MATH 466/566 SPRING 2024

CHELSEA WALTON RICE U.

LAST TIME

- · ADJUNCTION
- · UNIVERSALITY REVISITED
- · YONEDA'S LEMMA

LECTURE #11

TOPICS:

I. BUILDING BLOCK OBJECTS

 $(\S 2.7)$

II. EXACTNESS

 $(f_{2.8.1} - 2.8.2)$

III. PROJECTIVITY & INJECTIVITY

(£2.8.3)

IV. FINITENESS FOR LINEAR CATEGORIES

(82.9)

MATH 466/566 SPRING 2024

CHELSEA WALTON RICE U.

LAST TIME

- GOITSUNCTION.
- · UNIVERSALITY REVISITED
- · YONEDA'S LEMMA

LECTURE #11

WRAPPING UP CATEGORY THEORY

TOPICS: INC. SNIPPET OF HOMOLOGICAL ALGEBRA

I. BUILDING BLOCK OBJECTS

 $(\S 2.7)$

II. EXACTNESS

 $(\{\{\}2.8.1-2.8.2\})$

III. PROJECTIVITY & INJECTIVITY

(£2.8.3)

IV. FINITENESS FOR LINEAR CATEGORIES

(82.9)

= STANDING HYPOTHESIS =

& = ABELIAN CATEG.

SIMPLE

FINITE LENGTH OBJECTS

INDECOMPOSABLE
OBJECTS

SEMISIMPLE
OBJECTS

& = ABELIAN CATEG.

INDECOMPOSABLE OBJECTS

& = ABELIAN CATEG.

INDECOMPOSABLE

X * E C IS INDECOMPOSABLE

IF X \neq X, \ld X_2

V NONZERO SUBOBJ. X1, X2 OF X

& = ABELIAN CATEG.

INDECOMPOSABLE OBJECTS

X & C IS INDECOMPOSABLE

IF X \neq X, U X2

Y NONZERO SUBOBJ. X1, X2 OF X

& = ABELIAN CATEG.

SIMPLE OBJECTS

INDECOMPOSABLE
OBJECTS

X * E C IS INDECOMPOSABLE

IF X \neq X, \ld X_2

VONZERO SUBOBJ. X, X2 OF X

& = ABELIAN CATEG.

SIMPLE OBJECTS

X * & C IS SIMPLE

(F THE ONLY SUBOBTS OF X

ARE X & O

INDECOMPOSABLE OBJECTS

X[‡]e^{*}C IS INDECOMPOSABLE

IF X ≠ X, U X₂

V NONZERO SUBOBJ. X, X₂ OF X

& = ABELIAN CATEG.

SIMPLE

X * C IS SIMPLE

IF THE ONLY SUBOBTS OF X

ARE X & O

INDECOMPOSABLE OBJECTS

X[‡]e^{*}C IS INDECOMPOSABLE

IF X ≠ X, U X₂

V NONZERO SUBOBJ. X, X₂ OF X

& = ABELIAN CATEG.

IN GENERAL

SIMPLE

 $X^{\sharp e}$ C IS SIMPLE

(F THE ONLY SUBOBTS OF X

ARE $X \notin O$

INDECOMPOSABLE OBJECTS

X[‡]e^{*}C IS INDECOMPOSABLE

IF X ≠ X, U X₂

V NONZERO SUBOBJ. X, X₂ OF X

& = ABELIAN CATEG.

IN GENERAL

SIMPLE

 $X^{\sharp e}$ C IS SIMPLE

(F THE ONLY SUBOBTS OF X

ARE $X \notin O$

SCHUR'S LEMMA

IF $X,Y \in \mathcal{C}$ ARE SIMPLE, THEN $f:X \to Y \in \mathcal{C}$ IS AN ISO OR \overrightarrow{O} .

INDECOMPOSABLE
OBJECTS

X[‡]e^{*}C IS INDECOMPOSABLE

IF X ≠ X, U X₂

V NONZERO SUBOBJ. X, X₂ OF X

& = ABELIAN CATEG.

SIMPLE

OBJECTS THAT
ARE MEASURABLY
CLOSE TO
BEING SIMPLE

FINITE LENGTH OBJECTS

X * & C IS SIMPLE

(F THE ONLY SUBOBTS OF X

ARE X & O

& = ABELIAN CATEG.

SIMPLE

OBJECTS THAT
ARE MEASURABLY
CLOSE TO
BEING SIMPLE

FINITE LENGTH OBJECTS

X * & C IS SIMPLE

IF THE ONLY SUBOBTS OF X

ARE X & O

A COMPOSITION SERIES FOR XE &

(S A SEQUENCE OF MANOS $0 = X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} X_2 \longrightarrow \dots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \dots \longrightarrow X$ 3. (oker(fi) = Xi+1/xi IS SIMPLE Yi

& = ABELIAN CATEG.

SIMPLE

OBJECTS THAT
ARE MEASURABLY
CLOSE TO
BEING SIMPLE

FINITE LENGTH
OBJECTS

 $X^{\sharp} \in \mathcal{C}$ is simple IF THE ONLY SUBOBTS OF X ARE $X \notin O$

XEC HAS LENGTH N

IF IT ADMITS A COMP. SERIES

WITH X=XN, BUT NOT

WITH X=X1 FOR OLL

A COMPOSITION SERIES FOR XE &

IS A SEQUENCE OF MANOS $0=X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} X_2 \longrightarrow \dots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \dots \longrightarrow X$ 3. Coker $(f_i)=X_{i+1}/X_i$ is simple Y_i

& = ABELIAN CATEG.

SIMPLE

OBJECTS THAT
ARE MEASURABLY
CLOSE TO
BEING SIMPLE

FINITE LENGTH OBJECTS

 $X^{\sharp} \in \mathcal{C}$ is simple IF THE ONLY SUBOBTS OF X ARE $X \notin O$

XEC HAS LENGTH N

IF IT ADMITS A COMP. SERIES

WITH X=Xn, BUT NOT

WITH X=Xd FOR OLL N

JORDAN-HÖLDER THEOREM

ANY TWO COMP. SERIES OF A
FINITE LENGTH OBJ. HAVE THE
SAME # OF COMPONENTS

\$ SETS OF COKERNELS,

UP TO PERMUTATION.

A COMPOSITION SERIES FOR XE &

IS A SEQUENCE OF MANOS $0=X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} X_2 \longrightarrow \dots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \dots \longrightarrow X$ 3. Coker(f_i) = X_{i+1}/X_i IS SIMPLE Y_i

& = ABELIAN CATEG.

SIMPLE

OBJECTS THAT
ARE MEASURABLY
CLOSE TO
BEING SIMPLE

FINITE LENGTH
OBJECTS

X * & C IS SIMPLE

(F THE ONLY SUBOBTS OF X

ARE X & O

XEC HAS LENGTH N

IF IT ADMITS A COMP. SERIES

WITH X=Xn, BUT NOT

WITH X=Xn FOR OLL

JORDAN-HÖLDER THEOREM

ANY TWO COMP. SERIES OF A
FINITE LENGTH OBJ. HAVE THE
SAME # OF COMPONENTS

\$ SETS OF COKERNELS,

UP TO PERMUTATION.

COMPOSITION SERIES

A COMPOSITION SERIES FOR $X \in \mathcal{C}$ (S A SEQUENCE OF MONOS $0 = X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} X_2 \longrightarrow \dots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \dots \longrightarrow X$ 3. Coker $(f_i) = X_{i+1} / X_i$ is simple $\forall i$

& = ABELIAN CATEG.

SIMPLE

OBJECTS THAT
ARE MEASURABLY
CLOSE TO
BEING SIMPLE

FINITE LENGTH OBJECTS

X * E C IS SIMPLE

(F THE ONLY SUBOBTS OF X

ARE X & O

OBJECTS OF LENGTH 1

XEC HAS LENGTH N

IF IT ADMITS A COMP. SERIES

WITH X=Xn, BUT NOT

WITH X=Xd FOR OKN

JORDAN-HÖLDER THEOREM

ANY TWO COMP. SERIES OF A
FINITE LENGTH OBJ. HAVE THE
SAME # OF COMPONENTS
\$ SETS OF COKERNELS,
UP TO PERMUTATION.

LENGTH (S WELL-DEFINED)

A COMPOSITION SERIES FOR XE &

IS A SEQUENCE OF MANOS $0=X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} X_2 \longrightarrow \dots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \dots \longrightarrow X$ 3. Coker(f_i) = X_{i+1}/X_i is simple Y_i

& = ABELIAN CATEG.

SIMPLE

X * & C IS SIMPLE

(F THE ONLY SUBOBTS OF X

ARE X & O

INDECOMPOSABLE OBJECTS

X * E C IS INDECOMPOSABLE

IF X \neq X, \ld X_2

V NONZERO SUBOBJ. X1, X2 OF X

FINITE LENGTH OBJECTS

XE & ADMITS A COMP. SERIES OF MINIMUM FINITE LENGTH

& = ABELIAN CATEG.

IN GENERAL

SIMPLE

 $X^{\sharp e}$ C IS SIMPLE

(F THE ONLY SUBOBTS OF X

ARE $X \notin O$

INDECOMPOSABLE OBJECTS

X & C IS INDECOMPOSABLE

IF X \neq X, \lo X_2

V NONZERO SUBOBJ. X1, X2 OF X

FINITE LENGTH OBJECTS

XE & ADMITS A COMP. SERIES OF MINIMUM FINITE LENGTH

& = ABELIAN CATEG.

