MATH $466 / 566$
SPRING 2024
last Time

- ADJUNCTION
- universality revisited
- yoneda's lemma

CHELSEA WALTON RICE u.

Topics:
I. BUILDING BLOCK OBJECTS
(\$2.7)
II. EXACTNESS
III. PROJECTIVITY \& INJECTIVITY
(§2.8.3)
il. Finiteness for linear categories ($£ 2.9$)

MATH $466 / 566$
SPRING 2024

Last Time

- ADJUNCTION
- universality revisited
- yoneda's lemma

LECTURE \#II

TOPICS:

WRAPPING UP CATEGORY THEORY
$\int\left(\begin{array}{l}\text { INC. SNIPPET OF } \\ \text { HOMOLOGICAL ALGEBRA }\end{array}\right.$
I. BUILDING BLOCK OBJECTS
(\$2.7)
II. EXACTNESS
$\left(\xi \xi_{2.8} .1-2.8 .2\right)$
$(\{2.8 .3)$
($£ 2.9$)

三 STANDING HYPOTHESIS \equiv

三STANDING HYPOTHESIS \equiv

I. BUILDING BLOCK OBJECTS
simple OBJECTS

$\zeta \equiv$ abelian categ.

FINITE LENGTH OBJECTS
semisimple OBJECTS

SEMISIMPLE CATEGORIES
I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

indecompoiable OBJECTS
I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

indecomposable OBJECTS
$X^{\not 7^{0} \in \zeta}$ is indecomposable

$$
\text { IF } X \neq X_{1} \cup X_{2}
$$

\forall Nonzero SUBOBJ. X_{1}, X_{2} of X
I. BUILDING BLOCK OBJECTS
\square
$X^{\not 7^{0} \in \zeta}$ is in decomposable

$$
\text { IF } X \neq X_{1} \cup X_{2}
$$

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

$\frac{\text { EXERCISE } 2.49}{X^{\neq 0} \in C \text { IS INDECOMPOSABLE }}$ v
THE ONLY IDEMPOTENT MORPHISMS in Home (X, X) are $\overrightarrow{0}_{x, x} \& i d x$
\forall NONZERO SUBOBJ. X_{1}, X_{2} OF X
I. BUILDING BLOCK OBJECTS
simple OBJECTS
\square
$X^{\not{ }^{0} \in \mathscr{E}}$ is indecomposable

$$
\text { IF } X \neq X_{1} \cup X_{2}
$$

$$
\zeta_{\models} \equiv \operatorname{abelian~categ.}
$$

EXERCISE 2.49
$X^{\neq 0} \in C$ is INDECOMPOSABLE

THE ONLY IDEMPOTENT MORPHISMS in Home (x, x) are $\overrightarrow{0}_{x, x} \notin i d x$
\forall Nonzero SUbObJ. X_{1}, x_{2} of X
I. BUILDING BLOCK OBJECTS
simple OBJECTS
$X^{\neq 0} \in \mathscr{C}$ IS SIMPLE
IF THE only subobjs of X
are $X \& 0$
\square
$X^{\neq 0} \in \mathscr{C}$ IS INDECOMPOSABLE

$$
\text { IF } X \neq X_{1} \cup X_{2}
$$

 OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

EXERCISE 2.49 $X^{\neq 0} \in \varphi$ is indecomposable

THE ONLY IDEMPOTENT MORPHISMS in Home (x, x) are $\overrightarrow{0}_{x, x} \neq i d x$
\forall Nonzero SUbObJ. X_{1}, X_{2} of X
I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

simple OBJECTS

$$
X^{\not{ }^{0} \in \varphi \text { is SIMPLE }}
$$

IF THE ONLY SUBOBJS OF X

$$
\text { ARE } X \notin 0
$$

INDECOMPOSABLE OBJECTS
$X^{\neq 0} \in \mathscr{C}$ is indecomposable

$$
\text { IF } X \neq X_{1} \cup X_{2}
$$

EXERCISE 2.49 $X^{\neq 0} \in \varphi$ is ind composable

THE ONLY IDEMPOTENT MORPAISMS in Home (X, X) are $\overrightarrow{0}_{x, x} \& i d x$
\forall NONZERO SUBOBJ. X_{1}, X_{2} OF X
I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

\forall NONZERO δ UBOBJ. X_{1}, X_{2} OF X
I. BUILDING BLOCK OBJECTS

IF THE only subobjs of X are $X \notin 0$

INDECOMPOSABLE OBJECTS
$X^{\not{ }^{0} \in G \text { IS INDECOMPOSAble }}$ IF $X \neq X_{1} \cup X_{2}$

SCHUR'S LEMMA If $x, y \in G$ are simple,

THEN $f: x \rightarrow y \in \zeta$ IS AN ISO OR \vec{O}.

EXERCISE 2.49 $X^{\neq 0} \in \boldsymbol{C}$ is indecomposable it
THE ONE IDEMPOTENT MORPIISMS in Ho me (x, x) are $\vec{o}_{x, x} \not \approx i d x$
\forall NONZERO SUBOBJ. X_{1}, X_{2} OF X
I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

$$
X^{\not{ }^{0} \in C} \text { IS SIMPLE }
$$

IF THE only subobjs of X

$$
\operatorname{ArE} X \notin 0
$$

I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \operatorname{abelian~categ.}
$$

IF THE ONLY SUBOBJS OF X

$$
\text { ArE } X \notin 0
$$

A composition series for X e φ^{2} IS A SEQUENCE OF MINOS

$$
\begin{aligned}
& 0=x_{0} \xrightarrow{f_{0}} x_{1} \xrightarrow{f_{1}} x_{2} \rightarrow \ldots \xrightarrow{f_{n-1}} x_{n} \rightarrow \ldots \rightarrow x \\
& . \rightarrow \text { conker }\left(f_{i}\right)=x_{i+1} / x_{i} \text { is sImple } \forall i
\end{aligned}
$$

I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

IF THE ONLY SUBOBJS OF X

$$
\text { ARE } X \notin O
$$

\square
$X \in \zeta$ has length a IF IT ADMITS a comp. SerIes with $X=x_{n}$, but not WITH $X=x_{d}$ FOR $d<n$

A composition series for $X \in \varphi_{l}$ IS A SEQUENCE OF MINOS

$$
\begin{aligned}
& 0=x_{0} \xrightarrow{f_{0}} x_{1} \xrightarrow{f_{1}} x_{2} \rightarrow \ldots \xrightarrow{f_{n-1}} x_{n} \xrightarrow{f_{n}} \ldots \rightarrow x \\
& \text {-.. coker }\left(f_{i}\right)=x_{i+1} / x_{i} \text { is sImPLE } \forall i
\end{aligned}
$$

I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

IF THE ONLY SUBOBJS OF X

$$
\text { ARE } X \notin O
$$

$X^{\neq 0} \in C$ IS SIMPLE

- AF THE ON SUBOBJS OF
objects that are measurably close to being simple

ANy Two COMP. SERIES OF A finite length obj. Have the same \# of components \& SETS OF COKERNELS, up to permutation.

A COMPOSITION SERIES FOR $X \in Y^{6}$ IS A SEQUENCE OF MINOS

$$
\begin{aligned}
& 0=X_{0} \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{1}} x_{2} \rightarrow \ldots \xrightarrow{f_{n-1}} x_{n} \xrightarrow{f_{n}} \ldots \rightarrow X \\
& \text {-. coker }\left(f_{i}\right)=X_{i+1} / x_{i} \text { is sIMPLE } \forall i
\end{aligned}
$$

I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

objects that

IF THE ONLY SUBOBJS OF X
are $X \& 0$

$X^{\neq 0} \in \zeta$ IS SIMPLE

ARE \& O are measurably close to being simple

$$
\text { ARE } \wedge \& 0
$$

$X \in \zeta$ has length
IF IT ADMITS A COMP. SERIES
WITH $X=x_{n}$, bUT NOT
WITH $X=x_{d}$ FOR $d<n$

A COMPOSITION SERIES FOR $X \in \varphi_{l}$
IS A SEQUENCE OF MINOS

$$
\begin{aligned}
& 0=x_{0} \xrightarrow{f_{0}} x_{1} \xrightarrow{f_{1}} x_{2} \rightarrow \ldots \xrightarrow{f_{n-1}} x_{n} \xrightarrow{f_{n}} \ldots \rightarrow X \\
& \text {-. coker }\left(f_{i}\right)=x_{i+1} / x_{i} \text { is sImPLE } \forall i
\end{aligned}
$$

I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

$X \in \zeta$ has length a
IF THE ONLY SUBOBJS OF X

$$
\binom{\text { ARE } X \& 0}{\text { OBJECTS OF LENGTH } 1}
$$

if IT admits a comp. SerIes
with $X=x_{n}$, but not
WITH $X=x_{d}$ FOR $d<n$
JORDAN-HÖLDER THEOREM
ANy Two COMP. SERIES OF A
finite length obj. Have the
same \# of components
\& SETS OF COKERNELS, up to permutation.

