PBW DEFORMATIONS OF BRAIDED PRODUCTS

•

Chelsea Walton Temple University JMM Seattle 2016

Joint with Sarah Witherspoon

'Doubled' algebras: What are they and Why care?

An algebra \mathcal{D} has a *doubled structure* if $\mathcal{D} \cong A \otimes H \otimes B$ as vector spaces, where

- (i) H is a Hopf algebra that is a subalgebra of \mathcal{D} ,
- (ii) *H* acts on algebras *A*, *B*, and
- (iii) A and B are compatible in some sense.

In this case, we call $A \otimes H \otimes B$ a *triangular decomposition* (or PBW decomposition) of \mathcal{D} .

<u>Model</u>: the decomposition of $U(\mathfrak{g})$, for \mathfrak{g} a f.dim'l s.s. Lie algebra, as $U(\mathfrak{n}^-) \otimes U(\mathfrak{h}) \otimes U(\mathfrak{n}^+)$ via the classical PBW theorem, where $\mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$ is the triangular decomposition of \mathfrak{g} .

'Doubled' algebras: What are they and Why care?

Key Examples...

$\mathfrak{D} \cong A \otimes H \otimes B$, as vec spaces	Н	A	В
<i>n-</i> th Weyl algebra	a field k	$k[x_1,\ldots,x_n]$	$k[y_1,\ldots,y_n], y_i = \frac{\partial}{\partial x_i}$
rational (degenerate) DAHA	СΓ,	$\mathbb{C}[x_1,\ldots,x_n]$	
= rational Cherednik algebra	$\Gamma \leq GL_n(\mathbb{C})$ cpx. ref. group	$\mathbb{C}[x_1,\ldots,x_n]$	$\mathbb{C}[y_1,\ldots,y_n]$
trigonometric (deg.) DAHA	СГ	$\mathbb{C}[x_1,\ldots,x_n]$	$\mathbb{C}[y_1^{\pm 1},\ldots,y_n^{\pm 1}]$

[DAHA = double affine Hecke algebra]

...whose ring theory and representation theory has been of great interest (especially in the 15 years). These structures have been used to attack/ understand:

- Heisenberg's Uncertainty Principle in quantum mechanics,
- MacDonald's conjectures in combinatorics,
- generalized Calogero-Moser systems (integrable systems), and
- multivariable special functions in harmonic analysis.

Poincaré-Birkhoff-Witt (PBW) deformations

Let $\mathcal{D} = \bigcup_{i>0} F_i$ be a filtered algebra with $\{0\} \subseteq F_0 \subseteq F_1 \subseteq \cdots \subseteq \mathcal{D}$.

We say that \mathcal{D} is a Poincaré-Birkhoff-Witt (PBW) deformation of a N-graded algebra R if $\operatorname{gr}_F \mathcal{D} = \bigoplus_{i>0} F_i/F_{i-1}$ is isomorphic to R, as a N-graded algebra.

Take U a finite dimensional H-module.

Take $J \subseteq U \otimes U$ an *H*-submodule so that

R = T(U)/(J) is an N-graded H-module algebra (H-action preserves grading of R).

Assign the elements of H degree 0, and elements of U degree 1.

Take a *k*-bilinear map $\kappa : J \to H \oplus (U \otimes H)$,

the sum of its degree 0 and degree 1 parts, $J \rightarrow H$ and $J \rightarrow U \otimes H$.

A **PBW Theorem** is a set of necessary and sufficient conditions on κ for $\mathfrak{O} := \mathfrak{O}_{R,\kappa} = \frac{T(U)\#H}{(r - \kappa(r))_{r \in J}}$

to be a PBW deformation of R#H.

Poincaré-Birkhoff-Witt (PBW) deformations

A **PBW Theorem** is a set of necessary and sufficient conditions on κ for $\mathfrak{O} := \mathfrak{O}_{R,\kappa} = \frac{T(U)\#H}{(r - \kappa(r))_{r \in J}}$ to be a PBW deformation of R#H.

In this case,

- $U = V \longrightarrow \mathcal{D}$ is a [insert adjectives] Hecke algebra
- $U = V \oplus V' \rightarrow \mathcal{D}$ is a [insert adjectives] Cherednik algebra/ DAHA

W-Witherspoon (2014) established a **PBW Theorem** under the conditions above in the case when R is Koszul.