IN GENERAL

SIMPLE

X * & C IS SIMPLE

IF THE ONLY SUBOBTS OF X

ARE X & O

INDECOMPOSABLE OBJECTS

X * E C IS INDECOMPOSABLE

IF X \neq X, \ld X_2

V NONZERO SUBOBJ. X1, X2 OF X

FINITE LENGTH OBJECTS

CAN GET WHEN INVOLVING 1

XE & ADMITS A COMP. SERIES OF MINIMUM FINITE LENGTH

SEMISIMPLE OBJECTS

& = ABELIAN CATEG.

SIMPLE

X * & C IS SIMPLE

(F THE ONLY SUBOBTS OF X

ARE X & O

SEMISIMPLE OBJECTS

& = ABELIAN CATEG.

SIMPLE

X * & C IS SIMPLE

(F THE ONLY SUBOBTS OF X

ARE X & O

 $X = X = \coprod_{i \in I} X_i$ FOR SIMPLE OBJECTS X_i .

SEMISIMPLE OBJECTS

C= ABELIAN CATEG.

SIMPLE OBJECTS

X * & C IS SIMPLE

(F THE ONLY SUBOBTS OF X

ARE X & O

X*E & IS SEMISIMPLE

IF X = LieI X;

FOR SIMPLE OBJECTS X;

& IS SEMISIMPLE IF ALL OBJECTS ARE SEMISIMPLE

> SEMISIMPLE OBJECTS

& = ABELIAN CATEG.

SIMPLE OBJECTS

 $X^{\sharp} \in \mathcal{C}$ is simple IF THE ONLY SUBOBTS OF X ARE $X \notin O$

EXAMPLES A = IR-ALGEBRA (IR=IR, CHARO)

A-Mod IS A SEMISIMPLE CATEGORY

A IS A SEMISIMPLE ALGEBRA

X*e & IS SEMISIMPLE

IF X = LieI Xi

FOR SIMPLE OBJECTS Xi.

& IS SEMISIMPLE IF ALL OBJECTS ARE SEMISIMPLE

> SEMISIMPLE OBJECTS

& = ABELIAN CATEG.

SIMPLE OBJECTS

 $X^{\sharp} \in \mathcal{C}$ is simple IF THE ONLY SUBOBTS OF X ARE $X \notin O$

EXAMPLES A = IR-ALGEBRA (IR=R, CHARO)

A-Mod IS A SEMISIMPLE CATEGORY

A IS A SEMISIMPLE ALGEBRA

E.g. Vec = IR-Mod

A-Binod = (A & A^OP) - Mod FOR A SEPARABLE

G-Mod = IRG-Mod WHEN IGI < &

X*E & IS SEMISIMPLE

IF X = LieI X;

FOR SIMPLE OBJECTS X;

& IS SEMISIMPLE IF ALL OBJECTS ARE SEMISIMPLE

> SEMISIMPLE OBJECTS

& = ABELIAN CATEG.

SIMPLE OBJECTS

 $X^{\sharp} \in \mathcal{C}$ is simple IF THE ONLY SUBOBTS OF X ARE $X \notin O$

EXAMPLES A = IR-ALGEBRA (IR=R, CHARO)

A-Mod IS A SEMISIMPLE CATEGORY

A IS A SEMISIMPLE ALGEBRA

E.g. Vec = IR-Mod

A-Binod = (A @ A^OP) - Mod FOR A SEPARABLE

G-Mod = IRG-Mod WHEN IGI < 20

Ab ABELIAN, NOT SS. WILL SEE LATER

 $X^{\sharp \circ} \in \mathcal{L}$ is semisimple

If $X \cong \coprod_{i \in I} X_i$ FOR SIMPLE OBJECTS X_i .

& IS SEMISIMPLE IF ALL OBJECTS ARE SEMISIMPLE

> SEMISIMPLE OBJECTS

SIMPLE

 $X^{\sharp} \in \mathcal{C}$ is simple IF THE ONLY SUBOBTS OF X ARE $X \notin O$

EXAMPLES A = IR-ALGEBRA (IR=R, CHARO)

A-Mod IS A SEMISIMPLE CATEGORY

A IS A SEMISIMPLE ALGEBRA

E.g. Vec = IR-Mod

A-Binod = (A & A^OP) - Mod FOR A SEPARABLE

G-Mod = IRG-Mod WHEN IGI < &

Ab ABELIAN, NOT SS. WILL SEE LATER

C = ABELIAN CATEG.

NEED
NOT
EXIST
FOR

IF X = 11 iel Xi

FOR SIMPLE OBJECTS Xi.

& IS SEMISIMPLE IF ALL OBJECTS ARE SEMISIMPLE

> SEMISIMPLE OBJECTS

SIMPLE

X * & C IS SIMPLE

(F THE ONLY SUBOBTS OF X

ARE X & O

EXAMPLES A = IR-ALGEBRA (IR=IR, CHARO)

A-Mod IS A SEMISIMPLE CATEGORY

A IS A SEMISIMPLE ALGEBRA

E.g. Vec = IR-Mod

A-Binod = (A & A^OP) - Mod FOR A SEPARABLE

G-Mod = IRG-Mod WHEN IGIC &

Ab ABELIAN, NOT SS. WILL SEE LATER

HELPFUL TO IMPOSE FINITE LENGTH
TO GET RESULTS ...

Y & C IS SEMISIMPLE | FOR IF X = LieI Xi

FOR SIMPLE OBJECTS Xi.

& = ABELIAN CATEG.

EXIST

& IS SEMISIMPLE IF ALL OBJECTS ARE SEMISIMPLE

> SEMISIMPLE OBJECTS

& = ABELIAN CATEG.

IN GENERAL

SIMPLE

X * E C IS SIMPLE

IF THE ONLY SUBOBTS OF X

ARE X & O

INDECOMPOSABLE OBJECTS

X * E & IS INDECOMPOSABLE

IF X \neq X, \ld X_2

Y NONZERO SUBOBJ. X1, X2 OF X

FINITE LENGTH
OBJECTS

SEMISIMPLE
OBJECTS

SEMISIMPLE
CATEGORIES

CAN GET WHEN

INVOLVING 1

& = ABELIAN CATEG.

IN GENERAL

SIMPLE

X * E & IS SIMPLE

(F THE ONLY SUBOBTS OF X

ARE X & O

INDECOMPOSABLE OBJECTS

X * E C IS INDECOMPOSABLE

IF X \neq X, \ld X_2

V NONZERO SUBOBJ. X1, X2 OF X

FINITE LENGTH OBJECTS

PROP:

IN SEMISIMPLE CATEGORIES,
INDECOMPOSABLE OBJECTS
OF FINITE LENGTH
ARE SIMPLE.

C = ABELIAN CATEG.

THESE ARE
NICE CATEGORIES
IN WHICH A LOT OF
NICE RESULTS HOLD

C = ABELIAN CATEG.

NOW WE START TO WORK AWAY FROM THIS STRONG CONDITION

THESE ARE

NICE CATEGORIES

IN WHICH A LOT OF

VICE RESULTS HOLD

SEMISIMPLE

CATEGORIES

& = ABELIAN CATEG.

ENTER THE WORLD OF HOMOLOGICAL ALGEBRA

NOW WE START TO WORK AWAY
FROM THIS STRONG CONDITION

THESE ARE
NICE CATEGORIES
IN WHICH A LOT OF
NICE RESULTS HOLD

& = ABELIAN CATEG.

ENTER THE WORLD OF HOMOLOGICAL ALGEBRA

MAIN ENTITIES OF INTEREST:

EXACT SEQUENCES

& = ABELIAN CATEG.

ENTER THE WORLD OF HOMOLOGICAL ALGEBRA

MAIN ENTITIES OF INTEREST:

A SEQUENCE OF MORPHISMS IN &

$$\cdots \longrightarrow \chi_{i-1} \xrightarrow{f_{i-1}} \chi_i \xrightarrow{f_i} \chi_{i+1} \longrightarrow \cdots$$

IS EXACT AT Xi IF $Ker(f_i) = im(f_{i-1})$.

IT IS EXACT IF EXACT AT Xi Vi

& = ABELIAN CATEG.

A SEQUENCE OF MORPHISMS IN &

$$\cdots \longrightarrow \chi_{i-1} \xrightarrow{f_{i-1}} \chi_i \xrightarrow{f_i} \chi_{i+1} \longrightarrow \cdots$$

IS EXACT AT Xi IF Ker (fi) = im(fi-i).

IT IS EXACT IF EXACT AT Xi Vi

& = ABELIAN CATEG.

A SEQUENCE OF MORPHISMS IN &

$$\cdots \longrightarrow \chi_{i-1} \xrightarrow{f_{i-1}} \chi_i \xrightarrow{f_i} \chi_{i+1} \longrightarrow \cdots$$

IS EXACT AT Xi IF Ker (fi) = im(fi-1).

IT IS EXACT IF EXACT AT Xi Vi

•
$$0 \xrightarrow{0_{X'}} X' \xrightarrow{f} X$$
 is exact \in

•
$$\chi \xrightarrow{9} \chi'' \xrightarrow{\chi'' \stackrel{\circ}{0}} 0$$
 IS EXACT

& = ABELIAN CATEG.

