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Abstract

Division algebras and extended Frobenius structures in monoidal categories
by
Jacob Garrett Kesten

Due to the wide range of applications in logic, programming, and quantum physics,
adapting algebraic objects to the monoidal setting has become an active area of cur-
rent inquiry. This thesis adds to this field of categorical algebra by exploring general-
izations of division algebras and extended Frobenius algebras in monoidal categories.

Division algebras were first introduced to the categorical setting in attempts to
generalize structure results from classical algebra. Extended Frobenius algebras were
introduced by Turaev and Turner in 2006 as a way to extend the correspondence
between oriented 2-dimensional topological quantum field theories and commutative
Frobenius algebras to the unoriented case. In this thesis, we explore the monoidal
analogues of these objects. Concerning division algebras, we are especially interested
in determining how analogues of the equivalent definitions of division algebras over
a field relate in a variety of monoidal settings. We also find categorical and functo-
rial constructions that interact well with division algebras and extended Frobenius

algebras, and we use these constructions to produce examples.
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Chapter 1

Introduction

Category theory, first introduced by Eilenberg and MacLane [EM45], is a branch of
mathematics that focuses on the relationships between abstract objects. The basic
structures of categories and functors emphasize the importance of maps, or mor-
phisms, between objects. Categories are defined as collections of objects with the
morphisms between them, and functors are nice maps between categories that move
both objects and morphisms. Eilenberg and MacLane used this setting to formalize
the concept of naturality. They defined natural transformations as maps between
functors that respect the full structure of the categories involved, both objects and
morphsims. This allowed the naturality of isomorphisms from many disparate areas
of mathematics to be coherently understood; for examples, see [EM45, Section 2.10].

Category theory has since been used in many areas of mathematics, notably in
algebraic topology (e.g. [Lerd5, Carbl, ES52|) and algebraic geometry (e.g. [Ser55,
Ser56, Gro57a, Gro57b, DGT71]). An important development from this is the concept
of adjoint functors, which stemmed from a desire to simplify homological computa-
tions. Adjunctions, first introduced by Kan [Kan58|, are functors satisfying a natural
morphism set correspondence mimicking that of the tensor and Hom functors for mod-
ules over rings. Adjunctions were also shown to be equivalent to the concept of monads
[Hub61, EM65, Kle65|. Understanding the equivalence of adjunctions and monads
led to the natural constructions of Eilenberg-Moore and Kleisli categories associated
to every monad. Monads have since found a place in many applications, especially
functional programming and logic; see, for example, [Mog89, PJW93, Wad95, Mul98,
WZ99, FLF21|.



Adjunctions are also used to define a number of categorical constructions. For
example, free objects are constructed by defining the free functor as the left adjoint
of the forgetful functor [Mac50|. Because adjunctions are a correspondence between
morphisms, free objects could be defined explicitly by specifying the morphism prop-
erty that they satisfy. Many categorical objects can also be defined by such a universal
property, including (co)images, (co)kernels, and (co)products. Categories where all
such objects exist are called abelian, coined by Bushbaum and Grothendieck during
their work generalizing the algebraic concept of exact sequences [Buch5, Gro57b|.

Generalizing the objects and results of classical algebra became a major goal of
category theorists. Bénabou and MacLane adapted the structure of monoids from
classical algebra by defining monoidal categories as categories equipped with a prod-
uct functor and unit object [Bén63, ML63|. The ability to “multiply” objects of a cat-
egory was necessary in defining algebraic objects internal to categories, thus birthing
the field of categorical, or universal, algebra [Bén64, Wal70|. Algebras, coalgebras,
bialgebras, Hopf algebras, and Frobenius algebras could all be defined as objects
within a monoidal category equipped with morphisms mimicking the structure of the
corresponding objects over a field [AM10]. Monoidal categories and algebraic objects
therein have many applications, including logic, condensed matter physics, and quan-
tum field theories; see, for example, |[Lam68, Lam69, Min81, Koc04, ABK21, BB22].

Due to the wide range of applications, understanding algebraic objects in monoidal
categories is an active area of current research. This thesis, based on the pair of papers
[KW25, CKQW24|, adds to the field of categorical algebra by exploring division
algebras and extended Frobenius algebras in the monoidal setting. Both of these
have been previously introduced to the categorical setting (see [GS16, Grol9, KZ19|
and |TT06|, respectively), but lack a substantial body of results and examples. We
aim to remedy this, especially by investigating constructions that can lead to new
examples of these algebras. Below, we give a more detailed introduction to these

objects and the results included in this thesis.



In all that follows, k denotes an algebraically closed field of characteristic zero,

and categories C are assumed to be locally small, unless otherwise stated.

1.1 Division algebras

Division algebras are fundamental objects in classical algebra. They were originally
introduced in conjunction with the study of quaternions and octonions by Hamilton
[Hamb3|, Graves [Gra45|, and Cayley [Cay45|. This led to the famous classification
theorems of Frobenius [Fro78|, Hurwitz [Hur98, Hur22|, and Zorn [Zor30|, as they
sought to list all examples of finite dimensional real division algebras. Division alge-
bras also played a role in the classification of simple and semisimple algebras over a
field. The work of Cartan [Car98] and the theorem of Artin and Wedderburn [Wed0§]
showed that a simple algebra is precisely a matrix algebra over a division algebra, and
hence that semisimple algebras are finite products of matrix algebras over division
algebras.

With the goal of extending the Artin-Wedderburn Theorem and similar results
to the categorical setting, Kong and Zheng defined division algebras in multifusion
categories [KZ19]. Grossman and Snyder also introduced a similar definition of di-
vision algebras in fusion categories as tools for studying Morita equivalence classes
and autoequivalences |Grol9, GS16]. However, over a field there are a number of
equivalent definitions of division algebras which had yet to be adapted and explored

categorically. We recall the definitions over a field below.

Definition 1.1.1 (Definition 2.1.1). Let A be a non-zero, associative, unital k-
algebra. We say that A is a division algebra over k if it satisfies any, and hence

all, of the following equivalent conditions.

(i) Every non-zero element of A is left (or right) invertible.
(ii) Every left (or right) A-module is free.

(iii) The regular left (or right) A-module is a simple module.



Kong, Zheng, Grossman, and Snyder all adapted Definition 1.1.1(iii). In this the-
sis, as in the paper [KW25], we generalize Definition 1.1.1(ii) for the monoidal setting,
create also a monad-theoretic description of division algebras, and then explore how
these different definitions of division algebras relate to one another. The definitions of

categorical division algebras used throughout the thesis are briefly presented below.

Definition 1.1.2 (Definitions 3.1.1, 3.1.2, 3.2.2). Take C to be an abelian monoidal

category.

(i) A non-zero algebra in C is called a right (left) monadic division algebra if its as-
sociated “tensor on the right (left) monad” has equivalent Kleisli and Eilenberg-

Moore categories.

(ii) A non-zero algebra in C is called a right (left) essential division algebra if the

right (left) free-module functor is essentially surjective.

(iii) A non-zero algebra is called a right (left) simplistic division algebra if the right

(left) regular module is simple.

The following theorem and Figure 1.1 summarize the relationships found between

the different division algebra structures introduced by Definition 1.1.2.

Theorem 1.1.3 (Propositions 3.1.4, 3.1.16, 3.2.3). Let A be a non-zero algebra in an

abelian monoidal category C.

(i) A is a monadic division algebra in C precisely when it is an essential division

algebra in C.

(ii) Suppose that C is rigid with simple unit, and A has a simple module in C. If A

is an essential division algebra, then A is a simplistic division algebra.

(iii) When C is a pivotal multifusion category, then each left version of a division

algebra in C is equivalent to its right version in C.



The hypothesis on A in part (ii) holds in many settings, including in semisimple
categories [Remark 3.1.5]. Also, C need be abelian only when working with simplistic
division algebras. Results on essential and monadic division algebras can be given in
not-necessarily-abelian monoidal categories by replacing “non-zero” with the condition
that the algebra admits more than one isoclass of modules in C; see Lemma 2.3.4.

Throughout the thesis, we also supply several examples for the division algebras of

Definition 1.1.2, especially to show how the types differ in various monoidal categories.

e We provide a sufficient condition for a monad 7" on a monoidal category C to
ensure that 7'(1) is a monadic division algebra in C [Proposition 3.2.7]. We use
this to produce a monadic division algebra in the non-abelian monoidal category

Set [Example 3.2.9].

e For certain semisimple, rigid, abelian monoidal categories with simple unit, we

show that simplistic = essential [Examples 3.1.8, 3.1.9]; cf. Theorem 1.1.3(ii).

e For a monoidal category C with non-simple unit, we show that the unit is an
essential division algebra in C that is not a simplistic division algebra in C

[Example 3.1.3]; cf. Theorem 1.1.3(ii).

e In rigid categories C, take the algebras X ® X* and *X ® X, for X € C. These
are simplistic division algebras in C precisely when X is a simple object in C,
and are essential division algebras in C precisely when X is a one-sided invertible

object in C [Proposition 3.1.6].

Regarding the last item, one-sided invertibility implies simplicity under certain
conditions on C |[Lemma 2.2.2], so this item illustrates Theorem 1.1.3(ii) (see Re-
mark 3.1.7). The algebras in the last item are also examples of internal End algebras,
and the result there holds in settings where Ostrik’s Theorem |Theorem 2.4.4] is
valid (e.g., in multifusion categories); see Lemma 2.2.1, Propositions 3.1.10, 3.1.12.
This yields more examples of simplistic and essential division algebras in monoidal

categories.



In a Rigid, Abelian Monoidal]

[In a Monoidal Category] Category w/ Simple Unit [In a Pivotal Multifusion Category]

Monadic Essential Simplistic Left version of Right version of
Division Algebra <t==> Division Algebra Division Algebra Division Algebra <==> Division Algebra
Property Property Property Property Property

Figure 1.1 : Summary of connections between division algebra properties.

1.2 Extended Frobenius algebras

Topological quantum field theories (TQFTs) are certain categorical constructions that
yield topological invariants. Loosely speaking, a TQFT is a functor from a category of
topological data to a target category with extra structure. In the 2-dimensional case,
2-TQFTs are symmetric monoidal functors from the symmetric monoidal category of
1-manifolds and 2-cobordisms to a chosen symmetric monoidal category C. Often, C
is taken to be the symmetric monoidal category Vec of k-vector spaces. A classical
result is that a 2-TQFT with values in C is classified by where it sends the circle,
which in the oriented setting, is a commutative Frobenius algebra in C; see, e.g.,
[Koc04]. Turaev and Turner expanded this correspondence to the unoriented setting

by introducing the concept of extended Frobenius algebras [TT06, Section 2|.

Turaev and Turner’s 2-TQFT Result (x): Isomorphism classes of unoriented
2-dimensional TQFTs in Vec are in 1-1 correspondence with isomorphism classes of

commutative extended Frobenius algebras over k.

Since then, extended Frobenius algebras have appeared in many works, such as in
an adaptation of (x) to compute virtual link homologies [Tub14|, in an analogue of
(%) for homotopy quantum field theories [Tagl2|, in a modification of (x) to examine
linearized TQFTs [Cze24], in a categorical expansion of () [Oca24], and in a study
of topological invariants of ribbon graphs [CL24|.



We expect that extended Frobenius algebras will continue to play a crucial role
in the TQFT program. Thus, we focus on the algebraic side and study extended
Frobenius algebras in detail- producing numerous examples, classification results,

and general constructions. We first work in Vec. Consider the terminology below.

Definition 1.2.1 (Definitions 2.1.5, 4.1.1). (a) A Frobenius algebra over k is a vec-
tor space equipped both with the structure of an associative, unital k-algebra
and the structure of a coassociative, counital k-coalgebra, which are compatible

via the Frobenius law.

(b) [TTO06, Definition 2.5] A Frobenius algebra A over k is an eztended Frobenius
algebra over k if it is equipped with a Frobenius algebra involution ¢ : A — A
and a special element 6 € A that satisfy certain axioms. We call the pair (¢, 0)

the extended structure of the Frobenius algebra.

Our first main result is the classification of extended structures for various well-

known examples of Frobenius algebras over k.

Theorem 1.2.2 (Propositions 4.1.10-4.1.12, 4.1.14-4.1.16, 4.1.18-4.1.19). The ex-
tended structures for the following Frobenius algebras are classified: k over itself; C

over R; the polynomial algebra k[z]/x™ for n = 2; the group algebras kCy, kCjs, kCy,
and k(Cy x Cy); and the Sweedler algebra To(—1).

Next, we move to the general monoidal setting. Following |[TT06, Section 2.2,
we adapt Definition 1.2.1 to the categorical setting |Definition 4.2.1] and explore
some preliminary results. Particularly interesting is the connection between separable
Frobenius algebras [Definition 4.2.4] and extended Frobenius algebras. Separability
(or specialness) is a widely used condition in quantum theory (see, e.g., [M03, REFS07,
HV19]). In particular, it is used to construct state sum 2-TQFTs [NR15]. We produce

the following result.

Proposition 1.2.3 (Proposition 4.2.5). A separable Frobenius algebra in a monoidal

category is always extendable.



Then, letting ExtFrobAlg(C) denote the category of extended Frobenius algebras
in C, we establish monoidal structures on ExtFrobAlg(C). Namely, if C is also sym-
metric, then ExtFrobAlg(C) is monoidal with ® = ®° and 1 = 1¢ |[Proposition 4.2.7].
Moreover, if C is additive monoidal, then ExtFrobAlg(C) is monoidal with ® being the
biproduct of C and 1 being the zero object of C [Proposition 4.2.8|.

Next, we explore functors that preserve extended Frobenius algebras in monoidal
categories. To start, take monoidal categories C and C’, and note that a Frobenius
monoidal functor C — C' |Definition 2.5.1] sends Frobenius algebras in C to those in
C'. It is also known that the separability condition is preserved when such a functor
is separable, see [DP08] and [BI8, Chapter 6] for more details. We extend this theory
of Frobenius monoidal functors by introducing the notion of an extended Frobenius
monoidal functor [Definition 4.3.1]. We establish that this construction satisfies many

desirable conditions as discussed below.

Theorem 1.2.4 (Propositions 4.3.2 and 4.3.4, Theorem 4.3.5). The following state-

ments hold.
(a) A separable Frobenius monoidal functor is extended Frobenius monoidal.
(b) Extended Frobenius monoidal functors preserve extended Frobenius algebras.

(¢) The composition of two extended Frobenius monoidal functors is extended Frobe-

nius monoidal.

Various separable Frobenius monoidal functors appear in the literature; see, e.g.,
[Sz105, MS10, Mor12, BT15, HLRC23, FHL23, Yad24|. So, parts (a,b) above imply
that each of these constructions produce extended Frobenius algebras in monoidal
categories. There are also extended Frobenius monoidal functors that are not neces-
sarily separable [Examples 4.3.7, 4.3.8].

Finally, we turn our attention to Hopf algebras, which also play a role in quan-

tum theory and TQFTs (see, e.g., [KLO1, BBG21, CCC22]|). It is well-known that



finite-dimensional Hopf algebras over k admit a Frobenius structure. A lesser known
result is that in a symmetric monoidal category C, integral Hopf algebras in C [Def-
inition 2.3.3] are Frobenius [Proposition 4.4.3]. A graphical proof of this result is
in Appendix B. Building on this, we introduce extended Hopf algebras in symmetric

monoidal categories [Definition 4.4.7], and obtain the result below.

Proposition 1.2.5 (Proposition 4.4.8). If an integral Hopf algebra in a symmetric
monoidal category is extendable, then so is its corresponding Frobenius structure (via

Proposition 4.4.3).

We also explore functorial constructions that preserve extended Hopf algebras,
as we did with extended Frobenius algebras. This leads to the construction of inte-
gral Hopf monoidal functors [Definition 4.4.11] and extended Hopf monoidal functors
[Definition 4.4.15], which preserve integral Hopf algebras and extended Hopf algebras,
respectively |[Propositions 4.4.12 and 4.4.16].

1.3 Organization

We give a brief overview of the structure of this thesis. Chapter 2 is dedicated to
providing all necessary background on monoidal categories, the algebraic structures
of interest both over a field and in a monoidal category, and the major results that
will be used throughout. Chapter 3 is based on the paper [KW25|, presenting results
on division algebras in monoidal categories. Chapter 4 gives the results on extended
Frobenius algebras, including the functorial constructions that preserve such struc-
tures. Many of the longer commutative diagram arguments from Chapter 4 are pre-
sented in Appendix A. Finally, Appendix B is dedicated to the proof that integral
Hopf algebras admit Frobenius algebra stuctures, a result that is used in Section 4.4.

Chapter 4 and Appendices A and B all follow [CKQW24].
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Chapter 2

Background material

We begin in Section 2.1 by recalling the definitions and major results pertaining to
different types of algebras over a field that will be considered throughout the thesis.
We give background on monoidal categories and functors in Section 2.2, and define
basic algebraic objects in this setting in Section 2.3. The tools necessary for, and the
statements of, the major theorems of Morita and of Ostrik are presented in Section 2.4.
Finally, we discuss functorial analogues of algebraic objects in Section 2.5.
Sometimes, we impose that categories are abelian. In this case, the zero object
is denoted by 0, the biproduct is denoted by i, and an object is called simple if its

only subobjects are itself and 0.

2.1 Preliminary definitions and results over a field

We use this section to present the classical definitions and results related to the
structures considered in this thesis. Division algebras are explored in §2.1.1; Frobenius
and Hopf algebras are in §2.1.2.

The information on division algebras below can be found in any noncommutative
algebra textbook. See, for example, [Coh02, Coh04, GW04, Brel4|. For Frobenius
and Hopf algebras over a field, we refer the reader to [Koc04] and [Rad12|, respectively.

Recall that in all that follows, k denotes an algebraically closed field of character-

istic zero.

2.1.1 Division algebras over a field

We begin with the definition.
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Definition 2.1.1. Let A be a non-zero, associative, unital k-algebra. We say that A
is a diviston algebra over k if it satisfies any, and hence all, of the following equivalent

conditions.

(i) Every non-zero element of A is left (or right) invertible.
(ii) Every left (or right) A-module is free.

(iii) The regular left (or right) A-module is a simple module.

