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Welcome! I am happy that you are here, and I am excited to present to you a topic 
that I have enjoyed over the last several years. My journey towards landing on 
this topic began in graduate school, where I studied material related to the first 
chapter of this book (namely, algebras over a field). Later as a faculty member, I 
encountered the material comprising the remaining chapters here, discovering 
the world of Algebraic Quantum Symmetry. I’ve found all of the structures in this 
field quite beautiful and important in their own way.

This book is geared for newcomers who would love to learn about intriguing 
algebraic structures in nature beyond their first Abstract Algebra course(s). By 
now, you might have skimmed the table of contents and thought to yourself, "I 
know a few of these words, but certainly not all." If you are concerned about this, 
fret not. To be perfectly honest with you, I did not know most of those words as a 
student, but this is the way that it is supposed to work. Mathematics is certainly 
not a ‘young man’s game’; it is for everyone who simply wants an adventure in 
discovering new knowledge.

So, I wish to serve as your guide in finding and understanding some fascinating 
algebraic structures, motivated by the concept of symmetry. Let’s proceed!

– C. Walton, 2024
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In this part, we provide some motivation for the material in this book series, as
well as give a summary of its contents and features. Some reasons for studying
symmetries of algebras are presented in Section 0.1, but it is not required to
understand this in its entirety. It is enough to gather the flavor of the content at
this time. Section 0.2 discusses the contents and organization of the book series,
and Section 0.3 lists the book series’ features. Note that italicized words throughout
are terms that will either be defined vaguely, be explained later in the text, or are
outside of the scope of the text. Bold words throughout are either headers, result
labels, terms highlighted for emphasis, or terms that are defined formally.

§0.1. Motivation

What is a symmetry? Symmetry is a ubiquitous concept that we have all
encountered since childhood– it appears intuitively in art, music, science, etc.
Mathematically, let us consider the following definition. A symmetry of an object X

is a transformation from X to itself. If X has certain features or a structure, then we
may require symmetries to preserve such aspects of X. The set of symmetries of X,
denoted by Sym(X) here, can form an interesting structure when we equip it with
the operation of composition. For instance, if the composition of two symmetries
of X is again a symmetry of X, then Sym(X) is a monoid, that is, a set that has an
associative binary operation and an identity element with respect to the operation.
Here, the identity element of Sym(X), with respect to composition, is "do nothing
to X". If, further, all symmetries of X are reversible (or invertible), then Sym(X) is
a group, that is, Sym(X) is a monoid where each element is accompanied by an
inverse element.

Let us consider a couple of examples, which are depicted in Figure 0.1. Take X

to be two states (or entities) a and b. Leaving the states alone, and swapping the

1
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a b

X = {a, b} states

Sym(X) =
⇢

do nothing,
swap a and b

�

� C2 cyclic group

C
C

X = C
2 complex 2-space

Symlin(X) � GL2(C)
linear and

origin-preserving
general linear

group

Figure 0.1: Examples of classical symmetry for: (1) two states; and (2) C2.

states, are both reversible symmetries of X. In this case, these two symmetries can
be identified with the abstract cyclic group of order 2, yielding Sym({a, b}) � C2.

Next, take the complex numbers C, and let X be the complex 2-plane,

C
2 =

(  
x

y

! ����� x, y 2 C
)
.

Here, let us consider the symmetries of X that are linear (i.e., that send lines to lines),
that preserve the origin

✓
0
0

◆
, and that are reversible. These symmetries, denoted

by Symlin(C2), are captured by the general linear group GL2(C) of invertible 2⇥2
matrices in C, and the transformations are given by matrix multiplication,

GL2(C) ⇥ C2 ! C
2,

  
a b

c d

!
,

 
x

y

! !
7!

 
ax + by

cx + dy

!
.

In short, Symlin(C2) � GL2(C) as groups.

So far, this discussion all lies within the framework of Classical Symmetry, in
which symmetries of objects are those that we can see, or that we can ‘observe’
in the sense of classical physics. But there are many interesting objects that we
cannot see nor observe, namely those within the quantum world.

Generalizing symmetry. One way of constructing an object in the quantum
world is by altering an object in the classical world; we will illustrate this by using
the processes of linearization and deformation below.

Keep in mind that a good framework for symmetry should remain unchanged
under such alterations. Namely, taking alterations and symmetries in either order,
saying forming Sym(Xalt) and Sym(X)alt, should yield the same result. In this
case, we say that these processes commute. See Figure 0.2. Even if we are accus-
tomed to deformed shapes having more or less symmetry than their original
counterparts (e.g., scalene triangles being less symmetric than regular triangles),
it does not mean that the symmetry framework that we are used to is ideal.
Let us expand our perception of symmetry here...

2
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X object

Sym(X) gadget

Xalt altered object

Sym(Xalt)

Sym(X)alt

alter

alter

symmetry

symmetry

processes
"commute"
if gadgets
are equal

Figure 0.2: Ideal framework: Symmetries preserved after alteration.

In Classical Symmetry, the outputs Sym(Xalt) and Sym(X)alt are groups. But
often for Sym(Xalt) to equal Sym(X)alt, we have to work in a framework larger
than group symmetries, using more sophisticated algebraic structures. This is our
entrance into the realm of (Algebraic) Quantum Symmetry.

Structures that pop up frequently in generalized symmetry frameworks are
algebras, which are the key algebraic structures of this book series. An algebra
is, in short, a vector space that has a compatible structure of a unital ring. Here,
a vector space is an algebraic structure in which we can add and subtract tuples
of elements, and scalar-multiply tuples of elements by a number. We will take
the numbers to be complex numbers C in the examples below, forming C-vector
spaces. Moreover, a unital ring is an algebraic structure in which we can perform
addition, subtraction, and multiplication, with having additive and multiplicative
identity elements. Algebras that have the underlying structure of a C-vector space
are called C-algebras.

Linearizing symmetries. Let us now extend the first example in Figure 0.1 to
see how Classical Symmetry is generalized when incorporating linearization, and
to see how symmetries of algebras arise naturally.

Motivated by the notion of quantum superposition,we linearize the pairof states in
Figure 0.1 and create a quantum state space,Ca�Cb, which is a C-vector space with
basis given by the states a and b. The group of invertible, linear, origin-preserving
symmetries of this space is the general linear group GL2(C).

However, if we were to capture symmetries of the quantum state space by simply
linearizing the group of symmetries in the first example of Figure 0.1, we would
obtain a small subset of the symmetries obtained in the above procedure. Namely,
we would get C-linear combinations of the identity matrix and the anti-identity
matrix in GL2(C). So, linearizing the group symmetry framework is not sufficient
for capturing all linear symmetries of the quantum state space. See Figure 0.3.

3
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X = {a, b}
states

Sym(X) � C2

Xlin = Ca � Cb
quantum state space

Sym(Xlin) � GL2(C)

Sym(X)lin � CC2 � C

⌧✓
0 1
1 0

◆�

"
not equal

linearize

linearize

group
symmetry

group
symmetry

Figure 0.3: Group symmetries breaking after linearizing, for Fig. 0.1(1).

To capture all of the symmetries of quantum state spaces, one can use symme-
tries ofalgebras. In fact, linear,origin-preserving symmetries ofCa�Cb correspond
to degree-preserving symmetries of the tensor algebra T (Ca � Cb) on this space.
This algebra is also known as the free algebra Cha, bi on variables a and b, which
has the following structure:

• a C-vector space basis of words in a and b (e.g., a, ba, aabab...), with
• multiplication given by concatenation (e.g., ba ⇤ aabab = baaabab), and
• unit given by the empty word.

One can also recover the quantum state space from T (Ca � Cb) by taking
C-linear combinations of words of degree (or length) one, which is its generating
space. See Figure 0.4. This puts symmetries ofC-linearized states in the framework
of symmetries of C-algebras.

Xlin = Ca � Cb
quantum state space

T (Xlin) = Cha, bi

Sym(Xlin) � GL2(C) � Symdeg�
T (Xlin)

�

tensor algebra

generating space

group
symmetry

degree-
preserving

group
symmetry

Figure 0.4: Connection to symmetries of algebras, for Figure 0.1(1).

Deforming symmetries. Next, let us build on the second example in Figure 0.1
to see how the framework for symmetries needs to be generalized when incorpo-
rating deformation. This procedure alters some features of an object while other
features remain unchanged.

4

Copyright ©2024 Chelsea Walton. Free version by the courtesy of CW and 619 Wreath. https://math.rice.edu/~notlaw/symalgbook.html. 

Enjoy this textbook? Physical copies are available for purchase at https://www.619wreath.com/ and on Amazon. 
<< Please ask your local academic librarian to order a copy for circulation. >> 



0.1. M���������

Since we cannot visualize deformations of the space C
2, it is best to replace

this geometric object with an algebraic one. This involves taking the coordinate
algebra O(C2) of C2, which is a polynomial algebra with variables being the basis
of the space, e.g.,C[x, y] in this case. This procedure matches ideals I ofC[x, y] with
shapes in C

2 cut out by setting elements of I equal to zero. For instance, the ideal
(x) of C[x, y] corresponds to the y-axis, the ideal (x, y) of C[x, y] corresponds to the
origin, and the ideal (0) of C[x, y] corresponds to all of C2. The bigger the ideal
of C[x, y], the smaller the shape in C

2. In fancier terms, this algebro-geometric
correspondence is said to be contravariant– the directions of maps between objects
get reversed when going between the geometric and algebraic settings. Retrieving
the geometric shape from its coordinate algebra involves taking the spectrum of
the algebra, but we will not go into the details here.

Returning to symmetries, let us consider symmetries of C2 in the geometric
setting by taking symmetries of its coordinate algebra O(C2) = C[x, y] in the
algebraic setting. Linear,origin-preserving symmetries ofC2 correspond to degree-
preserving algebra maps ofC[x, y], and both groups of symmetries are the general
linear group GL2(C). See Figure 0.5.

X = C
2 O(X) = C[x, y]

Symlin(X) � GL2(C) � Symdeg�
O(X)

�

coordinate algebra

geometric spectrum

group
symmetry

degree-
preserving

group
symmetry

Figure 0.5: Connection to symmetries of algebras, for Figure 0.1(2).

On the other hand, to investigate deformations of the space C
2 (which reside

in the quantum world, and thus, cannot visualize), we deform its coordinate
algebra C[x, y] and proceed algebraically. Algebraic deformation is a process that
creates from one algebra A another algebra Adef that has the same vector space
basis as A, but has a different multiplication. One way of deforming C[x, y] is by
taking a nonzero complex number q, and creating the q-polynomial algebra,Cq[x, y],
generated by non-commuting variables x and y, with yx = qxy as a relation. This
is a well-behaved algebra that serves as the coordinate algebra for a deformation
of C2, commonly known as the quantum 2-space, C2

q
.

5
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Do the processes taking of a q-deformation and taking group symmetries
commute? Unfortunately not. We show this next. To compute the group of
degree-preserving symmetries of Cq[x, y], it suffices to determine the matrices✓

a b

c d

◆
in GL2(C) such that the transformations x 7! ax + by and y 7! cx + dy

preserve the relation space C(yx � qxy) of Cq[x, y]. Under the transformations,

yx � qxy 7! (1 � q)acx
2 + (bc � qad)xy + (ad � qbc)yx + (1 � q)bdy

2.

When q = 1, then
yx � xy 7! (ad � bc)(yx � xy),

which lies in the relation space C(yx� xy); thus, there are no restrictions on a, b, c, d

in this case. But when q = �1, then

yx + xy 7! 2acx
2 + (ad + bc)(yx + xy) + 2bdy

2,

and we need a = d = 0 or b = c = 0 for the output to lie in the relation space
C(yx+xy). Thus, the group symmetries in the q = �1 case consist of transformations
by diagonal or anti-diagonal matrices. Likewise, we can only have transformations
by diagonal matrices when q , ±1. So, the group of symmetries of Cq[x, y] shrinks
greatly when we move away from the q = 1 case, yet there is no way we can
q-deform the group GL2(C) to mirror this shrinkage. We need to expand beyond
the framework of group symmetries for deformations to be properly taken into
account. See Figure 0.6.

X = C
2

O(X) = C[x, y]

Symdeg�
O(X)

�
� GL2(C)

O(Xq) def
= Oq(X) = Cq[x, y]

8>>>>><
>>>>>:

GL2(C) q = 1
(anti-)diag. mats. q = �1
diagonal matrices q , ±1

"

q-deforms

cannot
q-deform

degree-
preserving

group
symmetry

degree-
preserving

group
symmetry

Figure 0.6: Group symmetries breaking after deforming, for Fig. 0.1(2).

To land in a setting in which symmetry commutes with deformation, we
exploit the contravariant relationship between C

2 and its coordinate algebra
O(C2) = C[x, y]. Recall that the geometric symmetries of C2 are given by matrix
multiplication:

GL2(C) ⇥ C2 ! C
2,

  
a b

c d

!
,

 
x

y

! !
7!

 
ax + by

cx + dy

!
.

6
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The algebraic symmetries of O(C2) are then given by matrix comultiplication:

O(C2)! O(C2) ⌦C O(GL2(C)),
 

x

y

!
7!

 
x ⌦C a + y ⌦C c

x ⌦C b + y ⌦C d

!
.

Here,GL2(C) is not only a group, it is also realized as a geometric shape in complex
5-space with coordinates a, b, c, d, t, subject to the relation (ad � bc)t = 1. Namely,
the variable t is used to force the determinant ad � bc to be nonzero. Then, the
coordinate algebra O(GL2(C)) of GL2(C) is the quotient algebra of C[a, b, c, d, t] by
the ideal generated by the relation (ad�bc)t = 1. We also have that the commutative
algebra O(GL2(C)) inherits the rich structure of being a Hopf algebra (or a quantum
group) due to GL2(C) being a group, but we will not elaborate on this here.

Fortunately, the Hopf algebra O(GL2(C)) can q-deform. Its q-deformation
Oq(GL2(C)) is also a Hopf algebra, which as an algebra, is the quotient alge-
bra of a q-polynomial algebra Cq[a, b, c, d, t] with certain q-commutation relations
by the ideal generated by the relation (ad � qbc)t = 1. This relation encodes that
a matrix in coordinates a, b, c, d has nonzero q-determinant. Most importantly, the
symmetries of the quantum space C

2
q
, and its coordinate algebra Cq[x, y], are also

given by the same matrix comultiplication rule as above:

Oq(C2)! Oq(C2) ⌦C Oq(GL2(C)),
 

x

y

!
7!

 
x ⌦C a + y ⌦C c

x ⌦C b + y ⌦C d

!
.

In short, the processes of taking q-deformation does not commute with group
symmetries, but it does commute with Hopf symmetries, also called quantum group
symmetries. This is a clean way ofq-deforming symmetries from the classical setting
to the quantum setting, and it requires a framework beyond group symmetry. See
Figure 0.7.

X = C
2

O(X) = C[x, y]

Symdeg�
O(X)

�
� O

�
GL2(C)

�

O(Xq) def
= Oq(X) = Cq[x, y]

Oq

�
GL2(C)

�
� Symdeg�

Oq(X)
�

q-deforms

q-deforms

degree-
preserving

Hopf
symmetry

degree-
preserving

Hopf
symmetry

Figure 0.7: Hopf symmetries preserved after deforming, for Fig. 0.1(2).
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Framework of Category Theory. What is beautiful about the algebraic frame-
work for capturing symmetries is that it can all be expressed in the language of
Category Theory. This provides us with powerful tools for translation between
mathematical frameworks (e.g., algebraic, geometric, topological, combinatorial,
etc.). A category is simply a collection of objects and structure-preserving maps
between the objects, subject to certain predictable axioms (e.g., there is always an
identity map between an object and itself). For instance, the collection of C-vector
spaces and C-linear maps forms a category, denoted by VecC. Related to the ex-
amples above, the category of modules over a group G, denoted by G-Mod, and the
category of comodules over the coordinate algebra O(G), denoted by Comod-O(G),
will play a vital role in this book series.

Moreover, what makes the categories VecC, G-Mod, Comod-O(G) especially use-
ful here are that they admit a monoidal structure. Namely, a category C is monoidal
if it comes equipped with an associative binary operation ⌦ on C and an object

of C for which (C,⌦, ) mimics the structure of a monoid. This allows us to
combine two objects (resp., maps) of C to build an object (resp., a map) in C. For
instance, VecC is a monoidal category, with ⌦ being the tensor product ⌦C over C,
and with = C. Similarly, both G-Mod and Comod-O(G) are monoidal categories.

Note that if we consider (co)modules over an arbitrary algebra H, then we need
extra structure on H to make H-(Co)Mod a monoidal category. This entails putting
a bialgebra, or a Hopf algebra, structure on H, as we will see later in the book series.
Again, indeed, the coordinate algebras O(GL2(C)) and Oq(GL2(C)) both admit the
structure of a Hopf algebra.

One can also build algebraic structures within monoidal categories. For instance,
an algebra in (VecC,⌦C,C) is a C-vector space A that comes equipped with a
C-linear multiplication map m : A ⌦C A ! A and a C-linear unit map u : C ! A

such that the triple (A,m, u) mimics the structure of a unital ring. In fact, algebras
in the monoidal category VecC are the same as C-algebras. Likewise, one can
build algebras, and other interesting algebraic structures (such as coalgebras and
Frobenius algebras) in general monoidal categories.

Returning to the running examples above, recall for the first example that the
tensor algebra T (Ca � Cb) has invertible, degree-preserving, algebra symmetries
captured by the group GL2(C). This amounts to T (Ca � Cb) being an algebra in
the monoidal category GL2(C)-Mod. On the other hand, for the second example
pertaining to symmetries of q-polynomial algebra Cq[x, y], we are able to remedy
the problem with using group symmetries in Figure 0.5 by using Hopf symmetries,
as seen Figure 0.6. This amounts to changing the monoidal categories in which we
work, using Comod-O(GL2(C)) instead of GL2(C)-Mod, as illustrated in Figure 0.8.

8
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X = C
2

Alg
�
GL2(C)-Mod

�

O(X)

2
=

2 2C[x, y]

Alg
�
Comod-O�

GL2(C)
��

Oq(X)

=

Cq[x, y]

@ q-deformation of
the group GL2(C)

Alg
�
Comod-Oq

�
GL2(C)

��

q-deforms
swap ⌦-cats

q-deforms via a
q-deformation of Hopf algs

"

X
Figure 0.8: Monoidal categories and deformed symmetries, for Fig. 0.1(2).

Even though the majority of monoidal categories in this book series are algebraic
in nature, there are many important monoidal categories that are inherently non-
algebraic, e.g., topological, geometric, or even information-theoretic. Thus, once
we understand monoidal categories and algebraic structures within them, the
tools in this book series can be adapted to study symmetries of algebras in other
mathematical settings!

§0.2. Contents of the book series

The contents of this three-volume book series are guided by notions that one
would like to understand fully when learning any mathematical concept.

Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Definitions)
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Models)
Constructions . . . . . . . . . . . . . . . . . . . . . (How to build more)
Key theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Tools)
History . . . . . . . . . . . . . . . . . . . . . . . . . ("Why did they care?")
Applications . . . . . . . . . . . . . . . . . . . . . . . . . ("Why care now?")

We center the notions above on the algebraic structures featured in Figure 0.9,
and within the framework of category theory as illustrated in Figure 0.10. The
three volumes of the book series are divided as follows.

Volume 1 pertains to algebras and categories: Chapter 1 is on algebras over a
field; Chapter 2 is on category theory; Chapter 3 is on monoidal categories; and
Chapter 4 is on algebras in monoidal categories.

See Figure 4.13 for a summary of the results we will start with here in Chapter 1,
and how we plan to end in Chapter 4, via the contents in Chapters 2 and 3.
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Volume 2 will be on coalgebras and Frobenius algebras: Chapter 5 will be on
coalgebras over a field; Chapter 6 will be on coalgebras in monoidal categories;
Chapter 7 will be on Frobenius algebras over a field; and Chapter 8 will be on
Frobenius algebras in monoidal categories.

Volume 3 will be on Hopf algebras and beyond: Chapter 9 will be on bialgebras
and Hopf algebras over a field; Chapter 10 will be on braided monoidal categories;
Chapter 11 will be on Hopf algebras and related structures in monoidal categories;
and Chapter 12 will be on higher categorical structures.

Set Semigroup

(Set, +)

Monoid

(Set, +, 0)

Group

(Set, +, 0, –)

Abelian Group

(Group, + Commutative)
Ring

(Abelian group,
compatible multip.)

Vector Space

(Abelian group,
comp. scalar multip.)Algebra

(Chapter 1)

Coalgebra

(Chapter 5)

Frobenius Algebra

(Chapter 7)

Bialgebra

(Chapter 9)

Weak Bialgebra

(Chapter 9)
Hopf Algebra

(Chapter 9)

Weak Hopf Algebra
(Chapter 9)

Figure 0.9: Algebraic structures with underlying set structure.
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.

Category
C

(Chapter 2)

Monoidal Category
(C,⌦, , a, `, r)

(Chapter 3)

Algebra in C

(Chapter 4)

Coalgebra in C

(Chapter 6)

Rigid Monoidal Category
(C,⌦, , a, `, r, (�)⇤, ⇤(�))

(Chapter 3)

Frobenius Algebra in C

(Chapter 8)

Braided Monoidal Category
(C,⌦, , a, `, r, c)

(Chapter 10)

Commutative Algebra,
Bialgebra, and

Weak Bialgebra in C

(Chapter 11)

Braided Rigid Monoidal Category
(C,⌦, , a, `, r, (�)⇤, ⇤(�), c)

(Chapter 10)

Hopf Algebra and
Weak Hopf Alg. in C

(Chapter 11)

Figure 0.10: Categorical (algebraic) structures.
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Timeline. The topics in this book series will be presented out of the order
in which they were introduced historically. But here is a snapshot of when the
structures in Volume 1 first arose in the literature.

Historical timeline of the algebraic and categorical structures in Volume 1

• Axiomatic vector spaces appeared . . . . .Grassmann [1844], Peano [1888]
• Matrix algebras investigated . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Cayley [1858]
• Quaternion algebra introduced . . . . . . . . . . . . . . . . . . . . . . .Hamilton [1866]
• Finite dim., associative algebras over a field first studied . . Peirce [1881]
• Representation theory of groups investigated . . . . . . . . . Maschke [1899]
• Definition of an algebra over a field first developed . . . . . Dickson [1903]
• First structure results for assoc. fin. dim. algebras . . Wedderburn [1908]
• Definition of a (commutative, assoc.) ring appeared . . . . Fraenkel [1915]
• Abstract ring theory established . . . . . . . . . . . . . . . . . . . . . . . Noether [1921]
• Foundations for algebras over a field published . . . . . . . . Dickson [1923]
• Structure results for semisimple algebras appeared . . . . . . . Artin [1927]
• More results on semisimple algebras . . Noether [1929], Hopkins [1939]
• Categories and functors introduced . . . . Eilenberg and MacLane [1945]
• Abelian categories arose . . . . . . Buchsbaum [1955], Grothendieck [1957]
• Foundations in Homological Algebra set . .Cartan and Eilenberg [1956]
• Adjoint functors studied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kan [1958]
• Monads developed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Godement [1958]
• Category theory began as an independent subject . . . . . . Lawvere [1963]
• Monoidal categories introduced . . . . . . . . . . . . . . . . . . . . . . .Bénabou [1963]
• Algebras in monoidal categories introduced . . . . . . . . . . . Bénabou [1964]
• Monoidal categories axiomatized . . . . . . . Mac Lane [1963], Kelly [1964]
• Landmark text on Category Theory appeared . . . . . . . . . MacLane [1971]
• Modules in monoidal categories formalized . . . . . . . . . . . MacLane [1971]
• Rigid monoidal categories developed . . . . . . . . . Saavedra Rivano [1972]
• Monoidal algebras and modules examined . . . . . . . . . . . . Pareigis [1977a]
• Applications of monoidal algebras arose . . . . . . . . . . . . Fuchs et al. [2002]
• Algebraic structures in fusion categories studied . . . . . . . Ostrik [2003c]
• Key results on fusion categories established . . . . . . . Etingof et al. [2005]
• Vital text on tensor categories published . . . . . . . . . . . Etingof et al. [2015]
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§0.3. Features of the book series

Prerequisites. It is best if the reader is familiar with abstract vector spaces,
groups, rings and ideals, as covered in many undergraduate mathematics courses.
These concepts and other important concepts from linear algebra (that are some-
times not offered in a course) are covered at the beginning of Chapter 1. It is
important that the reader has a solid understanding of this material before pro-
ceeding with the rest of the text. Depth is more important than speed.

Reading paths. Volume 1 (Chapters 1–4) serves as a representative sample of
what the book series has to offer, and it alone could be the subject of a course or a
source for independent study.

Considering all of the volumes together after Volumes 2 and 3 are released,
one can proceed in order, starting at Chapter 1 and ending with Chapter 12.
But, as you can see in Figure 0.9, one could skip the categorical material and
proceed by only studying Chapters 1, 5, 7, and 9. On the other hand, as shown
in Figure 0.10, the focus could be purely on the categorical material, with the
aim of studying Chapters 2, 3, 4, 6, 8, 10, 11, and 12 in depth; some material from
previous non-categorical chapters may be needed for context.

In any case, one may also want to just read the first few sections of each chapter
to gather the basic terms, tools, and examples of the material.

Highlighted references. This book series is not intended to be reference books
containing an extensive bibliography for all items needed to do research. Instead,
this is a learning book series, and a carefully curated list of additional textbooks
and articles will be featured at the end of each chapter for further exploration.

Modern applications. To add to the "Why care now?" component mentioned
above, there are sections dedicated to modern applications of and research themes
for the algebraic and categorical structures introduced here. This will also include
references for material beyond the scope of the book series, such as web addresses
to lectures publicly available at the time of this publication.

Diagrammatic arguments. Many of the arguments in the book series involve
showing that two sets of composed functions are equal. This can be done with
the familiar line-by-line method of using equalities. On the other hand, these
arguments can be executed using more visually appealing methods, namely, using
commutative diagrams or graphical calculus. The latter methods will be explained in
detail in this volume, and all three techniques will be used throughout the series.
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Exercises. There will be numerous exercises in this book series; in fact, there are
close to 200 exercises in this volume alone. This will aid the reader in exploring
the material further. The exercises will have varying degrees of difficulty, but the
tougher problems are not marked with stars or labeled as "challenges", nor are
the straightforward problems labeled as "easy". Full solutions could vary greatly
in length depending on the difficulty of the problem and the interest of the reader.
Moreover, some problems are intentionally open-ended (and labeled as such) to
prompt the reader to discover their taste in this subject. This may inspire potential
research directions!

The exercises are collected at the end of each chapter, and they are cited within
the body of the chapters roughly in order. So, read carefully to not only hunt for
the problems but to also hunt for some of their solutions. Have fun!
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History

An algebra is a mathematical structure that is a combination of a unital ring and
a vector space. A special case of these structures first appeared in the literature
as "hypercomplex numbers", which are algebras over the real numbers that have
multiplicative inverses (i.e., R-division algebras). Examples of such R-division
algebras include the real numbersR, the complex numbersC, and the quaternions
H introduced by Hamilton [1866]. Other examples of algebras, namely matrix
algebras, were examined by Cayley [1858], predating the work on hypercomplex
numbers. The first comprehensive study of hypercomplex numbers was carried
out by Peirce [1881], and the first general structure results for algebras were
achieved by Wedderburn [1908], building on the work of Cartan [1898] and
Molien [1892]. The introduction of abstract ring theory by Noether [1921], along
with the ring axioms presented by Fraenkel [1915], set the foundation for the
study of abstract algebras including the classes above. The foundations for the
theory of algebras over a field were then established by Dickson [1923], twenty
years after the first postulates for these structures were posed by Dickson [1903].

