MATH 466/566 SPRING 2024

CHELSEA WALTON RICE U.

LAST TIME

- · Ø OF VSPACES
 VIA QUOTIENT, UNIV. PROP.
- · OPERATIONS ON UNEAR MAPS
- · ALGEBRAS/IR & EXAMPLES

 Math(IR) EndIR(V) T(V) YP

 IK(Vi) if I S(V) N(V)

\$ TENSOR-HOM ADJUNCTION

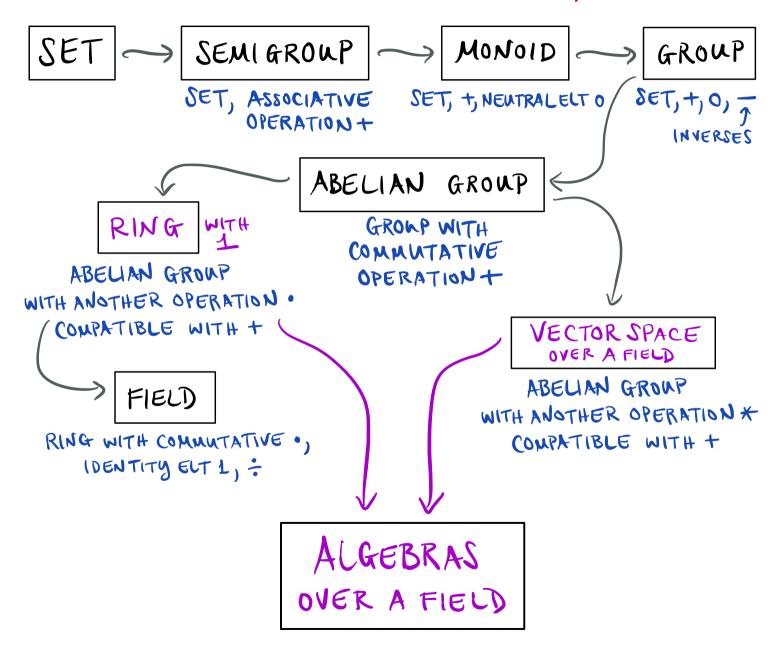
TOPICS:

LECTURE #3

I. EXAMPLES OF ALGEBRAS OVER A FIELD: IRQ, IRG (\$\$1.2.5, 1.2.6)

II. REPRESENTATIONS OF ALGEBRAS & GROUPS (\$\$1.3.1, 1.3.4)

II. MODILES AND BIMODILES OVER ALGEBRAS & GROUPS (581.3.2-1.3.4)



A |k-VSPACE(A,+,0,*) IS A |k-ALGEBRA| IF IT COMES WITH LINEAR MAPS $\mathbf{m}: A \otimes A \longrightarrow A$ (multiplication) & $u:k \longrightarrow A$ (unit)

3. $\mathbf{m}(\mathbf{m} \otimes \mathrm{id}_A) = \mathbf{m}(\mathrm{id}_A \otimes \mathbf{m})$ (associativity) & $\mathbf{m}(\mathbf{u} \otimes \mathrm{id}_A) = \mathrm{id}_A = \mathbf{m}(\mathrm{id}_A \otimes \mathbf{u})$ (unitality)

A |k-VSPACE(A,+,0,*) IS A |k-ALGEBRA| IF IT COMES WITH LINEAR MAPS $\mathbf{m}: A \otimes A \longrightarrow A$ (multiplication) & $u:k \longrightarrow A$ (unit).

3. $\mathbf{m}(\mathbf{m}\otimes \mathrm{id}_A) = \mathbf{m}(\mathrm{id}_A\otimes \mathbf{m})$ (associativity) & $\mathbf{m}(\mathbf{u}\otimes \mathrm{id}_A) = \mathrm{id}_A = \mathbf{m}(\mathrm{id}_A\otimes \mathbf{u})$ (unitality)

EXAMPLE BUILT FROM A DIRECTED GRAPH

A |k-VSPACE(A,+,0,*) IS A |k-ALGEBRA| IF IT COMES WITH LINEAR MAPS $\mathbf{m}: A\otimes A \longrightarrow A$ (multiplication) & $u:k \longrightarrow A$ (unit). 9. $\mathbf{m}(\mathbf{m}\otimes \mathrm{id}_A) = \mathbf{m}(\mathrm{id}_A\otimes \mathbf{m})$ (associativity) & $\mathbf{m}(\mathbf{u}\otimes \mathrm{id}_A) = \mathrm{id}_A = \mathbf{m}(\mathrm{id}_A\otimes \mathbf{u})$ (unitality)

A |k-VSPACE(A,+,0,*) IS A |k-ALGEBRA| IF IT COMES WITH LINEAR MAPS $\mathbf{m}: A \otimes A \longrightarrow A$ (multiplication) & $u: k \longrightarrow A$ (unit)

3. $\mathbf{m}(\mathbf{m} \otimes \mathrm{id}_A) = \mathbf{m}(\mathrm{id}_A \otimes \mathbf{m})$ (associativity) & $\mathbf{m}(\mathbf{u} \otimes \mathrm{id}_A) = \mathrm{id}_A = \mathbf{m}(\mathrm{id}_A \otimes \mathbf{u})$ (unitality)

EXAMPLE BUILT FROM A DIRECTED GRAPH

"QUIVER"

Q = (Qo, Qi, S: Qi \rightarrow Qo, t: Qi \rightarrow Qo)

SETOF SETOF ARROWS "SOURCE" "TARGET"

VERTICES BETWEEN FUNCTION FUNCTION

VERTICES

Ex. $Q: \frac{\alpha}{1} \xrightarrow{\alpha} 0$ $Q_0 = \{1, 2\}$ $Q_1 = \{\alpha\}$ $Q_2 = \{1, 2\}$ $Q_3 = \{1, 2\}$ $Q_4 = \{1, 2\}$ $Q_5 = \{1, 2\}$ $Q_6 = \{1, 2\}$

A |k-VSPACE(A,+,0,*) IS A |k-ALGEBRA| IF IT COMES WITH LINEAR MAPS $\mathbf{m}: A\otimes A \longrightarrow A$ (multiplication) & $u:k \longrightarrow A$ (unit)

9. $\mathbf{m}(\mathbf{m}\otimes \mathrm{id}_A) = \mathbf{m}(\mathrm{id}_A\otimes \mathbf{m})$ (associativity) & $\mathbf{m}(\mathbf{u}\otimes \mathrm{id}_A) = \mathrm{id}_A = \mathbf{m}(\mathrm{id}_A\otimes \mathbf{u})$ (unitality)

EXAMPLE BUILT FROM A

DIRECTED GRAPH

"QUIVER" Q

(Qo; Qi; s,t:Qi→Qo)
VERTICES TARGET

ARROWS SOURCE

A |k-VSPACE(A,+,0,*) IS A |k-ALGEBRA| IF IT COMES WITH LINEAR MAPS $m:A\otimes A \longrightarrow A$ (multiplication) & $u:k \longrightarrow A$ (unit).

3. $M(M\otimes id_A) = M(id_A\otimes M)$ (ASSOCIATIVITY) & $M(u\otimes id_A) = id_A = M(id_A\otimes u)$ (unitality)

EXAMPLE BUILT FROM A A PATH IN Q IS A COMPOSITION

OF ARROWS IN Q (READ LEFT-TO-RIGHT)

DIRECTED GRAPH

"QUIVER" Q

(Qo; Qı; s,t:Qı→Qo)
VERTICES TARGET

SOURCE

ARROWS

A |k-VSPACE(A,+,0,*) IS A |k-ALGEBRA| IF IT COMES WITH LINEAR MAPS $m:A\otimes A \longrightarrow A$ (multiplication) & $u:k \longrightarrow A$ (unit).

9. $M(M\otimes id_A) = M(id_A\otimes M)$ (ASSOCIATIVITY) & $M(u\otimes id_A) = id_A = M(id_A\otimes u)$ (unitality)

EXAMPLE BUILT
FROM A
DIRECTED GRAPH
"QUIVER" Q
II

A PATH IN Q IS A COMPOSITION

OF ARROWS IN Q (READ LEFT-TO-RIGHT)

Ex.
$$a \rightarrow b \rightarrow b$$
 HERE,
1s THE PATH ab . $t(a)=s(b)$

A |k-VSPACE(A,+,0,*) IS A |k-ALGEBRA| IF IT COMES WITH LINEAR MAPS $\mathbf{m}: A\otimes A \longrightarrow A$ (multiplication) & $u:k \longrightarrow A$ (unit). 9. $\mathbf{m}(\mathbf{m}\otimes \mathrm{id}_A) = \mathbf{m}(\mathrm{id}_A\otimes \mathbf{m})$ (associativity) & $\mathbf{m}(\mathbf{u}\otimes \mathrm{id}_A) = \mathrm{id}_A = \mathbf{m}(\mathrm{id}_A\otimes \mathbf{u})$ (unitality)

EXAMPLE BUILT
FROM A
DIRECTED GRAPH
"QUIVER" Q
II
(Qo; Qi; s,t:Qi \rightarrow Qo)
VERTICES TARGET

ARROWS

SOURCE

A PATH IN Q IS A COMPOSITION

OF ARROWS IN Q (READ LEFT-TO-RIGHT)

Ex.
$$a \rightarrow b \rightarrow b$$
 Here,
1s THE PATH ab . $t(a)=s(b)$

CAN ALSO FORM THE PATH

$$A = a_1 \ a_2 \cdots \ a_n \ For \ a_i \in Q_1$$

WHERE $t(a_i) = s(a_{i+1}) \ \forall i=1,...,n-1$
 $a_1 \ a_2 \ a_3$

A |k-VSPACE(A,+,0,*) IS A |k-ALGEBRA| IF IT COMES WITH LINEAR MAPS $m:A\otimes A \longrightarrow A$ (multiplication) & $u:k \longrightarrow A$ (unit).

