MATH $466 / 566$
SPRING 2024

CHELSEA WALTON RICE u.

LAST TIME
ALGEBRAS IN monoidal categories

TOPICS:
I.(BI)MODULES IN MONOIDAL CATEGORIES ($\delta \delta 4.4 .1,4.4 .2$)
II. MONADS
III. EILENBERG-MOORE CATEGORIES
(S4.3.2)
($\$ 4.4 .3$)

$$
\equiv \text { RECALL } \equiv
$$

There are many categories out there ...

$$
\equiv \text { RECALL } \equiv
$$

There are many categories out there ... and many admit a MONOIDAL STRUCTURE $\otimes, L 1 \ldots$

Copyright © 2024 Chelsea Walton

$$
\text { RECALL } \equiv
$$

There are many categories out there ... and many admit a MONOIDAL STRUCTURE $\otimes, L \ldots$ so we can do algebra

Group
Rep (A)

Mod-A (A, B)-Bimod
A-Bimod'
Bim

$$
\equiv \text { RECALL } \equiv
$$

MONOIDAL CATEGORY $\zeta:=\left(\operatorname{End}(A), 0, I d_{A}\right)$

ALSO SAW THAT MONOIDAL FUNCTOR Transport algebras...

I.(BI) MODULES IN MONOIDAL CATEGORIES

MONOIDAL CATEGORY $(6, \otimes, \mathbb{L})$
NOW LET'S STUDY THE CATEGORY OF mOdULES OVER algebras in e

I.(BI) MODULES IN MONOIDAL CATEGORIES

I.(BI) MODULES in monoidal categories

Take $(A, \mu, u) \in \operatorname{Alg}(e)$.
a left a-module in C CONSISTS OF

MONOIDAL CATEGORY $(6, \otimes, \mathbb{L})$

MODULE/
REPRESENTATION
THEORY in
I.(BI) MODULES IN MONOIDAL CATEGORIES

Take $(A, M, u) \in A \lg (\varphi)$.
A LEFT A-MODULE IN ζ CONSISTS OF
(a) AN OBJECT $M \mathbb{N} \zeta$
(b) A MORPHISM $D: A \otimes M \rightarrow M$ IN C (LEFT ACTION MORPHISM) SATISFYING:

MONOIDAL CATEGORY $(6, \otimes, \mathbb{L})$

THEORY in
I.(BI) MODULES in mONOIDAL CATEGORIES

Take $(A, M, u) \in \operatorname{Alg}(\varphi)$.
A LEFT A-MODULE IN C CONSISTS OF
(a) AN OBJECT $M \mathbb{N} G$
(b) A MORPHISM $D: A \otimes M \rightarrow M$ IN C (LEFT ACTION MORPHISM)
SATISFYING:

\ddagger

MONOIDAL CATEGORY $(6, \otimes, \mathbb{L})$

MODULE/
REPRESENTATION
THEORY IN C
I. (BI)MODULES in mONOIDAL CATEGORIES

TaKE $(A, M, u) \in A \lg (\varphi)$.
MONOIDAL CATEGORY
A left a-module in C CONSISTS OF
(a) AN OBJECT $M \mathbb{N} \zeta$
(b) A MORPHISM $D: A \otimes M \rightarrow M$ IN C (LEFT ACTION MORPHISM)

SATISFYING:

\ddagger

FORMS A CATEGORY WITH $\quad \phi \in \operatorname{HOM}_{A-\operatorname{Mod}(H)}\left(M, M^{\prime}\right)$
I. (BI)MODULES in mONOIDAL CATEGORIES

TAKE $(A, M, u) \in A \lg (\varphi)$.
MONOIDAL CATEGORY $(6, \otimes, 4)$
A LEFT A-MODULE IN ζ CONSISTS OF
(a) AN OBJECT $M \mathbb{N} G$
(b) A MORPHISM $D: A \otimes M \rightarrow M$ IN C (LEFT ACTION MORPHISM)

SATISFYING:

\ddagger

FORMS A CATEGORY WITH

$$
\phi \in \operatorname{HO}_{A-M_{0 d}(e)}\left(M, M^{\prime}\right)
$$

II
$\phi: M_{\text {OBJ }} \rightarrow M_{\text {oBJ }}^{\prime} \mid N \zeta_{l}$

I.(BI) MODULES IN MONOIDAL CATEGORIES

Take $(A, \mu, u) \in \operatorname{Alg}(e)$.
LEFT A-MODULE IN CIS:
(a) OBJECT $M \mathbb{N}$ C
(b) $M A P D: A \otimes M \rightarrow M \mathbb{N} C$

SATISFYING:
(Assoc.) $D(M \otimes i d)=D(i d \otimes D) a$
(unit.) $D($ undid $)=l$

FORMS CATEGORY

$$
A-\operatorname{Mod}\left(\zeta_{C}\right)
$$

WITH

$$
\begin{aligned}
& \phi \in \operatorname{HoM}_{A-M_{0 d}(r)}\left(M, M^{\prime}\right) \\
& \phi \in H_{O M} M_{\varphi}\left(M, M^{\prime}\right) \rightarrow . \\
& \nabla \phi=(i d \otimes \phi) \nabla^{\prime}
\end{aligned}
$$

I. (BI)MODULES in mONOIDAL CATEGORIES

$$
\begin{aligned}
& \text { TAKE }(A, M, u) \in A \lg (\varphi) . \\
& L E F T A-M O D U L E \mathbb{N} C I S: \\
& \text { (a) OBJECT } M \mathbb{N} \zeta \\
& \text { (b) MAP } D: A \otimes M \rightarrow M I N C \\
& \text { SATISFYING: } \\
& \text { CASSOC.) } D(M \otimes i d)=D(I d \otimes D) a \\
& \text { (uNIT.) } D(\text { U®id })=l
\end{aligned}
$$

FORMS CATEGORY

$$
A-\operatorname{Mod}(\zeta)
$$

WITH

$$
\begin{aligned}
& \phi \in H_{0} M_{A-M_{0}(C)}\left(M, M^{\prime}\right) \\
& \phi \in H_{0} M_{\varphi}\left(M, M^{\prime}\right) \rightarrow . \\
& \nabla \phi=(i d \otimes \phi) \nabla^{\prime}
\end{aligned}
$$

RIGHT A-MODULES IN ζ DEFINED OBJECTS : $(\mu \in \zeta, \Delta: M \otimes A \rightarrow \mu \in \boldsymbol{\zeta})$ SATISFYING ASSOC., UNIT.
FORMS CATEGORY Mod-A(el)
I.(BI)MODULES IN mONOIDAL CATEGORIES

TAKE $(A, M, u) \in A \lg (\cdot)$.
LEFT A-MODULE IN CIS:
(a) OBJECT M N C
(b) MAP $D: A \otimes M \rightarrow M \mathbb{N} C$

SATISFYING:
(Assoc.) $D(M \otimes i d)=D(i d \otimes D) a$
(unit.) $D(u \otimes i d)=l$

FORMS CATEGORY $A-\operatorname{Mod}\left(\zeta_{C}\right)$

WITH
$\phi \in \operatorname{HOM}_{A-M_{0 d}(r)}\left(M, M^{\prime}\right)$
II
$\phi \in \operatorname{HO}_{\varphi}\left(M, M^{\prime}\right) \rightarrow$.

$$
\nabla \phi=(i d \otimes \phi) \nabla^{\prime}
$$

RIGHT A-MODULES IN G $\begin{aligned} & \text { DEFINED } \\ & \text { LIKEWISE }\end{aligned}$
OBJECTS : $(M \in \zeta, \Delta: M \otimes A \rightarrow M \in \zeta)$ SATISFYING ASSOC., UNIT.

FORMS CATEGORY Mod-A(le)
A-BIMODULES IN G:

$$
\text { OBJECTS : }(M) \triangleright: A \otimes M \rightarrow M, \triangle: M \otimes A \rightarrow M)
$$

I.(BI)MODULES IN mONOIDAL CATEGORIES

Take $(A, M, u) \in A \lg (H)$.
LEFT A-MODULE IN CIS:
(a) OBJECT $M \mathbb{N}$ G
(b) MAP $D: A \otimes M \rightarrow M \mathbb{N} C$

SATISFYING:
(Assoc.) $D(M \otimes i d)=D(i d \otimes D) a$
(unit.) $D(u \otimes i d)=l$

FORMS CATEGORY $A-\operatorname{Mod}\left(\zeta_{C}\right)$

WITH
$\phi \in \operatorname{HOM}_{A-M_{0 d}(r)}\left(M, M^{\prime}\right)$
II
$\phi \in \operatorname{HO}_{\varphi}\left(M, M^{\prime}\right) \rightarrow$.

$$
\nabla \phi=(i d \otimes \phi) \nabla^{\prime}
$$

RIGHT A-MODULES IN G $\begin{aligned} & \text { DEFINED } \\ & \text { LIKEWISE }\end{aligned}$
OBJECTS : $(M \in \zeta, \Delta: M \otimes A \rightarrow M \in \mathscr{C})$ SATISFYING ASSOC., UNIT.

FORMS CATEGORY Mod-A(le)
A-BIMODULES IN G:

$$
\begin{aligned}
& \text { OBJECTS: }(M) \triangleright: A \otimes M \rightarrow M, \Delta: M \otimes A \rightarrow M) \\
& \text { WITH: }(M, D) \in A-\operatorname{Mod}(e) \\
& (M, 4) \in \operatorname{Mod}-A(e)
\end{aligned}
$$

I.(BI)MODULES IN mONOIDAL CATEGORIES

Take $(A, M, u) \in A \lg (H)$.
LEFT A-MODULE IN CIS:
(a) OBJECT $M \mathbb{N}$ C
(b) MAP $D: A \otimes M \rightarrow M \mathbb{N} C$

SATISFYING:
(Assoc.) $D(M \otimes i d)=D(i d \otimes D) a$
(uNIT.) $D($ u®id $)=l$

FORMS CATEGORY $A-\operatorname{Mod}\left(\zeta_{C}\right)$

WITH
$\phi \in \operatorname{HOM}_{A-M_{0 d}(r)}\left(M, M^{\prime}\right)$
II
$\phi \in \operatorname{HOM}_{\varphi}\left(M, M^{\prime}\right) \rightarrow$.

$$
\nabla \phi=(i d \otimes \phi) \nabla^{\prime}
$$

RIGHT A-MODULES IN G $\begin{aligned} & \text { DEFINED } \\ & \text { LIKEWISE }\end{aligned}$
OBJECTS : $(\mu \in \zeta, \Delta: M \otimes A \rightarrow M \in \mathscr{C})$ SATISFYING ASSOC., UNIT.

Forms category Mod-A(e)
A-BIMODULES IN G:

$$
\begin{aligned}
& \text { OBJECTS: }(M) D: A \otimes M \rightarrow M, \Delta: M \otimes A \rightarrow M)
\end{aligned}
$$

I. (BI)MODULES in mONOIDAL CATEGORIES

$$
\begin{aligned}
& \text { TAKE }(A, M, u) \in A \lg (\varphi) . \\
& \text { LEFT A-MODULE } N C I S: \\
& (a) O B J E C T M \mathbb{N} \zeta \\
& \text { (b) MAP } D: A \otimes M \rightarrow M I N C \\
& \text { SATISFYING: } \\
& \text { ASSOC.) } D(M \otimes i d)=D(\text { Id } \otimes D) a \\
& \text { (uNIT.) } D(\text { u®id })=l
\end{aligned}
$$

FORMS CATEGORY

$$
A-\operatorname{Mod}(\zeta)
$$

WITH

$$
\begin{aligned}
& \phi \in H_{0} M_{A-M_{0}(\varphi)}\left(M, M^{\prime}\right) \\
& \phi \in H_{0} M_{\varphi}\left(M, M^{\prime}\right) \rightarrow . \\
& \nabla \phi=(i d \otimes \phi) \nabla^{\prime}
\end{aligned}
$$

RIGHT A-MODULES IN G DEFIED
OBJECTS: $\left(M \in \zeta_{\boldsymbol{C}}, \Delta: M \otimes A \rightarrow M \in \boldsymbol{\zeta}\right)$
SATISFYING ASSOC, UNIT.
FORMS CATEGORY Mod-A(el)
A-BIMODULES IN G:

$$
\begin{aligned}
& \text { OBJECTS: }(M) D: A \otimes M \rightarrow M, \Delta: M \otimes A \rightarrow M)
\end{aligned}
$$

FORMS CATEGORY A-Bimod(e)
I.(BI) MODULES in monoidal categories
obtain substructures \& Quotient structures
$\operatorname{Take}(A, \mu, u) \in \operatorname{Alg}(\varphi)$. LEFT A-MODULE IN CIS:
(a) OBJECT $M \mathbb{N} G$
(b) MAP $D: A \otimes M \rightarrow M \mathbb{N} C$

SATISFYING:
(ASSOC.) $D(M \otimes i d)=D(i d \otimes D) a$
(unit.) $D($ u®id) $=l$

FORMS CATEGORY
$A-\operatorname{Mod}(\zeta)$

WITH
$\phi \in H_{O} M_{A-M_{0 d}(e)}\left(M, M^{\prime}\right)$
" 1
$\phi \in \operatorname{HO}_{\varphi}\left(M, M^{\prime}\right) \rightarrow$.

