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Goal

An investigation of noncommutative/ Hopf invariant theory...
...quantizations of results in classical invariant theory

Actions of quantum finite subgroups of SL2(C)

on

“quantum planes”: noncommutative C[u; v]
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Context

Let’s recall some classical results. Put k = C

Take G a finite subgroup of GL2(k) acting faithfully on k[u; v].
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Context

Let’s recall some classical results. Put k = C

Take G a finite subgroup of GL2(k) acting faithfully on k[u; v].

[STC] k[u; v]G regular?
k[u; v]G �= k[u0; v0] ()

G is generated by reflections.

[Klein] Finite subgroups of SL2(k)
are classified up to conjugation.

types: An Dn E6 E7 E8

“binary polyhedral groups” =: GBPG

...they are not generated by reflections
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Context

Let’s recall some classical results. Put k = C

Take G a finite subgroup of GL2(k) acting faithfully on k[u; v].

[STC] k[u; v]G regular?
k[u; v]G �= k[u0; v0] ()

G is generated by reflections.

[Klein] Finite subgroups of SL2(k)
are classified up to conjugation.

types: An Dn E6 E7 E8

“binary polyhedral groups” =: GBPG

...they are not generated by reflections

[Watanabe] k[u; v]G Gorenstein?

G � SL2(k) =) k[u; v]G Gorenstein

[DuVal-McKay] Geometry of k[u; v]GBPG .
The “Kleinian” or “DuVal” singularities

X = Spec(k[u; v]GBPG )
are precisely the rational double points

and the resolution graph of X is Dynkin.
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Objects of Study

“quantum finite subgroups of SL2(k)” acting on “quantum planes”

For q 2 k�, categorically–
quantum groups - dual to - Hopf algs

SLq(2) � � � � � � � � � � � � Oq(SL2(k))
Gq fin. subgrp � � � � � � Oq(G) fin. Hopf quot.
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Objects of Study

“quantum finite subgroups of SL2(k)” acting on “quantum planes”

Finite dim’l Hopf algebras H

...that are not necessarily finite
quotients of Oq(SL2(k))

with structure: (H;m;�; u; �; S)
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“quantum finite subgroups of SL2(k)” acting on “quantum planes”

Finite dim’l Hopf algebras H

...that are not necessarily finite
quotients of Oq(SL2(k))

with structure: (H;m;�; u; �; S)

AS regular algebras R of gldim 2

AS = Artin-Schelter
* R is graded with R0 = k
* global dimension 2
* AS-Gorenstein
* polynomial growth
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Objects of Study

“quantum finite subgroups of SL2(k)” acting on “quantum planes”

Finite dim’l Hopf algebras H

...that are not necessarily finite
quotients of Oq(SL2(k))

with structure: (H;m;�; u; �; S)

AS regular algebras R of gldim 2

AS = Artin-Schelter
* R is graded with R0 = k
* global dimension 2
* AS-Gorenstein
* polynomial growth

Viewed as ‘noncommutative k[u; v]’ in
Noncommutative Projective AG
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Objects of Study

“quantum finite subgroups of SL2(k)” acting on “quantum planes”

Finite dim’l Hopf algebras H

...that are not necessarily finite
quotients of Oq(SL2(k))

with structure: (H;m;�; u; �; S)

AS regular algebras R of gldim 2

AS = Artin-Schelter
* R is graded with R0 = k
* global dimension 2
* AS-Gorenstein
* polynomial growth

Classified up to isomorphism:

kq[u; v] := khu; vi=(vu � quv); q 2 k�

kJ[u; v] := khu; vi=(vu � uv � u2)
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Objects of Study

“quantum finite subgroups of SL2(k)” acting on “quantum planes”

Finite dim’l Hopf algebras H

...that are not necessarily finite
quotients of Oq(SL2(k))

with structure: (H;m;�; u; �; S)

AS regular algebras R of gldim 2

* R is graded with R0 = k
* global dimension 2
* AS-Gorenstein
* polynomial growth

Classified up to isomorphism:

kq[u; v] := khu; vi=(vu � quv); q 2 k�

kJ[u; v] := khu; vi=(vu � uv � u2)

H acts on R if R is a left H-module algebra: R is a left H-module and

h � (ab) =
P

(h1 � a)(h2 � b) and h � 1R = �(h)1R for all h 2 H, and for all a; b 2 R
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Setting of Study

Let H 6= k be a finite dimensional Hopf algebra acting on
an AS regular algebra R of global dimension 2.

