ii) are trivially satisfied.

4.1.2 Classification results

Now we proceed to establish Theorem 4.1.2, starting with the results for the Frobenius

algebras: k over k, C over R, and the nilpotent algebra krxs{pxnq over k.

Proposition 4.1.10. The only extended structures of the Frobenius algebra k where

∆k is given by the isomorphism k „
Ñ k b k are ϕ-trivial, with θ “ ˘1k. Moreover,

these two extended Frobenius algebra structures are non-isomorphic.

Proof. Suppose ϕ and θ give an extended structure of k. Since ϕ : k Ñ k is a

morphism of algebras, the only possible choice is ϕ “ idk, which satisfies conditions (i)

and (ii) trivially. Condition (iii) implies that θ “ ˘1k. Lastly, the structures are non-

isomorphic by Lemma 4.1.5.

Proposition 4.1.11. Consider the Frobenius algebra C over R with ∆ defined by

∆p1q “ 1 b 1 ´ i b i. Then,

(a) ϕ “ idC and θ “ ˘
?
2, and

(b) ϕpzq “ z for all z P C, and θ “ 0,

are all of the extended structures of C, and these extended Frobenius algebras are all

non-isomorphic.

Proof. By Lemma 4.1.4, an extended structure of C should be ϕ-trivial or θ-trivial.

If ϕ “ idC, then θ2 “ mpϕ b idCq∆p1q “ mp1 b 1 ´ i b iq “ 2, and so θ “ ˘
?
2. On

the other hand, if θ “ 0, then 0 “ mpϕ b idCq∆p1q “ 1 ´ ϕpiqi. Hence, ϕpiq “ ´i

and it follows that ϕ must be complex conjugation. Now condition (iii) holds, and it

is a quick check that conditions (i) and (ii) are satisfied for these choices. Lastly, it

follows from Lemma 4.1.5 that these structures are all non-isomorphic.
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Proposition 4.1.12. Consider the algebra krxs{pxnq, for n ě 2, with Frobenius

structure determined by ∆p1q “
řn´1

i“0 x
i b xn´i´1. Then, the following statements

hold.

(a) For n even, the Frobenius algebra krxs{pxnq is not extendable.

(b) For n odd, all extended structures of the Frobenius algebra krxs{pxnq are

ϕ-trivial, with θ “ ˘
?
nx

n´1
2 `

řn´1
j“n`1

2
θjx

j for some θn`1
2
, . . . , θn´1 P k.

Proof. Suppose that ϕ and θ give an extended structure of krxs{pxnq. Then, a routine

calculation with ϕ being multiplicative and ϕ2 “ id (from condition (i)) implies that

ϕpxq “ ˘x. So, in the rest of the proof, we look at the cases ϕ “ id and ϕpxq “ ´x,

and conclude the latter is never possible, while the former is only possible for n odd.

Suppose first that ϕ “ id. Then, conditions (i) and (ii) are satisfied trivially. Let

θ0, . . . , θn´1 P k such that θ “
řn´1

i“0 θix
i. Then, condition (iii) implies that

nxn´1 “
řn´1

i“0 θ
2
i x

2i `
ř

i‰j θiθix
i`j. (4.1.13)

From the coefficient of 1, it follows that θ0 “ 0. We can argue by induction that

θi “ 0 for all 0 ď i ď n´1
2

´ 1 if n is odd, and for all 0 ď i ď n
2

´ 1 if n is

even. It follows that if n is even, then the coefficient of xn´1 in (4.1.13) leads to

the contradiction: n “ 2
ř

n
2

´1

i“0 θiθn´1´i “ 0. Thus, ϕ “ id is not possible when n is

even. On the other hand, if n is odd, then the coefficient of xn´1 in (4.1.13) yields

n “ pθn´1
2

q2 ` 2
ř

n´1
2

´1

i“0 θiθn´1´i, which implies that θn´1
2

“ ˘
?
n ¨ 1k. So, ϕ “ id and

θ “ ˘
?
nx

n´1
2 `

řn´1
j“n`1

2
θjx

j precisely satisfy conditions (i), (ii), and (iii) yielding an

extended structure on the Frobenius algebra krxs{pxnq when n is odd.

It remains to look at the case ϕpxq “ ´x. It follows from ϕ being a morphism

of coalgebras that this is not possible when n is even, since we get the following

contradiction:
řn´1

i“0 x
i b xn´i´1 “ ∆pϕp1qq “ pϕ b ϕq∆p1q

“
řn´1

i“0 p´1qn´1xi b xn´i´1 “ ´
řn´1

i“0 x
i b xn´i´1.
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When n is odd, the equalities ϕpθq “ θ and ϕpxθq “ xθ from condition (ii) yield

the equations

řn´1
i“0 θix

i “
řn´1

i“0 p´1qiθix
i and

řn´2
i“0 θix

i`1 “
řn´2

i“0 p´1qi`1θix
i`1,

respectively. Hence θi “ 0 for 1 ď i ď n ´ 2, and we have that θ “ θn´1x
n´1. But

then this would imply 0 “ θ2 “ mpϕb idq∆p1q “ xn´1. Hence, ϕpxq “ ´x is also not

possible when n is odd.

For a group G, consider the Frobenius algebra kG of Example 4.1.6. We provide

classification results for extended structures of kG when G “ C2, C3, C4, and C2 ˆC2.

Proposition 4.1.14. Let g be a generator of C2. The extended structures of kC2 are:

(a) ϕ “ idkC2 and θ P t˘
?
2eC2 , ˘

?
2gu, and

(b) ϕpgq “ ´g and θ “ 0.

Moreover, pkC2, idkC2 ,
?
2gq – pkC2, idkC2 ,´

?
2gq as extended Frobenius algebras, and

all other structures are non-isomorphic. That is, there are four isomorphism classes

of extended Frobenius structures on kC2.

Proof. Suppose that ϕ and θ define an extended Frobenius structure on kC2, with

ϕpgq “ ϕ0eC2 ` ϕ1g and θ “ θ0eC2 ` θ1g for ϕ0, ϕ1, θ0, θ1 P k. By the counitality of

ϕ, we have that ϕ0 “ εpϕpgqq “ εpgq “ 0, and ϕ2
1 “ εpϕ2

1g
2q “ εpϕpg2qq “ εpg2q “ 1.

So, ϕ1 “ ˘1. Both choices are involutions and it is a quick check that they satisfy

condition (i). We look now at the conditions (ii) and (iii).

When ϕ “ id, we have that θ20`θ21 “ 2eC2 and 2θ0θ1 “ 0, and so either θ “ ˘
?
2eC2

or θ “ ˘
?
2g. Both of these satisfy conditions (ii) and (iii). When ϕpgq “ ´g,

condition (iii) yields θ20 ` θ21 “ 0 and 2θ0θ1 “ 0. Hence, θ “ 0, and condition (ii) is

satisfied in this case.

Lastly, it follows from Lemma 4.1.5 that an isomorphism can only exist between

pkC2, idkC2 ,
?
2gq and pkC2, idkC2 ,´

?
2gq, which are in fact isomorphic via the mor-

phism of extended Frobenius algebras f : kC2 Ñ kC2 defined by g ÞÑ ´g.
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Proposition 4.1.15. Let g be a generator of C3. The extended structures of kC3 are:

(a) ϕ “ idkC3 and θ P t˘
?
3eC3 , ˘ 1?

3
peC3 ´ 2ω3g ´ 2ω2

3g
2qu,

(b) ϕpgq “ ω3g
2 and θ “ ˘ 1?

3
peC3 ` ω3g ` ω2

3g
2q,

where ω3 P k is a 3-rd root of unity. Moreover, these structures are all non-isomorphic.

Proof. Suppose that ϕ and θ define an extended Frobenius structure of kC3, where

ϕpgq “ ϕ0eC3 ` ϕ1g` ϕ2g
2 and θ “ θ0eC3 ` θ1g` θ2g

2, for ϕi, θi P k. By condition (i),

we get that ϕ “ id or ϕpgq “ ω3g
2. We now examine the conditions (ii) and (iii):

mpϕ b idkC3q∆peC3q “ θ2, and ϕpθaq “ θa for a P kC3.

When ϕ “ id, this gives the equation θ2 “ 3eC3 . Hence, θ0 ‰ 0, and if θ1 “ 0 or

θ2 “ 0, these imply θ “ ˘
?
3eC3 . Otherwise, we have that both θ1, θ2 ‰ 0, and it

follows that θ “ ˘ 1?
3
peC3 ´2ω3g´2ω2

3g
2q for some 3-rd root of unity ω3. Condition (ii)

is trivially satisfied for these cases. When ϕpgq “ ω3g
2, then condition (iii) implies

that θ2 “ eC3 ` ω3g ` ω2
3g

2. We also require θ “ ϕpθq “ θ0eC3 ` θ1ω3g
2 ` θ2ω

2
3g, and

thus θ2 “ ω3θ1. Therefore, we get that θ “ ˘ 1?
3
peC3 ` ω3g ` ω2

3g
2q. One can check

that these choices satisfy condition (ii); see Example 4.1.7.

Lastly, any morphism f of extended Frobenius algebras between these possible

structures is counital, so fpgq “ cg or fpgq “ cg2 for some c P k such that c3 “ 1.

From this and Lemma 4.1.5, we conclude there are no such morphisms between the

different extended structures.