3. $M(M\otimes id_A) = M(id_A\otimes M)$ (ASSOCIATIVITY) & $M(u\otimes id_A) = id_A = M(id_A\otimes u)$ (unitality)

EXAMPLE BUILT
FROM A

DIRECTED GRAPH

"QUIVER" Q

II

(Qo; Qi; s,t:Qi \rightarrow)

VERTICES TARGET

ARROWS SOURCE

A PATH IN Q IS A COMPOSITION

OF ARROWS IN Q (READ LEFT-TO-RIGHT)

Ex.
$$a \rightarrow b \rightarrow b$$
 Here,
1s THE PATH ab . $t(a)=s(b)$

A 1R-VSPACE (A,+,0,*) IS A 1R-ALGEBRA IF IT COMES WITH LINEAR MAPS M: A & A -> A (MULTIPLICATION) & U: K-> A (UNIT) . T. M (MOIDA) = M (idAOM) (ASSOCIATIVITY) & M (UOIDA) = idA = M (idAOU) (UNITALITY)

EXAMPLE BUILT FROM A DIRECTED GRAPH "QUIVER" Q $(Q_0; Q_1; s, t: Q_1 \rightarrow Q_0)$ VERTICES

TARGET ARROWS SOURCE

A PATH IN Q IS A COMPOSITION OF ARROWS IN Q (READ LEFT-TO-RIGHT)

A TRIVIAL PATH IS A PATH OF LENGTH O, DENOTED ei

) LENGTH N

CAN ALSO FORM THE PATH $P = \alpha_1 \ \alpha_2 \cdots \ \alpha_N \ For \ \alpha_i \in Q_1$ WHERE $t(\alpha_i) = S(\alpha_{i+1}) \ \forall i=1,...,n-1$

A IR-VSPACE (A, +, 0, *) IS A IR-ALGEBRA IF IT COMES WITH LINEAR MAPS $\mathbf{m}: A \otimes A \longrightarrow A$ (multiplication) & $u: \mathbb{R} \longrightarrow A$ (unit) 9. $\mathbf{m}(\mathbf{m} \otimes \mathrm{id}_{A}) = \mathbf{m}(\mathrm{id}_{A} \otimes \mathbf{m})$ (associativity) & $\mathbf{m}(\mathbf{u} \otimes \mathrm{id}_{A}) = \mathrm{id}_{A} = \mathbf{m}(\mathrm{id}_{A} \otimes \mathbf{u})$ (unitality)

EXAMPLE BUILT

FROM A

DIRECTED GRAPH

"QUIVER" Q

"QUIVER" Q

"QUIVER" Q

(Qo; Qi; s,t:Qi \rightarrow Qo)

A PATH IN Q IS A COMPOSITION OF ARROWS IN Q

THE PATH ALGEBRA

RQ OF Q

NOTNECESSARILY UNITAL
IS THE IK-ALGEBRA WITH

- · K-VS BASIS = PATHS OF Q
- · MULTIPLICATION = PATH COMPOSITION

A $|k-VSPACE\ (A,+,0,*)$ IS A $|k-ALGEBRA\ |F|$ IT COMES WITH LINEAR MAPS $\mathbf{m}:A\otimes A\longrightarrow A\ (\text{MULTIPLICATION})$ & $u:k\longrightarrow A\ (\text{UNIT})$

.7. M(M&idA) = M(idA&M) (ASSOCIATIVITY) & M(U&idA) = idA = M(idA&U) (UNITALITY)

EXAMPLE BUILT FROM A

DIRECTED GRAPH
"QUIVER" Q

"QUIVER" Q

(Qo; Qi; s,t:Qi \rightarrow Qo)

A PATH IN Q IS A COMPOSITION OF ARROWS IN Q

THE PATH ALGEBRA

RQ OF Q

- · K-VS BASIS = PATHS OF Q
- · MULTIPLICATION = PATH COMPOSITION
- WHIT = ∑ e; WHEN |Qo|<∞
 i∈Qo

A |k-VSPACE(A,+,0,*) IS A |k-ALGEBRA| IF IT COMES WITH LINEAR MAPS $m:A\otimes A \longrightarrow A$ (MULTIPLICATION) & $u:k \longrightarrow A$ (UNIT)

.7. M(M&idA) = M(idA&M) (ASSOCIATIVITY) & M(U&idA) = idA = M(idA&U) (UNITALITY)

Q 1 IRQ = IRe, = IR AS ALGS

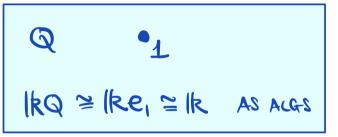
THE PATH ALGEBRA

RQ OF Q

- · IR-VS BASIS = PATHS OF Q
- · MULTIPLICATION = PATH COMPOSITION
- WHIT $\equiv \sum_{i \in Q_0} |Q_0| < \infty$

A |k-VSPACE(A,+,0,*) IS A |k-ALGEBRA| IF IT COMES WITH LINEAR MAPS $m:A\otimes A \longrightarrow A$ (MULTIPLICATION) & $u:k \longrightarrow A$ (UNIT)

. +. M (M&idA) = M (idA&M) (ASSOCIATIVITY) & M (U&idA) = idA = M (idA&U) (UNITALITY)



THE PATH ALGEBRA

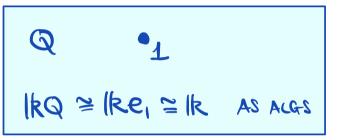
RQ OF Q

Q 2 L lkQ = lk(a) = lk[a] AS ALGS

- · IR-VS BASIS = PATHS OF Q
- · MULTIPLICATION = PATH COMPOSITION
- WHIT ≡ ∑ e; WHEN |Q0 |< ∞ i∈Q0

A IR-VSPACE (A,+,0,*) IS A IR-ALGEBRA IF IT COMES WITH LINEAR MAPS m: A&A -> A (MULTIPLICATION) & U: R-> A (UNIT)

.7. M(M&idA) = M(idA&M) (ASSOCIATIVITY) & M(U&idA) = idA = M(idA&U) (UNITALITY)



THE PATH ALGEBRA RQ OF Q

- IR-VS BASIS = PATHS OF Q
- · MULTIPLICATION = PATH COMPOSITION
- WHIT = Σ e; WHEN $|Q_0| < \infty$ i e Q_0

$$Q = 1 \xrightarrow{\alpha} 2$$

$$|kQ = (|k||k) \text{ AS ALGS}$$

A IR-VSPACE (A,+,0,*) IS A IR-ALGEBRA IF IT COMES WITH LINEAR MAPS m: A&A -> A (MULTIPLICATION) & U: K-> A (MULTIPLICATION)

.7. M(M&idA) = M(idA&M) (ASSOCIATIVITY) & M(U&idA) = idA = M(idA&U) (UNITALITY)

Q 1 |kQ = |ke, = |k As Augs

Q 2 L lkQ = lk(a) = lk[a] AS ALGS

$$Q \quad 1^{\bullet} \xrightarrow{\alpha}^{\bullet}_{2}$$

$$|kQ = \begin{pmatrix} k & k \\ 0 & k \end{pmatrix} \quad AS ALGS$$

THE PATH ALGEBRA

PROPERTIES

OFTEN GIVEN

BY GRAPHICAL

PROPS. OF Q

IS THE IR-ALGEBRA WITH = READ=

- · K-VS BASIS = PATHS OF Q
- · MULTIPLICATION = PATH COMPOSITION
- WHIT = SI e; WHEN 1001<∞ i∈00

A IR-VSPACE (A,+,0,*) IS A IR-ALGEBRA IF IT COMES WITH LINEAR MAPS m: A&A -> A (MULTIPLICATION) & U: R-> A (UNIT)

.7. M(M&idA) = M(idA&M) (ASSOCIATIVITY) & M(U&idA) = idA = M(idA&U) (UNITALITY)

Q 1 |kQ = |ke, = |k As Acgs

THE PATH ALGEBRA CAN BE
RQ OF Q CAN BE
DEFINED VIA
UNIV. PROP.

Q 2 L lkQ = lk(a) = lkTaJ AS ALGS IS THE IK-ALGEBRA WITH FREADS

 $Q \qquad 1^{\bullet} \xrightarrow{\alpha} ^{\bullet} _{2}$ $|kQ = \begin{pmatrix} |k| & |k| \\ 0 & |k| \end{pmatrix} \quad AS \quad ACGS$

- 1R-VS BASIS = PATHS OF Q
- · MULTIPLICATION = PATH COMPOSITION
- WHIT = SI e; WHEN 1001<∞ i∈00

A |k-VSPACE(A,+,0,*) IS A |k-ALGEBRA| IF IT COMES WITH LINEAR MAPS $\mathbf{m}: A\otimes A \longrightarrow A$ (multiplication) & $u:k \longrightarrow A$ (unit)

.3. $\mathbf{m}(\mathbf{m}\otimes \mathrm{id}_A) = \mathbf{m}(\mathrm{id}_A\otimes \mathbf{m})$ (associativity) & $\mathbf{m}(\mathbf{u}\otimes \mathrm{id}_A) = \mathrm{id}_A = \mathbf{m}(\mathrm{id}_A\otimes \mathbf{u})$ (unitality)

EXAMPLE BUILT FROM A GROUP G

A |k-VSPACE(A,+,0,*) IS A |k-ALGEBRA| IF IT COMES WITH LINEAR MAPS $\mathbf{m}: A\otimes A \longrightarrow A$ (multiplication) & $u:k \longrightarrow A$ (unit)

3. $\mathbf{m}(\mathbf{m}\otimes \mathrm{id}_A) = \mathbf{m}(\mathrm{id}_A\otimes \mathbf{m})$ (associativity) & $\mathbf{m}(\mathbf{u}\otimes \mathrm{id}_A) = \mathrm{id}_A = \mathbf{m}(\mathrm{id}_A\otimes \mathbf{u})$ (unitality)

EXAMPLE BUILT FROM A GROUP G

THE GROUP ALGEBRA

| kG OF G := (G, *, e)

IS THE IR-ALGEBRA WITH

- · IR-VS BASIS = ELEMENTS OF Q
- · MULTIPLICATION = GIVEN BY *
- · WIT = e

Ex. IN $|RS_3|$ TAKE: $\chi := 4(123)$ y = 2(13) - 3e

A |k-VSPACE(A,+,0,*) IS A |k-ALGEBRA| IF IT COMES WITH LINEAR MAPS $\mathbf{m}: A\otimes A \longrightarrow A$ (MULTIPLICATION) & $u:k \longrightarrow A$ (UNIT)

. +. M (MOidA) = M (idAOM) (ASSOCIATIVITY) & M (UOidA) = idA = M (idAOU) (UNITACITY)

EXAMPLE BUILT FROM A GROUP G

THE GROUP ALGEBRA

[RG OF G:= (G,*,e)