Overview

This chapter on algebras over a field sets the foundation for most of the material
in this book, as illustrated in Figures 0.9 and 0.10. Basic terminology and notions
about algebras overa field are discussed in §1.1,building on results from the theory
of groups, rings, and vector spaces. Many examples of algebras are provided in
§1.2. How algebras act on vector spaces, i.e., to form representations and modules,
is discussed in §1.3. Constructions of algebras and their representations and
modules are provided are §1.4. Structure results are then given in §§1.5–1.7
for algebras that are simple, semisimple, and separable, respectively. A diagram
summarizing the structure results and examples is given in §1.8. The chapter
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ends with a discussion of modern applications in §1.9, and references in §1.10,
along with several exercises.

Standing hypotheses. Throughout the book,N is the collection of natural
numbers including 0. Moreover,Z,Q,R, andC are the collections of integers,
rational numbers, real numbers, and complex numbers, respectively.

All linear algebraic structures are over a ground field k, i.e., are k-vector
spaces. Here, k has characteristic 0 and is algebraically closed. That is,
1k + · · · + 1k is never 0k for nonzero linear structures, and polynomials over
k have all roots in k. For instance, take k = C. Several results do not require
these assumptions on k, but we will emphasize when they are needed.

§1.1. Algebras over a field

We review various notions about groups, rings, and vector spaces over a field,
and then build on these notions to study algebras over a field.

§1.1.1. Groups

A monoid is a set G equipped with an associative binary operation,

? := ?G : G ⇥G ! G, (g, h) 7! gh,

(that is, (gh)` = g(h`) for all g, h, ` 2 G), and with an identity element e := eG with
respect to the operation ? (that is, ge = g = eg, for all g 2 G).

A group is a monoid (G,?, e) such that, for each element g 2 G, there exists
an inverse element g

�1 (that is, gg
�1 = g

�1
g = e). Sometimes, we denote the

underlying set of G by Gset.

The order of a group G is the cardinality of Gset, denoted by |G|. We say that G

is (in)finite if |G| is (in)finite.

A group G is abelian if gh = hg, for all g, h 2 G. In this case, we denote the
operation ?G by +, the identity element eG by 0, and inverse elements by �g.

Given groups (G,?, e) and (G0,?0, e0), a function � : G ! G
0 is a group

(homo)morphism or a group map if preserves the operations of G and G
0:

(�(g ? h) = ) �(gh) = �(g)�(h) (= �(g) ?0 �(h) ),

for all g, h 2 G. Homomorphisms provide a way of comparing two groups.
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Commutative diagrams. Notice that the equation, �(gh) = �(g)�(h), above
is captured by the diagram of composed morphisms below. Namely, the
compositions of morphisms (going! then #, or going # then!) from the
starting object G ⇥G to the finishing object G

0 yield the same outcome. In
this case, we say that the diagram commutes.

G ⇥G
?
//

� ⇥ �
✏✏

G

�

✏✏

(g, h) � //

_

✏✏

gh
_

✏✏

G
0 ⇥G

0 ?0
// G
0 (�(g), �(h)) � // �(g)�(h) = �(gh)

We will give many more examples of commutative diagrams throughout
this book, and they will serve as a tool to illustrate when compositions of
morphisms are equal.

Observe that we can combine elements of groups by using commutative dia-
grams. To see this, take the one-point set, {·}, and note that the cartesian product
{·} ⇥ {·} is isomorphic to {·}, as sets (i.e., there exists a bĳection between the two
sets). Next, identify each element g 2 G with a function,

!
g : {·}! G.

Then, one can identify a product of elements, gh, with the composition of mor-
phisms, ? � (

!
g ⇥

!
h). For instance, the equations ge = g = eg are encoded by the

commutative diagrams below.

{·} � {·} ⇥ {·}
!
g ⇥ !e

//

!
g

**

G ⇥G

?
✏✏

{·} ⇥ {·} � {·}

!
g

tt

!
e ⇥ !g

oo

G

A group (homo)morphism � : G ! G
0 is called a group monomorphism if �

is injective; a group epimorphism if � is surjective; a group isomorphism if � is
bĳective; a group endomorphism if G

0 = G; and a group automorphism if � is
bĳective and G

0 = G. For example, the identity map idG, where idG(g) := g for all
g 2 G, is a group automorphism.

Sometimes,monomorphisms and epimorphisms are referred to as embeddings
and projections, respectively.

We also have that � is a group isomorphism if, equivalently, there exists a
group homomorphism  : G

0 ! G such that  � � = idG and � �  = idG0 . In this
case, we say that G is isomorphic to G

0 and write G � G
0. Two groups G and G

0

are considered to be the same abstractly when G � G
0.
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Structure versus property. Observe that a set G becoming a group involves
equipping G with extra structure– features that are attached. However, a
group G being abelian requires that G has a certain property– a condition
that either holds or does not hold. In other words, structures are to nouns,
as properties are to adjectives. Moreover, morphisms preserve structure,
and properties are preserved under isomorphisms for free. For instance, we
have morphisms between groups that do not need to preserve the property
of being abelian. But isomorphic groups must simultaneously be abelian,
or simultaneously not be abelian. See Exercise 1.1.

Given a group G, a nonempty subset H of G is a subgroup if H is a group under
the same operation and identity element of G. In this case, there is a canonical
group monomorphism H ! G given by inclusion.

A subgroup N of G is called normal if gng
�1 2 N for all g 2 G and n 2 N.

Subgroups of abelian groups are always normal.

Given a subgroup H of G and g 2 G, the set gH = {gh | h 2 H} is a left coset of
H in G, and the collection of left cosets of H in G is denoted by G/H.

The set G/H can be upgraded to a group if and only if H =: N is a normal
subgroup of G. Here,

(gN)(g0N) := (gg
0)N, eG/N := eN = N (gN)�1 := g

�1
N,

for all g, g0 2 N. In this case,G/N is called a quotient group, and there is a canonical
group epimorphism G ! G/N defined by g 7! gN.

Let � : G ! G
0 be a group homomorphism. Then, the kernel of � is the set

ker(�) := {g 2 G | �(g) = eG0 },

and the image of � is
im(�) := {�(g) 2 G

0 | g 2 G}.

In fact, ker(�) is a normal subgroup of G, but im(�) ✓ G
0 is a subgroup that is not

necessarily normal. We also have the following isomorphisms of groups:

G/ker(�) � im(�).

Now let im(�)norm be the smallest normal subgroup of G
0 containing im(�)

(which exists because the intersection of normal subgroups is normal). Then, the
cokernel of � is the quotient group,

coker(�) := G
0/im(�)norm.

Note that if G
0 is abelian, then im(�)norm = im(�).
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§1.1.2. Rings

A ring is an abelian group (R,+, 0) that comes equipped with an associative binary
operation

· : R ⇥ R! R, (r, s) 7! rs,

such that r(s + t) = rs + rt and (r + s)t = rt + st for all r, s, t 2 R. The compatibility
conditions between the two operations, + (addition) and · (multiplication), can
be expressed by the following commutative diagrams.

R ⇥ R ⇥ R
id ⇥ +

//

.·
✏✏

R ⇥ R

·
✏✏

R ⇥ R ⇥ R
+ ⇥ id

//

/·
✏✏

R ⇥ R

·
✏✏

R ⇥ R
+

// R R ⇥ R
+

// R

Here, .· is the following left multiplication of R on R ⇥ R: r .· (s, t) = (r · s, r · t).
Likewise, /· is defined by (r, s) /· t = (r · t, s · t).

A ring (R,+, 0, ·) is unital if there is an identity element with respect to multi-
plication, which is denoted by 1 := 1R in this case.

Given a ring (R,+, 0, ·), its opposite ring is R
op := (R,+, 0, ·op), where for r, s 2 R,

we have that r ·op
s := sr. A ring R is commutative if R = R

op, or if rs = sr for all
r, s 2 R.

A ring R is a domain if it does not have zero divisors, that is, if r, s 2 R with
rs = 0, then r = 0 or s = 0.

Given rings R and R
0, a function � : R ! R

0 is a ring (homo)morphism or a
ring map if addition and multiplication are preserved, that is, if

�(r + s) = �(r) + �(s) and �(rs) = �(r)�(s),

for all r, s, 2 R. If R and R
0 are unital, then a ring homomorphism � : R ! R

0 is
unital when �(1R) = 1R0 .

A unital ring (R,+, 0, ·, 1) is called a division ring or skew field if there exists
a two-sided inverse element r

�1 with respect to ·, for each nonzero r 2 R (that is,
rr
�1 = r

�1
r = 1R). A commutative division ring is called a field.

The terminology for the various types of morphisms (e.g., mono-, epi-, iso-,
endo-, auto-) from the group setting also applies in the ring setting.

Given a ring R, a nonempty subset S of R is a subring if S is a ring under the
same operations of R. If R is unital, then a subring S is a unital subring if it has a
multiplicative identity and 1S = 1R. In this case, there is a canonical (unital) ring
monomorphism S ! R given by inclusion.
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One example of a subring of a ring R is given by the center of R:

Z(R) := {r 2 R | rs = sr, 8s 2 R}.

A subring S =: I of R is called a left (resp., right) ideal if rl 2 I (resp., lr 2 I) for
all r 2 R and l 2 I. A (two-sided) ideal of R is a left ideal that is also a right ideal.
When R is unital, an ideal is a unital subring of R if and only if I = R.

Given a subring S of R, the set R/S of additive cosets can be upgraded to a group
as the underlying group structure of R is abelian and S is a normal subgroup. The
quotient group R/S can be upgraded further to a ring if and only if S =: I is an
ideal of R. Here,

(r + I)(r0 + I) := (rr
0) + I,

for all r, r0 2 R, and R/I is called a quotient ring. If R is unital, then so is R/I with

1R/I := 1R + I.

There is a canonical (unital) ring epimorphism, R! R/I, defined by r 7! r + I.

Let � : R ! R
0 be a ring homomorphism. Then, the kernel of � is the set

ker(�) = {r 2 R | �(r) = 0R0 }, and the image of � is im(�) = {�(r) | r 2 R}. In fact,
ker(�) is an ideal of R, but im(�) ✓ R

0 is a subring that is not always an ideal. We
also have that, as rings:

R/ker(�) � im(�).

Similar to the group setting, let im(�)ideal be the smallest ideal of R
0 containing

im(�) (which exists because the intersection of ideals is an ideal). Then, the
cokernel of � is the quotient ring,

coker(�) := R
0/im(�)ideal.

However, it can be difficult to understand im(�)ideal. For this reason and others,
the collection of rings behaves pathologically (namely, the category of rings is quite
weird). Therefore, we will primarily work with the collection of vector spaces over
a field (discussed next) to construct algebras over a field later.

§1.1.3. Vector spaces

A vector space over a field k is an abelian group (V ,+, 0) that comes equipped
with a binary operation

⇤ : k ⇥ V ! V, (�, v) 7! �v,

such that, for all �, µ 2 k and v,w 2 V , we get:

�(v + w) = �v + �w, (� + µ)v = �v + µv, (�µ)v = �(µv), 1kv = v.
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The first three compatibility conditions between the operations, + (addition) and
⇤ (scalar multiplication), can be expressed by the commutative diagrams below.

k ⇥ V ⇥ V
id ⇥ +V

//

⇤V⇥V

✏✏

k ⇥ V

⇤

✏✏

k ⇥ k ⇥ V
+k ⇥ id

//

f
✏✏

k ⇥ V

⇤

✏✏

k ⇥ k ⇥ V
·k ⇥ id

//

id ⇥ ⇤

✏✏

k ⇥ V

⇤

✏✏

(k ⇥ V)⇥2

⇤ ⇥ ⇤
✏✏

V ⇥ V
+V

// V V ⇥ V
+V

// V k ⇥ V
⇤

// V

Here, ⇤V⇥V is scalar multiplication on V ⇥ V given by �(v,w) := (�v, �w). Moreover,
f is the composition of idk ⇥ idk ⇥ diag, for diag(v) := (v, v), with id ⇥ flip ⇥ id.

Elements of vector spaces are called vectors. Each vector comes equipped with
a (non-unique) collection of vectors B := {bi}i such that for each v 2 V , we have
that v =

Pfinite
i

�ibi for some scalars �i 2 k (i.e., B spans V), and such that the only
way to express 0V in terms of B is as 0V =

P
i 0kbi (i.e., B is linearly independent).

Here, B is called a basis of V . The cardinalities of any two bases of V are equal,
and this value is the dimension of V , denoted by dimkV . By convention, the zero
vector space is only vector space of dimension 0.

Given vector spaces V and V
0, a function � : V ! V

0 is a (k-)linear map or a
vector space (homo)morphism if

�(v + w) = �(v) + �(w) and �(�v) = ��(v),

for all � 2 k and v,w 2 V . The terminology for the various types of morphisms
(namely, mono-, epi-, iso-, endo-, auto-) from the group setting also applies in
the vector space setting.

To any linear map � : V ! V
0, with fixed bases B = {b j} j of V and B

0 = {b0
i
}i of

V
0, we have that �(b j) =

P
i �i, j b

0
i
, for some scalars �i, j 2 k. The matrix of � with

respect to B and B
0, is the dimkV

0 ⇥ dimkV matrix given by MatB,B0 (�) = (�i, j)i, j.
This matrix is invertible if and only if � is an isomorphism.

Given a vector space V , a nonempty subset U of V is a subspace if U is a vector
space under the same operations of V . There is a canonical linear embedding
U ! V in this case given by inclusion.

Given a subspace U of V , the set V/U of additive cosets is a group because Vgroup

is abelian and U is a normal subgroup of V . The quotient group V/U is also a
vector space, where �(v+U) := (�v)+U, for � 2 k, v 2 V . In this case, V/U is called
a quotient space, and there is a linear projection, V ! V/U, given by v 7! v + U.

Let � : V ! V
0 be a linear map. The kernel of � is ker(�) = {v 2 V | �(v) = 0V 0 },

which is also known as the nullspace of �. The dimension of the nullspace of � is
called the nullity of �.
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The image of a linear map � : V ! V
0 is im(�) = {�(v) | v 2 V}, also known as

the range of �. The dimension of the range of � is called the rank of �.

For a linear map � : V ! V
0, we have that ker(�) is a subspace of V , im(�) is a

subspace of V
0, and as vector spaces: V/ker(�) � im(�). So, if dimkV < 1, then

dimkV = nullity(�) + rank(�),

which is known as the Rank-Nullity Theorem.

Moreover, the cokernel of � is the quotient space, coker(�) := V
0/im(�), and its

dimension is called the corank of �.

§1.1.4. Operations on vector spaces

To combine algebras later in §1.4, we need the vector space operations below.

i. Direct products, sums, and direct sums

The direct product of vector spaces V1, . . . ,Vr is given by

V1 ⇥ · · · ⇥ Vr = {(v1, . . . , vr) | vi 2 Vi, i = 1, . . . , r},

a vector space with component-wise addition and scalar multiplication.

For a vector space V , the sum of subspaces of V1, . . . ,Vr of V is given by

V1 + · · · + Vr = {
P

r

i=1 vi | vi 2 Vi, i = 1, . . . , r},

which is a subspace of V with summand-wise addition and scalar multiplication.

If every element of V1 + · · · + Vr is a sum of vectors P
i vi for a unique choice of

vi 2 Vi, then V1 + · · · + Vr is a direct sum, denoted by V1 � · · · � Vr.

We also have that

dimk(V1 ⇥ · · · ⇥ Vr) = dimk(V1 � · · · � Vr) =
P

r

i=1 dimkVi,

but dimk(V1 + · · · + Vr) could be strictly less than P
r

i=1 dimkVi.

Remark 1.1. There is a subtle difference between direct products and direct sums
of vector spaces. Both constructions have component-wise operations. However,
the components of a direct sum are substructures (summands), and this is not
required for direct products. Also, note that for a direct product of vector spaces
V1 ⇥ V2, we have that V1 ⇥ {0V2 } and {0V1 } ⇥ V2 are subspaces of V1 ⇥ V2, and that
V1 ⇥ {0V2 } � V1 and {0V1 } ⇥ V2 � V2 as vector spaces. Therefore,

V1 ⇥ V2 � (V1 ⇥ {0V2 }) � ({0V1 } ⇥ V2) � V1 � V2,

where the first isomorphism is given by (v1, v2) 7! (v1, 0V2 ) + (0V1 , v2).
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Moreover, we leave it to the reader to verify the result below.

Lemma 1.2. We have a linear embedding and projection, for each j = 1, . . . , r, given by:

Vj ! V1 ⇥ · · · ⇥ Vr, vi 7! (0V1 , . . . , 0Vj�1 , v j, 0Vj+1 , . . . , 0Vr
),

V1 ⇥ · · · ⇥ Vr ! Vj, (v1, . . . , v j, . . . , vr) 7! v j.

Similar statements hold for direct sums. ⇤

ii. Bilinear maps and multilinear maps

For vector spaces V,W, Z, a function T : V ⇥W ! Z is called a bilinear map if it is
linear in each slot, that is, for each v 2 V and w 2 W,

T (�,w) : V ! Z, v 7! T (v,w) and T (v,�) : W ! Z, w 7! T (v,w)

are linear maps. Bilinear maps of the type T : V ⇥V ! k are called bilinear forms
on V . A bilinear form T on V is said to be nondegenerate if T (v, v0) = 0k for all
nonzero v

0 2 V implies that v = 0V . Likewise, one can define multilinear maps,
multilinear forms, and define when such forms are nondegenerate.

iii. Tensor products

Now we will define a product of two vector spaces first by using bases. If {bi}i is a
basis of a vector space V , and {c j} j is a basis of a vector space W, then one can form
symbols bi ⌦ c j, which we refer to as simple tensors. Sometimes, we write ⌦k to
emphasize the ground field k. The tensor product of V and W is the collection of
finite linear combinations of simple tensors:

V ⌦W := V ⌦k W := {Pfinite
i, j �i, j (bi ⌦ c j) | �i, j 2 k }.

It is a k-vector space with basis {bi ⌦ c j}i, j, via the definitions below:

�(bi ⌦ c j) := �bi ⌦ c j := bi ⌦ �c j,

(bi ⌦ c j) + (b0
i
⌦ c j) := (bi + b

0
i
) ⌦ c j, (bi ⌦ c j) + (bi ⌦ c

0
j
) := bi ⌦ (c j + c

0
j
),

for � 2 k, and bi, b0i 2 V , and ci, c0i 2 W. Here, dimk(V ⌦W) = (dimkV)(dimkW).

In other words, let F(V ⇥W) := spankh(v,w) | v 2 V,w 2 Wi, for k-vector spaces
V and W. Then, V ⌦W is the quotient space F(V ⇥W)/R, where R is the subspace
of F(V ⇥W) spanned by the following vectors (for v, v0 2 V ; w,w0 2 W; � 2 k):

�(v,w) � (�v,w), �(v,w) � (v, �w),

(v + v
0,w) � (v,w) � (v0,w), (v,w + w

0) � (v,w) � (v,w0).
(1.3)

There is another way of defining the k-vector space V ⌦W, which is particularly
helpful when comparing V ⌦W with other vector spaces. This uses the next notion.
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Universal property. "It’s as easy as ↵, �, �..."

Take a gadget X. A universal structure attached to X is a structure, Univ(X), that is
connected to X, such that for any arbitrary structure, Arb(X), connected to X in the
same way, there is a unique structure-preserving map between Univ(X) and Arb(X)
that respects the connections. Universal structures have one of the two forms below.

Form I. The connection between X and Univ(X) is of the form,

↵ : X ! Univ(X).

The universal property of Univ(X) is that for any structure Arb(X) connected to X

via � : X ! Arb(X), there is a unique structure map � : Univ(X) ! Arb(X) with
� = � � ↵. This is depicted via the commutative diagram below.

X
↵
//

8 �
%%

Univ(X)

9! �
✏✏

Arb(X)

Loosely speaking, the connection ↵ feeds into Univ(X) making it rule over all Arb(X).
There is a bĳection between the connections � and the structure maps � above.

{� : X ! Arb(X) } 1�1 ! {� : Univ(X)! Arb(X) }

Form II. The connection between X and Univ(X) is of the form,

↵0 : Univ(X)! X.

The universal property of Univ(X) is that for any structure Arb(X) is connected to
X via �0 : Arb(X)! X, then there is a unique structure map �0 : Arb(X)! Univ(X)
with �0 = ↵0 � �0. This is depicted via the commutative diagram below.

Arb(X)

9! �0
✏✏

8 �0

%%Univ(X) ↵0
// X

Here, the connection ↵0 takes away from Univ(X) making it ruled under all Arb(X).
Likewise, we have a bĳection:

{�0 : Arb(X)! X } 1�1 ! {�0 : Arb(X)! Univ(X) }.

Universal structures need not exist. But if they do exist, they are unique up to
structure-preserving isomorphism; see Exercise 1.2.
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Universal property of V ⌦W. Now take vector spaces V and W, and observe that
we can also define the tensor product of V and W via the result below.

Definition-Proposition 1.4. The vector space V ⌦W is equipped with a bilinear
map

↵ : V ⇥W ! V ⌦W, (v,w) 7! v ⌦ w,

such that for any bilinear map � : V ⇥W ! Z, there exists a unique linear map
� : V ⌦W ! Z with � = � � ↵. Namely, the following diagram commutes.

V ⇥W
↵

//

8bilinear map �
&&

V ⌦W

9! linear map �
✏✏

Z vs

Here, we have a bĳection:

{� : V ⇥W ! Z, bilinear map } 1�1 ! {� : V ⌦W ! Z, linear map }.

Proof. To start, one can check that ↵ is a bilinear map. Also, recall from above that
V ⌦W � F(V ⇥W)/R, for the subspace R of V ⇥W defined in (1.3).

Now take an arbitrary bilinear map � : V ⇥W ! Z. Then, we get a linear map

�̂ : F(V ⇥W)! Z, �̂(
P

i �i(vi,wi)) :=
P

i �i �(vi,wi),

for �i 2 k and (vi,wi) 2 V ⇥W. Since � is bilinear, R is contained in the kernel of �̂.
Thus, �̂ factors through a linear map � : V ⌦W ! Z. We also obtain that � = � � ↵.

To show that � is unique, suppose that �̃ : V ⌦W ! Z is a linear map such that
� = �̃ � ↵. Then, we have that �(v ⌦ w) = �(v,w) = �̃(v ⌦ w), for all (v,w) 2 V ⇥W.
Since the elements {v ⌦ w}v2V,w2W span V ⌦W as a vector space, the linear maps �
and �̃ must be equal. ⇤

Observe that the definition of V ⌦W above is independent of a choice of bases
for V and W. See Exercise 1.3 for practice, and consider the result below.

Proposition 1.5. For vector spaces V and W, we have an isomorphism of vector spaces:

V ⌦W � W ⌦ V.

Proof. Consider the map � : V ⇥W ! W ⌦ V defined by �(v,w) = w ⌦ v for v 2 V

and w 2 W. One can check that � is bilinear. Thus, by the universal property of
V ⌦W, we get a unique linear map � : V ⌦W ! W ⌦ V given by

�(v ⌦ w) = �↵(v,w) = �(v,w) = w ⌦ v.

Likewise, we can define a bilinear map �̄ : W ⇥ V ! V ⌦W by �̄(w, v) = v ⌦ w, and
this yields a linear map �̄ : W ⌦ V ! V ⌦W given by �̄(w ⌦ v) = v ⌦ w. So, � and �̄

are mutually inverse linear maps, and thus, V ⌦W � W ⌦ V as vector spaces. ⇤
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Universal property of V1 ⌦ · · · ⌦ Vn. Likewise, for vector spaces V1, . . . ,Vn, the
vector space V1 ⌦ · · · ⌦ Vn can be defined via the universal property attached to a
multilinear map,

↵ : V1 ⇥ · · · ⇥ Vn ! V1 ⌦ · · · ⌦ Vn, (v1, . . . , vn) 7! v1 ⌦ · · · ⌦ vn.

Namely, we require that the following diagram commutes.

V1 ⇥ · · · ⇥ Vn

↵
//

8multilinear map �
))

V1 ⌦ · · · ⌦ Vn

9! linear map �
✏✏

Z vs

Here, we have a bĳection:

{� : V1 ⇥ · · ·⇥Vn ! Z, multilinear map } 1�1 ! {� : V1 ⌦ · · ·⌦Vn ! Z, linear map }.

iv. Homs and duals

For fixed vector spaces V and W, the collection of linear maps V ! W forms a
vector space called a Hom space, denoted by Homk(V,W).

Namely, if � and �0 are elements of Homk(V,W), then we define the operations:

(� + �0)(v) := �(v) + �0(v) and (� ⇤ �)(v) := � ⇤W �(v) (= �(� ⇤V v)),

for all � 2 k and v 2 V . We have that dimkHomk(V,W) = (dimkV)(dimkW).

In particular, the Hom space,

V
⇤ := Homk(V, k),

is the dual space to V . Here, dimkHom(V, k) = (dimkV)(dimkk) = dimkV . Vectors
of V

⇤ are referred to as linear functionals, or as linear forms, on V . If {bi}i is a
basis of V , then V

⇤ has the dual basis {b⇤
i
}i given by b

⇤
i
(b j) = �i, j1k, with �i, j being

the Kronecker delta (which is = 1 if i = j, and = 0 if i , j). See Exercise 1.4.

There is a key relationship between the Hom space and tensor product con-
structions above, given by vector space isomorphisms below.

Homk(U ⌦ V,W) � Homk(U,Homk(V,W))),

8>>><
>>>:
� 7! [ u 7! (v 7! �(u ⌦ v)) ]

[ u ⌦ v!  (u)(v) ] [  

Homk(U ⌦ V,W) � Homk(V,Homk(U,W))),

8>>><
>>>:
� 7! [ v 7! (u 7! �(u ⌦ v)) ]

[ u ⌦ v!  (v)(u) ] [  

This relationship is called Tensor-Hom adjunction, and it admits generalizations
for modules and in the categorical setting discussed later in the book.
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v. Operations on linear maps

The direct product, the sum, and the direct sum of linear maps are defined
component-wise in a natural way. Also, given linear maps f : V ! W and
f
0 : V

0 ! W
0, along with a vector space U, we have the following linear maps built

from the tensor product and Hom constructions.

f ⌦ f
0 : V ⌦ V

0 ! W ⌦W
0, v ⌦ v

0 7! f (v) ⌦ f
0(v0)

Homk( f ,U) : Homk(W,U)! Homk(V,U), g 7! g � f

Homk(U, f
0) : Homk(U,V 0)! Homk(U,W0), g 7! f

0 � g

§1.1.5. Algebras

As mentioned at the beginning of the chapter, an algebra is a mathematical
structure that is a combination of a unital ring and a vector space over k. One
version of an algebra is given as follows.

Definition 1.6. A unital ring (A,+, 0, ·, 1) is calleda (k-)algebra if it comes equipped
with a unital ring homomorphism � : k! A such that im(�) ⇢ Z(A).

But as mentioned at the end of §1.1.2, the collection of (unital) rings is not well-
behaved. So, we define algebras in an alternative way, first using vector spaces,
instead of starting with unital rings. Linear Algebra is a nice setting to work in
overall.