$$
\nabla \phi=(i d \otimes \phi) \nabla^{\prime}
$$

RIGHT When ζ is abelan monoidal

OBJECTS : $(M \in \zeta, \Delta: M \otimes A \rightarrow M \in \zeta)$
SATISFYING ASSOC., UNIT.
FORMS CATEGORY Mod-A(le)
A-BIMODULES IN G:

$$
\begin{aligned}
& \text { OBJECTS: }(M) D: A \otimes M \rightarrow M, \Delta: M \otimes A \rightarrow M)
\end{aligned}
$$

FORMS CATEGORY A-Bimod (k)
I.(BI) MODULES IN MONOIDAL CATEGORIES

TAKE $(A, M, u) \in A l g(e)$.
LEFTA-MODULE N C $1 s:$
(a) OBJECT $M \mathbb{N}$ C
(b) MAP $D: A \otimes M \rightarrow M \mathbb{N} C$

SAT. ASSOC \ddagger UNIT. AXIOMS
FORMS CATEG. A- Mod(ζ)
RIGHTA-MODULE IN CIS:
(a) OBJECT $M \mathbb{N} G$
(b) $\operatorname{MAP} \triangleleft: M \otimes A \rightarrow M \mathbb{N} C$

SAT. ASSOC \ddagger UNIT. AXIOMS
FORMS CATEG. Mod-A(G)
A-BIMODULE IN CIS:
(a) OBJECT $M \mathbb{N} G$
(b) MAPS $D, \triangleleft \mathbb{N} C$

SAT. ($A, D) \in A-\operatorname{Mod}(C)$ $(A, \triangleleft) \in \operatorname{Mod}-A(C)$ + compatibility
FORMS CATEG. A-Bimod(ζ ($)$

EXAMPLES
I. (BI)MODULES IN MONOIDAL CATEGORIES

I. (BI)MODULES IN MONOIDAL CATEGORIES

I. (BI)MODULES IN MONOIDAL CATEGORIES

TAKE $\mathbb{1}:=\left(\mathbb{1}, l_{u}=r_{1}, i d_{c}\right) \in \operatorname{Alg}(\boldsymbol{\varphi})$. THEN:

$$
\mathbb{1}-\operatorname{Mod}(\varphi) \cong \operatorname{Mod}-\mathbb{L}(\varphi) \cong \mathcal{L}-\operatorname{BiMod}(\varphi)
$$

$$
\cong \zeta \text { AS CATEGORIES }
$$

I. (BI)MODULES IN MONOIDAL CATEGORIES

TAKE $\mathbb{1}:=\left(\mu, l_{u}=r_{t}, i d_{\mu}\right) \in \operatorname{Alg}(l)$. THEN:

$$
\begin{aligned}
1-\operatorname{Mod}(\zeta) & \cong \operatorname{Mod}-\mathbb{U}(\varphi) \cong \mathbb{1}-\operatorname{BiMod}(\varphi) \\
& \cong \zeta \text { AS CATEGORIES }
\end{aligned}
$$

TAKE $\left(M, D_{M}: \Delta \otimes M \rightarrow M\right) \in \mathbb{L}-M_{0}$.

I. (BI)MODULES in mONOIDAL CATEGORIES

TAKE $\mathbb{1}:=\left(\mu, l_{u}=r_{t}, i d_{\mu}\right) \in \operatorname{Alg}(l)$. THEN:

$$
\begin{aligned}
1-\operatorname{Mod}(\zeta) & \cong \operatorname{Mod}-\mathbb{1}(\zeta) \cong \mathcal{C}-\operatorname{BiMod}(\zeta) \\
& \cong \zeta \text { AS CATEGORIES }
\end{aligned}
$$

TAKE $\left(M, D_{M}: \| \otimes M \rightarrow M\right) \in \mathcal{L}-M o d$.
THEN: $D_{M}=\ell_{M}(\leftarrow$ PART OF STRUCTURE oF φ)

$$
\therefore \quad \mathbb{1}-\operatorname{Mod}(\varphi) \cong \zeta
$$

I. (BI)MODULES in mONOIDAL CATEGORIES

TAKE $\mathbb{1}:=\left(\mathbb{1}, l_{u}=r_{u}, i d_{u}\right) \in \operatorname{Alg}\left(\mathcal{l}_{l}\right)$. THEN:

$$
\mathbb{1}-\operatorname{Mod}(\varphi) \cong \operatorname{Mod}-\mathbb{L}(\varphi) \cong \mathbb{1}-\operatorname{BiMod}(\varphi)
$$

$$
\cong \zeta \text { AS CATEGORIES }
$$

TAKE $\left(M, D_{M}: \| \otimes M \rightarrow M\right) \in \mathcal{L}-M o d$.
THEN: $D_{M}=\ell_{M}(\leftarrow$ PART OF STRUCTURE oF φ)

$$
\therefore \quad \mathbb{1}-\operatorname{Mod}(\varphi) \cong \zeta
$$

LIKEWISE, MOd- $\mathbb{L} \cong \zeta$ SINCE $4_{\mu}=r_{\mu}$.
I. (BI)MODULES in mONOIDAL CATEGORIES

I. (BI)MODULES in mONOIDAL CATEGORIES

TAKE $\mathbb{1}:=\left(\mu, l_{u}=r_{t}, i d_{\mu}\right) \in \operatorname{Alg}(l)$. THEN:

$$
1-\operatorname{Mod}(\varphi) \cong \operatorname{Mod}-\mathbb{U}(\varphi) \cong \mathbb{1}-\operatorname{BiMod}(\varphi)
$$

$$
\cong \zeta \text { AS CATEGORIES }
$$

TAKE $\left(M, D_{\mu}: \| \otimes M \rightarrow M\right) \in \mathbb{L}-M_{0} d$.
THEN: $D_{M}=l_{\mu}(\leftarrow$ PART OF STRUCTRRE of $\varphi)$

$$
\therefore \quad \mathbb{1}-\operatorname{Mod}(\varphi) \cong \zeta
$$

LIKEWISE, $\operatorname{Mod}-\mathbb{L} \cong C$ SINCE $4_{\mu}=r_{\mu}$.

I. (BI)MODULES in mONOIDAL CATEGORIES

I. (BI)MODULES In mONOIDAL CATEGORIES

I. (BI)MODULES in mONOIDAL CATEGORIES

LETS EXPLORE THIS
ON THE BOARD
$\operatorname{TAKE}(A, \mu, u) \in \operatorname{Alg}(-)$.
LEFT A-MODULE \mathbb{N} と Is:
(a) OBJECT M N
(b) MAP $D: A \otimes M \rightarrow M \operatorname{N} C$

SAT. ASSOC \ddagger UNIT. AXIOMS
FORMS CATEG. A-Mod(G)
RIGHT A-MODULE IN CIS:
(a) OBJECT $M \mathbb{N} G$
(b) MAP $\triangle: M \otimes A \rightarrow M \mathbb{N} C$

SAT. ASSOC \ddagger UNIT. AXIOMS
FORMS CATEG. Mod-A(G)
A-BIMODULE IN CIS:
(a) OBJECT $M \mathbb{N} \mathfrak{C}$
(b) MAPS $D, \triangle \mathbb{N} C$

SAT. $(A, D) \in A-M o d(l)$
$(A, \triangleleft) \in \operatorname{Mod}-A(\zeta)$ + compatibility
FORMS CATEG. A-Bimod (Ce)
EXERCISE 4.25 SHOW THAT:
(a) $\left(A \otimes X, D_{A \oplus X}: A \otimes(A \otimes X) \longrightarrow A \otimes X\right)$ FOR $X \in G$
=FREE MODULE \equiv

$$
\begin{aligned}
& (A \otimes A) \otimes X \\
& \quad \in A-\operatorname{Mod}(\zeta)
\end{aligned}
$$

(b) Free: $\boldsymbol{C} \longrightarrow A-\operatorname{Mod}(\boldsymbol{e})$

$$
X \longmapsto\left(A \otimes X, D_{A \otimes X}\right)
$$

IS A FUNCTOR.
(c) $\left.\begin{array}{rl}\text { Free })-1 & (\text { Fora: } A-M \operatorname{Od}(\varphi)\end{array} \longrightarrow \zeta\right)$
(INSTANCE OF FREE-FORGET ADJUNCTION)
I. (BI)MODULES in mONOIDAL CATEGORIES

LETS EXPLORE THIS ON THE BOARD
$\operatorname{Take}(A, \mu, u) \in \operatorname{Alg}(\varphi)$.
LEFT A-MODULE \mathbb{N} と Is:
(a) OBJECT $M \sim \mathbb{N}$
(b) MAP $D: A \otimes M \rightarrow M \operatorname{N} C$

SAT. ASSOC \ddagger UNIT. AXIOMS
FORMS CATEG. A-Mod(C)
RIGHT A-MODULE IN CIS:
(a) OBJECT M iN
(b) MAP $\triangle: M \otimes A \rightarrow M \mathbb{N} C$

SAT. ASSOC \ddagger UNIT. AXIOMS
FORMS CATEG. Mod-A(G)
A-BIMODULE IN CIS:
(a) OBJECT $M \mathbb{N} G$
(b) MAPS $D, \triangleleft \mathbb{N} C$

SAT. $(A, D) \in A-M o d(l)$
$(A, \triangleleft) \in \operatorname{Mod}-A(C)$ + compatibility
FORMS CATEG. A-Bimod (Ce)

EXERCISE 4.25 SHOW THAT:
$(a)\left(A \otimes X, D_{A \otimes X}: A \otimes(A \otimes X) \longrightarrow A \otimes X\right)$
FOR $X \in C \quad a_{A, A, X}^{-1} \bigvee \quad D E F / M \otimes i d$
ㅋFREE MODULE \equiv

$$
(A \otimes A) \otimes X
$$

$$
\in A-\operatorname{Mod}(\zeta)
$$

ASSUME 6 STRICT FLOG. THEN NEED:

I. (BI)MODULES in mONOIDAL CATEGORIES

LETS EXPLORE THIS
ON THE BOARD
$\operatorname{TAKE}(A, \mu, u) \in \operatorname{Alg}(\varphi)$.
LEFT A-MODULE \mathbb{N} と Is:
(a) OBJECT M iN
(b) MAP D:A $\otimes M \rightarrow M \mathbb{N} E$

SAT. ASSOC \ddagger UNIT. AXIOMS FORMS CATEG. A-Mod(G)
right A-MODULE IN CIS:
(a) ObJECT M in
(b) MAP $\triangle: M \otimes A \rightarrow M I N E$

SAT. ASSOC \ddagger UNIT. AXIOMS
Forms Categ. Mod-A(l)
A-BIMODULE \mathbb{N} e Is:
(a) OBJECT M iN
(b) MAPS $D, \mathbb{A} \mathbb{N}$

SAT. ($A, D) \in A-\operatorname{Mod}(r)$
$(A, d) \in \operatorname{Mod}-A(r)$ + Compatibluty
FORMS CATEG. A-Bimod(C)

EXERCISE 4.25 SHOW THAT:
(b) Free: $\zeta \longrightarrow A-\operatorname{Mod}(\varphi)$

$$
X \longmapsto\left(A \otimes X, D_{A \otimes X}:=\left(\mu_{A \otimes i d x}\right) a_{A, A, X}^{-1}\right)
$$

IS A FUNCTOR
$\operatorname{RECALL} \phi \in \operatorname{HO}_{A-M_{\operatorname{Od}}(6)}\left(M, M^{\prime}\right)$

- For $f: X \rightarrow X^{\prime} \in \zeta$, WHAT IS Free (f)??
I. (BI)MODULES in mONOIDAL CATEGORIES

LETS EXPLORE THIS
ON THE BOARD
$\operatorname{TAKE}(A, \mu, u) \in \operatorname{Alg}(\varphi)$.
LEFT A-MODULE \mathbb{N} と Is:
(a) OBJECT M iN
(b) MAP $D: A \otimes M \rightarrow M I N e$

SAT. ASSOC \ddagger UNIT. AXIOMS FORMS CATEG. A-Mod(G)
right A-MODULE IN CIS:
(a) object M in \boldsymbol{C}
(b) MAP $\triangle: M \otimes A \rightarrow M I N e$

SAT. ASSOC \& UNIT. AXIOMS
FORMS CATEG. Mod-A(G)
A-BIMODULE \mathbb{N} e Is:
(a) OBJECT M iN
(b) MAPS $D, \mathbb{A} \mathbb{N}$

SAT. (A, D) $\in A-\operatorname{Mod}(E)$
$(A, d) \in \operatorname{Mod}-A(a)$ + Compatibluty
FORMS CATEG. A-Bimod(C)
EXERCISE 4.25 SHOW THAT:
(b) Free: $\zeta \longrightarrow A-\operatorname{Mod}(\varphi)$

$$
X \longmapsto\left(A \otimes X, \nabla_{A \otimes X}:=\left(\mu_{A \otimes i d x}\right) a_{A, A, X}^{-1}\right)
$$

IS A FUNCTOR
$\operatorname{RECALL} \phi \in \operatorname{HO}_{A-M_{\operatorname{Od}}(6)}\left(M, M^{\prime}\right)$

- For $f: X \rightarrow X^{\prime} \in \zeta$, WHAT IS Free (f)??
- DOES Free $(i d x)=i d$ Free $(x) \quad \forall x \in G$??

