MATH 466/566 SPRING 2024

CHELSEA WALTON RICE U.

LASTTIME

LECTURE#9

- FUNCTORS
- BIFUNCTORS & MULTIFUNCTORS
- · NATURAL TRANSFORMATIONS
- · COMPOSITIONS OF NATURAL TRANSFORMATIONS

TOPICS :

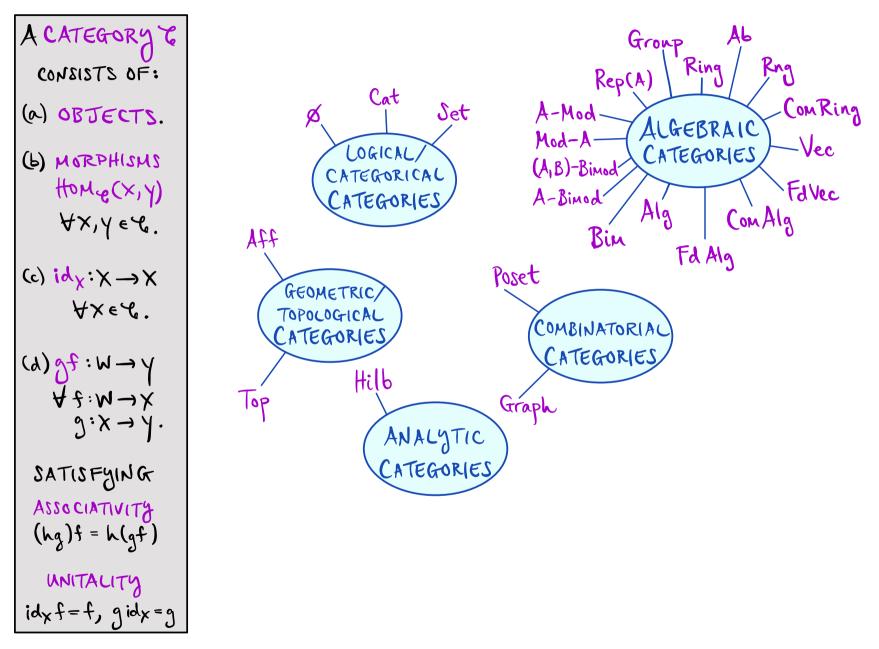
- I. ISOMORPHISM OF CATEGORIES (§2.4.1)
- I. EQUIVALENCE OF CATEGORIES (FF2.4.2-2.4.3)

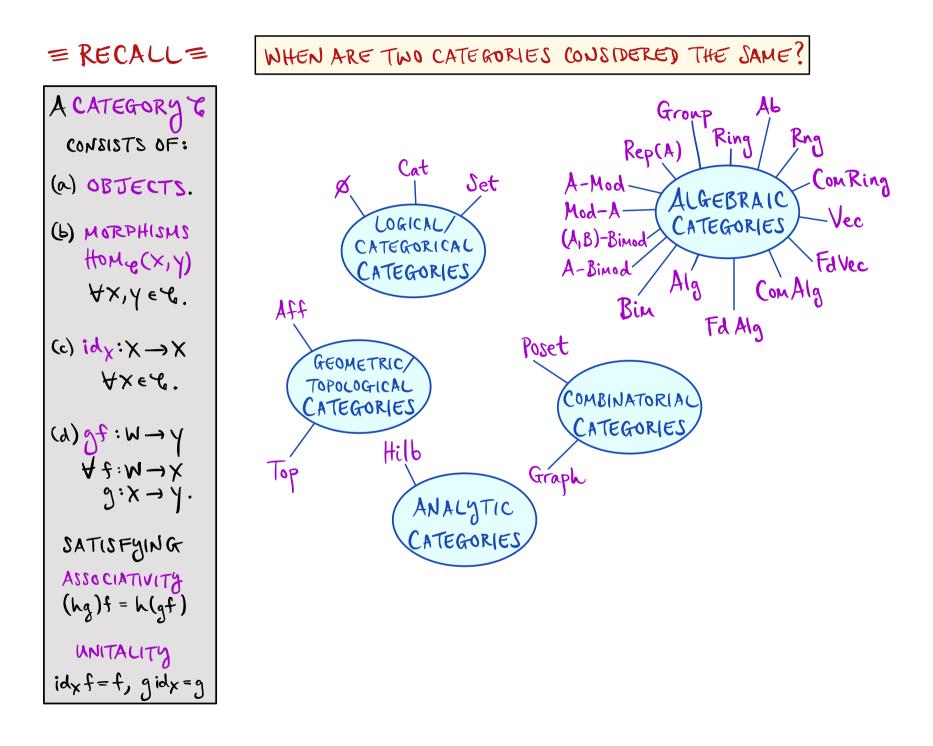
II. MORITA EQUIVALENCE (F2.4.3)

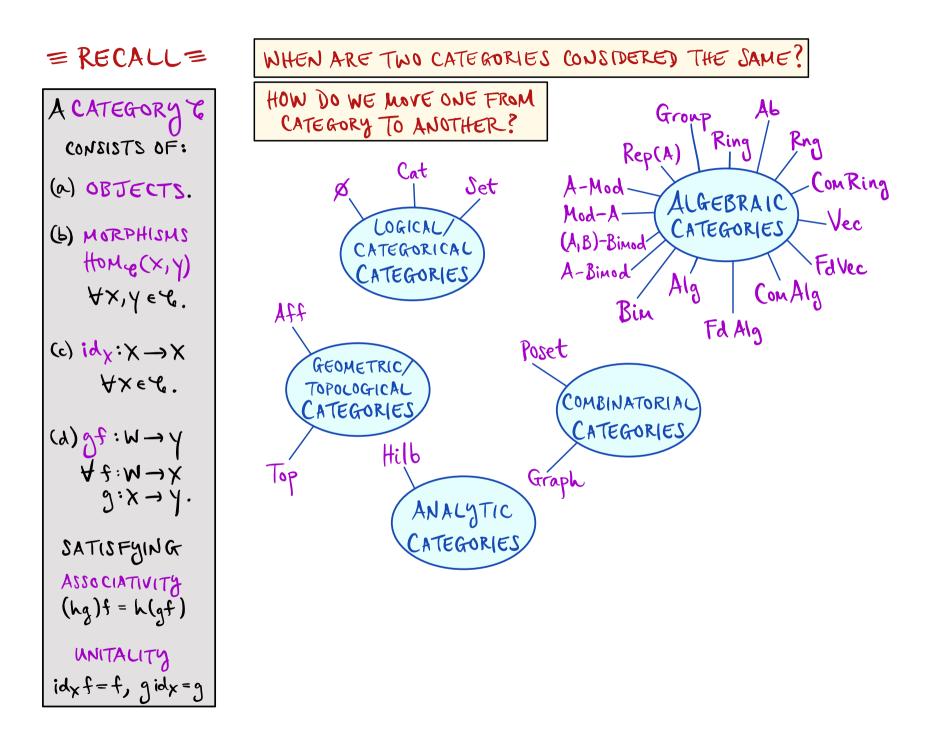
(b) MORPHISMS
Home(X,Y)

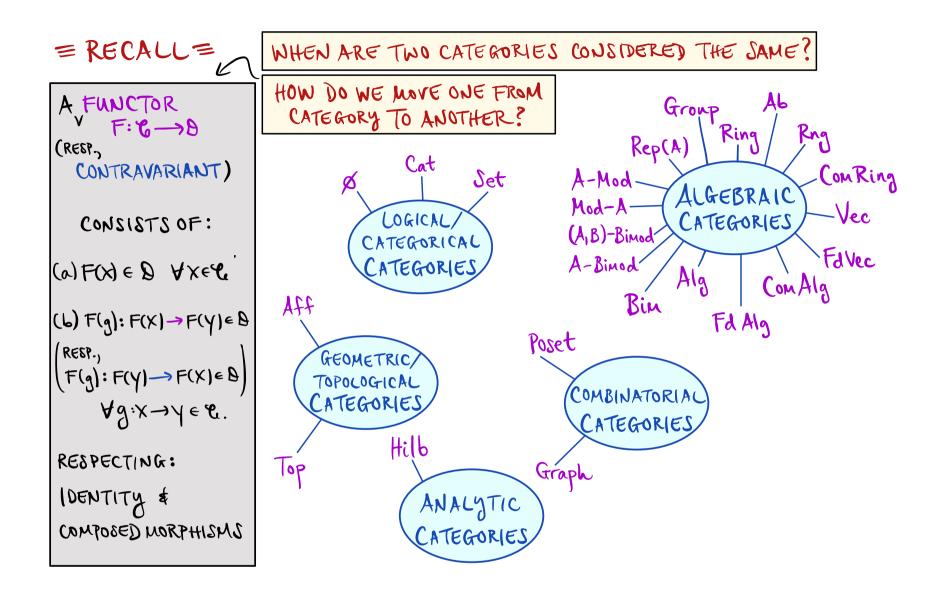
$$\forall X, Y \in \mathcal{C}$$
.
(c) $id_X : X \rightarrow X$
 $\forall X \in \mathcal{C}$.
(d) $\Im f : W \rightarrow Y$
 $\forall f : W \rightarrow Y$
 $\Im : X \rightarrow Y$.
SATISFYING
ASSOCIATIVITY
(hg) $f = h(gf)$

