MATH 466/566 SPRING 2024

CHELSEA WALTON RICE U.

LASTTIME

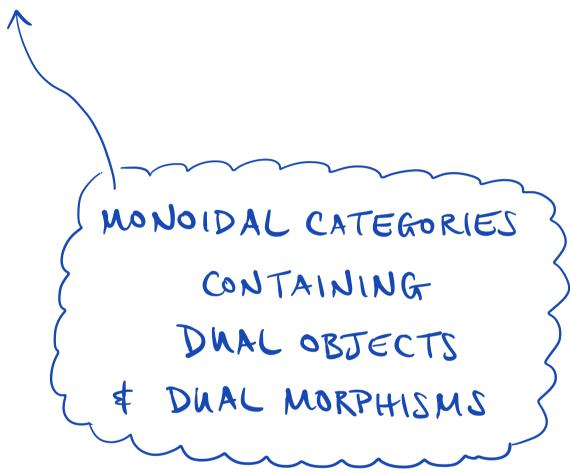
- · STRICTIFICATION
- · COHERENCE
- · GRAPHICAL CALCULUS
- RIGID CATEGORIES
 (JUST A SAMPLE IN THE STRICT CASE)

LECTURE #15

TOPICS:

I. RIGID CATEGORIES (§3.6)

II. PIVOTAL CATEGORIES (53.7)



FIX A MONOIDAL CATEGORY & := (&, 0, 1, a, 1, r)
AND AN OBJECT X & &

MONOIDAL CATEGORIES

CONTAINING

DNAL OBJECTS

DNAL MORPHISMS

FIX A MONOIDAL CATEGORY & := (&, 0, 1, a, 1, r)

AND AN OBJECT X & C

MONOIDAL CATEGORIES

CONTAINING

DNAL OBJECTS

\$ DNAL MORPHISMS

A LEFT DUAL OF X IS AN OBJECT X*& & EQUIPPED W/ MORPHISMS:

evx: X*&X -> 1L AND COEVx: 1L -> X&X*

FIX A MONOIDAL CATEGORY & := (&, 0, 1, a, 1, r)
AND AN OBJECT X & &

MONOIDAL CATEGORIES

CONTAINING

DNAL OBJECTS

\$ DNAL MORPHISMS

A LEFT DUAL OF X IS AN OBJECT X*& & EQUIPPED W/ MORPHISMS:

evx: X*&X -> 1L AND COEVx: 1L -> X&X*

FIX A MONOIDAL CATEGORY & := (&, 0, 1, a, 1, r)
AND AN OBJECT X & &

MONOIDAL CATEGORIES

CONTAINING

DNAL OBJECTS

\$ DNAL MORPHISMS

$$coev_{x}^{*} \otimes id \qquad (X \otimes X^{*}) \otimes X \xrightarrow{\alpha_{X,X^{*},X^{*}}} \times \otimes (X^{*} \otimes X) \qquad id \otimes ev_{x}^{*}$$

$$\downarrow^{-1} \text{ $1 \otimes X$} \qquad 2 \qquad \qquad \times \otimes 1 \qquad \times \\
= \text{LEFT RIGIDITY AXIOMS} = \\
\chi^{*} \qquad id \qquad \qquad \chi^{*} \qquad \qquad \downarrow^{*} \qquad \qquad \downarrow^{*} \qquad$$

FIX A MONOIDAL CATEGORY & := (&, 0, 1, a, 1, r) AND AN OBJECT XEC

MONOIDAL CATEGORIES

A LEFT DUAL OF X IS AN OBJECT X* & EQUIPPED W/ MORPHISMS:

$$ev_{x}^{L}: X^{*} \otimes X \longrightarrow U$$

AND $\operatorname{Coev}_{\times} : 1 \longrightarrow \times \times \times^*$

IN STRICT.



FIX A MONOIDAL CATEGORY & := (&, 0, 1, a, 1, r) AND AN OBJECT XEC

A LEFT DUAL OF X IS AN OBJECT X* & EQUIPPED W/ MORPHISMS:

$$ev_{x}^{L}: X^{*} \otimes X \longrightarrow U$$

AND
$$\operatorname{Coev}_{\times}^{\mathsf{L}} \colon \mathbb{L} \longrightarrow \mathsf{X} \otimes \mathsf{X}^{*}$$

IN STRICT.

FIX A MONOIDAL CATEGORY & := (&, 0, 1, a, 1, r)
AND AN OBJECT X & &

MONOIDAL CATEGORIES

CONTAINING

DNAL OBJECTS

\$ DNAL MORPHISMS

FIX A MONOIDAL CATEGORY & := (&, 0, 1, a, 1, r)
AND AN OBJECT X & &

MONOIDAL CATEGORIES

CONTAINING

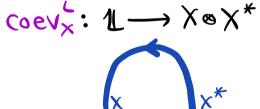
DNAL OBJECTS

\$ DNAL MORPHISMS

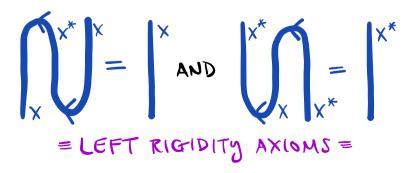
A LEFT DUAL OF X IS X*e & w/
evx: X*ex > 1L

[X*]

[X*



SUCH THAT: IN THE STRICT CASE



A RIGHT DUAL OF X IS * X \in * W | $ev_{x}^{R}: X \otimes * X \longrightarrow U$ $| (x) \times (x) \times (x) \times (x) \times (x)$ $| (x) \times (x) \times (x) \times (x) \times (x) \times (x)$ $| (x) \times (x) \times (x) \times (x) \times (x) \times (x)$

FIX A MONOIDAL CATEGORY & := (&, 0, 1, a, 1, r)
AND AN OBJECT X & &

MONOIDAL CATEGORIES

CONTAINING

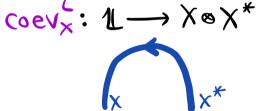
DNAL OBJECTS

DNAL MORPHISMS

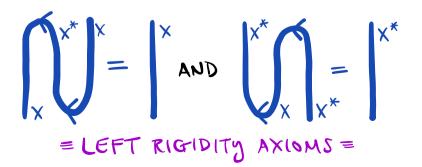
A LEFT DUAL OF X IS X*e& W/
evx: X*ex >1

(X*) X

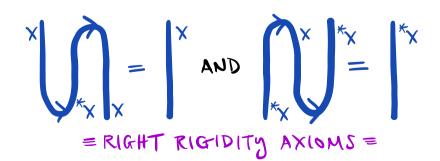
(X*)



SUCH THAT: IN THE STRICT CASE



A RIGHT DUAL OF X is $X \in \mathcal{C}_{W}$ $ev_{X}^{R}: X \otimes^{*} X \longrightarrow \mathcal{U}$ $X : X \otimes^{*} X \longrightarrow \mathcal{U}$ X : X



FIX A MONOIDAL CATEGORY & := (&, 0, 1, a, 1, r) AND AN OBJECT XEC

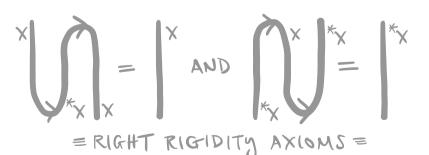
A LEFT DUAL OF X IS X*E & W | A RIGHT DUAL OF X IS *X = & W

 $ev_x: X^* \otimes X \longrightarrow U$

coevx: 1 - X x X*

 $ev_{x}^{k}: X \otimes^{*} X \longrightarrow U$

SUCH THAT: IN THE STRICT CASE



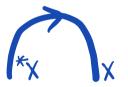
FIX A MONOIDAL CATEGORY & := (&, 0, 1, a, 1, r) AND AN OBJECT XEC

A LEFT DUAL OF X IS X*E & W/ A RIGHT DUAL OF X IS *X = & W/ $ev_x: X^* \otimes X \longrightarrow U$

$$Coev_{\times}: L \longrightarrow X \otimes X^*$$

C IS RIGHT RIGID

$$ev_{x}^{k}: X \otimes^{*} X \longrightarrow U$$



SUCH THAT: IN THE STRICT CASE

FIX A MONOIDAL CATEGORY & := (&, 0, 1, a, 1, r) AND AN OBJECT XEC

A LEFT DUAL OF X IS X*E & W | A RIGHT DUAL OF X IS *X = & W

$$ev_{x}: X^{*} \otimes X \longrightarrow U$$

G IS RIGID IF

FLEFT DUAL X*

$$ev_X^R: X \otimes^* X \longrightarrow U$$

SUCH THAT: IN THE STRICT CASE

RIGID CATEGORY

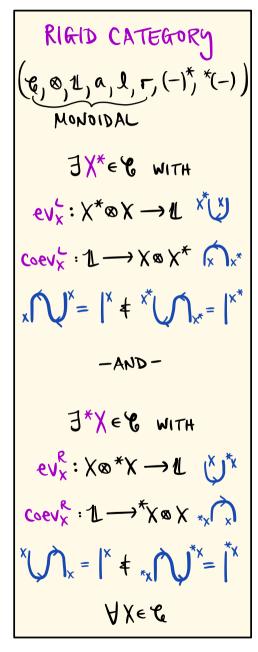
(e,
$$\otimes$$
, 1 , α , 1 , r , $(-)^*$, $*(-)$)

MONOIDAL

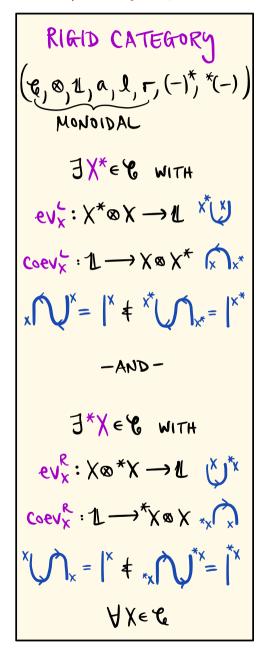
 $\exists X^* \in \mathcal{C}$ WITH

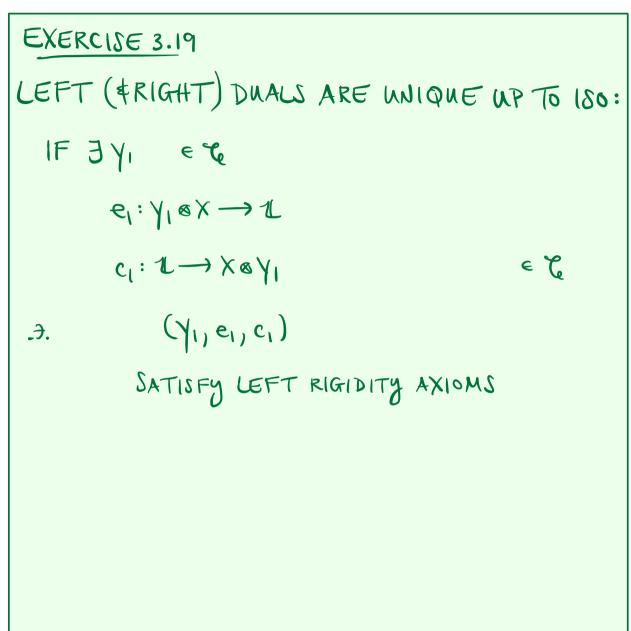
 $ev_X : X^* \otimes X \rightarrow \mathcal{L}$
 $coev_X : 1 \longrightarrow X \otimes X^* \quad x^*$
 $-AND$
 $\exists X \in \mathcal{C}$ WITH

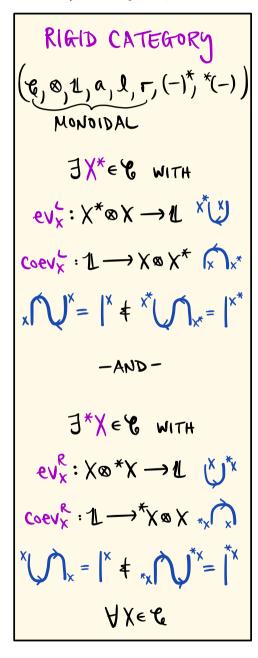
 $ev_X^* : X \otimes X^* \rightarrow \mathcal{L}$
 $ev_X^$

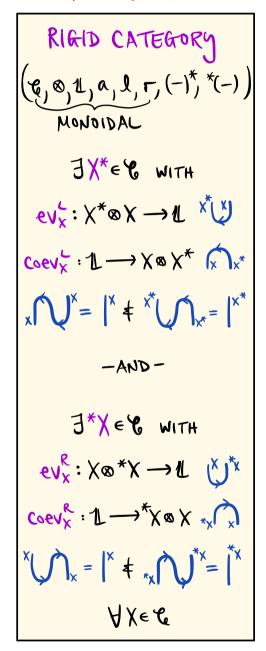


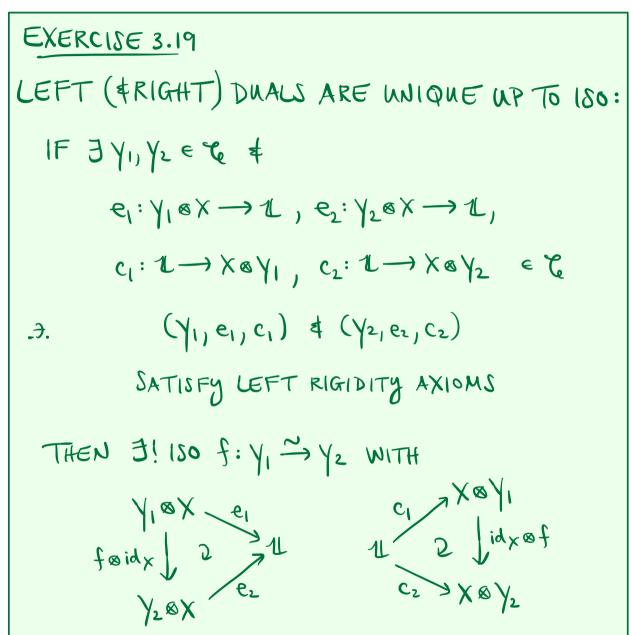
EXERCISE 3.19 LEFT (\$ RIGHT) DUALS ARE UNIQUE UP TO 180:











RIGID CATEGORY MONDIDAL JX* & WITH $ev_{x}^{L}: X^{*} \otimes X \rightarrow U^{X}$ $x = |x| \neq x^*$ -AND-HTIW 3 > X*E $ev_{X}^{R}: X \otimes *X \rightarrow U \bigvee_{X}^{X}$ $\operatorname{Coev}_{X}^{R}: 1 \longrightarrow {}^{*} \chi \otimes \chi _{*_{X}}$ AXE &

RIGID CATEGORY

$$(x, 0, 11, a, 1, r, (-)^*, *(-))$$

MONDIDAL

 $\exists X^* \in \mathcal{C}$ WITH

 $ev_x : X^* \otimes X \rightarrow \mathcal{L}$
 $x^* \in \mathcal{C}$
 $x^* \in \mathcal{C}$