Definition 1.7. A k-vector space (A,+, 0, ⇤) is called a (k-)algebra if it comes
equipped with two linear maps

m := mA : A ⌦ A! A, m(a ⌦ b) =: ab and u := uA : k! A, u(1k) =: 1A

such that the following axioms hold:

• (associativity) m(m ⌦ idA) = m(idA ⌦ m), and

• (unitality) m(u ⌦ idA) = idA = m(idA ⌦ u).

These structure axioms can be visualized via the commutative diagrams below.

A ⌦ A ⌦ A
m ⌦ id

//

id ⌦ m

✏✏

A ⌦ A

m

✏✏

a ⌦ b ⌦ c
�

//

_

✏✏

ab ⌦ c_

✏✏

A ⌦ A
m

// A a ⌦ bc
�

// a(bc) = (ab)c

A ⌦ k � A � k ⌦ A

id ⌦ u

✏✏

id

**

u ⌦ id
// A ⌦ A

m

✏✏

a
�

//

_

✏✏

1A ⌦ a_

✏✏

A ⌦ A
m

// A a ⌦ 1A

�
// a1A = a = 1Aa
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Exercise 1.5 entails showing that Definitions 1.6 and 1.7 are equivalent. In-
deed, the map � in Definition 1.6 gives A the structure of a k-vector space for
Definition 1.7, where � ⇤ a := �(�) · a, for � 2 k and a 2 A.

Standing hypothesis. All algebras in this book are assumed to be associa-
tive and unital, unless stated otherwise.

Examples of R-algebras include R and C, and k is a k-algebra. Moreover, the
zero k-algebra is the zero k-vector space with m and u being zero maps.

Features from rings and vector spaces also get adapted to algebras. For instance,
an algebra is commutative if it is commutative as a ring. The dimension of an
algebra is the dimension of its underlying vector space.

Moreover, a division algebra is a unital algebra (A,+, 0, ·, 1, ⇤) such that each
nonzero element a of A has a two-sided inverse element a

�1 with respect to ·.

Given algebras A and A
0, a function � : A! A

0 is an algebra (homo)morphism
or an algebra map if � is a ring morphism between the underlying ring structures
and a linear map between the underlying vector space structures.

We denote the set of algebra morphisms from A to A
0 by HomAlgk (A, A0), which

is a subspace of the Hom space between underlying vector spaces, Homk(Avs, A0vs).

The terminology for the various types of morphisms (namely, mono-, epi-, iso-,
endo-, auto-) from the group setting also applies in the algebra setting.

Given an algebra A, a nonempty subset B of A is a subalgebra if B is an
algebra under the same operations of A, and 1B = 1A. There is a canonical algebra
monomorphism B! A in this case.

If we drop the condition that 1B = 1A (or if 1B does not exist), then we call B a
nonunital subalgebra of A; the linear embedding B! A here is multiplicative,but
not necessarily unital. For instance, if A is the direct product of two nonzero algebras
A1 and A2 (defined later in §1.4.1), then A1 and A2 are nonunital subalgebras of A.

For a nonunital subalgebra B of A, the set A/B of additive cosets is a quotient
space, and is a quotient algebra if and only if B =: I is an ideal of A. Here, there
is a canonical algebra epimorphism, A! A/I, defined by a 7! a + I.

Let � : A! A
0 be an algebra morphism. Then, the following statements hold.

• The kernel of �, namely, the set ker(�) := {a 2 A | �(a) = 0A0 }, is an ideal of A.

• The image of �, namely, the set im(�) := {�(a) | a 2 A}, is just a subalgebra of A
0

and not necessarily an ideal of A
0.
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• We have an isomorphism of algebras: A/ker(�) � im(�).

• Let im(�)ideal denote the smallest ideal of A
0 containing im(�). Then, the cokernel

of � is defined as the quotient algebra: coker(�) := A
0/im(�)ideal.

§1.2. Examples of algebras over a field

We now provide several examples of algebras over a field that are ubiquitous
throughout the literature.

§1.2.1. Matrix algebras and endomorphism algebras

Let n be a positive integer. The collection of n ⇥ n matrices with entries in k,

Matn(k) = {(ci, j) | ci, j 2 k, i, j = 1, . . . , n},

is an algebra under matrix addition and matrix multiplication, and scalar multi-
plication given by � ⇤ (ci, j) := (�ci, j) for � 2 k. This is a matrix algebra over k.

For indices k, `, an elementary matrix is of the form Ek,` := (�k,i �`, j 1k)n

i, j=1, and
elementary matrices {Ek,`}nk,`=1 form a vector space basis of Matn(k).

Let V be a vector space. The Hom space of linear maps V ! V,

Endk(V) := Homk(V,V),

can be upgraded to an algebra with composition as multiplication, and with idV

as the unit. This is called the endomorphism algebra of the vector space V .

If dimkV = n, then we have an isomorphism between the algebras above:

Endk(V) � Matn(k).

Here, the linear endomorphism, � : V ! V, corresponds to the matrix, MatB(�),
for a choice of a basis B of V .

Likewise, one can define a matrix algebra over an algebra A, denoted by
Matn(A), and one gets that it is isomorphic to a certain endomorphism algebra; cf.
Exercise 1.26 after reading §1.4.3ii. See also Exercise 1.23 after reading §1.4.2v.

§1.2.2. Free algebras, tensor algebras, and quotient algebras

Our next set of examples are algebras which can be defined with a universal
property. First,we define the algebras in terms of elements. Let {vi}i2I be a collection
of variables for an index set I.
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The free algebra on {vi}i2I , denoted by khviii2I , is the algebra with vector space
basis being finite (possibly empty) products of variables

vi1 · · · vir
, (words)

with multiplication given by concatenation of the basis elements,

m(vi1 · · · vir
⌦ v j1 · · · v js

) := vi1 · · · vir
v j1 · · · v js

,

and with unit 1khviii2I
being the empty product of the variables. If |I| = n < 1, then

we write khviii2I as khv1, . . . , vni. Elements of khviii2I are linear combinations of
finitely many words in {vi}i2I .

Next, let V =
L

i2I
kvi be the vector space with basis {vi}i2I . The tensor algebra

of V , denoted by T (V), is the algebra with vector space basis being simple tensors,

vi1 ⌦ · · · ⌦ vir
2 V

⌦r,

for all r 2 N. Here, V
⌦0 is k by convention. In other words, as a vector space,

T (V) = k � V � (V ⌦ V) � (V ⌦ V ⌦ V) � · · · .
Since V

⌦r ⌦ V
⌦s � V

⌦(r+s), multiplication is given by concatenation:

m((vi1 ⌦ · · · ⌦ vir
) ⌦ (v j1 ⌦ · · · ⌦ v js

)) := vi1 ⌦ · · · ⌦ vir
⌦ v j1 ⌦ · · · ⌦ v js

.

The unit morphism, u : k! T (V), of T (V) is given by embedding.

We have an isomorphism between free algebras and tensor algebras above:

khviii2I � T (V),

for V =
L

i2I
kvi, via the identification of vi1 · · · vir

with vi1 ⌦ · · · ⌦ vir
.

Universal property of T (V). We will see here that tensor algebras (and, thus,
free algebras) can be defined universally. For a vector space V , we obtain that the
tensor algebra T (V) satisfies the following result.

Definition-Proposition 1.8. The tensor algebra T (V) is equipped with a linear
embedding:

↵ : V ! T (V)vs < T (V),

where < denotes taking the underlying vector space, such that for any algebra Z

equipped with a linear map � from V to the underlying vector space of Z, there
exists a unique algebra map � : T (V)! Z such that � = ��↵. Namely, the following
diagram commutes.

V
↵

//

8 linear map �
&&

T (V)vs < T (V)

9! algebra map �
✏✏

Zvs < Z alg

Here, we get a bĳection between sets: Homk(V, Zvs) � HomAlgk (T (V), Z).
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Proof. To start, ↵ is the linear embedding defined in Lemma 1.2. Next, given an
arbitrary linear map � : V ! Zvs, define a map

�̂i : V
⇥i ! Z, (v1, . . . , vi) 7! �(v1) · · · �(vi),

where we use the multiplication of the algebra Z for the right-hand side. One can
check that �̂i is multilinear, so this yields a unique linear map

�i : V
⌦i ! Z, �(v1 ⌦ · · · ⌦ vi) 7! �(v1) · · · �(vi),

due to the universal property of the i-fold tensor product. Now we obtain the
desired algebra map � as the sum of linear maps P

i2N �i. We leave it to the reader
to verify that � is multiplicative and unital (i.e., is an algebra map and not just a
linear map), and to verify the uniqueness of �. ⇤

Quotients of free (or tensor) algebras. Arbitrary structures in algebra and
elsewhere often arise as a ‘quotient’ of a free structure. Let us discuss the
quotient algebras of free (and tensor) algebras here. These are algebras that
are defined via a collection of independent variables (generators), subject to
certain expressions in those variables set equal to zero (relations).

In a free algebra khviii2I , take a collection of elements { f j} j2J , for index sets I

and J. Then, the set { f j} j2J generates an ideal of khviii2I , denoted by ( f j) j2J .
So, we obtain that the quotient space,

A := khviii2I / ( f j) j2J ,

is an algebra. Here, we say that A is generated by {vi}i2I , subject to the
relations { f j} j2J , which forms a presentation of A. If |I| < 1 (resp., |I| < 1
and |J| < 1), then A is finitely generated (resp., finitely presented).

Presentations of algebras are not unique. One way to understand algebras
built with generators and relations in detail is to use the Diamond Lemma
by Bergman [1978], which we will not discuss further here.

§1.2.3. Polynomial algebras and symmetric algebras

Now we impose commutativity relations on free/tensor algebras to get the alge-
bras below. Let {vi}i2I be a collection of variables for an index set I.

The polynomial algebra, k[v1, . . . , vn], is the algebra with vector space basis

{vi1
1 · · · vin

n
| ir 2 N, r = 1, . . . , n},

with unit 1k[v1,...,vn] := v
0
1 · · · v0

n
, and with multiplication given by

m(vi1
1 · · · vin

n
⌦ v

j1
1 · · · v

jn

n ) := v
i1+ j1
1 · · · vin+ jn

n .
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In fact, we have an algebra isomorphism,

k[v1, . . . , vn] � khv1, . . . , vni/(viv j � v jvi)1i< jn.

For instance, the polynomial algebra k[v1, v2] is finitely presented by generators
v1 and v2, and subject to the relation v1v2 � v2v1.

On the other hand, we can form a universal commutative algebra as follows.
The symmetric algebra of V , denoted by S (V), is defined to be the unique algebra
attached to a vector space V that comes equipped with an embedding,

↵ : V ! S (V)vs < S (V),

such that for any commutative algebra Z, the commutative diagram below holds.

V
↵

//

8 linear map �
&&

S (V)vs < S (V)

9! algebra map �
✏✏

Zvs < Z comm alg

By Zvs < Z, we mean take Zvs the underlying vector space of Z.

In fact, one can realize S (V) as a quotient algebra of T (V) by the ideal generated
by the set, {v ⌦ w � w ⌦ v}v,w2V . Thus, S (V) is a commutative algebra.

If V =
L

n

i=1 kvi, then S (V) � k[v1, . . . , vn] as algebras; see Exercise 1.6.

Note that Homk(V, Zvs) � HomCommAlgk (S (V), Z) as sets. Namely, maps of com-
mutative algebras are just algebra maps.

§1.2.4. Exterior algebras

A counterpart to the commutative algebras discussed in the previous section are
the universal anti-commutative algebras below.

Take a vector space V . The exterior algebra of V is defined to be the unique
algebra ⇤(V) attached to V that comes equipped with an embedding,

↵ : V ! ⇤(V)vs < ⇤(V),

such that ↵(v)↵(v) = 0 for each v 2 V , and such that for any algebra Z, the diagram
below commutes.

V
↵

//

8 linear � with
�(v)�(v) = 0 for each v 2 V &&

⇤(V)vs < ⇤(V)

9! algebra map �
✏✏

Zvs < Z alg

In fact, one can realize ⇤(V) as a quotient algebra of T (V) by the ideal generated
by the set, {v⌦v}v2V . See Exercise 1.7. In particular, if V =

L
n

i=1 kvi, then as algebras:

⇤(V) := ⇤(v1, . . . , vn) � khv1, . . . , vni/(viv j + v jvi)1i jn.
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§1.2.5. Path algebras

Next, we turn our attention to algebras built from graphs. A quiver is a synonym
for a directed graph used in algebraic settings; it is given by the data below:

Q := (Q0,Q1, s, t).

Here, Q0 is the vertex set of Q, and Q1 is the arrow set of Q, and s, t : Q1 ! Q0 are
the source and target maps for Q, respectively.

For example, for the arrow below,

•1 •2
a

we have that s(a) = 1 and t(a) = 2.

We say that Q is finite if both |Q0| and |Q1| are finite sets.

We say that Q is connected if its underlying undirected graph is connected.

A path in Q is a composition of arrows in Q, where composition is read left-to-
right here. That is, if a, b 2 Q1, then ab is a path in Q where t(a) = s(b). Likewise,
we can compose paths: If p = a1 · · · an and q = b1 · · · bm are paths for ai, b j 2 Q1,
then we can define the path, pq as a1 · · · anb1 · · · bm precisely when t(an) = s(b1).

A cycle is a path of the form a1 · · · an with t(an) = s(a1). A quiver is acyclic if it
does not contain a cycle.

A path of the form, a1 · · · an, for ai 2 Q1, has length n. The trivial path at a vertex
i 2 Q0 is the path, denoted ei, with s(ei) = i = t(ei) of length 0. The set of paths of
Q of length n is denoted by Qn.

Now the path algebra, kQ, attached to a quiver Q is a not-necessarily-unital
algebra with vector space basis being paths in Q; that is,

kQ := kQ0 � kQ1 � kQ2 � kQ3 � · · ·

as vector spaces. The multiplication of kQ is given by the composition of paths
when this makes sense, and 0 otherwise. Also,kQ is unital if and only if |Q0| < 1; in
this case, 1kQ =

P
i2Q0 ei. Note that kQ is rarely commutative, and that dimkkQ < 1

if and only if Q is finite and acyclic.

Examples of path algebras are provided in Figure 1.1 below.

• If Q is a quiver with one vertex {1} and no arrows, then the basis of kQ is {e1}.
Here, the product on the basis element is e

2
1 = e1 and 1kQ = e1. In terms of

generators and relations, kQ = khe1i/(e2
1 � e1) � ke1 � k, as algebras.
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• If Q is a loop a on a vertex labeled by 1, then paths of Q are {ai}i2N, including
a

0 = e1. In this case, a
i
a

j = a
j
a

i and 1kQ = e1. So, kQ is isomorphic to the free
algebra khai (or to the polynomial algebra k[a]) in the variable a.

• Likewise, if Q is an n-loop with arrows a1, . . . , an on vertex 1, then kQ is isomor-
phic to the free algebra kha1, . . . , ani in the variables a1, . . . , an with 1kQ = e1.

• If Q is an arrow a with s(a) = 1 and t(a) = 2, then kQ has vector space basis
e1, e2, a, and kQ is isomorphic to the algebra of 2 ⇥ 2 upper triangular matrices
with entries in k. The correspondence below extends to an algebra isomorphism:

e1 $
 

1 0
0 0

!
=: E1,1, e2 $

 
0 0
0 1

!
=: E2,2, a$

 
0 1
0 0

!
=: E1,2.

Q: •1 Q : •1 a
Q : •1

a1 a2 . . .

an

Q : •1 •2
a

kQ � k kQ � k[a] � khai kQ � kha1, . . . , ani kQ �

0
BBBBBB@
k k

0 k

1
CCCCCCA

Figure 1.1: Examples of path algebras of quivers.

Universal property of kQ. Path algebras of finite quivers satisfy a universal
property. Take Q to be a finite quiver. Then, the path algebra kQ is the unique
algebra attached to Q0 ⇥ Q1 that comes equipped with a function,

↵ = (↵0,↵1) : Q0 ⇥ Q1 ! kQ, i 2 Q0 7! ↵0(i) = ei, a 2 Q1 7! ↵1(a) = a,

that satisfies the following conditions,

• ↵0(i) ↵0( j) = �i, j ↵0(i) for each i, j 2 Q0,

• 1kQ =
P

i2Q0 ↵0(i),

• ↵0(s(a)) ↵1(a) ↵0(t(a)) = ↵1(a) for each a 2 Q1,

such that for any algebra Z, it satisfies the commutative diagram below.

Q0 ⇥ Q1
↵ = (↵0,↵1)

//

8 functions � = (�0 : Q0 ! Z, �1 : Q1 ! Z) with
�0(i) �0( j) = �i, j �0(i) for i 2 Q0,

1Z =
P

i2Q0 �0(i),
�0(s(a)) �1(a) �0(t(a)) = �1(a) for a 2 Q1

##

kQ

9! algebra map �

✏✏

Z alg

That is, �(ei) = �0(i) for all i 2 Q0, and �(a) = �1(a) for all a 2 Q1. (Yes, yes, there are
a lot of conditions on � in the diagram above. But the point is that path algebras
do satisfy a universal property.)
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§1.2.6. Group algebras

Next, we focus on algebras built from groups. Let G be a group.

The group algebra, kG, attached to G is the algebra with vector space basis
consisting of elements of G, with multiplication being the group operation applied
to the basis elements, and with unit 1kG equal to the identity element e of G.

Note that kG is commutative if and only if G is abelian. Moreover, kG is finite-
dimensional if and only if G is a finite group.

Universal property of kG. Group algebras satisfy a universal property. To see
this, take an algebra A, and consider its group of units :

A
⇥ := {a 2 A | ab = ba = 1A, for some b 2 A }.

Note that G is a subgroup of (kG)⇥, and consider the inclusion ⇢ of the group
(kG)⇥ in kG. Then, kG is the unique algebra attached to G that comes equipped
with a group homomorphism,

↵ : G ! (kG)⇥ ⇢ kG, g 7! g,

such that for any algebra Z, it satisfies the commutative diagram below.

G
↵

//

8group map �
&&

(kG)⇥ ⇢ kG

9! alg. map �
✏✏

Z
⇥ ⇢ Z alg

Here, we get a bĳection between sets: HomGroup(G, Z⇥) � HomAlgk (kG, Z).

§1.2.7. Graded algebras and filtered algebras

We now define algebras that are decomposed into pieces labeled by elements of N.
One could define similar notions by replacing N with any monoid N. For instance,
using N = Z is common in the literature, and using N = Z2 is foundational in
"super" structures in physics and in Lie theory.

i. Graded algebras

An algebra (A, m : A ⌦ A! A, u : k! A) is (N-)graded if

• Avs =
L

i2N Ai, for some subspaces Ai of Avs, for all i 2 N,

• the image of m|Ai⌦Aj
lies in Ai+ j, for all i, j 2 N, and

• the image of u lies in A0.
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In this case, Ai is the homogeneous part of A of degree i. For graded algebras A

and A
0, an algebra map � : A! A

0 is graded if �(Ai) ⇢ A
0
i
, for all i 2 N.

The underlying vector space of a graded algebra is a graded vector space, that
is, a vector space V =

L
i2N Vi, for some subspaces Vi of V .

Example 1.9. Free algebras, tensor algebras, polynomial algebras, symmetric al-
gebras, exterior algebras, and path algebras are all examples of graded algebras.
For instance, T (V)i = V

⌦i and (kQ)i = kQi, for i 2 N. Moreover, for a nonzero scalar
q 2 k⇥, we have that the following algebras are graded:

kq[v1, . . . , vn] := khv1, . . . , vni/(viv j � qv jvi)1i< jn,

⇤q(v1, . . . , vn) := khv1, . . . , vni/(viv j + qv jvi)1i jn.

Here, kq[v1, . . . , vn] is called a quantum (q-)polynomial algebra, and⇤q(v1, . . . , vn)
is called a quantum (q-)exterior algebra. See Exercise 1.8.

ii. Filtered algebras

An algebra (A, m : A ⌦ A! A, u : k! A) is (N-)filtered if

• Avs =
S

i2N Ai, for subspaces Ai of Avs with Ai ⇢ Ai+1, for all i 2 N,

• the image of m|Ai⌦A j
lies in Ai+ j, for all i, j 2 N, and

• the image of u lies in A0.

In this case, Ai is the filtered part of A of degree i. For filtered algebras A and A
0,

an algebra map � : A! A
0 is filtered if �(Ai) ⇢ A

0
i
for all i 2 N.

Example 1.10. The n-th Weyl algebra An(k) is a filtered algebra generated by
variables v1, . . . , vn,w1, . . . ,wn, subject to relations:

wiv j � v jwi � �i, j1, viv j � v jvi, wiwj � wjwi for 1  i, j  n.

For instance, the first Weyl algebra is A1(k) = khv,wi/(wv � vw � 1).

iii. Associated graded algebras

Graded algebras
L

j2N Aj are filtered with degree i filtered part: A0 � · · · � Ai.
Conversely, for a filtered algebra A =

S
i2N Ai, we can build the graded algebra:

gr(A) =
L

i2N gr(A)i, for gr(A)i := Ai/Ai�1, where A�1 = 0,

with multiplication (ai + Ai�1)(a j + Aj�1) := aia j + Ai+ j�1 for ai 2 Ai and a j 2 Aj, and
with unit 1gr(A) = 1A +A�1. This is called the associated graded algebra, and check
that this is indeed an algebra. See also Exercise 1.9.
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§1.3. Representations and modules

A representation of an algebraic structure S in terms of another algebraic structure
U is a structure-preserving map

⇢ : S ! End(U)

from S to the structure End(U) consisting of certain endomorphisms of U. Here, S

acts on U, and U inherits the structure of an S -module. We also say that S captures
symmetries of U (see Walton [2019]). Often, U is a set, an abelian group, or a vector
space. We focus on actions of algebras and of groups on vector spaces here.

§1.3.1. Representations

Fix an algebra A := (A,m, u). A representation of A is a vector space V equipped
with an algebra map

⇢ := ⇢V : A! Endk(V), a 7! [⇢(a) : V ! V].

The dimension or degree of (V, ⇢) is defined by deg(⇢V ) := dimkV .

If dimkV = n, then Endk(V) �Matn(k) (see §1.2.1). So, a n-dimensional represen-
tation of A is realized as an algebra map, A!Matn(k). The elements of A are then
identified as matrices, and the operations of A (addition, multiplication, scalar
multiplication) are encoded as the corresponding matrix operations.

A representation of A is called trivial if it is a 1-dimensional representation of
the form: A! k, a 7! 1k, for all a 2 A.

A representation (V, ⇢) of A is called faithful if ⇢ is injective; that is, if ⇢(a)(v) = 0V

for all v 2 V , then a = 0A.

Faithfulness ensures that the action of A on V does not factor through the
action of a proper quotient algebra A/I on V . Indeed, if ⇢ is not faithful, then
ker(⇢) , 0 and ⇢ : A/ker(⇢) ! End(V), a + ker(⇢) 7! ⇢(a), is a well-defined
representation of A/ker(⇢) using V . Conversely, if I is a nonzero ideal of A and
⇢ : A/I ! End(V), a + I 7! ⇢(a), is a representation of A/I, then ⇢ is not faithful.

Now take V = Avs with ⇢(a)(b) = m(a ⌦ b) =: ab, for all a, b 2 A. This yields the
regular representation of A, denoted by ⇢reg or Areg, of degree equal to dimkAvs.
This is an example of a faithful representation because a1A = a for all a 2 A.

For instance, let A := k[v]/(v2 � 1A), which has vector space basis 1A and v. The
regular representation of A is the algebra map,

k[v]/(v2 � 1A)!Mat2(k), 1A 7!
0
BBBB@

1 0
0 1

1
CCCCA, v 7!

0
BBBB@

0 1
1 0

1
CCCCA.
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Given two representations (V, ⇢) and (V 0, ⇢0) of A, a linear map � : V ! V
0 is a

representation morphism if ⇢0(a) � � = � � ⇢(a), for all a 2 A.

The terminology for the various types of morphisms (namely, mono-, epi-, iso-,
endo-, auto-) from the vector space setting also applies in this setting. In particular,
an isomorphism of representations is commonly referred to as an equivalence.

Take a representation (V, ⇢ : A! Endk(V)) of A. Take a subspace W of V , with
embedding ◆ : W ! V and with projection ⇡ : V ! V/W.

Here, W is a subrepresentation of (V, ⇢) if im(⇢(a) � ◆) ⇢ W, for all a 2 A.

The quotient space V/W of V is a quotient representation of (V, ⇢) if, for all
a 2 A, we have that ker(⇡ � ⇢(a)) � W. Indeed, in this case, the composition
 (a) := ⇡ � ⇢(a) : V ! V/W induces a well-defined map  (a) : V/W ! V/W, for
 (a)(v +W) =  (a)(v). Namely, for v +W = v

0 +W in V/W we get that v � v
0 2 W.

Then,  (a)(v � v
0) = 0, and  (a)(v +W) =  (a)(v0 +W).

Consider the example above for A = k[v]/(v2 � 1A) and V = Areg = k1A � kv.
Check that W = k(1A + v) is both a subspace and quotient space of V , and W

naturally becomes a subrepresentation and a quotient representation of Areg.

See Exercises 1.10 and 1.11 for practice; see also §1.3.4 for Exercise 1.11(a).

§1.3.2. Modules

Fix an algebra A := (A,m, u). A left A-module is a vector space V with a linear map,

. := .V : A ⌦ V ! V, a ⌦ v 7! a . v (action map),

such that the following diagrams commute.

A ⌦ (A ⌦ V) � (A ⌦ A) ⌦ V
m ⌦ id

//

id ⌦ .
✏✏

A ⌦ V

.
✏✏

V � k ⌦ V
u ⌦ id

//

id
((

A ⌦ V

.
✏✏

A ⌦ V
.

// V V

Such modules are sometimes denoted by AV . The dimension of (V, .) is dimkV .

Likewise, a right A-module is a vector space V equipped with a linear map
/ := /V : V ⌦ A! V such that

/ � (idV ⌦ m) = / � (/ ⌦ idA), / � (idV ⌦ u) = idV .

We will focus on left modules below; the details for right modules hold similarly.

There is a bĳection between left A-modules {(V, .)} and right A
op-modules {(V, /)},

given by sending V to V , and by sending a . v to v / a, for a 2 Avs and v 2 V .

A left A-module is called trivial if it is equal to k and equipped with the linear
map, . : A ⌦ k! k, where a ⌦ � 7! �, for all a 2 A and � 2 k.
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A left A-module (V, .) is faithful if, for any nonzero ideal I of A, the action map
. does not descend to linear map (A/I) ⌦ V ! V making V a left (A/I)-module.

The left regular module over A is the vector space V = Avs, with . given by the
multiplication map of A; this is denoted by A(Areg).

For instance, let A := k[v]/(v2 � 1A). Then, the left regular A-module is the vector
space V := k1A � kv with:

1A . 1A = 1A, v . 1A = v, 1A . v = v, v . v = 1A.

Given two left A-modules (V, .) and (V 0, .0), a linear map � : V ! V
0 is a left

module morphism or (left) module map if the following diagram commutes.

A ⌦ V
.
//

id ⌦ �
✏✏

V

�
✏✏

A ⌦ V
0 .0

// V
0

The terminology for the various types of morphisms (namely, mono-, epi-, iso-,
endo-, auto-) from the vector space setting also applies in this setting.

Take a left A-module (V, .), with a subspace W of V , an embedding ◆ : W ! V ,
and a projection ⇡ : V ! V/W. Then:

• W is a left A-submodule of (V, .) if im(. (idA ⌦ ◆)) ⇢ W;

• A quotient space V/W of V is a left A-quotient module of (V, .) if ker(⇡�.) � A⌦W.