I. (BI)MODULES in mONOIDAL CATEGORIES

LETS EXPLORE THIS
ON THE BOARD
$\operatorname{TAKE}(A, \mu, u) \in \operatorname{Alg}(\varphi)$.
LEFTA-MODULE \mathbb{N} CIS:
(a) OBJECT M iN
(b) MAP $D: A \otimes M \rightarrow M I N E$

SAT. ASSOC \ddagger UNIT. AXIOMS FORMS CATEG. A-Mod(G)
right A-MODULE IN CIS:
(a) object M in \boldsymbol{C}
(b) MAP $\triangle: M \otimes A \rightarrow M I N E$

SAT. ASSOC \& UNIT. AXIOMS
Forms Categ. Mod-A(l)
A-BIMODULE \mathbb{N} CIS:
(a) OBJECT M iN
(b) MAPS $D, \mathbb{A} \mathbb{N}$

SAT. ($A, D) \in A-\operatorname{Mod}(r)$
$(A, d) \in \operatorname{Mod}-A(a)$ + Compatibluty
FORMS CATEG. A-Bimod(C)
EXERCISE 4.25 SHOW THAT:
(b) Free: $\zeta \longrightarrow A-\operatorname{Mod}(\varphi)$

$$
X \longmapsto\left(A \otimes X, \nabla_{A \otimes X}:=\left(\mu_{A} \otimes i d x\right) a_{A, A, X}^{-1}\right)
$$

IS A FUNCTOR
$\operatorname{RECALL} \phi \in \operatorname{HoM}_{A-M_{\operatorname{Od}}(\xi)}\left(M, M^{\prime}\right)$

- For $f: X \rightarrow X^{\prime} \in \zeta$, WHAT IS Free (f)??
- DOES Free $(i d x)=i d$ Free $(x) \quad \forall x \in G$??
- DOES Free $(f g)=\operatorname{Free}(f) \operatorname{Free}(g)$??
\forall comparable $f, g \in \operatorname{Hom}(e)$
I. (BI)MODULES in mONOIDAL CATEGORIES

LETS EXPLORE THIS
ON THE BOARD
$\operatorname{Take}(A, \mu, u) \in \operatorname{Alg}(\varphi)$.
LEFT A-MODULE \mathbb{N} C IS:
(a) OBJECT M N
(b) MAP $D: A \otimes M \rightarrow M \operatorname{N} C$

SAT. ASSOC \ddagger UNIT. AXIOMS FORMS CATEG. A-Mod(b)

RIGHT A-MODULE IN CIS:
(a) OBJECT $M \mathbb{N} G$
(b) MAP $\triangle: M \otimes A \rightarrow M \mathbb{N} C$

SAT. ASSOC \ddagger UNIT. AXIOMS
FORMS CATEG. Mod-A(G)
A-BIMODULE IN CIS:
(a) OBJECT $M \mathbb{N} \mathfrak{C}$
(b) MAPS $D, \triangle \mathbb{N} C$

SAT. $(A, D) \in A-M o d(l)$
(A, Δ) $\in \operatorname{Mod}-A(e)$ + compatibility
FORMS CATEG. A-Bimod(Ce)
EXERCISE 4.25 SHOW THAT:
$\left.\begin{array}{c}\text { (c) }(\text { Free })-1(\text { Fora: } A-M o d(\zeta) \longrightarrow \zeta \\ (M, \triangleright) \longmapsto M\end{array}\right)$

$$
\left[\begin{array}{rl}
\text { Free }: \zeta & \longrightarrow A-\operatorname{Mod}(\varphi) \\
& X \longmapsto\left(A \otimes X, D_{A \otimes X}:=\left(\mu_{A} \otimes i d x\right) a_{A, A, x}^{-1}\right)
\end{array}\right]
$$

EITHER DEFINE -
$\eta:$ Id $\varphi \Rightarrow$ Forgo \circ Free $\neq \varepsilon$: Free ${ }^{\circ}$ For $\Rightarrow I_{A-M_{0}(C)}$

$$
\begin{array}{ll}
\hline \text { SATISFyING } \forall x \in \zeta, Y \in A-M o d(r): & F=F \text { Free } \\
G:=F_{0 \text { g }}
\end{array}
$$

I. (BI)MODULES in mONOIDAL CATEGORIES

LETS EXPLORE THIS
ON THE BOARD
$\operatorname{TaKE}(A, \mu, u) \in \operatorname{Alg}(\varphi)$.
LEFT A-MODULE \mathbb{N} と IS:
(a) OBJECT M N
(b) MAP $D: A \otimes M \rightarrow M \operatorname{N} C$ SAT. ASSOC \ddagger UNIT. AXIOMS FORMS CATEG. A-Mod(C)

RIGHT A-MODULE IN CIS:
(a) OBJECT $M \mathbb{N} G$
(b) MAP $\triangle: M \otimes A \rightarrow M \mathbb{N} C$

SAT. ASSOC \ddagger UNIT. AXIOMS
FORMS CATEG. Mod-A(G)
A-BIMODULE IN CIS:
(a) OBJECT $M \mathbb{N} G$
(b) MAPS D, \triangleleft IN C

SAT. $(A, D) \in A-\operatorname{Mod}(l)$
$(A, \triangleleft) \in \operatorname{Mod}-A(C)$

+ compatibility

EXERCISE 4.25 SHOW THAT:
$\left.\begin{array}{rl}\text { (c) }(\text { Free })-1 & \text { Fora: } A-\operatorname{Mod}(\zeta) \\ (M, \triangleright) & \longrightarrow M\end{array}\right)$

$$
\left[\begin{array}{rl}
\text { Free }: \zeta & \longrightarrow A-M o d(\varphi) \\
& X \longmapsto\left(A \otimes X, D_{\text {A\&X }}:=\left(\mu_{A} \otimes i d x\right) a_{A, A, X}^{-1}\right)
\end{array}\right]
$$

EITHER DEFINE -
$\eta:$ Id $_{\varphi} \Rightarrow$ Forg。Free $\ddagger \quad \varepsilon$: Free \circ For $\Rightarrow I_{A-M o d}(e)$

$$
\text { SATISFyING } \forall x \in \zeta, y \in A-M \text { od }(\varphi): \quad \begin{aligned}
& F:=F \text { Fee } \\
& G:=F o r g
\end{aligned}
$$

$$
\begin{array}{r}
\text { OR } \\
\text { SHOW }
\end{array} \operatorname{HOM}_{A-M_{\text {od }}(e)}(\operatorname{Free}(x), y) \cong \operatorname{HoM}_{C}(x, \operatorname{Forg}(y))
$$

I. (BI)MODULES in mONOIDAL CATEGORIES

LETS EXPLORE THIS
ON THE BOARD

TAKE $(A, M, u) \in \operatorname{Alg}(e)$.
LEFTA-MODULE IN C IS:
(a) OBJECT M iN ζ
(b) MAP $D: A \otimes M \rightarrow M I N E$ SAT. ASSOC \& UNIT. AXIOMS FORMS CATEG. A-Mod (Ce)
right A-MODULE IN CIS:
(a) ObJECT M in K
(b) MAP $\triangle: M \otimes A \rightarrow M I N E$

SAT. ASSOC \& UNIT. AXIOMS
Forms Categ. Mod-A(G)
A-bimodule $\mathbb{N e}$ Is:
(a) OBJECT M iN
(b) MAPS $D, \mathbb{N} \varepsilon$

SAT. ($A, D) \in A-\operatorname{Mod}(l)$
$(A, 4) \in \operatorname{Mod}-A(C)$

+ Compatibility

EXERCISE 4.25 SHOW THAT:
$\left.\begin{array}{c}\text { (c) } \text { (Free })-1(\text { Fora: } A-\operatorname{Mod}(\zeta) \longrightarrow \zeta \\ (M, \triangleright) \longmapsto M\end{array}\right)$

$$
\left[\begin{array}{rl}
\text { Free: } & \zeta
\end{array} \longrightarrow A-\operatorname{Mod}(\varphi)\right)
$$

EITHER DEFINE -
$\eta:$ Id $_{\varphi} \Rightarrow$ Forg。Free $\neq \varepsilon$: Free \circ For $\Rightarrow I_{d_{A-M o d}(e)}$ SATISFyING $\forall x \in \zeta, y \in A-\operatorname{Mod}(\epsilon): \quad \begin{aligned} & F:=F \text { Free } \\ & G:=F \text { org }\end{aligned}$

$$
\begin{aligned}
& \text { OR } \\
& \text { SHOW }
\end{aligned} \operatorname{HOM}_{A-M_{\text {od }}(e)}(\text { Free }(x), y) \cong \text { HoMe }_{C}(x, \text { Forg }(y))
$$

I. (BI)MODULES in mONOIDAL CATEGORIES

I.(bI)MODULES IN mONOIDAL CATEGORIES

TAKE $(A, \mu, u) \in \operatorname{Alg}(e)$.
LEFT A-MODULE IN $C \mathbb{I}$:
(a) OBJECT $M \mathbb{N}$ G
(b) MAP $D: A \otimes M \rightarrow M \mathbb{N} C$

SAT. ASSOC \ddagger UNIT. AXIOMS
FORMS CATEG. A-Mod(G)
RIGHT A-MODULE IN C IS:
(a) OBJECT M, N
(b) MAP $\triangle: M \otimes A \rightarrow M \mathbb{N} C$

SAT. ASSOC \ddagger UNIT. AXIOMS
Forms Categ. Mod-A(G)
A-BIMODULE IN CIS:
(a) OBJECT $M \mathbb{N} \boldsymbol{N}$
(b) MAPS $D, \triangleleft \operatorname{NC}$

SAT. $(A, D) \in A-\operatorname{Mod}(C)$
$(A, \triangleleft) \in \operatorname{Mod}-A(c)$

+ compatiblity
FORMS CATEG. A-Bimod(ζ)

ミRECALL "MODULES OVER CATEGORIES"
A RIGHT MODULE CATEGORY OVER G is $\left(\eta_{\hat{p}}, \Delta: \eta_{\hat{\prime}} \times b \rightarrow m, n, q\right.$) CATEGORY ACTION BIFUNCTOR ASSOC. UNIT. CONSTRAINTS
I.(BI)MODULES in monoidal categories

$$
\equiv \text { RECALL "MODULES OVER CATEGORIES" }
$$

A RIGHT MODULE CATEGORY OVER G is
CÁTEGORY ACTION BIFUNCTOR ASSOC. UNIT. CONSTRAINTS

A LEFT MODULE CATEGORY OVER G is
 CATEGORY ACTION BIFUNCTOR ASSOC. UNIT. CONSTRAINTS
I. (BI)MODULES IN MONOIDAL CATEGORIES

Prop "Moduces in ζ are modules over $l^{\prime \prime}$

$$
\begin{aligned}
& A-\operatorname{Mod}(\zeta) \in \operatorname{Mod}-\zeta V I A \\
& \Delta: A-\operatorname{Mod}(\zeta) \times \zeta \longrightarrow A-\operatorname{Mod}(\zeta) \\
& ((M, D), X) \longmapsto(M \otimes X, \nabla: A \otimes(M \otimes X) \longrightarrow M \otimes X) \\
& \\
& \\
& a_{A, M, X}^{-1} \downarrow_{D \in F} \hat{\rho}_{D \otimes i d x} \\
& (A \otimes M) \otimes X
\end{aligned}
$$

ㅍ RECALL "MODULES OVER CATEGORIES"
A RIGHT MODULE CATEGORY OVER G is
 CATEGORY ACTION BIFUNCTOR ASSOC. UNIT. CONSTRAINTS

A LEFT MODULE CATEGORY OVER G is $\left(\eta_{\gamma}, D: e_{i} \times \eta_{\eta} \rightarrow \eta_{i}, p\right)$ CATEGORY ACTION BIFUNCTOR ASSOC. UNIT. CONSTRAINTS
I. (BI)MODULES IN MONOIDAL CATEGORIES

prop "modules in ζ are modules over $l^{\prime \prime}$

$$
\begin{aligned}
& A-\operatorname{Mod}(\zeta) \in \operatorname{Mod}-\zeta \text { VIA } \\
& \Delta: A-\operatorname{Mod}(\boldsymbol{\zeta}) \times \zeta \longrightarrow A-\operatorname{Mod}(\boldsymbol{\zeta}) \\
& ((M, \triangleright), X) \longmapsto(M \otimes X, \triangleright: A \otimes(M \otimes X) \longrightarrow M \otimes X) \\
& \begin{array}{l}
a_{A, M, X}^{-1} \searrow^{\operatorname{DEF}} \hat{T} D \otimes i d_{X} \\
(A \otimes M) \otimes X
\end{array} \\
& \operatorname{Mod}-A(\zeta) \in \zeta-\operatorname{Mod} \operatorname{VIA} \\
& \Delta: \zeta \times \operatorname{Mod}-A(\zeta) \longrightarrow \operatorname{Mod}-A(\zeta)
\end{aligned}
$$

A LEFT MODULE CATEGORY OVER G IS
 CATEGORY ACTION BIFUNCTOR ASSOC. UNIT. CONSTRAINTS
I. (BI)MODULES IN MONOIDAL CATEGORIES

I. (BI)MODULES in mONOIDAL CATEGORIES

TAKE $(A, M, u) \in \operatorname{Alg}(\xi)$.
LEFT A-MODULE \mathbb{N} C IS:
(a) OBJECT $M \mathbb{N} G$
(b) MAP $D: A \otimes M \rightarrow M \operatorname{N} C$