A SEQUENCE OF MORPHISMS IN &

$$\cdots \longrightarrow \chi_{i-1} \xrightarrow{f_{i-1}} \chi_i \xrightarrow{f_i} \chi_{i+1} \longrightarrow \cdots$$

IS EXACT AT Xi IF Ker (fi) = im(fi-1).

IT IS EXACT IF EXACT AT Xi Vi

•
$$0 \xrightarrow{0_{X'}} X' \xrightarrow{f} X$$
 IS EXACT

•
$$\chi \xrightarrow{9} \chi'' \xrightarrow{\chi'' \circ} 0$$
 IS EXACT

& = ABELIAN CATEG.

A SEQUENCE OF MORPHISMS IN &

$$\cdots \longrightarrow \chi_{i-1} \xrightarrow{f_{i-1}} \chi_i \xrightarrow{f_i} \chi_{i+1} \longrightarrow \cdots$$

IS EXACT AT Xi IF Ker (fi) = in (fi-1).

IT IS EXACT IF EXACT AT Xi Vi

- $0 \xrightarrow{\delta_{X'}} X' \xrightarrow{f} X$ IS EXACT
- ⇒ f 15 MONIC.
- $\chi \xrightarrow{9} \chi'' \xrightarrow{\chi'' \circ} 0$ IS EXACT

- ⇔ g 15 EPIC.
- $0 \xrightarrow{\delta_X} X \xrightarrow{h} Y \xrightarrow{\gamma \delta} 0$ is EXACT \iff h is AN iso.

& = ABELIAN CATEG.

A SEQUENCE OF MORPHISMS IN &

$$\cdots \longrightarrow \chi_{i-1} \xrightarrow{f_{i-1}} \chi_i \xrightarrow{f_i} \chi_{i+1} \longrightarrow \cdots$$

IS EXACT AT Xi IF Ker (fi) = in(fi-1).

IT IS EXACT IF EXACT AT Xi Vi

A SHORT EXACT SEQUENCE IN C IS AN EXACT SEQ. OF THE FORM $0 \longrightarrow \chi' \xrightarrow{f} \chi \xrightarrow{g} \chi'' \longrightarrow 0$.

•
$$0 \xrightarrow{\delta_{X'}} X' \xrightarrow{f} X$$
 IS EXACT

•
$$\chi \xrightarrow{9} \chi'' \xrightarrow{\chi'' \circ} 0$$
 IS EXACT

$$0 \xrightarrow{\delta_X} X \xrightarrow{h} Y \xrightarrow{\gamma \delta} 0$$
 is EXACT \iff h is AN iso.

& = ABELIAN CATEG.

A SEQUENCE OF MORPHISMS IN &

$$\cdots \longrightarrow \chi_{i-1} \xrightarrow{f_{i-1}} \chi_i \xrightarrow{f_i} \chi_{i+1} \longrightarrow \cdots$$

IS EXACT AT Xi IF Ker (fi) = in(fi-1).

IT IS EXACT IF EXACT AT Xi Vi

A SHORT EXACT SEQUENCE IN C IS AN EXACT SEQ. OF THE FORM $0 \longrightarrow \chi' \xrightarrow{f} \chi \xrightarrow{g} \chi'' \longrightarrow 0.$ $\therefore f_{MONIC}, g_{EPIC}, ker(g) = in(f),$

X' = SUBOBJ. OF X & X" = X/X'

•
$$0 \xrightarrow{\delta_{X'}} X' \xrightarrow{f} X$$
 is EXACT

•
$$\chi \xrightarrow{9} \chi'' \xrightarrow{\chi'' \circ} 0$$
 IS EXACT

$$0 \xrightarrow{\mathring{0}_{x}} X \xrightarrow{h} Y \xrightarrow{\mathring{0}} 0$$
 is EXACT \iff h is AN iso.

& = ABELIAN CATEG.

A SEQUENCE OF MORPHISMS IN &

$$\cdots \longrightarrow \chi_{i-1} \xrightarrow{f_{i-1}} \chi_i \xrightarrow{f_i} \chi_{i+1} \longrightarrow \cdots$$

IS EXACT AT Xi IF Ker (fi) = im(fi-i).

IT IS EXACT IF EXACT AT Xi Vi

A SHORT EXACT SEQUENCE IN CIS AN EXACT SEQ. OF THE FORM $0 \longrightarrow \chi' \xrightarrow{f} \chi \xrightarrow{g} \chi'' \longrightarrow 0.$ $\therefore f_{MONIC}, g_{EPIC}, ker(g) = in(f),$ $\chi' = Subobj. of \chi & \chi'' = \chi/\chi'$

VICE SHORT EXACT SEQUENCES ...

PROP TFAE FOR S.E.S.:
$$0 \longrightarrow \chi' \xrightarrow{f} \chi \xrightarrow{g} \chi'' \longrightarrow 0.$$

& = ABELIAN CATEG.

A SEQUENCE OF MORPHISMS IN &

$$\cdots \longrightarrow \chi_{i-1} \xrightarrow{f_{i-1}} \chi_i \xrightarrow{f_i} \chi_{i+1} \longrightarrow \cdots$$

IS EXACT AT Xi IF Ker (fi) = im(fi-i).

IT IS EXACT IF EXACT AT Xi Vi

A SHORT EXACT SEQUENCE IN CIS AN EXACT SEQ. OF THE FORM $0 \longrightarrow \chi' \xrightarrow{f} \chi \xrightarrow{g} \chi'' \longrightarrow 0.$ $\therefore f_{MONIC}, g_{EPIC}, ker(g) = in(f),$ $\chi' = ShbobJ. OF \chi & \chi'' = \chi/\chi'$

WICE SHORT EXACT SEQUENCES ...

$$0 \longrightarrow \chi' \xrightarrow{f} \chi \xrightarrow{g} \chi'' \longrightarrow 0.$$
SECTION

& = ABELIAN CATEG.

A SEQUENCE OF MORPHISMS IN &

$$\cdots \longrightarrow \chi_{i-1} \xrightarrow{f_{i-1}} \chi_i \xrightarrow{f_i} \chi_{i+1} \longrightarrow \cdots$$

IS EXACT AT Xi IF Ker (fi) = im(fi-i).

IT IS EXACT IF EXACT AT Xi Vi

A SHORT EXACT SEQUENCE IN CIS AN EXACT SEQ. OF THE FORM $0 \longrightarrow \chi' \xrightarrow{f} \chi \xrightarrow{g} \chi'' \longrightarrow 0.$ $\therefore f_{MONIC}, g_{EPIC}, ker(g) = in(f),$ $\chi' = Subobj. of \chi & \chi'' = \chi/\chi'$

VICE SHORT EXACT SEQUENCES ...

PROP TFAE FOR S.E.S.:

$$0 \longrightarrow X' \xrightarrow{f} X \xrightarrow{g} X'' \longrightarrow 0.$$

RETRACTION

$$\otimes$$
 3 $s: X'' \longrightarrow X$. $gs = id_{X''}$.

⑤
$$\exists r: X \longrightarrow X'$$
 .+. $rf = id_{X'}$.

& = ABELIAN CATEG.

A SEQUENCE OF MORPHISMS IN &

$$\cdots \longrightarrow \chi_{i-1} \xrightarrow{f_{i-1}} \chi_i \xrightarrow{f_i} \chi_{i+1} \longrightarrow \cdots$$

IS EXACT AT Xi IF Ker (fi) = in(fi-i).

IT IS EXACT IF EXACT AT Xi Vi

A SHORT EXACT SEQUENCE IN CIS AN EXACT SEQ. OF THE FORM $0 \longrightarrow \chi' \xrightarrow{f} \chi \xrightarrow{g} \chi'' \longrightarrow 0.$ $\therefore f_{MONIC}, g_{EPIC}, ker(g) = in(f),$ $\chi' = Subobj. of \chi & \chi'' = \chi/\chi'$

VICE SHORT EXACT SEQUENCES ...

PROP TFAE FOR S.E.S.: $0 \longrightarrow \chi' \xrightarrow{f} \chi \xrightarrow{g} \chi'' \longrightarrow 0.$

$$\bigcirc$$
 $\exists r: X \longrightarrow X'$.4. $rf = id_{X'}$.

IN THIS CASE, X= X' DX".

CALL THE S.E.S. SPLIT.

& = ABELIAN CATEG.

A SEQUENCE OF MORPHISMS IN &

$$\cdots \longrightarrow \chi_{i-1} \xrightarrow{f_{i-1}} \chi_i \xrightarrow{f_i} \chi_{i+1} \longrightarrow \cdots$$

IS EXACT AT Xi IF Ker (fi) = im (fi-1).

IT IS EXACT IF EXACT AT Xi Vi

A SHORT EXACT SEQUENCE IN C IS AN EXACT SEQ. OF THE FORM $0 \longrightarrow \chi' \xrightarrow{f} \chi \xrightarrow{g} \chi'' \longrightarrow 0$.

: f MONIC, g EPIC, ker(g) = in(f), X' = S N B O B J O F X <math>* X'' = X/X'

COOL FACT

ALL S.E.S. SPLIT IN SEMISIMPLE CATEGORIES. VICE SHORT EXACT SEQUENCES ...

