MATH $466 / 566$
SPRING 2024

LAST TIME

- simple alas.
- semisimple alas.
- separable alga.
chelsea walton RICE U.

LECTURE \#6

TOPICS:
I. CATEGORIES
(\$2.1)
II. UNIVERSAL CONSTRUCTIONS (\$2.2.1)
I. CATEGORIES
"Category theory is the mathematics of mathematics."

- prof. eugenia cheng
I. CATEGORIES
"category theory is the mathematics of mathematics."
- prof. eugenia cheng

A CATEGORY ζ CONSISTS OF THE DATA:
(a) A COLLECTION OF OBJECTS Ob(द). WRITE $X \in \zeta$ FOR $X \in O G(Y)$.
(b)FOR EVERY PAIR OF OBJECTS $x, y \in \zeta_{l}$, A COLLECTION OF MORPH ISMS HOMe (x, y). WRITE $g: x \rightarrow Y$ FOR $g \in H_{O} M_{c}(x, y)$.
I. CATEGORIES
"category theory is the mathematics of mathematics."

- prof. eugenia cheng

A CATEGORY ζ CONSISTS OF THE DATA:
(a) A COLLECTION OF OBJECTS Ob(द). WRITE $X \in \zeta$ FOR $X \in O G(Y)$.
(b)FOR EVERY PAIR OF OBJECTS $x, y \in \varphi_{e}$, A COLLECTION OF MORPH ISMS HOMe (x, y). WRITE $g: X \rightarrow Y$ FOR $g \in H_{C O}(x, y)$.
(c) FOR EVERY OBJECT $x \in \zeta_{\text {, }}$, AN IDENTITY MORPHISM id $x: X \rightarrow X$.
I. CATEGORIES
"category theory is the mathematics of mathematics."

- prof. eugenia cheng

A CATEGORY ζ CONSISTS OF THE DATA:
(a) A COLLECTION OF OBJECTS Ob(द). WRITE $X \in \zeta$ FOR $X \in O G(Y)$.
(b)FOR EVERY PAIR OF OBJECTS $x, y \in \varphi_{e}$, A COLLECTION OF MORPH ISMS HOMe (x, y). WRITE $g: x \rightarrow Y$ FOR $g \in H_{C} M_{c}(x, y)$.
(c) FOR EVERY OBJECT $X \in \zeta_{\text {, }}$, AN IDENTITY MORPHISM id $x: X \rightarrow X$.
(d) FOR EVERY PAIR OF MORPHISMS

$$
f: w \rightarrow x \text { AND } g: x \rightarrow y,
$$

A COMPOSITE MORPHISM $g f:=g \circ f: W \rightarrow Y$.
I. CATEGORIES
"category theory is the mathematics of mathematics."

- prof. eugenia cheng

A CATEGORY ζ CONSISTS OF THE DATA:
(a) A COLLECTION OF OBJECTS Ob(b). WRITE $X \in \zeta$ FOR $X \in O G(Y)$.
(b)FOR EVERY PaIR OF OBJECTS $x, y \in \zeta_{e}$, A COLLECTION OF MORPH ISMS HOMe (x, y). WRITE $g: X \rightarrow Y$ FOR $g \in H_{C O}(x, y)$.
(c) FOR EVERY OBJECT $X \in \zeta_{\text {, }}$,

AN IDENTITY MORPHISM id $x: X \rightarrow X$.
(d) FOR EVERY PAIR OF MORPHISMS

$$
f: w \rightarrow x \text { AND } g: x \rightarrow y,
$$

A COMPOSITE MORPHISM $g f:=g \circ f: W \rightarrow Y$.

THIS DATA MUST SATISFY THE AXIOMS:

ASSOCIATIVITY
$(h g) f=h(g f)$
$H_{0} M_{c}(w, z)$
UNITALITY

$i d_{x} f=f$	\notin	$g i d x=g$
\mathbb{N}		\mathbb{N}^{N}
$H_{0} M_{c}(w, x)$		$H_{0} M_{e}(x, y)$
$\forall f: w \rightarrow x$,	$g: x \rightarrow y$,	$h: y \rightarrow z$

I. CATEGORIES
use "Collection" instead of "SET"
(... TO AVOID ISSUES WITH

A CATEGORY C CONSISTS OF THE DATA:
(a) A COLLECTION OF OBJECTS Ob (b).
(b)FOR EVERY PAIR OF OBJECTS $x, y \in \varphi_{6}$, A COLLECTION OF MORPH ISMS HOMe (x, y).
(c) FOR EVERY OBJECT $X \in \zeta_{\text {, }}$,

AN IDENTITY MORPHISM id $X: X \rightarrow X$.
(d) FOR EVERY PAIR OF MORPHISMS $f: W \rightarrow x$ AND $g: x \rightarrow y$, A COMPOSITE MORPHISM $g f:=g \circ f: w \rightarrow y$.
"A SET OF SETS" (ATE) doesn't Exist

THIS DATA MUST SATISFY THE AXIOMS:

ASSOCIATIVITY
$(h g) f=h(g f)$
$H_{0} M_{c}(w, z)$

UNITALITY

$i d_{x} f=f$	\notin	$g i i_{x}=g$
\mathbb{N}	\mathbb{N}	
$H_{0} M_{C}(w, x)$	$H_{0} M_{C}(x, y)$	
$\forall f: w \rightarrow x$,	$g: x \rightarrow y$,	$h: y \rightarrow z$

I. CATEGORIES
use "Collection" instead of "set"

ACATEGORY ζ CONSISTS OF THE DATA:
SMALL
(a) A COLLECTION OF OBJECTS Ob(と).
(b) FOR EVERY PAIR OF OBJECTS $x, y \in \varphi_{1}$, A COCLECTION OF MORPH ISMS HOMe (x, y). \$ All MORPHISMS HOM(le) FORM A SET
(c) FOR EVERY OBJECT $X \in \varphi_{\text {, }}$,

AN IDENTITY MORPHISM id $X: X \rightarrow X$.
(d) FOR EVERY PAIR OF MORPHISMS $f: w \rightarrow x$ AND $g: x \rightarrow y$, A COMPOSITE MORPHISM $g f:=g \circ f: w \rightarrow y$.
special cases
.\because.
THIS DATA MUST
SATISFY THE AXIOMS:

ASSOCIATIVITY
$(h g) f=h(g f)$
Home (W, z)
unitality

I. CATEGORIES

ArCATEGORY C CONSISTS OF THE DATA
LOCAL SMALL
(a) A COLLECTION OF OBJECTS Ob(E).
(b)FOR EVERY PAIR OF OBJECTS $x, y \in \varphi_{e}$, A COLLECTION OF MORPH ISMS HOMe $e(x, y)$. \&THIS IS A SET $\forall x, y \in \zeta$. \top
(c) FOR EVERY OBJECT $X \in \zeta_{\text {, }}$,

AN IDENTITY MORPHISM id $x: X \rightarrow X$.
(d) FOR EVERY PAIR OF MORPHISMS

$$
f: w \rightarrow x \text { And } g: x \rightarrow y,
$$

A COMPOSITE MORPHISM $g f:=g \circ f: W \rightarrow y$.
special cases .${ }^{\circ}$
THIS DATA MUST
SATISFY THE AXIOMS:

ASSOCIATIVITY

$$
(h g) f=h(g f)
$$

$H_{0} M_{4}(w, z)$

UNITALITY

$i d_{x} f=f$	\notin	$g i d x=g$
\mathbb{N}		\mathbb{N}^{N}
$H_{0} M_{c}(w, x)$		$H_{0} M_{c}(x, y)$
$\forall f: w \rightarrow x$,	$g: x \rightarrow y$,	$h: y \rightarrow z$

I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS $\operatorname{HOM}_{C}(x, y)$ $\forall x, y \in C$.
(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow Y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFYING
ASSOCIATIVITY

$$
(h g) f=h(g f)
$$

UNITALITY

$$
i d_{x} f=f, g i d x=g
$$

I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS $\operatorname{HOM}_{C}(x, y)$ $\forall x, y \in \zeta_{\text {. }}$.
(c) id $x: x \rightarrow x$ $\forall x \in \varphi$.
(d) $g f: w \rightarrow Y$ $\forall f: W \rightarrow x$ $g: x \rightarrow y$.