RIGID CATEGORY

$$(x, 0, 1, a, 1, r, (-)^*, *(-))$$

MONOIDAL

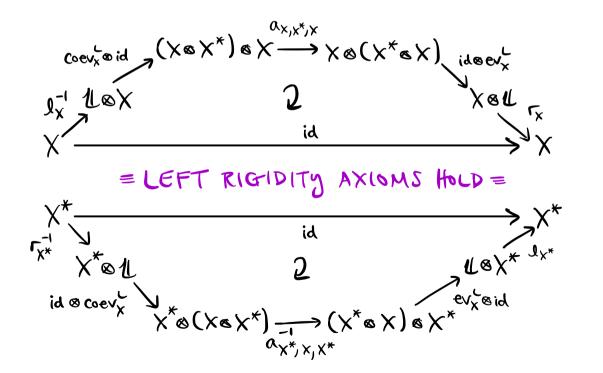
 $3 \times x \in \mathcal{C}$ WITH

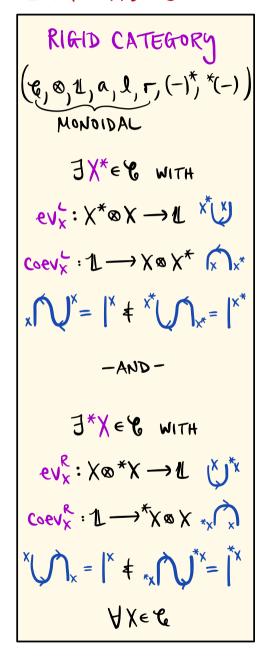
 $(x, 0, 1, a, 1, r, (-)^*, *(-))$
 $3 \times x \in \mathcal{C}$ WITH

 $(x, 0, 1, a, 1, r, (-)^*, *(-))$
 $3 \times x \in \mathcal{C}$ WITH

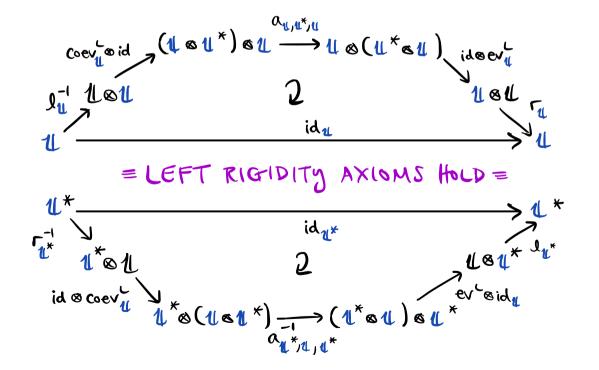
 $(x, 0, 1, a, 1, r, (-)^*, *(-))$
 $(x, 0, 1, a, 1, r, (-)^*, *(-)^*,$

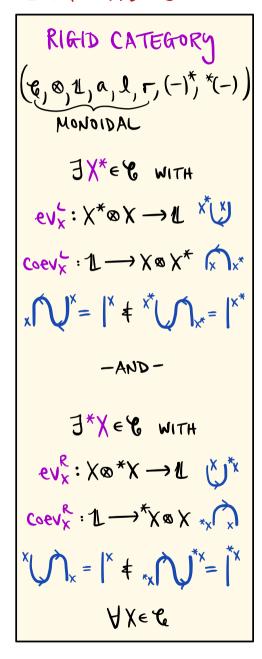
NEED
$$U^*$$
 $ev_{1}: 1 \otimes 1 \longrightarrow 1$
 $coev_{1}: 1 \longrightarrow 1 \otimes 1$



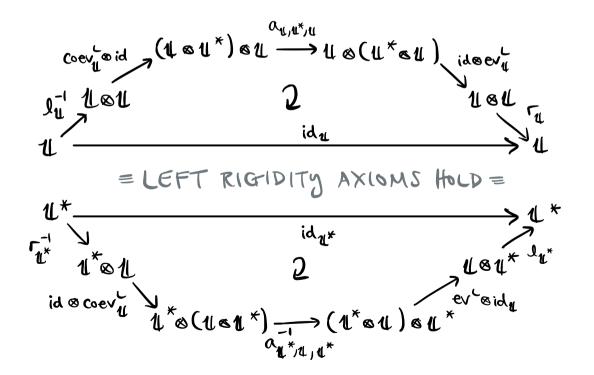


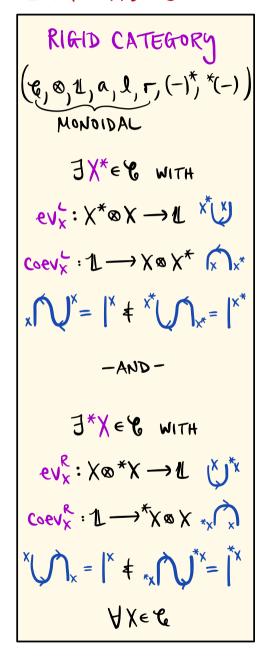
NEED
$$U^*$$
 $eV_1: U \otimes U \longrightarrow U$
 $coeV_1: U \longrightarrow U \otimes U$



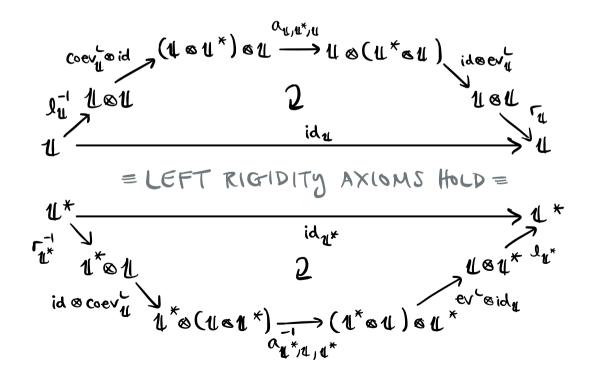


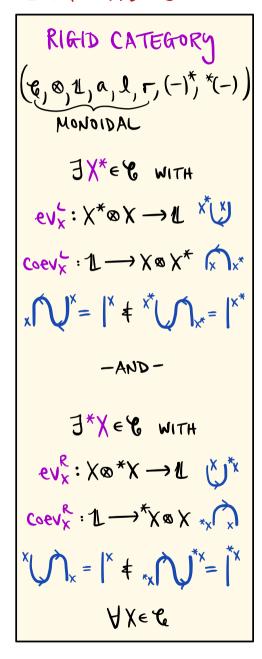
NEED
$$U^*$$
 $eV_{1}: U \otimes U \longrightarrow U$
 $coeV_{1}: U \longrightarrow U \otimes U$



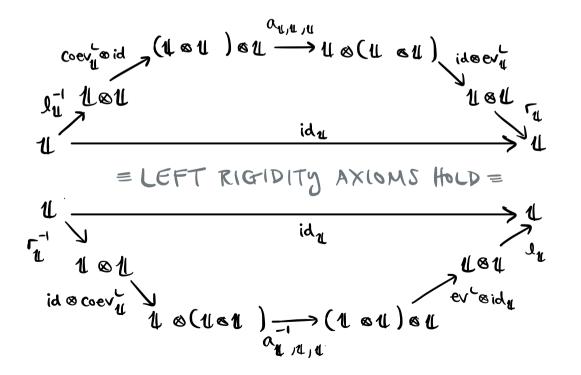


NEED
$$U^*$$
 $eV_{1}: 1 \otimes 1 \longrightarrow 1$
 $coeV_{1}: 1 \longrightarrow 1 \otimes 1$



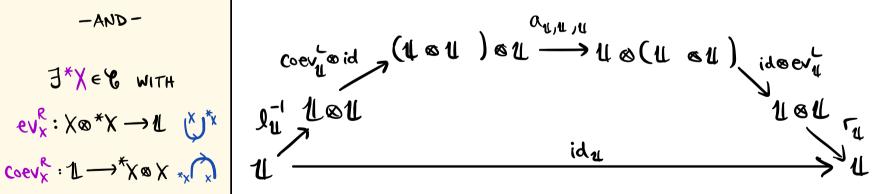


NEED
$$U^*$$
 $ev_{1}: 1 \otimes 1 \longrightarrow 1$
 $coev_{1}: 1 \longrightarrow 1 \otimes 1$



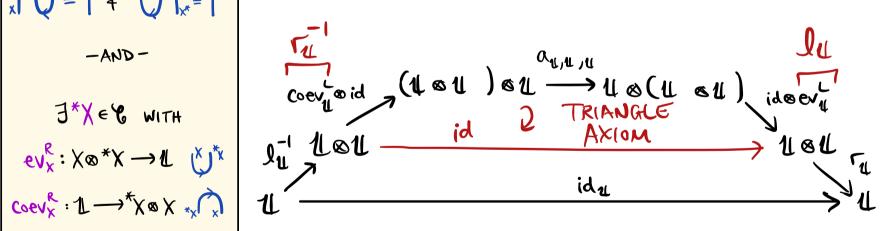
RIGID CATEGORY JX*∈& WITH $ev_{x}^{L}: X^{*} \otimes X \rightarrow U^{x}$ $Coev_X^L: L \longrightarrow X \otimes X^* \bigwedge_{x^*}$ $x = |x| \neq x^*$ YXE &

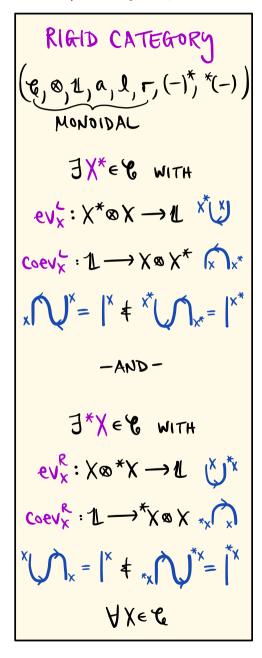
NEED
$$U^*$$
 $ev_1: 1 \otimes 1 \longrightarrow 1$
 $coev_1: 1 \longrightarrow 1 \otimes 1$



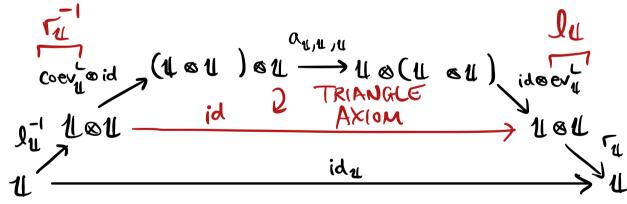
RIGID CATEGORY MONDIDAL JX*E WITH $ev_{x}^{L}: X^{*} \otimes X \rightarrow U^{X^{*}}$ $Coev_{x}^{L}: 1 \longrightarrow X \otimes X^{*} \bigwedge_{x^{*}}$ $X \cap X = X \neq X^* \cap X = X^*$ YXE &

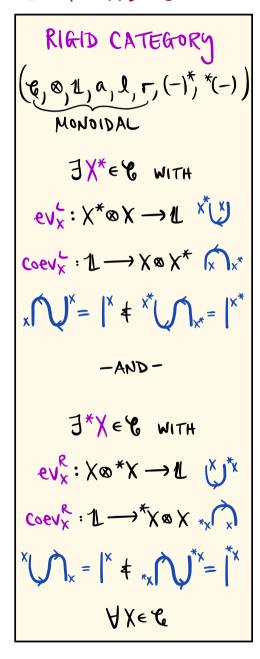
NEED
$$U^*$$
 $eV_{1}: 1 \otimes 1 \longrightarrow 1$
 $coeV_{1}: 1 \longrightarrow 1 \otimes 1$





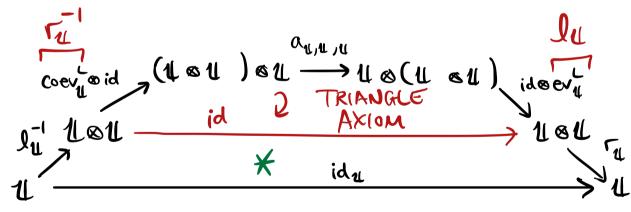
NEED
$$11^*$$
 $ev_1: 11 \otimes 11 \longrightarrow 11$
 $coev_1: 11 \longrightarrow 11 \otimes 11$

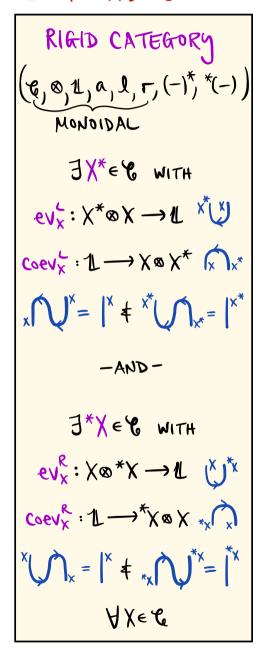




NEED
$$U^*$$
 $eV_{1}: 1 \otimes 1 \longrightarrow 1$
 $eV_{1}: 1 \otimes 1 \longrightarrow 1$
 $eV_{1}: 1 \otimes 1 \longrightarrow 1 \otimes 1$

Such that X Now STS $Y_{1} = Y_{1}$





EXERCISE 3.20 WE GET
$$1^* = 1 = *1$$
.

NEED 1^*
 $eV_1 : 1 \otimes 1 \longrightarrow 1$
 $coeV_1 : 1 \longrightarrow 1 \otimes 1$

Such that

$$coeV_1 : 1 \longrightarrow 1 \otimes 1$$

$$coeV_$$

RIGID CATEGORY

$$(e, 0, 1, a, 1, r, (-)^*, *(-))$$

MONOIDAL

 $\exists X^* \in \mathcal{C}$ WITH

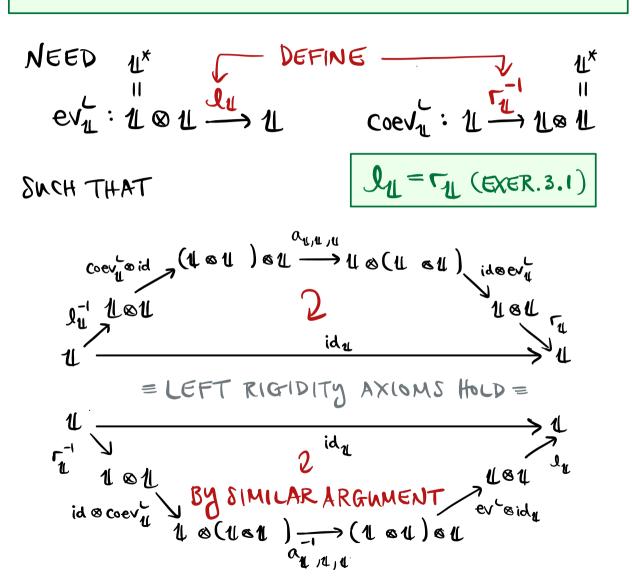
 $ev_{x}^{*}: X^* \otimes X \rightarrow \mathcal{L}$
 $Coev_{x}^{*}: 1 \longrightarrow X \otimes X^*$
 $-AND$
 $\exists X^* \in \mathcal{C}$ WITH

 $ev_{x}^{*}: X \otimes X^* \longrightarrow \mathcal{L}$
 $\downarrow X^* \otimes X^* \longrightarrow \mathcal{L}$

RIGID CATEGORY MONDIDAL HTIW 83*XE $ev_{x}: X^{*} \otimes X \rightarrow U^{X}$ $Coev_{x}^{\perp}: 1 \longrightarrow X \otimes X^{*} \bigwedge_{x^{*}}$ $X \cap X = X \neq X^* \cap X = X^*$ -AND-HTIW 3 > X*E $ev_{x}^{R}: X \otimes *X \rightarrow U (X)^{*}$ $\operatorname{Coev}_{\mathsf{X}}^{\mathsf{R}}: \mathbb{L} \longrightarrow {}^{\mathsf{*}} \chi \otimes \chi \times_{\mathsf{X}} \chi$

YXE &

you do!



youdo!

