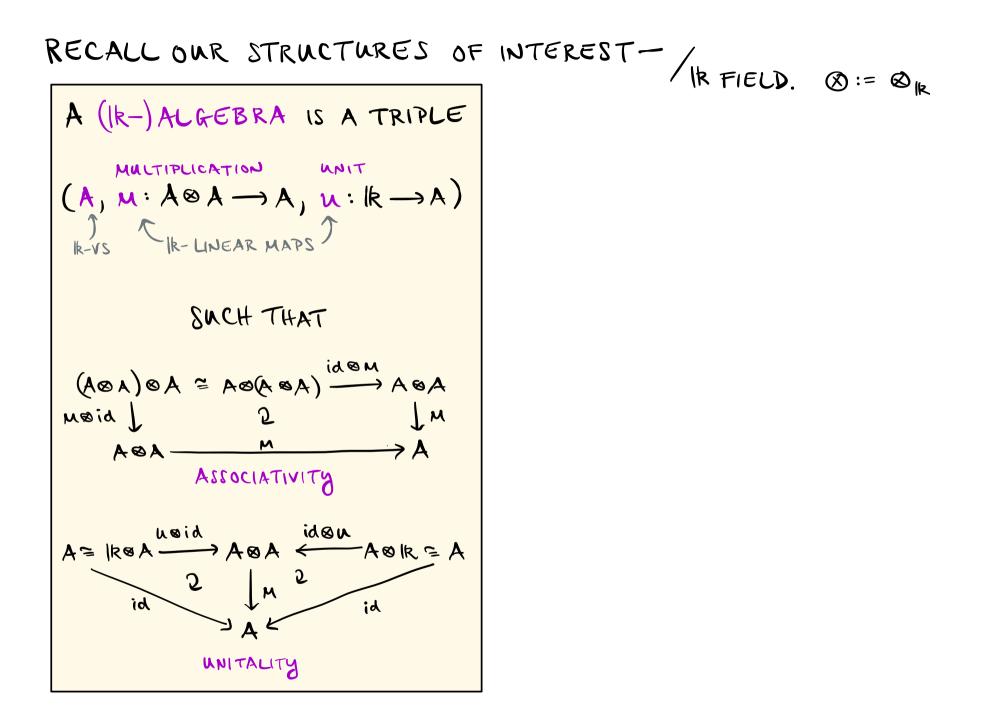


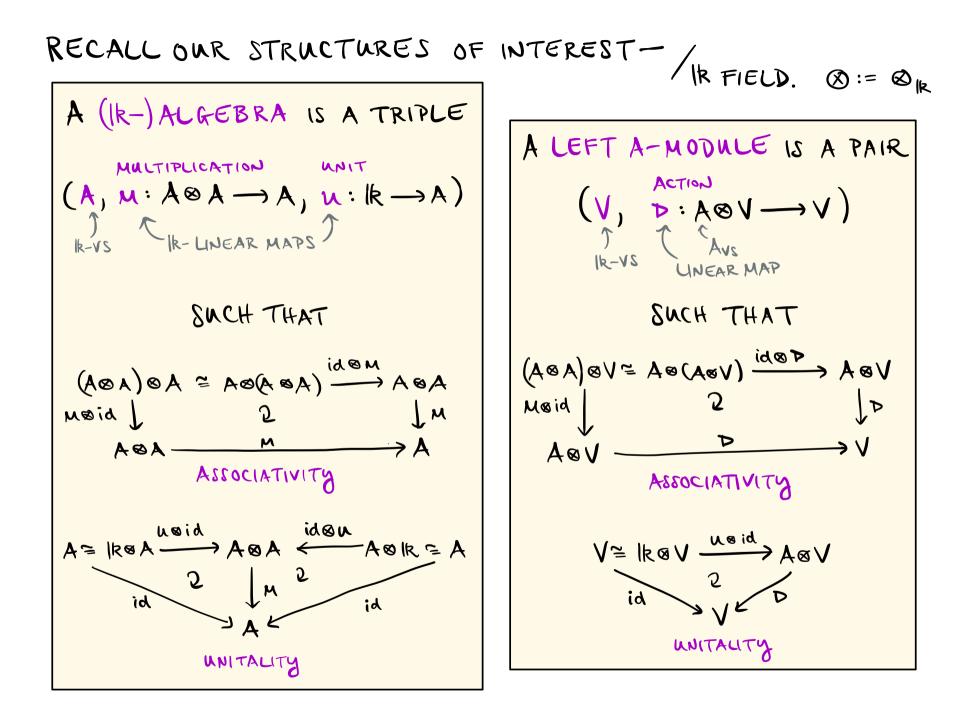
- · IkQ, IkG
- · REPRESENTATIONS
- · (BI)MODULES

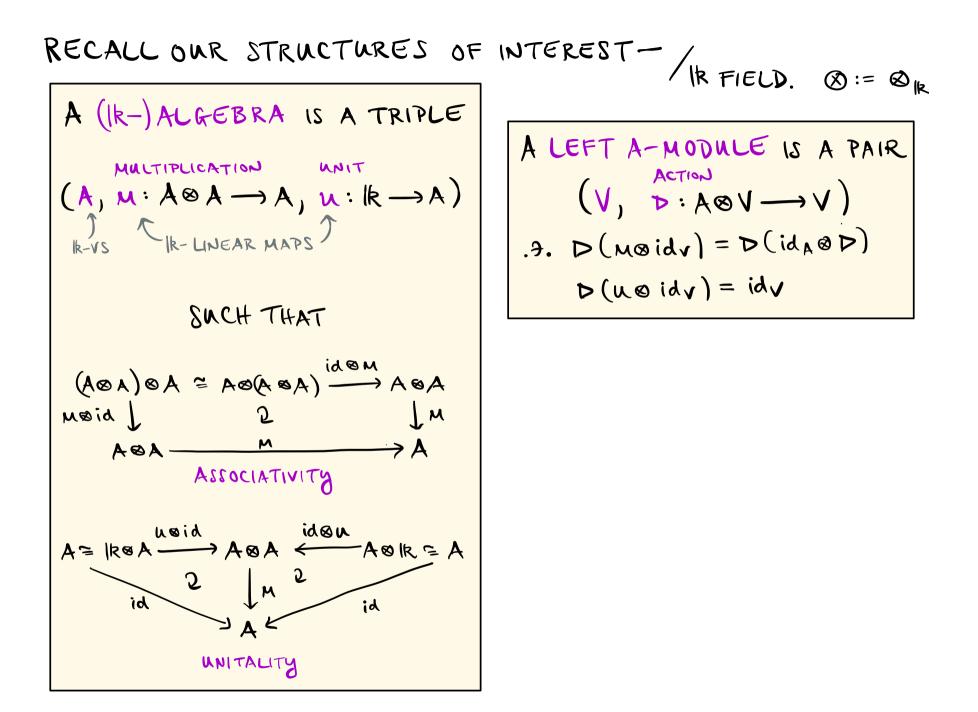
LECTURE #4

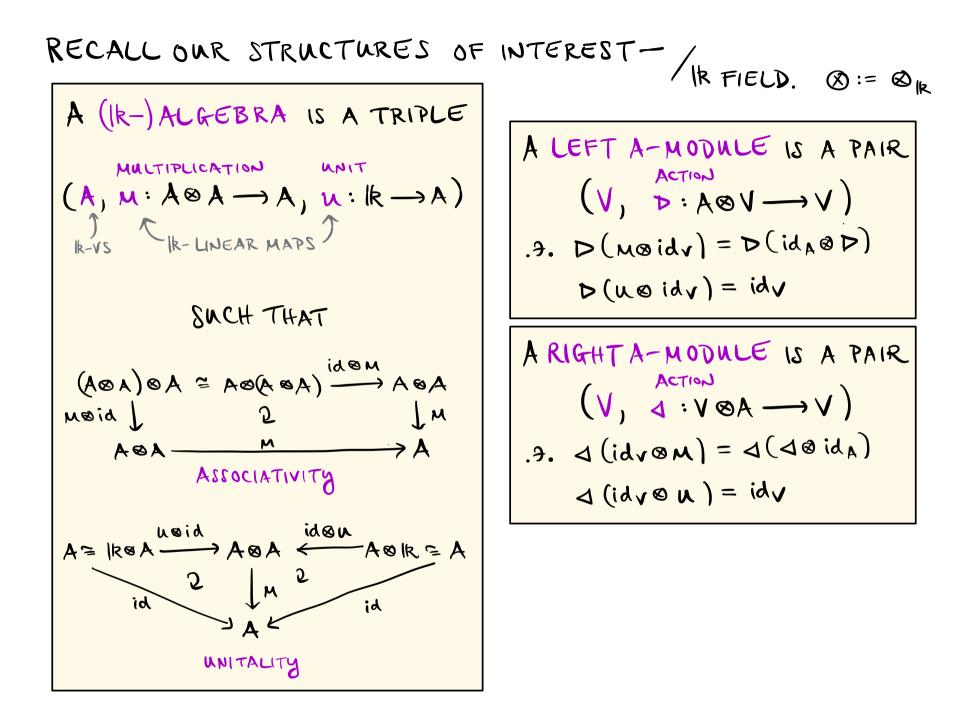
TOPICS :

- I. DIRECT PRODUCT, SUM, DIRECT SUM OF ALGEBRAS & MODULES (§1.4.1)
- I. TENSOR PRODUCT OF ALGEBRAS & MODULES (5§1.4.2, 1.4.4)
- II. HOM AND DUAL OF ALGEBRAS & MODULES (\$\$1.4.3, 1.4.4)









RECALL OUR STRUCTURES OF INTEREST
A (IR-)ALGEBRA IS A TRIPLE
MULTIPLICATION UNIT
(A, M: A@A
$$\rightarrow$$
 A, N: IR \rightarrow A)
INTEREST
(A, M: A@A \rightarrow A, N: IR \rightarrow A)
INTEREST
(A (IR-)ALGEBRA IS A TRIPLE
MULTIPLICATION UNIT
(A, M: A@A \rightarrow A, N: IR \rightarrow A)
INTEREST
(A (IR-)ALGEBRA IS A TRIPLE
MULTIPLICATION UNIT
(A, M: A@A \rightarrow A, N: IR \rightarrow A)
INTEREST
(A (IR-)ALGEBRA IS A TRIPLE
MULTIPLICATION UNIT
(A, M: A@A \rightarrow A, N: IR \rightarrow A)
INTEREST
(A (IR-)ALGEBRA IS A TRIPLE
MULTIPLICATION UNIT
(A, M: A@A \rightarrow A, N: IR \rightarrow A)
INTEREST
(A (IR-)ALGEBRA IS A TRIPLE
MULTIPLICATION UNIT
(A, M: A@A \rightarrow A, N: IR \rightarrow A)
INTEREST
(A (IR-)ALGEBRA IS A TRIPLE
MULTIPLICATION UNIT
(A, M: A@A \rightarrow A, N: IR \rightarrow A)
INTEREST
(A (IR-)ALGEBRA IS A TRIPLE
MULTIPLICATION UNIT
(A, M: A@A \rightarrow A, N: IR \rightarrow A)
INTEREST
(A (IR-)ALGEBRA IS A TRIPLE
MULTIPLICATION UNIT
(A, M: A@A \rightarrow A, N: IR \rightarrow A)
INTEREST
(A (IR-)ALGEBRA IS A TRIPLE
(A (IR-)A-MODULE IS A PAIR
(V, A: V@A \rightarrow V)
INTEREST
(V, A: V@A \rightarrow V)
INTEREST
(V, A: V@A \rightarrow V)
INTEREST
(IR FIELD. @: A PAIR
(V, A: V@A \rightarrow V)
INTEREST
(V, A: V@A \rightarrow V)
INTEREST
(IR FIELD. @: A PAIR
(IR (IR TA-MODULE IS A PAIR
(V, A: V@A \rightarrow V)
INTEREST
(IR FIELD. @: A PAIR
(IR (IR (IR A)))
(IR FIELD. @: A PAIR
(IR (IR A)))
(IR FIELD. @: A PAIR
(IR (IR A)))
(IR (IR (IR A)))
(IR FIELD. @: A PAIR
(IR (IR A)))
(IR (IR A))
(IR (IR A)))
(IR (IR A))
(IR (IR A))
(IR (IR A)))
(IR (IR A))
(IR (IR A))
(IR (IR A))
(IR (IR A)))
(IR (IR A))
(IR (IR A))
(IR (IR A)))
(IR (IR A)))
(IR (IR A))
(IR (IR A)))
(

RECALL OUR STRUCTURES OF INTEREST
A (IR-)ALGEBRA IS A TRIPLE
MULTIPLICATION UNIT
(A, M: A@A
$$\rightarrow$$
 A, U: IR \rightarrow A)
 k -VS $(k$ -LINEAR MAPS)
SUCH THAT
M(M@id_A) = M(id_A@M)
M(U@id_A) = id_A
M(id_A@U) = id_

A
$$(B_1, B_2) - B | MODULE | S A TRIPLE (V, D) = LEFT $B_1 - MODULE$
 $(V, d) = RIGHT B_2 - MODULE$$$

ALGEBRA A vs $M: A \otimes A \rightarrow A$ $u: R \otimes A \rightarrow A$ $\ddagger COMP. AXIOMS$
LEFT A-MODULE V vs
$D: A \otimes V \longrightarrow V$
¢ comp. Axioms
RIGHT A-MODULE
V vs
$\triangleleft : V \otimes A \longrightarrow V$
¢ COMP. AXIOMS
(B1,B2)-BIMODULE
V vs
$ \triangleright : B_1 \otimes V \longrightarrow V $ $ \triangleleft : V \otimes B_2 \longrightarrow V $
& COMP. AXIOMS

ALGEBRA A vs $M: A \otimes A \rightarrow A$ $u: R \otimes A \rightarrow A$ t : OMP. AXIOMS	GIVEN LEFT A-MODULES $(V_1, D_1), (V_2, D_2), \dots,$	(Vr, Dr)
LEFT A-MODULE V VS $D: A \otimes V \rightarrow V$ $\ddagger COMP. AXIOMS$		
RIGHT A-MODULE $V \lor s$ $\triangleleft: V \otimes A \longrightarrow V$ $\ddagger COMP. AXIOMS$		
$(B_1, B_2) - BIMODULE$ $V \lor s$ $D : B_1 \otimes V \longrightarrow V$ $d : V \otimes B_2 \longrightarrow V$ $\ddagger COMP. AXIOMS$		

ALGEBRA A VS M:A⊗A→A	GIVEN LEFT A-MODULES $(V_1, D_1), (V_2, D_2), \dots, (V_r, D_r)$
$u: \mathbb{R} \otimes A \longrightarrow A$ $\notin COMP. AXIOMS$	THEIR DIRECT PRODUCT IS V1 × V2 × × Vr WITH
LEFT A-MODULE V vs	$\triangleright : A \otimes (V_1 \times V_2 \times \times V_r) \longrightarrow V_1 \times V_2 \times \times V_r$
D:AOV ->V & COMP. AXIOMS	$a P(v_1, v_2,, v_r) := (a P_1 v_1, a P_2 v_2,, a P_r v_r)$
RIGHT A-MODULE V VS	
$d: V \otimes A \longrightarrow V$ \$ comp. Axioms	
(B1,B2)-BIMODULE	
V_{VS} $D: B_1 \otimes V \longrightarrow V$	
	EXERCISE 1.15 CHECK THE ASSOCIATIVITY & UNITALITY AXIOMS

LEFT A-MODULE V vs $D : A \otimes V \rightarrow V$ $\ddagger COMP. AXIOMS$	$ > : A \otimes (V_1 \times V_2 \times \times V_r) \longrightarrow V_1 \times V_2 \times \times V_r $ $ a D(v_1, v_2,, v_r) := (a P_1 v_1, a P_2 v_2,, a P_r v_1) $
RIGHT A-MODULE V vs $d: V \otimes A \longrightarrow V$ $\notin COMP. AXIOMS$	THEIR SUM IS $V_1 + V_2 + \dots + V_r$ with $D: A \otimes (V_1 + V_2 + \dots + V_r) \longrightarrow V_1 + V_2 + \dots + V_r$
(B_1, B_2) -BIMODULE V_{VS} $D: B_1 \otimes V \rightarrow V$	$\Delta D(v_1+v_2++v_r):=(\alpha P_1 v_1)+(\alpha P_2 v_2)++(\alpha P_r v_r)$

I. DIRECT PRODUCT, SUM, DIRECT SUM OF ALGEBRAS & MODULES GIVEN LEFT A-MODULES

 $(V_1, \mathcal{P}_1), (V_2, \mathcal{P}_2), \dots, (V_r, \mathcal{P}_r)$

THEIR DIRECT PRODUCT IS V1 × V2 × ... × Vr

CHECK THE ASSOCIATIVITY & UNITALITY AXIOMS

WITH

ALGEBRA

 $\mu: A \otimes A \rightarrow A$

u: IROA-)A

& COMP. AXIOMS

A vs

 $\triangleleft: \lor \otimes B, \longrightarrow \lor$

& COMP. AXIONS

 $OF(V,\widetilde{P})$

- 7

EXERCISE 1.15

I. DIRECT PRODUCT, SUM, DIRECT SUM OF ALGEBRAS & MODULES	
ALGEBRA	GIVEN LEFT A-MODULES OF (V, D)
$\begin{array}{c} A VS \\ M: A \otimes A \rightarrow A \end{array}$	$(V_1, D_1), (V_2, D_2), \dots, (V_r, D_r)$
$u: \mathbb{R} \otimes A \longrightarrow A$ $\notin COMP. AXIOMS$	THEIR DIRECT PRODUCT IS V1 × V2 × × Vr WITH
LEFT A-MODULE V vs	$\triangleright : A \otimes (V_1 \times V_2 \times \times V_r) \longrightarrow V_1 \times V_2 \times \times V_r$
D:AOV ->V \$ COMP. AXIOMS	$a D(v_1, v_2,, v_r) := (a P_1 v_1, a P_2 v_2,, a P_r v_r)$
RIGHT A-MODULE $V \lor s$ $\triangleleft: V \otimes A \longrightarrow V$	THEIR DIRECT SUM IS V, OV20OVr WITH
& COMP. AXIOMS	$\triangleright : A \otimes (V_1 \oplus V_2 \oplus \oplus V_r) \longrightarrow V_1 \oplus V_2 \oplus \oplus V_r$
(B1,B2)-BIMODULE Vvs	$\alpha P(v_1+v_2++v_r):=(\alpha P_1 v_1)+(\alpha P_2 v_2)++(\alpha P_r v_r)$
$ \begin{array}{c} \triangleright : B_1 \otimes \vee \longrightarrow \vee \\ \triangleleft : \vee \otimes B_2 \longrightarrow \vee \end{array} $	EXERCISE 1.15
& COMP. AXIOMS	CHECK THE ASSOCIATIVITY & UNITALITY AXIOMS

ALGEBRA A vs $M: A \otimes A \rightarrow A$ $u: R \otimes A \rightarrow A$	GIVEN LEFT A-MODULES $(V_1, P_1), (V_2, P_2), \dots, (V_r, P_r)$
\$ COMP. AXIOMS LEFT A-MODULE V VS D:A \otimes V \rightarrow V	THEIR DIRECT SUM IS $V_1 \oplus V_2 \oplus \oplus V_r$ with $D : A \otimes (V_1 \oplus V_2 \oplus \oplus V_r) \longrightarrow V_1 \oplus V_2 \oplus \oplus V_r$ D = D(r + T + + T) = (r - T) + (r - T)
t COMP. AXIOMS RIGHT A-MODULE VVS $d: V \otimes A \rightarrow V$	$a P (v_1 + v_2 + \dots + v_r) := (a P v_1) + (a P v_2) + \dots + (a P v_r)$
(B_1, B_2) -BIMODULE V_{VS} $D: B_1 \otimes V \longrightarrow V$ $d: V \otimes B_2 \longrightarrow V$ $\notin COMP. AXIOMS$	

ALGEBRA	GIVEN LEFT A-MODULES
$A \ vs \\ M: A \otimes A \rightarrow A$	$(V_1, D_1), (V_2, D_2), \dots, (V_r, D_r)$
$u: \mathbb{R} \otimes A \longrightarrow A$ $\notin COMP. AXIOMS$	THEIR DIRECT SUM IS VI OV20 OVr
LEFT A-MODULE V vs	$ \begin{array}{c} W(TH) \\ V_1 \oplus V_2 \oplus \ldots \oplus V_r \end{array} \\ V_1 \oplus V_2 \oplus \ldots \oplus V_r \end{array} \\ \end{array} $
D:AOV ->V & COMP. AXIOMS	$a P(v_1 + v_2 + + v_r) := (a P v_1) + (a P v_2) + + (a P v_r)$
RIGHT A-MODULE V vs	TUSED TO GET BUILDING BLOCKS
$d: V \otimes A \longrightarrow V$ $\notin COMP. AXIOMS$	IN MODULE THEORY
(B1,B2)-BIMODULE Vvs	(V,D) IS DECOMPOSABLE IF V = VI OV2 ASMODS
$D: B_1 \otimes V \longrightarrow V$ $ \triangleleft: V \otimes B_2 \longrightarrow V$ $ \ddagger COMP. AXIOMS$	ronzero SUBMODULES OF V \$ IS INDECOMPOSABLE OTHERWISE.