PROP TFAE FOR S.E.S.: $0 \longrightarrow X' \xrightarrow{f} X \xrightarrow{g} X'' \longrightarrow 0.$

. "
$$\chi$$
 bi = $2g$. ϵ . $\chi \leftarrow \chi'' : 2 E \otimes$

©
$$\exists r: X \longrightarrow X'$$
 . $f = id_{X'}$.

IN THIS CASE, X= X' 0 X".

CALL THE S.E.S. SPLIT.

& = ABELIAN CATEG.

A SEQUENCE OF MORPHISMS IN &

$$\cdots \longrightarrow \chi_{i-1} \xrightarrow{f_{i-1}} \chi_i \xrightarrow{f_i} \chi_{i+1} \longrightarrow \cdots$$

IS EXACT AT Xi IF Ker (fi) = im (fi-1).

IT IS EXACT IF EXACT AT Xi Vi

A SHORT EXACT SEQUENCE IN C IS AN EXACT SEQ. OF THE FORM $0 \longrightarrow \chi' \xrightarrow{f} \chi \xrightarrow{g} \chi'' \longrightarrow 0$.

: f MONIC, g EPIC, ker(g) = in(f), $X' = Subobj. OF <math>X \notin X'' \stackrel{!}{=} X/X'$

COOL FACT ALL S.E.S. SPLIT IN SEMISIMPLE CATEGORIES.

EXAMPLE AL IS NOT SEMISIMPLE.

VICE SHORT EXACT SEQUENCES ...

PROP TFAE FOR S.E.S.:

$$0 \longrightarrow X' \xrightarrow{f} X \xrightarrow{g} X'' \longrightarrow 0.$$
RETRACTION SECTION

. "
$$\chi$$
 bi = zg . ϵ . $\chi \leftarrow$ " $\chi : z \in \mathfrak{G}$

©
$$\exists \Gamma: X \longrightarrow X'$$
 .+. $\Gamma f = id_{X'}$.

IN THIS CASE, X= X' 0 X".

CALL THE S.E.S. SPLIT.

& = ABELIAN CATEG.

A SEQUENCE OF MORPHISMS IN &

$$\cdots \longrightarrow \chi_{i-1} \xrightarrow{f_{i-1}} \chi_i \xrightarrow{f_i} \chi_{i+1} \longrightarrow \cdots$$

IS EXACT AT Xi IF Ker (fi) = im(fi-1).

IT IS EXACT IF EXACT AT Xi Vi

A SHORT EXACT SEQUENCE IN C IS AN EXACT SEQ. OF THE FORM $0 \longrightarrow \chi' \xrightarrow{f} \chi \xrightarrow{g} \chi'' \longrightarrow 0.$

: f_{MONIC} , g_{EPIC} , ker(g) = in(f), $X' = S_{MBOBJ}.OF \times X'' = X/X'$

COOL FACT ALL S.E.S. SPLIT IN SEMISIMPLE CATEGORIES.

EXAMPLE AL IS NOT SEMISIMPLE.

BY WAY OF CONTRADICTION, TAKE S.E.S.: $0 \rightarrow 2^{2} 2 \rightarrow 2/2 2 \rightarrow 0$.

VICE SHORT EXACT SEQUENCES ...

PROP TFAE FOR S.E.S.:

$$0 \longrightarrow \chi' \xrightarrow{f} \chi \xrightarrow{g} \chi'' \longrightarrow 0.$$
RETRACTION SECTION

$$\& X'' \longrightarrow X : 2 E \&$$

©
$$\exists \Gamma: X \longrightarrow X'$$
 .+. $\Gamma f = id_{X'}$.

IN THIS CASE, X= X' 0 X".

CALL THE S.E.S. SPLIT.

& = ABELIAN CATEG.

A SEQUENCE OF MORPHISMS IN &

$$\cdots \longrightarrow \chi_{i-1} \xrightarrow{f_{i-1}} \chi_i \xrightarrow{f_i} \chi_{i+1} \longrightarrow \cdots$$

IS EXACT AT Xi IF Ker (fi) = im(fi-1).

IT IS EXACT IF EXACT AT Xi Vi

A SHORT EXACT SEQUENCE IN C IS AN EXACT SEQ. OF THE FORM $0 \longrightarrow \chi' \xrightarrow{f} \chi \xrightarrow{g} \chi'' \longrightarrow 0.$

: f_{MONIC} , g_{EPIC} , ker(g) = in(f), $X' = S_{MBOBJ}.OF \times X'' = X/X'$

COOL FACT ALL S.E.S. SPLIT IN SEMISIMPLE CATEGORIES.

EXAMPLE AL IS NOT SEMISIMPLE.

BY WAY OF CONTRADICTION, TAKE S.E.S.:

$$0 \to \mathcal{U} \xrightarrow{2} \mathcal{U} \to \mathcal{U} / 2\mathcal{U} \to 0.$$

IF $\exists r: \mathcal{U} \rightarrow \mathcal{U}$ 3. $r(\cdot z) = id_{\mathcal{U}_j}$ THEN $r(\cdot z)(1) = r(2) = 2n$ FOR SOME NEW VICE SHORT EXACT SEQUENCES ...

PROP TFAE FOR S.E.S.:

$$0 \longrightarrow \chi' \xrightarrow{f} \chi \xrightarrow{g} \chi'' \longrightarrow 0.$$
RETRACTION SECTION

. "
$$\chi$$
 bi = $2g$. ϵ . $\chi \leftarrow$ " $\chi : 2 E \otimes$

©
$$\exists \Gamma: X \longrightarrow X'$$
 .+. $\Gamma f = id_{X'}$.

IN THIS CASE, X= X' IX !!

CALL THE S.E.S. SPLIT.

& = ABELIAN CATEG.

A SEQUENCE OF MORPHISMS IN &

$$\cdots \longrightarrow \chi_{i-1} \xrightarrow{f_{i-1}} \chi_i \xrightarrow{f_i} \chi_{i+1} \longrightarrow \cdots$$

IS EXACT AT Xi IF Ker (fi) = im(fi-1).

IT IS EXACT IF EXACT AT Xi Vi

A SHORT EXACT SEQUENCE IN CIS AN EXACT SEQ. OF THE FORM $0 \longrightarrow \chi' \xrightarrow{f} \chi \xrightarrow{g} \chi'' \longrightarrow 0.$ I have $a \in P(C) = iu(f)$

: fmonic, g EPIC, ker(g) = in(f), X' = Subobj. OF X & X" = X/x'

COOL FACT ALL S.E.S. SPLIT IN SEMISIMPLE CATEGORIES.

EXAMPLE AL IS NOT SEMISIMPLE.

BY WAY OF CONTRADICTION, TAKE S.E.S.:

$$0 \to \mathcal{U} \xrightarrow{2} \mathcal{U} \to \mathcal{U}/2\mathcal{U} \to 0.$$

IF $\exists r: \mathcal{U} \rightarrow \mathcal{U}$ 3. $r(\cdot z) = id_{\mathcal{U}}$,

THEN $r(\cdot z)(1) = r(2) = 2n \neq 1$.

FOR SOME NEV #

VICE SHORT EXACT SEQUENCES ...

PROP TFAE FOR S.E.S.:

$$0 \longrightarrow \chi' \xrightarrow{f} \chi \xrightarrow{g} \chi'' \longrightarrow 0.$$
RETRACTION SECTION

. "
$$\chi$$
 bi = $2g$. ϵ . $\chi \leftarrow$ " $\chi : 2 E \otimes$

©
$$\exists \Gamma: X \longrightarrow X'$$
 .+. $\Gamma f = id_{X'}$.

IN THIS CASE, X= X' DX".

CALL THE S.E.S. SPLIT.

& = ABELIAN CATEG.

LET'S STUDY HOW

THESE ARE PRESERVED

WHOER FUNCTORS...

A SHORT EXACT SEQUENCE IN CIS AN EXACT SEQ. OF THE FORM $OODYN Y \xrightarrow{f} X \xrightarrow{g} X'' \longrightarrow O$. \therefore fmonic, $g \in Pic$, ker(g) = in(f)

& = ABELIAN CATEG.

LET'S STUDY HOW

THESE ARE PRESERVED

WHOER FUNCTORS...

FUNCTOR F: C-D

- (S LEFT EXACT IF F SENDS \bigstar TO EX. SEQ: $0 \longrightarrow F(X') \xrightarrow{F(9)} F(X'')$
- (S RIGHT EXACT IF F SENDS \bigstar TO EX. SEQ: F(+) $F(x') \longrightarrow F(x'') \longrightarrow 0$
- · (S EXACT IF LEFT & RIGHTEXACT.

& = ABELIAN CATEG.

LET'S STUDY HOW

THESE ARE PRESERVED

WHOER FUNCTORS...

A SHORT EXACT SEQUENCE IN C IS AN EXACT SEQ. OF THE FORM $O \longrightarrow X' \xrightarrow{f} X \xrightarrow{g} X'' \longrightarrow O$. $C \hookrightarrow f$ HONIC, $G \in PIC$, $C \hookrightarrow f \in G$

FUNCTOR F: & -> D (RESP. CONTRAV'T)

• (S LEFT EXACT IF F SENDS \bigstar TO EX. SEQ: $0 \longrightarrow F(X') \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F(X'')$ $(RESP. 0 \longrightarrow F(X'') \xrightarrow{F(g)} F(X) \xrightarrow{F(f)} F(X'))$ • (S RIGHT EXACT IF F SENDS \bigstar TO EX. SEQ: $F(f) = F(g) = F(X'') \longrightarrow F(X'') \longrightarrow 0$

· (S EXACT IF LEFT & RIGHTEXACT.