Now assume that A is (N-)graded, where A =
L

i2N Ai; see §1.2.7. Then, a graded
left A-module is a direct sum of vector spaces V =

L
j2N Vj with left A-action

map, . : A ⌦ V ! V , where im(.|Ai⌦Vj
) ⇢ Vi+ j for all i, j 2 N.

In fact, there is a bĳection between the set of representations of A and the
set of left A-modules; see Exercise 1.12. So, actions of A on V are captured by
representations, or equivalently, by left modules. Therefore, all of the notions
about modules can be transported to representations, and vice versa. For instance,
we can define graded representations of graded algebras.

Remark 1.11. One may opt to use representations when studying actions of A

on a fixed vector space V (e.g., to study an induced action of a quotient algebra
A/I on V). Yet modules are useful when studying actions of a fixed algebra A on
vector spaces V (e.g., to study an induced A-action on a quotient space V/W).
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§1.3.3. Bimodules

Next, we consider a structure that is both a left and a right module. Take algebras
A, B1, and B2. A (B1, B2)-bimodule is a vector space V equipped with linear maps,

. : B1 ⌦ V ! V and / : V ⌦ B2 ! V,

where (V, .) is a left B1-module, (V, /) is a right B2-module, and the following
diagram commutes.

B1 ⌦ (V ⌦ B2) � (B1 ⌦ V) ⌦ B2
. ⌦ id

//

id ⌦ /
✏✏

V ⌦ B2

/
✏✏

B1 ⌦ V
.

// V

Such bimodules are sometimes denoted by B1 VB2 . We refer to the (A, A)-bimodule
AVA as an A-bimodule.

Remark 1.12. If C is a commutative algebra, then a left C-module (V, .) is also a
right C-module, where v / c := c . v. Indeed,

v / (cc
0) = (cc

0) . v
C com
= (c0c) . v = c

0 . (c . v) = c
0 . (v / c) = (v / c) / c

0.

Furthermore, (V, ., /) is a C-bimodule in this case.

The regular bimodule over A is the vector space V = Avs, with . and / given by
the multiplication map of A, denoted by A(Areg)A.

Given (B1, B2)-bimodules (V, ., /) and (V 0, .0, /0), a linear map � : V ! V
0 is a

bimodule morphism or bimodule map if it is simultaneously a left B1-module
map and a right B2-module map.

Likewise, one can define subbimodules, quotient bimodules, the trivial bi-
module k, and graded bimodules over graded algebras.

§1.3.4. Over groups

Let (G,?, e) be a group, with operation ? : G ⇥G ! G, and with identity element
e identified with a function !e : {·}! G as in §1.1.1. Here, we consider actions of
G on a vector space V := (V,+, ⇤), which historically predates actions of algebras
on V discussed in the previous sections. Yet representations and modules over a
group wind up ‘being the same’ as those over the corresponding group algebra.

Take GL(V) to be the general linear group on V , which is the group of auto-
morphisms of V under composition. Then, a representation of G is a vector space
V equipped with a group homomorphism,

⇡ := ⇡V : G ! GL(V), g 7! [⇡(g) : V ! V].
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Moreover, a left G-module is a vector space V equipped with a function,

. : G ⇥ V ! V, (g, v) 7! g . v,

such that the following compatibility conditions hold:

. � (? ⇥ idV ) = . � (idG ⇥ .), . � (
!
e ⇥ idV ) = idV ,

. � (idG ⇥ +) = + � (.V⇥V ), . � (idG ⇥ ⇤) = ⇤ � (idG ⇥ .).

Here, .V⇥V : G ⇥ V ⇥ V ! V ⇥ V is the diagonal action: (g, v,w) 7! (g . v, g . w).

The sets of representations of G, of left G-modules, of representations of kG,
and of left kG-modules are all in bĳective correspondence. See Exercise 1.13.

A representation of (V, ⇡) of G is faithful if ⇡ is injective, i.e., if ⇡(g)(v) = v for all
v 2 V , then g = e.

Remark 1.13. Faithfulness for representations of G is different than for repre-
sentations of kG. If ⇢ : kG ! End(V) is faithful as in §1.3.1, then the group
representation ⇡ = ⇢|G : G ! End(V)⇥ = GL(V) is faithful; to see this, take the con-
trapositive. Yet if ⇡ : G ! GL(V) is faithful, then its k-extension to ⇢ : kG ! End(V)
given by ⇢(

P
g2G �g g) :=

P
g2G �g ⇡(g) need not be faithful (see Exercise 1.11(a)).

See Exercise 1.14 for notions of groups and rings acting on other structures.

§1.4. Operations on algebras and modules

Now we present various recurring operations used to build modules and algebras,
including (direct) sums, tensor products, free products, Homs, and duals. Each
of these constructions applies to morphisms of modules and algebras as well.

§1.4.1. Direct products, sums, and direct sums

Here, we study direct products, sums, and direct sums of modules and algebras.
We leave it to the reader to verify the results in this part; see Exercise 1.15.

The next result defines direct products and (direct) sums of left modules.
Likewise, one can define such constructions for right modules and bimodules.

Proposition 1.14. Fix a nonzero algebra (A,m, u). Then, the following statements hold.

(a) Let (V1, .1), . . . , (Vr, .r) be left A-modules. Then, the direct product of vector spaces
V1 ⇥ · · · ⇥ Vr forms a left A-module with action map:

.V1⇥···⇥Vr
: A ⌦ (V1 ⇥ · · · ⇥ Vr)! V1 ⇥ · · · ⇥ Vr,

a ⌦ (v1, . . . , vr) 7! ((a .1 v1), . . . , (a .r vr)) .
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(b) Let (V1, .), . . . , (Vr, .) be left A-submodules of a left A-module (V, .). Then, the direct
sum V1 � · · · � Vr is a left A-module using action map:

.V1�···�Vr
: A ⌦ (V1 � · · · � Vr)! V1 � · · · � Vr,

a ⌦ (v1 + · · · + vr) 7! (a . v1) + · · · + (a . vr).

The sum of vector spaces V1 + · · · + Vr is also a left A-module using a similar action.

(c) The canonical embeddings and projections between a vector space Vj and the direct
product (or direct sum) of vector spaces {Vi}ri=1 given in Lemma 1.2 can be upgraded
to left A-module maps. ⇤

We call a nonzero left A-module V decomposable if V = V1 � V2, for some
nonzero left A-submodules V1 and V2 of V . Else, we say that a nonzero left A-
module V is indecomposable. A necessary and sufficient condition for V to be
indecomposable is given in Proposition 1.22 later.

Indecomposable modules (resp., indecomposable representations, defined anal-
ogously) serve as one type of ‘building block’ in module theory (resp., represen-
tation theory). Other types of building blocks are the simple modules (resp.,
irreducible representations) discussed later in §1.5.

Moreover, we can discuss the generation of modules with the notions above.
We say that a left (resp., right) A-module V is finitely generated if there exists a
surjective left (resp., right) A-module map from (Areg)�n to V , for some n 2 N.

Next, we turn our attention to defining direct products and (direct) sums of
algebras, which is achieved by way of the result below.

Proposition 1.15. Let (A1,m1, u1), . . . , (Ar,mr, ur) be algebras.

(a) Then, the direct product of vector spaces A1 ⇥ · · · ⇥ Ar is an algebra, where

mA1⇥···⇥Ar
: (A1 ⇥ · · · ⇥ Ar) ⌦ (A1 ⇥ · · · ⇥ Ar)! A1 ⇥ · · · ⇥ Ar,

(a1, . . . , ar) ⌦ (a01, . . . , a
0
r
) 7!

⇣
m1(a1 ⌦ a

0
1), . . . ,mr(ar ⌦ a

0
r
)
⌘
,

uA1⇥···⇥Ar
: k! A1 ⇥ · · · ⇥ Ar,

1k 7! (u1(1k), . . . , ur(1k)) =: (1A1 , . . . , 1Ar
).

The components (Ai,mi, ui) are nonunital subalgebras of A1 ⇥ · · · ⇥ Ar.

(b) If A1, . . . , Ar are subspaces of an algebra (A,mA, uA), such that

(mA)|Ai⌦A j
= 0 for i , j, (1.16)

then the vector space A1 + · · · + Ar is an algebra, with multiplication mA and unit uA.
Likewise, (A1 � · · · � Ar,mA, uA) is an algebra if (1.16) holds.
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(c) The embeddings and projections between a vector space Aj and the direct product
A1 ⇥ · · · ⇥ Ar (resp., the direct sum A1 � · · · � Ar) in Lemma 1.2 can be upgraded to
not-necessarily-unital algebra maps (resp., when (1.16) holds). ⇤

We call a nonzero algebra A indecomposable if A � A1 ⇥ A2, for some nonzero
algebras A1 and A2; else, A is decomposable. Note that direct products are used
for the definition of (in)decomposability of algebras, as opposed to direct sum as
used for (in)decomposable modules above; see Remark 1.1.

Proposition 1.17. A nonzero algebra A is indecomposable if and only if the only central
idempotents of A (that is, elements e 2 Z(A) with e

2 = e) are 0A and 1A. ⇤

It can be shown with the result above that, for a finite quiver Q, a path algebra
kQ is an indecomposable algebra if and only if the quiver Q is connected.

§1.4.2. Tensor products and free products

Now we combine modules and algebras via a tensor product of vector spaces.
Let A, B1, B2 be algebras, and let V,W be vector spaces. We write B1 V if V is a left
B1-module with action map . : B1⌦V ! V , and write VB2 if V is a right B2-module
with action map / : V ⌦ B2 ! V . We also write B1 VB2 if V is a (B1, B2)-bimodule
with action maps . and /.

i. Tensor product of modules B1 V and WB2

For modules B1 V and WB2 , the vector space V ⌦W is a (B1, B2)-bimodule, where

b1 . (v ⌦ w) := (b1 . v) ⌦ w and (v ⌦ w) / b2 := v ⌦ (w / b2), (1.18)

for each b1 2 B1, b2 2 B2, v 2 V , and w 2 W. See Exercise 1.16.

ii. Tensor product modules CV and CW

For modules CV and CW over a commutative algebra C, we obtain that the tensor
product V ⌦W is a C-bimodule; see Remark 1.12 and §1.4.2i. But this fails when
C is not commutative. We will discuss a way of making V ⌦W a left C-module
when C is not necessarily commutative in a future volume; there, we will give C

the structure of a bialgebra.

iii. Tensor product ⌦A of modules VA and AW

We now form a tensor product of modules VA and AW. To do so, take a vector
space Z. Then, a bilinear map � : V ⇥W ! Z is called A-balanced if

�(v / a,w) = �(v, a . w),

for all a 2 A, v 2 V , and w 2 W.
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The tensor product V and W over A is defined as the unique vector space V⌦A W

attached to V ⇥W, via an A-balanced map ↵ : V ⇥W ! V ⌦A W, that satisfies the
commutative diagram below.

V ⇥W
↵
//

8 A-balanced map �
''

V ⌦A W

9! linear map �
✏✏

Z vs

Here, we have a bĳection:

{� : V ⇥W ! Z, A-balanced maps } 1�1 ! {� : V ⌦A W ! Z, linear maps }.

Concretely, V ⌦A W is realized as a quotient space of V ⌦W as follows:

V ⌦A W �
V ⌦W

spankh(v / a) ⌦ w � v ⌦ (a . w)i a2A, v2V, w2W
.

Note that (B1 VA) ⌦A (AWB2 ) is a (B1, B2)-bimodule. See Exercise 1.16.

In particular, if C is commutative, then (VC) ⌦C (CW) is a C-bimodule (see
Remark 1.12). See also Exercises 1.17 and 1.18 for practice.

Similar to §1.1.4, we can form a linear map f ⌦A f
0 : V ⌦A V

0 ! W ⌦A W
0, for

a right A-module map f : V ! W, and a left A-module map f
0 : V

0 ! W
0. See

Exercises 1.19 and 1.20.

iv. Algebras constructed using (� ⌦A �)

An A-bimodule algebra is a triple (D,m, u) consisting of an A-bimodule D, and
A-bimodule maps, m : D ⌦A D! D and u : Areg ! D, satisfying associativity and
unitality axioms:

m(m ⌦A idD) = m(idD ⌦A m) and m(u ⌦A idD) = idD = m(idD ⌦A u).

Indeed, (D⌦A D)⌦A D � D⌦A (D⌦A D) and D⌦A Areg � D � Areg ⌦A D as discussed
in Exercise 1.18.

A morphism between A-bimodule algebras is an A-bimodule map that is
simultaneously an algebra map.

Now for an A-bimodule V , the bimodule tensor algebra is defined to be the
unique A-bimodule algebra TA(V) attached to V , which comes equipped with an
A-bimodule embedding,

↵ : V ! TA(V)A-bimod < TA(V),
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such that for any A-bimodule algebra Z, the commutative diagram below holds.

V
↵

//

8 A-bimodule map �

&&

TA(V)A-bimod < TA(V)

9! A-bimodule algebra map �
✏✏

ZA-bimod < Z A-bimod alg

We obtain that HomA-bimod(V, ZA-bimod) � HomA-bimod alg(TA(V), Z) as sets. Here, the
symbol < denotes taking the underlying A-bimodule.

When A equals the ground field k, we recover the tensor algebra T (V) con-
structed in §1.2.2. Indeed, as an A-bimodule, we have that

TA(V) = Areg � V � (V ⌦A V) � (V ⌦A V ⌦A V) � · · · .

Moreover, path algebras kQ arise as bimodule tensor algebras; see Exercise 1.21.

v. Tensor product of algebras

Consider the following result; the proof is Exercise 1.22. See also Exercise 1.23.

Proposition 1.19. Let (A,mA, uA) and (B,mB, uB) be algebras. Then, the tensor product
of underlying vector spaces A ⌦ B is an algebra, with

mA⌦B := (mA ⌦ mB) (idA ⌦ flip ⌦ idB) and uA⌦B := uA ⌦ uB.

Here, the linear map, flip : B ⌦ A! A ⌦ B, is given by b ⌦ a 7! a ⌦ b. ⇤

vi. Free product of algebras

One can also combine two algebras A and B universally in the following manner.

The free product of A and B is the unique algebra A~B equipped with injective
algebra maps ↵A : A ! A ~ B and ↵B : B ! A ~ B, such that for any algebra
Z equipped with algebra maps �A : A ! Z and �B : B ! Z, we have that the
following diagram commutes. See Exercise 1.24 for practice.

A
↵A

//

8 algebra map �A

((

A~ B

9! alg map �

✏✏

B
↵B

oo

8 algebra map �B

vv

Zalg

§1.4.3. Homs and duals

We discuss when a Hom space of modules (resp., algebras) has the structure of a
module (resp., an algebra). We adopt the notation AV , VA, B1 VB2 from §1.4.2.
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Given an algebra A and left A-modules AV and AW, recall from §1.1.4iv that the
collection of linear maps from the underlying vector space V to the underlying
vector space W is itself a vector space,denoted by Homk(V,W). In fact, the collection
of left A-module maps from AV to AW is a subspace of Homk(V,W); we denote this
subspace by HomA-mod(V,W).

Likewise, for right A-modules VA and WA, we let Hommod-A(V,W) be the vector
space of right A-module maps from VA to WA. Moreover, for algebras B1 and B2,
we take Hom(B1, B2)-bimod(V,W) to be the vector space of (B1, B2)-bimodule maps
from B1 VB2 to B1 WB2 .

i. Homs of (bi)modules

Consider the next result, the proof of which is part of Exercise 1.25.

Proposition 1.20. For algebras A, B1, B2, we have that the following statements hold.

(a) If V is an (A, B1)-bimodule and W is a (A, B2)-bimodule, then the vector space
HomA-mod(V,W) is a (B1, B2)-bimodule.

(b) If V is a (B1, A)-bimodule and W is a (B2, A)-bimodule, then the vector space
Hommod-A(V,W) is a (B2, B1)-bimodule. ⇤

Now applying Proposition 1.20 to the linear dual V
⇤ = Homk(V, k) of a vector

space V , we immediately obtain the result below.

Corollary 1.21. If V is a right (resp., left) B1-module and k is a trivial right (resp., left)
B2-module, then V

⇤ is a (B1, B2)-bimodule (resp., a (B2, B1)-bimodule). ⇤

ii. Algebras constructed using HomA-mod(�,�)

Let A be an algebra, and let V be a left A-module. Then,

EndA-mod(V) := HomA-mod(V,V)

is an algebra, with composition as multiplication, and with 1EndA-mod(V) = idV . We
call EndA-mod(V) a left A-module endomorphism algebra.

Note that when A = k, we recover the endomorphism algebra, Endk(V), from
§1.2.1. See Exercise 1.26.

This endomorphism algebra can be used to detect when V is indecomposable;
the proof of the result below is part of Exercise 1.15.

Proposition 1.22. Let A be a nonzero algebra, let V be a left A-module, and consider the
algebra E := EndA-mod(V). Then, V is indecomposable if and only if the only idempotents
of E (that is, elements e 2 E with e

2 = e) are 0E and 1E . ⇤

46

Copyright ©2024 Chelsea Walton. Free version by the courtesy of CW and 619 Wreath. https://math.rice.edu/~notlaw/symalgbook.html. 

Enjoy this textbook? Physical copies are available for purchase at https://www.619wreath.com/ and on Amazon. 
<< Please ask your local academic librarian to order a copy for circulation. >> 



1.4. O��������� �� �������� ��� �������

iii. On Homs of algebras

Given two algebras A and B, one may wish to put an algebra structure on the Hom
space of underlying vector spaces, Homk(A, B). But recall from §1.1.4v that the
direction of a morphism gets reversed when applying the operation Homk(�, B).
So, it is more natural to replace the algebra,

(A, mA : A ⌦ A! A, uA : k! A),

in the first slot of Homk(A, B) with an algebraic structure of the form,

(A, �A : A! A ⌦ A, "A : A! k),

and require that �A and "A satisfy a reversed version of the associativity and uni-
tality axioms (namely, coassociativity and counitality, respectively). Such a structure
(A,�A, "A) is called a coalgebra, and the resulting algebraic structure on the Hom
space, Homk(A, B), is a convolution algebra. Details will be discussed in a future
volume.

Example 1.23. We consider the special case of when the algebra in the first slot
of a Hom space is the ground field k (which is a coalgebra with �k : k ⇠! k ⌦ k

and "k = idk). We also assume that the algebra in the second slot, denoted by
(A,mA, uA), is arbitrary. Then, the vector space Homk(k, A) is an algebra, where for
f , f

0 2 Homk(k, A), the multiplication and unit are given as follows:

mHomk(k,A)( f ⌦ f
0) : k ⇠

// k ⌦ k f ⌦ f
0
// A ⌦ A

mA
// A, uHomk(k,A)(1k) := uA.

We leave it to the reader to verify that this is indeed an associative, unital algebra.

§1.4.4. Restriction and (co)induction

Fix an algebra map � : A! B. Then, there is a way to build modules over B from
modules over A via �, and vice versa. These operations will be called restriction,
induction, and coinduction, as discussed below.

Let (V, .V ) be a left B-module. Then, V is also a left A-module, with action

A ⌦ V ! V, a ⌦ v 7! �(a) .V v.

This left A-module is called the restriction of BV to A along � : A ! B, and is
denoted by ResB

A
(V). Exercise 1.27 asks the reader to verify that

ResB

A
(V) � HomB-mod(B,V), as left A-modules. (1.24)

Here, B is a left (B, A)-bimodule with .B = mB and b /B a = mB (b ⌦ �(a)).
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Now let V be a left A-module. We can build a left B-module from V with:

IndB

A
(V) := B ⌦A V. (1.25)

Exercise 1.27 asks the reader to verify that IndB

A
(V) is a left B-module. This

construction is called the induction of AV to B along � : A! B.

Keep V as a left A-module. We can also build a left B-module from V by taking:

CoindB

A
(V) := HomA-mod(B,V). (1.26)

Exercise 1.27 asks the reader to verify that CoindB

A
(V) is a left B-module. This

construction is called the coinduction of AV to B along � : A! B.

The construction of algebras built from restriction, induction, or coinduction is
also explored as part of the open-ended Exercise 1.28.

§1.5. Simple algebras

As remarked in §1.4.1, indecomposable modules (resp., representations) are
viewed as building blocks in module theory (resp., representation theory). Here,
we study a notion finer than indecomposability, namely simplicity, and we also
examine the corresponding notion for algebras. The reader may wish to view
Figure 1.2 in §1.8 for a preview of the results for simple algebras; some details are
deferred to Exercises 1.33 and 1.35.

§1.5.1. Simple modules

Given an algebra A, we say that a nonzero left A-module V is simple if the only
nonzero left A-submodule of V is V itself. Simple right A-modules and simple
A-bimodules can be defined similarly. Likewise, a representation of A is said to
be irreducible if it does not have a proper subrepresentation; see Exercise 1.29.

Remark 1.27. (a) A simple module is indecomposable. Indeed, if V is a decom-
posable left A-module, then there exist nonzero left A-submodules V1,V2 of V

such that V � V1 � V2. So, V1 is a proper submodule of V , and V is not simple.

(b) But indecomposable modules need not be simple. For instance, take the poly-
nomial algebra k[v] from §1.2.3. Then, by Proposition 1.22 and Exercise 1.26(a),
the regular left k[v]-module k[v](k[v])reg is indecomposable. But k[v](k[v])reg has
proper submodules, e.g., k[v](v). So, k[v](k[v])reg is not simple.

We will see later in Proposition 1.48 in §1.6 that indecomposable modules are
simple when the algebra A is semisimple. For now, we will consider simple algebras;
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we will also provide a structure result for such algebras in the finite-dimensional
case. To proceed, we present some useful results below, the first of which is due
to Schur [1905].

Proposition 1.28 (Schur’s Lemma). Let A be an algebra, let V and W be simple left
A-modules, and take � 2 HomA-mod(V,W). Then, either � = 0 or � is an isomorphism of
left A-modules. In particular, EndA-mod(V) is a division algebra.

Proof. Take a nonzero element � of HomA-mod(V,W). Then, ker(�) and im(�) are
left A-submodules of V and W, respectively. Since V and W are simple and � , 0,
we have that ker(�) = 0 and im(�) = W. Therefore, � is an isomorphism. For the
last statement, recall that EndA-mod(V) is an algebra (see §1.4.3ii). Since its nonzero
elements are invertible, EndA-mod(V) is then a division algebra. ⇤

Next, we measure how far an A-module V is from being simple. A composition
series for a left A-module V is a sequence of left A-submodules

0 = V0 ! V1 ! V2 ! · · ·! Vn ! · · ·! V,

such that each quotient module Vi+1/Vi is a simple left A-module for all i. If
V = Vn above for some n, then we say that V has finite length, and we refer to the
minimum such n as the length of V .

Length is well-defined due to the following results of Jordan [1989] (reprint
of 1870 work) and Hölder [1889] that were established for groups. The proof for
modules holds similarly and we will skip this here.

Theorem 1.29 (Jordan-Hölder Theorem). Take a left A-module V of finite length. If
V has two composition series

0 = V0 ! V1 ! · · ·! Vn = V and 0 = W0 ! W1 ! · · ·! Wm = V,

then n = m and there exists a permutation� of {1, . . . , n} such that V�(i)+1/V�(i) � Wi+1/Wi

as left A-modules for all i. ⇤

Observe that a left A-module is simple precisely when its length is 1.

Now for a left A-module V , we will study its decomposition into a direct sum
of submodules. Given a left A-submodule W of V , we call a left A-submodule X

of V a complement for W in V if V � W � X as left A-modules.

Lemma 1.30. Given an algebra A, we have that a sum of simple left A-modules is a
direct sum. Moreover, for a (direct) sum V of simple left A-modules, we have that any left
A-submodule W of V has a complement.
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Proof. Let {Vi}i2I be simple left A-modules, and take the sum V :=
P

i2I Vi. Next,
using Zorn’s lemma, there is a maximal subset J of I such that V

0 :=
P

i2J Vi is
direct. Now for Vj with j 2 I, we have that V

0 \ Vj is either 0 or equal to Vj, since
Vj is simple. If V

0 \ Vj = 0, then V
0 + Vj is direct, contradicting J being maximal.

So, V
0 \ Vj = Vj, for each j 2 I, and P

j2I V j ⇢ V
0. Hence, V

0 = V is a direct sum.
Likewise, if W is a left A-submodule of V , then there exists a maximal subset J

of I such that W
0 := W +

P
i2J Vi is direct. We can also repeat the arguments above

to obtain that W
0 = V . Thus, V = W � X, for X :=

P
i2J Vi =

L
i2J

Vi. ⇤

So, modules that are a direct sum of simple modules have an internal structure
that is well-understood. We also have a general decomposition result when we use
the weaker notion of indecomposable modules, due to the work of Krull [1925]
and Schmidt [1913]. We refer the reader to Section 1.2.6 of Lorenz [2018] for a
proof of this result for representations in the finite-dimensional case, which can
be translated to modules via Exercise 1.12.

Theorem 1.31 (Krull-Schmidt Theorem). If V is a left A-module of finite length, then

V � V1 � · · · � Vn,

for a unique choice of indecomposable left A-modules Vi, up to isomorphism. ⇤

Finally, we relate simple modules to ideals of an algebra. A left ideal of an
algebra A is minimal if the only left ideals of A contained in I are 0 and I itself. A
similar notion holds for right ideals and (two-sided) ideals. The result below is
then clear by definition.

Lemma 1.32. Given an algebra A, we have the following statements.

(a) A minimal left ideal of A is a simple left A-module.

(b) If A(Areg) is a direct sum of simple left A-modules
L

i2I
Vi, then each Vi is a minimal

left ideal of A. ⇤

§1.5.2. Simple algebras

Recall that ideals (rather than subalgebras) are the substructures of algebras that
arise as kernels of algebra maps, and thus, yield quotient algebras. So, ideals are
‘ideal’ when breaking an algebra down into pieces. We consider when an algebra
cannot be broken down in such a manner.

A nonzero algebra A is called simple if its only ideals are 0 and itself.

Note that left (resp., right) ideals of A coincide with the left (resp., right) A-
submodules of regular A-module. So, an algebra A is simple if and only if the
regular bimodule A(Areg)A is simple.
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Simplicity also implies indecomposability for algebras; cf. Remark 1.27.

Remark 1.33. (a) A simple algebra is indecomposable. Indeed, suppose that A

is a decomposable algebra. Then, A � A1 ⇥ A2, for some nonzero algebras A1

and A2. Now (A1)reg ⇥ {0A2 } is a proper ideal of A. Thus, A is not simple.

(b) But indecomposable algebras need not be simple. For instance, the polynomial
algebra k[v] (from §1.2.3) is indecomposable. One way to see this is to use
Figure 1.1 and Exercise 1.15(d), or by using Proposition 1.17. On the other
hand, k[v] has proper ideals, e.g., (v). So, k[v] is not a simple algebra.

Example 1.34. Matrix algebras Matn(k) (from §1.2.1) are simple. To see this, recall
the elementary matrices Ek,`, and take a nonzero ideal I of Matn(k). Then, I contains
a matrix X := (ci, j), with an entry cp,q , 0 for some indices p, q. Now,

Ek,` =
1

cp,q
Ek,p X Eq,`

is contained in I, for each k, `. Thus, I =Matn(k).

We will show in §1.5.3 that matrix algebras Matn(k) are the only finite-
dimensional simple algebras. Moreover, for a division algebra D, we have that a
matrix algebra Matn(D) is simple; see Exercise 1.33.

Now consider the following result about commutative, simple algebras.

