MATH 466/566 SPRING 2024

CHELSEA WALTON RICE U.

LAST TIME

- · SIMPLE ALGS.
- · SEMISIMPLE ALGS.
- · SEPARABLE ALGS.

LECTURE #6

### TOPICS:

I. CATEGORIES

II. UNIVERSAL CONSTRUCTIONS (§2.2.1)

 $(\S 2.1)$ 

"CATEGORY THEORY IS THE MATHEMATICS OF MATHEMATICS."
- PROF. EUGENIA CHENG

"CATEGORY THEORY IS THE MATHEMATICS OF MATHEMATICS."
- PROF. EUGENIA CHENG

A CATEGORY & CONSISTS OF THE DATA:

- (a) A COLLECTION OF OBJECTS Ob(e).

  WRITE XEC FOR X=06(e).
- (b) FOR EVERY PAIR OF OBJECTS X, y e v, A COLLECTION OF MORPHISMS HOME(X, y). WRITE g:X→Y FOR ge HOME(X, y).

"CATEGORY THEORY IS THE MATHEMATICS OF MATHEMATICS."
- PROF. EUGENIA CHENG

- A CATEGORY & CONSISTS OF THE DATA:
- (a) A COLLECTION OF OBJECTS Ob(e).
  WRITE XEC FOR X=06(e).
- (b) FOR EVERY PAIR OF OBJECTS X, Y ∈ C, A COLLECTION OF MORPHISMS HOME(X, Y). WRITE g:X→Y FOR g∈ HOME(X,Y).
- (c) FOR EVERY OBJECT X ∈ C, AN IDENTITY MORPHISM idx: X → X.

"CATEGORY THEORY IS THE MATHEMATICS OF MATHEMATICS."
- PROF. EUGENIA CHENG

- A CATEGORY & CONSISTS OF THE DATA:
- (a) A COLLECTION OF OBJECTS Ob(e).
  WRITE XEC FOR X=06(e).
- (b) FOR EVERY PAIR OF OBJECTS X, Y ∈ C, A COLLECTION OF MORPHISMS HOME(X, Y). WRITE g:X→Y FOR g∈ HOME(X,Y).
- (c) FOR EVERY OBJECT X ∈ C, AN IDENTITY MORPHISM idx: X → X.
- (d) FOR EVERY PAIR OF MORPHISMS

  f:W→X AND g: X→Y,

  A COMPOSITE MORPHISM of := gof: W→Y.

"CATEGORY THEORY IS THE MATHEMATICS OF MATHEMATICS."
- PROF. EUGENIA CHENG

A CATEGORY & CONSISTS OF THE DATA:

- (a) A COLLECTION OF OBJECTS Ob(e).
  WRITE XEC FOR X=06(e).
- (b) FOR EVERY PAIR OF OBJECTS X, Y e e, A COLLECTION OF MORPHISMS HOME(X, Y). WRITE g:X→Y FOR ge HOME(X,Y).
- (c) FOR EVERY OBJECT X ∈ C, AN IDENTITY MORPHISM idx: X → X.
- (d) FOR EVERY PAIR OF MORPHISMS

  f:W→X AND g: X→Y,

  A COMPOSITE MORPHISM of := gof: W→Y.

THIS DATA MUST
SATISFY THE AXIOMS:

ASSOCIATIVITY
(hg)f = h(gf)
(N
Home (Wiz)

UNITALITY
idxf=f \$ gidx=g

Home (W, X) Home (X, Y)

 $\forall f: W \rightarrow X, g: X \rightarrow Y, h: Y \rightarrow E$ 

USE "COLLECTION" INSTEAD OF "SET"

(... TO AVOID (SSUES WITH

"A SET OF SETS" LATER)

DOESN'T

EXIST

A CATEGORY & CONSISTS OF THE DATA:

- (a) A COLLECTION OF OBJECTS Ob(e).
- (b) FOR EVERY PAIR OF OBJECTS X, Y & C,
  A COLLECTION OF MORPHISMS HOME(X, Y).
- (c) FOR EVERY OBJECT X ∈ C, AN IDENTITY MORPHISM idx: X → X.
- (d) FOR EVERY PAIR OF MORPHISMS

  f:W→X AND g: X→Y,

  A COMPOSITE MORPHISM of := gof: W→Y.

JATIS DATA MUST SATISFY THE AXIOMS:

ASSOCIATIVITY

(hg)f = h(gf)

(N

Home (W,Z)

UNITALITY  $id_{x}f = f \notin gid_{x} = g$ IN
IN
Home (W, X)  $\forall f: W \rightarrow X, g: X \rightarrow Y, h: Y \rightarrow Z$ 

ANCATEGORY & CONSISTS OF THE DATA:

- (a) A COLLECTION OF OBJECTS Ob(e).
- (b) FOR EVERY PAIR OF OBJECTS X, Y & C,

  A COLLECTION OF MORPHISMS HOME(X, Y).

  \$ ALL MORPHISMS HOME() FORM A SET
- (c) FOR EVERY OBJECT X ∈ C, AN IDENTITY MORPHISM idx: X → X.
- (d) FOR EVERY PAIR OF MORPHISMS

  f:W→X AND g: X→Y,

  A COMPOSITE MORPHISM of:=gof: W→Y.

SPECIAL CASES

JATISFY THE AXIOMS:

ASSOCIATIVITY
(hg)f = h(gf)
(N
Hong (W,Z)

UNITACITY  $id_X f = f \notin g id_X = g$ IN
Home (W,X)  $\forall f: W \rightarrow X, g: X \rightarrow Y, h: Y \rightarrow Z$ 

ACATEGORY & CONSISTS OF THE DATA:

- (a) A COLLECTION OF OBJECTS Ob(&).
- (b) FOR EVERY PAIR OF OBJECTS X, Y & C,

  A COLLECTION OF MORPHISMS HOME(X, Y).

  4 THIS IS A SET YX, Y & C.
- (c) FOR EVERY OBJECT X ∈ C, AN IDENTITY MORPHISM idx: X → X.
- (d) FOR EVERY PAIR OF MORPHISMS

  f:W→X AND g: X→Y,

  A COMPOSITE MORPHISM of:=gof: W→Y.

SPECIAL CASES

JATIS DATA MUST SATISFY THE AXIOMS:

ASSOCIATIVITY

(hg)f = h(gf)

(N

Home (WiZ)

UNITALITY  $id_{x}f = f \notin gid_{x} = g$ IN
Home (W,x)  $\forall f: W \rightarrow x, g: X \rightarrow y, h: Y \rightarrow z$ 

### A CATEGORY &

CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y e.C.
- (c)  $id_X: X \rightarrow X$  $\forall X \in \mathcal{C}$ .

SATISFYING

UNITALITY

$$idx f = f$$
,  $gidx = g$ 



A CATEGORY &

CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOMG(X,Y) YX,Y ∈ C.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .

SATISFYING

Associativity (hg)f = h(gf)

UNITALITY

idx f = f, gidx = g





A CATEGORY &

CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y ∈ C.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- 3:X→Y. At:M→X (9) Dt:M→A

SATISFYING

Associativity (hg)f = h(gf)

unitality
idxf=f, gidx=g



ABELIAN GROUPS &
GROUP HOMOMS.
NOT "ABELIAN GROUP HOMOMS"

C PROPERTY



- A CATEGORY &
  - CONSISTS OF:
- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y ∈ C.
- (c)  $id_X: X \rightarrow X$  $\forall X \in \mathcal{C}$ .
- $\begin{array}{c} 3: X \rightarrow A \\ A + M \rightarrow X \\ A + M \rightarrow A \end{array}$

SATISFYING

ASSO CIATIVITY

(hg)f = h(gf)

UNITALITY

 $id_{x}f = f$ ,  $gid_{x} = g$ 



A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y ∈ C.
- (c)  $id_X: X \rightarrow X$  $\forall X \in \mathcal{C}$ .
- $\begin{array}{c} 3: X \to A \\ A : M \to X \\ A : M \to A \end{array}$

SATISFYING ASSOCIATIVITY

(hg)f = h(gf)

UNITALITY idx = 9

IR FIELD

ALG. CLOSED

CHAR.O

(NOT NEEDED HERE)

GROUPS &
GROUP HOMOMS.

ABELIAN GROUPS &
GROUP HOMONS.

NOT "ABELIAN GROUP HOHOMS"

C PROPERTY

UNITAL RINGS & UNITAL RING HOMOMS.

King

RINGS &
RING HOMOMS

Rng

ALGEBRAIC CATEGORIES COMRING UNITAL COMMUTATIVE RINGS & UNITAL RING HOMOMS

IR-VECTOR SPACES \$
IK-LINEAR MAPS

FINITE DIM'L

IR-VECTOR SPACES \$

IK-LINEAR MAPS

- A CATEGORY & CONSISTS OF:
- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- $\begin{array}{c} 3:X \to A \\ A : M \to X \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

UNITALITY
idxf=f, gidx=g

Group ABELIAN GROWPS & IR FIELD GROWPS \$ ALG. CLOSED GROUP HOMOMS. GROUP HOMOMS \$ CHAR.O NOT "ABELIAN GROUP HOMOMS" (NOT NEEDED HERE) C PROPERTY King Rng UNITAL RINGS & UNITAL RING HOMOMS. RINGS & RING HOMOMS ComRing ALGEBRAIC LINITAL CATEGORIES COMMUTATIVE RINGS & UNITAL RING HOMOMS Alg ComAla IK-ALGEBRAS & IK-ALGEBRA COMMUTATIVE IR-VECTOR SPACES \$ HOMOMS. IK-ALGEBRAS \$ IK-LINEAR MAPS IR-ALGEBRA HOMOMS Fd Alg FdVec FINITE DIM'L FINITE DIM'L IR-VECTOR SPACES & IK-ALGEBRAS & IK-LINEAR MAPS IK-ALGEBRA HOMOMS

# I. CATEGORIES A CATEGORY & CONSISTS OF:

- (A) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y E.C.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- $\begin{array}{c} 3:X \to A \\ A : M \to X \\ A : M \to A \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

UNITALITY
idxf=f, gidx=g







∈(A,C)-Bimod

- A CATEGORY & CONSISTS OF:
- (a) OBJECTS.
- (b) MORPHISMS Home(x,y) YX,Y E.C.
- (c)  $id_X: X \rightarrow X$ XXEC.
- (4)  $\mathcal{J}_{+}: M \rightarrow A$ At:M-X  $9 \cdot \lambda \rightarrow \gamma$ .

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

UNITALITY

idx f = f, gidx = g

IR FIELD ALG. CLOSED \$ CHAR.O (NOT NEEDED HERE)

A,B,C |k-ALGS/

A-Binod

Group GROWPS & GROUP HOMOMS

Rep(A)

REPINS OF A \$

REPIN MORPHISM

ABELIAN GROUPS & GROUP HOMOMS. NOT "ABELIAN GROWP HOMOMS"

C PROPERTY

King

UNITAL RINGS & UNITAL RING HOMOMS.

Rng RINGS & RING HOMOMS

A-Mod VARIOUS

CATEGORIES Mod-A

(A,B)-Bimod/(BI)moduces

ALGEBRAIC CATEGORIES ComRing UNITAL

COMMUTATIVE RINGS \$ UNITAL RING HOMOMS

Ala

IK-ALGEBRAS & IK-ALGEBRA

HOMOMS.

OBJECTS = IR-ALGEBRAS

MORPHISMS: ~ ISOCLASS~  $A \rightarrow B \iff AV_B \in (A_1B) - Bimod$ 

WITH: idA = A(Areg)

 $(A \rightarrow B \rightarrow C = AV_R \otimes_R BW_C$ ∈(A,C)-Bimod ComAla

COMMUTATIVE IK-ALGEBRAS & IR-ALGEBRA HOMOMS

IR-VECTOR SPACES \$ IK-LINEAR MAPS

Fd Alg

FINITE DIM'L IK-ALGEBRAS \$ IK-ALGEBRA HOMOMS

FdVec FINITE DIM'L IR-VECTOR SPACES & IK-LINEAR MAPS

A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOMG(X,Y) YX,Y ∈ C.
- (c)  $id_X: X \rightarrow X$  $\forall X \in \mathcal{C}$ .
- 3:X→Y. At:M→X (Y) St:M→A

SATISFYING

ASSOCIATIVITY (hg)f = h(gf)

UNITALITY

$$idx f = f$$
,  $gidx = g$ 

... MORE (NON-ALGEBRAIC) EXAMPLES LATER

- LET'S STUDY MORPHISMS IN DETAIL ...

$$g: X \longrightarrow Y$$

- A CATEGORY & CONSISTS OF:
- (a) OBJECTS.
- (b) MORPHISMS HOMG(X,Y) YX,Y ∈ C.
- (c)  $id_X: X \rightarrow X$  $\forall x \in \mathcal{C}$ .
- 3:X→ Y. A t:M→X (γ) Ωt:M→ A

SATISFYING

Associativity (hg)f = h(gf)

UNITALITY

$$idx f = f$$
,  $gidx = g$ 

LET'S STUDY MORPHISMS IN DETAIL ...

DOMAIN OF g 9: X -> Y CODOMAIN OF g

- A CATEGORY & CONSISTS OF:
- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y e.C.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- 3:X→ Y. A t:M→ X. (γ) Ωt:M→ A.

SATISFYING

ASSOCIATIVITY 
$$(hg)f = h(gf)$$

UNITALITY

$$idx f = f$$
,  $gidx = g$ 

LET'S STUDY MORPHISMS IN DETAIL ...

DOMAIN OF g 9: X -> Y CO DOMAIN OF g

g is modic (or is a mono)

LEFT-CANCELLATIVE:

 $\forall f_1 f': W \rightarrow X \text{ with } gf = gf'$ WE GET f = f'.

- A CATEGORY & CONSISTS OF:
- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y e.C.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- (d) 3f:W→Y Yf:W→X g:X→Y.

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

unitality idx = f, gidx = g

LET'S STUDY MORPHISMS IN DETAIL ...

DOMAIN OF g 9: X -> Y CO DOMAIN OF g

g is modic (or is a modo)

LEFT-CANCELLATIVE:

 $\forall f, f': W \rightarrow X \text{ with } gf = gf'$ WE GET f = f'.

HERE: X := (X,g) IS A
SUBOBJECT OF X

- A CATEGORY & CONSISTS OF:
- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- $\begin{array}{c} 3:X \to \lambda \\ A \neq :M \to X \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

UNITALITY

idxf=f, gidx=g

LET'S STUDY MORPHISMS IN DETAIL ...