These are instrumental in a number important classical results. Below is one such

result, due to Schur [Sch05].

Lemma 2.1.2 (Schur’s Lemma). Let A be an algebra, and let M and N be simple
left A-modules. Then, any element in Hom s moq(M, N) is either the zero map or an

isomorphism. In particular, Endamed(M) is a division algebra. O

Also, we have the following structure theorem, originally stated in the finite dimen-
sional case by Wedderburn in 1908 [Wed08|. Improvements were then done by Artin
[Art27], Noether [Noe29|, and Hopkins [Hop39|, resulting in the statement below.

Theorem 2.1.3 (Artin-Wedderburn Theorem). An algebra A overk is a semisimple

algebra if and only if A is a product of matriz algebras over division algebras. O
Finally, we have a classification theorem of Frobenius [Fro78|.

Theorem 2.1.4 (Frobenius Theorem). The only finite dimensional division algebras

over R are the real numbers R, the complex numbers C, or the quaternions H. [

2.1.2 Frobenius and Hopf algebras over a field

Again, we start with the relevant definitions.

Definition 2.1.5. A Frobenius algebra over k is a tuple (A,m, 14,4, ), where
(A,m, 14) is an associative, unital k-algebra, where (A, A, ¢) is a coassociative, couni-
tal k-coalgebra, and which satisfies the Frobenius law:

(a®14)A(b) = A(ab) = A(a)(14 ®b) for all a,b e A.
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We note that every Frobenius algebra must be finite dimensional over k. Moreover,

Frobenius algebras should not be confused with bialgebras over k, defined below.
Definition 2.1.6. A bialgebra over k is a tuple (A,m, 14, A, ¢), where (A,m,14)
is an associative, unital k-algebra, where (A, A ¢) is a coassociative, counital k-
coalgebra, and which satisfies the condition that its comultiplication A and counit &
are morphisms of algebras. In particular, for any a,b € A, we have

A(ab) = a(l)b(l) ® a(Q)b(Q); s(ab) = E(CL)E([))

A(ly) =14®1y; e(1a) = 1k

where the comultiplication A is defined by A(z) := 2y ® x(2) for any x € A.

By equipping a bialgebra over a field with an extra property, we obtain the concept

of a Hopf algebra over a field.

Definition 2.1.7. A Hopf algebra over k is a bialgebra H over k, together with a
k-linear antipode map S : H — H which, for any a € H, satisfies the antipode axiom
S(awy)aw) = e(a)ln = aw)S(ag),
where the comultiplication A is again defined by A(a) := a1y ® a(2), and the counit

is denoted by ¢ : H — k.
Frobenius and Hopf algebras over a field are connected via the following theorem.

Theorem 2.1.8. [LS69|, [Par71, Theorem 1| Fvery finite dimensional Hopf algebra

over k admits the structure of a Frobenius algebra. [

2.2 Monoidal categories and monoidal functors

In this section we recall the basics of monoidal categories. In §§2.2.1, 2.2.2, the
definitions of monoidal categories, monoidal functors, and monoidal natural transfor-
mations are presented. We discuss rigidity in §2.2.3 and other properties of monoidal

categories in §2.2.4. Finally, invertible objects are introduced in §2.2.5.
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The standard reference for background on monoidal categories is [EGNO15]. We
also refer the reader to [Wal24, Chapter 3| for a pedagogical introduction.

2.2.1 Monoidal categories

A monoidal category consists of a category C equipped with a bifunctor ® : CxC — C,
an associator natural isomorphism a := {axyz : (XQY)®Z > XQ (Y ®Z)}x v zec
a unit object 1 € C, and unitality natural isomorphisms ¢ := {/x : 1® X > X}xcc

and 7 := {rx : X®1 = X}xec, such that the diagrams in Figure 2.1 commute.

(WRX)®Y)® ~Z
aw,)iy W},z
WRX®Y)®Z WRX)®(YR®Z)

aW,X@Y,Zk kaw,x,ya)z

WR((XRY)®2) IR X®Y®Z))

idw®ax,y,z

Figure 2.1 : Pentagon axiom for a monoidal category.

(XQL) QY ey y XQ(1QY)
rxgm A@ZY
XQY

Figure 2.2 : Triangle axiom for a monoidal category.

Unless stated otherwise, by MacLane’s strictness theorem [MLI8, §VII.2|, we as-

sume that all monoidal categories are strict in the sense that
XRY®Z =(XRQY)®Z=X®(Y®2), X =1X=X®I,

for all XY, Z € C; that is, a, ¢, and r are identity natural isomorphisms.
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2.2.2 Monoidal functors and monoidal natural transformations

To move between monoidal categories, we want to consider functors that respect the
monoidal structures of the two categories. Specifically, given monoidal categories
(C,®,1) and (C',®',1'), a monoidal functor between them is a tuple (F, F?) FO))
where F': C — (' is a functor, F® = {F{), : F(X)® F(Y) - F(X®Y)} is
a natural transformation, and F(® : 1’ — F(1) is a morphism in C’, which satisfy
associativity and unitality axioms.

A monoidal functor (F, F®, F©):C — C'is said to be strict if F?) is an identity
natural transformation and F© is an identity morphism. The monoidal functor
(F, F?) FO)is called strong if F® is a natural isomorphism and F(® is an iso in C’.

We say that two monoidal categories (C,®,1) and (C',®',1’) are equivalent as
monoidal categories, or monoidally equivalent, if there exists a monoidal functor
(F,F? FO):C - C" whose underlying functor F is an equivalence of categories.

Now, take two monoidal functors (F, F® F©) and (G,G?® G®) from C to
C'. A monoidal natural transformation (resp., monoidal natural isomorphism) from
(F,F? FO) to (G,G? GO) is a natural transformation ¢ : F' = G (resp., natural
isomorphism ¢ : F = @) such that the diagrams in Figure 2.3 commute for all objects

X, Y eC.

F>(f,)y F(0)
FX)® F(Y) F(X®Y) 1’ > F'(1)
ox by PxQY G b1

Gy
GX)®GY) — 5 G(X®Y) G(1)

Figure 2.3 : Compatibility requirements for monoidal natural transformations.
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2.2.3 Rigidity and pivotality

We say that C is rigid if each X € C has a left dual X* € C with (co)evaluation
maps evg( c X*®X — 1 and coev§( 1 - X ® X™*, and a right dual *X € C with
(co)evaluation maps evl : X @ *X — 1, coevl : 1 — *X ® X, satisfying coherence
conditions. Here, *(X*) ~ X =~ (*X)* in C.

For a morphism f : X — Y in a rigid category C, one can define the left dual
morphism f* : Y* — X* and right dual morphism *f : *Y — *X. This gives that
(—)* and *(—) are contravariant (strong monoidal) autoequivalences of C, called the
left and right duality functors, respectively.

A rigid category is called pivotal if every object is naturally isomorphic to its dou-
ble duals. More specifically, this means there exists a monoidal natural isomorphism
j :Ide = (—)**. We note that this is equivalent to there existing a monoidal natural

~

isomorphism j: (—)* = *(—).

2.2.4 Types of monoidal categories

A monoidal category C is symmetric if it is equipped with a natural isomorphism
c:={cxy : XQ®Y 5 Y ® X}xye which satisfies cy x o cxy = idxgy for all
X,Y € C, and which obeys the hexagon axioms. The component cxy of ¢, the
c? = id property, the naturality of ¢ at a morphism f € C, and unit coherence of ¢ are

all depicted in Figure 2.4 with string diagrams.

_ - B |\s B : ’Il B :
N : / :
cxy (S1) (S2) (S3) (S4)

Figure 2.4 : Some axioms for a symmetric monoidal category.

We say that C is additive monoidal if its underlying category is additive and the
endofunctors (X ® —) and (— ® X) of C are additive, for each X € C. It is abelian

monotdal if is additive monoidal, and moreover, its underlying category is abelian.
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Let k denote an algebraically closed field of characteristic 0. A category is k-linear
if all Hom-sets are k-vector spaces, where composition distributes over addition and
scalar multiplication. We say that C is (k-)linear monoidal if the underlying category
is k-linear, and the endofunctors (X ® —) and (—® X)) of C are linear, for each X € C.

A k-linear abelian category C is locally finite if every object has finite length and
each Hom-space is finite dimensional. It is finite if it is locally finite, has enough
projectives, and has only finitely many isoclasses of simple objects. We say that
C is fusion if it is abelian, k-linear monoidal, finite, rigid, semisimple, and satisfies

Endc¢(1) = k. When the last condition is omitted, C is multifusion.

2.2.5 Invertible objects in monoidal categories

There are a few notions of invertible objects in monoidal categories. Here, X € C is
left invertible if there exists X% € C such that X*' ® X = 1, and is right invertible if
there exists X € C such that X ® X® ~ 1. We also say that X is invertible if it is
both left and right invertible; here, X* ~ X%,

The result below is straightforward to verify.
Lemma 2.2.1. Consider an object X € C.

(i) X s left invertible if and only if (—® X) : C — C is essentially surjective.
(il) X is right invertible if and only if (X ® —) : C — C is essentially surjective.

(iii) If X € C is invertible, then both functors (—®X):C - C and (X®—):C —C

are equivalences. [

In a rigid category C, a stronger notion of invertibility for X € C is to require
that it is invertible via (co)evaluation morphisms [EGNO15, §2.11]. Next, we connect

invertibility here with simplicity.

Lemma 2.2.2. Take an abelian monoidal category C with simple 1, and where all

objects have finite length. If X € C is left or right invertible, then X s simple.
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Proof. This follows since length(X ® Y') > length(X) length(Y) when X,Y e C have
finite length [EGNO15, Exercise 4.3.11(1,2)], and objects of length 1 are precisely the
simple objects of C. O]

2.3 Algebraic structures in monoidal categories

Here, we adapt algebraic objects from §2.1 to the monoidal setting. We start with
algebras and coalgebras in monoidal categories is §2.3.1. Modules are introduced in
§2.3.2, and their properties and operations are discussed in §§2.3.3, 2.3.4.

For details on algebras in monoidal categories, see, for example, [Koc04, Chap-
ter 3|, [TV17, Parts I and II|, or [Wal24, Chapter 4|. The first of these also includes
an introduction to Frobenius algebras in monoidal categories, and the last also in-
cludes background on modules in monoidal categories. For background on coalgebras,
bialgebras, and Hopf algebras in monoidal categories, see [AM10, Section 1.2|, noting

that the term monoid is used instead of the term algebra for all of these structures.

2.3.1 Algebraic objects in monoidal categories

Let C := (C,®, 1) be a monoidal category. An algebra in C is an object A € C,
equipped with morphisms m : AQ A — A and v : 1 — A in C, subject to the

associativity and unitality axioms given below.
m(m®ids) = m(ids ® m), m(u®idy) =idy = m(ida ® u).

Algebras in C form a category, Alg(C), where a morphism (A, ma,us) — (B, mp,up)
is a morphism f : A — B in C such that fms = mp(f® f) and fus = ug.

For example, 1 € Alg(C), with my : 1® 1 — 1 being the unitor isomorphism,
and uy = id;. In an abelian monoidal category, 0 € Alg(C) with my : 0® 0 — 0 and

ug : 1 — 0 coming from 0 being terminal.
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A coalgebra in C is an object A € C, equipped with morphisms A : A - A®Q A

and € : A — 1 in C, subject to coassociativity and counitality axioms:
(A@ldA)AI (ldA®A)A, (€®ldA)A=1dA :€(ldA®u)A

Coalgebras in C form a category, where a morphism (A, Ay,e4) — (B, Ap,ep) is a
morphism f: A — B in C such that Ag f = (f® f)A4 and eg f = €4. This category
is denoted Coalg(C).

We continue our examples of 1 and 0. Specifically, for any monoidal category C,
we have that 1 is a coalgebra in C with Ay : 1 — 1®1 being the inverse of the unitor
isomorphism, and €3 = idy. If C is abelian, then 0 € Coalg(C) with Ag: 0 - 0® 0
and €¢ : 0 — 1 both coming from 0 being initial.

We now explore ways in which objects in C can be simultaneously an algebra and a
coalgebra. The first, which requires no additional structure on the monoidal category

C is given in the following definition.

Definition 2.3.1. A Frobenius algebra in C is a tuple (A, m,u, A, ) where (A, m,u)

is an algebra in C, (A, A, ¢) is a coalgebra in C, and which satisfies the Frobenius law:
(m®idy)(ida ® A) = Am = (idg @ m)(A ®idy).

A morphism of Frobenius algebras in C is a morphism of the underlying algebras and

coalgebras in C. The above objects and morphisms then form a category, FrobAlg(C).

When the monoidal category C is symmetric via natural isomorphism ¢, as dis-

cussed in §2.2.4, we can also define bialgebras and Hopf algebras.

Definition 2.3.2. A bialgebra in a symmetric monoidal category C is a tuple
(A, m,u, A, e) where (A,m,u) € Alg(C), where (A, A, ¢e) € Coalg(C), and which sat-
isfies the condition that A and ¢ are morphisms of algebras, or equivalently that m
and u are morphisms of coalgebras. Again, together with morphisms that are simul-

taneously algebra and coalgebra morphisms, these objects form a category, Bialg(C).
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Imposing further structure on bialgebras produces Hopf algebras, which are de-

fined below.

Definition 2.3.3. A Hopf algebra in a symmetric monoidal category C is a bialgebra
(H,m,u, A, ¢), equipped with a morphism S : H — H in C, called the antipode,

satisfying the antipode axiom:
m(S ®idy)A = ue = m(idy ® S)A.

Again, we obtain a category, HopfAlg(C), whose objects are Hopf algebras and whose
morphisms are those morphisms of C which are simultaneously algebra and coalgebra

morphisms.

As elementary examples, we note that it is easy to verify that 1 is a Frobenius al-
gebra in any monoidal category, and is a bialgebra and Hopf algebra in any symmetric
monoidal category. In the Hopf case, the antipode is given by S = idy. Similarly, in
the case that the (symmetric) monoidal category is abelian, one can check that 0 is
a Frobenius algebra, bialgebra, and Hopf algebra with antipode S = idy.

Note also that all of these above definitions coincide with the corresponding defi-

nitions over a field k from Section 2.1 when we take C = Vecy.

2.3.2 Modules in monoidal categories

Fix an algebra (A,ma,us) in C. A right A-module in C is a pair (M, <), where
MeCand <: M®A — M in C satisfying associativity and unitality axioms.
These structures form a category Mod-A(C), where morphisms are those morphisms
in C that respect the right module structures. Left A-modules (N,=) in C and the
category A-Mod(C) are defined likewise.

If (B, mp,up) is another algebra in C, an (A, B)-bimodule in C is a tuple (Q, =, <)
such that (Q,>) € A-Mod(C), (Q,<) € Mod-B(C), satisfying a middle associativity
axiom. With morphisms that are simultaneously left and right module morphisms,

we obtain the category (A, B)-Bimod(C).
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For example, for any algebra A in an abelian monoidal category C, we have that
0 € A-Mod(C), with =: A® 0 — 0 coming from 0 being terminal.

A left ideal of an algebra A in C is a subobject of A,., € A-Mod(C). In other words,
it is an object (I,)\) with a mono ¢ : (I,\) = (A4, m,4) in A-Mod(C). Similarly, a
right ideal of A is a subobject of A,e; € Mod-A(C), and a (two-sided) ideal of A is a
subobject of Aes € (A, A)-Bimod(C).

In an abelian monoidal category C, a non-zero algebra A is simple if its only ideals
are itself and zero (i.e., Ao is a simple object in (A, A)-Bimod(C)). Next, consider

the preliminary result below.

Lemma 2.3.4. In an abelian monoidal category C, an algebra A in C is the zero
algebra 0 if and only if A-Mod(C) and Mod-A(C) each have one object, namely the

zero module, up to isomorphism.

Proof. If A = 0 and (M,>) € 0-Mod(C), then idy; = = o (up ® idy) is a zero
morphism. Hence, M is both initial and terminal, and M =~ 0. Similarly, all right
modules over A = 0 are also zero. On the other hand, if A is non-zero, then A-Mod(C)
(or Mod-A(C)) contains the zero module and the regular module, and these are not

isomorphic. O

2.3.3 Properties of modules

A non-zero right module M € Mod-A(C) is called simple if it is a simple object in the
category Mod-A(C); a similar notion holds for right modules and bimodules in C.

The reqular right (resp., left) A-module in C is (A, m4) in Mod-A(C) (resp., in
A-Mod(C)), and the regular (A, A)-bimodule in C is (A,ma, m4) in (A, A)-Bimod(C),
which is denoted by A, or A.

Moreover, a right A-module (M, <) in C is said to be free if there is an object X € C
so that (M, <) = (X ® A,idx ® m4) in Mod-A(C). Similarly, a left A-module (N, =)
in C is said to be free if there is an object Y € C so that (NV,>) = (AQ Y, ms ®idy)
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in A-Mod(C). For instance, the regular left and right A-modules are the free modules

over A on the object 1 € C.

2.3.4 Operations on modules

Now let (M,<) € Mod-A(C). If *M exists in C, then *M is a left A-module in C.
Similarly, given (N,>) € A-Mod(C), if N* exists in C, then N* is a right A-module
in C. When C is rigid, restricting the duality functors from §2.2.3 to categories of
modules, we obtain the equivalences of categories (—)* : A-Mod(C) — Mod-A(C) and
*(=) : Mod-A(C) = A-Mod(C), for any A € Alg(C).

Given (M, <) € Mod-A(C) and (N, =) € A-Mod(C), the tensor product of M and N
over A is the coequalizer of the morphisms id); ® > and <®id, denoted by M &®4 IV,
if it exists in C. In any case, for any @ € (A, B)-Bimod(C) and P € (B, C)-Bimod(C),
we get that Q ®p P is in (A, C)-Bimod(C). Here, (A, A)-Bimod(C) is monoidal with
® = @4 and 1 := Ape,.

2.4 Morita’s and Ostrik’s theorems

Here, instead of doing algebra in monoidal categories, we do algebra on monoidal
categories, thinking of monoidal categories as the analogue of algebras. We introduce
module categories and functors in §2.4.1. Internal Homs and Ends are in §2.4.2.
Finally, Morita’s Theorem and Ostrik’s Theorem are presented in §§2.4.3, 2.4.4.