Proposition 4.1.16. Let g be a generator of C4. The extended structures of kC4 are

given by

(a) ϕ “ idkC4 and θ P t˘2eC4 , ˘2g2, ˘p1 ´ iqpg ` ig3q, ˘p1 ` iqpg ´ ig3qu;

(b) ϕpgq “ ´g and θ “ 0;

(c) ϕpgq “ ω4g
3 and θ P

!

˘
1`ω2

4

2
peC4 ´ g2q, ˘i

1`ω2
4

2
pg ´ g3q

)

,

for any 4-th root of unity ω4 P k. These form eight isomorphism classes of extended

structures.
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Proof. Suppose that ϕ and θ define an extended structure on kC4, where for ϕi, θi P k,

we have ϕpgq “ ϕ0eC3 ` ϕ1g ` ϕ2g
2 ` ϕ3g

3 and θ “ θ0eC3 ` θ1g ` θ2g
2 ` θ3g

3. By

condition (i), we get that ϕ2 “ 0 with ϕpgq “ ϕ1g or ϕpgq “ ϕ3g
3; else, ϕ2 ‰ 0 with

ϕ2
1 ` ϕ2

3 “ 0. But a routine computation using ϕ2pgq “ g and condition (iii) shows

that the ϕ2 ‰ 0 case is not possible. So, either ϕpgq “ ϕ1g or ϕpgq “ ϕ3g
3. Since

ϕ2pgq “ g, we obtain ϕpgq “ ˘g or ϕpgq “ ω4g
3 for some ω4 P k.

Suppose that ϕ “ idkC4 . Then, condition (ii) is trivially satisfied. Condition (iii)

implies that 4eC4 “ θ2, and we get the choices for θ in part (a). Condition (ii) implies

that when ϕpgq “ ´g, we must have that θ1 “ θ3 “ 0. So, by condition (iii), we

obtain that θ20 ` 2θ0θ2g
2 ` θ22 “ 0, and it follows that θ “ 0. This yields the choice

in part (b). Lastly, if ϕpgq “ ω4g
3, then from condition (ii), we know that θ1 “ ω3

4θ3.

Also from condition (iii), we get that θ2 “ p1`ω2
4qeC4 ` pω4 `ω3

4qg2. Solving for θ2 in

kC4, we get the two choices for θ in part (c). The former coincides with the choice of

structure given in Example 4.1.7. For the latter, it is easy to check that condition (ii)

still holds.

We prove now that there are exactly eight isomorphism classes of extended struc-

tures. It follows from Lemma 4.1.5 that three such classes are given by

tpkC4, idkC4 , 2eC4qu, tpkC4, idkC4 ,´2eC4qu, tpkC4, ϕpgq “ ´g, 0qu.

Next, there can be no isomorphisms f : pkC4, idkC4 , θq Ñ pkC4, ϕpgq “ ω4g
3, θ1q, as

this would imply fpgq “ fpω4g
3q. Also, the algebra isomorphisms f, f 1 : kC4 Ñ kC4

defined by fpgq “ ´g and f 1pgq “ ig imply that

tpkC4, idkC4 ,˘p1´ iqpg` ig3qq, tpkC4, idkC4 ,˘p1` iqpg´ ig3qqu, tpkC4, idkC4 ,˘2g2qu

are isomorphism classes of extended structures. The remaining isomorphism classes

are then

tpkC4, ϕpgq “ ω4g
3, ˘

1`ω2
4

2
peC4 ´ g2qqu, tpkC4, ϕpgq “ ω4g

3, ˘i
1`ω2

4

2
pg ´ g3qqu

by a routine calculation.
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Given the results in Proposition 4.1.14, 4.1.15, 4.1.16, we propose the following.

Conjecture 4.1.17. Let g be a generator of Cn. The following are the only possi-

bilities for the Frobenius automorphism ϕ for an extended structure on kCn:

(a) ϕpgq “ ˘g or ϕpgq “ ωng
´1 when n is even,

(b) ϕpgq “ g or ϕpgq “ ωng
´1 when n is odd,

where ωn P k is any n-th root of unity.

The remainder of Theorem 4.1.2 is established in the next two results.

Proposition 4.1.18. The extended structures of kpC2 ˆ C2q are:

(a) ϕ “ idkpC2ˆC2q and θ P t˘2e, ˘2gi, ˘pe` gℓq ˘ pgi ´ gjq, ˘pe´ gℓq ˘ pgi ` gjqu;

(b) ϕpgiq “ ´gi, ϕpgjq “ ´gj, ϕpgℓq “ gℓ, and θ “ 0;

(c) ϕpgiq “ gj, ϕpgjq “ gi, ϕpgℓq “ gℓ, and θ P t˘pe ` gℓq, ˘pgi ` gjqu;

(d) ϕpgiq “ ´gj, ϕpgjq “ ´gi, ϕpgℓq “ gℓ, and θ P t˘pe ´ gℓq, ˘pgi ´ gjqu;

where C2 ˆ C2 “ te, g1, g2, g3u and ti, j, ℓu “ t1, 2, 3u.

Proof. It follows from ϕ being counital that ϕpgiq “ ai,1g1 ` ai,2g2 ` ai,3g3 for ai,p P k,

for all 1 ď i, p ď 3. Since ϕ is multiplicative, we then get that

e “ ϕpg2i q “ ϕpgiq
2

“ pa2i,1 ` a2i,2 ` a2i,3qe ` 2ai,1ai,2g3 ` 2ai,1ai,3g2 ` 2ai,2ai,3g1.

Hence, ϕpgiq “ ˘gj for some 1 ď j ď 3. But ϕ2 “ idkpC2ˆC2q, and thus the remaining

possibilities for ϕ are the ones listed in the statement. It remains to find suitable θ

for each possible ϕ. Let θ0, θ1, θ2, θ3 P k such that θ “ θ0e ` θ1g2 ` θ2g2 ` θ3g3.

We compute θ2 “ ϕpeqe `
ř3

i“1 ϕpgiqgi. When ϕ “ idkpC2ˆC2q, one can check that

we get the choices of θ in part (a) by condition (iii). When ϕpgiq “ ´gi, ϕpgjq “ ´gj

and ϕpgℓq “ gℓ for ti, j, ℓu “ t1, 2, 3u, condition (iii) implies θ2 “ 0, so θ “ 0; this

implies part (b). When ϕpgiq “ gj, ϕpgjq “ gi and ϕpgℓq “ gℓ for ti, j, ℓu “ t1, 2, 3u,
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conditions (ii) and (iii) yield the choices of θ in part (c). The case ϕpgiq “ ´gj,

ϕpgjq “ ´gi and ϕpgℓq “ gℓ for ti, j, ℓu “ t1, 2, 3u is analogous.

Proposition 4.1.19. Consider the Taft algebra T2p´1q :“ kxg, xy{pg2´1, x2, gx`xgq

as defined in Example 4.1.8. All extensions of T2p´1q are ϕ-trivial, with θ P kx‘kgx.

Proof. First, note that ∆p1q “ ´g b gx ` x b 1 ` 1 b x ` gx b g. So, by (4.1.3), we

get that ∆pgq “ ´1 b gx ` gx b 1 ` g b x ` x b g, ∆pxq “ gx b gx ` x b x, and

∆pgxq “ xbgx`gxbx. Hence, εp1q “ εpgq “ εpgxq “ 0 and εpxq “ 1. Now suppose

that ϕ : T2p´1q Ñ T2p´1q and θ P T2p´1q define an extended structure on T2p´1q.

Let ai, bi P k such that ϕpgq “ a1 `a2g`a3x`a4gx and ϕpxq “ b1 ` b2g` b3x` b4gx.

Since ϕ is an algebra morphism, we have that

1 “ ϕpgq
2

“ a21 ` a22 ` 2a1a2g ` 2a1a3x ` 2a1a4gx,

0 “ ϕpxq
2

“ b21 ` b22 ` 2b1b2g ` 2b1b3x ` 2b1b4gx.

It follows that ϕpgq “ ˘g ` a3x ` a4gx and ϕpxq “ b3x ` b4gx. On the other

hand, since ϕ is counital, we get 0 “ εpϕpgqq “ a3 and 1 “ εpϕpxqq “ b3. So,

ϕpgq “ ˘g ` a4gx and ϕpxq “ x ` b4gx. Also, because ϕ is an involution, we have

that g “ ϕp˘g ` a4gxq “ ˘pg ` a4gxq ˘ a4pgx ` b4xq. It follows that ϕ “ idT2p´1q.

Lastly, θ2 “ mpϕ b idT2p´1qq∆p1q “ 0, and thus θ P kx ‘ kgx.

Conjecture 4.1.20. Recall the Taft algebras Tnpωq :“ kxg, xy{pgn ´ 1, xn, gx´ωxgq

from Example 4.1.8. All extended Frobenius structures of Tnpωq are ϕ-trivial, with

θ P kx ‘ kgx ‘ ¨ ¨ ¨ ‘ kgn´1x.

4.2 Extended Frobenius algebras in a monoidal category

In this section, we first generalize Definition 4.1.1 to the monoidal setting, following

[TT06, Section 2.2], and give some preliminary results in the monoidal setting in

§4.2.1. Then, in §4.2.2 we put monoidal structures on the category of extended

Frobenius algebras.
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4.2.1 Monoidal definition and preliminary results

Recall the basics of monoidal categories and functors from Section 2.2, as well as

Definition 2.3.1 of Frobenius algebras in a monoidal category. We build on this

definition below to produce our main algebraic structures of interest in this chapter.