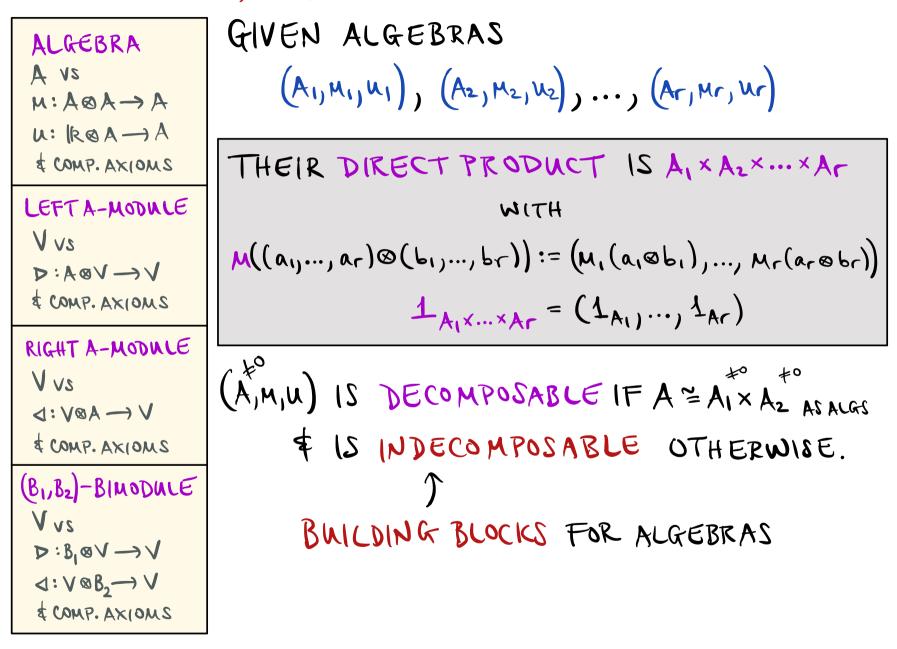
ALGEBRA	GIVEN LEFT A-MODULES
$\begin{array}{c} A vs \\ m: A \otimes A \rightarrow A \\ u: k \otimes A \rightarrow A \end{array}$	$(V_1, D_1), (V_2, D_2), \dots, (V_r, D_r)$
& COMP. AXIOMS	THEIR DIRECT SUM IS VI OV20 OVr
LEFT A-MODULE V vs	$ \begin{array}{c} & W(TH) \\ & V_1 \oplus V_2 \oplus \ldots \oplus V_r \end{array} \end{array} \\ & V_1 \oplus V_2 \oplus \ldots \oplus V_r \end{array} $
D:AOV ->V & COMP. AXIOMS	$\alpha \mathcal{D}(\sigma_1 + \sigma_2 + \dots + \sigma_r) := (\alpha \mathcal{P} \sigma_1) + (\alpha \mathcal{P} \sigma_2 \sigma_2) + \dots + (\alpha \mathcal{P} \sigma_r \sigma_r)$
RIGHT A-MODULE V vs	(USED TO GET BUILDING BLOCKS
$d: V \otimes A \longrightarrow V$ $\notin COMP. AXIOMS$	IN MODULE THEORY
(B1,B2)-BIMODULE V vs	(V,D) IS DECOMPOSABLE IF V = VI OV2 ASMODS
$ P: B_1 \otimes V \longrightarrow V $ $ \triangleleft: V \otimes B_2 \longrightarrow V $	Nontero Submodules of V
& COMP. AXIOMS	& IS INDECOMPOSABLE OTHERWISE.

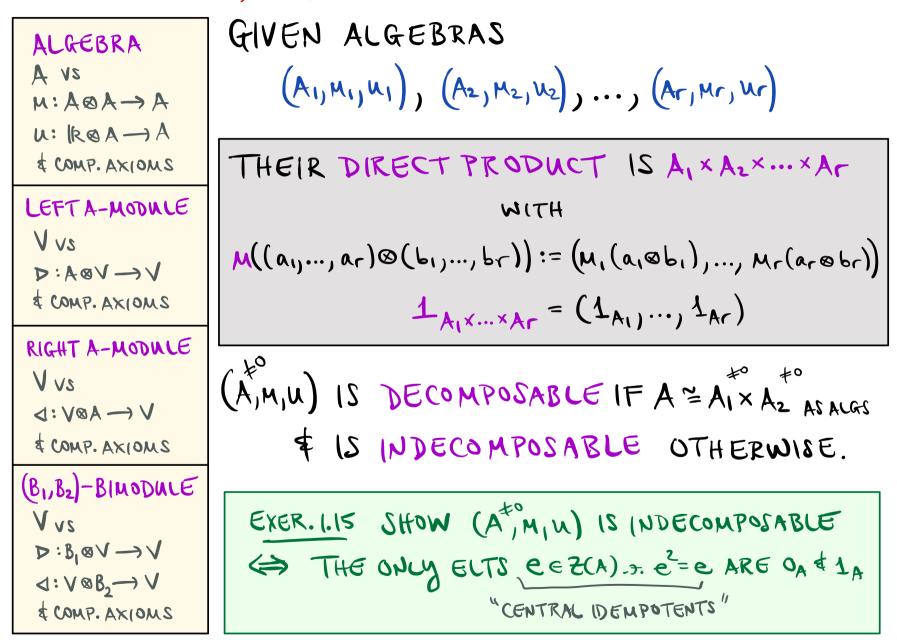
ALGEBRA	GIVEN ALGEBRAS	
A VS M:A®A→A	$(A_1, M_1, M_1), (A_2, M_2, M_2), \dots, (A_r, M_r, M_r)$)
$u: \mathbb{R} \otimes A \longrightarrow A$ $\notin COMP. AXIOMS$		
LEFT A-MODULE		
V vs		
$D: A \otimes V \longrightarrow V$ \$ COMP. AXIOMS		
RIGHT A-MODULE		
$V \lor s$ $ \triangleleft : \lor \forall \land \rightarrow \lor \lor$		
& COMP. AXIOMS		
(B1,B2)-BIMODULE		
V vs		
$ \begin{array}{c} \triangleright : B_1 \otimes V \longrightarrow V \\ \lhd : V \otimes B_2 \longrightarrow V \end{array} $		
& COMP. AXIOMS		

ALGEBRA A vs $M: A \otimes A \rightarrow A$ $u: R \otimes A \rightarrow A$ $\ddagger COMP. AXIOMS$
LEFT A-MODULE V VS D:AOV ->V & COMP. AXIOMS
RIGHT A-MODULE $V \lor s$ $\triangleleft: V \otimes A \longrightarrow V$ $\ddagger COMP. AXIOMS$
$(B_1, B_2) - BIMODULE$ V_{VS} $D: B_1 \otimes V \longrightarrow V$ $d: V \otimes B_2 \longrightarrow V$ $\ddagger COMP. AXIOMS$

$$\begin{aligned} \widehat{\mathcal{A}} | V \in \mathbb{N} \quad A \cup \widehat{\mathcal{A}} \in \mathbb{B} \\ \widehat{\mathcal{A}} (A_1, M_1, M_1), & (A_2, M_2, M_2), \dots, & (Ar_1, Mr_1, Mr) \end{aligned}$$

$$\begin{aligned} T H \in \mathbb{R} \quad D | R \in \mathbb{C} \\ T \in \mathbb{P} \\ R \quad O \mid C \in \mathbb{C} \\ W \mid T H \\ M((a_1, \dots, a_r) \otimes (b_1, \dots, b_r)) := (M_1(a_1 \otimes b_1), \dots, M_r(a_r \otimes b_r)) \\ 1 \\ A_1 \times \dots \times A_r = (1_{A_1}, \dots, 1_{A_r}) \end{aligned}$$





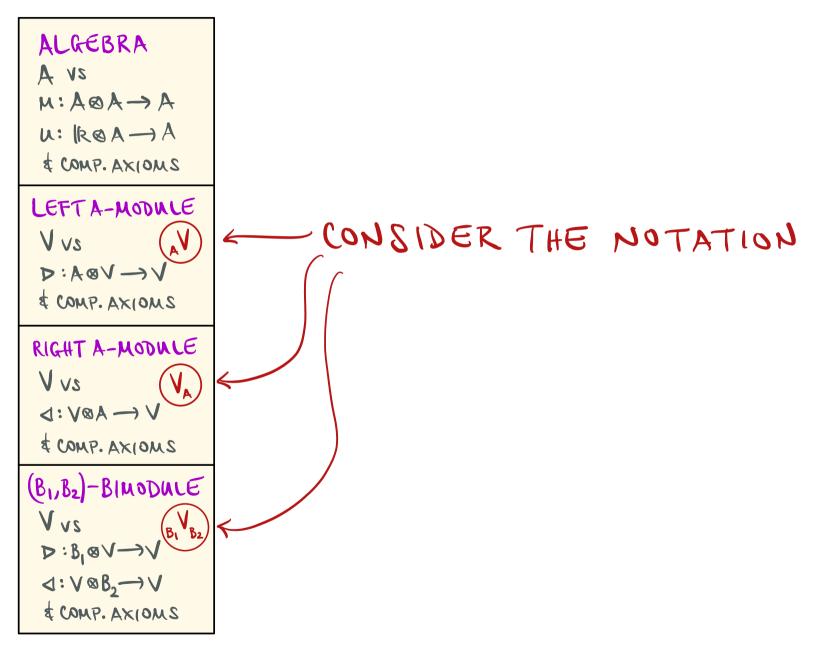
ALGEBRA	GIVEN ALGEBRAS
$\begin{array}{c} A VS \\ M: A \otimes A \rightarrow A \end{array}$	$(A_1, M_1, u_1), (A_2, M_2, u_2), \ldots, (A_r, M_r, u_r)$
$u: \mathbb{R} \otimes A \longrightarrow A$	TICO DECT PRODUCT IS A Y YA
& COMP. AXIOMS LEFT A-MODULE	THEIR DIRECT PRODUCT IS A, × A2×····×Ar WITH
V vs	$M((a_1,,a_r)\otimes(b_1,,b_r)) := (M_1(a_1\otimes b_1),,M_r(a_r\otimes b_r))$
D:AOV ->V & COMP. AXIOMS	$1_{A_{1} \times \times A_{r}} = (1_{A_{1}},, 1_{A_{r}})$
RIGHT A-MODULE V vs	
$\triangleleft: \vee \otimes A \longrightarrow \vee$	(A,M,U) IS DECOMPOSABLE IF A = A1 × A2 ASALGS
\$ COMP. AXIOMS	& IS INDECOMPOSABLE OTHERWISE.
(B1,B2)-BIMODULE Vvs	EXER. 1.15 SHOW (A ^{*,} M, N) IS (NDECOMPOSABLE
$ \begin{array}{c} \triangleright : B_1 \otimes \lor \longrightarrow \lor \\ \lhd : \lor \otimes B_2 \longrightarrow \lor \end{aligned} $	⇐ THE ONLY ELTS e ∈ Z(A) e ² = e ARE OA \$ 1A
& COMP. AXIOMS	Ex. IRQ INDECOMP (=) Q CONNECTED

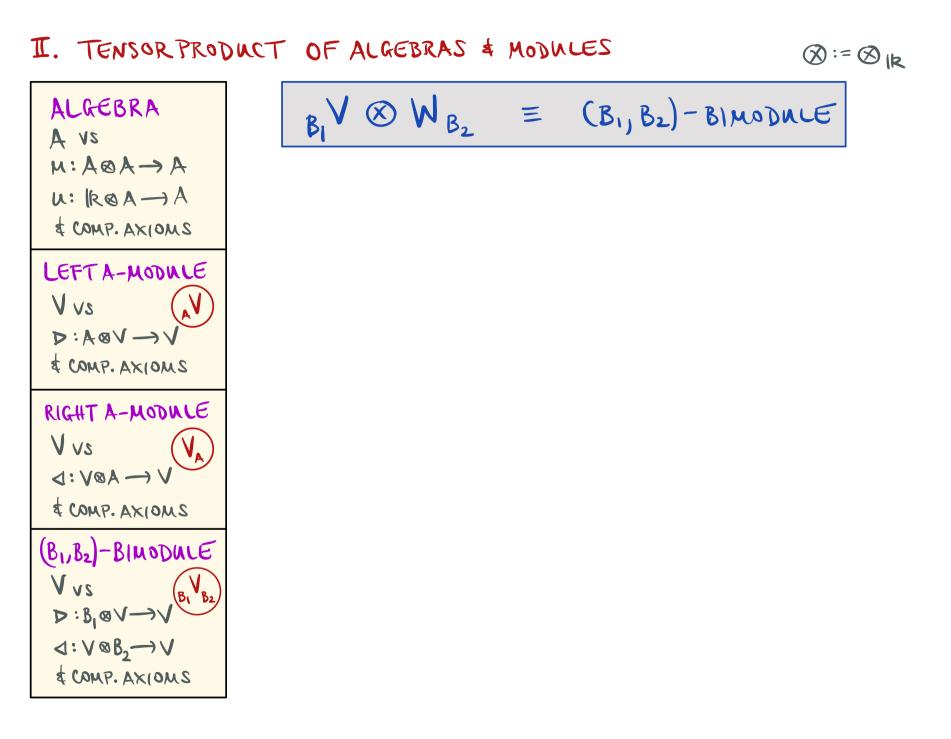
ALGEBRA A VS $M: A \otimes A \rightarrow A$ $U: R \otimes A \rightarrow A$	GIVEN ALGEBRAS (A_1, M_1, M_1), (A_2, M_2, M_2),, (A_r, M_r, M_r)
& COMP. AXIOMS LEFT A-MODULE	THEIR DIRECT PRODUCT IS A, × A2×····×Ar WITH
V VS $D: A \otimes V \longrightarrow V$ \$ COMP. AXIOMS	$M((a_1,,a_r)\otimes(b_1,,b_r)) := (M_1(a_1\otimes b_1),,M_r(a_r\otimes b_r))$ $1_{A_1\times\times A_r} = (1_{A_1},,1_{A_r})$
RIGHT A-MODULE $V \lor s$ $\triangleleft: V \otimes A \longrightarrow V$	(Ai, Mi, ui) IS A NONUNITAL SUBALGEBRA
& COMP. AXIOMS (B1,B2)-BIMODULE	OF AIX × Aix × Ar Vi=1,, r
V_{VS} $D: B_1 \otimes V \longrightarrow V$ $d: V \otimes B_2 \longrightarrow V$ $\notin COMP. AXIOMS$	

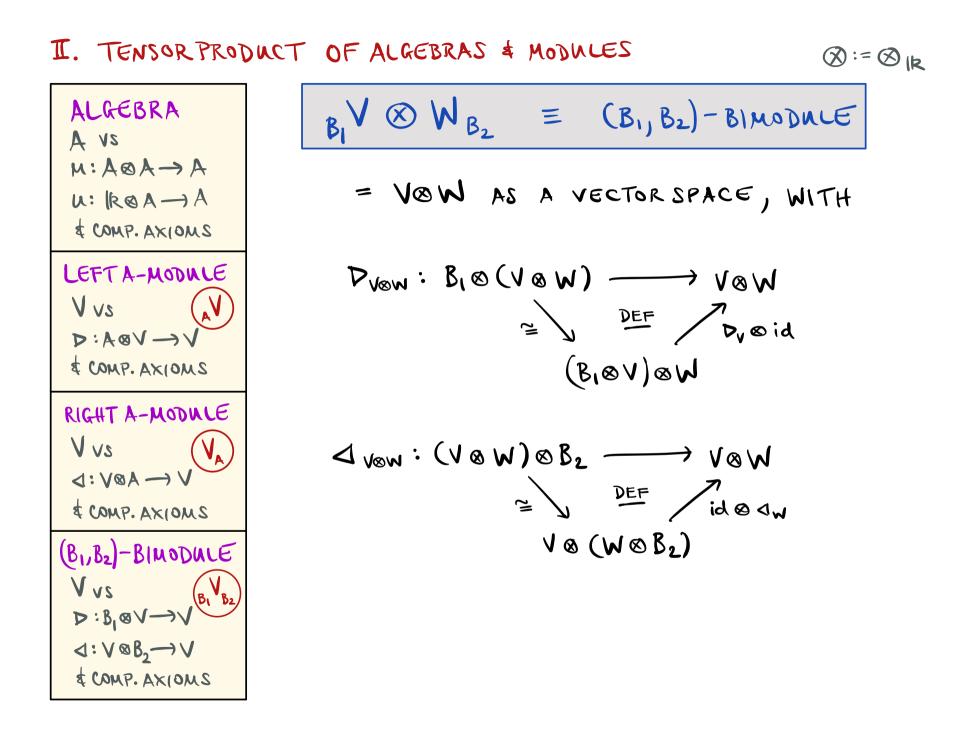
ALGEBRA	GIVEN ALGEBRAS WITH AI SUBSPACE OF A
$\begin{array}{c} A VS \\ M: A \otimes A \rightarrow A \end{array}$	$(A_1, M_1, u_1), (A_2, M_2, u_2), \dots, (A_r, M_r, u_r)^{\Lambda}$ $\forall i$
$u: \mathbb{R} \otimes A \longrightarrow A$	
¢ COMP. AXIOMS	THEIR DIRECT PRODUCT IS A, × A2×····×Ar
LEFT A-MODULE	WITH
V vs	$M((a_1,,a_r)\otimes(b_1,,b_r)):=(M,(a_1\otimes b_1),,M_r(a_r\otimes b_r))$
$D: A \otimes V \longrightarrow V$	
& COMP. AXIOMS	$1_{A_1 \times \dots \times A_r} = (1_{A_1}, \dots, 1_{A_r})$
RIGHT A-MODULE	
V vs	(Ai, Mi, ui) IS A NONUNITAL SUBALGEBRA
$\triangleleft : V \otimes A \longrightarrow V$	(AL) ML, ULJ IS A NONUNITAL SUBALGEDINA
& COMP. AXIOMS	OF AIX × Aix × Ar Vi=1,, r
(B1,B2)-BIMODULE	
2vV	
$D: B_1 \otimes V \longrightarrow V$	
$\triangleleft: \vee \otimes B_2 \longrightarrow \vee$	
& COMP. AXIOMS	

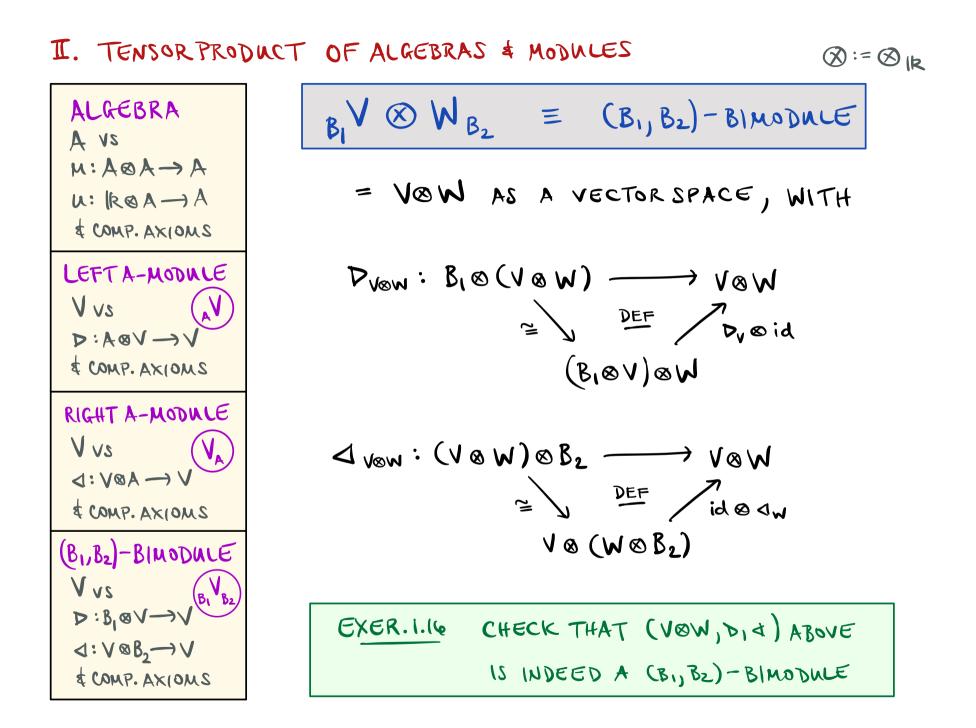
ALGEBRA	GIVEN ALGEBRAS WITH A: SUBSPACE OF A
$\begin{array}{c} A vs \\ \mu: A \otimes A \rightarrow A \end{array}$	$(A_1, M_1, u_1), (A_2, M_2, u_2), \dots, (A_r, M_r, u_r)^{\Lambda}$ $\forall i$
u: IROA-A	
¢ comp. Axioms	THEIR DIRECT PRODUCT IS A, × A2×····×Ar
LEFT A-MODULE	WITH
$V \lor s$ $D : A \otimes V \longrightarrow V$	$M((a_1,,a_r)\otimes(b_1,,b_r)):=(M_1(a_1\otimes b_1),,M_r(a_r\otimes b_r))$
& COMP. AXIOMS	$1_{A_1 \times \dots \times A_r} = (1_{A_1}, \dots, 1_{A_r})$
RIGHT A-MODULE	$-A_1 \times \dots \times A_r (-A_1) \cdots) - A_r$
V vs	
$\triangleleft : \lor \boxtimes \land \longrightarrow \lor \lor$	(Ai, Mi, Ui) IS A NONUNITAL SUBALGEBRA
¢ comp. Axioms	OF AIX × Aix × Ar Vi=1,, r
(B1,B2)-BIMODULE	
$\bigvee v_{S}$ $\triangleright : B_{1} \otimes V \longrightarrow V$	THEIR DIRECT (SUM) OF UNDERLYING VSPACES
	IS AN ALGEBRA IF (MA) Ai@Aj = 0 i # j