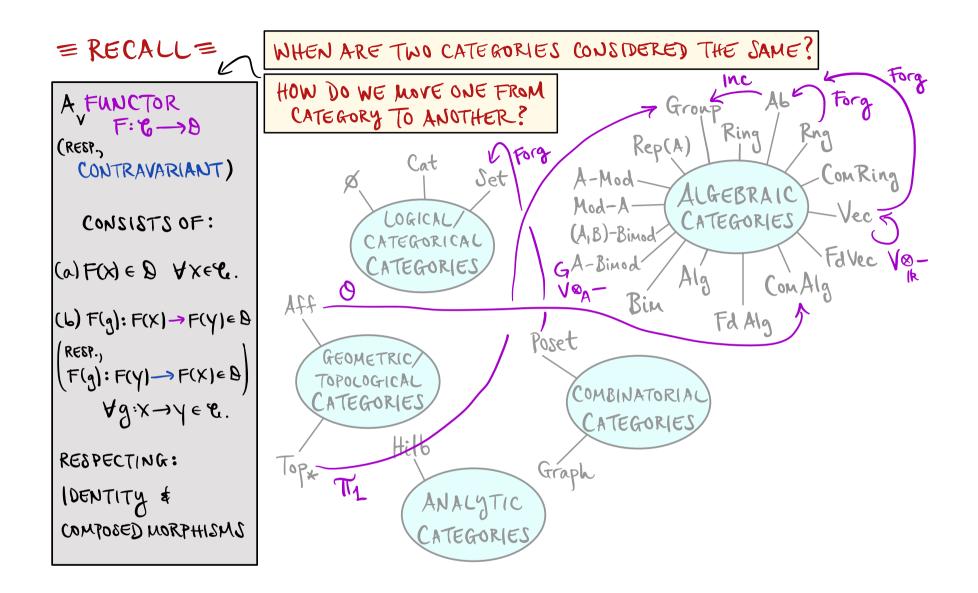
UNITALITY idxf=f, gidx=g

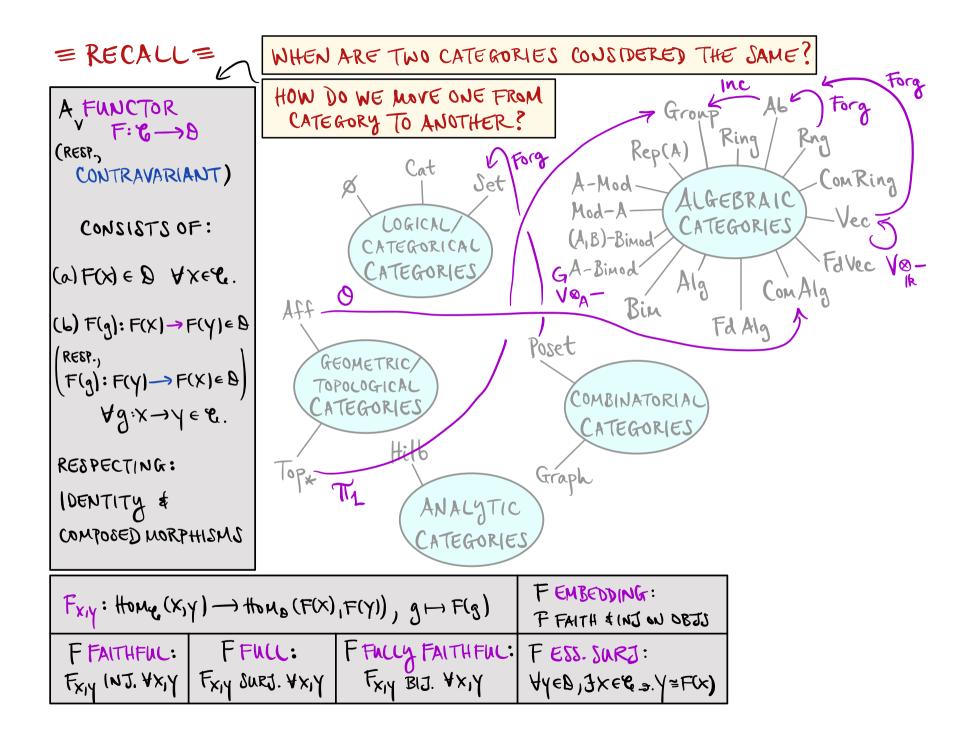


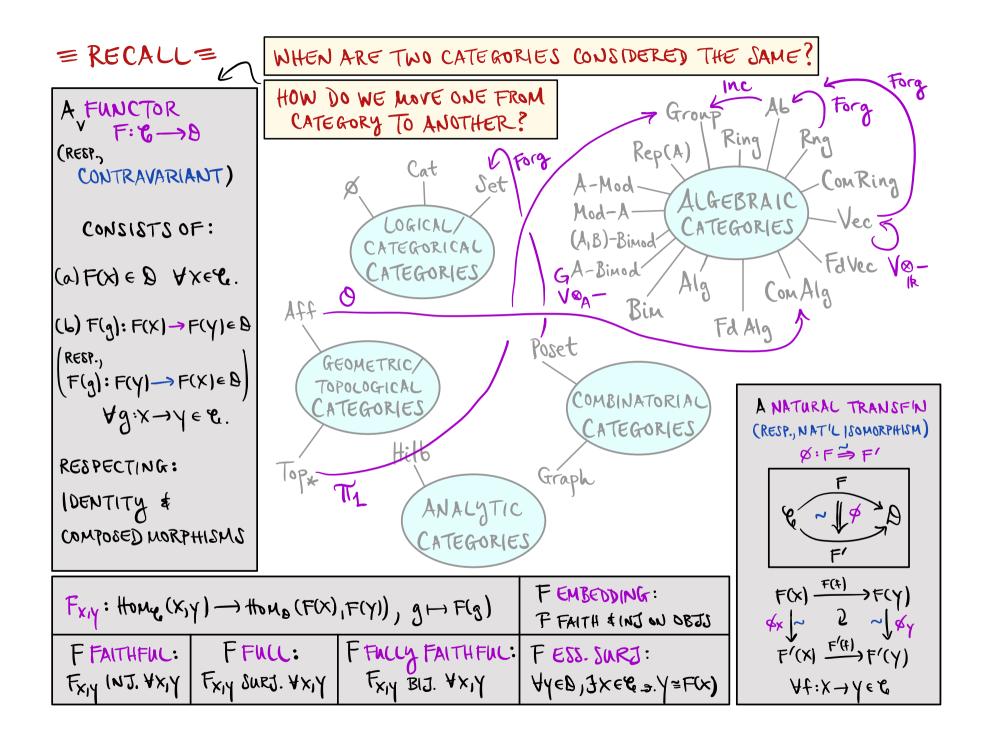






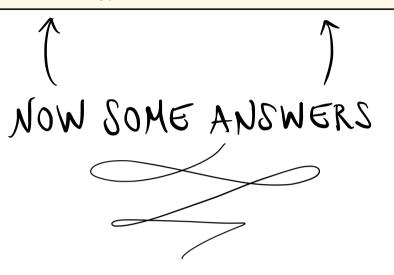


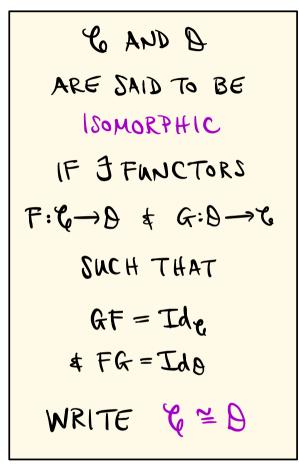


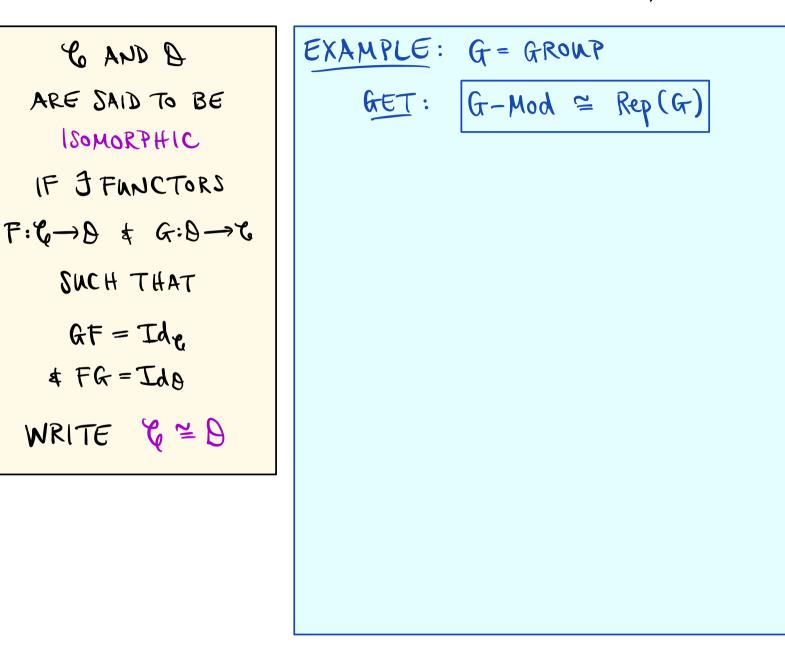


Copyright © 2024 Chelsea Walton

WHEN ARE TWO CATEGORIES CONSIDERED THE SAME?







C AND D
ARE SAID TO BE
ISOMORPHIC
IF J FUNICTORS

$$F: \mathcal{C} \rightarrow \mathcal{O} \notin G: \mathcal{O} \rightarrow \mathcal{C}$$

SUCH THAT
 $GF = Td_{\mathcal{C}}$
 $\# FG = Td_{\mathcal{O}}$
WRITE $\mathcal{C} \cong \mathcal{O}$

Co AND D
ARE SAID TO BE
ISOMORPHIC
IF J FUNJCTORS

$$F: C \rightarrow 0 \pm G: 0 \rightarrow C$$

SUCH THAT
 $GF = Td_{C}$
 $\pm FG = Td_{0}$
WRITE $C \cong 0$

EXAMPLE:
$$G = GRONP$$

 $G \in T$: $G - Mod \cong Rep(G)$
 $F: G - Mod \longrightarrow Rep(G)$
 $= ACTION = = GRONP HONOM.=$
 $(V, D: G \times V \rightarrow V) \mapsto (V, pv: G \rightarrow GL(V))$
 $Vec (gh) Dv = gD(hDv) \longrightarrow (V, pv: G \rightarrow GL(V))$
 $p(gh)(v) = (gh) Dv = gD(hDv)$
 $p(gh)(v) = (gh) Dv = gD(hDv)$
 $p(g)p(h)(v) = gD(p(h)(v))$
 $F': Rep(G) \longrightarrow G-Mod$
 $(V, p: G \rightarrow GL(V)) \mapsto (V, Dv: G \times V \rightarrow V)$
 $vec (g, v) \mapsto p_{g}(v)$

6, 8 CATEGORIES

C AND D
ARE SAID TO BE
ISOMORPHIC
IF J FUNICTORS

$$F: C \rightarrow 0 \pm G: 0 \rightarrow C$$

SUCH THAT
 $GF = Td_{C}$
 $\pm FG = Td_{0}$
WRITE $C = 0$

EXAMPLE:
$$G = GRONP$$

 $G \in T$: $G-Mod \cong Rep(G)$
F: $G-Mod \longrightarrow Rep(G)$
 $= ACTION = = GRONP (HONOM = (V, pV : G \rightarrow GL(V))$
 $Vec (gh) DV = gD(hDV) \longrightarrow (V, pV : G \rightarrow GL(V))$
 $Vec (gh) DV = gD(hDV) \longrightarrow (Y, pV : G \rightarrow V)$
 $p(gh)(v) = (gh) DV = gD(hDV)$
 $p(g)p(h)(v) = gD(hDV)$
 $p(g)p(h)(v) = gD(p(h)(v))$
F': $Rep(G) \longrightarrow G-Mod$
 $(V, p: G \rightarrow GL(V)) \mapsto (V, DV : G \times V \rightarrow V)$
 $(g, v) \mapsto pg(v)$
CHECK F'F = $Td_{G-Mod} \notin FF' = Td_{Rep}(G)$

Copyright © 2024 Chelsea Walton

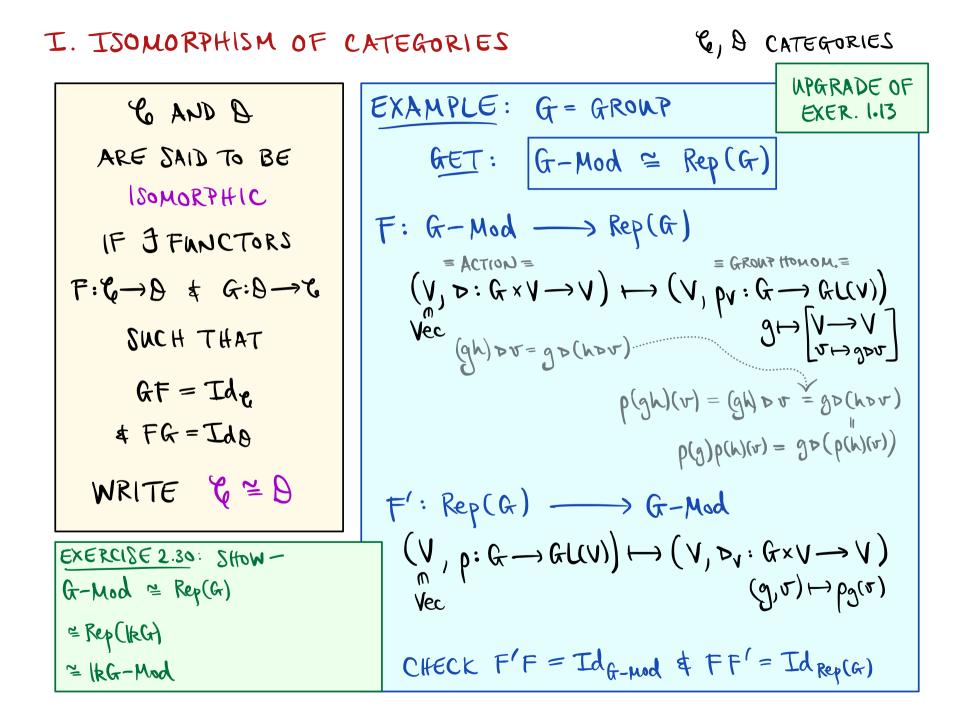
C AND D
ARE SAID TO BE
ISOMORPHIC
IF J FUNICTORS

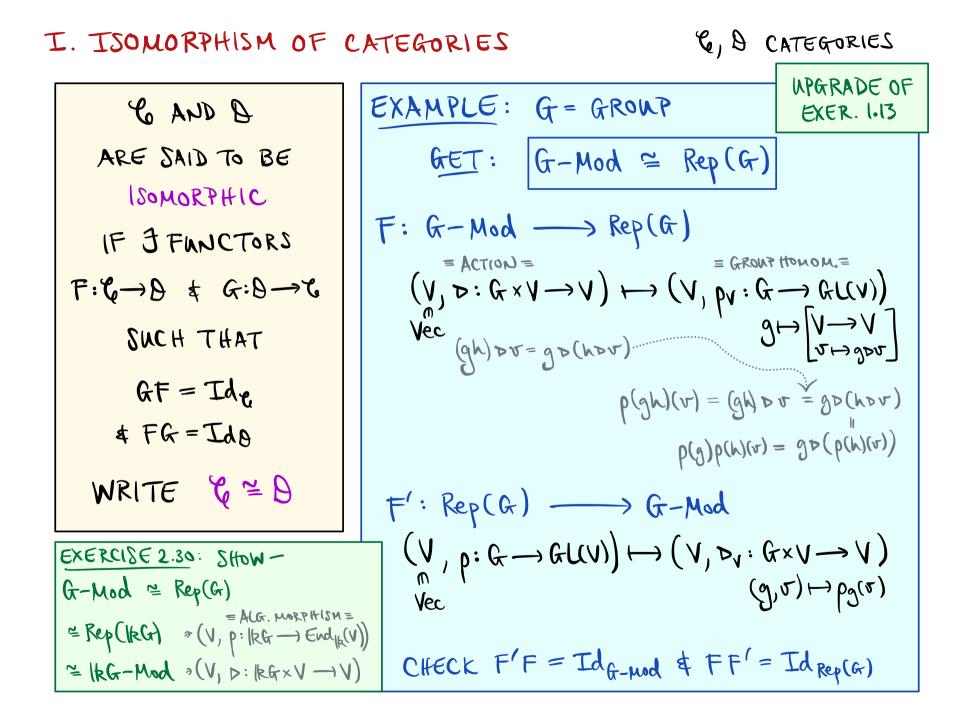
$$F: C \rightarrow 0 \pm G: 0 \rightarrow C$$

SUCH THAT
 $GF = Id_{C}$
 $\pm FG = Id_{0}$
WRITE $C = 0$

EXAMPLE:
$$G = GROWP$$

 $G \in T$: $G = GROWP$
 $G \in T$: $G = GROWP$
 $F: G = Mod \cong Rep(G)$
 $F: G = Mod \longrightarrow Rep(G)$
 $(V_{J} D: G \times V \rightarrow V) \mapsto (V_{J} p_{V}: G \rightarrow GL(V))$
 $Vec (gh) D V = gD(hDV) \qquad g \mapsto [V \rightarrow V]$
 $p(gh)(V) = (gh) D V = gD(hDV)$
 $p(g)p(h)(V) = gD(hDV)$
 $p(g)p(h)(V) = gD(hDV)$
 $p(g)p(h)(V) = gD(hDV)$
 $F': Rep(G) \longrightarrow G-Mod$
 $(V_{J}, p: G \rightarrow GL(V)) \mapsto (V_{J}, D_{V}: G \times V \rightarrow V)$
 $m (g, V) \mapsto p_{3}(T)$
 $Vec (g, V) \mapsto p_{3}(T)$
 $Vec (g, V) \mapsto p_{3}(T)$





E, O CATEGORIES

C AND D
ARE ISOMORPHIC IF

$$JF: C \rightarrow 0 \ddagger G: 0 \rightarrow C$$

 $...$
 $GF = Id_{c} \ddagger FG = Id_{c}$
 $WRITE C \cong 0$

C AND D
ARE ISOMORPHIC IF

$$JF: C \rightarrow 0 \ddagger G: 0 \rightarrow C$$

 $. \Rightarrow.$
 $GF = Id_{c} \ddagger FG = Id_{0}$
 $WRITE C = 0$

CONSIDER Follec // REFLECD
TAKE
$$A = FULL SUBCATEGORY OF Follec IR
ON OBJECTS $\int |R^{ON} \int NEN$
PERHAPS Follec A ARE THE "SAME" AS
EVERY F.D. VECTOR SPACE IS A IR O^{ON} FOR SOME
NEN.
TRY:
F: Follec $\rightarrow A$ A $G: A \rightarrow Follec$
 $V \mapsto |R^{OON} \mapsto |R^{ON}$$$

C AND D
ARE ISOMORPHIC IF

$$JF: C \rightarrow 0 \ddagger G: 0 \rightarrow C$$

 $. \Rightarrow.$
 $GF = Id_{C} \ddagger FG = Id_{0}$
 $WRITE C = 0$

CONSIDER FdVec / IR FIELD
TAKE
$$\downarrow =$$
 FULL SUBCATEGORY OF FdVec IR
ON OBJECTS $\downarrow |k^{\oplus n} j_{n \in N}$
PERHAPS FdVec $\ddagger \forall A$ ARE THE "SAME" AS
EVERY F.D. VECTOR SPACE IS $\cong |k^{\oplus n}$ For some
neM.
TRY:
F: FdVec $\rightarrow \downarrow \ddagger G: \downarrow \longrightarrow$ FdVec
 $V \mapsto |k^{\oplus dim_{|k}V} \qquad |k^{\oplus n} \mapsto |k^{\oplus n}$
HERE, $FG(|k^{\oplus n}) = F(|k^{\oplus n}) = |k^{\oplus n}$.
BUT $GF(V) = G(|k^{\oplus dim_{|k}V}) = |k^{\oplus dim_{|k}V}$

E, O CATEGORIES

C AND D
ARE ISOMORPHIC IF

$$JF: C \rightarrow 0 \ddagger G: 0 \rightarrow C$$

 $. \Rightarrow.$
 $GF = Id_{C} \ddagger FG = Id_{0}$
 $WRITE C = 0$

CONSIDER FdVec
$$/$$
 IR FIELD
TAKE $A = FULL SUBCATEGORY OF FdVec IR
ON OBJECTS $[IR^{\oplus n}]_{NEN}$
PERHAPS FdVec A ARE THE "SAME" AS
EVERY F.D. VECTOR SPACE IS $= IR^{\oplus n}$ FOR SOME
NEN.
TRY:
F: FdVec $\rightarrow A = G: A \rightarrow FdVec$
 $V \mapsto IR^{\oplus dim_{IR}V} = IR^{\oplus n} \mapsto IR^{\oplus n}$
HERE, $FG(IR^{\oplus n}) = F(IR^{\oplus n}) = IR^{\oplus n}$.
BUT $GF(V) = G(IR^{\oplus dim_{IR}V}) = IR^{\oplus dim_{IR}V} \neq V$
 \therefore FdVec $a \neq A$$

C AND D
ARE ISOMORPHIC IF

$$JF: C \rightarrow 0 \ddagger G: 0 \rightarrow C$$

 $...$
 $GF = Id_{c} \ddagger FG = Id_{0}$
 $WRITE C = 0$

CONSIDER FdVec / IR FIELD
TAKE
$$A = FHLL SUBCATEGORY OF FdVec_{IR}$$

ON OBJECTS $[IR^{\oplus n}]_{N \in \mathcal{N}}$
PERHAPS FdVec $A = N$ ARE THE "SAME" AS
EVERY F.D. VECTOR SPACE IS $= IR^{\oplus n}$ For some
NEW.
TRY:
F: FdVec $\rightarrow A = G: A \longrightarrow FdVec$
 $V \mapsto IR^{\oplus dim_{IR}V} = IR^{\oplus n} \mapsto IR^{\oplus n}$
HERE, $FG(IR^{\oplus n}) = F(IR^{\oplus n}) = IR^{\oplus n}$.
BUT $GF(V) = G(IR^{\oplus dim_{IR}V}) = IR^{\oplus dim_{IR}V} \neq V$
 \therefore FdVec $a = A$
 $MILL WEAKEN NOTION OF "SAMENESS"...$

6, 8 CATEGORIES

C AND D
ARE ISOMORPHIC IF

$$JF: C \rightarrow 0 \ddagger G: 0 \rightarrow C$$

 $...$
 $GF = Id_{c} \ddagger FG = Id_{c}$
 $WRITE C \cong 0$

SKELETON OF C = FULL SUBCATEGORY Skel(C) OF C ON ISOCLASSES OF Obj(C)

CONSIDER FdVec / IR FIELD
TAKE
$$A = FULL SUBCATEGORY OF FdVec_{IR}$$

ON OBJECTS $[IR^{\oplus n}]_{N \in N}$
PERHAPS FdVec A ARE THE "SAME" AS
EVERY F.D. VECTOR SPACE IS A IR $B^{\oplus n}$ FOR SOME
N $R^{\oplus N}$.
TRY:
F: FdVec $\rightarrow A$ a G : $A \rightarrow FdVec$
 $V \mapsto |R^{\oplus dim_{IR}V}$ $R^{\oplus n} \mapsto |R^{\oplus n}$
HERE, $FG(IR^{\oplus n}) = F(IR^{\oplus n}) = IR^{\oplus n}$.
BUT $GF(V) = G(IR^{\oplus dim_{IR}V}) = IR^{\oplus dim_{IR}V} \neq V$
 \therefore FdVec a A
WILL WEAKEN NOTION OF "SAMENESS"...