SAT. ASSOC \ddagger UNIT. AXIOMS
FORMS CATEG. A-Mod(G)
RIGHT A-MODULE IN CIS:
(a) OBJECT $M \mathbb{N} G$
(b) MAP $\triangle: M \otimes A \rightarrow M \mathbb{N} C$

SAT. ASSOC \ddagger UNIT. AXIOMS
FORMS CATEG. Mod-A(G)
A-BIMODULE $\mathbb{N} C$ IS:
(a) OBJECT $M \mathbb{N} \boldsymbol{N}$
(b) MAPS $D, \triangleleft \mathbb{N} C$

SAT. $(A, D) \in A-M o d(l)$
$(A, \triangleleft) \in \operatorname{Mod}-A(C)$ + compatibility
FORMS CATEG. A-Bimod (Ce)

READ ABOUT WHEN
these categories satisfy:

II. MONADS

ALGEBRA IN $(\varphi, \otimes, 11) \stackrel{\swarrow}{\text { STRICT. }}$
(a) OBJECT $A \in \xi$
(b) $\mu:=\mu_{A}: A \otimes A \rightarrow A \in \zeta$
(c) $u:=u_{A}: \mathbb{1} \rightarrow A \in \mathscr{C}$

SATISFyING:
(ASSOC) $M\left(M \otimes i d_{A}\right)=M\left(i d_{A} \otimes M\right)$
(wit.) $\mu\left(u \otimes i d_{A}\right)=i d_{A}$

$$
\mu\left(i d_{A} \otimes u\right)=i d A
$$

FORMS CATEGORY $\operatorname{Alg}(6)$
WITH:

$$
\begin{gathered}
\phi \in H_{0} \mu_{A l g}(\varphi)\left(A, A^{\prime}\right) \\
\text { III } \\
\phi: A \rightarrow A^{\prime} \in \tau \\
\rightarrow . \\
\phi M=\mu^{\prime}(\phi \otimes \phi) \\
\phi u=u^{\prime}
\end{gathered}
$$

II. MONADS

TAKE A (NOT NEG. MONOIDAL) CATEGORY A. A MONAD ON A is BY DEFINITION AN ALGEBRA in (End $\left.(A), 0, I d_{A}\right) \bigwedge_{\text {STRICT }}$

ALCEBRAIN $(\zeta, \otimes, Q 1))_{\text {STRuT. }}^{2}$.
(a) OBJECT $A \in \xi$
(b) $\mu:=M_{A}: A \otimes A \rightarrow A \in \zeta$
(c) $u:=u_{A}: \mathbb{1} \rightarrow A \in \mathscr{C}$

SATISFYING:
(ASSOC) $M\left(M \otimes i d_{A}\right)=M\left(i_{A} \otimes M\right)$
(aNT.)

$$
\begin{aligned}
& \mu\left(u s i d_{A}\right)=i d_{A} \\
& \mu\left(i_{A} \otimes u\right)=i d A
\end{aligned}
$$

FORMS CATEGORY $\operatorname{Alg}(b)$
WITH:

$$
\begin{gathered}
\phi \in \operatorname{HoM}_{A l g(\varphi)}\left(A, A^{\prime}\right) \\
\text { III } \\
\phi: A \rightarrow A^{\prime} \in \tau \\
\Rightarrow \\
\phi \mu=\mu^{\prime}(\phi \otimes \phi) \\
\phi u=u^{\prime}
\end{gathered}
$$

II. MONADS

TAKE A (NOT NEC. MONOIDAL) CATEGORY A. A MONAD ON A is BY DEFINITION

AN ACGEBRA in (End $\left.(A), 0, I d_{A}\right) \bigwedge_{S T R}$ that is:

AN ENDOFUNCTOR T:A $\rightarrow A$ EQUIPPED W/ NAT'L Transfind $\mu: T_{0} T \Longrightarrow T$

$$
\eta: I d_{t} \Longrightarrow T
$$

SATIJFYING

ALAEBRA IN $(\varphi, \otimes, 1))_{\text {STRCT }}^{2}$.
(a) OBJECT $A \in \xi$
(b) $M:=M_{A}: A \otimes A \rightarrow A \in \xi$
(c) $u:=u_{A}: \mathbb{1} \rightarrow A \in \boldsymbol{\zeta}$

SATISFIING:
$(A S S O C) M\left(M \otimes i d_{A}\right)=M\left(i d_{A} \otimes M\right)$
(wNit.)

$$
\begin{aligned}
& \mu\left(u \otimes i d_{A}\right)=i d A \\
& \mu\left(i d_{A} \otimes u\right)=i d A
\end{aligned}
$$

FORMS CATEGORY Alg(b)
WITH:

$$
\begin{aligned}
& \phi \in H_{0} M_{A l g}(\varepsilon)\left(A, A^{\prime}\right) \\
& \text { III } \\
& \phi: A \rightarrow A^{\prime} \in \tau \\
& \rightarrow . \\
& \phi \mu=m^{\prime}(\phi \otimes \phi) \\
& \phi u=u^{\prime}
\end{aligned}
$$

II. MONADS

TAKE A (NOT NEG. MONOIDAL) CATEGORY A. A MONAD ON A is BY DEFINITION
 That is:

AN ENDOFUNCTOR $T: A \rightarrow A$ EQUIPPED W/ NAT'L Transfind $\mu: T_{0} T \Longrightarrow T$

$$
\eta: I d_{t} \Longrightarrow T
$$

SATISFYING $\forall x \in A:$

$$
T_{:}^{n}=\widetilde{T}_{0} \ldots
$$

$$
\xrightarrow[{\left.T\left(\mu_{x}\right)\right|_{T^{2}(x)} ^{T^{3}(x)} \xrightarrow{\mu_{T(x)}}{ }_{2}^{\mu_{x}(x)}{ }_{T}^{\mu_{x}} \mu_{x}}]{\mu_{x}}
$$

ALGEBRA IN $(\varphi, \otimes, Q 1))_{\text {STR KT. }}^{2}$.
(a) OBJECT $A \in \xi$
(b) $M:=\mu_{A}: A \otimes A \rightarrow A \in \zeta$
(c) $u:=u_{A}: \mathbb{1} \rightarrow A \in \zeta$

SATISFYING:
(ASSOC) $M\left(M \otimes i d_{A}\right)=M\left(i d_{A} \otimes M\right)$
(uNit.) $\mu\left(u \otimes i d_{A}\right)=i d_{A}$

$$
\mu\left(i d_{A} \otimes u\right)=i d_{A}
$$

FORMS CATEGORY

$$
\operatorname{Alg}(6)
$$

WITH:

$$
\begin{aligned}
& \phi \in H_{O} M_{A l g}(\varepsilon)\left(A, A^{\prime}\right) \\
& \text { III } \\
& \phi: A \rightarrow A^{\prime} \in \tau \\
& \rightarrow . \\
& \phi \mu=m^{\prime}(\phi \otimes \phi) \\
& \phi u=u^{\prime}
\end{aligned}
$$

II. MONADS

TAKE A (NOT NEG. MONOIDAL) CATEGORY A. A MONAD ON A is BY DEFINITION AN ACGEBRA in (End $(A), 0$, Id d $)$ STRIA that IS:

AN ENDOFUNCTOR $T: A \rightarrow A$ EQUIPPED W/ NAT'L Transfind $\mu: T_{0} T \Longrightarrow T$

$$
\eta: I d_{t} \Longrightarrow T
$$

SATISFYING $\forall x \in A$:

$$
T_{i}^{n}=\widetilde{T}_{0} \ldots T_{T}^{n}
$$

ALGEBRA IN $(\varphi, \otimes, Q 1)$ STRuT.
(a) OBJECT $A \in \xi$
(b) $M:=\mu_{A}: A \otimes A \rightarrow A \in \zeta$
(c) $u:=u_{A}: \mathbb{1} \rightarrow A \in \zeta$

SATISFYING:
$(A S S O C) M\left(M \otimes i d_{A}\right)=M\left(i d_{A} \otimes M\right)$
($\left(W 1 T\right.$.) $\mu\left(u \otimes i d_{A}\right)=i d_{A}$

$$
\mu\left(i_{A} \otimes U\right)=i d_{A}
$$

FORMS CATEGORY

$$
\operatorname{Alg}(6)
$$

WITH:

$$
\begin{aligned}
& \phi \in H_{O} \mu_{A \operatorname{Al}(\varphi)}\left(A, A^{\prime}\right) \\
& \text { III } \\
& \phi: A \rightarrow A^{\prime} \in \tau \\
& \rightarrow \\
& \phi \mu=m^{\prime}(\phi \otimes \phi) \\
& \phi u=u^{\prime}
\end{aligned}
$$

II. MONADS

TAKE A (NOT NEG. MONOIDAL) CATEGORY A.
A MONAD ON A is BY DEFINITION
AN ACGEBRA in (En deA), 0, IdA) $\varlimsup_{\text {Strict }}$ THAT IS:

AN ENDOFUNCTOR $T: A \rightarrow A$ EQUIPPED W/ NATL TRANSFINS $\mu:$ ToT $\Longrightarrow T$

$$
\eta: I d_{t} \Longrightarrow T
$$

SATISFYING $\forall X \in A$:

$$
T_{1}^{n}=T_{0 . \ldots T}^{n}
$$

ALGEBRA IN $(\varphi, \otimes, Q 1))_{\text {STR KT. }}^{2}$.
(a) OBJECT $A \in \xi$
(b) $M:=\mu_{A}: A \otimes A \rightarrow A \in \zeta$
(c) $u:=u_{A}: \mathbb{1} \rightarrow A \in \zeta$

SATISFYING:
$(A S S O C) M\left(M \otimes i d_{A}\right)=M\left(i d_{A} \otimes M\right)$
(uNiT.) $\mu\left(u \otimes i d_{A}\right)=i d_{A}$

$$
\mu\left(i d_{A} \otimes u\right)=i d A
$$

FORMS CATEGORY

$$
\operatorname{Alg}(6)
$$

WITH:

$$
\begin{aligned}
& \phi \in H_{O} M_{A l g(\varepsilon)}\left(A, A^{\prime}\right) \\
& \text { III } \\
& \phi: A \rightarrow A^{\prime} \in \tau \\
& \rightarrow . \\
& \phi \mu=\mu^{\prime}(\phi \otimes \phi) \\
& \phi u=u^{\prime}
\end{aligned}
$$

II. MONADS

TAKE A (NOT NEG. MONOIDAL) CATEGORY A.
A MONAD ON A is BY DEFINITION
AN ACGEBRA iN (End $(A), 0, I d A) \bigwedge_{\text {STRICT }}$ That is:

AN ENDOFUNCTOR $T: A \rightarrow A$ EQUIPPED $w /$ NATILTRANSFINS $\mu: T 0 T \Longrightarrow T$

$$
\eta: I d_{A} \Rightarrow T
$$

SATISFYING $\forall X \in A:$

$$
T^{n}: \widetilde{T}_{0 \ldots 0 \cdot}^{n}
$$

Have Category $\operatorname{Monad}(A):=A \lg (\operatorname{End}(A))$
$\operatorname{ALGEBRA} \operatorname{IN}(\varphi, \otimes, \mathbb{1}) \stackrel{\swarrow}{\text { STRICT. }}$
(a) OBJECT $A \in \zeta$
(b) $\mu:=M_{A}: A \otimes A \rightarrow A \in \zeta$
(c) $u:=u_{A}: \mathbb{1} \rightarrow A \in \boldsymbol{G}$

SATISFYING:
(ASSOC) $M\left(\mu \otimes i d_{A}\right)=M\left(i d_{A} \otimes M\right)$
(wit.) $\mu\left(u \otimes i d_{A}\right)=i d_{A}$
$\mu(i d A \otimes u)=i d A$
FORMS CATEGORY

$$
\operatorname{Alg}(b)
$$

WITH:

$$
\varnothing_{\text {III }} \in \operatorname{Hom}_{\mathrm{Alg}_{(r)}\left(A, A^{\prime}\right)}
$$

$$
\phi: A \rightarrow A^{\prime} \in \tau
$$

$$
\rightarrow
$$

$$
\phi \mu=\mu^{\prime}(\phi \otimes \phi)
$$

$\phi u=u^{\prime}$
II. MONADS

ALGEBRA IN $(\zeta, \otimes, \mathbb{1})$ STRICT.
(a) OBJECT $A \in \zeta$
(b) $M:=M_{A}: A \otimes A \rightarrow A \in \zeta$
(c) $u:=u_{A}: \mathbb{1} \rightarrow A \in \zeta$

SATISFYING:
$(A S S O C) M\left(M \otimes i d_{A}\right)=M\left(i d_{A} \otimes M\right)$
$(u N I T.) \mu\left(u \otimes i d_{A}\right)=i d A$

$$
\mu\left(i d_{A} \otimes u\right)=i d_{A}
$$

FORMS CATEGORY

$$
A \lg (\zeta)
$$

WITH:

$$
\varnothing \in H_{I I I} M_{A l g(e)}\left(A, A^{\prime}\right)
$$

$$
\phi: A \rightarrow A^{\prime} \in \zeta
$$

\rightarrow.