Definition 4.2.1. Let C :“ pC,b,1q be a monoidal category.

(a) An extended Frobenius algebra in C is a tuple pA,m, u,∆, ε, ϕ, θq, where the

tuple pA,m, u,∆, εq is a Frobenius algebra in C, with ϕ : A Ñ A and θ : 1 Ñ A

being morphisms in C such that

(i) ϕ is a morphism of Frobenius algebras in C, with ϕ2 “ idA;

(ii) ϕmpθ b idAq “ mpθ b idAq;

(iii) mpϕ b idAq∆u “ mpθ b θq.

A morphism f : pA, ϕA, θAq Ñ pB, ϕB, θBq of extended Frobenius algebras in C

is a morphism f : A Ñ B of Frobenius algebras in C, such that f ϕA “ ϕB f and

f θA “ θB. The above objects and morphisms form a category, ExtFrobAlgpCq.

(b) The morphisms ϕ and θ in part (a) are the extended structure of the underlying

Frobenius algebra. When ϕ and θ exist, we say that the underlying Frobenius

algebra is extendable.

(c) An extended structure pϕ, θq on a Frobenius algebra A is said to be ϕ-trivial

if ϕ is the identity morphism, and is θ-trivial if θ is the zero morphism (when

these exist in C).

The structure morphisms for an extended Frobenius algebra in C are depicted in

Figure 4.1, and the axioms that they satisfy are depicted in Figure 4.2. Here, we read

diagrams from top down.
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m u ∆ ε ϕ θ

Figure 4.1 : Structure morphisms for an extended Frobenius algebra in C.

= = = = ==

(E1) (E2) (E3) (E4) (E5)

=

(E6) (E7) (E8) (E9) (E10) (E11) (E12)

= =

=

= =

= =

=

Figure 4.2 : Axioms for an extended Frobenius algebra in C.

One useful lemma is the following, adapted from [TT06, Lemma 2.8] for the

monoidal setting.

Lemma 4.2.2. If pA,m, u,∆, ε, ϕ, θq is an extended Frobenius algebra in C, then

mpϕ b idAq∆ “ m
`

mpθ b θq b idA

˘

.

Proof. This is proved in Figure 4.3 with references to Figures 4.1 and 4.2.

(E2) (E5) (E1) (E12)
== = =

Figure 4.3 : Proof of Lemma 4.2.2.
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Proposition 4.2.3. A morphism of extended Frobenius algebras in C must be an

isomorphism.

Proof. This follows from the well-known fact that a morphism of Frobenius algebras

in C must be an isomorphism. We repeat the proof here for the reader’s convenience.

Take a morphism of (extended) Frobenius algebras f : A Ñ B in C, that is, f is a

morphism of the underlying algebras and coalgebras in C. In graphical calculus, we

will denote the (extended) Frobenius structure morphisms on A by those given in

Figure 4.1, and the (extended) Frobenius structure morphisms on B will be denoted

according to Figure 4.4. We then define a morphism g : B Ñ A in Figure 4.5, and

show that gf “ idA and fg “ idB using graphical calculus in Figure 4.6.

mB uB ∆B ϕBεB θB

Figure 4.4 : Extended Frobenius structure on B.

g := f

B

A

Figure 4.5 : Defining g.

We now recall the definition of separable Frobenius algebras, and show that they

are all extendable.

Definition 4.2.4. (a) We say that an algebra A :“ pA,m, uq in C is separable if

there exists a morphism t : A Ñ A b A such that mt “ idA, and

pm b idAqpidA b tq “ tm “ pidA b mqpt b idAq.

(b) A Frobenius algebra A :“ pA,m, u,∆, εq is separable Frobenius if m∆ “ idA.

These structures form full subcategories as indicated below:

SepAlgpCq Ă AlgpCq, SepFrobAlgpCq Ă FrobAlgpCq.
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g

f

f

:=

f

=
f

= = =

g

f

f

:=

f

= = = =

f

A

A

A

A

B

B

B

B

(f mult.) (E5) (E2)

(E4)

(E2)

(E4)

(E5)(f unital)

(f counital)

(f comult.)

Figure 4.6 : Proof that gf “ idA and fg “ idB.

Proposition 4.2.5. If A is a separable Frobenius algebra in C, then A is extendable.

Proof. Suppose that A :“ pA,m, u,∆, εq is a separable Frobenius algebra, and take

ϕ :“ idA and θ :“ u. Then, conditions (i) and (ii) of Definition 4.2.1(b) are trivially

satisfied. Condition (iii) of Definition 4.2.1(b) holds by the computation below:

mpϕ b idAq∆u “ m∆u “ u “ mpu b uq “ mpθ b θq,

where the third equality follows from a unitality axiom of A.

Example 4.2.6. The monoidal unit 1 P C is a separable Frobenius algebra, with

m and ∆ identified as id1, and with u “ ε “ id1. The Frobenius structure is then

extended with ϕ “ θ “ id1.

4.2.2 Structural results

Recall the category ExtFrobAlgpCq defined in Definition 4.2.1. We put monoidal struc-

tures on this category, using two distinct monoidal products, in the following results.

Proposition 4.2.7. Let pC,b,1, cq be a symmetric monoidal category. Then, the

category ExtFrobAlgpCq is monoidal with b :“ bC and 1 :“ 1
C.
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Proof. We first note that 1C “ p1C, ℓ1, id1, ℓ´1
1
, id1, id1, id1q is an extended Frobenius

algebra in C.

Next, we show that the monoidal product of two extended Frobenius algebras

is extended Frobenius. Namely, we verify that given extended Frobenius algebras

pA,mA, uA,∆A, εA, ϕA, θAq and pB,mB, uB,∆B, εB, ϕB, θBq, then the tensor product

pA b B, m̃, ũ, ∆̃, ε̃, ϕ̃, θ̃q is an extended Frobenius algebra, where

m̃ :“ pmA b mBqpidA b cB,A b idBq, ∆̃ :“ pidA b cA,B b idBqp∆A b ∆Bq

ũ :“ uA b uB, ε̃ :“ εA b εB, ϕ̃ :“ ϕA b ϕB, θ̃ :“ θA b θB.

Figure 4.7 shows what these morphisms look like in graphical calculus, using the

symbols from Figure 4.1 for A and the symbols from Figure 4.4 for B, as in Proposi-

tion 4.2.3. Recall also the axioms for a symmetric monoidal category from Figure 2.4.

A b B A b B

A b B

m̃

A A BB

A B

ũ

1

A b B

1 1

A B A b B

A b B

A b B A A BB

A B

A b B

1

ε̃

1 1

A B

θ̃

1

A b B

1 1

A BA b B A B

A b B A B

ϕ̃

:“ :“ :“

:“:“:“

∆̃

Figure 4.7 : Extended Frobenius structure morphisms for A b B.

We then have that pA b B, m̃, ũ, ∆̃, ε̃q P FrobAlgpCq by [Koc04, Section 2.4]. To

see that this Frobenius algebra is extended via ϕ̃ and θ̃, we verify the three required

conditions in Definition 4.2.1(b).

(i) We see that ϕ̃ is an involution since both ϕA and ϕB are involutions. Moreover,

since both ϕA, ϕB are Frobenius morphisms, so is their monoidal product in C.

(ii) Figure 4.8 gives that ϕ̃ m̃pθ̃ b idAbBq “ m̃pθ̃ b idAbBq.

(iii) Finally, Figure 4.9 gives that m̃pϕ̃ b idAbBq∆̃ũ “ m̃pθ̃ b θ̃q.
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Lastly, we note that by taking 1
C as the unit and bC as the monoidal product

in ExtFrobAlgpCq, with extended structures behaving as described above, we obtain

that the required pentagon and triangle axioms (refer to Figures 2.1 and 2.2) in

pExtFrobAlgpCq,bC,1Cq are both inherited from the same axioms in pC,bC,1Cq. Thus,

we conclude that pExtFrobAlgpCq,bC,1Cq is a monoidal category.

=(def) = =

=

=(def) = =

(S2) (S4)

((E11) for A and B)

(S4)(S2)

θ̃

m̃

ϕ̃

θ̃

m̃

Figure 4.8 : Proof that A b B satisfies Definition 4.2.1(b)(ii).

=
(def)

= =

=
(def)

= =

=

(S2) (S1)

(S4)(S2)
(S3)

((E12) for A and B)

ũ

∆̃

ϕ̃

m̃

θ̃ θ̃

m̃

Figure 4.9 : Proof that A b B satisfies Definition 4.2.1(b)(iii).
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Now we turn our attention to extended Frobenius algebras in additive monoidal

categories. See §2.2.4 for a brief introduction to such categories, and [Wal24, Sec-

tion 3.1.3] for further background material.

Proposition 4.2.8. Let pC,b,1q be an additive monoidal category. Then, the cate-

gory ExtFrobAlgpCq is monoidal with b being the biproduct \, and 1 being the zero

object 0.