E, O CATEGORIES

C AND D
ARE ISOMORPHIC IF

$$JF: C \rightarrow 0 \ddagger G: 0 \rightarrow C$$

 $...$
 $GF = Id_{c} \ddagger FG = Id_{c}$
 $WRITE C \cong 0$

SKELETON OF C = FULL SUBCATEGORY Skel(C) OF C ON ISOCLASSES OF Obj(C)

CONSIDER Faller / IR FIELD TAKE & = FULL SUBCATEGORY OF Fallec 1 ON OBJECTS [10 JNEN PERHAPS Follec & & ARE THE "SAME" AS EVERY F.D. VECTOR SPACE IS = 12 ON FOR SOME NEN. TRy: $F: FdVec \longrightarrow J \qquad \notin G: J \longrightarrow FdVec$ $V \mapsto ||_{\mathcal{R}}^{\bigoplus dim_{\mathcal{R}}V} \qquad ||_{\mathcal{O}^{\mathcal{R}}}^{\bigoplus n} \mapsto ||_{\mathcal{O}^{\mathcal{R}}}^{\bigoplus n}$ HERE, $FG(\mathbb{R}^{\oplus n}) = F(\mathbb{R}^{\oplus n}) = \mathbb{R}^{\oplus n}$. BUT $GF(V) = G(||R^{\text{Odim}_{||R}V}) = ||R^{\text{Odim}_{||R}V} \neq V$ ·· FdVec = J WILL WEAKEN NOTION OF "SAMENESS" ...

E, O CATEGORIES

C AND D
ARE ISOMORPHIC IF

$$JF: C \rightarrow 0 \ddagger G: 0 \rightarrow C$$

 $...$
 $GF = Id_{c} \ddagger FG = Id_{c}$
 $WRITE C = 0$

SKELETON OF C = FULL SUBCATEGORY Skel(C) OF C ON ISOCLASSES OF Obj(C)

CONSIDER Faller / IR FIELD TAKE & = FULL SUBCATEGORY OF Fallec 1 Skel (FdVec) ON OBJECTS [IR In JNEN PERHAPS Follec & & ARE THE "SAME" AS EVERY F.D. VECTOR SPACE IS = IR ON FOR SOME NEN. TRy: F: FdVec -> & & G: & -> FdVec $V \mapsto ||_{\mathcal{R}} \oplus dim_{\mathcal{R}} V \qquad ||_{\mathcal{R}} \oplus h \mapsto ||_{\mathcal{R}} \oplus h$ HERE, $FG(k^{\oplus n}) = F(k^{\oplus n}) = k^{\oplus n}$. BUT $GF(V) = G(||R^{\bigoplus dim_{1R}V}) = ||R^{\bigoplus dim_{1R}V} \neq V$ ·· FdVec = J WILL WEAKEN NOTION OF "SAMENESS" ...

6, 8 CATEGORIES

 $k \xrightarrow{\oplus} k \xrightarrow{\oplus} k$

ZV

/ IR FIELD

Consider Fave/k fieldARE ISOMORPHIC IF
JF:
$$\mathcal{C} \rightarrow \mathcal{B} \ddagger G: \mathcal{B} \rightarrow \mathcal{C}$$

 \mathcal{A} Take $\pounds = Full SUBCATEGORY OF Fave \mathcal{R} GF = Ide $\ddagger FG = Ide$
 $\mathcal{R} \ddagger FG = Ide$
WRITE $\mathcal{C} \cong \mathcal{B}$ Rerhaps Fave
 $fave \mathcal{R} The $\mathcal{C} \oplus \mathcal{A}$
 \mathcal{R} Skeleton of \mathcal{C}
 $fave \mathcal{R} Rerhaps Fave
 \mathcal{R} \mathcal{A}
 \mathcal{R} Skeleton of \mathcal{C}
 \mathcal{R} Try:
 \mathcal{R} $\mathcal{C} \oplus \mathcal{R}$
 \mathcal{R} Skele(c) of \mathcal{C}
 \mathcal{R} Try:
 \mathcal{R} $\mathcal{C} \oplus \mathcal{R}$
 \mathcal{R} Exer. 2.35
 \mathcal{R} Skel(c) = \mathcal{C}
 \mathcal{R} $\mathcal{C} \oplus \mathcal{R}^{\oplus n}$
 \mathcal{R} Exer. 2.35
 \mathcal{R} Skel(c) = \mathcal{C}
 \mathcal{R} $\mathcal{C} \oplus \mathcal{R}^{\oplus n}$
 \mathcal{R} Exer. 2.35
 \mathcal{R} Skel(c) = \mathcal{C}
 \mathcal{R} $\mathcal{C} \oplus \mathcal{R}^{\oplus n}$
 \mathcal{R} Exer. 2.35
 \mathcal{R} $\mathcal{C} \oplus \mathcal{R}^{\oplus n}$
 \mathcal{R} $\mathcal{C} \oplus \mathcal{R}^{\oplus n}$
 \mathcal{R} File $\mathcal{C} \oplus \mathcal{R}^{\oplus n}$
 \mathcal{R} $\mathcal{C} \oplus \mathcal{R}^{\oplus n}$
 $\mathcal{R}^{\oplus n}$ $\mathcal{C} \oplus \mathcal{C}^{\oplus n}$
 $\mathcal{C} \oplus \mathcal{C}^{\oplus n}$ $\mathcal{C} \oplus \mathcal{C}^{\oplus n}$
 $\mathcal{$$$$

6, 8 CATEGORIES

OF Fallec 1R

& --> Falvec

 $\mathbb{k}^{\oplus n} \mapsto \mathbb{k}^{\oplus n}$

IR OdiMIRV = V

2

/ IR FIELD

Consider Fave/k fieldARE ISOMORPHIC IF
3F:
$$\mathcal{C} \rightarrow \mathcal{B} \neq G: \mathcal{B} \rightarrow \mathcal{C}$$

 $\mathcal{A}:$ Consider Fave/k fieldTAKE $\mathcal{A} = Full SUBCATEGORY OF Fave $\mathcal{A}:$ TAKE $\mathcal{A} = Full SUBCATEGORY OF Fave $\mathcal{A}:$ TAKE $\mathcal{A} = Full SUBCATEGORY OF Fave $\mathcal{A}:$ GF = Ide $\mathcal{A} \neq FG = Ide $\mathcal{A}:$ PERHAPS Fave
 $\mathcal{A}:$ N OBJECTS $[k^{\oplus n}]_{neN}$ WRITE $\mathcal{C} \cong \mathcal{B}$ PERHAPS Fave
 $\mathcal{A}:$ ARE THE "SAME" AS
 $\mathcal{A}:$ Skeleton of \mathcal{C}
 $\mathcal{Skel(C) of \mathcal{C} TRy:F: Fave
 $\mathcal{A}:$ F: Fave
 $\mathcal{A}:$ F: Fave
 $\mathcal{A}:$ $\mathcal{A}:$ Exerc. 2.35
 $\mathcal{Skel(C) \cong \mathcal{C}:}$ Skel(C) = \mathcal{C} $\mathcal{A}:$ But $GF(V) = G(|k^{\oplus A}|) = |k^{\oplus A}|$ $\mathcal{A}:$ But $GF(V) = G(|k^{\oplus A}|) = |k^{\oplus A}|$ $\mathcal{A}:$ Will weaken notion of "SAMENESS"... $\mathcal{D}:$ $\mathcal{A}:$$$$$$

I. EQUIVALENCE OF CATEGORIES

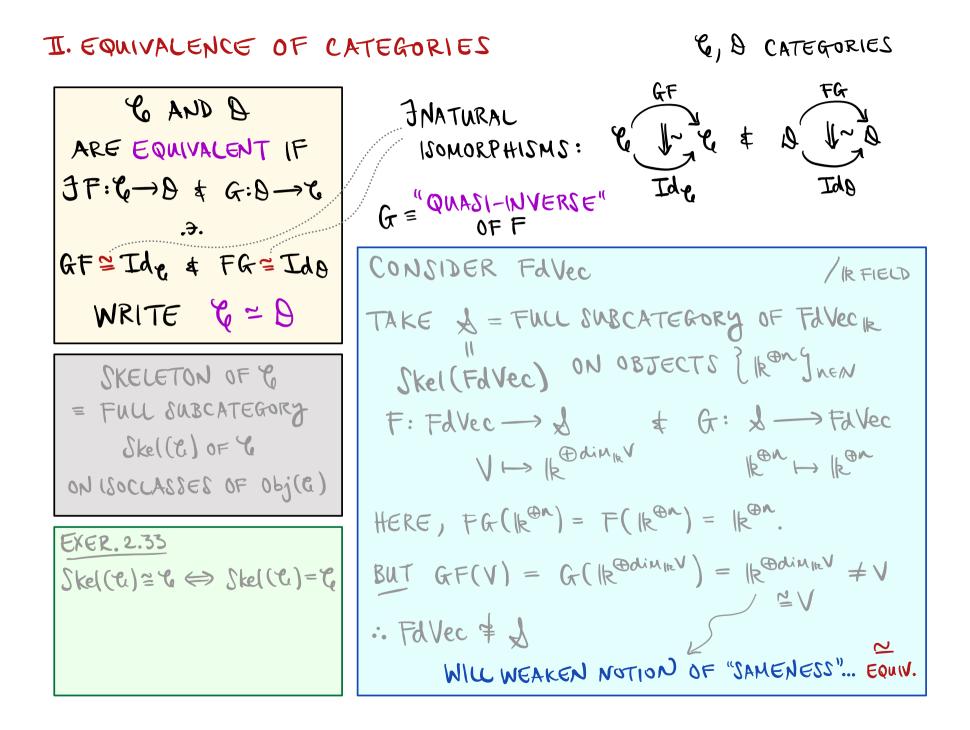
Г

6 AND B	
ARE ISOMORPHIC IF	
JF:€→0 \$ G:0→C	
<i>.</i> . .	
GF = Ide + FG = Ide	CONSIDER Faller / IRFIELD
WRITE & = D	TAKE & = FULL SUBCATEGORY OF FAVECIN
SKELETON OF \mathcal{C} = FULL SUBCATEGORY Skel(\mathcal{C}) of \mathcal{C} ON ISOCLASSES OF Obj(\mathcal{C}) EXER. 2.33 Skel(\mathcal{C}) = \mathcal{C} \Leftrightarrow Skel(\mathcal{C}) = \mathcal{C}	Skel (FdVec) ON OBJECTS $[k^{\oplus n}]_{n\in N}$ F: FdVec $\rightarrow j$ $\ddagger G: j \rightarrow FdVec$ $V \mapsto k^{\oplus dim_{lk}V}$ $k^{\oplus n} \mapsto k^{\oplus n}$ HERE, $FG(k^{\oplus n}) = F(k^{\oplus n}) = k^{\oplus n}$.

I. EQUIVALENCE OF CATEGORIES

Г

6 AND B	
ARE EQUIVALENT IF	
$\exists F: C \rightarrow O \neq G: O \rightarrow C$	
<i>.</i> ə.	
GF=Ide & FG=Ido	CONSIDER Follec / IR FIELD
WRITE &=D	TAKE & = FULL SUBCATEGORY OF FAVECIN
SKELETON OF G = FULL SUBCATEGORY Skel(C.) OF G ON ISOCLASSES OF Obj(C) EXER. 2.33 Skel(C.) = C ⇔ Skel(C.) = C	
	·· Folder & J WILL WEAKEN NOTION OF "SAMENESS" EQUIV.



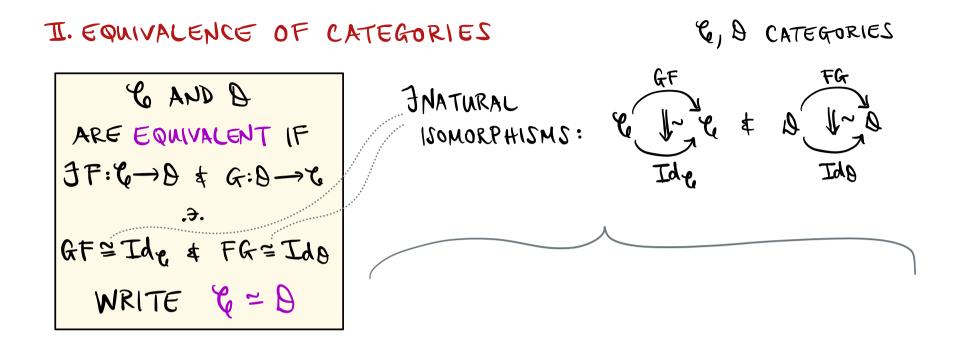
I. EQUIVALENCE OF C.	ATEGORIES	, & CATEGORIES
C AND B ARE EQUIVALENT IF $JF:C \rightarrow 0 \neq G:0 \rightarrow C$ $. \Rightarrow$.	JNATURAL ISOMORPHISMS: & J-4 Ide	t o Ino Ido
GF=Ide & FG=Ido	CONSIDER FdVec	/ IR FIELD
WRITE $\mathcal{E} = \mathcal{B}$ SKELETON OF \mathcal{E} = FULL SUBCATEGORY Ske((\mathcal{E}) OF \mathcal{E} ON ISOCLASSES OF Obj(\mathcal{E}) EXER. 2.33 Ske((\mathcal{E}) = $\mathcal{E} \iff$ Ske((\mathcal{E}) = \mathcal{E}	TAKE $A = FULL SUBCATEGO Skel(FdVec) ON OBJECT F: FdVec \rightarrow A = f(FdVec)V \mapsto FdVec \Rightarrow A = f(FdVec)HERE, FG(FdVec) = F(FdVec) = F(FdVec)FdVec \neq A$	For $f = 1k^{\Theta n}$.