$$
\begin{aligned}
& \phi u=m^{\prime}(\phi \otimes \phi) \\
& \phi u=u^{\prime}
\end{aligned}
$$

II. MONADS

II. MONADS
take a category a.
$\operatorname{Monad}(A):=\operatorname{Alg}(E \operatorname{nd}(A))$ OBJECTS:
ENDOFUNCTOR $T: A \rightarrow A$ $\begin{aligned} \text { NaT TRANS: } \mu: T_{0} T & \Rightarrow T \\ \eta: I d_{d} & \Rightarrow T\end{aligned}$
SATISFyING $\forall x \in A$:

$$
\begin{aligned}
& T(x) \xrightarrow{T\left(n_{x}\right)} T^{2}(x) \\
& i d(x) \downarrow{ }^{2} \stackrel{\downarrow^{\prime}(x)}{\mu_{x}}
\end{aligned}
$$

EXAMPLES
IDENTITY MONAD ON A

$$
T:=I d d
$$

II. MONADS

TAKE A CATEGORy A.
$\operatorname{MOnad}(A):=A \lg (\operatorname{End}(A))$
OBJECTS:
ENDOFUNCTOR $T: A \rightarrow A$
NAT TRANS: $\mu: T 0 T \Longrightarrow T$
$\eta: I d_{A} \Rightarrow T$
SATISFYING $\forall x \in A$:

EXAMPLES

IDENTITY MONAD ON A

$$
\begin{array}{lll}
T:=I d_{A} \\
& \mu_{i}: X \rightarrow X & \eta_{x}: X \rightarrow X \\
i i_{i} \\
i d x & i d x & \forall X \in A
\end{array}
$$

$$
\begin{aligned}
& \text { GIVEN } A \in A \lg (\zeta, \otimes, \mathbb{U}) \operatorname{sTRICT} \\
& \text { GET }(A \otimes-) \in \operatorname{Monad}(C) \text { WITH } \\
& \\
& \mu_{x}: A \otimes A \otimes X \xrightarrow[R]{ } A \otimes X \\
& \eta_{X}: X \xrightarrow[? ?]{ } \xrightarrow{ } \quad A \otimes X \quad \forall X \in \zeta
\end{aligned}
$$

II. MONADS

TAKE A CATEGORy A.
$\operatorname{MOnad}(A):=A \lg (\operatorname{End}(A))$
OBJECTS:
ENDOFUNCTOR $T: A \rightarrow A$
NATTRANS: $\mu: T 0 T \Longrightarrow T$
$\eta: I d_{A} \Rightarrow T$
SATISFYING $\forall x \in A$:

EXAMPLES
IDENTITY MONAD ON A

$$
T:=\text { IdA } \quad \begin{array}{ll}
\mu_{x}: X \rightarrow X & \eta_{x}: X \rightarrow X \\
& \\
& \\
\text { ii } \\
i d_{X} & i d x
\end{array} \quad \forall X \in A
$$

$$
\begin{aligned}
\text { GIVEN } & A \in A l g(\zeta, \otimes, \mathbb{U}) \text { sTRICT } \\
\text { GET } & (A \otimes-) \in \operatorname{Monad}(\zeta) \text { WITH } \\
& \mu_{X}: A \otimes A \otimes X \xrightarrow{M_{A} \otimes i d x} A \otimes X \\
& \eta_{X}: X \xrightarrow{u_{A} \otimes i d x} A \otimes X \quad \forall X \in \zeta
\end{aligned}
$$

II. MONADS

TAKE A CATEGORy A.
$\operatorname{Monad}(A):=A \lg (\operatorname{End}(A))$
OBJECTS:
ENDOFUNCTOR $T: A \rightarrow A$
NAT TRANS: $\mu: T 0 T \Longrightarrow T$
$\eta: I d_{l} \Rightarrow T$
SATISFYING $\forall x \in A$:

EXAMPLES

IDENTITY MONAD ON A

$$
\begin{array}{llll}
T:=\text { Id } A & \mu_{x}: X \rightarrow X & \eta_{x}: X \rightarrow X & \\
& \text { ii } & & \\
& \text { id x } & i d x & \forall X \in A
\end{array}
$$

DETAILS ミ EXERCISE 4.20

GIVEN $A \in A \lg (C, \otimes, \underset{K}{\mathbb{U}})$ STRICT
GET $(A \otimes-) \in \operatorname{Monad}(e)$ WITH

$$
\begin{aligned}
& \mu_{X}: A \otimes A \otimes X \xrightarrow{M_{A} \otimes i d x} A \otimes X \\
& \eta_{X}: X \xrightarrow{u_{A} \otimes i d x} A \otimes X
\end{aligned}
$$

$\forall x \in \zeta$
II. MONADS

EXAMPLES
MOST IMPORTANT
TAKE ADJUNCTION
UNIT $\eta: I_{d} \Rightarrow G F$
$(F: A \rightarrow B)-1(G: B \rightarrow A) \quad \operatorname{conN} I T \varepsilon: F G \rightarrow I d_{B}$

DETAILS ミ EXERCISE 4.20
$\operatorname{GiveN} A \in \operatorname{Alg}(\varphi, \otimes, \mathbb{U}) \operatorname{STRLT}$
GET $(A \otimes-) \in \operatorname{Monad}(e)$ WITH

$$
\begin{aligned}
& \mu_{X}: A \otimes A \otimes X \xrightarrow{\mu_{A} \otimes i d X} A \otimes X \\
& \eta_{X}: X \xrightarrow{u_{A} \otimes i d_{X}} A \otimes X
\end{aligned}
$$

$\forall x \in \zeta$
II. MONADS

$$
\begin{aligned}
& \text { TAKE A CATEGORY A. } \\
& \operatorname{Monad}(A):=A \lg (\operatorname{End}(A)) \\
& \text { OBJECTS: } \\
& {\left[\left.\begin{array}{l}
\text { ENDOFUNCTOR } T: A \rightarrow A \\
\text { NATTRANS: } \mu: T 0 T \Longrightarrow T \\
\eta: I d_{d} \Rightarrow T
\end{array} \right\rvert\,\right.}
\end{aligned}
$$

SATISFYING $\forall x \in A$:

EXAMPLES
MOST IMPORTANT
TAKE ADJUNCTION
UNIT $\eta: I_{d} \Rightarrow G F$
$(F: A \rightarrow B)-1(G: B \rightarrow A) \quad \operatorname{con} N I T \varepsilon: F G \Rightarrow I d_{B}$
GET GE $\operatorname{Monad}(A)$ WITH

$$
\mu: G F G F \stackrel{? ?}{\Longrightarrow} G F \quad \ddagger \quad \eta: I d_{A} \stackrel{? ?}{\longrightarrow} G F
$$

$$
\text { DETAILS } \equiv \text { EXERCISE } 4.20
$$

GIVEN $A \in A \lg (\varphi, \otimes, \mathbb{\mu})$ STET GET $(A \otimes-) \in \operatorname{Monad}(E)$ with

$$
\begin{aligned}
& \mu_{X}: A \otimes A \otimes X \xrightarrow{\mu_{A} \otimes i d X} A \otimes X \\
& \eta_{X}: X \xrightarrow{u_{A} \otimes i d x} A \otimes X
\end{aligned}
$$

$\forall x \in \zeta$
II. MONADS

$$
\begin{aligned}
& \text { TAKE A CATEGORy A. } \\
& \operatorname{MOnad}(A):=A \lg (\text { End }(A)) \\
& \operatorname{OBJECTS:} \\
& \text { ENDOFUNCTOR T:A } \rightarrow A \\
& \text { NATTRANS: } \mu: T 0 T \Longrightarrow T \\
& \eta: I_{d} \Rightarrow T
\end{aligned}
$$

SATISFYING $\forall x \in A$:

EXAMPLES
MOST IMPORTANT
TAKE ADJUNCTION UNIT $\eta: I d_{A} \Rightarrow G F$ $(F: A \rightarrow B)-1(G: B \rightarrow A)$ Count IT E: $F G \Rightarrow I d_{B}$

GET GF $\operatorname{Monad}(A)$ WITH No Abuse of Notation $\mu: G F G F \xrightarrow{G \varepsilon F} G F \not \& \quad \eta: I d_{A} \xrightarrow{\eta} G F$

$$
\text { DETAILS ミ EXERCISE } 4.20
$$

GIVEN $A \in A \lg (\varphi, \otimes, \mathbb{1})$ STRICT GET $(A \otimes-) \in \operatorname{Monad}(E)$ with

$$
\begin{aligned}
& \mu_{X}: A \otimes A \otimes X \xrightarrow{\mu_{A} \otimes i d X} A \otimes X \\
& \eta_{X}: X \xrightarrow{u_{A} \otimes i d x} A \otimes X
\end{aligned}
$$

$\forall x \in \zeta$
II. MONADS

$$
\begin{aligned}
& \text { TAKE A CATEGORy A. } \\
& \text { MOnad }(A):=\operatorname{Alg}(\operatorname{End}(A)) \\
& \text { OBJECTS: } \\
& \text { ENDOFUNCTOR T:A } \rightarrow A \\
& \text { NAT TRANS: } \mu: T 0 T \Longrightarrow T \\
& \eta: I d_{A} \Rightarrow T
\end{aligned}
$$ SATISFYING $\forall x \in A$:

EXAMPLES
MOST IMPORTANT
TAKE ADJUNCTION UNIT $\eta: I d_{A} \Rightarrow G F$
$(F: A \rightarrow B) \rightarrow((G: B \rightarrow A)$ Count IT E: $F G \Rightarrow I_{d_{B}}$
GET GE $\operatorname{Monad}(A)$ WITH NO ABUSE OF NOTATION

GIVEN $A \in \operatorname{Alg}(\varphi, \otimes, \mathbb{N})$ STRICT GET $(A \otimes-) \in \operatorname{Monad}($ e. $)$ WITH

$$
\begin{aligned}
& \mu_{X}: A \otimes A \otimes X \xrightarrow{\mu_{A} \otimes i d x} A \otimes X \\
& \eta_{X}: X \xrightarrow{u_{A} \otimes i d x} A \otimes X
\end{aligned}
$$

$\forall x \in \zeta$
II. MONADS

EXAMPLES
MOST IMPORTANT
TAKE ADJUNCTION UNIT $\eta: I d_{A} \Rightarrow G F$
$(F: A \rightarrow B)-1(G: B \rightarrow A)$ COUNT \&: $F G \Rightarrow I d_{B}$
GET GF $\operatorname{Monad}(A)$ WITH no Abuse of NOTATION
 VIA EXERCISE 4.25

GIVEN $A \in A \lg (\zeta, \otimes, \mathbb{U})$ STRICT
GET $(A \otimes-) \in \operatorname{Monad}(e)$ WITH

II. MONADS

TAKE A CATEGORY A.
$\operatorname{Monad}(A):=\operatorname{Alg}(\operatorname{End}(A))$ OBJECTS:
[ENDOFUNCTOR $T: A \rightarrow A$ NAT TRANS: $\mu: T_{0} T \Longrightarrow T$ $\eta: I d_{d} \Rightarrow T$
SATISFYING $\forall x \in A$:

EXAMPLES
MOST IMPORTANT
TAKE ADJUNCTION
$(F: A \rightarrow B)-((G: B \rightarrow A)$
UNIT $\eta: I d_{A} \Rightarrow G F$
$G E T \quad G F \in \operatorname{Monad}(A)$ WITH NoABUSE
GET $G F \in \operatorname{Monad}(A)$ WITH
 VIA EXERCISE 4.25

GIVEN $A \in A \lg (C, \otimes, \mathbb{U})$ Strict
GET $(A \otimes-) \in \operatorname{Monad}(e)$ WITH

$$
\begin{aligned}
& \mu_{x}: A \otimes A \otimes X \xrightarrow{\mu_{A} \otimes i d x} A \otimes X \\
& \eta_{x}: X \xrightarrow{u_{A} \otimes i d x} A \otimes X \quad \forall x \in \zeta
\end{aligned}
$$

III. EILENBERG-MOORE CATEGORIES

TAKE A CATEGORY A.
$\operatorname{Monad}(A):=\operatorname{Alg}(E \operatorname{nd}(A))$
OBJECTS:
ENDOFUNCTOR $T: A \rightarrow A$

$$
\text { NAT Trans: } \mu: T_{0} T \Rightarrow T
$$

$$
\eta: I d_{t} \Rightarrow T
$$

SATISFYING $\forall x \in A$:

$$
\begin{aligned}
& T(x) \xrightarrow{T\left(n_{x}\right)} T^{2}(x) \\
& i d(x)\rangle^{2} \underset{T(x)}{\downarrow^{\mu} \mu_{x}}
\end{aligned}
$$

TAKE ADJUNCTION UNIT $\eta: I d_{A} \Rightarrow G F$
$(F: A \rightarrow B)-1(G: B \rightarrow A) \quad \operatorname{con} N T \tau: F G \Rightarrow I d_{B}$
GET GF $\operatorname{Monad}(A)$ WITH

$$
\mu: G F G F \stackrel{G \varepsilon F}{\longrightarrow} G F \quad \ddagger \quad \eta: I d_{A} \stackrel{\eta}{\Longrightarrow} G F
$$