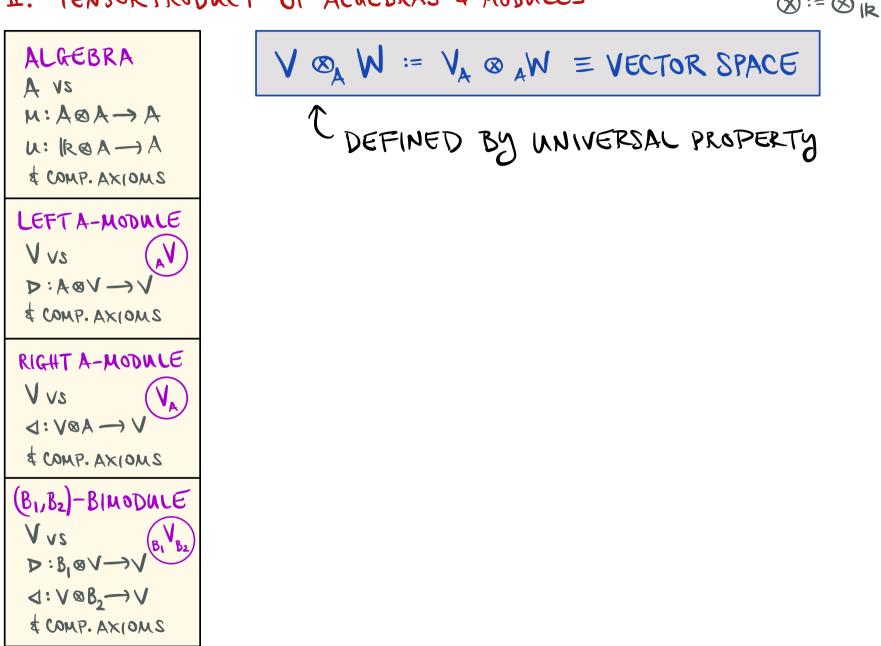
I. TENSOR PRODUCT OF ALGEBRAS & MODULES





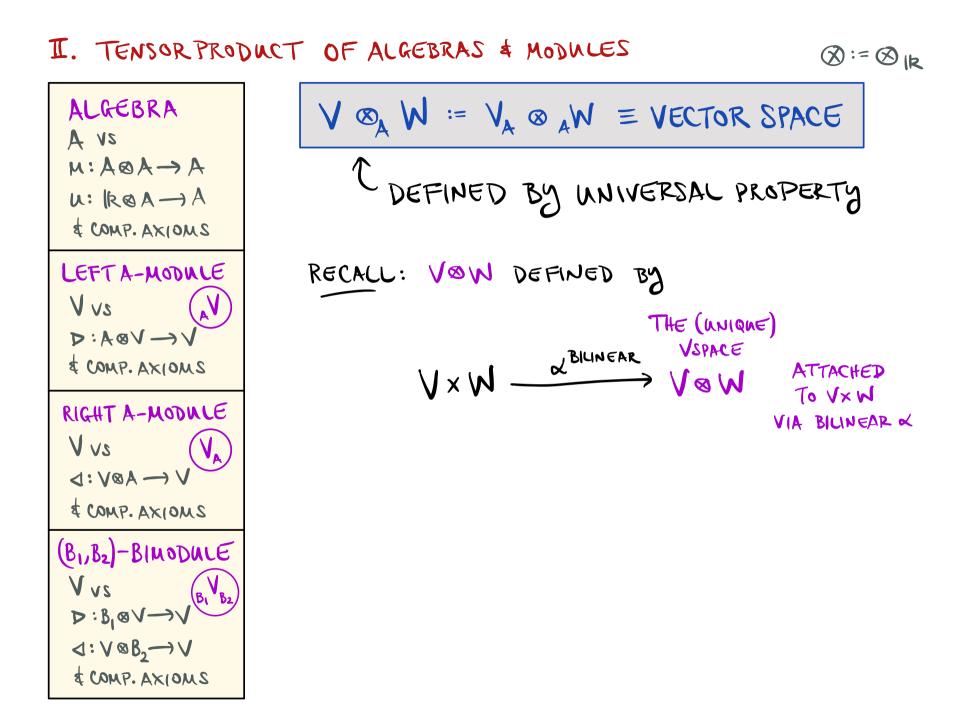


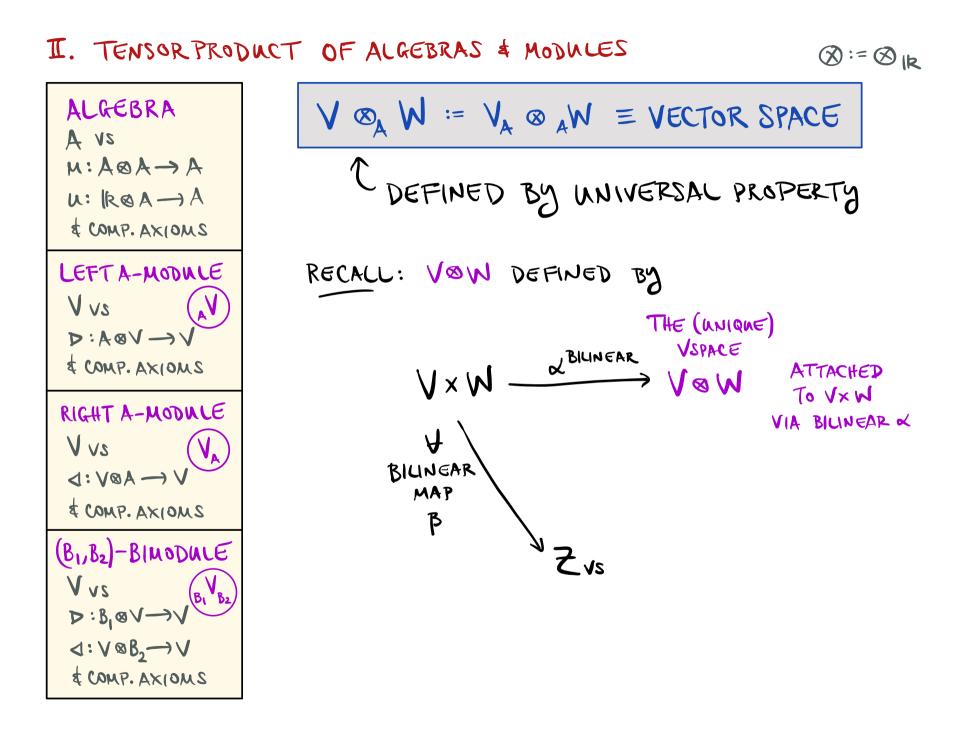


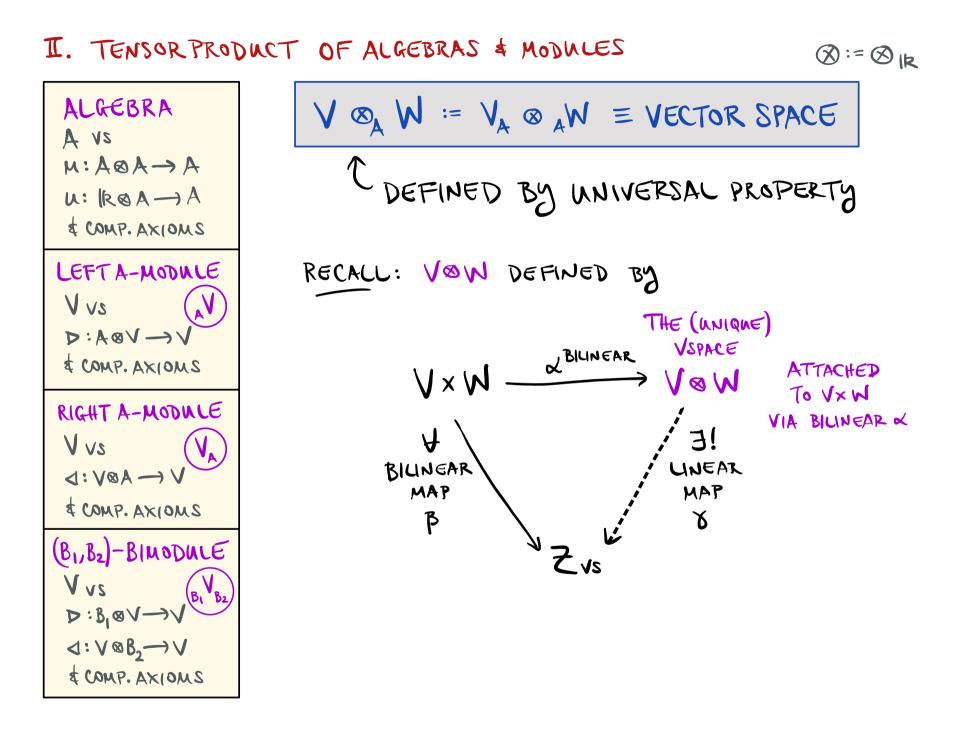


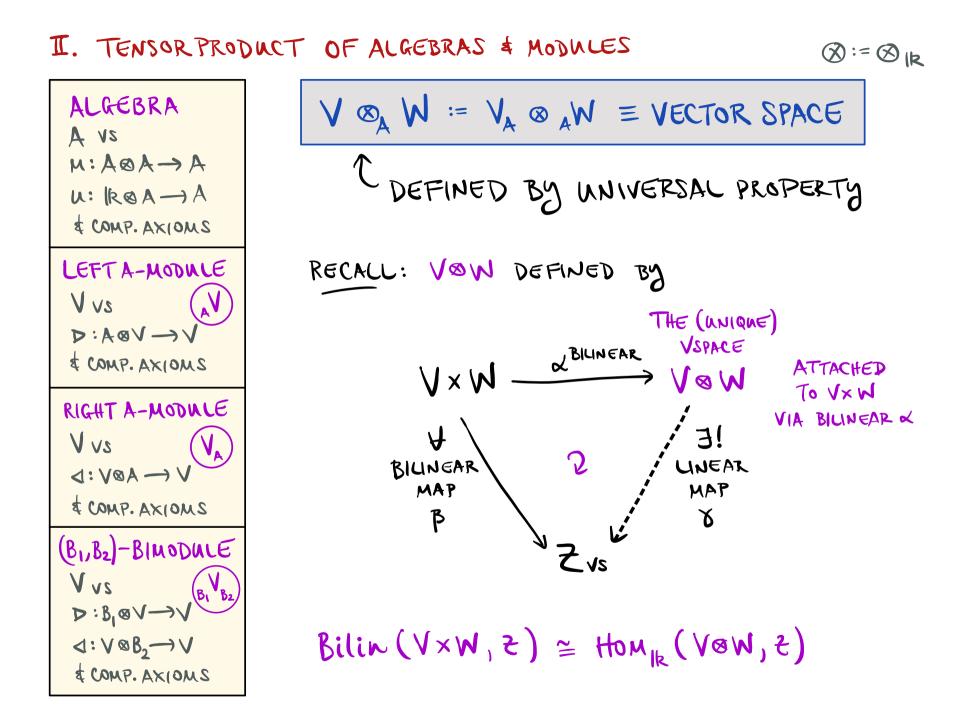
I. TENSOR PRODUCT OF ALGEBRAS & MODULES

 $\bigotimes := \bigotimes ||_{\mathbf{k}}$



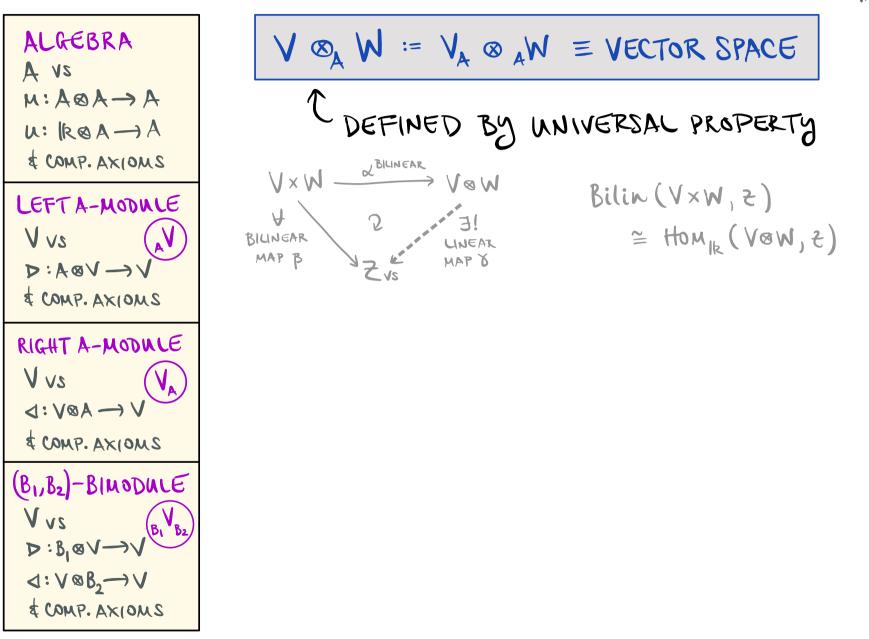


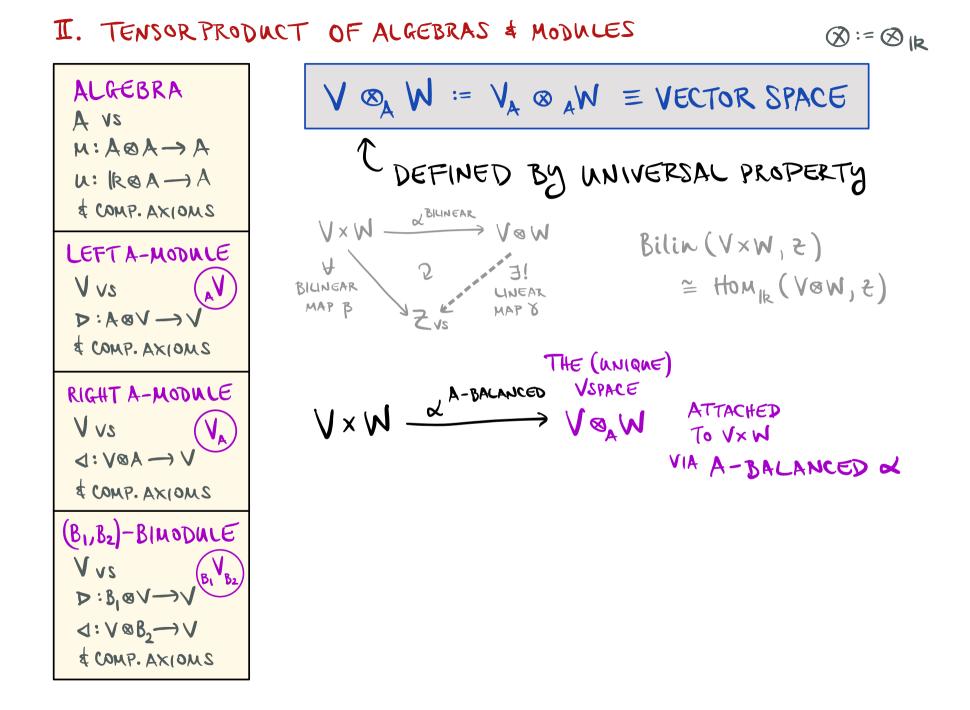


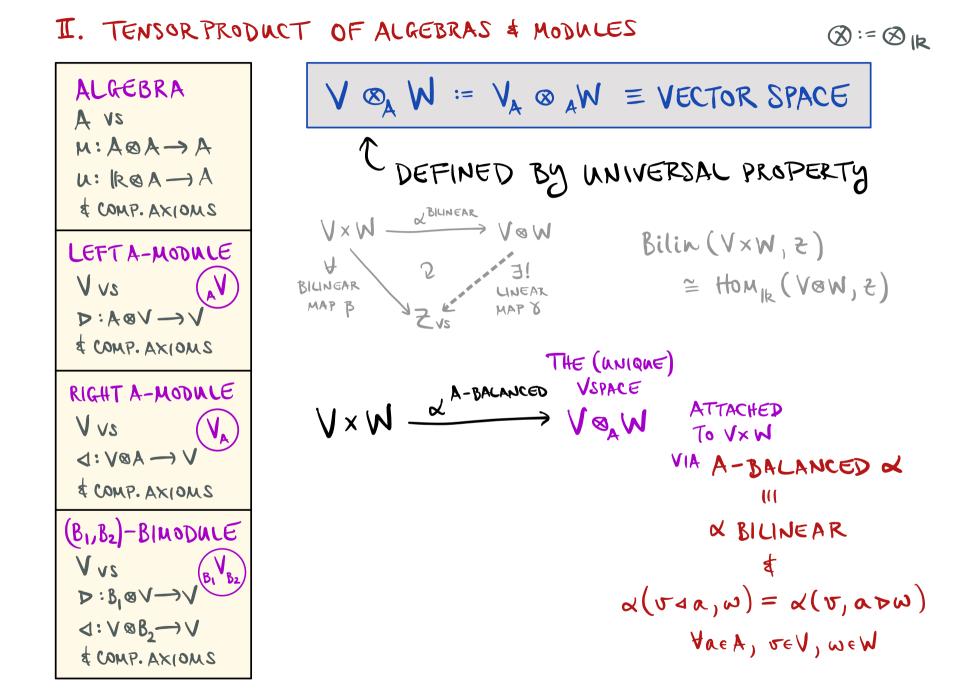


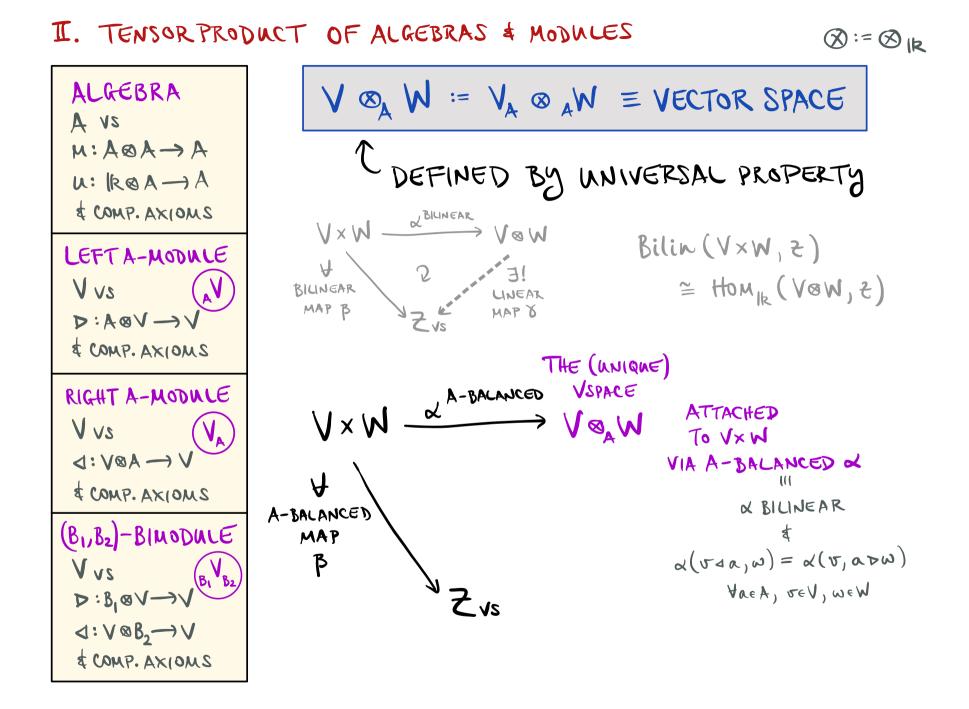
I. TENSOR PRODUCT OF ALGEBRAS & MODULES

 $\otimes := \otimes_{\mathbb{R}}$

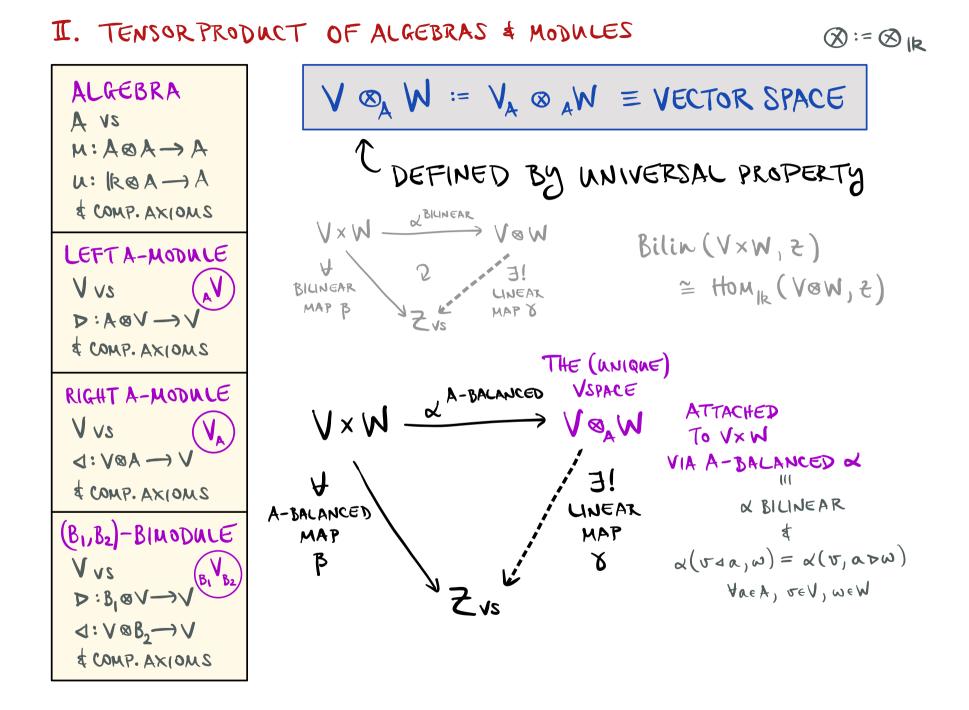


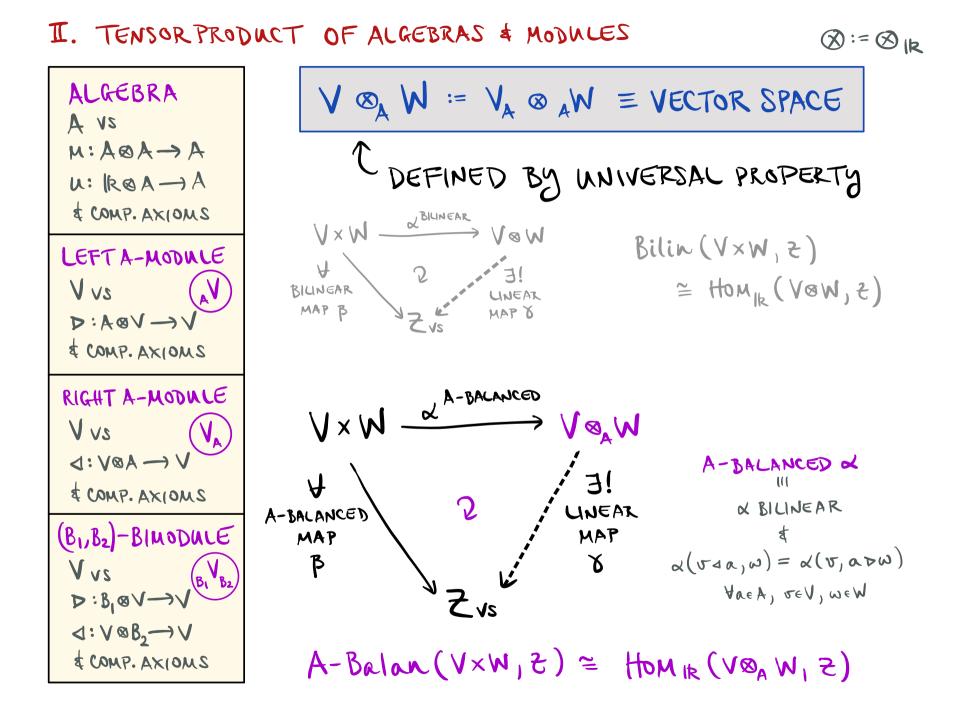




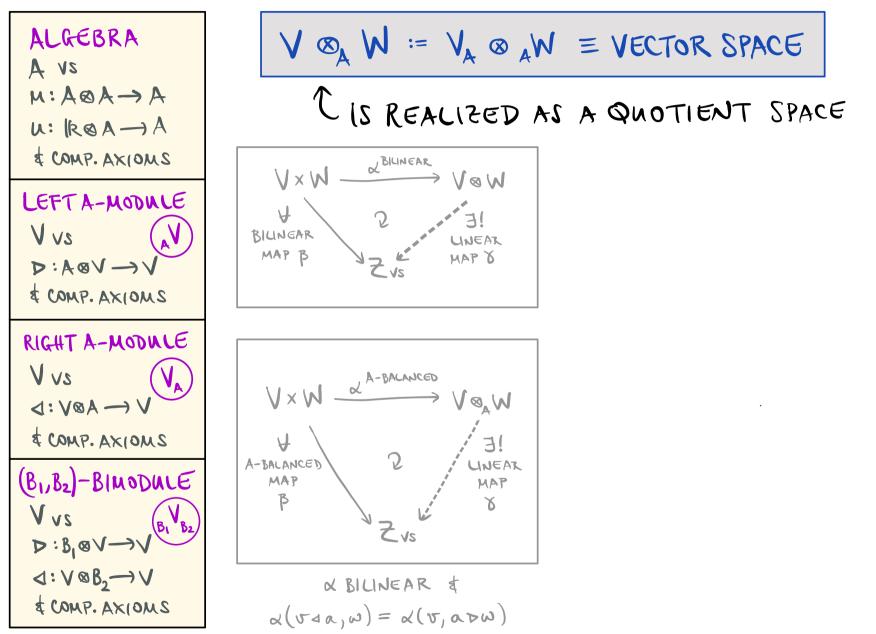


Copyright © 2024 Chelsea Walton

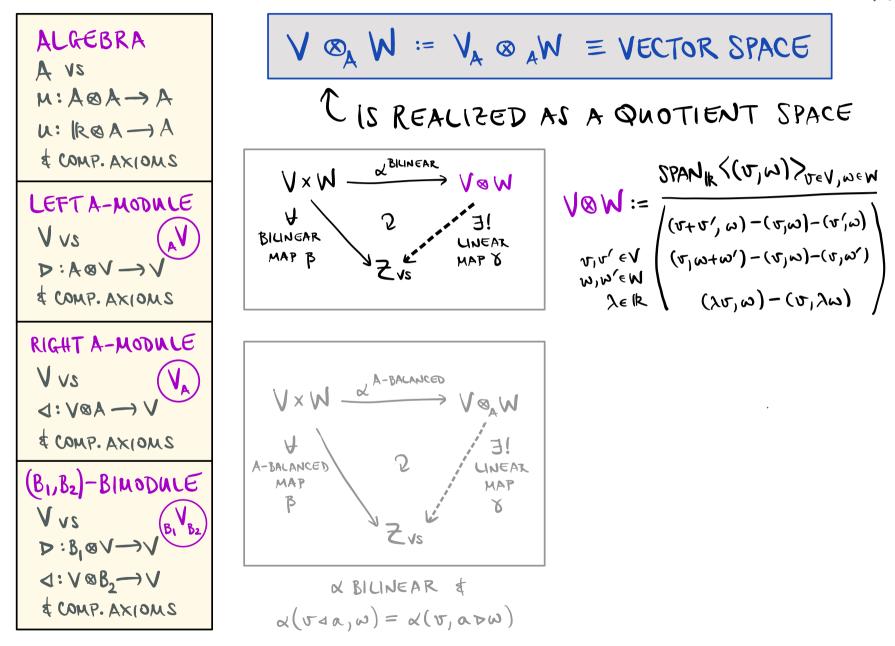




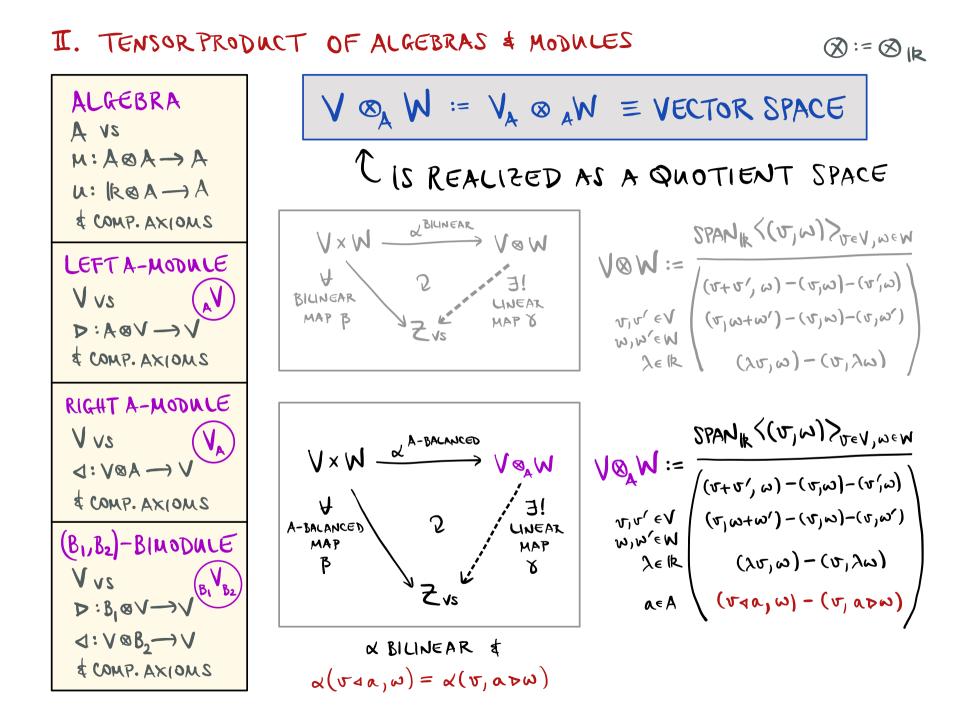




 $\otimes := \otimes \mathbb{R}$



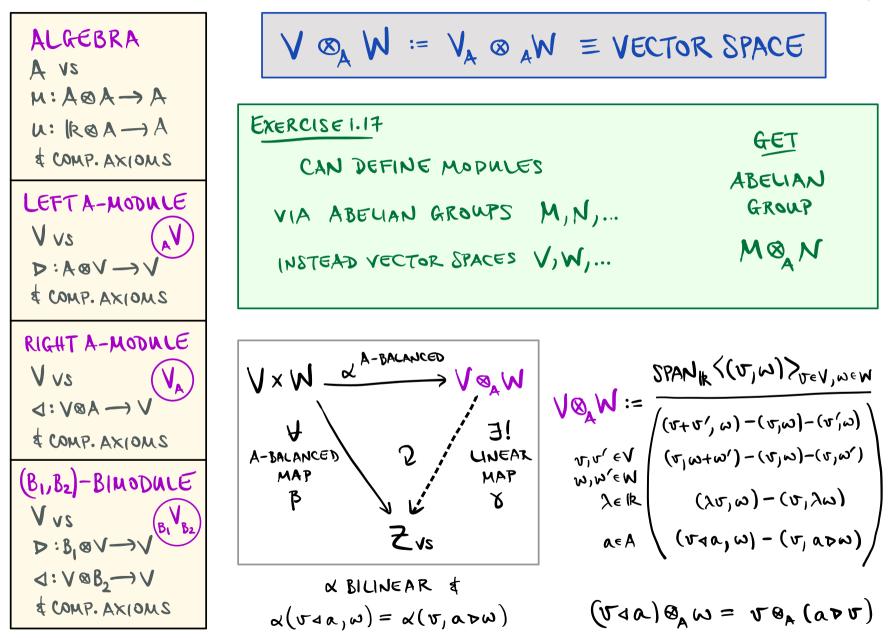
Copyright © 2024 Chelsea Walton

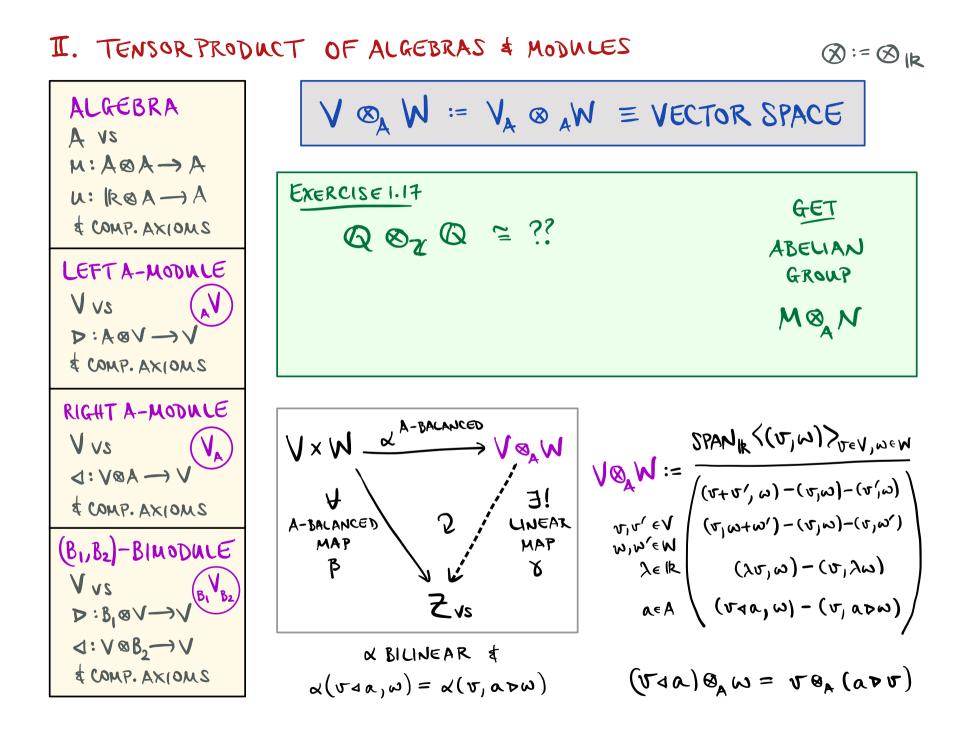


Copyright © 2024 Chelsea Walton

I. TENSOR PRODUCT OF ALGEBRAS & MODULES $\bigotimes := \bigotimes |\mathbf{k}|$ ALGEBRA $\otimes_{A} W := V_{A} \otimes_{A} W \equiv VECTOR SPACE$ A VS $M: A \otimes A \rightarrow A$ IS REALIZED AS A QUOTIENT