- IR-VS BASIS = ELEMENTS OF Q
- · MULTIPLICATION = GIVEN BY *
- · WIT = e

Ex. IN IRS3,
TAKE:

$$\chi := 4(123)$$

 $y = 2(13) - 3e$
GET:
 $\chi y = 8(23) - (2(123))$
 $y = 8(12) - 12(123)$

A |k-VSPACE(A,+,0,*) IS A |k-ALGEBRA| IF IT COMES WITH LINEAR MAPS $\mathbf{m}: A\otimes A \longrightarrow A$ (multiplication) & $u:k \longrightarrow A$ (unit)

.3. $\mathbf{m}(\mathbf{m}\otimes \mathrm{id}_A) = \mathbf{m}(\mathrm{id}_A\otimes \mathbf{m})$ (associativity) & $\mathbf{m}(\mathbf{u}\otimes \mathrm{id}_A) = \mathrm{id}_A = \mathbf{m}(\mathrm{id}_A\otimes \mathbf{u})$ (unitality)

EXAMPLE BUILT FROM A GROUP G

THE GROUP ALGEBRA PROPERTIES

[RG OF G := (G, *, e) OFTEN GIVEN

BY PROPS. OF G

- IR-VS BASIS = ELEMENTS OF Q
- · MULTIPLICATION = GIVEN BY *
- · WIT = e

Ex. IN IRS3,
TAKE:

$$\chi := 4(123)$$

 $y = 2(13) - 3e$
GET:
 $\chi y = 8(23) - 12(123)$
 $y = 8(12) - 12(123)$

A |k-VSPACE(A,+,0,*) IS A |k-ALGEBRA| IF IT COMES WITH LINEAR MAPS $\mathbf{m}: A\otimes A \longrightarrow A$ (multiplication) & $u:k \longrightarrow A$ (unit)

9. $\mathbf{m}(\mathbf{m}\otimes \mathrm{id}_A) = \mathbf{m}(\mathrm{id}_A\otimes \mathbf{m})$ (associativity) & $\mathbf{m}(\mathbf{u}\otimes \mathrm{id}_A) = \mathrm{id}_A = \mathbf{m}(\mathrm{id}_A\otimes \mathbf{u})$ (unitality)

EXAMPLE BUILT FROM A GROUP G

THE GROWP ALGEBRA CAN BE IRG OF G := (G, *, e) DEFINED VIA UNIV. PROP.

- · IR-VS BASIS = ELEMENTS OF Q
- · MULTIPLICATION = GIVEN BY *
- · WIT = e

Ex. IN IRS3,
TAKE:

$$\chi := 4(123)$$

 $y = 2(13) - 3e$
GET:
 $\chi y = 8(23) - (2(123))$
 $y = 8(12) - 12(123)$

A $|k-VSPACE\ (A,+,0,*)$ IS A $|k-ALGEBRA\ |F|$ IT COMES WITH LINEAR MAPS $m:A\otimes A \longrightarrow A\ (multiplication)$ & $u:k \longrightarrow A\ (unit)$

.7. M(M&idA) = M(idA&M) (ASSOCIATIVITY) & M(U&idA) = idA = M(idA&W) (UNITALITY)

EXAMPLE BUILT FROM A GROUP G

THE GROUP ALGEBRA CAN BE IRG OF G := (G, *, e) DEFINED VIA UNIV. PROP.

GIVEN AN ALGEBRA A, GET $A^{\times} = \left\{ \begin{array}{c|c} a \in A & ab = ba = 1_A \\ \hline \text{For some bea} \end{array} \right\}$ GROUP OF UNITS OF A

- · IR-VS BASIS = ELEMENTS OF Q
- · MULTIPLICATION = GIVEN BY *
- · WIT = e

A $|k-VSPACE\ (A,+,0,*)$ IS A $|k-ALGEBRA\ |F|$ IT COMES WITH LINEAR MAPS $\mathbf{m}: A\otimes A \longrightarrow A\ (\text{MULTIPLICATION})$ & $u:k\longrightarrow A\ (\text{UNIT})$

.7. M(M&idA) = M(idA&M) (ASSOCIATIVITY) & M(U&idA) = idA = M(idA&U) (UNITALITY)

EXAMPLE BUILT FROM A GROUP G

THE GROUP ALGEBRA CAN BE IRG OF G := (G, *, e) DEFINED VIA UNIV. PROP.

GIVEN AN ALGEBRA A, GET $A^{\times} = \left\{ \begin{array}{c|c} a \in A & ab = ba = 1_A \\ \hline \text{For some bea} \end{array} \right\}$ GROUP OF UNITS OF A

- · IR-VS BASIS = ELEMENTS OF Q
- · MULTIPLICATION = GIVEN BY *
- · WIT = e

A |k-VSPACE(A,+,0,*) IS A |k-ALGEBRA| IF IT COMES WITH LINEAR MAPS $\mathbf{m}: A \otimes A \longrightarrow A$ (multiplication) & $u:k \longrightarrow A$ (unit) 9. $\mathbf{m}(\mathbf{m} \otimes \mathrm{id}_A) = \mathbf{m}(\mathrm{id}_A \otimes \mathbf{m})$ (associativity) & $\mathbf{m}(\mathbf{u} \otimes \mathrm{id}_A) = \mathrm{id}_A = \mathbf{m}(\mathrm{id}_A \otimes \mathbf{u})$ (unitality)

EXAMPLE BUILT FROM A GROUP G

THE GROUP ALGEBRA CAN BE IRG OF G := (G, *, e) DEFINED VIA UNIV. PROP.

GIVEN AN ALGEBRA A, GET $A^{\times} = \left\{ \begin{array}{c|c} a \in A & ab = ba = 1_A \\ \hline \text{For some bea} \end{array} \right\}$ GROUP OF UNITS OF A

- IR-VS BASIS = ELEMENTS OF Q
- · MULTIPLICATION = GIVEN BY *
- · WIT = e

A IR-VSPACE (A,+,0,*) IS A IR-ALGEBRA IF IT COMES WITH

LINEAR MAPS m: A&A -> A (MULTIPLICATION) & U: K-> A (UNIT)

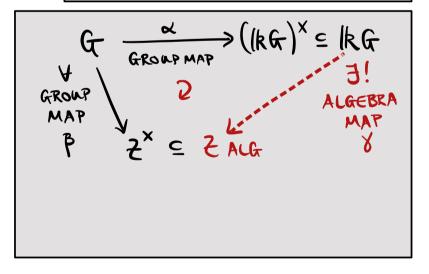
. . . M (MOIDA) = M (IDAON) (ASSOCIATIVITY) & M (UOIDA) = IDA = M (IDAON) (UNITACITY)

EXAMPLE BUILT FROM A GROUP G

THE GROUP ALGEBRA CAN BE IRG OF G := (G, *, e) DEFINED VIA UNIV. PROP.

GIVEN AN ALGEBRA A, GET $A^{\times} = \left\{ \begin{array}{c|c} a \in A & ab = ba = 1_A \\ \hline \text{For some bea} \end{array} \right\}$ GROUP OF UNITS OF A

- · IR-VS BASIS = ELEMENTS OF Q
- · MULTIPLICATION = GIVEN BY *
- · WIT = e



A |k-VSPACE(A,+,0,*) IS A |k-ALGEBRA| IF IT COMES WITH LINEAR MAPS $m:A\otimes A \longrightarrow A$ (multiplication) & $u:k \longrightarrow A$ (unit)

3. $M(M\otimes id_A) = M(id_A\otimes M)$ (ASSOCIATIVITY) & $M(u\otimes id_A) = id_A = M(id_A\otimes M)$ (unitality)

EXAMPLE BUILT FROM A GROUP G

THE GROUP ALGEBRA CAN BE IRG OF G := (G, *, e) DEFINED VIA UNIV. PROP.

GIVEN AN ALGEBRA A, GET $A^{\times} = \begin{cases} a \in A & \text{ab} = ba = 1a \\ \text{for some bea} \end{cases}$ GROUP OF UNITS OF A

- · IR-VS BASIS = ELEMENTS OF Q
- · MULTIPLICATION = GIVEN BY *
- · WIT = e

TAKE AN (ALGEBRAIC) STRUCTURE S.

E.G. GROUP, RING, ALGEBRA

A REPRESENTATION OF S IS ANOTHER STRUCTURE U. . . .

E.G. SET, ABELIAN GROUP, VSPACE

TAKE AN (ALGEBRAIC) STRUCTURE S.

E.G. GROUP, RING, ALGEBRA

A REPRESENTATION OF S IS ANOTHER STRUCTURE U. . F.

E.G. SET, ABELIAN GROUP, VSPACE

END(U) HAS THE SAME STRUCTURE AS S
[COLLECTION OF

ENDOMORPHISMS OF U]

TAKE AN (ALGEBRAIC) STRUCTURE S. E.G. GROWP, RING, ALGEBRA A REPRESENTATION OF S IS ANOTHER STRUCTURE U. . J. E.G. SET, ABELIAN GROUP, VSPACE End (U) HAS THE SAME STRUCTURE AS S [COLLECTION OF # 3 STRUCTURE MAP ENDOMORPHISMS OF U] SP End(U)

TAKE AN (ALGEBRAIC) STRUCTURE S.

E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS ANOTHER STRUCTURE U. A.

E.G. SET, ABELIAN GROUP, VSPACE

End (U) HAS THE SAME STRUCTURE AS S

\$\fracture map

\$\frac{P}{S} \int \text{End}(u)

THIS CREATES AN AVATAR OF S IN THE CONTEXT OF U

TAKE AN (ALGEBRAIC) STRUCTURE S.

E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS ANOTHER STRUCTURE U. .7.

E.G. SET, ABELIAN GROUP, VSPACE

END(U) HAS THE SAME STRUCTURE AS S

COLLECTION OF MATRICES

S VIA LINEAR ALG.