For further details see [EGNO15, Chapter 7| or [Wal24, Chapters 3 and 4].

2.4.1 Module categories and functors

A left C-module category is a category M with a left action bifunctor =>: C x M — M
and associativity and unitality natural isomorphisms which satisfy the pentagon and
triangle axioms. Right C-module categories (N, <) are defined likewise.

The regular left (resp. right) C-module category is given by C, with action bifunctor
> = ® (resp. < := ®). We also have that for any algebra A € Alg(C), the category
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Mod-A(C) is a left C-module category and A-Mod(C) is a right C-module category,
again with action bifunctors given by ®.

A left C-module functor is a tuple (F), s) where F'is a functor between left C-module
categories (M, =) and (M, =) and s := {sx s : F(X=M) = X='F(M)}xec.mem is
a natural isomorphism satisfying a pentagon and triangle axiom. One can analogously
define a right C-module functor.

We say two left C-module categories are equivalent as left C-module categories if
there is a left C-module functor between them such that the underlying functor is an

equivalence. Right C-module equivalence of categories is defined analogously.

2.4.2 Internal Homs

A left C-module category M := (M, =) is closed if, for each M € M (resp,. N € ),
the functor (— = M) : C — M has a right adjoint: Hom,,(M,—) : M — C. We call
Hom (M, N) the internal Hom of M and N. Also, End,,(M) := Hom (M, M) is
called the internal End of M. Similar notions hold for right C-module categories.

For any M € (M, =) and any N € (N, <), the objects End , (M) and End,,(N)
are algebras in C. Given M’ € M and N’ € N, we obtain that Hom ,,(M, M’) is a
right End ,,(M)-module in C. Similarly, Hom,(N, N’) is a left End,-(N’)-module in
C. From this, we obtain the functors Hom,,(M, —) : M — Mod-End ,,(M)(C) and
Homy(—, ') : A — End, (N")-Mod(C).

As an example, if the category C is rigid, the regular left C-module category is
closed, with Hom,(X,Y) =~ Y ® X*. The algebra and module structures on these
internal Homs and Ends are then given by appropriate (co)evaluation maps.

Given an algebra A € C, we see that the left C-module category Mod-A(C) and
the right C-module category A-Mod(C) are both closed, with internal Homs given by
Hompyegae) (M, M) = (M @4 *(M'))* and Hom y yoq(e) (N, N') = *((N')* ®4 N) in

C. The next result is also useful.
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Lemma 2.4.1. For C rigid with A € Alg(C), we have that A = End 4 poqc)(A4) and
A = Endyog.4(c)(A) as algebras in C.

Proof. Take the projection 7 : A*®A — A*®4 A from the coequalizer property. Next,

note that TMEnd 1 yyoq(cy(A) = *u where p 1= idA*®Acoevﬁ ®aid 4, and UEnd 5 o) (A) = *n
such that evl = nm. Moreover, the isomorphism A* ®4 A =~ A* in C is given by
mutually inverse morphisms ¢ : A* ®4 A — A* and ¢ : A* - A*®4 A in C, where
o =<4x = (evh®idax)(id 4+ @M 4®id 4% ) (1d 4+ ®id s @coevh) and ¥ = 7 (id 4+ @u4).

Now one can check that (ma)* = (¢®¢) u1 and (ua)* = n1p. Thus, *¢ yields the

first algebra isomorphism in C. Similarly, A ~ Endyeg 4(c)(A) as algebrasin C. O

2.4.3 Morita’s Theorem

We say that algebras A and B in C are Morita equivalent in C if their categories
of modules are equivalent as C-module categories. The following gives the formal

definition, as well as a useful characterization of this notion in terms of bimodules.

Theorem 2.4.2 (Generalized Morita’s Theorem). Let C be an abelian monoidal cat-
egory such that the functors — ® X and X ® — are right exact for each X € C. Take

algebras A, B € Alg(C). Then the following statements are equivalent.
(a) A-Mod(C) and B-Mod(C) are equivalent as right C-module categories.
(b) Mod-A(C) and Mod-B(C) are equivalent as left C-module categories.

(¢) There exists bimodules P € (A, B)-Bimod(C) and Q € (B, A)-Bimod(C) such
that P ®@p Q) = A,ey as A-bimodules and QQ @4 P = B,., as B-bimodules. O

In particular, the proof of this theorem shows that if we have the bimodules P

and @, then the equivalences of module categories are given by
Q ®4 — : A-Mod(C) — B-Mod(C); P®p — : B-Mod(C) — A-Mod(C)

—®4 P:Mod-A(C) — Mod-B(C); - ®5Q : Mod-B(C) — Mod-A(C).
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For instance, let C be abelian rigid monoidal with simple unit. Then, for any
non-zero X € C, the internal End of X, given by X ® X*, is Morita equivalent to 1
in C via one of the functors below:

(—®X*):C 5 Mod-(X @ X*)(C); (X®—):C > (X ®X*)-Mod(C). (2.4.3)

Their respective quasi-inverses are given by:

(— ®X®X* X) . MOd—(X@X*>(C) - C; (X* ®X®X* —) . (X®X*)—Mod(C) - C

See, e.g., [Wal24, Example 4.58]. Similarly, the algebra *X ® X is also Morita equiv-
alent to 1 in C.

2.4.4 Ostrik’s Theorem

The categories A-Mod(C) and Mod-A(C) are the prototypical examples of C-module
categories, and the following theorem from [Ost03] addresses when any given C-

module category is of this form.

Theorem 2.4.4 (Ostrik’s Theorem). Let C be a multifusion category, with M and
N non-zero, indecomposable left and right C-module categories, respectively. Then,

for any non-zero M € M and any non-zero N' € N, we have that
M ~ Mod-End ,,(M)(C) and N~ End,(N")-Mod(C),
as left and right C-module categories, respectively, via the functors

Hom,, (M, —) : M = Mod-End ,,(M)(C) and
Hom, (—, N') : N'= End(N")-Mod(C).

2.5 Functorial constructions

In this section, we begin by expanding the analogy between algebras in monoidal

categories and monoidal functors to include all the different algebraic structures in-
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troduced in §2.3.1. This is done in §2.5.1. Then we introduce Monads and the
Eilenberg-Moore and Kleisli categories corresponding to them in §§2.5.2, 2.5.3.

A good overview of the material concerning functorial preservation of algebra
objects can be found in [AM10, Chapter 3|. Further information can be found in
[Wal24, DPO0S, B18], with specific locations provided at the beginning of the theorems
below. References on monads include [Riel7, Chapter 5| and [Wal24, §§4.3.2, 4.4.3|.

2.5.1 Functors preserving algebraic objects

Algebras in monoidal categories and monoidal functors are linked by the fact that
monoidal functors preserve algebras (see Proposition 2.5.4 below). Similarly, there
are specific types of functors between (symmetric) monoidal categories that preserve
coalgebras, Frobenius algebras, bialgebras, and Hopf algebras.

First, A functor F' : C — C'is a comonoidal functor if it is equipped with a natural
transformation Fig) := {F()Q()’Y F(X®Y) - F(X)® F(Y)}xye and a morphism
Fy : F(1) — 1" in C" which satisfy coassociativity and counitality constraints.

To ease notation when working with a monoidal functor (F, F® F©) . ¢C — ',
we will write F¢y,, 1 F(X)® F(Y)® F(Z) — F(X®Y ® Z) for the composition
F® o F® which is unambiguous by associativity. Similarly, for comonoidal functors,

we will write F()Q()’Y’Z FX®Y®Z)—- F(X)Q F(Y)® F(Z) by coassociativity.

Definition 2.5.1. A Frobenius monoidal functor between monoidal categories C and
C' is a tuple (F, F®,FO Fy), Fq)) such that (F, F®, F©®) is a monoidal functor
between C and C’, and (F, F(2), F(o)) is a comonoidal functor between C and C’, and

which satisfies the Frobenius conditions given below, for all XY, Z € C.
(F& @ idrz)) (ideoo) @ FF) = FaP o Fhs,
(idroo & B2 (FY & iden)) = F"™ 0 FEy

In the case that F® o Fl9) = id, we call I a separable Frobenius monoidal functor.
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As with bialgebras and Hopf algebras, to define corresponding functors we must

require that we are working in symmetric monoidal categories.

Definition 2.5.2. A bi-monoidal functor between the symmetric monoidal cate-
gories (C,c) and (C',c) is a tuple (F, F® FO Fo Fp) such that (F, F®, FO)
is a monoidal functor between C and C’, and (F, F(z), F(o)) is a comonoidal functor
between C and C’, and which satisfies the three unitality axioms given below and the
braiding axiom shown in Figure 2.5 for any X, Y, Z, W € C:

F(ﬂ2)Il o F® = FO & FO; Fg) o Fﬁ{ = Flo) ® Floy; Foy o FO —idy,.

FIX®Y)® F(Z@W) .

FX®YQZQW) Y)® F(Z)® F(W)
F(idx ®cy,z ®idw)l/ ‘/idF(X) ® cp(y),F(z)® dpw)
FIX®ZQY QW) X)Q@ F(Z)® F(Y)® F(W)

XQZ.YQW /)
\ FQ,&FP),

FX®Z)Q FY®@W)

Figure 2.5 : Braiding axiom for bi-monoidal functors.

Lastly, we define Hopf monoidal functors.

Definition 2.5.3. A Hopf monoidal functor between symmetric monoidal categories
(C,c) and (C', () is a tuple (F, F(z),F(O),F(Q),F(0)7T) where (F), F(z),F(O),F(g),F(O))
is a bi-monoidal functor, and T : F' = F' is a natural transformation, again called

the antipode, such that the following conditions are satisfied for any X,Y. Z € C.

F)((Q)YZ (idp(X) ® Ty @ idpz)) Fg)’Y’Z = dr(xevez);
FX vz (Tx ® idpy) ® TZ) = Txevez

F? (idpay ® Y1) Fy' = F© Foy = FY) (T2 @ idp)) By
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Now, with all these definitions we obtain the following results.

Proposition 2.5.4. [Wal24, Proposition 4.3] [DP08, Corollary 5| [B18, Lemma 6.10]
[AM10, Proposition 3.31 and Theorem 3.70] Take monoidal categories C and C'.

(a)

Given a monoidal functor (F, F® F©):C — C" and an algebra (A, m4,uy) in

C, we obtain that
(F(A)7 Mpa) = F(mA)Ff(an UR(A) = F(“A)F(O)) e Alg(C").
In particular, F induces a functor Alg(C) — Alg(C’).

Given A comonoidal functor (F, F(a), Fo)) : C — C" and a coalgebra (A, Ay, e4)

in C, we obtain that
(F(A), Ap) = F5" F(Aa), ep) = Fo) F(ea)) € Coalg(C').
In particular, F induces a functor Colg(C) — Coalg(C’).

Moreover, given a Frobenius monoidal functor (F, F?) F©) Fioy, Flp)) : C = C'
and Frobenius algebra (A,ma,ua, Aa,e4) in C, we have that F(A) is a Frobe-
nius algebra in C' by wusing the formulas from parts (a) and (b).
In particular, F induces a functor FrobAlg(C) — FrobAlg(C’).

Now, letting C and C' be symmetric monoidal, given a bi-monoidal functor
(F,F@ FO Fo Fg) : C — C' and bialgebra (A,ma,ua, Aa,ea) in C, we
have that F(A) is a bialgebra in C' via the formulas from parts (a) and (b).
In particular, F induces a functor Bialg(C) — Bialg(C’).

Likewise, given a Hopf monoidal functor (F, F® FO Fq, F),T) :C — C' be-
tween symmetric monoidal categories, and a Hopf algebra (A,ma,ua, Aa,€4,S)
in C, it follows that F'(A) is a Hopf algebra in C' using the formulas from (a) and
(b), and with antipode given by Spy = YpF(S) = F(S)Tx.
In particular, F induces a functor HopfAlg(C) — HopfAlg(C’). O

Another nice feature of these functors is that they are closed under composition.
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Proposition 2.5.5. [Wal24, Exercise 3.4] [DP08, Proposition 4] [B18, Exercise 3.10
and 6.4] [AM10, Proposition 3.10 and Theorem 3.72] Take monoidal categories C, C',
and C".

(a)

(d)

(e)

Let (F,FA FO):C - C" and (G,G? G :C" — C" be monoidal functors.
Then, the composition GF : C — C" is monoidal, with (GF)® and (GF)©®
defined by:

(GF)Sy = G(FL) 0 Golyy pyy XYV EC,  (GP)O 1= G(F) 0 GO,

Let (F, Fay, Flo)) : C = C" and (G, G2y, G(g)) : C" — C" be comonoidal functors.
Then, the composition GF : C — C" is comonoidal, with (GF)) and (GF )
defined by:

F(X),F(Y , .
(GF)y =G o G(FSY) XY eC,  (GF)q) =G o G(Fy).
Let (F, F(Z),F(O),F(Q),F(O)) :C —C and (G, G(Q),G(O),G(Q),G(O)) :C— C" be
Frobenius monoidal functors. Then, the composition GF : C — C" is Frobenius

monoidal by using the formulas from parts (a) and (b).

Now, letting C, C', and C" all be symmetric, the composition of two bi-monoidal

functors is also bi-monoidal, using the formulas from parts (a) and (b).

Similarly, the composition, GF, of two Hopf monoidal functors F' and G, with
antipodes Y'Y and Y& respectively, is also a Hopf monoidal functor, with an-

tipode T := TG )0 G(TY) = G(TX) 0 TE x) for any X e C. O

2.5.2 Monads

Let A be any category. A monad on A is an algebra in the monoidal category

(End(A),0,1d4). More explicitly, a monad is a tuple (T, u,n) where T : A — A is

an endofunctor, and p : T'oT = T and n : Id4 = T are natural transformations

satisfying associativity and unitality axioms.
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For example, given an adjunction, (F': A — B) 4 (G : B — A) with unit 7 and
counit €, we get that (GF,GeF,n) is a monad on A.

2.5.3 Eilenberg-Moore and Kleisli categories

Next, for amonad (T, i1, ) on A, the Eilenberg-Moore category AT of T is the category
with objects (Y,& ) where Y € A and & : T(Y) - Y € A. In A’ a morphism
f: (Y, &) — (Z,&7) is a morphism [ : Y — Z € A, satisfying f o &y = £z 0 T(f).

This construction produces an adjunction
(Free” : A — AT) —+ (Forg” : AT — A),

where the functor Free® is defined by Free” (V) := (T(Y), py ), Free’ (f) := T(f), and
Forg” is defined by Forg” (Y, &y) := Y, Forg” (f) := f. The monad associated to this
adjunction coincides with the original monad 7.

Alternatively, the Kleisli category Ar of T is the category whose objects are the
objects of A, where Hom 4,.(X,Y) = Homy (X, T(Y)). The composition of morphisms
f € Homy, (X,Y) and g € Homy, (Y, Z) in Az is given by gor f := uz o T(g) o f,
which is in Hom4(X,T(Z)). Again, this produces an adjunction:

(FTiAHAT) — (UTZ.AT—>.A),

where the functor Fr is defined by Fr(Y) :=Y, Fr(f : Y — Z) :=nz o f, and the
functor Ur is defined by Urp(Y) :=T(Y), Ur(f : Y — Z) := uz o T(f). Again, the
monad associated to this adjunction coincides with the original monad 7.

The category Ay can be identified with the essential image of Free” in A7, via the
embedding K : Ap — AT given by K(Y) =T(Y) and K(f : Y — Z) = uz o T(f).
Hence, the objects of the Kleisli category of T' are considered as the free objects of
the Eilenberg-Moore category of T

The Eilenberg-Moore and Kleilsi categories are, respectively, the terminal and

initial solutions to the problem of finding an adjunction which gives rise to a certain
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monad. Namely, given a monad T on A, consider the category Adj,, whose objects are
adjunctions (F': A — B) o (G : B — A) which induce the monad 7. Morphisms in
Adj, are defined as follows. Given adjunctions A; := (F; : A — By) 4 (G1 : By — A)
and Ay := (Fy : A — By) 4 (Gy : By —> A) in Adj,, a morphism K : A} —> Ay is a
functor K : B; — By which satisfies K o F; = Fy and G5 0 K = (.

In this category Adj;, the Eilenberg-Moore adjunction is terminal and the Kleisli
adjunction is initial. This produces a unique functor K7 : Ay — AT which satisfies
KpoFp = Free” and Forg? oKy = Up. This functor is called the comparison functor,

and it coincides with the embedding K of Ay into AT mentioned above.



31

Chapter 3

Division algebras in monoidal categories

This chapter of the thesis is based on the paper [KW25]. Our goal is to adapt the
equivalent definitions of division algebras over a field, given in Defintion 2.1.1, to the
monoidal setting. In Section 3.1 we use module-theoretic techniques to accomplish
this, and explore how these definitions relate in a variety of monoidal categories. In
Section 3.2, we instead use monads to define division algebras and examine their
connection to the previously proposed definitions. Finally, we discuss possible future

directions that may be of interest in Section 3.3.

3.1 Module-theoretic division algebras

theoretic techniques. In §3.1.1, we introduce module-theoretic definitions of division
algebras in abelian monoidal categories. We then explore these structures in rigid,

multifusion, and pivotal multifusion categories in §83.1.2, 3.1.3, 3.1.4, respectively.

3.1.1 In abelian monoidal categories

Let C denote an abelian monoidal category.

Definition 3.1.1. A non-zero algebra A € Alg(C) is a left (resp., right) simplistic
division algebra in C if the regular module A,e; in A-Mod(C) (resp., in Mod-A(C)) is
simple, and we say that A is a simplistic division algebra in C if both conditions hold.

The full subcategories of Alg(C) on these objects are denoted by ¢.SimpDivAlg(C),
by 7.SimpDivAlg(C), and by SimpDivAlg(C), respectively.
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Definition 3.1.2. A non-zero algebra A € Alg(C) is a left (resp., right) essential
division algebra in C if the functor (A® —) : C — A-Mod(C) (resp., the functor
(—® A) : C - Mod-A(C)) is essentially surjective. We say that A is an essential
division algebra in C if both conditions hold.

The full subcategories of Alg(C) on these objects are denoted by ¢.EssDivAlg(C),
by r.EssDivAlg(C), and by EssDivAlg(C), respectively.