DOMAIN OF g 9: X -> Y CO DOMAIN OF g

- g IS MONIC (OR IS A MONO)

  IF IT IS

  LEFT-CANCELLATIVE:
- $\forall f, f': W \rightarrow X \text{ with } gf = gf'$ WE GET f = f'.

HERE: X := (X,g) IS A
SUBOBJECT OF X

g IS EPIC (OR IS AN EPI)

IF IT IS

RIGHT-CANCELLATIVE:

Vh, h: Y→Z WITH hg = h'g WE GET h=h.

HERE: Y := (Y,g) IS A
QUOTIENT OBJECT OF Y

A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y ∈ C.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- $\begin{array}{c} 3:X \to A \\ A : M \to X \\ (9) P_{4}:M \to A \end{array}$

SATISFYING ASSOCIATIVITY

(hg)f = h(gf)

unitality
idxf=f, gidx=g

LET'S STUDY MORPHISMS IN DETAIL ...

DOMAIN OF g 9: X -> Y CO DOMAIN OF g

g IS MONIC (OR IS A MONO)

IF IT IS

LEFT-CANCELLATIVE:

 $\forall f, f': W \rightarrow X \text{ with } gf = gf'$ WE GET f = f'.

HERE: X := (X,g) IS A
SUBOBJECT OF X

g IS EPIC (OR IS AN EPI)

(F IT IS

RIGHT-CANCELLATIVE:

Vh, h: Y→Z WITH hg = h'g WE GET h=h.

HERE: Y := (Y,g) IS A
QUOTIENT OBJECT OF Y

EXERCISE 2.2

MONO IN Ab = INJECTIVE GROUP HOMOM. EPI IN Ab = SURJECTIVE GROUP HOMOM.

- A CATEGORY & CONSISTS OF:
- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- $\begin{array}{c} 3:X \to \lambda \\ A \neq :M \to X \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

unitality
idxf=f, gidx=g

LET'S STUDY MORPHISMS IN DETAIL ...

DOMAIN OF g 9: X -> Y CODOMAIN OF g

- g is monic (or is a mono)

  IF IT IS

  LEFT-CANCELLATIVE:
- $\forall f, f': W \rightarrow X \text{ with } gf = gf'$ WE GET f = f'.

HERE: X := (X,g) IS A
SUBOBJECT OF X

g IS EPIC (OR IS AN EPI)

(F IT IS

RIGHT-CANCELLATIVE:

Vh, K: Y→2 WITH hg = h'g WE GET h=h'.

HERE: Y := (Y,g) IS A
QUOTIENT OBJECT OF Y

9 IS AN ISO (F  $\exists g' \in Hom_g(Y,X)$   $\Rightarrow g'g = id_X \text{ AND } gg' = id_Y.$ HERE: WRITE  $g' = :g' \text{ AND } X \cong Y.$ 

- A CATEGORY & CONSISTS OF:
- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- $\begin{array}{c} 3: X \to A \\ A : M \to X \\ & \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

unitality
idxf=f, gidx=g

LET'S STUDY MORPHISMS IN DETAIL ...

DOMAIN OF g 9: X -> Y CODOMAIN OF g

- g IS MONIC (OR IS A MONO)

  IF IT IS

  LEFT-CANCELLATIVE:
- $\forall f, f': W \rightarrow X \text{ with } gf = gf'$ WE GET f = f'.

HERE: X := (X,g) IS A
SUBOBJECT OF X

9 IS EPIC (OR IS AN EPI)

(FIT IS

RIGHT-CANCELLATIVE:

Vh, K: Y→2 WITH hg = h'g WE GET h=h'.

HERE: Y := (Y,g) IS A
QUOTIENT OBJECT OF Y

g IS AN ISO (F  $\exists g' \in Hom_{\mathcal{C}}(Y,X)$   $\exists g'g = id_X \text{ AND } gg' = id_Y.$ HERE: WRITE  $g' = : g^{-1} \text{ AND } X \cong Y.$  FROM EXERCISE 2.2

ISO IN Ab =

BIJECTIVE GROUP HOMOM.

= GROUP ISOM.

- A CATEGORY & CONSISTS OF:
- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- $\begin{array}{c} 3: X \to A \\ A : M \to X \\ & \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

UNITALITY

idxf=f, gidx=g

LET'S STUDY MORPHISMS IN DETAIL ...

DOMAIN OF g 9: X -> Y CO DOMAIN OF g

- g IS MONIC (OR IS A MONO)

  IF IT IS

  LEFT-CANCELLATIVE:
- $\forall f, f': W \rightarrow X \text{ with } gf = gf'$ WE GET f = f'.

HERE: X := (X,g) IS A
SUBOBJECT OF X

g IS EPIC (OR IS AN EPI)

(F IT IS

RIGHT-CANCELLATIVE:

Vh, h: Y→2 WITH hg = h'g WE GET h=h'.

HERE: Y := (Y,g) IS A
QUOTIENT OBJECT OF Y

9 IS AN ISO IF  $\exists g' \in Hom_{\mathcal{C}}(Y,X)$   $\Rightarrow g'g = id_X \text{ AND } g g' = id_Y.$ HERE: WRITE  $g' = : g^{-1} \text{ AND } X \cong Y.$ 



- A CATEGORY & CONSISTS OF:
- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- $\begin{array}{c} 3: X \to A \\ A : M \to X \\ A : M \to A \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

UNITALITY

idxf=f, gidx=g

LET'S STUDY MORPHISMS IN DETAIL ...

DOMAIN OF g 9: X -> Y CODOMAIN OF g

- g is monic (or is a mono)

  IF IT IS

  LEFT-CANCELLATIVE:
- $\forall f, f': W \rightarrow X \text{ with } gf = gf'$ WE GET f = f'.

HERE: X := (X,g) IS A
SUBOBJECT OF X

g IS EPIC (OR IS AN EPI)

(F IT IS

RIGHT-CANCELLATIVE:

Vh, h: Y→Z WITH hg = h'g WE GET h=h'.

HERE: Y := (Y19) IS A
QUOTIENT OBJECT OF Y

g IS AN ISO (F  $\exists g' \in Hom_{\mathcal{C}}(Y,X)$ a.  $g'g = id_X$  AND  $gg' = id_Y$ . HERE: WRITE  $g' = : g^{-1}$  AND  $X \cong Y$ . EXERCISE 2.2

Z - Q IN Ring

IS MONIC & EPIC

YET IS NOT AN ISO.

- A CATEGORY & CONSISTS OF:
- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- $\begin{array}{c} \lambda: X \to \lambda \\ A \neq : M \to X \\ (\gamma) P_{+} : M \to \lambda \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

UNITALITY idx = 9

LET'S STUDY MORPHISMS IN DETAIL ...

DOMAIN OF g 9: X -> Y CO DOMAIN OF g

g is monic (or is a mono)

IF IT IS

LEFT-CANCELLATIVE:

 $\forall f, f': W \rightarrow X \text{ with } gf = gf'$ WE GET f = f'.

HERE: X := (X,g) IS A
SUBOBJECT OF X

g IS EPIC (OR IS AN EPI)

(F IT IS

RIGHT-CANCELLATIVE:

Vh, K: Y→2 WITH hg = h'g WE GET h=h'.

HERE: Y := (Y19) IS A
QUOTIENT OBJECT OF Y

9 IS AN ISO (F  $\exists g' \in Hom_g(Y,X)$ a.  $g'g = id_X$  AND  $gg' = id_Y$ . HERE: WRITE  $g' = : g^{-1}$  AND  $X \cong Y$ .