RIGID CATEGORY MONOIDAL HTIW 33*XE $ev_{x}: X^{*} \otimes X \rightarrow U \xrightarrow{X^{*}} V$ $Coev_{x}^{\perp}: 1 \longrightarrow X \otimes X^{*} \bigwedge_{x}^{*}$ $X \cap X = X \neq X^* \cap X^* = X^*$ -AND-HTIW S=X*E $ev_{x}^{R}: X \otimes * X \rightarrow U \bigvee_{x}^{X}$ $\operatorname{Coev}_{X}^{R}: \mathbb{1} \longrightarrow {}^{*}X \otimes X *_{X}$ $X = X \neq X$ YXE &

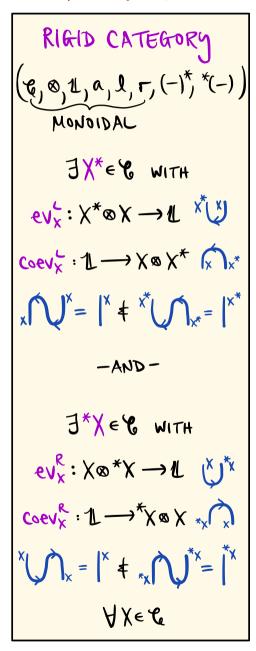
NEED
$$U^*$$
 $eV_1: 1 \otimes 1$
 U^*
 $eV_1: 1 \otimes 1$
 U^*
 U^*

ANOTHER COOL EXERCISE:

RIGID CATEGORY MONDIDAL JX* & WITH $ev_{x}^{L}: X^{*} \otimes X \rightarrow U \stackrel{x^{*} \vee}{\vee}$ $X \cap X = X \neq X^* \cap X^* = X^*$ -AND-J*X & WITH $ev_{x}^{R}: X \otimes *X \rightarrow U \bigvee_{x}^{x}$ $\operatorname{Coev}_{X}^{R}: \mathbb{1} \longrightarrow {}^{*}X \otimes X *_{X}$ YXE &

EXAMPLES INVOLVING 1k-VECTOR SPACES

CONSIDER (Fd Vec,
$$\otimes := \otimes_{\mathbb{R}}, 1 = \mathbb{R}$$
)



EXAMPLES INVOLVING 1R-VECTOR SPACES

CONSIDER (FdVec, $\otimes := \otimes_{\mathbb{R}}$, $1L=\mathbb{R}$)

FOR $V \in FdVec$ WITH BASIS (bi);

GET $V^* := Hom_{\mathbb{R}}(V, \mathbb{R})$ is the LEFT DUAL OF V.

RIGID CATEGORY MONOIDAL 3X*∈& WITH $x = |x| \neq x^*$ -AND-J*X & WITH $ev_{x}^{R}: X \otimes *X \rightarrow U \bigvee_{x}^{x}$ $\operatorname{Coev}_{X}^{R}: \mathbb{1} \longrightarrow {}^{*}X \otimes X *_{X}$ $x = x \neq x$ YXE &

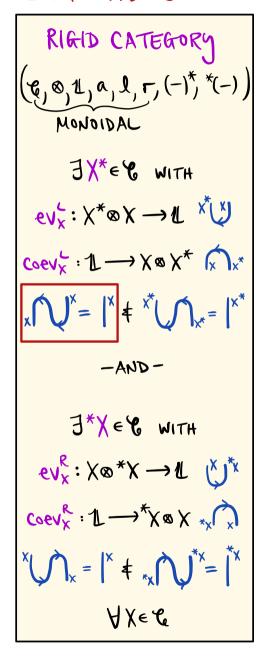
CONSIDER (FdVec,
$$\otimes := \otimes_{\mathbb{R}}$$
, $1 L = \mathbb{R}$)

HONOIDAL

FOR $V \in FdVec$ WITH BASIS (biji,

 $3 \times * \in \mathscr{C}$ WITH

 $ev_{x}^{*} : \times * \otimes \times \to 1 L \times (V)$
 $coev_{x}^{*} : 1 L \to \times \otimes \times * \times (X)$
 $coev_{x}^{*} : 1 L \to \times \otimes \times * \times (X)$
 $f \otimes_{\mathbb{R}} v \mapsto f(v)$
 $f \otimes_{\mathbb{R}} v \mapsto f(v)$



CONSIDER (Favec)
$$\otimes := \otimes_{\mathbb{R}} 1 = \mathbb{R}$$
)

HONOUDAL

 $\exists \chi^* \in \mathscr{C} \text{ with}$
 $\exists \chi^* \in \mathscr{C} \text{$

RIGID CATEGORY MONOIDAL JX* & WITH $ev_{x}^{\zeta}: \chi^{*} \otimes \chi \rightarrow \ell \chi^{*}$ $Coev_{x}: 1 \longrightarrow X \otimes X^{*} \bigwedge_{x^{*}}$ -AND-J*X & WITH $ev_{x}^{R}: X \otimes * X \rightarrow U \bigvee_{x}^{X}$ $\operatorname{Coev}_{\mathsf{X}}^{\mathsf{R}}: \mathbb{I} \longrightarrow {}^{\mathsf{*}} \chi \otimes \chi \times_{\mathsf{X}}$ $^{\times}$ \bigcirc $_{\times}$ = $|^{\times}$ \neq $_{*_{\times}}$ \bigcirc \bigcirc $^{*_{\times}}$ YXE &

CONSIDER (Fd Vec,
$$\otimes := \otimes_{\mathbb{R}}$$
, $1L = \mathbb{R}$)

HONOIDAL

 $3 \times \in \mathscr{C}$ WITH

 $2 \times : \times \otimes \times \to 1L \times ()$
 $2 \times : \times \otimes \times \to 1L \times ()$
 $2 \times : \times \otimes \times \to 1L \times ()$
 $2 \times : \times \otimes \times \to 1L \times ()$
 $2 \times : \times \otimes \times \to 1L \times ()$
 $2 \times : \times \otimes \times \to 1L \times ()$
 $2 \times : \times \otimes \times \to 1L \times ()$
 $2 \times : \times \otimes \times \to 1L \times ()$
 $2 \times : \times \otimes \times \to 1L \times ()$
 $2 \times : \times \otimes \times \to 1L \times ()$
 $2 \times : \times \otimes \times \times ()$
 $3 \times : \times \otimes \times ()$
 $4 \times : \times ()$
 $4 \times ()$
 4

RIGID CATEGORY MONOIDAL 3X*∈& WITH $Coev_{x}^{L}: L \longrightarrow X \otimes X^{*} \bigwedge_{x}^{*}$ -AND-J*X & WITH $ev_{x}^{R}: X \otimes *X \rightarrow U (X)^{*x}$ YXE &

RIGID CATEGORY MONOIDAL 7X*∈ YO WITH $Coev_{x}^{L}: 1 \longrightarrow X \otimes X^{*} \bigwedge_{x^{*}}$ $X \cap Y = |X| \neq X^* \cap Y = |X^*|$ -AND-HTIW 33X*E $ev_{x}^{R}: X \otimes *X \rightarrow U (X)^{*x}$ AXE &

Consider (Favec)
$$\otimes := \otimes_{\mathbb{R}_{1}} 1 L = \mathbb{R}_{2}$$

For $V \in FaVec$ with $Basis$ (b) \mathbb{I}_{1}
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*} \otimes x^{*}$
 $ev_{x}^{\times} : x^{*} \otimes x \to 1 x^{*}$
 ev_{x}^{\times}

RIGID CATEGORY MONOIDAL 3X*∈ & WITH $Coev_{x}^{L}: 1 \longrightarrow X \otimes X^{*} \bigwedge_{x^{*}}$ $x = |x| + x^*$ -AND-J*X & WITH $ev_{x}^{R}: X \otimes *X \rightarrow U (X)^{*x}$ AXE &

CONSIDER (FdVec)
$$\otimes := \otimes_{\mathbb{R}}$$
, $1L = \mathbb{R}$)

FOR VE FdVec WITH BASIS $\{b_i\}_i$,

 $2 \times * \in \mathscr{C}$ WITH

 $ev_{x}: X * \otimes X \to U$
 $v_{x}: X$

RIGID CATEGORY MONOIDAL 3X*∈ & WITH $Coev_{x}^{L}: 1 \longrightarrow X \otimes X^{*} \bigwedge_{x^{*}}$ $X \cap Y = |X| \neq X^* \cap Y = |X^*|$ -AND-J*X & WITH $ev_{x}^{R}: X \otimes {}^{*}X \rightarrow U \stackrel{(X)^{*}}{\longrightarrow} U$ AXE &

RIGHD CATEGORY

(c, 0, 1, 1, 1, 1, 1)

MONDIDAL

$$2 \times e^* e^* with$$
 $ev_x^* : \chi^* \otimes \chi \to U \times i \chi$
 $coev_x^* : 1 \to \chi \otimes \chi^* \times i \chi^*$
 $-AND 3 \times \chi e^* e^* with$
 $ev_x^* : \chi^* \otimes \chi \to U \times i \chi^*$
 $-AND 3 \times \chi e^* e^* with$
 $ev_x^* : \chi^* \otimes \chi \to U \times i \chi^*$
 $-AND 3 \times \chi e^* e^* with$
 $ev_x^* : \chi^* \otimes \chi^* \to U \times i \chi^*$
 $-AND 3 \times \chi e^* e^* with$
 $ev_x^* : \chi^* \otimes \chi^* \to U \times i \chi^*$
 $-AND 3 \times \chi e^* e^* with$
 $ev_x^* : \chi^* \otimes \chi^* \to U \times i \chi^*$
 $-AND 3 \times \chi e^* e^* with$
 $ev_x^* : \chi^* \otimes \chi^* \to U \times i \chi^*$
 $-AND 3 \times \chi e^* e^* with$
 $ev_x^* : \chi^* \otimes \chi^* \to U \times i \chi^*$
 $-AND 3 \times \chi e^* e^* with$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^* \otimes \chi^* \to U \times i \chi^*$
 $1 \times \chi^*$

RIGID CATEGORY MONDIDAL 3X*∈ & WITH $ev_{\kappa}^{\kappa}: \chi^{*} \otimes \chi \rightarrow \ell \chi^{*}$ $Coev_{x}^{L}: 1 \longrightarrow X \otimes X^{*} \bigwedge_{x}^{*}$ $x = |x| \neq |x|$ J*X & WITH $ev_{x}^{\ell}: X \otimes {}^{*}X \rightarrow {}^{\prime}L \stackrel{x}{\downarrow}^{*_{x}}$ $\operatorname{Coev}_{X}^{R}: \mathbb{L} \longrightarrow {}^{*}\!\! \chi \otimes \chi *_{x} \bigcap_{X}$ $x = x \neq x$ YXE &

CONSIDER (Fd Vec,
$$\otimes := \otimes_{\mathbb{R}}$$
, $1L = \mathbb{R}$)

HONOIDAL

 $3 \times \in \mathscr{C}$ WITH

 $2 \times (: \times) \times$

LIKEWISE

$$V^* \xrightarrow{id_{V}* \otimes \operatorname{Coev}_{V}^{\vee}} V^* \otimes V \otimes V^* \xrightarrow{\operatorname{ev}_{V}^{\vee} \otimes \operatorname{id}_{V}^{*}} V^* = \operatorname{id}_{V}^{*}$$

RIGID CATEGORY (e, ⊗, 1, a, l, r, (-)*, *(-)) MONDIDAL 3X*∈& WITH $ev_{\kappa}^{\kappa}: \chi^{*} \otimes \chi \rightarrow \ell^{\kappa}$ $Coev_{x}^{L}: 1 \longrightarrow X \otimes X^{*} \bigwedge_{x^{*}}$ $X \cap X = X \neq X^* \cap X = X^*$ -AND-J*X & WITH evx:X∞*X →L (X)*x LIKEWISE $\operatorname{Coev}_{\mathsf{X}}^{\mathsf{R}}: \mathbb{I} \longrightarrow^{*} \chi \otimes \chi *_{\mathsf{X}}$ $\mathbf{x}(\mathbf{y}) = \mathbf{x} + \mathbf{x}(\mathbf{y}) = \mathbf{x}$ YXE &

EXAMPLES INVOLVING IR-VECTOR SPACES

CONSIDER (Favec, $\otimes := \otimes_{\mathbb{R}}, \mathcal{L} = \mathbb{R}$)

FOR Ve Favec WITH BASIS (bi)i,

GET V := HOMIR (V, IR) IS THE LEFT DUAL OF V.

HERE: $ev_{V}^{L}: V^{*} \otimes_{lk} V \longrightarrow lk$ $coev_{V}^{L}: lk \longrightarrow V \otimes_{lk} V^{*}$ 1/k > 5/ bi & bi* $f \otimes_{\mathbb{K}} v \mapsto f(v)$

 $V \xrightarrow{\text{coeV}_{1} \otimes \text{id}_{V}} V \otimes V \xrightarrow{\text{id}_{1} \otimes \text{ev}_{V}} V = \text{id}_{V}$

$$V^* \xrightarrow{id_{V}* \otimes \operatorname{Coev}_{V}} V^* \otimes V \otimes V^* \xrightarrow{\operatorname{ev}_{V} \otimes \operatorname{id}_{V}*} V^* = \operatorname{id}_{V}*$$

ALSO, *V := HOMIR (V, IR) IS THE RIGHT DUAL OF V.

RIGID CATEGORY (e, ⊗, 1, a, l, F, (-)*, *(-)) MONOIDAL 3X*∈ & WITH $ev_{x}^{x}: X^{*} \otimes X \rightarrow U^{x}$ $Coev_{x}^{L}: 1 \longrightarrow X \otimes X^{*} \bigwedge_{x^{*}}$ $X \cap X = X \neq X^* \setminus X = X^*$ -AND-HTIW 33X*E $ev_{x}^{R}: X \otimes {}^{*}X \rightarrow U \stackrel{X}{\downarrow}^{*}$ $\operatorname{Coev}_{\mathsf{X}}^{\mathsf{R}}: \mathbb{L} \longrightarrow {}^{\mathsf{*}} \chi \otimes \chi \times_{\mathsf{X}} \chi$ X = X = X = XYXE &

EXAMPLES INVOLVING 1R-VECTOR SPACES

CONSIDER (FdVec)
$$\otimes := \otimes_{\mathbb{R}}$$
, $1L = \mathbb{R}$)

FOR $V \in FdVec$ with BASIS $\{b_i\}_i$,

GET $V^* := Hom_{\mathbb{R}}(V, \mathbb{R})$ is the left dual of V .