(IN TERMS OF MATRICES)

\$\fracture map

S\fracture \text{End(u)}

THIS CREATES AN AVATAR OF S IN THE CONTEXT OF U

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP S P ENd(U)

FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A := (A, M, N).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP

$$\rho := \rho_{V} : A \longrightarrow End_{\mathbb{R}}(V)$$

S = ALGEBRAIC STRUCTURE E.G. GROUP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP S P ENd(U)

FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A:= (A, M, N).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP

 $\rho := \rho_{V} : A \longrightarrow End_{\mathbb{R}}(V)$

WHEN dimin V=n

GET Endin(V) = Mata(IR)

CAN STUDY A VIA MATRICES

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

(C WE CHOOSE)

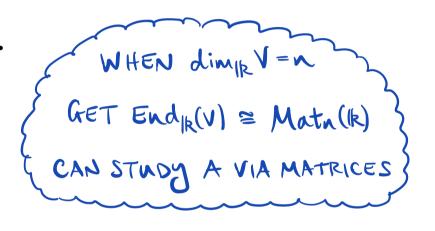
TAKE A IR-ALGEBRA A:= (A, M, N).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP

P:= Pv: A -> Endig(V)



Ex. Take cyclic group
$$\rho: \mathbb{C}C_2 \longrightarrow Mat_2(\mathbb{C})$$
 given by $C_2 = \langle g \mid g^2 = e \rangle$ $e \longmapsto (10)$ (10) "extending Linearly" $\mathbb{C}C_2$ $\lambda e + \mu_2 \mapsto \lambda p(e) + \mu_2(g) \forall \lambda, \mu \in \mathbb{C}$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A := (A, M, N).

A REPRESENTATION OF A

DEGREE/DIMENSION OF P = dimply

IS A VECTOR SPACE V EQUIPPED WITH AN ALGEBRA MAP

$$p := p_v : A \longrightarrow End_k(v)$$

Ex. Take cyclic group
$$\rho: \mathbb{C}C_2 \longrightarrow Mat_2(\mathbb{C})$$
 given by $C_2 = \langle g \mid g^2 = e \rangle$ $e \longmapsto (0)$ (0) "extending Linearly" $\mathbb{C}C_2$ $\lambda e + \mu g \mapsto \lambda p(e) + \mu p(g) \forall \lambda, \mu \in \mathbb{C}e$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP S P End(U)

FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE
(C WE CHOOSE)

TAKE A IR-ALGEBRA A := (A, M, N).

A REPRESENTATION OF A

DEGREE/DIMENSION OF P = dimply

IS A VECTOR SPACE V EQUIPPED
WITH AN ALGEBRA MAP

$$\rho := \rho_{V} : A \longrightarrow End_{\mathbb{R}}(V)$$

Ex. Take cyclic group
$$\rho: \mathbb{C}C_2 \longrightarrow Mat_2(\mathbb{C})$$
 given by $C_2 = \langle g \mid g^2 = e \rangle$ $e \longmapsto (10)$ Degree 2 Consider the group alg. $g \longmapsto (10)$ "Extending Linearly" $\mathbb{C}C_2$ $\lambda e + \mu g \mapsto \lambda p(e) + \mu p(g) \forall \lambda, \mu \in \mathbb{C}e$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A := (A, M, N).

A REPRESENTATION OF A

DEGREE/DIMENSION OF P = dim_{lk} V

IS A VECTOR SPACE V EQUIPPED WITH AN ALGEBRA MAP

p is faithful if p is injective

 $p := p_v : A \longrightarrow End_k(v)$

Ex. Take cyclic group
$$\rho: \mathbb{C}C_2 \longrightarrow Mat_2(\mathbb{C})$$
 given by $C_2 = \langle g \mid g^2 = e \rangle$ $e \longmapsto \binom{10}{01}$ Degree 2 Consider the group alg. $g \longmapsto \binom{10}{01}$ "Extending Linearly" $\mathbb{C}C_2$ $\lambda e + \mu_2 \mapsto \lambda_p(e) + \mu_p(g) \forall \lambda_1 \mu \in \mathbb{C}e$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP S P ENd(U)

FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A := (A, M, L).

A REPRESENTATION OF A

DEGREE/DIMENSION OF P = dim_{lk} V

IS A VECTOR SPACE V EQUIPPED WITH AN ALGEBRA MAP

P IS FAITHFUL

IF P IS INJECTIVE

 $p := p_v : A \longrightarrow End_k(v)$

Ex. Take cyclic group
$$\rho: \mathbb{C}C_2 \longrightarrow Mat_2(\mathbb{C})$$
 given by $C_2 = \langle g \mid g^2 = e \rangle$ $e \longmapsto (10)$ Degree 2 Consider the group alg. $g \longmapsto (10)$ Faithful $\mathbb{C}C_2$ $\lambda e + \mu g \mapsto \lambda p(e) + \mu p(g) \forall \lambda, \mu \in \mathbb{C}$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

CAN THINK OF P AS S

CAPTURING SYMMETRIES OF U

End(u) = Sym(u)

P IS FAITHFUL

IF P IS INJECTIVE

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

FAITHFULNESS ENSURES THAT

S DOES THIS ON THE NOSE, &

NOT UNNECESARILY BIG

CAN THINK OF ρ AS S

CAPTURING SYMMETRIES OF uEnd(u) = Sym(u)

P IS FAITHFUL

IF P IS INJECTIVE

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

FAITHFULNESS ENSURES THAT

S DOES THIS ON THE NOSE, K

NOT UNNECESARILY BIG

Eg. 1 2 CAPTURED BY

C2

C2

C2

C3

C2

C4

C5

CAPTURED BY

CAPTURED

CAN THINK OF ρ AS SCAPTURING SYMMETRIES OF UEnd(u) = Sym(u)

P IS FAITHFUL

IF P IS INJECTIVE

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

FAITHFULNESS ENSURES THAT

S DOES THIS ON THE NOSE, &

NOT UNNECESARILY BIG

CAN THINK OF ρ AS SCAPTURING SYMMETRIES OF UEnd(u) = Sym(u)

p is faithful if p is injective

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

FAITHFULNESS ENSURES THAT

S DOES THIS ON THE NOSE, &

NOT UNNECESARILY BIG

CAN THINK OF P AS SCAPTURING SYMMETRIES OF UEnd(u) = Sym(u)

P IS FAITHFUL

IF P IS INJECTIVE

THE ONLY ELEMENT
OF & THAT DOES
NOTHING TO U
IS THE IDENTITY FLT OF &

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP S P ENd(U)

FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A := (A, M, L).

A REPRESENTATION OF A

DEGREE/DIMENSION OF P = dim_{lk} V

IS A VECTOR SPACE V EQUIPPED WITH AN ALGEBRA MAP

P IS FAITHFUL

IF P IS INJECTIVE

 $p := p_v : A \longrightarrow End_k(v)$

Ex. Take cyclic group
$$\rho: \mathbb{C}C_2 \longrightarrow Mat_2(\mathbb{C})$$
 given by $C_2 = \langle g \mid g^2 = e \rangle$ $e \longmapsto (10)$ Degree 2 Consider the group alg. $g \longmapsto (10)$ Faithful $\mathbb{C}C_2$ $\lambda e + \mu g \mapsto \lambda p(e) + \mu p(g) \forall \lambda, \mu \in \mathbb{C}$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A := (A, M, L).

A REPRESENTATION OF A

DEGREE/DIMENSION OF P = dim_{lk} V

IS A VECTOR SPACE V EQUIPPED WITH AN ALGEBRA MAP

p is faithful if p is injective

 $p := p_{V} : A \longrightarrow End_{\mathbb{R}}(V)$

Ex. Take cyclic group
$$\rho: \mathbb{C} \hookrightarrow \mathbb{C} \longrightarrow \mathbb{C} \hookrightarrow \mathbb{C$$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A := (A, M, N).

A REPRESENTATION OF A

DEGREE/DIMENSION OF P = dim_{lk} V

IS A VECTOR SPACE V EQUIPPED WITH AN ALGEBRA MAP

P IS FAITHFUL

IF P IS INJECTIVE

$$p := p_v : A \longrightarrow End_k(v)$$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP S P ENd(U)

FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A := (A, M, N).

A REPRESENTATION OF A

DEGREE/DIMENSION OF P = dimply

IS A VECTOR SPACE V EQUIPPED WITH AN ALGEBRA MAP

P IS FAITHFUL

IF P IS INJECTIVE

$$p := p_v : A \longrightarrow End_k(v)$$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A := (A, M, L).

A REPRESENTATION OF A

DEGREE/DIMENSION OF P = dimply

IS A VECTOR SPACE V EQUIPPED WITH AN ALGEBRA MAP

P IS FAITHFUL

IF P IS INJECTIVE

$$p := p_v : A \longrightarrow End_k(v)$$

Ex. TAKE IR-ALGEBRA (A, M, u), AND LET Avs = UNDERLYING VS OF A.

Preg: A ---> End IR(Avs) = REGULAR REPRESENTATION OF A

A ---> [Avs ---> Avs]

b ---> ab]

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP S P ENd(U)

FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A := (A, M, N).

A REPRESENTATION OF A

DEGREE/DIMENSION OF P = dim_{lk} V

IS A VECTOR SPACE V EQUIPPED WITH AN ALGEBRA MAP

p is faithful if p is injective

 $p := p_v : A \longrightarrow End_k(v)$

Ex. TAKE IR-ALGEBRA (A, M, u), AND LET Avs = UNDERLYING VS OF A.

Preg: A ---> End IR(Avs) = REGULAR REPRESENTATION OF A

A ---> [Avs ---> Avs]

b---> ab]

• FAITHFUL

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP S P End(U)

FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE
(C WE CHOOSE)

TAKE A IR-ALGEBRA A := (A, M, N).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP

 $\rho := \rho_{V} : A \longrightarrow \operatorname{End}_{\mathbb{R}}(V)$

SUBSTRUCTURE

MORPHISM

QUOTIENT STRUCTURE

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(U)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

("WE CHOOSE)

TAKE A IR-ALGEBRA A := (A, M, N).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP $\rho := \rho_V : A \longrightarrow End_R(V)$

Jondo!

PICK ONE & GNESS

THE DEFINITION

HINT: A REPIN IS A VSPACE

WITH EXTRA STUFF

QUOTIENT STRUCTURE

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A := (A, M, N).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP

 $\rho := \rho_{V} : A \longrightarrow End_{\mathbb{R}}(V)$

A SUBREPIN OF (V, p_V) IS A SUBSPACE W OF V...

W \hookrightarrow $V \xrightarrow{p(\alpha)} V$...