LENGTH IS $\}$
A COMPOSITION SERIES FOR XE Y
IS A SEQUENCE OF MINOS

$$
\begin{aligned}
& 0=x_{0} \xrightarrow{f_{0}} x_{1} \xrightarrow{f_{1}} x_{2} \rightarrow \ldots \xrightarrow{f_{n-1}} x_{n} \xrightarrow{f_{n}} \ldots \rightarrow X \\
& \text {-. coker }\left(f_{i}\right)=x_{i+1} / x_{i} \text { is sImPLE } \forall i
\end{aligned}
$$

I. BUILDING BLOCK OBJECTS

IF THE ONLY SUBOBJS OF X

$$
\text { ARE } X \& 0
$$

indecomposable OBJECTS
$X^{\neq 0} \in \zeta$ is indecomposable

$$
\text { IF } X \neq X_{1} \cup X_{2}
$$

\forall Nonzero SUBOBJ. X_{1}, X_{2} of X

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

FINITE LENGTH OBJECTS
$X \in \zeta$ Admits a comp. series of Minimum finite lengit
I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

IF THE ONLY SUBOBJS OF X

$$
\text { ARE } X \notin 0
$$

indecomposable OBJECTS
$X^{\not 7^{0} \in \zeta \text { is in decomposable }}$

$$
\text { IF } X \neq X_{1} \cup X_{2}
$$

\forall Nonzero SUBOBJ. X_{1}, X_{2} of X

FINITE LENGTH OBJECTS
$X \in \zeta$ Admits a comp. series of Minimum finite lengit
I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

I. BUILDING BLOCK OBJECTS

IF THE ONLY SUBOBJS OF X

$$
\text { ARE } X \notin O
$$

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

semisimple OBJECTS

Semisimple categories
I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

SIMPLE OBJECTS

$$
X^{\neq 0} \in \varphi \text { is SIMPLE }
$$

IF THE ONLY SUBOBJS OF X

$$
\text { ARE } X \notin 0
$$

$X^{* 0}{ }^{\circ}{ }^{\circ}$ is semisimple
$\mathbb{F} X \cong \mathbb{U}_{i \in I} X_{i}$
For simple objects X_{i}.
semisimple OBJECTS

Semisimple cATEGORIES
I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

simple OBJECTS

IF THE ONLY SUBOBJS OF X

$$
\text { ARE } X \notin 0
$$

$X^{\neq 0} \in \zeta$ is semisimple
$\mathbb{F} X \cong \Perp_{i \in I} X_{i}$
FOR SIMPLE OBJECTS X_{i}.
G is semisimple if all objects are semisimple
semisimple OBJECTS

SEMISIMPLE CATEGORIES
I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

SIMPLE OBJECTS
$X^{\neq 0} \in \mathscr{C}$ IS SIMPLE
IF THE ONLY SUBOBJS OF X are $X \neq 0$

EXAMPLES $\quad A \equiv \mathbb{k}-A L G \in B R A \quad(\mathbb{k}=\bar{k}$, Char o $)$
A-Mod is a semisimple category
\Leftrightarrow A IS A SEMISIMPLE AlGEBRA
$X^{\neq 0} \in{ }^{\circ}$ is semisimple
IF $X \cong \mathbb{U}_{i \in I} X_{i}$
For simple objects X_{i}.
G is semisimple if all objects are semisimple
semisimple OBJECTS

SEMISIMPLE CATEGORIES
I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

SIMPLE OBJECTS
$X^{\neq 0} \in \mathscr{C}$ IS SIMPLE
IF THE ONLY SUBOBJS OF X

$$
\text { ARE } X \notin 0
$$

EXAMPLES $\quad A \equiv \mathbb{R}-A L G \in B R A \quad(\mathbb{R}=\overline{\mathbb{k}}$, CHARD)
A-Mod is a semisimple category
\Leftrightarrow A is a semisimple algebra
E.g. $\quad V e c \cong \mathbb{k}-\operatorname{Mod}$
A-Binod $\cong\left(A \otimes A^{\circ P}\right)-M$ od for A separable $G-M o d \cong \mathbb{K G}$-Mod WHEN $|G|<\infty$
$X^{\neq 0} \in \zeta$ is semisimple
IF $X \cong \mathbb{U}_{i \in I} X_{i}$
For simple objects X_{i}.
G is semisimple if all objects are semisimple
semisimple OBJECTS

SEMISIMPLE CATEGORIES
I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

simple OBJECTS
$X^{\neq 0} \in \mathscr{C}$ IS SIMPLE
IF THE ONLY SUBOBJS OF X

$$
\text { ARE } X \notin 0
$$

EXAMPLES $\quad A \equiv \mathbb{k}-A L G \in B R A \quad(\mathbb{k}=\bar{k}$, CHAR O $)$
A-Mod is a semisimple category
\Leftrightarrow A is a semisimple algebra
E.g. $\quad V e c \cong \mathbb{k}-\operatorname{Mod}$
A-Binod $\cong\left(A \otimes A^{\circ P}\right)-M$ od for A separable $G-M o d \cong \mathbb{K G}$-Mod WHEN $|G|<\infty$
ab AbelIAn, Not sS. WILL SEE later
$X^{\neq 0}{ }^{\circ}{ }^{\circ}$ is semisimple
IF $X \cong \mathbb{U}_{\text {ie }} X_{i}$
For simple objects X_{i}.
G is semisimple if all objects are semisimple
semisimple OBJECTS

SEMISIMPLE CATEGORIES
I. BUILDING BLOCK OBJECTS

SIMPLE
OBJECTS
$X^{\not{ }^{0} \in \mathscr{C}}$ IS SIMPLE

IF THE ONLY subobjs of X are $X \notin 0$

EXAMPLES $\quad A \equiv \mathbb{k}-A L G \in B R A \quad(\mathbb{k}=\bar{k}$, Char o $)$
A-Mod is a semisimple category
$\Leftrightarrow A$ is a semisimple Algebra
Egg. $\quad V e c \cong \mathbb{k}-M_{o d}$
A-Binod $\cong\left(A \otimes A^{\circ p}\right)-M_{0} d$ for A separable $G-M_{\text {od }} \cong \mathbb{k} G-M_{\text {od }} W_{H E N}|G|<\infty$
ab abelian, not ss. Will see later

FOR SIMPLE OBJECTS X_{i}.
C is semisimple if all objects are semisimple
semisimple OBJECTS

Semisimple categories
I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

SIMPLE
OBJECTS
$X^{\neq 0} \in \zeta$ IS SIMPLE

IF THE ONLY Subobjs of X

$$
\text { Are } X \notin 0
$$

EXAMPLES $\quad A \equiv \mathbb{k}-A L G \in B R A \quad(\mathbb{k}=\bar{k}$, Char o $)$
A-Mod is a semisimple category
$\Leftrightarrow A$ is a semisimple Algebra
Egg. $\quad V e c \cong \mathbb{k}-M_{o d}$
A-Binod $\cong\left(A \otimes A^{\circ p}\right)-M_{0} d$ for A separable $G-M_{\text {od }} \cong \mathbb{k} G-M_{\text {od }} W_{H E N}|G|<\infty$
ab abelian, not ss. Will see later
helpful to impose finite length To GET RESULTS...

FOR SIMPLE OBJECTS X_{i}.
G is semisimple if all objects are semisimple
semisimple OBJECTS

Semisimple CATEGORIES
I. BUILDING BLOCK OBJECTS

I. BUILDING BLOCK OBJECTS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

indecomposable OBJECTS
$X^{7^{\circ} \in \zeta \text { IS in decomposable }}$

$$
I F X \neq X_{1} \cup X_{2}
$$

\forall NONZERO SUBOBJ. X_{1}, X_{2} OF X

FINITE LENGTH OBJECTS

PROP:
in semisimple categories, indecomposable objects OF FINITE LENGTH are simple.

Semisimple CATEGORIES
II. exactness

II. EXACTNESS

NOW WE START TO WORK AWAy From titis strong condition

II. exactness

ENTER THE WORLD OF HOMOLOGICAL ALGEBRA

NOW We start to work away From this strong condition

II. EXACTNESS

ENTER THE WORLD OF
HOMOLOGICAL ALGEBRA

MAIN ENTITIES OF INTEREST:
exact sequences
II. exactness

$$
\zeta_{\varrho} \equiv \operatorname{abelian~categ.}
$$

ENTER THE WORLD OF
HOMOLOGICAL ALGEBRA
main entities of interest :
exact sequences

A SEQUENCE OF MORPHISMS IN C

$$
\cdots \rightarrow x_{i-1} \xrightarrow{f_{i-1}} x_{i} \xrightarrow{f_{i}} x_{i+1} \longrightarrow \cdots
$$

IS EXACT AT X_{i} IF $\operatorname{ker}\left(f_{i}\right)=\operatorname{im}\left(f_{i-1}\right)$.
it is exact if exact at $X_{i} \forall i$
II. EXACTNESS

A SEQUENCE OF MORPHISMS IN C

$$
\ldots \rightarrow x_{i-1} \xrightarrow{f_{i-1}} x_{i} \xrightarrow{f_{i}} x_{i+1} \rightarrow \cdots
$$

IS EXACT AT X_{i} IF $\operatorname{Ker}\left(f_{i}\right)=i m\left(f_{i-1}\right)$.
it is exact if exact at $x_{i} \forall i$

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

A SEQUENCE OF MORPHISMS IN C

$$
\cdots \longrightarrow X_{i-1} \xrightarrow{f_{i-1}} X_{i} \xrightarrow{f_{i}} X_{i+1} \longrightarrow \cdots
$$

IS EXACT AT X_{i} IF $\operatorname{Ker}\left(f_{i}\right)=\operatorname{im}\left(f_{i-1}\right)$.
IT is EXACT IF EXACT AT $X_{i} \forall i$
$\frac{\text { EXERCISE } 2.51}{\overrightarrow{0}_{x^{\prime}}}$