(H1) [notion of faithfulness]
.

(H2) H preserves the grading of R

(H3) [notion of H-action having ‘determinant 1’]
... as results involving G with det(G) =1 motivate our results.
See [DuVal-McKay] for instance.
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Setting of Study

Let H 6= k be a finite dimensional Hopf algebra acting on
an AS regular algebra R of global dimension 2.

(H1) H acts on R inner faithfully:
there is not an induced action of H=I on R for any nonzero Hopf ideal I of H

(H2) H preserves the grading of R

(H3) H-action of R have trivial “homological determinant”.
here, hdetHR: H ! k and it is trivial if equal to the counit map �
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Setting of Study

Let H 6= k be a finite dimensional Hopf algebra acting on
an AS regular algebra R of global dimension 2.

(H1) H acts on R inner faithfully:
there is not an induced action of H=I on R for any nonzero Hopf ideal I of H

(H2) H preserves the grading of R

(H3) H-action of R have trivial “homological determinant”.

Definition. A Hopf algebra H satisfying the conditions above is
called a quantum binary polyhedral group, denoted by HQBPG.
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Main Result

Theorem. [CKWZ] The pairs (HQBPG, RASreg2) are classified as follows.
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Main Result
Theorem. [CKWZ] The pairs (HQBPG, RASreg2) are classified as follows.

H noncom & s.s.

(kGBPG, k[u; v])
GBPG nonabelian

(kD2n, k�1[u; v])
n � 3

(D(GBPG)�; k�1[u; v])

D(GBPG): Hopf deformation

of nonabelian b.p.g. [BN]
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(kGBPG, k[u; v])
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D(GBPG): Hopf deformation
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H comm (& s.s.)
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non-diagonal action

(kCn, kq[u; v])
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n � 3

H nonsemisimple

For q is a root of 1, q2 6= 1

((Tq;�;n)
�, kq�1 [u; v])

Tq;�;n: generalized Taft alg.

(H, kq�1 [u; v]) ord(q) odd
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Main Result
Theorem. [CKWZ] The pairs (HQBPG, RASreg2) are classified as follows.

R = k[u; v] =) H = kGBPG, no “new” H
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Main Result
Theorem. [CKWZ] The pairs (HQBPG, RASreg2) are classified as follows.

For R = k�1[u; v]

H noncom & s.s.

(kGBPG, k[u; v])
GBPG nonabelian
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Main Result
Theorem. [CKWZ] The pairs (HQBPG, RASreg2) are classified as follows.

For R = kq[u; v] with q a root of unity, q2 6= 1
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GBPG nonabelian

(kD2n, k�1[u; v])
n � 3

(D(GBPG)�; k�1[u; v])
D(GBPG): Hopf deformation

of nonabelian b.p.g. [BN]

H comm (& s.s.)

(kC2, kq[u; v])
diagonal action

(kC2, k�1[u; v])
non-diagonal action

(kCn, kq[u; v])
n � 3

((kD2n)
�, k�1[u; v])

n � 3

H nonsemisimple

For q is a root of 1, q2 6= 1

((Tq;�;n)
�, kq�1 [u; v])
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Main Result
Theorem. [CKWZ] The pairs (HQBPG, RASreg2) are classified as follows.

For R = kq[u; v] for q not a root of 1

H noncom & s.s.

(kGBPG, k[u; v])
GBPG nonabelian

(kD2n, k�1[u; v])
n � 3

(D(GBPG)�; k�1[u; v])
D(GBPG): Hopf deformation

of nonabelian b.p.g. [BN]

H comm (& s.s.)