SPACE U: ROA-A & COMP. AXIOMS VXW ~~~~ V&W SPANK (U, W) > JEV, WEW $V \otimes W := \overline{\left| (v_{+}v', \omega) - (v_{,}\omega) - (v', \omega) \right|}$ LEFT A-MODULE 2 JINEAR MAP X V vs BILINGAR $v_1v' \in V \left((v_1\omega + \omega') - (v_1\omega) - (v_1\omega') \right)$ MAP B D:AOV-V WEW $\lambda \in \mathbb{R}$ $(\lambda \sigma, \omega) - (\sigma, \lambda \omega)$ & COMP. AXIOMS RIGHT A-MODULE SIMPLE TENSORS .. SPAN 1 < (J, W) > JEV, WEW V vs V X W ~ ~ A-BALANCED $V \bigotimes_{A} W := \frac{(v_{+}v_{+}', \omega) - (v_{+}\omega) - (v_{+}\omega)}{(v_{+}\omega_{+}) - (v_{+}\omega) - (v_{+}\omega)}$ Waw $\triangleleft : \mathsf{V} \otimes \mathsf{A} \longrightarrow \mathsf{V}$ $(v,\omega) \mapsto v \otimes_{\mu} \omega$ JI UNEAR A & COMP. AXIONS A-BALANCED W, W'EW (B1,B2)-BIMODULE MAP MAP $(\lambda \sigma, \omega) - (\sigma, \lambda \omega)$ Le IR P γ Vvs Zvs $a\in A$ $(v \triangleleft a, \omega) - (v, a \neg \omega)$ $D: B_1 \otimes V \longrightarrow V$ $\triangleleft: \lor \otimes B, \longrightarrow \lor$ ·... SATISFY: & BILINEAR & & COMP. AXIOMS $(\nabla \triangleleft \alpha) \otimes_{A} \omega = \nabla \otimes_{A} (\alpha \nabla \nabla)$ $\alpha(\sigma_{\Delta}\alpha,\omega) = \alpha(\sigma,\alpha,\omega)$