SATISFYING
ASSOCIATIVITY

$$
(h g) f=h(g f)
$$

UNITALITY

$$
i d_{x} f=f, g i d x=g
$$

I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS $\operatorname{HOM}_{c}(x, y)$ $\forall x, y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow Y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFYING
ASSOCIATIVITY

$$
(h g) f=h(g f)
$$

UNITALITY

$$
i d_{x} f=f, g \text { id } x=g
$$

ABELIAN GROUPS \& Group Honors.
NOT "ABELLAN GROUP HOMOMS" C PROPERTY
I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPH ISMS $\operatorname{HOM}_{C}(x, y)$ $\forall x, y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow Y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFYING
ASSOCIATIVITY

$$
(h g) f=h(g f)
$$

UNITALITY

$$
i d x f=f, g i d x=g
$$

$A b$
ABELIAN GROUPS \ddagger GROUP HOMOMS.
NOT "ABELAN GROUp HOMOMS"

I. CATEGORIES

ACATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS $\operatorname{HOM}_{\varphi}(x, y)$ $\forall x, y \in C_{0}$.
(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFYING
ASSOCIATIVITY

$$
(h g) f=h(g f)
$$

unitality

$$
i d x f=f, g i d x=g
$$

Favec
FINITE DIM'L lk-VECTOR SPACES \& k-linear maps
I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS $\operatorname{HOM}_{c}(x, y)$ $\forall x, y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFYING
ASSOCIATIVITY
$(h g) f=h(g f)$
UNITALITY

$$
i d x f=f, g i d x=g
$$

I. CATEGORIES

A CATEGORY C ... MORE (NON-ALGEBRAIC) EXAMPLES LATER CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS $\operatorname{HOM}_{c}(x, y)$ $\forall x, y \in \zeta$.
(c)

$$
\begin{gathered}
i d x: x \rightarrow x \\
\forall x \in \zeta .
\end{gathered}
$$

(d)

$$
\begin{aligned}
g f: w & \rightarrow y \\
\forall f: w & \rightarrow x \\
g: x & \rightarrow y .
\end{aligned}
$$

SATISFYING
ASSOCIATIVITY

$$
(h g) f=h(g f)
$$

UNITALITY

$$
i d_{x} f=f, g \text { id } x=g
$$

LET'S STUDY MORPHISMS IN DETAIL...

$$
g: X \longrightarrow Y
$$

I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS $\operatorname{HOM}_{C}(x, y)$ $\forall x, y \in C_{0}$.
(c)

$$
\begin{gathered}
i d x: x \rightarrow x \\
\forall x \in \varphi .
\end{gathered}
$$

(d)

$$
\begin{array}{r}
g f: w \rightarrow y \\
\forall f: w \rightarrow x \\
g: x \rightarrow y .
\end{array}
$$

SATISFYING
ASSOCIATIVITY

$$
(h g) f=h(g f)
$$

UNITALITY

$$
i d_{x} f=f, g i d x=g
$$

LET'S STADY MORPHISMS IN DETAIC...

$$
\text { DOMAIN OFg } g: X \longrightarrow Y_{\text {CODDMAIN OF }}
$$

I. CATEGORIES

A CATEGORY ζ CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS $\operatorname{HOM}_{C}(x, y)$ $\forall x, y \in \zeta_{c}$.
(c) id $x: x \rightarrow x$ $\forall x \in \varphi$.
(d) $g f: w \rightarrow Y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFYING
ASSOCIATIVITY
$(h g) f=h(g f)$
UNITALITY

$$
i d x f=f, g i d x=g
$$

LET'S STUDY MORPHISMS IN DETAK ...

$$
\text { DOMAIN OFg } g: X \rightarrow Y_{\text {CODOMAIN OF }}
$$

g IS MONIC (OR IS A MONO)
IF IT IS
left-cancellative:
$\forall f, f^{\prime}: w \rightarrow X$ wITH $g f=g f^{\prime}$
WE GET $f=f^{\prime}$.
I. CATEGORIES

A CATEGORY ζ CONSISTS OF:
(a) $O B J E C T S$.
(b) MORPHISMS $\operatorname{HOM}_{C}(x, y)$ $\forall x, y \in \zeta_{c}$.
(c) id $x: x \rightarrow x$ $\forall x \in \varphi$.
(d) $g f: w \rightarrow Y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFYING
ASSOCIATIVITY
$(h g) f=h(g f)$
unitality

$$
i d x f=f, g i d x=g
$$

LET'S STUDY MORPHISMS IN DETAK ...

$$
\text { DOMAIN OFg } g: X \rightarrow Y_{\text {CODOMAIN OF }}
$$

g IS MONIC (OR IS A MONO)
IF IT IS
left-cancellative:
$\forall f, f^{\prime}: w \rightarrow X$ wITH $g f=g f^{\prime}$
WE GET $f=f^{\prime}$.
HERE: $X:=(x, g)$ IS A
subobject of X
I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) $O B J E C T S$.
(b) MORPHISMS $\operatorname{HOM}_{C}(x, y)$ $\forall x, y \in \zeta_{c}$.
(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow Y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFYING
ASSOCIATIVITY
$(h g) f=h(g f)$
UNITALITY

$$
i d x f=f, g i d x=g
$$

LET'S STUDY MORPHISMS IN DETAK ...
DOMAIN OF $g: X \rightarrow Y_{\text {codomaln of } g}$
g IS MONIC (OR IS A MONO)
IF IT IS
left-cancellative:
$\forall f, f^{\prime}: w \rightarrow X$ wITH $g f=g f^{\prime}$ WE GET $f=f^{\prime}$.

HERE: $X:=(x, g)$ IS A
subobject of X
g IS EPIC (OR IS AN EPI)
IF IT IS
RIGHT-CANCELLATIVE:
$\forall h, h^{\prime}: y \rightarrow z$ WITH $h g=h^{\prime} g$ WE GET $h=h^{\prime}$.

HERE: $y:=(y, g)$ IS A QUOTIENT OBJECT OF Y
I. CATEGORIES

A CATEGORY G CONSISTS OF:
(a) OBJECTS.
(b) MORPH ISMS $\operatorname{HOM}_{c}(x, y)$ $\forall x, y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFYING
ASSOCIATIVITY
$(h g) f=h(g f)$
unitality

$$
i d_{x} f=f, g \text { id } x=g
$$

LETS STUDY MORPHISMS IN DETAIL...

$$
\text { DOMAIN OF g } g: X \rightarrow Y_{\text {CODOMAIN OF }}
$$

g IS MONIC (OR IS A MONO)
IF IT IS
left-cancellative:
$\forall f, f^{\prime}: w \rightarrow X$ wITH $g f=g f^{\prime}$ WE GET $f=f^{\prime}$.

HeRE: $X:=(x, g)$ IS A
SUbObJECT OF X
g IS EPIC (OR IS AN EPI)
IF IT IS
RIGHT-CANCELLATIVE:
$\forall h, h^{\prime}: y \rightarrow z$ WITH $h g=h^{\prime} g$ WE GET $h=h^{\prime}$.

HERE: $y:=(y, g)$ IS A QUOTIENT OBJECT OF Y

EXERCISE 2.2
MONO IN $A b \equiv$ INJECTIVE GROUP HOMOM.
UPI IN $A b \equiv$ SURJECTIVE GROUP HOMOM.
I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPH ISMS $\operatorname{HOM}_{c}(x, y)$ $\forall x, y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFYING
ASSOCIATIVITY $(h g) f=h(g f)$
unitality

$$
i d_{x} f=f, g \text { id } x=g
$$

LET'S STUDY MORPHISMS IN DETAK ...
DOMAIN OF $g: X \rightarrow Y_{\text {codomaln of } g}$
g IS MONIC (OR IS A MONO)
IF IT IS
left-cancellative:
$\forall f, f^{\prime}: w \rightarrow X$ wITH $g f=g f^{\prime}$ WE GET $f=f^{\prime}$.

HERE: $X:=(x, g)$ IS A
SUBOBJECT OF X
g IS EPIC (OR IS AN EPI)
IF IT IS
RIGHT-CANCELLATIVE:
$\forall h, h^{\prime}: y \rightarrow z$ WITH $h g=h^{\prime} g$ WE GET $h=h^{\prime}$.

HERE: $y:=(y, g)$ IS A QUOTIENT OBJECT OF Y
g IS AN ISO IF $\exists g^{\prime} \in \operatorname{HOM}_{C}(y, x)$
.. $g^{\prime} g=i d x$ AND $g g^{\prime}=i d y$.
HERE: WRITE $g^{\prime}=: g^{-1}$ AND $X \cong Y$.
I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPH ISMS $H_{0} M_{e}(x, y)$ $\forall x, y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \mathcal{C}$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFyING
ASSOCIATiVITY
$(h g) f=h(g f)$
unitality

$$
i d x f=f, g i d x=g
$$

LET'S STUDY MORPHISMS IN DETAK ...
DOMAIN OF $g: X \rightarrow Y_{\text {codomaln of } g}$
g IS MONIC (OR IS A MONO)
IF IT IS
left-cancellative:
$\forall f, f^{\prime}: w \rightarrow X$ wITH $g f=g f^{\prime}$ WE GET $f=f^{\prime}$.

HERE: $X:=(x, g)$ IS A
SUBOBJECT OF X
g IS AN ISO IF $\exists g^{\prime} \in \operatorname{HOM}_{C}(y, x)$
.. $g^{\prime} g=i d x$ AND $g g^{\prime}=i d y$.
HERE : WRITE $g^{\prime}=: g^{-1}$ AND $X \cong Y$.
ISO IN Ab 三
g IS EPIC (OR IS AN EPI)
IF IT IS
RIGHT-CANCELLATIVE:
$\forall h, h^{\prime}: y \rightarrow z$ WITH $h g=h^{\prime} g$ WE GET $h=h^{\prime}$.