Here MORPHISM

QUOTIENT STRUCTURE

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

("WE CHOOSE)

TAKE A IR-ALGEBRA A:= (A, M, N).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP

P:= Pv: A -> Endig(V)

MORPHISM

A SUBREPIN OF (V, p_V) IS A SUBSPACE W OF $V \ni$. IMAGE $(W \hookrightarrow V \xrightarrow{p(a)} V) \subseteq W$ $\forall a \in A$ QUOTIENT STRUCTURE

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A := (A, M, N).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP

 $\rho := \rho_{V} : A \longrightarrow End_{\mathbb{R}}(V)$

MORPHISM

A SUBREPIN OF (V, p_V) IS A SUBSPACE W OF $V oldsymbol{\cdot} oldsymbol{\cdot}$. IMAGE $(W oldsymbol{\cdot} oldsymbol$ A QUOTIENT REPIN OF (V, p_V) IS A QUOTIENT SPACE \bigvee OF V o. $V \xrightarrow{p(a)} V \longrightarrow \bigvee$... $\forall A \in A$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A := (A, M, N).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP

 $\rho := \rho_{V} : A \longrightarrow End_{\mathbb{R}}(V)$

MORPHISM

A SUBREPIN OF (V, p_V) IS A SUBSPACE W OF $V oldsymbol{\cdot} oldsymbol{\cdot}$. IMAGE $(W oldsymbol{\cdot} oldsymbol$ A QUOTIENT REPIN OF (V, p_V) IS A QUOTIENT SPACE W OF $V oldsymbol{def}$. $W ext{ } e$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A:= (A, M, N).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP

P:= Pv: A -> End_R(V)

A REPIN MORPHISM $(V, p_V) \rightarrow (V', p_{V'})$ IS A LINEAR MAP $\phi: V \rightarrow V'$ $\Rightarrow V \xrightarrow{p(\alpha)} V$ $\forall \alpha \in A$

A SUBREPIN OF (V, p_V) IS A SUBSPACE W OF V.7. IMAGE $(W \hookrightarrow V \xrightarrow{p(a)} V) \subseteq W$ $\forall a \in A$ A QUOTIENT REPIN OF (V, p_V) IS A QUOTIENT SPACE W OF $V oldsymbol{def}$. $W ext{ } e$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C-WE CHOOSE)

TAKE A IR-ALGEBRA A:= (A, M, N).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP

P:= Pv: A -> Endig(V)

AN EQUIVALENCE OF REPINS

$$(V, p_V) \cong (V', p_{V'})$$

INVERTIBLE

 $(SAN, LINEAR MAP \not S: V \rightarrow V'$
 $\Rightarrow \cdot V \xrightarrow{p(\alpha)} V$
 $y' \xrightarrow{p'(\alpha)} V' \forall \alpha \in A$

CONSIDERED THE SAME

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A:= (A, M, N).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP

P:= Pv: A -> Endik(V)

Ex.
$$A = \mathbb{C}C_2$$
 $C_2 = \langle g | g^2 = e \rangle$
 $V = \mathbb{C}^2$
 $p: \mathbb{C}C_2 \longrightarrow \mathbb{E}nd_{\mathbb{C}}(\mathbb{C}^2)$
 $e \longmapsto [\{x \mapsto \{x \}\}]$
 $g \mapsto [\{x \mapsto \{x \}\}]$
 $g \mapsto [\{x \mapsto \{x \}\}]$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(U)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A:= (A, M, N).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP

P:= Pv: A -> Endic(V)

AN EQUIVALENCE OF REPINS $(V, p_V) \cong (V', p_{V'})$ INVERTIBLE

IS AN, LINEAR MAP $\varnothing: V \rightarrow V'$ \Rightarrow . $V \xrightarrow{p(\alpha)} V$ $V \xrightarrow{p'(\alpha)} V'$ $\forall \alpha \in A$

 $\begin{array}{ll} \exists x. \ A = \mathbb{C}C_2 & p:\mathbb{C}C_2 \to \exists \mathsf{End}_{\mathbb{C}}(\mathbb{C}^2) \\ C_2 = \langle g \mid g^2 = e \rangle & e \mapsto \lceil \{ y \mapsto \{ y \} \} \\ V = \mathbb{C}^2 & \text{detending linearly} & \text{detending linearly} \end{array}$ $\begin{array}{ll} p:\mathbb{C}C_2 \to \exists \mathsf{End}_{\mathbb{C}}(\mathbb{C}^2) \\ e \mapsto \lceil \{ y \mapsto \{ y \} \} \\ g \mapsto \lceil \{ y \mapsto \{ y \} \} \end{cases}$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A:= (A, M, N).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP

P:= Pv: A -> Endik(V)

AN EQUIVALENCE OF REPINS $(V, p_V) \cong (V', p_{V'})$ INVERTIBLE

IS AN, LINEAR MAP $\varnothing: V \rightarrow V'$ \Rightarrow . $V \xrightarrow{\alpha} V$ $V \xrightarrow{\beta} V$ $V \xrightarrow{\beta} V'$

$$\begin{array}{lll} \exists x. & (\mathbb{C}^{2}, \mathbb{P})^{=}(\mathbb{C}^{2}, \mathbb{P}') & p: \mathbb{C}c_{2} \longrightarrow \mathbb{E}nd_{\mathbb{C}}(\mathbb{C}^{2}) \\ \forall \mathsf{IA} & \varphi: \mathbb{C}^{2} \longrightarrow \mathbb{C}^{2} & e \longmapsto [\{x_{y} \mapsto \{x_{y}\}\} & e \mapsto [\{x_{y} \mapsto \{x_{y}\}\} \\ \{x_{y} \mapsto \{x_{y} \mapsto \{x_{y}\}\} & g \mapsto \{x_{y}\}\} & g \mapsto [\{x_{y} \mapsto \{x_{y}\}\} \\ \forall y \mapsto \{y_{-x} \mapsto \{y_{-x}\}\} & \text{dextending linearly} & \text{dextending linearly} \end{array}$$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A := (A, M, N).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP $P := Pv : A \longrightarrow End_R(V)$

AN EQUIVALENCE OF REPINS

$$(V, p_V) \cong (V', p_{V'})$$

INVERTIBLE

IS AN LINEAR MAP $\varnothing:V \to V'$
 $0 = e^{V} \int_{\varnothing} \frac{p(\alpha)}{2} \bigvee_{\varnothing} \frac{p(\alpha)}{2} \bigvee_$

$$\begin{array}{lll} \exists x. & (\mathbb{C}^{2}, \mathbb{P})^{\frac{1}{2}}(\mathbb{C}^{2}, \mathbb{P}') & p: \mathbb{C}c_{2} \longrightarrow \mathbb{E}nd_{\mathbb{C}}(\mathbb{C}^{2}) & p: \mathbb{C}c_{2} \longrightarrow \mathbb{E}nd_{\mathbb{C}}(\mathbb{C}^{2}) \\ \forall 1 A & g: \mathbb{C}^{2} \longrightarrow \mathbb{C}^{2} & e \longmapsto [\{x_{3} \mapsto \{x_{3}\}\} & e \mapsto [\{x_{3} \mapsto \{x_{3}\}\} \\ \forall y \mapsto \{x_{3} \mapsto \{x_{4} \mapsto \{x_{3}\}\} & g \mapsto [\{x_{3} \mapsto \{x_{3}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} & g \mapsto [\{x_{3} \mapsto \{x_{3}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} & g \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} & g \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} & g \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} & g \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} & g \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} & g \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} & g \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} & g \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} & g \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} & g \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} & g \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} & g \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} & g \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4} \mapsto \{y_{4}\}\} \\ \forall y \mapsto \{y_{4} \mapsto$$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(U)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A:= (A, M, N).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP

P:= Pv: A -> Endic(V)

AN EQUIVALENCE OF REPINS

$$(V, p_V) \cong (V', p_{V'})$$

INVERTIBLE

IS AN LINEAR MAP $\varnothing: V \rightarrow V'$
 $\Rightarrow y \xrightarrow{p(\alpha)} y \xrightarrow{\chi} \chi$
 $\alpha = g: y - \chi, V \xrightarrow{p'(\alpha)} V', \chi + g$

S = ALGEBRAIC STRUCTURE E.G. GROUP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A:= (A, M, W).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP

P:= Pv: A -> Endir(V)

AN EQUIVALENCE OF REPINS $(V, p_V) \cong (V', p_{V'})$ INVERTIBLE

IS AN, LINEAR MAP $\varnothing:V \to V'$ \Rightarrow . $V \xrightarrow{p(\alpha)} V$ $V \xrightarrow{p'(\alpha)} V'$ $\forall \alpha \in A$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A:= (A, M, N).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP

P:= Pv: A -> Endr(V)

Ex. Take cyclic group
$$\rho: \mathbb{C}C_2 \longrightarrow Mat_2(\mathbb{C})$$
 given by $C_2 = \langle g \mid g^2 = e \rangle$ $e \longmapsto (10)$ Degree 2 Consider the group alg. $g \longmapsto (10)$ Faithful $\lambda e + \mu_2 \mapsto \lambda p(e) + \mu_2(g) \forall \lambda, \mu \in \mathbb{C}$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROWP, VSPACE

(C WE CHOOSE)

TAKE A IR-ALGEBRA A:= (A, M, u).