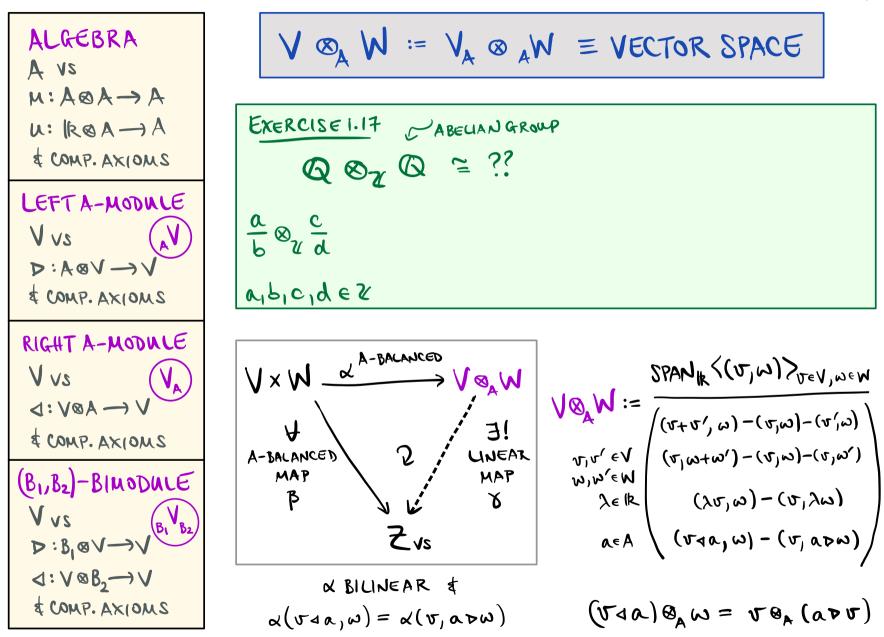
 $\otimes := \otimes_{\mathbb{R}}$



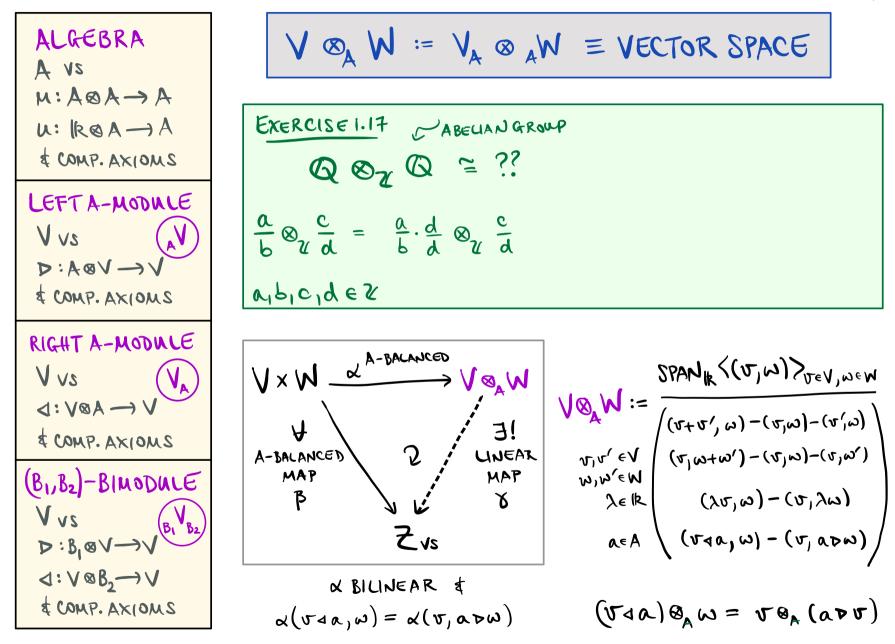


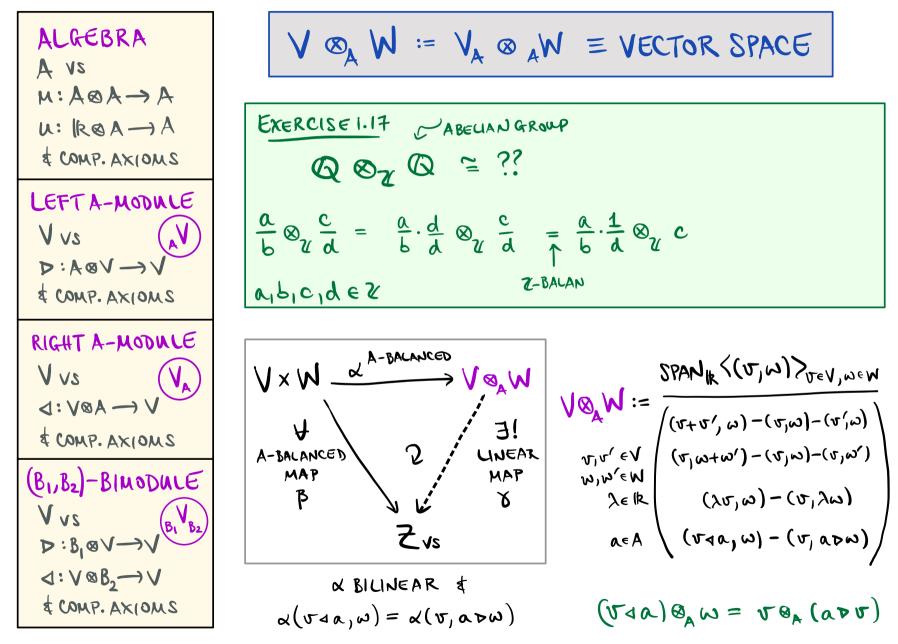
Copyright © 2024 Chelsea Walton

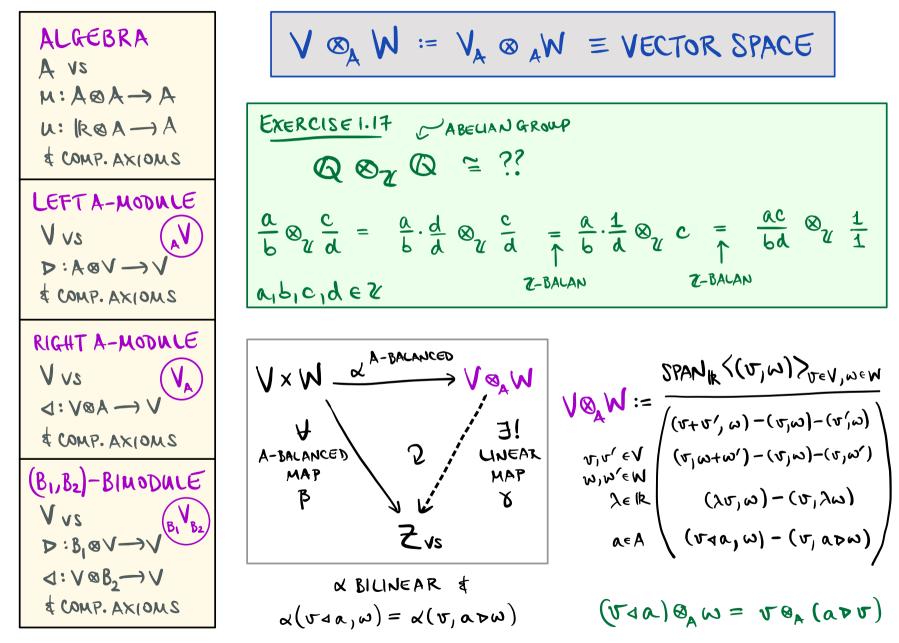
 $\otimes := \otimes_{\mathbb{R}}$



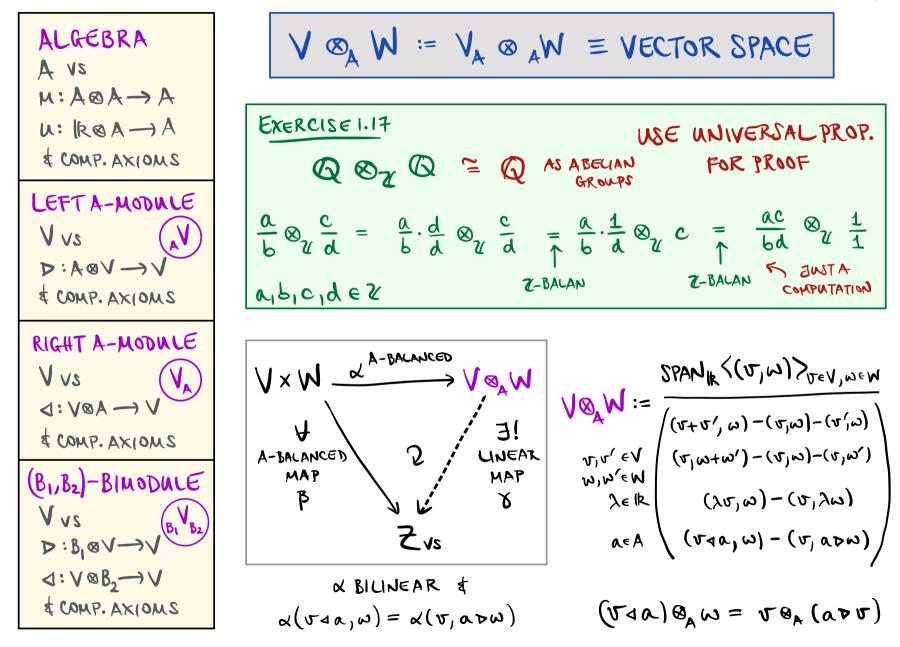
$$\bigotimes := \bigotimes ||_{\mathbf{k}}$$