- $O \xrightarrow{0_{x^{\prime}}} X^{\prime} \xrightarrow{f} X$ IS EXACT
- $X \xrightarrow{9} X^{\prime \prime} \xrightarrow{X^{\prime \prime} \stackrel{\rightharpoonup}{0}} 0$ IS EXACT
II. EXACTNESS

$$
\varphi_{\varphi} \equiv \text { abelian categ. }
$$

A SEQUENCE OF MORPHISMS IN C

$$
\cdots \longrightarrow X_{i-1} \xrightarrow{f_{i-1}} X_{i} \xrightarrow{f_{i}} X_{i+1} \longrightarrow \cdots
$$

IS EXACT AT X_{i} IF $\operatorname{Ker}\left(f_{i}\right)=\operatorname{im}\left(f_{i-1}\right)$.
IT is EXACT IF EXACT AT $X_{i} \forall i$
$\frac{\text { ExERCISE } 2.51}{\overrightarrow{0}_{x^{\prime}}}$

- $O \xrightarrow{\partial_{x^{\prime}}} X^{\prime} \xrightarrow{f} X$ IS EXACT $\Longleftrightarrow f$ IS MONIC.
- $X \xrightarrow{g} X^{\prime \prime} \xrightarrow{x^{\prime \prime} 0} 0$ is EXACT $\Longleftrightarrow g$ is EPIC.
II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

A SEQUENCE OF MORPHISMS IN C

$$
\cdots \rightarrow X_{i-1} \xrightarrow{f_{i-1}} X_{i} \xrightarrow{f_{i}} X_{i+1} \rightarrow \cdots
$$

IS EXACT AT X_{i} IF $\operatorname{Ker}\left(f_{i}\right)=i m\left(f_{i-1}\right)$.
IT IS EXACT IF EXACT AT $X_{i} \forall i$
$\frac{\text { ExERCISE } 2.51}{\stackrel{\rightharpoonup}{0}_{x^{\prime}}}$

- $O \xrightarrow{\partial_{x^{\prime}}} X^{\prime} \xrightarrow{f} X$ IS EXACT $\Longleftrightarrow f$ IS MONIC.
- $X \xrightarrow{g} X^{\prime \prime} \xrightarrow{X^{\prime \prime} \overrightarrow{0}} 0$ IS EXACT $\Longleftrightarrow g$ IS EPIC.
- $0 \xrightarrow{\overrightarrow{0}_{x}} x \xrightarrow{h} y \xrightarrow{y \overrightarrow{0}} 0$ IS EXACT $\Leftrightarrow h$ IS AN 150 .
II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

A SEQUENCE OF MORPHISMS IN

$$
\cdots \rightarrow x_{i-1} \xrightarrow{f_{i-1}} x_{i} \xrightarrow{f_{i}} x_{i+1} \longrightarrow \cdots
$$

IS EXACT AT X_{i} IF $\operatorname{Ker}\left(f_{i}\right)=i m\left(f_{i-1}\right)$.

IT IS EXACT IF EXACT AT $X_{i} \forall i$

A SHORT EXACT SEQUENCE IN C
IS AN EXACT SEQ. OF THE FORM

$$
0 \rightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

$\frac{\text { EXERCISE } 2.51}{\overrightarrow{0}_{x^{\prime}}}$

- $O \xrightarrow{0 x^{\prime}} X^{\prime} \xrightarrow{f} X$ IS EXACT $\Longleftrightarrow f$ IS MONIC.
- $X \xrightarrow{9} X^{\prime \prime} \xrightarrow{X^{\prime \prime} \stackrel{\rightharpoonup}{0}} 0$ IS EXACT $\Longleftrightarrow g$ IS EPIC.
- $0 \xrightarrow{\overrightarrow{0}_{x}} X \xrightarrow{h} y \xrightarrow{y \overrightarrow{0}} 0$ is EXACT $\quad h$ IS AN 180.
II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

A SEQUENCE OF MORPHISMS IN C

$$
\cdots \longrightarrow X_{i-1} \xrightarrow{f_{i-1}} X_{i} \xrightarrow{f_{i}} X_{i+1} \longrightarrow \cdots
$$

IS EXACT AT X_{i} IF $\operatorname{Ker}\left(f_{i}\right)=i m\left(f_{i-1}\right)$.
IT is EXACT IF EXACT aT $X_{i} \forall i$

A SHort exact sequence in ζ
IS AN EXACT SEQ. OF THE FORM

$$
0 \rightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0
$$

$\therefore f$ Manic, g EPIC, $\operatorname{ker}(g)=i m(f)$,

$$
X^{\prime}=\text { SUBOBJ.OF } X \not \& X^{\prime \prime} \cong X / X^{\prime}
$$

$\frac{\text { EXERCISE } 2.51}{\overrightarrow{0}_{x^{\prime}}}$

- $O \xrightarrow{0_{x^{\prime}}} X^{\prime} \xrightarrow{f} X$ IS EXACT $\Longleftrightarrow f$ IS MANIC.
- $X \xrightarrow{g} X^{\prime \prime} \xrightarrow{x^{\prime \prime}} 0$ IS EXACT $\Longleftrightarrow g$ IS EPIC.
- $0 \xrightarrow{\overrightarrow{0}_{x}} X \xrightarrow{h} y \xrightarrow{y \overrightarrow{0}} 0$ IS EXACT $\Leftrightarrow \quad h$ IS AN 150.
II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

A SEQUENCE OF MORPHISMS IN C

$$
\cdots \rightarrow x_{i-1} \xrightarrow{f_{i-1}} x_{i} \xrightarrow{f_{i}} x_{i+1} \rightarrow \cdots
$$

IS EXACT AT X_{i} IF $\operatorname{Ker}\left(f_{i}\right)=i m\left(f_{i-1}\right)$.
it is exact if exact at $x_{i} \not \forall_{i}$

A SHORT EXACT SEQUENCE IN C
is an exact seq. of the form

$$
0 \longrightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

\therefore franc, g EPIC, $\operatorname{ker}(g)=i m(f)$,

$$
X^{\prime}=\operatorname{SUBOBJ.OF} X \nexists X^{\prime \prime} \cong X / X^{\prime}
$$

NICE SHORT EXACT SEQUENCES...
PROP TFAE FOR S.E.S.:

$$
0 \rightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

A SEQUENCE OF MORPHISMS IN C

$$
\cdots \rightarrow x_{i-1} \xrightarrow{f_{i-1}} x_{i} \xrightarrow{f_{i}} x_{i+1} \rightarrow \cdots
$$

IS EXACT AT X_{i} IF $\operatorname{Ker}\left(f_{i}\right)=i m\left(f_{i-1}\right)$.
it is exact if exact at $x_{i} \not \forall_{i}$

A SHORT EXACT SEQUENCE IN C
is an exact seq. of the form

$$
0 \rightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

\therefore franc, g EPIC, $\operatorname{ker}(g)=i m(f)$, $X^{\prime}=$ Subobj. OF $X \quad \neq X^{\prime \prime} \cong X / X^{\prime}$

NICE SHORT EXACT SEQUENCES...
PROP TFAE FOR S.E.S.:

$$
0 \rightarrow X^{\prime} \xrightarrow{f} X \underset{\substack{\frac{g}{\mathrm{~s}}}}{ } X_{\text {SECTION }}^{\prime \prime} \rightarrow 0 .
$$

(a) $\exists s: X^{\prime \prime} \rightarrow X$
.. $g s=i d_{X^{\prime \prime}}$.
II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

A SEQUENCE OF MORPHISMS IN C

$$
\cdots \rightarrow x_{i-1} \xrightarrow{f_{i-1}} x_{i} \xrightarrow{f_{i}} x_{i+1} \rightarrow \cdots
$$

IS EXACT AT X_{i} IF $\operatorname{Ker}\left(f_{i}\right)=i m\left(f_{i-1}\right)$.
it is exact if exact at $x_{i} \not \forall_{i}$

A SHORT EXACT SEQUENCE IN C
is an exact seq. of the form

$$
0 \rightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

\therefore franc, g EPIC, $\operatorname{ker}(g)=i m(f)$, $X^{\prime}=$ Subobj. OF $X \quad \neq X^{\prime \prime} \cong X / X^{\prime}$

NICE SHORT EXACT SEQUENCES...
PROP TFAE FOR S.E.S.:

$$
\underset{\text { ACTION }}{0 \rightarrow} X^{\prime} \frac{f}{r} X \xrightarrow[r]{g} X^{\prime \prime} \rightarrow 0 .
$$

(a) $\exists s: X^{\prime \prime} \rightarrow x$
.. $g s=i d x^{\prime \prime}$.
(b) $\exists r: X \rightarrow X^{\prime}$
... $r f=i d_{x^{\prime}}$.
II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

A SEQUENCE OF MORPHISMS IN C

$$
\cdots \rightarrow x_{i-1} \xrightarrow{f_{i-1}} x_{i} \xrightarrow{f_{i}} x_{i+1} \rightarrow \cdots
$$

IS EXACT AT X_{i} IF $\operatorname{Ker}\left(f_{i}\right)=i m\left(f_{i-1}\right)$.
it is exact if exact at $x_{i} \not \forall_{i}$

A SHORT EXACT SEQUENCE IN C
is an exact seq. of the form

$$
0 \rightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

\therefore franc, g EPIC, $\operatorname{ker}(g)=i m(f)$, $X^{\prime}=$ Subobj. OF $X \quad \neq X^{\prime \prime} \cong X / X^{\prime}$

NICE SHORT EXACT SEQUENCES...
PROP TFAE FOR S.E.S.:

$$
0 \rightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

(a) $\exists s: X^{\prime \prime} \rightarrow x$
.. $g s=i d x^{\prime \prime}$.
(b)
$\exists r: X \rightarrow X^{\prime} . \rightarrow . r f=i d{ }_{x^{\prime}}$.
in this case, $X \cong X^{\prime} \square X^{\prime \prime}$.
call the s.e.s. SPLIT.
II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

A SEQUENCE OF MORPHISMS IN C

$$
\cdots \rightarrow x_{i-1} \xrightarrow{f_{i-1}} x_{i} \xrightarrow{f_{i}} x_{i+1} \rightarrow \cdots
$$

IS EXACT AT X_{i} IF $\operatorname{Ker}\left(f_{i}\right)=i m\left(f_{i-1}\right)$.
it is exact if exact at $x_{i} \not \forall_{i}$

COOL FACT ALL S.E.S. SPLIT IN semisimple categories.

