[No Quantum Symmetry] k=k,chh=0 Goal: Etudy symmetries of		To # Juan Chadra	(18-1	Unico Neally & Septhy Mexico Neally & Septhy Mexico @ USC
Goal: Ethor symmetries of	mycons -		1as —	10000 6000
1	0	They refer of over &	,	netweten .
Why Hopfalzebras? Genetry (Aff/k) GxX-> X (group action	contravan	$\frac{A!gebia}{O(X) \rightarrow O(X) \otimes O(A)}$ $\Delta: O(G) \rightarrow O(G) \otimes O(G)$	11. (-1. 1	Similar materiation. John (4) Coo(M)
w/morphisms m: G×G -> G mu inAffle i: G -> G inv ee G identity object	et eron	E: 0(e) → 0(e) ' 2: 0(e) → 0(e) ▼: 4(e) → 0(e)@0(e)		racom come that als
face @ m(alia) = m(ia)= Exterting duch arisms	rl=e	Schiefying thef elg o (idos) & = (so) is (idos) & = (so) is (idos) & = (so) is	ukisms L) D= id	action of noncome thoptalgebra
O associativity Noncom Geometry Quantum group action on	4	G coassociativity $G_{\zeta}(X) \rightarrow G_{\zeta}(X) \otimes G_{\zeta}$	(a) (coachair)	
Butethere are lost of noncom. all no So actions of arbitrary top! Say [a thopf algebra H acts or				
Q: When does this bail du	onto classical a	actors?		
Guen class of thopt algebras findum's thopta Semismyle Hopt	H and algeb lyp roles	D MEYMO, Acan ton E son E	hantum Jymm inte Os emishiple Os	NGFOI NGFOI NGFOI
V			.)	m. Hopfalgy cluses up (algebra) up (algebra)

I. No Quantum Symultry when &= semi simple Hopfalgo, A = commutative dumains Assume H DA WLOG (X) action doesn't factor through action of questions they also.

(XX) A is finitely generated. want to show that H* commutative (* phitedinil => H = group algebra) A right cooleal subalg B of H* is a subalg of H* Use undeal subalgebras of H*: so that $\Delta(B) \leq B\otimes H^*$ Ex. HXA-A action ~ A - A&H* coaction Take K: A -> k character. Then for A P > AOH* ** ** H* , Px(A) is a night coideal subory of H* Theorem FEW] A semisimple that alubra has finitely many Crideal susalgubras. Bro (**) Take X= Spec(A) & X: X -> II (Sd(H*)) vaicy of dim d coideal subalgo of H* do= max dim x Axy Xo = {x e X | dim x Ax = do 9 Consider X/Xo: Xo --> CSdo(H*) regular irreducible fruite $y \Rightarrow constant$ (\$1,0pen,dense) (by Thursbore) AXEXO 8/x0 (x)=B for some coideal subely. By Hor y din do Argue that A P A OH* (coactus) restricts to A -> A O (B) coactus of top found yourseld to B. By (*), $H^* = (B)$. But B = Ax = px(A) is commutative (image q com-alg) H* commutation, as desired. Next, extend to NUFOS fu quantizations of com durains

```
II. No Quantum Symmetry when H=semisimple Hopfalgs, A= Weylalgebras 3
Assume H An(k) doesn't factoryhrough action of a proper questions thopfalso
   want H cocommutative. Pf follows in 3 steps
Reduce insolutop, p>>0
   · I fin gen. subling Rgk somat HR An(R) (actividoson't factor pupely)
"R-ordi"
R-subay.

[H=k@HR]
   · I homom. Y: R -> Fp to define Hup= HROR FF =: Hp
              # get Hp An(Fp) (action doesn't factor property)

81,0000 $ PIdamain
 Localite: use roult on the factions on DNAIgo to getraultinche
  · Get (Skryalain-van Obtaeyen) Hp ~ Dp (achin duesn't facter purperly) (*)

Mi, cass quat. dv. alg.

J An(FF)
  Technical lemma: HF Host als of dim of / F= aly closed field of arts, cher.
       Say a division of globe D of degree Novo 200) admits action of the by gcd (d!, N) = 1, other D = 200) DH and 2(D) is H-stable
have to be able to control FI degree of Ap = degree of Dp.

How degree Ip = 9 m for home m. Now Technology Dp = 2(Dp)Dp + 5 (t) $ 2(Dp) is Hp-stable

P>70
   So take any Hopfideal I of the so that IZ(Dp)=0
        TDp=0 (*) I=0 (#) Hp? a field 2(Dp), action doesn't facture.

Result I. Hp Cacommutative.
```