Note that Definition 3.1.1 was used in previous works involving division algebras in
abelian monoidal categories [GS16, Grol9, KZ19], as this recovers Definition 2.1.1(iii)
when C is the monoidal category of k-vector spaces, (Vec, ®y, k). On the other hand,
Definition 3.1.2 recovers Definition 2.1.1(ii) when C is Vec since if the functor (—® A)
is essentially surjective, then every right A-module in C is isomorphic to one in the
image of (— ® A), hence free. Similarly, if (A ® —) is essentially surjective, then
every left A-module in C is free. Moreover, the hypothesis that A is non-zero in the
terminology above is needed; else, by Lemma 2.3.4, the conditions in Definitions 3.1.1

and 3.1.2 hold vacuously.

Example 3.1.3. If 1 # 0, then 1 is a simplistic division algebra precisely when 1 is
a simple object in C. But, 1 is always an essential division algebra since, by unitality,

the functors (1® —) : C — C and (—® 1) : C — C are essentially surjective.

With the quick example above, we see that these two types of division algebras

differ in the general abelian monoidal setting beyond Vec.

3.1.2 In rigid, abelian monoidal categories with simple unit

In this part, assume that C is a rigid, abelian monoidal category with simple 1. We
will show that essential division algebras in C are simplistic division algebras in C. We
will also present examples of simplistic, non-essential division algebras in C, showing

that these definitions remain distinct in this setting.
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Proposition 3.1.4. Take A € Alg(C) where A admits a simple left (resp., right)
module in C. If A is in (./r.EssDivAlg(C), then A is in £./r.SimpDivAlg(C).

Proof. We start with A € Alg(C) that is a left essential division algebra admitting a
simple left A-module S in C. We aim to show that A, € A-Mod(C) is simple. Now
take a non-zero left ideal + : I — A in C; it suffices to show that the mono ¢ is an
isomorphism in C.

Since A is a left essential division algebra, the module S is free. So, there is
an object X € C such that S ¥~ A® X € A-Mod(C). By exactness of the functor
(— ® X), a consequence of rigidity, we have that monos are preserved. Thus, we
obtain a submodule t ® idy : I® X — A® X. By simplicity of S =@ A® X, either
I® X =0 or:®idy is an isomorphism.

Next, note that (—® X) : C - Mod-(*X ® X)(C) is an equivalence of categories
via the right dual version of (2.4.3). Since I # 0, we conclude that I ® X, the
image of I under the equivalence (— ® X), is also non-zero. Hence, : ® idy is an
isomorphism in C, and hence in (*X ® X)-Mod(C). But, equivalences of categories
reflect isomorphisms, so ¢ must be an isomorphism, as desired.

The right version argument is similar, using instead the equivalence of categories

(X®-):C > (X ®X*)-Mod(C). O

Remark 3.1.5. The hypothesis on A in Proposition 3.1.4 holds when the regular
module in A-Mod(C) (resp., Mod-A(C)) is left (resp., right) Artinian, is left (resp.,

right) Noetherian, or is semisimple.

Next, we construct simplistic, non-essential division algebras in C. To do this, we
study when the internal End algebras of the regular left and right C-module categories

are division algebras in C.
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Proposition 3.1.6. Take C as above, and take an object X in C.
(i) X ® X* is a simplistic division algebra in C if and only if X is simple.
(il) *X ® X is a simplistic division algebra in C if and only if X is simple.
(i) X ® X* is an essential division algebra in C if and only if X is left invertible.
(iv) *X ® X is an essential division algebra in C if and only if X is right invertible.

Proof. For (i), recall the equivalence (—® X*) : C = Mod-(X ® X*)(C) from (2.4.3).
Applying this to X, we obtain that X is simple in C if and only if X ® X* is simple in
Mod-(X ® X*)(C), if and only if X ® X* is a right simplistic division algebra. Again,
using (2.4.3), we get an equivalence X ® (—)* : C = (X ® X*)-Mod(C), and applying
this to X, we obtain that X is simple in C if and only if X ® X* is a left simplistic
division algebra. The proof of part (ii) follows likewise.

For (iii), by way of Lemma 2.2.1(i), we first show that X ® X* is a right essential
division algebra if and only if (—®X) : C — C is essentially surjective. For the forward
direction, assume that X ® X* is a right essential division algebra, and let Z € C be
any object. Take the module Z ® X* in Mod-(X ® X*)(C), and by the assumption,
there is an object Z eCsuchthat ZQX®X* =~ Z®X* in Mod- (X ® X*)(C). Again,
(—®X*):C = Mod-(X ® X*)(C) is an equivalence, so apply its quasi-inverse to get
that Z® X =~ Z in C. Thus, Z is in the essential image of (— ® X).

Conversely, assume that (— ® X) : C — C is essentially surjective, and take
any right module M € Mod-(X ® X*)(C). Since (— ® X*) is essentially surjective
onto Mod-(X ® X*)(C), there exists an object M € C such that M ® X* =~ M in
Mod-(X ® X*)(C). Moreover, since (— ® X) is essentially surjective onto C, there
exists an object X € C such that X® X ~ 1 in C. Then, (M@)N() R (X ®X*) ~
M®X* =~ M in Mod-(X ® X*)(C), so that M is in the essential image of the functor
(—®(X®X*)):C — Mod-(X ® X*)(C), completing the direction.

Likewise, X ® X* is a left essential division algebra if and only if (-®X):C — C
is essentially surjective, by the equivalence (X ® —) : C = Mod-(X ® X*)(C) from
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(2.4.3), and by duality functors. Now apply Lemma 2.2.1(i) to conclude part (iii).
The proof of part (iv) follows similarly. O

Remark 3.1.7. We can recover Proposition 3.1.4 for the algebras X®@X* and * X ® X
in C, in the finite length case. First, applying (2.4.3) to the simple object 1 € C, we get
simple modules X* € Mod-(X®X*)(C) and X € (X®X*)-Mod(C). So, the hypotheses
of Proposition 3.1.4 hold for the algebra X @ X™* in C. Now assume that X @ X* is
an essential division algebra in C. Then, X is left invertible [Proposition 3.1.6(iii)],
so X is simple |[Lemma 2.2.2|, and hence X ® X* is a simplistic division algebra

[Proposition 3.1.6(i)|. Similar arguments work for the algebra *X ® X in C.

Next, we provide examples of simplistic, non-essential division algebras in certain

fusion categories. Indeed, fusion categories satisfy the hypotheses on C here, including
those in Remark 3.1.7.
Example 3.1.8. Take the Fibonacci fusion category, Fib, which has simple objects 1
and 7 satisfying the fusion rules: 1® 1 = 1, and I®7T =7~ 7®1,and T®7T = 1 uT.
See e.g., [Wal24, §3.9] or [BD12|. We have that 7 ® 7* = 1 L 7. Since 7 is simple in
C, Proposition 3.1.6(i) implies that 1 L 7 is a simplistic division algebra in Fib.

But, (—®7) : Fib — Fib is not essentially surjective. Indeed, since Fib is semisim-
ple, each object in Fib is isomorphic to 1" 7™, for some m,n > 0. Then, the essential
image of (— ® 7) has objects (1" U 7™) ® 7 = 1™ L 7"+, for m,n = 0. So, 1 is not
in the essential image of (— ® 7), and by Lemma 2.2.1(i) with Proposition 3.1.6(iii),

1 u 7 is not an essential division algebra in Fib.

Example 3.1.9. Take a finite non-abelian group G, and take its (fusion) category
FdRep(G) of finite-dimensional representations over k. Here, ® := ®y and 1 := k.
Now FdRep(G) has a simple object Z with dimy(Z) > 1. So, Z ® Z* is a simplistic
division algebra in FdRep(G) [Proposition 3.1.6()].

But, dimg(1) = 1, and dimg(X ® V') = dimg(X) dimk(Y") for X,Y € FdRep(G).
So, Z above is not left invertible, and Z ® Z* is not an essential division algebra in

FdRep(G) [Proposition 3.1.6(iii)].
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3.1.3 In multifusion categories

Proposition 3.1.6 used the Morita equivalence of 1 and X ® X* for any non-zero
X € C. More generally, the results below use a Morita equivalence from Ostrik’s

Theorem [Theorem 2.4.4].

Proposition 3.1.10. Let C be multifusion with A € Alg(C) whose categories of mod-
ules in C satisfy the hypothesis of Ostrik’s Theorem.

(1) Endyoeq.ace)(M) is a right simplistic division algebra if and only if M is simple
in Mod-A(C).

(i) End 4 moaic)(N) is a left simplistic division algebra if and only if N is simple in
A-Mod(C).

Proof. Applying Ostrik’s Theorem first to Mod-A(C), we obtain an equivalence of
categories Hompog 4(c) (M, —) : Mod-A(C) — Mod-Endyoq 4(c)(M)(C) for any non-
zero M € Mod-A(C). Applying this equivalence to M € Mod-A(C), it follows that
Endyieg.4(c) (M) is simple in Mod-Endyeq.4(c)(M)(C) if and only if M is simple in
Mod-A(C), proving (i). Similarly, applying Ostrik’s Theorem to the right C-module
category A-Mod(C) gives (ii). O

Remark 3.1.11. Deriving simplistic division algebras from internal End algebras of
simple objects was considered in |Grol9, Theorem 2.5, [GS16, Theorem 2.8], and

[KZ19, Lemma 3.6(4)|, without considering the converse statement.

Proposition 3.1.12. Let C be multifusion with A € Alg(C) whose categories of mod-
ules in C satisfy the hypothesis of Ostrik’s Theorem.

(i) For any M € Mod-A(C), we have that Endyoy ac)(M) is a right essential divi-

sion algebra if and only if (—® M) : C — Mod-A(C) is essentially surjective.

(ii) For any N € A-Mod(C), we have that End 4 yoqic)(N) is a left essential division
algebra if and only if (N ® —) : C — A-Mod(C) is essentially surjective.
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Proof. To prove (i), note that X ® Homyoy4(c) (M, M') = Homyoq.a(c) (M, X ® M'),
for any X € C and M, M’ € Mod-A(C); see [EGNO15, Lemma 7.9.4]. Therefore, we
get that

(— ®Endyoq.ac)(M)) = Hompey ey (M, — & M)

as functors from C to Mod-Endyeq 4(c)(M)(C). Moreover, Hompyoq4(c) (M, — @ M)
is the composition of the functor (— ® M) : C — Mod-A(C) with the functor
Homyoq 40y (M, =) : Mod-A(C) — Mod-Endy;oq4 4c)(M)(C), where the second is an

equivalence of categories by Ostrik’s Theorem. Hence

(— ®@Endyeg.a(c)(M)) = Homyeq ey (M, —) o (—® M)

is essentially surjective if and only if (— ® M) is essentially surjective, and we are

done. The proof of (ii) is analogous. O

Remark 3.1.13. Propositions 3.1.10 and 3.1.12 are analogues of Schur’s Lemma
[Lemma 2.1.2].

Example 3.1.14. Let A € Alg(C) such that Mod-A(C) satisfies the hypothesis of
Ostrik’s Theorem. Also, let M € Mod-A(C) be a left invertible module, i.e., there is
some N € A-Mod(C) satisfying N Q@ M = A, € (A, A)-Bimod(C). Then we have that
M = M ®s Ay = M ®4 N ® M in Mod-A(C), for any M’ € Mod-A(C). Hence,
(—® M) : C — Mod-A(C) is essentially surjective, and Proposition 3.1.12 gives that
Endyeq ac) (M) = (M ®4 *M)* is a right essential division algebra in C.

When A = 1, we recover Proposition 3.1.6(iii): namely, if an object X € C is left
invertible, then (X ® *X)* ~ X ® X* is a right essential division algebra in C.

3.1.4 In pivotal multifusion categories

We now address whether the distinction between left and right division algebras is
necessary, and we find that in a pivotal multifusion category, the distinction is not

needed. Note that such categories are abundant, as it is conjectured that every fusion
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category must be pivotal [ENOO5, Conjecture 2.8|.

Lemma 3.1.15. Let C be a pivotal abelian monoidal category with A € Alg(C). Then,
for any M € Mod-A(C), the algebras Endyoqac) (M) and End 4 yoq(c)(*M) are iso-

morphic as algebras in C.

Proof. We have the following isomorphism:

* * IM® 5 %M # # *
E—ndMod-A(C)(M) = (M®a*M)* —"— (M ®s"M) = E—ndA-Mod(C)( M).

Thus, it is suffices to show that jyg,*m is an algebra map. To do this, recall that
the algebra structure maps of (M ®4 *M)* are given by m = (u)* and u = (n)*,
while the algebra structure maps of *(M ®4 *M ) are given by m’ = *i and v’ = *n,
where 41 := idy; ®4 coevl ®4id«ys. Then, 7 is defined as the map from M ®,4 *M to
1 satisfying evl, = n, where 7 is the coequalizer projection morphism associated to
M®a*M = coeq(<w®idxys, idy ®c). Using this structure on the internal Ends, and

the fact that 7 is a monoidal natural transformation, it is straightforward to verify

that j is an algebra isomorphism. O]
Proposition 3.1.16. Let C be a pivotal multifusion category with A € Alg(C).

(i) A e £.SimpDivAlg(C) if and only if A € r.SimpDivAlg(C).

(ii) A € £.EssDivAlg(C) if and only if A € r.EssDivAlg(C).

Proof. Start with algebras A and B in C that are a left simplistic division algebra and
left essential division algebra, respectively. Using the equivalence of categories (—)*
from left modules to right modules we obtain that A* is simple in Mod-A(C), and that
(—® B*) : C — Mod-B(C) is essentially surjective. Proposition 3.1.10(i) then gives
that Endyg 4(c)(A*) is a right simplistic division algebra, and Proposition 3.1.12(i)
gives that Endy.y pc)(B*) is a right essential division algebra. By Lemmas 2.4.1

and 3.1.15, we get that as algebras,

Endyog.ac)(A") = Endy yoqe)("(A%)) = Endy poqe)(A) = A



39

Similarly, Endyeq p(e)(B*) = B. Thus, A is a right simplistic division algebra, and B

is a right essential division algebra. The backwards direction is analogous. O]

3.2 Monad-theoretic division algebras

Previously, we were restricted to working in abelian monoidal and (multi)fusion cat-
egories to study simplistic division algebras. But essential division algebras can be
defined in any monoidal category; we will see here that they can be examined via
monads. Monadic division algebras are introduced in §3.2.1, and connections to es-
sential division algebras are discussed there. We provide examples of monadic division

algebras in §3.2.2.

3.2.1 DMonadic division algebras

We first direct the reader to §2.5.3 to recall the Eilenberg-Moore and Kleisli categories

of a monad, along with the comparison functor between these categories.

Definition 3.2.1. Let T': A — A be a monad on any monoidal category A. We say
that T is adjunction-trivial if the comparison functor K7 : Ay — A” is an equivalence

of categories.

The term adjunction-trivial was chosen to describe such a monad because when
this condition is satisfied, the category Adj; has only one object, up to isomorphism.
Thinking of the Kleisli category as the free modules over the monad 7T, this condi-
tion is an analogue of the division algebra property that all modules over a division
algebra are free. We use this analogue to define monad-theoretic division algebras in
Definition 3.2.2 below.

Now, let C be a strict monoidal category. For any A € Alg(C), we obtain two mon-

ads on C: ((A®—), ma ®id_y, uA®id(,)) and ((— ® A), id-y ®@ma, idy ®uA).
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To be consistent with the exclusion of the zero algebra as a division algebra in abelian

monoidal categories, via Lemma 2.3.4, we will consider the condition below:

A € Alg(C) satisfies that A-Mod(C) and Mod-A(C)
both have more than one isoclass of objects. )
Definition 3.2.2. An algebra A in C subject to () is called a left (resp., right)
monadic division algebra if the monad (A ® —) (resp., (—® A)) on C is adjunction-
trivial.
The full subcategory of Alg(C) on these algebras is denoted by ¢.MonDivAlg(C)
(resp., .MonDivAlg(C)).

Note that essential division algebras can also be defined in C by replacing the
non-zero condition on A with (x). The connection to monadic division algebras in C

is given below.

Proposition 3.2.3. Tuke A € Alg(C) subject to (x). Then, A € {./r.MonDivAlg(C) if
and only if A € {./r.EssDivAlg(C).

Proof. This follows as C“®7) ~ A-Mod(C) and C-®4 ~ Mod-A(C), and because
under these equivalences, C(ag—) and C_ga) are the left and right free A-modules in

C, respectively. ]

Example 3.2.4. For the monoidal category of k-vector spaces, (Vec,®, k), with
A € Alg(Vec), consider the monad (— ®; A) on Vec. Then, Vec"®4) ~ Vec(_g, 4y if
and only if every right A-module over k is free, which happens precisely when A is a
division algebra over k. So, monadic division algebras in Vec again recover division

algebras over k.

3.2.2 Examples of monadic division algebras

To construct more examples of monadic division algebras, we use monads that satisfy

the following property. For further information, see [Mog91]| or [MU22|.
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Definition 3.2.5. A monad (7', u,n) on C is left strong if it is equipped with a natural
transformation 6 := {Oxy : X®T(Y) - T(X ®Y)}xvec (left strength) such that
for all X,Y, Z € C:

(i) Oxyvez(idx ®0y.z) = Oxev.z; (iii) Ox,y (idx @ py) = pxevT (Ox,y)0x r(v);

(i) bq1,x = idrex); (iv) Oxy (idx ®ny) = nxey-
A left strong monad (7', i, n,0) is said to be left very strong if 6 is a natural isomor-

phism. Right strong and right very strong monads on C are defined analogously.
The next result is straightforward to verify.

Lemma 3.2.6. If (T, u,n,0) is left (resp., right) strong, then T'(1) € Alg(C). Here,
mT(ﬂ) = Uy ‘9T(]1),Il (T@Sp., M1 9]1,T(]1)); and 'U/T(jl) =M1 ]

Proposition 3.2.7. Let T be a monad on a strict monoidal category C.

(i) If T is left very strong, then T is adjunction-trivial if and only if T'(1) is a right

monadic division algebra.

(ii) If T is right very strong, then T is adjunction-trivial if and only if T(1) is a

left monadic division algebra.