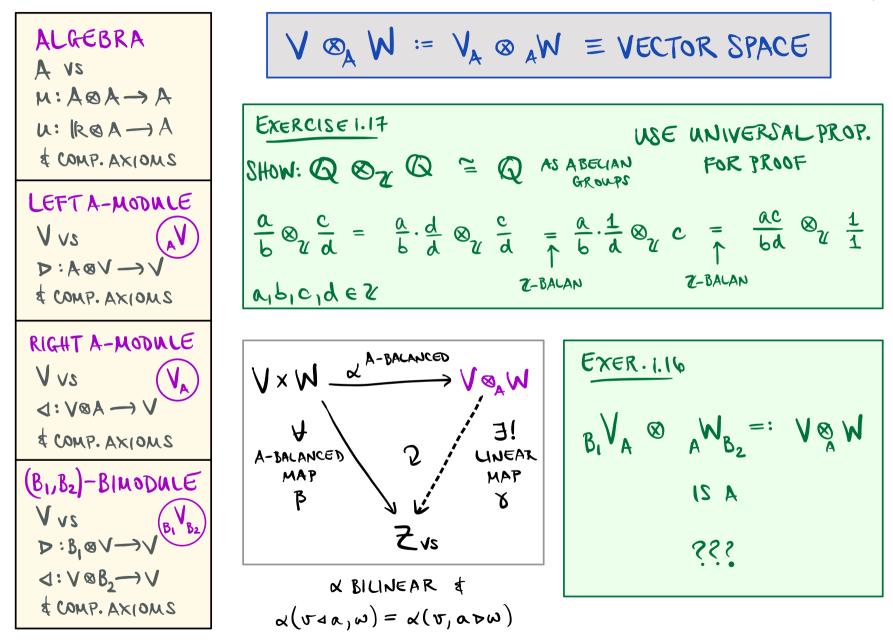




 $\otimes := \otimes_{\mathbb{R}}$

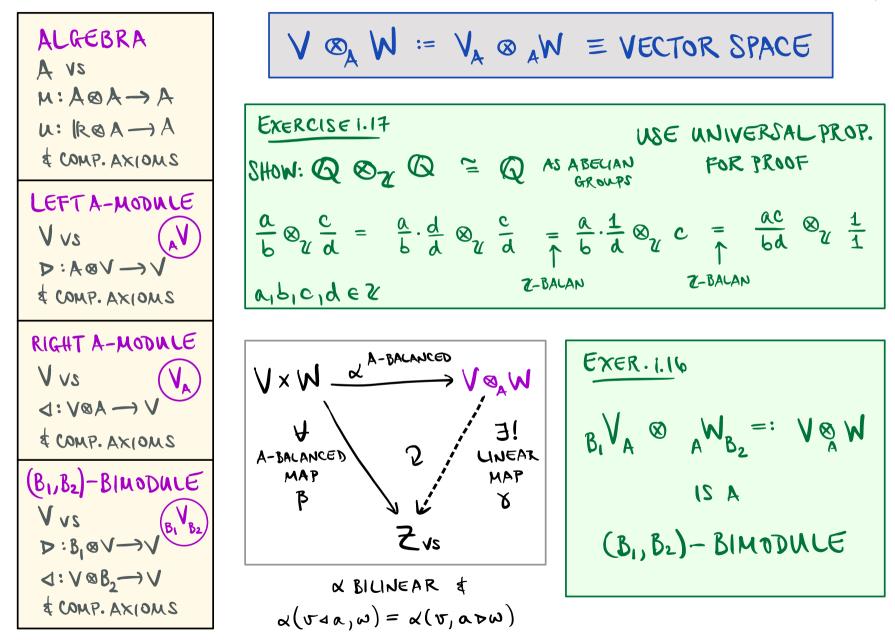


 $\bigotimes := \bigotimes |k|$



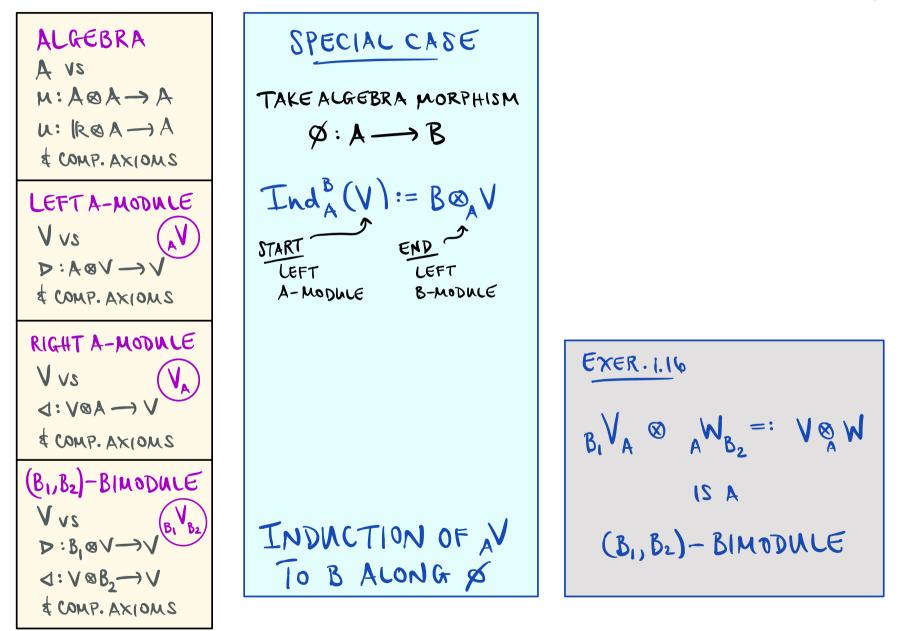
Copyright © 2024 Chelsea Walton

 $\bigotimes := \bigotimes |k|$

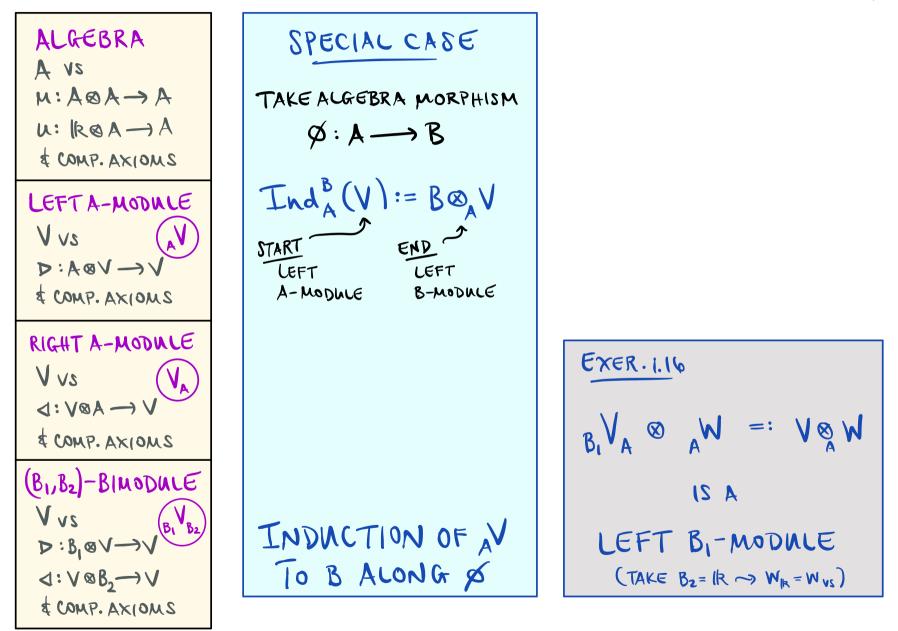


Copyright © 2024 Chelsea Walton

$$\otimes := \otimes_{|k|}$$



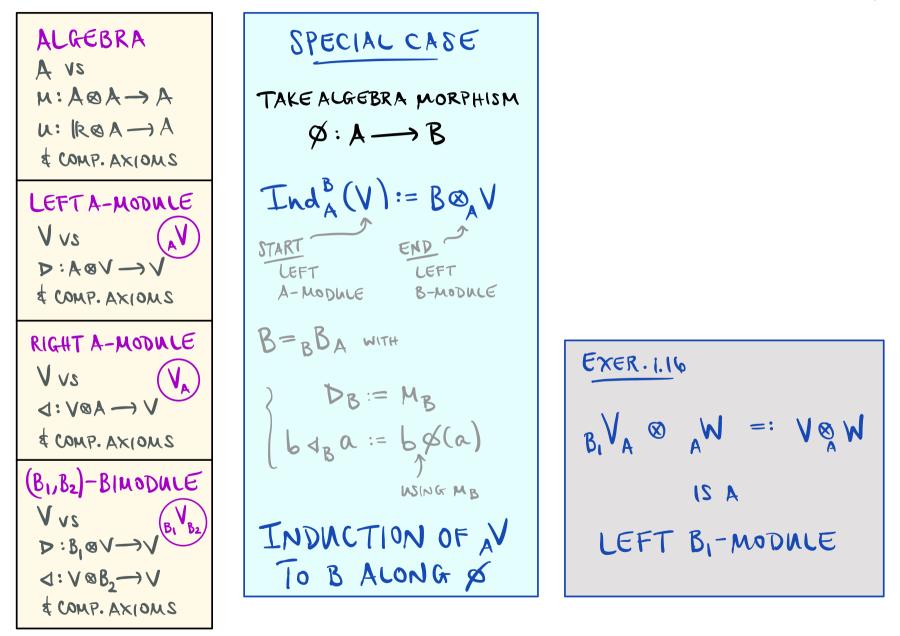
$$\otimes := \otimes_{\mathbb{R}}$$

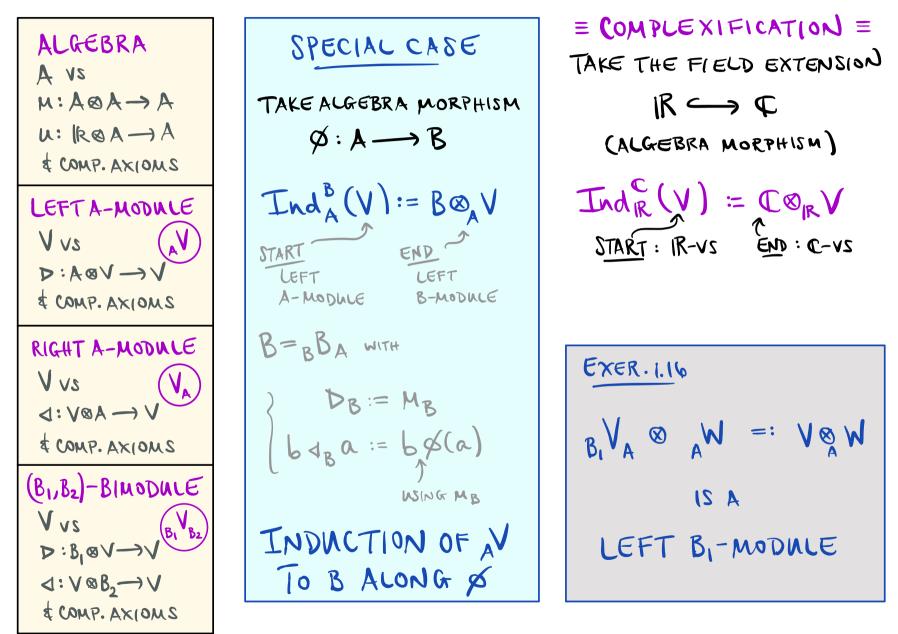


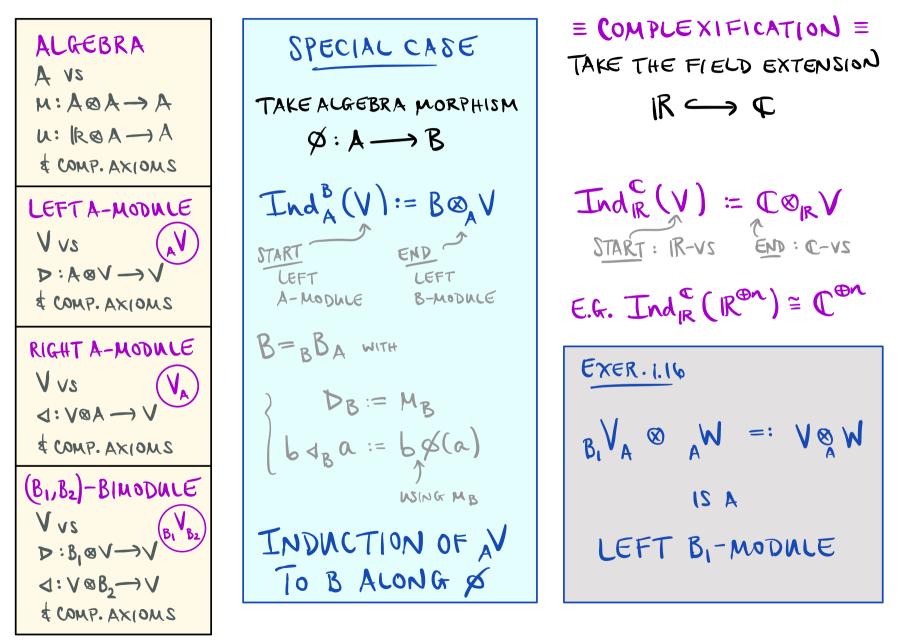
$$\otimes := \otimes_{\mathbb{R}}$$



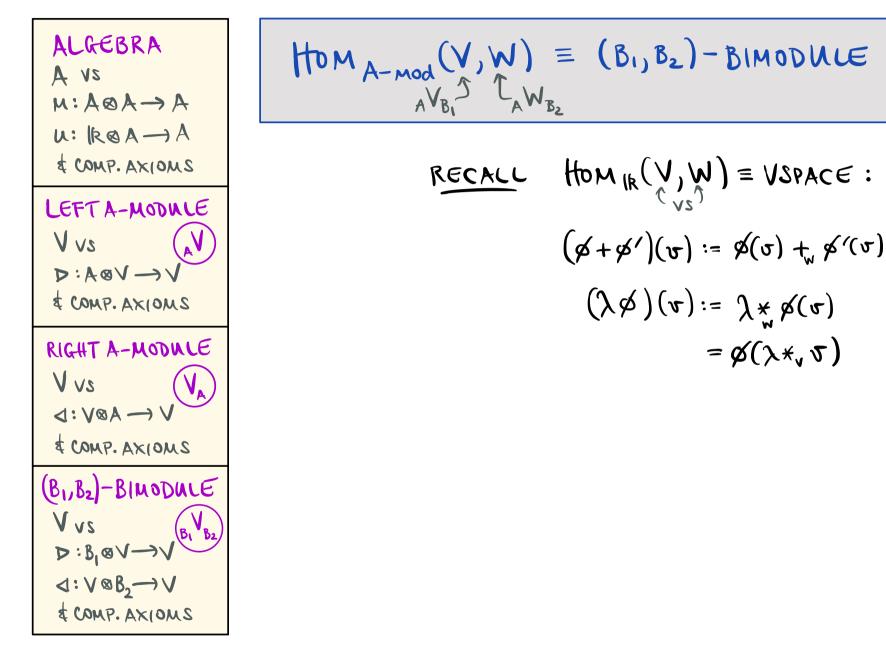
$$\otimes := \otimes_{\mathbb{R}}$$

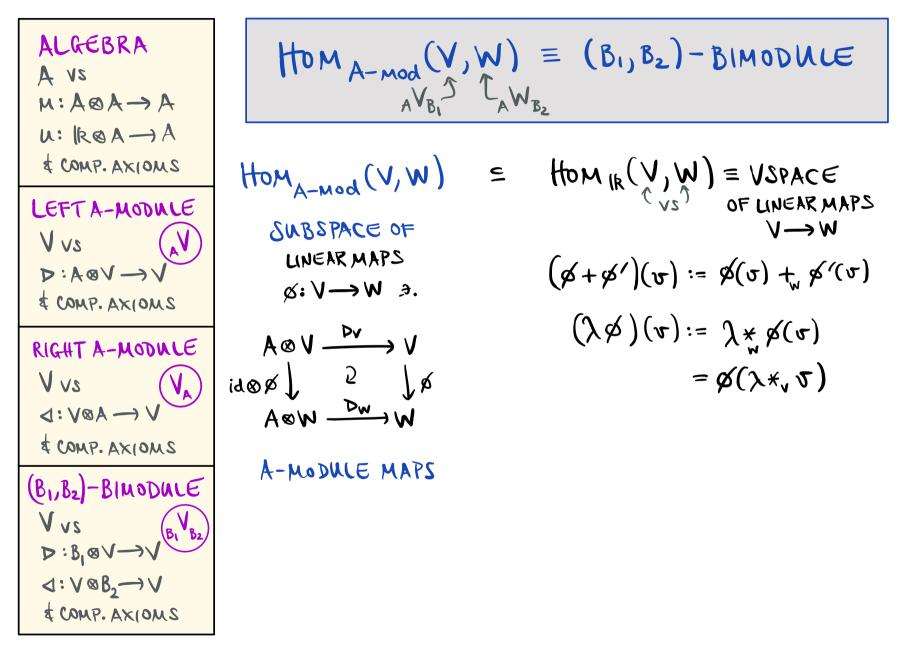


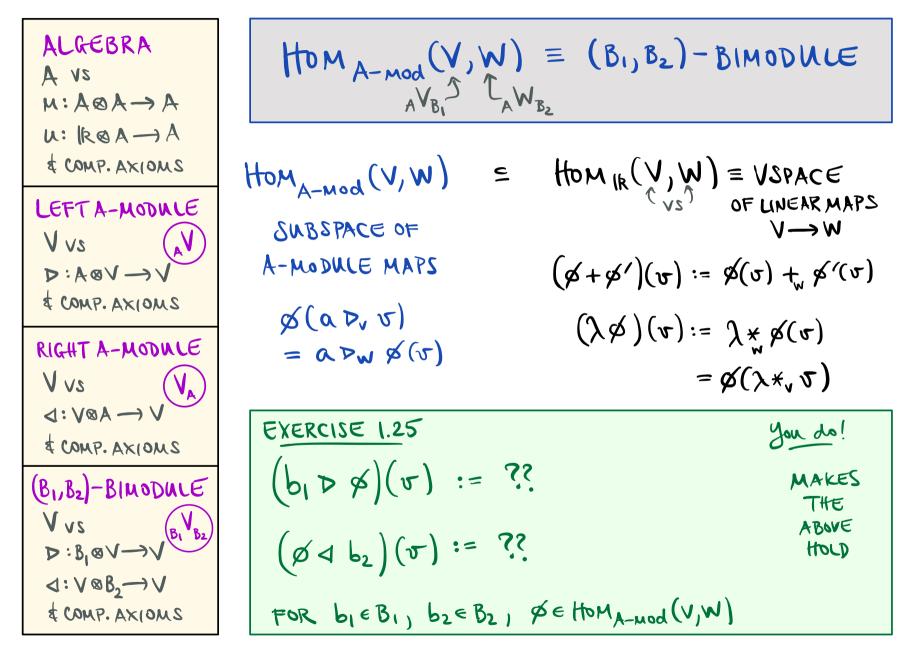


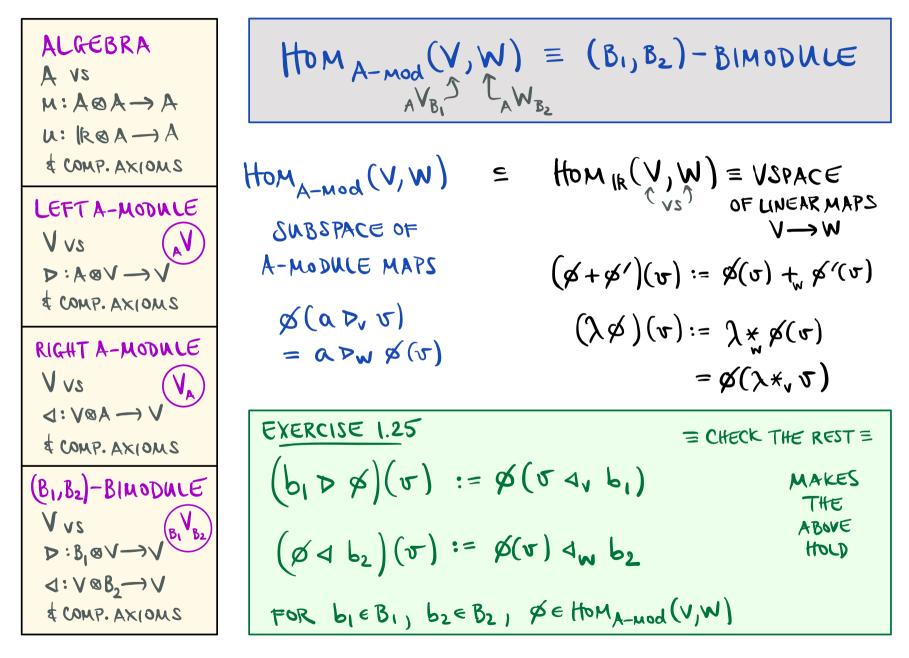


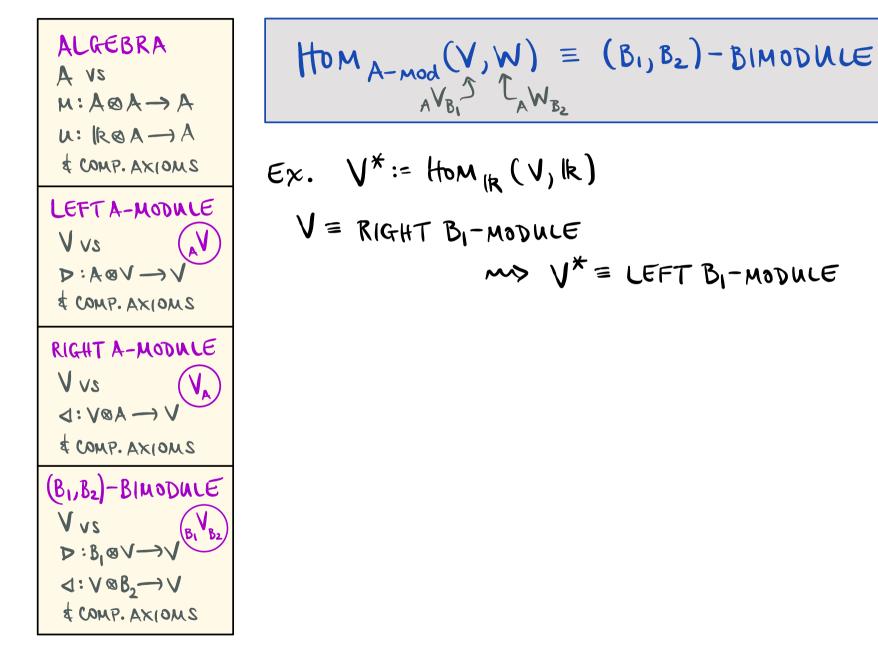
I. TENSOR PRODUCT OF ALGEBRAS & MODULES READ ABOUT ALGEBRAS CONSTRUCTIONS		
ALGEBRA A VS	SPECIAL CASE	NSING OA
$M: A \otimes A \rightarrow A$ $U: \mathbb{R} \otimes A \rightarrow A$	TAKE ALGEBRA MORPHISM $\emptyset : A \longrightarrow B$	= COMPLEXIFICATION = TAKE THE FIELD EXTENSION
& COMP. AXIOMS LEFT A-MODULE V VS	$\operatorname{Ind}_{A}^{B}(V) := B \otimes_{A} V$ START END	$IR \hookrightarrow \Psi$ $Ind_{R}^{C}(V) \coloneqq \mathbb{C}\otimes_{R}V$ $START \colon IR-vs END \colon C-vs$
$D: A \otimes V \longrightarrow V$ \$ COMP. AXIOMS	LEFT LEFT A-MODILE B-MODILE	E.G. Ind _R ($\mathbb{R}^{\oplus n}$) $\cong \mathbb{C}^{\oplus n}$
RIGHT A-MODULE $V \lor s$ $\lor : V \otimes A \longrightarrow V$	B = BBA with B = BBA with	EXER.1.16
& COMP. AXIOMS (B1, B2)-BIMODULE	$b d_{B} a := b \varphi(a)$	$B_{I}V_{A} \otimes W =: V \otimes W$ IS A
V_{VS} $P: B_1 \otimes V \longrightarrow V$ $V_{B_1 B_2}$	INDUCTION OF N	LEFT B,-MODULE
	TO B ALONG Ø	