 $(\text{RESP. } F(X'') \xrightarrow{F(g)} F(X) \xrightarrow{F(f)} F(X') \longrightarrow 0)$

& = ABELIAN CATEG.

COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \mathcal{C} \rightarrow \mathcal{B}$

 $F_{X,Y}: Hom_{\mathcal{C}}(X,Y) \rightarrow Hom_{\mathcal{D}}(F(X), F(Y))$ $f \longmapsto F(f)$ $IS A GROWP HOMOM. <math>\forall X,Y$

FUNCTOR F: C-D

• IS LEFT EXACT IF F SENDS * TO

EX. SEQ:

$$0 \longrightarrow F(X') \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F(X'')$$

• (S RIGHT EXACT IF F SENDS * TO EX. SEQ:

$$F(X') \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F(X'') \longrightarrow C$$

& = ABELIAN CATEG.

COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \mathcal{C} \longrightarrow \mathcal{B}$

· F IS LEFT EXACT ⇔

F PRESERVES KERNELS

F(ker(f)) = ker(F(f))

A SHORT EXACT SEQUENCE IN C IS AN EXACT SEQ. OF THE FORM $O \longrightarrow X' \xrightarrow{f} X \xrightarrow{g} X'' \longrightarrow O$. $C \hookrightarrow f$ Honic, $G \in C$ $C \hookrightarrow C$ $C \hookrightarrow C$

FUNCTOR F: C-D

• IS LEFT EXACT IF F SENDS * TO EX. SEQ:

$$0 \longrightarrow F(X') \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F(X'')$$

• (S RIGHT EXACT IF F SENDS * TO EX. SEQ:

$$F(X') \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F(X'') \longrightarrow 0$$

& = ABELIAN CATEG.

COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \mathcal{C} \rightarrow \emptyset$

• F IS LEFT EXACT ↔

F PRESERVES KERNELS

F(ker(f)) = ker(F(f))

• F IS RIGHT EXACT

F PRESERVES COKERNELS

FUNCTOR F: C-D

• (S LEFT EXACT IF F SENDS ★ TO EX. SEQ:

$$0 \longrightarrow F(X') \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F(X'')$$

• (S RIGHT EXACT IF F SENDS * TO EX. SEQ:

$$F(x') \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F(x'') \longrightarrow 0$$

& = ABELIAN CATEG.

COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \mathcal{C} \longrightarrow \mathcal{B}$

· F IS LEFT EXACT ↔

F PRESERVES KERNELS

F(ker(f)) = ker(F(f))

- F IS RIGHT EXACT ⇒

 F PRESERVES COKERNELS
- · F PRESERVES SPLIT S.E.S.

A SHORT EXACT SEQUENCE IN & IS AN EXACT SEQ. OF THE FORM \downarrow \downarrow

FUNCTOR F: 8-0

• (S LEFT EXACT IF F SENDS ★ TO EX. SEQ:

$$0 \longrightarrow F(X') \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F(X'')$$

• IS RIGHT EXACT IF F SENDS * TO EX. SEQ:

$$F(X') \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F(X'') \longrightarrow 0$$

& = ABELIAN CATEG.

COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \mathcal{C} \rightarrow \mathcal{B}$

- FIS LEFT EXACT F PRESERVES KERNELS

 F(ker(f)) ≈ ker(F(f))
- F IS RIGHT EXACT ↔

 F PRESERVES COKERNELS
- · F PRESERVES SPLIT S.E.S.
- 3 LEFT ADJOINT TO F ⇒
 FIS LEFT EXACT
- · 3 RIGHT ADJOINT TO F ⇒
 FIS RIGHT EXACT

A SHORT EXACT SEQUENCE IN C IS AN EXACT SEQ. OF THE FORM $O \longrightarrow X' \xrightarrow{f} X \xrightarrow{g} X'' \longrightarrow O$. $C \hookrightarrow f$ Honic, $G \in C$ $C \hookrightarrow C$ $C \hookrightarrow C$

FUNCTOR F: C-D

- (S LEFT EXACT IF F SENDS \bigstar TO EX. SEQ: $0 \longrightarrow F(X') \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F(X'')$
- (S RIGHT EXACT IF F SENDS * TO EX. SEQ:

$$F(X') \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F(X'') \longrightarrow 0$$

A SHORT EXACT SEQUENCE IN C IS AN EXACT SEQ. OF THE FORM $O \longrightarrow X' \xrightarrow{f} X \xrightarrow{g} X'' \longrightarrow O$. \therefore fmonic, $g \in Pic$, ker(g) = in(f)

FUNCTOR FIR-D

- (S LEFT EXACT IF F SENDS \bigstar TO EX. SEQ: $0 \longrightarrow F(X') \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F(X'')$
- (S RIGHT EXACT IF F SENDS \bigstar TO EX. SEQ: $F(x') \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F(x'') \longrightarrow 0$
- (S EXACT IF LEFT & RIGHTEXACT.

- COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \mathcal{C} \longrightarrow \mathcal{B}$
- · 3 LEFT ADJOINT TO F ⇒
 FIS LEFT EXACT
- · 3 RIGHT ADJOINT TO F ⇒
 FIS RIGHT EXACT

& = ABELIAN CATEG.

EXAMPLE TAKE 1k-ALGS. A,B. \$ Q = BQA BIMODULE.

GET ADDITIVE FUNCTORS:

HomB-Mod (Q1-): B-Mod -> A-Mod

COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \mathcal{C} \longrightarrow \emptyset$

- · 3 LEFT ADJOINT TO F ⇒
 FIS LEFT EXACT
- · 3 RIGHT ADJOINT TO F ⇒
 FIS RIGHT EXACT

A SHORT EXACT SEQUENCE IN C IS AN EXACT SEQ. OF THE FORM $O \longrightarrow X' \xrightarrow{f} X \xrightarrow{g} X'' \longrightarrow O$. \therefore fmonic, $g \in Pic$, ker(g) = in(f)

FUNCTOR F: C-D

• (S LEFT EXACT IF F SENDS * TO EX. SEQ:

 $0 \longrightarrow F(X') \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F(X'')$

• (S RIGHT EXACT IF F SENDS * TO EX. SEQ:

$$F(X') \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F(X'') \longrightarrow 0$$

& = ABELIAN CATEG.

EXAMPLE TAKE 1R-ALGS. A,B. \$ Q = BQA BIMODULE.

GET ADDITIVE FUNCTORS:

HomB-Mod (Q1-): B-Mod -> A-Mod

WITH $(Q \otimes_A -) - (\text{thom}_{B-\text{mod}}(Q_1 -))$

COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \mathcal{C} \rightarrow \mathcal{B}$

- · 3 LEFT ADJOINT TO F ⇒
 FIS LEFT EXACT
- · 3 RIGHT ADJOINT TO F ⇒
 FIS RIGHT EXACT

FUNCTOR F: C-D

• (S LEFT EXACT IF F SENDS ★ TO EX. SEQ:

 $0 \longrightarrow F(X') \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F(X'')$

• (S RIGHT EXACT IF F SENDS * TO EX. SEQ:

$$F(X') \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F(X'') \longrightarrow 0$$

& = ABELIAN CATEG.

EXAMPLE TAKE IR-ALGS. A,B.

\$ $Q = {}_{B}Q_{A}$ BIMODING.

GET ADDITIVE FUNCTORS:

RIGHTEX. $Q \otimes_{A} = : A - Mod \longrightarrow B - Mod$ Hombord $(Q_{1} -) : B - Mod \longrightarrow A - Mod$ LEFT EX.

WITH $(Q \otimes_{A} -) - I$ (Hombord $(Q_{1} -)$)

COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \mathcal{C} \rightarrow \mathcal{B}$

- 3 LEFT ADJOINT TO F ⇒
 F IS LEFT EXACT
- · 3 RIGHT ADJOINT TO F ⇒
 FIS RIGHT EXACT

A SHORT EXACT SEQUENCE IN C IS AN EXACT SEQ. OF THE FORM $O \longrightarrow X' \xrightarrow{f} X \xrightarrow{g} X'' \longrightarrow O$. \therefore fmonic, $g \in PIC$, ker(g) = in(f)

FUNCTOR F: C-D

• (S LEFT EXACT IF F SENDS * TO EX. SEQ:

$$0 \longrightarrow F(X') \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F(X'')$$

• (S RIGHT EXACT IF F SENDS * TO EX. SEQ:

$$F(X') \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F(X'') \longrightarrow 0$$

& = ABELIAN CATEG.

EXAMPLE TAKE IR-ALGS. A,B.

\$ $Q = {}_{B}Q_{A}$ BIMODING.

GET ADDITIVE FUNCTORS:

RIGHT EX. $Q \otimes_{A} = : A - Mod \longrightarrow B - Mod$ Hombord $Q = : A - Mod \longrightarrow A - Mod$ LEFT EX.

WITH $Q \otimes_{A} = : A - Mod \longrightarrow A - Mod$ WITH $Q \otimes_{A} = : A - Mod \longrightarrow A - Mod$

COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \mathcal{C} \rightarrow \mathcal{B}$

- · 3 LEFT ADJOINT TO F ⇒
 FIS LEFT EXACT
- · 3 RIGHT ADJOINT TO F ⇒
 F IS RIGHT EXACT

EILENBERG-WATTS THEOREM

TAKE FINITE DIM'L IR-ALGEBRAS A, B. FOR IR-LINEAR

F: A-FdMod -> B-FdMod, GET:

& = ABELIAN CATEG.