Proof. In both cases, T'(1) is an algebra in C by Lemma 3.2.6. Next, let 7" be left very
strong, with left strength 6. Then, T’ = (—®7T(1)) via the natural isomorphism -}
It follows that T is adjunction-trivial if and only if (— ® T'(1)) is adjunction-trivial,
if and only if T'(1) € r.MonDivAlg(C) by definition. Similarly, when T is right very
strong, '~ (T'(1) ® —), and part (ii) holds. O

Example 3.2.8. Continuing Example 3.2.4 for C = Vec and A € Alg(Vec), we have
that (—®x A) is a left very strong monad on Vec with strength being the associativity
of ®k. Now, Vec(—®A) ~ Vec(_g, 4) if and only if k ® A = A is a right monadic

division algebra in Vec (which happens precisely when A is a division algebra over k).
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Example 3.2.9. Here, we consider the maybe monad 7' on (Set,u, ¢J), given by
T(—) := (—w{*}), where u is disjoint union. See [Riel7, Examples 5.1.4(i) and 5.3.2]
for details; in particular, it is adjunction-trivial. Also, T' is left very strong by the
associativity of w. Proposition 3.2.7 implies that T(¢f) =~ {+} is a right monadic
division algebra in (Set, L, &¥). Using that X 1Y = Y 1 X for XY € Set, we see
that T is right very strong. Hence, {+} is also a left monadic division algebra in
(Set, L, ).

Example 3.2.10. Consider the free vector space monad 7" on (Set, x,{*}), given
by T(X) := k¥, consisting of finitely supported functions f : X — k. See [Riel7,
Example 5.1.4(iii)|]. We obtain that Set” ~ Vec ~ Sety. However, T is not left very

kXxY

strong as, in general, X x kY 2 as sets. So, we cannot use Proposition 3.2.7 to

get a left monadic division algebra in Set. Still, see §3.3.1 below.

3.3 Discussion

We briefly discuss here potential research directions that may be of interest to the

reader.

3.3.1 On division monads

One may want to refer to a monad 7' on A as a “division monad” when A; ~ A7,
instead of calling such monads adjunction-trivial. This would include monads that
are not necessarily very strong, such as in Example 3.2.10. We inquire whether the
scarcity of these types of monads mirrors the scarcity of division k-algebras among

the collection of k-algebras.

3.3.2 On structural results for algebras in monoidal categories

There are several classical results using division k-algebras that could be expanded
to general monoidal settings, e.g., Artin-Wedderburn Theorem. Moreover, the clas-

sification of division algebras in various monoidal settings is open. For example, we



43

expect an analogue of Frobenius’s Theorem (i.e., the only finite-dimensional division
algebra over an algebraically closed field is the field itself) to hold in finite monoidal

settings.

3.3.3 On the essential condition versus the simplistic condition

If one uses simplistic division algebras as done in previous works (e.g., in [GS16,
Grol9, KZ19]), then the supply of division algebras may be too abundant to make
satisfactory progress. For instance, any simple module over a finite group G yields
a simplistic division algebra in the monoidal category of G-modules [Example 3.1.9].
We propose it is that better to use the more restrictive class of essential /monadic

division algebras to examine pertinent results for algebras in monoidal categories.

3.3.4 On the left versus right division algebra conditions

In Proposition 3.1.16, we proved that a left simplistic (resp., essential) division algebra
in a pivotal multifusion category C is a right simplistic (resp., essential) division
algebra in C, and vice versa. It is shown in recent work of Nakamura, Shibata, and
Shimizu that the result in the simplistic case holds when C is a finite tensor category
[NSS25, Lemma 2.12]. There, the more common terminology, left/right simple algebra
in C, is used instead of our terminology here. We all expect that such “Left < Right”

results hold in more general monoidal settings [Shi25].
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Chapter 4

Extended Frobenius algebras in monoidal categories

This chapter follows the paper [CKQW24]. We begin by exploring extended Frobenius
algebras over a field in Section 4.1 and in a monoidal category in Section 4.2. We
define functors that preserve extended Frobenius algebras in Section 4.3. Section 4.4
is dedicated to using the connection between Frobenius algebras and Hopf algebras
to create more extended Frobenius algebras by extending Hopf algebras and defining
functors that preserve these structures. We end with a discussion on some possible

future research directions in Section 4.5.

4.1 Extended Frobenius algebras over a field

In this section, we study extended Frobenius algebras over a field k, originally defined

in [TTO06| as follows.

Definition 4.1.1. (a) |[TT06, Definition 2.5] A Frobenius algebra (A, m,u, A, ¢)
(see Definition 2.1.5) is an extended Frobenius algebra over k if it is equipped

with a morphism ¢ : A — A and an element 6 € A such that:

(i) ¢ : A — Ais an involution of Frobenius algebras,
(i) 6 € A satisfies ¢(fa) = fa, for all a € A,
(iii) m(p ®ida)A(14) = 6%

A morphism f : (A, ¢a,04) — (B, ¢p,0p) of extended Frobenius algebras over
k is a morphism f : A — B of k-Frobenius algebras such that f¢, = ¢ f and

f(04) = 05.
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(b) We refer to (¢,0) in part (b) as the extended structure of the underlying Frobe-
nius algebra A, and say that A is extendable when ¢ and 6 exist. We also call

an extended structure (¢, 0) on A ¢-trivial when ¢ = id4, and call it 0-trivial

when 0 = 0.

The roman numerals (i), (ii), (iii) in this section will refer to the
conditions in Definition 4.1.1(a).
We provide many examples of, and preliminary results for, such structures in

§4.1.1. Then, §4.1.2 is dedicated to establishing the following theorem classifying

extended structures for several Frobenius algebras over k.

Theorem 4.1.2 (Propositions 4.1.10-4.1.12, 4.1.14-4.1.16, 4.1.18-4.1.19). Take an
integer n = 2, and w, € k an n-th root of unity. The extended structures for the

Frobenius algebras below are classified, recapped as follows.
(a) k : all extensions are ¢-trivial.
(b) C over R: all extensions are ¢-trivial or O-trivial.

(c) k[z]/(x™): all extensions are ¢ trivial when n is odd, and is not extendable when

n 1S even.
(d) kCsy: all extensions are ¢-trivial or O-trivial.
(e) kC3: all extensions are ¢-trivial or ¢ maps a generator g of Cs to wsg?.

(f) kCy: all extensions are ¢-trivial, or O-trivial, or ¢ takes a generator g of Cy

to wig®.
(g) k(Cy x Cy): here, ¢ maps g to wag', where g,qg" are generators of Cy x Cs.

(h) Ty(—1) :=k{g,z)/(g*> — 1,2% gz + xg) : all extensions are ¢-trivial.



46

4.1.1 Preliminary results and examples

We begin with some useful preliminary results on (extended) Frobenius algebras A

over k. First, the Frobenius law from Definition 2.1.5 implies that
Ala) = a(14)' ® (14)%, where A(14) := (14)'® (14)?, (4.1.3)

for any a € A. So, A(1,4) determines the Frobenius structure of A.

Lemma 4.1.4. If A is a Frobenius algebra that is also a domain, then an extended

structure of A (if it exists) must be either ¢-trivial or O-trivial.

Proof. Suppose that an extended structure (A, ¢, 0) exists. Then, for all a € A we
have that 6¢(a) = ¢(0)¢p(a) = ¢(fa) = Ha, by condition (i). Hence, 8(¢p(a) —a) =0

for all a € A, and the result follows from A being a domain. O

Lemma 4.1.5. Let A be a Frobenius algebra over k, and let (A, ¢,0) and (A, ¢',0)
be two extended structures of A. If 0 € k1 and 0 # 0', then an extended Frobenius
algebra morphism from (A, ¢,0) to (A, ¢',0') does not exist.

Proof. Suppose by way of contrapositive that & = A14 for some A € k and there is a
morphism f : (4, ¢,0) — (A, ¢, 0') of extended Frobenius algebras. Since f is unital
and preserves the extended structure, § = A4 = A\f(14) = f(Al4) = f(0) =0, as
desired. O

We will see in Proposition 4.1.14 that Lemma 4.1.5 fails when 6 ¢ k1,4. We now

include some examples of extended structures for well-known Frobenius algebras.

Example 4.1.6. Let G be a finite group. Its group algebra kG has a Frobenius
algebra structure determined by A(eg) = >, .o h ® h™'. Then,

¢=idkg, 0= + |G|‘6G

yield extended structures of kG. Now, conditions (i) and (ii) are trivially satisfied.

Condition (iii) holds as m(¢ ® idkg)Aleq) = m (X o h@h™) = |G| - eq = 62 .
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Example 4.1.7. Let C,, denote the cyclic group of order n > 2, and let g denote a

generator of C,,. Consider the Frobenius structure on kC, from Example 4.1.6. Then,

$(9) = wag ™, = —f Z] o Wi

are extended structures of kC), for any n-th root of unity w, € k. It is a quick check
that condition (i) holds. Towards condition (ii), let a := 3"} a;g" be an element in

kC,. Then,

o) = +5- 0L awhdlg) ™ = +m Mk awi g
= i% Z?kloalwngz 2k = ah.

For condition (iii), we compute:
n(6®ida)Alec,) = m(6®idsc,) (g o @ g*j)
= ;:01 g7 = 1y Lk g2k

) N 2
— 1273 o z+jg—2(z+j) — %(Z?:—Ol w%g‘”) _ 92'

Example 4.1.8. Let w := w, be a primitive n-th root of unity, for n > 2. Con-
sider the Taft algebra, T, (w) := k{g,x)/(¢" — 1, 2", gr — wxg), with Frobenius struc-
ture defined by A(lz, ) = Z;:& (—wig ™ ® g7t Vz + g’z ® g77). This Frobenius
structure on 7,,(w) can be extended via

CbzidTn(w); 0 E@J —0,k= 1kgjl'
To show this, we compute: m(¢ ® idr,w))A(1) = 0 = 6%, so condition (iii) holds.

Conditions (i) and (ii) are trivially satisfied.

Example 4.1.9. Let Mat, (k) be the algebra of n x n matrices over k, with basis
{Ei;}i ;-1 of elementary matrices. Consider the Frobenius structure determined by
A(E@j) = Z?:l Ei,f &® Eg,j, for all 1 < Z,j <n. Then,

(b = idMaLtn(]k)a 0 = i\/ﬁ Ay

give extended structures of Mat, (k).
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Indeed, m(¢ ® idmat,w)AU) = 2y BieEei = n - I, = 6, so condition (iii)

holds. Moreover, conditions (i) and (ii) are trivially satisfied.

4.1.2 Classification results

Now we proceed to establish Theorem 4.1.2, starting with the results for the Frobenius

algebras: k over k, C over R, and the nilpotent algebra k[x]/(z") over k.

Proposition 4.1.10. The only extended structures of the Frobenius algebra k where
Ay is given by the isomorphism k — k @ k are ¢-trivial, with 0 = +1y.. Moreover,

these two extended Frobenius algebra structures are non-isomorphic.

Proof. Suppose ¢ and 6 give an extended structure of k. Since ¢ : k — k is a
morphism of algebras, the only possible choice is ¢ = idy, which satisfies conditions (i)
and (ii) trivially. Condition (iii) implies that § = +1. Lastly, the structures are non-

isomorphic by Lemma 4.1.5. O

Proposition 4.1.11. Consider the Frobenius algebra C over R with A defined by
A1) =1®1—i®i. Then,

(a) ¢ =idc and 0 = ++/2, and
(b) ¢(2) =Z for all z€ C, and § =0,

are all of the extended structures of C, and these extended Frobenius algebras are all

non-isomorphic.

Proof. By Lemma 4.1.4, an extended structure of C should be ¢-trivial or #-trivial.
If ¢ =idc, then 02 = m(¢ ®idc)A(1) = m(1® 1 —i®1) = 2, and so § = +4/2. On
the other hand, if § = 0, then 0 = m(¢ ® idc)A(1) = 1 — ¢(i)i. Hence, ¢(i) = —i
and it follows that ¢ must be complex conjugation. Now condition (iii) holds, and it
is a quick check that conditions (i) and (ii) are satisfied for these choices. Lastly, it

follows from Lemma 4.1.5 that these structures are all non-isomorphic. O
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Proposition 4.1.12. Consider the algebra k[x]|/(z"), for n = 2, with Frobenius
structure determined by A(1) = Y2t ® a"~""1. Then, the following statements
hold.

(a) For n even, the Frobenius algebra k[z]/(xz™) is not extendable.

(b) For n odd, all extended structures of the Frobenius algebra k[z]/(z™) are
o-trivial, with 0 = ++/nz"z Z n+1 0;27 for some Onpr, ... 01 €k

Proof. Suppose that ¢ and 6 give an extended structure of k[x]/(z™). Then, a routine
calculation with ¢ being multiplicative and ¢* = id (from condition (i)) implies that
¢(x) = +x. So, in the rest of the proof, we look at the cases ¢ = id and ¢(x) = —=z,
and conclude the latter is never possible, while the former is only possible for n odd.

Suppose first that ¢ = id. Then, conditions (i) and (ii) are satisfied trivially. Let
0o, .. .,0n1 € k such that § = 37" 0;2°. Then, condition (iii) implies that

gt = Yl g% 4 S, 00t (4.1.13)

From the coefficient of 1, it follows that 6, = 0. We can argue by induction that
0; = 0 for all 0 < i < ”T_l—lifnisodd, and for all 0 < i < § —1if n is
even. It follows that if n is even, then the coefficient of 27! in (4.1.13) leads to
the contradiction: n = 22?:_01 0;0,_1_; = 0. Thus, ¢ = id is not possible when n is
even. On the other hand, if n is odd, then the coefficient of z"~! in (4.1.13) yields

) + 22 - 91‘9%14, which implies that Qan = +4/n - 1. So, ¢ = id and

n=(0x
0 i\f " 2 n+1 6;27 precisely satisfy conditions (i), (ii), and (iii) yielding an
extended structure on the Frobenius algebra k[z]/(2™) when n is odd.

It remains to look at the case ¢(x) = —zx. It follows from ¢ being a morphism
of coalgebras that this is not possible when n is even, since we get the following

contradiction:

Sip i@t = A(g(1) = (9@ $)A(L)

= 22:01( Dl @ant = — ;:olxi®x"fifl,
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When n is odd, the equalities ¢(f) = 6 and ¢(xf) = 6 from condition (ii) yield

the equations
Sito biat =Y (<10t and NGt = MO (1) Gt

respectively. Hence 0; = 0 for 1 < i < n — 2, and we have that 0 = 0,_;2"!. But
then this would imply 0 = 6% = m(¢ ®id)A(1) = 2"!. Hence, ¢(x) = —z is also not

possible when n is odd. n

For a group G, consider the Frobenius algebra kG of Example 4.1.6. We provide

classification results for extended structures of kGG when G = C5, C5, Cy, and Cy x C5.

Proposition 4.1.14. Let g be a generator of Cs. The extended structures of kCy are:

(a) ¢ = idyc, and 0 € {£+/2¢ec,, +v/2g}, and

(b) ¢(g) = —g and 0 = 0.

Moreover, (kCy,idyey,, v/29) = (kCs, idyc,, —V/2g) as extended Frobenius algebras, and
all other structures are non-isomorphic. That is, there are four isomorphism classes

of extended Frobenius structures on kCs.

Proof. Suppose that ¢ and 6 define an extended Frobenius structure on kCsy, with
6(g) = poec, + @19 and 0 = Gpec, + 619 for ¢y, 1,600,601 € k. By the counitality of
¢, we have that ¢o = £(¢(g)) = €(g) = 0, and ¢7 = e(¢79°) = £(¢(g%)) = £(¢?) = 1.
So, 1 = £1. Both choices are involutions and it is a quick check that they satisfy
condition (i). We look now at the conditions (ii) and (iii).

When ¢ = id, we have that 62+607 = 2¢¢, and 20,6, = 0, and so either § = ++/2e¢,
or § = ++/2g. Both of these satisfy conditions (i) and (iii). When ¢(g) = —g,
condition (iii) yields 63 + 67 = 0 and 2606, = 0. Hence, 6 = 0, and condition (ii) is
satisfied in this case.

Lastly, it follows from Lemma 4.1.5 that an isomorphism can only exist between
(kCs, idyc,, v2g) and (kCy,idge,, —v/2g), which are in fact isomorphic via the mor-
phism of extended Frobenius algebras f : kCy — k(5 defined by g — —g. O
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Proposition 4.1.15. Let g be a generator of Cs. The extended structures of kCs are:
(a) ¢ =idye, and 6 € {++/3ec,, i%(ecs — 2wsg — 2w3g?)},
(b) ¢(g) = wsg® and 6 = i\/ig(e(;3 + wzg + wig?),

where ws € k is a 3-rd root of unity. Moreover, these structures are all non-isomorphic.

Proof. Suppose that ¢ and 6 define an extended Frobenius structure of kC'3, where
(g) = doec, + P19 + d2g? and O = Oyec, + 019 + 0292, for ¢;,0; € k. By condition (i),
we get that ¢ = id or ¢(g) = wsg®. We now examine the conditions (ii) and (iii):
m(¢ ® idygc,)Alec,) = 6%, and ¢(fa) = a for a € kCs.

When ¢ = id, this gives the equation §? = 3ec,. Hence, 6y # 0, and if 6; = 0 or
0y = 0, these imply # = ++/3ec,. Otherwise, we have that both 61,6, # 0, and it
follows that 6 = i\%(e@ —2w3g—2w3g?) for some 3-rd root of unity ws. Condition (ii)
is trivially satisfied for these cases. When ¢(g) = wsg?, then condition (iii) implies
that 62 = eq, + wsg + wig?. We also require 0 = ¢(0) = Opec, + O1wsg? + Oowig, and
thus 0 = wsf;. Therefore, we get that 6 = i\%(ec?, + w3g + wig?). One can check
that these choices satisfy condition (ii); see Example 4.1.7.

Lastly, any morphism f of extended Frobenius algebras between these possible
structures is counital, so f(g) = cg or f(g) = cg? for some c € k such that ¢ = 1.