Proof. We first note that 0 is an extended Frobenius algebra in C, with structure

morphisms m,u,∆, ε, and θ all being zero morphisms, and ϕ “ id0. We next

note that similar to the previous proposition, the pentagon and triangle axioms in

pExtFrobAlgpCq,\, 0q will be inherited from these same axioms on the strict monoidal

category pC,\, 0q. Hence, to finish the proof, it suffices to show that the biprod-

uct of two extended Frobenius algebras is again extended Frobenius. To do so, let

pA,mA, uA,∆A, εA, ϕA, θAq and pB,mB, uB,∆B, εB, ϕB, θBq be two extended Frobe-

nius algebras in C. We will show that pA\B, m̃, ũ, ∆̃, ε̃, ϕ̃, θ̃q is an extended Frobenius

algebra, where m̃, ũ, ∆̃, ε̃, ϕ̃, and θ̃ are defined by universal property diagrams in

Figure 4.10.

It is well known that with the above constructions, pA\B, m̃, ũ, ∆̃, ε̃q is a Frobe-

nius algebra. See [Koc04, Exercises 2.2.7 and 2.2.8] for the case where C “ Vec. Thus,

we only need to verify that ϕ̃ and θ̃ extend this Frobenius algebra. The three required

properties from Definition 4.2.1(b) can be verified by respectively considering each of

the universal property diagrams in Figure 4.11. Using uniqueness of the completing

map in each of these diagrams, it follows that

(i) pϕ̃q2 “ idA\B,

(ii) m̃pθ̃ b idA\Bq “ ϕ̃pm̃pθ̃ b idA\Bqq,

(iii) m̃pϕ̃ b idA\Bqp∆̃pũqq “ m̃pθ̃ b θ̃q,

which completes the proof that pA\B, ϕ̃, θ̃q is an extended Frobenius algebras in C,

hence giving that pExtFrobAlgpCq,\, 0q is a monoidal category.
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pA \ Bq b pA \ Bq pA \ Bq b pA \ Bq

A \ B A \ B

A B A B

1 1

A \ B A \ B

A B A B

A \ B 1

A \ B A \ B

A B A B

D! m̃
mA ˝ πAbA

mB ˝ πBbB

πA πB

D! ∆̃

ιAbA ˝ ∆A

ιBbB ˝ ∆B

ιA ιB

uA uBD! ũ

πA πB

D! ε̃εA εB

ιA ιB

ϕA ˝ πA ϕB ˝ πBD! ϕ̃

πA πB

θA θBD! θ̃

πA πB

Figure 4.10 : Defining the extended Frobenius algebra structure on A \ B.

A \ B A \ B

A A \ B B A A \ B B

A B A B

1

A \ B

A B

πA πB
D!

ϕ2
A “ idA ϕ2

B “ idBπA πB

πA πB
D!

mApθA b idAq

“

ϕApmApθA b idAqq

mBpθB b idBq

“

ϕBpmBpθB b idBqqπA πB

D!

πA πB

mApϕA b idAqp∆ApuAqq

“

mApθA b θAq

mBpϕB b idBqp∆BpuBqq

“

mBpθB b θBq

Figure 4.11 : Proof that A \ B is an extended Frobenius algebra.
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4.3 Extended Frobenius monoidal functors

In this section, we introduce the construction of an extended Frobenius monoidal

functor, which preserves extended Frobenius algebras [Proposition 4.3.4]. The main

construction is covered in §4.3.1 and examples are presented in §4.3.2.

4.3.1 Main construction and results

Here, we extend the results in Proposition 2.5.4 and Proposition 2.5.5 to the category

ExtFrobAlgpCq. In particular, we will define a type of functor that preserves extended

Frobenius algebras and show that this type of functor is closed under composition.

Definition 4.3.1. A Frobenius monoidal functor pF, F p2q, F p0q, Fp2q, Fp0qq between the

monoidal categories pC,b,1q and pC 1,b1,11q is called an extended Frobenius monoidal

functor (or is extendable) if there exist a natural transformation pF : F ñ F and a

morphism qF : 11 Ñ F p1q P C 1 such that the conditions below hold.

(a) pF is both a monoidal and comonoidal natural transformation.

(b) F p2q

1,1 ˝ p pF1 b1 idF p1qq ˝ F 1,1
p2q

˝ F p0q “ F
p2q

1,1 ˝ p qF b1
qF q.

(c) The following are true for each X, Y P C:

(i) pFX ˝ pFX “ idF pXq;

(ii) pF1bX ˝ F
p2q

1,X ˝ p qF b1 idF pXqq “ F
p2q

1,X ˝ p qF b1 idF pXqq;

(iii) F p2q

X,Y ˝ p pFX b1 idF pY qq ˝ FX,Y
p2q

“ F
p2q

XbY,1 ˝ p pFXbY b1 idF p1qq ˝ FXbY,1
p2q

.

Extended Frobenius monoidal functors are plentiful. Specifically, we have the

following result; compare to Proposition 4.2.5.

Proposition 4.3.2. A separable Frobenius monoidal functor admits the structure of

an extended Frobenius monoidal functor.
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Proof. Let pF, F p2q, F p0q, Fp2q, Fp0qq be a Frobenius monoidal functor. Recall that it is

separable if F p2q ˝ Fp2q “ id (see Definition 2.5.1). Then, take pF “ IdF and qF “ F p0q.

It is then straightforward to verify that these choices of pF and qF extend the Frobenius

monoidal structure on F .

Example 4.3.3. Strong monoidal functors are separable with Fp2q :“ F p´2q and

Fp0q :“ F p´0q, so they are also extended Frobenius monoidal functors.

The next result is the desired extension of Proposition 2.5.4. See Appendix A.1

for proof.

Proposition 4.3.4. Let pF, F p2q, F p0q, Fp2q, Fp0q, pF , qF q : C Ñ C 1 be an extended Frobe-

nius monoidal functor. This induces a functor ExtFrobAlgpCq Ñ ExtFrobAlgpC 1q.

Specifically, for A P ExtFrobAlgpCq, we have that F pAq P ExtFrobAlgpC 1q with mF pAq,

uF pAq, ∆F pAq, εF pAq as in Proposition 2.5.4(a,b), with ϕF pAq “ F pϕAq pFA, and with

θF pAq “ F pθAq qF .

We also have the following extension of Proposition 2.5.5 to extended Frobenius

monoidal functors. The proof of this theorem can be found in Appendix A.2.

Theorem 4.3.5. The composition of two extended Frobenius monoidal functors is

again an extended Frobenius monoidal functor.

Remark 4.3.6. One can also obtain Proposition 4.3.4 as a consequence of Theo-

rem 4.3.5. Take the monoidal category 1 consisting of a single object 1 and mor-

phism id1. Then, a Frobenius monoidal functor pE,Ep2q, Ep0q, Ep2q, Ep0qq : 1 Ñ C

is extendable if and only if Ep1q P ExtFrobAlgpCq. So, when A P ExtFrobAlgpCq,

the functor A# : 1 Ñ C with A#p1q :“ A is extended Frobenius monoidal. Now if

pF, F p2q, F p0q, Fp2q, Fp0q, pF , qF q : C Ñ C 1 is extended Frobenius monoidal, Theorem 4.3.5

implies that the functor FA# : 1 Ñ C 1 is also extended Frobenius monoidal. Hence,

F pAq is an extended Frobenius algebra in C 1 as in the proof of Proposition 4.3.4.

Compare to [DP08, Corollary 5].
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4.3.2 Examples

Building upon Propositions 4.2.7 and 4.2.8, consider the examples of extended Frobe-

nius monoidal functors below.

Example 4.3.7. Let pC,b,1, cq be symmetric monoidal with B P ExtFrobAlgpCq.

Then, the functor ´ b B : C Ñ C is extended Frobenius monoidal with

p´ b Bq
p2q

X,Y :“ pidXbY b mBqpidX b cB,Y b idBq,

p´ b Bq
X,Y
p2q

:“ pidX b cY,B b idBqpidXbY b ∆Bq,

p´ b Bq
p0q :“ uB, p´ b Bqp0q :“ εB,

{p´ b BqX :“ idX b ϕB, and p´ b Bq :“ θB,

for any X, Y P C. We note further that when B is not a separable Frobenius algebra,

the Frobenius functor defined above is not separable.

Example 4.3.8. Let pC,b,1q be additive monoidal with B P ExtFrobAlgpCq. Then,

the functor ´ \ B : C Ñ C is extended Frobenius monoidal with

p´ \ Bq
p2q

X,Y :“ πXbY \ pmB ˝ πBbBq, p´ \ Bq
X,Y
p2q

:“ ιXbY \ pιBbB ˝ ∆Bq,

p´ \ Bq
p0q :“ id1 \ uB, p´ \ Bqp0q :“ id1 \ εB,

{p´ \ BqX :“ πX \ pϕB ˝ πBq, and p´ \ Bq :“ id1 \ θB,

for any X, Y P C. Again, when B is not a separable Frobenius algebra, the Frobenius

functor defined above is not separable.

4.4 Connection to Hopf algebras

In this section, we explore the extension of Frobenius algebra structures inherited

from Hopf algebras. We begin with the induced Frobenius structure on integral Hopf

algebras in §4.4.1. In §4.4.2, we define an extended Hopf structure that guarantees
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extendability of the inherited Frobenius structure. We introduce functorial construc-

tions preserving integral and extended Hopf algebras in §4.4.3 and §4.4.4, respectively.