HERE: $y:=(y, g)$ IS A QUOTIENT OBJECT OF Y

FROM EXERCISE 2.2
BIJECTIVE GROUP HOMO.

$$
\equiv \text { GROUP ISOM. }
$$

I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPH ISMS $H_{0} M_{e}(x, y)$ $\forall x, y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \mathcal{C}$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFyING
ASSOCIATVITIT
$(h g) f=h(g f)$
unitality

$$
i d x f=f, g i d x=g
$$

LET'S STUDY MORPHISMS IN DETAK ...
DOMAIN OF $g: X \rightarrow Y_{\text {codomaln of } g}$
g IS MONIC (OR IS A MONO)
IF IT IS
left-cancellative:
$\forall f, f^{\prime}: w \rightarrow X$ wITH $g f=g f^{\prime}$ WE GET $f=f^{\prime}$.

HERE: $X:=(x, g)$ IS A
SUBOBJECT OF X
g IS EPIC (OR IS AN EPI) IF IT IS
RIGHT-CANCELLATIVE:
$\forall h, h^{\prime}: y \rightarrow z$ WITH $h g=h^{\prime} g$ WE GET $h=h^{\prime}$.

HERE: $y:=(y, g)$ IS A QUOTIENT OBJECT OF Y
g IS AN ISO IF $\exists g^{\prime} \in \operatorname{HOM}_{C}(y, x)$
.. $g^{\prime} g=i d x$ AND $g g^{\prime}=i d y$.
HERE: WRITE $g^{\prime}=: g^{-1}$ AND $X \cong Y$.

I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPH ISMS $H_{0} M_{e}(x, y)$ $\forall x, y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \mathcal{C}$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFyING
ASSOCIATiVITY

$$
(h g) f=h(g f)
$$

unitality

$$
i d_{x} f=f, g i d x=g
$$

LET'S STUDY MORPHISMS IN DETAK ...
DOMAIN OF $g: X \rightarrow Y_{\text {codomaln of } g}$
g IS MONIC (OR IS A MONO)
IF IT IS
left-cancellative:
$\forall f, f^{\prime}: w \rightarrow X$ wITH $g f=g f^{\prime}$ WE GET $f=f^{\prime}$.

HERE: $X:=(x, g)$ IS A
SUBOBJECT OF X
g IS AN ISO IF $\exists g^{\prime} \in \operatorname{HOM}_{C}(y, x)$
.7. $g^{\prime} g=i d x$ AND $g g^{\prime}=i d y$.
HERE: WRITE $g^{\prime}=: g^{-1}$ AND $X \cong Y$.
g IS EPIC (OR IS AN EPI)
IF IT IS
RIGHT-CANCELLATIVE:
$\forall h, h^{\prime}: y \rightarrow z$ WITH $h g=h^{\prime} g$ WE GET $h=h^{\prime}$.

HERE: $y:=(y, g)$ IS A QUOTIENT OBJECT OF Y
I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPH ISMS $H_{0} M_{e}(x, y)$ $\forall x, y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \mathcal{C}$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFyING
Associativity
$(h g) f=h(g f)$
unitality

$$
i d x f=f, g i d x=g
$$

LET'S STUDY MORPHISMS IN DETAK ...
DOMAIN OF $g: X \rightarrow Y_{\text {codomaln of } g}$
g IS MONIC (OR IS A MONO)
IF IT IS
left-cancellative:
$\forall f, f^{\prime}: w \rightarrow X$ wITH $g f=g f^{\prime}$ WE GET $f=f^{\prime}$.

HeRE: $X:=(x, g)$ IS A
SUBOBJECT OF X
g IS EPIC (OR IS AN EPI)
IF IT IS
RIGHT-CANCELLATIVE:
$\forall h, h^{\prime}: y \rightarrow z$ WITH $h g=h^{\prime} g$ WE GET $h=h^{\prime}$.

HERE: $y:=(y, g)$ IS A QUOTIENT OBJECT OF Y
g IS AN ISO IF $\exists g^{\prime} \in H_{O} M_{C}(y, x)$
.7. $g^{\prime} g=i d x$ AND $g g^{\prime}=i d y$.
HERE: WRITE $g^{\prime}=: g^{-1}$ AND $X \cong Y$.

I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPH ISMS $H_{0} M_{e}(x, y)$ $\forall x, y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \mathcal{C}$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFyING
ASSOCIATVITIT
$(h g) f=h(g f)$
unitality

$$
i d x f=f, g i d x=g
$$

LET'S STUDY MORPHISMS IN DETAK ...
DOMAIN OF $g: X \rightarrow Y_{\text {codomaln of } g}$
g IS MONIC (OR IS A MONO)
IF IT IS
left-cancellative:
$\forall f, f^{\prime}: w \rightarrow X$ wITH $g f=g f^{\prime}$ WE GET $f=f^{\prime}$.

HeRE: $X:=(x, g)$ IS A
SUBOBJECT OF X
g IS EPIC (OR IS AN EPI)
IF IT IS
RIGHT-CANCELLATIVE:
$\forall h, h^{\prime}: y \rightarrow z$ WITH $h g=h^{\prime} g$ WE GET $h=h^{\prime}$.

HERE: $y:=(y, g)$ IS A QUOTIENT OBJECT OF Y
g IS AN ISO IF $\exists g^{\prime} \in \operatorname{HOM}_{C}(y, x)$
.7. $g^{\prime} g=i d x$ AND $g g^{\prime}=i d y$.
HERE: WRITE $g^{\prime}=: g^{-1}$ AND $X \cong Y$.

I. CATEGORIES

I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPH ISMS $H_{0} M_{e}(x, y)$ $\forall x, y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \mathcal{C}$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFyING
ASSOCIATVITIT
$(h g) f=h(g f)$
unitality

$$
i d x f=f, g i d x=g
$$

.... LET'S CHECK OUT SUBSTRUCTURES
LETS STUDY MORPHISMS IN DETAIL...

$$
\text { DOMAIN OF } g: X \rightarrow Y_{\text {CODDMAIN OF } g}
$$

g IS MONIC (OR IS A MONO) IF IT IS
LEFT-CANCELLATIVE:
$\forall f, f^{\prime}: w \rightarrow X$ wITH $g f=g f^{\prime}$ WE GET $f=f^{\prime}$.

HERE: $X:=(x, g)$ IS A
SUBOBJECT OF X
g IS EPIC (OR IS AN EPI)
IF IT IS
RIGHT-CANCELLATIVE:
$\forall h, h^{\prime}: y \rightarrow z$ WITH $h g=h^{\prime} g$ WE GET $h=h^{\prime}$.

HERE: $y:=(y, g)$ is A QUOTIENT OBJECT OF Y

I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS $H_{0} M_{e}(x, y)$ $\forall x, y \in \zeta$.
(c) id $\begin{aligned} & : x \rightarrow x \\ \forall & \rightarrow \zeta .\end{aligned}$
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.
SATISFyING
Associativity

$$
(h g) f=h(g f)
$$

unitality

$$
i d_{x} f=f, g i d x=g
$$

A SUBCATEGORY D OF C CONSISTS OF:
(a) A SUBCOLLECTION Ob(A) OF OB(C).
(b) A subcollection $\operatorname{Hom}(\theta)$ of $\operatorname{Hom}(\xi)$.
I. CATEGORIES

ACATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS HoMe (x, y) $\forall x, y \in \mathscr{C}$.
(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFyING Associativity $(h g) f=h(g f)$
unitality

$$
i d_{x} f=f, g i d x=g
$$

A SUBCATEGORY D OF φ CONSISTS OF:
(a) A SUBCOLLECTION Ob(A) OF OB(C).
(b) A sUbCOLLECTION HOm(D) OF Hom(H).

SUCH That

- $X \in \theta \Longrightarrow i d_{x} \in \operatorname{Hom}(\theta)$.
- $f \in \operatorname{Hom}(\theta) \Rightarrow \operatorname{domain}(f)$, codomain $(f) \in O b(\theta)$.
- $f, g \in \operatorname{HOM}(\theta)$ WITH $\operatorname{codomain}(f)=\operatorname{domain}(g)$

$$
\Rightarrow \quad g f \in H_{O M}(\theta)
$$

I. CATEGORIES

$$
\begin{aligned}
& \text { ACATEGORY } \zeta \\
& \text { CONSISTS OF: } \\
& \text { (a) OBJECTS. } \\
& \text { (b) MORPHISMS } \\
& \text { HOMC }(x, y) \\
& \forall x, y \in \zeta .
\end{aligned}
$$

(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFYING associativity $(h g) f=h(g f)$
UNITALITY

$$
i d x f=f, g i d x=g
$$

A SUBCATEGORY D OF C CONSISTS OF:
(a) A SUBCOLLECTION Ob(A) OF OB(e).
(b) A subcollection Hom(A) of Hom(द).
such that

- $X \in \theta \Rightarrow i d_{x} \in \operatorname{Hom}(\theta)$.
- $f \in \operatorname{Hom}_{\mathrm{M}}(\theta) \Rightarrow \operatorname{domain}(f), \operatorname{codomain}(f) \in O b(\theta)$.
- $f, g \in \operatorname{HOM}^{(\theta)}$ WITH codomain $(f)=\operatorname{domain}(g)$

$$
\Rightarrow \quad g f \in \operatorname{Hom}_{0}(\theta)
$$

A SUBCATEGORY D of C is FULL IF

$$
\operatorname{Hom}_{\Delta}(x, y)=\operatorname{Hom}_{e}(x, y) \quad \forall x, y \in \theta
$$

I. CATEGORIES

A CATEGORY G CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS $\operatorname{HOM}_{c}(x, y)$ $\forall x, y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow y$

SATISFYING
ASSOCIATIVITY
$(h g) f=h(g f)$
UNITALITY

$$
i d x f=f, g i d x=g
$$

A SUBCATEGORY θ OF Y CONSISTS OF:
(a) SUBCOLLECTION Ob(A) OF OB(C).
(b) SUBCOLLECTION
.. $\mathrm{Hom}(\theta)$ of $\mathrm{Hom}(\xi)$.