<u>Aim</u>: Find PBW deformations \mathcal{D} of $(A \otimes^* B) \# H$ with A = T(V)/(I), B = T(V')/(I')- Get triangular decomposition: $\mathcal{D} \cong A \otimes H \otimes B$ as vector spaces

Bazlov-Berenstein's braided doubles

Bazlov-Berenstein (2009) studied when algs of the form $\mathcal{D} = \frac{T(V \oplus V') \# H}{(I, I', \text{mixed relations})}$

have triangular decomposition $A \otimes H \otimes B$ (PBW theorem)

Conditions	Work of Bazlov-Berenstein	
On H	* None *	
On A	Is denoted $T(V)/(I^-) *$ just an <i>H</i> -mod alg, no other restrictions $*$ e.g. symm alg $S(V)$ or Nichols alg $\mathfrak{B}(V)$ or q -symm alg $S_{\mathbf{q}}(V)$	
On B	Is $T(V^*)/(I^+)$ so that $T(V^*)/(I^+)$ and $T(V)/(I^-)$ satisfy "non-deg. Harish-Chandra pairing" e.g. symm alg $S(V^*)$ or Nichols alg $\mathfrak{B}(V^*)$ or q -symm alg $S_{\mathbf{q}}(V^*)$	
On product of A and B	Prescribed "mixed" relations: e.g. $[f, v] = 0$ or $[f, v]_q = 0, f \in V^* v \in V$ Is not always an <i>H</i> -module algebra	
On deformations of relations of <i>A</i> , <i>B</i>	Relations are not deformed	
On deformations of "mixed" relations of product A and B	Deform by elements of degree 0 only: for k-vs map $\beta : V^* \otimes V \to H$, get, e.g., $[f, v] = \beta(f, v)$ or $[f, v]_q = \beta(f, v)$	

Our framework: braided products

<u>Aim</u>: Find PBW deformations \mathfrak{D} of $(A \otimes^* B) \# H$, with A = T(V)/(I) and B = T(V')/(I')Get triangular decomposition: $\mathfrak{D} \cong A \otimes H \otimes B$ as vector spaces

Bazlov-Berenstein's framework:

Profit: No conditions on *H*, *A*Price: Limitation on *B* in terms of *A*Price: Mixed relations are prescribed
Price: Relations of *A*, *B* don't get deformed, only mixed relations get deformed

Our framework with braided products: Price: Condition on (category of modules over) *H* Price: need *A*, *B* Koszul Profit: "Mixed" relations are natural Profit: Relations of *A*, *B*, "mixed" relations can all get deformed

Our framework: braided products

Take H so that there's a full subcategory \mathcal{C} of H-modules equipped with a braiding:

 $\mathbf{c}=\mathbf{c}_{M,N}:M\otimes N\xrightarrow{\sim}N\otimes M,\quad M,N\in \mathbf{\mathcal{G}}.$

Take A, B algebras in 6 (an H-module algebra)

Could take $B = A_c^{op}$ the braided-opposite of A, with multip $m_A \circ c$, an algebra in G.

Can form $A \otimes^{c} B$ the braided product of A and B, which is $A \otimes B$ as a vector space, with multip given by $(m_A \otimes m_B) \circ (1 \otimes c \otimes 1)$. This is also an algebra in G.

Proposition: If A (and B) is Koszul, then so are A_c^{op} and $A \otimes^c A_c^{op}$ (and $A \otimes^c B$).

Now apply W-Witherspoon's 2014 PBW Theorem for Hopf actions on Koszul algs to get the desired PBW deformations of $(A \otimes^c B) # H$.

If $(A \otimes^{c} B) # H$ doesn't have many PBW deform's, swap c with twisting H-mod map

 $\tau: B \otimes A \to A \otimes B$

to form twisted tensor product $A \otimes^{\tau} B$. Then proceed as above...

Main result: Statement

Theorem. Given certain Hopf algebras *H* and Koszul algebras *A*, *B* as listed below, we find PBW deformations \mathcal{D} of degree 0 of the smash product algebra $(A \otimes^* B) \# H$, where \otimes^* is either

- a braided product \otimes^{c} (when a categ of *H*-modules is braided), or
- a twisted tensor product \otimes^{τ} (in general).

Here, either

- the Hopf algebra H is non-cocommutative or
- the Koszul algebras A, B are noncommutative.

The parameter space of <u>all</u> of such PBW deformations is computed in the cases denoted by \star below.

Main result: Examples for *H* noncocommutative

Н	A	В	Braiding/ Twisting	Parameter space of PBW deformations of degree 0 of $(A \otimes^* B) \# H$
$U_{\zeta}(\mathfrak{sl}_2)$	$k_{\zeta}[u,v]$	$A_{ m c}^{ m op}=k_{\zeta}[u,v]$	braiding <mark>c</mark>	$k imes \mathbb{Z}^3 imes \mathbb{N}^4$
$U_q(\mathfrak{sl}_2)$	$k_q[u, v]$	$k_q[u, v]$	twisting τ	$k imes \mathbb{Z}$
T(2)	k[u, v]	$A_{\rm c}^{\rm op} = k[u, v]$	braiding <mark>c</mark>	k ★