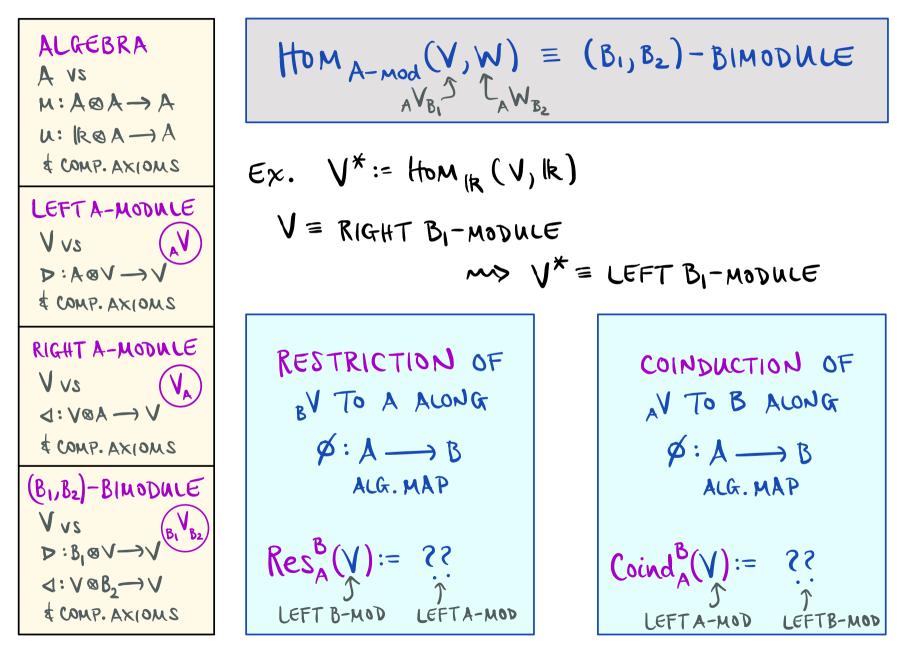


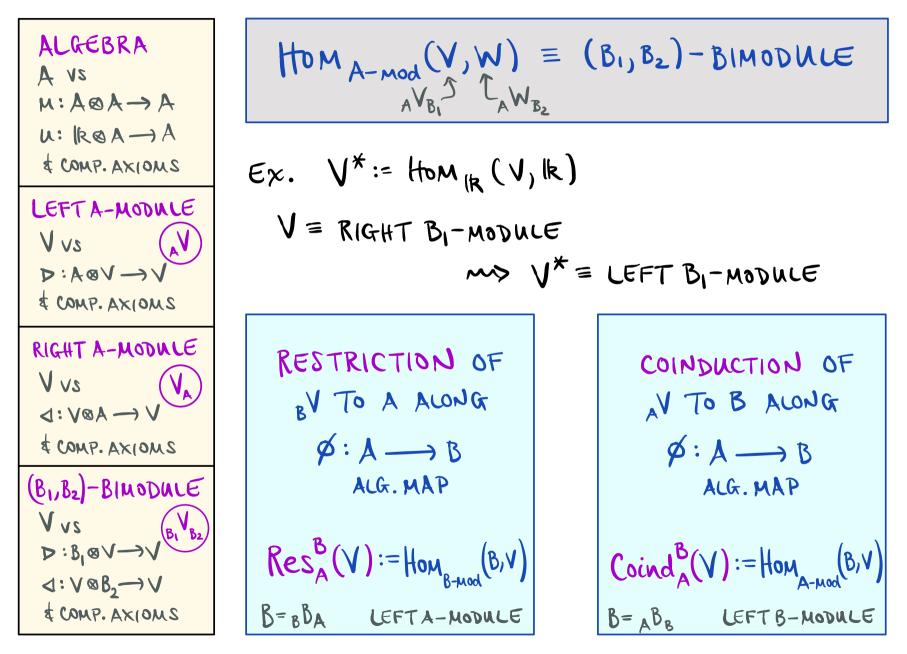


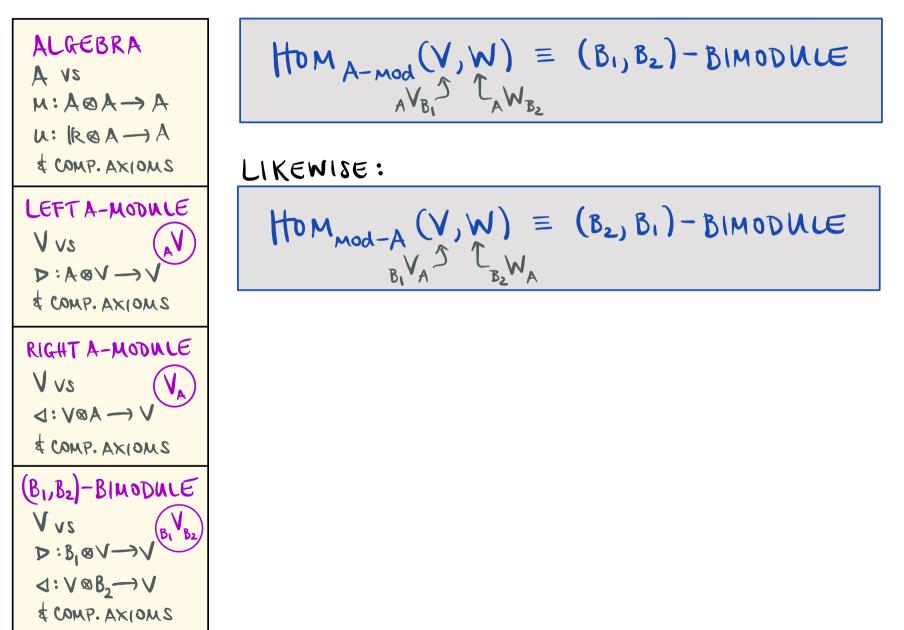


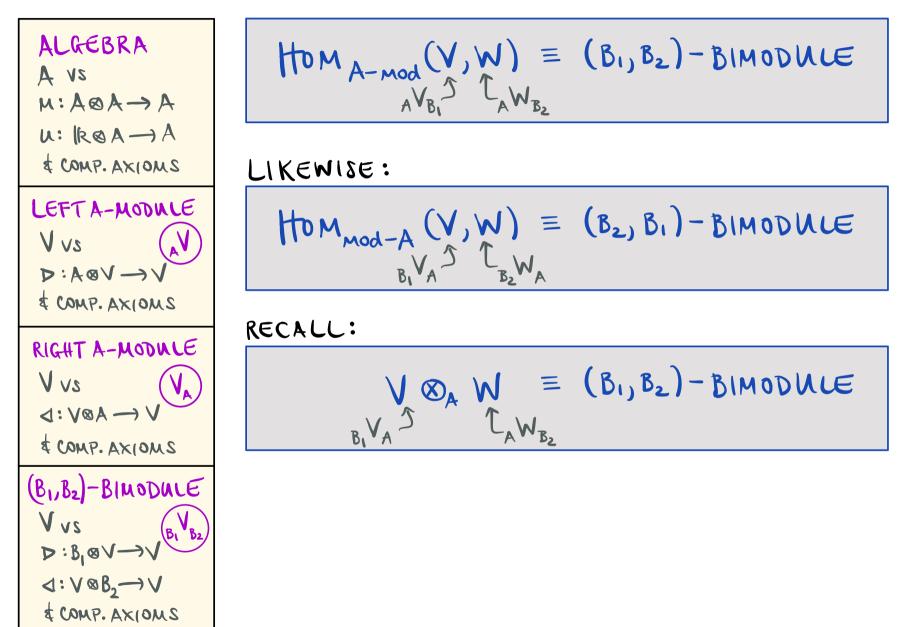


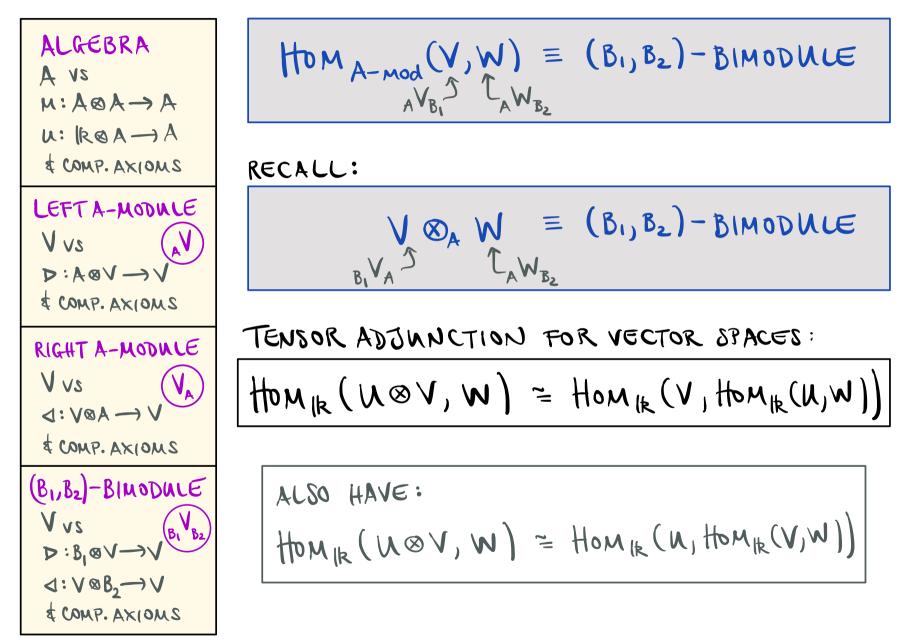


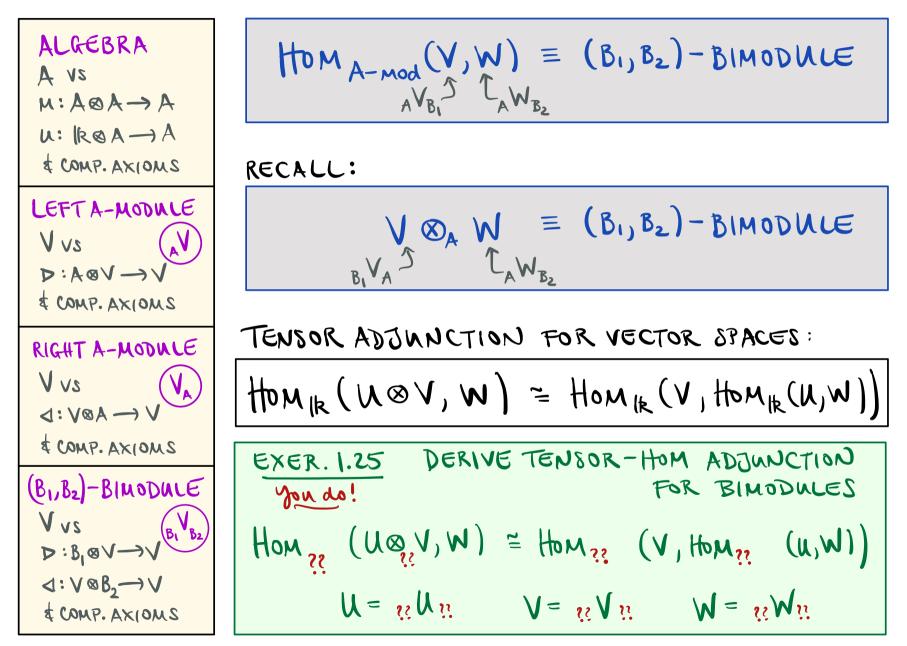


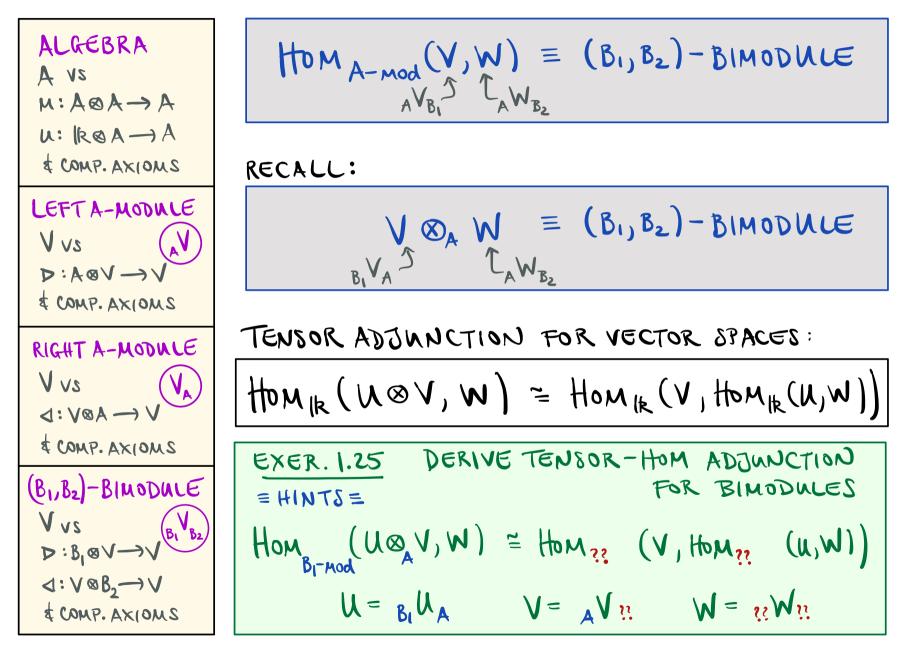


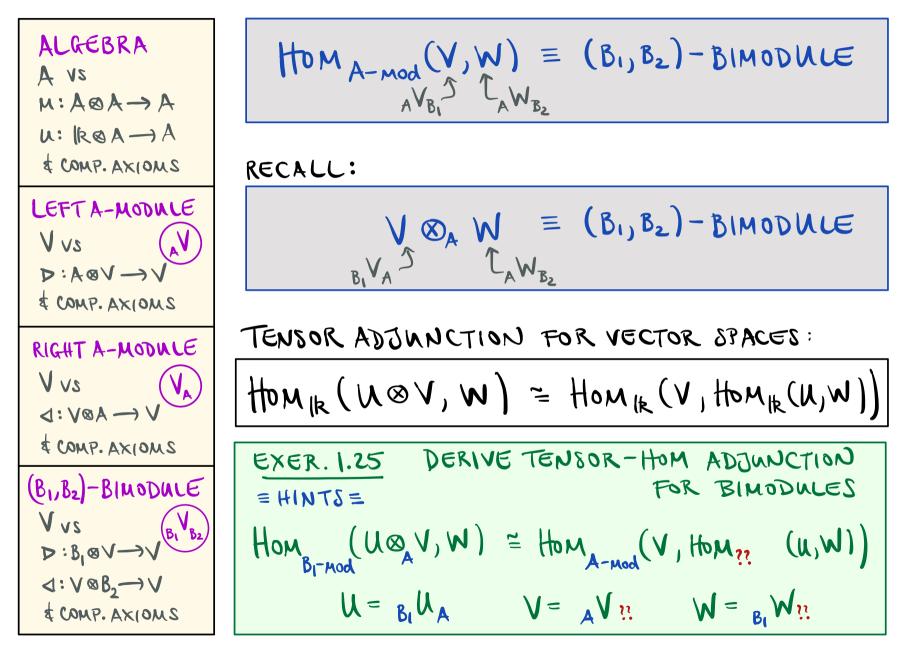


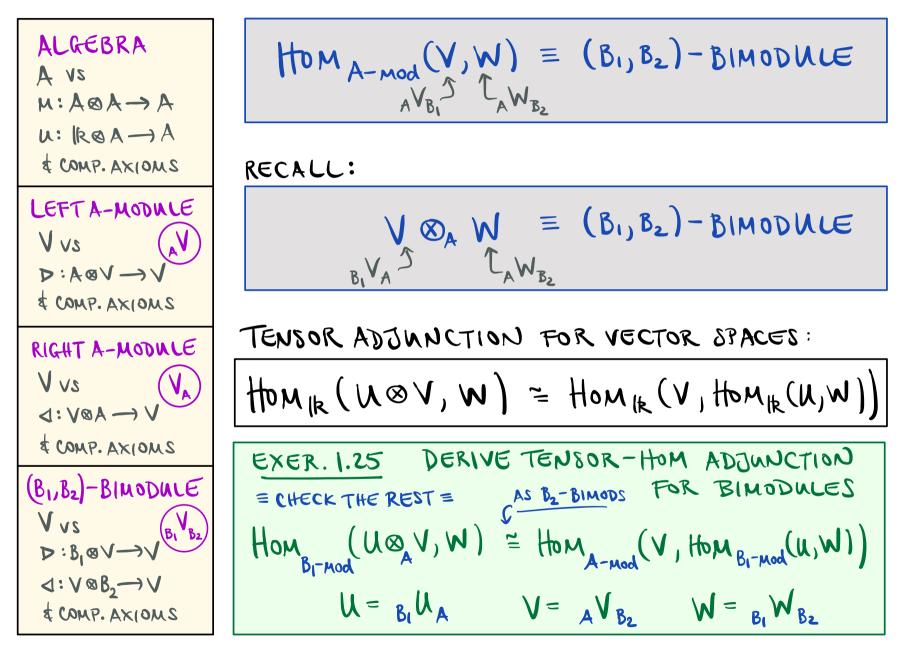


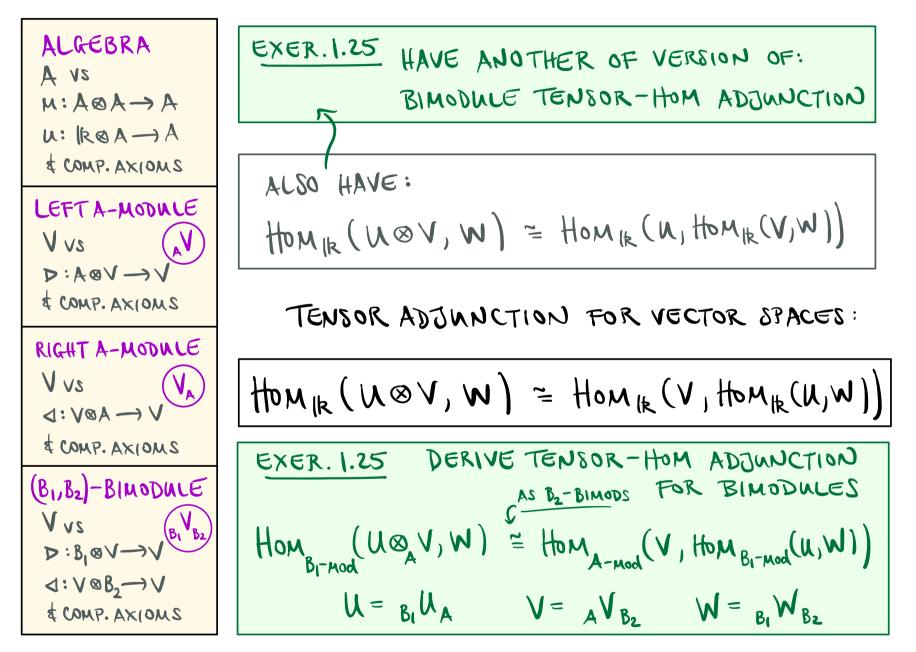


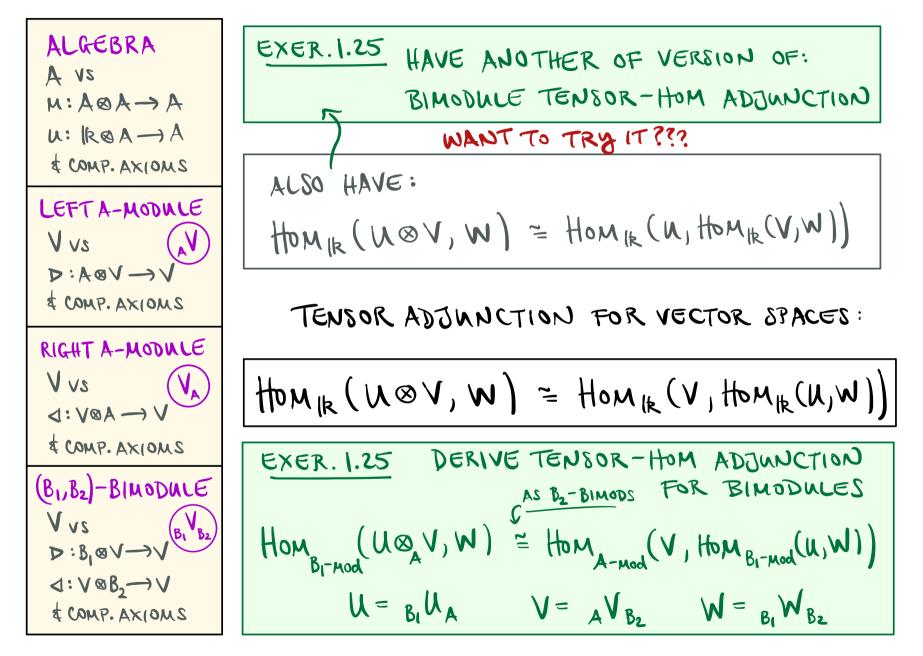






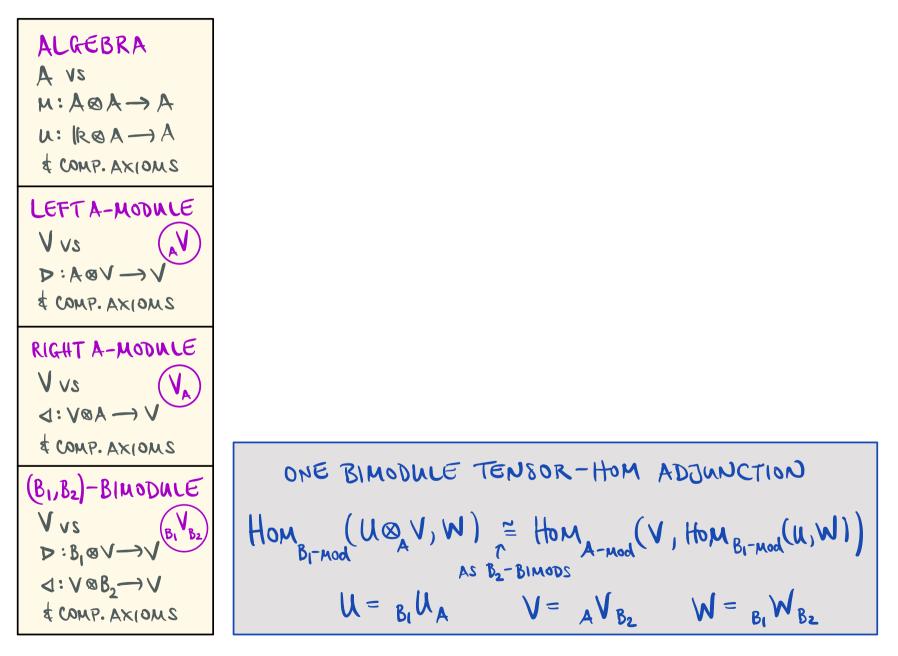


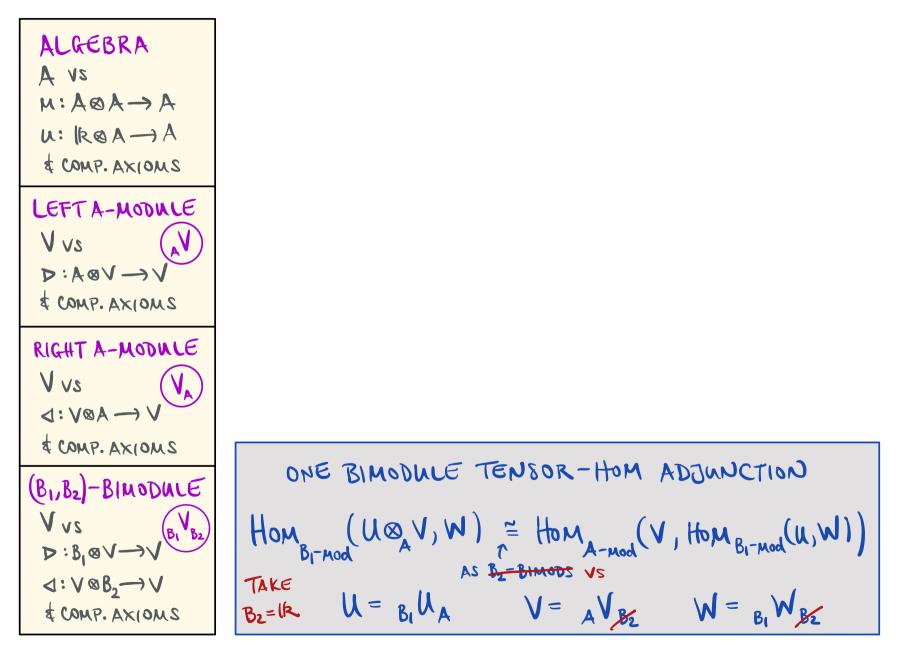


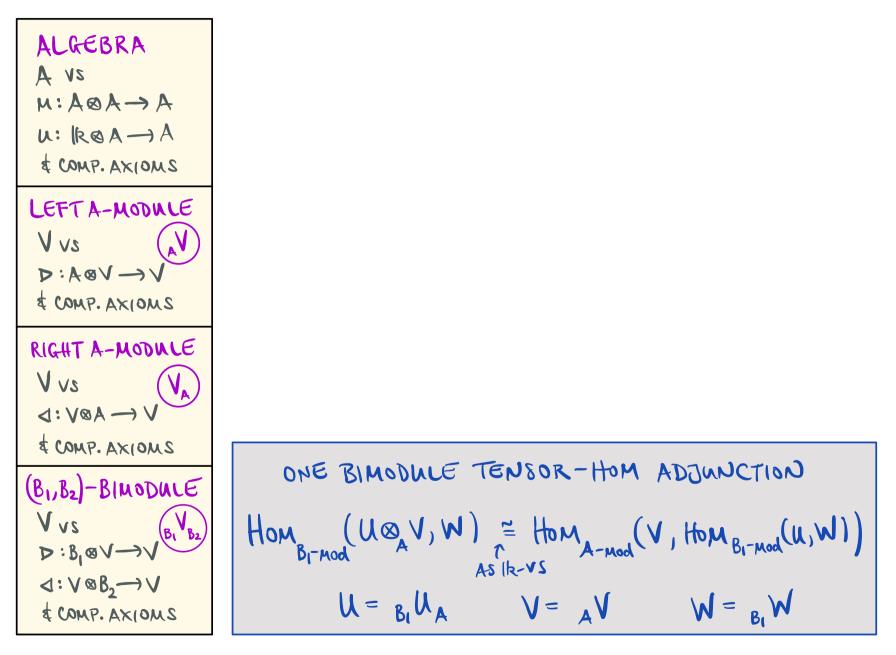


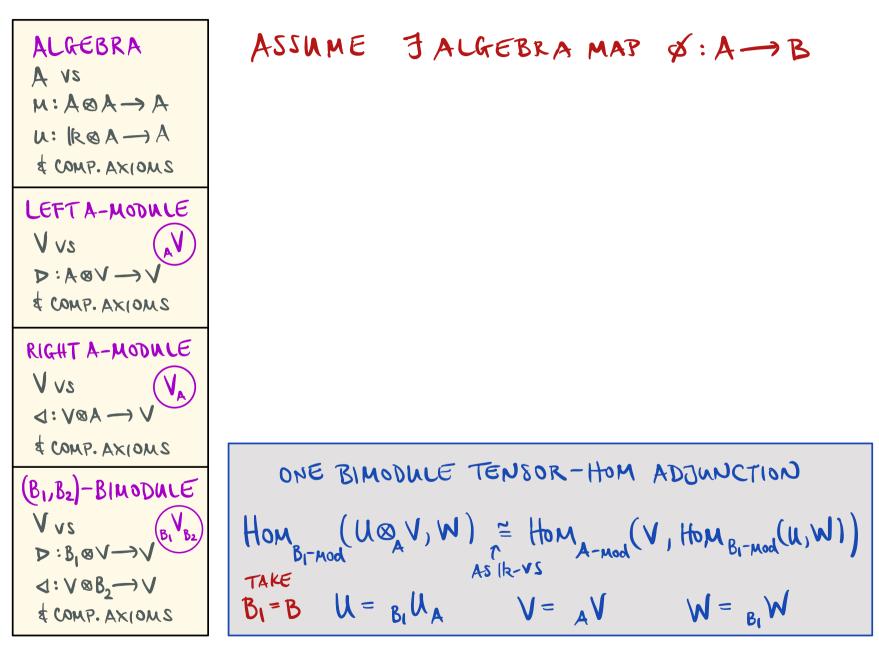
ALGEBRA
A VS
M: A&A
$$\rightarrow$$
 A
u: [k & A \rightarrow A
t COMP. AXIONS
RIGHT A-MODULE
V vs
U: $\{x & y = y \\ y = y \\$

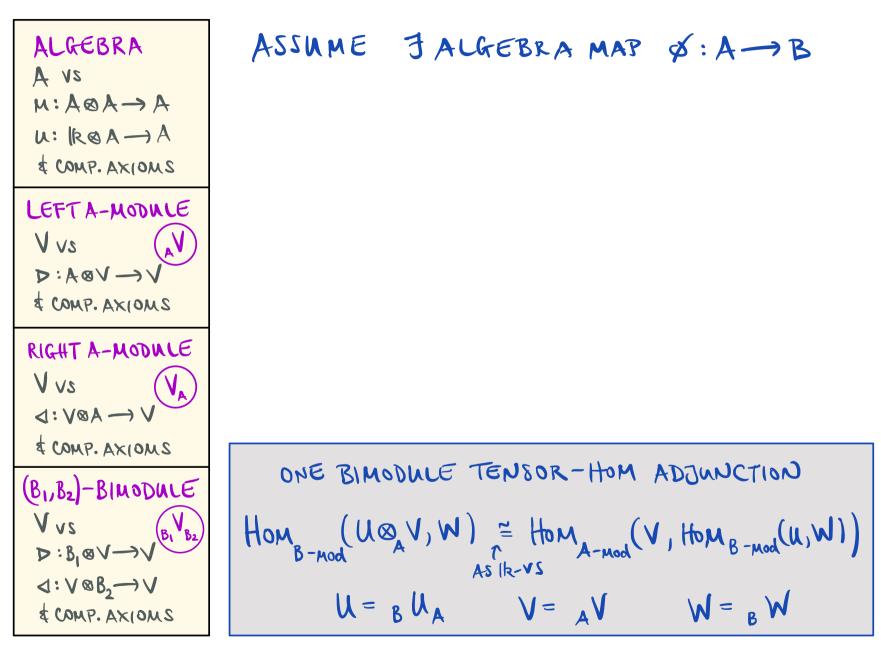
ALGEBRA
A VS
M: A&A
$$\rightarrow$$
 A
u: [k & A \rightarrow A
t COMP. AXIOMS
RIGHT A-MODULE
V vs
U: $(\mathbb{N} \otimes A \rightarrow A)$
t COMP. AXIOMS
RIGHT A-MODULE
V vs
U: $(\mathbb{N} \otimes V \rightarrow V)$
t COMP. AXIOMS
RIGHT A-MODULE
V vs
U: $(\mathbb{N} \otimes V)$
U: $(\mathbb{$