A SHort Exact sequence in C
is an exact seq. of the form

$$
0 \rightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

\therefore franc, g EPIC, $\operatorname{ker}(g)=i m(f)$, $X^{\prime}=$ SubOBJ.OF $X \quad \neq X^{\prime \prime} \cong X / X^{\prime}$

NICE SHORT EXACT SEQUENCES...
PROP TFAE FOR S.E.S.:

$$
0 \rightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

(a) $\exists s: X^{\prime \prime} \rightarrow x$
.. $g s=i d X_{x^{\prime \prime}}$.
(b)
$\exists r: X \rightarrow X^{\prime} . \rightarrow . r f=i d x^{\prime}$.
in this case, $X \cong X^{\prime} \square X^{\prime \prime}$.
call the s.e.s. SPLIT.
II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

A SEQUENCE OF MORPHISMS IN C

$$
\cdots \rightarrow x_{i-1} \xrightarrow{f_{i-1}} x_{i} \xrightarrow{f_{i}} x_{i+1} \rightarrow \cdots
$$

IS EXACT AT X_{i} IF $\operatorname{Ker}\left(f_{i}\right)=i m\left(f_{i-1}\right)$.
it is exact if exact at $x_{i} \not \forall_{i}$

COOL FACT ALL S.E.S. SPLIT IN semisimple categories.
example ab is not semisimple.

A SHORT EXACT SEQUENCE IN C
is an exact seq. of the form

$$
0 \rightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

\therefore franc, g EPIC, $\operatorname{ker}(g)=i m(f)$, $X^{\prime}=$ SubOBJ. of $X \quad \neq X^{\prime \prime} \cong X / X^{\prime}$

NICE SHORT EXACT SEQUENCES...
PROP TFAE FOR S.E.S.:

$$
\underset{\text { RACTION }}{0 \rightarrow X_{r}^{\prime} \underbrace{\prime}_{r}} \times \underset{\text { s }}{\frac{g}{c}} X_{\text {SECTION }}^{\prime \prime}
$$

(a) $\exists s: X^{\prime \prime} \rightarrow X \quad \rightarrow . g s=i d{ }_{x^{\prime \prime}}$.
(b) $\exists r: X \rightarrow X^{\prime} \rightarrow . \quad r f=i d{ }_{x^{\prime}}$.
in this case, $X \cong X^{\prime} \square X^{\prime \prime}$.
call the s.e.s. SPLIT.
II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

A SEQUENCE OF MORPHISMS IN C

$$
\cdots \rightarrow x_{i-1} \xrightarrow{f_{i-1}} x_{i} \xrightarrow{f_{i}} x_{i+1} \rightarrow \cdots
$$

IS EXACT AT X_{i} IF $\operatorname{Ker}\left(f_{i}\right)=i m\left(f_{i-1}\right)$.
it is exact if exact at $x_{i} \forall i$
COOL FACT ALL S.E.S. SPLIT IN semisimple categories.
example ab is not semisimple. By WAy of CONTRADICTION, TAKE S.E.S.:

$$
0 \rightarrow \mathbb{Z} \xrightarrow{\circ 2} \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{T} \rightarrow 0 .
$$

A SHORT EXACT SEQUENCE IN C
is an exact seq. of the form

$$
0 \rightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

\therefore franc, g EPIC, $\operatorname{ker}(g)=i m(f)$, $X^{\prime}=$ SubOBJ. of $X \quad \neq X^{\prime \prime} \cong X / X^{\prime}$

NICE SHORT EXACT SEQUENCES...
PROP TFAE FOR S.E.S.:

$$
\underset{\text { RACTION }}{0 \rightarrow X_{r}^{\prime} \underbrace{\prime}_{r}} \times \underset{\text { s }}{\frac{g}{c}} X_{\text {SECTION }}^{\prime \prime}
$$

(a) $\exists s: X^{\prime \prime} \rightarrow X \quad \rightarrow . g s=i d{ }_{x^{\prime \prime}}$.
(b) $\exists r: X \rightarrow X^{\prime} \rightarrow . \quad r f=i d{ }_{x^{\prime}}$.
in this case, $X \cong X^{\prime} \square X^{\prime \prime}$.
call the s.e.s. SPLIT.
II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

A SEQUENCE OF MORPHISMS IN C

$$
\cdots \rightarrow x_{i-1} \xrightarrow{f_{i-1}} x_{i} \xrightarrow{f_{i}} x_{i+1} \rightarrow \cdots
$$

IS EXACT AT X_{i} IF $\operatorname{Ker}\left(f_{i}\right)=i m\left(f_{i-1}\right)$.
it is exact if exact at $x_{i} \forall i$
COOL FACT ALL S.E.S. SPLIT IN semisimple categories.
example ab is not semisimple. By WAY of CONTRADICTION, TAKE S.E.S:

$$
0 \rightarrow \mathbb{Z} \xrightarrow{\circ 2} \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{T} \rightarrow 0 .
$$

IF $\exists r: \mathbb{Z} \rightarrow \mathbb{Z}$ 3. $r(\cdot 2)=i d z$,
THEN $r(\cdot 2)(1)=r(2)=2 n$
FOR SOME $n \in \mathbb{Z}$

A SHORT EXACT SEQUENCE IN C
is an Exact seq. of the form

$$
0 \rightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

\therefore franc, g EPIC, $\operatorname{ker}(g)=i m(f)$, $X^{\prime}=$ SubOBJ. of $X \quad \neq X^{\prime \prime} \cong X / X^{\prime}$

NICE SHORT EXACT SEQUENCES...
PROP TFAE FOR S.E.S.:

$$
\underset{\text { RACTION }}{0 \rightarrow X_{r}^{\prime} \underbrace{\prime}_{r}} \times \underset{\text { s }}{\frac{g}{c}} X_{\text {SECTION }}^{\prime \prime}
$$

(a) $\exists s: X^{\prime \prime} \rightarrow X \quad \rightarrow . g s=i d{ }_{x^{\prime \prime}}$.
(b) $\exists r: X \rightarrow X^{\prime} \rightarrow r f=i d{ }_{x^{\prime}}$.
in this case, $X \cong X^{\prime} \square X^{\prime \prime}$.
call the s.e.s. SPLIT.
II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

A SEQUENCE OF MORPHISMS IN C

$$
\cdots \rightarrow x_{i-1} \xrightarrow{f_{i-1}} x_{i} \xrightarrow{f_{i}} x_{i+1} \rightarrow \cdots
$$

IS EXACT AT X_{i} IF $\operatorname{Ker}\left(f_{i}\right)=i m\left(f_{i-1}\right)$.
it is exact if exact at $x_{i} \not \forall_{i}$
COOL FACT ALL S.E.S. SPLIT IN semisimple categories.
example ab is not semisimple. By WAY of CONTRADICTION, TAKE S.E.S::

$$
0 \rightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0 .
$$

IF $\exists r: \mathbb{Z} \rightarrow \mathbb{Z}$ 3. $r(\cdot 2)=i d z$,
THEN $r(\cdot 2)(1)=r(2)=2 n \neq 1$.
for some ne \#

A SHORT EXACT SEQUENCE IN C
is an Exact seq. of the form

$$
0 \rightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

\therefore franc, g EPIC, $\operatorname{ker}(g)=i m(f)$, $X^{\prime}=$ SubOBJ. of $X \quad \neq X^{\prime \prime} \cong X / X^{\prime}$

NICE SHORT EXACT SEQUENCES...
PROP TFAE FOR S.E.S.:

$$
\underset{\text { RACTION }}{0 \rightarrow X_{r}^{\prime} \underbrace{\prime}_{r}} \times \underset{\text { s }}{\frac{g}{c}} X_{\text {SECTION }}^{\prime \prime}
$$

(a) $\exists s: X^{\prime \prime} \rightarrow X \quad \rightarrow . g s=i d{ }_{x^{\prime \prime}}$.
(b) $\exists r: X \rightarrow X^{\prime} \rightarrow r f=i d{ }_{x^{\prime}}$.
in this case, $X \cong X^{\prime} \square X^{\prime \prime}$.
call the s.e.s. SPLIT.
II. EXACTNESS

LET'S STUDY How
these are preserved
under Functors...