4.4.1 Frobenius algebras from Hopf algebras

Take a symmetric monoidal category C :“ pC,b,1, cq and consider the following

structures on a Hopf algebra pH,m, u,∆, ε, Sq in C (see Definition 2.3.3).

Definition 4.4.1. (a) A left integral for a Hopf algebra pH,m, u,∆, ε, Sq is a mor-

phism Λ : 1 Ñ H which satisfies mpidH b Λq “ Λε. A right cointegral

for the Hopf algebra pH,m, u,∆, ε, Sq is a morphism λ : H Ñ 1 satisfying

pλ b idHq∆ “ uλ. If Λ and λ further satisfy λΛ “ id1, then Λ and λ are said

to be normalized. A Hopf algebra equipped with a normalized (co)integral pair

is called an integral Hopf algebra.

See Figures B.1-B.4 in Appendix B for a graphical depiction of this definition.

(b) A morphism of integral Hopf algebras f : H Ñ K is a morphism, which is

both an algebra and coalgebra morphism, and which satisfies fΛH “ ΛK and

λKf “ λH .

(c) We organize the above into a category, IntHopfAlgpCq, whose objects are integral

Hopf algebras and whose morphisms are morphisms of integral Hopf algebras

as defined above.

For further information on the objects in the above definition, see [Rad12, Chap-

ter 10] and the references within for the case when C “ Vec.

Remark 4.4.2. If a Hopf algebra is equipped with a normalized integral and cointe-

gral, then its antipode is invertible; see, e.g., [CD20, Lemma 3.5].

We also have the following proposition saying that integral Hopf algebras in C

admit the structure of Frobenius algebras in C. This is proved in Appendix B using
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a graphical argument due to Yadav. A similar, nongraphical argument can be found

in [FS10, Appendix A.2].

Proposition 4.4.3. We have that

Ψ : IntHopfAlgpCq Ñ FrobAlgpCq

pH, m, u,∆, ε, S, S´1, Λ, λq ÞÑ pH, m, u, ∆ :“ pm b SqpidH b ∆Λq, ε :“ λq

is a well-defined functor, which acts as the identity on morphisms.

Example 4.4.4. Let G be any finite group. The group algebra kG is a finite-

dimensional Hopf algebra with ∆pgq “ g b g, εpgq “ 1, and Spgq “ g´1, for all

g P G. This Hopf algebra admits a normalized (co)integral pair given by Λ :“
ř

hPG h

and λpgq :“ δe,g1k. Applying Ψ to this integral Hopf algebra, we obtain the Frobenius

algebra structure on kG described in Example 4.1.6 using equation (4.1.3), where

∆pgq :“
ř

hPG gh b h´1 and εpgq :“ λpgq “ δe,g1k, for all g P G.

Proposition 4.4.5. If H P IntHopfAlgpCq is equipped with θ : 1 Ñ H P C such

that mpθ b θq “ uεΛ, then the Frobenius algebra ΨpHq from Proposition 4.4.3 is

extendable.

In particular, when C “ Vec, the Frobenius algebra ΨpHq over k is always extend-

able with ϕ “ idΨpHq and θ “ ˘
a

εpΛp1kqqu.

Proof. Suppose that the morphism θ : 1 Ñ H as in the statement exists. Then, taking

ϕ “ idΨpHq, and using this θ, we extend the Frobenius structure. To verify the axioms

of Definition 4.2.1(b), notice that conditions (i) and (ii) hold trivially. Condition

(iii) is verified in Figure 4.12; using notation and axioms from Appendix B. The last

statement on the case when C “ Vec is clear.

Example 4.4.6. Let G be a finite group, and recall the induced Frobenius-from-Hopf

algebra strcuture on kG described in Example 4.4.4. In this case, we have that

uεpΛq “ u pε p
ř

hPGhqq “ u p
ř

hPG1kq “ |G| ¨ up1kq “ |G| ¨ eG.
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:= = = = =
(def) Fig.B.7 (H2) (H9) (hyp)

Figure 4.12 : Proof of Definition 4.2.1(b)(iii) for Proposition 4.4.5.

The above proposition then tells us that the choice ϕ “ idkG and θ “ ˘
a

|G| ¨ eG

extends the induced Frobenius algebra structure on kG. Note that this is the same

extended Frobenius structure introduced in Example 4.1.6.

4.4.2 Extended Hopf algebras

Continue to let C be a symmetric monoidal category. Here, we introduce extended

Hopf algebras in C as a way to obtain extensions of Frobenius-from-Hopf algebra

structures.

Definition 4.4.7. An integral Hopf algebra pH,m, u,∆, ε, S, S´1,Λ, λq is called ex-

tended if it is equipped with two morphisms ϕ : H Ñ H and θ : 1 Ñ H in C satisfying

the following axioms:

(i) ϕ is a morphism of integral Hopf algebras such that ϕ2 “ idH ;

(ii) ϕmpθ b idHq “ mpθ b idHq;

(iii) mpϕ b Sq∆Λ “ mpθ b θq.

A morphism of extended Hopf algebras f : pH,ϕ, θq Ñ pH 1, ϕ1, θ1q is a morphism of

integral Hopf algebras in C which also satisfies fϕ “ ϕ1f and fθ “ θ1.
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With the above, we define a category ExtHopfAlgpCq and obtain a forgetful functor,

U : ExtHopfAlgpCq Ñ IntHopfAlgpCq

pH, m, u,∆, ε, S, S´1, Λ, λ, ϕ, θq ÞÑ pH, m, u,∆, ε, S, S´1, Λ, λq.

We have the following result.

Proposition 4.4.8. Take H P ExtHopfAlgpCq. Then, the Frobenius algebra ΨUpHq

in C from Proposition 4.4.3 is extendable via the morphisms ϕ and θ.

Proof. To verify that ϕ and θ extend the Frobenius algebra ΨUpHq, we check the ax-

ioms of Definition 4.2.1(b). Since ϕ : pH,m, u,∆, ε, S,Λ, λq Ñ pH,m, u,∆, ε, S,Λ, λq

is a morphism of integral Hopf algebras, the functoriality of Ψ and U gives that

ϕ : pH,m, u,∆, εq Ñ pH,m, u,∆, εq is a Frobenius algebra morphism. Moreover, we

have that ϕ2 “ idH by Definition 4.4.7(i). So, condition (i) of Definition 4.2.1(b)

holds. Condition (ii) of Definition 4.2.1(b) also holds by Definition 4.4.7(ii) since the

multiplication morphism is the same for both the Hopf and Frobenius structures on

H. Towards condition (iii) of Definition 4.2.1(b), we compute:

mpϕ b idHq∆u “ mpϕ b Sqpm b idHqpu b ∆qΛ “ mpθ b θq,

where the first equality is the definition of ∆ and a level exchange, and the second

equality is by the unitality of m and u and Definition 4.4.7(iii).

The consequence below is straight-forward.

Corollary 4.4.9. There is a functor Ψ : ExtHopfAlgpCq Ñ ExtFrobAlgpCq which sends

an extended Hopf algebra pH,m, u,∆, ε, S, S´1,Λ, λ, ϕ, θq to the extended Frobenius

algebra pH,m, u,∆, ε, ϕ, θq, with ∆ and ε defined as in Proposition 4.4.3, and which

acts as the identity on morphisms.

Remark 4.4.10. While the above result tells us that every extended Hopf algebra

gives rise to an extended Frobenius algebra via the same ϕ and θ, the converse is

not true. In particular, given H P IntHopfAlgpCq, we get that ΨpHq P FrobAlgpCq.
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But, even if ΨpHq is extendable via ϕΨpHq and θΨpHq, it is not necessarily true that

pH,ϕΨpHq, θΨpHqq is an extended Hopf algebra in C.

For instance, consider the Frobenius algebra structure on kC2, induced by the

Hopf structure, as described in Example 4.4.4. This Frobenius structure can be

extended by taking ϕpgq “ ´g (where g is a generator of C2) and θ “ 0, as in

Proposition 4.1.14(b). However, this choice of ϕ and θ does not extend the integral

Hopf structure on kC2, since ϕ is not comultiplicative with respect to ∆.

4.4.3 Integral Hopf monoidal functors

We continue the extension of Proposition 2.5.4 and Proposition 2.5.5 by defining types

of monoidal functors that preserve integral and extended Hopf algebras.

Definition 4.4.11. A Hopf monoidal functor pF, F p2q, F p0q, Fp2q, Fp0q,Υq : C Ñ C 1 is

called an integral Hopf monoidal functor if it comes equipped with two morphisms

F : 11 Ñ F p1q and F : F p1q Ñ 1
1 satisfying F ˝ F “ id11 and the two diagrams in

Figure 4.13.

F p1q 1
1 F p1q 1

1

F p1q b1
1

1 F p1 b 1q

F p1q F p1q

F p1q b1 F p1q F p1 b 1q F p1q b1 F p1q 1
1 b1 F p1q

Fp0q F

r´1
F p1q F pℓ´1

1
q

idF p1q b1 F F1,1
p2q

F
p2q

1,1

F

F pr´1
1

q

F p0q

ℓ´1
F p1q

F b1 idF p1q

Figure 4.13 : Axioms for an integral Hopf monoidal functor.