- $X \in \theta \Rightarrow i d x \in \operatorname{Hom}(\theta)$.
- $f \in \operatorname{Hom}_{\mathrm{m}}(\theta) \Rightarrow$ $\operatorname{dom}(f), \operatorname{codom}(f) \in \operatorname{Ob}(\theta)$.
- $f, g \in \operatorname{Hom}(\theta)$ with
$\operatorname{codom}(f)=\operatorname{dom}(g)$
$\Rightarrow g f \in H_{0 M}(\theta)$.
SUBCAT A of ζ IS FULL IF

$$
\begin{gathered}
\operatorname{Hom}_{\theta}(x, y)=\operatorname{Hom}_{\varphi}(x, y) \\
\forall x, y \in \theta .
\end{gathered}
$$

I. CATEGORIES
ACATEGORY ζ
CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS
HOMC (x, y)
$\forall X, Y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \varphi$.
(d) $g f: w \rightarrow y$
$\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFYING
ASSOCIATIVITY
$(h g) f=h(g f)$
UNITALITY

$$
i d x f=f, g \text { id } x=g
$$

A SUBCATEGORY θ OF C CONSISTS OF:
(a) SUBCOLLECTION $O b(A)$ OF OB(C).
(b) SUBCOLLECTION .. $\operatorname{HOM}(\theta)$ of $\operatorname{Hom}(\xi)$.

- $X \in \theta \Rightarrow i d_{x} \in \operatorname{Hon}(\theta)$.
- $f \in \operatorname{Hom}_{\mathrm{M}}(\theta) \Rightarrow$ $\operatorname{don}(f), \operatorname{codom}(f) \in \operatorname{Ob}(\theta)$.
- $f, g \in H_{O M}(\theta)$ WITH $\operatorname{codom}(f)=\operatorname{dom}(g)$ $\Rightarrow g f \in \operatorname{Hom}_{\mathrm{M}}(\theta)$.

SUBCAT D of ζ IS FULL IF

$$
\begin{gathered}
\operatorname{Hom}_{\theta}(x, y)=\operatorname{Hom}_{\varphi}(x, y) \\
\forall x, y \in \theta .
\end{gathered}
$$

I. CATEGORIES

$$
\begin{aligned}
& \text { ACATEGORY } \zeta \\
& \text { CONSISTS OF: } \\
& \text { (a) OBJECTS. } \\
& \text { (b) MORPHISMS } \\
& \text { HOM }(x, y) \\
& \forall X, Y \in \zeta .
\end{aligned}
$$

(c) id $\begin{aligned} & : x \rightarrow x \\ \forall x & \in \zeta .\end{aligned}$
(d) $g f: w \rightarrow y$
$\forall f: w \rightarrow x$

SATISFYING
ASSOCIATIVITY
$(h g) f=h(g f)$
UNITALITY

$$
i d_{x} f=f, g i d x=g
$$

A SUBCATEGORY θ OF C CONSISTS OF:
(a) SUBCOLLECTION $O b(A)$ OF OB(C).
(b) SUBCOLLECTION .. $\operatorname{HOM}(\theta)$ of $\operatorname{Hom}(\xi)$.

- $X \in \theta \Rightarrow i d_{x} \in \operatorname{Hor}(\theta)$.
- $f \in \operatorname{Hom}_{\mathrm{M}}(\theta) \Rightarrow$ $\operatorname{dom}(f), \operatorname{codom}(f) \in \operatorname{Ob}(\theta)$.
- $f, g \in H_{O M}(\theta)$ WITH $\operatorname{codom}(f)=\operatorname{dom}(g)$ $\Rightarrow g f \in \operatorname{Hom}_{\mathrm{M}}(\theta)$.

$$
\begin{gathered}
\text { SUBCAT } \theta \text { oF } \varphi \text { IS FULL IF } \\
\operatorname{HOM}_{\theta}(x, y)=\operatorname{HOM}_{\varphi}(x, y) \\
\forall x, y \in \theta .
\end{gathered}
$$

I. CATEGORIES
ACATEGORY ζ
CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS
HOMC (x, y)
$\forall X, Y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow y$
$\forall f: w \rightarrow x$

SATISFYING
ASSOCIATIVITY
$(h g) f=h(g f)$
UNITALITY

$$
i d_{x} f=f, g \text { id } x=g
$$

A SUBCATEGORY θ OF C CONSISTS OF:
(a) SUBCOLLECTION $O b(A)$ OF OB(C).
(b) SUBCOLLECTION .. $\operatorname{HOM}(\theta)$ of $\operatorname{Hom}(\xi)$.

- $X \in \theta \Rightarrow i d x \in \operatorname{Hon}(\theta)$.
- $f \in \operatorname{Hom}_{\mathrm{M}}(\theta) \Rightarrow$ $\operatorname{don}(f), \operatorname{codon}(f) \in \operatorname{Ob}(\theta)$.
- $f, g \in H_{O M}(\theta)$ WITH $\operatorname{codom}(f)=\operatorname{dom}(g)$ $\Rightarrow g f \in \operatorname{Hom}_{\mathrm{M}}(\theta)$.

SUBCAT D of ζ IS FULL IF

$$
\begin{gathered}
\operatorname{Hom}_{\theta}(x, y)=\operatorname{Hom}_{e}(x, y) \\
\forall x, y \in \theta
\end{gathered}
$$

$A b \equiv \operatorname{subc} A T E G O R y$ of Group
I. CATEGORIES
A CATEGORY G
CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS
HOMe (x, y)
$\forall X, Y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow y$

SATISFYING
ASSOCIATIVITY

$$
(h g) f=h(g f)
$$

UNITALITY

$$
i d x f=f, g i d x=g
$$

A SUBCATEGORY θ OF C CONSISTS OF:
(a) SUBCOLLECTION $O b(A)$ OF OB (C).
(b) SUBCOLLECTION .. $\operatorname{HOM}(\theta)$ of $\operatorname{Hom}(\xi)$.

- $X \in \theta \Rightarrow i d_{x} \in \operatorname{Hor}(\theta)$.
- $f \in \operatorname{Hom}_{\mathrm{M}}(\theta) \Rightarrow$ $\operatorname{don}(f), \operatorname{codom}(f) \in \operatorname{Ob}(\theta)$.
- $f, g \in H_{O M}(\theta)$ WITH $\operatorname{codom}(f)=\operatorname{dom}(g)$ $\Rightarrow g f \in \operatorname{Hom}_{\mathrm{M}}(\theta)$.

SUBCAT \triangle of ζ IS FULL IF $\operatorname{HOm}_{\theta}(x, y)=\operatorname{Hom}_{c}(x, y)$ $\forall x, y \in \theta$.

$A b \equiv \operatorname{subCATEGORy}$ of Group
Full because $\forall G, G^{\prime} \in A b$:
$f \in H_{\text {OM }}^{A b}\left(G, G^{\prime}\right)$ IS A GROUP HOMOM.
so $f \in$ Ho $_{\text {Group }}\left(G, G^{\prime}\right)$
\& VICE VERSA.
I. CATEGORIES

$$
\begin{aligned}
& \text { ACATEGORY } \zeta \\
& \text { CONSISTS OF: } \\
& \text { (a) OBJECTS. } \\
& \text { (b) MORPHISMS } \\
& \text { HOM }(x, y) \\
& \forall X, Y \in \zeta .
\end{aligned}
$$

(c) id $\begin{aligned} & : x \rightarrow x \\ \forall x & \in \zeta .\end{aligned}$
(d) $g f: w \rightarrow y$
$\forall f: w \rightarrow x$

SATISFYING
ASSOCIATIVITY
$(h g) f=h(g f)$
UNITALITY

$$
i d_{x} f=f, g i d x=g
$$

A SUBCATEGORY θ OF C CONSISTS OF:
(a) SUBCOLLECTION $O b(A)$ OF OB(C).
(b) SUBCOLLECTION .. $\operatorname{HOM}(\theta)$ of $\operatorname{Hom}(\xi)$.

- $X \in \theta \Rightarrow i d_{x} \in \operatorname{Hor}(\theta)$.
- $f \in \operatorname{Hom}_{\mathrm{M}}(\theta) \Rightarrow$ $\operatorname{dom}(f), \operatorname{codom}(f) \in O b(\theta)$.
- $f, g \in H_{O M}(\theta)$ WITH $\operatorname{codom}(f)=\operatorname{dom}(g)$ $\Rightarrow g f \in \operatorname{Hom}_{\mathrm{M}}(\theta)$.

$$
\begin{gathered}
\text { SUBCAT } \theta \text { of } \varphi \text { IS FULL IF } \\
\operatorname{HOM}_{\theta}(x, y)=\operatorname{HOM}_{\varphi}(x, y) \\
\forall x, y \in \theta .
\end{gathered}
$$

I. CATEGORIES
ACATEGORY ζ
CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS
HOMC (x, y)
$\forall X, Y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow y$
$\forall f: w \rightarrow x$

SATISFYING
ASSOCIATIVITY
$(h g) f=h(g f)$
UNITALITY

$$
i d_{x} f=f, g \text { id } x=g
$$

A SUBCATEGORY θ OF C CONSISTS OF:
(a) SUBCOLLECTION $O b(A)$ OF OB(C).
(b) SUBCOLLECTION .. $\operatorname{HOM}(\theta)$ of $\operatorname{Hom}(\xi)$.