ADJUNCTIONS MONADS
III. EILENBERG-MOORE CATEGORIES

TAKE A CATEGORY A.
$\operatorname{Monad}(A):=\operatorname{Alg}(E \operatorname{nd}(A))$
OBJECTS:
ENDOFUNCTOR $T: A \rightarrow A$

$$
\text { NAT TRANS: } \mu: T_{0} T \Rightarrow T
$$

$$
\eta: I d_{t} \Rightarrow T
$$

SATISFYING $\forall x \in A$:

$$
\begin{aligned}
& T(x) \xrightarrow{T\left(n_{x}\right)} T^{2}(x) \\
& i d d_{(x)} \stackrel{1}{2}_{2}^{\downarrow^{\mu}(x)}
\end{aligned}
$$

TAKE ADJUNCTION UNIT $\eta: I d_{A} \Rightarrow G F$
$(F: A \rightarrow B) \rightarrow(G: B \rightarrow A)$ COUNT $\varepsilon: F G \Rightarrow I_{B}$

GET GF $\operatorname{Monad}(\&)$ WITH

$$
\mu: G F G F \stackrel{G \varepsilon F}{\longrightarrow} G F \not \& \quad \eta: I d_{A} \stackrel{\eta}{\longrightarrow} G F
$$

III. EILENBERG-MOORE CATEGORIES
take a category a.
$\operatorname{Monad}(t):=\operatorname{Alg}(E \operatorname{Lnd}(A))$
OBJECTS:
ENDOFUNCTOR $T: A \rightarrow A$ NAT TRANS: $\mu: T_{0} T \Rightarrow T$
$\eta: I_{d} \Rightarrow T$
SATISFYING $\forall x \in A$:

$$
\underset{\left.T\left(\mu_{x}\right)\right|_{T^{2}(x)} ^{T^{3}(x)} \xrightarrow{\mu_{x}} \int_{T(x)}^{\mu_{x}} T^{2}(x)}{\mu_{x}}
$$

$$
\begin{gathered}
T(x) \xrightarrow{\eta T(x)} \rightarrow T^{2}(x) \\
\text { id }\left(T(x) \geq \underset{T(x)}{\downarrow^{2}} \mu_{x}^{\mu_{x}}\right.
\end{gathered}
$$

A NICE SUBCATEGORY OF MODULES OVER MONADS

III. EILENBERG-MOORE CATEGORIES
take a category a.
$\operatorname{Monad}(t):=\operatorname{Alg}(\operatorname{End}(A))$ OBJECTS:
ENDOFUNCTOR $T: A \rightarrow A$ NaT TRANS: $\mu: T_{0} T \Rightarrow T$
$\eta: I_{d} \Rightarrow T$
SATISFYING $\forall x \in A$:

$$
\begin{gathered}
T^{3}(x) \xrightarrow{\mu_{T(x)}} T^{2}(x) \\
\left.T\left(\mu_{x}\right)\right|_{T^{2}(x)} ^{2} \xrightarrow{2} \int_{T(x)}^{\mu_{x}}
\end{gathered}
$$

$$
\xrightarrow{T(x) \xrightarrow{\eta_{T(x)}} \underset{i d(x)}{\longrightarrow} T^{2}(x)} \underset{T(x)}{\downarrow^{\mu_{x}}}
$$

A NICE SUBCATEGORY OF. MODULES OVER MONADS

III. EILENBERG-MOORE CATEGORIES

TAKE A CATEGORY A.
$\operatorname{Monad}(t):=\operatorname{Alg}(\operatorname{End}(A))$ OBJECTS:
ENDOFUNCTOR $T: A \rightarrow A$ NaT TRANS: $\mu: T_{0} T \Longrightarrow T$

SATISFYING $\forall x \in A$:

A NICE SUBCATEGORY OF. MODULES OVER MONADS

MUCH BETTER THEORY

For em Categories

III. EILENBERG-MOORE CATEGORIES

TAKE A CATEGORY A.
$\operatorname{Monad}(t):=\operatorname{Alg}(\operatorname{End}(A))$
OBJECTS:
ENDOFUNCTOR $T: A \rightarrow A$ NaT TRANS: $\mu: T_{0} T \Longrightarrow T$

SATISFyING $\forall x \in A$:

MUCH BETTER THEORY
A NICE sUBCATEGORY OF MODULES OVER MONADS FOR EM CATEGORIES

III. EILENBERG-MOORE CATEGORIES

TAKE A CATEGORY A.
MOnad (A): $=\operatorname{Alg}(\operatorname{End}(A))$
OBJECTS:
ENDOFUNCTOR $T: A \rightarrow A$
NAT TRANS: $\mu: T 0 T \Rightarrow T$
$\eta: I d_{A}$
SATISFYING $\forall x \in A$:

GIVEN A monad (T, μ, η) on A, AN EM ObJECT IS AN OBJECT $Y \in \notin$ EQuIPPED WITH A MORPH ISM $\xi:=\xi_{y}: T(Y) \rightarrow Y \in A$ such that
III. EILENBERG-MOORE CATEGORIES
take a category a. GIVEN a monad (T, μ, η) on A,

$$
\begin{aligned}
& \operatorname{Monad}(A):=\operatorname{Alg}\left(E_{\text {nd }}(A)\right) \\
& \text { OBJECTS: } \\
& \text { ENDDFUNCTOR } T: A \rightarrow A \\
& \text { NAT TRANS: } \mu: T_{0} T \Rightarrow T \\
& \eta: I_{d} \Rightarrow T
\end{aligned}
$$

SATISFyING $\forall x \in A$:
an em object is an object $y \in d$ Equipped WITH A MORPH UM $\xi_{:}=\xi_{y}: T(y) \rightarrow y \in A$ SUCH THAT

$T(\xi) \downarrow$
$T(y) \xrightarrow{2}(y) \xrightarrow{\mu_{y}} T(y)$

III. EILENBERG-MOORE CATEGORIES
$\begin{aligned} & \text { TAKE A CATEGORY A. } \\ & \text { MOnad (A): }=\operatorname{Alg}(\operatorname{End}(A)) \\ & \text { OBJECTS: } \\ & \text { ENDOFUNCTOR } T: A \rightarrow A \\ & \text { NAT TRANS: } \mu: T 0 T \Longrightarrow T \\ & \eta: I d_{t}\end{aligned}>T$
SATISFYING $\forall x \in A$:

GIVEN A monad (T, μ, η) on A,
an EM ObJECT IS AN OBJECT $Y \in \notin$ Equipped WITH A MORPH ISM $\xi:=\xi_{y}: T(Y) \rightarrow Y \in A$
Such that $\quad T^{2}(y) \xrightarrow{\mu_{y}} T(y) \quad y \xrightarrow{\eta_{y}} T(y)$

THESE FORM THE EM CATEGORY A ${ }^{\top}$ WITH

$$
\phi \in \operatorname{HOM}_{A^{\top}}\left((y, \xi),\left(y^{\prime} \xi^{\prime}\right)\right)
$$

$$
\begin{aligned}
& \text { I' } \\
& \phi: y \rightarrow Y^{\prime} \in A . \Rightarrow \begin{array}{l}
T(y) \xrightarrow{q^{\prime}} y \\
T(x) \bigsqcup^{\prime} \\
T\left(y^{\prime}\right) \xrightarrow{e^{\prime}} \downarrow^{\prime}
\end{array}{ }^{\phi}
\end{aligned}
$$

II. EILENBERG-MOORE CATEGORIES

TAKE A CATEGORy
MONAD ON $A \equiv$
ENDOFUNCTOR T:A $\rightarrow A$
NAT TRANS $: \mu: T \circ T \Longrightarrow T$

$$
\eta: I d_{A} \Rightarrow T
$$

.7. $\forall x \in A$:

$$
\begin{aligned}
& \mu_{x} \circ \mu_{T(x)}=\mu_{x} \circ T\left(\mu_{x}\right) \\
& \mu_{x} \circ \eta_{T(x)}=i d_{T(x)} \\
& \mu_{x} \circ T\left(\eta_{x}\right)=i d_{T(x)}
\end{aligned}
$$

EM CATEGORY A^{\top}
OBJECTS:

$$
(y \in A, \xi: T(y) \rightarrow y \in A)
$$

$$
\text { .ว. } \xi \circ \mu_{y}=\xi_{0} T(\xi)
$$

$$
\xi_{0} \eta_{y}=i d y
$$

MORPHISMS: $\boldsymbol{\phi}: y \rightarrow Y^{\prime} \in \notin$
..

$$
\phi \cdot \xi=\xi^{\prime} \cdot T(\phi)
$$

EXAMPLES
III. EILENBERG-MOORE CATEGORIES

$$
\text { EM CATEGORY } A^{\top}
$$

OBJECTS:

$$
(y \in A, \xi: T(y) \rightarrow Y \in A)
$$

$$
\text { .. } \xi \cdot \mu_{y}=\xi \cdot T(\xi)
$$

$$
\xi_{0} \eta_{y}=i d y
$$

MORPHISMS: $\phi: y \rightarrow y^{\prime} \in \phi$

$$
\theta \phi \cdot \xi=\xi^{\prime} \cdot T(\phi)
$$

$$
\begin{aligned}
& \text { take a category a. } \\
& \text { MONAD ON } A \equiv \\
& \text { EENDOFUNCTOR } T: A \rightarrow A \\
& \text { NaTTrans: } \mu: T \cdot T \Longrightarrow T \\
& L_{\forall x \in A:} \eta: I d_{A} \Rightarrow T \\
& \mu_{x} \circ \mu_{T(x)}=\mu_{x} \circ T\left(\mu_{x}\right) \\
& \mu_{x} \circ \eta_{T(x)}=i d_{T(x)} \\
& \mu_{x} \circ T\left(\eta_{x}\right)=i d_{T(x)}
\end{aligned}
$$

EXAMPLES
IDENTITY MONAD ON A

$$
\begin{array}{lll}
T:=I d d & \mu_{x}: X \rightarrow X & \eta_{x}: X \rightarrow X \\
& \text { ii } \\
\text { id } & & \\
i d x & \forall X \in A
\end{array}
$$

WHAT IS AId ??
III. EILENBERG-MOORE CATEGORIES

$$
\begin{aligned}
& \hline \text { TAKE A CATEGORY A. } \\
& \text { MONAD ON } A \equiv \\
& {\left[\begin{array}{l}
\text { ENDOFUNCTOR } T: A \rightarrow A \\
\text { NAT TRANS: } \mu: T 0 T \Rightarrow T \\
\quad \eta: I d_{x} \Rightarrow T \\
\exists \cdot \forall x \in A: \\
\mu_{x} \circ \mu_{T(x)}=\mu_{x} \circ T\left(\mu_{x}\right) \\
\mu_{x} \circ \eta_{T(x)}=i d_{T(x)} \\
\mu_{x} \circ T\left(\eta_{x}\right)=i d_{T(x)}
\end{array}\right.}
\end{aligned}
$$

$$
\text { EM CATEGORY } A^{\top}
$$

OBJECTS:

$$
(y \in A, \xi: T(y) \rightarrow y \in A)
$$

$$
\text { .. } \xi \cdot \mu_{y}=\xi \cdot T(\xi)
$$

$$
\xi_{0} \eta_{y}=i d y
$$

MORPHISMS: $\phi: y \rightarrow y^{\prime} \in \phi$

$$
\theta \phi \cdot \xi=\xi^{\prime} \cdot T(\phi)
$$

EXAMPLES
IDENTITY MONAD ON A

WHAT IS AId??
III. EILENBERG-MOORE CATEGORIES

$$
\text { EM CATEGORY } A^{\top}
$$

OBJECTS:

$$
(y \in A, \xi: T(y) \rightarrow Y \in A)
$$

$$
. \Rightarrow . \xi \circ \mu_{y}=\xi \cdot T(\xi)
$$

$$
\xi_{0} \eta_{y}=i d y
$$

$$
\text { MORPHISMS: } \phi: y \rightarrow y^{\prime} \in \phi
$$

$$
\theta \cdot \xi=\xi^{\prime} \cdot T(\phi)
$$

$$
\begin{aligned}
& \text { take a category a. } \\
& \text { MONAD ON } A \equiv \\
& \text { [ENDOFUNCTOR } T: A \rightarrow A \\
& \text { NaTTRANS: } \mu: \text { ToT } \Rightarrow T \\
& L_{\forall x \in A:} \quad \eta: I d_{A} \Rightarrow T \\
& \mu_{x} \circ \mu_{T(x)}=\mu_{x} \circ T\left(\mu_{x}\right) \\
& \mu_{x} \circ \eta_{T(x)}=i d_{T(x)} \\
& \mu_{x} \circ T\left(\eta_{x}\right)=i d_{T(x)}
\end{aligned}
$$

EXAMPLES

IDENTITY MONAD ON A

$$
\begin{array}{llll}
\text { T:= Id d } & \mu_{x}: X \rightarrow X & \eta_{x}: X \rightarrow X & \\
& & \text { ii } \\
\text { ii } & \\
\text { id } x & \forall X \in A
\end{array}
$$

WHAT IS $\varphi^{(A \otimes-)} ? ?$

GIVEN $A \in A \lg (\varphi, \otimes, \mathbb{U})$ strict
GET $(A \otimes-) \in \operatorname{Monad}(e)$ WITH

$$
\begin{aligned}
& \mu_{X}: A \otimes A \otimes X \xrightarrow{M_{A} \otimes i d X} A \otimes X \\
& \eta_{X}: X \xrightarrow{u_{A} \otimes i d X} A \otimes X
\end{aligned}
$$