Proposition 1.35. Let C be a nonzero commutative algebra. Then, C is simple if and
only if C is a field. In this case, C is finite-dimensional if and only if C � k.

Proof. First, note that fields are commutative and simple. Conversely, suppose
that C is a commutative simple algebra. Let x be a nonzero element of C. Then,
the nonzero ideal generated by x must be equal to C, since C is simple. Now there
exists a nonzero element y of C such that xy = 1C . Since C is commutative, we also
have that yx = 1C . Thus, x is invertible, and C is a field.

Further, if C is finite-dimensional, then C is a finite field extension of k, and thus
(using field theory), C is algebraic over k. Since k is assumed to be algebraically
closed, we get that C � k. Conversely, k is a finite-dimensional simple algebra. ⇤

§1.5.3. Classification of simple algebras

Our next goal is to classify finite-dimensional simple algebras. Consider the
important lemma below.

Lemma 1.36. The only finite-dimensional division algebra D (over k) is k.

Proof. Take an element x 2 D. Since D is finite-dimensional, there exists some
minimal n 2 N such that 1D = x

0, x = x
1, x

2, . . . , xn are k-linearly dependent. In
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this case, p(x) := x
n + �n�1x

n�1 + · · · + �1x + �0 = 0, for some scalars �i 2 k. This
polynomial has a root � in k because k is assumed to be algebraically closed. Now
p(x) = (x � �)q(x) = 0, and by the minimality of n, we get that q(x) , 0. Since
division algebras are domains, we have that x = � 2 k. Thus, D = k. ⇤

Next, we present a classification result for finite-dimensional simple algebras;
see Section 71 of Cartan [1898] (for k = C) and Theorem 21 of Wedderburn [1908],
which builds on Satz 30 of Molien [1892].

Theorem 1.37 (Cartan-Wedderburn Theorem). Take a finite-dimensional algebra A.
Then, A is simple if and only if A �Matn(k), for some n 2 N.

Proof. First, if A is isomorphic to Matn(k), then A is simple by Example 1.34.
Conversely, assume that A is a finite-dimensional simple algebra. Then, there

exists a minimal left ideal I of A since A is finite-dimensional. Now I = Ax for
some nonzero x 2 A. On the other hand, the A-bimodule AxA is equal to A since A

is simple. So,
A(Areg) =

P
a2A Ia,

for left ideals Ia := Axa of A. Note that there is a left A-module epimorphism
I ! Ia given by x 7! xa. Since I is a simple left A-module [Lemma 1.32(a)], each Ia

is either 0 or isomorphic to I. Hence,

A(Areg) �
P

a2S I,

for a subset S of A. Further, this sum is direct by Lemma 1.30, and finite as A(Areg)
is finitely generated by 1A. Therefore,

A(Areg) � I
�n (1.38)

as left A-modules, for some n 2 N. We then obtain the algebra isomorphisms:

A
op � EndA-mod(A(Areg)) � EndA-mod(I�n) � Matn

�EndA-mod(I)
�
.

The first and last isomorphisms hold by Exercise 1.26(a,d). Apply Schur’s Lemma
[Proposition 1.28] to get that EndA-mod(I) is a division algebra. We then apply
Lemma 1.36 to get that EndA-mod(I) � k, since A (and thus EndA-mod(I)) is finite-
dimensional. Now by Exercise 1.33(a), we have that as algebras:

A � Matn(k)op � Matn(k). ⇤

Remark 1.39. There is no known analogue of the Cartan-Wedderburn Theorem
for infinite-dimensional algebras. For instance, the Weyl algebras An(k) from
Example 1.10 are simple by the work of Hirsch [1937], and are not isomorphic
to a matrix algebra. In general, classification problems in infinite settings are too
tough to pursue without imposing strong hypotheses on the structures of interest.
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§1.6. Semisimple algebras

Here, we study semisimple algebras, which are generalizations of simple algebras
(see §1.5) in the finite-dimensional case. We will present a version of the Cartan-
Wedderburn Theorem [Theorem 1.37] for these algebras below. The reader may
wish to view Figure 1.2 in §1.8 for a preview of the results for semisimple algebras;
some details are deferred to Exercises 1.33 and 1.35.

Given an algebra A, we say that a left A-module V is semisimple if it is the sum
of simple left A-modules; this sum is direct by Lemma 1.30. Moreover, we say that
the algebra A is semisimple if the regular module A(Areg) is semisimple; else, we
call A nonsemisimple.

There are several characterizations of semisimple algebras in the literature, and
the one below is module-theoretic like the definition.

Lemma 1.40. An algebra A is semisimple if and only if each of its left A-modules is
semisimple.

Proof. The reverse direction is clear. For the forward direction, note that any left
A-module M has a set of generators {mi}i2I that is not necessarily finite. Now there
is a surjective A-module homomorphism:

A
�I ! M, (ai)i2I 7!

P
i2I(ai . mi).

Since the direct sum of semisimple modules is semisimple, and a homomorphic
image of a semisimple module is semisimple (think about this), we have that M

is semisimple, as desired. ⇤

One useful feature of semisimple algebras is given as follows.

Lemma 1.41. Let A be a semisimple algebra. Then, any descending chain of left ideals of
A must stabilize.

Proof. We have that A(Areg) is a direct sum of finitely minimal left ideals {I j}rj=1

of A due to Lemma 1.32(b) and due to A(Areg) being finitely generated by 1A. Since,
for each j, each chain of left A-submodules of I j stabilizes due to the minimality
of I j, we then get the result for A(Areg). ⇤

An algebra A is called left Artinian if any descending chain of left ideals of A

stabilizes; thus, we have shown that semisimple algebras are left Artinian. On the
other hand, an algebra A is left Noetherian if any ascending chain of left ideals
of A stabilizes. Artinian and Noetherian algebras are very important classes of
algebras in mathematics, and we will refer the reader to Goodearl and Warfield
[2004] and other references in §1.10 for further information.
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§1.6.1. Classification of semisimple algebras

Next, we turn our attention to classifying semisimple algebras. Consider the
preliminary result below.

Proposition 1.42. Let A be an algebra. Then, A is simple and semisimple if and only if
A �Matn(D) for some n 2 N and some division algebra D. ⇤

Proof. For the forward direction, we use the proof of the Cartan-Wedderburn The-
orem [Theorem 1.37]. Note that the regular module A(Areg) is (finitely) generated
by 1A as a left A-module. Next, since A is semisimple, A(Areg) �

L
n

j=1 Vj, a direct
sum of finitely many simple left A-modules, which is a direct sum of finitely many
minimal left ideals of A (see Lemma 1.32(b)). One can then argue as in the proof
of Theorem 1.37 to obtain (1.38). Then, we use the simplicity of A and follow
that argument to get that A � Matn(D) as algebras, for a division algebra D; see
Exercise 1.33(a). The backward direction holds by Exercise 1.33(b,c). ⇤

As a consequence, we obtain a family of semisimple algebras.

Corollary 1.43. Take division algebras D1, . . . ,Dr. Then,Qr

i=1 Matni
(Di) is a semisimple

algebra. In particular, Qr

i=1 Matni
(k) is a finite-dimensional semisimple algebra.

Proof. Let Ai :=Matni
(Di). Since Ai is semisimple by Proposition 1.42, we get that

the regular left module over Ai is a direct sum of minimal left ideals {Ii, j} j of Ai.
We can embed each Ii, j to identify it as an ideal of Q

r

i=1 Ai, and it remains minimal.
Therefore, the regular left module over Q

r

i=1 Ai is now
L

i, j Ii, j, which implies that
Q

r

i=1 Ai is semisimple via Lemma 1.40. ⇤

We now present the full classification of semisimple algebras, which is due to
Theorem 22 of Wedderburn [1908] in the finite-dimensional case, and the work of
Artin [1927] extending Wedderburn’s result to the infinite-dimensional case while
assuming the Artinian and Noetherian conditions. Works by Noether [1929] and
Hopkins [1939] were then applied to remove the chain conditions in the initial
hypotheses. This yields the result below.

Theorem 1.44 (Artin-Wedderburn Theorem). Let A be an algebra. Then, A is
semisimple if and only if

A �
Q

r

i=1 Matni
(Di),

for some unique choice of r, n1, . . . , nr 2 N and division algebras D1, . . . ,Dr. In this case,
A is finite-dimensional if and only if A �

Q
r

i=1 Matni
(k).

Proof. The algebra Q
r

i=1 Matni
(Di) is semisimple by Corollary 1.43. Conversely, if

A is semisimple, then A(Areg) is a direct sum of minimal left ideals {I j} j2J of A, and
|J| < 1 since the regular module is finitely generated by 1A. In this case,

A(Areg) �
L

r

j=1(I�n j

j
),
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where {I j} j are pairwise non-isomorphic left A-modules. Now as in the proof of
Theorem 1.37, we obtain that

A
op � EndA-mod(A(Areg)) � EndA-mod(

L
r

j=1(I�n j

j
)) �

Q
r

j=1 Matn j

⇣
EndA-mod(I j)

⌘
.

The first and last isomorphism follows from Exercise 1.26 and Schur’s Lemma
[Proposition 1.28]. Now apply Schur’s Lemma again and Exercise 1.33(a) to
conclude that A is of the desired form. We leave it to the reader to verify the
uniqueness statement via the Jordan-Hölder Theorem [Theorem 1.29]. Lastly, we
apply Lemma 1.36 to yield the result for the finite-dimensional case. ⇤

We refer to the values {r; n1, . . . , nr} in the decomposition of A above as the
Artin-Wedderburn parameters of A.

Next, note the following consequence of the Cartan-Wedderburn Theorem and
the Artin-Wedderburn Theorem [Theorems 1.37 and 1.44].

Corollary 1.45. Finite-dimensional simple algebras are semisimple. ⇤

Remark 1.46. (a) However, finite-dimensional semisimple algebras are not nec-
essarily simple; e.g., consider the direct product of fields, k ⇥ k.

(b) Also, infinite-dimensional simple algebras need not be semisimple. Namely,
the Weyl algebra An(k) from Example 1.10 is simple (see Remark 1.39), but is
not semisimple. To see why A := An(k) is not semisimple, consider the infinite
chain A � Av1 � Av

2
1 � Av

3
1 � · · · of left ideals of A. Since this chain does not

stabilize, Lemma 1.41 yields the desired result.

Finally, we point out a special case of the Artin-Wedderburn Theorem, namely
for the group algebras kG from §1.2.6; see §1.3.4 on modules over kG.

Theorem 1.47 (Maschke’s Theorem). Let G be a group. Then, a group algebra kG is
semisimple precisely when G is finite. ⇤

This vital result is due to the work of Maschke [1899], predating the Artin-
Wedderburn Theorem. We refer the reader to textbooks on (group) representation
theory for the proof; see, e.g., Theorem 8.1 of James and Liebeck [2001] where
k = C and G is assumed to be finite, or Theorem 3.4.1 of Lorenz [2018] for the
most general case with no assumptions on k.

§1.6.2. Modules over semisimple algebras

Let us now show that indecomposability is the same as simplicity for modules
over semisimple algebras; see Remark 1.27.

To do so,we say that a left A-module V is completely reducible if V is isomorphic
to a direct sum of simple left A-submodules.
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Proposition 1.48. An algebra A is semisimple if and only if any left A-module is
completely reducible. In this case, an indecomposable left A-module must be simple.

Proof. Suppose that A is semisimple. Then, any left A-module V is of the form
P

i2I Vi, for some left A-submodules Vi generated by one element. Such modules
Vi are homomorphic images of the regular left module A(Areg), where 1A maps to
the generator of Vi. Now V =

P
i2I Vi is the homomorphic image of a direct sum

of simple left A-modules by the semisimplicity of A and by Lemma 1.30. Since
homomorphic images of semisimple modules are semisimple, the forward direc-
tion holds. Conversely, if the left regular module over A is completely reducible,
then A is semisimple by definition.

Lastly, if a left A-module V is not simple, then there exists a proper left
A-submodule W of V . Now by Lemma 1.30, there exists a left A-submodule
X of V such that V = W � X. Thus, V is not indecomposable. ⇤

Remark 1.49. If A is an algebra that has an indecomposable left A-module that is
not simple, then by the result above, A is a nonsemisimple algebra. For instance,
we can use this to show that the polynomial algebra k[v] is nonsemisimple; see
Remark 1.27.

Semisimple algebras have finitely many simple modules, up to isomorphism.
This result follows from Lemma 1.32 and the proofs of Theorems 1.37 and 1.44.

Proposition 1.50. Take a semisimple algebra A with Artin-Wedderburn parameters
{r; n1, . . . , nr}. Then, A has r simple left A-modules, V1, . . . ,Vr, up to isomorphism, with
dimkVi = ni, for i = 1, . . . , r, up to reordering. ⇤

Example 1.51. Take A :=Matn(k). Then, A has precisely one simple left A-module
V , up to isomorphism, and V has dimension n. Here, V is isomorphic to the left
ideal of matrices, {(ci, j) 2Matn(k) | ci, j = 0 for j , 1}.

See Exercises 1.30, 1.31, and 1.32 for the commutative case and more practice.

§1.7. Separable algebras

Here, we discuss separable algebras, which are algebraic versions of separable
field extensions in field theory. We will see that these algebras are the same as
finite-dimensional semisimple algebras (due to our assumptions on the ground
field). However, separable algebras have an advantage over semisimple algebras in
that they can be defined using compositions of morphisms, i.e., with commutative
diagrams. Defining algebraic structures via commutative diagrams will play a
role throughout the categorical chapters in this book.
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Take an algebra (A,m, u), and consider the linear map:

µ : A ⌦ A
op ! A, a ⌦ b 7! m(a ⌦ b).

Note that µ is an A-bimodule map, with .A = m = /A, and .A⌦Aop = m ⌦ idA, and
/A⌦Aop = idA ⌦ m.

We call an algebra (A,m, u) separable if µ has a right inverse � : A! A ⌦ A
op as

A-bimodules, i.e., if the following diagrams commute.

A
�
//

id
$$

A ⌦ A
op

µ
✏✏

A ⌦ A
op ⌦ A

id ⌦ m

✏✏

A ⌦ A
� ⌦ id
oo

id ⌦ �
//

m

✏✏

A ⌦ A ⌦ A
op

m ⌦ id
✏✏

A A ⌦ A
op

A
�

oo

�
// A ⌦ A

op

(1.52)

Proposition 1.53. We have that an algebra A is separable if and only if there exists an
element e

A := e
1 ⌦ e

2 2 A ⌦ A
op such that

e
1
e

2 = 1A and ae
1 ⌦ e

2 = e
1 ⌦ e

2
a, 8a 2 A.

Here, we are using sumless notation for elements in A ⌦ A
op. In this case, the element e is

idempotent, and we call it a separability idempotent for A.

Proof. Take a right inverse � of µ as above, and consider the notation:

�(1A) := e
1 ⌦ e

2 2 A ⌦ A
op.

We also identify this element with the morphism below:

e
A := � � u : k! A ⌦ A

op, 1k 7! e
1 ⌦ e

2.

The first commutative diagram in (1.52) implies the equation e
1
e

2 = 1A. Also, the
unit axiom and the second commutative diagram in (1.52) implies that

ae
1 ⌦ e

2 = a�(1A) (⇤)
= �(a1A) = �(a) = �(1Aa) = �(1A)a = e

1 ⌦ e
2
a

for all a 2 A. In particular for step (⇤), we have that

�(a1A) = �m(a ⌦ 1A) = (m ⌦ id)(id ⌦ �)(a ⌦ 1A) = (m ⌦ id)(a ⌦ e
1 ⌦ e

2) = a�(1A).

Moreover, the element e 2 A ⌦ A
op is idempotent: for a copy eA of e

A, we get:

(eA)2 = e
A
eA = (e1 ⌦ e

2)(e1 ⌦ e
2) = e

1
e

1 ⌦ e
2
e

2 = e
1 ⌦ e

2
e

2
e

1 = e
1 ⌦ e

2 = e
A.

Here, the third equation holds by multiplication in A ⌦ A
op (see Proposition 1.19),

the fourth equation holds by the second separability axiom, and the fifth equation
holds by the first separability axiom applied in A

op (see Exercise 1.34(b)).
We leave it to the reader to verify the converse. ⇤
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Next, we provide some examples of separable algebras; see Exercise 1.34(a).

Example 1.54. Recall the matrix algebras Matn(k) and the elementary matrices
Ek,` from §1.2.1. Then, (eMatn(k))k :=

P
n

`=1 E`,k ⌦ Ek,` is a separability idempotent, for
each k = 1, . . . , n. So, separability idempotents are not unique.

Example 1.55. Recall the group algebra kG from §1.2.6. If G is finite, then the
element e

kG := 1
|G|

P
g2G g ⌦ g

�1 is a separability idempotent for kG.

Moreover, the name for separable algebras stems from the example below.

Example 1.56. Let F be an arbitrary field and consider a finite field extension K

over F. Then, we have that the field extension K/F is separable if and only if the
F-algebra K is separable. See Lemma 10.7b from Pierce [1982].

We will now discuss why there is no difference between finite-dimensional
semisimple algebras studied in §1.6 and separable algebras studied here.

Proposition 1.57. An algebra A is separable if and only if A is semisimple and finite-
dimensional.

Proof. For the forward direction, see Corollary 10.3 and Corollary 10.4b of Pierce
[1982]. (Note that this direction holds over an arbitrary field.)

For the reverse direction, we can apply the Artin-Wedderburn theorem to get
that A is isomorphic to a finite direct product of matrix algebras over k. Now
Matn(k) is separable as shown in Example 1.54, and a finite direct product of
separable algebras is separable by Exercise 1.34(b). ⇤

We will explore generalizations of algebras, including separable algebras, in
the categorical setting later in Chapter 4. There, the convention for a separable
algebra is slightly modified due to the following remark.

Remark 1.58. Notice that the opposite multiplication in A⌦A
op is only used when

showing that e
A is an idempotent element. However, the idempotent condition

is not used later in the categorical version of a separable algebra. As a result, the
map µ is later replaced with m, while still requiring (1.52).
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§1.8. Summary

Recall that our ground field k is algebraically closed and has characteristic 0
throughout the book. The main structure of interest in this chapter is an algebra
over a field k, which is a combination of a unital ring and a k-vector space. We
discussed ways that the structure of an algebra gets translated to a collection of
linear maps (or matrices) via representations and modules. We also presented
various constructions of algebras and modules, namely direct products, sums,
direct sums, tensor products, Homs, and duals.

We then investigated classification results for various types of algebras, i.e.,
those that are simple, semisimple, and separable, along with (counter-)examples.
This is captured by Figure 1.2 below. Exercise 1.35 asks the reader to examine this
figure in detail and to derive more (counter-)examples that fit into the diagram.

Commutative

Finite-dimensional

Semisimple

� k

�
Q

r

i=1 k

� K

�
Q

r

i=1 Ki

� Matn(D)

�
Q

r

i=1 Matni
(k)

�
Q

r

i=1 Matni
(Di)

Simple

Separable

An(k) Weyl algebra
T (V) tensor algebra

for dimkV > 1

S (V) symm. algebra

⇤(V) exterior algebra
for dimkV = 1

kG group algebra
for G finite

kQ path algebra
for Q : • �! •

�Matn(k)

Figure 1.2: Classification results for algebras over k, with (counter-)examples. Here, n, ni, r

are positive integers; K, Ki are fields over k; and D, Di are division algebras over k.
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§1.9. Modern applications

We now illustrate how various notions that were introduced in this chapter on
algebras over a field are used in modern mathematics. A full understanding of
the resources here is not expected. Instead, we aim to put the chapter’s material
into context by offering videos and content to casually explore.

The Artin–Wedderburn Theorem has been used in several fields, such as:

⇤ Cryptography, see, e.g., Kuz�min et al. [2015];

⇤ Languages and automata, see, e.g., Almeida and Rodaro [2016];

⇤ Linear codes, see, e.g., Olteanu and Van Gelder [2015];

⇤ Network synchronization, see, e.g., Zhang and Motter [2020];

⇤ Noncommutative geometry, see, e.g., Marcolli and van Suĳlekom [2014];

⇤ Semidefinite programming, see, e.g., Vallentin [2009], Burgdorf et al. [2013];

⇤ Symbolic dynamics, see, e.g., Kwapisz [2000].

The importance of the polynomial algebras in algebraic geometry is highlighted
in the following video. An excellent introductory text on this field, Smith et al.
[2000], is also authored by the speaker of this series.

Karen Smith’s 2022 Joint Mathematics Meetings AMS Colloquium Lecture on
"Understanding and Measuring Singularities in Algebraic Geometry"

https://youtu.be/k6sk9_6EzuQ

The representation theory of path algebras has been studied by Chindris et al.
[2015] with geometric and categorical techniques, and a clear lecture on this article
by the second author is available below.

Ryan Kinser’s 2012 Worldwide Center of Mathematics research lecture on
"Module varieties with dense orbits in every component"

https://youtu.be/BnVXT64JSx0

The role of the Weyl algebras in quantum mechanics is discussed in Section 3
of the expository article by Walton [2019], and a lecture on this material can be
found at the link below (starting at 15:08).

C. Walton’s 2021 Joint Mathematics Meetings NAM Claytor-Woodard Lecture on
"An Invitation to Noncommutative Algebra"

https://youtu.be/G2ZX0ZqOBxM

Weyl algebras are also examples of algebras of differential operators; see
Coutinho [1995] for a user-friendly introduction to this area of research.
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§1.10. References for further exploration

• A great historical account of the development of algebras over a field before
1927 is provided by LaDuke [1983].

• The manuscript by Dickson [1923] is compelling as it established numerous
notions about algebras that are still used 100 years later in ring theory, in
representation theory, and in algebraic number theory.

• The textbook by Aluffi [2009] provides an insightful discussion of algebraic
structures with a view towards Category Theory. It discusses why the categories
of groups and of rings are not well-behaved, and why the categories of abelian
groups, of vector spaces, and of modules are preferable, for instance.

• The textbook by Assem et al. [2006] is recommended to learn about path algebras
kQ (see §1.2.5), their quotient algebras, and their module theory. Representations
of quivers Q are also discussed.

• The textbook by James and Liebeck [2001] is a friendly resource to learn about
the representation theory of groups G, and equivalently, of group algebras kG.
It assumes that G is finite, and that k = R or C.

• A holistic investigation of representation theory, including that of algebras, of
groups, and of other algebraic structures such as Lie algebras and Hopf algebras,
is provided in the textbook by Lorenz [2018].

• The textbooks by Pierce [1982] and Goodearl and Warfield [2004] are excellent
introductory resources for the classical theory of rings, of (associative) algebras,
and of their modules.

• The Database of Ring Theory (https://ringtheory.herokuapp.com/) is a help-
ful repository for examples of rings that satisfy certain properties. It also main-
tains a list of useful theorems and websites in ring theory.

§1.11. Exercises

1.1 [Open-ended] Recall the notion of structure versus property in §1.1.1.

(a) List various properties of groups.
(b) Describe structures that one could impose on a certain group G.
(c) Repeat parts (a) and (b) for rings, vector spaces, and algebras, after

reading §1.1.2, §1.1.3, and §1.1.5, respectively.
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1.2 Recall the chat about universal property in §1.1.4iii. Let X be a gadget, and
let Univ(X) and Univ(X) be universal structures attached to X, say of Form I.
Prove that there is a structure isomorphism between Univ(X) and Univ(X).

Hint. Use commutative diagrams as described in §1.1.4iii, the feature of
uniqueness in the definition of a universal property, and the notion of
isomorphism that requires the existence of mutually inverse morphisms.

1.3 Recall direct sums and tensor products of vector spaces from §1.1.4i,iii. Let
U, V , W be vector spaces, and consider k as a vector space over itself. Prove
the isomorphisms below using the universal property of ⌦ := ⌦k.

(a) k ⌦ V � V and V ⌦ k � V .
(b) (U ⌦ V) ⌦W � U ⌦ (V ⌦W).
(c) U ⌦ (V �W) � (U ⌦ V) � (U ⌦W).

An aside. An analogue to part (c) holds if we replace V �W with
L

i2I
Vi.

1.4 Recall tensor products, Hom spaces, and duals of vector spaces from
§1.1.4iii,iv. Let V and W be vector spaces.

(a) Show that the following linear map is an embedding:

W ⌦ V
⇤ ! Homk(V,W), w ⌦ f 7! [v 7! f (v)w].

(b) Prove that the linear map in part (a) is an isomorphism when V and W

are finite-dimensional.
(c) Verify that W

⇤ ⌦ V
⇤ � (V ⌦W)⇤ when V and W are finite-dimensional.

(d) Consider the double dual V
⇤⇤ of V . Show that the linear map

V ! V
⇤⇤, v 7! [ f 7! f (v)].

is an embedding, which is an isomorphism when dimkV < 1.

1.5 Prove that the notions of an algebra given in Definitions 1.6 and 1.7 in §1.1.5
are equivalent. Namely, show that there is a bĳection between the sets of
algebras in Definitions 1.6 and of algebras in Definitions 1.7.

1.6 Let S (V) be a symmetric algebra of a vector space V from §1.2.3.

(a) Show that if V has basis {v1, . . . , vn}, then S (V) is isomorphic to the
polynomial algebra k[v1, . . . , vn], as algebras.

(b) If dimkV < 1, is S (V) finite-dimensional? If so, what is dimkS (V)?
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1.7 Consider the exterior algebra ⇤(V) of a vector space V from §1.2.4.

(a) Show that if V has basis {v1, . . . , vn}, then as algebras,

⇤(V) � khv1, . . . , vni/(viv j + v jvi)1i jn.

(b) If dimkV < 1, is ⇤(V) finite-dimensional? If so, what is dimk⇤(V)?

1.8 Recall Example 1.9 from §1.2.7. Verify that free algebras, (q-)polynomial
algebras, (q-)exterior algebras, and path algebras are all graded algebras. For
each of these algebras A, determine if the homogeneous parts Ai are finite-
dimensional. If so, compute the closed form of the generating function,

HA(t) :=
P

i2N (dimkAi) t
i.

That is, express HA(t) as a fraction. This is called the Hilbert series of A.

1.9 Recall Example 1.10 on the Weyl algebras An(k) from §1.2.7. Prove that
gr(A1(k)) � k[v,w] as graded algebras. This shows that A1(k) is a filtered
deformation of k[v,w].

1.10 Pertaining to §1.3.1, write down the precise definition of two representations
(V, ⇢) and (V 0, ⇢0) over an algebra A being equivalent.

1.11 Recall the discussion of representations from §1.3.1. Take the symmetric
group on three letters, S3 = {e, (12), (13), (23), (123), (132)}, which can be
generated as a group by (12) and (123), and take its group algebra kS3 from
§1.2.6. Now consider the linear maps below.

⇢1 : kS3 !Mat2(k), (12) 7!
 
�1 2
0 1

!
(123) 7!

 
1 0
0 1

!

⇢2 : kS3 !Mat2(k), (12) 7!
 
�1 1
0 1

!
(123) 7!

 
0 �1
1 �1

!

⇢3 : kS3 !Mat2(k), (12) 7!
 
�1 �1
0 1

!
(123) 7!

 
�1 �1
1 0

!

Extend these maps to representations of kS3 using the operation of S3.

(a) Which of these representations ⇢ are faithful? And which of the corre-
sponding group representations ⇢|S3 : S3 ! GL2(k) are faithful?

(b) Which pairs of representations are equivalent? See Exercise 1.10.
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1.12 Given an algebra A, show that there is a bĳection between the set of repre-
sentations of A (see §1.3.1) and the set of left A-modules (see §1.3.2).