- A CATEGORY & CONSISTS OF:
- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- $\begin{array}{c} 3:X \to A \\ A : M \to X \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

UNITALITY  $id_{x}f=f$ ,  $gid_{x}=g$ 

LET'S STUDY MORPHISMS IN DETAIL ...

DOMAIN OF g 9: X -> Y CO DOMAIN OF g

- g is monic (or is a mono)

  IF IT IS

  LEFT-CANCELLATIVE:
- $\forall f, f': W \rightarrow X \text{ with } gf = gf'$ WE GET f = f'.

HERE: X := (X,g) IS A
SUBOBJECT OF X

g IS EPIC (OR IS AN EPI)

IF IT IS

RIGHT-CANCELLATIVE:

Vh, h: Y→Z WITH hg = h'g WE GET h=h'.

HERE: Y := (Y,g) IS A
QUOTIENT OBJECT OF Y

g IS AN ISO (F  $\exists g' \in Hom_{\mathcal{C}}(Y,X)$   $\Rightarrow g'g = id_X \text{ AND } gg' = id_Y.$ HERE: WRITE  $g' = : g^{-1} \text{ AND } X \cong Y.$ 



- A CATEGORY & CONSISTS OF:
- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y ∈ C.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- $\begin{array}{c} 3:X \to A \\ A : M \to X \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

UNITALITY

idxf=f, gidx=g

EXERCISE 2.1 (1) SHOW: 9 180 -> 9 MODIC & EPIC. Youdo!

(2)  $g:X\to Y$  is  $g=id_X$ . SPLIT-MONIC IF  $g=id_X$ . SPLIT-EPIC IF  $g=id_X$ .

SHOW: 9 SPLIT-MONIC EPI (OR SPLIT-EPIC MONO) => 9 150.

g IS MONIC (OR IS A MONO)

IF IT IS

LEFT-CANCELLATIVE:

 $\forall f_1 f': W \rightarrow X \text{ with } gf = gf'$ WE GET f = f'.

HERE: X := (X,g) IS A
SUBOBJECT OF X

g IS EPIC (OR IS AN EPI)

IF IT IS

RIGHT-CANCELLATIVE:

Vh, K: Y→Z WITH hg = h'g WE GET h=h.

HERE: Y := (Y,g) IS A
QUOTIENT OBJECT OF Y

g IS AN ISO (F  $\exists g' \in Hom_{\mathcal{C}}(Y,X)$   $\Rightarrow g'g = id_X \text{ AND } gg' = id_Y.$ HERE: WRITE  $g' = :g^{-1} \text{ AND } X \cong Y.$ 



- A CATEGORY & CONSISTS OF:
- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- $\begin{array}{c} 3: X \to A \\ A + : M \to X \\ A \to M \to A \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

UNITALITY

idxf=f, gidx=g

.... LET'S CHECK OUT SUBSTRUCTURES

LET'S STADY MORPHISMS IN DETAIL ...

DOMAIN OF g

CODOMAIN OF g

- g IS MONIC (OR IS A MONO)

  IF IT IS

  LEFT-CANCELLATIVE:
- $\forall f, f': W \rightarrow X \text{ with } gf = gf'$ WE GET f = f'.

HERE: X := (X,g) IS A

SUBOBJECT OF X

- 9 IS EPIC (OR IS AN EPI)

  IF IT IS

  RIGHT-CANCELLATIVE:
- Vh, K: Y→Z WITH hg = Kg WE GET h=K.

HERE: Y := (Y,g) IS A
QUOTIENT OBJECT OF Y

9 IS AN ISO IF  $\exists g' \in Hom_{\mathcal{C}}(Y,X)$   $\exists g'g = id_X \text{ AND } gg' = id_Y.$ HERE: WRITE  $g' = :g^{-1} \text{ AND } X \cong Y.$ 



# A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- $\begin{array}{c} 3:X \to \lambda \\ A \neq :M \to X \end{array}$

SATISFYING

Associativity (hg)f = h(gf)

UNITALITY

idx f = f, gidx = g

# .... LET'S CHECK OUT SUBSTRUCTURES

A SUBCATEGORY & OF & CONSISTS OF:

- (a) A SUBCOLLECTION OB(B) OF OB(B).
- (b) A SUBCOLLECTION HOM(B) OF HOM(B).

# A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- $\begin{array}{c} 3:X \to \lambda \\ A \neq :M \to X \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

unitality
idxf=f, gidx=g

## .... LET'S CHECK OUT SUBSTRUCTURES

A SUBCATEGORY & OF & CONSISTS OF:

- (a) A SUBCOLLECTION OB(B) OF OB(B).
- (b) A SUBCOLLECTION HOM(B) OF HOM(C). Such that
- $X \in \mathcal{B} \implies id_X \in \mathsf{Hom}(\mathcal{B})$ .
- $f \in Hom(B) \Rightarrow domain(f), codomain(f) \in Ob(B).$
- $f, g \in Hom(\theta)$  with codomain(f) = domain(g)  $\Rightarrow gf \in Hom(\theta)$ .

# A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{L}$ .
- $\begin{array}{c} 3:X \to \lambda \\ A \neq :M \to X \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

unitality
idxf=f, gidx=g

## .... LET'S CHECK OUT SUBSTRUCTURES

A SUBCATEGORY & OF & CONSISTS OF:

- (a) A SUBCOLLECTION OB(B) OF OB(B).
- (b) A SUBCOLLECTION HOM(B) OF HOM(C). Such that
- $X \in \mathcal{B} \implies id_X \in \mathsf{Hom}(\mathcal{B})$ .
- $f \in Hom(B) \Rightarrow domain(f), codomain(f) \in Ob(B).$
- $f, g \in Hom(\theta)$  with codomain(f) = domain(g)  $\Rightarrow gf \in Hom(\theta)$ .

A SUBCATEGORY  $\theta$  OF C IS FULL IF  $\text{Hom}_{\theta}(x,y) = \text{Hom}_{\mathcal{C}}(x,y) \ \forall x,y \in \theta.$ 

## A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y ∈ C.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- $\begin{array}{c} 3:X \to \lambda \\ A \neq :M \to X \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

unitality
idxf=f, gidx=g

.... LET'S CHECK OUT SUBSTRUCTURES & EXAMPLES

A SUBCATEGORY D

OF & CONSISTS OF:

- (a) SUBCOLLECTION Ob(B) OF OB(C).
- (b) SUBCOLLECTION . HOM(&).
- $\chi \in \beta \implies id_{\chi} \in tom(\delta)$ .
- $f \in Hom(B) \Rightarrow$  $dom(f), Codom(f) \in OL(B).$
- $f, g \in Hom(B)$  WITH Codon(f) = don(g) $\Rightarrow gf \in Hom(B)$ .