A REPRESENTATION OF A

IS A VECTOR SPACE V EQUIPPED

WITH AN ALGEBRA MAP $\rho := \rho_V : A \longrightarrow \text{End}_R(V)$

TAKE A GROUP G

A REPRESENTATION OF G

IS A VECTOR SPACE V EQUIPPED

WITH A GROUP MAP $\rho := \rho_V : G \longrightarrow GL(V) = Aut_{IR}(V)$

Ex. Take cyclic group $\rho: \mathbb{C}C_2 \longrightarrow Mat_2(\mathfrak{C}^2)$ given by $C_2 = \langle g \mid g^2 = e \rangle$ $e \longmapsto (0)$ Degree 2 Consider the group alg. $g \longmapsto (0)$ Faithful $2e + Mg \longmapsto \lambda p(e) + Mp(g) \forall \lambda, Me C$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

(C WE CHOOSE)

- · deg(pv) := dim 1 V
- · P FAITHFUL IF INJECTIVE
- MORPHISMS, SUBREPS
 \$ QUOTIENT REPS
 DEFINED LIKEWISE

TAKE A GROWP G

A REPRESENTATION OF G

IS A VECTOR SPACE V EQUIPPED

WITH A GROWP MAP

 $\rho := \rho_{V} : G \longrightarrow GL(V) \equiv_{Aut_{|R}}(V)$

Ex. Take cyclic group
$$\rho: \mathbb{C}C_2 \longrightarrow Mat_2(\mathbb{C}^2)$$
 given by $C_2 = \langle g \mid g^2 = e \rangle$ $e \longmapsto (0)$ Degree 2 Consider the group alg. $g \longmapsto (0)$ Faithful CC_2 $\lambda e + \mu g \mapsto \lambda p(e) + \mu p(g) \forall \lambda, \mu \in \mathbb{C}$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

(C WE CHOOSE)

- · deg(pv) := dim 1 V
- · P FAITHFUL IF INJECTIVE
- MORPHISMS, SUBREPS
 \$ QUOTIENT REPS
 DEFINED LIKEWISE

TAKE A GROWP G

A REPRESENTATION OF G

IS A VECTOR SPACE V EQUIPPED

WITH A GROUP MAP

P := Pv : G - GL(V) = Aut (R)

Ex. Take cyclic Group
$$C_2 = \langle g | g^2 = e \rangle$$

$$\rho: C_2 \longrightarrow GL_2(\mathbb{C})$$
 GIVEN BY

 $e \longmapsto (0)$
 $faithful$
 $g \longmapsto (0)$

S = ALGEBRAIC STRUCTURE E.G. GROWP, RING, ALGEBRA

A REPRESENTATION OF S IS A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$ FOR U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

(C WE CHOOSE)

- · deg(pv) := dim 1 V
- P FAITHFUL IF INJECTIVE

 THERE'S A DIFFERENCE

 BETWEEN FAITHFULNESS

 FOR GROUPS AND FOR GROUP ALGS.

TAKE A GROWP G

A REPRESENTATION OF G

IS A VECTOR SPACE V EQUIPPED

WITH A GROWP MAP

Ex. Take cyclic group
$$\rho: C_2 \longrightarrow GL_2(\mathbb{C})$$
 Given by
$$C_2 = \langle g \mid g^2 = e \rangle \qquad e \longmapsto (0) \qquad \text{Degree 2}$$

$$faithful$$

$$g \longmapsto (0)$$

S = ALGEBRAIC STRUCTURE E.G. GROLP, RING, ALGEBRA

U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

WANT S TO CAPTURE SYMMETRIES OF U

A REPRESENTATION OF S

IS U EQUIPPED WITH

A STRUCTURE MAP

SPENd(U)

S = ALGEBRAIC STRUCTURE E.G. GROLP, RING, ALGEBRA

U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

WANT S TO CAPTURE SYMMETRIES OF U

A REPRESENTATION OF S

IS U EQUIPPED WITH

A STRUCTURE MAP

SPENd(U)

AN S-MODULE

IS U EQUIPPED WITH

AN "ACTION" MAP $S \times U \xrightarrow{P} U$ COMPATIBLE WITH THE STRUCTURE OF S

S = ALGEBRAIC STRUCTURE E.G. GROLP, RING, ALGEBRA

U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

WANT S TO CAPTURE SYMMETRIES OF U

REPACKAGING

A REPRESENTATION OF S

IS U EQUIPPED WITH

A STRUCTURE MAP

SPEND(U)

AN S-MODULE

IS U EQUIPPED WITH

AN "ACTION" MAP $S \times U \xrightarrow{P} U$ COMPATIBLE WITH THE STRUCTURE OF S

$$[p:S \rightarrow End(u)] \longmapsto$$

$$\longleftarrow \downarrow \left[\triangleright : \mathcal{S} \times \mathcal{U} \longrightarrow \mathcal{U} \right]$$

S = ALGEBRAIC STRUCTURE E.G. GROLP, RING, ALGEBRA

U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

WANT S TO CAPTURE SYMMETRIES OF U

REPACKAGING

A REPRESENTATION OF S

IS $U \in QUIPPED$ WITH

A STRUCTURE MAP $S \xrightarrow{p} End(U)$

AN S-MODULE

IS U EQUIPPED WITH

AN "ACTION" MAP $S \times U \xrightarrow{P} U$ COMPATIBLE WITH THE STRUCTURE OF S

 $\left[p: S \longrightarrow \text{End}(U) \right] \longmapsto \quad \text{SDU} := p(s)(u) \quad \forall s \in S, u \in U$ $p(s)(u) := \text{SDU} \quad \forall s \in S, u \in U \quad \longleftrightarrow \quad \left[D: S \times U \longrightarrow U \right]$

S = ALGEBRAIC STRUCTURE E.G. GROLP, RING, ALGEBRA

U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

WANT S TO CAPTURE SYMMETRIES OF U

GET BIJECTION (SEE EXERCISE 1.12)

A REPRESENTATION OF S

IS U EQUIPPED WITH

A STRUCTURE MAP

SPEND(U)

AN S-MODULE

IS U EQUIPPED WITH

AN "ACTION" MAP $S \times U \xrightarrow{P} U$ COMPATIBLE WITH THE STRUCTURE OF S

$$\left[p: S \longrightarrow \text{End}(U) \right] \longmapsto \quad \text{SDU} := p(s)(u) \quad \forall s \in S, u \in U$$

$$p(s)(u) := SDU \quad \forall s \in S, u \in U \quad \longleftrightarrow \quad \left[D: S \times U \longrightarrow U \right]$$

S = ALGEBRAIC STRUCTURE E.G. GROLP, RING, ALGEBRA

U = ANOTHER STRUCTURE E.G. SET, ABELIAN GROUP, VSPACE

WANT S TO CAPTURE SYMMETRIES OF U

GET BIJECTION (SEE EXERCISE 1.12)

A REPRESENTATION OF S

IS U EQUIPPED WITH

A STRUCTURE MAP

(S) P End(u)

AN S-MODILE

IS U EQUIPPED WITH

AN "ACTION" MAP S X U POU

COMPATIBLE WITH THE STRUCTURE OF S

NICE FOR STUDYING SYMMETRIES VIA

PROPERTIES OF S

(E.G. FAITHFULNESS)

PROPERTIES OF U

(E.G. DEGREE)

$$S = ALGEBRA A = (A, n:A \otimes A \longrightarrow A, n: R \longrightarrow A)$$

$$U = VECTOR SPACE V$$

A REPRESENTATION OF S

IS U EQUIPPED WITH

A STRUCTURE MAP $S \xrightarrow{\rho} End(u)$

AN S-MODULE

IS U EQUIPPED WITH

AN "ACTION" MAP $S \times U \xrightarrow{P} U$ COMPATIBLE WITH THE STRUCTURE OF S

$$S = ALGEBRA A = (A, n:A \otimes A \longrightarrow A, n: R \longrightarrow A)$$

$$U = VECTOR SPACE V$$

A REPRESENTATION OF A

IS V EQUIPPED WITH

AN ALGEBRA MAP

 $\rho := \rho_V : A \longrightarrow End_{\mathbb{R}}(V)$

A REPRESENTATION OF S

IS U EQUIPPED WITH

A STRUCTURE MAP

SPEND(U)

AN S-MODULE

IS U EQUIPPED WITH

AN "ACTION" MAP $S \times U \xrightarrow{P} U$ COMPATIBLE WITH THE STRUCTURE OF S

 $S = ALGEBRA A = (A, n:A \otimes A \longrightarrow A, u: R \longrightarrow A)$

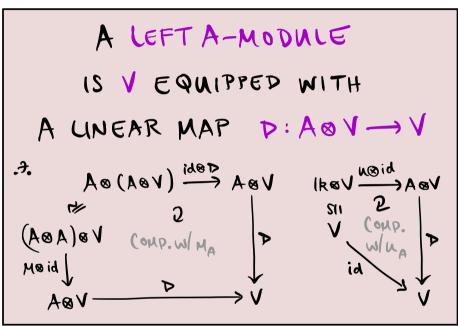
U = VECTOR SPACE V

A REPRESENTATION OF A

13 V EQUIPPED WITH

AN ALGEBRA MAP

 $\rho := \rho_{V} : A \longrightarrow End_{\mathbb{R}}(V)$



A REPRESENTATION OF S

IS U EQUIPPED WITH

A STRUCTURE MAP

SPEND(U)

AN S-MODULE

13 U EQUIPPED WITH

AN "ACTION" MAP $S \times U \xrightarrow{P} U$ COMPATIBLE WITH THE STRUCTURE OF S

 $S = ALGEBRA A = (A, n:A \otimes A \longrightarrow A, u: R \longrightarrow A)$

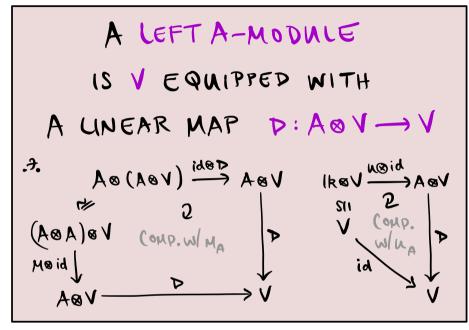
U = VECTOR SPACE V

A REPRESENTATION OF A

15 V EQUIPPED WITH

AN ALGEBRA MAP

 $\rho := \rho_V : A \longrightarrow End_k(V)$



RIGHT A-MODULE (V, d:V&A -> V) DEFINED LIKEWISE

A REPRESENTATION OF S

IS U EQUIPPED WITH

A STRUCTURE MAP

SPENd(U)

AN S-MODULE

13 U EQUIPPED WITH

AN "ACTION" MAP $S \times U \xrightarrow{P} U$ COMPATIBLE WITH THE STRUCTURE OF S

S = ALGEBRA A = (A, n: A & A -> A, u: k -> A)

U = VECTOR SPACE V

A REPRESENTATION OF A

IS V EQUIPPED WITH

AN ALGEBRA MAP $P := Pv : A \longrightarrow End_R(V)$

Ex. Take cyclic group
$$\rho: \mathbb{C}C_2 \longrightarrow Mat_2(\mathbb{k})$$
 given by $C_2 = \langle g \mid g^2 = e \rangle$ $e \longmapsto (10)$ Consider the group alg. $g \longmapsto (10)$ (10)