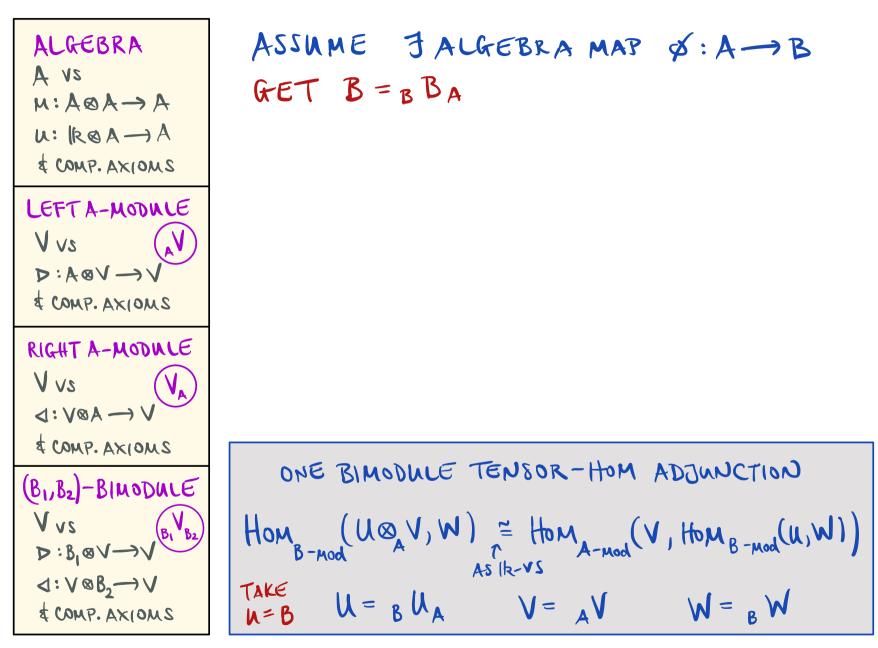


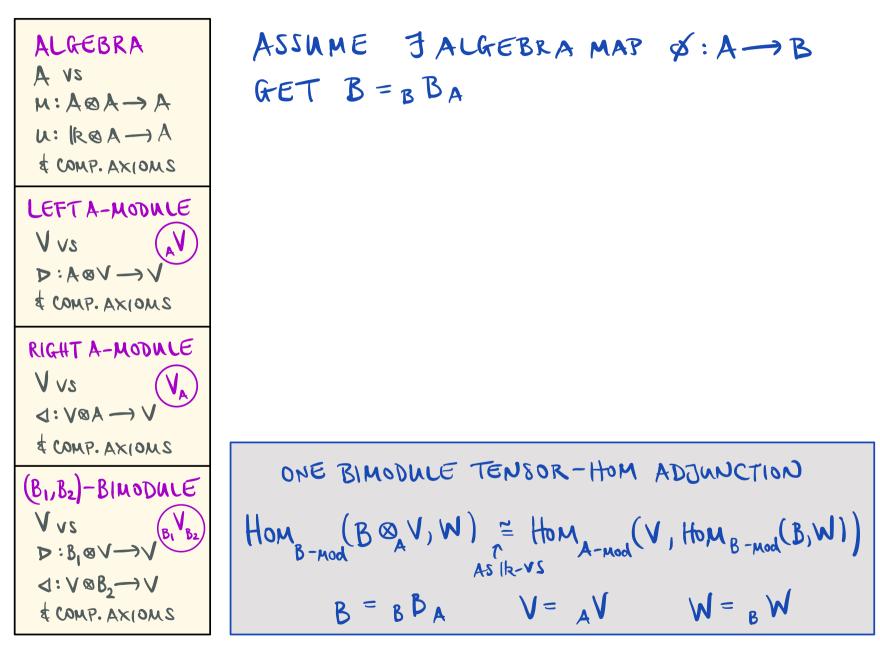


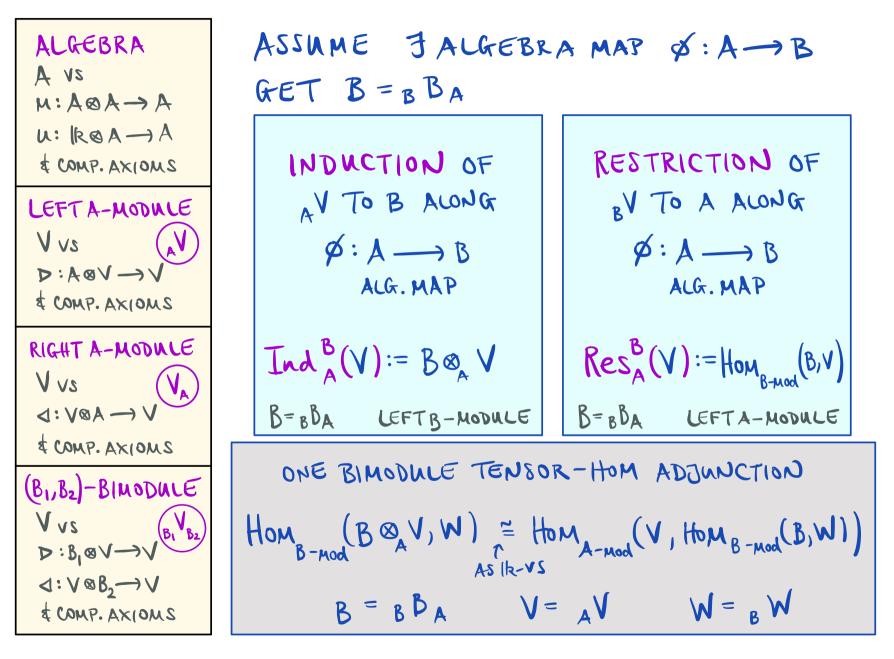


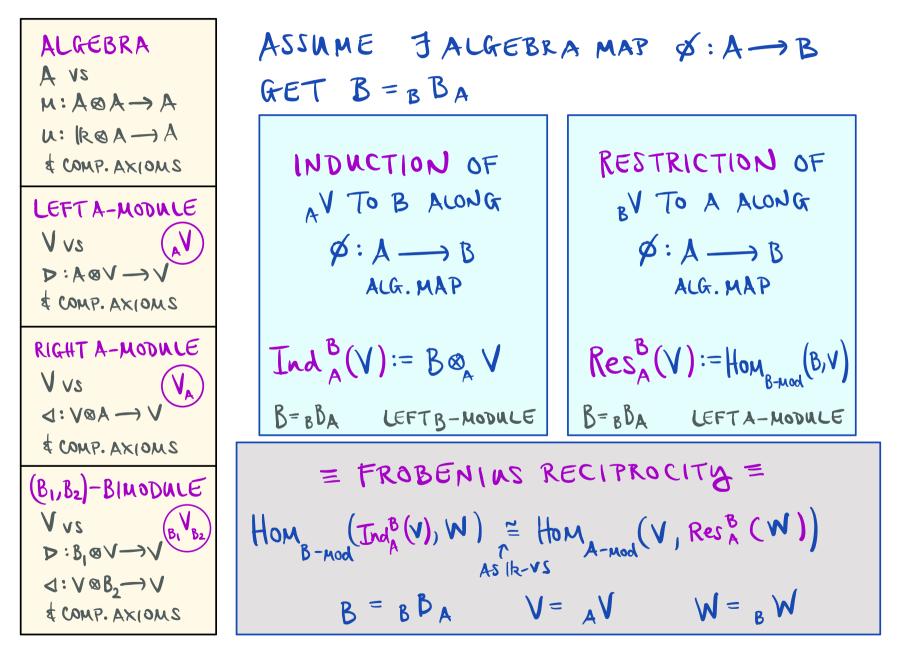


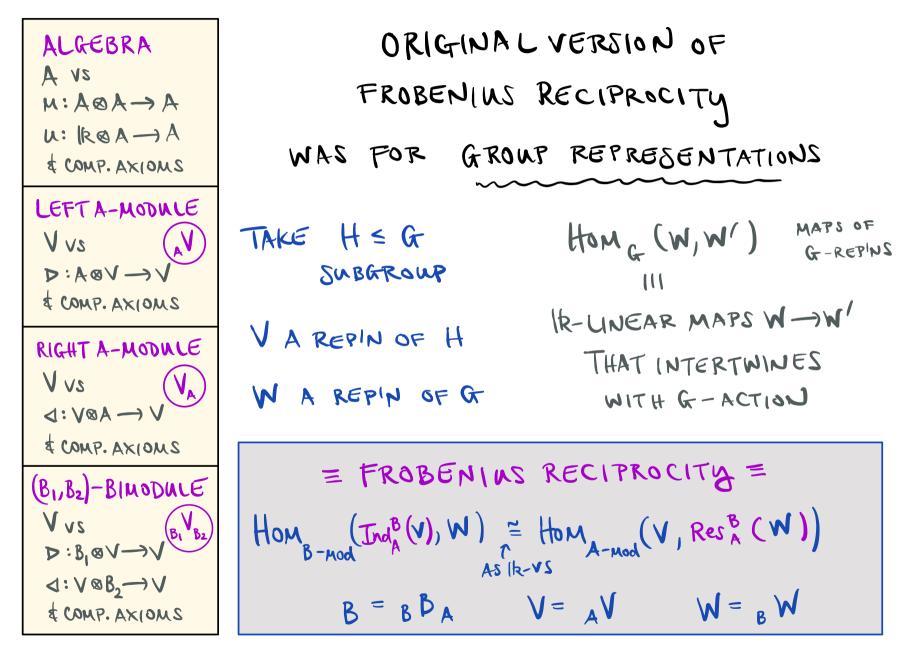


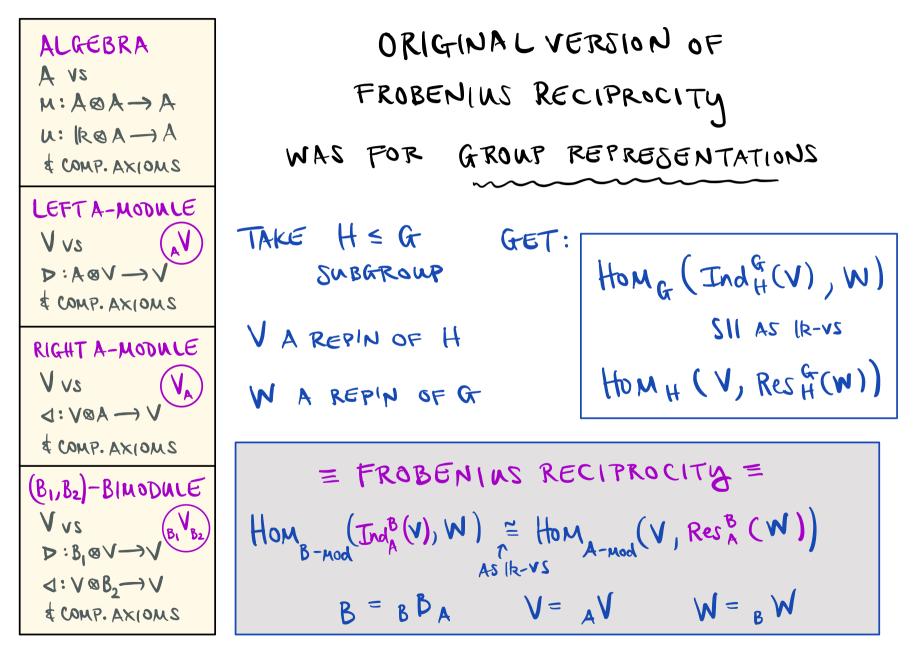


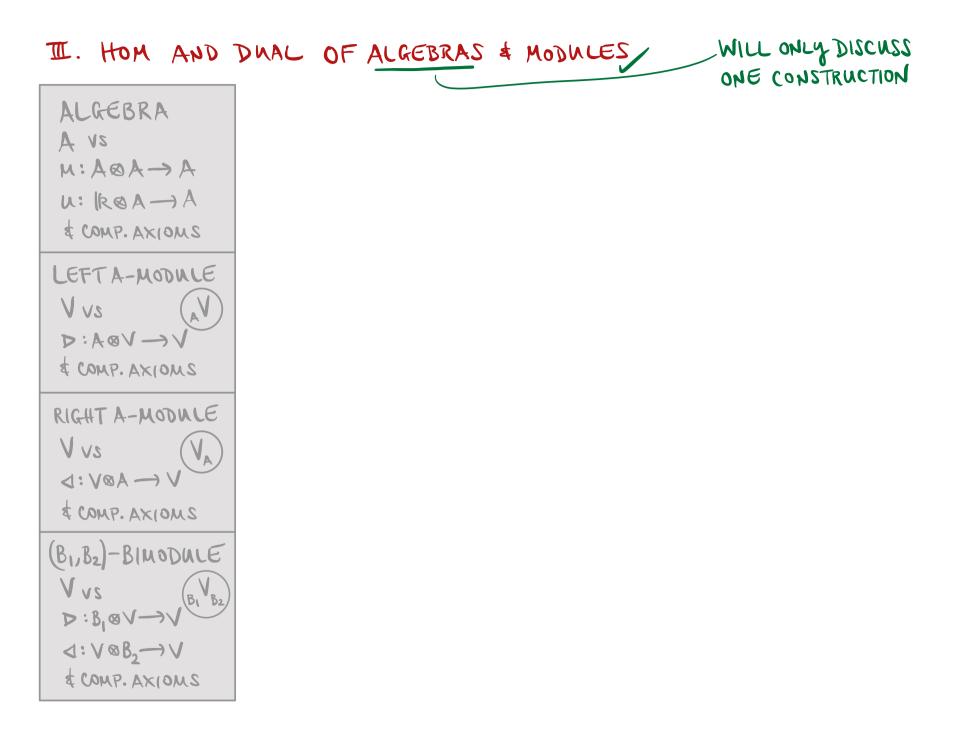


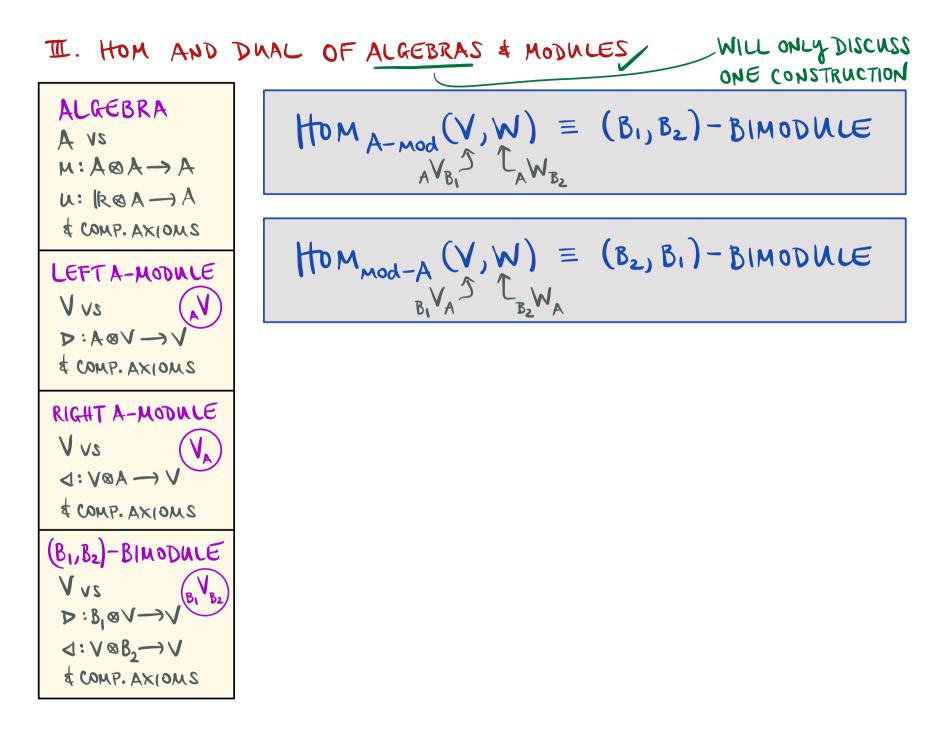


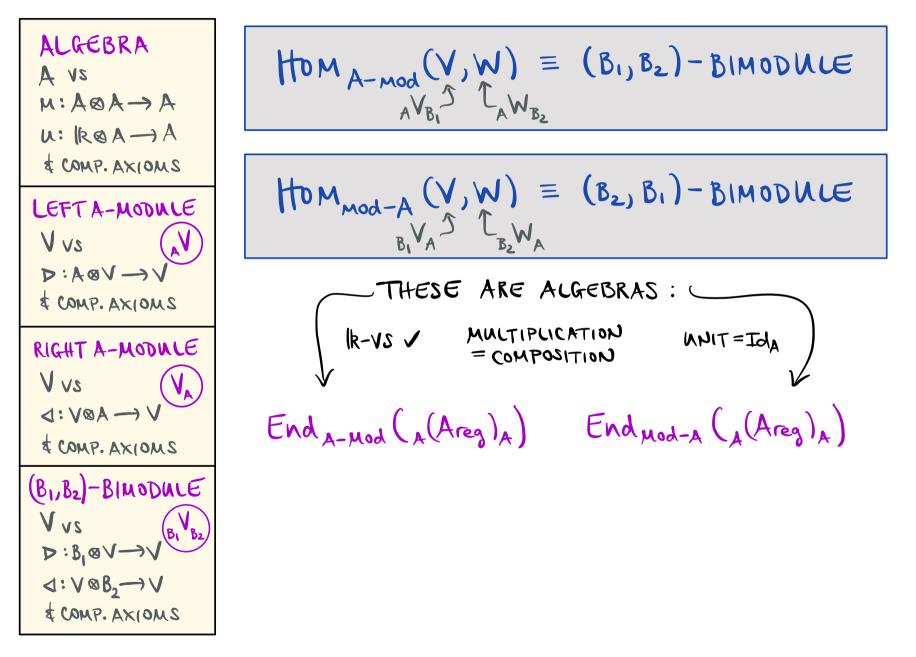


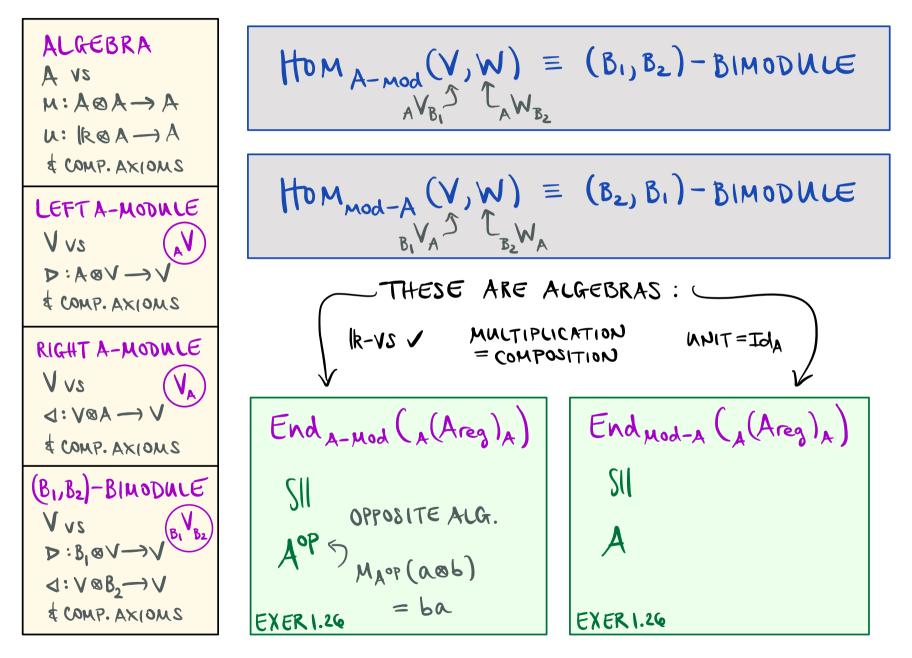


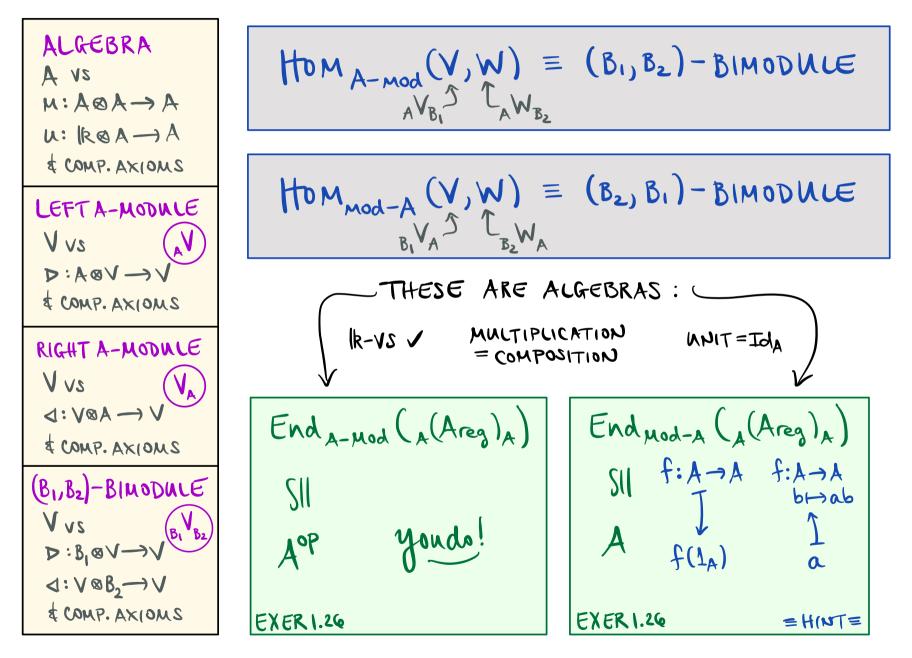












I. DIRECT PRODUCT, SUM, DIRECT SUM OF ALGEBRAS & MODULES (§1.4.1)

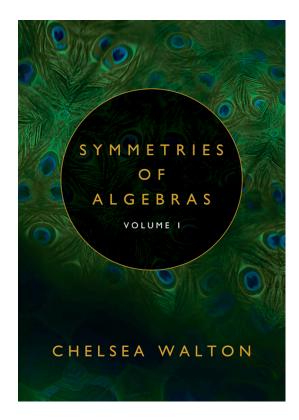
TOPICS :

MATH 466/566 SPRING 2024

CHELSEA WALTON RICE U.

Enjoy this lecture? You'll enjoy the textbook!

C. Walton's "Symmetries of Algebras, Volume 1" (2024)



Available for purchase at :

619 Wreath (at a discount)

https://www.619wreath.com/

Also on Amazon & Google Play

<u>Lecture #4 keywords</u>: Bimodule Tensor-Hom adjunction, coinduction, direct product/direct sum of algebras, direct product/direct sum of modules, Frobenius Reciprocity, induction, restriction, tensor product of modules