

On quasitriangular comodule algebras

 joint w/
 Monique Müller
 2508.19845

Q1: What is a categorical braided structure?
 Hopf

Q2: ... And when are two the same?

A1 (rough)

Categorical Braided structures

= a categorical structure whose objects represent a braid group.

Braid groups

$A_n, BC_n, D_n, E_6, E_7, E_8, F_4, G_2, H_3, H_4, I_{2n}$

Def'n Given a Coxeter matrix $(a_{ij}) \in \text{Mat}_n(\mathbb{N})$ of type X_n ,
 the braid group of type X_n is the group

$$Br_n^X = \langle \theta_1, \dots, \theta_n \mid \underbrace{\theta_i \theta_j \theta_i \dots}_{a_{ij} \text{ factors}} = \underbrace{\theta_j \theta_i \theta_j \dots}_{a_{ij} \text{ factors}} \rangle$$

There's a "Coxeter graph of type X_n " --

ooo...ooo Ex. $Br_n^A = \langle \sigma_1, \dots, \sigma_n \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \text{ for } i=1, \dots, n-1 \rangle$

$\sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i-j| \geq 2$

ooo...ooo $Br_n^{BC} = \langle \sigma_1, \dots, \sigma_{n-1}, t \mid \sigma_i \text{ 's satisfy Type A relations}$

$\sigma_i t = t \sigma_i \quad ; \quad \sigma_{n-1} t \sigma_{n-1} = t \sigma_{n-1} t \sigma_{n-1}$

ooo...ooo $Br_n^D = \langle \sigma_1, \dots, \sigma_{n-1}, t \mid \sigma_i \text{ 's satisfy Type A relations,}$

$\sigma_i t = t \sigma_i \quad , \quad \sigma_{n-2} t \sigma_{n-2} = t \sigma_{n-2} t$

A1 (Type A)

Prop: Braided monoidal categories are

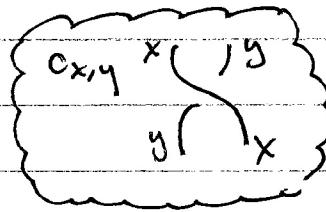
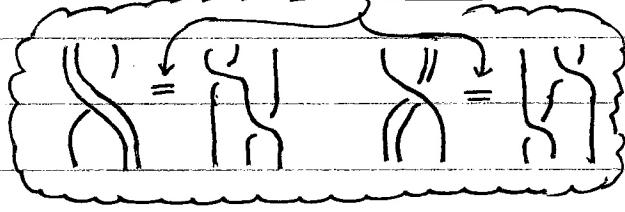
categorical braided structures of Type A.

 $(\mathcal{C}, \otimes, \mathbb{1}, c)$

- \mathcal{C} = category
- $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ monoidal (bifunctor)
- $\mathbb{1} \in \mathcal{C}$ disting. object

 $\Rightarrow (\mathcal{C}, \otimes, \mathbb{1})$ behaves like a monoid(have associativity & unitality nat'l \cong -)

- $c = \{c_{x,y}: x \otimes y \xrightarrow{\sim} y \otimes x\}_{x,y \in \mathcal{C}}$ nat'l \cong compatible with \otimes

Ex. $(\text{Vec}_{\mathbb{K}}, \otimes = \otimes_{\mathbb{K}}, \mathbb{1} = \mathbb{K}, \text{flip})$

group
 $(\mathbb{K}\text{-Mod}, \otimes_{\mathbb{K}}, \mathbb{K}, \text{flip})$

ex. $R = 1 \otimes 1$
 \cong for $\mathbb{K}G$

bialgebra/Hopf alg

 $(H\text{-Mod}, \otimes_{\mathbb{K}}, \mathbb{K}, \text{via } R\text{-matrix})$

$R = R^1 \otimes R^2 \in H \otimes H$
 satisfying axioms

For $x, y \in \mathbb{K}^G$:

$$h \cdot (x \otimes y) \quad h \cdot 1_{\mathbb{K}} \quad \text{and} \quad c_{x,y} (x \otimes y)$$

$$\Delta(h) = h_1 \otimes h_2 \rightarrow \mathbb{K}$$

$$(h_1 \cdot x) \otimes (h_2 \cdot y)$$

$$\varepsilon(h) 1_{\mathbb{K}}$$

$$(R^1 \cdot y) \otimes (R^2 \cdot x)$$

bialgebra

The tuple $(H, M, \eta, \Delta, \varepsilon, R)$ is called a quasitriangular bialgebra $\mathcal{C} \otimes \mathcal{C} \subset \mathcal{C}$

(same for Hopf)

Pf of Prop: For any object $X \in (\mathcal{C}, \otimes, \mathcal{U}, c)$,

\exists group homomorphism:

$$p_n^X: \text{Br}_A^{n-1} \longrightarrow \text{Aut}_\mathcal{C}(X^{\otimes n})$$

$$\sigma_i \longmapsto \begin{array}{c} x \cdots \overset{\sigma_i}{x} x \cdots x \\ | \cdots | \cdots | \end{array}$$

[relations] \longmapsto [braid axioms]

That is, $X^{\otimes n}$ yields a representation of Br_A^{n-1} .

A2 (Type A)

Theorem [Shinzen] Can use p_n^X to get a
(braided) monoidal invariant in the Hopf case.

Def'n Say f.d. (quasitriangular) Hopf algebras $(H, R) \ncong (H', R')$
(braided) monoidal equivalent if $H\text{-Mod} \cong H'\text{-Mod}$
(braided) categories.

Result: $H\text{-Mod} \cong H'\text{-Mod} \implies p_n^{H\text{-reg}} \cong p_n^{H'\text{-reg}}$
braided categories \uparrow \uparrow
rep's of Br_A^{n-1}

Application: If $\exists \theta \in \text{Br}_{n-1}^A$ $\text{tr}(p_n^{H\text{-reg}}(\theta)) \neq \text{tr}(p_n^{H'\text{-reg}}(\theta))$
then $H\text{-Mod} \ncong H'\text{-Mod}$.

Another result for f.d. Hopf algebras L, L' non
quasitriangular Drinfeld doubles $\mathcal{D}(L), \mathcal{D}(L')$, get

$L\text{-Mod} \ncong L'\text{-Mod} \implies p_n^{\mathcal{D}(L)\text{-reg}} \cong p_n^{\mathcal{D}(L')\text{-reg}}$
monoidal

A1 (Type BC)

Prop: Braided module categories are
categorical structures of Type B

$(\mathcal{M}, \triangleright, e)$ over $(\mathcal{A}, \otimes, \mathbb{1}, c)$

- \mathcal{M} = category
- $\triangleright: \mathcal{A} \times \mathcal{M} \xrightarrow{\text{functor}} \mathcal{M}$ left \mathcal{A} -action

$$X \triangleright M = X \otimes M$$

- $e = \{e_{X,M}: X \triangleright M \xrightarrow{\sim} X \otimes M\}_{X \in \mathcal{A}, M \in \mathcal{M}}$ natural \cong

compatible w/ $\otimes_{\mathcal{A}}$ & with \triangleright

$$e_{X,M} : X \triangleright M \xrightarrow{\sim} X \otimes M$$

$$e_{X,M} = \begin{array}{c} \text{twist} \\ \text{isomorphism} \end{array}$$

Ex For G finite group, $R_G = \frac{1}{2}(\mathbb{1} \otimes \mathbb{1} + \mathbb{1} \otimes u + u \otimes \mathbb{1} - u \otimes u) \in \mathbb{R} \otimes \mathbb{R}$
Get $\mathcal{C} = (\mathbb{R}G\text{-Mod}, \otimes_{\mathbb{R}G}, \mathbb{1}_{\mathbb{R}G}, C \leftrightarrow R_G)$ br. \otimes cat. on $\mathbb{R}G$

for $L \leq G$ subgroup, get

$$\triangleright: \mathbb{R}G\text{-Mod} \times \mathbb{R}L\text{-Mod} \longrightarrow \mathbb{R}L\text{-Mod}$$

$$(X, \cdot), (M, *) \mapsto (X \otimes M, l \cdot (x \otimes m)) \\ = (l \cdot x) \otimes (l \cdot m)$$