EXAMPLE TAKE IR-ALGS. A,B. $Q = {}_{B}Q_{A}$ BIMODULE.

GET ADDITIVE FUNCTORS:

RIGHTEX. $Q \otimes_{A} = : A - Mod \longrightarrow B - Mod$ Hom_{B-Mod} $(Q_{1} -) : B - Mod \longrightarrow A - Mod$ LEFT EX.

WITH $(Q \otimes_{A} -) - I$ (Hom_{B-Mod} $(Q_{1} -)$)

COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \mathcal{C} \longrightarrow \mathcal{B}$

- · 3 LEFT ADJOINT TO F ⇒
 F IS LEFT EXACT
- · 3 RIGHT ADJOINT TO F ⇒
 F IS RIGHT EXACT

EILENBERG-WATTS THEOREM

TAKE FINITE DIM'L IR-ALGEBRAS A, B. FOR IK-LINEAR

F: A-FdMod -> B-FdMod, GET:

FLEFTEXACT

1

F HAS A LEFT ADJOINT

1

F = HOM (P,-)

FOR SOME BIMOD.

P=APB.

& = ABELIAN CATEG.

EXAMPLE TAKE IR-ALGS. A,B. $Q = {}_{B}Q_{A}$ BIMODULE.

GET ADDITIVE FUNCTORS:

RIGHTEX. $Q \otimes_{A} = : A - Mod \longrightarrow B - Mod$ Hom_{B-Mod} $(Q_{1} -) : B - Mod \longrightarrow A - Mod$ LEFT EX.

WITH $(Q \otimes_{A} -) - I$ (Hom_{B-Mod} $(Q_{1} -)$)

COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \mathcal{C} \rightarrow \mathcal{B}$

- · 3 LEFT ADJOINT TO F ⇒
 FIS LEFT EXACT
- · 3 RIGHT ADJOINT TO F ⇒
 F IS RIGHT EXACT

EILENBERG-WATTS THEOREM

TAKE FINITE DIM'L IR-ALGEBRAS A, B. FOR IR-LINEAR

F: A-FdMod → B-FdMod, GET:

FLEFTEXACT

1

F HAS A LEFT ADJOINT

1

F = HOM (P,-)

FOR SOME BIMOD.

 $P = A P_B$.

FRIGHT EXACT

FHAS A RIGHT ADJOINT

1

F=QQ-

FOR SOME BIMOD.

 $Q = {}_{B}Q_{A}$.

& = ABELIAN CATEG.

EXAMPLE TAKE IR-ALGS. A,B. $Q = Q_A$ BIMODULE.

GET ADDITIVE FUNCTORS:

RIGHTEX. $Q \otimes_A = A - Mod \longrightarrow B - Mod$ Hombord $Q = A - Mod \longrightarrow A - Mod$ LEFT EX.

WITH $Q \otimes_A = A - Mod \longrightarrow A - Mod$ WITH $Q \otimes_A = A - Mod \longrightarrow A - Mod$

COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \mathcal{C} \rightarrow \emptyset$

- · 3 LEFT ADJOINT TO F ⇒
 F IS LEFT EXACT
- · 3 RIGHT ADJOINT TO F ⇒
 F IS RIGHT EXACT

EILENBERG-WATTS THEOREM

TAKE FINITE DIM'L IR-ALGEBRAS A, B. FOR IR-LINEAR

F: A-FdMod -> B-FdMod, GET:

FLEFTEXACT

F HAS A LEFT ADJOINT

F = HOM (P,-)

FOR SOME BIMOD.

$$P = A P_B$$
.

FRIGHT EXACT

FHAS A RIGHT ADJOINT

F=QQ-

FOR SOME BIMOD.

$$Q = {}_{B}Q_{A}$$
.

& = ABELIAN CATEG.

COOL FACTS: TAKE AN ADDITIVE FUNCTOR

F: C -> B

• 3 LEFT ADJOINT TO F ->

F IS LEFT EXACT

• 3 RIGHT ADJOINT TO F ->

F IS RIGHT EXACT

& = ABELIAN CATEG.

PF/ FRIGHT EXACT => FOR SOME BQA:

& = ABELIAN CATEG.

PF/ FRIGHT EXACT => FOR SOME BQA:

TAKE Q := F(A Areg) & B-FdMod.

GET Q & (B, A) - Fd Binod (See PF OF)

& = ABELIAN CATEG.

PF/ FRIGHT EXACT => FOR SOME BQA:

TAKE Q := F(A Areg) & B-FdMod.

GET Q & (B, A) - Fd Binod (See pF OF)

DEFINE $\varphi_V: V \cong HoM_{A-Folmod}(Areg, V)$ For $V \in A-Folmod \subseteq HoM_{R-Folmod}(Q, F(V))$

: $\phi_{V} \in Hom_{A-Filmod}(V, Hom_{B-Filmod}(Q, F(V)))$

Hom B- Falmod (QQAV, F(V))

EILENBERG-WATTS THEOREM TAKE FINITE DIM'L IR-ALGEBRAS A, B. FOR IR-LINEAR F: A-FdMod → B-FdMod, GET: FRIGHTEXACT FLEFTEXACT RIGHT ADJOINT FOR SOME BIMOD. FOR SOME BIMOD. P=APB. $Q = {}_{B}Q_{A}$.

& = ABELIAN CATEG.

PF/ FRIGHT EXACT => FOR SOME BQA:

TAKE Q := F(A Areg) & B-FdMod.

GET Q & (B, A) - Fd Binod (See pF OF)

DEFINE Øy: V= HOMA-FOLMON (Areg, V)
FOR V & A-FOLMON (F) HOMR-FILMON (Q, F(V))

: $\phi_{V} \in Hom_{A-Fidmod}(V, Hom_{B-Fidmod}(Q, F(V)))$

[NITCA MOH-O. GOMB] 112

Hom B-Falmed (Q& V, F(V))

EILENBERG-WATTS THEOREM TAKE FINITE DIM'L IR-ALGEBRAS A, B. FOR IR-LINEAR F: A-FdMod → B-FdMod, GET: FRIGHTEXACT FLEFTEXACT RIGHT ADJOINT F = HOM FOR SOME BIMOD. FOR SOME BIMOD. P=APB. $Q = {}_{B}Q_{A}$.

& = ABELIAN CATEG.

PF/ FRIGHT EXACT => FOR SOME BQA:

TAKE Q := F(A Areg) & B-FdMod.

GET Q & (B, A) - Fd Binod (See pF OF)

DEFINE Øy: V= HOMA-FOLMON (Areg, V)
FOR V & A-FOLMON (Q, F(V))

: $\phi_{V} \in Hom_{A-Filmod}(V, Hom_{B-Filmod}(Q, F(V)))$

Hom B-Falmod (Q& V, F(V))

YIELDS A-FOLMON B-FOLMON

NATIL TRANSF:

F

B-Folmon

EILENBERG-WATTS THEOREM TAKE FINITE DIM'L IR-ALGEBRAS A, B. FOR IR-LINEAR F: A-FdMod → B-FdMod, GET: FRIGHTEXACT FLEFTEXACT RIGHT ADJOINT FOR SOME BIMOD. FOR SOME BIMOD. P=APB. $Q = {}_{B}Q_{A}$.

& = ABELIAN CATEG.

PF/ F RIGHT EXACT => FOR SOME BQA

TAKE Q := F(A Areg) & B-FdMod.

GET Q & (B, A) - Fd Binod (See PF OF)

DEFINE Øy: V= HOMA-Folmod (Areg, V) FOR VE A-FAMED F HOMR-FIMM (Q, F(V))

: $\phi_{V} \in Hom_{A-Folmod}(V, Hom_{B-Folmod}(Q, F(V)))$

875 12 AN 180 AN Home Filmed (Q&V, F(V))

MECDS A-FdMod 1 8 B-Fd Mod NATIL TRANSF

EILENBERG-WATTS THEOREM TAKE FINITE DIM'L IR-ALGEBRAS A, B. FOR IR-LINEAR F: A-FdMod -> B-FdMod, GET: FRIGHTEXACT FLEFTEXACT RIGHT ADJOINT

FOR SOME BIMOD.

P=APB.

FOR SOME BIMOD.

& = ABELIAN CATEG.

PF/ F RIGHT EXACT => FOR SOME BQA:

HAVE

A-Foldod & B-Foldod

FOR

Q:= F(A Areq)

 $\therefore 0 \longrightarrow \ker(g) \longrightarrow A^{\otimes n} \xrightarrow{g} V \longrightarrow 0 \text{ is EXACT.}$

& = ABELIAN CATEG.