1.13 Building on Exercise 1.12 and §1.3.4: Given a group G, show that there are
bĳective correspondences between the following sets.

(a) Left G-modules. (c) Representations of kG.

(b) Representations of G. (d) Left kG-modules.

Hint. Use the universal property of kG to relate (b) and (c).

1.14 Recall the discussion of left modules over a group G in §1.3.4.

(a) One can weaken the definition of a left G-module by imposing that G

acts on an abelian group M from the left. Write down such a definition.
This is also referred to as a left G-module in the literature.

(b) One can further weaken the definition of a left G-module in part (a)
by imposing that G acts on a set X from the left. Write down such a
definition. This is often referred to as a left G-set.

(c) Now take a ring R, and deduce of the definitions of a left R-module M

and a right R-module M, for M an abelian group.

(d) Show that M is an abelian group (resp., is a k-vector space) if and only
if M is a left Z-module (resp., is a left k-module) as in part (c).

1.15 Consider the products and sums of modules and algebras from §1.4.1.

(a) Verify Proposition 1.14 on direct products and sums of modules.

(b) Verify Proposition 1.15 on direct products and sums of algebras.

(c) Verify Proposition 1.17 on indecomposable algebras.

(d) Take a finite quiver Q. Show that a path algebra kQ is an indecomposable
algebra if and only if the quiver Q is connected.

(e) Verify Proposition 1.22 on indecomposable modules from §1.4.3ii.

(f) When is the regular left kQ-module (kQ)reg indecomposable?

1.16 Recall the tensor products of (bi)modules from §1.4.2i,iii.

(a) Verify that the tensor product ⌦ of modules B1 V and WB2 with action
maps in (1.18) is a (B1, B2)-bimodule.

(b) Show that (B1 VA) ⌦A (AWB2 ) is a (B1, B2)-bimodule.
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1.17 Consider the notion of a left module over a ring R in Exercise 1.14(c).

(a) Write down the universal property of the tensor product over R, namely
M ⌦R N, of a right R-module M and a left R-module N.

(b) When R is commutative,upgrade part (a) to derive the universalproperty
of the tensor product over R of two R-modules M and N.

(c) Simplify the following tensor products over the rings Z and Q, where
the action maps below are all given by multiplication.

(i) Q ⌦Z Z. (ii) Q ⌦Z Q. (iii) Q ⌦Q Q. (iv) Q ⌦Z Q/Z.

1.18 Recall the tensor products of (bi)modules from §1.4.2iii. For an algebra A,
let U, V , W be A-bimodules, and take Areg to be the regular A-bimodule.

(a) Verify that Areg ⌦A V � V and V ⌦A Areg � V as A-bimodules.
(b) Verify that (U ⌦A V) ⌦A W � U ⌦A (V ⌦A W) as A-bimodules.

1.19 Recall the tensor product construction from §1.4.2iii. Take the 2-dimensional
commutative k-algebra: A := k[x]/(x

2). Here, we show that if f : V ! W is
an injective A-module morphism, then for an A-module X, we may not have
that the linear map idX ⌦A f : X ⌦A V ! X ⌦A W is injective.

(a) Take the 1-dimensional A-module V = kv with 1A . v = v and x . v = 0.
Show that the k-linear map f : V ! Areg defined by f (v) = x is an
injective A-module morphism.

(b) Show that V ⌦A V � V as A-modules.
(c) Verify that the A-module morphism idV ⌦A f : V ⌦A V ! V ⌦A Areg is not

injective.

1.20 In contrast to the previous exercise, the operation (X ⌦A �) from §1.4.2iii
preserves surjective morphisms. Verify this as follows.

(a) Take a surjective left A-module morphism f : V ! W, and a right A-
module X, and prove that idX ⌦A f : X ⌦A V ! X ⌦A W is a surjective
k-linear map.

(b) Likewise, for any left A-module X, show that (�⌦A X) preserves surjective
k-linear maps.

1.21 Take a path algebra kQ of a quiver Q = (Q0,Q1, s, t) from §1.2.5. Show that
kQ is isomorphic to a bimodule tensor algebra TA(V) from §1.4.2iv, for a
choice of an algebra A and an A-bimodule V .
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1.22 For the tensor product of algebras in §1.4.2v, verify Proposition 1.19. Use
commutative diagrams for fun.

1.23 Regarding §1.4.2v and §1.2.1, show that Matn(k) ⌦Matm(k) � Matnm(k) as
algebras. Also show that Matn(k) ⌦ A �Matn(A), for any algebra A.

1.24 Recall the tensor product and the free product of algebras in §1.4.2v,vi, along
with free/tensor algebras, polynomial/symmetric algebras, and presenta-
tions of algebras from §§1.2.2, 1.2.3.

(a) Take the following finitely presented algebras:

A := khv1, . . . , vni/( f1, . . . , fr), B := khw1, . . . ,wmi/(g1, . . . , gs).

Express A~ B and A ⌦ B as quotient algebras of khv1, . . . , vn,w1, . . . ,wmi.
(b) For finite-dimensional vector spaces V and W, verify the following alge-

bra isomorphism statements:

(i) S (V) ⌦ S (W) � S (V �W); (iii) T (V) ⌦ T (W) � T (V �W);

(ii) S (V)~ S (W) � S (V �W); (iv) T (V)~ T (W) � T (V �W).

1.25 Recall the Hom space of (bi)modules discussed in §1.4.3i.

(a) Verify Proposition 1.20 and Corollary 1.21.
(b) Use part (a) to write down and prove a bimodule upgrade of the Tensor-

Hom adjunction presented in §1.1.4iv.

1.26 Recall the left A-module Hom space andendomorphism algebra from §1.4.3ii.
Let V,V1, . . . ,Vr be left A-modules, and verify the items below.

(a) A
op � EndA-mod(Areg) and A � Endmod-A(Areg) as algebras.

(b) Proposition 1.17 is a special case of Proposition 1.22.
(c) EndA-mod(

L
r

i=1 Vi) �
Q

r

i, j=1 HomA-mod(Vi,Vj) as vector spaces.
(d) EndA-mod(V�n) � Matn

�EndA-mod(V)
� as algebras.

1.27 Recall the restriction and (co)induction constructions in §1.4.4.

(a) Verify the module isomorphism (1.24).
(b) Show that the vector spaces in (1.25) and (1.26) are left B-modules.
(c) Now interpret Tensor-Hom adjunction of Exercise 1.25(b) in terms of

restricted and (co)induced modules. The resulting vector space isomor-
phisms are known as Frobenius reciprocity.
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1.28 [Open-ended] Recall the various constructions of algebras using the tensor
product and Hom operations in §§1.4.2 and 1.4.3.

(a) Are there additional constructions of algebras using the tensor product
and Hom operations beyond what is presented in §§1.4.2, 1.4.3?

(b) Explore the constructions of algebras in §§1.4.2 and 1.4.3, along with
any results from part (a), for the path algebras kQ in §1.2.5. Do the
constructions depend on operations of the underlying quivers Q?

(c) Explore the constructions of algebras in §§1.4.2 and 1.4.3, along with
any results from part (a), for the group algebras kG in §1.2.6. Do the
constructions depend on operations of the groups G?

1.29 To accompany the notion of a simple module over an algebra A as in §1.5.1,
we examine irreducible representations of a group G here.

(a) Use the notion of a left A-submodule in §1.3.2 to write down the defini-
tion of a left G-submodule of a left G-module (V, .) as in §1.3.4.

(b) Use the correspondence between left G-modules and representations of
G in Exercise 1.13 to write down the definition of a subrepresentation
of a representation ⇡V : G ! GL(V) as in §1.3.4.

(c) Given that simple A-modules as in §1.5.1 correspond to irreducible
representations of A, write down the definition of an irreducible repre-
sentation of G.

(d) Define a completely reducible representation of G (see §1.6.2).
(e) Take the representations ⇡1, ⇡2 ⇡3 of S3 given by ⇢1, ⇢2, ⇢3 in Exercise 1.11,

respectively, without extending linearly to kS3.

(i) Which of ⇡1, ⇡2, ⇡3 are irreducible representations of S3?
(ii) Which of ⇡1, ⇡2, ⇡3 are completely reducible?

1.30 Recall the material about modules over semisimple algebras from §1.6.2.

(a) Show that a simple module over a commutative semisimple algebra
must be 1-dimensional (as k-vector space).

(b) Verify that an irreducible representation of an abelian group (as in
Exercise 1.29) must be 1-dimensional.

1.31 Recall the material about (modules over) semisimple algebras from §1.6.

(a) Show that the 2-dimensional algebra k[x]/(x
2 � 1) is semisimple.

(b) Show that the 2-dimensional algebra k[x]/(x
2) is nonsemisimple.
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1.32 Here, we examine the representation theory of groups (resp., of group
algebras) outside of the setting for Maschke’s Theorem [Theorem 1.47]
(resp., for Artin-Wedderburn’s Theorem [Theorem 1.44]).

(a) Consider the additive group Z, and show that it has infinitely many
inequivalent irreducible representations over the field C.

(b) Show that the assignment

⇡ : Z! GL2(C), n 7!
 

1 n

0 1

!

is a representation of Z that is not completely reducible.
(c) Now consider the finite field F2 of order 2, and the cyclic group C2 = hgi

of order 2. Show that the only irreducible representation C2 over F2 is
the trivial representation (where e, g maps to 1F2 ).

(d) Construct a representation ⇡ : C2 ! GL2(F2) that is not completely
reducible.

1.33 Let D be a division algebra, and consider the matrix algebra Matn(D).

(a) Show that Matn(D)op �Matn(D) as algebras.
(b) Verify that Matn(D) is simple (see §1.5.2).
(c) Verify that Matn(D) is semisimple (see §1.6).

1.34 Recall the discussion of separable algebras in §1.7. Verify the following:

(a) The elements (eMatn(k))k for Matn(k), and e
kG for kG, in Examples 1.54

and 1.55, respectively, are separability idempotents.
(b) If A and B are separable algebras, then so are A

op, A ⇥ B, and A ⌦ B.

1.35 [Open-ended] Consider Figure 1.2 in §1.8

(a) Verify the inclusions and (counter-)examples in Figure 1.2.
(b) Derive more (counter-)examples for this figure by using the examples

of algebras over k discussed in §1.2.
(c) Discover further (counter-)examples for the figure by searching for ex-

amples of algebras over k in the literature, not included in §1.2.
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History

A category is a system of objects and structure-preserving maps between them,
which satisfy certain predictable axioms. Categories, along with functors between
categories and equivalences of categories, were introduced in the landmark work
by Eilenberg and MacLane [1945] for applications in algebraic topology. The
field took a substantial leap forward due to the work of Buchsbaum [1955] and
Grothendieck [1957] in their introduction of abelian categories, especially in
algebraic geometry in the latter work. Kan [1958] then developed the notion
of adjunction for functors to provide a framework for ubiquitous concepts in
homotopy theory and other parts of mathematics. The work of Lawvere [1963]
fundamentally launched category theory as a subject of independent interest.

Overview

An introduction to categories is covered in §2.1; many examples are provided.
Universal constructions and abelian categories are then discussed in §2.2. How
to move from one category to another via functors, and how two categories
are considered the same, are presented in §§2.3, 2.4. Key relationships between
functors (adjunction, representability) are the focus of §§2.5, 2.6. Next, ‘building
blocks’ in categories (indecomposability, simplicity, semisimplicity) are highlighted
in §§2.7, 2.8, and finiteness conditions are introduced in §2.9. The chapter ends
with summarizing diagrams in §2.10, modern applications in §2.11, references in
§2.12, and several exercises.

Standing hypotheses. Linear structures are over an algebraically closed
field k of characteristic 0, and algebras over k are associative and unital.
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§2.1. Categories

We define categories and present many examples, some building on material
from Chapter 1. We also define products of categories here.

§2.1.1. Categories

A category C consists of the following data.

(a) A collection of objects Ob(C) of C. Here, we write X 2 C for X 2 Ob(C).

(b) For every pair of objects X, Y 2 C, a collection of morphisms from X to Y ,
denoted by HomC(X, Y). Here, we write f : X ! Y for f 2 HomC(X, Y). (The
collection of all morphisms in C is denoted by Hom(C).)

(c) For any object X 2 C, an identity morphism idX in HomC(X, X).

(d) For each pair of morphisms f 2HomC(W, X) and g 2HomC(X, Y), a composi-
tion g f := g � f 2 HomC(W, Y). Here, we call f and g composable.

This data must satisfy the axioms below.

• (associativity) For f 2 HomC(W, X), g 2 HomC(X, Y), h 2 HomC(Y, Z), we have
that (hg) f = h(g f ) as morphisms from W to Z in C.

• (unitality) For f 2HomC(W, X) and g 2HomC(X, Y), we have that idX f = f in
HomC(W, X), and that g idX = g in HomC(X, Y).

Collection versus set, and the importance of morphisms. Notice that
we use the term collection instead of set when describing the objects and
morphisms ofa categoryC. IfHom(C) is a set, then we refer toC as small; else,
C is large. Also, when C is small, Ob(C) is a set because objects are in bĳective
correspondence with the identity morphisms in C. So, the morphisms of a
category are more intriguing than its objects. For instance, we could have
that HomC(X, Y) = ?, for some X, Y 2 C.

A notion weaker than smallness is to require that HomC(X, Y) is a set for
each pair X, Y 2 C. In this case, C is locally small. Most of the categories
here will be locally small, so we will often forgo set-theoretic subtleties.

If f 2 HomC(X, Y), then X (resp., Y) is the domain (resp., codomain) of f .

To compare objects X and Y in a category C, let us consider certain types of
morphisms in C.
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We say that g : X ! Y 2 C is a mono, or is monic, if for any f , f
0 2HomC(W, X)

with g f = g f
0, we get that f = f

0. In other words, monos are left cancellative. If
g : X ! Y is monic, then we refer to X := (X, g) as a subobject of Y .

We say that g : X ! Y 2 C is an epi, or is epic, if for any h, h0 2 HomC(Y, Z)
with hg = h

0
g, we get that h = h

0. In other words, epis are right cancellative. If
g : X ! Y is epic, then we refer to Y := (Y, g) as a quotient object of X.

We also call g : X ! Y 2 C an iso if there exists a morphism g
0 2 HomC(Y, X) if

g
0
g = idX and gg

0 = idY . In this case, we write g
�1 for g

0, and write X � Y .

One might expect that a morphism is an iso precisely when it is both monic
and epic, but this is not true in general. (It is true in abelian categories as we will
see later in §2.2.2.) See Exercises 2.1 and 2.2 for more details.

Mono/ epi vs. monomorphism/ epimorphism. Here, we do not use
monomorphism (resp., epimorphism) to refer to a morphism in a category
that is a mono (resp., an epi). Indeed, the former terminology (e.g., in Chap-
ter 1 material) does not always match with the categorical notions here. For
instance, there is a non-surjective ring homomorphism that is epic in the
category of rings defined later; see Exercise 2.2(c).

Next, we turn our attention to subcategories. Given a category C, we have that
a subcategory D of C consists of the following data.

(a) A subcollection Ob(D) of Ob(C).

(b) A subcollection Hom(D) of Hom(C).

We also require that the following conditions hold.

• If X 2 D, then idX 2 Hom(D).

• If f 2 Hom(D), then the domain and codomain of f are objects of D.

• If f , g 2 Hom(D) with codomain( f ) = domain(g), then g f 2 Hom(D).

If, further, HomC(X, Y) =HomD(X, Y) for any objects X, Y 2 D, then we say that D
is a full subcategory of C.

Sometimes it is useful to reverse the directions of morphisms in a category.
Given a category C, its opposite category C

op is a category defined by:

(a) Ob(Cop) = Ob(C);

(b) There exists f
op 2 HomCop (X, Y) if and only if there exists f 2 HomC(Y, X).

Exercise 2.3 is on verifying that Cop is indeed a category, given the data above. In
particular, monos (resp., epis) in C are epis (resp., monos) in C

op.
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§2.1.2. Examples of categories

We provide many examples of categories in terms of their collections of objects
and morphisms, but this is by no means an exhaustive list (see Exercise 2.5). Some
non-algebraic terminology below is outside the scope of this book, and will not
be defined here. Recall that we assume that all vector spaces and algebras are over
the (algebraically closed) ground field k (of characteristic 0) below.

i. Algebraic categories

These examples build on many constructions presented in Chapter 1.

• Monoid: monoidandmonoidhomomorphisms. (Thinkaboutwhat the definition
of a monoid homomorphism should be.)

• Group: groups and group homomorphisms.

• Ab: abelian groups and group homomorphisms. (Recall the discussion about
structure versus property in §1.1.1.)

• A groupoid G is a category in which all morphisms are isomorphisms. This is
a generalization of a group because if G has one object, then the morphisms are
identified with elements of a group. See Exercise 2.4.

• Ring: unital rings and unital ring homomorphisms.

• Rng: not-necessarily-unital rings and ring homomorphisms.

• ComRing: commutative unital rings and unital ring homomorphisms.

• Vec: vector spaces and linear maps.

• FdVec: finite-dimensional vector spaces and linear maps.

• Alg: algebras and algebra homomorphisms.

• ComAlg: commutative algebras and algebra homomorphisms.

• FdAlg: finite-dimensional algebras and algebra homomorphisms.

• FgAlg: finitely generated algebras and algebra homomorphisms.

• N-GrAlg: N-graded algebras and N-graded algebra homomorphisms.

• N-GrAlg: N-graded algebras and their homomorphisms, for any monoid N.

• VecN : N-graded vector spaces and N-graded linear maps, for a monoid N.

• Rep(A): representations of an algebra A and representation morphisms.
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• A-Mod (resp., Mod-A): left (resp., right) modules over algebra A and module
morphisms. In particular,

HomA-Mod(X, Y) here is HomA-mod(X, Y) in Chapter 1.

• Rep(G), G-Mod, Mod-G, for a group G, are defined likewise.

• (A, B)-Bimod: (A, B)-bimodules over algebras A and B, and bimodule morphisms.
Likewise, we can define the category A-Bimod.

• FdRep(A), A-FdMod, FdMod-A, (A, B)-FdBimod, and A-FdBimod are the finite-
dimensional version of the representation and (bi)module categories above.

• Bim: objects are algebras, and morphisms from an algebra A to an algebra B

are given by isoclasses of (A, B)-bimodules. Compositions are given by tensor
product over algebras, and the identity morphisms are the regular bimodules.

The category Ab is an example of a subcategory of Group. In fact, Ab is a full
subcategory of Group because if we take a morphism between two abelian groups
in Group, then this morphism also belongs to Ab.

But Ring is a non-full subcategory of Rng. Indeed, a morphism between two
unital rings in Rng may not be unital, and thus, may not belong to Ring.

ii. Logical and categorical categories

• ? : the empty category. It consists of no objects and no morphisms.

• Set: sets and functions. This is a large category, as there is no set of all sets.

• FinSet: finite sets and functions.

• Set⇤: sets with a fixed base point and base-point-preserving functions.

• Rel: objects are sets X, Y, Z, . . . ; morphisms are subsets RX⇥Y ⇢ X ⇥ Y ; and

S Y⇥Z � RX⇥Y := {(x, z) 2 X ⇥ Z | 9 y 2 Y with (x, y) 2 RX⇥Y , (y, z) 2 S Y⇥Z},

and idX := {(x, x) 2 X ⇥ X | x 2 X}. See Section 0.1.3 of Heunen and Vicary [2019].

• Cat: small categories and functors (to be defined in §2.3.1).

iii. Geometric and topological categories

• A↵: affine varieties and regular maps.

• Mfld: manifolds and smooth maps. One can also get subcategories by adjusting
the smoothness (or differentiability) class as desired.
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• nCob: objects are manifolds of dimension n � 1 and morphisms are cobordisms
of dimension n.

• Top: topological spaces and continuous maps.

• Top⇤: topological spaces with a fixed base point and morphisms are base-point-
preserving continuous maps.

iv. Analytic categories

• Meas: measure spaces and measurable functions.

• Hilb: Hilbert spaces and bounded linear maps.

• FdHilb: finite-dimensional Hilbert spaces and bounded linear maps.

• Ban: Banach spaces and bounded linear maps. There are variations by imposing
further hypotheses on the collection of morphisms.

v. Combinatorial categories

• Poset: partially ordered set and order-preserving functions.

• Graph: graphs and incidence-preserving functions sending vertices to vertices
and edges to edges.

• DirGraph (or Quiv): Likewise, we can define a category of directed graphs (also
known as quivers), by preserving the orientation of arrows.

vi. Amusing (non-)categories

Not all collections of objects and corresponding morphisms form categories. For
instance, Exercise 2.6 asks if the following collections of objects and morphisms
form categories.

• 80sMusic: Let the objects be persons, and let there be a morphism from Person A
to Person B if A and B both like a certain track from the 1980s.

• SharePw: Pick your favorite streaming service. Then, let the objects be persons,
and let there be a morphism from Person A to Person B if A shared a service
password for that streaming service with B.

• SameTaste: Pick your favorite food. Let the objects be persons, and let there be
a morphism from Person A to Person B if A and B both enjoy this food.
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§2.1.3. Products of categories

Here, we will construct new categories from old ones via a product. This will be
needed later to discuss when a category is (in)decomposable (see §2.2.2ii).

For categories C and C
0, the product category C⇥C0 is defined by the data below.

(a) Ob(C ⇥ C0) = {(X, X0) | X 2 C, X
0 2 C0}.

(b) HomC⇥C0 ((X, X0), (Y, Y 0)) = {(g, g0) | g 2 HomC(X, Y), g
0 2 HomC0 (X0, Y 0)}.

We have that id(X,X0) = (idX , idX0 ), for all X 2 C and X
0 2 C

0. For f 2 HomC(W, X),
f
0 2 HomC0 (W 0, X0), g 2 HomC(X, Y), g

0 2 HomC0 (X0, Y 0), we also have that

(g, g0) � ( f , f
0) = (g f , g0 f 0) 2 HomC⇥C0 ((W,W0), (Y, Y 0)).

§2.2. Universal constructions and abelian categories

In this part, we discuss some useful objects and morphisms in a category C that
are constructed via a universal property. (See the chat about universal property
in §1.1.4iii.) As usual for universal constructions, the objects below need not exist.
But if they do exist, they are unique up to iso; compare to Exercise 1.2. Then, we
introduce the notion of an abelian category, which is a category in which each of
the universal constructions discussed here exists. The reader may wish to view
Figure 2.1 in §2.10 for a preview of the terminology in this section.

§2.2.1. Universal objects and morphisms in categories

Here, we will introduce the following universal constructions: (i) initial, terminal,
and zero objects; (ii) coproducts and products of objects; (iii) pushouts and
pullbacks of morphisms; (iv) coequalizers and equalizers of morphisms; (v) zero
morphisms; and (vi) cokernels, kernels, and images of morphisms. To proceed,
take C to be an arbitrary category, and consider the following conventions.

Universal object vs. universal morphism? Or both? Universal construc-
tions in a category consist of an object Univ(X), equipped with a (collection
of) morphism(s) ↵X (or ↵0

X
). When working with these constructions, some-

times one only considers the object Univ(X), and at other times one may
just work with the morphism(s) ↵X (or ↵0

X
), but both go by the same name.

For instance, we will construct a categorical version of a kernel of a mor-
phism f : X ! Y below. This will consist of an object ker( f ) equipped with
a certain morphism given by ↵0

f
: ker( f )! X. By "the kernel of f ", we could

mean the object ker( f ), or the morphism ↵0
f
, or both.
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i. Initial, terminal, and zero objects

An object I 2 C is called initial if for every object X 2 C there exists a unique
morphism !

0X: I! X. Dually, an object T 2 C is terminal if for every object X 2 C
there exists a unique morphism X

!
0 : X ! T.

I
9!

!
0X

// X X
9! X

!
0
// T

If an object is both initial and terminal, then we call it a zero object and denote
this by 0. Here are a few examples; see Exercise 2.7.

• Set: The initial object is ?, and the terminal object is the one-point set.

• Group, Ab: The (initial, terminal, and) zero object is the trivial group, {e}.

• Ring: The initial object is Z, and the terminal object is the zero ring.

• Vec: The (initial, terminal, and) zero object is the zero vector space.

• A-Mod: The (initial, terminal, and) zero object is the zero module.

• Alg: The initial object is k, and the terminal object is the zero algebra.

• Top: The initial object is the empty space, and the terminal object is the one-point
space.

ii. Coproducts and products of objects

Now we discuss ways of combining objects in categories via (co)products.

The coproduct of two objects X, Y 2 C is an object X t Y in C, equipped with
two morphisms ↵X : X ! X t Y and ↵Y : Y ! X t Y in C, such that for any object
C equipped with morphisms �X : X ! C and �Y : Y ! C in C, we have a unique
morphism � : X t Y ! C with �X = �↵X and �Y = �↵Y .

The product of two objects X, Y 2 C is an object X u Y in C, equipped with two
morphisms ↵0

X
: X u Y ! X and ↵0

Y
: X u Y ! Y in C, such that for any object P

equipped with morphisms �0
X

: P ! X and �0
Y

: P ! Y in C, we have a unique
morphism �0 : P! X u Y with �0

X
= ↵0

X
�0 and �0

Y
= ↵0

Y
�0.

These constructions are visualized via the commutative diagrams below.

X
↵X

//

8 �X
''

X t Y

9! �
✏✏

Y
↵Y

oo

8 �Y
ww

P

8 �0
X

ww

9! �0
✏✏

8 �0
Y

''

C X X u Y

↵0
X

oo

↵0
Y

// Y
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When Y and P are equal to X, and �0
X
= �0

Y
= idX , the resulting map �0 from the

universal property of products is the diagonal morphism of X in C, denoted by

diag
X

: X ! X u X.

Here are a few examples of coproducts and products of objects in categories.

• Set: The coproduct is disjoint union ], and the product is cartesian product.

• Group: The coproduct is free product, and the product is direct product.

• Ab: The coproduct is direct sum, and the product is direct product.

• Ring: The coproduct is free product (similar to that for algebras in §1.4.2), and
the product is direct product.

• Vec: The coproduct is direct sum, and the product is direct product.

• A-Mod: The coproduct is direct sum, and the product is direct product.

• Alg: The coproduct is the free product discussed in §1.4.2, and the product is
direct product.

• Top: The coproduct is disjoint union with disjoint union topology, and the
product is cartesian product with product topology.

Note that the coproduct (or product) of a collection of objects {Xi}i2I can be
formed in the same manner as above; we denote these constructions by `

i2I Xi

(or by Q
i2I Xi, resp.). See Exercise 2.8 for practice with coproducts and products.

iii. Pushouts and pullbacks of morphisms

Here, we discuss how one can produce an object from a pair of morphisms in a
category, via the pushout and pullback constructions. This will be a generalization
of the coproduct and product of objects discussed in §2.2.1ii.

The pushout (or fiber coproduct) of f : Z ! X and g : Z ! Y is an object

X tZ Y := X tZ, f ,g Y

equipped with two morphisms ↵X : X ! X tZ Y and ↵Y : Y ! X tZ Y , where
↵X f = ↵Y g, such that for every object C with morphisms �X : X ! C and
�Y : Y ! C where �X f = �Y g, there exists a unique morphism � : X tZ Y ! C

with �X = �↵X and �Y = �↵Y .
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The pullback (or fiber product) of f : X ! Z and g : Y ! Z is an object

X uZ Y := X uZ, f ,g Y

equipped with two morphisms ↵0
X

: X uZ Y ! X and ↵0
Y

: X uZ Y ! Y , where
f ↵0

X
= g↵0

Y
, such that forevery object P with morphisms �0

X
: P! X and�0

Y
: P! Y

where f �0
X
= g�0

Y
, there exists a unique morphism �0 : P! X uZ Y with �0

X
= ↵0

X
�0

and �0
Y
= ↵0

Y
�0.