With this definition, we obtain the following.
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Proposition 4.4.12. Let pF, F p2q, F p0q, Fp2q, Fp0q,Υ, F , F q : C Ñ C 1 be an integral

Hopf monoidal functor. This induces a functor IntHopfAlgpCq Ñ IntHopfAlgpC 1q.

Specifically, for H P IntHopfAlgpCq, we have that F pHq P IntHopfAlgpC 1q, with Hopf

algebra structure given by Proposition 2.5.4(e), with integral ΛF pHq :“ F pΛHq ˝ F ,

and with cointegral λF pHq :“ F ˝ F pλHq.

Proof. Proposition 2.5.4(e) gives that F pHq is a Hopf algebra in C 1, so it only remains

to show that ΛF pHq and λF pHq form a normalized(co)integral pair for this Hopf algebra

structure.

First, we see that ΛF pHq and λF pHq are normalized, since

λF pHq ˝ ΛF pHq “ FF pλHq ˝ F pΛHqF “ FF “ idF pHq,

where the first equality is by definition, the second is from the fact that ΛH and λH

are normalized, and the last equality is by the normalization condition of F and F

from Definition 4.4.11.

Next, Figure 4.14 gives that ΛF pHq is indeed an integral for F pHq. Here, re-

gions (1), (5), (8), and (11) commute by definition, regions (2), (6), (7), and (9)

by naturality, region (3) is a level exchange, region (4) is the condition on F from

Definition 4.4.11 and Figure 4.13, and region (10) follows from the fact that ΛH is an

integral for H.

Figure 4.15 gives that λF pHq is a cointegral for F pHq, where regions (1), (5), (10),

and (11) commute by definition, regions (3), (6), (7), and (9) by naturality, region

(8) is a level exchange, region (4) is the condition on F from Definition 4.4.11 and

Figure 4.13, and region (2) follows from the fact that λH is a cointegral for H.

Finally, we must check that given a morphism f : pH,ΛH , λHq Ñ pH 1,ΛH 1 , λH 1q

of integral Hopf algebras in C, its image F pfq : F pHq Ñ F pH 1q is a morphism of

integral Hopf algebras in C 1. Proposition 2.5.4(e) gives that F pfq is a morphism of

Hopf algebras, and so it only remains to check that F pfq respects the (co)integrals of

F pHq and F pH 1q.
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Indeed, we have that

F pfqΛF pHq “ F pfqF pΛHqF “ F pΛH 1qF “ ΛH 1 ;

λF pHqF pfq “ FF pλHqF pfq “ FF pλH 1q “ λF pH 1q,

where the first and last equalities are the definitions of ΛF p´q and λF p´q and the middle

equalities are because f : H Ñ H 1 is a morphism integral Hopf algebras and hence

respects the (co)integrals of H and H 1. This completes the proof.

F pHq 1
1

F pHq b1
1

1 F p1q

F p1q b1
1

1

F p1q b1 F p1q F p1 b 1q

F pHq b1 F p1q F pH b 1q F pHq F p1q

F pH b Hq

F pHq b1 F pHq F pHq

εF pHq

F pεq

ΛF pHq

F

idF pHq b1 ΛF pHq

id b1 F

F pεq b1 id

Fp0q

id b1 F
F

p2q

1,1

id b F pΛHq

F
p2q

H,1

F pεq b1 id

F pid b ΛHq

F pε b idq

F pεq

F pΛHq
F pmq

mF pHq

F
p2q

H,H

p1q

p2q

p3q

p4q

p5q

p6q p7q

p8q

p9q
p10q

p11q

Figure 4.14 : Proof that ΛF pHq is an integral for F pHq.

F pHq 1
1

F p1q

F pHq F p1 b 1q

F pH b Hq F p1 b Hq F p1q b1 F p1q

1
1 b1 F p1q F p1q

F p1q b1 F pHq

F pHq b1 F pHq 1
1 b1 F pHq F pHq

λF pHq

∆F pHq

F p∆q

F pλHq

uF pHq

F p0q

F

F puq

F pid b uq
F1,1

p2q

FH,H
p2q

F pλH b idq

F1,H
p2q

id b1 F puq

F b1 id

id b1 F puq F puq

F b1 id

λF pHq b1 id

F pλHq b1 id

p1q

p11q

p5q

p10q

p2q p3q

p4q

p7q

p6q

p8q

p9q

Figure 4.15 : Proof that λF pHq is a cointegral for F pHq.
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The following result extends Proposition 2.5.5 to integral Hopf monoidal functors.

Proposition 4.4.13. Given two integral Hopf monoidal functors pF, F , F q : C Ñ C 1

and pG,G,Gq : C 1 Ñ C2, the composition GF : C Ñ C2 is also integral Hopf monoidal.

Proof. We first note that GF is Hopf monoidal by Theorem 2.5.5(e), so we only need

to show that GF admits an integral structure. To see this, define

GF :“ GpF q ˝ G : 12
Ñ GF p1q and GF :“ G ˝ GpF q : GF p1q Ñ 1

2.

Now, the conditions of Definition 4.4.11 must be verified. We first note that

GF ˝ GF “ G ˝ GpF q ˝ GpF q ˝ G “ G ˝ GpFF q ˝ G “ GG “ id12 ,

since pF , F q and pG,Gq are integral structures for F and G, respectively. Next, we

check the two axioms of Figure 4.13. For the strict case, this is done in Figure 4.16,

where regions (1), (5), (6), and (11) commute by definition, regions (2), (7), (8), and

(9) by naturality, region (3) is a level exchange, and regions (4) and (10) are the

condition from Definition 4.4.11 Figure 4.13 for G and F , respectively.

The verification thatGF satisfies the condition of Definition 4.4.11 and Figure 4.13

is analogous, so we omit it. This completes the proof.

Analogously to how morphisms of integral Hopf algebras preserve integrals and

cointegrals, we require that natural transformations of integral Hopf monoidal func-

tors also behave nicely with the functorial analogues of integrals and cointegrals.

Definition 4.4.14. A natural transformation ϕ : pF, F , F q ñ pG,G,Gq between

integral Hopf monoidal functors is an integral Hopf monoidal natural transformation

if the following conditions are satisfied.

(a) ϕ is simultaneously monoidal and comonoidal;

(b) ϕ1 ˝ F “ G;

(c) G ˝ ϕ1 “ F .

We think of the second condition above as saying that ϕ “respects integrals” and the

third as saying that ϕ “respects cointegrals.”
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GF p1q 1
2

Gp11q

GF p1q b2
1

2 Gp11q b2
1

2 Gp11q

Gp11q b2 Gp11q

GF p1q b2 Gp11q Gp11 b1
1

1q

GpF p1q b1
1

1q GF p1q GF p1q

GpF p1q b1 F p1qq

GF p1q b2 GF p1q GF p1 b 1q

pGF qp0q

GF

idGF p1q b2 GF

pGF q
p2q

1,1

G

GpF q

GpFp0qq
Gp0q

idGF p1q b2 G

idGF p1q b2 GpF q

G
p2q

F p1q,F p1q GpF
p2q

1,1q

GpFp0qq b2 id12

idGp11q b2 G

GpFp0qq b2 idGp11q G
p2q

11,11

G
p2q

F p1q,11

GpFp0q b1 id11 q

GpFp0qq

GpidF p1q b1 F q

p1q

p2q

p3q

p4q p5q

p6q

p7q

p8q

p9q

p10q

p11q

Figure 4.16 : GF satisfies the condition of Definition 4.4.11 and Figure 4.13.

4.4.4 Extended Hopf monoidal functors

With integral Hopf monoidal functors and natural transformations defined, it is now

easy to define extended Hopf monoidal functors in a manner similar to the creation

of extended Frobenius monoidal functors from Frobenius monoidal functors. Because

of this, the proofs of results in this section will be analogous to those in Appendix A,

and so we omit them here.

Definition 4.4.15. An integral Hopf monoidal functor pF, F , F q : C Ñ C 1 is called

an extended Hopf monoidal functor, or is extendable, if it can be equipped with a

natural transformation pF : F ñ F and a morphism qF : 11 Ñ F p1q P C 1 such that the

conditions below hold.

(a) pF is an integral Hopf monoidal natural transformation.

(b) F p2q

1,1 ˝ p pF1 b1 Υ1q ˝ F 1,1
p2q

˝ F “ F
p2q

1,1 ˝ p qF b1
qF q.

(c) The following are true for each X, Y P C:
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(i) pFX ˝ pFX “ idF pXq;

(ii) pF1bX ˝ F
p2q

1,X ˝ p qF b1 idF pXqq “ F
p2q

1,Xp qF b1 idF pXqq;

(iii) F p2q

X,Y ˝ p pFX b1 ΥY q ˝ FX,Y
p2q

“ F
p2q

XbY,1 ˝ p pFXbY b1 Υ1q ˝ FXbY,1
p2q

.

Again, we now extend Propositions 2.5.4 and 2.5.5 to the extended Hopf case.

Proposition 4.4.16. An extended Hopf monoidal functor pF, pF , qF q : C Ñ C 1 induces

a functor ExtHopfAlgpCq Ñ ExtHopfAlgpC 1q. Specifically, for H P ExtHopfAlgpCq,

we have that F pHq P ExtHopfAlgpC 1q, with integral Hopf algebra structure given by

Proposition 4.4.12, and with extended structure given by ϕF pHq :“ F pϕHq pFH and

θF pHq :“ F pθHq qF .