I. EQUIVALENCE OF C,	ATEGORIES &, & CATEGORIES
C AND D ARE EQUIVALENT IF $JF:C \rightarrow 0 \neq G:0 \rightarrow C$ $. \Rightarrow .$	JNATURAL ISOMORPHISMS: & GF Inte & DInto Ide Ido Ide Ido
GF=Ide ≠ FG=Ido	CONSIDER Faller / RFIELD
WRITE &=D	TAKE & = FULL SUBCATEGORY OF Fallec 1
SKELETON OF \mathcal{C} = FULL SUBCATEGORY Skel(\mathcal{C}) of \mathcal{C} ON ISOCLASSES OF Obj(\mathcal{C}) EXER. 2.33 Skel(\mathcal{C}) = \mathcal{C} \Leftrightarrow Skel(\mathcal{C}) = \mathcal{C}	Skel(FdVec) ON OBJECTS $\mathcal{J} k^{\oplus n} \mathcal{J}_{neN}$ F: FdVec $\rightarrow \mathcal{J}$ \notin G: $\mathcal{J} \rightarrow \mathcal{F}_{dVec}$ $V \mapsto _{\mathbb{R}}^{\oplus dim_{ _{\mathbb{R}}}V}$ $ _{\mathbb{R}}^{\oplus n} \mapsto _{\mathbb{R}}^{\oplus n}$ HERE, $\mathcal{F}_{G}(_{\mathbb{R}}^{\oplus n}) = \mathcal{F}(_{\mathbb{R}}^{\oplus n}) = _{\mathbb{R}}^{\oplus n}$. BUT $G\mathcal{F}(V) = G(_{\mathbb{R}}^{\oplus dim_{ _{\mathbb{R}}}V}) = _{\mathbb{R}}^{\oplus dim_{ _{\mathbb{R}}}V} \neq V$ $\cong V$ $\cong V$

I. EQUIVALENCE OF C,	ATEGORIES &, & CATEGORIES
C AND D ARE EQUIVALENT IF $JF:C \rightarrow D \notin G:D \rightarrow C$ J.	JNATURAL ISOMORPHISMS: & GF Inte & DInte Ide Ide Ide Ide
GF=Ide & FG=Ido	CONSIDER Follec / IR FIELD
WRITE &=D	TAKE & = FULL SUBCATEGORY OF Follec 1/2
SKELETON OF \mathcal{C} = FULL SUBCATEGORY Ske((\mathcal{C}) OF \mathcal{C} ON ISOCLASSES OF Obj(\mathcal{C}) EXER. 2.33 Ske((\mathcal{C}) = \mathcal{C} \Leftrightarrow Ske((\mathcal{C}) = \mathcal{C}	Skel(FdVec) ON OBJECTS is in given in the set of

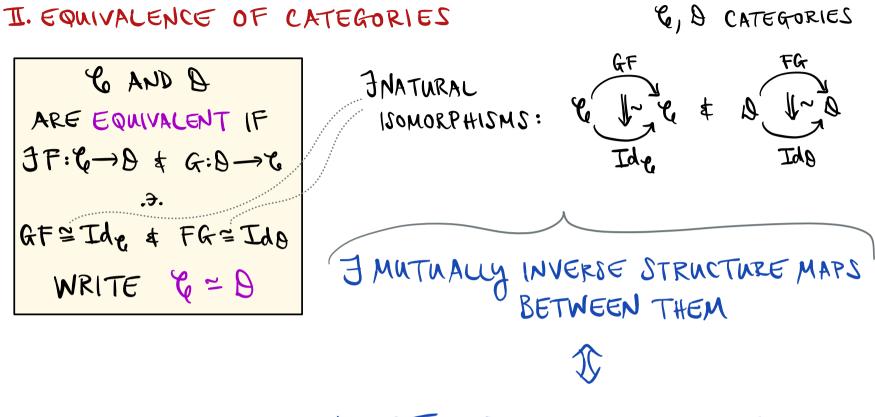
I. EQUIVALENCE OF C	ATEGORIES &, O CATEGORIES
C AND D ARE EQUIVALENT IF $JF:C \rightarrow 0 \neq G:0 \rightarrow C$ $. \Rightarrow .$	JNATURAL ISOMORPHISMS: & GF Ide # 0 11-0 Ide Ido
GF=Ide & FG=Ido	CONSIDER Follec / IR FIELD
WRITE $G = G$ SKELETON OF G = FULL SUBCATEGORY Ske((C) OF G ON ISOCLASSES OF Obj(G) EXER. 2.33 Ske((C)) = G \Leftrightarrow Ske((C)) = G	TAKE $A = FULL SUBCATEGORY OF Faller IN Skel(Faller) ON OBJECTS [IR^{\oplus n}]_{NEN}F: Faller \rightarrow A \ddagger G: A \longrightarrow FallerV \mapsto IR^{\oplus ain_{IR}V} R^{\oplus n} \mapsto IR^{\oplus n}HERE, FG(IR^{\oplus n}) = F(IR^{\oplus n}) = IR^{\oplus n}.\ddagger GF(V) = G(IR^{\oplus ain_{IR}V}) = IR^{\oplus ain_{IR}V} \cong V\therefore Faller \cong A$

I. EQUIVALENCE OF CATEGORIES		C, O CATEGORIES
C AND D ARE EQUIVALENT IF $3F:C \rightarrow 0 \neq G:0 \rightarrow C$	JNATURAL ISOMORPHISMS: &	GF J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$V \mapsto _{\mathbb{R}}^{\bigoplus dim_{ _{\mathbb{R}}} V}$ HERE, $FG(_{\mathbb{R}}^{\oplus n}) = F($	BJECTS $\{k^{\oplus n}\}_{n\in\mathbb{N}}$ $\notin G: \mathcal{A} \longrightarrow \mathbb{F}_{d} \text{Vec}$ $ k^{\oplus n} \mapsto k^{\oplus n}$
$C = 0 \iff Skel(C) = Skel(0)$		

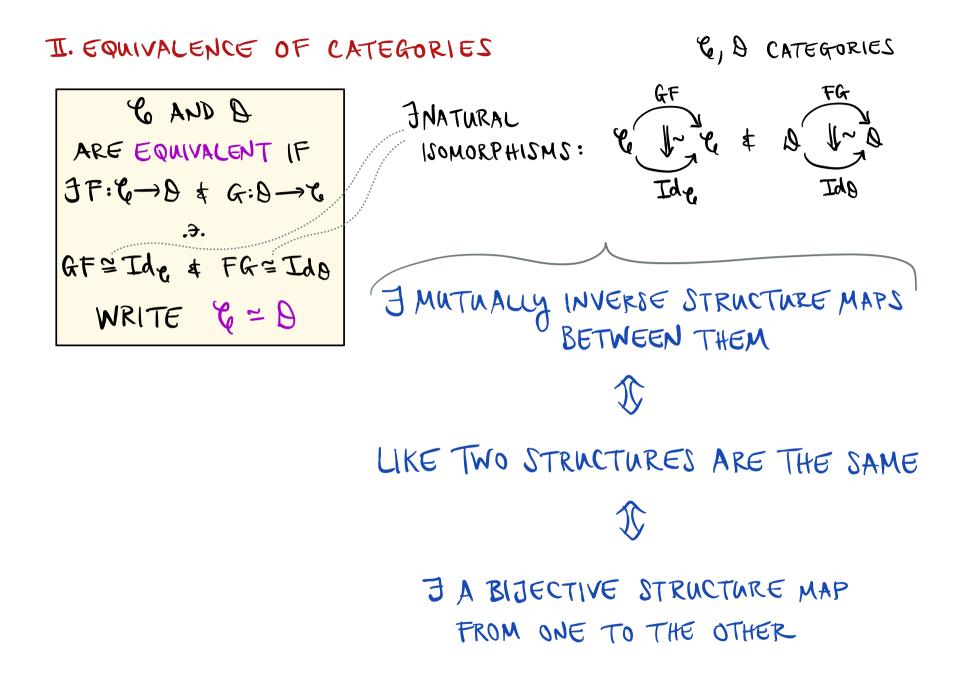


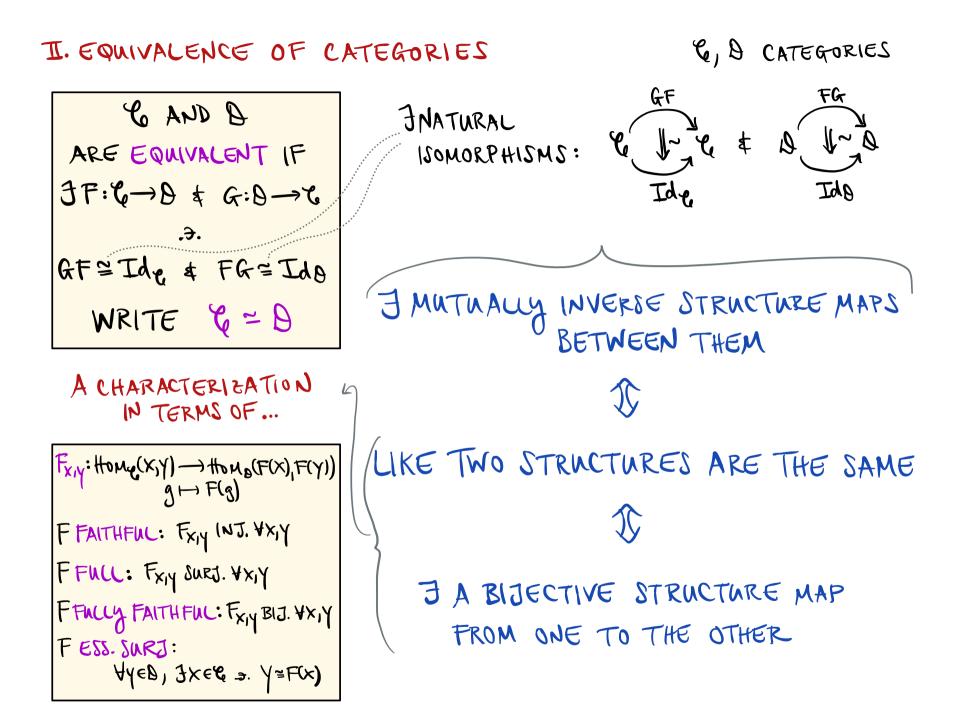
LIKE TWO STRUCTURES ARE THE SAME

Copyright © 2024 Chelsea Walton



LIKE TWO STRUCTURES ARE THE SAME





Co AND B
ARE EQUIVALENT IF

$$JF: C \rightarrow 0 \pm G: 0 \rightarrow C$$

 $J:$
 $GF \cong Id_{C} \ddagger FG \cong Id_{0}$
 $GF \cong Id_{C} \ddagger GF \cong Id_{0}$
 FG
 FG
 FG
 FG
 FG
 FG
 FG
 FG
 FG
 FF
 FF

C AND B
ARE EQUIVALENT IF

$$JF: C \rightarrow 0 \pm G: 0 \rightarrow C$$

 $...$
 $GF \cong Id_{e} \ddagger FG \cong Id_{0}$
 $GF \cong Id_{e} \ddagger I = Id_{0}$
 $GF \cong Id_{e} \ddagger I = Id_{0}$
 $GF = Id_{e} \ddagger I = Id_{0}$
 $Id_{e} = I$

THEOREM

$$\mathcal{C} = \mathcal{O} \iff \mathcal{J}$$
FALLY FAITHFAL, ESS. SURJECTIVE
FUNCTOR F: $\mathcal{Q} \rightarrow \mathcal{O}$

$$\begin{array}{c} & & & \\ & &$$

C AND B
ARE EQUIVALENT IF

$$JF: C \rightarrow 0 \pm G: 0 \rightarrow C$$

 $JF: C \rightarrow 0 \pm G: 0 \rightarrow C$
 $JF: C \rightarrow 0 \pm G: 0 \rightarrow C$
 $GF \cong Id_{C} \ddagger FG \cong Id_{0}$
 $GF \cong Id_{C} \ddagger I_{n}$
 $Id_{C} \ddagger I_{n}$
 Id

$$\begin{array}{c} & & & \\ & &$$

$$\begin{array}{c} & & & \\ & &$$

$$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

$$\begin{array}{c} & & & \\ & &$$

C AND B
ARE EQUIVALENT IF

$$\exists F: C \rightarrow 0 \ddagger G: 0 \rightarrow C$$

 \therefore
 $Gf \cong Td_{C} \ddagger FG \cong Td_{0}$
 $ff'(C)$
 $Take F: C \rightarrow 0$ FULLY FAITHFUL, ESS. SURJECTIVE
FUNCTOR F: $Q \rightarrow 0$
 $Ff'(C)$
 $Take F: C \rightarrow 0$ FULLY FAITHFUL, ESS. SURJ.
 $Ff'(C)$
 $Take F: C \rightarrow 0$ FULLY FAITHFUL, ESS. SURJ.
 $Ff'(C)$
 $Take F: C \rightarrow 0$
 $Fully FAITHFUL, ESS. SURJ.$
 $Ff(S)$
 $Ff(S)$
 $Ffaithful, Fxy SURJ. Vxy Y$
 $Ffull: Fxy SURJ. Vxy Y$
 $Ffull: Fxy SURJ. Vxy Y$
 $Ffully FAITHFUL: Fxy BIJ. Vxy Y$
 $Ffully FAITHFUL: Fxy BIJ. Vxy Y$
 $Ffully FAITHFUL: Fxy BIJ. Vxy Y$
 $Ffolly \exists xee a. Y = F(x)$

