MATH 466/566 SPRING 2024

CHELSEA WALTON RICE U.

LAST TIME

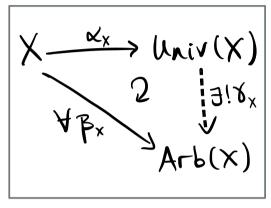
LECTURE #7

- · CATEGORIES
- · UNIV. CONSTRUCTIONS: I, T, O, U, M

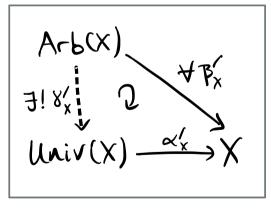
TOPICS:

- I. UNIVERSAL CONSTRUCTIONS (§2.2.1)
- II. ABELIAN CATEGORIES (\$2.2.2)

UNIVERSAL PROPERTY

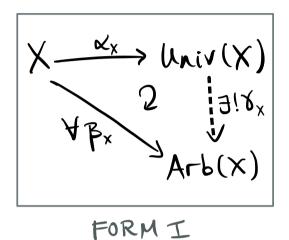


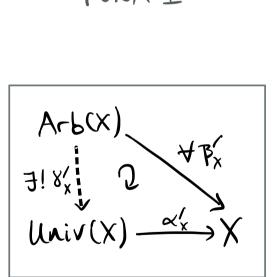
FORMI



FORM I

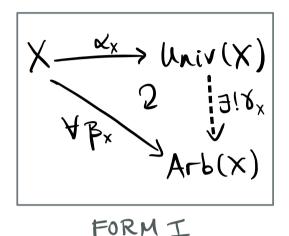
UNIVERSAL PROPERTY

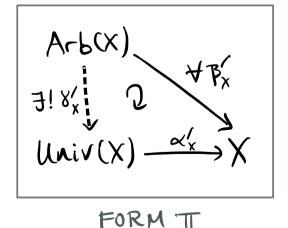




FORM I

UNIVERSAL PROPERTY





WE DON'T HAVE "ELEMENTS"

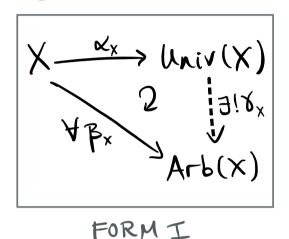
TO WORK WITH IN GENERAL

THIS IS THE MAIN WAY

WE'LL DO COMPUTATIONS

UNIVERSAL PROPERTY

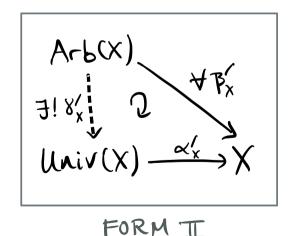
GIVEN A CATEGORY 6:



AN OBJECT I & C IS INITIAL IF $\forall x \in \mathcal{C}$ $\exists !$ MORPHISM $\overrightarrow{o}_x : I \rightarrow X$.

AN OBJECT TEG IS TERMINAL IF VXEG 3! MORPHISM XO: X -> T.

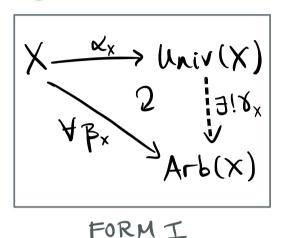
A ZERO OBJECT O IS AN INITIAL & TERMINAL OBJ.

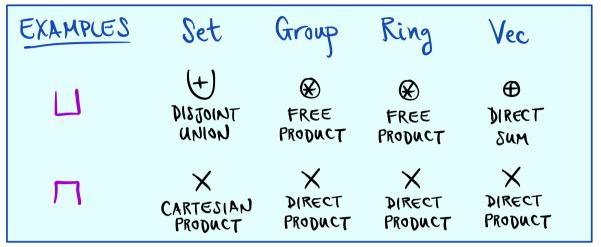


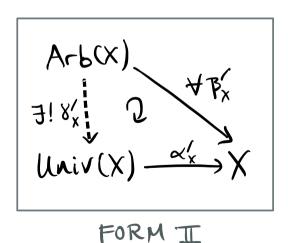
EXAMPLES	Set	Group	Ring	Vec
エ	ø	le J	Z	Q^{nz}
Τ	?• 9	le J	ORING	Ovs
0	NA	<i>le</i> J	NA	O_{N2}

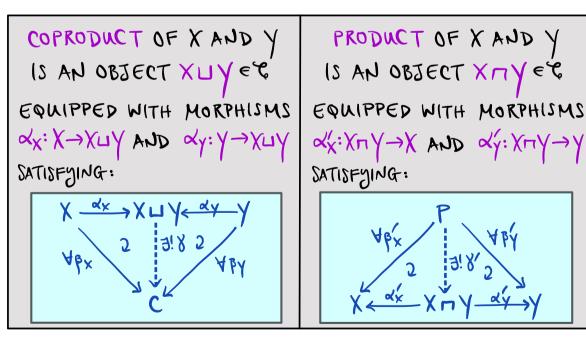
UNIVERSAL PROPERTY

GIVEN A CATEGORY & & OBJECTS X, YE &:

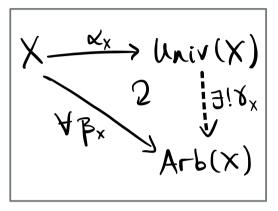




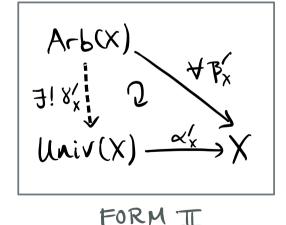




UNIVERSAL PROPERTY



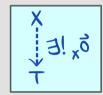
FORMI



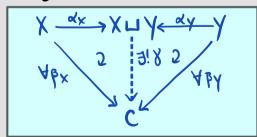
GIVEN A CATEGORY & & OBJECTS X, YE 6:

AN OBJECT I & & INITIAL IF $\forall x \in \mathcal{C}$ 3! MORPHISM $\vec{\sigma}_x : I \rightarrow X$.

AN OBJECT TEG IS TERMINAL IF VXEG 3! MORPHISM XO: X -> T.



A ZERO OBJECT O IS AN INITIAL & TERMINAL OBJ.



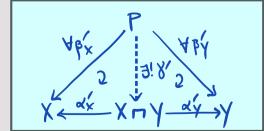
PRODUCT OF X AND Y

IS AN OBJECT XMY & C

EQUIPPED WITH MORPHISMS

XX:XMY -> X AND XY:XMY -> Y

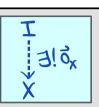
SATISFYING:



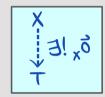
GIVEN A CATEGORY & & OBJECTS X, YE &:

"STARTING" & "ENDING"
OBJECTS

AN OBJECT I & & INITIAL IF $\forall x \in \mathcal{C}$ $\exists ! \text{MORPHISM } \vec{\sigma}_x : I \rightarrow X.$

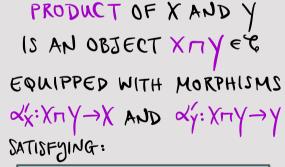


AN OBJECT TEG IS TERMINAL IF VXEG 3! MORPHISM XO: X -> T.

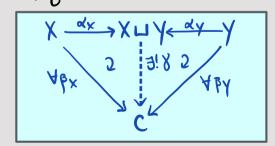


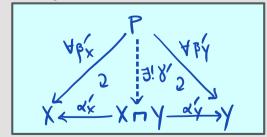
A ZERO OBJECT O IS AN INITIAL & TERMINAL OBJ.

WAYS OF COMBINING OBJECTS

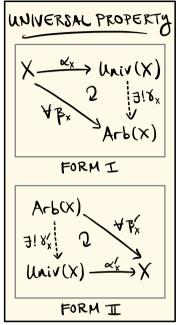


MORE
UNIVERSAL
CONSTRUCTIONS
NEXT—

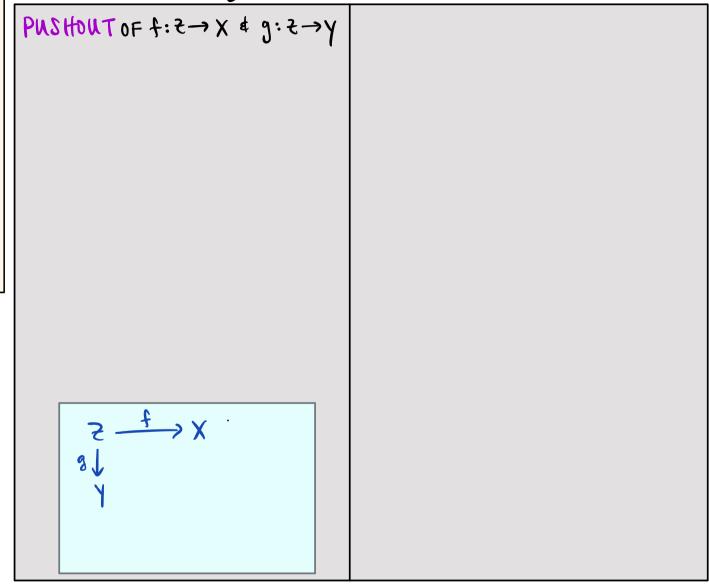


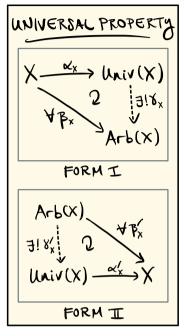


I. UNIVERSAL CONSTRUCTIONS: PNSHOUTS AND PULLBACKS OPERATION ON MORPHISMS



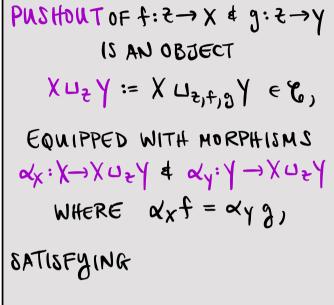
GIVEN A CATEGORY 6:

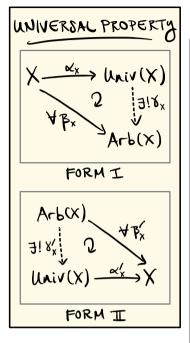


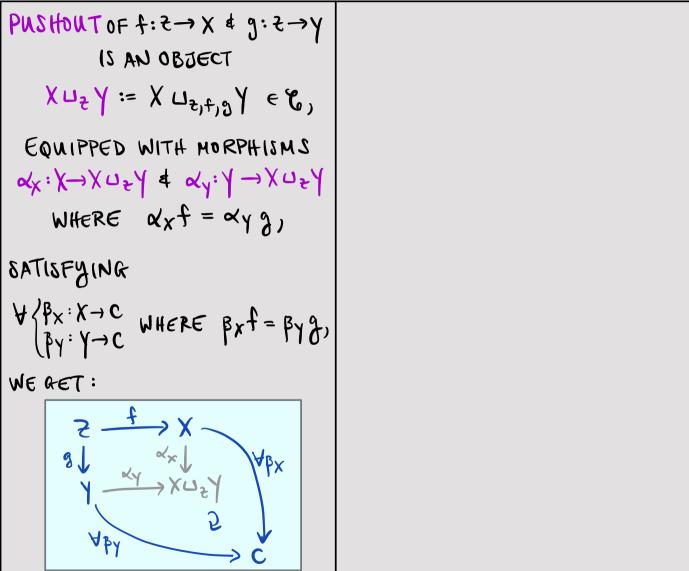


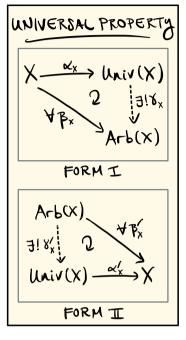
GIVEN A CATEGORY 6:

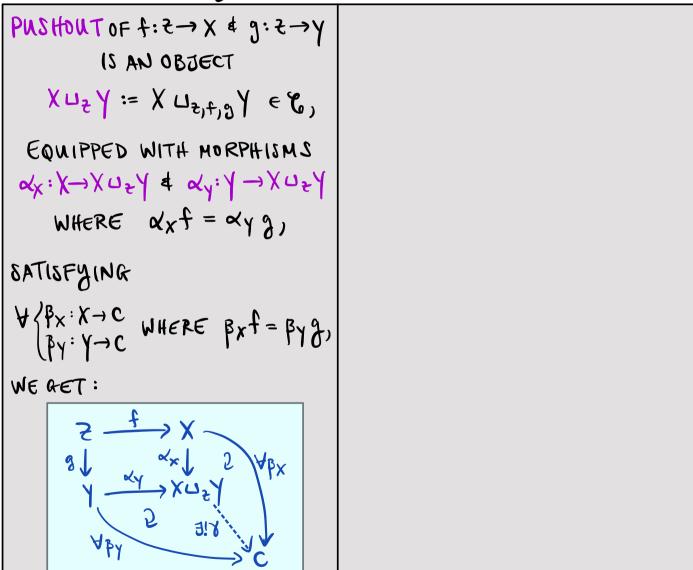
OPERATION ON MORPHISMS

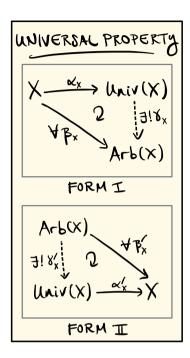












"PULLBACKS"

111

Pusitouts In & op GIVEN A CATEGORY 6:

OPERATION ON MORPHISMS

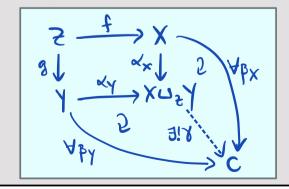
PUSHOUT OF $f: \xi \rightarrow X \notin g: \xi \rightarrow Y$ (S AN OBJECT

EQUIPPED WITH MORPHISMS

$$\alpha_{X}: X \rightarrow X \cup_{\mathcal{E}} Y \neq \alpha_{Y}: Y \rightarrow X \cup_{\mathcal{E}} Y$$

BATISFYING

WE GET:



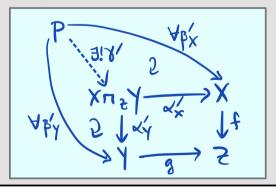
PULLBACK OF f: X→Z & g: Y→Z
IS AN OBJECT

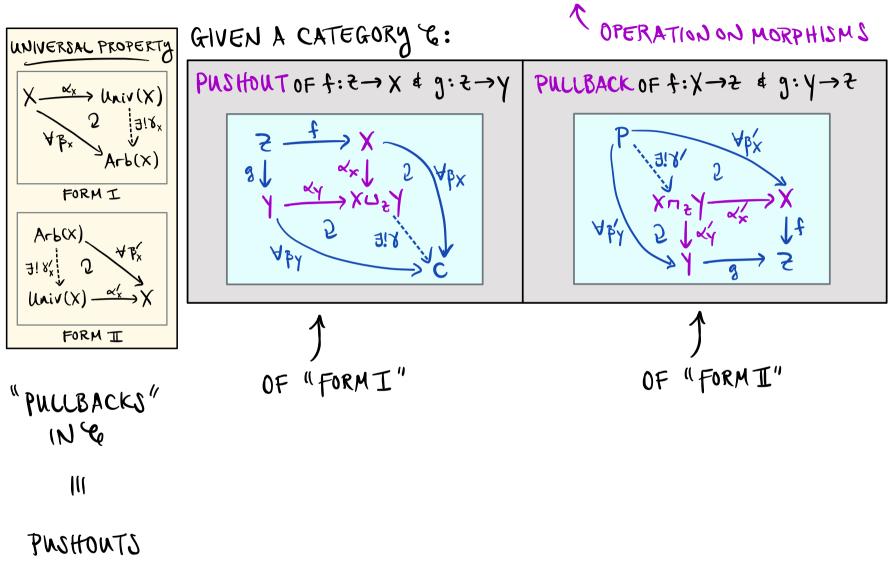
EQUIPPED WITH MORPHISMS

$$\alpha_{x}:X \cap_{\xi} Y \rightarrow X \neq \alpha_{y}:X \cap_{\xi} Y \rightarrow Y$$
WHERE $f \alpha_{x}' = g \alpha_{y}'$

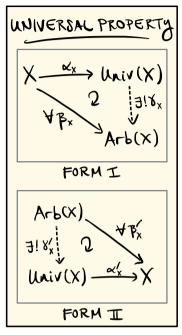
BATISFYING

WE GET:

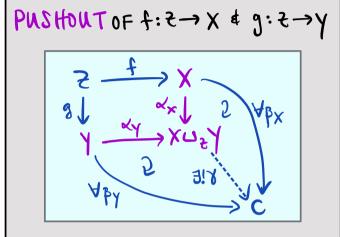




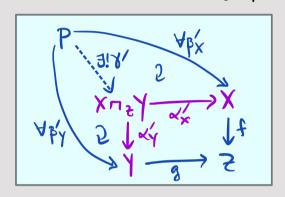
IN & 99



GIVEN A CATEGORY 6:



PULLBACK OF f: X -> 2 & g: Y -> 2

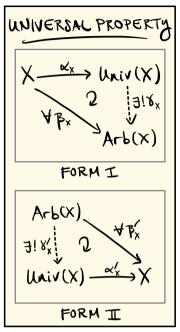


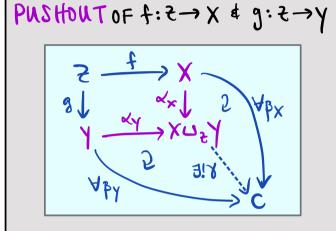
EXERCISE 2.9 FOR X, Y, Z & Set, WE GET

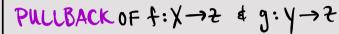
WITH FUNCTIONS
$$f: X \rightarrow Z, g: Y \rightarrow Z:$$

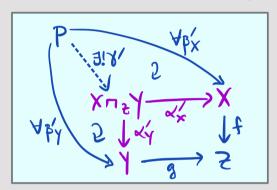
$$X \prod_{z} Y = \{(x,y) \in X \times Y \mid f(x) = g(y) \text{ in } Z\}$$

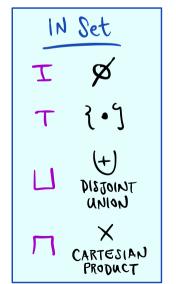
$$SUBSET OF X \times Y$$











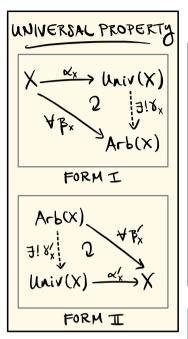
WITH FUNCTIONS
$$f: \xi \to X, g: \xi \to Y:$$

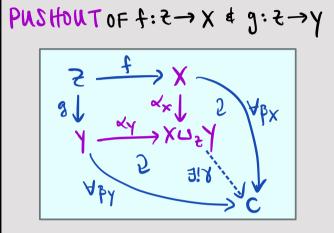
$$X \sqcup_{\xi} Y \cong (X \uplus Y) /_{\sim}$$
Quotient set of X \d Y

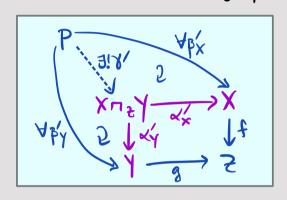
WITH FUNCTIONS
$$f: X \rightarrow Z, g: Y \rightarrow Z:$$

$$X \prod_{Z} Y = \{(x,y) \in X \times Y \mid f(x) = g(y) \text{ in } Z\}$$

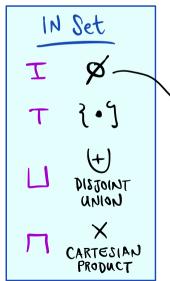
$$SUBSET OF X \times Y$$







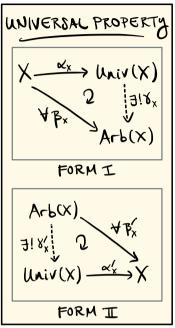
EXERCISE 2.9 FOR X, Y, Z & Set, WE GET

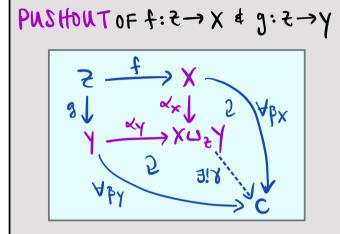


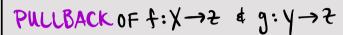
WITH FUNCTIONS
$$f: \emptyset \rightarrow X$$
, $g: \emptyset \rightarrow Y$:

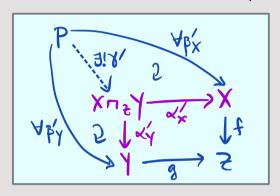
$$X m_{z} Y = \{(x,y) \in X \times Y \mid f(x) = g(y) \text{ in } z\}$$

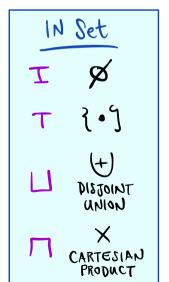
Subset of $X \times Y$











EXERCISE 2.9 FOR
$$X,Y,\xi \in Set$$
, WE GET

WITH FUNCTIONS

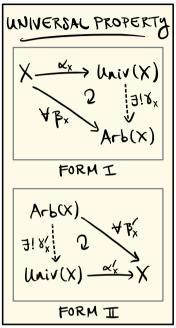
 $f: \not x \to X$, $g: \not x \to Y$:

 $f: x \to X$

HERE,
$$f(z) \sim g(z)$$
 IN XWY Yzez

WITH FUNCTIONS

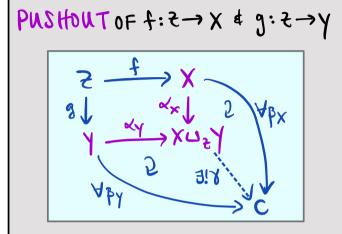
$$f: X \rightarrow Z$$
, $g: Y \rightarrow Z$:
 $X \bowtie_Z Y = \{(x,y) \in X \times Y \mid f(x) = g(y) \bowtie Z\}$
SUBSET OF $X \times Y$

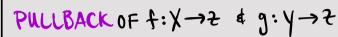


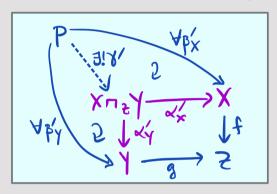
IN Set

HOIYN

CARTESIAN PRODUCT







EXERCISE 2.9 FOR
$$X, Y, z \in Set$$
, WE GET

WITH FUNCTIONS

 $f: \emptyset \to X$, $g: \emptyset \to Y$:

 $X \coprod_{\emptyset} Y \cong (X \uplus Y)$

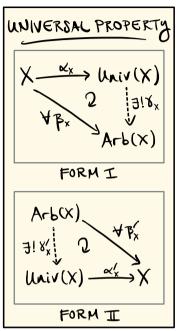
WITH FUNCT

 $f: X \to Y$
 $X \coprod_{\emptyset} Y \cong (X \uplus Y)$

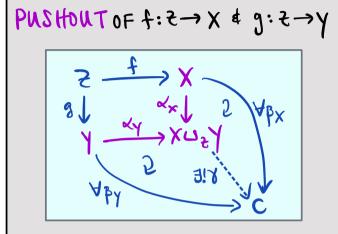
VACUOUS

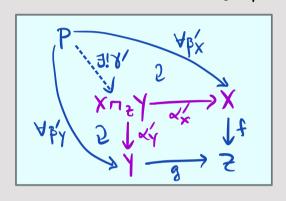
HERE, $f(z) \sim g(z)$ IN $X \uplus Y \ \forall z \in z$

WITH FUNCTIONS
$$f: X \rightarrow \{., g: Y \rightarrow 1., g: Y$$



GIVEN A CATEGORY 6:



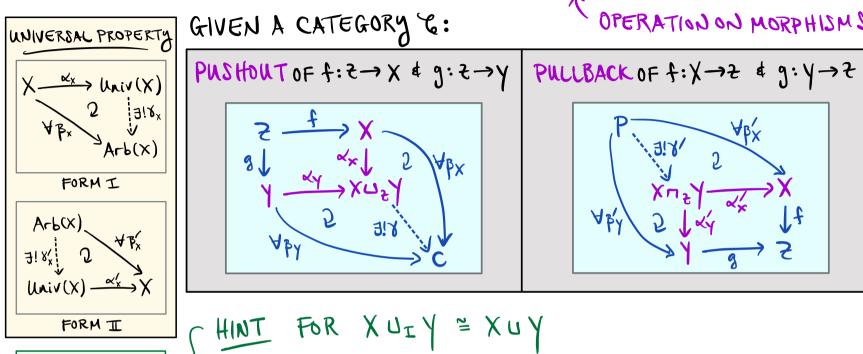


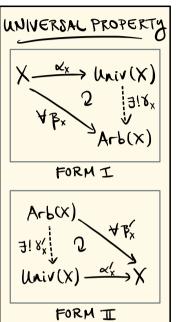
WITH FUNCTIONS
$$f: \not x \to x, g: \not x \to y:$$

$$X \coprod_{\not x} \cong (X \uplus_{\not x}) / \sim (X \uplus_{\not$$

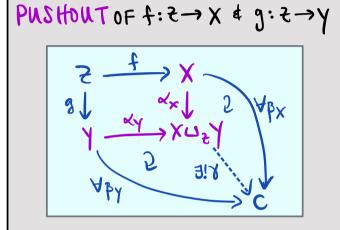
WITH FUNCTIONS
$$f: X \rightarrow \{.5, g: Y \rightarrow \{.5\}:$$

$$X \sqcap_{\{.7\}} Y = \{(x,y) \in X \times Y \mid f(x) = g(y) \text{ in } 2\}$$
VACUOUS
$$\frac{f(x) = g(y) \text{ in } 2}{\text{SUBSET OF } X \times Y}$$

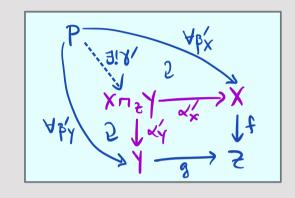




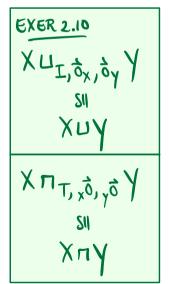
GIVEN A CATEGORY 6:



PULLBACK OF f: X -> 2 & g: Y -> 2



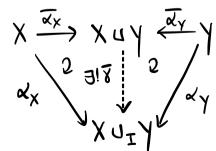
CHINT FOR XUIY = XUY

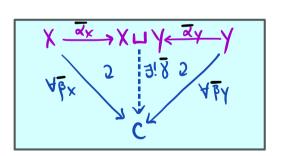


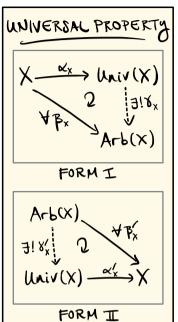
UNIV PROP OF XUY YIELDS

A MORPHISM T: XUY -> XUIY

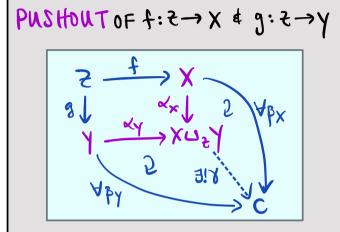
VIA:



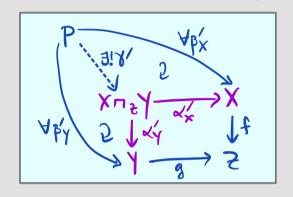




GIVEN A CATEGORY 6:



PULLBACK OF f: X -> & g: Y -> ?

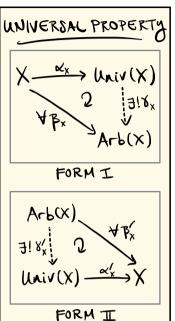


FOR XUIY = XUY



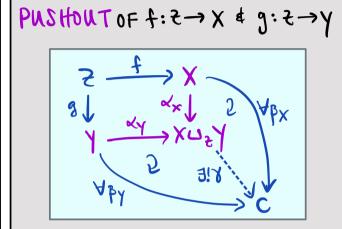
UNIV PROP OF XUY YIELDS A MORPHISM T: XUY -> XUIYY VIA:

WHIN PROP OF XUIY YIELDS A MORPHISM Y: XUIY -> XUIY

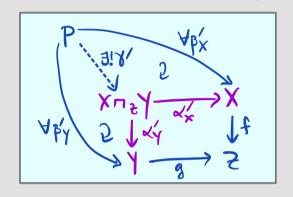


GIVEN A CATEGORY 6:

OPERATION ON MORPHISMS



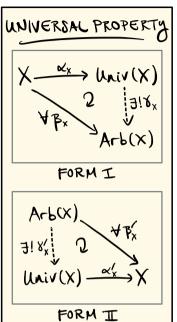
PULLBACK OF f: X -> 2 & g: Y -> 2



EXER 2.10 Χ Δ Ι, δχ, δγ Υ SII Χ Δ Υ Χ Π Τ, χδ, γδ Υ HINT FOR XUIY = XUY

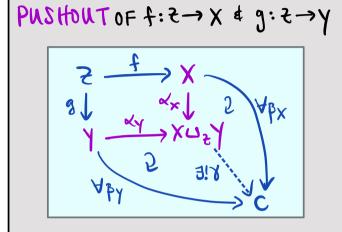
UNIV PROP OF XUY YIELDS

A MORPHISM $\overline{X}: XUY \to XU_{\overline{1}}Y$ VIA: $X \xrightarrow{\overline{x}} XUY \xrightarrow{\overline{x}} Y$ $2 = |\overline{X}| 2$

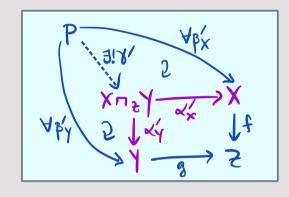


GIVEN A CATEGORY 6:

OPERATION ON MORPHISMS



PULLBACK OF f: X -> 2 & g: Y -> 2



EXER 2.10

X U I, ox, oy Y

SII

X U Y

X T T, xo, yo Y

XnV

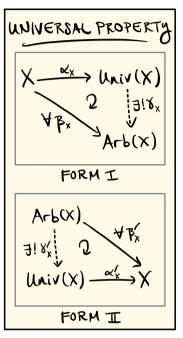
HINT FOR XUIY = XUY

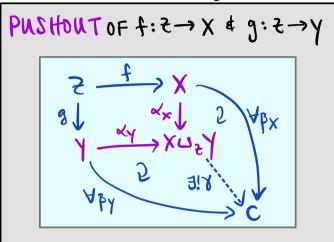
UNIV PROP OF XUY YIELDS

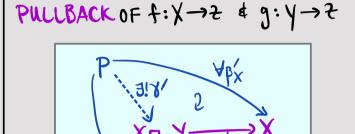
A MORPHISM $\overline{X}: XUY \to XU_{\overline{1}}Y$ VIA: $X \xrightarrow{\overline{x}} XUY \xrightarrow{\overline{x}} Y$

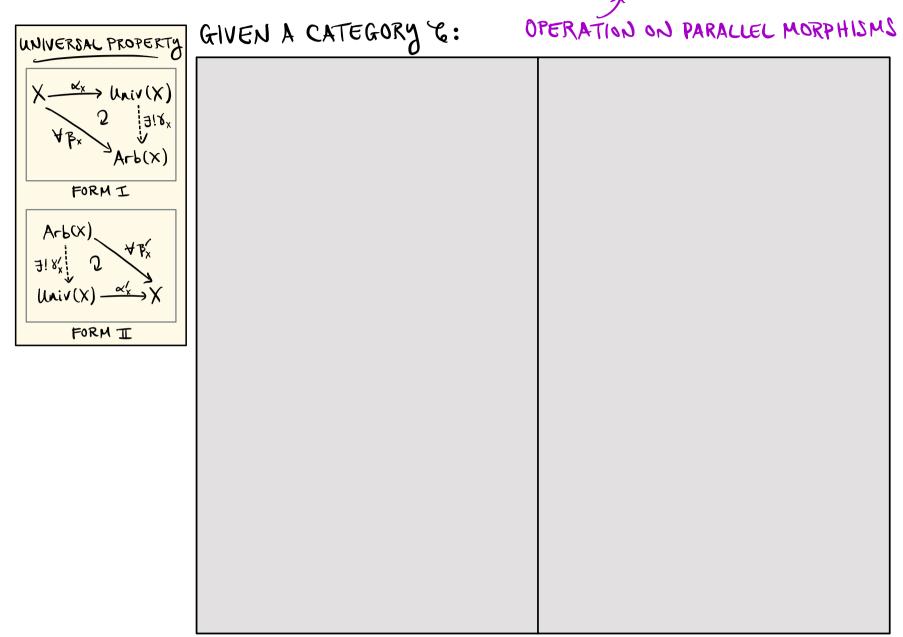
 $\begin{array}{c} X \xrightarrow{\Delta X} X \xrightarrow{1} X \xrightarrow{1}$

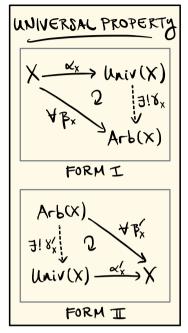
SHOW & & & ARE MUTUALLY INV.