HERE: $ev_V : V^* \otimes_{\mathbb{R}} V \longrightarrow \mathbb{R}$ $coev_V : \mathbb{R} \longrightarrow V \otimes_{\mathbb{R}} V^*$
 $f \otimes_{\mathbb{R}} v \mapsto f(v)$ $1 + v_V \otimes_{\mathbb{R}} V \otimes_{\mathbb{R}} V$

THINK ABOUT THIS III

RIGID CATEGORY MONOIDAL 3X*∈& WITH $x = |x| \neq x^*$ -AND-J*X & WITH $ev_{x}^{R}: X \otimes *X \rightarrow U \bigvee_{x}^{x}$ $\operatorname{Coev}_{X}^{R}: \mathbb{1} \longrightarrow {}^{*}X \otimes X *_{X}$ $x = x \neq x$ YXE &

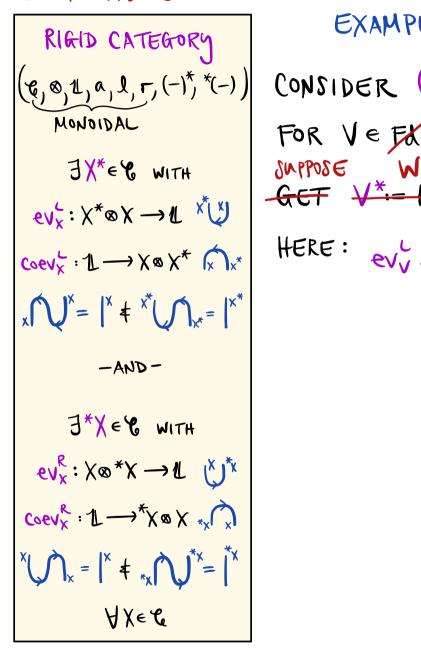
CONSIDER (FdVec,
$$\otimes := \otimes_{\mathbb{R}}$$
, $1 L = \mathbb{R}$)

HONOIDAL

FOR $V \in FdVec$ WITH BASIS (biji,

 $3 \times * \in \mathscr{C}$ WITH

 $ev_{x}^{*} : \times * \otimes \times \to 1 L \times (V)$
 $coev_{x}^{*} : 1 L \to \times \otimes \times * \times (X)$
 $coev_{x}^{*} : 1 L \to \times \otimes \times * \times (X)$
 $f \otimes_{\mathbb{R}} v \mapsto f(v)$
 $f \otimes_{\mathbb{R}} v \mapsto f(v)$



RIGID CATEGORY (e, 0, 1, a, 1, r, (-)*, *(-)) MONDIDAL 3X*∈ & WITH $ev_{x}^{\zeta}: X^{*} \otimes X \rightarrow U \xrightarrow{x^{\zeta}}$ $X \cap X = X \neq X^* \cap X = X^*$ -AND-J*X & WITH $ev_{X}^{R}: X \otimes *X \rightarrow U \bigvee_{X}^{X}$ $\operatorname{Coev}_{X}^{R}: \mathbb{1} \longrightarrow {}^{*}X \otimes X *_{X}$ X = X = X = XAXE &

CONSIDER (Vec,
$$\otimes := \otimes_{\mathbb{R}}$$
, $1 L = \mathbb{R}$)

HERE: $ev_{V}: V \otimes_{\mathbb{R}} V \otimes$

RIGID CATEGORY (e, 0, 1, a, 1, r, (-)*, *(-)) MONDIDAL 3X*∈ & WITH $ev_{x}^{L}: X^{*} \otimes X \rightarrow L \xrightarrow{x^{*}}$ $X \cap X = X \neq X^* \cap X = X^*$ -AND-J*X & WITH $ev_{x}^{R}: X \otimes *X \rightarrow U \bigvee_{x}^{x}$ $\operatorname{Coev}_{X}^{R}: \mathbb{1} \longrightarrow {}^{*}X \otimes X *_{X}$ X = X = X = XAXE &

CONSIDER (Vec,
$$\otimes := \otimes_{\mathbb{R}}$$
, $1 = \mathbb{R}$)

MONOIDAL

 $\exists X^* \in \mathcal{C}$ WITH

 $\exists X^* \in \mathcal{C}$ W

RIGID CATEGORY (6, 0, 1, a, l, r, (-)*, *(-)) MONDIDAL 3X*∈ & WITH $ev_{\kappa}^{\kappa}: \chi^{*} \otimes \chi \rightarrow \iota \iota \chi^{(\kappa)}$ $X \cap X = X \neq X^* \cap X = X^*$ -AND-J*X & WITH $ev_{x}^{R}: X \otimes *X \rightarrow U \bigvee_{x}^{x}$ $\operatorname{Coev}_{\mathsf{X}}^{\mathsf{R}}: \mathbb{L} \longrightarrow {}^{\mathsf{*}} \chi \otimes \chi \times_{\mathsf{X}} \chi$ $x = x \neq x$ YXE &

RIGID CATEGORY MONOIDAL 3X*∈& WITH $ev_{\zeta}^{\chi}: \chi^{*} \otimes \chi \rightarrow U^{\chi^{*}}$ $X = |X \neq X^*|$ -AND-J*X & WITH $ev_{x}^{R}: X \otimes * X \rightarrow L \overset{x}{\bigvee}^{*_{x}}$ $\operatorname{Coev}_{\mathsf{X}}^{\mathsf{R}}: \mathbb{I} \longrightarrow {}^{\mathsf{*}} \chi \otimes \chi \times_{\mathsf{X}}$ $^{\times}$ \bigcirc $_{\times}$ = $|^{\times}$ \neq $_{*_{\times}}$ \bigcirc \bigcirc $^{*_{\times}}$ YXE &

RIGID CATEGORY MONDIDAL HTIW 83*XE $ev_{\zeta}^{\chi}: \chi^{*} \otimes \chi \rightarrow \iota \iota^{\chi^{*}}$ $X = |X \neq X^*|$ -AND-J*X & WITH $X = X \neq X$ YXE &

CONSIDER (Vec,
$$\otimes := \otimes_{\mathbb{R}}$$
, $1 L = \mathbb{R}$)

 $\exists X^* \in \mathscr{C}$ with

 \exists

RIGID CATEGORY (e, 0, 1, a, 1, r, (-)*, *(-)) MONDIDAL 3X*∈ & WITH $ev_{x}^{L}: X^{*} \otimes X \rightarrow L \xrightarrow{x^{*}}$ $X = |X \notin X^* | X = |X^*|$ -AND-J*X & WITH |X| = |X| + |X| + |X| = |X| |X| = |X| + |X| + |X| = |X| |X| = |X| + |X| + |X| = |X| = |X| + |X| = |X| + |X| = |XAXE &

CONSIDER (Vec
$$\otimes := \otimes_{\mathbb{R}}$$
, $1 L = \mathbb{R}$)

HONDODAL

 $\exists X^* \in \mathcal{C}$ WITH

 $\exists X^* \in \mathcal{C}$

RIGID CATEGORY (6,0,1,a,l,r,(-)*,*(-)) MONDIDAL 3X*∈ & WITH $ev_{x}^{x}: X^{*} \otimes X \rightarrow U^{x}$ $X \cap X = X \neq X^{*} (A \cap X)^{*} = X^{*}$ -AND-J*X & WITH |X| = |X| + |X| + |X| = |X| |X| = |X| + |X| + |X| = |X| |X| = |X| + |X| + |X| = |X| = |X| + |X| = |X| + |X| = |X| = |X| + |X| = |X| = |X| + |X| = |XAXE &

CONSIDER (Vec
$$_{|} \otimes := \otimes_{|R|} : 1L = |R|)$$

HONDOLDAL

 $\exists X^* \in \mathcal{C} \text{ with}$
 $\exists X^* \in \mathcal{C$

RIGID CATEGORY (e, 0, 1, a, l, r, (-)*, *(-)) MONDIDAL 3X*∈ & WITH $ev_{x}^{L}: X^{*} \otimes X \rightarrow L \xrightarrow{x^{*}} V$ $X = |X \neq X^{*} |$ -AND-J*X & WITH $ev_x^R: X \otimes *X \rightarrow U \bigvee^*$ |X| = |X| + |X| + |X| = |X| |X| = |X| + |X| + |X| = |X| |X| = |X| + |X| + |X| = |X| |X| = |X| + |X| + |X| = |X| |X| = |X| + |X| + |X| = |X| |X| = |X| + |X| + |X| = |X| |X| = |X| + |X| + |X| = |X| = |X| + |X| = |X| + |X| = |X| = |X| = |X| = |X| + |X| = |X|

Consider (Vec)
$$\otimes := \otimes_{\mathbb{R}}$$
, $1L=\mathbb{R}$)

Here: $ev_{x}^{\vee}: \chi^{*} \otimes \chi \to 1$ χ^{\vee}
 $\chi^{\vee} = \chi^{*} \otimes \chi^{*} \otimes \chi^{*} \otimes \chi^{*}$
 $\chi^{\vee} = \chi^{\vee} \otimes \chi^{*} \otimes \chi^{*} \otimes \chi^{*}$
 $\chi^{\vee} = \chi^{\vee} \otimes \chi^{*} \otimes \chi^{*} \otimes \chi^{*}$
 $\chi^{\vee} = \chi^{\vee} \otimes \chi^{*} \otimes \chi^{*} \otimes \chi^{*}$
 $\chi^{\vee} = \chi^{\vee} \otimes \chi^{*} \otimes \chi^{*} \otimes \chi^{*}$
 $\chi^{\vee} = \chi^{\vee} \otimes \chi^{*} \otimes \chi^{*} \otimes \chi^{*}$
 $\chi^{\vee} = \chi^{\vee} \otimes \chi^{*} \otimes \chi^{*} \otimes \chi^{*}$
 $\chi^{\vee} = \chi^{\vee} \otimes \chi^{*} \otimes \chi^{*} \otimes \chi^{*}$
 $\chi^{\vee} = \chi^{\vee} \otimes \chi^{*} \otimes \chi^{*} \otimes \chi^{*} \otimes \chi^{*}$
 $\chi^{\vee} = \chi^{\vee} \otimes \chi^{*} \otimes \chi^{*} \otimes \chi^{*} \otimes \chi^{*} \otimes \chi^{*}$
 $\chi^{\vee} = \chi^{\vee} \otimes \chi^{*} \otimes \chi^{$

RIGID CATEGORY (6, 0, 1, a, 1, r, (-)*, *(-)) MONDIDAL 3X*∈ & WITH $ev_{x}^{x}: X^{*} \otimes X \rightarrow U^{x}$ $Coev_{x}^{L}: 1 \longrightarrow X \otimes X^{*} \bigwedge_{x^{*}}$ $x = |x| \neq x^{-1}$ -AND-J*X & WITH YXE &

CONSIDER (Vec,
$$\otimes := \otimes_{\mathbb{R}}$$
, $1 L = \mathbb{R}$)

HONOUDAL

 $\exists X'' \in \mathcal{C}$ WITH

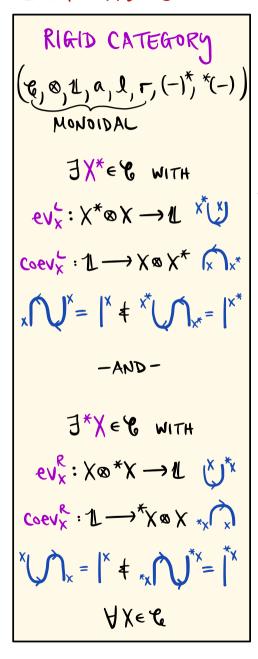
 $\exists X'' \in \mathcal{C}$

RIGID CATEGORY (6, 8, 1, a, 1, r, (-)*, *(-)) MONDIDAL 3X*∈ & WITH $ev_{x}: X^{*} \otimes X \rightarrow U^{X}$ $Coev_{x}: 1 \longrightarrow X \otimes X^{*} \bigwedge_{x^{*}}$ $x = |x| \neq x^{-1}$ -AND-J*X & WITH YXE &

CONSIDER (Vec,
$$\otimes := \otimes_{\mathbb{R}}$$
, $1 = \mathbb{R}$) NOT RIGID

FOR V e Vec WITH BASIS $\{b_i\}_i$,

 $\{v_{x}, v_{x}, v_{x}, v_{x}\}_{i=1}^{k}$
 $\{v_{x}, v_{x}, v_{x}, v_{x}\}_{i=1}^{k}$
 $\{v_{x}, v_{x},$



EXAMPLES INVOLVING IR-VECTOR SPACES

RIGID

For Rigid

For Vec

RIGID CATEGORY (e, ⊗, 1, a, l, r, (-)*, *(-)) MONDIDAL JX* & WITH $ev_{x}^{L}: X^{*} \otimes X \rightarrow U^{X}$ $Coev_{x}^{\perp}: 1 \longrightarrow \chi \otimes \chi^{*} \bigwedge_{x^{*}}$ $x = |x| \neq x^*$ -AND-HTIW 3 > X*E $ev_{x}^{R}: X \otimes *X \rightarrow U \bigvee_{x}^{x}$ $\operatorname{Coev}_{X}^{R}: \mathbb{L} \longrightarrow {}^{*}X \otimes X *_{x}$ $^{\mathsf{X}}$ $^{\mathsf{X}}$ = $^{\mathsf{X}}$ $^{\mathsf{X}}$ $^{\mathsf{X}}$ $^{\mathsf{X}}$ $^{\mathsf{X}}$ $^{\mathsf{X}}$ $^{\mathsf{X}}$ AXE &

RIGID CATEGORY

$$(e, 0, 11, a, 1, r, (-)^*, *(-))$$

MONOIDAL

 $\exists X^* \in \mathcal{C}$ WITH

 $ev_x : X^* \otimes X \rightarrow \mathcal{L}$
 $x^* \in \mathcal{C}$
 $x^* \in \mathcal{C}$

RIGID CATEGORY (e, ∞, 1, a, 1, r, (-)*, *(-)) MONDIDAL JX* & WITH $ev_{x}^{L}: X^{*} \otimes X \rightarrow U^{X}$ $Coev_{x}^{L}: \mathbb{1} \longrightarrow X \otimes X^{*} \bigwedge_{x^{*}}$ $x = |x| \neq x^*$ -AND-HTIW 3 > X*E $ev_{x}^{R}: X \otimes *X \rightarrow U \bigvee_{x}^{x}$ $Coev_X^R : 1 \longrightarrow X \otimes X *_X$ $X = |X| \neq X$ AXE &

FOR A IR-ALGEBRA A

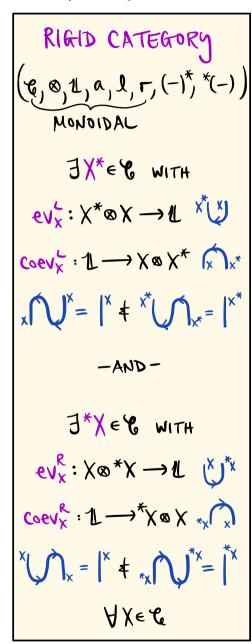
A-FdBimod (MOST OF THE TIME)

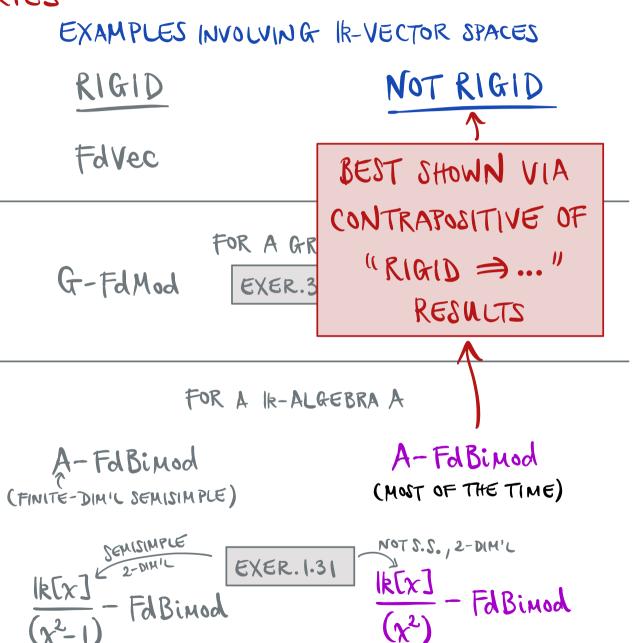
RIGID CATEGORY (e, ⊗, 1, a, l, r, (-)*, *(-)) MONOIDAL JX* & WITH $ev_{x}^{L}: X^{*} \otimes X \rightarrow U \stackrel{X^{*} \cup V}{\cup}$ $Coev_{x}^{L}: \mathbb{1} \longrightarrow X \otimes X^{*} \bigwedge_{x^{*}}$ $x = |x| \neq x^*$ -AND-J*X & WITH $ev_{\mathcal{K}}^{\mathsf{X}}: \mathsf{X} \otimes * \mathsf{X} \to \mathsf{I} \cup \mathsf{X}^{\mathsf{X}}$ $\operatorname{Coev}_{\mathsf{X}}^{\mathsf{R}}: \mathbb{L} \longrightarrow^{*} \!\! \chi \otimes \chi \times_{\mathsf{X}} \!\! \bigcap_{\mathsf{X}}$ $X = |X| \neq X$ AXE &

FdVec Vec

FOR A IR-ALGEBRA A

RIGID CATEGORY (e, ⊗, 1, a, l, r, (-)*, *(-)) MONOIDAL 3X*∈ & WITH $ev_{x}^{L}: X^{*} \otimes X \rightarrow U^{X}$ $Coev_{x}^{L}: \mathbb{1} \longrightarrow X \otimes X^{*} \bigwedge_{x^{*}}$ $x = |x| \neq x^*$ -AND-HTIW 3 > X*E $ev_{x}^{R}: X \otimes *X \rightarrow U \bigvee_{x}^{x}$ $\operatorname{Coev}_{\mathsf{X}}^{\mathsf{R}}: 1 \longrightarrow {}^{\mathsf{X}} \times \times \times \times$ YXEC



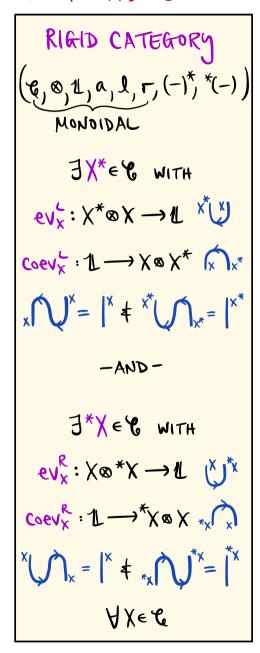


LET'S ESTABLISH A

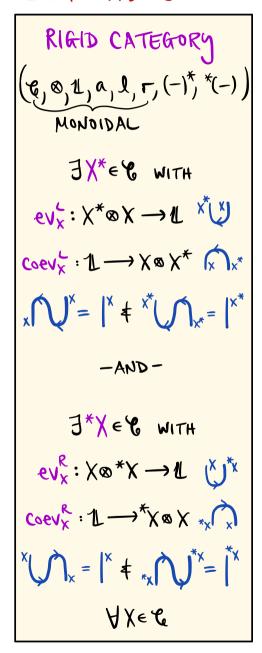
"RIGID \(\Rightarrow\)..."