$$\begin{array}{c} & & & \\ & &$$

$$\begin{array}{c} & & & \\ & &$$

$$\begin{array}{c} & & & \\ & &$$

$$\begin{array}{c} & & & & \\ & & &$$

$$\begin{array}{c} & & & \\ & &$$

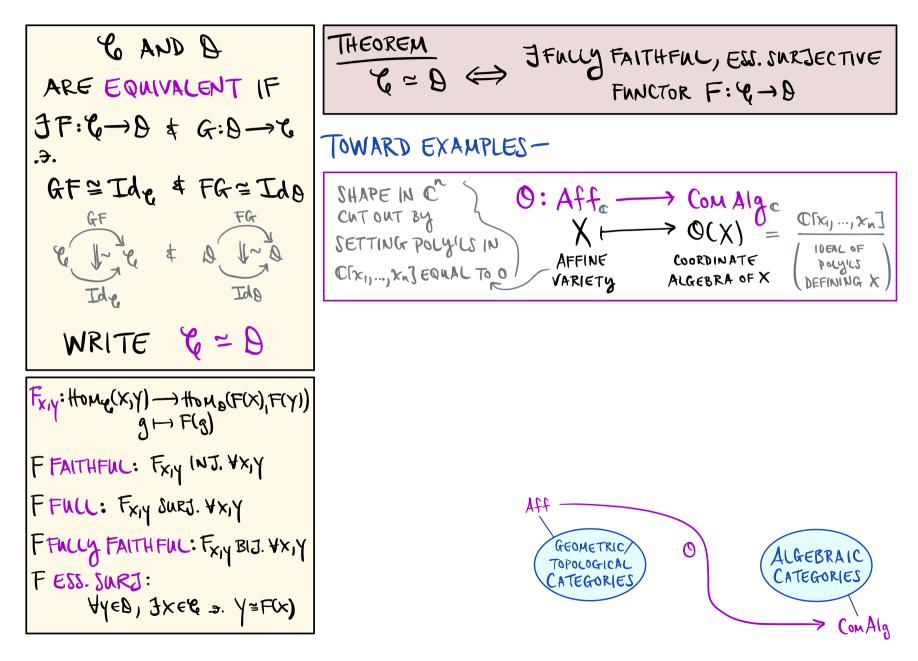
$$\begin{array}{c} & & & & \\ & & &$$

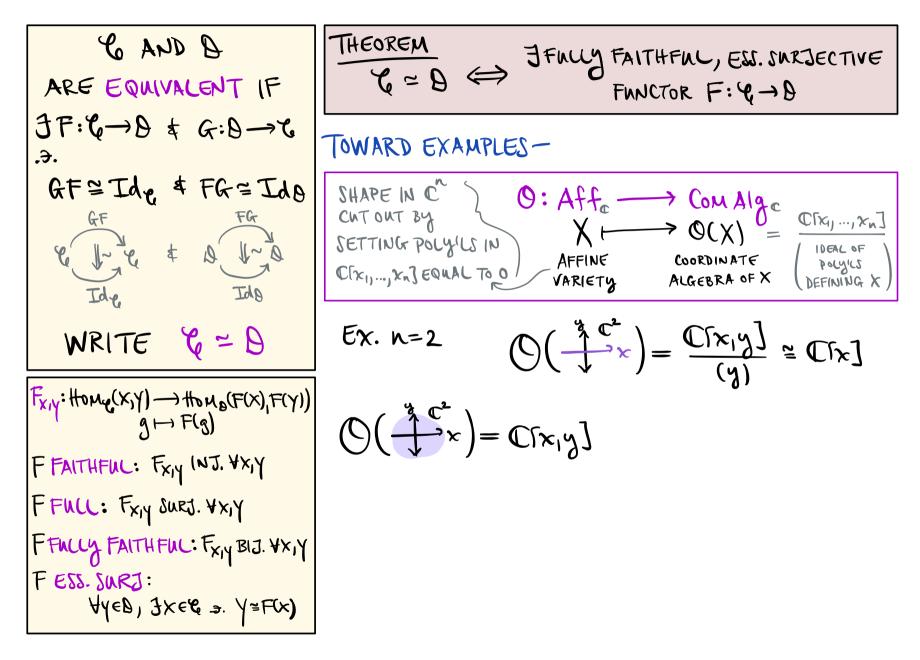
B. COMPOLENCE OF CATEGORIES
DETAILS = EXER 2.34
C AND B
ARE EQUIVALENT IF

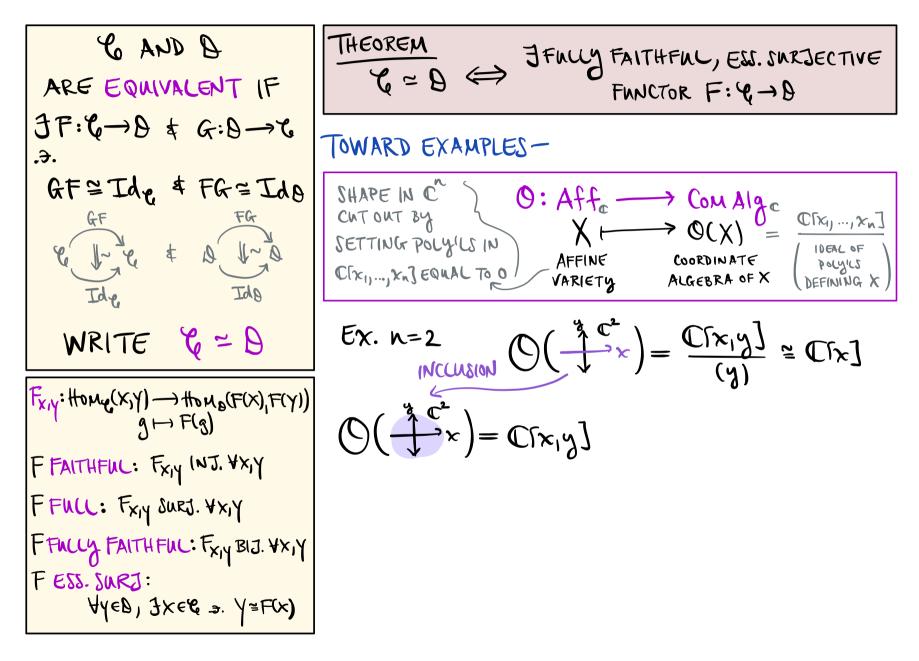
$$\exists F: \mathfrak{C} \rightarrow \mathfrak{D} \notin G: \mathfrak{D} \rightarrow \mathfrak{C}$$

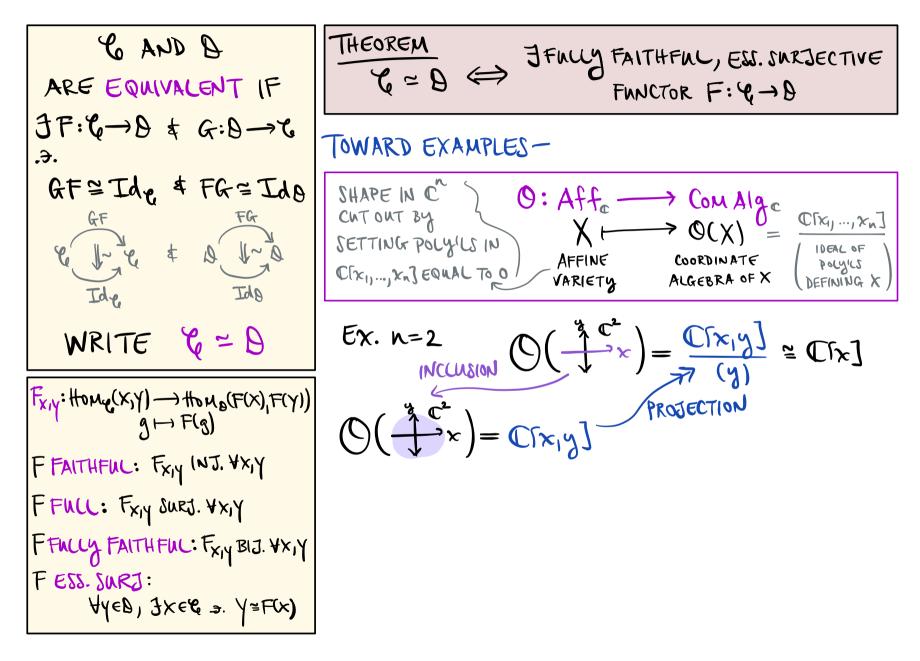
 \mathfrak{C} .
 $GF \cong Id_{\mathfrak{C}} \notin FG \cong Id_{\mathfrak{D}}$
 $\mathfrak{C} = \mathfrak{D} \Leftrightarrow \exists \mathsf{Fully} \mathsf{FAITHFUL}, \mathsf{ESS.SUR3} = \mathsf{Fully} \mathsf{FAITHFUL}, \mathsf{ESS.SUR3}.$
 $\mathsf{FF}(\mathfrak{C}) \mathsf{TAKE} \mathsf{F: }\mathfrak{C} \rightarrow \mathfrak{D} \mathsf{Fully} \mathsf{FAITHFUL}, \mathsf{ESS.SUR3}.$
 $\mathsf{FF}(\mathfrak{C}) \mathsf{TAKE} \mathsf{F: }\mathfrak{C} \rightarrow \mathfrak{D} \mathsf{Fully} \mathsf{FAITHFUL}, \mathsf{ESS.SUR3}.$
 $\mathsf{FF}(\mathfrak{C}) \mathsf{TAKE} \mathsf{F: }\mathfrak{C} \rightarrow \mathfrak{D} \mathsf{Fully} \mathsf{FAITHFUL}, \mathsf{ESS.SUR3}.$
 $\mathsf{FE}(\mathfrak{C}) \mathsf{TAKE} \mathsf{F: }\mathfrak{C} \rightarrow \mathfrak{D} \mathsf{Fully} \mathsf{FAITHFUL}, \mathsf{ESS.SUR3}.$
 $\mathsf{FESS.SUR3} \Rightarrow \mathsf{VYED} \exists \mathsf{EY} \mathfrak{C} \mathfrak{C} \Rightarrow \mathsf{F(e_Y)} = \mathsf{Y}$
 $\mathfrak{K}(\mathfrak{Y}) = \mathsf{FULL} \mathsf{FAITHFUL} \Rightarrow \mathsf{V} \mathfrak{g}: \mathsf{Y} \rightarrow \mathsf{Y}' \mathfrak{E} \mathfrak{D}$
 $\mathsf{FFULL} \mathsf{FAITHFUL}: \mathsf{FXY}(\mathsf{NJ}, \mathsf{VXY})$
 $\mathsf{FFULL} \mathsf{FXY}(\mathsf{NJ}, \mathsf{VXY})$
 $\mathsf{FFULL} \mathsf{FXY}(\mathsf{NJ}, \mathsf{VXY})$
 $\mathsf{FEULL} \mathsf{FXY}(\mathsf{NJ}, \mathsf{VXY})$
 $\mathsf{FEULL} \mathsf{FXY}(\mathsf{NJ}, \mathsf{VXY})$
 $\mathsf{FEULL} \mathsf{FXY}(\mathsf{SUE3}, \mathsf{VXY})$
 $\mathsf{FULL} \mathsf{FX}(\mathsf{SUE3}, \mathsf{VXY})$
 $\mathsf{FULL} \mathsf{FX}(\mathsf{V}) = \mathsf{FULL} \mathsf{FX}(\mathsf{V}) = \mathsf{FX}(\mathsf{V}) = \mathsf{FULL} \mathsf{FX}(\mathsf{V}) = \mathsf{$