From this and Lemma 4.1.5, we conclude there are no such morphisms between the

different extended structures. O

Proposition 4.1.16. Let g be a generator of Cy. The extended structures of kCy are
gien by

(a) ¢ =iduc, and 0 € {£2ec,, +2¢%, +(1 —1)(g +1ig*), +(1+i)(g —ig*)};

(b) ¢(g) = —g and 6 = 0;

(c) ¢(g) = wig® and O € {i”%(eal —g%), TiSh (g — 93)};

for any 4-th root of unity wy € k. These form eight isomorphism classes of extended

structures.
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Proof. Suppose that ¢ and 6 define an extended structure on kCy, where for ¢;, 6; € k,
we have ¢(g) = ¢oec, + 19 + dag” + ¢3g® and 0 = Opec, + 019 + bag” + O39°. By
condition (i), we get that ¢o = 0 with ¢(g) = ¢1g or ¢(g) = ¢39°; else, ¢y # 0 with
®? + ¢2 = 0. But a routine computation using ¢*(g) = g and condition (iii) shows
that the ¢ # 0 case is not possible. So, either ¢(g) = ¢1g or ¢(g) = ¢39>. Since
®*(g) = g, we obtain ¢(g) = g or ¢(g) = wyg® for some wy € k.

Suppose that ¢ = idge,. Then, condition (ii) is trivially satisfied. Condition (iii)
implies that 4ec, = 6%, and we get the choices for § in part (a). Condition (ii) implies
that when ¢(g) = —g, we must have that 6, = 3 = 0. So, by condition (iii), we
obtain that 62 + 260y029> + 65 = 0, and it follows that § = 0. This yields the choice
in part (b). Lastly, if ¢(g) = wsg?, then from condition (ii), we know that 6; = w303.
Also from condition (iii), we get that 6> = (1 +w?)ec, + (ws +wi)g?. Solving for #% in
kCy, we get the two choices for € in part (c). The former coincides with the choice of
structure given in Example 4.1.7. For the latter, it is easy to check that condition (ii)
still holds.

We prove now that there are exactly eight isomorphism classes of extended struc-

tures. It follows from Lemma 4.1.5 that three such classes are given by

{(k047idk0472604>}7 {(k04vidkc47 _2604)}7 {(kC4,¢(g) = _gao>}'

Next, there can be no isomorphisms f : (kCjy,idyc,,0) — (kCy, ¢(g) = wag®, ), as
this would imply f(g) = f(wsg®). Also, the algebra isomorphisms f, ' : kCy — kC}
defined by f(g) = —¢g and f’(g) = ig imply that

{(k047 idkcw i<1 - Z)(Q + igg))a {(k047 idkc4, i(l +i) (g - igg»}v {(k047 idk@u i292)}

are isomorphism classes of extended structures. The remaining isomorphism classes

are then

((KCy, d(g) = wig?, +58 (co, — g2))}, {(KCy, d(g) = wig?, +iT(g — ¢*))}

by a routine calculation. O
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Given the results in Proposition 4.1.14, 4.1.15, 4.1.16, we propose the following.

Conjecture 4.1.17. Let g be a generator of C),. The following are the only possi-

bilities for the Frobenius automorphism ¢ for an extended structure on kC,,:

(a) 6(g) = +g or 6(g) = wag™! when n is even,

(b) 6(g) = g o1 6(g) = wag™ when n s odd,
where w, € k is any n-th root of unity.

The remainder of Theorem 4.1.2 is established in the next two results.

Proposition 4.1.18. The extended structures of k(Cy x Cy) are:

(a) ¢ = idycyxcy) and 0 € {£2e, £2g;, t(e+gr) £ (9: —g5), (e —ge) £ (9i +g5)};

(b) ¢(9:) = —gi» 0(9;) = =95, ¢(9¢) = 9o, and 6 = 0;

(c) ¢(g:) = gi» 0(95) = 91, &(ge) = 9o, and 6 € {£(e + go), (g + g5)};

(d) &(g:) = —gj, (95) = —gi, (ge) = g, and 0 € {£(e —g0), +(g; — g)};
where Cy x Cy = {e, g1, g2, g3} and {i,j, 0} = {1,2,3}.

Proof. 1t follows from ¢ being counital that ¢(g;) = a; 161 + @i202 + a; 395 for a;, € k,

for all 1 < 4,p < 3. Since ¢ is multiplicative, we then get that
€ = ¢<gz2> = ¢(gz)2 = (ail + CliQ + (1,?73)6 + 2@@1@@293 + 2(1@1&@392 + 2@1}2@17391.

Hence, ¢(g;) = +g; for some 1 < j < 3. But ¢? = idgc,xc,), and thus the remaining
possibilities for ¢ are the ones listed in the statement. It remains to find suitable 6
for each possible ¢. Let 0y, 61,05, 03 € k such that 8 = Oge + 0195 + 0292 + 6593.

We compute 62 = ¢(e)e + Z?:l #(gi)gi- When ¢ = idy(c,xc,), one can check that
we get the choices of 6 in part (a) by condition (iii). When ¢(g;) = —gi, ¢(g;) = —g;
and ¢(gs) = g for {i,7,¢} = {1,2,3}, condition (iii) implies #* = 0, so 6 = 0; this
implies part (b). When ¢(g;) = g;, ¢(9;) = g; and ¢(g¢) = g, for {7, 5,0} = {1,2,3},
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conditions (ii) and (iii) yield the choices of § in part (c). The case ¢(g;) = —gj,
¢(g]) =0 and ¢<g€) = Ge for {iaja e} = {17 273} is analogous. L

Proposition 4.1.19. Consider the Taft algebra Ty(—1) := kg, 2)/(¢g*>—1, 2*, gv+x9)
as defined in Example 4.1.8. All extensions of To(—1) are ¢-trivial, with 6 € kx@kgz.

Proof. First, note that A(l) = —g®gr +2®1+1®z + gr® g. So, by (4.1.3), we
get that A(g) = - 1®g9gr+ 92 ® 1+ 9gR®r+2®g, A(r) = gr ® gr + z ® z, and
A(gr) = z®gx+ gr®x. Hence, (1) = e(g) = e(gx) = 0 and £(z) = 1. Now suppose
that ¢ : To(—1) — To(—1) and 6 € To(—1) define an extended structure on Tp(—1).
Let a;, b; € k such that ¢(g) = a1 + asg + agxr + aggx and ¢(x) = by + beg + b3z + bygz.

Since ¢ is an algebra morphism, we have that

1= ¢(g)2 = a% + a% + 2aqa09 + 2a1a3T + 2a1a49,

0 = ¢(x)? = b + b3 + 2b1byg + 2b1bsx + 2b1byg.

It follows that ¢(g9) = tg + asz + asgx and ¢(xr) = bsz + bygx. On the other
hand, since ¢ is counital, we get 0 = e(¢(g)) = az and 1 = e(¢(z)) = bs. So,
#(g9) = g + asgzr and ¢(x) = x + bygw. Also, because ¢ is an involution, we have
that g = ¢(£g + asgx) = +(g9 + asgx) + as(gz + byx). It follows that ¢ = idgp,_1).
Lastly, 0% = m(¢ ® idp,(—1))A(1) = 0, and thus 0 € kz @ kgz. O

Conjecture 4.1.20. Recall the Taft algebras T, (w) := k{g,z)/(¢" — 1, 2", g — wxg)
from Example 4.1.8. All extended Frobenius structures of T),(w) are ¢-trivial, with

ekrDkgr®- - Dkg"'x.

4.2 Extended Frobenius algebras in a monoidal category

In this section, we first generalize Definition 4.1.1 to the monoidal setting, following
[TTO06, Section 2.2|, and give some preliminary results in the monoidal setting in
§4.2.1. Then, in §4.2.2 we put monoidal structures on the category of extended

Frobenius algebras.
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4.2.1 Monoidal definition and preliminary results

Recall the basics of monoidal categories and functors from Section 2.2, as well as
Definition 2.3.1 of Frobenius algebras in a monoidal category. We build on this

definition below to produce our main algebraic structures of interest in this chapter.
Definition 4.2.1. Let C := (C,®, 1) be a monoidal category.

(a) An extended Frobenius algebra in C is a tuple (A, m,u, A, &, ¢,0), where the
tuple (A, m,u, A, ¢) is a Frobenius algebra in C, with¢p: A - Aand 0 :1 — A

being morphisms in C such that

(i) ¢ is a morphism of Frobenius algebras in C, with ¢? = id4;
(ii) ¢m(9 ® idA) = m(6 ® idA);

(i) m(¢p ®ida)Au = m(0 ®0).

A morphism f : (A, ¢a,04) — (B, ¢p,0p) of extended Frobenius algebras in C
is a morphism f : A — B of Frobenius algebras in C, such that f¢4 = ¢p f and
f04 = 0p. The above objects and morphisms form a category, ExtFrobAlg(C).

(b) The morphisms ¢ and 6 in part (a) are the extended structure of the underlying
Frobenius algebra. When ¢ and 6 exist, we say that the underlying Frobenius

algebra is extendable.

(c) An extended structure (¢,#) on a Frobenius algebra A is said to be ¢-trivial
if ¢ is the identity morphism, and is 8-trivial if 6 is the zero morphism (when

these exist in C).

The structure morphisms for an extended Frobenius algebra in C are depicted in
Figure 4.1, and the axioms that they satisfy are depicted in Figure 4.2. Here, we read

diagrams from top down.
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YOl A L

Figure 4.1 : Structure morphisms for an extended Frobenius algebra in C.

VYLV A ALA N W
YUY AN LYY oy

(E7) (E9) (E10) Ell E12)

E4)

Figure 4.2 : Axioms for an extended Frobenius algebra in C.

One useful lemma is the following, adapted from |[TT06, Lemma 2.8] for the

monoidal setting.

Lemma 4.2.2. If (A, m,u, A, e, ¢,0) is an extended Frobenius algebra in C, then

m(¢ ®ida)A = m(m(0 ®0) ®ida).

Proof. This is proved in Figure 4.3 with references to Figures 4.1 and 4.2. O

8 (E2) % (E5) %J (E1) QJ (E12) %éj

Figure 4.3 : Proof of Lemma 4.2.2.
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Proposition 4.2.3. A morphism of extended Frobenius algebras in C must be an

1somorphism.

Proof. This follows from the well-known fact that a morphism of Frobenius algebras
in C must be an isomorphism. We repeat the proof here for the reader’s convenience.
Take a morphism of (extended) Frobenius algebras f : A — B in C, that is, f is a
morphism of the underlying algebras and coalgebras in C. In graphical calculus, we
will denote the (extended) Frobenius structure morphisms on A by those given in
Figure 4.1, and the (extended) Frobenius structure morphisms on B will be denoted
according to Figure 4.4. We then define a morphism g : B — A in Figure 4.5, and
show that gf = id4 and fg = idp using graphical calculus in Figure 4.6. [

mpg uB Ap €B ¢B 0p A

Figure 4.4 : Extended Frobenius structure on B. Figure 4.5 : Defining g.

We now recall the definition of separable Frobenius algebras, and show that they

are all extendable.

Definition 4.2.4. (a) We say that an algebra A := (A,m,u) in C is separable if
there exists a morphism ¢t : A - A® A such that mt = id4, and

(m®id,4)(id,4®t) = tm = (idA®m)(t®idA).

(b) A Frobenius algebra A := (A, m,u, A, ¢) is separable Frobenius if mA = id 4.

These structures form full subcategories as indicated below:

SepAlg(C) < Alg(C), SepFrobAlg(C) < FrobAlg(C).
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A
B (f n;ult) (f counltal (E:E)) (E:2)
(E4)
QD
O A
B
B (f cozmult.) (f umtal (E:E)) (E:Q)
B (4)
B

Figure 4.6 : Proof that gf =id4 and fg = idp.

Proposition 4.2.5. If A is a separable Frobenius algebra in C, then A is extendable.

Proof. Suppose that A := (A,m,u, A ¢€) is a separable Frobenius algebra, and take

¢ :=1id4 and 0 := u. Then, conditions (i) and (ii) of Definition 4.2.1(b) are trivially

satisfied. Condition (iii) of Definition 4.2.1(b) holds by the computation below:
m(p®ida)Au = mAu = v = muu) = m(@EH),

where the third equality follows from a unitality axiom of A. m

Example 4.2.6. The monoidal unit 1 € C is a separable Frobenius algebra, with
m and A identified as idy, and with u = ¢ = idy. The Frobenius structure is then

extended with ¢ = 6 = id;.

4.2.2 Structural results

Recall the category ExtFrobAlg(C) defined in Definition 4.2.1. We put monoidal struc-

tures on this category, using two distinct monoidal products, in the following results.

Proposition 4.2.7. Let (C,®,1,c) be a symmetric monoidal category. Then, the
category ExtFrobAlg(C) is monoidal with ® := ®° and 1 := 1°€.
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Proof. We first note that 1¢ = (1€, ¢y,idy, £;",1dy, id;, idy) is an extended Frobenius
algebra in C.

Next, we show that the monoidal product of two extended Frobenius algebras
is extended Frobenius. Namely, we verify that given extended Frobenius algebras
(A,ma,ua, Aa,ea,04,04) and (B, mp,up, Ap,ep, ¢, 0p), then the tensor product

(A® B,m, 0, A&, ¢, é) is an extended Frobenius algebra, where

m = (ma®mp)(ida ® cp 4 ®idp), A= (ida ®cap®idp)(As ® Ap)

U:=us@ug, E:=e4Qe¢p, b:=da® ¢g, 0:=0,4®05.
Figure 4.7 shows what these morphisms look like in graphical calculus, using the

symbols from Figure 4.1 for A and the symbols from Figure 4.4 for B, as in Proposi-

tion 4.2.3. Recall also the axioms for a symmetric monoidal category from Figure 2.4.

11 1 1 A®B
1

:= [+ ] -
B A®B A®B A
A®

AQB A B
AQB A B 11 1 1
AQB A B B A B

Figure 4.7 : Extended Frobenius structure morphisms for A ® B.

We then have that (A ® B, 1, @, A, &) € FrobAlg(C) by [Koc04, Section 2.4]. To
see that this Frobenius algebra is extended via gz~5 and 6, we verify the three required

conditions in Definition 4.2.1(b).

(i) We see that ¢ is an involution since both ¢4 and ¢p are involutions. Moreover,

since both ¢4, ¢p are Frobenius morphisms, so is their monoidal product in C.

(ii) Figure 4.8 gives that ¢m(0 ® idags) = m(d @ idags).

(iii) Finally, Figure 4.9 gives that (¢ ® idags) Al = m(d @ 6).
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Lastly, we note that by taking 1¢ as the unit and ®° as the monoidal product
in ExtFrobAlg(C), with extended structures behaving as described above, we obtain
that the required pentagon and triangle axioms (refer to Figures 2.1 and 2.2) in
(ExtFrobAlg(C), ®F, 1) are both inherited from the same axioms in (C,®°, 1¢). Thus,

we conclude that (ExtFrobAlg(C),®¢, 1€) is a monoidal category. O

o-—-c o

Figure 4.9 : Proof that A ® B satisfies Definition 4.2.1(b)(iii).
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Now we turn our attention to extended Frobenius algebras in additive monoidal
categories. See §2.2.4 for a brief introduction to such categories, and [Wal24, Sec-

tion 3.1.3] for further background material.

Proposition 4.2.8. Let (C,®, 1) be an additive monoidal category. Then, the cate-
gory ExtFrobAlg(C) is monoidal with ® being the biproduct L, and 1 being the zero
object 0.

Proof. We first note that 0 is an extended Frobenius algebra in C, with structure
morphisms m,u, A&, and 6 all being zero morphisms, and ¢ = idy. We next
note that similar to the previous proposition, the pentagon and triangle axioms in
(ExtFrobAlg(C), L1, 0) will be inherited from these same axioms on the strict monoidal
category (C,ws,0). Hence, to finish the proof, it suffices to show that the biprod-
uct of two extended Frobenius algebras is again extended Frobenius. To do so, let
(A, ma,ua, Aa,ea,04,04) and (B,mp,up, Ap,cp, ¢p,0p) be two extended Frobe-
nius algebras in C. We will show that (AL B, m, i, A, €, b, é) is an extended Frobenius
algebra, where m, 1, A, &, gE, and 0 are defined by universal property diagrams in
Figure 4.10.

It is well known that with the above constructions, (A L B, ., @, A, €) is a Frobe-
nius algebra. See [Koc04, Exercises 2.2.7 and 2.2.8| for the case where C = Vec. Thus,
we only need to verify that ¢ and  extend this Frobenius algebra. The three required
properties from Definition 4.2.1(b) can be verified by respectively considering each of

the universal property diagrams in Figure 4.11. Using uniqueness of the completing

map in each of these diagrams, it follows that
(i) (#)* = idas,
(i) MO ®idaup) = d(M(0 ®ida,p)),
(iii) 772(¢ ® idacp)(A(a) = (0 @),
which completes the proof that (A U B, gg, 0~) is an extended Frobenius algebras in C,
hence giving that (ExtFrobAlg(C), u,0) is a monoidal category. O



62

(AuB)®(AuB) (AuB)®(Au B)
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131 5 mp © TpB LA
mA © TA®A \LH mn ® ;H'A tBeB © Ap
AuB taga © Ba Au B
LA LB
TA B
A B A B
1 1
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uA 3G uB €A 13le €B
~N 1
AuB Au B
LA LB
TA B
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AuB 1
pa© A 33'@; B o 7B 04 iayé 0p
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/ B

B

AL uB
TA 15“ TB TA 15” TB
\l/ . \L .
A AuB B Ga®ida) A AuB B 00 i)
ma(0a®ida mp(lpXidp
2 =id 2 =id I I
Z Al .A % %5 B¢A(mA(9A®idA))J' % m J’¢B(m3(93®id3))
A B A B
ma(pa®ida)(Da(ua)) 1 mp(¢p ®idp)(Ap(up))
I ! I
ma(0a®04) \A‘/E“ mp(0p®0p)
AuB
A B

Figure 4.11 : Proof that A L B is an extended Frobenius algebra.
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4.3 Extended Frobenius monoidal functors

In this section, we introduce the construction of an extended Frobenius monoidal
functor, which preserves extended Frobenius algebras [Proposition 4.3.4]. The main

construction is covered in §4.3.1 and examples are presented in §4.3.2.