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

A Short exact sequence in ζ
IS AN EXACT SEQ. OF THE FORM

$$
\star 0 \rightarrow x^{\prime} \xrightarrow{t} x \xrightarrow{g} x^{\prime \prime} \longrightarrow 0 .
$$

$\therefore f$ Manic, g EPIC, $\operatorname{ker}(g)=i m(f)$
II. EXACTNESS

LET'S STUDY How
these are preserved
UNDER FUNCTOR...
$\zeta_{e} \equiv$ abel ian categ.
A SHORT EXACT SEQUENCE IN C IS AN EXACT SEQ. OF THE FORM
$\star 0 \longrightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0$.
$\therefore f$ Manic, g EPIC, $\operatorname{ker}(g)=i m(f)$
FUNCTOR $F: \varphi \rightarrow \theta$

- IS LEFT EXACT IF F SENDS \star To EX. SEQ:

$$
0 \longrightarrow F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(x^{\prime \prime}\right)
$$

- IS RIGHT EXACT IF F SENDS \star To EX. SEQ:

$$
F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(x^{\prime \prime}\right) \longrightarrow 0
$$

- IS EXACT IF LEFT\&RIGHTEXACT.
II. EXACTNESS

LET'S STUDY How
these are preserved
UNDER FUNCTOR...
$\zeta_{e} \equiv$ abel ian categ.
A SHORT EXACT SEQUENCE IN C IS AN EXACT SEQ. OF THE FORM $\star 0 \longrightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0$.
$\therefore f$ Monica, g EPIC, $\operatorname{ker}(g)=i m(f)$
FUNCTOR $F: \varphi \rightarrow \theta$ (RESP.CONTRAV'T)

- IS LEFT EXACTIF F SENDS \star To EX. SEQ:

$$
\begin{aligned}
& \text { SEQ: } F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(x^{\prime \prime}\right) \\
& \left(\text { Resp. } 0 \longrightarrow F\left(x^{\prime \prime}\right) \xrightarrow{F(g)} F(x) \xrightarrow{\stackrel{F(f)}{\longrightarrow}} F\left(x^{\prime}\right)\right)
\end{aligned}
$$

- IS RIGHT EXACT IF F SENDS \star To EX. SEQ:

$$
\begin{aligned}
& \text { EQ: } \\
& F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(x^{\prime \prime}\right) \longrightarrow 0,
\end{aligned}
$$

$$
\text { (Resp. } \left.F\left(x^{\prime \prime}\right) \xrightarrow{F(g)} F(x) \xrightarrow{f(f)} F\left(x^{\prime}\right) \longrightarrow 0\right)
$$

- IS EXACT IF LEFT \& RIGHTEXACT.
II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

COOL FACTS: TAKE AN ADDITIVE FUNCTOR

$$
\begin{aligned}
F: \zeta & \longrightarrow \theta \\
F_{x, y}: H_{0} M_{Q}(x, y) & \rightarrow H_{0} M_{\theta}(F(x), F(y)) \\
f & \longmapsto F(f)
\end{aligned}
$$

IS A Group homo. $\forall x, y$

A SHORT EXACT SEQUENCE IN C
is AN EXACT SEQ. OF THE FORM

$$
\star 0 \rightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

$\therefore f$ MANIC, g EPIC, $\operatorname{ker}(g)=i m(f)$
FUNCTOR $F: \varphi \rightarrow \theta$

- IS LEFT EXACTIF F SENDS \star To EX. SEQ:

$$
0 \longrightarrow F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(x^{\prime \prime}\right)
$$

- IS RIGHT EXACT IF F SENDS \star To EX. SEQ:

$$
F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(x^{\prime \prime}\right) \longrightarrow 0
$$

- IS EXACT IF LEFT\& RIGHTEXACT.
II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \zeta \rightarrow \theta$

- FIN LEFT EXACT \Leftrightarrow

F preserves kernels

$$
F(\operatorname{ker}(f)) \cong \operatorname{ker}(F(f))
$$

A SHORT EXACT SEQUENCE IN C
is an Exact seq. of the form

$$
\star 0 \longrightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

\therefore fMonic, g EPIC, $\operatorname{ker}(g)=i n(f)$
FUNCTOR $F: C \rightarrow \theta$

- IS LEFT EXACTIF F SENDS \star To EX. SEQ:

$$
0 \longrightarrow F\left(X^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(X^{\prime \prime}\right)
$$

- IS RIGHT EXACT IF F SENDS \star To EX. SEQ:

$$
F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(x^{\prime \prime}\right) \longrightarrow 0
$$

- IS EXACT IF LEFT \& RIGHTEXACT.
II. EXACTNESS

$$
\zeta_{\varrho} \equiv \operatorname{Abelian~categ.}
$$

COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \zeta \rightarrow \theta$

- Figs LEFT EXACT \Leftrightarrow

F preserves kernels

$$
F(\operatorname{ker}(f)) \cong \operatorname{ker}(F(f))
$$

- FIN RIGHT EXACT \Leftrightarrow

F preserves cokernels

A SHort Exact sequence in C
is an Exact seq. of the form

$$
\star 0 \longrightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

\therefore fMonic, g EPIC, $\operatorname{ker}(g)=i n(f)$
FUNCTOR $F: C \rightarrow \theta$

- IS LEFT EXACTIFF SENDS \star To EX. seq:

$$
0 \longrightarrow F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(x^{\prime \prime}\right)
$$

- IS RIGHT EXACT IF F SENDS \star To EX. SEQ:

$$
F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(x^{\prime \prime}\right) \longrightarrow 0
$$

- IS EXACT IF LEFT \& RIGHTEXACT.
II. EXACTNESS

$$
\zeta_{\varrho} \equiv \operatorname{Abelian~categ.}
$$

COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \zeta \rightarrow \theta$

- Figs LEFT EXACT \Leftrightarrow

F preserves kernels

$$
F(\operatorname{ker}(f)) \cong \operatorname{ker}(F(f))
$$

- FIN RIGHT EXACT \Leftrightarrow

F preserves cokernels

- F preserves split s.e.s.

A SHort Exact sequence in C
IS AN EXACT SEQ. OF THE FORM

$$
\star 0 \longrightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

\therefore fMonic, g EPIC, $\operatorname{ker}(g)=i n(f)$
FUNCTOR $F: C \rightarrow \theta$

- IS LEFT EXACTIFF SENDS \star To EX. SEQ:

$$
0 \longrightarrow F\left(X^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(X^{\prime \prime}\right)
$$

- IS RIGHT EXACT IF F SENDS \star To EX. SEQ:

$$
F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(x^{\prime \prime}\right) \longrightarrow 0
$$

- IS EXACT IF LEFT \& RIGHTEXACT.
II. EXACTNESS

COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \zeta \rightarrow \theta$

- Figs left exact \Leftrightarrow

F preserves kernels

$$
F(\operatorname{ker}(f)) \cong \operatorname{ker}(F(f))
$$

- FIN RIGHT EXACT \Leftrightarrow

F preserves cokernels

- f preserves split s.e.s.
- ヨ LEFT ADJOINT TO F \Rightarrow pIS LEFT EXACT
- J RIGHT ADJOINT TO F \Rightarrow PIS RIGHT EXACT

$$
\zeta_{\varrho} \equiv \operatorname{Abelian~categ.}
$$

A SHort Exact sequence in ce is an Exact seq. of the form

$$
\star 0 \longrightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

\therefore fMonic, g EPIC, $\operatorname{ker}(g)=i n(f)$
FUNCTOR $F: C \rightarrow \theta$

- IS LEFT EXACTIFF SENDS \star To EX. SEQ:

$$
0 \longrightarrow F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(X^{\prime \prime}\right)
$$

- IS RIGHT EXACT IF F SENDS \star To EX. SEQ:

$$
F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(x^{\prime \prime}\right) \longrightarrow 0
$$

- IS EXACT IF LEFT \& RIGHTEXACT.
II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

A SHORT EXACT SEQUENCE IN C
IS AN EXACT SEQ. OF THE FORM

$$
\star 0 \longrightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

\therefore fMonic, g EPIC, $\operatorname{ker}(g)=\operatorname{in}(f)$
FUNCTOR $F: \varphi \rightarrow \theta$

- IS LEFT EXACTIF F SENDS \star To EX. SEQ:

$$
0 \longrightarrow F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(x^{\prime \prime}\right)
$$

- IS RIGHT EXACT IF F SENDS \star To EX. SEQ:

$$
F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(x^{\prime \prime}\right) \longrightarrow 0
$$

- IS EXACT IF LEFT\&RIGHTEXACT.
II. EXACTNESS

$$
\zeta_{\varrho} \equiv \operatorname{Abelian~categ.}
$$

EXAMPLE TAKE lk-alas. A, B.
\& $Q={ }_{B} Q_{A}$ bimodule. GET ADDITIVE FUNCTOR:

$$
\begin{aligned}
Q Q_{A}-: A-M_{\text {od }} & \longrightarrow B-M_{\text {od }} \\
H_{\text {oM }}^{B-M_{\text {od }}}\left(Q_{1}-\right): B-M_{\text {od }} & \rightarrow A-M_{\text {od }}
\end{aligned}
$$

COOL FACTS: TAKE AN ADDITIVE FUNCTOR

$$
F: \zeta \longrightarrow \theta
$$

- J LEFT ADJOINT TO F \Rightarrow pIS LEFT EXACT
- J RIGHT ADJOINT TO F \Rightarrow PIS RIGHT EXACT

A SHORT EXACT SEQUENCE IN C
IS AN EXACT SEQ. OF THE FORM

$$
\star 0 \longrightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

\therefore fMonic, g EPIC, $\operatorname{ker}(g)=i n(f)$
FUNCTOR $F: C \rightarrow \theta$