PF/ F RIGHT EXACT => FOR SOME BQA:

HAVE

QQA
TOR SOME BQA:

A-FdMod & B-FdMod FOR Q := F(A Areg)

V = 3 = FLY A MORPHISM A = 00 > V IN A-FLY A FOR SOME NEW

 $\therefore 0 \longrightarrow \ker(g) \longrightarrow A^{\otimes n} \xrightarrow{g} V \longrightarrow 0 \text{ is EXACT.}$

APPLY QOA - & F(-) TO YIELD:

 $Q \otimes_{A} \ker(g) \longrightarrow Q \otimes_{A} A^{\otimes n} \longrightarrow Q \otimes_{A} V \longrightarrow O$ $\not \Rightarrow_{\ker(g)} \downarrow \qquad 2 \qquad \not \Rightarrow_{A^{\otimes n}} \downarrow \qquad 2 \qquad \not \Rightarrow_{V} \downarrow \qquad 2 \qquad \not \Rightarrow_{\delta} \downarrow \qquad 0$ $F(\ker(g)) \longrightarrow F(A^{\otimes n}) \longrightarrow F(V) \longrightarrow O$

EILENBERG-WATTS THEOREM

TAKE FINITE DIM'L IR-ALGEBRAS A, B.

FOR IR-LINEAR

F: A-FdMod → B-FdMod, GET:

FLEFTEXACT

FRIGHT EXACT

F HAS A LEFT ADJOINT

V

F = HOM (P,-) A-FdMod

FOR SOME BIMOD.

P=APB.

RIGHT ADJOINT

· ~ A

FOR SOME BIMOD.

& = ABELIAN CATEG.

dim_{lk} V < 00 => JEPIMORPHISM A^{ON 3} >> V IN A-FAMOD FOR SOME NENV

 $\therefore 0 \longrightarrow \ker(g) \longrightarrow A^{\otimes n} \xrightarrow{g} V \longrightarrow 0 \text{ is EXACT.}$

$$Q \otimes_{A} \ker(g) \longrightarrow Q \otimes_{A} A^{\otimes n} \longrightarrow Q \otimes_{A} V \longrightarrow O$$

$$\not \Rightarrow_{\ker(g)} \downarrow \qquad 2 \qquad \not \Rightarrow_{A^{\otimes n}} \downarrow \cong \qquad 2 \qquad \not \Leftrightarrow_{V} \downarrow \qquad 2 \qquad \not \Leftrightarrow_{V} \downarrow \qquad 2 \qquad \downarrow \qquad$$

QQA - COMMUTES WITH (1)

EILENBERG-WATTS THEOREM TAKE FINITE DIM'L IR-ALGEBRAS A, B. FOR IR-LINEAR F: A-FOLMOND B-FOLMOND, GET: F HAS A LEFT ADJOINT EILENBERG-WATTS THEOREM THOREM F HAS A RIGHT ADJOINT

F= HOM (P,-) A-FAMOD FOR SOME BIMOD.

 $P = A P_B$.

FOR SOME BIMOD. $Q = {}_{B}Q_{A}.$

Q := F(A Areg)

& = ABELIAN CATEG.

dim_{lk} $V < \infty \implies \exists$ EPIMORPHISM $A^{\oplus n} \xrightarrow{g} V$ IN A-FAMOD FOR SOME NENV

 $\therefore 0 \longrightarrow \ker(g) \longrightarrow A^{\oplus n} \xrightarrow{g} V \longrightarrow 0 \text{ is EXACT.}$

F RIGHT EX & PRESERVES COKERNELS

Q := F(A Areg)

& = ABELIAN CATEG.

dim_{lk} V < ∞ \Rightarrow \exists EPIMORPHISM $A^{\oplus n} \xrightarrow{9} V$ IN A-FOLMOND FOR SOME NEW

 $\therefore 0 \longrightarrow \ker(g) \longrightarrow A^{\oplus n} \xrightarrow{g} V \longrightarrow 0 \text{ is EXACT.}$

APPLY QOA - & F(-) TO YIELD:

: \$V IS EPIC YV

& = ABELIAN CATEG.

dim_{lk} V < ∞ \Rightarrow \exists EPIMORPHISM $A^{\oplus n} \xrightarrow{9} V$ IN A-FOLMOND FOR SOME NEW

 $\therefore 0 \longrightarrow \ker(g) \longrightarrow A^{\oplus n} \xrightarrow{g} V \longrightarrow 0 \text{ is EXACT.}$

APPLY QOA - & F(-) TO YIELD:
RIGHTEXACT

: \$ ker(g) IS EPIC

F = HOM (P,-)

FOR SOME BIMOD.

P=APB.

 $F^2 Q Q_A -$ FOR SOME BIMOD. $Q = {}_{B}Q_A.$

& = ABELIAN CATEG.

PF/ F RIGHT EXACT => FOR SOME BQA:

HAVE

A-FdMod & B-FdMod

FOR

Q := F(A Areq)

dim_{lk} V < ∞ = 3 EPIMORPHISM A^{ON 3} V IN A-FAMOD FOR SOME NEW

 $\therefore 0 \longrightarrow \ker(g) \longrightarrow A^{\oplus n} \xrightarrow{g} V \longrightarrow 0 \text{ is EXACT.}$

APPLY QOA - & F(-) TO YIELD:
RIGHTEXACT

HONOCOGICAL "4-LEMMA" => &V MONIC

EILENBERG-WATTS THEOREM

TAKE FINITE DIM'L IR-ALGEBRAS A, B.

FOR IR-LINEAR

F: A-FdMod → B-FdMod, GET:

FLEFTEXACT FRIGHT EXACT

F HAS A LEFT ADJOINT

1 /

F = HOM (P,-)

FOR SOME BIMOD.

P=APB.

F HAS A RIGHT ADJOINT

•

F=Q&-

FOR SOME BIMOD.

& = ABELIAN CATEG.

PF/ F RIGHT EXACT => FOR SOME BQA:

HAVE

QQA
FOR SOME BQA:

A-FdMod & B-FdMod FOR Q := F(A Areg)

VIMIRVE CO = JEPIMORPHISM A DN 3 WILL IN A-FAMOR FOR SOME NEW

 $\therefore 0 \longrightarrow \ker(g) \longrightarrow A^{\oplus n} \xrightarrow{g} V \longrightarrow 0 \text{ is EXACT.}$

APPLY QOA - & F(-) TO YIELD:
RIGHTEXACT

 $Q \otimes_{A} \ker(g) \longrightarrow Q \otimes_{A} A^{\otimes n} \longrightarrow Q \otimes_{A} V \longrightarrow O$ $\varphi_{\ker(g)} \downarrow \qquad \qquad Q \otimes_{A} \wedge \downarrow \cong \qquad \qquad Q \otimes_{A} \vee \downarrow \qquad Q \cong \downarrow \varphi_{0}$ $F(\ker(g)) \longrightarrow F(A^{\otimes n}) \xrightarrow{F(g)} F(V) \longrightarrow O$

INDEED, MONIC EPIS ARE 1803 IN AB. CATS.

EILENBERG-WATTS THEOREM

TAKE FINITE DIM'L IR-ALGEBRAS A, B. FOR IR-LINEAR

F: A-FdMod -> B-FdMod, GET:

FLEFTEXACT

F RIGHT EXACT

1 ~

F HAS A LEFT ADJOINT

1/

F = HOM (P,-) A-FAMOD

FOR SOME BIMOD.

P=APB.

RIGHT ADJOINT

₩,

F=Q&-

FOR SOME BIMOD.

& = ABELIAN CATEG.

PF/ F RIGHT EXACT => FOR SOME BQA:

HAVE

QOLD

FOR SOME BQA:

A-FdMod & B-FdMod FOR Q:= F(A Areg)

dim_{lk} V < ∞ \Rightarrow \exists EPIMORPHISM $A^{\oplus n} \xrightarrow{9} V$ IN A-FOLMOND FOR SOME NEIN

 $\therefore 0 \longrightarrow \ker(g) \longrightarrow A^{\otimes n} \xrightarrow{g} V \longrightarrow 0 \text{ is EXACT.}$

APPLY QOA - & F(-) TO YIELD:
RIGHTEXACT

 $Q \otimes_{A} \ker(g) \longrightarrow Q \otimes_{A} A^{\otimes n} \longrightarrow Q \otimes_{A} V \longrightarrow O$ $\phi_{\ker(g)} \downarrow \qquad 2 \qquad \phi_{A} \otimes_{n} \downarrow \cong \qquad 2 \qquad \phi_{V} \downarrow \qquad 2 \cong \downarrow \phi_{0}$ $F(\ker(g)) \longrightarrow F(A^{\otimes n}) \xrightarrow{F(g)} F(V) \longrightarrow O$

INDEED, MONIC EPIS ARE 1805 IN AB. CATS.

EILENBERG-WATTS THEOREM

TAKE FINITE DIM'L IR-ALGEBRAS A, B. FOR IR-LINEAR

F: A-FdMod -> B-FdMod, GET:

FLEFTEXACT

1

F HAS A LEFT ADJOINT

1

F = HOM (P,-)

FOR SOME BIMOD.

P=APB.

FRIGHT EXACT

FHAS A RIGHT ADJOINT

1

F=QQ-

FOR SOME BIMOD.

& = ABELIAN CATEG.

IN GENERAL:

Home (P,-): & -> Ab (COVARIANT)
IS ALWAYS LEFT EXACT

EILENBERG-WATTS THEOREM

TAKE FINITE DIM'L IR-ALGEBRAS A, B. FOR IR-LINEAR

F: A-FdMod -> B-FdMod, GET:

FLEFTEXACT

1

F HAS A LEFT ADJOINT

1

F = HOM (P,-)

FOR SOME BIMOD.

 $P = A P_B$.