4.3.1 Main construction and results

Here, we extend the results in Proposition 2.5.4 and Proposition 2.5.5 to the category
ExtFrobAlg(C). In particular, we will define a type of functor that preserves extended

Frobenius algebras and show that this type of functor is closed under composition.

Definition 4.3.1. A Frobenius monoidal functor (F, F® F©) Flay, Flo)) between the
monoidal categories (C,®, 1) and (C',&®', 1’) is called an extended Frobenius monoidal
functor (or is extendable) if there exist a natural transformation F' : F' = F and a

morphism F : 1’ — F(1) € C’ such that the conditions below hold.
(a) F is both a monoidal and comonoidal natural transformation.

(b) Fﬁ% o (]?’]1 ® idpa)) © Fé’)]l o FO) — Fﬁ% o(F® F).

(c) The following are true for each X,Y € C:
(i) FyoFy = idr(x);
(i) Prgx o Filx o (F & idpen) = Filx o (F® idpon);

(iii) F$Y o (Fx ® idpu) o " = F{oy o (Fxey ® idpa)) o Fy?™h.

Extended Frobenius monoidal functors are plentiful. Specifically, we have the

following result; compare to Proposition 4.2.5.

Proposition 4.3.2. A separable Frobenius monoidal functor admits the structure of

an extended Frobenius monoidal functor.
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Proof. Let (F, F® F© Fay, Fp) be a Frobenius monoidal functor. Recall that it is
separable if F® o Fly) = id (see Definition 2.5.1). Then, take F' = Idp and F' = F©.
It is then straightforward to verify that these choices of F and F extend the Frobenius

monoidal structure on F'. O
Example 4.3.3. Strong monoidal functors are separable with Fy) = F (=2) and
Foy:=F (=0) 5o they are also extended Frobenius monoidal functors.

The next result is the desired extension of Proposition 2.5.4. See Appendix A.1

for proof.

Proposition 4.3.4. Let (F, F® FO Fo, Fo), F, F):C — C' be an extended Frobe-
nius monoidal functor. This induces a functor ExtFrobAlg(C) — ExtFrobAlg(C’).
Specifically, for A € ExtFrobAlg(C), we have that F(A) € ExtFrobAlg(C’) with mp(ay,
upa), Apay, €pca)y as in Proposition 2.5.4(a,b), with ¢pa)y = F(da) ﬁ’A, and with

~

Opay = F(0a) F. ]

We also have the following extension of Proposition 2.5.5 to extended Frobenius

monoidal functors. The proof of this theorem can be found in Appendix A.2.

Theorem 4.3.5. The composition of two extended Frobenius monoidal functors is

again an extended Frobenius monoidal functor. 0

Remark 4.3.6. One can also obtain Proposition 4.3.4 as a consequence of Theo-
rem 4.3.5. Take the monoidal category 1 consisting of a single object 1 and mor-
phism idy. Then, a Frobenius monoidal functor (F, E(2),E(0),E(2),E(O)) 1 - C
is extendable if and only if F(1) € ExtFrobAlg(C). So, when A € ExtFrobAlg(C),
the functor A# : 1 — C with A#(1) := A is extended Frobenius monoidal. Now if
(F,F® FO Fo Fg,F,F):C— Cis extended Frobenius monoidal, Theorem 4.3.5
implies that the functor FA# : T — (' is also extended Frobenius monoidal. Hence,
F(A) is an extended Frobenius algebra in C’ as in the proof of Proposition 4.3.4.
Compare to [DP08, Corollary 5].
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4.3.2 Examples

Building upon Propositions 4.2.7 and 4.2.8, consider the examples of extended Frobe-

nius monoidal functors below.

Example 4.3.7. Let (C,®,1,¢) be symmetric monoidal with B € ExtFrobAlg(C).
Then, the functor —® B : C — C is extended Frobenius monoidal with

(—® B)S?y = (ldxgy ® mp)(idx ® cpy ®idp),
(- ® B)é’)y = (idx ® ey p ®idp)(idxgy ® Ap),

(—®B) Y = up, (—®B)) = e,

(_®B)X = idx ® ¢p, and (- ®B) :=0p,
for any X,Y € C. We note further that when B is not a separable Frobenius algebra,

the Frobenius functor defined above is not separable.

Example 4.3.8. Let (C,®, 1) be additive monoidal with B € ExtFrobAlg(C). Then,
the functor — 1 B : C — C is extended Frobenius monoidal with

(—uB)Yy == mxey U (mpompgs), (- U B)) = txey U (tegs © Ap),

(—uB)O:=idy Lug, (—u B)) = idy L€,

(—I_I/’\B)X =7x U (pgomp), and (—\\_1’23) = id; v O,

for any X,Y € C. Again, when B is not a separable Frobenius algebra, the Frobenius

functor defined above is not separable.

4.4 Connection to Hopf algebras

In this section, we explore the extension of Frobenius algebra structures inherited
from Hopf algebras. We begin with the induced Frobenius structure on integral Hopf
algebras in §4.4.1. In §4.4.2, we define an extended Hopf structure that guarantees
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extendability of the inherited Frobenius structure. We introduce functorial construc-

tions preserving integral and extended Hopf algebras in §4.4.3 and §4.4.4, respectively.

4.4.1 Frobenius algebras from Hopf algebras

Take a symmetric monoidal category C := (C,®,1,c¢) and consider the following

structures on a Hopf algebra (H, m,u, A, ¢g,S) in C (see Definition 2.3.3).

Definition 4.4.1. (a) A left integral for a Hopf algebra (H,m,u, A, g,S) is a mor-
phism A : 1 — H which satisfies m(idyg ® A) = Ae. A right cointegral
for the Hopf algebra (H,m,u,A,&,S) is a morphism A : H — 1 satisfying
(A®idg)A = uA. If A and X further satisfy AA = id;, then A and A are said
to be normalized. A Hopf algebra equipped with a normalized (co)integral pair

is called an integral Hopf algebra.

See Figures B.1-B.4 in Appendix B for a graphical depiction of this definition.

(b) A morphism of integral Hopf algebras f : H — K is a morphism, which is
both an algebra and coalgebra morphism, and which satisfies fAy = Ag and

A f = A

(c) We organize the above into a category, IntHopfAlg(C), whose objects are integral
Hopf algebras and whose morphisms are morphisms of integral Hopf algebras

as defined above.

For further information on the objects in the above definition, see [Rad12, Chap-

ter 10| and the references within for the case when C = Vec.

Remark 4.4.2. If a Hopf algebra is equipped with a normalized integral and cointe-
gral, then its antipode is invertible; see, e.g., [CD20, Lemma 3.5]|.

We also have the following proposition saying that integral Hopf algebras in C

admit the structure of Frobenius algebras in C. This is proved in Appendix B using
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a graphical argument due to Yadav. A similar, nongraphical argument can be found

in [FS10, Appendix A.2].

Proposition 4.4.3. We have that

U : IntHopfAlg(C) — FrobAlg(C)
(H,m,u, A, g, S, ST AN — (H,m,u, A= (m®S)(idyg ®AN), €:=)\)

1s a well-defined functor, which acts as the identity on morphisms.

Example 4.4.4. Let G be any finite group. The group algebra kG is a finite-
dimensional Hopf algebra with A(g) = ¢ ® g, e(g) = 1, and S(g) = ¢!, for all
g € G. This Hopf algebra admits a normalized (co)integral pair given by A := >}, . h
and A(g) := 0 41k. Applying W to this integral Hopf algebra, we obtain the Frobenius

algebra structure on kG described in Example 4.1.6 using equation (4.1.3), where

A(g) :==Ycc9gh @bt and e(g) := A(g) = dc g1k, for all g € G.

Proposition 4.4.5. If H € IntHopfAlg(C) is equipped with 6 : 1 — H € C such
that m(0 ® 0) = ueA, then the Frobenius algebra V(H) from Proposition 4.4.3 is
extendable.

In particular, when C = Vec, the Frobenius algebra W(H) over k is always extend-

able with ¢ = idy(my and 0 = £+/e(A(1k))u.

Proof. Suppose that the morphism 6 : 1 — H as in the statement exists. Then, taking
¢ = idy(m), and using this §, we extend the Frobenius structure. To verify the axioms
of Definition 4.2.1(b), notice that conditions (i) and (ii) hold trivially. Condition
(iii) is verified in Figure 4.12; using notation and axioms from Appendix B. The last

statement on the case when C = Vec is clear. O

Example 4.4.6. Let GG be a finite group, and recall the induced Frobenius-from-Hopf

algebra strcuture on kGG described in Example 4.4.4. In this case, we have that

ug(A) = u (£ (Sheh) = 1 (Sheale) = (6] u(li) = G| - ec.
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Figure 4.12 : Proof of Definition 4.2.1(b)(iii) for Proposition 4.4.5.

The above proposition then tells us that the choice ¢ = idge and 0 = +4/|G| - eq
extends the induced Frobenius algebra structure on kG. Note that this is the same

extended Frobenius structure introduced in Example 4.1.6.

4.4.2 Extended Hopf algebras

Continue to let C be a symmetric monoidal category. Here, we introduce extended
Hopf algebras in C as a way to obtain extensions of Frobenius-from-Hopf algebra

structures.

Definition 4.4.7. An integral Hopf algebra (H,m,u,A,g,S,S™, A, ) is called ex-
tended if it is equipped with two morphisms ¢ : H — H and 6 : 1 — H in C satisfying

the following axioms:

(i) ¢ is a morphism of integral Hopf algebras such that ¢ = idy;
(i) m(¢p®S)AA =m(0®0).

A morphism of extended Hopf algebras f : (H,¢,0) — (H',¢',0') is a morphism of
integral Hopf algebras in C which also satisfies f¢ = ¢'f and f0 = 6'.
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With the above, we define a category ExtHopfAlg(C) and obtain a forgetful functor,

U : ExtHopfAlg(C) — IntHopfAlg(C)
(H7 m7 u? é7 §7 S? 5_17 A‘7 A? ¢7 9) — (H7 m? u7 é? §7 S7 S_17 A’7 >\)'

We have the following result.

Proposition 4.4.8. Tauke H € ExtHopfAlg(C). Then, the Frobenius algebra WU (H)

in C from Proposition 4.4.3 is extendable via the morphisms ¢ and 6.

Proof. To verify that ¢ and 6 extend the Frobenius algebra WU (H ), we check the ax-
ioms of Definition 4.2.1(b). Since ¢ : (H,m,u, A, e, S, A, \) — (H,m,u, A, g, S, A, \)
is a morphism of integral Hopf algebras, the functoriality of ¥ and U gives that
¢: (H,m,u,Ae) - (H,m,u,A,¢e) is a Frobenius algebra morphism. Moreover, we
have that ¢? = idy by Definition 4.4.7(i). So, condition (i) of Definition 4.2.1(b)
holds. Condition (ii) of Definition 4.2.1(b) also holds by Definition 4.4.7(ii) since the
multiplication morphism is the same for both the Hopf and Frobenius structures on

H. Towards condition (iii) of Definition 4.2.1(b), we compute:
m(¢®idg)Au = m(p® S) (M idy)(u®A)A = m(d ®0),

where the first equality is the definition of A and a level exchange, and the second

equality is by the unitality of m and u and Definition 4.4.7(iii). H
The consequence below is straight-forward.

Corollary 4.4.9. There is a functor ¥ : ExtHopfAlg(C) — ExtFrobAlg(C) which sends
an extended Hopf algebra (H,m,u,A,g,S,S™ A\ ¢,0) to the extended Frobenius
algebra (H,m,u,A,e,¢,0), with A and € defined as in Proposition 4.4.3, and which

acts as the identity on morphisms. [

Remark 4.4.10. While the above result tells us that every extended Hopf algebra
gives rise to an extended Frobenius algebra via the same ¢ and 6, the converse is

not true. In particular, given H € IntHopfAlg(C), we get that W(H) € FrobAlg(C).
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But, even if W(H) is extendable via ¢w(m) and Oy, it is not necessarily true that
(H, pw(n), Ow(my) is an extended Hopf algebra in C.

For instance, consider the Frobenius algebra structure on kCs, induced by the
Hopf structure, as described in Example 4.4.4. This Frobenius structure can be
extended by taking ¢(g) = —g (where g is a generator of Cy) and 6 = 0, as in
Proposition 4.1.14(b). However, this choice of ¢ and 6 does not extend the integral

Hopf structure on kCj, since ¢ is not comultiplicative with respect to A.

4.4.3 Integral Hopf monoidal functors

We continue the extension of Proposition 2.5.4 and Proposition 2.5.5 by defining types

of monoidal functors that preserve integral and extended Hopf algebras.

Definition 4.4.11. A Hopf monoidal functor (F, F®, F©) Fo F),YT): C — C'is
called an integral Hopf monoidal functor if it comes equipped with two morphisms
F:1' — F(1) and F : F(1) — 1’ satisfying F o F = idy and the two diagrams in
Figure 4.13.

F(1) — 9,y F(1) £ v
"R F(erY)
F1)& 1 F F(1®1) F(0)
idp1)® F F(1) Fiyt F(1)
HF(GI) ot
F(1)® F(1) W F(1®1) F(1) & F(IL)EMDIL’ ® F(1)

Figure 4.13 : Axioms for an integral Hopf monoidal functor.

With this definition, we obtain the following.
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Proposition 4.4.12. Let (F,F® FO F, Fq),Y,F,F) : C — C' be an integral
Hopf monoidal functor. This induces a functor IntHopfAlg(C) — IntHopfAlg(C’).
Specifically, for H € IntHopfAlg(C), we have that F(H) € IntHopfAlg(C’), with Hopf

algebra structure given by Proposition 2.5.4(e), with integral Apy = F(Ag) o F,
and with cointegral Appy := F o F(Ag).

Proof. Proposition 2.5.4(e) gives that F'(H) is a Hopf algebra in C’, so it only remains
to show that Ap(y and Ay form a normalized(co)integral pair for this Hopf algebra
structure.

First, we see that Apg) and Apy) are normalized, since
Ay © Apry = EF(Ag) o F(AH)F = FF = dpm),

where the first equality is by definition, the second is from the fact that Ay and Ay
are normalized, and the last equality is by the normalization condition of F and F
from Definition 4.4.11.

Next, Figure 4.14 gives that Apy is indeed an integral for F'(H). Here, re-
gions (1), (5), (8), and (11) commute by definition, regions (2), (6), (7), and (9)
by naturality, region (3) is a level exchange, region (4) is the condition on F from
Definition 4.4.11 and Figure 4.13, and region (10) follows from the fact that Ay is an
integral for H.

Figure 4.15 gives that Ap () is a cointegral for F/(H), where regions (1), (5), (10),
and (11) commute by definition, regions (3), (6), (7), and (9) by naturality, region
(8) is a level exchange, region (4) is the condition on F from Definition 4.4.11 and
Figure 4.13, and region (2) follows from the fact that Ay is a cointegral for H.

Finally, we must check that given a morphism f : (H,Ag,A\g) — (H', Ay, A\nv)
of integral Hopf algebras in C, its image F(f) : F(H) — F(H') is a morphism of
integral Hopf algebras in C’. Proposition 2.5.4(e) gives that F'(f) is a morphism of
Hopf algebras, and so it only remains to check that F'(f) respects the (co)integrals of
F(H) and F(H').
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Indeed, we have that

F(f)Arm
)\F(H)F(f)

= F(f)F(Ay)F = F(Ag)F = Ag;
= FF(Ag)F(f) = EF(Agr) = Ap(an,

where the first and last equalities are the definitions of Ap_) and Ap(_) and the middle

equalities are because f : H — H’ is a morphism integral Hopf algebras and hence

respects the (co)integrals of H and H’. This completes the proof. O
F(H) D v
1) o)
F(H) F(1)
H w
FO) T -
id ®' Fl (
F(1®1) Ar
idp () ® Apc) V y (7) \
() F(H)& F(1 *>FH®11) F(H) — F(1) ()
F7 F(e)
©) F(id@h
id® F(Ay) Fi<~12H H®H
B 11 777
F(H) & F(H) S PO
Figure 4.14 : Proof that Ap(gy is an integral for F/(H).
F(H) Arcn g
Fn) W /
F(4) l \ Y
Fal®1)
“@/ lF "
/\H®1d
Apm) (5) FH®H) ——'F Up(H)
lF@ id
Fﬂ2,H ]l/ [
F(I;I)H (6) (2) & F
H) id® F(u

F(H)& F V' F(H F(H
(H) & F(H) o @ i & (H)

Figure 4.15 : Proof that Ap(

m) is a cointegral for F'(H).
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The following result extends Proposition 2.5.5 to integral Hopf monoidal functors.
Proposition 4.4.13. Given two integral Hopf monoidal functors (F, F,F) : C — C'
and (G,G,G) : C' — C", the composition GF : C — C" is also integral Hopf monoidal.

Proof. We first note that GF' is Hopf monoidal by Theorem 2.5.5(e), so we only need

to show that GF' admits an integral structure. To see this, define
GF:=G(F)oG:1" - GF(1) and GF:=GoG(F):GF(1)—1".
Now, the conditions of Definition 4.4.11 must be verified. We first note that
GFoGF =GoG(F)oG(F)oG=GoG(EFF)oG = GG = idyn,

since (F,F) and (G, Q) are integral structures for F' and G, respectively. Next, we
check the two axioms of Figure 4.13. For the strict case, this is done in Figure 4.16,
where regions (1), (5), (6), and (11) commute by definition, regions (2), (7), (8), and
(9) by naturality, region (3) is a level exchange, and regions (4) and (10) are the
condition from Definition 4.4.11 Figure 4.13 for G and F, respectively.

The verification that GF satisfies the condition of Definition 4.4.11 and Figure 4.13

is analogous, so we omit it. This completes the proof. O

Analogously to how morphisms of integral Hopf algebras preserve integrals and
cointegrals, we require that natural transformations of integral Hopf monoidal func-

tors also behave nicely with the functorial analogues of integrals and cointegrals.

Definition 4.4.14. A natural transformation ¢ : (F,F,F) = (G,G,G) between
integral Hopf monoidal functors is an integral Hopf monoidal natural transformation
if the following conditions are satisfied.