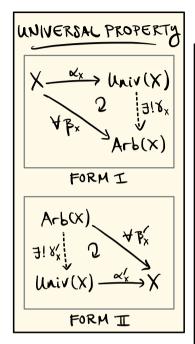






GIVEN A CATEGORY 6:

OPERATION ON PARALLEL MORPHISMS



GIVEN A CATEGORY 6:

OPERATION ON PARALLEL MORPHISMS

COEQUALIZER OF
$$X = \frac{f}{g}$$
 Y

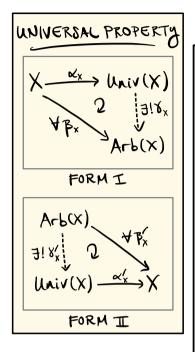
Arb(x)

FORM I

EQUIPPED WITH A MORPHISM

 $X : Y \longrightarrow coeq(f,g)$
 $X : Y \longrightarrow coeq(f,g)$

$$X \xrightarrow{f} Y \xrightarrow{\alpha} coeq(f,g)$$



GIVEN A CATEGORY 6:

OPERATION ON PARALLEL MORPHISMS

COEQUALIZER OF $X \stackrel{f}{\Longrightarrow} Y$

IS AN OBJECT coeq(f,g) & &

EQUIPPED WITH A MORPHISM

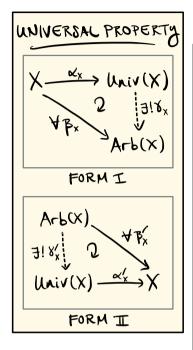
$$\alpha: \gamma \longrightarrow coeq(f_{19})$$

 $A: \gamma \longrightarrow coeq(f_{19})$

WHERE Yp:Y -> C 3. pf=pg

WE GET:

$$\begin{array}{c} X \xrightarrow{g} Y \xrightarrow{g} Y \xrightarrow{\alpha} Coed(t^{1}) \end{array}$$



GIVEN A CATEGORY 6:

OPERATION ON PARALLEL MORPHISMS

COEQUALIZER OF $X = \frac{f}{3} Y$

IS AN OBJECT coeq(f,g) & &

EQUIPPED WITH A MORPHISM

$$\alpha: \gamma \longrightarrow coeq(f_1g)$$

.a. $\alpha f = \alpha g$

WHERE Yp:Y -> C 3. pf=pg

WE GET:

$$X \xrightarrow{\beta} A \xrightarrow{\alpha} coed(t^{10})$$

EQUALIZER OF $X \xrightarrow{f} Y$

IS AN OBJECT eq(f,g) ∈ &

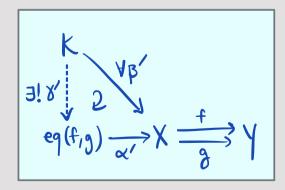
EQUIPPED WITH A MORPHISM

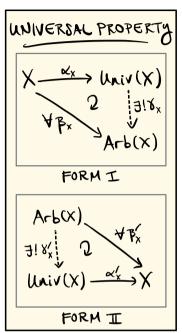
$$\alpha': eq(f_1g) \longrightarrow X$$

 $\Rightarrow f \alpha' = g \alpha'$

WHERE & p:K -X 3.f = gp

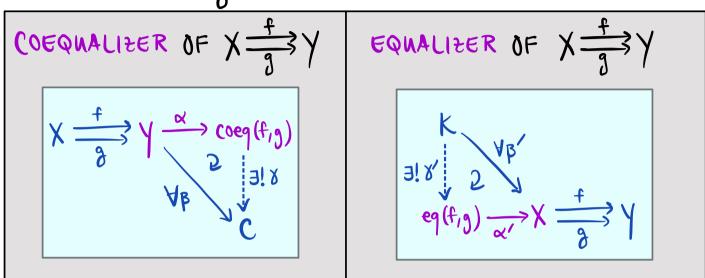
WE GET:



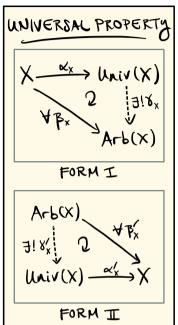


GIVEN A CATEGORY 6:

OPERATION ON PARALLEL MORPHISMS

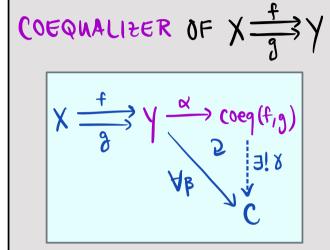


SOME SPECIAL CASES

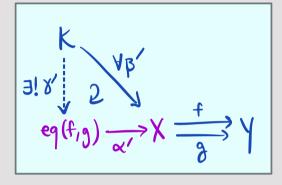


GIVEN A CATEGORY 6:

OPERATION ON PARALLEL MORPHISMS



EQUALIZER OF X = 3



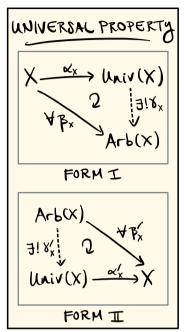
SOME SPECIAL CASES EXERCISE 2.11

LET f,g:X→Y
BE FUNCTIONS IN Set.

THEN:

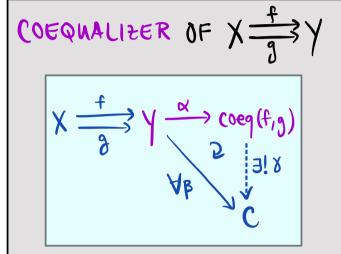
eq
$$(f,g) = \{x \in X \mid f(x) = g(x)\}$$

SUBSET OF X

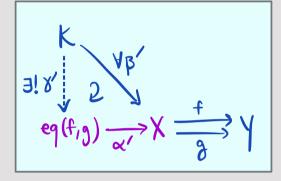


GIVEN A CATEGORY 6:

OPERATION ON PARALLEL MORPHISMS



EQUALIZER OF X = 3



RECALL FOR 1R-ALG. A
W/ MODILES VA & AW
GET:

V ⊗ W = (V ⊗ | W)/R

SPAN/R ((U < a) ⊗ W - U ⊗ (a > W))

TeV, WeW, aeA

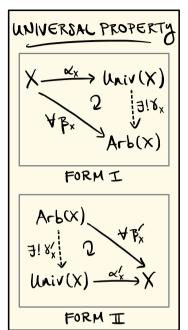
EXERCISE 2.11

LET f,g:X→Y
BE FUNCTIONS IN Set.

THEN:

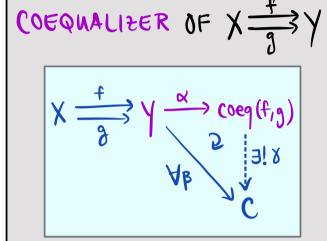
eq
$$(f,g) = \{x \in X \mid f(x) = g(x)\}$$

SUBSET OF X

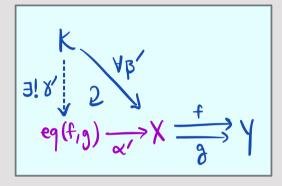


GIVEN A CATEGORY 6:

OPERATION ON PARALLEL MORPHISMS



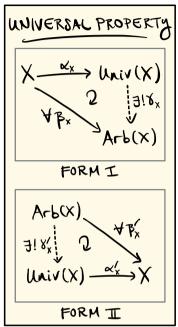
EQUALIZER OF X=3

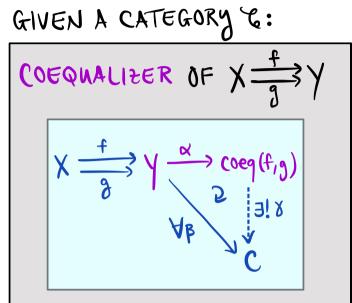


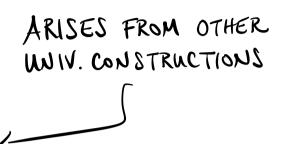
RECALL FOR 1R-ALG. A W/ MODULES VA & AW GET:

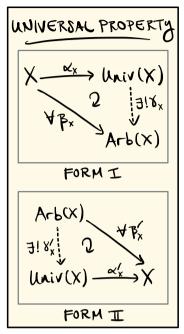
EXERCISE 2.11 WE GET V & M = Coeq (f,g) FOR VOAW = (VORW)/R f: VORAORW = idw VORW SPANIK (UTON) 9: VOK AOK W idv & D V OK W

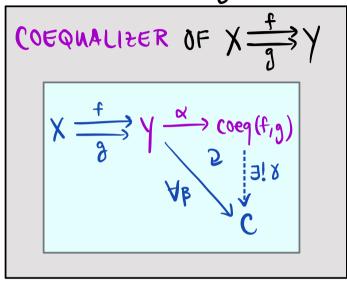
EXERCISE 2.11 LET f,g:X→Y BE FUNCTIONS IN Set. THEN: eq $(f,g) = \{x \in X \mid f(x) = g(x)\}$ SUBSET OF X

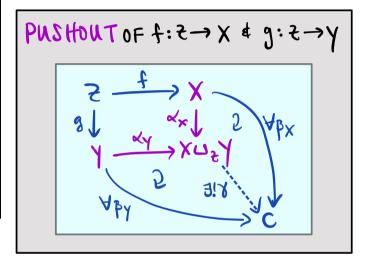


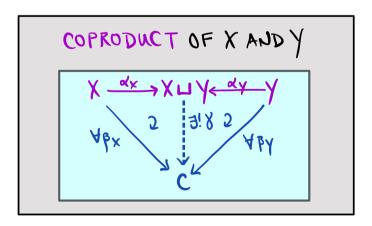


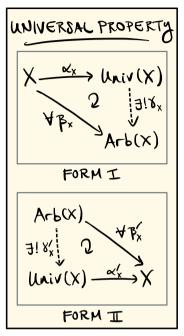


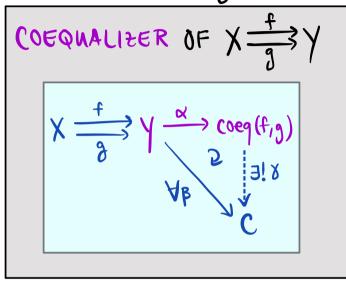


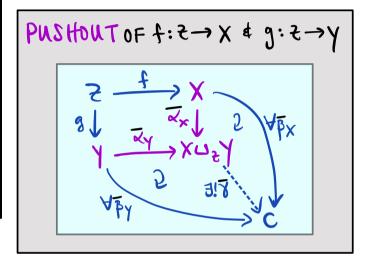


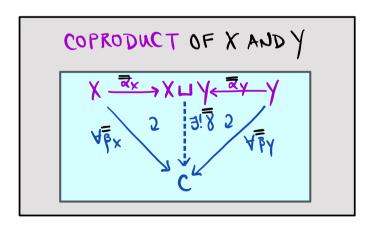


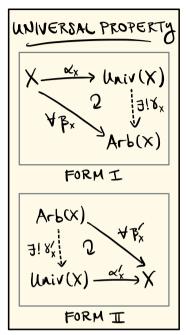




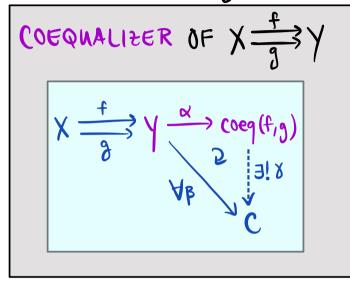


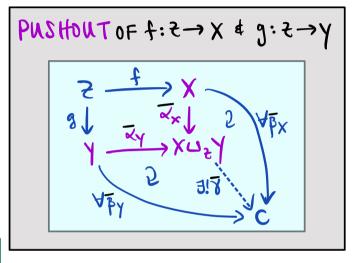


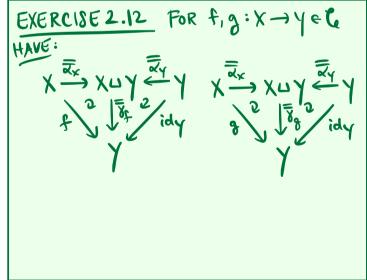


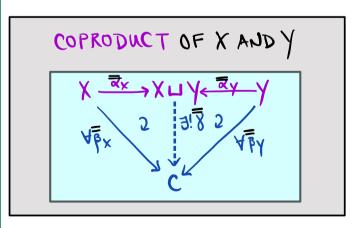


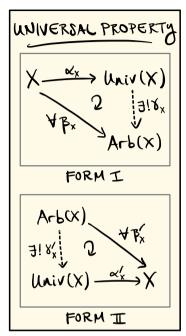
GIVEN A CATEGORY 6:

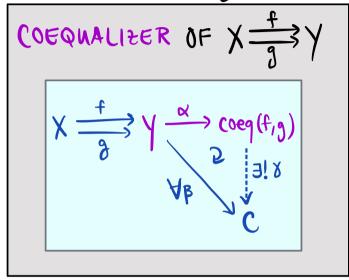


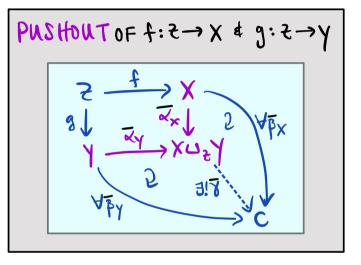


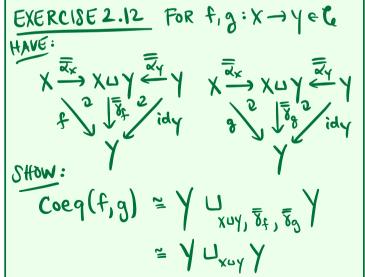


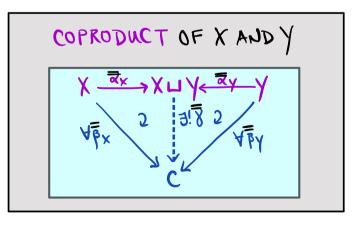


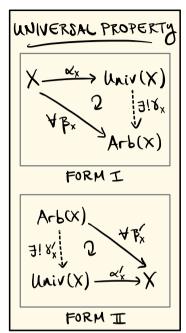


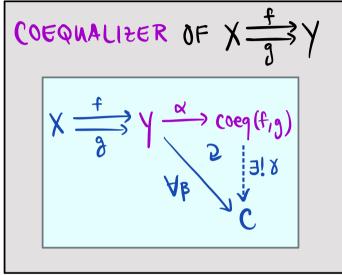




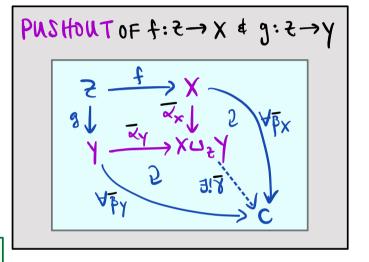








ARISES FROM OTHER WIV. CONSTRUCTIONS



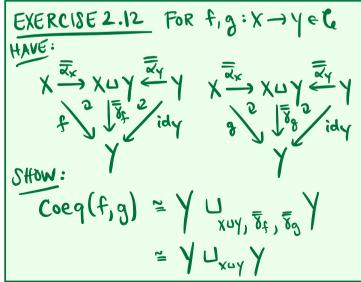
PUSHOUTS

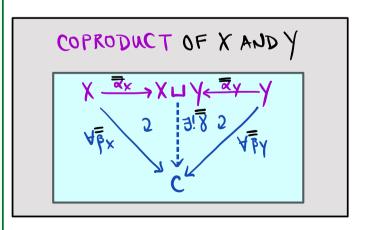
\$
COPRODUCTS

EXIST

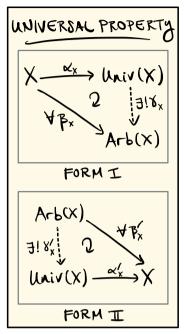
COEQUALIZERS

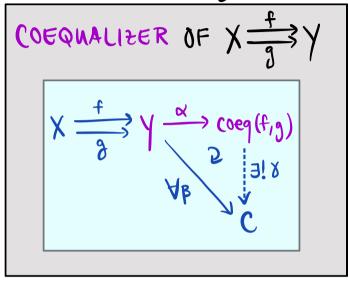
EXIST

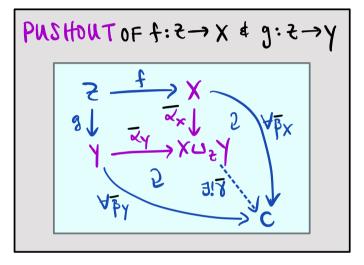


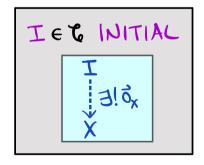


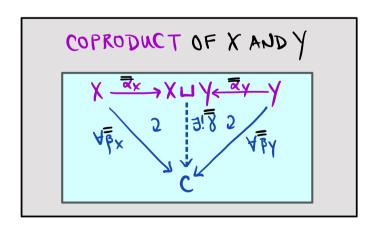
I. UNIVERSAL CONSTRUCTIONS: RECAP



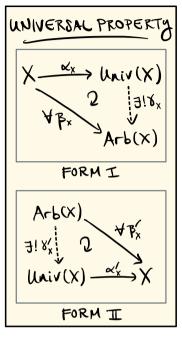


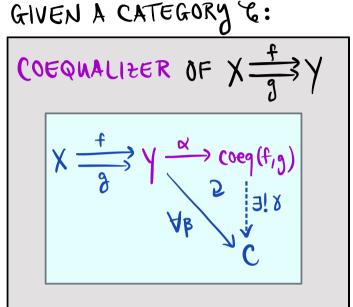




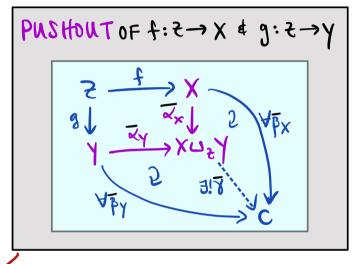


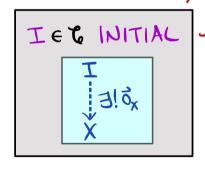
I. UNIVERSAL CONSTRUCTIONS: RECAP

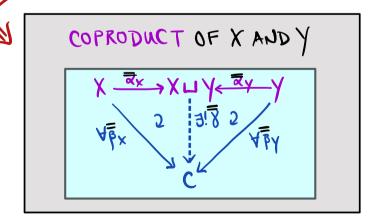




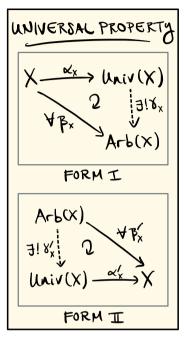
HAVE THE FOLLOWING EXISTENCE IMPLICATIONS

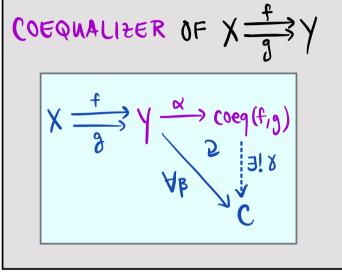




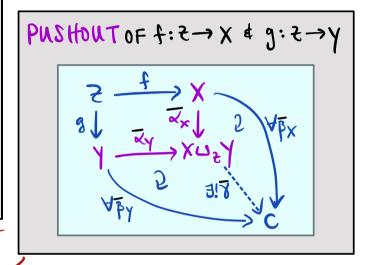


I. UNIVERSAL CONSTRUCTIONS: RECAP





HAVE THE FOLLOWING EXISTENCE IMPLICATIONS

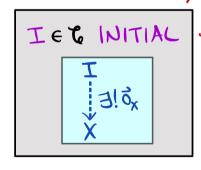


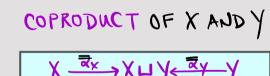
EQUALIZERS

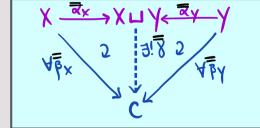
PULLBACKS

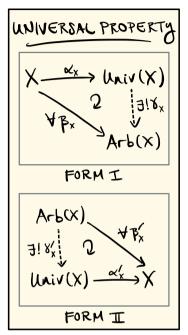
TERMINAL OBJECT

PRODUCTS



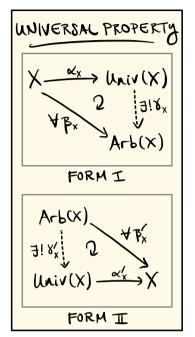






GIVEN A CATEGORY 6:

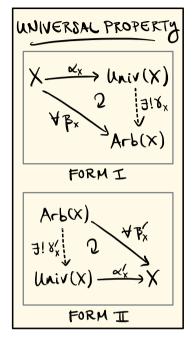
OPERATION ON MORPHISMS



GIVEN A CATEGORY 6:

A MORPHISM $g: X \rightarrow Y$ is

A ZERO MORPHISM IF gf = gf' f gf = gf' f f f f



GIVEN A CATEGORY 6:

OPERATION ON MORPHISMS

A MORPHISM
$$g: X \rightarrow Y$$
 IS

A ZERO MORPHISM IF

 $gf = gf'$
 $f = gf$

Ex.

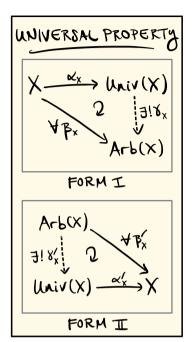
IF 3 ZERO OBJECT IN &, THEN:

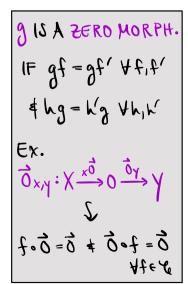
$$\overrightarrow{0}_{\times \gamma}: X \xrightarrow{\overrightarrow{0}} 0 \xrightarrow{\overrightarrow{0}_{\gamma}} Y$$

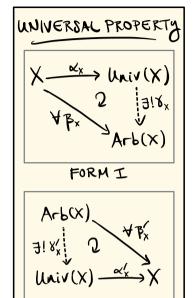
IS A ZERO MORPHISM.

YMORPHISMS fel:

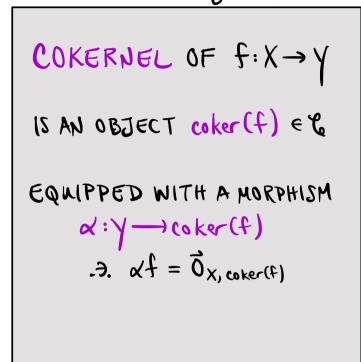
$$f \circ \vec{0} = \vec{0} \neq \vec{0} \circ f = \vec{0}$$

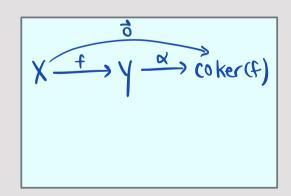


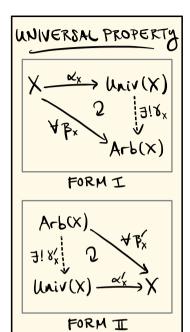


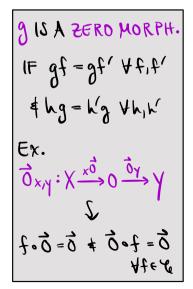


FORM I









GIVEN A CATEGORY & W/ZERO OBJ .: OPERATION ON MORPHISMS

COKERNEL OF f:X -Y

IS AN OBJECT coker(f) ∈ &

EQUIPPED WITH A MORPHISM

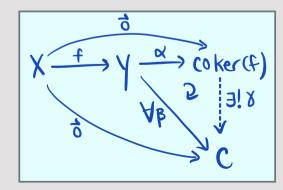
$$\alpha: \gamma \longrightarrow coker(f)$$

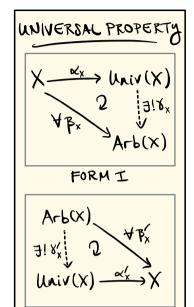
 $A: \gamma \longrightarrow coker(f)$

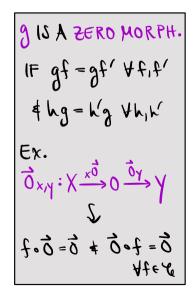
.7.
$$\alpha f = \vec{0}_{X, coker(f)}$$

WHERE &B:Y -> C 3. Bf = Ox, c

WE GET:







FORM I

GIVEN A CATEGORY & W/ZERO OBJ.: OPERATION ON MORPHISMS

COKERNEL OF f:X -Y

IS AN OBJECT coker(f) ∈ &

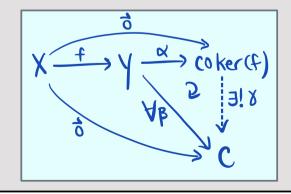
EQUIPPED WITH A MORPHISM

$$\alpha: \gamma \longrightarrow \operatorname{coker}(f)$$

.7.
$$\alpha f = \vec{0}_{X, coker(f)}$$

WHERE $\forall \beta: \gamma \rightarrow C \rightarrow \beta f = \vec{0}_{x,c}$

WE GET:



KERNEL OF f: X -> Y

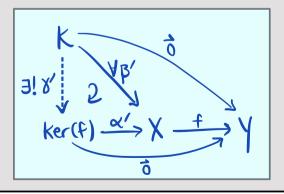
IS AN OBJECT Ker(f) & &

EQUIPPED WITH A MORPHISM

$$\alpha': \ker(f) \longrightarrow X$$

WHERE YB:K-X = OKY

WE GET:



WNIVERSAL PROPERTY

X X Univ(X)

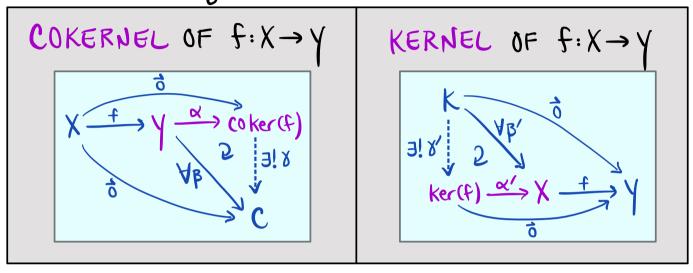
2 318

Arb(X)

FORM I

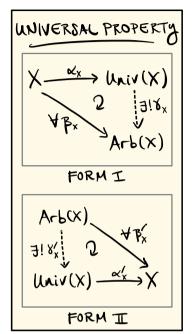
Waiv(X) X

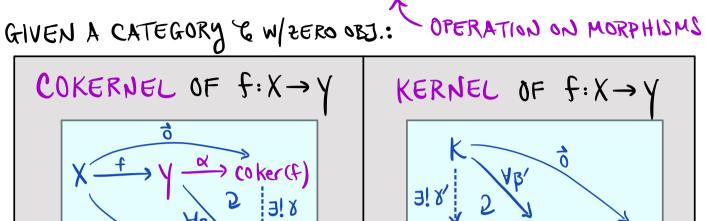
FORM II

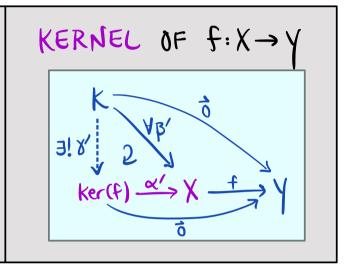


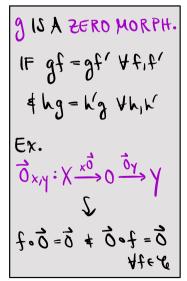
g is A ZERO MORPH.

IF
$$gf = gf' \forall f, f'$$
 $f = gf' \forall f, f'$
 $f = gf' \forall f'$

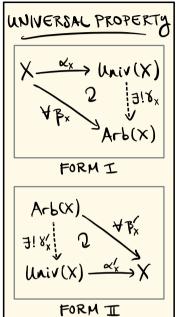




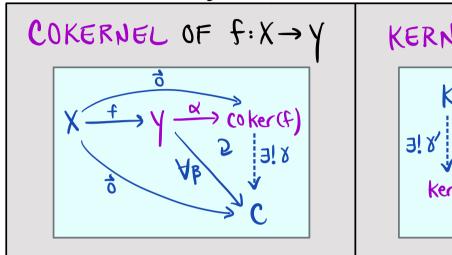


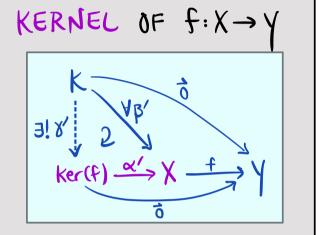


RECOVERS THE WOULL NOTION OF (CO)KERNELS IN MANY CATEGORIES EXERCISE 2.15



GIVEN A CATEGORY & W/ZERO OBJ .: OPERATION ON MORPHISMS





RECOVERS THE USUAL NOTION OF (CO)KERNELS
IN MANY CATEGORIES EXERCISE 2.15

(IS A SPECIAL CASE OF A (CO)EQUALIZER

EXERCISE 2.13

WIVERSAL PROPERTY

X

V

V

V

V

V

V

Arb(X)

FORM I

Holx

V

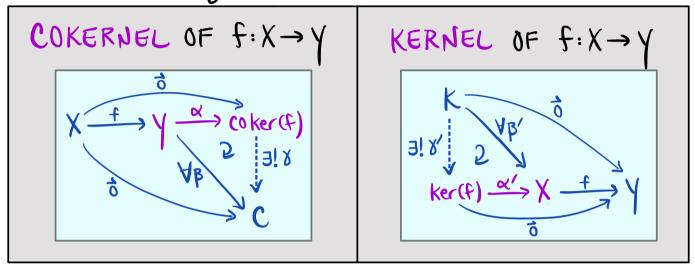
V

FORM I

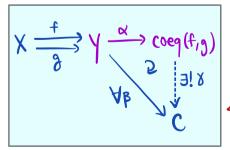
FORM I

FORM I

GIVEN A CATEGORY & W/ZERO OBJ .: OPERATION ON MORPHISMS



RECOVERS THE USUAL NOTION OF (CO)KERNELS
IN MANY CATEGORIES EXERCISE 2.15



(1S A SPECIAL CASE OF A (CO)EQUALIZER

THINK HOW TO GET A

EXERCISE 2.13

WHIVERSAL PROPERTY

X WX UNIV(X)

2 318x

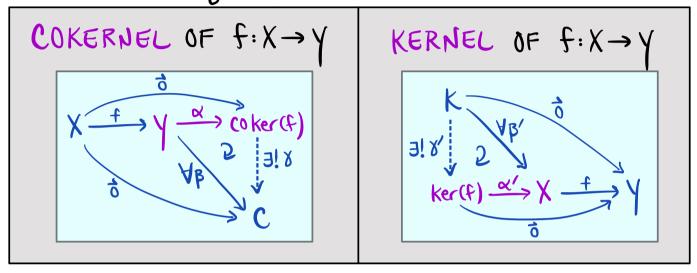
Arb(X)

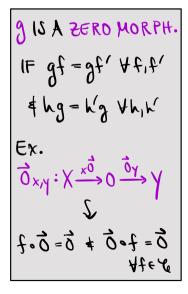
FORM I

Univ(X) X

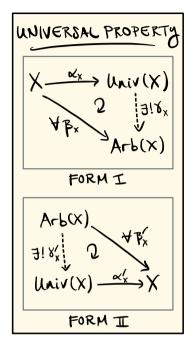
FORM I

GIVEN A CATEGORY & W/ZERO OBJ .: OPERATION ON MORPHISMS

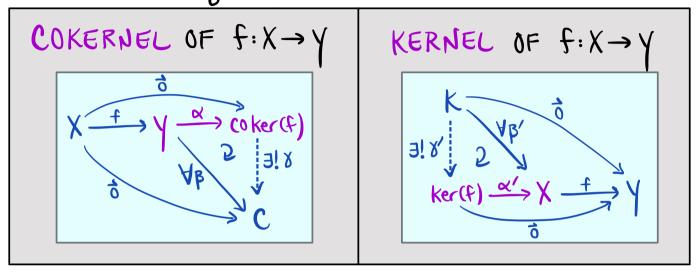


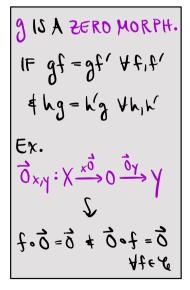


EXERCISE 2.13 COKERNELS ARE EPIC, RIGHT CANCELLATIVE & KERNELS ARE MONIC, LEFT



GIVEN A CATEGORY & W/ZERO OBJ .: OPERATION ON MORPHISMS





Youdo! COKERNELS ARE EPIC, RIGHT CANCELLATIVE

WIVERSAL PROPERTY

X WX UNIV(X)

2 318

Arb(X)

FORM I

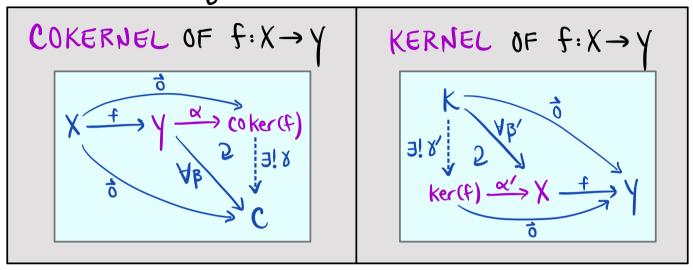
Arb(X)

48

Univ(X) WX

FORM II

GIVEN A CATEGORY & W/ZERO OBJ .: OPERATION ON MORPHISMS



g IS A ZERO MORPH.