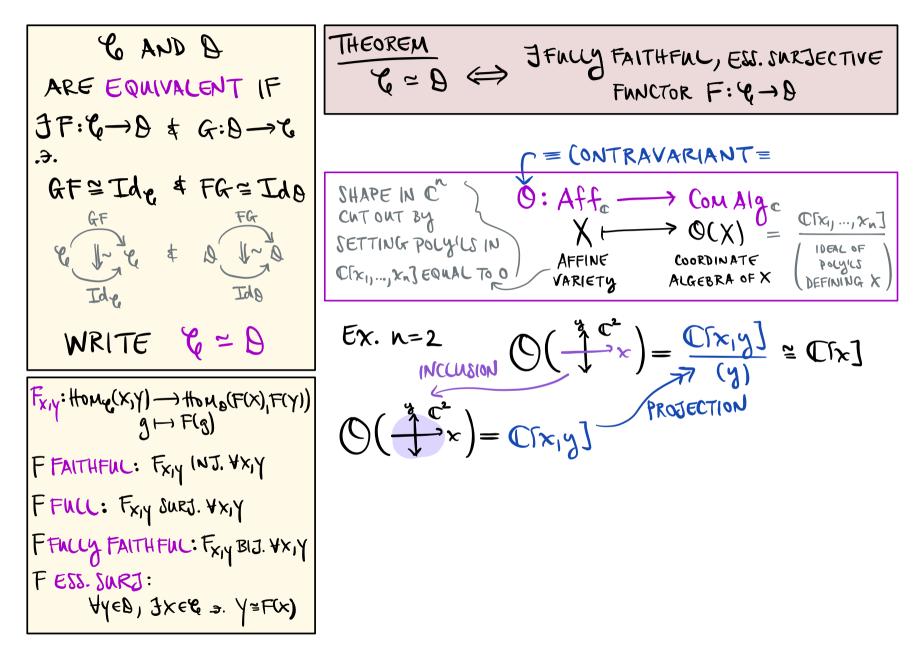
1

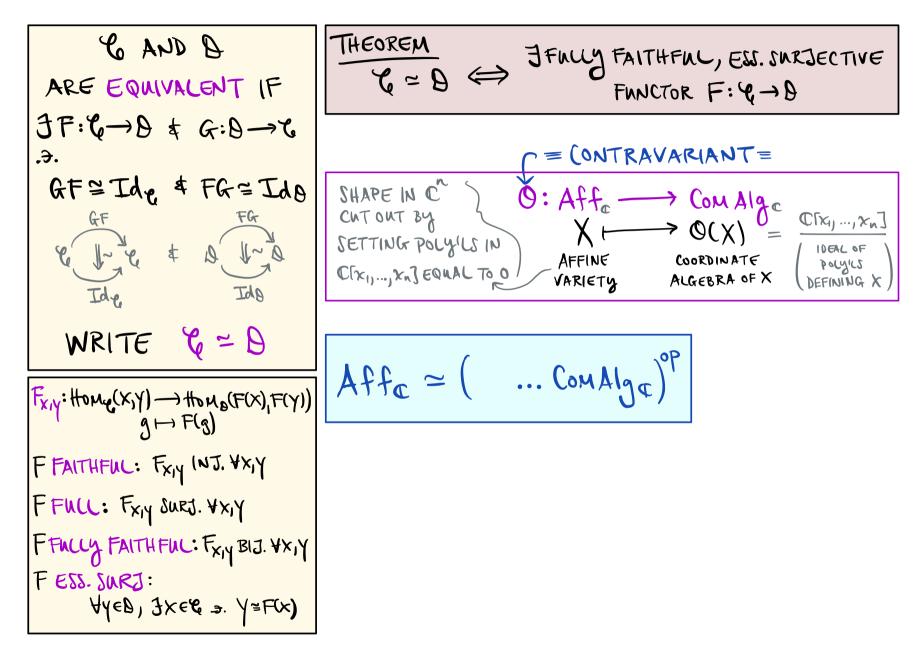


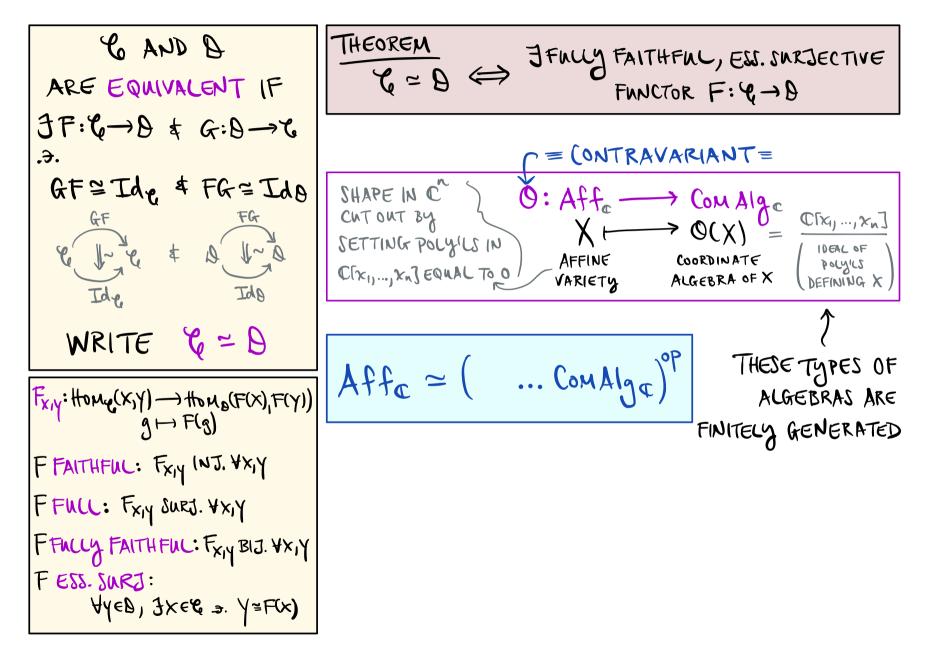


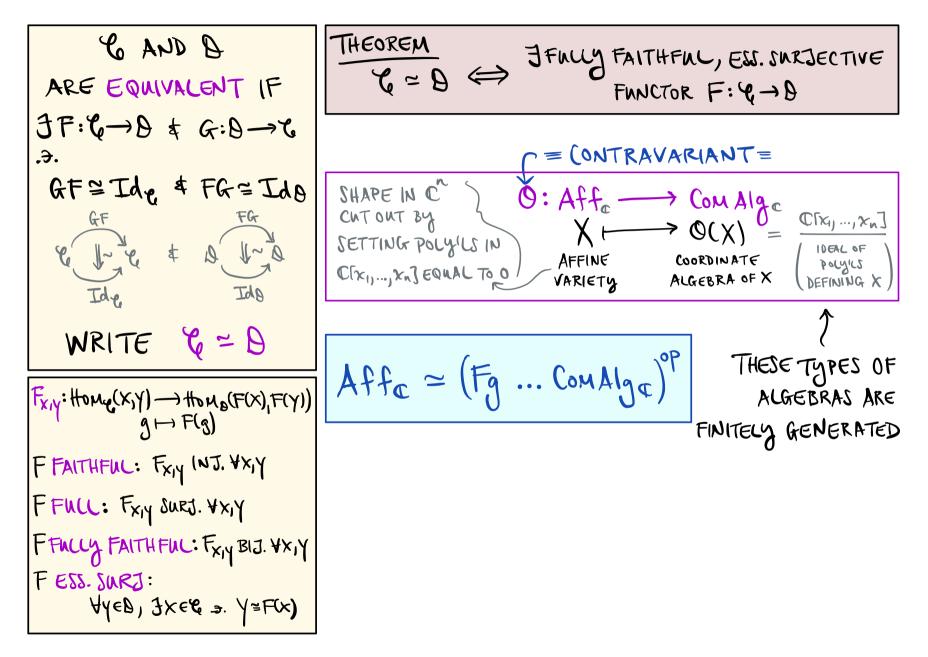


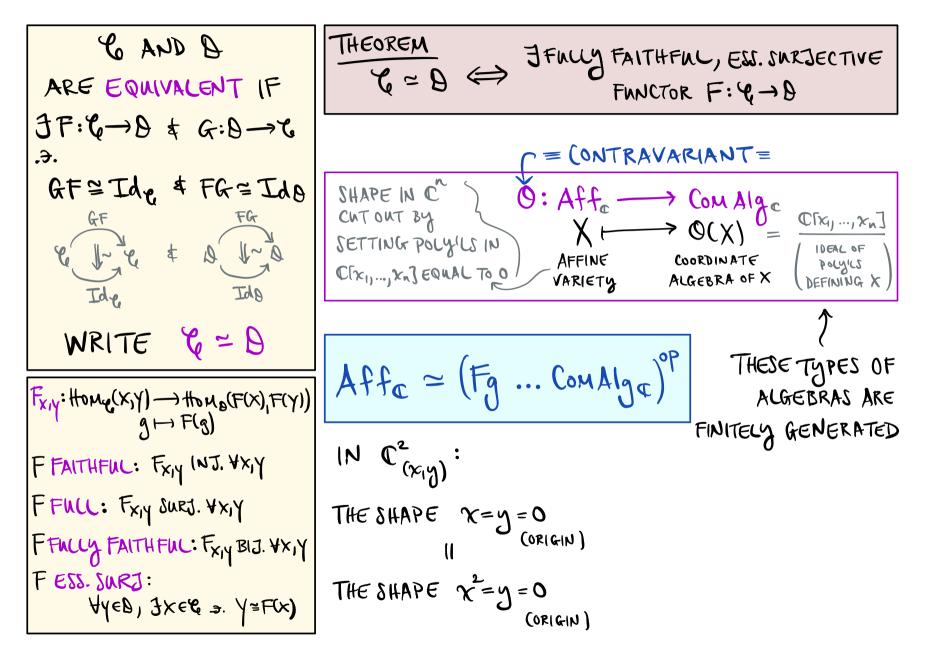


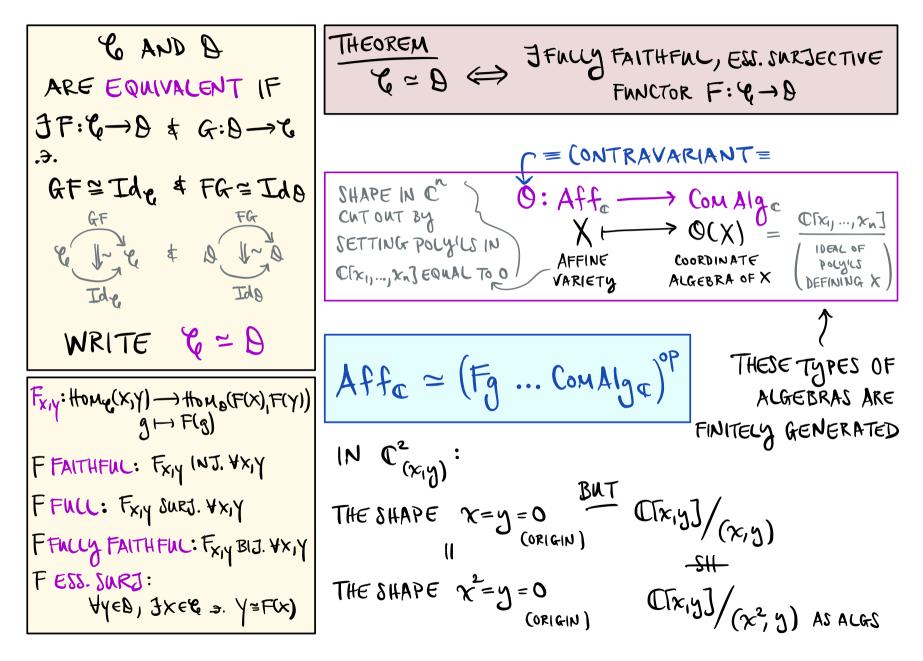


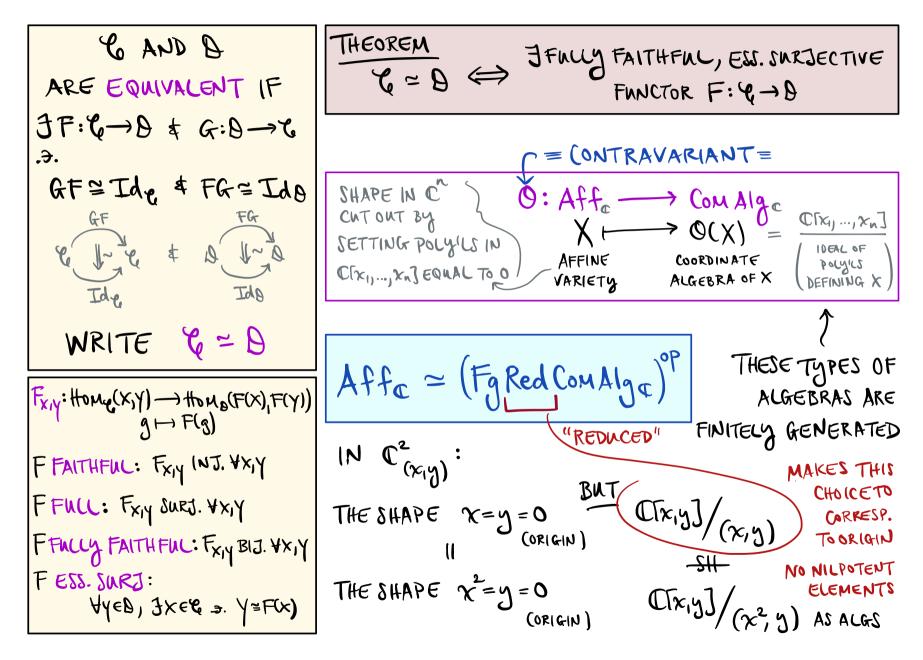


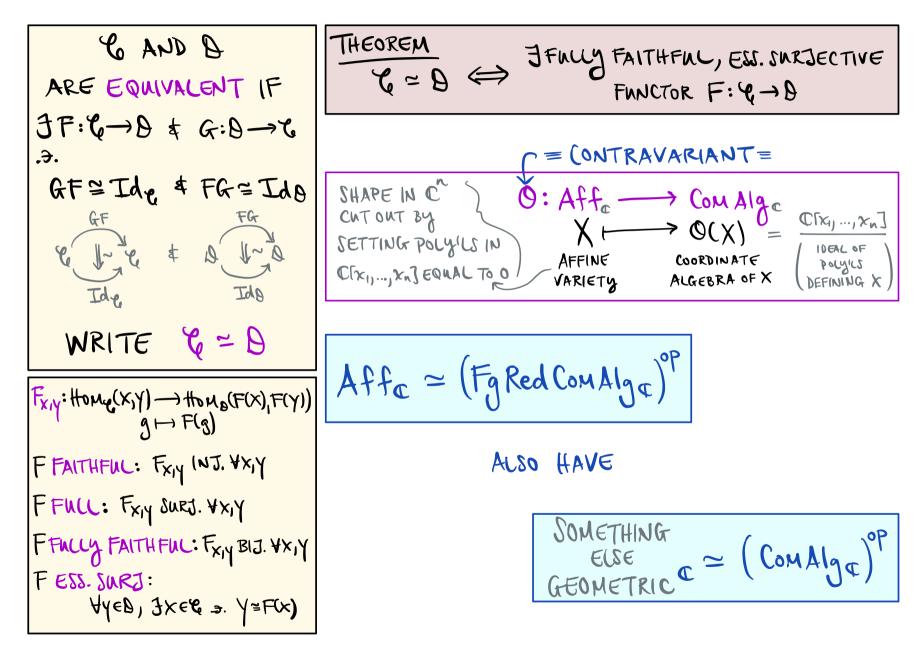


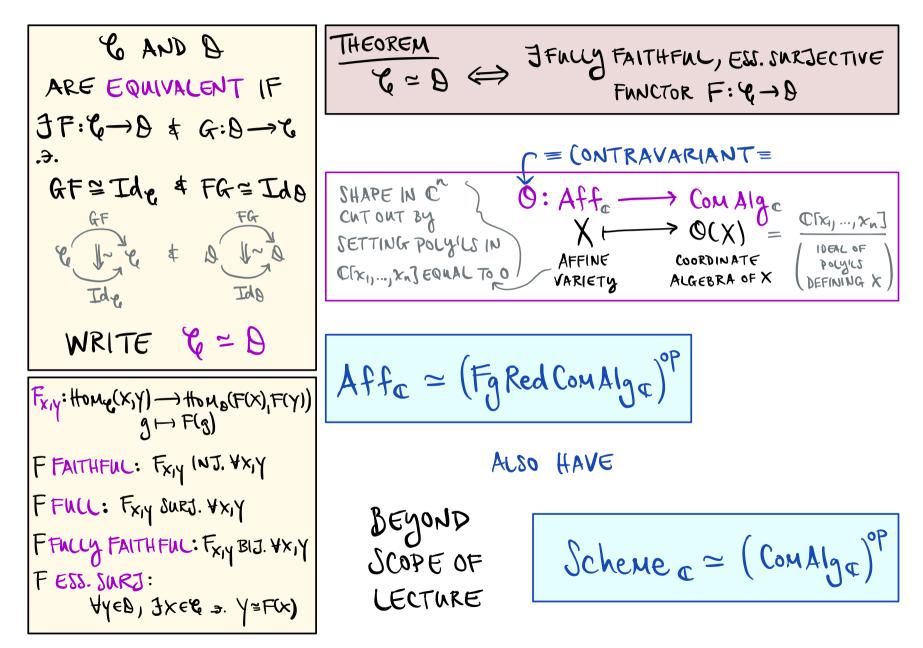












C AND D
ARE EQUIVALENT IF

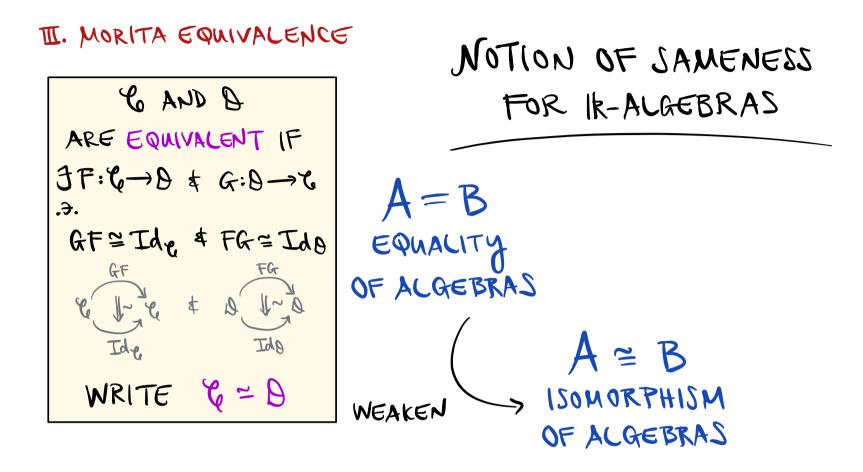
$$JF:C \rightarrow 0 \pm G:0 \rightarrow C$$

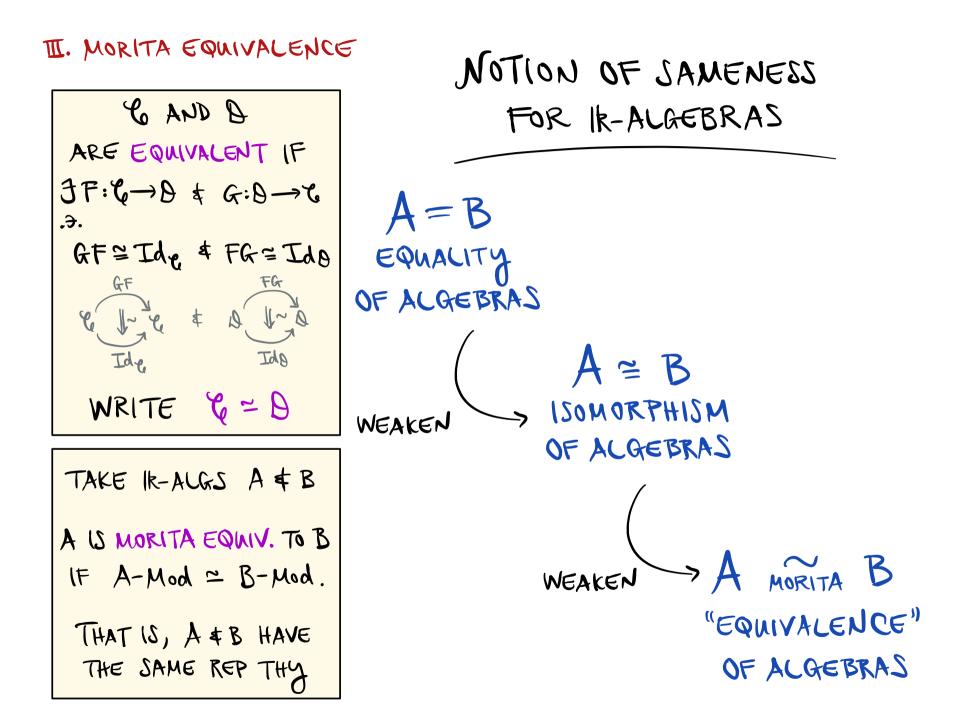
 $J:$
 $GF \cong Id_{c} \ddagger FG \cong Id_{0}$
 $GF = Id_{c} \ddagger Id_{0}$