$\forall x \in \zeta$
III. EILENBERG-MOORE CATEGORIES

$$
\text { MORPHISMS: } \phi: y \rightarrow y^{\prime} \in \phi
$$

$$
\theta \cdot \xi=\xi^{\prime} \cdot T(\phi)
$$

$$
\begin{aligned}
& \text { take a category a. } \\
& \text { MONAD ON } A \equiv \\
& \text { [ENDOFUNCTOR } T: A \rightarrow A \\
& \text { NaTTRANS: } \mu: T_{0} T \Rightarrow T \\
& \eta: I d_{t} \Rightarrow T \\
& \mu_{x} \circ \mu_{T(x)}=\mu_{x} \circ T\left(\mu_{x}\right) \\
& \mu_{x} \circ \eta_{T(x)}=i d_{T(x)} \\
& \mu_{x} \circ T\left(\eta_{x}\right)=i d_{T(x)} \\
& \text { EM CATEGORY } A^{\top} \\
& \text { OBJECTS: } \\
& (y \in A, \xi: T(y) \rightarrow Y \in A) \\
& \text {.7. } \xi \circ \mu_{y}=\xi \cdot T(\xi) \\
& \xi_{0} \cdot \eta_{y}=i d y
\end{aligned}
$$

EXAMPLES
IDENTITY MONAD ON A

$$
\begin{array}{llll}
\text { T:= Id d } & \mu_{x}: X \rightarrow X & \eta_{x}: X \rightarrow X & \\
& \text { ii } \\
\text { ii } & \\
& i d x & \forall x \in A
\end{array}
$$

GIVEN $A \in A \lg (\varphi, \otimes, \mathbb{K})$ STRICT GET $(A \otimes-) \in \operatorname{Monad}(e)$ WITH

$$
\begin{aligned}
& \mu_{X}: A \otimes A \otimes X \xrightarrow{M_{A} \otimes i d X} A \otimes X \\
& \eta_{X}: X \xrightarrow{u_{A} \otimes i d x} A \otimes X
\end{aligned}
$$

$\forall x \in \zeta$
II. EILENBERG-MOORE CATEGORIES
take a category a.

MONAD ON $A \equiv$
ENDOFUNCTOR $T: A \rightarrow A$
NAT TRANS: $\mu: T_{0} T \Longrightarrow T$

$$
\eta: I d_{A} \Rightarrow T
$$

.子. $\forall x \in A$:

$$
\begin{aligned}
& \mu_{x} \circ \mu_{T(x)}=\mu_{x} \circ T\left(\mu_{x}\right) \\
& \mu_{x} \circ \eta_{T(x)}=i d_{T(x)} \\
& \mu_{x} \circ T\left(\eta_{x}\right)=i d_{T(x)}
\end{aligned}
$$

EM CATEGORY A^{\top}
OBJECTS:

$$
(y \in A, \xi: T(y) \rightarrow y \in A)
$$

$$
\text { .. } \xi \cdot \mu_{y}=\xi \cdot T(\xi)
$$

$$
\xi_{0} \eta_{y}=i d y
$$

MORPHISMS: $\phi: y \rightarrow y^{\prime} \in A$
. 3.

$$
\phi \cdot \xi=\xi^{\prime} \cdot T(\phi)
$$

III. EILENBERG-MOORE CATEGORIES

$$
\begin{aligned}
& \text { take a category a. } \\
& \text { MONAD ON } A \equiv \\
& \text { [ENDOFUNCTOR TbA } \rightarrow A \\
& \text { NaTTrans: } \mu: T_{0} T \Rightarrow T \\
& \text { f. } \forall x \in A \text { : } \\
& \mu_{x} \circ \mu_{T(x)}=\mu_{x} \circ T\left(\mu_{x}\right) \\
& \mu_{x} \circ \eta_{T(x)}=i d_{T(x)} \\
& \mu_{x} \circ T\left(\eta_{x}\right)=i d_{T(x)} \\
& \text { EM CATEGORY } A^{\top} \\
& \text { OBJECTS: } \\
& (Y \in A, \xi: T(y) \rightarrow Y \in A) \\
& \text {. } . ~ \xi \cdot \mu_{y}=\xi \cdot T(\xi) \\
& \xi_{0} \eta_{y}=i d y
\end{aligned}
$$

MORPHISMS: $\phi: y \rightarrow y^{\prime} \in \phi$

$$
\text { . } \phi \cdot \xi=\xi_{0}^{\prime} T(\phi)
$$

Theorem : Take a monad (T, μ, η) on A.
(a) JFUNCTORS:
(b)
(c)
III. EILENBERG-MOORE CATEGORIES

$$
\begin{aligned}
& \text { take a category a. } \\
& \text { MONAD ON } A \equiv \\
& \text { ENDOFUNCTOR TbA } \rightarrow A \\
& \text { NaT TRANS: } \mu: T_{0} T \Rightarrow T \\
& \text { f. } \forall x \in A \text { : } \\
& \mu_{x} \circ \mu_{T(x)}=\mu_{x} \circ T\left(\mu_{x}\right) \\
& \mu_{x} \circ \eta_{T(x)}=i d_{T(x)} \\
& \mu_{x} \circ T\left(\eta_{x}\right)=i d_{T(x)} \\
& \text { EM CATEGORY } A^{\top} \\
& \text { OBJECTS: } \\
& (Y \in A, \xi: T(y) \rightarrow Y \in A) \\
& \text {. } . ~ \xi \cdot \mu_{y}=\xi \cdot T(\xi) \\
& \xi \cdot \eta_{y}=i d y
\end{aligned}
$$

MORPHISMS: $\phi: y \rightarrow y^{\prime} \in \lambda$

$$
\cdots \phi \cdot \xi=\xi^{\prime} \cdot T(\phi)
$$

Theorem : Take a monad (T, μ, η) on A.
(a) JFANCTORS:

$$
\begin{aligned}
\text { For }
\end{aligned} \begin{aligned}
\top & A^{\top}
\end{aligned} \longrightarrow^{(y, \xi)} \longmapsto y
$$

(b)
(c)
III. EILENBERG-MOORE CATEGORIES

$$
\begin{aligned}
& \text { take a category a. } \\
& \text { MONAD ON } A \equiv \\
& \text { EENDOFUNCTOR } T: A \rightarrow A \\
& \text { NaT Trans: } \mu: T_{0} T \Longrightarrow T \\
& \text { - } . \forall x \in A \text { : } \\
& \mu_{x} \circ \mu_{T(x)}=\mu_{x} \circ T\left(\mu_{x}\right) \\
& \mu_{x} \circ \eta_{T(x)}=i d_{T(x)} \\
& \mu_{x} \circ T\left(\eta_{x}\right)=i d_{T(x)} \\
& \text { EM CATEGORY } A^{\top} \\
& \text { OBJECTS: } \\
& (y \in A, \xi: T(y) \rightarrow Y \in A) \\
& \text {.. } \xi \cdot \mu_{y}=\xi \cdot T(\xi) \\
& \xi_{0} \eta_{y}=i d y
\end{aligned}
$$

MORPHISMS: $\phi: y \rightarrow y^{\prime} \in \phi$

$$
\text { . } \phi \cdot \xi=\xi_{0}^{\prime} \cdot T(\phi)
$$

Theorem : Take a monad (T, μ, η) on A.
(a) JFANCTORS:

$$
\begin{aligned}
\text { Free }^{\top}: A & \longrightarrow A^{\top} & F_{0} g^{\top}: A^{\top} & \longrightarrow A \\
y & \longmapsto\left(T(y), \mu_{y}\right) & (y, \xi) & \longmapsto y
\end{aligned}
$$

(b)
(c)
III. EILENBERG-MOORE CATEGORIES

$$
\begin{aligned}
& \text { take a category a. } \\
& \text { MONAD ON } A \equiv \\
& \text { EENDOFUNCTOR } T: A \rightarrow A \\
& \text { NaT Trans: } \mu: T_{0} T \Rightarrow T \\
& \text {-. } \forall x \in A \text { : } \\
& \mu_{x} \circ \mu_{T(x)}=\mu_{x} \circ T\left(\mu_{x}\right) \\
& \mu_{x} \circ \eta_{T(x)}=i d_{T(x)} \\
& \mu_{x} \circ T\left(\eta_{x}\right)=i d_{T(x)} \\
& \text { EM CATEGORY } A^{\top} \\
& \text { OBJECTS: } \\
& (y \in A, \xi: T(y) \rightarrow Y \in A) \\
& \text {.. } \xi \cdot \mu_{y}=\xi \cdot T(\xi) \\
& \xi_{0} \eta_{y}=i d y
\end{aligned}
$$

MORPHISMS: $\phi: y \rightarrow y^{\prime} \in \phi$

$$
\theta \phi \cdot \xi=\xi_{0}^{\prime} \cdot T(\phi)
$$

Theorem : Take a monad (T, μ, η) on A.
(a) JFANCTORS:

$$
\begin{aligned}
\text { Free }^{\top}: A & \longrightarrow A^{\top} \\
y & \longmapsto\left(T(y), \mu_{y}\right)
\end{aligned}
$$

(b) Free $^{\top}$-1 Ford ${ }^{\top}$
(c)
III. EILENBERG-MOORE CATEGORIES

$$
\text { MORPHISMS: } \phi: y \rightarrow y^{\prime} \in \phi
$$

$$
\cdots \phi \cdot \xi=\xi^{\prime} \cdot T(\phi)
$$

$$
\begin{aligned}
& \text { take a category a. } \\
& \text { MONAD ON } A \equiv \\
& \text { ENDDFUNCTOR TbA } \rightarrow A \\
& \text { NaTTRANS: } \mu: T_{0} T \Rightarrow T \\
& \eta: I d_{d} \Rightarrow T \\
& \text {-. } \forall X \in A \text { : } \\
& \mu_{x} \circ \mu_{T(x)}=\mu_{x} \circ T\left(\mu_{x}\right) \\
& \mu_{x} \circ \eta_{T(x)}=i d_{T(x)} \\
& \mu_{x} \circ T\left(\eta_{x}\right)=i d_{T(x)} \\
& \text { EM CATEGORY } A^{\top} \\
& \text { OBJECTS: } \\
& (y \in \mathcal{A}, \xi: T(y) \rightarrow y \in \mathbb{A}) \\
& \text {.. } \xi \cdot \mu_{y}=\xi \cdot T(\xi) \\
& \xi \circ \eta_{y}=i d y
\end{aligned}
$$

Theorem : Take a monad (T, μ, η) on A.
(a) JFunctors:

$$
\begin{aligned}
\text { Free } & \text { A } A \longrightarrow A^{\top} & \text { Forge }^{\top}: A^{\top} & \longrightarrow A \\
& \longrightarrow\left(T(y), \mu_{y}\right) & (y, \xi) & \longmapsto y
\end{aligned}
$$

(b) Free ${ }^{\top}$ - Forge $^{\top}$
(c) $T=$ For $^{\top}$ 。 Free ${ }^{\top}$ AS MONADS VIA \downarrow

TAKE ADJUNCTION WIT $\eta=T_{d} \Rightarrow G F$ $(F: A \rightarrow B)-1(G: B \rightarrow A) \quad$ convict $\varepsilon: F G \Rightarrow I d_{B}$ $G E T \quad G F \in \operatorname{Monad}(A)$ with

$$
\mu: G F G F \stackrel{G \in F}{\longrightarrow} G F \neq \eta: I d_{B} \xrightarrow{\eta} F G
$$

III. EILENBERG-MOORE CATEGORIES

$$
\begin{aligned}
& \text { take a category a. } \\
& \text { MONAD ON } A \equiv \\
& \text { [ENDOFUNCTOR } T: A \rightarrow A \\
& \text { NaTTRANS: } \mu: T_{0} T \Rightarrow T \\
& \eta: I d_{A} \Rightarrow T \\
& \mu_{x} \circ \mu_{T(x)}=\mu_{x} \circ T\left(\mu_{x}\right) \\
& \mu_{x} \circ \eta_{T(x)}=i d_{T(x)} \\
& \mu_{x} \circ T\left(\eta_{x}\right)=i d_{T(x)} \\
& \text { EM CATEGORY } A^{\top} \\
& \text { OBJECTS: } \\
& (y \in A, \xi: T(y) \rightarrow Y \in A) \\
& \text {.. } \xi \cdot \mu_{y}=\xi \cdot T(\xi) \\
& \xi_{0} \eta_{y}=i d_{y}
\end{aligned}
$$

MORPHISMS: $\phi: y \rightarrow y^{\prime} \in \phi$

$$
\phi \cdot \xi=\xi^{\prime} \cdot T(\phi)
$$

Theorem : TAKE A monad (T, μ, η) on A.
(a) JFANCTORS:

$$
\begin{array}{rlrl}
\text { Free }^{\top}: A & \longrightarrow A^{\top} & F^{\top} g^{\top}: A^{\top} & \longrightarrow A \\
y & \longmapsto\left(T(y), \mu_{y}\right) & (y, \xi) \longmapsto y
\end{array}
$$

(b) Free $^{\top}-1$ For ${ }^{\top}$
(c) $T=$ Forg $^{\top}$ 。 Free ${ }^{\top}$ AS MONADS VIA \downarrow