SUBCAT  $\theta$  OF  $\mathcal{C}$  IS FULL IF  $\text{Hom}_{\theta}(X,Y) = \text{Hom}_{\mathcal{C}}(X,Y)$  $\forall X,Y \in \theta.$ 

## A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_X: X \rightarrow X$  $\forall X \in \mathcal{C}$ .
- $\begin{array}{c}
  \lambda : X \to \lambda \\
  \lambda : X \to \lambda
  \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

unitality
idxf=f, gidx=g

#### ... LET'S CHECK OUT SUBSTRUCTURES & EXAMPLES

A SUBCATEGORY D

OF & CONSISTS OF:

- (a) SUBCOLLECTION Ob(B) OF OB(C).
- (b) SUBCOLLECTION

  3. HOM(B) OF HOM(C).
- $\chi \in \beta \implies id_{\chi} \in \text{Hom}(\delta)$ .
- $f \in Hom(B) \Rightarrow$  $dom(f), Codom(f) \in OL(B).$
- $f, g \in Hom(B)$  WITH Codon(f) = don(g) $\Rightarrow gf \in Hom(B)$ .



SUBCAT 
$$\theta$$
 OF  $\mathcal{C}$  IS FULL IF  $Hom_{\theta}(X,Y) = Hom_{\mathcal{C}}(X,Y)$   
 $\forall X,Y \in \theta.$ 

## CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS Home(x,y) YX,Y EG.
- (c)  $id_X:X \rightarrow X$ XXEC.

SATISFYING ASSO CIATIVITY (hg)f = h(gf)

UNITALITY idx f = f, gidx = g .... LET'S CHECK OUT SUBSTRUCTURES & EXAMPLES

A SUBCATEGORY O OF & CONSISTS OF:

- (a) SUBCOLLECTION 06(B) OF OB(C).
- (b) SUBCOLLECTION 7. HOM(B) OF HOM(E).
- $\chi \in \beta \implies id_{\chi} \in \text{thu}(\theta)$ .
- · fe Hom(8) ⇒ dom(f),  $Codom(f) \in OL(B)$ .
- · f, g & Hom (B) WITH codon(f) = don(g)⇒ gf ∈ Hom(8).



SUBCAT 8 OF & IS FULL IF 2?  $tom_{\mathcal{B}}(x, y) = tom_{\mathcal{B}}(x, y)$ ¥X, Y ∈ β.

## A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- $\begin{array}{c}
  \lambda : X \to \lambda \\
  \lambda : X \to \lambda
  \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

idxf=f, gidx=g

... LET'S CHECK OUT SUBSTRUCTURES & EXAMPLES

A SUBCATEGORY D
OF & CONSISTS OF:

- (a) SUBCOLLECTION Ob(B) OF OB(C).
- (b) SUBCOLLECTION

  3. HOM(B) OF HOM(C).
- $\chi \in \beta \implies id_{\chi} \in \text{Hom}(0)$ .
- $f \in Hom(B) \Rightarrow$  $dom(f), Codom(f) \in OL(B).$
- $f, g \in Hom(B)$  WITH Codon(f) = don(g) $\Rightarrow gf \in Hom(B)$ .



Ab = SUBCATEGORY OF Group

SUBCAT 
$$\theta$$
 OF  $\mathcal{C}$  IS FULL IF  $\text{Hom}_{\theta}(X,Y) = \text{Hom}_{\mathcal{C}}(X,Y)$   
 $\forall X,Y \in \theta.$ 

## A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOMG(X,Y) YX,Y ∈ C.
- (c)  $id_X: X \rightarrow X$  $\forall X \in \mathcal{C}$ .
- $\begin{array}{c} 3:X \to A \\ A \neq :M \to X \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

unitality
idxf=f, gidx=g

... LET'S CHECK OUT SUBSTRUCTURES & EXAMPLES

A SUBCATEGORY D
OF & CONSISTS OF:

- (a) SUBCOLLECTION Ob(B) OF OB(C).
- (b) SUBCOLLECTION

  THOM(B) OF HOM(E).
- $\chi \in \beta \implies id_{\chi} \in \text{thu}(\delta)$ .
- $f \in Hom(B) \Rightarrow$  $dom(f), Codom(f) \in OL(B).$
- $f, g \in Hom(B)$  WITH Codon(f) = don(g) $\Rightarrow gf \in Hom(B)$ .

SUBCAT  $\theta$  OF  $\mathcal{C}$  IS FULL IF  $\text{Hom}_{\theta}(X,Y) = \text{Hom}_{\mathcal{C}}(X,Y)$  $\forall X,Y \in \theta.$ 



FULL BECAUSE YG, G'EAL:

FEHDMAL (G, G') IS A GROUP HOMOM.

SO FE HOMADOM (G, G')

# VICE VERSA.

## A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_X: X \rightarrow X$  $\forall X \in \mathcal{C}$ .
- $\begin{array}{c}
  \lambda : X \to \lambda \\
  \lambda : X \to \lambda
  \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

unitality
idxf=f, gidx=g

... LET'S CHECK OUT SUBSTRUCTURES & EXAMPLES

A SUBCATEGORY D

OF & CONSISTS OF:

- (a) SUBCOLLECTION Ob(B) OF OB(C).
- (b) SUBCOLLECTION

  3. HOM(B) OF HOM(C).
- $\chi \in \beta \implies id_{\chi} \in \text{Hom}(0)$ .
- $f \in Hom(B) \Rightarrow$  $dom(f), Codom(f) \in OL(B).$
- $f, g \in Hom(B)$  WITH Codon(f) = don(g) $\Rightarrow gf \in Hom(B)$ .



SUBCAT 
$$\theta$$
 OF  $\mathcal{C}$  IS FULL IF  $\theta$  then  $\theta(x,y) = \theta$ .

## A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_X: X \rightarrow X$  $\forall X \in \mathcal{C}$ .
- $\begin{array}{c}
  \lambda : X \to \lambda \\
  \lambda : X \to \lambda
  \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

unitality
idxf=f, gidx=g

... LET'S CHECK OUT SUBSTRUCTURES & EXAMPLES

A SUBCATEGORY D
OF & CONSISTS OF:

- (a) SUBCOLLECTION Ob(B) OF OB(C).
- (b) SUBCOLLECTION
  3. HOM(B) OF HOM(C).
- $\chi \in \beta \implies id_{\chi} \in \text{thom}(0)$ .
- $f \in Hom(B) \Rightarrow$  $dom(f), Codom(f) \in OL(B).$
- $f, g \in Hom(B)$  WITH Codon(f) = don(g) $\Rightarrow gf \in Hom(B)$ .



Ring = SUBCATEGORY OF Rng

SUBCAT  $\theta$  OF  $\mathcal{C}$  IS FULL IF  $\text{Hom}_{\theta}(X,Y) = \text{Hom}_{\mathcal{C}}(X,Y)$  $\forall X,Y \in \theta.$ 

## A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOMG(X,Y) YX,Y ∈ C.
- (c)  $id_X: X \rightarrow X$  $\forall X \in \mathcal{C}$ .
- $\begin{array}{c} 3:X \to A \\ A : M \to X \\ A : M \to A \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

unitality
idxf=f, gidx=g

.... LET'S CHECK OUT SUBSTRUCTURES & EXAMPLES

A SUBCATEGORY D
OF & CONSISTS OF:

- (a) SUBCOLLECTION Ob(B) OF OB(C).
- (b) SUBCOLLECTION

  3. HOM(B) OF HOM(C).
- $\chi \in \beta \implies id_{\chi} \in \text{thom}(\delta)$ .
- $f \in Hom(B) \Rightarrow$  $dom(f), Codom(f) \in OL(B).$
- $f, g \in Hom(B)$  WITH Codom(f) = dom(g) $\Rightarrow gf \in Hom(B)$ .

