June 5,2019
Chelsea Wation
Tensor Algebus in Fivite Tevser Categorios
OSK summer schorl
joint wl Pavel Eringof \& Ryar Kinger, coningrom
Proad Interest : To stndy (quantum) symmetries of algebass A say over a field $k: A=(A, m: A \otimes A \longrightarrow A, u: \mathbb{k} \rightarrow A)$ $\mathbb{k}_{\mathrm{k}}=\mathrm{ra}^{\prime}$ raps in Veck
satishping assaciativits mit aximes
I. "symmetries" = group actinis in A by antomorphisus
[Lie alf actions by derivationo]
II "quantum synmeties" = actions of a Hopt algester H in the sease that A is an H-module algaba J
$A, m, u \in \operatorname{Reg}(H)$
I)
mus $A \in A \lg (\underbrace{}_{\text {Rep }(H)}$ monsidal category
III. "quantum symmetries" 三 algybus in nonoidal cetegorys of algs in general"

3 questurin: what to act on? ohattoash with?
This talk $A=\mathbb{k} Q$ path alybera of a guiver

$$
\begin{aligned}
& \mathbb{R} Q=\underset{\text { pathe } \in \mathbb{Q}}{\oplus} \mathbb{R} x_{\rho} \text { as a } \mathbb{k}-r s \text {, }
\end{aligned}
$$ jath $\mathcal{E} \in \mathbb{Q}$

with multiglicution $\left.x_{p} x_{q}=\delta_{t(p)}\right), s(q) x_{p q}$

UNIVERSITY OF LEEDS

More geneally $A=T_{B}(V)$ tentas algebar

$$
\begin{aligned}
& B \in \operatorname{Alg}(\operatorname{Vec} \mathbb{k}) \quad V \in \operatorname{Bimod}_{\mathbb{k}}(B) \text {. } \\
& \mathbb{k} Q=T_{\mathbb{k} Q_{0}}\left(\mathbb{k} Q_{1}\right) \cdot \mathbb{k}_{\mathrm{Q}}=\text { commatative, semising } k \\
& \mid k \text {-ayestan }|k| Q_{0} \mid \\
& \text { - } \mathbb{K}_{\mathrm{k}} Q_{1} \in \operatorname{Bimod}_{\mathbb{k}}\left(\mathbb{k} Q_{0}\right)
\end{aligned}
$$

(Q.) Symmetries we goig to be grade / dugu-preserting.

Ex. G fivite grup degree puser ring G-aetuins on IhQ

F sivee $H_{R} Q$ is geverated in deguee $0 \neq 1$ G-actions on Q oy graph antonorphisms

Ex. $G=\mathbb{Z}_{2}=\left\langle g \mid g^{2}=1\right\rangle$
Q:

induces $G^{2} \| Q$.
Q. Symmetries are going to be in context III., motivated bs context II in the semisimple case...

Finite-dim'l Hogf alegesias: tho important surclarses.

Senisimple:
as an alyeba:
modme ミ © simgle nod.
sheh H are typically stadied whth grap - theoretic techrigues -
e.s. hornal Hopt subalys, exhers ete. -

pointed
as a coalgetan
simple comodules are 1-aimil
" w) Lie-cheoretic technigues eg. "Cartandate is hsed for $\underbrace{\text { Classificatuin } \mathrm{jwg}^{\prime} \text { osses" }}$ $\left\{\begin{array}{l}\text { Kinse-W }(2016) \text { studied actons of } \\ \text { fin-dimulested } H \text { on } 1 k Q \text {. }\end{array}\right.$ fin-dimle fted H on IRQ.

UNIVERSITY OF LEEDS

Category Thery provides a beautitul frmework for net ondy udisering sur goal of analyziveg
degue pissering actavis in semsisimple fopt algo on $\underbrace{\| R Q}$ it gillded a foot d deanway to gerectize
finate thesor catejories.

As usual for categoritication vowlt, the work is owne in the set-up so that tie theorem "Yalls out"

Set-up Take ξ a finite multitersor coteyary
Ex. $\left.\underline{G}=\operatorname{Vec}, \underline{V e c} a, \frac{\operatorname{Vec}_{G}^{\omega}}{\omega \in H^{3}(G)} \mathbb{R}^{*}\right), \underline{\operatorname{Rep}(G)}, \underline{\operatorname{Reg}(H)}$ when HitmiC prover

$\zeta_{C}=$ "gorp otheoreti cal fussin catygry".

$$
=\operatorname{Bimod}_{\operatorname{vec}_{G}^{\prime}}\left(k_{\alpha \alpha}^{\prime} k\right)
$$

\& twitted grop alychor $k \leqslant G, \quad \alpha \in Z^{2}\left(k, \mid k^{x}\right)$

Letto contiderups of ζ and reps of algetaras in ζ -
 $Q: Y \times m \rightarrow m$ compatitle al otrictre 0^{4}
M is exact it \forall pojective obects $7 \in \varphi_{\text {, }}, \forall \mu \in M$, get $P s M$ is pujective
Es. M is samisingle. (all obecats are prosective)
Fin $\varphi(m, m)=$ cateyon of Might exaret ζ-rodule endoonncters of in.