The constructions are visualized via the commutative diagrams below.

Z
f

//

g

✏✏

X

↵X

✏✏

8 �X

��

P

9! �0
''

8 �0
X

&&

8 �0
Y

''

Y
↵Y

//

8 �Y
//

X tZ Y 9! �

''

X uZ Y

↵0
X

//

↵0
Y
✏✏

X

f
✏✏

C Y
g

// Z

For example, in Set, we have that for objects X, Y, Z 2 Set with functions f and g

above, the following results.

• X tZ Y is the quotient set, (X ] Y)/⇠, with f (z) ⇠ g(z) for each z 2 Z, equipped
with set maps ↵X , ↵Y from X, Y respectively. That is, (X ] Y)/⇠ is the collection
of equivalence classes {[w]}w2X]Y , where

[w] =

8>>><
>>>:
{ f (z), g(z)}, if w = f (z) or g(z), for some z 2 Z,

{w}, otherwise.

• X uZ Y is the set {(x, y) 2 X ⇥Y | f (x) = g(y) in Z}, equipped with set maps ↵0
X

and
↵0

Y
to X and Y , respectively.

See Exercise 2.9. See also Exercise 2.10 for practice.

iv. Coequalizers and equalizers of morphisms

Now we explain how one forms the coequalizer, and the equalizer, of a pair of
morphisms. In particular, for two functions f and g on a set X, we will generalize
the subset of elements x of X for which f (x) = g(x). To do so, fix a pair of parallel
morphisms f , g : X ! Y in C; these are, by definition, morphisms f and g with
the same domain and codomain.

The coequalizer of f , g : X ! Y is an object coeq( f , g) equipped with a mor-
phism ↵ : Y ! coeq( f , g) where ↵ f = ↵g, such that for any object C equipped
with a morphism � : Y ! C where � f = �g, there exists a unique morphism
� : coeq( f , g)! C with � = �↵.
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The equalizer of f , g : X ! Y is an object eq( f , g) equipped with a morphism
↵0 : eq( f , g) ! X where f↵0 = g↵0, such that for any object K equipped with
a morphism �0 : K ! X where f�0 = g�0, there exists a unique morphism
�0 : K ! eq( f , g) with �0 = ↵0�0.

These constructions are visualized via the commutative diagrams below.

X

f

//

g

//

Y
↵

//

8 �
%%

coeq( f , g)

9! �
✏✏

K

8 �0

%%

9! �0
✏✏

C eq( f , g) ↵0
// X

f

//

g

//

Y

For example, in Set, we have the following results for functions f , g : X ! Y .

• coeq( f , g) is the quotient set, Y/⇠, with f (x) ⇠ g(x) for each x 2 X, equipped with
a set map ↵ from Y . That is, Y/⇠ = {[y]}y2Y , where

[y] =

8>>><
>>>:
{ f (x), g(x)}, if y = f (x) or g(x), for some x 2 X,

{y}, otherwise.

• eq( f , g) is the set {x 2 X | f (x) = g(x)}, equipped with a set map ↵0 to X.

We also have that in Vec, the tensor product of modules over a k-algebra
(as in §1.4.2iii) arises as a coequalizer of two k-linear maps. See Exercises 2.11
and 2.12 for practice. In particular, the latter exercise explains why any category
in which pushouts and coproducts (resp., pullbacks and products) exist also has
coequalizers (resp., equalizers).

v. Zero morphisms

To generalize kernels and cokernels from the algebraic setting to the categorical
one, we first need the notion of a zero morphism in a category.

A morphism g : X ! Y is constant if g f = g f
0 for any pair of morphisms

f , f
0 : W ! X, and g is coconstant if hg = h

0
g for any morphisms h, h0 : Y ! Z. A

zero morphism is a morphism that is constant and coconstant.

Next, note that if C has a zero object 0, then 0

!
0 =

!
00 = id0.

Also, forany objects X and Y ,we getunique morphisms!0Y : 0! Y and X

!
0 : X ! 0.

The composition,
!
0 :=

!
0X,Y :=

!
0Y � X

!
0 : X ! 0! Y,

is then a zero morphism. This is independent of the choice of zero object. That is,
if 00 is another zero object of C, then !0 0Y � X

!
0
0: X ! 0

0 ! Y satisfies the following:
!
0
0
X,Y =

!
0
0
Y
� X

!
0
0
=
!
0Y � 00

!
0 � X

!
0
0
=
!
0Y �

!
0
0
0
� X

!
0
0
=
!
0Y � X

!
0 =

!
0X,Y .
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We say that C has zero morphisms if for any triple of objects X, Y, Z 2 C and for
all morphisms f : X ! Y and g : Y ! Z, there exist morphisms 0̃⇤,⇤⇤ : ⇤ ! ⇤⇤ that
make the diagram below commute.

X
0̃X,Y

//

0̃X,Z

''

8 f

✏✏

Y

8g

✏✏

Y
0̃Y,Z

// Z

When C has a zero object, then C has zero morphisms by taking 0̃⇤,⇤⇤ =
!
0⇤,⇤⇤.

For emphasis, note that for all morphisms f in C: f � !0 = !0 and !
0 � f =

!
0 .

vi. Cokernels, kernels, and images of morphisms

Now we introduce categorical generalizations of the cokernels and kernels of
morphisms discussed in the algebraic setting of §1.1. Assume that a category C

has a zero object. Thus, the zero morphism !
0X,Y exists, for each X, Y 2 C here.

The cokernel of a morphism f : X ! Y is an object coker( f ) equipped with
a morphism ↵ : Y ! coker( f ), where ↵ f =

!
0X,coker( f ), such that for any object

C equipped with a morphism � : Y ! C where � f =
!
0X,C , we have a unique

morphism � : coker( f )! C with � = �↵ and !0X,C = � �
!
0X,coker( f ).

The kernel of a morphism f : X ! Y is an object ker( f ) equipped with a
morphism ↵0 : ker( f ) ! X, where f↵0 =

!
0ker( f ),Y , such that for any object K

equipped with a morphism �0 : K ! X where f�0 =
!
0K,Y , we have a unique

morphism �0 : K ! ker( f ) with �0 = ↵0�0 and !0K,Y =
!
0ker( f ),Y ��0.

These constructions are visualized via the commutative diagrams below.

X
f

//

!
0X,coker( f )

++

!
0X,C ..

Y ↵
//

8 �
&&

coker( f )

9! �
✏✏

K

9! �0
✏✏

8 �0

%%

!
0K,Y

$$

C ker( f ) ↵0
//

!
0ker( f ),Y

33X
f

// Y

See Exercise 2.13 for practice. In particular, we have that kernels are monic, and
that cokernels are epic.

If f : X ! Y is a mono (so that X is a subobject of Y), then we write

Y/X := coker(X ! Y)

and refer to this as a quotient object of Y by X, if it exists.

On the other hand, if a mono (resp., epi) is the kernel (resp., cokernel) of a
morphism, we say it is a normal mono (resp., normal epi).
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The image of a morphism f : X ! Y is an object im( f ) equipped with a mono
↵ : im( f ) ! Y and a morphism ↵̃ : X ! im( f ) where f = ↵↵̃, such that for any
object Z equipped with a mono � : Z ! Y and morphism �̃ : X ! Z, where f = � �̃,
we have a unique morphism � : im( f ) ! Z with �̃ = � ↵̃ and ↵ = ��. This is
visualized via the commutative diagram below. See also Exercise 2.14.

X

f

**

↵̃
//

8 �̃
))

im( f ) ↵ mono
//

9! �
✏✏

Y

Z

8 � mono

55

We recover the kernels, cokernels, and images of morphisms from §1.1 in the
algebraic setting, especially for categories with a zero object. See Exercise 2.15.

Remark 2.1. Each of the universal constructions above is realized as either a
categorical colimit or a limit. This will be discussed in §2.3.6.

§2.2.2. Abelian categories

Finally, we examine categories in which all of the universal constructions in §2.2.1
exist: abelian categories. Thus, abelian categories are quite important; there are
also numerous examples of such categories as discussed below. The reader may
wish to view Figure 2.1 in §2.10 for a summary of terminology.

i. Preadditive and linear categories

First, a category C is said to be preadditive if for each X, Y 2 C, we have that
HomC(X, Y) is an abelian group with:

• group operation +,

• additive identity (which is !0 :=
!
0X,Y when C has a zero object), and

• additive inverse of f : X ! Y , denoted by � f : X ! Y .

We also require composition of morphisms to distribute over +: that is, for mor-
phisms f , f

0 : X ! Y and g, g0 : Y ! Z in C, we have that

g � ( f + f
0) = (g � f ) + (g � f

0), (g + g
0) � f = (g � f ) + (g0 � f ).

Here, C is also called an Ab-category or is enriched over Ab (see §3.11 later). An
example of an Ab-category is Ab itself.

Moreover,C is called (k-)linear if HomC(X, Y) is a k-vector space for each X, Y 2 C,
and composition distributes over addition and over scalar multiplication, i.e.:

g � (� f ) = �(g � f ),
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for all f : X ! Y, g : Y ! Z 2 C and � 2 k. Linear categories are also said to be
enriched over Vec (see §3.11 later). An example of such a category includes Vec
itself; see §1.1.4iv.

ii. Additive categories

Now recall from Remark 1.1 that the direct sum (or coproduct) of two vector
spaces V and W is isomorphic to the direct product (or product) of V and W. This
fact is generalized in the result below.

Proposition 2.2. Take an Ab-category C with objects X and Y in C. Then, the following
statements are equivalent.

(a) There exists a coproduct (X t Y, ↵X : X ! X t Y, ↵Y : Y ! X t Y) in C.

(b) There exists a product (X u Y, ↵0
X

: X u Y ! X, ↵0
Y

: X u Y ! Y) in C.

(c) There exists an object X ⇤ Y 2 C, with morphisms pX : X ! X ⇤ Y , pY : Y ! X ⇤ Y ,
p
0
X

: X ⇤ Y ! X, and p
0
Y

: X ⇤ Y ! Y in C such that

p
0
X

pX = idX , p
0
Y

pY = idY , p
0
Y

pX =
!
0X,Y , p

0
X

pY =
!
0Y,X ,

pX p
0
X
+ pY p

0
Y
= idX⇤Y .

In this case, X t Y � X u Y � X ⇤ Y .

The tuple in part (c) above is called the (binary) biproduct of X and Y in C

Proof. We will sketch why (a) is equivalent to (c), and leave the rest of the proof as
Exercise 2.16. To show that (a) implies (c), take X ⇤ Y = X t Y , along with pX = ↵X

and pY = ↵Y . Now using the universal property of the coproduct construction,
define the desired maps p

0
X

and p
0
Y

below.

X
pX

//

�X = idX
&&

X t Y

� = p
0
X

✏✏

Y
pY

oo

�Y =
!
0Y,X

xx

X
pX

//

�X =
!
0X,Y

&&

X t Y

� = p
0
Y

✏✏

Y
pY

oo

�Y = idY
xx

X Y

Indeed, the first four conditions of (c) hold by the diagrams above. One can show
that pX p

0
X
+ pY p

0
Y
= idX⇤Y , which we leave to the reader.

To show that (c) implies (a), take X tY = X ⇤Y , along with ↵X = pX and ↵Y = pY .
Now for any morphisms �X : X ! C and �Y : Y ! C, define the morphism

� := �X p
0
X
+ �Y p

0
Y

: X ⇤ Y ! C.

Then, �X = �↵X and �Y = �↵Y , and one can show � is the unique morphism with
this property. We leave this, and the rest of the proof, to the reader. ⇤
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Now a preadditive category C is said to be additive if there exists

• a zero object in C, and

• the binary biproduct between any two objects in C.

Inductively, additive categories contain biproducts of finitely many objects. See
also Exercise 2.17.

Example 2.3. One example of an additive category is the zero category consisting
of only the zero object 0 and the zero morphism !

00,0 = id0.

Next, we turn our attention to product categories. If C and C
0 are additive, then

it is straightforward to see that so is the product category C ⇥ C0.

An additive category is said to be decomposable if it is equivalent to the product
of two nonzero categories; else, it is indecomposable.

iii. Abelian categories

This brings us to the main concept of the section. An additive category C is abelian
if satisfies the conditions below.

• Every morphism in C has a cokernel and a kernel in C.

• All monos and epis in C are normal.

One nice feature about abelian categories is given as follows.

Proposition 2.4. Isos are precisely monic epis (or, epic monos) in abelian categories C.

Proof. Let f : W ! X be a monic epi in C. Since f is monic, by normality we
have that f = ↵0

g
: ker(g) ! X for some morphism g : X ! Y in C. Thus,

g f =
!
0ker(g),Y =

!
0X,Y � f . Since f is epic, we then get that g =

!
0X,Y . Therefore,

f = ↵0!
0 X,Y

: ker(
!
0X,Y )! X.

Now we have the commutative diagram below from the definition of a kernel.

X

9! �0
✏✏

idX

%%ker(
!
0X,Y )

f
// X

!
0X,Y

// Y

So, f�0 = idX . This implies that f�0 f = f . Since f is monic, �0 f = idker(!0 X,Y ). So, f is
an iso with inverse �0. The converse direction is covered in Exercise 2.1(b). ⇤

The result above can be used to rule out examples of abelian categories. For
instance, Exercise 2.2(c) shows that Ring is not an abelian category.
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But there are many nice examples of abelian categories, including:

Ab, Vec, Rep(A), A-Mod, Mod-A, (A, B)-Bimod.

In particular, this is why we work with the definition of a k-algebra in §1.1.5
that builds on the structure of a vector space, instead of building on a unital ring
structure. We leave it to the reader to explore whether the rest of the categories
in §2.1.2 are abelian; see Remark 2.17 later.

Next, we show that abelian categories contain vital universal objects.

Proposition 2.5. In an abelian category C, pushouts and pullbacks exist.

Proof. We will sketch the proof of the statement about pushouts; and leave to the
rest to Exercise 2.18. Moreover, we leave it to the reader to dualize arguments to
get the proof of the statement for pullbacks.

Let f : Z ! X and g : Z ! Y be morphisms, for which we aim to construct the
pushout. Consider the biproduct:

(X ⇤ Y, pX : X ! X ⇤ Y, pY : Y ! X ⇤ Y, p
0
X

: X ⇤ Y ! X, p
0
Y

: X ⇤ Y ! Y).

Since (X ⇤ Y, p
0
X

: X ⇤ Y ! X, p
0
Y

: X ⇤ Y ! Y) is a product (see Proposition 2.2),
there exists a unique morphism q : Z ! X ⇤ Y that makes the diagram below
commute.

Z

f

ww

9! q

✏✏

�g

''

X X ⇤ Y

p
0
X

oo

p
0
Y

// Y

Next, take the cokernel of q, given by ↵q : X ⇤ Y ! coker(q). Define

↵X := ↵q � pX : X ! coker(q) and ↵Y := ↵q � pY : Y ! coker(q).

Then, we get the following computation (see Proposition 2.2):

↵X f � ↵Yg = ↵X p
0
X

q + ↵Y p
0
Y
q = ↵q(pX p

0
X
+ pY p

0
Y
)q = ↵qq =

!
0Z,coker(q) .

So, the diagram below commutes, and (coker(q),↵X ,↵Y ) is a candidate for the
pushout of the morphisms f and g.

Z
f

//

g

✏✏

X

↵X

✏✏

Y
↵Y

// coker(q)

Now for every object C with morphisms �X : X ! C and �Y : Y ! C, where
�X f = �Yg, one can construct a morphism � : coker(q) ! C, with �X = �↵X and
�Y = �↵Y . One can also show that the choice of � is unique. Thus, the pushout of
f and g exists in C. ⇤
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Finally, each of the universal constructions in §2.2.1 exists in an abelian cate-
gory C, due to the reasoning below (corresponding to subsection numbers).

(i) An initial object and a terminal object exist because C has a zero object.

(ii) Coproducts and products exist due to Proposition 2.2.

(iii) Pushouts and pullbacks exist due to Proposition 2.5.

(iv) Coequalizers and equalizers exist due to (ii,iii) and Exercise 2.12.

(v) C has zero morphisms since it has a zero object.

(vi) Cokernels and kernels exist by definition.

§2.3. Functors and natural transformations

Now we set up a framework to answer the question of whether two categories
are the ‘same’; this will be made clear in §2.4. For now, we study how to move
from one category to another. Let C, C0, D, and E be categories throughout.

§2.3.1. Functors

A functor F : C ! D from C to D consists of the following data.

(a) An object F(X) in D, for each X 2 C.

(b) A morphism F(g) : F(X)! F(Y) in D, for each g 2 HomC(X, Y).

This data must satisfy the axioms below.

• (respects identity morphisms) We have that F(idX) = idF(X) for all X 2 C.

• (respects composition) For all g 2 HomC(X, Y) and h 2 HomC(Y, Z), we have
that F(h � g) = F(h) � F(g) in HomD(F(X), F(Z)).

Sometimes, F : C ! D above is referred to as a covariant functor as it preserves
the directions of the morphisms in part (b).

We can also reverse the direction of morphisms when transporting categories
as follows. A contravariant functor F : C ! D consists of the following data.

(a) An object F(X) in D, for each X 2 C.

(b) A morphism F(g) : F(Y)! F(X) in D, for each g 2 HomC(X, Y).

This data must satisfy the axioms below.

• (respects identity morphisms) We have that F(idX) = idF(X) for all X 2 C.

• (respects composition contravariantly) For each pair f 2 HomC(W, X) and
g 2 HomC(X, Y) , we have that F(g � f ) = F( f ) � F(g) in HomD(F(Y), F(W)).
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In any case, C (resp., D) is the domain (resp., codomain) of F : C ! D. Also, if
C = D, then we refer to F as an endofunctor.

An example of an endofunctor on any category C is the identity functor IdC

given by IdC(X) = X and IdC( f ) = f , for all X 2 C and f 2 Hom(C).

Given functors F : C ! D and G : D ! E , we can compose functors object-wise
and morphism-wise to yield a functor GF := G � F : C ! E .

Next, we will discuss "injectivity" and "surjectivity" for functors F : C ! D. To
do so on morphisms, consider the functions below (which are between sets as we
assume C and D are locally small):

FX,Y : HomC(X, Y)! HomD(F(X), F(Y)), f 7! F( f ).

• F is called faithful if FX,Y is injective, for each X, Y 2 C.

• F is called full if FX,Y is surjective, for each X, Y 2 C.

• F is called fully faithful if FX,Y is bĳective, for each X, Y 2 C.

See Exercise 2.19 for practice.

Now we consider the following notions for the injectivity and surjectivity of
objects of a functor F : C ! D.

• F is said to be an embedding if F is faithful and if F is injective on objects.

• F is said to be essentially surjective if, for each object Y 2 D, there exists an
object X 2 C such that Y � F(X).

The image of a functor F : C ! D is not necessarily a subcategory of D, but we
can form the essential image of F: the full subcategory Imess(F) of D on objects
Y � F(X) of D, for some X 2 C. In particular, F is essentially surjective precisely
when its essential image is D. See Exercise 2.20, after reading §2.4.2, for practice.

The notions below pertain to a functor F : C ! D preserving certain categorical
properties from §2.2.2.

• F is additive if C, D are preadditive and FX,Y is a group map, for each X, Y 2 C.

• F is linear if C, D are linear and FX,Y is a linear map, for each X, Y 2 C.

In fact, we have a convenient characterization of additive functors between
additive categories. The proof of the result below is Exercise 2.21.

Lemma 2.6. Suppose that (C,⇤C) and (D,⇤D) are additive categories. Then, a functor
F : C ! D is additive if and only if F preserves biproducts, i.e., for all X, Y 2 C we have:

F(X ⇤C
Y) � F(X) ⇤D

F(Y). ⇤
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§2.3.2. Examples of functors

In this part, we present interesting examples of functors using some of the cate-
gories from §2.1.2. See Exercise 2.22 for practice.

Forgetful functors. These are functors Forg : C ! D, where each object of D is
obtained from an object in C by forgetting certain structure. Consider the following.

• Forg : Ring ! Ab (forgets multiplication)

• Forg : Vec! Ab (forgets scalar multiplication)

• Forg : Top! Set (forgets topology)

• Forg : Poset! Set (forgets partial ordering)

• Forg : Quiv ! Graph (forgets direction of arrows / sources and targets)

Forgetful functors are usually faithful, but could be not full nor essentially surjec-
tive. For instance, Forg : Ring ! Ab is not full as the trivial group homomorphism
Z/nZ ! Z cannot be upgraded to a ring homomorphism. On the other hand,
Forg : Ring ! Ab is not essentially surjective as the quotient group Q/Z cannot
admit the structure of a ring.

Inclusions. These are functors Inc : C ! D, where Ob(C) is a subcollection of
Ob(D). Here, C is a subcategory of D. The examples below impose a certain property
on objects in D to get objects in C. (One can also impose properties on morphisms.)

• Inc : Ab! Group

• Inc : ComAlg ! Alg

• Inc : FinSet! Set

Inclusions are always faithful. If Inc : C ! D is a full (so, a fully faithful) inclusion,
then C is a full subcategory of D.

Free functors. These are functors Free : C ! D, where for X 2 C, the object
Free(X) is the free object in D built from X. For instance, if objects in D have
generators, then Free(X) has no relations amongst its generators. So, free functors
are typically not essentially surjective. Consider the examples below.

• Free : Set! Group (free group)

• Free : Vec! Alg (tensor algebra, see §1.2.2)

Free objects and free functors will be defined formally later in Example 2.29 in
§2.5, and more examples of free functors will be discussed there.
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Algebraic functors. Consider the following examples of functors derived from
various constructions in Chapter 1. See §§1.1.4iii-v, 1.4.2iii, 1.4.3i, 1.4.4.

• V ⌦k � : Vec! Vec and � ⌦k W : Vec! Vec, for V,W 2 Vec.

• Homk(V,�) : Vec! Vec and Homk(�,W) : Vec! Vec, for V,W 2 Vec.

• V ⌦A � : (A, B2)-Bimod! (B1, B2)-Bimod, for V 2 (B1, A)-Bimod.

• HomMod-A(�,W) : (B1, A)-Bimod! (B2, B1)-Bimod, W 2 (B2, A)-Bimod.

• ResB

A
(�) : B-Mod! A-Mod, for A! B 2 Hom(Alg).

• IndB

A
(�) : A-Mod! B-Mod, for A! B 2 Hom(Alg).

Functors between mathematical fields. Finally,we list some examples of functors
that connect different fields in mathematics. Note that some of the terminology
below is outside the scope of this book, and will not be defined.

• O : A↵ ! ComAlg (Form the coordinate algebra of an affine variety,
used in Algebraic Geometry.)

• L : Ban! Alg (Form the function algebra of a Banach space, used in
Functional Analysis. Here, L(X) is a Banach algebra.)

• ⇡1 : Top⇤ ! Group (Form the fundamental group of a topological space
with base point, used in Algebraic Topology.)

• Z : nCob! FinHilb (or VecC) (This functor is referred to as a Topological
Quantum Field Theory in Quantum Physics.)

• p : FinSet! Vec (or Set) (This is a species in Enumerative Combinatorics.)

§2.3.3. Bifunctors and multifunctors

Like bilinear maps for vector spaces (see §1.1.4iii), we consider a way of moving
from two categories to a third category, while preserving structure.

Recall the product category C ⇥ C
0 from §2.1.3. Now a functor of the form

F : C ⇥ C0 ! D is called a bifunctor. Here:

• F(X,�) : C0 ! D is a functor, for a fixed object X 2 C, and

• F(�, X0) : C ! D is a functor, for a fixed object X
0 2 C0.
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Here are a few examples of bifunctors on some categories from §2.1.2i.

� ⌦k � : Vec ⇥ Vec! Vec

� ⌦A � : (B1, A)-Bimod ⇥ (A, B2)-Bimod! (B1, B2)-Bimod

HomA-Mod(�,�) : ((A, B1)-Bimod)op ⇥ (A, B2)-Bimod! (B1, B2)-Bimod

See §§1.1.4iii,v for the first example, and §1.4.2iii for the second example. We use
Proposition 1.20 in §1.4.3i for the third example; the opposite category is used in
the first slot because HomA-Mod(�,W) is contravariant for each W 2 (A, B2)-Bimod.

A multifunctor is a functor of the form: F : C1 ⇥ C2 ⇥ · · · ⇥ Cn ! D. Here,

F(X1, . . . , Xi�1,�, Xi+1, . . . , Xn) : Ci ! D

is a functor for each i = 1, . . . , n, for fixed objects Xj 2 C j with j , i.

§2.3.4. Natural transformations and natural isomorphisms

Next, we discuss how to transport one functor to another one with the same
domain and codomain categories.

Given two functors F, F0 : C ! D, a natural transformation,

� : F ) F
0,

by definition consists of morphisms,

�X : F(X)! F
0(X) in D, for each X 2 C.

We also require that, for each f : X ! Y in C, the diagram below commutes in D.

F(X)
F( f )

//

�X

✏✏

F(Y)

�Y

✏✏

F
0(X)

F
0( f )

// F
0(Y)

Here, the morphism �X is called the component of � at X, and the commutative
diagram above is referred to as the naturality of � at f .

If, further, the component �X is an iso in D for every X 2 C, then we say that �
is a natural isomorphism, and we write � : F

⇠) F
0, or just F � F

0.

Pictorially, a natural transformation � from F : C ! D to F
0 : C ! D is

visualized as the diagram below.

C

F

((

F
0

66↵◆ � D
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The collection of natural transformations � : F ) F
0 is denoted by

Nat(F, F0) := NatC,D(F, F0).

This collection may not be a set, even when C and D are locally small. But we will
discuss a situation when Nat(F, F0) is a set later in §2.6.2.

Moreover, we denote the collection of natural isomorphisms � : F
⇠) F

0 by

NatIsom(F, F0) := NatIsomC,D(F, F0).

One example of a natural isomorphism is the identity natural isomorphism,

IDF : F
⇠) F,

of a functor F : C ! D to itself. Its components are defined by the morphisms,

(IDF)X := idF(X) : F(X)! F(X),

for all X 2 C.

More sophisticated examples of natural transformations are given as follows.

Example 2.7. There is a natural transformation j from the identity functor on Vec

to the double dual functor Vec (cf. Exercise 1.4(e)).

Vec

Id
))

(�)⇤⇤
55↵◆ j Vec

The components are given by

jV : V ! V
⇤⇤, v 7! [ f 7! f (v)].

If we replace Vec with FdVec, then j is a natural isomorphism. See Exercise 2.23.

Example 2.8. The associativity of the tensor product ⌦ := ⌦k of vector spaces,
(U ⌦ V) ⌦ W � U ⌦ (V ⌦ W) for each U,V,W 2 Vec (cf. Exercise 1.3(b)), can be
upgraded to a natural isomorphism. See Exercise 2.24.

Vec ⇥ Vec ⇥ Vec
⌦ � (⌦ ⇥ Id)

++

⌦ � (Id ⇥ ⌦)

33↵◆⇠ a Vec

With the material above, we can construct categories of functors. (See Exer-
cise 2.25 after reading §2.3.5.) Namely, the functor category Fun(C,D) is defined
with objects being functors F : C ! D from C to D, and with morphisms given by

HomFun(C,D)(F, F0) := NatC,D(F, F0).