Proof. This proof is analogous to the one given in Appendix A.1, with only minor

modifications. As was the case with extended Frobenius monoidal functors, Defini-

tion 4.4.15(a),(c)(i) allow us to conclude that ϕF pHq is an integral Hopf convolution,

Definition 4.4.15(c)(ii) is used to show that F pHq satisfies condition (ii) of Defini-

tion 4.4.7, and finally Definition 4.4.15(b),(c)(iii) are necessary in proving that F pHq

satisfies condition (iii) of Definition 4.4.7.

Proposition 4.4.17. Let pF, pF , qF q : C Ñ C 1 and pG, pG, qGq : C 1 Ñ C2 be two extended

Hopf monoidal functors. The composition GF : C Ñ C2 is also an extended Hopf

monoidal functor, with integral Hopf monoidal structure given in Proposition 4.4.13,

and with extended structure defined by yGFX :“ Gp pFXq ˝ pGF pXq for all X P C and
}GF :“ Gp qF q ˝ qG.

Proof. Again, the proof of this statement is analogous to the one given in Ap-

pendix A.2. The only additional thing that must be checked is that yGF is an integral

monoidal natural transformation, but this is straightforward from naturality and the

fact that both pG and pF are integral monoidal natural transformations.
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4.5 Discussion

There are a number of possible directions for future research based upon the material

presented above. We discuss some here for the interested reader.

4.5.1 On forgetful functors

In searching for examples of extended Frobenius monoidal functors, we came across

[BT15, Theorem 6.2], which states that if A is an algebra in a monoidal category C,

then the forgetful functor AUA : A-BimodpCq Ñ C, equipped with the trivial monoidal

structure, is Frobenius monoidal if and only if A is a Frobenius algebra. We wonder

how this could be modified to the cases of integral Hopf, extended Frobenius, and

extended Hopf, giving a new example of these types of monoidal functors.

4.5.2 On pullbacks

It is natural to want ExtHopfAlgpCq to be the pullback of the functor Ψ : IntHopfAlgpCq

from Proposition 4.4.3 and the forgetful functor U : ExtFrobAlgpCq Ñ FrobAlgpCq,

but Remark 4.4.10 shows that this is not the case. If, however we restrict to only

ϕ-trivial extended Hopf and Frobenius algebras, then we do obtain this result. This

leads to questions concerning how the pullback subcategory and the subcategory

ExtHopfAlgpCq of C relate, how these two types of objects can be used in different

applications and scenarios, and whether there are any conditions on C or on extended

Hopf algebras that could produce special cases of this result.

4.5.3 On a functorial version of Frobenius-from-Hopf structures

In §4.4.1, we saw that integral Hopf algebras all admit a Frobenius structure. We

inquire whether a functorial analogue of this result could be obtained. There are

many results that showcase relationships between Hopf monoidal functors, Hopf ad-

junctions, Frobenius monoidal functors, and Frobenius functors, see for example
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[Bal17, Sar21, FLP24, Yad24, FLP25, JY25], but none have considered the func-

torial analogue of integral Hopf algebras. The initial example ´ b A : C Ñ C on a

symmetric monoidal category C looks promising, as if H is an integral Hopf algebra,

then ´bH obtains both an integral Hopf monoidal and Frobenius monoidal structure

from the corresponding algebra structures on H. However, it is not clear whether this

could be generalized, as it may be the case that for general integral Hopf monoidal

functors, only Frobenius algebras in the image of Ψ are preserved.
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Appendix A

Proofs of selected results in Section 4.3

Following [CKQW24], Proposition 4.3.4 is proved in Section A.1 and Proposition 4.3.5

in Section A.2.

A.1 Proof of Proposition 4.3.4

Given pA,mA, uA,∆A, εA, ϕA, θAq P ExtFrobAlgpCq, we first define an extended Frobe-

nius algebra structure on F pAq. Let mF pAq, uF pAq, ∆F pAq, and εF pAq be as in Proposi-

tion 2.5.4(a,b). By Proposition 2.5.4(c), this makes F pAq a Frobenius algebra in C 1.

Define
ϕF pAq :“ F pϕAq pFA, θF pAq :“ F pθAq qF ,

and note that by naturality, ϕF pAq :“ F pϕAq pFA “ pFAF pϕAq. We will now show that

ϕF pAq and θF pAq satisfy the conditions in Definition 4.2.1(b).

To verify Definition 4.2.1(b)(i) for F pAq, we first show that ϕF pAq is a Frobe-

nius algebra morphism. Commutativity of the diagram in Figure A.1 verifies that

mF pAqpϕF pAq b1 ϕF pAqq “ ϕF pAqmF pAq. Regions (1), (2), (5), and (8) commute by defi-

nition, (3) by monoidality of pF , (4) and (6) by naturality, and (7) by multiplicativity

of ϕA. Likewise, comonoidality of pF gives pϕF pAq b1 ϕF pAqq∆F pAq “ ∆F pAqϕF pAq.

Commutativity of the diagram in Figure A.2 shows that uF pAq “ ϕF pAquF pAq.

Regions (1), (4), and (6) commute by definition, (2) by monoidality of pF , (3) by ϕA

being an algebra morphism, and (5) by naturality. Comonoidality of pF analogously

gives that εF pAq “ εF pAqϕF pAq, concluding the proof that ϕF pAq P FrobAlgpC 1q.
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F pAq b1 F pAq F pA b Aq F pAq

F pAq b1 F pAq F pA b Aq F pAq

F pAq b1 F pAq F pA b Aq F pAq

F
p2q

A,A

mF pAq

pFA b1
pFA

ϕF pAq b1 ϕF pAq

F pmAq

pFAbA pFA

ϕF pAqF
p2q

A,A

F pϕAq b1 F pϕAq

F pmAq

F pϕA b ϕAq F pϕAq

F
p2q

A,A

mF pAq

F pmAq

p1q

p2q
p3q p4q

p5q

p6q p7q

p8q

Figure A.1 : ϕF pAq is multiplicative.

1
1 F p1q F pAq

F p1q F pAq

F pAq

F p0q

uF pAq

F p0q

uF pAq

F puAq

pF1 F puAq

F pϕAq

ϕF pAqp5q

F puAq
pFA

p1q

p2q p3q

p6q

p4q

Figure A.2 : ϕF pAq is unital.

To see that ϕF pAq is an involution, note that

ϕF pAq ˝ ϕF pAq “ F pϕAq ˝ pFA ˝ pFA ˝ F pϕAq “ F pϕA ˝ ϕAq “ idF pAq,

where we use that ϕF pAq :“ F pϕAq pFA “ pFAF pϕAq, Definition 4.3.1(c)(i), and the fact

that ϕA is an involution.

Definition 4.2.1(b)(ii) for F pAq follows from the diagram in Figure A.3. Regions

(1), (2), (5), (9), and (11) commute by definition, (4), (6), (7), and (10) by natural-

ity, (3) by Definition 4.3.1(c)(ii), and (8) by Definition 4.2.1(b)(ii) for A.

Lastly, Definition 4.2.1(b)(iii) for F pAq holds by Figure A.6, where regions (1),

(2), (3), (8), (20), and (21) commute by definition, (5), (6), and (9)-(18) by natu-

rality, (4) by Definition 4.3.1(b), (7) by Definition 4.3.1(c)(iii), and (19) by Defini-

tion 4.2.1(b)(iii) for A. This completes the proof that F pAq P ExtFrobAlgpC 1q.
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1
1 b1 F pAq F p1q b1 F pAq F pAq b1 F pAq

F p1q b1 F pAq F p1 b Aq

F p1 b Aq F pA b Aq

F pAq b1 F pAq F pA b Aq F pA b Aq F pAq F pAq

F pAq

qF b1 idF pAq

θF pAq b1 idF pAq

qF b1 idF pAq

θF pAq b1 idF pAq

F pθAq b1 idF pAq

F
p2q

1,A

F
p2q

A,A

mF pAq

p3q

F
p2q

1,A

F pθAq b1 idF pAq

pF1bA
F pθA b idAq

F pθA b idAq

F pθA b idAq F pmAq

F
p2q

A,A

mF pAq

F pmAq

p8q

pFAbA F pmAq

pFA

F pϕAq

ϕF pAq

p1q

p4q

p5q

p6q

p2q

p7q

p10q p11q

p9q

Figure A.3 : F pAq satisfies Definition 4.2.1(b)(ii).

It remains to show that morphisms of extended Frobenius algebras are also pre-

served. Specifically, if f : pA,mA, uA,∆A, εA, ϕA, θAq Ñ pB,mB, uB,∆B, εB, ϕB, θBq is

a morphism of extended Frobenius algebras in C, then F pfq : F pAq Ñ F pBq is a mor-

phism of extended Frobenius algebras in C 1. By Proposition 2.5.4(c), F pfq is a mor-

phism of Frobenius algebras in C 1, so it suffices to verify that F pfqϕF pAq “ ϕF pBqF pfq

and F pfqθF pAq “ θF pBq in C 1. The first equation follows from Figure A.4, where re-

gions (1) and (4) commute by definition of ϕF p´q, (2) by naturality of pF , and (3)

because f is a morphism of extended Frobenius algebras in C. For the second equa-

tion, observe that regions (1) and (3) in Figure A.5 commute by definition of θF p´q,

and (2) commutes because f is a morphism of extended Frobenius algebras in C.