(a) ¢ is simultaneously monoidal and comonoidal;
(b) 10 F=G;
(c) Gogy =F.

We think of the second condition above as saying that ¢ “respects integrals” and the

third as saying that ¢ “respects cointegrals.”
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GF
GF(1) €N ”
N . //
7(0
) G(1) ~
G(F, ®// idy H
GF(1)®" 1" Flo)& 4, G e Gy ©
3) lld(*(l ) ®"'G GF
idgra) ®' G G(F
Lo ( G(1)®"G(1 e "
G FO) 1(10(% N
G(Fo))
(7)
(()) G ( ) ®N / 1/ ®l /
) — G(F ®’ idy/)
ldGF(]L) ®"GF idGF(JL) ®" G(F) G(Z>
POV Gr) @ 11) GF(1) GF(1)
(9) lG(idF(]) ®'T)
G(F(1)& F(1)) (10)
(11)
GF(1)®" GF(1) , GF(1®1)
(GR)E,

Figure 4.16 : GF satisfies the condition of Definition 4.4.11 and Figure 4.13.

4.4.4 Extended Hopf monoidal functors

With integral Hopf monoidal functors and natural transformations defined, it is now

easy to define extended Hopf monoidal functors in a manner similar to the creation

of extended Frobenius monoidal functors from Frobenius monoidal functors. Because

of this, the proofs of results in this section will be analogous to those in Appendix A,

and so we omit them here.

Definition 4.4.15. An integral Hopf monoidal functor (F, F, F)

:C — (' is called

an extended Hopf monoidal functor, or is extendable, if it can be equipped with a

natural transformation F : F = F and a morphism F:1 — F(1) € C’ such that the

conditions below hold.
(a) Fis an integral Hopf monoidal natural transformation.

(b) F o (Fi& Y1) o Fly o F = F% o

5 (F& F).

(c¢) The following are true for each X,Y € C:
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(1) ﬁX O [:\’X = idF(X);
(it) Figx o Fix o (F & idpx) = i (F @ idp(x));

(iii) FY o (Fx ® Ty)o Fy" = Figy, o (Fxgy ® Y1) o Fyo".

Again, we now extend Propositions 2.5.4 and 2.5.5 to the extended Hopf case.

Proposition 4.4.16. An extended Hopf monoidal functor (F, ﬁ, ﬁ) :C — C' induces
a functor ExtHopfAlg(C) — ExtHopfAlg(C’). Specifically, for H € ExtHopfAlg(C),
we have that F(H) € ExtHopfAlg(C’), with integral Hopf algebra structure given by
Proposition 4.4.12, and with extended structure given by ¢p) = F(ng)ﬁH and

Proof. This proof is analogous to the one given in Appendix A.1, with only minor
modifications. As was the case with extended Frobenius monoidal functors, Defini-
tion 4.4.15(a),(c)(i) allow us to conclude that ¢p s is an integral Hopf convolution,
Definition 4.4.15(c)(ii) is used to show that F'(H) satisfies condition (ii) of Defini-
tion 4.4.7, and finally Definition 4.4.15(b),(c)(iii) are necessary in proving that F'(H)
satisfies condition (iii) of Definition 4.4.7. O

Proposition 4.4.17. Let (F, F, F):C—C and (G, G, G) : C' — C" be two extended
Hopf monoidal functors. The composition GF : C — C” is also an extended Hopf
monoidal functor, with integral Hopf monoidal structure given in Proposition 4.4.13,
and with extended structure defined by @X = G(}A?’X) o @F(X) for all X € C and
GF = G(F)oG.

Proof. Again, the proof of this statement is analogous to the one given in Ap-
pendix A.2. The only additional thing that must be checked is that GF is an integral
monoidal natural transformation, but this is straightforward from naturality and the

fact that both G and F are integral monoidal natural transformations. O
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4.5 Discussion

There are a number of possible directions for future research based upon the material

presented above. We discuss some here for the interested reader.

4.5.1 On forgetful functors

In searching for examples of extended Frobenius monoidal functors, we came across
[BT15, Theorem 6.2], which states that if A is an algebra in a monoidal category C,
then the forgetful functor 4414 : A-Bimod(C) — C, equipped with the trivial monoidal
structure, is Frobenius monoidal if and only if A is a Frobenius algebra. We wonder
how this could be modified to the cases of integral Hopf, extended Frobenius, and

extended Hopf, giving a new example of these types of monoidal functors.

4.5.2 On pullbacks

It is natural to want ExtHopfAlg(C) to be the pullback of the functor ¥ : IntHopfAlg(C)
from Proposition 4.4.3 and the forgetful functor U : ExtFrobAlg(C) — FrobAlg(C),
but Remark 4.4.10 shows that this is not the case. If, however we restrict to only
¢-trivial extended Hopf and Frobenius algebras, then we do obtain this result. This
leads to questions concerning how the pullback subcategory and the subcategory
ExtHopfAlg(C) of C relate, how these two types of objects can be used in different
applications and scenarios, and whether there are any conditions on C or on extended

Hopf algebras that could produce special cases of this result.

4.5.3 On a functorial version of Frobenius-from-Hopf structures

In §4.4.1, we saw that integral Hopf algebras all admit a Frobenius structure. We
inquire whether a functorial analogue of this result could be obtained. There are
many results that showcase relationships between Hopf monoidal functors, Hopf ad-

junctions, Frobenius monoidal functors, and Frobenius functors, see for example
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[Ball7, Sar21, FLP24, Yad24, FLP25, JY25|, but none have considered the func-
torial analogue of integral Hopf algebras. The initial example —® A : C — C on a
symmetric monoidal category C looks promising, as if H is an integral Hopf algebra,
then —® H obtains both an integral Hopf monoidal and Frobenius monoidal structure
from the corresponding algebra structures on H. However, it is not clear whether this
could be generalized, as it may be the case that for general integral Hopf monoidal

functors, only Frobenius algebras in the image of ¥ are preserved.
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Appendix A

Proofs of selected results in Section 4.3

Following [CKQW24|, Proposition 4.3.4 is proved in Section A.1 and Proposition 4.3.5
in Section A.2.

A.1 Proof of Proposition 4.3.4

Given (A, ma,ua, Aa,e4,04,04) € ExtFrobAlg(C), we first define an extended Frobe-
nius algebra structure on F'(A). Let mpea), upay, Ara), and epay be as in Proposi-
tion 2.5.4(a,b). By Proposition 2.5.4(c), this makes F(A) a Frobenius algebra in C'.
Define

~

Prea) = F(¢a) Fa, Opcay = F(04) F,
and note that by naturality, ¢pa) 1= F(¢a) Fo=F, F(¢4). We will now show that
dr(a) and Op 4 satisfy the conditions in Definition 4.2.1(b).

To verify Definition 4.2.1(b)(i) for F(A), we first show that ¢p4) is a Frobe-
nius algebra morphism. Commutativity of the diagram in Figure A.1 verifies that
mpa)(Pra) & dpa)) = draymr). Regions (1), (2), (5), and (8) commute by defi-
nition, (3) by monoidality of F, (4) and (6) by naturality, and (7) by multiplicativity
of ¢4. Likewise, comonoidality of F gives (dp(a) @ Opa)) Ara) = Apa) Or(a)-

Commutativity of the diagram in Figure A.2 shows that upa) = ¢pa)ura).
Regions (1), (4), and (6) commute by definition, (2) by monoidality of F , (3) by ¢4
being an algebra morphism, and (5) by naturality. Comonoidality of F analogously

gives that ep(a) = €p(a) @r(a), concluding the proof that ¢p4) € FrobAlg(C’).
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MpE(A)
)
F(A)® F(A) FQ, —— F(A® A) Fma) — F(A)
(2) l}?‘A ®/ ﬁ'A (3) lﬁA@A (4) ﬁAl/
bray® ¢ray | F(A)® F(A) FX)A >y F(A® A) Fma) —— F(A) 6))ora
lF(m) ®' F(¢a) (6) lF(m ®dba) (7 F(ch)l
F(A)® F(A) P, » F(AQ A) F(ma) — F(A)
(8)
ME(A)

Figure A.1 : ¢p(a) is multiplicative.

YF(A)

//(;\

1 FO > F(1) F(ua) — F(A)

Fq

\Fw) ) l ™~ @ F<¢A>l
~

Figure A.2 : ¢p(a) is unital.

To see that ¢p(4) is an involution, note that

O © br(a) = F(6) 0 Fa 0 Fa 0 F(a) = F(fa 0 ¢a) = idria),
where we use that ¢pa) := F(¢a) Fa = FAF(¢4), Definition 4.3.1(c)(i), and the fact
that ¢4 is an involution.

Definition 4.2.1(b)(ii) for F'(A) follows from the diagram in Figure A.3. Regions
(1), (2), (5), (9), and (11) commute by definition, (4), (6), (7), and (10) by natural-
ity, (3) by Definition 4.3.1(c)(ii), and (8) by Definition 4.2.1(b)(ii) for A.

Lastly, Definition 4.2.1(b)(iii) for F'(A) holds by Figure A.6, where regions (1),
(2), (3), (8), (20), and (21) commute by definition, (5), (6), and (9)-(18) by natu-
rality, (4) by Definition 4.3.1(b), (7) by Definition 4.3.1(c)(iii), and (19) by Defini-
tion 4.2.1(b)(iii) for A. This completes the proof that F'(A) € ExtFrobAlg(C’).
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Op(a) ® idpa)

(1)

I / / !
'@ F(A) F & e F(1)® F(A) FOR & o F(A)® F(A)
widp(m lF(Q) /
@) @ 2
F1)® F(A F(1®A) Fo,
@ P2, Frsa F(0A @ida)
‘ \ % \ / o —
Op(a) ® idpa) F(64) ® idp(a) F1®A) () F(04®ida) F(A® A)
l © leA ®ida) J ®© W
(2)
F(A) @ F(A) 23 FA®A) 222 P(A®A) — 74, pa) %)

\ (10) (11)
() F(ma) Fy
\ PF(A)
— F(4)

Figure A.3 : F(A) satisfies Definition 4.2.1(b)(ii).

It remains to show that morphisms of extended Frobenius algebras are also pre-
served. Specifically, if f : (A, ma,ua, Aa,e4,Pa,04) — (B,mp,up, Ag,ep,¢p,0p) is
a morphism of extended Frobenius algebras in C, then F(f) : FI(A) — F(B) is a mor-
phism of extended Frobenius algebras in C’'. By Proposition 2.5.4(c), F(f) is a mor-
phism of Frobenius algebras in C’, so it suffices to verify that F'(f) ¢pa) = ¢rm) F(f)
and F(f)0pa) = 0p) in C'. The first equation follows from Figure A.4, where re-
gions (1) and (4) commute by definition of ¢y, (2) by naturality of F, and (3)
because f is a morphism of extended Frobenius algebras in C. For the second equa-
tion, observe that regions (1) and (3) in Figure A.5 commute by definition of 0p(_)

and (2) commutes because f is a morphism of extended Frobenius algebras in C. [

PF(A)
m 2
. () F(A)
F F(oa)
F(A) s Pl — s () %
lpm @ JFU) ®) k(n I ——— F (1) F(f)
®) F(9g)
B P F(B) F(¢p) F(B) Or (5 — F(B)
()
PF(B)

Figure A.4 : F(f) respects ¢. Figure A.5 : F(f) respects 6.
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A.2 Proof of Theorem 4.3.5

Let

A~

(F,F®,FO, Fo, Foy, F. F) : (€,®,1) — (C', &, 1');
(G,G?,GO G, G, G, G): (C,&, 1) — (", &",1")
be two extended Frobenius monoidal functors. To show that the composition
GF:(C,®,1) — (C",®",1")

admits the structure of an extended Frobenius monoidal functor, let (GF)® (GF)©
(GF)(2), and (GF)(g be as in Proposition 2.5.5(a,b). Proposition 2.5.5(c) gives that
this makes GF' into a Frobenius monoidal functor. Now, define GF :GF = GF by
GFy = G(Fy) oap(x) for all X € C, and define GF := G(F)oG : 1”7 — GF(1). We
need to show that GE and GF extend the Frobenius monoidal structure on GF.

Note first that the composition of (co)monoidal natural transformations is again
(co)monoidal, so GF is simultaneously a monoidal and comonoidal natural transfor-
mation. So, Definition 4.3.1(a) holds for GF.

That Definition 4.3.1(b) is satisfied by GF follows from commutativity of the dia-
gram in Figure A.9: regions (1), (2), (8), (18), (25), and (26) commute by definition,
(4)-(6), (9)-(17), and (19)-(23) by naturality, (3) and (24) by Definition 4.3.1(b) for
G and F respectively, and (7) by Definition 4.3.1(c)(iii) for G.

To see that Definition 4.3.1(c)(i) holds for GF', see Figure A.7. Regions (1)
and (3) commute by definition of GF, and regions (2) and (4) commute by Defi-
nition 4.3.1(c)(i) for F' and G respectively.

GF(X)
% N

I apx) fereo GF(X) —~ GF(X

idgr(x)

Figure A.7 : GF satisfies Definition 4.3.1(c)(i).
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Next, GF satisfies Definition 4.3.1(c)(ii) by Figure A.8: regions (1), (4), (7), (8),
and (11) commute by definition; (3), (5), (6), and (9) by naturality; and (2) and (10)
by Definition 4.3.1(c)(ii) for G and F respectively.

Finally, Definition 4.3.1(c)(iii) is satisfied by GF' via Figure A.10: regions (1),
(2), (5), (6), (25), and (26) commute by definition; (4), (7)-(11), and (14)-(24) by
naturality; and (3), (12), and (13) by Definition 4.3.1(c)(iii) for F" and G respectively.

This concludes the proof of Theorem 4.3.5 ]
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Appendix B

Graphical proof that integral Hopf implies Frobenius

In this appendix, which is connected to Section 4.4 and also comes from the pa-
per [CKQW24|, we give a graphical proof of Proposition 4.4.3, showing that an in-
tegral Hopf algebra in a symmetric monoidal category C is a Frobenius algebra in C.
This result can be found in [FS10, Appendix A.2|, and the graphical proof is due to
Harshit Yadav. Recall axioms (S1)—(S5) from Figure 2.4 in §2.2.4.

B.1 Diagrams for integral Hopf algebras

Recall from Definition 2.3.3 that a Hopf algebra in C is an object H € C equipped
with morphisms m : HQ H - H,u:1 > H A: H—> HQH,c: H— 1,
S : H — H satisfying specific conditions. In this section, we consider Hopf algebras
equipped with a normalized (co)integral pair, given by morphisms A : 1 — H and
A : H — 1 which satisfy a number of axioms (see Definition 4.4.1). Note that this
also means that the antipode S is invertible, with inverse S™! (see Remark 4.4.2).
Graphical representations of the structure morphisms for a Hopf algebra with
invertible antipode are given in Figure B.1, and the axioms they satisfy are in Fig-
ures B.2 and B.3. The normalized integral and a cointegral of a Hopf algebra H are

given graphically in Figure B.4, together with the axioms they satisty.

'R

m U A 3

Figure B.1 : Structure morphisms for a Hopf algebra in C.
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Figure B.2 : Axioms for a Hopf algebra with invertible antipode in C.

FO ] AR e

Figure B.3 : Identities for a Hopf algebra in C.

TV AL

A A (I3)

Figure B.4 : Normalized (co)integral for a Hopf algebra in C.

Lemma B.1.1. We have the following identities.
(a) (m®S)(idg ®AA) = (dg ®@m)(idg ® S®idy)(AmQidy)(idg ® A®idy)A.
(b) ASA =id;.

Proof. Part (a) is proved in Figure B.5, and part (b) is proved in Figure B.6. Refer-
ences to Figures 2.4, B.2, B.3, and B.4 are made throughout. O
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Figure B.5 : Proof of Lemma B.1.1(a).
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Figure B.6 : Proof of Lemma B.1.1(b).
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B.2 Proof of Proposition 4.4.3

We aim to show that
U : IntHopfAlg(C) — FrobAlg(C)

(H,m,u, A, e, S, A\, \) — (H,m,u, A := (m®S)(idg ®AA), ¢ := )

is a well-defined functor, which acts as the identity on morphisms.

For the assignment of objects under the functor ¥, we depict graphically the
coproduct A and counit ¢ in Figure B.7. Coassociativity is verified in Figure B.§,
counitality is in Figure B.9, and the Frobenius laws are established in Figure B.10.

References to Figures B.2-B.6 are made throughout.

NA L

Figure B.7 : Coproduct and counit for the Frobenius-from-Hopf structure in C.

m Fig.B.7 %Fig.B.lo M}?ig.a?mMgm (]}\

Figure B.8 : Proof of coassociativity for the Frobenius-from-Hopf structure in C.
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Figure B.9 : Proof of counitality for the Frobenius-from-Hopf structure in C.

Fig. B.7

v
Fig.B.5
Fig.B.7 (H1) Fig.B.7

Figure B.10 : Proof of Frobenius laws for the Frobenius-from-Hopf structure in C.
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For the assignment of morphisms under ¥, take a morphism of integral Hopf algebras
f : (H7mH7uHaéHa§H7AH7)\H) - (K7mKauK7éK7§K7AK7/\K)'

We will verify that U(f) := f : (H,mpg,ug, Ay, eg) — (K,mg,ur, Ak, k) is a
morphism of Frobenius algebras. We have multiplicativity and unitality for free,
since the Hopf multiplications and units on H and K are the same as the Frobenius
multiplications and units on H and K.

Next, because the Frobenius counits of H and K are given by ey = Ay and
£x = Ak, we get Frobenius counitality immediately from the fact that f is compatible
with the cointegrals of H and K.

Finally, we have that Frobenius comultiplicativity holds via the commutative di-
agram in Figure B.11. Specifically, the regions (2) and (4) commute by definition of
Ap and Ag, respectively. Region (1) commutes because f is compatible with the
integrals of H and K, region (5) because f is an algebra map and is compatible with

the antipodes of H and K, and region (3) because f is a coalgebra map between the

Hopf algebras H and K. O
H / s K
HoH —® koK
An @) lidHcaAH ) lichmK @ |2k
HRHR®H m KKK
< %SH (5) me <
H®RH Y s K ®

Figure B.11 : Frobenius comultiplicativity for U(f) := f.
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