SOME DETAILS in The book, REST \equiv EYER 4.33
take adjunction
UNIT $\eta: I d_{A} \Rightarrow G F$ COUNT \&: $F G \Rightarrow I_{B}$ GET $G F \in \operatorname{Monad}(A)$ WITH $\mu: G F G F \xrightarrow{G \in F} G F \notin \eta: I d_{B} \xrightarrow{\eta} F G$
III. EILENBERG-MOORE CATEGORIES

$$
\begin{aligned}
& \text { TAKE A CATEGORY A. } \\
& \text { MONAD ON } A \equiv \\
& \text { [ENDOFUNCTOR } T: A \rightarrow A \\
& \text { NATTRANS: } \mu: T_{0} T \Rightarrow T \\
& \text {.7. } \forall x \in A \text { : } \\
& \mu_{x} \circ \mu_{T(x)}=\mu_{x} \circ T\left(\mu_{x}\right) \\
& \mu_{x} \circ \eta_{T(x)}=i d_{T(x)} \\
& \mu_{x} \circ T\left(\eta_{x}\right)=i d_{T(x)} \\
& \text { EM CATEGORY } A^{\top} \\
& \text { OBJECTS: } \\
& (y \in A, \xi: T(y) \rightarrow Y \in A) \\
& \text {.J. } \xi \cdot \mu_{y}=\xi \cdot T(\xi) \\
& \xi_{0} \eta_{y}=i d y
\end{aligned}
$$

MORPHISMS: $\phi: y \rightarrow y^{\prime} \in \phi$

$$
\theta \phi \cdot \xi=\xi^{\prime} \cdot T(\phi)
$$

ADJUNCTIONS
EXAMPLE
Forgo (AD-)
FOR $T:=(A \otimes-)$ MONAD ON ζ
(a) JFUNCTORS:

Free ${ }^{\top}: A \longrightarrow A^{\top}$

$$
y \longmapsto\left(T(y), \mu_{y}\right)
$$

For ${ }^{\top}: A^{\top} \longrightarrow A$ $(y, \xi) \longmapsto y$
(b) Free ${ }^{\top}-$ Ford $^{\top}$
(c) $T=$ For ${ }^{\top}$. Free ${ }^{\top}$
III. EILENBERG-MOORE CATEGORIES

$$
\begin{aligned}
& \text { take a category a. } \\
& \text { MONAD ON } A \equiv \\
& \text { [ENDOFUNCTOR TbA } \rightarrow A \\
& \text { NaT TRANS: } \mu: T_{0} T \Rightarrow T \\
& \text {-. } \forall x \in A \text { : } \\
& \mu_{x} \circ \mu_{T(x)}=\mu_{x} \circ T\left(\mu_{x}\right) \\
& \mu_{x} \circ \eta_{T(x)}=i d_{T(x)} \\
& \mu_{x} \circ T\left(\eta_{x}\right)=i d_{T(x)} \\
& \text { EM CATEGORY } A^{\top} \\
& \text { OBJECTS: } \\
& (y \in A, \xi: T(y) \rightarrow Y \in A) \\
& \text {.. } \xi \cdot \mu_{y}=\xi \cdot T(\xi) \\
& \xi \cdot \eta_{y}=i d y
\end{aligned}
$$

MORPHISMS: $\phi: y \rightarrow y^{\prime} \in \phi$

$$
\cdots \phi \cdot \xi=\xi^{\prime} \cdot T(\phi)
$$

Forge ${ }^{\top}: A^{\top} \longrightarrow A$ $(y, \xi) \longmapsto y$
(b) Free ${ }^{\top}-$ For $^{\top}$
(c) $T=$ For ${ }^{\top} \cdot F_{r e e}{ }^{\top}$

ADJUNCTIONS
EXAMPLE
Forgo (A®-)
FOR $T:=(A \otimes-)$ MONAD ON Ce
Free ${ }^{\top}: \zeta \longrightarrow C^{\top}$

$$
\begin{aligned}
\text { Free } & \text { A } \\
y & \longrightarrow\left(T(y), \mu_{y}\right)
\end{aligned}
$$ Monads

THEOREM:
TAKE (T, μ, η) on A.
(a) JFUNCTORS:
$A 8-$

$$
X \longmapsto\left(A \otimes X, M_{A} \otimes i d\right)
$$

III. EILENBERG-MOORE CATEGORIES

$$
\begin{aligned}
& \text { take a category a. } \\
& \text { MONAD ON } A \equiv \\
& \text { [ENDOFUNCTOR TbA } \rightarrow A \\
& \text { NaTTRANS: } \mu: T 0 T \Rightarrow T \\
& \text {-. } \forall x \in A \text { : } \\
& \mu_{x} \circ \mu_{T(x)}=\mu_{x} \circ T\left(\mu_{x}\right) \\
& \mu_{x} \circ \eta_{T(x)}=i d_{T(x)} \\
& \mu_{x} \circ T\left(\eta_{x}\right)=i d_{T(x)} \\
& \text { EM CATEGORY } A^{\top} \\
& \text { OBJECTS: } \\
& (y \in A, \xi: T(y) \rightarrow Y \in A) \\
& \text {.. } \xi \cdot \mu_{y}=\xi \cdot T(\xi) \\
& \xi \circ \eta_{y}=i d y
\end{aligned}
$$

MORPHISMS: $\phi: y \rightarrow y^{\prime} \in \phi$

$$
\theta_{0} \xi=\xi^{\prime} \cdot T(\phi)
$$

ADJUNCTIONS
EXAMPLE
THEOREM:
take (T, μ, η) on A.
(a) JFunctors:

Free ${ }^{\top}: A \longrightarrow A^{\top}$

$$
y \mapsto\left(T(y), \mu_{y}\right)
$$

Ford ${ }^{\top}: A^{\top} \longrightarrow A$ $(y, \xi) \longmapsto y$
(b) Free $^{\top}-$ Ford $^{\top}$
(c) $T=$ For ${ }^{\top} \cdot F_{r e e}{ }^{\top}$

Forgo (A A -)
FOR $T:=(A \otimes-)$ MONAD ON Ce
Free ${ }^{\top}: \zeta \longrightarrow と^{\top}$

$$
X \longmapsto\left(A \otimes X, m_{A} \otimes i d\right)
$$

$A 8-$
Ford ${ }^{\top}=$ Ford From before
III. EILENBERG-MOORE CATEGORIES

$$
\begin{aligned}
& \text { take a category a. } \\
& \text { MONAD ON } A \equiv \\
& \text { [ENDOFUNCTOR } T: A \rightarrow A \\
& \text { NATTRANS: } \mu: T_{0} T \Longrightarrow T \\
& \text {.7. } \forall x \in A \text { : } \\
& \mu_{x} \circ \mu_{T(x)}=\mu_{x} \circ T\left(\mu_{x}\right) \\
& \mu_{x} \circ \eta_{T(x)}=i d_{T(x)} \\
& \mu_{x} \circ T\left(\eta_{x}\right)=i d_{T(x)} \\
& \text { EM CATEGORY } A^{\top} \\
& \text { OBJECTS: } \\
& (y \in A, \xi: T(y) \rightarrow Y \in A) \\
& \text {.J. } \xi \cdot \mu_{y}=\xi \cdot T(\xi) \\
& \xi_{0} \eta_{y}=i d y
\end{aligned}
$$

MORPHISMS: $\phi: y \rightarrow y^{\prime} \in \phi$

$$
\theta \phi \cdot \xi=\xi^{\prime} \cdot T(\phi)
$$

ADJUNCTIONS

THEOREM:
TAKE (T, μ, η) on A.
(a) JFUNCTORS:

Free ${ }^{\top}: A \longrightarrow A^{\top}$

$$
y \longmapsto\left(T(y), \mu_{y}\right)
$$

For ${ }^{\top}: A^{\top} \longrightarrow A$ $(y, \xi) \longmapsto y$
(b) Free ${ }^{\top}-$ For ${ }^{\top}$
(c) $T=$ For ${ }^{\top}$. Free ${ }^{\top}$

EXAMPLE
EXAMPLE \quad Forg.(AQ-)
FOR $T:=(A \otimes-)$ MONAD ON ζ
Free ${ }^{\top}: \zeta \longrightarrow \zeta^{\top}$

$A \otimes-$
For ${ }^{\top}=$ Ford From beFore
THIS EXAMPLE IS NOT $\delta 0$ illuminating because $C^{(A \otimes-)} \cong A-\mu_{\operatorname{od}(E)}$
III. EILENBERG-MOORE CATEGORIES

THEOREM:
TAKE (T, μ, η) on A.
(a) FFUNCTORS:

Free ${ }^{\top}: A \longrightarrow A^{\top}$

Forg ${ }^{\top}: A^{\top} \longrightarrow A$ $(y, \xi) \longmapsto y$
(b) Free $^{\top}-$ Ford $^{\top}$
(c) $T=$ Forge ${ }^{T}$ 。 Free ${ }^{T}$

ADJUNCTIONS
EXAMPLE
Forgo (A -)
FOR $T:=(A \otimes-)$ MONAD ON C
Free ${ }^{\top}: \zeta \longrightarrow と^{\top}$

$A 8-$
For ${ }^{\top}$ = For From before
THIS EXAMpLE IS NOT so illuminating because

$$
\varphi^{(A \theta-)} \cong A-\mu_{\operatorname{od}}(\zeta)
$$

\uparrow
codomain of LEFT ADJOINT
here
III. EILENBERG-MOORE CATEGORIES

THEOREM:
TAKE (T, μ, η) on A.
(a) FFUNCTORS:

Free ${ }^{\top}: A \longrightarrow A^{\top}$

Forg ${ }^{\top}: A^{\top} \longrightarrow A$ $(y, \xi) \longmapsto y$
(b) Free $^{\top}-$ Ford $^{\top}$
(c) $T=$ For ${ }^{\top} \cdot$ Free $^{\top}$

ADJUNCTIONS
EXAMPLE
Forgo (A®-)
FOR $T:=(A \otimes-)$ MONAD ON C
Free ${ }^{\top}: \zeta \longrightarrow と^{\top}$

$A 8-$
For ${ }^{\top}$ = For From before
THIS EXAmple is not so illuminating because

$$
\left.C_{\uparrow}^{(A Q-)} \cong A-\mu_{\operatorname{Od}}(\zeta)\right)_{\uparrow}
$$

codomain of
CODOMAIN OF LEFT ADJOINT OF - - WE START WITH
III. EILENBERG-MOORE CATEGORIES

THEOREM:
TAKE (T, μ, η) on A.
(a) JFunctors:

Free ${ }^{\top}: A \longrightarrow A^{\top}$

$$
y \mapsto\left(T(y), \mu_{y}\right)
$$

Forge ${ }^{\top}: A^{\top} \longrightarrow A$ $(y, \xi) \longmapsto y$
(b) Free $^{\top}-$ Ford $^{\top}$
(c) $T=$ For ${ }^{\top}$ 。 Free ${ }^{\top}$

WHAT IF THESE CODOMAINS ARE DIFFERENT??

ADJUNCTIONS
EXAMPLE
Forgo (A®-)
FOR $T:=(A \otimes-)$ MONAD ON Ce
Free ${ }^{\top}: \zeta \longrightarrow と^{\top}$

A ${ }^{-}$
For ${ }^{\top}=$ Ford From before
THIS example is not so illuminating because

$$
\left.\varphi_{\uparrow}^{(A Q-)} \cong A-\mu_{\text {od }}(\zeta)\right)_{\uparrow}
$$

codomain of
codomain of LEFT ADJOIN LEFT ADJOiNT
here

OF - I WE START WITH
III. EILENBERG-MOORE CATEGORIES

THEOREM: FOR

For ${ }^{\top}: A^{\top} \longrightarrow A$

$$
(y, \xi) \longmapsto y
$$

GET:

- Free $^{\top}-1$ For ${ }^{\top}$

WHAT IF THESE CODOMAINS

- $T=$ For ${ }^{T}$. Free $^{\top}$
III. EILENBERG-MOORE CATEGORIES

What if these CODOMAINS ARE DIFFERENT??
III. EILENBERG-MOORE CATEGORIES

III. EILENBERG-MOORE CATEGORIES

III. EILENBERG-MOORE CATEGORIES

III. EILENBERG-MOORE CATEGORIES

OTHER SOLUTIONS
TO THE PROBLEM
OF GETTING T VIA ADJUNCTION
III. EILENBERG-MOORE CATEGORIES

OTHER SOLUTIONS
TO THE PROBLEM
OF GETTING T VIA ADJUNCTION
... BUT WE MUST END HERE

MATH $466 / 566$
SPRING 2024

NEXT TIME
OPERATIONS \#

TOPICS:
Z. (B1)MODULES in mONOIDAL CATEGORIES (\$§4.4.1, 4.4.2)
IV. MONADS
(84.3.2)
III. ellenberg-moore categories

Enjoy this lecture? You'll enjoy the textbook!
 C. Walton's "Symmetries of Algebras, Volume 1" (2024)

Available for purchase at :

619 Wreath (at a discount)
https://www.619wreath.com/

Also on Amazon
\&
Google Play

Lecture \#19 keywords: adjunction monad, Beck's Monadicity Theorem, bimodule in a monoidal category,
Eilenberg-Moore category, Eilenberg-Moore object, module in a monoidal category, monad