IF $gf = gf' \forall f, f'$ $f = gf \forall f \neq g$ $f = gf' \forall f, f'$ $f = gf \Rightarrow gf' \forall f' f'$ $f = gf \Rightarrow gf' \forall$

EXERCISE 2.13 COKERNELS ARE EPIC, RIGHT CANCELLATIVE

PF/TAKE h,h': coker(f) -> Z -> h x = h'x AS MORPHISMS y -> Z

WINERSAL PROPERTY

X WX UNIV(X)

2 318x

Arb(X)

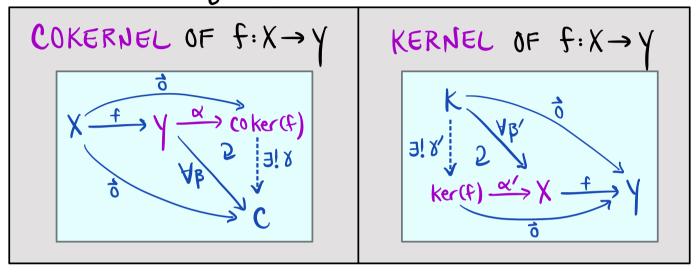
FORM I

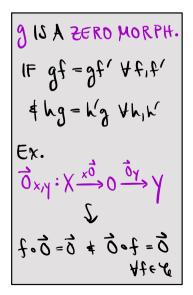
Arb(X)

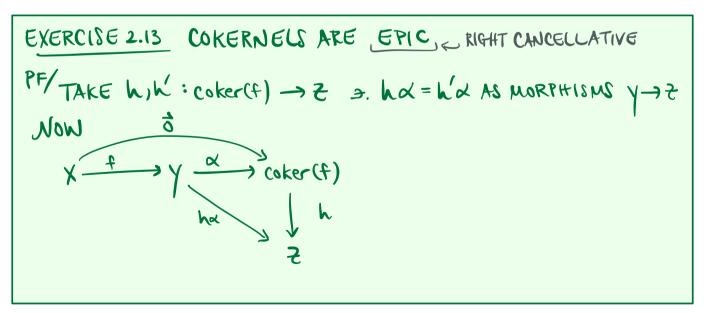
48x

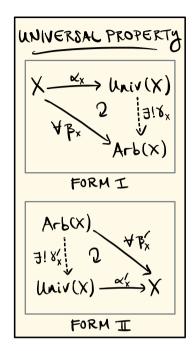
Vaiv(X) X

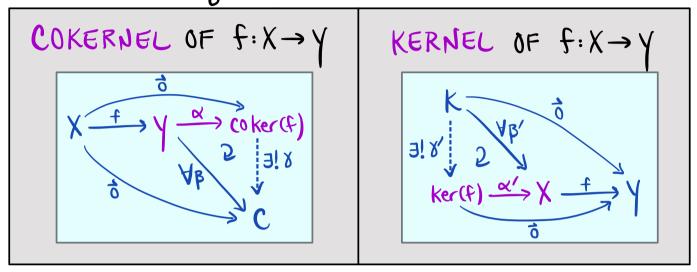
FORM II

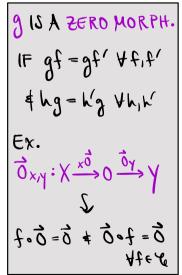


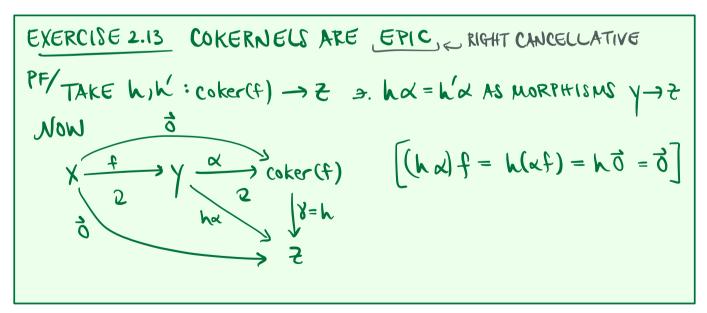


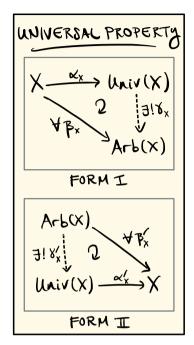


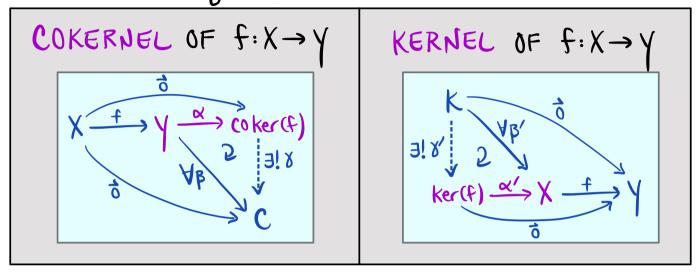


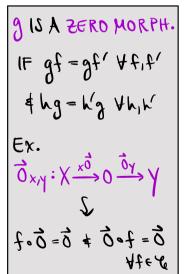


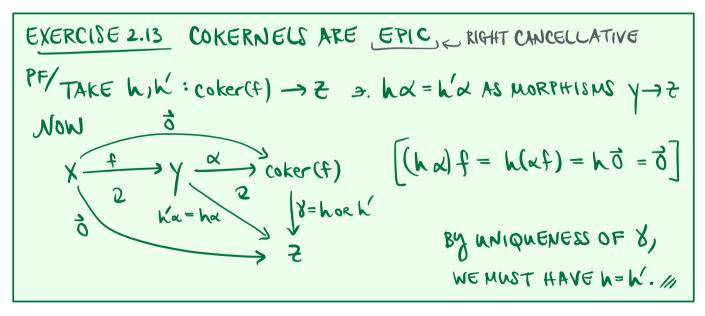


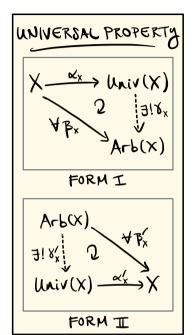


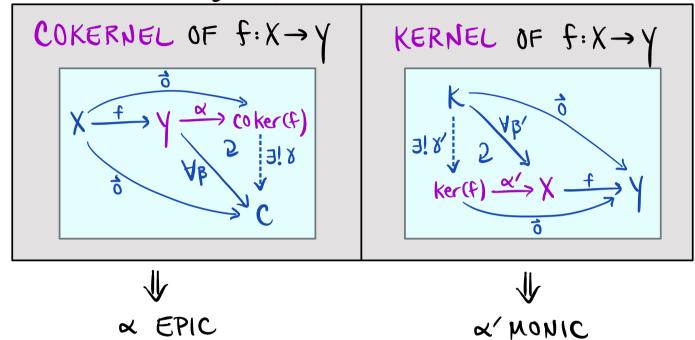


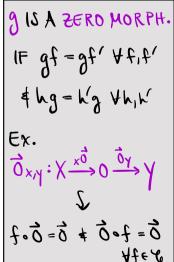




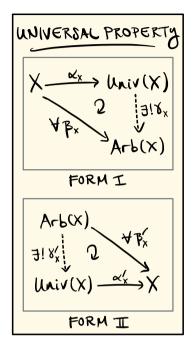




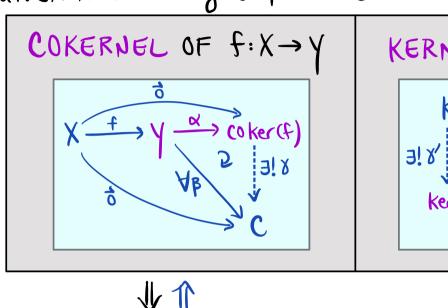


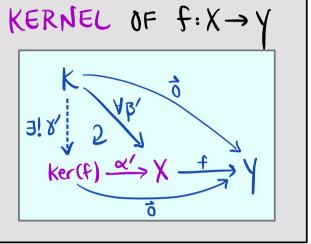


& EPIC



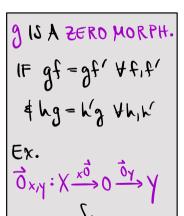
GIVEN A CATEGORY & W/ZERO OBJ .: OPERATION ON MORPHISMS





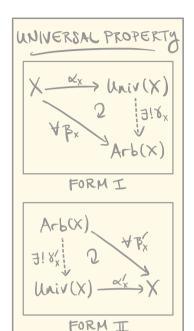
W 1

X MONIC

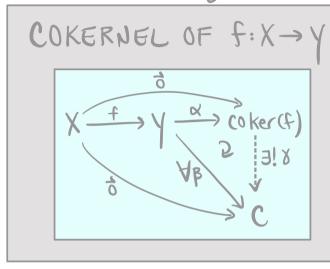


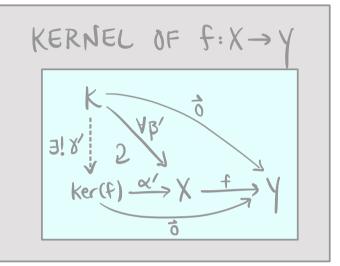
LAN EPI A MONO IS CALLED NORMAL IF IT ARISES

AS THE COKERNEL OF A MORPHISM.



GIVEN A CATEGORY & W/ZERO OBJ .: OPERATION ON MORPHISMS





V ↑

« EPIC

M MONIC

g IS A ZERO MORPH.

IF $gf = gf' \forall f, f'$ $\forall hg = h'g \forall h, h'$ Ex. $\overrightarrow{O}_{x,y} : X \xrightarrow{x \overrightarrow{O}} O \xrightarrow{\overrightarrow{O}_{y}} Y$ $f \cdot \overrightarrow{O} = \overrightarrow{O} \neq \overrightarrow{O} \circ f = \overrightarrow{O}$ $\forall f \in \mathcal{C}$

AN EPI A MONO IS CALLED NORMAL IF IT ARISES AS THE COKERNEL OF A MORPHISM.

= NEXT WE DISCUSS CATEGORIES IN WHICH = ALL OF THE ABOVE EXISTS

II. ABELIAN CATEGORIES: OVERVIEW

TAKE & A CATEGORY

PREADDITIVE

ADDITIVE

ABELIAN
CATEGORY

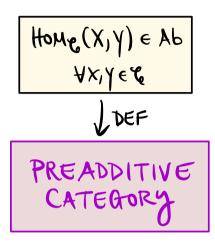
II. ABELIAN CATEGORIES : OVERVIEW TAKE & A CATEGORY Home (X, Y) & Ab NEEDED ¥x, y ∈ C J> YOXE 3 COKERNELS 1 DEF AX1/66 390E & KERNELS BIPRODUCT tero obj. PREADDITIVE CATEGORY DEF SOLOMS DEF" DEF DEF DEF DEF

II. ABELIAN CATEGORIES : OVERVIEW TAKE & A CATEGORY Home (X, Y) & Ab NEEDED ¥x,γ ∈ ℃ J> YOXE 3 COKERNEUS 1 DEF AX11 E & 330E & KERNELS BIPRODUCT tero obj. PREADDITIVE CATEGORY DEF DEF" SOLOMS DEF EPIS DEF DEF DEF CATEGORY GET GET JYnYe J > YUXE GET AX'A & C COPRODUCT PRODUCT GET GET JJE & JTE & **ETWOHEUSE** JCOEQUAUZERS INITIAL OBJ. TERMINAL OBJ. PULLBACKS EQUALIZERS 3 ZERO MORPHISMS

II. ABELIAN CATEGORIES : OVERVIEW TAKE & A CATEGORY Home (X, Y) & Ab NEEDED ¥x,γ ∈ ℃ J > YOXE 3 COKERNEUS LDEF AX11 E & 390E \$ KERNELS BIPRODUCT LERO OBJ. = NORMAUTY = PREADDITIVE CATEGORY DEF SONOMS PKERNELS DEF DEF EPIS COKERNELS DEF DEF CATEGORY DEF GET GET GET AX'AE & COPRODUCT PRODUCT GET GET JIE & 3TE& **ETWOHENTS** JCOEQUALIZERS INITIAL OBJ. TERMINAL OBJ. PULLBACKS EQUACIZERS 3 ZERO MORPHISMS

II. ABELIAN CATEGORIES : OVERVIEW TAKE & A CATEGORY Home (X, Y) & Ab NEEDED ¥x,γ ∈ ℃ J > YOXE 3 COKERNEUS 1 DEF 390E AX' Leg \$ KERNELS BIPRODUCT LERO OBJ. = NORMAUTY = PREADDITIVE CATEGORY DEF SONOMS PKERNELS DEF DEF EPIS COKERNELS DEF DEF CATEGORY DEF GET GET GET AX'AE & COPRODUCT PRODUCT GET GET JIE & 3TE& **ETWOHEUPE** JCOEQUALIZERS INITIAL OBJ. TERMINAL OBJ. PULLBACKS EQUACIZERS 3 ZERO MORPHISMS

II. ABELIAN CATEGORIES: PREADDITIVE & LINEAR CATEGORIES



II. ABELIAN CATEGORIES: PREADDITIVE & LINEAR CATEGORIES

Home(X,y) & Ab VX,y & & JDEF

PREADDITIVE

A CATEGORY & 15 PREADDITIVE

(OR AN AB-CATEGORY),

OR ENRICHED OVER Ab)

IF HOME (X,Y) IS AN ABELIAN GROUP YX,YEE

W/OPERATION +

ADDITIVE IDENTITY O (WHEN 30 & C)

(ADDITIVE INVERSE OF f: X - Y DENOTED BY -f: X - Y

ALSO REQUIRE • DISTRIBUTES OVER +

II. ABELIAN CATEGORIES: PREADDITIVE & LINEAR CATEGORIES

Home(X,y) & Ab VX,y & & LDEF

PREADDITIVE
CATEGORY

Ex. Ab

A CATEGORY & IS PREADDITIVE

(OR AN AB-CATEGORY),

OR ENRICHED OVER AL)

IF HOME (X,Y) IS AN ABELIAN GROUP YX,YER

W/OPERATION +

ADDITIVE IDENTITY O (WHEN 30 EV)

ADDITIVE INVERSE OF f: X - Y DENOTED BY -f: X - Y

ALSO REQUIRE • DISTRIBUTES OVER +

II. ABELIAN CATEGORIES: PREADDITIVE & LINEAR CATEGORIES

Home(X,y) & Ab VX,y & & LDEF

PREADDITIVE
CATEGORY

Ex. Ab

A CATEGORY & IS PREADDITIVE

(OR AN AB-CATEGORY)

OR ENRICHED OVER Ab)

IF HOME (X,Y) IS AN ABELIAN GROUP YX,YEE

W/OPERATION +

ADDITIVE IDENTITY O (WHEN 30 EV)

(ADDITIVE INVERSE OF f: X-Y DENOTED BY -f: X-Y

ALSO REQUIRE • DISTRIBUTES OVER +

FIX GROUND FIELD IR A CATEGORY & IS LINEAR (OR ENRICHED OVER Vec)

IF & IS PREADDITIVE

HOMY (X,Y) IS A VECTOR SPACE YX,YER

O DISTRIBUTES OVER X.

II. ABELIAN CATEGORIES: PREADDITIVE & LINEAR CATEGORIES

Home (X, Y) & Ab ¥x, y ∈ & J. DEF

PREADDITIVE CATEGORY

Ex. Ab

Ex. Vecir A-Mod A CATEGORY & IS PREADDITIVE

(OR AN Ab-CATEGORY) OR ENRICHED OVER Ab)

IF HOME (X,Y) IS AN ABELIAN GROUP YX, YE'C

ALSO REQUIRE . DISTRIBUTES OVER +

FIX GROUND FIELD

A CATEGORY & IS LINEAR (OR ENRICHED OVER Vec)

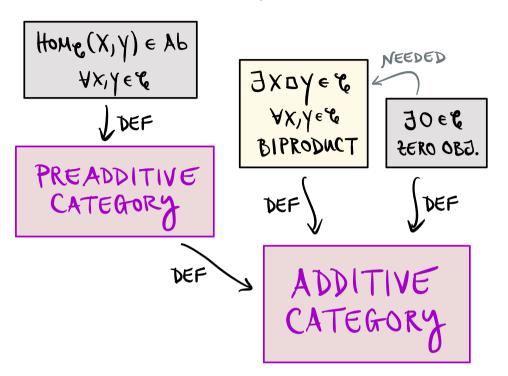
IF & IS PREADDITIVE

* Home (X,Y) IS A VECTOR SPACE YX, YE'C

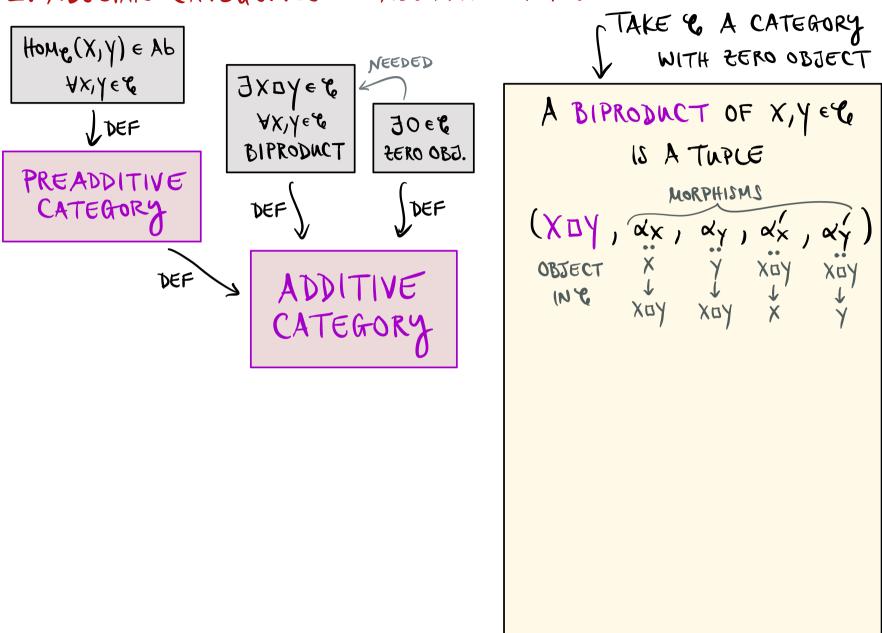
· DISTRIBUTES OVER X.