NOTION OF SAMENESS FOR IK-ALGEBRAS

NOTION OF SAMENESS FOR IK-ALGEBRAS

A = B EQUALITY OF ALGEBRAS





C AND B
ARE EQUIVALENT IF

$$JF: C \rightarrow 0 \pm G: 0 \rightarrow C$$

 \therefore
 $GF \cong Td_{2} \pm FG \cong Td_{0}$
 $V = V_{2} \pm S = 0$
 $V = V_{2} \pm S = 0$
 $TAKE |k-ALGS A \neq B$
A IS MORITA EQUIV. TO B
IF A-Mod \cong B-Mod.
THAT IS, A \pm B HAVE
THE SAME REP THY

C AND B
ARE EQUIVALENT IF

$$\exists F: G \rightarrow 0 \pm G: 0 \rightarrow 0$$

 $\exists F: G \rightarrow 0 \pm G: 0 \rightarrow 0$
 $\exists F: G \rightarrow 0 \pm G: 0 \rightarrow 0$
 $\exists F: Td_{g} \neq FG = Td_{0}$
 $f = f = Td_{g} \neq FG = Td_{0}$
 $f = f = Td_{g} \neq FG = Td_{0}$
 $f = f = Td_{g} \neq FG = Td_{0}$
 $f = f = Td_{g} \neq FG = Td_{0}$
 $f = f = Td_{g} \neq FG = Td_{0}$
 $f = f = Td_{g} \neq FG = Td_{0}$
 $f = f = 0$
 $TAKE | k-ALGS A \neq B$
A US MORITA EQUIV. TO B
IF A-Mod $= B-Mod$.
THAT IS, A $\pm B$ HAVE
THE SAME REP THY

Co AND B
ARE EQUIVALENT IF

$$\exists F: G \rightarrow 0 \pm G: 0 \rightarrow C$$

 $\exists \cdot \vdots$
 $GF \cong Td_{g} \ddagger FG \cong Td_{0}$
 $ff \oplus Td_{g} \ddagger FG \equiv Td_{0}$
 $ff \oplus FG \equiv FG \equiv FG \oplus Are_{0} \oplus Are_{0}$

C AND B
ARE EQUIVALENT IF

$$\exists F: C \rightarrow \Theta \pm G: \Theta \rightarrow C$$

 \vdots .
 $GF \cong Td_{C} \ddagger FG \cong Td_{\Theta}$
 $\downarrow f = Q = A_{reg} AS A-BIMODULES$
 $\downarrow Q \otimes_{A} P \cong B_{reg} AS B-BIMODULES$.
 $\downarrow Q \otimes_{A} P \cong B_{reg} AS B-BIMODULES$.
 $\downarrow Q \otimes_{A} P \cong B_{reg} AS B-BIMODULES$.
 $\downarrow Q \otimes_{A} P \cong B_{reg} AS B-BIMODULES$.
 $\downarrow PF/(\Rightarrow) GIVEN EQUIVALENCE F: A-Mod \rightarrow B-Mod
 $TAKE | k-ALGS A \neq B$
A IS MORITA EQUIV. TO B
IF A-Mod \cong B-Mod.
THAT IS, $A \neq B$ HAVE
THE SAME REP THY$

BQA .7.

Co AND BARE EQUIVALENT IF
$$\exists F: C \rightarrow 0 \pm G: 0 \rightarrow C$$
 \vdots $GF \cong Td_{2} \pm G: 0 \rightarrow C$ \vdots $GF \cong Td_{2} \pm G: 0 \rightarrow C$ \vdots $GF \cong Td_{2} \pm G: 0 \rightarrow C$ $i \oplus 3$ BIMODULES $AB \pm BQA . 3$. $P \otimes_{0} Q \cong Areg AS A - BIMODULES$ $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \otimes_{A} P \cong Breg AS B - BIMODULES$. $f \oplus Q \cong B$ $f \oplus A \cap_{A} \oplus B$ f

ConstrainedMORITA'S THEOREMA is morital Equivalent to BARE EQUIVALENT IF
JF:
$$C \rightarrow 0 \pm G: 0 \rightarrow c$$

 \vdots .MORITA'S THEOREMA is morital Equivalent to BGF = Ide $f G: 0 \rightarrow c$
 \vdots . $P \otimes_B Q \cong Areg As A-BIMODULES$
 $I \otimes_B Q \cong Areg As B-BIMODULES.GF = Ide $F G \cong Ide$
 $Ide $F G \cong Ide$
 $IdeVIALENCE $F G \cong Ide$
 $Ide $F G \cong Ide$
 $IdeFree $F G \cong Ide$
 $Ide $F G \cong Ide$
 $IdeFree $F G \cong Ide$
 $Ide $F G \cong Ide$
 $IdeFree $F G \cong Ide$
 $Ide $F G \cong Ide$
 $IdeFree $F G \cong Ide$
 $Ide $F G \cong Ide$
 $IdeFree $F G \cong Ide$
 $Ide $F G \cong Ide$
 $IdeFree $F G \cong Ide$
 $Ide $F G \cong Ide$
 $IdeTAKE IK-ALGS A $\ddagger B$
IF A-Mod $\cong B-Mod$. $F G \cong Ide$
 $IdeTAKE IK-ALGS A $\ddagger B$
IF A-Mod $\cong B-Mod$. $F G \cong Ide$
 $IdeTAKE Ik-ALGS A $\ddagger B$
IF A-Mod $\cong B-Mod$. $F G \cong Ide$
 $IdeTAKE Ik-ALGS A $\ddagger B$
IF A-Mod $\cong B-Mod$. $F G \cong Ide$
 $IdeTAKE Ik-ALGS A $\ddagger B$
IF A-Mod $\cong B-Mod$. $F G \cong Ide$
 $IdeTAKE Ik-ALGS A $\ddagger B$
IF A-Mod $\cong B-Mod$. $F G = Ide$
 $IdeTAKE Ik-ALGS A $\ddagger B$
IF A-Mod $\cong B-Mod$. $F G \cong Ide$
 $IdeDEFINETHAT IS, A $\ddagger B$ HAVE
THE SAME REP THY $B Q \in (B, A) - Bimod$$$$$$$$$$$$$$$$$$$$$$$$$

APB & BQA .7.

Consistent of the same rep Thy is morital equivalent to b
MORITA'S THEOREM A IS MORITA EQUIVALENT to b
MORITA'S THEOREM A IS MORITA EQUIVALENT to b

$$\Rightarrow$$
 3 BIMODULES $_{A}P_{B} = B_{Reg}$ as $_{A}B_{Reg}$ as $_{A}B_{Reg}$.
 $P \otimes_{B} Q = A_{Reg}$ as $_{A}B_{Reg}$ as $_{B}B_{Reg}$.
 $P \otimes_{B} Q = A_{Reg}$ as $_{B}B_{Reg}$.
 $P \otimes_{A}P = B_{Reg}$.
 $P \otimes_{A}P = B_{R$

C AND B
ARE EQUIVALENT IF

$$\exists F: {}^{C} \rightarrow 0 \pm G: 0 \rightarrow c$$

 \vdots .
 $GF \cong Td_{C} \ddagger FG \equiv Td_{0}$
 $f = F(TAKE Me A-Mod \ GET 180:$
 $f = Td_{C} \equiv F(AAre_{0}) \in F(AAre_{0}) \in F(AAre_{0}) = Hom_{B-Mod}(F(AI_{1},F(X)))$
 $f = Fm_{C} f = Td_{C} = F(AAre_{0}) = Hom_{B-Mod}(F(AI_{1},F(X)))$
 $f = Fm_{C} f = Td_{C} = T$

ConstrainedMORITA'S THEOREMA is morital Equivalent to BARE EQUIVALENT IF
$$\exists F: C \rightarrow 0 \pm G: 0 \rightarrow C$$
 $\exists B imodules A P = B e a A = 0$ $\exists F: C \rightarrow 0 \pm G: 0 \rightarrow C$ $\exists G = Tde \pm FG = Tde for a A = 0$ $P \otimes_B Q \cong A e a A = 0$ $GF \cong Tde \pm FG = Tde for a A = 0$ $f \otimes G = A e a A = 0$ $A = B - M o d A = 0$ $V = V = V = V$ $Tab = 0$ $PF/ (\Rightarrow)$ Given Equivalence $F: A - M o d \rightarrow B - M o d$ $WRITE = C = 0$ $PF/ (\Rightarrow)$ Given Equivalence $F: A - M o d \rightarrow B - M o d$ Take Ik-ALGS A $\neq B$ $PF/ (\Rightarrow)$ Given Equivalence $F: A - M o d \rightarrow B - M o d$ $Take Ik-ALGS A \neq B$ $PF/ (\Rightarrow) Given Equivalence $F: A - M o d \rightarrow B - M o d$ Take Ik-ALGS A $\neq B$ $PF/ (\Rightarrow) Given Equivalence $F: A - M o d \rightarrow B - M o d$ $Take Ik-ALGS A \neq B$ $PF/ Take Me A - M o d \pm GeT (so: $Take Ik-ALGS A \neq B$ $FF/ Take Me A - M o d \pm GeT (so: $G_X: X \cong Hom_{A-Mod} (A, X) \xrightarrow{F} Hom_{B-Mod} (F(A), F(X))$ $PF/ Take Me A - M o d \pm GeT (so: $G_X: X \cong Hom_{A-Mod} (A, X) \xrightarrow{F} Hom_{B-Mod} (Q, F(X))$ $Har IS, A \neq B Have The SAME REP THY$ $GeT (so: Take The SAME REP THY)$$$$$$

C AND B
ARE EQUIVALENT IF

$$\exists F: C \rightarrow \emptyset \ddagger G: \emptyset \rightarrow C$$

 $\exists F \cong Td_C \ddagger FG \cong Td\emptyset$
 $fF \Rightarrow Td_C \ddagger FG \cong Td\emptyset$
 $FF = Td_C \ddagger FG \equiv Td$
 $FF = Td_C \ddagger FG \equiv Td$

$$F(\Rightarrow)$$
 GIVEN EQUIVALENCE F:A-Mod \rightarrow B-Mod
HAVE Q := F(A Areg) \in (B,A)-Bimod
HAVE F = Q \otimes_A - AS FUNCTORS

C AND B
ARE EQUIVALENT IF

$$\exists F: C \rightarrow 0 \ddagger G: 0 \rightarrow C$$

 $\exists F: C \rightarrow 0 \ddagger G: 0 \rightarrow C$
 $\exists F: C \rightarrow 0 \ddagger FG = Id0$
 $GF \cong Id_C \ddagger FG = Id0$
 $FG = Id_0$
 $FG = Id0$
 $FG = Id0$

UORITA'S THEOREM A IS MORITA EQUIVALENT TO B ⇒ 3 BIMODULES APB & BQA . 7. P∞BQ = Areq AS A-BIMODULES \$ Q @A P = Breg AS B-BIMODULES. $F/(\Longrightarrow)$ GIVEN EQUIVALENCE $F:A-Mod \rightarrow B-Mod$ HAVE Q := F(A Areg) E(B,A)-Bimod HAVE F = Q QA - AS FUNCTORS NOW 3 G: B-Mod -> A-Mod WITH \$: IdAmod = GF & Y:FR = Idrud

C AND B
ARE EQUIVALENT IF

$$JF: C \rightarrow B \pm G: B \rightarrow C$$

 $J:$
 $GF \cong Td_{\mathcal{C}} \pm G: G \rightarrow C$
 $J:$
 $GF \cong Td_{\mathcal{C}} \pm G: G \rightarrow C$
 $J:$
 $GF \cong Td_{\mathcal{C}} \pm G: G \rightarrow C$
 $J:$
 $GF \cong Td_{\mathcal{C}} \pm G: G \rightarrow C$
 $J:$
 $GF \cong Td_{\mathcal{C}} \pm G: G \rightarrow C$
 $J:$
 $J:$
 $GF \cong Td_{\mathcal{C}} \pm G: G \rightarrow C$
 $J:$
 $GF \cong Td_{\mathcal{C}} \pm G: G \rightarrow C$
 $J:$
 J

ConstraintMORITA'S THEOREMA is morital Equivalent to BARE EQUIVALENT IF
JF:
$$\mathcal{C} \rightarrow \mathcal{D} \neq G: \mathcal{D} \rightarrow \mathcal{C}$$

...MORITA'S THEOREMA is morital EQUIVALENT to B $\mathcal{C} \neq \mathcal{D} \neq G: \mathcal{D} \rightarrow \mathcal{C}$
... $\mathcal{D} = \mathcal{D} = \mathcal{D} = \mathcal{D}$ $\mathcal{D} = \mathcal{D} = \mathcal{D} = \mathcal{D} = \mathcal{D}$ $\mathcal{D} = \mathcal{D} = \mathcal{D} = \mathcal{D} = \mathcal{D}$ $\mathcal{C} \neq \mathcal{D} \neq \mathcal{C} \neq \mathcal{D} = \mathcal{D}$ $\mathcal{C} \neq \mathcal{D} = \mathcal{D} = \mathcal{D}$ $\mathcal{D} = \mathcal{D} = \mathcal{D} = \mathcal{D} = \mathcal{D}$ $\mathcal{D} = \mathcal{D} = \mathcal{D$

6 AND B ARE EQUIVALENT IF JF:6→0 \$ G:0→6 .Э. GF≅Ide & FG≡Ido & 1- e t o 1-0 Idg Ide WRITE C=D TAKE IK-ALGS A & B A IS MORITA EQUIV. TO B IF A-Mod ≃ B-Mod. THAT IS, A & B HAVE THE SAME REP THY

DETAILS = EXER. 2.35 MORITA'S THEOREM A IS MORITA EQUIVALENT TO B ⇒ 3 BIMODULES APB & BQA .7. POBQ = Areq AS A-BIMODULES + Q ØA P = Brey AS B-BIMODULES. PF/ (⇒) GIVEN EQUIVALENCE F: A-Mod → B-Mod HAVE Q := F(A Areg) (B,A)-Bimod HAVE F = Q ØA - AS FUNCTORS NOW 3 G: B-Mod -> A-Mod WITH \$: IdAmod = GF & Y:FR = IdB-Mod HAVE P := $G(B \operatorname{Breg}) \in (A, B) - Bimod$ HAVE G = P 0 - AS FUNCTORS GET $\phi_A : A \xrightarrow{\sim} GF(A) \xrightarrow{\sim} P \otimes_B Q$ AS A-BIMODS + Y=1: B→ FG(B) = QQ P AS B-BIMODS/