Also for $K = a \otimes 1 \in \mathbb{R}G \otimes \mathbb{R}L$, for $a \in C_G(L)$

$$e_{X,M}(x \otimes m) = (a \cdot x) \otimes (1 \cdot m) \text{ works.}$$

In general, for $\mathcal{C} = (H, R)\text{-Mod}$,

a left H -comodule algebra $(B, \delta: B \rightarrow H \otimes B)$

$\rightarrow \triangleright$ for $B\text{-Mod}$ (left \mathcal{C} -module category)

\nexists "K-matrix" $K \in H \otimes B$ (satisfying axioms)

$\rightarrow e$ for $(B\text{-Mod}, \triangleright)$.

-5-

The tuple (B, δ, κ) is called a quasitriangular (left H -)
comodule algebra

$$\begin{matrix} \downarrow & \downarrow & \downarrow \\ \eta & \triangleright & e \end{matrix}$$

Pf of Prop. For any objects $X \in (E, \otimes, \mathcal{U}, \mathcal{C})$ & $M \in (M, \triangleright, e)$
 \exists group homomorphism.

$$p_n^{X, M}: B_{n, \text{type BC}} \longrightarrow \text{Aut}_M(X^{\otimes n} \triangleright M)$$

$\sigma_i \longmapsto \begin{array}{c} X \cdots X X \cdots X M \\ | \cdots \swarrow \cdots | \end{array}$

$t \longmapsto \begin{array}{c} X \cdots \cdots X X M \\ | \cdots \cdots | \end{array}$

That is, we get a rep of $B_{n, \text{type BC}}$.

A2 (type BC)

Theorem [Müller-W] Can use $p_n^{X, M}$ to get a
(braided) Morita invariant in the comodule algebra case.

Defn Say f.d. (quasitriangular) left (H, R) -comodule algebras
 $(B, \kappa), (B', \kappa')$ are (braided) Morita equivalent if

$B\text{-Mod} \simeq B'\text{-Mod}$ as (braided) mod. categories

Result $\xrightarrow{*} p_n^{H\text{-reg}, B\text{-reg}} \simeq p_n^{H\text{-reg}, B'\text{-reg}}$ as reps of type BC

* need B, B' "H-simple" & "augmented"

Ex. Coalgebra subalgebras satisfying this ✓

Similar application w/ traces in type A
 other result

⋮

replace Drinfeld double w/ "reflective algebra"

$$\begin{bmatrix} A\text{-mod} \xrightarrow{\otimes} A'\text{-mod} \\ \Rightarrow R(A)\text{-mod} \xrightarrow{3\text{-c}} R(A')\text{-mod} \end{bmatrix}$$

can't quasi-
 triang. comod. algebra
 attached to arbitrary comod. alg.
 (see Lautenbacher-W-Yakhnayev)

Questions

① What about other Coxeter types?

- A_1, A_2 in type D done by Müller-W. Here,
 categorical braided structure \equiv "symmetric" mod. cat. ($e^2 = \text{id}$)

② Remove H -simplicity & augmentation

assumptions in Type BC/D theorems

- They were needed to use key results
 of Andruskiewitsch-Nicolás on "equivariant
 bimodules" & Skryabin's freeness results on
 such structures

Why care?

R-matrices
 " "
 solutions to
 QYBE

&
 K-matrices
 " "
 solutions to
 quantum
 reflection
 equation

③ Classify k -matrices for concrete examples

of comodule algebras over quasitriangular Hopf algebras
 " up to braided Morita equivalence

- This was done for coideal subalgebras of H
 and of the Sweedler algebra by Müller-W
 in more examples are needed!