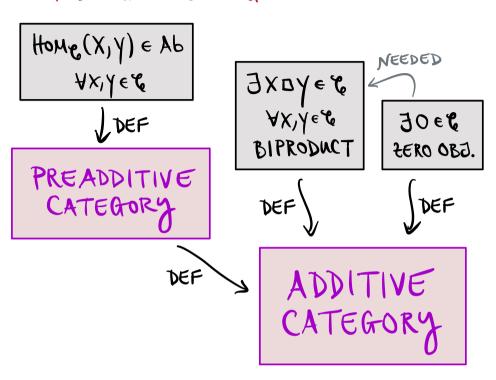
II. ABELIAN CATEGORIES : OVERVIEW TAKE & A CATEGORY Home (X, Y) & Ab NEEDED ¥x,γ ∈ € J > YOXE 3 COKERNEUS 1 DEF AX' Leg 30€€ \$ KERNELS BIPRODUCT LERO OBJ. = NORMAUTY = PREADDITIVE CATEGORY DEF SONOMS PKERNELS DEF DEF EPIS COKERNELS DEF DEF CATEGORY DEF GET GET GET AX'AE & COPRODUCT PRODUCT GET GET JIE & 3TE& **ETWOHEUPE** JCOEQUALIZERS INITIAL OBJ. TERMINAL OBJ. PULLBACKS EQUACIZERS 3 ZERO MORPHISMS

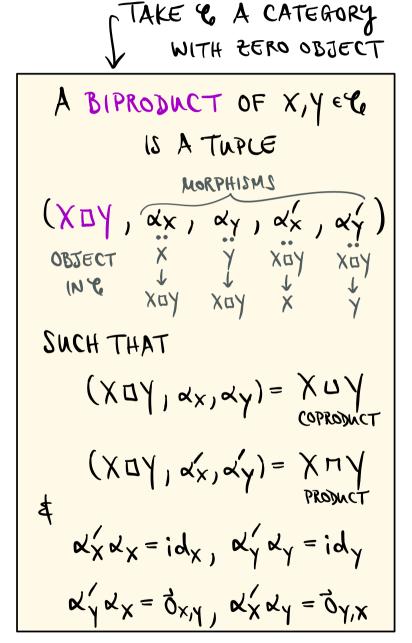
II. ABELIAN CATEGORIES: OVERVIEW

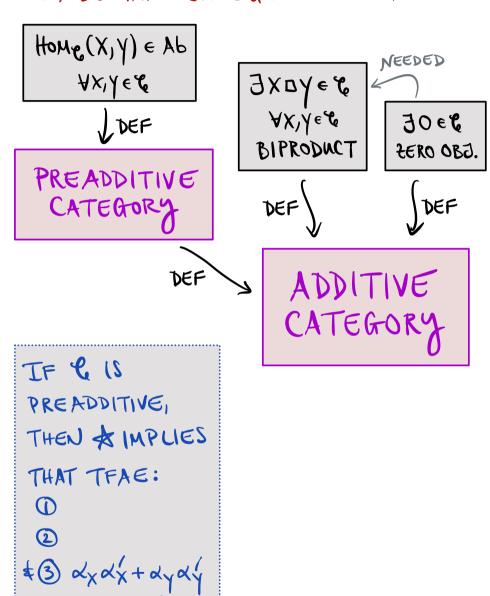


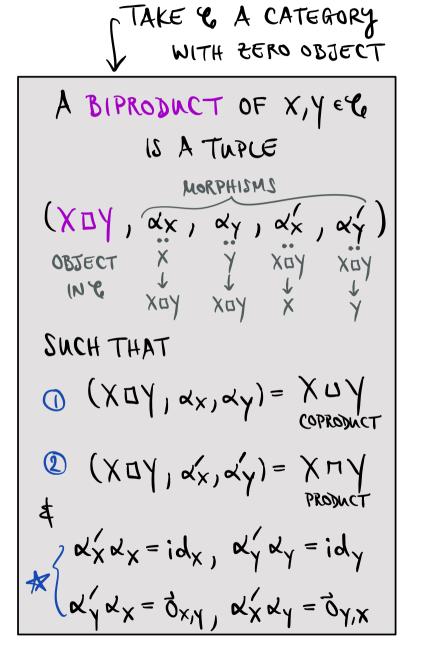
TAKE & A CATEGORY

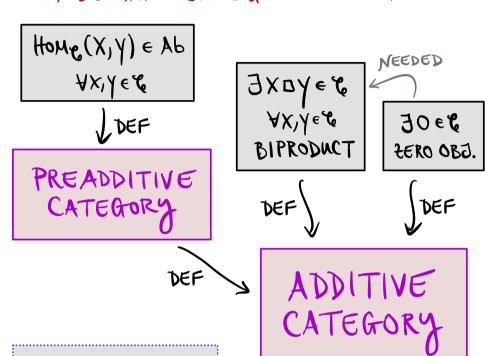












TF & 1S

PREADDITIVE,

THEN & IMPLIES

THAT TFAE:

①
②

\$3 & x & x + & y & y

= id x n y

A CATEGORY &

IS ADDITIVE IF

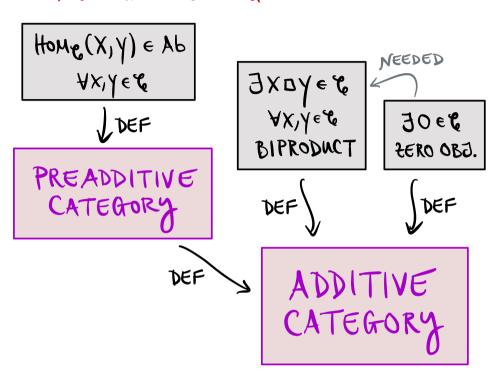
IT IS PREADDITIVE,

JERO OBJECT &

JXDY&&

VX,Y&&.

TAKE & A CATEGORY
WITH ZERO OBJECT A BIPRODUCT OF X,Y &C IS A TUPLE MORPHISMS (XDY, dx, dy, dx, dy OBJECT X Y XOY X SUCH THAT $(X \square Y, \alpha_X, \alpha_Y) = X \sqcap Y$ PRODUCT



TAKE & A CATEGORY WITH ZERO OBJECT

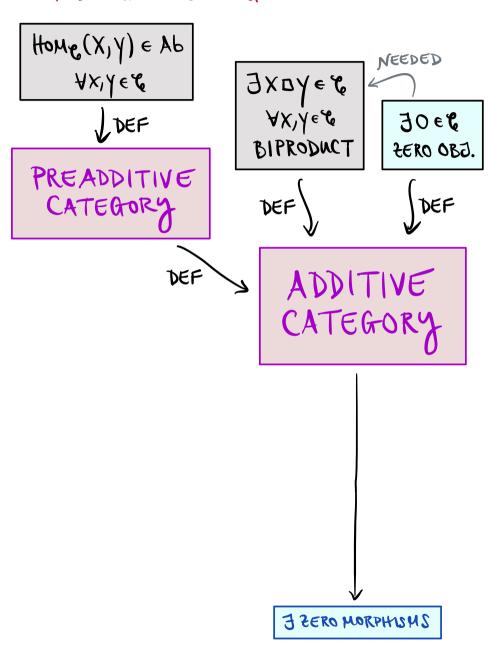
A BIPRODUCT OF
$$X, y \in \mathcal{C}$$

IS A TUPLE

 $(X \square Y, dx, dy, dx, dy')$

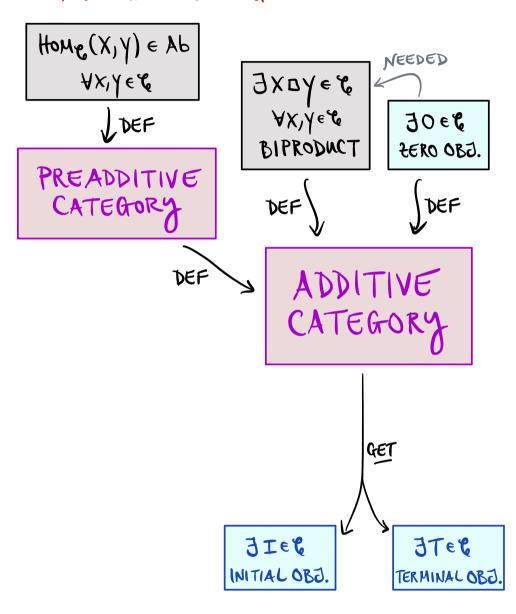
3.

 $(X \square Y, dx, dy) = X \square Y$
 $(X \square Y, dx, dy') = X \square Y$
 $dx = idx, dy' dy = idy$
 $dx = dx, dx' dy = dy'$
 $dx' dx = dx, dx' dy = dy'$



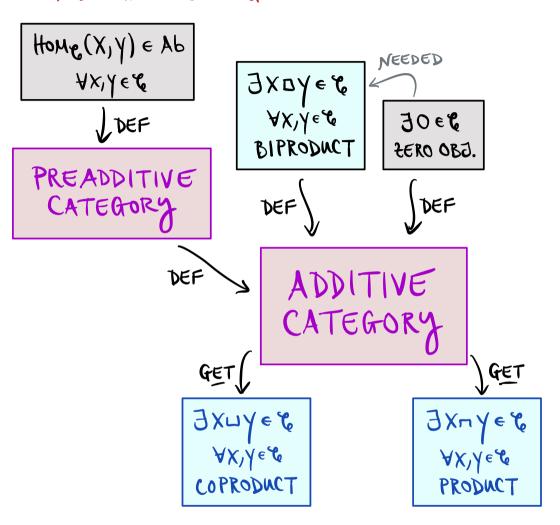
TAKE & A CATEGORY WITH ZERO OBJECT

A BIPRODUCT OF $X, y \in \mathcal{C}$ IS A TUPLE $(X \square Y, dx, dy, dx', dy')$ \exists $(X \square Y, dx, dy) = X \square Y$ $(X \square Y, dx, dy) = X \square Y$ dx = dx, dy = dy dx = dx dx = dx dx = dx



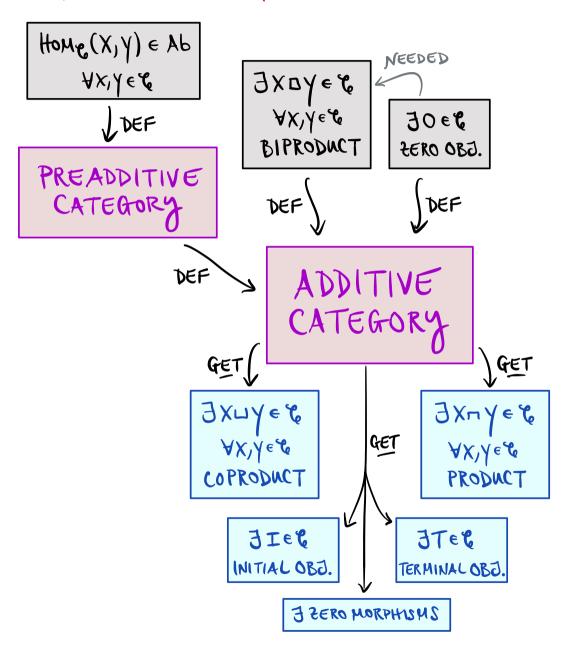
TAKE & A CATEGORY WITH ZERO OBJECT

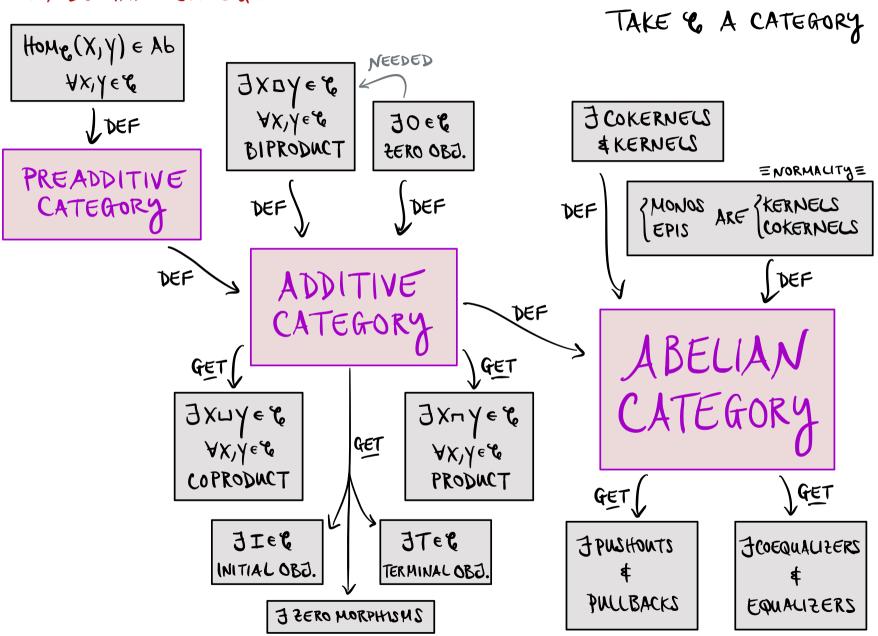
A BIPRODUCT OF $X, y \in \mathcal{C}$ IS A TUPLE $(X \square Y, dx, dy, dx, dy')$ 3. $(X \square Y, dx, dy) = X \square Y$ $(X \square Y, dx, dy') = X \square Y$ dx dx = idx, dy' dy = idy dx dx = dx, dx' dy = dy, x

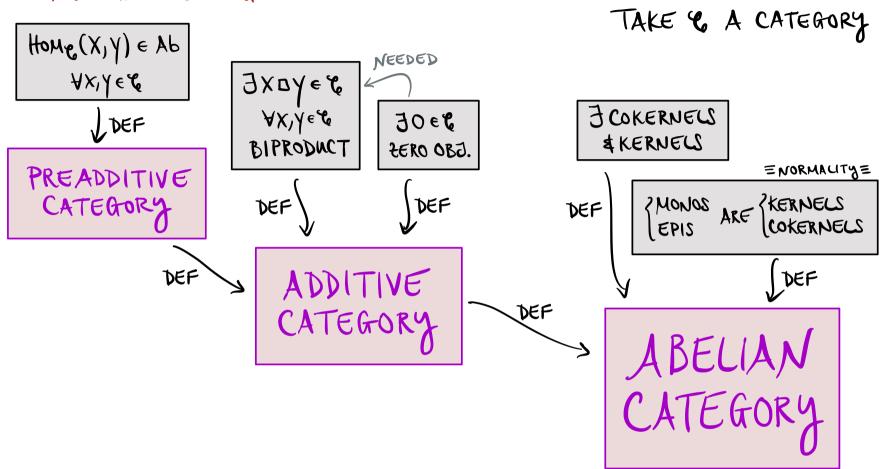


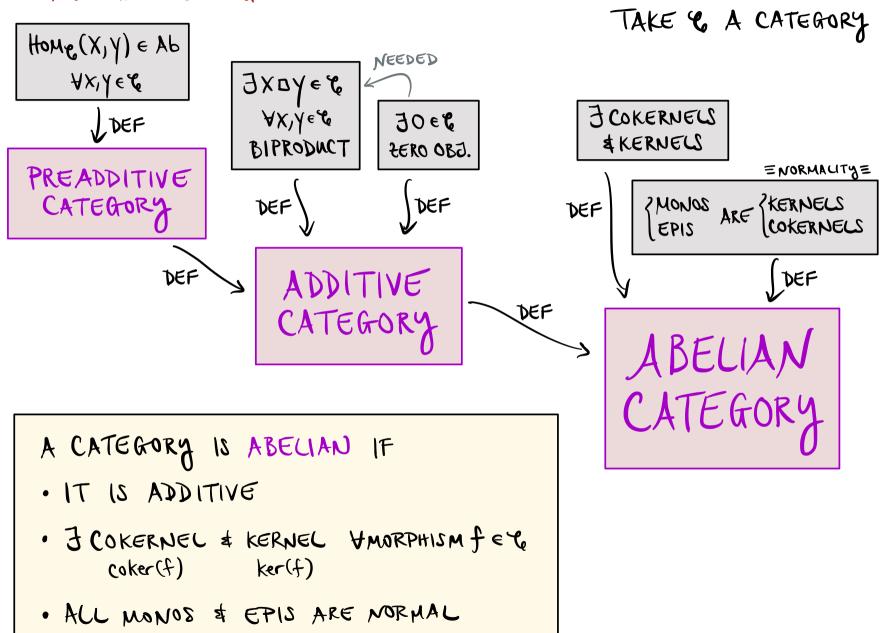
TAKE & A CATEGORY WITH ZERO OBJECT

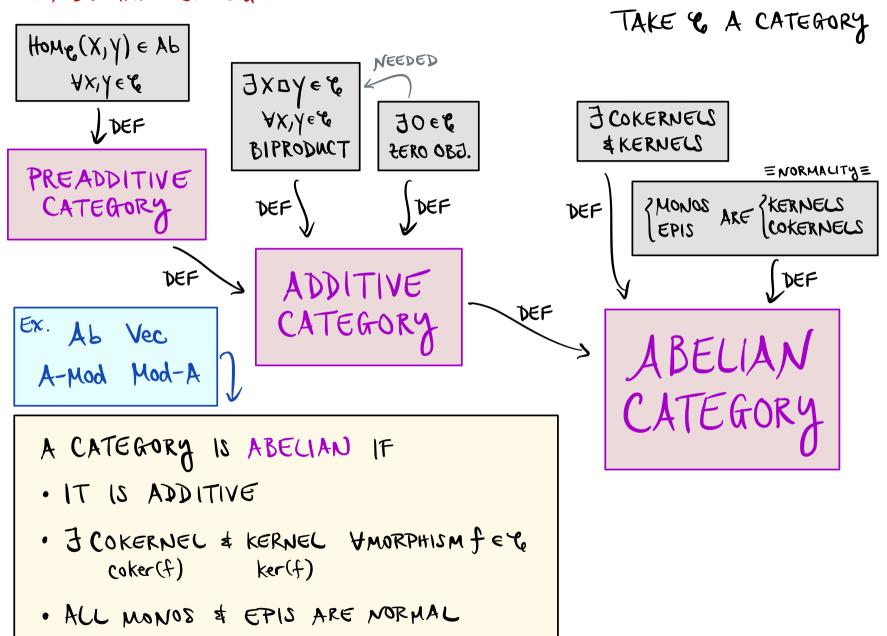
A BIPRODUCT OF $X, y \in \mathcal{C}$ IS A TUPLE $(X \square Y, dx, dy, dx', dy')$ B. $(X \square Y, dx, dy) = X \square Y$ $(X \square Y, dx, dy') = X \square Y$ dx dx = idx, dy' dy = idy dx' dx = dx', dx' dy = dy', dx'