SUBCAT  $\theta$  OF  $\mathcal{C}$  IS FULL IF  $Hom_{\theta}(x,y) = Hom_{\mathcal{C}}(x,y)$  $\forall x,y \in \theta.$ 



Ring = SUBCATEGORY OF RAG NOT FULL BECAUSE VR, R' & Ring: f & Hom<sub>Rag</sub>(R,R') is a RING HOMOM. But it DOESN'T NEED TO BE UNITAL : Hom<sub>Rag</sub>(R,R') & Hom<sub>Ring</sub>(R,R').

CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS Home(x,y) YX, Y EG.
- (c)  $id_X:X \rightarrow X$ AXEG.

SATISFYING

ASSOCIATIVITY

(hg)f = h(qf)

UNITALITY

idx f = f, gidx = g

.... MORE EXAMPLES



A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- 3:X→Y. At:M→X (4) Dt:M→A

SATISFYING

Associativity (hg)f = h(gf)

unitality
idxf=f, gidx=g

.... MORE EXAMPLES





A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y E.C.
- (c)  $id_X: X \rightarrow X$  $\forall X \in \mathcal{C}$ .
- 3:X→Y. At:M→X (4) Dt:M→A

SATISFYING

Associativity (hg)f = h(gf)

UNITALITY

$$idx f = f$$
,  $gidx = g$ 

.... MORE EXAMPLES

NO OBJECTS
NO MORPHISMS

LOGICAL/ CATEGORICAL CATEGORIES



CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS Home(x,y) YX,Y EG.
- (c)  $id_X:X \rightarrow X$ AXEG.

SATISFYING

ASSO CIATIVITY

(hg)f = h(gf)

UNITALITY idx f = f, gidx = g ....MORE EXAMPLES

2NO OBJECTS SETS FUNCTIONS NO MORPHISMS

LOGICAL CATEGORICAL LATEGORIES



A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y e.C.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- 3:X→Y. At:M→X (γ) Dt:M→ A

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

UNITALITY idx = 9

...MORE EXAMPLES

NO OBJECTS SETS FUNCTIONS

LOGICAL/ CATEGORICAL CATEGORIES/

Cat

SMALL CATEGORIES

"FUNCTORS"

LECTURE 8

Rep(A) Ring Rng

A-Mod

A-Mod

ALGEBRAIC

CATEGORIES

Vec

(A,B)-Bimod

Alg

Com Alg

Fd Alg

Fd Alg

A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_X: X \rightarrow X$  $\forall X \in \mathcal{C}$ .
- 3:X→Y. At:M→X (4) Dt:M→A

SATISFYING

Associativity (hg)f = h(gf)

UNITALITY

$$id_{x}f = f$$
,  $gid_{x} = g$ 

... MORE EXAMPLES





A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOMG(X,Y) ∀X,Y ∈ C.
- (c)  $id_X: X \rightarrow X$  $\forall X \in \mathcal{C}$ .
- 3:X→ Y. ∀ f:W→ Y. (γ) Df: W→ A.

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

UNITALITY
idxf=f, gidx=g

... MORE EXAMPLES











A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOMe(X,Y) YX,Y ∈ C.
- (c)  $id_X: X \rightarrow X$  $\forall X \in \mathcal{C}$ .
- $\begin{array}{c}
  3:X \to X \\
  4 & \text{f:} M \to X
  \end{array}$

SATISFYING
ASSOCIATIVITY
(hg)f = h(gf)
UNITALITY

idx f = f, gidx = g

... MORE EXAMPLES



Aff REGULAR MAPS

GEOMETRIC/ TOPOLOGICAL CATEGORIES

TOP TOPOLOGICAL SPACES
(CONTINUOUS MAPS







CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS Home(x,y) YX,Y EG.
- (c)  $id_X:X \rightarrow X$ AXEG.

SATISFYING ASSO CIATIVITY (hg)f = h(gf)UNITALITY

idx f = f, gidx = g

Set LOGICAL CATEGORICAL ATEGORIES

... MORE EXAMPLES

Aff GEOMETRIC) TOPOLOGICAL CATEGORIES TOP

Rep(A) ComRing A-Mod ALGEBRAIC Mod-A CATEGORIES (A,B)-Bimod FdVec A-Bimod Fd Alg

CATEGORIES

COMBINATORIA CATEGORIES

CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS Home(x,y) YX,YEG.
- (c)  $id_X:X \rightarrow X$ XXEC.

SATISFYING ASSO CIATIVITY (hg)f = h(gf)

UNITALITY idx f = f, gidx = g ... MORE EXAMPLES Cat Set ComRing A-Mod LOGICAL ALGEBRAIC CATEGORICAL Mod-A CATEGORIES ATEGORIES (A,B)-Bimod A-Bimod

Aff GEOMETRIC/ TOPOLOGICAL LATEGORIES lop

Bin Fd Alg COMBINATORIAL CATEGORIES

GRAPHS

FUNCTIONS SENDING VERTICES TO VERTICES FPRESERVING INCIDENCE

FdVec

ANALYTIC

CATEGORIES

Hilb

A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y e.e.
- (c)  $id_X: X \rightarrow X$  $\forall X \in \mathcal{C}$ .
- $\begin{array}{c}
  3:X \to X \\
  4 & \text{f:} M \to X
  \end{array}$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

unitality
idxf=f, gidx=g

.... MORE EXAMPLES Group Cat Ring Set Rep(A) ComRing A-Mod LOGICAL ALGEBRAIC CATEGORICAL Mod-A CATEGORIES LATEGORIES (A,B)-Bimod Fallec A-Bimod ComAlg Aff Bin Fd Alg GEOMETRIC) Poset TOPOLOGICAL LATEGORIES Hilb COMBINATORIAL CATEGORIES TOP ANALYTIC Graph CATEGORIES

CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS Home(x,y) Axidea.
- (c)  $id_{\chi}: \chi \rightarrow \chi$ YXEC.
- (9) 92 : M → A

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

UNITALITY idx f = f, g idx = g

A CATEGORY & .... MORE EXAMPLES ??

EXERCISE 2.6 IS THE FOLLOWING A CATEGORY?

80s Music:

- OBJECTS = PERSONS
- If & Hom 80s Music (Person A, Person B)
  - ⇔ Person A & Person B BOTH LIKE
    A CERTAIN TRACK FROM THE 1980s.

## CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS Home(x,y) YX,Y EG.
- (c)  $id_X:X \rightarrow X$ AXEG.
- (4) 2+: M→Y

SATISFYING ASSO CIATIVITY (hg)f = h(gf)

UNITALITY idx f = f, g idx = g

# A CATEGORY & .... MORE EXAMPLES ??

EXERCISE 2.6 IS THE FOLLOWING A CATEGORY?

#### 80s Music:

- OBJECTS = PERSONS
- If & Hom 80s Music (Person A, Person B)
  - A CERTAIN TRACK FROM THE 1980s.