- $X \in \theta \Rightarrow i d_{x} \in \operatorname{Hor}(\theta)$.
- $f \in \operatorname{Hom}_{\mathrm{M}}(\theta) \Rightarrow$ $\operatorname{don}(f), \operatorname{codom}(f) \in \operatorname{Ob}(\theta)$.
- $f, g \in H_{O M}(\theta)$ WITH $\operatorname{codom}(f)=\operatorname{dom}(g)$ $\Rightarrow g f \in \operatorname{Hom}_{\mathrm{M}}(\theta)$.

SUBCAT D of ζ IS FULL IF

$$
\begin{gathered}
\operatorname{Hom}_{\theta}(x, y)=\operatorname{Hom}_{\varphi}(x, y) \\
\forall x, y \in \theta .
\end{gathered}
$$

$$
\text { Ring } \equiv \operatorname{SUBCATEGORy~OF~Rng~}
$$

I. CATEGORIES

I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS $\operatorname{HOM}_{C}(x, y)$ $\forall x, y \in \varphi_{0}$.
(c) id $x: x \rightarrow x$ $\forall x \in \varphi$.
(d) $g f: w \rightarrow Y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFYING
ASSOCIATIVITY

$$
(h g) f=h(g f)
$$

UNITALITY

$$
i d_{x} f=f, g i d x=g
$$

I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS $H_{0} M_{e}(x, y)$ $\forall x, y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFYING
Associativity
$(\mathrm{hg}) \mathrm{f}=\mathrm{h}(\mathrm{gf})$
unitality

$$
i d_{x} f=f, g i d x=g
$$

- MORE EXAMPLES

I. CATEGORIES

$$
\begin{aligned}
& \text { A CATEGORY } \zeta \\
& \text { CONSISTS OF: } \\
& \text { (a) OBJECTS. } \\
& \text { (b) MORPHISMS } \\
& H_{C} M_{C}(x, y) \\
& \forall x, y \in \zeta .
\end{aligned}
$$

(c) id $x: x \rightarrow x$ $\forall x \in \mathcal{C}$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.
SATISFyING
Associativity

$$
(h g) f=h(g f)
$$

unitality

$$
i d_{x} f=f, g i d x=g
$$

- more examples

ф $\left\{\begin{array}{l}\text { No obJects } \\ \text { no morphisms }\end{array}\right.$

I. CATEGORIES

$$
\begin{aligned}
& \text { ACATEGORY } \zeta \\
& \text { CONSISTS OF: } \\
& \text { (a) OBJECTS. } \\
& \text { (b) MORPHISMS } \\
& H_{C} M_{\varphi}(x, y) \\
& \forall x, y \in \zeta .
\end{aligned}
$$

(c) id $x: x \rightarrow x$ $\forall x \in \mathcal{E}$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.
SATISFyING
Associativity

$$
(h g) f=h(g f)
$$

unitality

$$
i d_{x} f=f, g i d x=g
$$

...$M O R E ~ E X A M P L E S$
\varnothing $\left\{\begin{array}{l}\text { NO OBJECTS } \\ \text { NO MORPHISMS }\end{array} \quad \begin{array}{l}\text { SETS } \\ \text { FUNCT }\end{array}\right.$

I. CATEGORIES

$$
\begin{gathered}
\text { ACATEGORY C } \\
\text { CONSISTS OF: } \\
\text { (a) OBJECTS. } \\
\text { (b) MORPHISMS } \\
\text { HOMC }(x, y) \\
\forall X, Y \in \zeta .
\end{gathered}
$$

(c) id $x: x \rightarrow x$ $\forall x \in \varphi$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFYING
ASSOCIATIVITY
$(h g) f=h(g f)$
UNITALITY

$$
i d_{x} f=f, g i d_{x}=g
$$

... MORE EXAMPLES

I. CATEGORIES

ACATEGORY そ ... MORE EXAMPLES CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS $H_{0} M_{e}(x, y)$ $\forall x, y \in \mathcal{C}$.

(c) id $x: x \rightarrow x$ $\forall x \in \mathcal{C}$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFyING
Associativity

$$
(h g) f=h(g f)
$$

unitality

$$
i d_{x} f=f, g i d_{x}=g
$$

I. CATEGORIES

$$
\begin{aligned}
& \text { A CATEGORY } \zeta \\
& \text { CONSISTS OF: } \\
& \text { (a) OBJECTS. } \\
& \text { (b) MORPHISMS } \\
& \text { HOMe }(x, y) \\
& \forall X, Y \in \zeta .
\end{aligned}
$$

(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFYING ASSOCIATIVITY $(h g) f=h(g f)$ UNITALITY $i d_{x} f=f, g i d x=g$

- more examples

GEOMETRIC TOPOLOGICAL Categories
I. CATEGORIES

$$
\begin{aligned}
& \text { A CATEGORY } \zeta \\
& \text { CONSISTS OF: } \\
& \text { (a) OBJECTS. } \\
& \text { (b) MORPHISMS } \\
& \text { HO }(x, y) \\
& \forall x, y \in \zeta .
\end{aligned}
$$

(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow y$

$$
g: x \rightarrow y
$$

SATISFYING
ASSOCIATIVITY
$(h g) f=h(g f)$
UNITALITY

$$
i d x f=f, g i d x=g
$$

...MORE EXAMPLES

Aft $\left\{\begin{array}{l}\text { affine varieties } \\ \text { regular maps }\end{array}\right.$

I. CATEGORIES

$$
\begin{aligned}
& \text { A CATEGORY } \zeta \\
& \text { CONSISTS OF: } \\
& \text { (a) OBJECTS. } \\
& \text { (b) MORPHISMS } \\
& \text { HO } C(x, y) \\
& \forall X, Y \in \zeta .
\end{aligned}
$$

(c) id $x: x \rightarrow x$ $\forall x \in \varphi$.
(d) $g f: w \rightarrow y$

$$
g: x \rightarrow y
$$

SATISFYING
ASSOCIATIVITY
$(h g) f=h(g f)$
UNITALITY

$$
i d_{x} f=f, g i d_{x}=g
$$

...MORE EXAMPLES

I. CATEGORIES

$$
\begin{aligned}
& \text { ACATEGORY } \\
& \text { CONSISTS OF: } \\
& \text { (a) OBJECTS. } \\
& \text { (b) MORPHISMS } \\
& \text { HOMY }(x, y) \\
& \forall x, y \in \zeta .
\end{aligned}
$$

$$
\text { (c) } \begin{aligned}
\text { id } x & : x \rightarrow x \\
\forall x & \in \zeta .
\end{aligned}
$$

(d) $g f: w \rightarrow y$

$$
g: x \rightarrow y
$$

SATISFYING
ASSOCIATIVITY
$(h g) f=h(g f)$
UNITALITY

$$
i d_{x} f=f, g i d_{x}=g
$$

I. CATEGORIES

$$
\begin{aligned}
& \text { A CATEGORY } \zeta \\
& \text { CONSISTS OF: } \\
& \text { (a) OBJECTS. } \\
& \text { (b) MORPHISMS } \\
& \text { HOMe }(x, y) \\
& \forall X, Y \in \zeta .
\end{aligned}
$$

(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.

$$
\begin{aligned}
\text { (d) } g f: w & \rightarrow y \\
\forall f: w & \rightarrow x \\
g: x & \rightarrow y .
\end{aligned}
$$

SATISFYING
ASSOCIATIVITY

$$
(h g) f=h(g f)
$$

UNITALITY

$$
i d x f=f, g i d x=g
$$

....MORE EXAMPLES

I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPH ISMS $H_{0} M_{e}(x, y)$ $\forall x, y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \mathcal{C}$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFyING
Associativity

$$
(h g) f=h(g f)
$$

unitality

$$
i d_{x} f=f, g i d_{x}=g
$$

EXERCISE 2.6 IS THE FOLLOWING A CATEGORY?
80s Music :

- ObJECTS ミ PERSONS
- $\exists f \in H_{\text {g os }}^{\text {gosh Music }}$ (Person A, Person B)
$\Leftrightarrow\left\{\begin{array}{l}\text { PersonA \& Person B BOTH LIKE } \\ \text { A certain Track From THe 1980s. }\end{array}\right.$
I. CATEGORIES

A CATEGORY C CONSISTS OF:
(a) OBJECTS.
(b) MORPH ISMS $H_{0} M_{e}(x, y)$ $\forall x, y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \mathcal{C}$.
(d) $g f: w \rightarrow y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFyING
ASSOCIATVITIT $(h g) f=h(g f)$
unitality

$$
i d x f=f, g i d x=g
$$

EXERCISE 2.6 IS THE FOLLOWING A CATEGORY?
80s Music:

- OBJECTS \equiv PERSONS
- $\exists f \in H_{\text {BosMusic }}$ (Person A, Person B)
$\Leftrightarrow\left\{\begin{array}{l}\text { PersonA \& Person B BOTH LIKE } \\ \text { A CERTAIN TRACK FROM THE 1980s. }\end{array}\right.$
make up a weird example

I. CATEGORIES

Acategory b some operations on categories CONSISTS OF:
(a) OBJECTS.
(b) MORPHISMS $\operatorname{HOM}_{C}(x, y)$ $\forall x, y \in C_{0}$.
(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow Y$ $\forall f: w \rightarrow x$ $g: x \rightarrow y$.