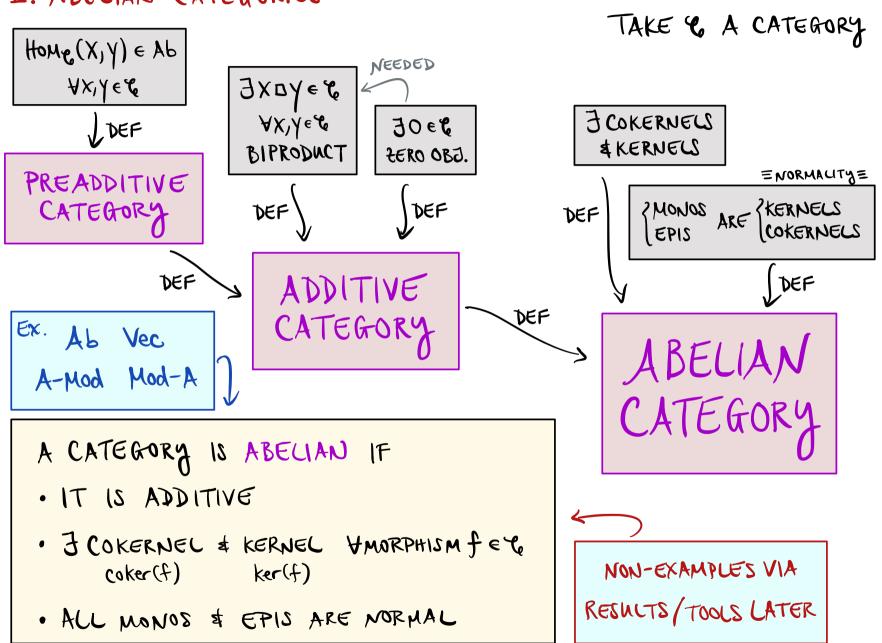


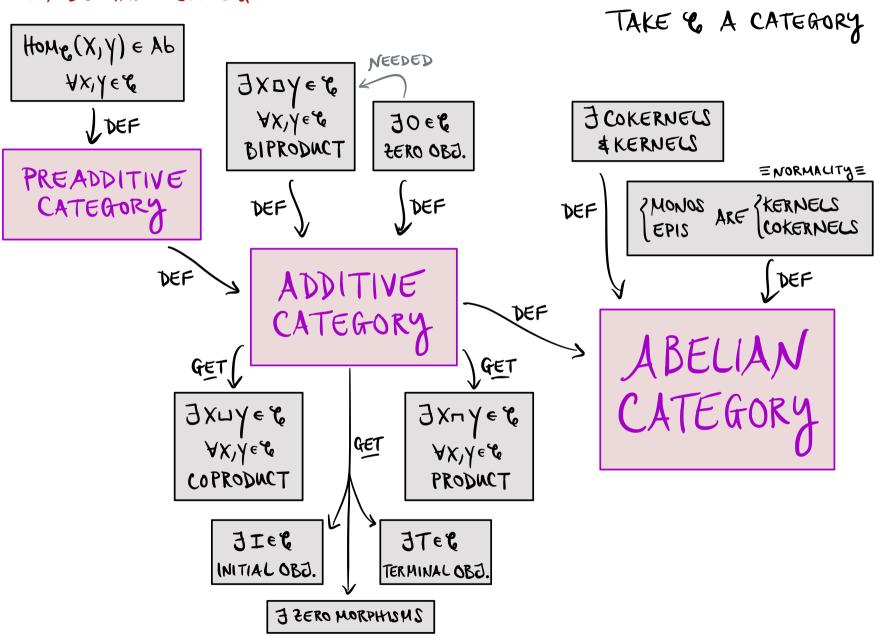


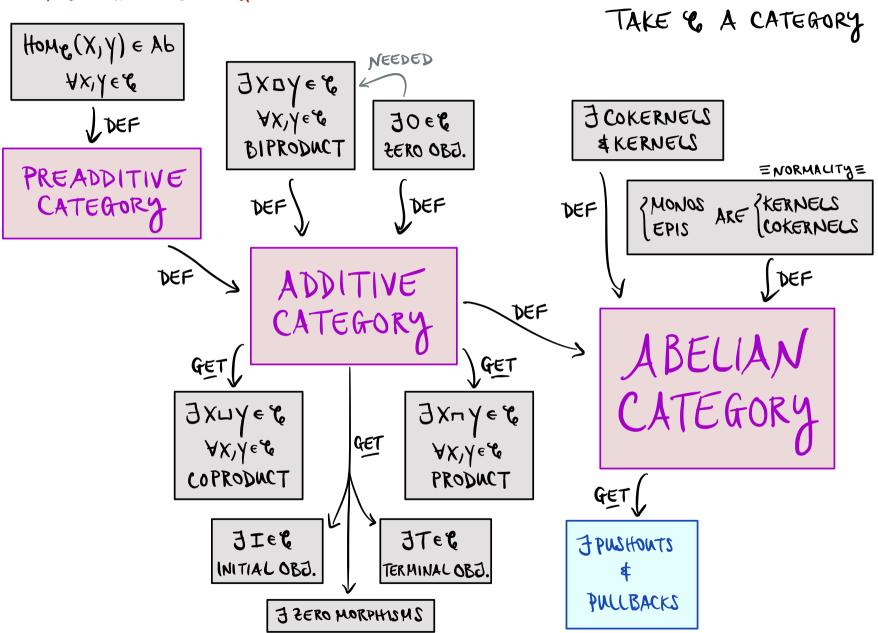


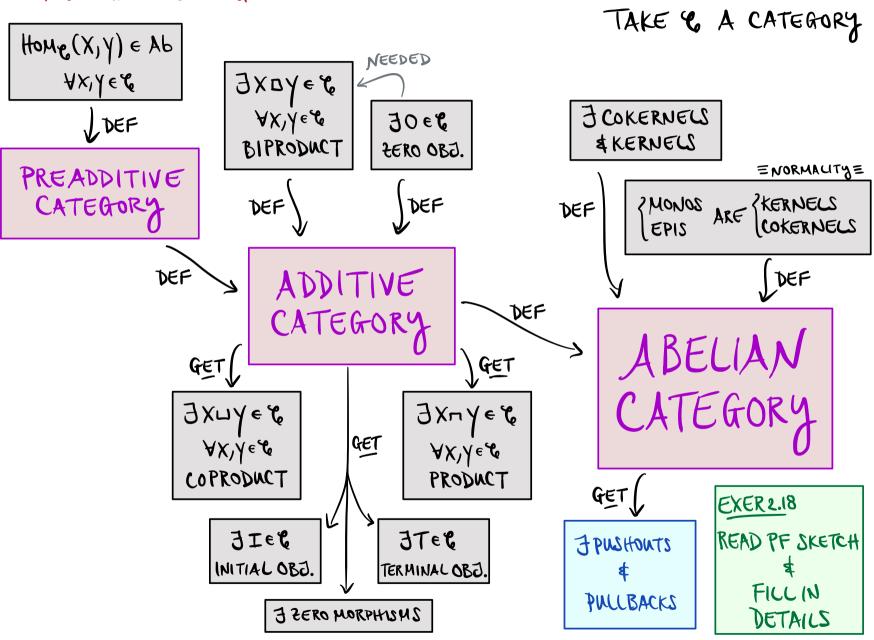


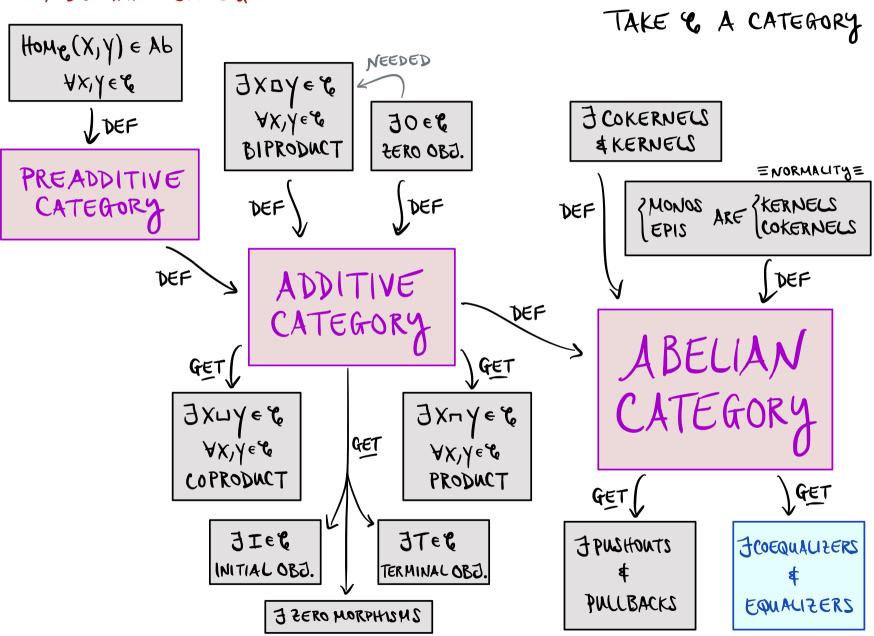




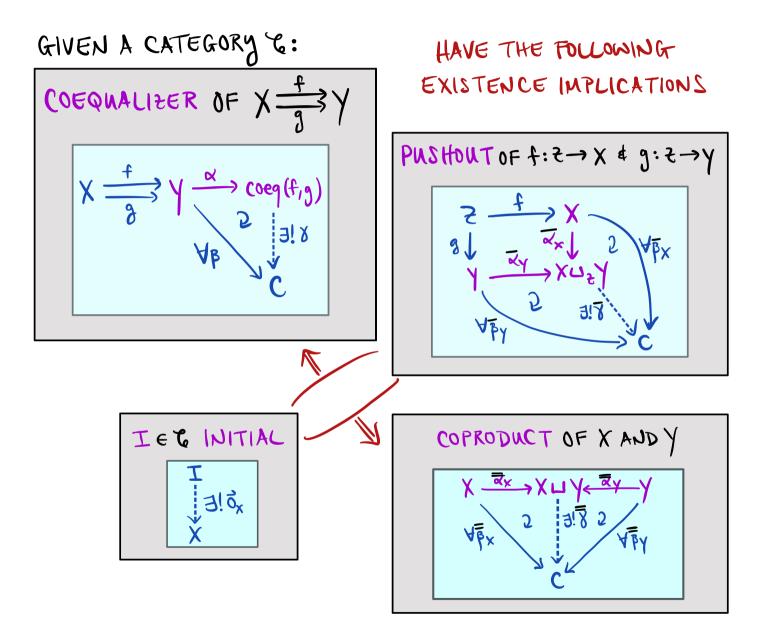


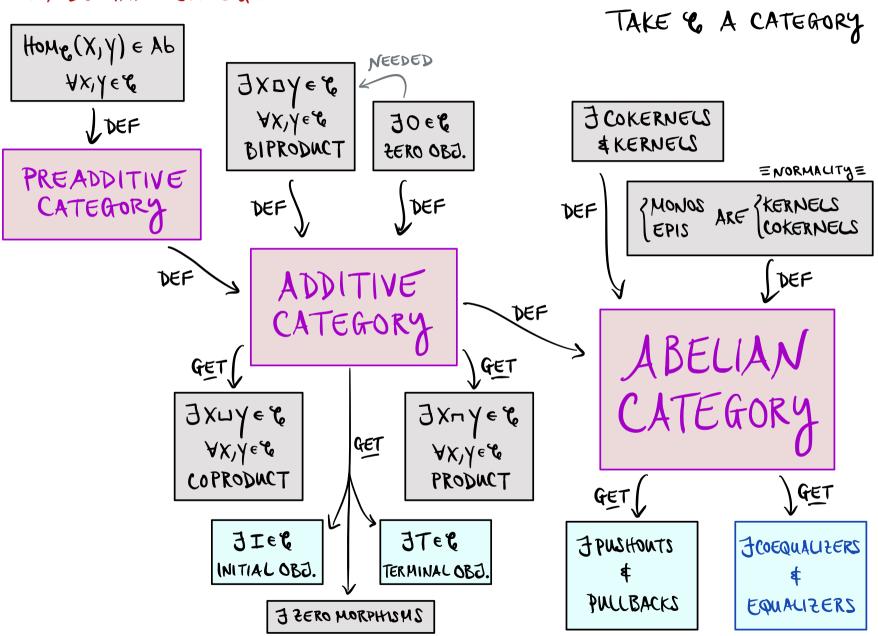


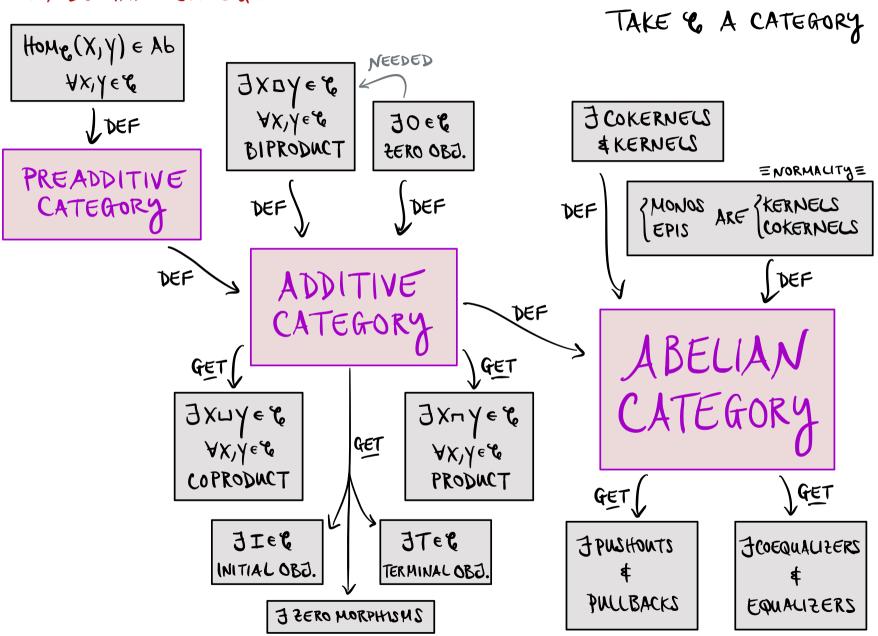




= RECALL =





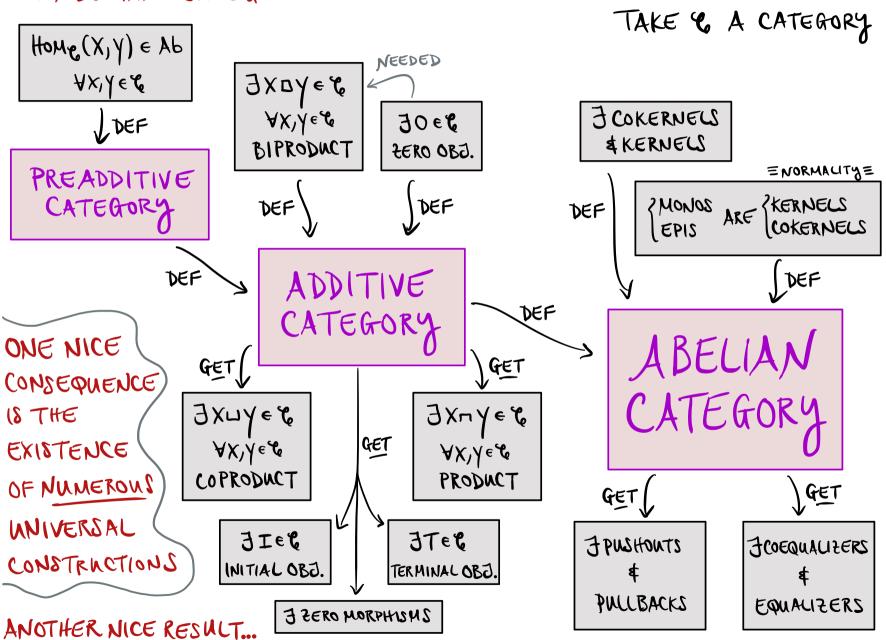


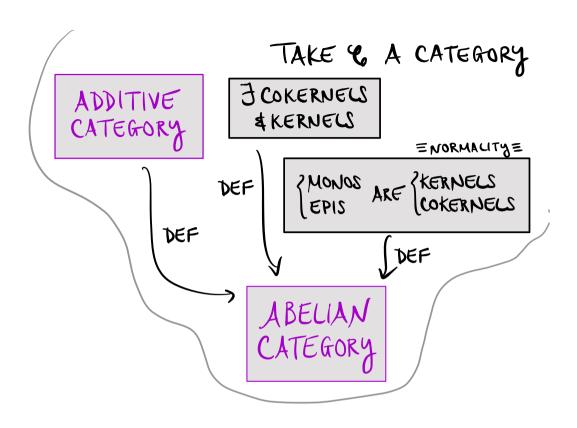
II. ABELIAN CATEGORIES TAKE & A CATEGORY Home (X, Y) & Ab NEEDED ¥x, y ∈ 6 3×0Ye& 3 COKERNEUS 1 DEF AX' Le & 390E \$ KERNELS BIPRODUCT tero obj. = NORMAUTY = PREADDITIVE DEF CATEGORY SONOMS PKERNELS DEF DEF ARE EPIS COKERNELS DEF DEF ADDITIVE DEF CATEGORY ABELIAN ONE NICE GET GET CONSEQUENCE CATEGORY 18 THE 3 > YUXE JXnYe & GET EXISTENCE AX' LEG AX' LE C COPRODUCT PRODUCT OF NUMEROUS GET GET WNIVERSAL JIEC 33TE 3 PUSHOUTS JCOEQUALIZERS CONSTRUCTIONS INITIAL OBJ. TERMINAL OBJ.