F pAq F pAq F pAq

F pBq F pBq F pBq

pFA

ϕF pAq

F pfq p2q

F pϕAq

F pfq F pfq

pFB

ϕF pBq

p3q

F pϕBq

p1q

p4q

Figure A.4 : F pfq respects ϕ.

F pAq

1
1 F p1q

F pBq

F pfq

θF pAq

qF

θF pBq

F pθAq

F pθBq

p1q

p3q

p2q

Figure A.5 : F pfq respects θ.
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A.2 Proof of Theorem 4.3.5

Let
pF, F p2q, F p0q, Fp2q, Fp0q, pF , qF q : pC,b,1q Ñ pC 1,b1,11

q;

pG,Gp2q, Gp0q, Gp2q, Gp0q, pG, qGq : pC 1,b1,11
q Ñ pC2,b2,12

q

be two extended Frobenius monoidal functors. To show that the composition

GF : pC,b,1q Ñ pC2,b2,12
q

admits the structure of an extended Frobenius monoidal functor, let pGF qp2q, pGF qp0q,

pGF qp2q, and pGF qp0q be as in Proposition 2.5.5(a,b). Proposition 2.5.5(c) gives that

this makes GF into a Frobenius monoidal functor. Now, define yGF : GF ñ GF by
yGFX :“ Gp pFXq ˝ pGF pXq for all X P C, and define }GF :“ Gp qF q ˝ qG : 12 Ñ GF p1q. We

need to show that yGF and }GF extend the Frobenius monoidal structure on GF .

Note first that the composition of (co)monoidal natural transformations is again

(co)monoidal, so yGF is simultaneously a monoidal and comonoidal natural transfor-

mation. So, Definition 4.3.1(a) holds for GF .

That Definition 4.3.1(b) is satisfied by GF follows from commutativity of the dia-

gram in Figure A.9: regions (1), (2), (8), (18), (25), and (26) commute by definition,

(4)-(6), (9)-(17), and (19)-(23) by naturality, (3) and (24) by Definition 4.3.1(b) for

G and F respectively, and (7) by Definition 4.3.1(c)(iii) for G.

To see that Definition 4.3.1(c)(i) holds for GF , see Figure A.7. Regions (1)

and (3) commute by definition of yGF , and regions (2) and (4) commute by Defi-

nition 4.3.1(c)(i) for F and G respectively.

GF pXq

GF pXq GF pXq GF pXq GF pXq

Gp pFX q

zGFX
zGFX

pGF pXq

idGF pXq

Gp pFX q

idGF pXq
pGF pXq

p3q
p2qp1q

p4q

Figure A.7 : GF satisfies Definition 4.3.1(c)(i).
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Next, GF satisfies Definition 4.3.1(c)(ii) by Figure A.8: regions (1), (4), (7), (8),

and (11) commute by definition; (3), (5), (6), and (9) by naturality; and (2) and (10)

by Definition 4.3.1(c)(ii) for G and F respectively.

Finally, Definition 4.3.1(c)(iii) is satisfied by GF via Figure A.10: regions (1),

(2), (5), (6), (25), and (26) commute by definition; (4), (7)-(11), and (14)-(24) by

naturality; and (3), (12), and (13) by Definition 4.3.1(c)(iii) for F and G respectively.

This concludes the proof of Theorem 4.3.5
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Appendix B

Graphical proof that integral Hopf implies Frobenius

In this appendix, which is connected to Section 4.4 and also comes from the pa-

per [CKQW24], we give a graphical proof of Proposition 4.4.3, showing that an in-

tegral Hopf algebra in a symmetric monoidal category C is a Frobenius algebra in C.

This result can be found in [FS10, Appendix A.2], and the graphical proof is due to

Harshit Yadav. Recall axioms (S1)–(S5) from Figure 2.4 in §2.2.4.

B.1 Diagrams for integral Hopf algebras

Recall from Definition 2.3.3 that a Hopf algebra in C is an object H P C equipped

with morphisms m : H b H Ñ H, u : 1 Ñ H, ∆ : H Ñ H b H, ε : H Ñ 1,

S : H Ñ H satisfying specific conditions. In this section, we consider Hopf algebras

equipped with a normalized (co)integral pair, given by morphisms Λ : 1 Ñ H and

λ : H Ñ 1 which satisfy a number of axioms (see Definition 4.4.1). Note that this

also means that the antipode S is invertible, with inverse S´1 (see Remark 4.4.2).

Graphical representations of the structure morphisms for a Hopf algebra with

invertible antipode are given in Figure B.1, and the axioms they satisfy are in Fig-

ures B.2 and B.3. The normalized integral and a cointegral of a Hopf algebra H are

given graphically in Figure B.4, together with the axioms they satisfy.

m u ∆ ε S S´1

Figure B.1 : Structure morphisms for a Hopf algebra in C.
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= = = = ==

(H1) (H2) (H3) (H4)

= = = =

(H5) (H6) (H7) (H8)

= = = =

(H9) (H10)

Figure B.2 : Axioms for a Hopf algebra with invertible antipode in C.

= = = =
(A1) (A2) (A3) (A4)

Figure B.3 : Identities for a Hopf algebra in C.

= = =

Λ λ (I1) (I2) (I3)

Figure B.4 : Normalized (co)integral for a Hopf algebra in C.

Lemma B.1.1. We have the following identities.

(a) pmb SqpidH b ∆Λq “ pidH bmqpidH b S b idHqp∆mb idHqpidH b Λ b idHq∆.

(b) λSΛ “ id1.

Proof. Part (a) is proved in Figure B.5, and part (b) is proved in Figure B.6. Refer-

ences to Figures 2.4, B.2, B.3, and B.4 are made throughout.



89

= = =
=

===

=

(H2)

(H4)

(H9) (H1)

(A1)

(H3)(S1)(H5) (S3)

Figure B.5 : Proof of Lemma B.1.1(a).

= = = = = =

=====

= = = = = = =

=

=

(I3) (H10) (H2) (H4)

(S2)

(I1)

(I2)

(A1)

(A3 for S´1) (H10)

(S3)(H5)(H3)(H1)(H9)

(H2) (H4)

(A3)

(S2)

(H10) (S3) (I1) (A4)

(I3)

(H4) (I3)

Figure B.6 : Proof of Lemma B.1.1(b).
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B.2 Proof of Proposition 4.4.3

We aim to show that

Ψ : IntHopfAlgpCq Ñ FrobAlgpCq

pH, m, u,∆, ε, S, Λ, λq ÞÑ pH, m, u,∆ :“ pm b SqpidH b ∆Λq, ε :“ λq

is a well-defined functor, which acts as the identity on morphisms.

For the assignment of objects under the functor Ψ, we depict graphically the

coproduct ∆ and counit ε in Figure B.7. Coassociativity is verified in Figure B.8,

counitality is in Figure B.9, and the Frobenius laws are established in Figure B.10.

References to Figures B.2–B.6 are made throughout.

∆ ε

:= :=

Figure B.7 : Coproduct and counit for the Frobenius-from-Hopf structure in C.

= == =
Fig.B.7 Fig.B.10 Fig.B.7 Fig.B.7

Figure B.8 : Proof of coassociativity for the Frobenius-from-Hopf structure in C.
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= = = = =

= = = =

====

=

=

Fig.B.7 Fig.B.5 (I1)

(I2)

(A2)

(I3)

(H2)

(H4)

Fig.B.7 (H2) (I2) (A3) (S3)

(H3)
(H1)(H9)(H2)

(H4)

Fig.B.6

Figure B.9 : Proof of counitality for the Frobenius-from-Hopf structure in C.

= = =

=

== =

Fig.B.7 (H4) (I1)

Fig.B.5

Fig.B.7(H1)Fig.B.7

Figure B.10 : Proof of Frobenius laws for the Frobenius-from-Hopf structure in C.
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For the assignment of morphisms under Ψ, take a morphism of integral Hopf algebras

f : pH,mH , uH ,∆H , εH ,ΛH , λHq Ñ pK,mK , uK ,∆K , εK ,ΛK , λKq.

We will verify that Ψpfq :“ f : pH,mH , uH ,∆H , εHq Ñ pK,mK , uK ,∆K , εKq is a

morphism of Frobenius algebras. We have multiplicativity and unitality for free,

since the Hopf multiplications and units on H and K are the same as the Frobenius

multiplications and units on H and K.

Next, because the Frobenius counits of H and K are given by εH “ λH and

εK “ λK , we get Frobenius counitality immediately from the fact that f is compatible

with the cointegrals of H and K.

Finally, we have that Frobenius comultiplicativity holds via the commutative di-

agram in Figure B.11. Specifically, the regions (2) and (4) commute by definition of

∆H and ∆K , respectively. Region (1) commutes because f is compatible with the

integrals of H and K, region (5) because f is an algebra map and is compatible with

the antipodes of H and K, and region (3) because f is a coalgebra map between the

Hopf algebras H and K.

H K

H b H K b K

H b H b H K b K b K

H b H K b K

f

∆H

idHbΛH

∆K

idKbΛK

idHb∆H

fbf

idKb∆K

fbfbf

mHbSH mKbSK

fbf

p1q

p2q p4qp3q

p5q

Figure B.11 : Frobenius comultiplicativity for Ψpfq :“ f .
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