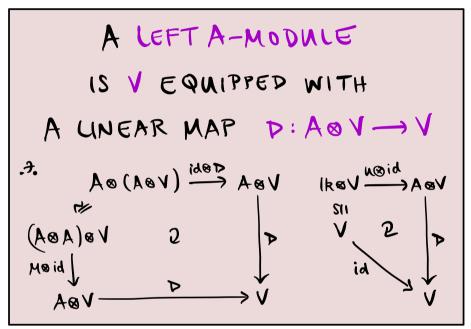
S = ALGEBRA A = (A, n: A & A -> A, u: R -> A)

U = VECTOR SPACE V

A REPRESENTATION OF A

IS V EQUIPPED WITH

AN ALGEBRA MAP $\rho := \rho_V : A \longrightarrow \text{End}_{\mathbb{R}}(V)$



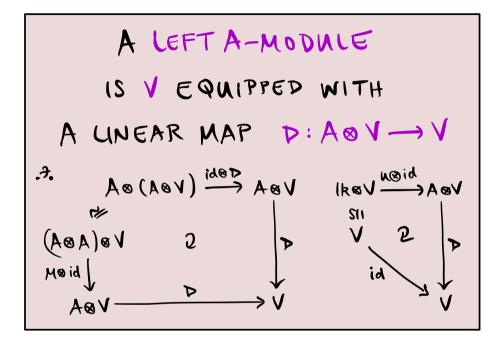
Ex. Take cyclic group
$$p: \mathbb{C}C_2 \times \mathbb{C}^2 \longrightarrow \mathbb{C}^2$$
 given by $C_2 = \langle g \mid g^2 = e \rangle$ $(e, \{^{\times}_{g}\}) \longmapsto \{^{\times}_{g}\}$ Consider the group alg. $(g, \{^{\times}_{g}\}) \longmapsto \{^{\times}_{g}\}$ $(he + \mu_{g}, \{^{\times}_{g}\}) \mapsto \lambda(e \circ \{^{\times}_{g}\}) + \mu(g \circ \{^{\times}_{g}\}) + \lambda(e \circ \{^{\times}_{g}\}) + \mu(g \circ \{^{\times}_{g}\}) + \lambda(e \circ$

ALGEBRA A = (A, m, u)

VECTOR SPACE V

· dim (V,D) = dim KV

[INSTEAD OF "DEGREE"



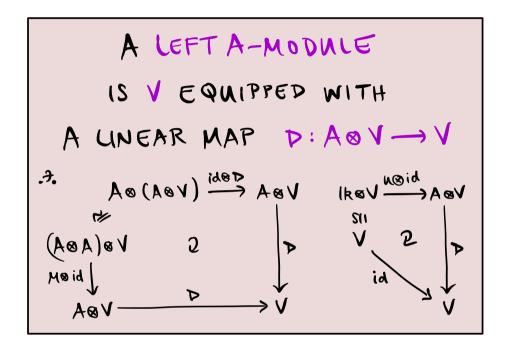
Ex. Take cyclic group
$$p: \mathbb{C}C_2 \times \mathbb{C}^2 \longrightarrow \mathbb{C}^2$$
 given by $C_2 = \langle g \mid g^2 = e \rangle$ $(e, \{\frac{x}{g}\}) \longmapsto \{\frac{x}{g}\}$ Degree 2 $(g, \{\frac{x}{g}\}) \longmapsto \{\frac{x}{g}\}$ $(g, \{\frac{x}{g}\}) \longmapsto \{\frac{x}{g}\}$ $(g, \{\frac{x}{g}\}) \longmapsto \{\frac{x}{g}\}$ $(g, \{\frac{x}{g}\}) \mapsto \lambda(e p \{\frac{x}{g}\}) + \mu(g p \{\frac{x}{g}\}) + \lambda(g p \{\frac{x}{g}\}) + \mu(g p \{\frac{x}{g}\}) + \lambda(g p \{\frac{x}$

ALGEBRA A = (A, m, u)

VECTOR SPACE V

- · dim (V, D) = dim (R)

IS A LEFT MODULE OVER A/T



Ex. Take cyclic group
$$p: \mathbb{C}C_2 \times \mathbb{C}^2 \longrightarrow \mathbb{C}^2$$
 given by $C_2 = \langle g \mid g^2 = e \rangle$ (e, $\{ \}_g^{\times} \} \longmapsto \{ \}_g^{\times} \}$ Degree 2 Consider the group alg. (9, $\{ \}_g^{\times} \} \longmapsto \{ \}_g^{\times} \} \mapsto \{ \}_g^{\times} \} \mapsto \{ \}_g^{\times}$ FAITHFUL $(\lambda e + \mu g, \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \}) \mapsto \lambda(e \circ \{ \}_g^{\times} \} + \mu(g \circ \{ \}_g^{\times} \})$

ALGEBRA A = (A, m, u)

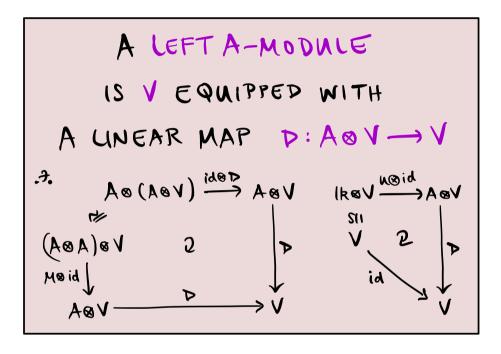
VECTOR SPACE V

- · dim (V, D) = dim (R)
- (V,D) IS FAITHFUL IF

 IT FOIDEAL OF A .3.

$$\begin{pmatrix} V, \sqrt[4]{L} \otimes V \xrightarrow{\overline{P}} V \\ (a+I) \otimes V \longmapsto (aPV)+I \end{pmatrix}$$

IS A LEFT MODULE OVER A/I



Ex. TAKE IR-ALGEBRA (A, M, U), AND LET AVS = UNDERLYING VS OF A.

$$Preg: A \otimes Avs \longrightarrow Avs$$

$$(a, b) \longmapsto ab$$

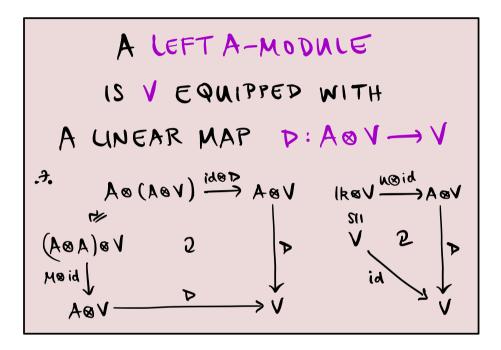
= REGULAR LEFT A-MODILE

- · dim(Dreg) = dim IR Avs
- · FAITHFUL

ALGEBRA A = (A, M, W)

VECTOR SPACE V

MORPHISMS



SUBSTRUCTURES

QUOTIENT STRUCTURES

ALGEBRA A = (A, m, u)

VECTOR SPACE V

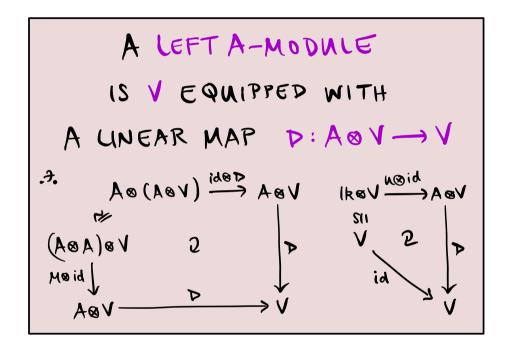
MORPHISMS

A LEFT A-MODULE MAP $(V,D) \longrightarrow (V',D')$

IS A UNEAR MAP \$: V -> V' ->.

$$A\otimes V \xrightarrow{D} V$$

$$A\otimes V \xrightarrow{D} V$$



SUBSTRUCTURES

QUOTIENT STRUCTURES

ALGEBRA A = (A, m, u)

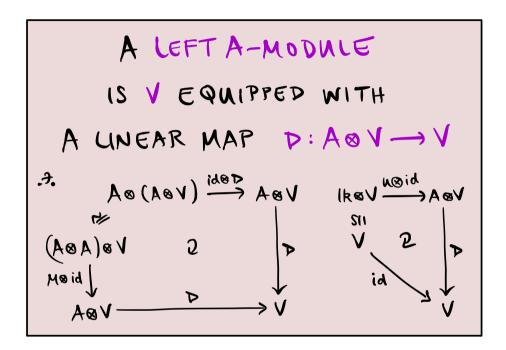
VECTOR SPACE V

MORPHISMS

A LEFT A-MODULE MAP $(V, \nabla) \longrightarrow (V', \nabla')$

IS A UNEAR MAP $\phi: V \rightarrow V' \rightarrow$. $\phi \circ D = b' \circ (id_A \otimes \phi)$

(V,D) = (V, b) ISOMORPHISM
WHEN & IS INVERTIBLE



SUBSTRUCTURES

QUOTIENT STRUCTURES

ALGEBRA A=(A, m, u)

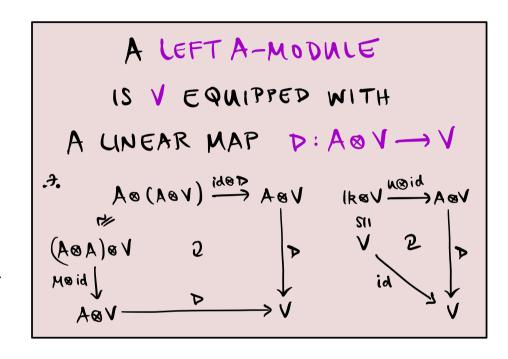
VECTOR SPACE V

MORPHISMS

A LEFT A-MODULE MAP $(V, \nabla) \longrightarrow (V', \nabla')$

IS A UNEAR MAP $\phi: V \rightarrow V' \rightarrow$. $\phi \circ D = b' \circ (id_A \otimes \phi)$

(V,D) = (V, b) ISOMORPHISM
WHEN & IS INVERTIBLE



PLEASE READ ABOUT

SUBSTRUCTURES SUBMODULES

QUOTIENT STRUCTURES ~ QUOTIENT MODULES
IN \$1.3.2

ALGEBRA A = (A, m, u)