(kC2, kq[u; v])
diagonal action

(kC2, k�1[u; v])
non-diagonal action

(kCn, kq[u; v])
n � 3

((kD2n)
�, k�1[u; v])

n � 3

H nonsemisimple

For q is a root of 1, q2 6= 1

((Tq;�;n)
�, kq�1 [u; v])

Tq;�;n: generalized Taft alg.

(H, kq�1 [u; v]) ord(q) odd

1 ! (kGBPG)� ! H� ! Oq(SL2)! 1

(H, kq�1 [u; v]) ord(q) even

1 ! (kGPG)� ! H� ! Oq(SL2)! 1
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Main Result
Theorem. [CKWZ] The pairs (HQBPG, RASreg2) are classified as follows.

For R = kJ[u; v]

H noncom & s.s.

(kGBPG, k[u; v])
GBPG nonabelian

(kD2n, k�1[u; v])
n � 3

(D(GBPG)�; k�1[u; v])
D(GBPG): Hopf deformation

of nonabelian b.p.g. [BN]

H comm (& s.s.)

(kC2, kJ[u; v])
diagonal action

(kC2, k�1[u; v])
non-diagonal action

(kCn, kq[u; v])
n � 3

((kD2n)
�, k�1[u; v])

n � 3

H nonsemisimple

For q is a root of 1, q2 6= 1

((Tq;�;n)
�, kq�1 [u; v])

Tq;�;n: generalized Taft alg.

(H, kq�1 [u; v]) ord(q) odd

1 ! (kGBPG)� ! H� ! Oq(SL2)! 1

(H, kq�1 [u; v]) ord(q) even

1 ! (kGPG)� ! H� ! Oq(SL2)! 1
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Further Results

Given a pair (H = HQBPG, R = RASreg2) in the main theorem, to say:

a finite dimensional Hopf algebra H acts inner faithfully and
preserves the grading of an AS regular algebra R of gldim 2,

with H-action having trivial homological determinant

we have the following results.

RH = fr 2 R j h � r = �(h)r for all h 2 Hg

[On the regularity of the invariant subring RH ,
motivated by [STC]]

[On the Gorenstein condition for the invariant subring RH ,
motivated by [Watanabe]]
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Further Results

Given a pair (H = HQBPG, R = RASreg2) in the main theorem, to say:

a finite dimensional Hopf algebra H acts inner faithfully and
preserves the grading of an AS regular algebra R of gldim 2,

with H-action having trivial homological determinant

we have the following results.

RH = fr 2 R j h � r = �(h)r for all h 2 Hg

Theorem. [CKWZ] Let (H, R) be as above with H semisimple.
If RH 6= R, then RH is *not* AS-regular. (RH has 1 gldim.)

[On the Gorenstein condition for the invariant subring RH ,
motivated by [Watanabe]]
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Further Results

Given a pair (H = HQBPG, R = RASreg2) in the main theorem, to say:

a finite dimensional Hopf algebra H acts inner faithfully and
preserves the grading of an AS regular algebra R of gldim 2,

with H-action having trivial homological determinant

we have the following results.

RH = fr 2 R j h � r = �(h)r for all h 2 Hg

Theorem. [CKWZ] Let (H, R) be as above with H semisimple.
If RH 6= R, then RH is *not* AS-regular. (RH has 1 gldim.)

Proposition. [CKWZ] Let (H, R) be as above. The invariant subring
RH is AS-Gorenstein. (semisimple case by [KKZ])
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Future Work

(1) Since RH is Gorenstein and is not regular ...
Motivated by [DuVal-McKay] and others:

Study the geometry of ‘noncommutative Gorenstein singularities’ RH

for (H; R) in the main theorem, particularly with H semisimple.

(2) Motivated by [STC] and others:

Study finite dimensional Hopf algebra actions on AS regular algebras
of gldim 2 with arbitrary homological determinant.

(3) Since AS regular algebras of gldim 3 have been classified...

Study finite dim’l Hopf algebra actions on AS reg. algs of gldim 3.

... AS regular algebras of gldim > 3 have not been classified
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Thank you for listening!
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