Take an algbara A in ξ
Ctet $\operatorname{Mod} \boldsymbol{M}_{e}(A)=$ Category of right $A-m o d u t e s ~ i n ~ E: ~$
$\left(\mu, p_{\mu}: \mu \otimes A \rightarrow M\right)$ compatible moth struative of C.
Infoct $\bmod _{\mathrm{H}}(A)$ is a left ξ-nodule catregory:
\otimes :

$$
\begin{aligned}
& : \varphi_{\varphi} \operatorname{Mod}_{\varphi}(A) \longrightarrow \operatorname{Mod}_{\varphi}(A) \\
& \left(X,\left(M, \rho_{\mu}\right)\right) \longmapsto\left(X \otimes M, i d_{x} \otimes p_{\mu}\right)
\end{aligned}
$$

Theorem, Tosriki Take any oract Jaleibar $A \rightarrow M_{M} \sim \operatorname{Mod}_{\boldsymbol{K}}(A)$ as G-rodule cetegoys.
we say that $A \in A g\left(y_{1}\right)$ is indecomposable/exnet/semisingle if rody (A) is so
 categoins

Let's define tersor algibas in 4 he and coolemp a notion of "sumeness"
So that (1) -the throoralgubas cen be casily, classitied us to this notime of samenues क rocthet ere illustrate on clastitication in conceefe examples... bnieloing the fromewoth.
$G_{i}=$ mult frover
Degnd A E-tansor algabiar $T_{S}(E)$ is an argethar in $\operatorname{Ind}(Y)$ where rbase $^{2} y^{2}$

$$
\begin{aligned}
& \text { - } T_{S}(E)=S \oplus E \oplus\left(E \otimes_{S} E\right) \oplus E^{\otimes^{3}} \oplus \\
& \text { - } m_{T(\mathbb{S}(E)}: E^{\otimes_{s} m} \otimes_{s}^{\otimes} E^{\otimes_{s} n} \longrightarrow E^{\otimes_{s} n+\mu} \\
& \text { - } u_{T_{s}(t)}: S \longrightarrow T_{S}(E)
\end{aligned}
$$

Defó $T_{S}(E)$ is equiralent $+T_{S^{\prime}}\left(E^{\prime}\right)$ if

$$
Q \longmapsto f Q f^{-1}
$$

Gields $\hat{f}(E) \cong E^{\prime}$ in Binody $\left(S^{\prime}\right)$.

Ex. $\quad \xi=V e c$
Each equis. dars of a V ec-terser algcbur is upresented by a jailhaly $k Q$.
Vec smisiouple \Rightarrow base aly $S=$ fintadimele semisimple le-cy Awthm

Can get E as arrow space in $H_{2} Q_{0}$

$$
\stackrel{\rightharpoonup}{s i n} \text { for }\left|Q_{0}\right|=r
$$

Gructi-fusion
Theorem [EKW] The collection of equiv. classs of G-tens oralgebers $T_{s}(E)$ are parameterized by pairs (M, Q), where
(semisimple)

$$
\begin{aligned}
& \rightarrow M=\text { exact }_{h} \text {-mod. categon } \\
& \cdot Q=\text { nonzeo fineter in } \operatorname{Fin} \varphi_{e}(m, m)
\end{aligned}
$$

PX1 Helus care of the base alger bus S up to equivalence, due to optrik's theorem then with m fixed, chaius for E is paravetriged by cluricas of fructes in $\operatorname{Fmy}(m, m)$.

Why tother with this high-falutintech? (DComputatois/5ormulas can be nasity and uniretuetive
(2) J many G for which G-nod. Cetgaries m are concretely at completely
 Gfintego Ex. Vec, $\operatorname{Vec} G_{G}, V{ }^{\omega}{ }_{G}^{\omega}, \operatorname{Reg}\left(C_{F}\right), \operatorname{Rep}(H), \operatorname{Bimod}_{\operatorname{Vec}_{G}}\left(\|_{\alpha} K\right)$ Hfintedime Hoptaly
all furion
Theoren [ostrik, Natale]. Findecomposabre momisimple categorios orer ar
are parameteriged by (L, Ψ) vhere

$$
L \leqslant G, \quad \psi \in Z^{2}\left(L, \|_{2}^{x}\right) \rightarrow \quad d+=\left.w\right|_{L}
$$

so that lomega|_L is trivial
cotrik's Theorem
us This also parareterizs'indecomposathe semisimple wlys in there categorer

UNIVERSITY OF LEEDS

Example: $\psi_{1}=\operatorname{Rep}\left(\mathbb{z}_{2}\right) \quad \mathbb{Z}_{2}=\left\langle g \mid g^{2}=1\right\rangle$
To get all el-tendor algatas ur to equiralena, Sny with Sindecomposerble, wote
$\{(L, \psi)\}=\left\{(\langle l\rangle, 1),\left(\mathbb{Z}_{2}, 11\right\}\right.$ two derius

Cet urlization op poth oly in ohis case:

$$
\text { Ex. } Q_{0}: i_{2}^{g}
$$

$$
Q_{0}: 19
$$

$\leadsto T_{s}(E)=1 k Q$ for $Q:$ or

$$
Q: G_{0}^{x}(\ldots) \cdot \int^{y}
$$

for $g \cdot x=y, g \cdot y=x$

Kac-paljuthin
topt dy-are
F six indecomp. G-wodule catrgaiss : parmaterized by $L \leqslant D_{8}$ ωl_{l} trivial.

Vo there explicit ausaription of indeconposable Hz-algibas S inpaper at pury other calculatzime...

$$
\begin{aligned}
& \text { Tio add amus - } \\
& \begin{array}{ll}
\text { add anus - } \\
\left\{\begin{array}{c}
(\text { tet by usult of } \\
\text { ostrik }
\end{array}\right\} & \mid \operatorname{Im}(\text { Bimody }(S)) \mid=2
\end{array} \quad|\operatorname{Im}(\operatorname{Binod}(S))|=2 \\
& \text { ostrik }\}
\end{aligned}
$$

