June 5,2019 Tensor Algebras in Fruite Tensor	Categories OSU oummer school
June 5,2019 Tensor Algebras in Finite Tensor White Walton joint of Parel Etingof & Ryan Kinger, co.	rigson.
Broad Interest: To study (quantum) symmet	nes of algebras A
Say over a field lk: A = (A, m: 1k-vi) Satisfying	Maps in Vecin
sort effine	affect strong & the
T Symmetries" = group actions in A by and	Over togethe
(lie alg actions by our is an	0 0
T " quantum symmetries" = actions of a Hopf al	getra It in the sense that
A is an H-module	algebra
7 \$	
A, m, n &	Kap (H.)
	1)
MAE Alg(Rep(H	monoidal entagory
This talk A = IRQ part algebra of a guir Q = (Qo, Q1, S,t: Q1)	3 questions: Squestions: what to act on? what to act? how to act? Qo) directed graph
IRQ = (1) IR xp as a Ik-vs,	
with multiplication ?	$G_{p} \propto q = f_{t(p), S(q)} \times pq$
	€ Q is finite 1001,10,1<00
$\begin{array}{ccc} & & & & & & & & \\ & & & & & & & \\ & & & &$	NIVERSITY OF LEEDS

More generally $A = T_B(V)$ tensor algebra $V \in Binnod_{IR}(B)$.

IRQ = TIRQO (IRQI)

- · |kQo = commutative, semisingle |k-ayedang|klool
- · Ita, & Bimodik (Ika)

(Q.) Symmetries are going to be grade / dugue-preserving.

Ex. G finite grup

degree purrishe G-actions on IRQ

since IRQ is greated in degree 0 \$1

G-actions on Q by graph automorphisms

Ex. $G=\mathbb{Z}_2=\{0|0^2=1\}$ Q: 0

 $(70 \% 1 \stackrel{?}{\longleftrightarrow} 2$ $\chi \longleftrightarrow y$ inducts $(7) 1 \times 0$.

Q. Symmetries are going to be in contest II., motivated by contest II in the semi-simple case...

Filite-dim's Host algebras: two important subclasses.

Samoimple.

as an algeba: module = @ single mod.

such it are typically studied with group-theoretic techniques-

e.g. hornal Hopt subalgo, exchis etc .-

Intice Good ?

pointed

as a coalgebra

simple comodules are 1-ain'l

w/ Lie-Chesretic techniques

eg. "Cartan data is now for classification gurposus"

Kinser-W (2014) studied actions of) fin-aimle sted H on IRO.

UNIVERSITY OF LEEDS

Take an algebra A in le (tet [Mode (A)] = category of right A-modules in &: (M, fm: M&A -> M') compatible not observe & G. Inject mode (A) is a left le-module category: (X, (M,pm)) (X&M, idx &pm) Theorem Take any west-module carryon My. Then Faylan A. m. mody (A) as li-module cetagogs. We say that $A \in Alg(4)$ is indecomposable (exact/semisingle + mody(A) is so Say that A, A' EAIS(4) are morntagentralent if mody (A) ~ mody (A') as 4-mod. Let's define tensor algebras in the and cooking a notion of "summeness" So that the tensor algebras can be world, classified up to this notion of someness & so that we illustrate our classification in concrete examples brilaire che franceworth. Dept A le-tensoralgebra Tole) is on algebra in Ind(8) where -tensoralgebra 1500)

S = exact algebra in & E & Bimody (S)

Simonula

bimodula · TS(E) = S @ E @ (E @ E) @ E & .--· MISIE): Egg, W & Egg, w .-- Egg, wth noted makes Jails days to have only · NIGLED: S - Tole). Dept Tole) is equivalent to Torle') if OF total NIVERSITY OF LEEDS wields f(E) = E' in Bimody(S').

w/ trivial.

No there explicit discription of indecomposable Ha-algebras of In paper of many other calculateum.