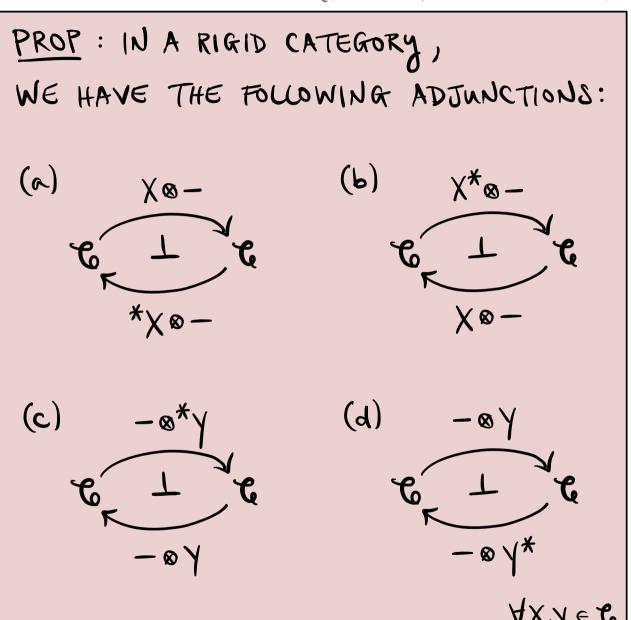
RESULT

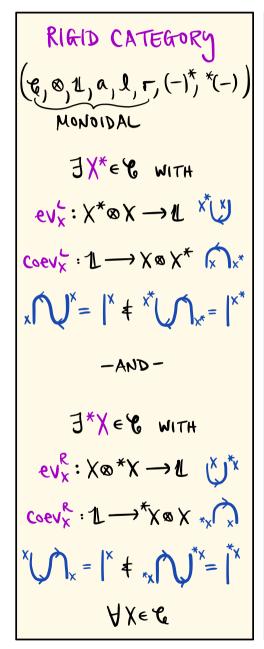
(RECALL NOTATION: L-IR)

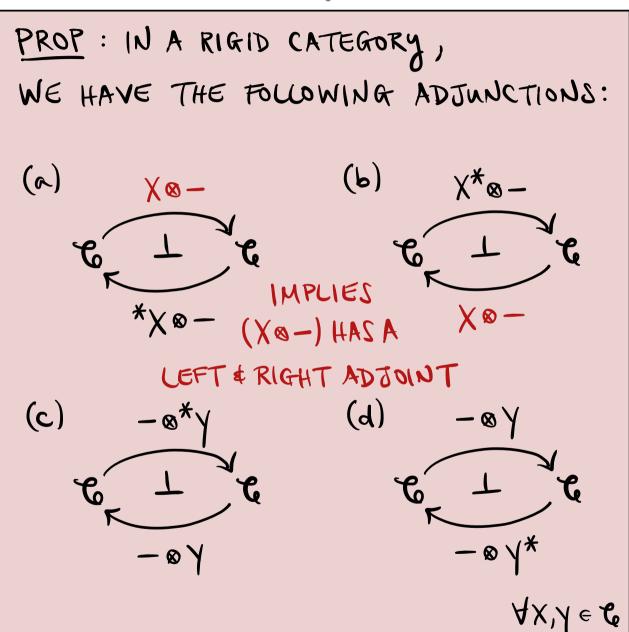


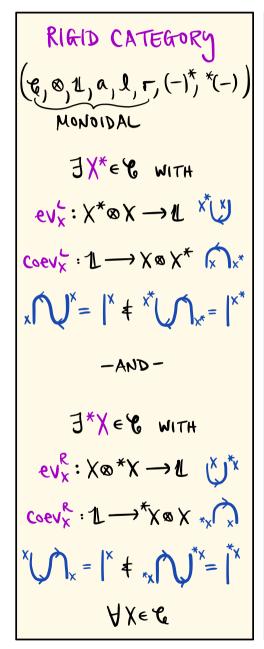
PROP: IN A RIGID CATEGORY, WE HAVE THE FOLLOWING ADJUNCTIONS: (b) (\sim) X*&-Xe-X Ø -

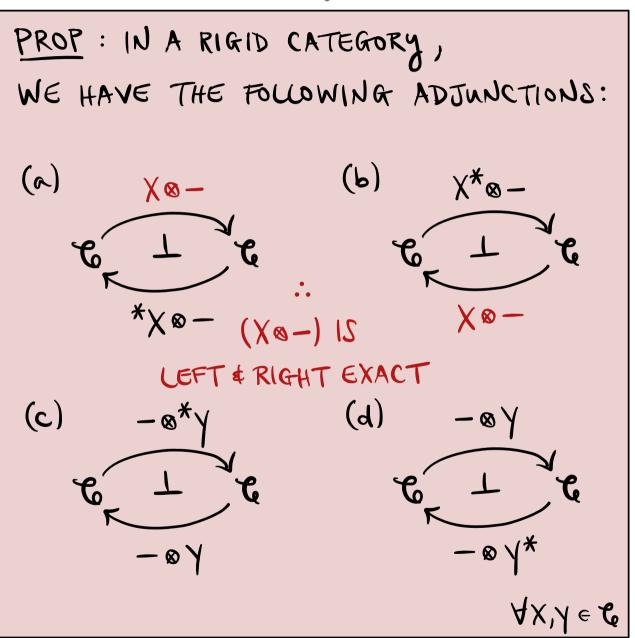


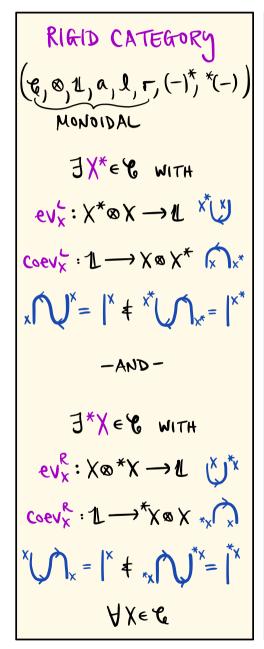


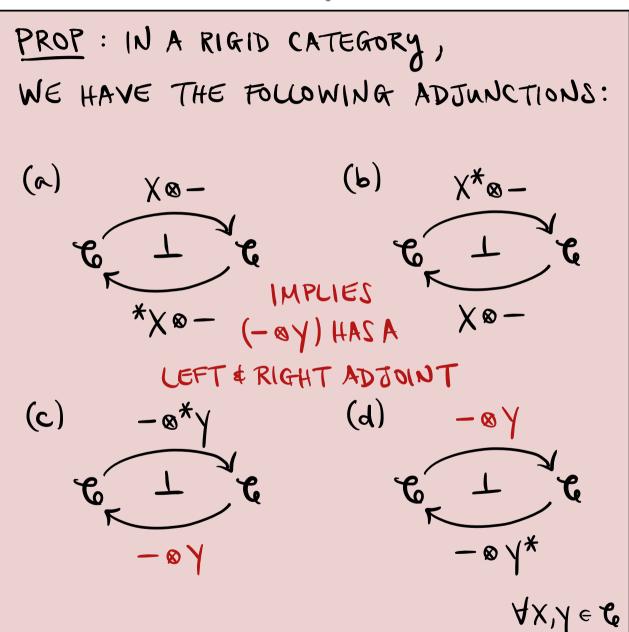




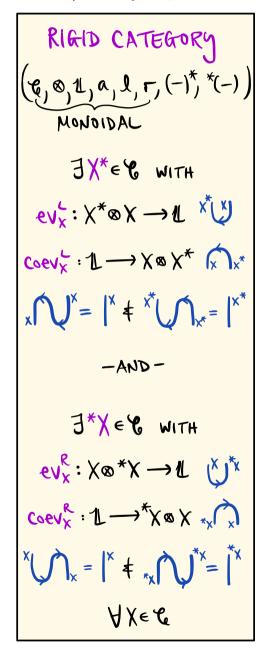


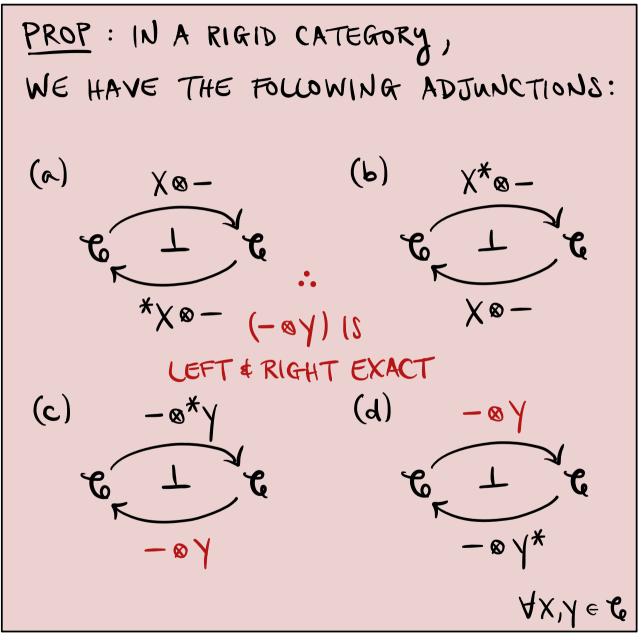




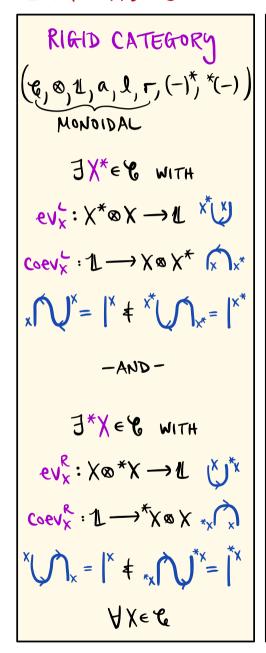


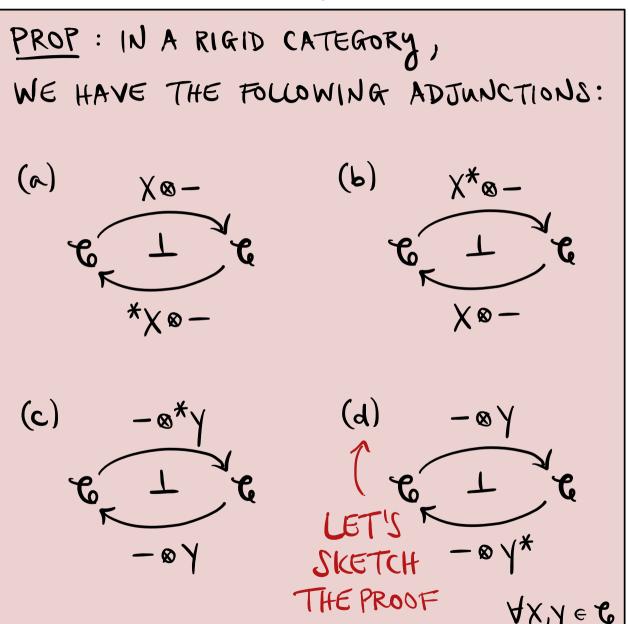
(RECALL NOTATION: L-IR)

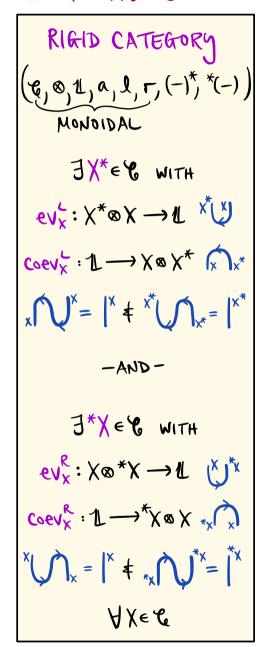


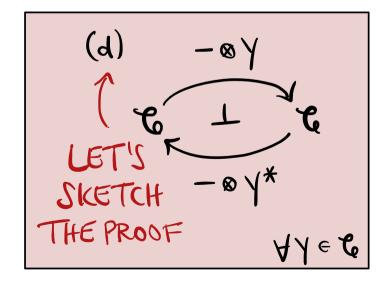


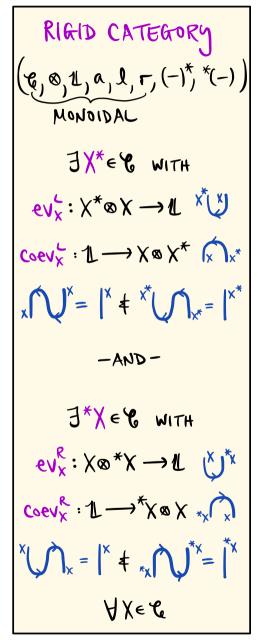
(RECALL NOTATION: L-IR)

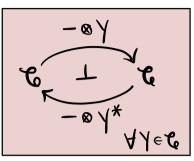


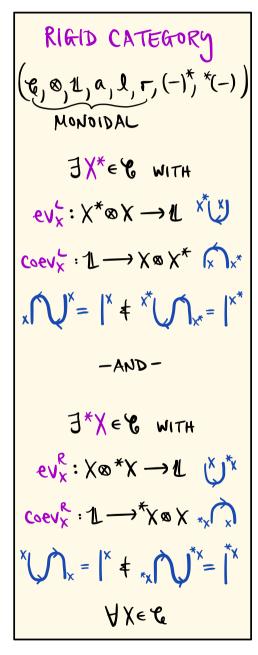


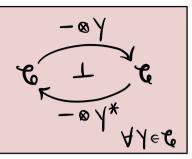


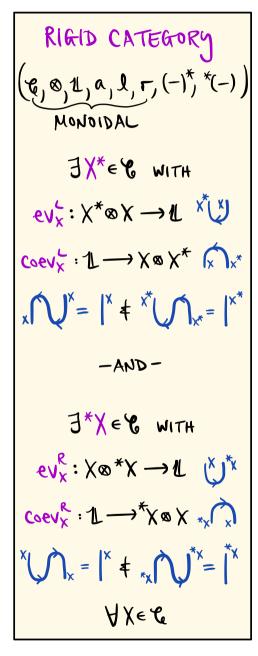








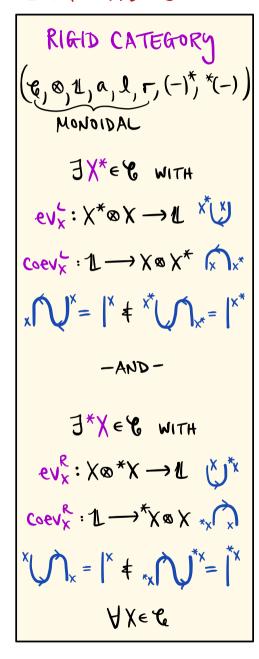


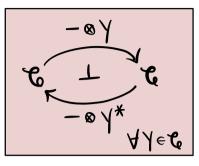


WLOG PROCEED IN STRICT CASE

$$J_{X_1 z} (f: X \otimes Y \longrightarrow z) := X \xrightarrow{id_X \otimes c \otimes v_Y} X \otimes Y \otimes Y^* \xrightarrow{f \otimes id_Y x} z \otimes Y^*$$