#### MAKE UP A WEIRD EXAMPLE



A CATEGORY &

CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y E.
- (c)  $id_X: X \rightarrow X$  $\forall X \in \mathcal{C}$ .
- 3:X→ Y. β:M→X γ:M→ γ

SATISFYING

Associativity (hg)f = h(gf)

UNITALITY

SOME OPERATIONS ON CATEGORIES -

### A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .
- $\begin{array}{c} 3:X \to \lambda \\ A \neq :M \to X \end{array}$

SATISFYING

ASSOCIATIVITY (hg)f = h(gf)

UNITALITY

$$idx f = f$$
,  $gidx = g$ 

#### SOME OPERATIONS ON CATEGORIES -

GIVEN A CATEGORY &,

ITS OPPOSITE CATEGORY 8°P IS A CATEGORY DEFINED BY

- OP( $\mathcal{E}_{ob}$ ) = OP( $\mathcal{E}$ )
- · 3f∈ Homeof(x,y) ⇔ 3f∈ Home(y,x)

= REVERSE DIRECTION OF MORPHISMS =

## A CATEGORY & CONSISTS OF:

- (a) OBJECTS.
- (b) MORPHISMS HOME(X,Y) YX,Y EC.
- (c)  $id_{\chi}: \chi \rightarrow \chi$  $\forall \chi \in \mathcal{C}$ .

$$\begin{array}{c} 3:X \to \lambda \\ A \neq :M \to X \end{array}$$

SATISFYING ASSOCIATIVITY (hg)f = h(gf)

idxf=f, gidx=g

#### SOME OPERATIONS ON CATEGORIES -

GIVEN A CATEGORY &,
ITS OPPOSITE CATEGORY 8°P IS A CATEGORY DEFINED BY

- Jf∈ Homeop(X,Y) ⇒ Jf∈ Home (Y,X)
   = REVERSE DIRECTION OF MORPHISMS =

GIVEN CATEGORIES & AND &',

ITS PRODUCT CATEGORY EXE IS A CATEGORY DEFINED BY

- Ob(&x&') = {(x,x') | x∈&, x'∈&')
- Homexer((x,x'),(y,y'))
   = { (9,9') | ge Home (x,y), g'e Home (x',y')}

= THINK ABOUT COMPOSITION OF MORPHISMS =

RECALL UNIVERSAL PROPERTY ...

GIVEN A GADGET X,

A UNIVERSAL STRUCTURE ATTACHED TO X VIA & (or &') IS A STRUCTURE Univ(X)

.3. Y ARBITRARY STRUCTURES Arb(x) ATTACHED TO X VIA B (OR B')

3! STRUCTURE MAP & (OR &') MAKING THE DIAGRAM COMMUTE:





FORM I

RECALL UNIVERSAL PROPERTY ...

GIVEN A GADGET X,

A UNIVERSAL STRUCTURE ATTACHED TO X VIA & (or &')
IS A STRUCTURE Univ(X)

.7. Y ARBITRARY STRUCTURES Arb(x) ATTACHED TO X VIA B (OR B')

3! STRUCTURE MAP & (OR 8') MAKING THE DIAGRAM COMMUTE:





RECALL UNIVERSAL PROPERTY ...

GIVEN A GADGET X,



A UNIVERSAL STRUCTURE ATTACHED TO X VIA  $\alpha_{x}$  (or  $\alpha_{x}'$ )

IS A STRUCTURE Univ(X)

.7. Y ARBITRARY STRUCTURES Arb(x) ATTACHED TO X VIA BX (OR BX)

3! STRUCTURE MAP &x (OR 8x) MAKING THE DIAGRAM COMMUTE:





### UNIVERSAL PROPERTY



FORMI



Univ(X) DOESN'T
HAVE TO EXIST.

IF EXISTS, THEN

IT'S WIQUE

UP TO 150.

WE DON'T HAVE "ELEMENTS"/
TO WORK WITH IN GENERAL

THIS IS THE MAIN WAY

WE'LL DO COMPUTATIONS

NAMING
Univ(X) IS ATTACHED TO X VIA & (OR &)

### UNIVERSAL PROPERTY



FORMI



Univ(X) DOESN'T
HAVE TO EXIST.

IF EXISTS, THEN

IT'S WIQUE

UP TO 150.

WE DON'T HAVE "ELEMENTS"/
TO WORK WITH IN GENERAL

THIS IS THE MAIN WAY

WE'LL DO COMPUTATIONS

NAMING

Univ(X) IS ATTACHED TO X VIA & (OR &)

SOMETIMES WE ONLY NAME THIS

WHEN BUILDING UNIVERSAL CONSTRUCTIONS

### UNIVERSAL PROPERTY



FORMI



Univ(X) DOESN'T
HAVE TO EXIST.

IF EXISTS, THEN

IT'S WIQUE

UP TO 150.

WE DON'T HAVE "ELEMENTS"/
TO WORK WITH IN GENERAL

THIS IS THE MAIN WAY

WE'LL DO COMPUTATIONS

NAMING

Univ(X) IS ATTACHED TO X VIA XX(OR XX)

SOMETIMES WE ONLY HAME THIS
WHEN BUILDING UNIVERSAL CONSTRUCTIONS

### UNIVERSAL PROPERTY



FORMI



Univ(X) DOESN'T HAVE TO EXIST. IF EXISTS, THEN

IF EXISTS, THEN IT'S WHIQUE UP TO 150. WE DON'T HAVE "ELEMENTS"/
TO WORK WITH IN GENERAL

THIS IS THE MAIN WAY

WE'LL DO COMPUTATIONS

NAMING

Univ(X) IS ATTACHED TO X VIA XX(OR XX)

SOMETIMES WE NAME BOTH

WHEN BUILDING UNIVERSAL CONSTRUCTIONS

### UNIVERSAL PROPERTY



FORMI



Univ(X) DOESN'T HAVE TO EXIST.

IF EXISTS, THEN IT'S UNIQUE UP TO 150. WE DON'T HAVE "ELEMENTS"/
TO WORK WITH IN GENERAL

THIS IS THE MAIN WAY

WE'LL DO COMPUTATIONS

### NAMING

Univ(X) IS ATTACHED TO X VIA &x(or &x)

SOMETIMES WE NAME BOTH
WHEN BUILDING UNIVERSAL CONSTRUCTIONS

EX.

WILL BUILD "KERNEL" = DOBJECT "ker(f)"

OF A MORPHISM  $f: X \rightarrow Y$   $ker(f) \xrightarrow{\alpha f} X$ 

### UNIVERSAL PROPERTY



FORMI



Univ(X) DOESN'T HAVE TO EXIST.

IF EXISTS, THEN IT'S WHOME UP TO 150. WE DON'T HAVE "ELEMENTS"/
TO WORK WITH IN GENERAL

THIS IS THE MAIN WAY

WE'LL DO COMPUTATIONS

NAMING

Univ(X) IS ATTACHED TO X VIA &x(or &x)

SOMETIMES WE NAME BOTH

WHEN BUILDING UNIVERSAL CONSTRUCTIONS

EX.

WILL BUILD "KERNEL" = DOBJECT "ker(f)"

OF A MORPHISM  $f: X \rightarrow Y$   $ker(f) \xrightarrow{\alpha f} X$ 

### UNIVERSAL PROPERTY



FORMI



Univ(X) DOESN'T
HAVE TO EXIST.

IF EXISTS. THEN

IF EXISTS, THEN IT'S WIQUE UP TO 150. WE DON'T HAVE "ELEMENTS"/
TO WORK WITH IN GENERAL

THIS IS THE MAIN WAY

WE'LL DO COMPUTATIONS

### NAMING

Univ(X) IS ATTACHED TO X VIA XX(OR XX)

SOMETIMES WE NAME BOTH

WHEN BUILDING UNIVERSAL CONSTRUCTIONS

EX.

WILL BUILD "KERNEL" = DBJECT "ker(f)"

EQUIPPED WITH

MORPHISM

ker(f)  $\xrightarrow{\sim f}$  X

### UNIVERSAL PROPERTY



FORMI



Univ(X) DOESN'T HAVE TO EXIST.