- IS LEFT EXACTIFF SENDS \star To EX. SEQ:

$$
0 \longrightarrow F\left(X^{\prime}\right) \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F\left(X^{\prime \prime}\right)
$$

- IS RIGHT EXACT IF F SENDS \star To EX. SEQ:

$$
F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(x^{\prime \prime}\right) \longrightarrow 0
$$

- IS EXACT IF LEFT \& RIGHTEXACT.
II. EXACTNESS

EXAMPLE TAKE lk-alGGS. A,B.
\& $Q={ }_{B} Q_{A}$ bimodule. GET ADDITIVE FUNCTOR:

$$
\begin{array}{r}
Q \otimes_{A}-: A-M_{\text {od }} \longrightarrow B-M_{\text {od }} \\
\operatorname{HoM}_{B-\mu_{\text {od }}\left(Q_{1}-\right): B-M_{\text {od }}} \rightarrow A-M_{\text {od }} \\
\text { WITH }\left(Q \otimes_{A}-\right)-\left(\operatorname{HoM}_{B}-\mu_{\text {od }}\left(Q_{1}-\right)\right)
\end{array}
$$

COOL FACTS: TAKE AN ADDITIVE FUNCTOR
$\Longrightarrow \quad F: \zeta \rightarrow \theta$

- ヨ LEFT ADJOINT TO F \Rightarrow PIS LEFT EXACT
- J RIGHT ADJOINT TO F \Rightarrow PIS RIGHT EXACT

$$
\zeta_{\varrho} \equiv \operatorname{Abelian~categ.}
$$

A SHORT EXACT SEQUENCE IN C IS AN EXACT SEQ. OF THE FORM

$$
\star 0 \longrightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0 .
$$

\therefore fMonic, g EPIC, $\operatorname{ker}(g)=i n(f)$
FUNCTOR $F: C \rightarrow \theta$

- IS LEFT EXACTIFF SENDS \star To EX. SEQ:

$$
0 \longrightarrow F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(X^{\prime \prime}\right)
$$

- IS RIGHT EXACT IF F SENDS \star To EX. SEQ:

$$
F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(x^{\prime \prime}\right) \longrightarrow 0
$$

- IS EXACT IF LEFT \& RIGHTEXACT.
II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

EXAMPLE TAKE lk-alas. A, B.
\& $Q={ }_{B} Q_{A}$ bimoduce. GET ADDITIVE FUNCTOR:

WITH $\left(Q_{A} \otimes_{A}\right) \dashv\left(\operatorname{HoM}_{B-M_{\text {od }}}\left(Q_{1}-1\right)\right)$
COOL FACTS: TAKE AN ADDITIVE FUNCTOR

- ヨ LEFT ADJOINT TO F \Rightarrow
pIS LEFT EXACT
- J RIGHT ADJOINT TO F \Rightarrow

PIS RIGHT EXACT

A SHORT EXACT SEQUENCE IN C is an Exact seq. of the form $\star 0 \longrightarrow X^{\prime} \xrightarrow{f} X \xrightarrow{g} X^{\prime \prime} \longrightarrow 0$.
\therefore fMonic, g EPIC, $\operatorname{ker}(g)=i n(f)$
FUNCTOR $F: C \rightarrow \theta$

- IS LEFT EXACTIFF SENDS \star To EX. SEQ:

$$
0 \longrightarrow F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(X^{\prime \prime}\right)
$$

- IS RIGHT EXACT IF F SENDS \star To EX. SEQ:

$$
F\left(x^{\prime}\right) \xrightarrow{F(f)} F(x) \xrightarrow{F(g)} F\left(x^{\prime \prime}\right) \longrightarrow 0
$$

- IS EXACT IF LEFT \& RIGHTEXACT.
II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

EXAMPLE TAKE \mathbb{k}-alaS. A, B. \& $Q={ }_{B} Q_{A}$ bimodule. GET ADDITIVE FUNCTOR:

RIGHTER. $Q \otimes_{A}-$: $A-M_{o d} \longrightarrow B-M_{o d}$

$$
H_{0} M_{B-M_{o d}}\left(Q_{1}-\right): B-M_{o d} \rightarrow A-M_{o d}
$$

LEFT EX.
WITH $\left(Q_{A} \otimes_{A}-\right)-1\left(\right.$ Ho $\left._{B-M_{\text {od }}}\left(Q_{1}-\right)\right)$
COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \zeta \rightarrow \theta$

- ヨ LEFT ADJOINT TO F \Rightarrow pIS LEFT EXACT
- J RIGHT ADJOINT TO F \Rightarrow PIS RIGHT EXACT

EILENBERG-WATTS THEOREM
TAKE FINITE DIM'L IR-ALGEBRAS ABB. FOR IK-LINEAR
$F: A-F d M o d \rightarrow B-F d M o d, G E T:$
II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

EXAMPLE TAKE \mathbb{k}-alaS. A, B. \& $Q={ }_{B} Q_{A}$ bimodule. GET ADDITIVE FUNCTOR:

RIGHTER. $Q \otimes_{A}-$: $A-M_{o d} \longrightarrow B-M_{o d}$

LEFTER.
WITH $\left(Q_{A} \otimes_{A}\right) \dashv\left(\operatorname{HoM}_{B-M_{\text {od }}}\left(Q_{1}-1\right)\right)$
COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \zeta \rightarrow \theta$

- ヨ LEFT ADJOINT TO F \Rightarrow pIS LEFT EXACT
- J RIGHT ADJOINT TO F \Rightarrow PIS RIGHT EXACT

EILENBERG-WATTS THEOREM
Take finite dim'l lr-algebras alb.
FOR IR-LINEAR
$F: A-F d M o d \rightarrow B-F d M o d, G E T:$
FLEET EXACT II

FHASA
LEFT ADJOINT
I
$F \cong \operatorname{HOM}_{A-F_{\text {dad }}}(P,-1)$
For some blood.

$$
P={ }_{A} P_{B} .
$$

II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

EXAMPLE TAKE lk-alas. A, B. \& $Q={ }_{B} Q_{A}$ bimodule. GET ADDITIVE FUNCTOR:
RIGHTER. $Q \otimes_{A}-$: $A-M_{\text {od }} \longrightarrow B-M_{\text {od }}$ $H_{0 \text { M }}^{B-M_{\text {od }}}\left(Q_{1}-\right): B-M_{\text {od }} \rightarrow A-M_{\text {od }}$ LEFT EX.
WITH $\left(Q \otimes_{A}-\right) \dashv\left(\operatorname{HoM}_{B-M_{\text {od }}}\left(Q_{1}-1\right)\right)$
COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \zeta \rightarrow \theta$

- ヨ LEFT ADJOINT TO F \Rightarrow PIS LEFT EXACT
- J RIGHT ADJOINT TO F \Rightarrow PIS RIGHT EXACT

EILENBERG-WATTS THEOREM
TAKE FINITE DIM'L lk-Algebras A, B.
FOR IR-LINEAR
$F: A-F d M o d \rightarrow B-F d M o d, G E T:$

FLEET EXACT	FRIGHT EXACT
\Uparrow	\hat{y}
FHAS A	FHAS A
LEFT ADJOINT	RIGHT ADJOINT

I
II
$F \cong \operatorname{HoM}_{A-F_{\text {dM od }}}(P,-)$

$$
F \cong Q \theta_{A}-
$$

FOR SOME BIMOD.
FOR SOME BIMOD.

$$
P={ }_{A} P_{B} .
$$

$$
Q={ }_{B} Q_{A} .
$$

II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

EXAMPLE TAKE lk-alas. A,B. \& $Q={ }_{B} Q_{A}$ bimodule. GET ADDITIVE FUNCTOR:
RIGHTER. $Q \otimes_{A}-$: $A-M_{\text {od }} \longrightarrow B-M_{\text {od }}$
 LEFT EX.
WITH $\left(Q_{A}^{\otimes}-\right)-1\left(\operatorname{HoM}_{B-M_{\text {od }}}\left(Q_{1}-1\right)\right)$
COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \zeta \rightarrow \theta$

- ヨ LEFT ADJOINT TO F \Rightarrow

PIS LEFT EXACT

- J RIGHT ADJOINT TO F \Rightarrow

PIS RIGHT EXACT

EILENBERG-WATTS THEOREM
TAKE FINITE DIM'L IR-ALGEBRAS ABB.
FOR IR-LINEAR
F: A-FdMod \rightarrow B-FdMod, GET:

FHASA
LEFT ADJOiNT

F HAS A RIGHT ADJOINT

IV
$F \cong \operatorname{HOM}_{A-F_{d M O}}(P,-)$

$$
F \cong Q \theta_{A}-
$$

FOR SOME BIMOD.
FOR SOME BIMOD.

$$
P={ }_{A} P_{B} .
$$

$$
Q={ }_{B} Q_{A} .
$$

II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

EXAMPLE TAKE \mathbb{k}-alas. A, B. \& $Q={ }_{B} Q_{A}$ bimoduce. GET ADDITIVE FUNCTOR:
RIGHTER. $Q Q_{A}-A$: $-M_{\text {od }} \longrightarrow B-M_{o d}$ $H_{0 \text { M }}^{B-M_{\text {od }}\left(Q_{1}-\right)}: B-M_{\text {od }} \rightarrow A-M_{\text {od }}$ LEFT EX.
WITH $\left(Q_{A} \otimes_{A}-\right)-1\left(\operatorname{HoM}_{B-M_{\text {od }}}\left(Q_{1}-1\right)\right)$
COOL FACTS: TAKE AN ADDITIVE FUNCTOR $F: \zeta \rightarrow \theta$