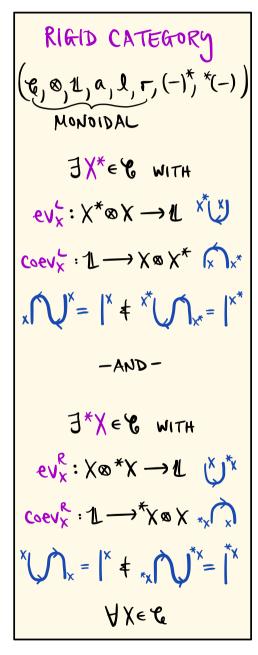
$$J_{X_1 z}^{-1} (g: X \longrightarrow z \otimes Y^*) := X \otimes Y \xrightarrow{g \otimes id_Y} z \otimes Y^* \otimes Y \xrightarrow{id_z \otimes ev_Y} z$$





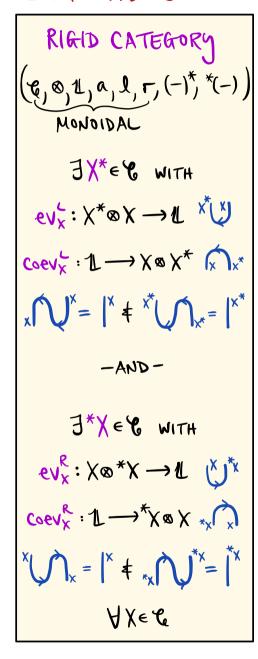
WLOG PROCEED IN STRICT CASE

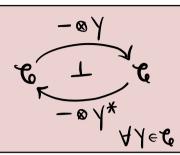
$$\int_{X_1 \in \mathbb{R}} (f: X \otimes Y \to g) := X \xrightarrow{id_X \otimes coev_Y} X \otimes Y \otimes Y \xrightarrow{f \otimes id_Y *} g \otimes Y \xrightarrow{id_Y \otimes ev_Y} g \xrightarrow{id_Y \otimes ev_Y} g \xrightarrow{id_Y \otimes ev_Y} g \xrightarrow{f \otimes id_Y \otimes$$

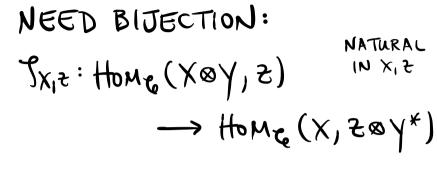


NEED BIJECTION:

$$f_{X_1 z}: Hom_{\mathcal{C}}(X \otimes Y, z)$$
 $\longrightarrow Hom_{\mathcal{C}}(X, z \otimes Y^*)$



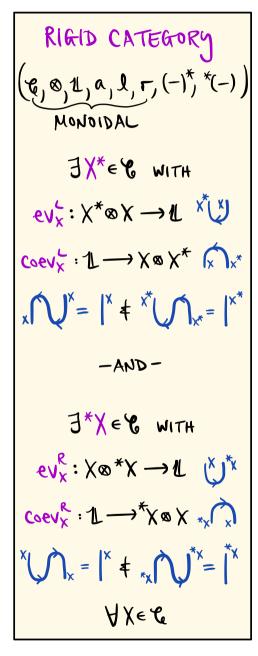


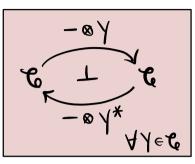


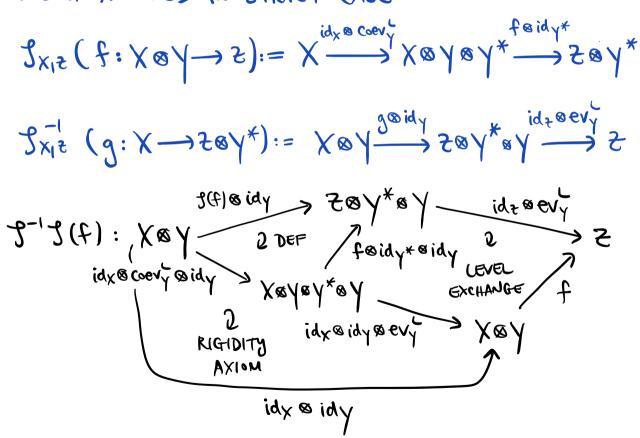
WLOG PROCEED IN STRICT CASE

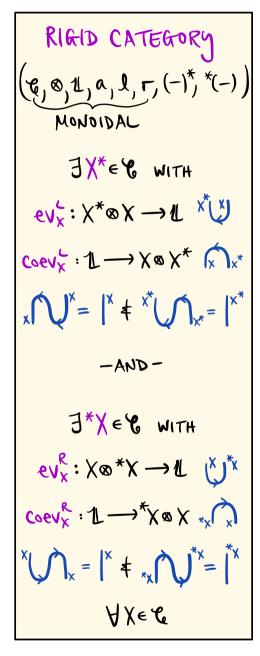
$$\int_{X_1 z} (f: X \otimes Y \to z) := X \xrightarrow{id_X \otimes coev_Y} X \otimes Y \otimes Y \xrightarrow{f \otimes id_Y *} z \otimes Y \xrightarrow{f \otimes id_Y *} z \otimes Y \xrightarrow{j \otimes id_Y} z \otimes Y \xrightarrow{j \otimes id_Y \otimes ev_Y} z \\

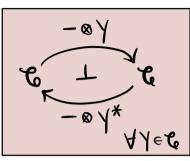
\int_{-1}^{-1} (f) : X \otimes Y \xrightarrow{j \otimes id_Y} z \otimes Y \xrightarrow{j \otimes id_Y \otimes ev_Y} z \xrightarrow{j \otimes id_Y \otimes ev_Y} z$$

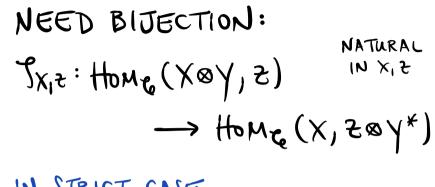


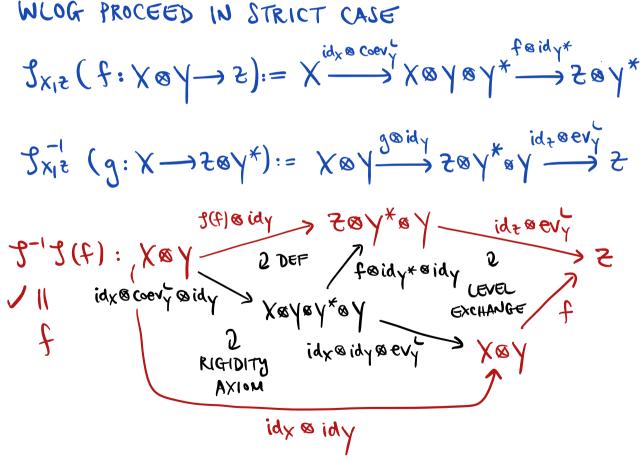


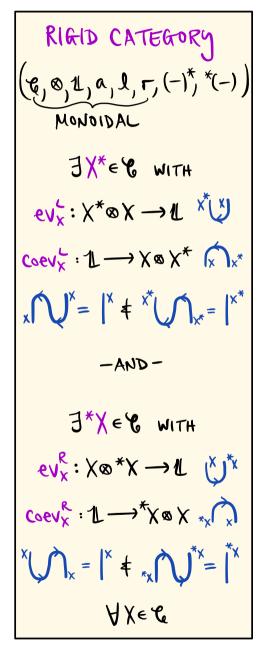


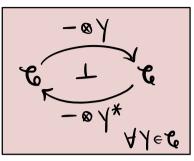


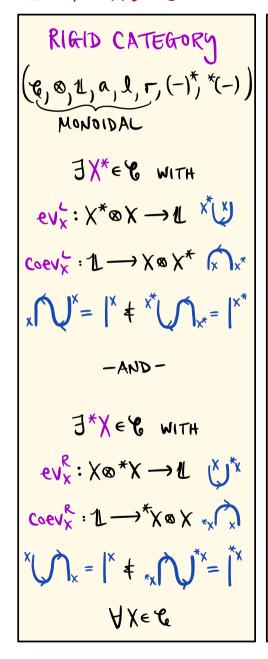


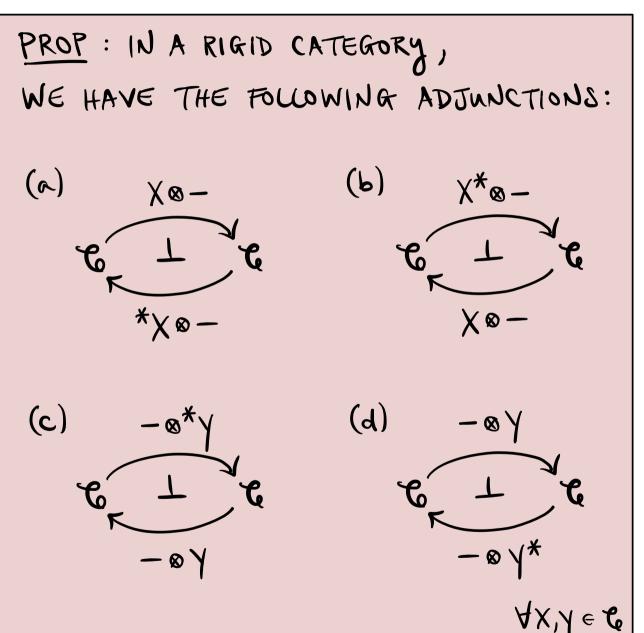




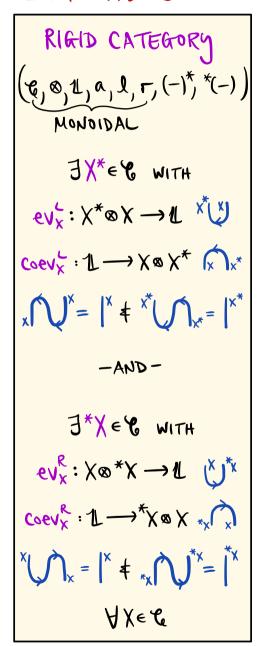


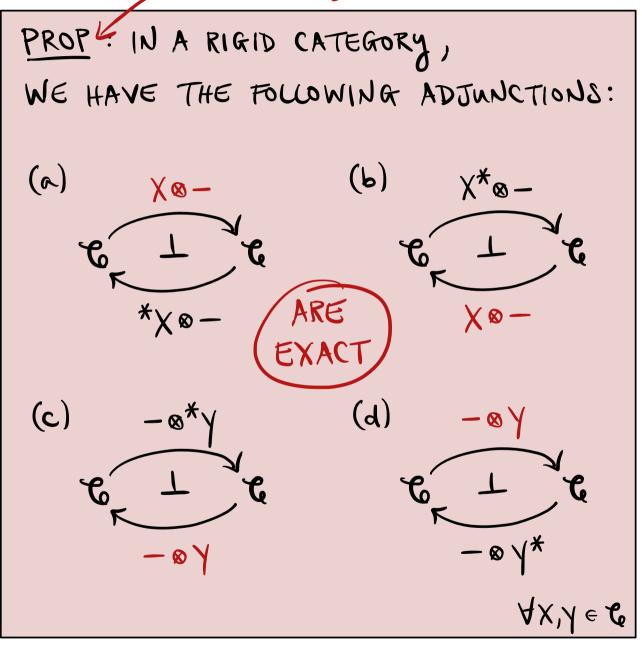






VERY IMPORTANT RESULT!



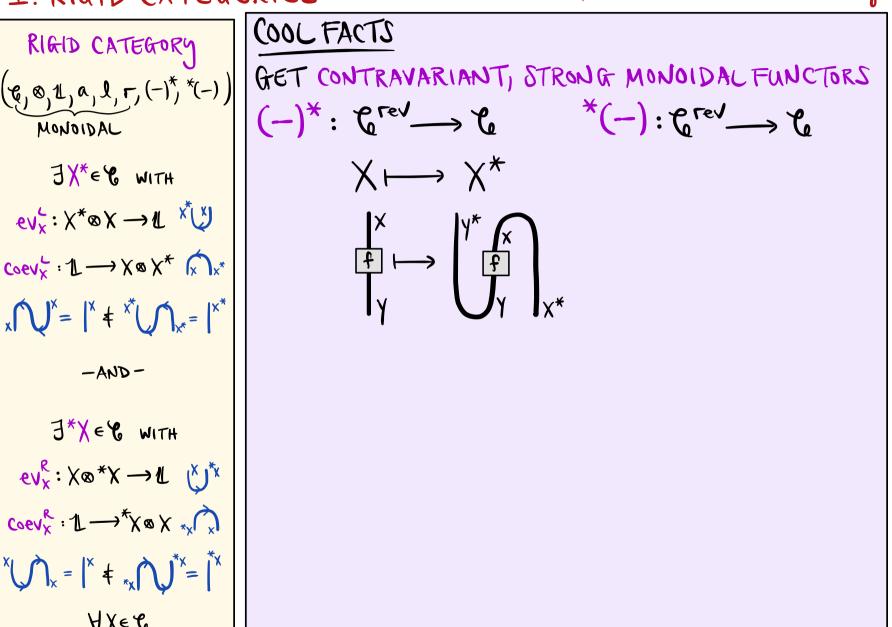


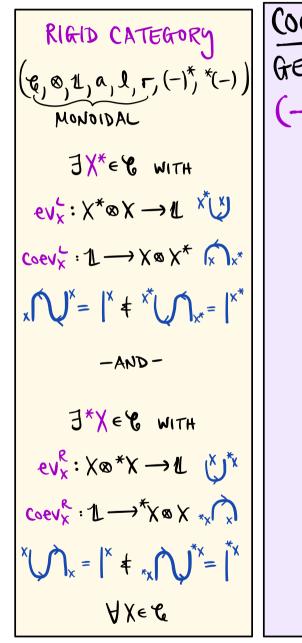
RIGID CATEGORY MONDIDAL JX* & WITH $ev_{x}^{x}: X^{*} \otimes X \rightarrow U^{x}$ -AND-J*X & WITH $ev_{x}^{R}: X \otimes *X \rightarrow U \bigvee_{x}^{x}$ YXE &