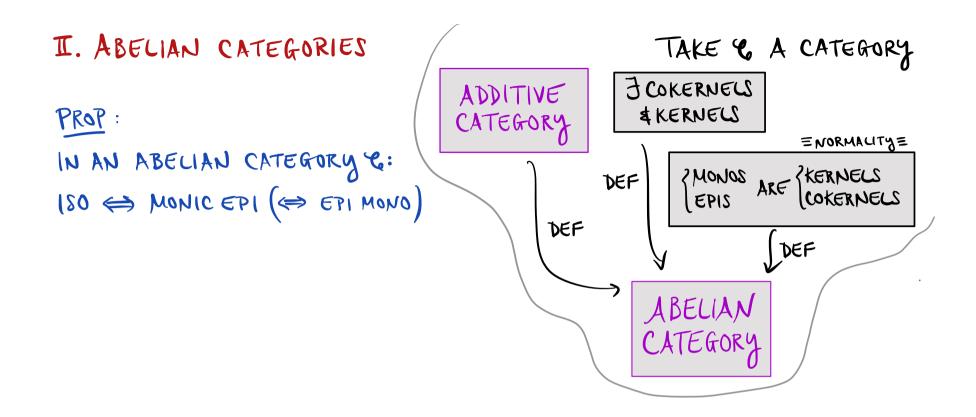
3 ZERO MORPHISMS

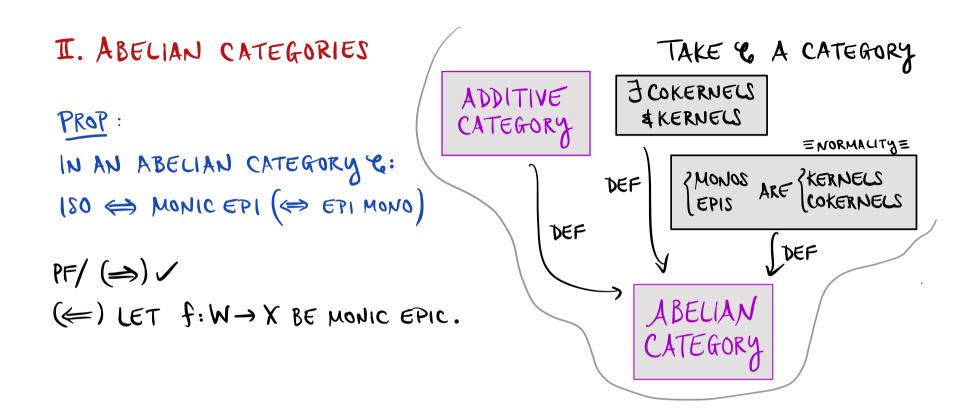
PWLLBACKS

EQUALIZERS









PROP:

IN AN ABELIAN CATEGORY C:

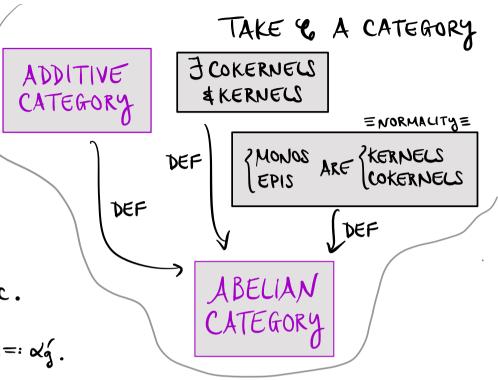
(SO \Rightarrow MONIC EPI (FPI MONO)

PF/ (⇒) ✓

(€) LET f:W → X BE MONIC EPIC.

NORMAUTY \Rightarrow f= ker(g:X \rightarrow Y)=: α g.

GET $\ker(g) \xrightarrow{\alpha g = f} X \xrightarrow{g} Y$.



PROP:

IN AN ABELIAN CATEGORY &:

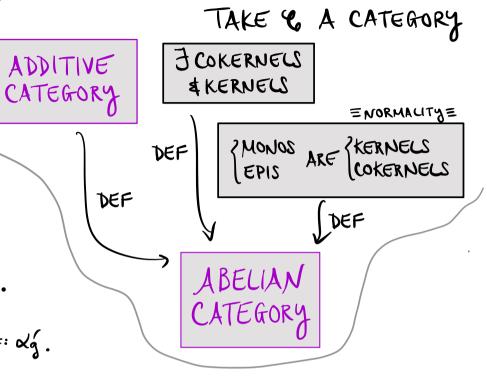
(SO \Rightarrow MONIC EPI (FPI MONO)

PF/ (⇒) ✓

(€) LET f:W → X BE MONIC EPIC.

NORMAUTY \Rightarrow f= ker(g:X \rightarrow Y)=: α g.

GET $\ker(g) \xrightarrow{\alpha g = f} X \xrightarrow{g} Y$. ALSO $\ker(g) \xrightarrow{f} X \xrightarrow{\sigma} Y$. $\therefore gf = \overrightarrow{O}f$.



PROP:

IN AN ABELIAN CATEGORY &:

(20 AND MONIC EDI (EDI MONO)

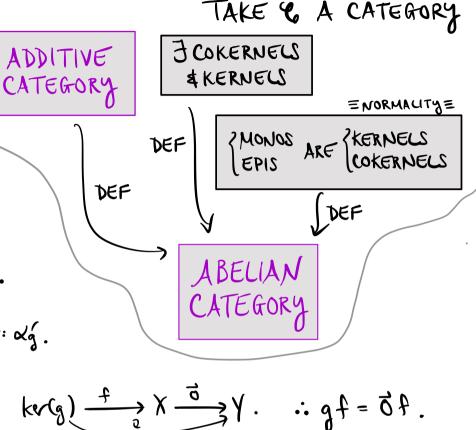
PF/ (⇒) ✓

(€) LET f:W → X BE MONIC EPIC.

NORMAUTY \Rightarrow f= ker(g:X \rightarrow Y)=: α g.

GET $\ker(g) \xrightarrow{\alpha g = f} X \xrightarrow{g} Y$. ALSO $\ker(g) \xrightarrow{f} X \xrightarrow{\vec{o}} Y$. $\therefore gf = \vec{o}f$.

NOW f EPIC => g=0. ... WE GET:



$$\ker(\underline{Q}) \xrightarrow{\underline{Q}} X \xrightarrow{\underline{Q} = \underline{Q}} \lambda$$

PROP:

IN AN ABELIAN CATEGORY &:

(80 € MONIC EPI (€ EPI MONO)

PF/ (⇒) ✓

(€) LET f:W → X BE MONIC EPIC.

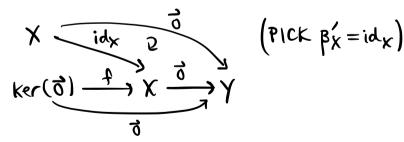
NORMAUTY \Rightarrow f= ker(g:X \rightarrow Y)=: α g.

GET $\ker(g) \xrightarrow{\alpha g = f} X \xrightarrow{g} Y$. ALSO $\ker(g) \xrightarrow{f} X \xrightarrow{\vec{o}} Y$. $\therefore gf = \vec{o}f$.

ADDITIVE

CATEGORY

NOW f EPIC => g=0. .. WE GET: X idx 2



TAKE & A CATEGORY

3 COKERNEUS \$ KERNEUS

DEF

DEF

= NORMALITY =

MONOS ARE COKERNELS

COKERNELS

ABELIAN CATEGORY

PROP:

IN AN ABELIAN CATEGORY &:

(80 ADMICEDI (EDI MONO)

PF/ (⇒) ✓

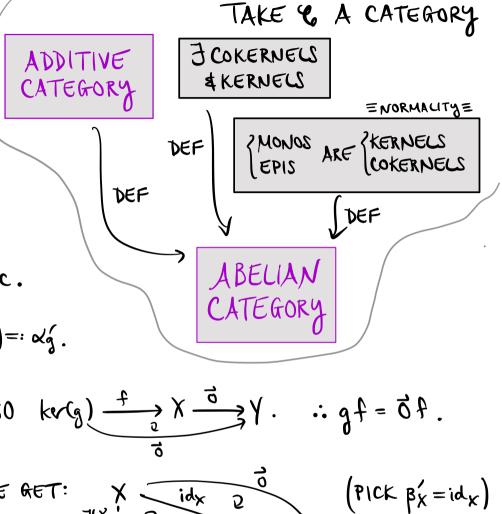
(€) LET f:W → X BE MONIC EPIC.

NORMAUTY \Rightarrow f= ker(g:X \rightarrow Y)=: α g.

GET $\ker(g) \xrightarrow{\alpha g' = f} X \xrightarrow{g} Y$. ALSO $\ker(g) \xrightarrow{f} X \xrightarrow{\vec{o}} Y$. $\therefore gf = \vec{o}f$.

NOW f EPIC => g=0. ... WE GET: X

$$\therefore fY = id_{x}$$



PROP:

IN AN ABELIAN CATEGORY &:

(80 ANIC EDI (= EDI MONO)

PF/ (⇒) ✓

(€) LET f:W → X BE MONIC EPIC.

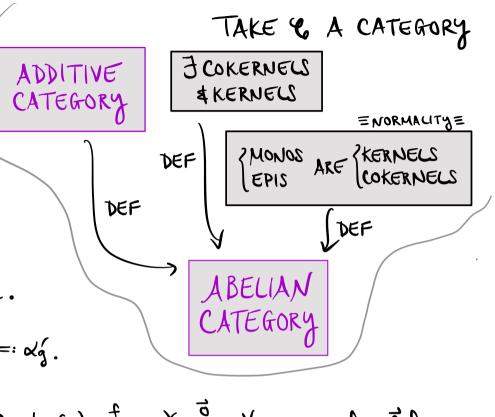
NORMAUTY \Rightarrow f= ker(g:X \rightarrow Y)=: α g.

GET $\ker(g) \xrightarrow{\alpha g = f} X \xrightarrow{g} Y$. ALSO $\ker(g) \xrightarrow{f} X \xrightarrow{\vec{o}} Y$. $\therefore gf = \vec{o}f$.

NOW f EPIC => g=0. .. WE GET: X = 318; 2

$$\therefore fY = id_X \qquad \therefore fXf = f$$

NOW & MONIC => 8f = id ker(0)



(PICK $\beta_X' = id_X$)

PROP:

IN AN ABELIAN CATEGORY &:

(SO \Rightarrow MONIC EPI (REPI MONO)

PF/ (⇒) ✓

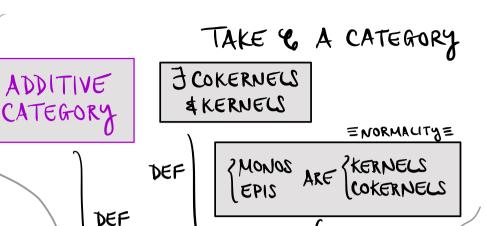
(LET f: W → X BE MONIC EPIC.

NORMAUTY \Rightarrow f= ker(g:X \rightarrow Y)=: α g.

GET $\ker(g) \xrightarrow{\alpha g = f} X \xrightarrow{g} Y$. ALSO $\ker(g) \xrightarrow{f} X \xrightarrow{\vec{o}} Y$. $\therefore gf = \vec{o}f$.

$$\therefore fY = id_X \qquad \therefore fXf = f$$

NOW & MONIC => &f = id ker(0)



ABELIAN

NOW
$$f \in PIC \implies g = \vec{0}$$
. \therefore WE GET: $X = id_X$ $\Rightarrow y$ $\Rightarrow y$ $\Rightarrow f = id_X$ $\Rightarrow f = id_X$ $\Rightarrow f = id_X$ $\Rightarrow f = id_X$

1. 8 = 1-7 \w ozi 4x 21 7:

Ex. Ring IS NOT ABELIAN

IN AN ABELIAN CATEGORY &:

(SO ⇔ MONIC EPI (⇔ EPI MONO)

PF/ (⇒) ✓

(€) LET f:W → X BE MONIC EPIC.

NORMAUTY => f= ker(g:X-)Y)=: &g.

GET $\ker(g) \xrightarrow{\alpha g' = f} X \xrightarrow{g} Y$. ALSO $\ker(g) \xrightarrow{f} X \xrightarrow{\sigma} Y$. $\therefore gf = \overrightarrow{\sigma}f$.

CATEGORY

DEF

$$f = id_x \qquad f = f$$

Now f MONIC \Rightarrow $8f = id_{\kappa\sigma(\vec{0})}$: f is AN iso W $f^{-1} = 8$.

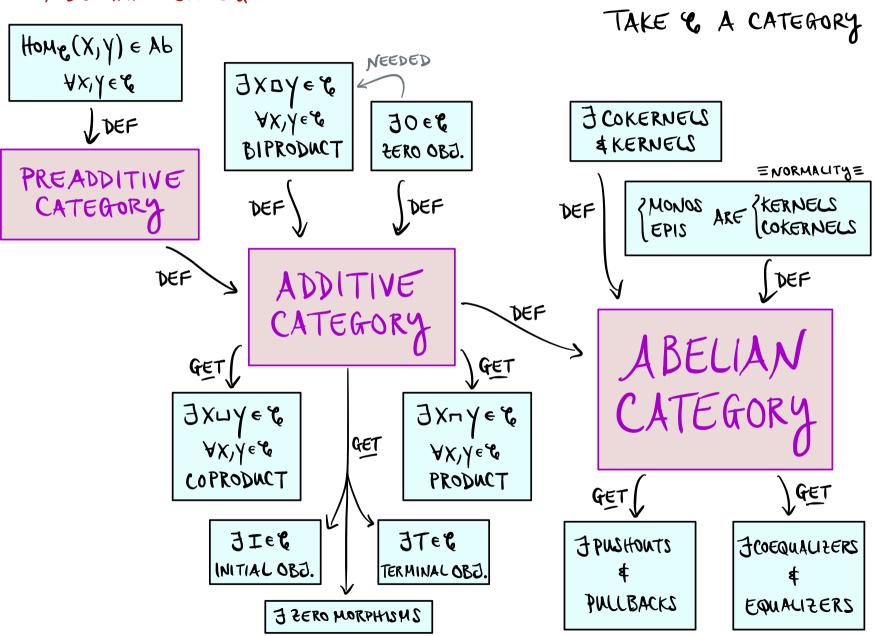
TAKE & A CATEGORY

= NORMAUTY =

3 COKERNELS & KERNEUS

ABELIAN CATEGORY

NOW
$$f \in PIC \implies g = \vec{0}$$
. \therefore WE GET: $X = id_X$ $\Rightarrow Y$ $\Rightarrow Y$



MATH 466/566 SPRING 2024

CHELSEA WALTON RICE U.

LECTURE #7

TOPICS:

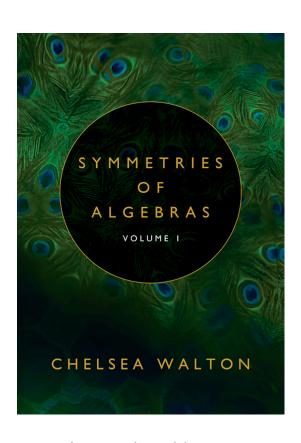
I. UNIVERSAL CONSTRUCTIONS (§2.2.1)

II. ABELIAN CATEGORIES (§2.2.2)

NEXT: FUNCTORS & NATURAL TRANSFORMATIONS

Enjoy this lecture? You'll enjoy the textbook!

C. Walton's "Symmetries of Algebras, Volume 1" (2024)



Available for purchase at:

619 Wreath (at a discount)

https://www.619wreath.com/

Also on Amazon & Google Play

<u>Lecture #7 keywords</u>: additive category, abelian category, biproduct of objects, coequalizer of morphisms, cokernel, equalizer of morphisms, kernel, preadditive category, pullback of morphisms, pushout of morphisms