- ヨ LEFT ADJOINT TO F \Rightarrow PIS LEFT EXACT
- J RIGHT ADJOINT TO F \Rightarrow PIS RIGHT EXACT

EILENBERG-WATTS THEOREM
TAKE FINITE DIM'L IR-ALGEBRAS ABB.
FOR IR-LINEAR
F: A-FdMod \rightarrow B-FdMod, GET:
FLEET EXACT FRIGHT EXACT IV
FHASA
TADJOINT

$F \cong \operatorname{HoM}_{A-\text { Fam od }^{2}}\left(P_{1}-1\right.$
FOR SOME BIMOD.

$$
P={ }_{A} P_{B} .
$$

F HAS A RIGHT ADJOINT

$$
\mathbb{I}
$$

$$
F \cong Q \theta_{A}-
$$

FOR SOME BIMOD.

$$
Q={ }_{B} Q_{A} .
$$

II. EXActness

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

PF/ FRIGHT EXACT $\Rightarrow \begin{aligned} & F \cong Q \otimes_{A}^{-} \\ & \text {FOR SOME }_{B} Q_{A}\end{aligned}:$ EILENBERG-WATTS THEOREM
Take Finite dim'l ir-algebras alb.
FOR Ik-LINEAR
$F: A-F d M o d \rightarrow B$-FdMod, GET:

FOR SOME BIMOD.
FOR SOME BIMOD.

$$
P={ }_{A} P_{B} .
$$

$$
Q={ }_{B} Q_{A} .
$$

II. exactness

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

EILENBERG-WATTS THEOREM
Take finite dim'l ir-algebras alb.
FOR IR-LINEAR
$F: A-F d M o d \rightarrow B-F d M o d, G E T:$

EILENBERG-WATTS THEOREM
Take finite dim'l ir-algebras alb.
FOR IR-LINEAR
$F: A-F d M o d \rightarrow B-F d M o d, G E T:$
FLEET EXACT FRIGHT EXACT It
FHAS A
LEFT ADJOINT

FHAS A RIGHT ADJOINT

$$
F \cong \operatorname{HOM}_{A-F d M_{\text {od }}}\left(P_{1},-\right)
$$

FOR SOME BIMOD.

$$
P={ }_{A} P_{B} .
$$

FOR SOME BIMOD.

$$
Q={ }_{B} Q_{A}
$$

II. exactness

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

II. EXACTNESS

EILENBERG-WATTS THEOREM
Take finite dim'l lr-algebras alb.
FOR IR-LINEAR
$F: A-F d M o d \rightarrow B-F d M o d, G E T:$
FLEFTEXACT FRIGHT EXACT FHAS A
FIT ADJOINT
i $F \cong \operatorname{HoM}_{A-F d M_{0 d}}(P,-)$

FOR SOME BIMOD.

$$
P={ }_{A} P_{B}
$$

F HAS A RIGHT ADJOINT

IV

$$
F \cong Q \theta_{A}-
$$

FOR SOME BIMOD.

$$
Q={ }_{B} Q_{A} .
$$

II. EXACTNESS

EILENBERG-WATTS THEOREM
Take finite dim'l lr-algebras alb.
FOR IR-LINEAR
$F: A-F d M o d \rightarrow B-F d M o d, G E T:$
FLEFTEXACT FRIGHT EXACT F HAS A
FIT ADJOINT

$F \cong \operatorname{HoM}_{A-F d M_{0 d}}(P,-)$
FOR SOME BIMOD.

$$
P={ }_{A} P_{B}
$$

F HAS A RIGHT ADJOINT

$$
F \cong Q \theta_{A}-
$$

FOR SOME BIMOD.

$$
Q={ }_{B} Q_{A} .
$$

II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

EILENBERG-WATTS THEOREM
Take finite dim'l Ir-algebras A, B.
FOR IR-LINEAR
$F: A-F d M o d \rightarrow B-F d M o d, G E T:$

FOR SOME BIMOD.
FOR SOME BIMOD.

$$
P={ }_{A} P_{B} .
$$

$$
Q={ }_{B} Q_{A} .
$$

II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

II. exactness

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

II. EXACTNESS

$$
\varphi_{\varrho} \equiv \text { abelian categ. }
$$

III. PROJECTIVITY \& INJECTIVITY

$$
\zeta_{\varrho} \equiv \operatorname{Abelian~categ.}
$$

IN GENERAL:
HO $_{\zeta}(P,-): \zeta \longrightarrow A b$ (Covariant)
is Always LEFT EXACT

EILENBERG-WATTS THEOREM
TAKE FINITE DIM'L \mathbb{R}-Algebras A, B.
FOR IR-LINEAR
$F: A-F d \operatorname{Mod} \rightarrow B-F d M o d, G E T:$
FLEFTEXACT FRIGHT EXACT II II

HAS A
HAS A
LEFT ADJOINT

I

$$
F \cong \operatorname{HoM}_{A-\text { Fam od }}\left(P_{1}-1\right)
$$

FOR SOME BIMOD.

$$
P={ }_{A} P_{B} .
$$

$$
F \cong Q \theta_{A}-
$$

FOR SOME BIMOD.

$$
Q={ }_{B} Q_{A} .
$$

III. PROJECTIVITY \& INJECTIVITY

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

IN GENERAL:
$\operatorname{HoM}_{\zeta}(P,-): \zeta \longrightarrow A b$ (covariant)
is ALWAYS LEFT EXACT
FACT: HOMe $(P,-)$ IS RIGHT EXACT
III. PROJECTIVITY \& INJECTIVITY

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

in GENERAL:
$\operatorname{HOM}_{\zeta}(P,-): \zeta \rightarrow A b$ (Covariant)
is ALWAYS LEFT EXACT
FACT: HOMe $(P,-)$ IS RIGHT EXACT

EVERY S.E.S. IN Y OF THE FORM

$$
\begin{gathered}
0 \rightarrow X^{\prime} \rightarrow X \rightarrow P \rightarrow 0 \\
\text { SPLITS }
\end{gathered}
$$

II. PROJECTIVITY \& INJECTIVITY

$$
\zeta_{\risingdotseq} \equiv \operatorname{abelian~categ.}
$$

IN GENERAL:
HO $_{\zeta}(P,-): \zeta \longrightarrow A b$ (CoVArIANT)
is Always LeFT EXACT
FACT: HOMe $(P,-)$ IS RIGHT EXACT
I
EVERY S.E.S. IN Y OF THE FORM

$$
0 \rightarrow x^{\prime} \rightarrow x \rightarrow p \rightarrow 0
$$

SPLITS
介
III. PROJECTIVITY \& INJECTIVITY

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

IN GENERAL:
$\operatorname{HOM}_{\zeta}(P,-): \zeta \longrightarrow A b$ (covariant)
is ALWAYS LEFT EXACT
FACT: HOMe $(P,-)$ IS RIGHT EXACT
\uparrow
EVERY S.E.S. IN Y OF THE FORM

$$
0 \rightarrow X^{\prime} \rightarrow X \rightarrow P \rightarrow 0
$$

SPLITS
\Uparrow

in This case,
pis a projective object in C.
III. PROJECTIVITY \& INJECTIVITY

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

in General :
Ho $_{\zeta}(P,-): \zeta \longrightarrow A b$ (covariant) $\quad \mathrm{HOM}_{\zeta}(-, Q): \zeta \longrightarrow A b$ (contravar't)
is ALWAYS LEFT EXACT
FACT: HOMe $(P,-)$ IS RIGHT EXACT

EVERY S.E.S. IN Y OF THE FORM

$$
0 \rightarrow X^{\prime} \rightarrow X \rightarrow P \rightarrow 0
$$

SPLITS

in This case,
pis a projective object in C.

IS ALWAys LEFT EXACT

III. PROJECTIVITY \& INJECTIVITY

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

in General :
Ho $_{\zeta}(P,-): \zeta \longrightarrow A b$ (covariant) $\quad \mathrm{HOM}_{\zeta}(-, Q): \zeta \longrightarrow A b$ (contravar't)
is ALWAYS LEFT EXACT
FACT: HOMe $(P,-)$ IS RIGHT EXACT

EVERY S.E.S. IN Y OF THE FORM

$$
0 \rightarrow X^{\prime} \rightarrow X \rightarrow P \rightarrow 0
$$

SPLITS

in This case,
pis a projective object in ζ.

IS ALWAys LEFT EXACT
FACT: HO $_{C}(-, Q)$ IS RIGHT EXACT

III. PROJECTIVITY \& INJECTIVITY

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

in General :
$\operatorname{HOM}_{\zeta}(P,-): \zeta \longrightarrow \mathrm{Ab}$ (covariant) $\quad \mathrm{HOM}_{\zeta}(-, Q): \zeta \longrightarrow \mathrm{Ab}$ (contravar't)
is ALWAYS LEFT EXACT
FACT: HOMe $(P,-)$ IS RIGHT EXACT

EVERY S.E.S. IN Y OF THE FORM

$$
0 \rightarrow X^{\prime} \rightarrow X \rightarrow P \rightarrow 0
$$

SPLITS

in This case,
pis a projective object in C.