VECTOR SPACE V

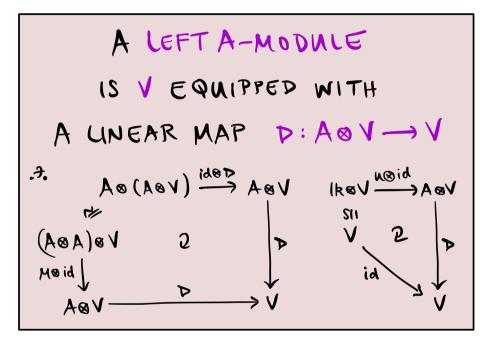
MORPHISMS

A LEFT A-MODULE MAP $(V,D) \longrightarrow (V',D')$

IS A UNEAR MAP \$: V -> V' ...

$$A\otimes V \xrightarrow{D} V$$

$$A\otimes V \xrightarrow{D} V$$



PLEASE READ ABOUT

SUBSTRUCTURES SUBMODULES

THINK ABOUT
ANALOGOUS
NOTIONS FOR
RIGHT A-MODULES

QUOTIENT STRUCTURES ~ QUOTIENT MODULES
IN \$1.3.2

ALGEBRA A = (A, m, u)

VECTOR SPACE V

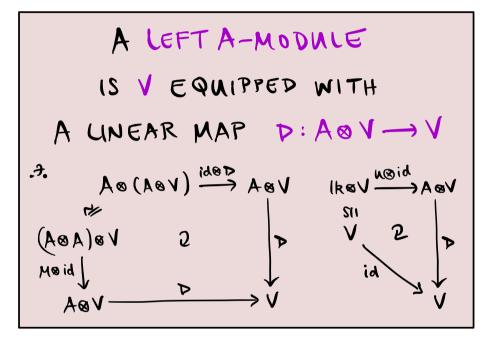
MORPHISMS

A LEFT A-MODULE MAP $(V,D) \longrightarrow (V',D')$

IS A UNEAR MAP \$: V -> V' ...

$$A\otimes V \xrightarrow{D} V$$

$$A\otimes V \xrightarrow{D} V$$



PLEASE READ ABOUT

SUBSTRUCTURES SUBMODULES

QUOTIENT STRUCTURES ~ QUOTIENT MODULES
IN \$1.3.2

THINK ABOUT
ANALOGOUS
NOTIONS FOR
RIGHT A-MODULES

MODNLES OVER GROUPS G IN §1.3.4 II. MODILES AND BIMODILES OVER ALGEBRAS & GROUPS
PUTTING LEFT & RIGHT MODILES TOGETHER -

PUTTING LEFT & RIGHT MODINES TOGETHER TAKE ALGEBRAS (B1, M1, U1) & (B2, M2, U2)

A
$$(B_1, B_2)$$
 - BIMODULE

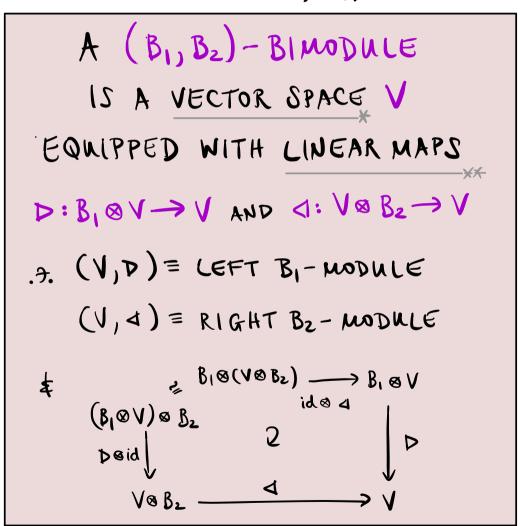
IS A VECTOR SPACE V

EQUIPPED WITH LINEAR MAPS

D: $B_1 \otimes V \rightarrow V$ AND $A: V \otimes B_2 \rightarrow V$

A. $(V, D) = CEFT B_1 - MODULE$
 $(V, A) = RIGHT B_2 - MODULE$
 $(B_1 \otimes V) \otimes B_2$
 $(B_2 \otimes V) \otimes B_3$
 $(B_3 \otimes V) \otimes B_4$
 $(B_4 \otimes V) \otimes B_4$
 $(B_5 \otimes V) \otimes B_4$
 $(B_6 \otimes V) \otimes B_4$
 $(B_6$

PUTTING LEFT & RIGHT MODINES TOGETHER TAKE ALGEBRAS (B1, M1, U1) & (B2, M2, U2)



TUST OUR CHOICE HERE.

COULD BE A

* SET,
ABELIAN GROUP

D, J

** FUNCTION
GROUP MAP

PUTTING LEFT & RIGHT MODILES TOGETHER TAKE ALGEBRAS (B1, M1, U1) & (B2, M2, U2)

A (B_1, B_2) - BIMODULE

IS A VECTOR SPACE V

EQUIPPED WITH LINEAR MAPS

D: $B_1 \otimes V \rightarrow V$ AND \triangleleft : $V \otimes B_2 \rightarrow V$

.7. $(V,D) \equiv LEFT B_1 - MODULE$ $(V, \triangleleft) \equiv RIGHT B_2 - MODULE$

 $\not\in \Delta \circ (D \otimes id_{B_2}) = D \circ (id_{B_1} \otimes \Delta)$

THIS IS CALLED AN A-BIMODULE WHEN $B_1 = B_2 = : A$ (ALGEBRA).

PUTTING LEFT & RIGHT MODILES TOGETHER TAKE ALGEBRAS (B1, M1, U1) & (B2, M2, U2)

A
$$(B_1, B_2)$$
 - BIMODULE

IS A VECTOR SPACE V

EQUIPPED WITH LINEAR MAPS

D: $B_1 \otimes V \rightarrow V$ AND \triangleleft : $V \otimes B_2 \rightarrow V$

A. $(V, D) = CEFT B_1$ - MODULE

 $(V, A) = RIGHT B_2$ - MODULE

 $4 \otimes (D \otimes id_{B_2}) = D \circ (id_{B_1} \otimes A)$

THIS IS CALLED AN A-BIMODULE
WHEN BI = B2 = : A (ALGEBRA).

• A MAP OF
$$(B_1,B_2)$$
—BIMODULES $(V,D,A) \longrightarrow (V',D',A)$

IS A LINEAR MAP $\varnothing:V \rightarrow V'$

THAT IS A MAP OF 2

[CEFT B_{1} -Modules 4

RIGHT B_{2} -Modules

PUTTING LEFT & RIGHT MODILES TOGETHER TAKE ALGEBRAS (B1, M1, U1) & (B2, M2, U2)

.7.
$$(V,D) \equiv LEFT B_1 - MODULE$$

 $(V, A) \equiv RIGHT B_2 - MODULE$

THIS IS CALLED AN A-BIMODULE WHEN $B_1 = B_2 = :A$ (ALGEBRA).

• A MAP OF
$$(B_1,B_2)$$
—BIMODULES
 $(V,D,A) \longrightarrow (V',D',A)$
IS A LINEAR MAP $\varnothing:V \rightarrow V'$
THAT IS A MAP OF
¿LEFT B_1 -MODULES
RIGHT B_2 -MODULES

CAN DEFINE

AN ISOMORPHISM OF BIMODULES

SUBBIMOPULES

QUOTIENT BIMODULES

IN A SIMICAR MANNER

PUTTING LEFT & RIGHT MODILES TOGETHER TAKE ALGEBRAS (B1, M1, U1) & (B2, M2, U2)

A (B₁, B₂) - BIMODULE

IS A VECTOR SPACE V

EQUIPPED WITH LINEAR MAPS

D: B, & V -> V AND O: V & B2 -> V

.7. $(V,D) = LEFT B_1 - MODULE$ $(V, A) = RIGHT B_2 - MODULE$

\$ do(DoidB2) = Do(idB, 0 d)

THIS IS CALLED AN A-BIMODULE WHEN $B_1 = B_2 = : A$ (ALGEBRA).

• A MAP OF (B₁,B₂)—BIMODULES (V,D,A) → (V',D',A) IS A LINEAR MAP Ø:V→V' THAT IS A MAP OF { LEFT B₁-MODULES \$ RIGHT B₂-MODULES

CAN DEFINE

REGULAR A-BIMODULE

DIMENSION = Liming V

IN A SIMICAR MANNER

PUTTING LEFT & RIGHT MODILES TOGETHER TAKE ALGEBRAS (B1, M1, U1) & (B2, M2, U2)

A (B1, B2)-BIMODULE

IS A VECTOR SPACE V

EQUIPPED WITH LINEAR MAPS

D: B, & V -> V AND O: V & B2 -> V

.7. $(V,D) = LEFT B_1 - MODULE$ $(V, \triangleleft) = RIGHT B_2 - MODULE$

 $\not= \Delta \circ (D \otimes id_{B_2}) = D \circ (id_{B_1} \otimes \Delta)$

THIS IS CALLED AN A-BIMODULE WHEN $B_1 = B_2 = : A$ (ALGEBRA).

BUT FAITHFULNESS IS A ONE-SIDED NOTION

CAN DEFINE

REGULAR A-BIMODULE

DIMENSION =

IN A SIMICAR MANNER

MATH 466/566 SPRING 2024

CHELSEA WALTON RICE U.

LECTURE #3

Topics:

I. EXAMPLES OF ALGEBRAS OVER A FIELD: IRQ, IRG (\$\$1.2.5, 1.2.6)

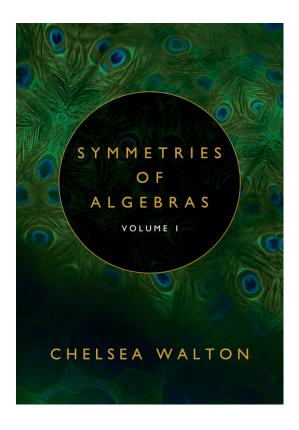
II. REPRESENTATIONS OF ALGEBRAS & GROUPS (881.3.1, 1.3.4)

III. MODILES AND BIMODILES OVER ALGEBRAS & GROUPS (581.3.2-1.3.4)

NEXT TIME: OPERATIONS ON ALGEBRAS & MODULES

Enjoy this lecture? You'll enjoy the textbook!

C. Walton's "Symmetries of Algebras, Volume 1" (2024)



Available for purchase at:

619 Wreath (at a discount)

https://www.619wreath.com/

Also on Amazon & Google Play

<u>Lecture #3 keywords</u>: bimodule over an algebra, faithfulness, group algebra, module over an algebra, path algebra, quiver, representation of an algebra