ConstraintMORITA'S THEOREMA is morital Equivalent to BARE EQUIVALENT IF
$$F: G \rightarrow 0$$
 $A = 3$ $3F: G \rightarrow 0$ $A = 3$ $A = 3$ $GF \cong Td_{g} \notin FG \cong Td_{g}$ $FG \cong Td_{g}$ $FG \cong Td_{g}$ $GF \cong Td_{g} \notin FG \cong Td_{g}$ $FG \cong Td_{g}$ $FG \cong Td_{g}$ $GF \cong Td_{g}$ $FG \cong Td_{g}$ $FG \cong Td_{g}$ $Main Example $A = 3$ $A = 3$ $A = 3$ $Main Example $A = 3$ $A = 3$ $A = 3$ $Main Example $A = 3$ $A = 3$ $A = 3$ $Main Example $A = 3$ $A = 3$$$$$$$$$$

C AND B
ARE EQUIVALENT IF

$$\exists F: \mathcal{C} \rightarrow \mathfrak{D} \ddagger G: \mathfrak{D} \rightarrow \mathcal{C}$$

 $\exists : \\ \mathfrak{C} \rightarrow \mathfrak{D} \ddagger G: \mathfrak{D} \rightarrow \mathcal{C}$
 $\exists : \\ \mathfrak{C} \rightarrow \mathfrak{D} \ddagger G: \mathfrak{D} \rightarrow \mathcal{C}$
 $\exists : \\ \mathfrak{C} \rightarrow \mathfrak{D} \ddagger G: \mathfrak{D} \rightarrow \mathcal{C}$
 $\exists : \\ \mathfrak{C} \rightarrow \mathfrak{D} \ddagger G: \mathfrak{D} \rightarrow \mathcal{C}$
 $\exists : \\ \mathfrak{C} \rightarrow \mathfrak{D} \ddagger \mathfrak{C} \rightarrow \mathfrak{C} = \mathfrak{D}$
 $\mathfrak{C} = \mathfrak{C} \ddagger \mathfrak{C} \rightarrow \mathfrak{C} = \mathfrak{D}$
 $\mathfrak{C} = \mathfrak{C} \ddagger \mathfrak{C} = \mathfrak{D}$
 $\mathfrak{C} = \mathfrak{C} = \mathfrak{D}$
 $\mathfrak{C} = \mathfrak{D} = \mathfrak{D}$

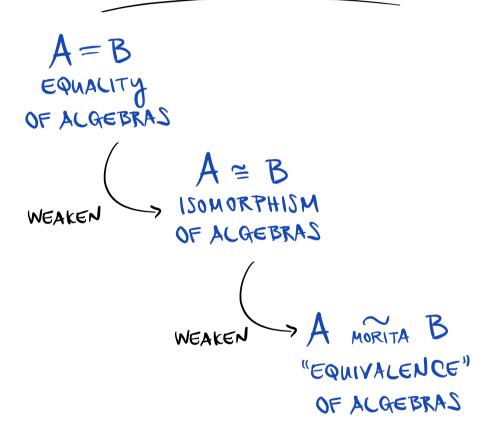
$$\mathcal{C}$$
 AND \mathcal{B}
ARE EQUIVALENT IF
 $\exists F: \mathcal{C} \rightarrow \mathfrak{D} \ddagger G: \mathfrak{D} \rightarrow \mathcal{C}$
 \mathfrak{d} .MORITA'S THEOREM
 A is morita EQUIVALENT to \mathcal{B}
 $\Leftrightarrow \exists \mathsf{B}$ imodules $_{A}\mathsf{P} \ddagger \mathsf{B} \mathsf{Q} \texttt{A}$.
 $\mathcal{P} \otimes_{\mathsf{B}} \mathsf{Q} \eqqcolon A_{\mathsf{Reg}} \mathsf{A} \mathsf{S} \mathsf{A}$ -Bimodules
 $\ddagger \mathsf{Q} \otimes_{\mathsf{A}} \mathsf{P} \cong \mathsf{Breg} \mathsf{A} \mathsf{S} \mathsf{A}$ -Bimodules.
 $\ddagger \mathsf{Q} \otimes_{\mathsf{A}} \mathsf{P} \cong \mathsf{Breg} \mathsf{A} \mathsf{S} \mathsf{B}$ -Bimodules.
 $\ddagger \mathsf{Q} \otimes_{\mathsf{A}} \mathsf{P} \cong \mathsf{Breg} \mathsf{A} \mathsf{S} \mathsf{B}$ -Bimodules. $\mathcal{C} \mathsf{F} \cong \mathsf{Id}_{\mathfrak{C}} \ddagger \mathsf{F} \mathsf{G} \cong \mathsf{Id}_{\mathfrak{D}}$
 $\mathsf{Id}_{\mathfrak{C}} \blacksquare \mathsf{Id}_{\mathfrak{C}} \blacksquare \mathsf{Id}_{\mathfrak{C}}$ MAIN EXAMPLE
 $\mathsf{A} \mathsf{IS} \mathsf{MORITA} \mathsf{EQUIVALENT}$ To $\mathsf{Mat}_{\mathsf{n}}(\mathsf{A})$ WRITE
 $\mathsf{V} \cong \mathsf{D}$ $\mathsf{Exer.2.38}$ $\mathsf{A} \sim_{\mathsf{MOR}} \mathsf{B} \implies \mathsf{C}(\mathsf{A}) \cong \mathsf{C}(\mathsf{B})$ TAKE
 $\mathsf{IF} \mathsf{A}-\mathsf{Mod} \cong \mathsf{B}-\mathsf{Mod}$.
 THAT
 IS , $\mathsf{A} \ddagger \mathsf{B}$ HAVE
 THE SAME REP THY $\mathsf{Exer.2.38}$ $\mathsf{A} \sim_{\mathsf{MOR}} \mathsf{B} \implies \mathsf{C}(\mathsf{A}) \cong \mathsf{C}(\mathsf{B})$

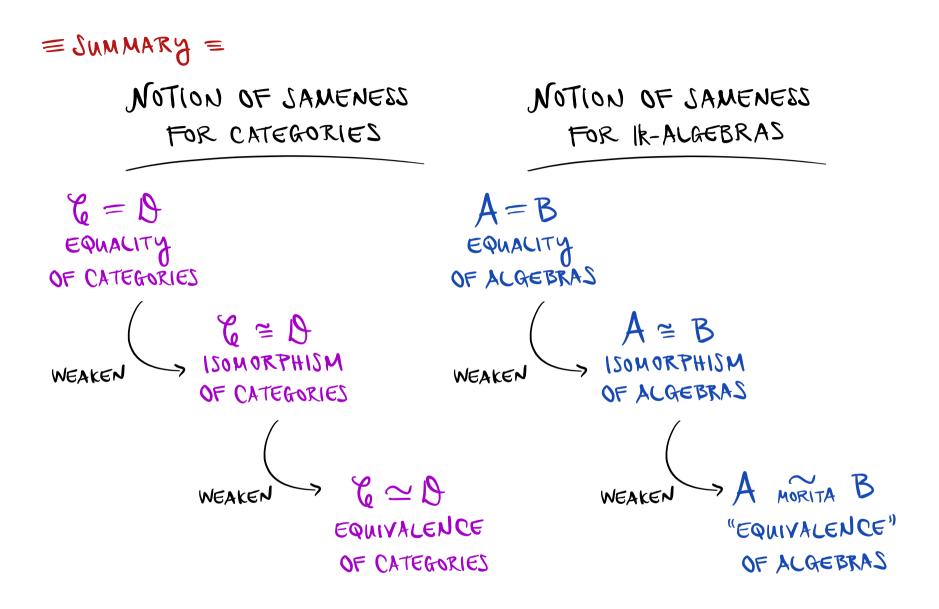
ConstraintMORITA'S THEOREMA is morital Equivalent to BARE EQUIVALENT IFF:
$$G \rightarrow 0 \pm G : 0 \rightarrow 0$$
 \Rightarrow \Rightarrow \Rightarrow a is morital Equivalent to B $\exists F: G \rightarrow 0 \pm G : 0 \rightarrow 0$ \Rightarrow \exists bimodules $A^B \pm B QA$ $P^{\otimes_B} Q \cong A_{Reg}$ as A-Bimodules $GF \cong Td_e = FG \equiv Td_0$ $f = G \oplus G \cong A^R = B_{Reg}$ AS B-Bimodules. $f = Q^{\otimes_A}P \cong B_{Reg}$ AS B-Bimodules. $GF \cong Td_e = FG \equiv Td_0$ $f = G \oplus G \cong A_{Reg}$ AS B-Bimodules. $GF \cong Td_e = FG \equiv Td_0$ $f = G \oplus G \cong A^R \oplus A^R$

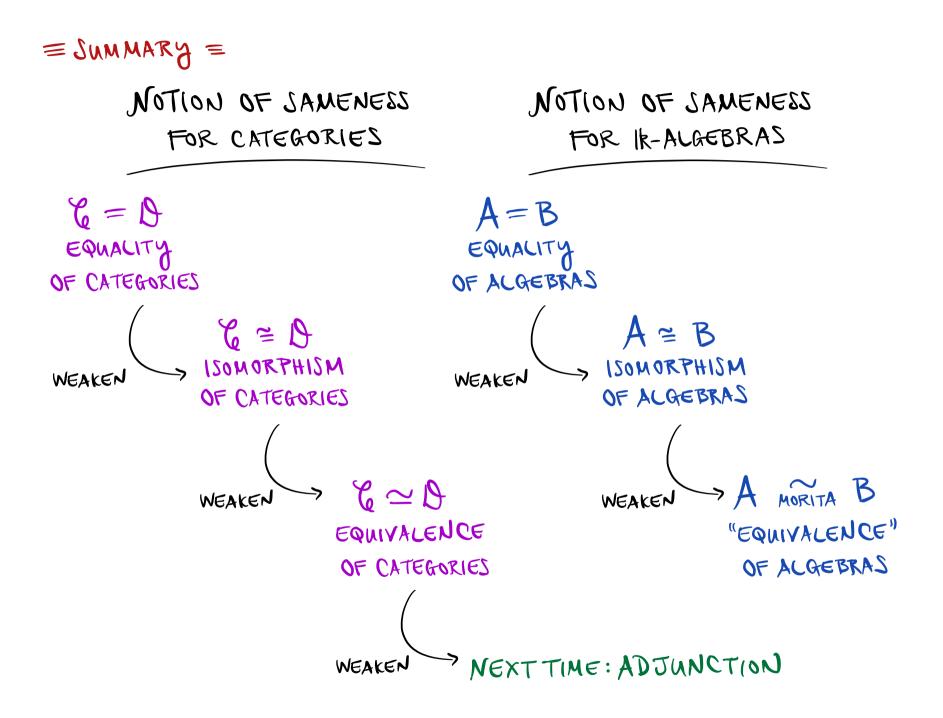
$$\mathcal{C}$$
 AND \mathcal{B}
ARE EQUIVALENT IF
 $\exists F: \mathcal{C} \rightarrow \mathfrak{D} \ddagger G: \mathfrak{D} \rightarrow \mathfrak{C}$
 \mathfrak{D} MORITA'S THEOREM A IS MORITA EQUIVALENT TO \mathcal{B}
 $\mathfrak{C} \Rightarrow \mathfrak{B} \ddagger G: \mathfrak{D} \rightarrow \mathfrak{C}$
 $\mathfrak{D} \Rightarrow \mathfrak{C} \Rightarrow \mathfrak{D} \ddagger G: \mathfrak{D} \rightarrow \mathfrak{C}$
 $\mathfrak{D} \Rightarrow \mathfrak{C} \Rightarrow \mathfrak{D} \ddagger G: \mathfrak{D} \rightarrow \mathfrak{C}$
 $\mathfrak{C} \Rightarrow \mathfrak{C} \ddagger G: \mathfrak{D} \Rightarrow \mathfrak{C}$
 $\mathfrak{C} \Rightarrow \mathfrak{C} \ddagger \mathfrak{C} \Rightarrow \mathfrak{C} \Rightarrow$

ConstraintMORITA'S THEOREMA is morital Equivalent to BARE EQUIVALENT IF
$$F: C \rightarrow 0 \pm G: 0 \rightarrow C$$
 \Rightarrow \Rightarrow B imodules $AB \pm 0 = 0$ $\exists F: C \rightarrow 0 \pm G: 0 \rightarrow C$ \Rightarrow B imodules $AB \pm 0 = 0$ \Rightarrow $\exists F: C \rightarrow 0 \pm G: 0 \rightarrow C$ \Rightarrow B imodules $AB \pm 0 = 0$ \Rightarrow $\exists F: C \rightarrow 0 \pm G: 0 \rightarrow C$ \Rightarrow B imodules $AB \pm 0 = 0$ \Rightarrow $\exists F: C \rightarrow 0 \pm G: 0 \rightarrow C$ $f G = 0$ $A = 0$ $B = 0$ $GF = Tde \pm FG = Tde = T$

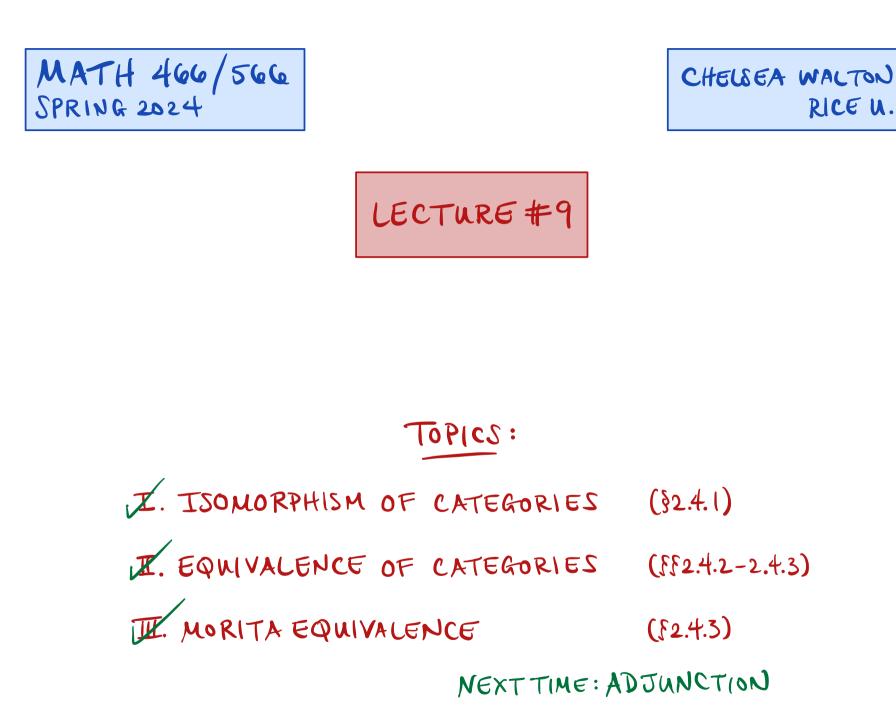
NOTION OF SAMENESS FOR IK-ALGEBRAS







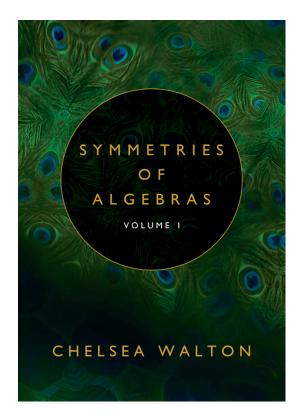
Copyright © 2024 Chelsea Walton



Copyright © 2024 Chelsea Walton

Enjoy this lecture? You'll enjoy the textbook!

C. Walton's "Symmetries of Algebras, Volume 1" (2024)



Available for purchase at :

619 Wreath (at a discount)

https://www.619wreath.com/

Also on Amazon & Google Play

Lecture #9 keywords: equivalence of categories, isomorphism of categories, Morita equivalence of algebras, Morita's Theorem, skeleton