IS ALWAYS LEFT EXACT
FACT: HO $_{C}(-, Q)$ IS RIGHT EXACT
§
EVERY S.E.S. IN Y OF THE FORM

$$
0 \rightarrow Q \rightarrow X \rightarrow X^{\prime \prime} \rightarrow 0
$$

SPLITS

III. PROJECTIVITY \& INJECTIVITY

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

in General :
$\operatorname{HOM}_{\zeta}(P,-): \zeta \longrightarrow \mathrm{Ab}$ (covariant) $\quad \mathrm{HOM}_{\zeta}(-, Q): \zeta \longrightarrow \mathrm{Ab}$ (contravar't)
is ALWAYS LEFT EXACT
FACT: HOMe $(P,-)$ IS RIGHT EXACT

EVERY S.E.S. IN Y OF THE FORM

$$
0 \rightarrow X^{\prime} \rightarrow X \rightarrow P \rightarrow 0
$$

SPLITS

in This case,
pis a projective object in C.

IS ALWAyS LEFT EXACT
FACT: HO $_{C}(-, Q)$ is RIGHT EXACT
I
EVERY S.E.S. IN Y OF THE FORM

$$
0 \rightarrow Q \longrightarrow x \rightarrow X^{\prime \prime} \rightarrow 0
$$

SPLITS

in This case,
Q is an infective object in ζ.
III. PROJECTIVITY \& INJECTIVITY

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

TEEING BACK TO SEMISIMPLICITY...

FACT: HOMe $(P,-)$ IS RIGHT EXACT

EVERY S.E.S. IN Y OF THE FORM

$$
0 \rightarrow X^{\prime} \rightarrow X \rightarrow P \rightarrow 0
$$

SPLITS

in This case,
pis a projective object in C.

FACT: $H_{O M}(-, Q)$ IS RIGHT EXACT

$$
\Uparrow
$$

EVERY S.E.S. IN Y OF THE FORM

$$
0 \rightarrow Q \rightarrow X \rightarrow X^{\prime \prime} \rightarrow 0
$$

SPLITS

in This case,
Q is an infective object in ζ.
III. PRoJectivity \& Injectivity

$$
\zeta_{\models} \equiv \operatorname{abelian~categ.}
$$

FACTS

$$
\begin{aligned}
& \text { IF G is demisimple, } \\
& \text { Then Each object is } \\
& \text { projective \& InJective. }
\end{aligned}
$$

FACT: HOMe $(P,-)$ IS RIGHT EXACT

EVERY S.E.S. IN Y OF THE FORM

$$
\begin{gathered}
0 \rightarrow X^{\prime}-X \rightarrow P \rightarrow 0 \\
\text { SPLITS }
\end{gathered}
$$

in this case,
pIS A PRoJective object in ζ.

FACT: HOMe $(-, Q)$ IS RIGHT EXACT

$$
\Uparrow
$$

EVERY S.E.S. IN Y OF THE FORM

$$
0 \rightarrow Q \rightarrow x \rightarrow x^{\prime \prime} \rightarrow 0
$$

SPLITS

in this case,
Q is an infective object in ζ.
III. PRoJectivity \& Injectivity

$$
\varphi_{\varrho} \equiv \text { abelian cate. }
$$

FActs
if C is semisimple,
Then each object is
projective \ddagger invective.

FACT: HOMe $(P,-)$ IS RIGHT EXACT

EVERY S.E.S. IN Y OF THE FORM

$$
0 \rightarrow X^{\prime} \rightarrow X \rightarrow P \rightarrow 0
$$

SPLITS

in This case,
pis a projective object in ζ.

FOR aN IR-AlGEBRA A:
A semisimple
\Leftrightarrow EACH OBJ. OF A- Mod is PROJ.
\Leftrightarrow EACH OBJ. OF A-Mod IS INJ.
FACT: $H_{O M}(-, Q)$ IS RIGHT EXACT
I
EVERY S.E.S. IN Y OF THE FORM

$$
0 \rightarrow Q \rightarrow X \rightarrow X^{\prime \prime} \rightarrow 0
$$

SPLITS

in This case,
Q is an infective object in ζ.
iv. Finiteness for linear categories

NICE CONDITIONS
IMPOSED OFTEN IN
Lien of semisimplicity
$\zeta \equiv$ abellan, lk-linear cat.
homs are ... And FURTHER abeliangroups are \mathbb{R}-vspaces
il. Finiteness for linear categories
$\zeta \equiv$ abelian, lk-linear cat. \uparrow \uparrow homs are Abelian groups
... And Further are lk-vspaces

$$
\begin{aligned}
& \text { LOCALLY } \\
& \text { FINITE }
\end{aligned}
$$

FINITE
II. Finiteness for linear categories

$\zeta \equiv$ abelian, lk-linear cat.

$$
\uparrow
$$

$$
\uparrow
$$

homs are
Abelian groups
... And Further are \mathbb{R}-vspaces

FINITE
II. FINITENESS For linear categories

$\zeta \equiv \operatorname{AbELAN}, \operatorname{lk}$-LINEAR CAT.
homs are
AbELIAN GRoups
... AND FURTHER are le-vspaces

FINITE
II. Finiteness for linear categories

FINITE DIM'L IR-VSPACE $\forall x, y \in \zeta_{e}$
 FINITE
$\zeta \equiv$ abelian, lr-linear cat.
homs are
abelian groups
... AND FURTHER are lk-vspaces FINITE
II. Finiteness for linear categories

$\zeta \equiv$ abelian, lr-linear cat.
homs are
AbELIAN GRoups
are le-vspaces
\exists ONLY FINITELY MANY isoclasses of SIMPLE OBJECTS IN G $\int D E F$ FINITE
il. Finiteness for linear categories

IV. Finiteness for linear categories

il. Finiteness for linear categories

ALL OBJECTS IN ζ have finite lengTh

PROP: C FINITE \Longleftrightarrow $\zeta \simeq A-F d$ Mod For some fid. IR-ALG. A.

PF SKETCH/ $\Leftarrow)$

$$
\zeta \equiv \text { abelian, ll-linear cat. }
$$

Homs are
AbeLIAN GRoups
abeliangroups are \mathbb{R}-vspaces

J ENOUGH PROJECTIVE IN ζ : $\forall Z \in \zeta$ PPROJ.OBJ PL) $\in \boldsymbol{\zeta}$ WITH EPI PR) $\rightarrow z \mathbb{N} \boldsymbol{Y}$. DEF $\begin{aligned} & \downarrow \begin{array}{c}\text { F ONLY FINITELY MANY } \\ \text { ISOCLASSES OF } \\ \text { SIMPLE OBJECTS IN } \zeta\end{array} \\ & \int \text { DEF }\end{aligned}$ FINITE
\Longleftrightarrow Take isoclass reps $\left\{x_{1}, \ldots, x_{n}\right\}$
of simple objects of \mathcal{C}.
THEN $A:=\oplus_{i=1}^{n}$ Eide $\left(P\left(X_{i}\right)\right)$ WORKS...
il. Finiteness for linear categories

PROP: $C_{\text {FINITE }} \Longleftrightarrow$ $C \simeq A-F d$ Mod FOR SOME F.D. IK-ALG. A.

PF SKETCH / $\Leftarrow)$
(\Longrightarrow) TAKE ISOCLASS REPS $\left\{x_{1}, \ldots, x_{n}\right\}$ of simple objects of $\zeta_{\text {. }}$.

$$
\begin{gathered}
\zeta \equiv \operatorname{AbELIAN}, \text { lk-LINEAR CAT. } \\
\uparrow
\end{gathered}
$$

homs are ... And Further
AbElian GRoups are lR-vspaces

J ENOUGH PROJECTIVE IN ζ_{6} : $\forall z \in \zeta$ ヨPROJ.OBJ PC) $\in \zeta$ WITH EPI $P(z) \rightarrow Z \mathbb{N}$. . $\operatorname{DEF}\left(\begin{array}{c}\begin{array}{c}\text { F ONLY FINITELY MANY } \\ \text { ISOCLASSES OF } \\ \text { SIMPLE OBJECTS IN } \zeta\end{array} \\ \int \text { DEF }\end{array}\right.$

EILENBERG COR: $\zeta_{0}, 8$ FINITE. - WATTS TM

F LEFT (RIGHT) EXACT \Leftrightarrow
THEN $A:=\oplus_{i=1}^{n}$ End $\left(P\left(X_{i}\right)\right)$ WORKS...

F HAS A LEFT (RIGHT) ADJOINT.

LECTURE \# II

THIS ENDS OUR INTRO TO category theory
TOPICS:

1. BUILDING BLOCK OBJECTS
(\$2.7)
III. exactness
(f§2.8.1-2.8.2)
III. PROJECTIVITY \& INJECTIVITY
($\left\{_{2.8 .3}\right.$)
2. Finiteness for linear categories
($£ 2.9$)

LECTURE \#II

Next Time:
MONOIDAL
Topics: categories
12. BUILDING BLOCK OBJECTS
(\$2.7)
1II. Exactness
(882.8.1-2.8.2)
II. PRoJectivity \& INJEctivity
(82.8 .3)
11. Finiteness for linear categories
($£ 2.9$)

Enjoy this lecture? You'll enjoy the textbook!
 C. Walton's "Symmetries of Algebras, Volume 1" (2024)

Available for purchase at :
 619 Wreath (at a discount)
 https://www.619wreath.com/

Also on Amazon
 \&
 Google Play

Lecture \#11 keywords: Eilenberg-Watts Theorem, exact functor, finite category, indecomposable object, injective object, projective object, Schur's Lemma, semisimple category, short exact sequence, simple object