 $U_*(\mathfrak{sl}_2)$ = quantized enveloping algebras

- T(2) = Sweedler (Hopf) algebra
- $k_*[u, v] =$ (quantum) polynomial ring
- ζ = primitive third root of unity
- $q = \text{primitive } n \text{-th root of unity, } n \geq 3$

Main result: Examples for *A*, *B* noncommutative

Н	A	В	Braiding	Parameter space of PBW deformations of degree 0 of $(A \otimes^{c} B) # H$
kC_2	$k_J[u,v]$	$A_{\rm c}^{\rm op} \cong k_J[u,v]$	non-trivial	$k^3 \star$
kC_2	$k_J[u,v]$	$A_{\rm c}^{\rm op} \cong k_J[u,v]$	trivial	$k^3 \star$
kC ₂	S(a,b,c)	$A_{\rm c}^{\rm op} = S(b,a,c)$	non-trivial	$\begin{array}{cc} \mathbf{k}^6 & \text{if } a \neq b \\ \mathbf{k}^{15} & \text{if } a = b \end{array} \bigstar$
kC ₂	S(a,b,c)	$A_{\rm c}^{\rm op} = S(b,a,c)$	trivial	$\begin{array}{cc} \mathbf{k}^6 & \text{if } a \neq b \\ \mathbf{k}^{15} & \text{if } a = b \end{array} \bigstar$

 $k_J[u, v] =$ Jordan plane S(a, b, c) = three-dimensional Sklyanin algebra

A question to consider

Н	A	В	Braiding	Parameter space of PBW deformations of degree 0 of $(A \otimes^c B) \# H$
kC_2	$k_J[u,v]$	$A_{\rm c}^{\rm op} \cong k_J[u,v]$	non-trivial	$k^3 \star$
kC_2	$k_J[u,v]$	$A_{\rm c}^{\rm op} \stackrel{\sim}{=} k_J[u,v]$	trivial	$k^3 \star$
kC ₂	S(a,b,c)	$A_{\rm c}^{\rm op} = S(b,a,c)$	non-trivial	$\begin{array}{cc} \mathbf{k}^6 & \text{if } a \neq b \\ \mathbf{k}^{15} & \text{if } a = b \end{array} \bigstar$
kC_2	S(a,b,c)	$A_{\rm c}^{\rm op} = S(b,a,c)$	trivial	$\begin{array}{cc} \mathbf{k}^{6} & \text{if } a \neq b \\ \mathbf{k}^{15} & \text{if } a = b \end{array} \bigstar$

<u>Question</u>: Is the PBW deformation parameter space of $(A \otimes^{c} B) # H$ independent of the choice of the braiding c? When *H* is cocommutative?

Another problem to consider

Theorem. Given certain Hopf algebras *H* and Koszul algebras *A*, *B*, we find PBW deformations \mathcal{D} of degree 0 of the $(A \otimes^* B) \# H$, where \otimes^* is either a braided product \otimes^c or a twisted tensor product \otimes^{τ} . Here, either

– the Hopf algebra H is non-cocommutative or

– the Koszul algebras *A*, *B* are noncommutative.

The parameter space of <u>all</u> of such PBW deformations is computed in some examples denoted by \star above.

<u>Problem</u>: Extend this work to classify PBW deformations of $(A \otimes^{c} B) # H$ (or, in particular, of $(A \otimes^{c} A_{c}^{op}) # H$) of degree 1.

Another direction: *q***-deformed infinitesimal Cherednik algs**

[Etingof-Gan-Ginzburg (2005)] infinitesimal Cherednik algebras (iCa) = degree 0 PBW deformations of $(S(V) \otimes S(V^*)) # U(\mathfrak{g})$, for a Lie algebra \mathfrak{g} .

* The iCa arise from continuous Cherednik algebras (cCa) = degree 0 PBW deformations of $(S(V) \otimes S(V^*)) # O(G)^*$, for *G* an algebraic group with $\mathfrak{g} = \text{Lie}(G)$.

* The iCa are also realized as certain W-algebras [Losev-Tsymbaliuk (2014)]

<u>Problem</u> (Etingof): Define and study a q-analogue of the infinitesimal Cherednik/ Hecke algebras. (Say, for $g = gl_n$.) Do the same for corresp. cCa's and W-algs.

Possible approach: Use our framework. For instance...

Н	A	В	Param. space of PBW deform'n of deg 0 of $(A \otimes^{\tau} B) # H$
$U_q(\mathfrak{sl}_2)$	$k_q[u,v]$	$k_q[u,v]$	$k imes \mathbb{Z}$

...extends to actions of $U_q(\mathfrak{gl}_2)$ also yielding PBW deform. parameter space $k \times \mathbb{Z}$.