FRIGHT EXACT

1

FHAS A RIGHT ADJOINT

1

F=QQ-

FOR SOME BIMOD.

& = ABELIAN CATEG.

IN GENERAL:

Home (P,-): & -> Ab (COVARIANT)
IS ALWAYS LEFT EXACT

FACT: Home (P,-) IS RIGHT EXACT

IN GENERAL:

Home (P,-): & --- Ab (COVARIANT)
IS ALWAYS LEFT EXACT

FACT: Home (P,-) IS RIGHT EXACT

EVERY S.E.S. IN & OF THE FORM $0 \rightarrow \chi' \rightarrow \chi \rightarrow P \rightarrow 0$ SPLITS

IN GENERAL:

Home (P,-): C -> Ab (COVARIANT)
IS ALWAYS LEFT EXACT

IN GENERAL:

Home (P,-): & --> Ab (COVARIANT)
IS ALWAYS LEFT EXACT

FACT: Home (P,-) IS RIGHT EXACT

EVERY S.E.S. IN & OF THE FORM $0 \rightarrow \chi' \rightarrow \chi \rightarrow P \rightarrow 0$ SPLITS

1

$$\begin{array}{c}
A_b \longrightarrow S \longrightarrow O \\
& 3\underline{1} \longrightarrow O
\end{array}$$

IN THIS CASE,

PISA PROJECTIVE OBJECT IN G.

& = ABELIAN CATEG.

IN GENERAL:

Home (P,-): C -> Ab (COVARIANT)
IS ALWAYS LEFT EXACT

Home (-, Q): C -> Ab (CONTRAVARIT)
IS ALWAYS LEFT EXACT

FACT: Home (P,-) IS RIGHT EXACT

EVERY S.E.S. IN & OF THE FORM $0 \rightarrow \chi' \rightarrow \chi \rightarrow P \rightarrow 0$ SPLITS

IN THIS CASE,
P IS A PROJECTIVE OBJECT IN G.

& = ABELIAN CATEG.

IN GENERAL:

Home (P,-): C -> Ab (COVARIANT)
IS ALWAYS LEFT EXACT

HOME (-,Q): & -> Ab (CONTRAVARIT)

18 ALWAYS LEFT EXACT

FACT: Home (P,-) IS RIGHT EXACT

EVERY S.E.S. IN & OF THE FORM $0 \rightarrow \chi' \rightarrow \chi \rightarrow P \rightarrow 0$ SPLITS

1

 $\frac{\lambda \xrightarrow{Ab}}{5} \xrightarrow{5} \xrightarrow{At}$

IN THIS CASE,
P IS A PROJECTIVE OBJECT IN G.

FACT: HOME (-,Q) IS RIGHT EXACT

& = ABELIAN CATEG.

IN GENERAL:

Home (P,-): C -> Ab (COVARIANT)
IS ALWAYS LEFT EXACT

FACT: Home (P,-) IS RIGHT EXACT

EVERY S.E.S. IN & OF THE FORM $0 \rightarrow \chi' \rightarrow \chi \rightarrow P \rightarrow 0$ SPLITS

IN THIS CASE,
P IS A PROJECTIVE OBJECT IN G.

HOME (-,Q): & --- Ab (CONTRAVARIT)
IS ALWAYS LEFT EXACT

FACT: HOME (-,Q) IS RIGHT EXACT EVERY S.E.S. IN & OF THE FORM $0 \rightarrow Q \rightarrow \chi \rightarrow \chi'' \rightarrow 0$ SPLITS

& = ABELIAN CATEG.

IN GENERAL:

Home (P,-): C -> Ab (COVARIANT)
IS ALWAYS LEFT EXACT

FACT: HOME (P,-) IS RIGHT EXACT

EVERY S.E.S. IN & OF THE FORM $0 \rightarrow \chi' \rightarrow \chi \rightarrow P \rightarrow 0$ SPLITS

$$\frac{\lambda \xrightarrow{Ab} 5}{2} \xrightarrow{5} At$$

IN THIS CASE,
P IS A PROJECTIVE OBJECT IN G.

Home (-,Q): C --- Ab (CONTRAVARIT)
IS ALWAYS LEFT EXACT

FACT: Home (-,Q) IS RIGHT EXACT

EVERY S.E.S. IN & OF THE FORM $0 \rightarrow Q \rightarrow \chi \rightarrow \chi'' \rightarrow 0$ SPLITS

IN THIS CASE,

Q IS AN INJECTIVE OBJECT IN G.

& = ABELIAN CATEG.

TIEING BACK TO SEMISIMPLICITY ...

FACT: HOME (P,-) IS RIGHT EXACT EVERY S.E.S. IN & OF THE FORM $0 \rightarrow \chi' \rightarrow \chi \rightarrow P \rightarrow 0$ SPLITS IN THIS CASE, PISA PROJECTIVE OBJECT IN G. FACT: HOME (-,Q) IS RIGHT EXACT EVERY S.E.S. IN & OF THE FORM $0 \rightarrow Q \rightarrow \chi \rightarrow \chi'' \rightarrow 0$ SPLITS IN THIS CASE, Q IS AN INJECTIVE OBJECT IN G.

& = ABELIAN CATEG.

FACTS

IF & IS SEMISIMPLE,
THEN EACH OBJECT IS
PROJECTIVE & INJECTIVE.

FACT: HOME (P,-) IS RIGHT EXACT

EVERY S.E.S. IN & OF THE FORM $0 \rightarrow \chi' \rightarrow \chi \rightarrow P \rightarrow 0$ SPLITS

IN THIS CASE,
P IS A PROJECTIVE OBJECT IN G.

FACT: Home (-,Q) IS RIGHT EXACT

EVERY S.E.S. IN & OF THE FORM $0 \rightarrow Q \rightarrow \chi \rightarrow \chi'' \rightarrow 0$ SPLITS

IN THIS CASE, Q IS AN INJECTIVE OBJECT IN G.

& = ABELIAN CATEG.

FACTS

IF & IS SEMISIMPLE,
THEN EACH OBJECT IS
PROJECTIVE & INJECTIVE.

FOR AN IR-ALGEBRA A:

A SEMISIMPLE

EACH OBJ. OF A-MOD IS PROJ.

EACH OBJ. OF A-MOD IS INJ.

FACT: Home (P,-) IS RIGHT EXACT

EVERY S.E.S. IN & OF THE FORM $0 \rightarrow \chi' \rightarrow \chi \rightarrow P \rightarrow 0$ SPLITS

IN THIS CASE,

P IS A PROJECTIVE OBJECT IN G.

FACT: Home (-,Q) IS RIGHT EXACT

EVERY S.E.S. IN & OF THE FORM $0 \rightarrow Q \rightarrow \chi \rightarrow \chi'' \rightarrow 0$ SPLITS

IN THIS CASE,

Q IS AN INJECTIVE OBJECT IN C.

IV. FINITENESS FOR LINEAR CATEGORIES

NICE CONDITIONS

IMPOSED OFTEN IN LIEU OF SEMISIMPLICITY C = ABELIAN, IR-LINEAR CAT.

Thomas are ... AND FURTHER

ABELIAN GROWS ARE IR-VSPACES

IV. FINITENESS FOR LINEAR CATEGORIES

C = ABELIAN, IR-LINEAR CAT.

Thoms are ... AND FURTHER

ABELIAN GROWS ARE IR-VSPACES

LOCALLY
FINITE

FINITE

I. FINITENESS FOR LINEAR CATEGORIES

Home (X, Y) IS A
FINITE DIMIL IR-USPACE

XX, Y & C

DEF.

LOCALLY

C = ABELIAN, IR-LINEAR CAT.

Thoms are ... AND FURTHER

ABELIAN GROWS ARE IR-VSPACES

FINITE

I. FINITENESS FOR LINEAR CATEGORIES

C = ABELIAN, IK-LINEAR CAT.

Thoms are ... AND FURTHER

ABELIAN GROWS ARE IR-VSPACES

FINITE

MATH 466/566 SPRING 2024

CHELSEA WALTON RICE U.

LECTURE #11

THIS ENDS OUR INTRO TO CATEGORY THEORY

TOPICS:

. I. BUILDING BLOCK OBJECTS

 $(\S 2.7)$

II. EXACTNESS

 $(\{\{2.8.1-2.8.2\})$

II. PROJECTIVITY & INJECTIVITY

(£2.8.3)

IV. FINITENESS FOR LINEAR CATEGORIES (52.9)

MATH 466/566 SPRING 2024

CHELSEA WALTON RICE U.

LECTURE #11

NEXT TIME:

MONOIDAL

TOPICS: CATEGORIES

101163.

. I. BUILDING BLOCK OBJECTS

 $(\S 2.7)$

II. EXACTNESS

 $(f_{2.8.1} - 2.8.2)$

II. PROJECTIVITY & INJECTIVITY

(£2.8.3)

IN. FINITENESS FOR LINEAR CATEGORIES (52.9)

Enjoy this lecture? You'll enjoy the textbook!

C. Walton's "Symmetries of Algebras, Volume 1" (2024)

Available for purchase at:

619 Wreath (at a discount)

https://www.619wreath.com/

Also on Amazon & Google Play

<u>Lecture #11 keywords</u>: Eilenberg-Watts Theorem, exact functor, finite category, indecomposable object, injective object, projective object, Schur's Lemma, semisimple category, short exact sequence, simple object