SATISFYING
ASSOCIATIVITY

$$
(h g) f=h(g f)
$$

UNITALITY

$$
i d x f=f, g i d x=g
$$

I. CATEGORIES

ACATEGORYG SOME OPERATIONS ON CATEGORIES CONSISTS OF:
(a) OBJECTS.
(b) MORPH ISMS $H_{0} M_{e}(x, y)$ $\forall x, y \in \zeta$.
(c) id $: x \rightarrow x$ $\forall x \in \mathcal{C}$.
(d)

$$
\begin{aligned}
& g f: w \rightarrow y \\
& \forall f: w \rightarrow x \\
& g: x \rightarrow y \text {. }
\end{aligned}
$$

SATISFyING
Associativity

$$
(h g) f=h(g f)
$$

unitality

$$
i d_{x} f=f, g i d x=g
$$

GIVEN A category G,
its opposite category gop is a category defined by

- Ob $\left(6^{\circ p}\right)=O b(6)$
- $\exists f \in \operatorname{Hom}_{\text {® op }}(x, y) \Leftrightarrow \exists f \in \operatorname{HoM}_{C}(y, x)$
\equiv REVERSE DIRECTION OF MORPHISMS \equiv
I. CATEGORIES

ACATEGORYC SOME OPERATIONS ON CATEGORIES CONSISTS OF:
(a) OBJECTS.
(b) MORPH ISMS $\operatorname{HOM}_{c}(x, y)$ $\forall x, y \in \zeta$.
(c) id $x: x \rightarrow x$ $\forall x \in \zeta$.
(d) $g f: w \rightarrow y$

SATISFYING
ASSOCIATIVITY
$(h g) f=h(g f)$
unitality

$$
i d x f=f, g i d x=g
$$

given a category G,
its opposite category gop is a category defined by

- Ob $\left(6^{\circ p}\right)=O b(6)$
- $\exists f \in \operatorname{Hom}_{\text {® op }}(x, y) \Leftrightarrow \exists f \in \operatorname{HoM}_{C}(y, x)$

三 Reverse direction of morphisus \equiv
Given categories ζ and ζ^{\prime},

- $O b\left(\zeta \times \varphi^{\prime}\right)=\left\{\left(x, x^{\prime}\right) \mid x \in \varphi, x^{\prime} \in e^{\prime}\right\}$
- HoMexeré $\left(\left(x, x^{\prime}\right),\left(y, y^{\prime}\right)\right)$

$$
\begin{aligned}
& =\left\{\left(g, g^{\prime}\right) \mid g \in \text { HOMe }_{c}(x, y), g^{\prime} \in \text { HON }_{c^{\prime}}\left(x^{\prime}, y^{\prime}\right)\right\} \\
& \equiv \text { THINK ABOUT COMPOSITION OF MORPHISYS } \equiv
\end{aligned}
$$

II. UNIVERSAL CONSTRUCTIONS
recall universal property...
given a gadget X,
A UNIVERSAL STRUCTURE ATTACHED TO X VIA α (or α^{\prime})
is a structure Univ(X)
.7. \forall arbitrary structures Arb (x) ATtached to X via β (or β^{\prime})
Э! Structure map γ (or γ^{\prime}) making the diagram commute:

FORM I

FORM II
II. UNIVERSAL CONSTRUCTIONS

RECALL UNIVERSAL PROPERTY...
given a gadget X,
A UNIVERSAL STRUCTURE ATTACHED TO X VIA α (OR α^{\prime})
is a structure Univ (X)
... \forall arbitrary structures Arb (x) attached to X Via β (or β^{\prime})
Э! Structure map γ (or γ^{\prime}) making the diagram commute:

FORM I

FORM II
II. UNIVERSAL CONSTRUCTIONS

RECALL UNIVERSAL PROPERTY...
given a gadget X,

We don't have "Elements" To wORK WITH IN GENERAL THIS IS THE MAIN WAY WELL DO COMPUTATIONS

A UNIVERSAL STRUCTURE ATTACHED TO X VIA $\alpha_{x}\left(o r \alpha_{x}^{\prime}\right)$ is a structure Univ (X)
.7. \forall arbitrary structures Arb (x) attached to X via $\beta_{x}\left(O r ~ \beta_{x}^{\prime}\right)$ Э! Structure map $\gamma_{x}\left(\right.$ or $\left.\gamma_{x}^{\prime}\right)$ making the diagram commute:

FORM II

II. UNIVERSAL CONSTRUCTIONS

UNIVERSAL PROPERTY

FORM I

WE DON'T HAVE "ELEMENTS"
TO WORK WITH IN GENERAL
this is the main way WEILL DO COMPUTATIONS
Univ (X) DOESN'T have to EXIST.
$\widetilde{N A M I N G}$
Univ (X) is ATTACHED To X VIA $\alpha_{x}\left(\right.$ or $\left.\alpha_{x}^{\prime}\right)$ t
sometimes we only name this WHEN BUILDING UNIVERSAL CONSTRUCTIONS
II. UNIVERSAL CONSTRUCTIONS

UNIVERSAL PROPERTY

FORM I

FORM II

We don't have "Elements"
To work with in general
THIS IS THE MAIN WAY WEILL DO COMPUTATIONS
Univ(X) DOESN'T have to EXIST.
$\widetilde{N A M I N G}$
Univ (X) is attached To X VIA $\alpha_{x}\left(O R \alpha_{x}^{\prime}\right)$
SOMETIMES wE only NAME THIS WHEN BUILDING UNIVERSAL CONSTRUCTIONS
II. UNIVERSAL CONSTRUCTIONS

UNIVERSAL PROPERTY

FORM I

We don't have "Elements"
To work with in general
THIS IS THE MAIN WAY WEILL DO COMPUTATIONS
Univ (X) DOESN'T have to EXIST.
$\widetilde{N A M I N G}$
Univ (X) is attached To X VIA $\alpha_{x}\left(O R \alpha_{x}^{\prime}\right)$ τ
sometimes we name both WHEN BUILDING UNIVERSAL CONSTRUCTIONS

II. UNIVERSAL CONSTRUCTIONS: INITIAL, TERMINAL, AND ZERO OBJECTS UNIVERSAL PROPERTY

FORM I

II. UNIVERSAL CONSTRUCTIONS: INITIAL, TERMINAL, AND ZERO OBJECTS

UNIVERSAL PROPERTY
GIVEN A CATEGORy C :

AN OBJECT IE IS INITIAL IF $\forall X \in \zeta$ J! MORPHISM $\overrightarrow{0}_{x}: I \rightarrow X$.

II. UNIVERSAL CONSTRUCTIONS: INITIAL, TERMINAL, AND ZERO OBJECTS

UNIVERSAL PROPERTY
GIVEN A CATEGORy C :

三 THINK ABOUT THE LINK \equiv

FORM II

AN OBJECT $I \in G$ IS INITIAL IF $\forall x \in \zeta$ Э! MORPHISM $\overrightarrow{0}_{x}: I \rightarrow X$.

II. UNIVERSAL CONSTRUCTIONS: INITIAL, TERMINAL, AND ZERO OBJECTS

UNIVERSAL PROPERTY
GIVEN A CATEGORy C:

AN OBJECT $I \in G$ IS INITIAL IF $\forall X \in \zeta$ J! MORPHISM $\overrightarrow{0}_{x}: I \rightarrow X$.

AN OBJECT $T \in G$ IS TERMINAL IF $\forall X \in \zeta$ I! MORPHISM $\times \overrightarrow{0}: X \rightarrow T$. \square

FORM II
II. UNIVERSAL CONSTRUCTIONS: INITIAL, TERMINAL, AND ZERO OBJECTS

UNIVERSAL PROPERTY
GIVEN A CATEGORy C:

FORM II
三 THINK ABOUT THE LINK \equiv
II. UNIVERSAL CONSTRUCTIONS: INITIAL, TERMINAL, AND ZERO OBJECTS

UNIVERSAL PROPERTY
GIVEN A CATEGORy C:

AN OBJECT $I \in G$ IS INITIAL IF $\forall X \in \zeta$ J! MORPHISM $\overrightarrow{0}_{x}: I \rightarrow X$.

AN OBJECT $T \in G$ IS TERMINAL IF $\forall X \in \zeta$ I! MORPHISM $\times \overrightarrow{0}: X \rightarrow T$. \square A ZERO OBJECT O IS AN INITIAL \& TERMINAL ObJ.