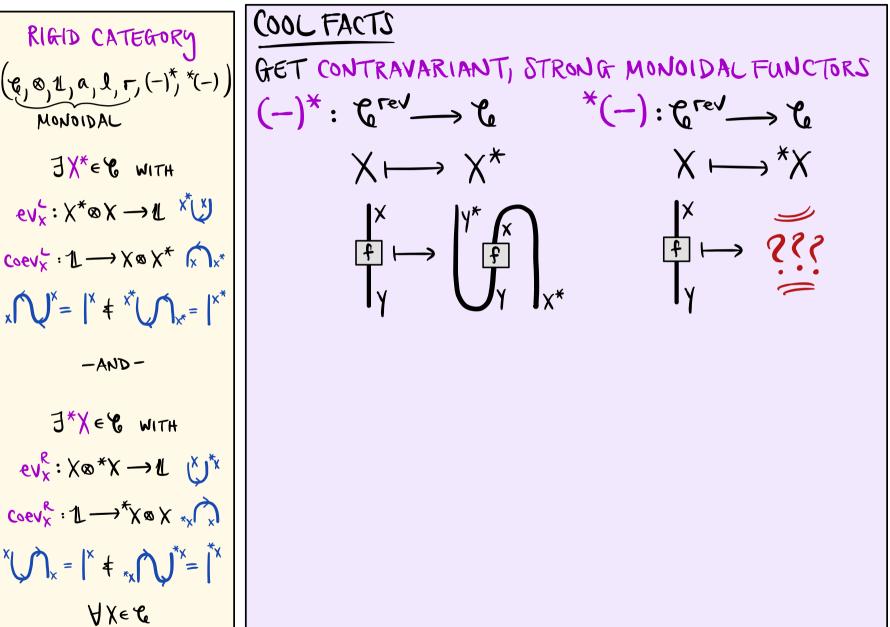
RIGID CATEGORY JX* & WITH $ev_{x}^{L}: X^{*} \otimes X \rightarrow U^{X}$ $Coev_{x}^{L}: L \longrightarrow X \otimes X^{*} \bigwedge_{x^{*}}$ $X = |X| \neq X^*$ -AND-HTIW 3 > X*E $ev_{x}^{R}: X \otimes *X \rightarrow U \bigvee_{x}^{x}$ $\operatorname{Coev}_{X}^{R}: \mathbb{1} \longrightarrow {}^{*}X \otimes X *_{x}$ $^{\mathsf{X}}\bigcup_{\mathsf{X}}^{\mathsf{X}}= ^{\mathsf{X}} \not\models _{\mathsf{X}} \bigcup_{\mathsf{X}}^{\mathsf{X}}= ^{\mathsf{X}}$ AXE &

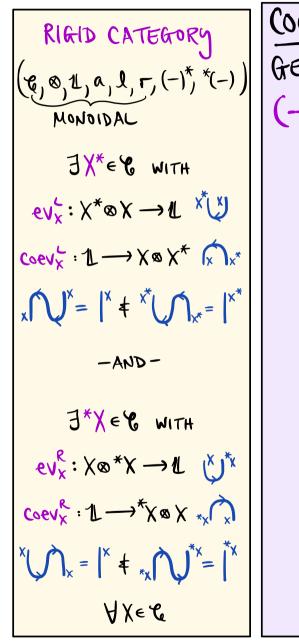
DROPPING DIRECTIONAL ARROWS FOR BREVITY COOL FACTS (c, 0, 1, a, 1, r, (-)*, *(-)) GET CONTRAVARIANT, STRONG MONOIDAL FUNCTORS MONOIDAL (-)*: Grev *(-): Grev *

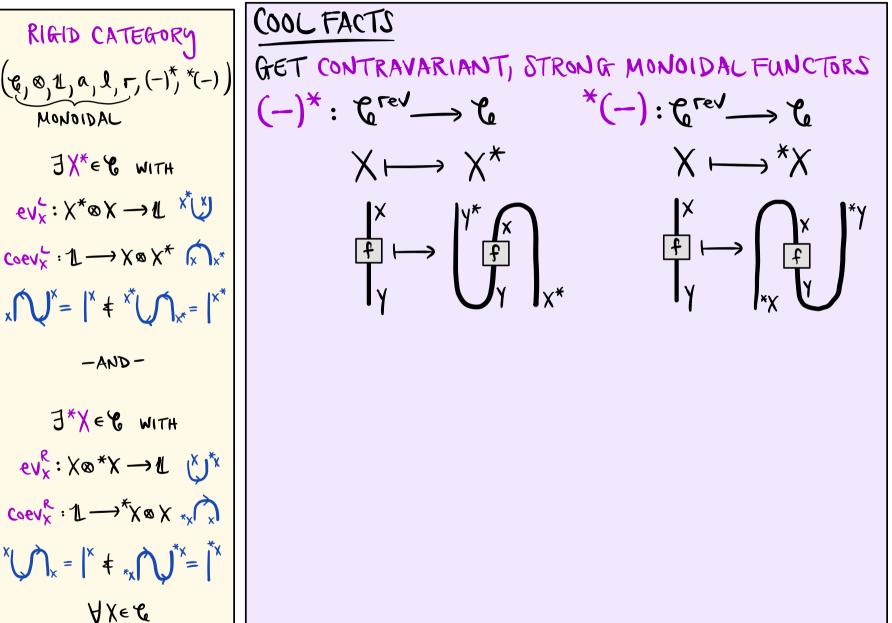
HTIW 33*XE $ev_{x}^{L}: X^{*} \otimes X \rightarrow L \xrightarrow{x^{*}}$ $Coev_{X}^{L}: L \longrightarrow X \otimes X^{*} \bigwedge_{X}^{*}$ J*X & WITH $ev_{x}^{R}: X \otimes *X \rightarrow U \bigvee_{x}^{x}$ $\operatorname{Coev}_{X}^{R}: \mathbb{1} \longrightarrow {}^{*}X \otimes X *_{X}$ AXE &

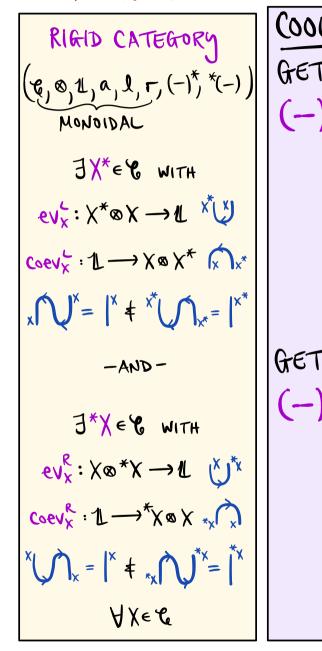


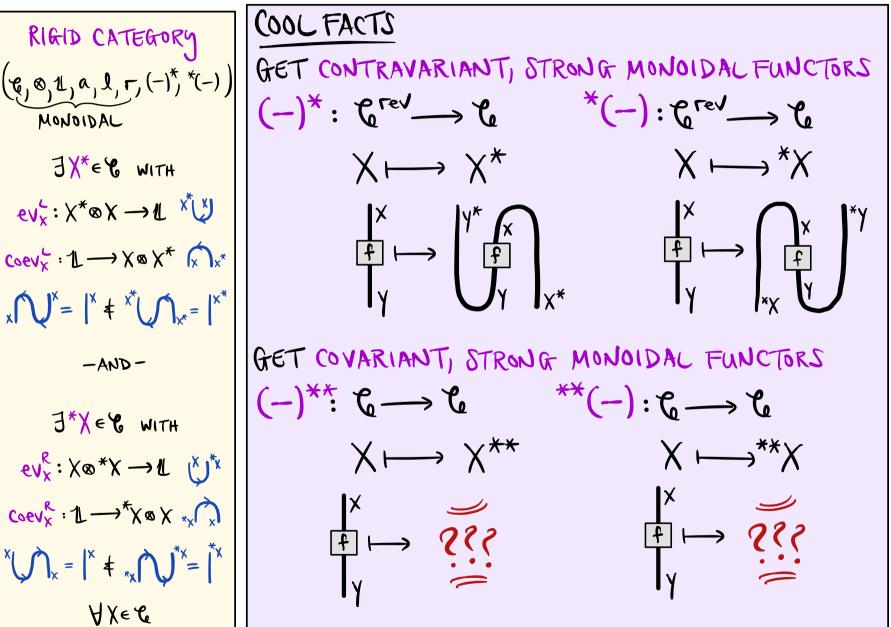


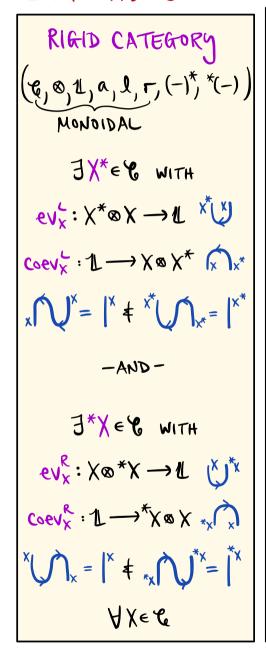


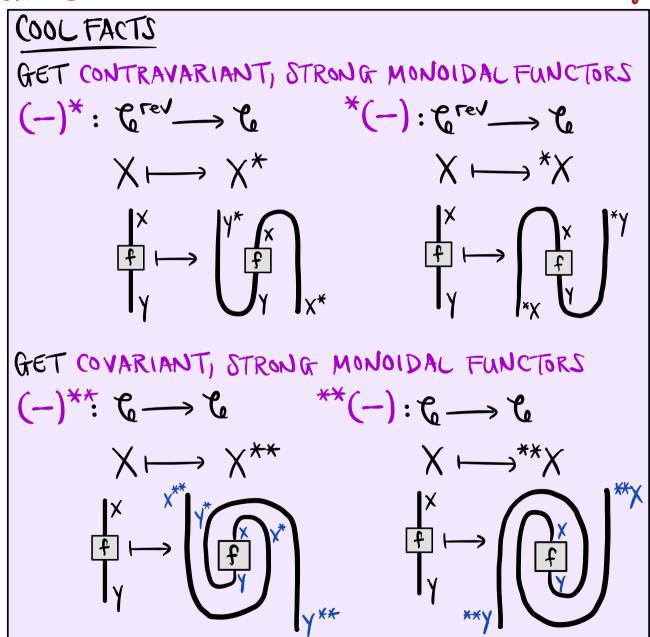


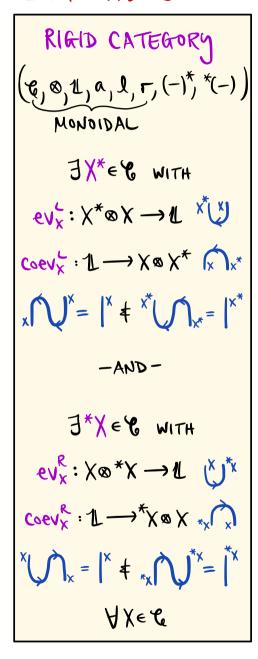






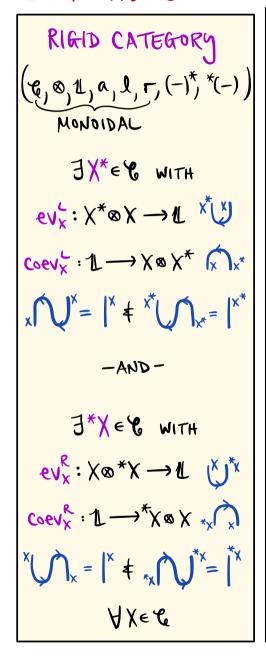






COOL FACTS

RIGIDITY IS PRESERVED UNDER STRONG MONOIDAL FUNCTORS



COOL FACTS

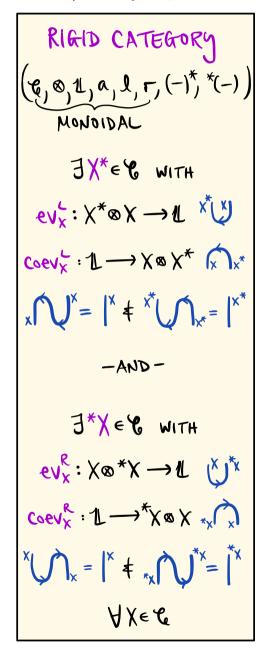
RIGIDITY IS PRESERVED UNDER

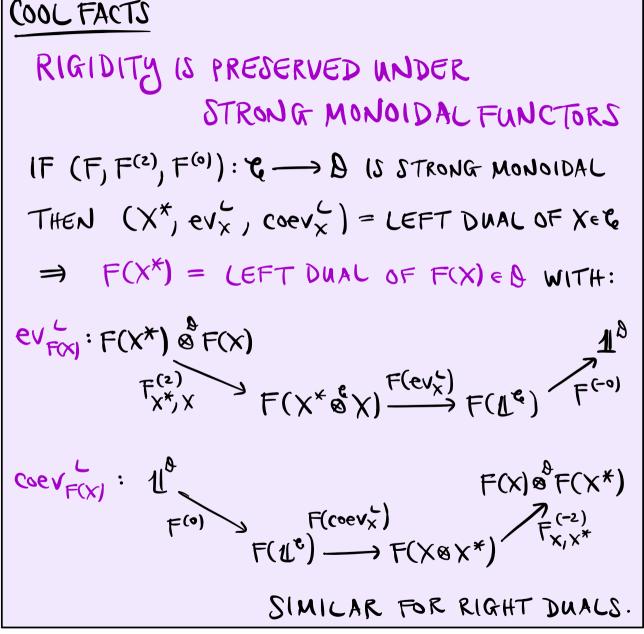
STRONG MONOIDAL FUNCTORS

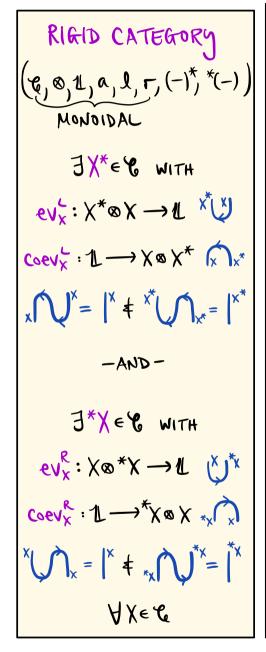
IF
$$(F, F^{(2)}, F^{(0)})$$
: $C oup B$ Is strong monoidal

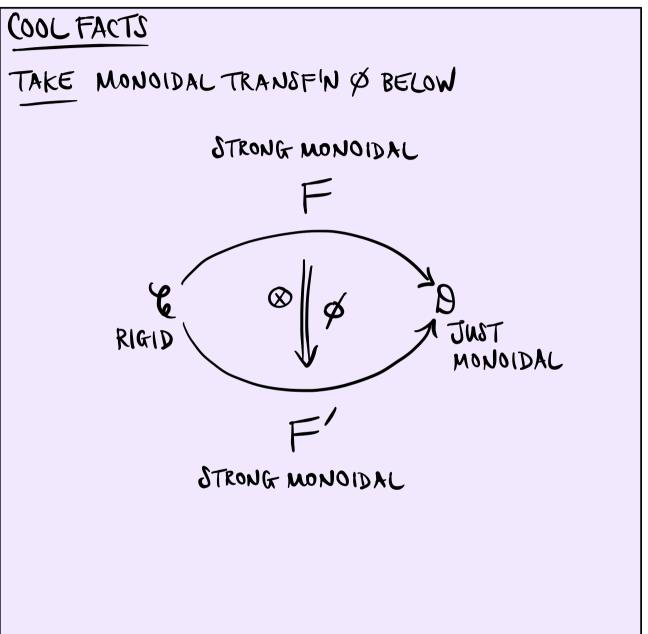
THEN $(X^*, ev_X^L, coev_X^L) = LEFT$ DUAL OF $X \in C$
 $\Rightarrow F(X^*) = LEFT$ DUAL OF $F(X) \in B$ WITH:

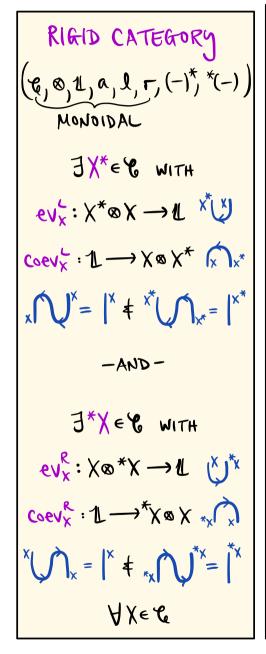
 $ev_{F(X)}^L : F(X^*) \overset{b}{\otimes} F(X) \overset{b}{\longrightarrow} f(X) \overset{b}{\otimes} F(X^*)$
 $???$
 $coev_{F(X)}^L : 1 \overset{b}{\longrightarrow} F(X) \overset{b}{\otimes} F(X^*)$

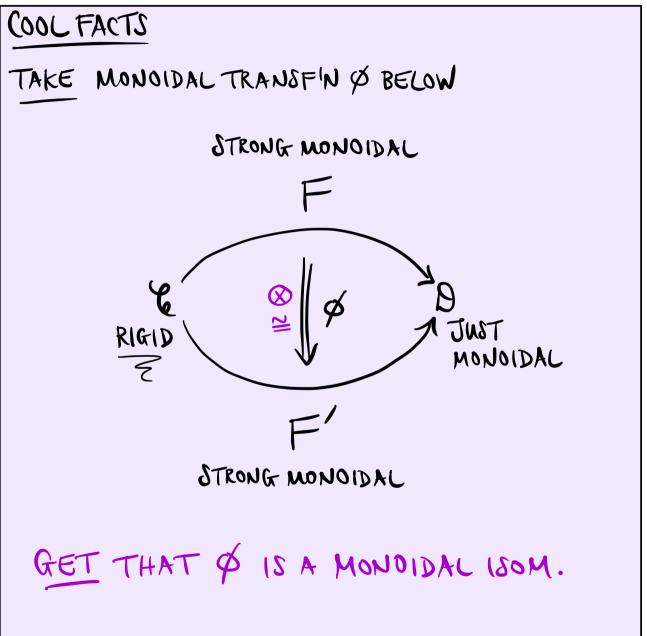


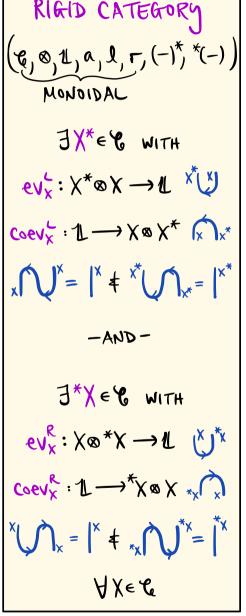


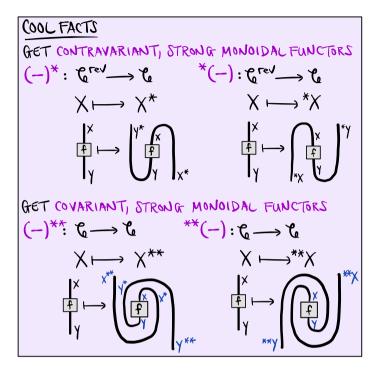


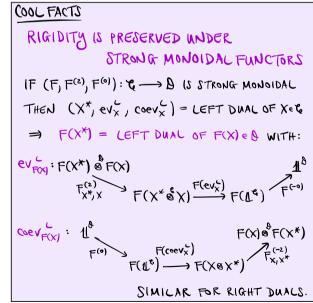


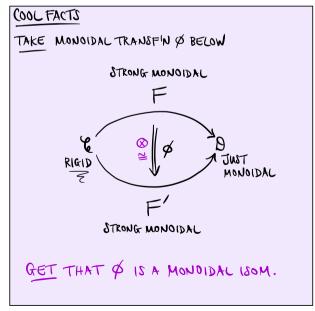


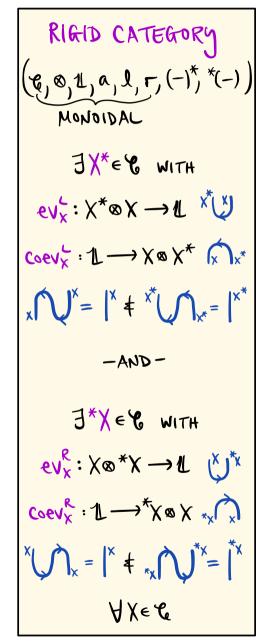


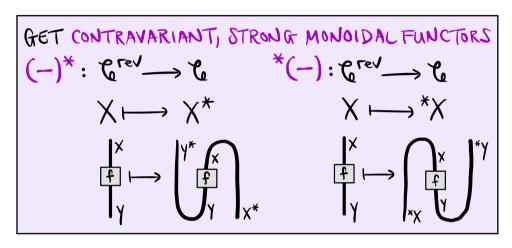


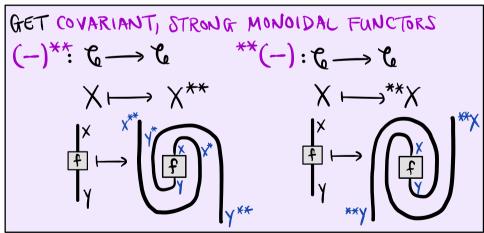


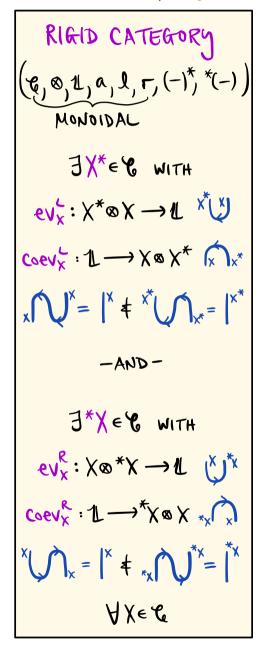






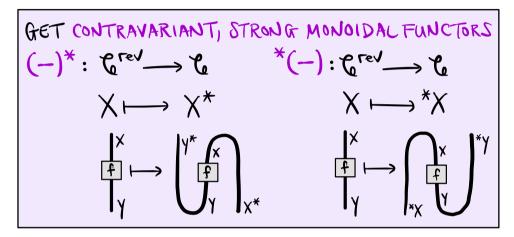


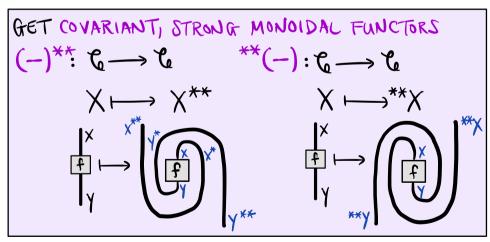


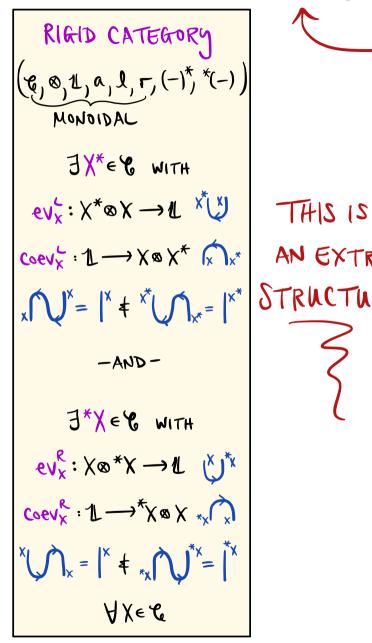


THESE ARE RIGID CATEGORIES WHERE

$$(-)^* \stackrel{\otimes}{=} ^* (-)$$



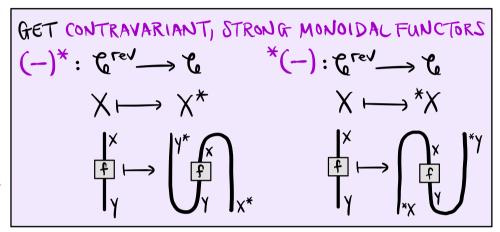


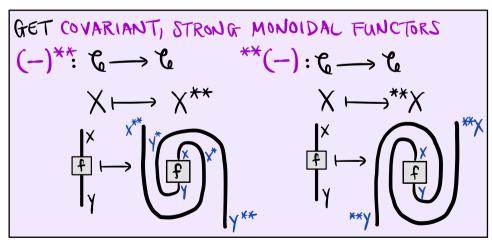


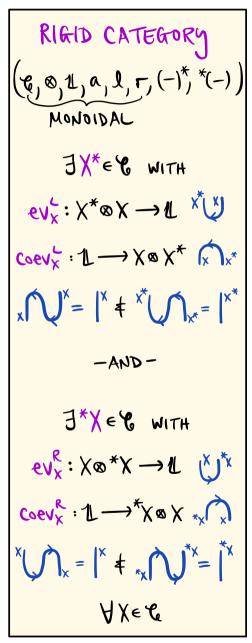
THESE ARE RIGID CATEGORIES WHERE

$$(-)^* \stackrel{\otimes}{=} ^* (-)$$

AN EXTRA STRUCTURE

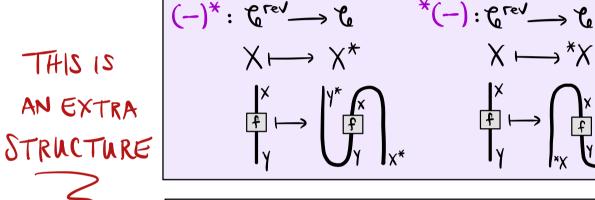


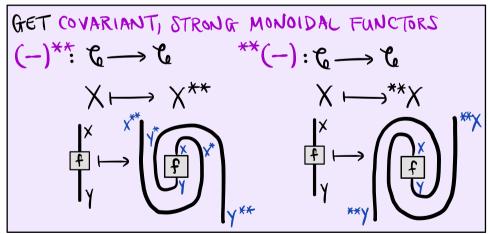




THESE ARE RIGID CATEGORIES WHERE

GET CONTRAVARIANT, STRONG MONOIDAL FUNCTORS

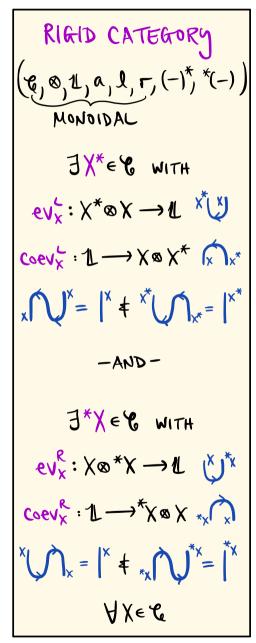


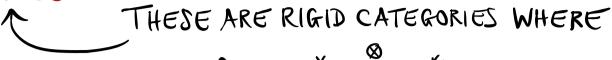


$$\exists j: \exists de \stackrel{\otimes}{\Longrightarrow} (-)^{**}$$

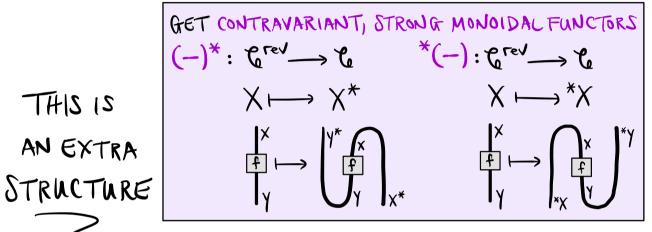
THIS 15

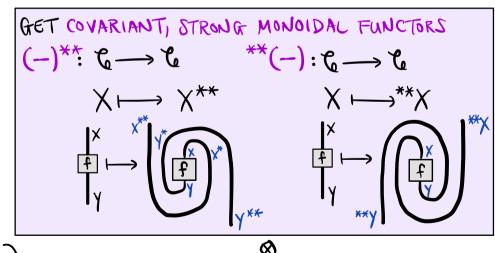
E.G...





$$\exists \, \hat{j} : (-)^* \stackrel{\otimes}{\Longrightarrow} *(-)$$

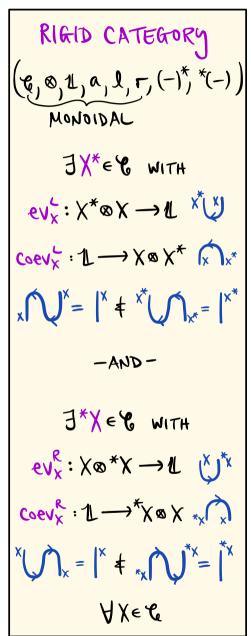


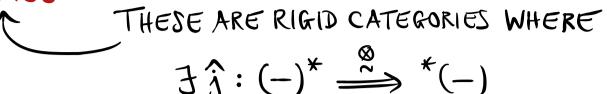


THIS 15

AN EXTRA

STRUCTURE

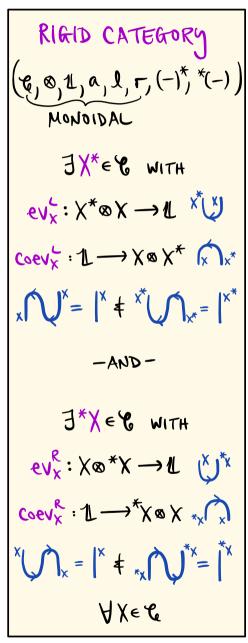




COOL FACT FOR & RIGID

FIVOTAL STRUCTURE j ON &

AS ABOVE.



THESE ARE RIGID CATEGORIES WHERE $3\hat{j}:(-)^* \stackrel{\otimes}{\longrightarrow} *(-)$

THIS IS

AN EXTRA
STRUCTURE

COOL FACT FOR & RIGID

FOR & RIGID

FOR & RIGID

ON &

AN EXTRA

STRUCTURE

AN ABOVE.

EXAMPLES INCLUDE:

Fd Vec G-Fd Mod

>> 3 j: Ide ≈ (-)**

E.G...

CALLED A

PIVOTAL

STRUCTURE

MATH 466/566 SPRING 2024

CHELSEA WALTON RICE U.

THERE'S SO MUCH LECTURE #15

MORE WE COULD COVER

TOPICS:

I. RIGID CATEGORIES (§3.6)

II. PIVOTAL CATEGORIES (53.7)

MATH 466/566 SPRING 2024

CHELSEA WALTON RICE U.

LECTURE #15

THERE'S SO MUCH

MORE WE COULD COVER

BUT WE'RE OUT OF TIME

PLEASE READ MORE

TOPICS:

IF you're curious

Z. RIGID CATEGORIES

 $(\S 3.6)$

I. PIVOTAL CATEGORIES (§3.7)

MATH 466/566 SPRING 2024

CHELSEA WALTON RICE U.

LECTURE #15

PLEASE READ MORE

TOPICS: IF you're curious

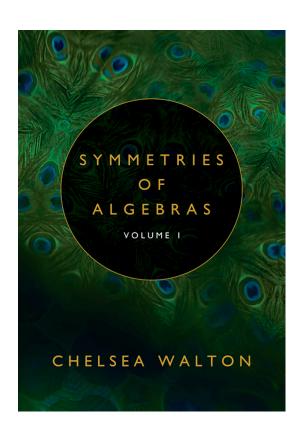
I. RIGID CATEGORIES (§3.6)

II. PIVOTAL CATEGORIES (53.7)

NEXT TIME: FUSION CATEGORIES

Enjoy this lecture? You'll enjoy the textbook!

C. Walton's "Symmetries of Algebras, Volume 1" (2024)



Available for purchase at:

619 Wreath (at a discount)

https://www.619wreath.com/

Also on Amazon & Google Play

<u>Lecture #15 keywords</u>: coevaluation, dual of an object, evaluation, pivotal category, rigid to tategory, rigid object