IF EXISTS, THEN IT'S WIQUE UP TO 150. WE DON'T HAVE "ELEMENTS"/
TO WORK WITH IN GENERAL

THIS IS THE MAIN WAY

WE'LL DO COMPUTATIONS

NAMING

Univ(X) IS ATTACHED TO X VIA ~x(or ~x')

SOMETIMES WE NAME BOTH

WHEN BUILDING UNIVERSAL CONSTRUCTIONS

EX.

WILL BUILD "KERNEL" = DBJECT "ker(f)"

EQUIPPED WITH

OF A MORPHISM f:X-Y

ker(f)  $\xrightarrow{\sim f}$  X

#### II. UNIVERSAL CONSTRUCTIONS: INITIAL, TERMINAL, AND ZERO OBJECTS

UNIVERSAL PROPERTY



FORMI



Copyright © 2024 Chelsea Walton

UNIVERSAL PROPERTY



FORMI





FORM T

UNIVERSAL PROPERTY



FORMI = THINK ABOUT THE LINK=







FORM T

UNIVERSAL PROPERTY

# GIVEN A CATEGORY &:







AN OBJECT TEG IS TERMINAL IF VXEC 3! MORPHISM XO: X -> T.





FORM I

UNIVERSAL PROPERTY

# GIVEN A CATEGORY &:



FORMI





FORM II

= THINK ABOUT THE LINK=

UNIVERSAL PROPERTY

# GIVEN A CATEGORY &:



FORMI









FORM I

UNIVERSAL PROPERTY



FORMI







UNIVERSAL PROPERTY









UNIVERSAL PROPERTY

# GIVEN A CATEGORY &:







AN OBJECT TEG IS TERMINAL IF VXEG 3! MORPHISM XO: X -> T.







UNIVERSAL PROPERTY



FORMI







UNIVERSAL PROPERTY

# GIVEN A CATEGORY &:







AN OBJECT TEG IS TERMINAL IF YXE% ∃! MORPHISM , of: X -> T.





EXAMPLES Set Group Ring Vec Ø jej (e) NA (e)

FORM T

UNIVERSAL PROPERTY

# GIVEN A CATEGORY &:



FORMI



YXE% ∃! MORPHISM XO: X -> T.







UNIVERSAL PROPERTY

# GIVEN A CATEGORY &:









3! gx





UNIVERSAL PROPERTY



FORMI





| EXAMPLES | Set | Group | Ring | Vec                      |
|----------|-----|-------|------|--------------------------|
| I        | Ø   | le J  | Em J | !Z→R                     |
| Τ        | ?•9 | leg   | _    | 12 - 72R<br>J! R ->> R/R |
| 0        | NA  | res   | NIA  |                          |

UNIVERSAL PROPERTY



FORMI





| EXAMPLES | Set | Group | Ring  | Vec |
|----------|-----|-------|-------|-----|
| I        | ø   | leg   | 7     | Ovs |
| Τ        | ?•9 | le J  | ORING | Ovs |
| 0        | NA  | leg   | NA    | Ovs |

UNIVERSAL PROPERTY









| EXAMPLES | Set | Group | Ring  | Vec               |
|----------|-----|-------|-------|-------------------|
| I        | ø   | leg   | 7     | $O_{\mathbf{v}z}$ |
| Τ        | {•J | leg   | ORING | $Q^{N2}$          |
| 0        | NA  | leJ   | NIA   | Ovs               |
| 0        | NA  | (e)   | NA    | 0v2               |

UNIVERSAL PROPERTY

GIVEN A CATEGORY & & OBJECTS X, YEG:







FORM I

UNIVERSAL PROPERTY

GIVEN A CATEGORY & & OBJECTS X, YE &:



FORMI





FORM I

UNIVERSAL PROPERTY

GIVEN A CATEGORY & & OBJECTS X, YE &:



FORMI



PRODUCT OF X AND Y



FORM I

UNIVERSAL PROPERTY

GIVEN A CATEGORY & & OBJECTS X, YE &:



FORMI







FORM I

UNIVERSAL PROPERTY

GIVEN A CATEGORY & & OBJECTS X, YEG:



FORMI







FORM I

UNIVERSAL PROPERTY

GIVEN A CATEGORY & & OBJECTS X, YE 6:



FORMI







UNIVERSAL PROPERTY

GIVEN A CATEGORY & & OBJECTS X, YE &:

Vec



FORMI



FORM T

EXAMPLES Set Group Ring

L)

DISJOINT

UNION

CARTESIAN

PRODUCT



UNIVERSAL PROPERTY

GIVEN A CATEGORY & & OBJECTS X, YE &:



FORMI







UNIVERSAL PROPERTY

GIVEN A CATEGORY & & OBJECTS X, YE 6:



FORMI







COPRODUCT OF X AND Y

UNIVERSAL PROPERTY

GIVEN A CATEGORY & & OBJECTS X, YE &:

PRODUCT OF X AND Y



FORMI











EXAMPLE: X LI I = X FOR AND KE C.



EXAMPLE: X U I = X FOR AND KE 6.

PF/ HAVE 
$$X \xrightarrow{\alpha_{X}} X \coprod I \xleftarrow{\alpha_{I}} I$$

$$\beta_{X} = id_{X} \qquad \qquad \beta_{X} = \beta_{I}$$

$$C$$

: 
$$\forall \alpha_{x} = id_{x}$$
 STS:  $\alpha_{x} \forall = id_{x}$ 















PRODUCT OF OBJECTS











LIKEWISE XUIZX ZIUX AND XNT = X = TMX for Any X & C.



<u>UKEWISE</u> XUI = X = IUX AND XNT = X = TMX for Ang X \in \mathbb{E}.

THINK ABOUT THIS IN THE CONTEXT OF:

| EXAMPLES | Set | Group | Ring  | Vec |  |
|----------|-----|-------|-------|-----|--|
| I        | ø   | le J  | Z     | Ovs |  |
| Τ        | {•9 | leJ   | ORING | Ovs |  |
| 0        | NA  | (e)   | NIA   | Ovs |  |

| EXAMPLES | Set                       | Group                  | Ring                   | Vec                    |
|----------|---------------------------|------------------------|------------------------|------------------------|
| Ц        | TMIOESIQ<br>HOINN         | €<br>FREE<br>PRODUCT   | ₩<br>FREE<br>PRODUCT   | O<br>DIRECT<br>SUM     |
| П        | X<br>Cartesian<br>Product | X<br>DIRECT<br>PRODUCT | X<br>DIRECT<br>PRODUCT | X<br>DIRECT<br>PRODUCT |

MATH 466/566 SPRING 2024

CHELSEA WALTON RICE U.

LECTURE #6

TOPICS:

Z. CATEGORIES

(§2.1)

II. UNIVERSAL CONSTRUCTIONS (§2.2.1) JI, TI

NEXT TIME: MORE & ABELIAN CATEGORIES

# Enjoy this lecture? You'll enjoy the textbook!

## C. Walton's "Symmetries of Algebras, Volume 1" (2024)



**Available for purchase at:** 

619 Wreath (at a discount)

https://www.619wreath.com/

Also on Amazon & Google Play

<u>Lecture #6 keywords</u>: category, coproduct of objects, initial object, morphism, product of objects, object, terminal object, universal construction, zero object