Purs back to chard Com Alglema => R Co product of fields => Hr co commutative -> H cocom

III. No Quantum Symmetry when Hepenismyle Hopfaly, of = lorge dass of Theory oly lings
A= kg [x1,-1xn] w welchors xixj = qû xjxi, q = (qij) multiply ontisym.
Reduce modulo p - I fin. gnerated Extragg RSk - >. HR Rg [x1, -1, xn] (action allow 17 factor purporty)
h while p a believe for the while p as believe for the second of the sec
Need new way to reduce nothing p, so that the PI angue of Rg (x), (xx)
Good much number field k: given haman. 2: 1 - 1007
· Get HRY R' 8(9) [x11-1xn] down't factor projectly. The condition
Get He P = (g) [x1,, xn] down't freth großerly. The condition
closure of (q) = (kx)(s) of Gra closure of (q) = (kx)(s) of Gra closure of (q) = (kx)(s)
and A Postucco January por
so that for a green's homom $\psi': R \to \overline{ F }$ annihilating P :
order of $\Psi'(\xi(g)) = N_{\text{depends on}}$ is finite of coprime to (dinett)!
Now form Ap = Rafx1, , xa] or IF, via + and got 1 = and for
(Localite: Hopf actions on divales Toget work
Get Hp Dp (action of Ap (action of Decon't Jacob jury edg)
· We can now control degree Ip to that for p>>0, get ged (deg Dp, (dinttp)!)=1
Teohnical lanna from I. Hy cocommutative.
[Paso back to char 0] -> H is cocommutative

Theorem: Let H be a servicingle topf abyester of dimenorind.

lythe order of Gq/Gq is coprime to d!, Then any H-action on kg [xi,...,xn] foodusthrough a group actor.

 \star each shawparameter qij is a root of unity of order rij, then $|G_{q}| = \text{lem } \{r_{ij}\}_{i < j}$.

 \star eg the set of gij are multiplicatively independent, then $|G_{q}/G_{q}^{2}|=1$ (and hypothesis getheorem is satisfied).

Heg. Take n=2: $A=\frac{k(x_17)}{(xy-gyx)}$.

Then $|G_g/G_g^o|$ is committed! \iff order of g is committed! =ox-order of g is infracte

* Es. Take n=3: A= k(x,y,z)/(xy-3,yx) for g;=pnminn jth norty1

Get NSFOS for H A at ((dim H)!, 7.11:13) = 1 (ex periosurghe Hopf algebras of aim 45 must factor Though a group algebra)

Summary of No Quantum Symmetry results

* wl Etingol	** w Chadra & Etingo	iboa, Johns la ***	vami, & Mandal		
(see vorus of Bhornick, Chirrasith, Sao, Goowanii, Joarder, for Mas results in the analytic setting)					
ArXiv #	module algebras &	(4=sensionagle) NSFQS	(H= finite dime) NFQS		
X 1301.4161	Commutative domains				
XXX (507.08486	com. friger also w/ no homos des enlatoris				
** 1409 · 1644	Weylolys An(h[x1,,x5])				
** 1509.01165	weylodys An(k) Rings of diffle ago D(X)		N71		
* 1602.00532	quantum (formal) deformations of com. domains Ao filtered (PBW) deformations		of alto) istrical		
	of con donains.		if filtration is proserved		
¥ 1605.00560	filtered deformation. >, is PI madulop Skew jory's ringo thisted hamog. coordinate at 3 3-dum'll Sulyania algebras	ogenerie AFA	under a mondey, conditioner action		