II. UNIVERSAL CONSTRUCTIONS: INITIAL, TERMINAL, AND ZERO OBJECTS

UNIVERSAL PROPERTY GIVEN A CATEGORY C :

FORM II
AN OBJECT $I \in G$ IS INITIAL IF $\forall x \in \zeta$ J! MORPHISM $\overrightarrow{0}_{x}: I \rightarrow X$. \square
AN OBJECT $T \in G$ is TERMINAL IF $\forall X \in \zeta$ ヨ! MORPHISM $\times \overrightarrow{0}: X \rightarrow T$. \square A ZERO OBJECT O IS AN INITIAL \& TERMINAL OBJ.

EXAMPLES Set Group Ring Voc I

T
0
II. UNIVERSAL CONSTRUCTIONS: INITIAL, TERMINAL, AND ZERO OBJECTS UNIVERSAL PROPERTY GIVEN A CATEGORY C :

AN OBJECT IE IS INITIAL IF $\forall x \in \zeta$ J! MORPHISM $\overrightarrow{0}_{x}: I \rightarrow X$.

$\frac{T}{1}$
$\vdots!\vec{a}_{x}$
X

AN OBJECT $T \in G$ is TERMINAL IF $\forall X \in \zeta$ ヨ! MORPHISM $\times \overrightarrow{0}: X \rightarrow T$. \square A ZERO OBJECT O IS AN INITIAL \& TERMINAL OBJ.

EXAMPLES	Set	Group Ring	Fec	
I	\varnothing			
T	$\{\cdot y$			
0	N/A			

II. UNIVERSAL CONSTRUCTIONS: INITIAL, TERMINAL, AND ZERO OBJECTS

UNIVERSAL PROPERTY
GIVEN A CATEGORy C :

AN OBJECT IE IS INITIAL IF $\forall X \in \zeta$ J! MORPHISM $\overrightarrow{0}_{x}: I \rightarrow X$.

AN OBJECT $T \in G$ IS TERMINAL IF $\forall X \in \zeta$ I! MORPHISM $\times \overrightarrow{0}: X \rightarrow T$. \square A ZERO ObJECT O IS AN INITIAL \& TERMINAL OBJ.

II. UNIVERSAL CONSTRUCTIONS: INITIAL, TERMINAL, AND ZERO OBJECTS

UNIVERSAL PROPERTY
GIVEN A CATEGORy C :

AN OBJECT IE IS INITIAL IF $\forall X \in \zeta$ Э! MORPHISM $\overrightarrow{0}_{x}: I \rightarrow X$.

AN OBJECT $T \in G$ IS TERMINAL IF $\forall X \in \zeta \quad \exists$! MORPHISM $\times \overrightarrow{0}: X \rightarrow T$.
 A ZERO ObJECT O IS AN INITIAL \& TERMINAL ObJ.

EXAMPLES Set Group Ring Voc I $\varnothing<m$ is A SUBSET OF ANY $\quad \varnothing$ INCLUDING ϕ $T \quad\{\cdot\}$ thu Any function must send $0 \quad N / A$ elements to elements
II. UNIVERSAL CONSTRUCTIONS: INITIAL, TERMINAL, AND ZERO OBJECTS UNIVERSAL PROPERTY GIVEN A CATEGORY C :

FORM II
AN OBJECT $I \in G$ IS INITIAL IF $\forall x \in \zeta$ Э! MORPHISM $\overrightarrow{0}_{x}: I \rightarrow X$. \square
AN OBJECT $T \in G$ is TERMINAL IF $\forall X \in \zeta$ ヨ! MORPHISM $\times \overrightarrow{0}: X \rightarrow T$. \square A ZERO OBJECT O IS AN INITIAL \& TERMINAL OBJ.

EXAMPLES	Set	Group Ring Fec	
I	\varnothing	$\{e\}$	
T	$\{\cdot\}$	$\{e\}$	
0	N / A	$\{e\}$	

II. UNIVERSAL CONSTRUCTIONS: INITIAL, TERMINAL, AND ZERO OBJECTS UNIVERSAL PROPERTY GIVEN A CATEGORY C :

FORM II
AN OBJECT $I \in G$ IS INITIAL IF $\forall x \in \zeta$ J! MORPHISM $\overrightarrow{0}_{x}: I \rightarrow X$.

$\frac{I}{1}$
$y^{\prime} y!\vec{o}_{x}$
X

AN OBJECT $T \in G$ is TERMINAL IF $\forall X \in \zeta$ ヨ! MORPHISM $\times \overrightarrow{0}: X \rightarrow T$. \square A ZERO OBJECT O IS AN INITIAL \& TERMINAL OBJ.

EXAMPLES	Set Group Ring V ec	
I	\varnothing	$\{e\}<m \exists!l e\} \rightarrow G$ wcusion
T	$\{\cdot\}$	$\{e\}<m \exists!G \rightarrow G / G=\{e\}$
0	N / A	$\{e\}$

II. UNIVERSAL CONSTRUCTIONS: INITIAL, TERMINAL, AND ZERO OBJECTS UNIVERSAL PROPERTY GIVEN A CATEGORY C :

FORM II
AN OBJECT $I \in G$ IS INITIAL IF $\forall x \in \zeta$ Э! MORPHISM $\overrightarrow{0}_{x}: I \rightarrow X$. \square
AN OBJECT $T \in \zeta$ IS TERMINAL IF $\forall X \in \zeta$ ヨ! MORPHISM $\times \overrightarrow{0}: X \rightarrow T$. \square A ZERO OBJECT O IS AN INITIAL \& TERMINAL OBJ.

EXAMPLES	Set	Group	Ring	Voc
I	\varnothing	$\{e\}$	\mathbb{Z}	
T	$\{\cdot\}$	$\{e\}$	$O_{\text {Rind }}$	
0	N / A	$\{e\}$	N_{A}	

II. UNIVERSAL CONSTRUCTIONS: INITIAL, TERMINAL, AND ZERO OBJECTS UNIVERSAL PROPERTY GIVEN A CATEGORY C :

FORM II
AN OBJECT $I \in G$ IS INITIAL IF $\forall x \in \zeta$ J! MORPHISM $\overrightarrow{0}_{x}: I \rightarrow X$. \square
AN OBJECT $T \in G$ is TERMINAL IF $\forall X \in \zeta$ ヨ! MORPHISM $\times \overrightarrow{0}: X \rightarrow T$. \square A ZERO OBJECT O IS AN INITIAL \& TERMINAL OBJ.

II. UNIVERSAL CONSTRUCTIONS: INITIAL, TERMINAL, AND ZERO OBJECTS UNIVERSAL PROPERTY GIVEN A CATEGORY C :

FORM II

EXAMPLES	Set	Group	Ring	Voc
I	\varnothing	$\{e\}$	\mathbb{Z}	$O_{v s}$
T	$\{0 Y$	$\{e\}$	$O_{\text {Rinar }}$	$O_{v s}$
0	N / A	$\{e\}$	N_{A}	$O_{v s}$

II. UNIVERSAL CONSTRUCTIONS: INITIAL, TERMINAL, AND ZERO OBJECTS UNIVERSAL PROPERTY GIVEN A CATEGORY C :

FORM II
AN OBJECT $I \in G$ IS INITIAL IF $\forall x \in \zeta$ J! MORPHISM $\overrightarrow{0}_{x}: I \rightarrow X$.

AN OBJECT $T \in G$ is TERMINAL IF $\forall X \in \zeta$ ヨ! MORPHISM $\times \overrightarrow{0}: X \rightarrow T$. \square A ZERO OBJECT O IS AN INITIAL \& TERMINAL OBJ.

EXAMPLES	Set	Group	Ring	$V_{\text {ec }}$
I	\varnothing	$\{e\}$	\mathbb{Z}	$O_{v s}$
T	$\{\cdot\}$	$\{e\}$	$O_{\text {RNa }}$	$O_{v s}$
0	N / A	$\{e\}$	$\left.N\right\|_{A}$	$O_{v s}$

II. UNIVERSAL CONSTRUCTIONS: COPRODUCTS AND PRODUCTS

UNIVERSAL PROPERTY GIVEN a category $\zeta \&$ OBJects $X, Y \in \zeta:$

II. UNIVERSAL CONSTRUCTIONS: COPRODUCTS AND PRODUCTS

UNIVERSAL PROPERTY GIVEN a category $\zeta \&$ OBJects $X, Y \in \zeta:$

FORM I

COPRODUCT OF X AND Y PRODUCT OF X AND Y IS AN OBJECT X YO $\in \zeta$ EQUIPPED WITH MORPHISMS $\alpha_{x}: X \rightarrow X \sqcup Y$ And $\alpha_{y}: Y \rightarrow X \sqcup Y$ SATISFyING:

FORM II
II. UNIVERSAL CONSTRUCTIONS: COPRODUCTS AND PRODUCTS

UNIVERSAL PROPERTY GIVEN a category $\zeta \&$ OBJects $X, Y \in \zeta:$

FORM I

COPRODUCT OF X AND Y PRODUCT OF X AND Y IS AN OBJECT X YO $\in \zeta$ EQUIPPED WITH MORPHISMS $\alpha_{x}: X \rightarrow X \sqcup Y$ And $\alpha_{y}: Y \rightarrow X \cup Y$ SATISFyING:

FORM II
II. UNIVERSAL CONSTRUCTIONS: COPRODUCTS AND PRODUCTS

UNIVERSAL PROPERTY
GIVEN A CATEGORY ζ \& OBJECTS $X, Y \in \zeta:$

FORM I

FORM II

COPRODUCT OF X AND Y IS AN OBJECT $X \sqcup Y$ E ζ EQUIPPED WITH MORPHISMS $\alpha_{x}: X \rightarrow X \in Y$ AND $\alpha_{y}: Y \rightarrow X \in Y$ SATISFYING:

PRODUCT OF X AND Y IS AN OBJECT X RY EG EQUIPPED WITH MORPHISMS $\alpha_{X}^{\prime}: X_{\Pi} Y \rightarrow X$ AND $\alpha_{y}^{\prime}: X_{\square} Y \rightarrow Y$ SATISFYING:

II. UNIVERSAL CONSTRUCTIONS: COPRODUCTS AND PRODUCTS

UNIVERSAL PROPERTY
GIVEN A CATEGORY ζ \& OBJECTS $X, Y \in \zeta:$

FORM I

FORM II

COPRODUCT OF X AND Y IS AN OBJECT $X \sqcup Y \in \zeta$ EQUIPPED WITH MORPHISMS $\alpha_{x}: X \rightarrow X \in Y$ AND $\alpha_{y}: Y \rightarrow X \in Y$ SATISFYING:

PRODUCT OF X AND Y IS AN OBJECT X RY EG EQUIPPED WITH MORPHISMS $\alpha_{X}^{\prime}: X_{\Pi} Y \rightarrow X$ AND $\alpha_{y}^{\prime}: X_{\square} Y \rightarrow Y$ SATISFYING:

II. UNIVERSAL CONSTRUCTIONS: COPRODUCTS AND PRODUCTS

UNIVERSAL PROPERTY
GIVEN A CATEGORY ζ \& OBJECTS $X, Y \in \zeta:$

COPRODUCT OF X AND Y IS AN OBJECT X YO EC EQUIPPED WITH MORPHISMS $\alpha_{x}: X \rightarrow X \sqcup Y$ AND $\alpha_{y}: Y \rightarrow X \in Y$ SATISFYING:

PRODUCT OF X AND Y IS AN OBJECT X RY EG EQUIPPED WITH MORPHISMS $\alpha_{x}^{\prime}: X_{\Pi} Y \rightarrow X$ And $\alpha_{y}^{\prime}: X_{\square} Y \rightarrow Y$ SATISFYING:

EXAMPLES Set Group Ring Voc

\sqcap
II. UNIVERSAL CONSTRUCTIONS: COPRODUCTS AND PRODUCTS

UNIVERSAL PROPERTY
GIVEN A CATEGORY ζ \& OBJECTS $X, Y \in \zeta:$

PRODUCT OF X AND Y

FORM I

FORM II
COPRODUCT OF X AND Y
IS AN OBJECT X $\cup Y \in \zeta$
EQUIPPED WITH MORPHISMS
$\alpha_{X}: X \rightarrow X \cup Y$ AND $\alpha_{Y}: Y \rightarrow X \cup Y$
SATISFYING:

COPRODUCT OF X AND Y IS AN OBJECT X YO G EQUIPPED WITH MORPHISMS $\alpha_{x}: X \rightarrow X \sqcup Y$ AND $\alpha_{y}: Y \rightarrow X \in Y$ SATISFYING:
 IS AN OBJECT XIX EG EQUIPPED WITH MORPHISMS $\alpha_{x}^{\prime}: X_{\Pi} Y \rightarrow X$ And $\alpha_{y}^{\prime}: X_{\Pi} Y \rightarrow Y$ SATISFYING:

EXAMPLES	Set Group Ring Fec		
\square	DISJOINT UNION		
\square	x CARTESIAN PRODUCT		

II. UNIVERSAL CONSTRUCTIONS: COPRODUCTS AND PRODUCTS

UNIVERSAL PROPERTY
GIVEN a category $\zeta \&$ OBJects $X, Y \in \zeta:$

PRODUCT OF X AND Y IS AN OBJECT XIX $\in \boldsymbol{C}$ EQUIPPED WITH MORPHISMS $\alpha_{x}^{\prime}: X_{\Pi} Y \rightarrow X$ And $\alpha_{y}^{\prime}: X_{\sqcap} Y \rightarrow Y$ SATISFYING:

II. UNIVERSAL CONSTRUCTIONS: COPRODUCTS AND PRODUCTS

UNIVERSAL PROPERTY
GIVEN a category $\zeta \&$ OBJects $X, Y \in \zeta:$

PRODUCT OF X AND Y IS AN OBJECT XIX $\in \boldsymbol{C}$ EQUIPPED WITH MORPHISMS $\alpha_{x}^{\prime}: X_{\Pi} Y \rightarrow X$ AND $\alpha_{y}^{\prime}: X_{\square} Y \rightarrow Y$ SATISFyING:

II. UNIVERSAL CONSTRUCTIONS: COPRODUCTS AND PRODUCTS

UNIVERSAL PROPERTY
GIVEN a category $\zeta \&$ OBJects $X, Y \in \zeta:$

PRODUCT OF X AND Y IS AN OBJECT XIX $\in \boldsymbol{C}$ EQUIPPED WITH MORPHISMS $\alpha_{x}^{\prime}: X_{\Pi} Y \rightarrow X$ And $\alpha_{y}^{\prime}: X_{\Pi} Y \rightarrow Y$ SATISFYING:

II. UNIVERSAL CONSTRUCTIONS: A COMPUTATION

II. UNIVERSAL CONSTRUCTIONS: A COMPUTATION

EXAMPLE: $X \cup I \cong X$ FOR any $X \in C$.
II. UNIVERSAL CONSTRUCTIONS: A COMPUTATION

EXAMPLE: $X \cup I \cong X$ FOR ANY $X \in \mathscr{C}$.
PF/ HAVE $X \xrightarrow{\alpha_{x}} X 山 I \stackrel{\alpha_{I}}{\longleftrightarrow} I$

"
$\therefore \gamma \alpha_{x}=i d x \quad$ TS: $\quad \alpha_{x} \gamma=i d_{x \Perp I}$
II. UNIVERSAL CONSTRUCTIONS: A COMPUTATION

EXAMPLE: $X \cup I \cong X$ FOR $\operatorname{Ang} X \in C$.

"
$\therefore \gamma \alpha_{x}=i d_{x} \quad$ STS: $\alpha_{x} \gamma=i d_{x \Perp I}$

II. UNIVERSAL CONSTRUCTIONS: A COMPUTATION

EXAMPLE: $X \cup I \cong X$ for any $X \in C$.

$$
\beta_{x}=i d x
$$

$\therefore \gamma \alpha_{x}=i d x \quad$ SIS: $\alpha_{x} \gamma=i d_{x \Perp I}$

PRODUCT
OF OBJECTS

II. UNIVERSAL CONSTRUCTIONS: A COMPUTATION

COPRODUCT
OF OBJECTS

EXAMPLE: $X \cup I \cong X$ for any $X \in \mathscr{C}$. PF/ Have $X \xrightarrow{\alpha_{x}} X \Perp I \stackrel{\alpha_{I}}{\rightleftarrows} I$
$\therefore \gamma \alpha_{x}=i d_{x} \quad$ STS: $\quad \alpha_{x} \gamma=i d_{x \Perp I}$

II. UNIVERSAL CONSTRUCTIONS: A COMPUTATION

EXAMPLE: $X \cup I \cong X$ for and $X \in C$.

$$
\beta_{x}=i d x
$$

$\therefore \gamma \alpha_{x}=i d_{x} \quad$ ITS: $\alpha_{x} \gamma=i d_{x \Perp I}$

II. UNIVERSAL CONSTRUCTIONS: A COMPUTATION

EXAMPLE: $X \cup I \cong X$ For any $X \in C$.

$$
\beta_{x}=i d x
$$

$\therefore \gamma \alpha_{x}=i d_{x}$

COPRODUCT
OF OBJECTS

II. UNIVERSAL CONSTRUCTIONS: A COMPUTATION

LIKEWISE $X \cup I \cong X \cong I \cup X \quad A N D \quad X \sqcap T \cong X \cong T \Pi X$ FOR Any $X \in C$.
II. UNIVERSAL CONSTRUCTIONS: A COMPUTATION

LIKEWISE $X \cup I \cong X \cong I \cup X \quad A N D \quad X \sqcap T \cong X \cong T \Pi X$ FOR Any $X \in C$.
Think about this in the context of:

EXAMPLES	Set	Group	Ring	$V_{\text {ec }}$
I	\varnothing	$\{e\}$	\mathbb{Z}	$O_{v s}$
T	$\{\cdot 9$	$\{e\}$	$O_{\text {RUN }}$	$O_{v s}$
0	N / A	$\{e\}$	N / A	$O_{v s}$

LECTURE \#6

TOPICS:

1. categories
(\$2.1)
 next time: more $\hat{\xi}$ \& abelian categories

Enjoy this lecture? You'll enjoy the textbook!
 C. Walton's "Symmetries of Algebras, Volume 1" (2024)

Available for purchase at :

619 Wreath (at a discount)
https://www.619wreath.com/

Also on Amazon
\&
Google Play

Lecture \#6 keywords: category, coproduct of objects, initial object, morphism, product of objects, object, terminal object, universal construction, zero object