In the case, when C = D, we denote Fun(C, C) by End(C), and refer to it as an
endofunctor category.
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§2.3.5. Compositions of natural transformations

Since the components of natural transformations are encoded by commutative
rectangles, we can compose them in two ways – vertically or horizontally – to
yield operations on natural transformations.

Given natural transformations � from F : C ! D to F
0 : C ! D, and �0 from

F
0 : C ! D to F

00 : C ! D, their vertical composition �0 �ver � is the natural
transformation pictured below.

C

F

++

F
00

33↵◆ �
0 �ver � D := C

F

""↵◆ �

;;

F
00
↵◆ �
0

F
0

// D

Namely, the components are given (�0 �ver �)X := �0
X
��X : F(X)! F

00(X), for X 2 C.

On the other hand, take natural transformations � from F : C ! D to F
0 : C ! D,

and  from G : D ! E to G
0 : D ! E . Then, their horizontal composition  �hor �

is the natural transformation pictured below.

C

GF

**

G
0
F
0

44↵◆  �hor � E := C

F

((

F
0

66↵◆ � D

G

((

G
0

66↵◆  E

For X 2 C, the component at X is given by:

( �hor �)X :=  F0(X) �G(�X) = G
0(�X) �  F(X) : GF(X)! G

0
F
0(X).

The equality holds by the naturality of  at �X : F(X)! F
0(X).

Next, we discuss a special case of horizontal composition– how one can combine
a natural transformation with a functor. Take a natural transformation � from
F : C ! D to F

0 : C ! D, with functors F0 : B ! C and F1 : D ! E . Then, we can
define natural transformations:

� ⇤ F0 := � �hor IDF0 , F1 ⇤ � := IDF1 �hor �.

Their components are given by (� ⇤ F0)W := �F0(W) : FF0(W)! F
0
F0(W) for W 2 B,

and (F1 ⇤ �)X := F1(�X) : F1F(X) ! F1F
0(X) for X 2 C, respectively. This is called

whiskering, and is as pictured below.

B

F F0
**

F
0

F0

44↵◆ � ⇤ F0 D := B
F0

// C

F

''

F
0
77↵◆ � D

C

F1 F

))

F1 F
0

55↵◆ F1 ⇤ � E := C

F

''

F
0
77↵◆ � D

F1
// E
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Next, we have that vertical composition and horizontal composition satisfy the
compatibility condition below; the proof is left to Exercise 2.26.

( 0 �ver  ) �hor (�0 �ver �) = ( 0 �hor �0) �ver ( �hor �) (2.9)

This is called the interchange law, and is pictured as follows.

C
F

))

F
00

55↵◆ �
0�ver� D

G

((

G
00

66↵◆  
0�ver E = C

F

⇢⇢↵◆ �

EE

F
00
↵◆ �
0

F
0
// D

G

⇢⇢↵◆  

EE

G
00
↵◆  
0

G
0
// E = C

GF

##↵◆  �hor�

;;

G
00

F
00
↵◆  
0�hor�0

G
0
F
0

// E

§2.3.6. Colimits and limits of functors

Here,we study how each of the universal constructions in §2.2.1 fits into a common
framework. To begin, take categories J and C; here, J will be considered as an
index category. Next, take the diagonal functor � defined below:

� : C ! Fun(J , C), D 7! [�(D) : J ! C, J 7! D, f 7! idD],

for all D 2 C, J 2 J , and f 2 Hom(J ). Now we consider the constructions below.

A colimit of a functor F : J ! C consists of the following data.

(a) An object, colimJ F, in C.

(b) A natural transformation, ↵ : F ) �(colimJ F).

This data must satisfy the universality axiom below.

• For each pair (C, � : F ) �(C)), with C an object in C and �C : F ) �(C) a
natural transformation, there exists a unique morphism �C : colimJ F ! C in C

such that �C = �(�C) �ver ↵ as natural transformations.

Example 2.10. Many of the universal constructions in §2.2.1 arise as colimits.

(a) An initial object I in C is a colimit of the functor F : ?! C. Here, colim?F := I

and, for any object X 2 C, we have that �X :=
!
0X: I! X.

(b) A pushout (X tZ Y, f : Z ! X, g : Z ! Y) in C arises as a colimit as follows.
TakeJ to be a category with objects J0, J1, J2, and morphisms J0 ! J1, J0 ! J2.
Now for the functor F : J ! C, colimJ F := X tZ Y , and for an object C, the
morphism �C : X tZ Y ! C is the morphism � in the pushout construction.

(c) Likewise, either directly or by using Exercises 2.10(a), 2.12(a), and 2.13(c), we
have that coproducts, coequalizers, and cokernels arise as colimits.

The details are left to Exercise 2.27.
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Dually, a limit of a functor F : J ! C consists of the following data.

(a) An object, limJ F, in C.

(b) A natural transformation, ↵0 : �(limJ F)) F.

This data must satisfy the universality axiom below.

• For each pair (L, �0
L

: �(L) ) F), with L an object in C and �0
L

: �(L) ) F a
natural transformation, there exists a unique morphism �0

L
: L ! limJ F in C

such that �0
L
= ↵0 �ver �(�0

L
) as natural transformations.

Example 2.11. Dual to Example 2.10, we get that terminal objects, pullbacks,
products, equalizers, and kernels arise as limits. The details are left to Exercise 2.27.

§2.4. Isomorphisms and equivalence of categories

Now that we have a framework to move from one category to another, i.e., with
functors from §2.3, we will proceed with addressing the question of whether two
categories are the same. Let C and D be categories throughout.

§2.4.1. Isomorphism of categories

Analogous to two groups being considered the same if there is an isomorphism
(e.g., a group homomorphism with an inverse map) between them, we have the
notion of sameness for categories below.

We say that C andD are isomorphic as categories if there are functors F : C ! D

and G : D ! C such that GF = IdC and FG = IdD as functors. In this case, we write
C � D. Isomorphism here is an equivalence relation for categories [Exercise 2.28].

Let us discuss an example and a non-example of isomorphic categories.

Example 2.12. Recall §1.3.4 and consider the categories G-Mod and Rep(G), for
a group G. We have that these categories are isomorphic as follows. Define the
functors F and F

0 below, first on objects as such:

• F : G-Mod! Rep(G) sends (V, . : G ⇥ V ! V) to the G-representation,

G ! GL(V), g 7! [V ! V, v 7! g . v];

• F
0 : Rep(G) ! G-Mod sends (V, ⇢ : G ! GL(V)) to the left G-module V with

action map,
G ⇥ V ! V, (g, v) 7! ⇢(g)(v).

We leave it to the reader to write down the definition of F and F
0 on morphisms,

along with showing that G-Mod � Rep(G). See Exercises 2.29 and 2.30.
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Example 2.13. Take the category of finite-dimensional k-vector spaces FdVec.
Let S be the full subcategory of FdVec on the objects {kn}n2N. Since every finite-
dimensional k-vector space is isomorphic to k

n for some n 2 N, one may expect
that FdVec and S are the "same", say via the functors below:

F : FdVec! S , V 7! k
dimkV and G : S ! FdVec, kn 7! k

n.

If by ‘same’ we mean that there exists an isomorphism of categories, then

V = GF(V) = k
dimkV ,

for any V 2 FdVec, which is not true. So, we need to replace these vector space
equalities with vector space isomorphisms to get that FdVec is the same as S as
categories. That is, we need to weaken the notion of a category isomorphism. See
Exercise 2.32 for practice.

The example above illustrates a generalphenomenon. The skeleton ofa category
C is the full subcategory Skel(C) of C on objects consisting of exactly one isoclass
representative for each isoclass of objects. In particular, there is no iso between
distinct objects in Skel(C).

Even though C and Skel(C) carry the ‘same’ categorical information, they are
not isomorphic as categories. But these categories are equivalent in the sense that
we will define in the next section.

§2.4.2. Equivalence of categories

As discussed above, category isomorphism is too strong of a notion of sameness
to have a rich category theory. So, we will consider a weaker notion below.

First, we consider an analogy. Recall that we do not require two groups to
be precisely equal to be considered the same in group theory; instead, we use
the weaker notion of group isomorphism. Else, classification problems would be
impossible– e.g., the classification of groups of order four would consist of a zoo
of examples (e.g., Z/4Z, 5Z/20Z, symmetries of a rectangle, 3Z/6Z ⇥ 4Z/8Z, etc.).
It is better to use our two models of groups of order four, namely C2 ⇥C2 and C4,
to illustrate how all such groups behave, up to isomorphism.

Now we say that C and D are equivalent as categories if there exist functors
F : C ! D and G : D ! C such that GF � IdC and FG � IdD as functors.
(Namely, we replace equality of functors for a category isomorphism with natural
isomorphism of functors here.) Here, we write C ' D, and refer to F and G as
quasi-inverses of each other.

Equivalence here is an equivalence relation amongst categories [Exercise 2.28].
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If C is isomorphic to D, then C is equivalent to D. But the converse does not
hold. For instance, in Example 2.13, we saw that FdVec is not isomorphic to its
skeleton S , yet we have that FdVec ' S (see Exercise 2.33).

Notice that the definition of equivalence above is analogous to stating that a
homomorphism between groups is a group isomorphism if there exists an inverse
group homomorphism. On the other hand, a group isomorphism can equivalently
be defined as a group homomorphism that is injective and surjective as a function.
Along the latter lines, consider the following definition.

We say thatC andD are equivalent as categories if there exists functor F : C ! D

that is fully faithful and essentially surjective. Of course, we need to reconcile this
with the notion of equivalence above; this is done as follows.

Theorem 2.14. Given categories C and D, the following statements are equivalent.

(a) C ' D via functors F : C ! D and G : D ! C, where GF � IdC and FG � IdD.

(b) C ' D via a fully faithful, essentially surjective functor F : C ! D.

Proof. We will sketch the proof here, and leave it to the reader to fill in the details
(especially by using commutative diagrams); see Exercise 2.34.

Suppose that there exist functors F : C ! D and G : D ! C such that we have
natural isomorphisms:

� : IdC
⇠) GF and  : FG

⇠) IdD. (2.15)

We claim that F : C ! D is fully faithful and essentially surjective. By using the
component  Y , we have that F(G(Y)) � Y , for each Y 2 D. This shows that F is
essentially surjective. Next, by using �, we have for each f : X ! X

0 in C that

�X0 f = ((GF)( f ))�X .

Therefore, f = ��1
X0 ((GF)( f ))�X , and this shows that F is faithful. To get that F is

full, we first use  to conclude that G is faithful by repeating the argument for
F being faithful. Then, take a morphism h : F(X) ! F(X0) in D. Also, take the
morphism g := ��1

X0 (G(h))�X from X to X
0 in C. We obtain that (GF)(g) = G(h).

Since G is faithful, we then obtain that F is full.
Conversely, suppose that F : C ! D is a fully faithful, essentially surjective

functor. Our goal is to construct a functor G : D ! C such that (2.15) holds. For
each object Y 2 D, there exists an object ZY 2 C such that F(ZY ) � Y in D since F is
essentially surjective. Now use the following labels:

ZY =: G(Y) 2 C,  Y : F(ZY ) = F(G(Y)) ⇠! Y 2 D.

Moreover, since F is fully faithful, we have that for any morphism g : Y ! Y
0 in

D, we get a unique morphism,

G(g) : G(Y)! G(Y 0) 2 C.
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Now it remains to show that:

(1) the assignments, Y 7! G(Y) and g 7! G(g), make G into a functor;

(2) there exists a natural isomorphism  : FG
⇠) IdD;

(3) there exists a natural isomorphism � : IdC
⇠) GF.

Faithfulness of F is used to establish (1). The morphisms  Y form the components
of  in (2). For (3), we have by the fully faithfulness of F that it suffices to
define a natural isomorphism ⌫ : F

⇠) FGF. Taking the components of ⌫ to be
⌫X :=  �1

F(X) : F(X)! (FGF)(X), for all X 2 C, achieves the goal. ⇤

In any case, an equivalence, F : C ⇠! C, from a category C to itself is referred to
as an autoequivalence of C.

We can also construct an autoequivalence category, Aut(C), defined with
objects being autoequivalences F : C

⇠! C, and with morphisms given by
HomAut(C)(F, F0) := NatIsomC,C(F, F0).

§2.4.3. Examples of equivalent categories

One example of an autoequivalence includes the following.

• (�)⇤⇤ : FdVec ⇠! FdVec [Exercise 2.23, Example 2.7]

Also, note that for categories C and D, the following statements hold.

• C is equivalent to its skeleton Skel(C) [Exercise 2.33(b)]

• C ' D if and only if Skel(C) � Skel(D) [Exercise 2.33(c)]

More concretely, for any algebra A, and any group G with group algebra kG,
we have the category isomorphisms below, which yield category equivalences.

• A-Mod � Rep(A) [Exercise 2.29]

• G-Mod � Rep(G) � Rep(kG) � kG-Mod [Exercise 2.30, Example 2.12]

On a related note, take a group G, and take Gcat to be the category with one
object with morphisms identified as elements of G. We then get that

• Rep(G) ' Fun(Gcat,Vec) [Exercise 2.31]

Since Gcat is a special case of a groupoid [Exercise 2.4], this is why, by definition,
a representation of a groupoid G is a functor of the form G ! Vec.
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More interestingly, there are equivalences between categories that lie in different
areas of mathematics. A prevalent model for this lies in Algebraic Geometry as
follows; see Section 2.5 of Smith et al. [2000] for more details.

• We have an equivalence of categories,

A↵ ' (FgRedComAlg)op,

between the category of affine varieties, and the opposite category of finitely
generated, reduced, commutative algebras. This is given by the contravariant
coordinate algebra functor O : A↵ ! ComAlg [§2.3.2] (here, the essential im-
age is in FgRedComAlg); its quasi-inverse is the spectrum functor denoted by
Spec : FgRedComAlg ! A↵.

• Likewise,we have a geometric category that corresponds to the categoryComAlg.
Namely, we need to replace affine varieties with affine schemes to yield:

Scheme ' (ComAlg)op.

Many other equivalences that stem from relating a geometric/topological ob-
ject X (e.g., a certain space, a type of manifold, a surface) with its algebra of
functions on X. See Chapter 1 on Khalkhali [2013] for further reading about this
and about the category of schemes discussed above.

Lastly, abelian categories (from §2.2.2) are understood in terms of categories of
modules over rings, up to equivalence. This is due to the work of Mitchell [1964].

Theorem 2.16 (Mitchell’s Embedding Theorem). Every small abelian category is
equivalent to a full subcategory of left modules over some ring R. ⇤

See Section 1.6 of Weibel [1994] for a discussion of this result. Here, the left
R-modules have the underlying structure of an abelian group, not of a vector
space (see Exercise 1.14), and we denote this by R-Modab for emphasis.

Remark 2.17. For a k-algebra A, the category A-Mod is abelian since, after forget-
ting scalar multiplication, the category A-Modab is abelian. With this result, we
can then derive various examples of abelian categories.

• Ab � Z-Modab. • Mod-A � A
op-Mod.

• Vec � k-Modab. • (A, B)-Bimod � (A ⌦ B
op)-Mod.

§2.4.4. Morita equivalence

Now we will address the following question:

For algebras A and B, when are A-Mod and B-Mod equivalent as categories?

We say that A and B are Morita equivalent when this is true, and write A 'Mor B.
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This provides us with another notion of sameness for algebras, which is weaker
than isomorphism (which, in turn, is weaker than equality). It is indeed an
equivalence relation for algebras [Exercise 2.28]. The terminology is due to the
characterizations of this condition by the work of Morita [1958]. One version is in
terms of bimodules; see Section 18.D of Lam [1999] for further details.

Theorem 2.18 (Morita’s Theorem). Let A and B be algebras. Then, we have that

A-Mod ' B-Mod

if and only if there exist bimodules APB and BQA such that P⌦B Q � Areg as A-bimodules
and Q ⌦A P � Breg as B-bimodules.

In this case, we say that the bimodules P and Q are invertible.

Proof. We will discuss the steps below, and will leave the details to the reader; see
Exercise 2.35. For the backward direction, consider the functors:

F := (BQA) ⌦A � : A-Mod! B-Mod,

G := (APB) ⌦B � : B-Mod! A-Mod.

These functors yield an equivalence of categories, A-Mod ' B-Mod (more readily
obtained via the condition in Theorem 2.14(a)).

The forward direction takes more steps. Suppose that F : A-Mod
⇠! B-Mod is

an equivalence of categories. Let F(A(Areg)) =: BQ 2 B-Mod. We have that

A
op � EndA-Mod(Areg) � EndB-Mod(F(Areg)) = EndB-Mod(BQ)

as algebras, by Exercise 1.26(a) and by F being fully faithful. Label this isomor-
phism by f , and we obtain that BQ is a right A-module via the action q/a := f (a)(q)
for a 2 A, q 2 Q. With this, we get that Q 2 (B, A)-Bimod.

Claim. F � (BQA) ⌦A � as functors.

Proof of Claim. Take X 2 A-Mod. Consider the morphism:

�X : X � HomA-Mod(A, X)
F! HomB-Mod(F(A), F(X)) = HomB-Mod(Q, F(X)),

which is an iso in A-Mod; see also Proposition 1.20(a). Next, by Tensor-Hom
adjunction [Exercise 1.25(b)], we have the bĳection below:

HomA-Mod(X,HomB-Mod(Q, F(X))) � HomB-Mod(Q ⌦A X, F(X)).

Let �0
X

: Q ⌦A X ! F(X) be the morphism in B-Mod corresponding to �X . We
then have that �0

X
is an iso in B-Mod. Lastly, these isos form the components of a

natural isomorphism �0 : (Q ⌦A �) ⇠) F. Claim Q.E.D.
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Next, there exists a quasi-inverse G : B-Mod! A-Mod to F with natural isomor-
phisms � : IdA-Mod

⇠) GF and  : FG
⇠) IdB-Mod by assumption. Denote G(B(Breg))

by P. By repeating the arguments above, we obtain that P is in (A, B)-Bimod,
and that G � (P ⌦B �) as functors. Finally, one can check that P ⌦B Q � Areg as
A-bimodules, and Q ⌦A P � Breg as B-bimodules, by using the isomorphisms
�A : A

⇠! GF(A) and  B : FG(B) ⇠! B. ⇤

Remark 2.19. The characterization of Morita equivalence above is conveniently
framed in the category Bim mentioned in §2.1.2, where objects are algebras and
morphisms are isoclasses of bimodules over algebras. In particular, isos in Bim are
precisely invertible bimodules, and two algebras A and B are Morita equivalent if
and only if A! B is an iso in Bim.

Remark 2.20. There is another characterization of Morita equivalence given
in terms of endomorphism algebras. Take algebras A and B, and consider the
following terminology.

• M 2 A-Mod is projective if the functor HomA-Mod(M,�) : A-Mod! Set sends an
epi to an epi; see §2.8.3 later for details.

• M 2 A-Mod is a generator if HomA-Mod(M,�) : A-Mod! Set is faithful.

Then, A 'Mor B if and only if B
op � EndA-Mod(M) as algebras for some finitely

generated, projective generator M of A-Mod. We defer the proof to Exercise 2.36.

Now if A and B are isomorphic as algebras, then A and B are Morita equivalent.
But the converse does not hold as we will see in the next example.

Example 2.21. An algebra A is Morita equivalent to Matn(A), for any n in N�1; see
§1.2.1. To obtain this result, take the bimodules below:

P := {(a1, . . . , an) | ai 2 A} � A
�n and Q := {(a1, . . . , an)T | ai 2 A} � A

�n,

where T is transpose. Here, the A-action is given by scalar multiplication and
Matn(A)-action given by matrix multiplication. Verifying this is Exercise 2.37.

Notice that the center of Matn(A) is isomorphic to the center of A as algebras. In
fact, we have the following results; the proofs of which comprise Exercise 2.38.

Proposition 2.22. Take algebras A and B. If A 'Mor B, then Z(A) � Z(B) as algebras. ⇤

Corollary 2.23. Take commutative algebras C and C
0. If C 'Mor C

0, then C � C
0 as

algebras. ⇤

So commutativity is not preserved under Morita equivalence, but many proper-
ties that are preserved; we call these Morita invariant properties. Examples
of Morita invariant properties include simplicity, semisimplicity, separability,
left/right Artinianity, and left/right Noetherianity. See Exercise 2.39.
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§2.5. Adjunction

In this section,we weaken the requirement for two functors to yield an equivalence
of categories to gain a rich theory of functors themselves. Arguably, the most
interesting aspect of category theory is not the way that it frames structures, but
rather the way that it frames how to move from one structure to another structure.

Recall from §2.4.2 that two categories C and D are equivalent if there exist
functors F : C ! D and G : D ! C such that IdC � GF and FG � IdD. We
will loosen these natural isomorphisms to natural transformations, and require a
useful compatibility condition between such natural transformations next.

§2.5.1. Characterization of adjunction

We say that the functors F : C ! D and G : D ! C form an adjunction, or are an
adjoint pair, if there exist natural transformations

⌘ : IdC ) GF and " : FG ) IdD,

such that the triangle identities hold:

(" ⇤ F) �ver (F ⇤ ⌘) = IDF and (G ⇤ ") �ver (⌘ ⇤G) = IDG.

These identities are also written as "F � F⌘ = ID and G" � ⌘G = ID, respectively,
for short. In particular, the triangle identities are the requirement that, for each
X 2 C and Y 2 D, the following two diagrams commute in D and C, respectively.

F(X)

idF(X)
''

F(⌘X)
// FGF(X)

"F(X)

✏✏

G(Y)

idG(Y)
''

⌘G(Y)
// GFG(Y)

G("Y )
✏✏

F(X) G(Y)

Here, we are using the fact that the composition of functors is associative.

In the above, we refer to F as the left adjoint of G, and G as the right adjoint
of F, and write

(F : C ! D) a (G : D ! C).

Moreover, ⌘ is called the unit of the adjunction F a G, and " is the counit of F a G.
Pictorically, we illustrate adjunctions as follows.

C

F

((

G

hh

? D

Adjoints need not exist, but if they do, then they are unique up to natural
isomorphism. See Sections 4.4 and 4.6 of Riehl [2016] for details.

Next, we consider a useful characterization for the existence of adjunctions.
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Proposition 2.24. Let F : C ! D and G : D ! C be functors between categories C

and D. Then, we have an adjunction F a G if and only if for each pair of objects, X 2 C
and Y 2 D, there is a bĳection of sets,

⇣ := ⇣X,Y : HomD(F(X), Y) ⇠! HomC(X,G(Y)),

that is natural in X and Y .

Here, naturality means that we have the natural isomorphism below.

C
op ⇥D

HomD(F(�),�)
++

HomC(�,G(�))

33↵◆⇠ ⇣ Set

In other words, for a fixed object X 2 C with arbitrary morphism g : Y
0 ! Y

00

in D, and for a fixed object Y 2 D with arbitrary morphism f : X
0 ! X

00 in C, the
diagrams below commute. See also §1.1.4v.

HomD(F(X), Y 0)

⇣X,Y0
✏✏

HomD(F(X), g)
// HomD(F(X), Y 00)

⇣X,Y00
✏✏

HomC(X,G(Y 0))
HomC(X,G(g))

// HomC(X,G(Y 00))

HomD(F(X00), Y)

⇣X00 ,Y
✏✏

HomD(F( f ), Y)
// HomD(F(X0), Y)

⇣X0 ,Y
✏✏

HomC(X00,G(Y))
HomC( f ,G(Y))

// HomC(X0,G(Y))

Proof of Proposition 2.24. We will sketch the argument below, leaving the details to
the reader; see Exercise 2.40. Suppose that F a G via the natural transformations
⌘ : IdC ) GF and " : FG ) IdD satisfying the triangle axioms. For a morphism
h : F(X)! Y in D, define the morphism in C:

⇣X,Y (h) := G(h) � ⌘X : X ! G(Y).

Check that ⇣X,Y natural in X and Y . Moreover, for ` : X ! G(Y) in C, the inverse of
⇣X,Y is given by

⇣�1
X,Y (`) := "Y � F(`) : F(X)! Y.

Now suppose that there exists a bĳection ⇣X,Y as given. Define morphisms:

⌘X := ⇣X,F(X)(idF(X)) : X ! GF(X) and "Y := ⇣�1
G(Y),Y (idG(Y)) : FG(Y)! Y.

These morphisms yield natural transformations ⌘ : IdC ) GF and " : FG ) IdD

satisfying the triangle axioms. ⇤
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Faithfulness and fullness of adjoint functors can be detected by studying the
components of the adjunction unit and counit; see Exercise 2.41. Moreover, an
adjunction, with unit and counit being natural isomorphisms, is precisely an
equivalence of categories; we see this as follows.

Proposition 2.25. For categories C and D, the following statements hold.

(a) If F : C ! D has a left (or right) adjoint with the unit and counit being natural
isomorphisms, then F is an equivalence of categories.

(b) If F : C ! D is an equivalence of categories, then there exists a left and right adjoint
G : D ! C of F with unit and counit being natural isomorphisms.

Proof. (a) This follows from the definition of an equivalence of categories.
(b) Suppose F : C ! D has quasi-inverse G : D ! C, with given natural

isomorphisms
� : IdC

⇠) GF and  : FG
⇠) IdD.

By Proposition 2.24, we will display a bĳection of sets,

⇣X,Y : HomD(F(X), Y) ⇠! HomC(X,G(Y)),

for each X 2 C and Y 2 D. To do so, consider the assignment

HomD(F(X), Y) ⇠! HomC(GF(X),G(Y)), f 7! G( f ),

which is a bĳection because G is fully faithful. Then, precompose G( f ) with the
iso �X : X

⇠! GF(X) to get the bĳection ⇣X,Y . This yields the desired adjunction
F a G, and we get the other desired adjunction G a F by swapping the roles of F

and G. Completing the details of this proof is part of Exercise 2.41. ⇤

§2.5.2. Properties preserved under adjunction

Next, we discuss how adjoint functors preserve useful constructions.

Proposition 2.26. Take adjoint functors, F a G, with adjunction unit ⌘ : Id) GF and
adjunction counit " : FG ) Id. Then, the following statements hold.

(a) F preserves pushouts, and G preserves pullbacks.

(b) F preserves coequalizers, and G preserves equalizers.

(c) F preserves cokernels, and G preserves kernels.

Proof. We will establish the result that F preserves cokernels, and leave the re-
maining parts to the reader as an exercise; see Exercise 2.42.
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Take a morphism f : X ! Y with cokernel ↵ f : Y ! coker( f ).

X
f

//

!
0

**

Y ↵ f

// coker( f )

We want to show that the cokernel of F( f ) : F(X)! F(Y) is equal to the morphism
F(↵ f ) : F(Y)! F(coker( f )). Namely, we aim to establish that F sends the cokernel
↵ f : Y ! coker( f ) to the cokernel ↵F( f ) : F(Y)! coker(F( f )).

Take a morphism �F( f ) : F(Y)! C with �F( f ) F( f ) =
!
0 . It suffices to construct a

unique morphism �F( f ) : F(coker( f ))! C to make the diagram below commute.

F(X)
F( f )

//

!
0

++

!
0

00

F(Y)
F(↵ f )

//

8 �F( f )
((

F(coker( f ))

Want 9! �F( f )
✏✏

C

Apply G to the equation �F( f ) F( f ) =
!
0 to yield commutative diagram below.

Here, the square commutes by the naturality of ⌘.

X
f

//

⌘X

✏✏

Y

⌘Y

✏✏

GF(X)
GF( f )

//

!
0

44

GF(Y)
G(�F( f ))

// G(C)

Next, we obtain a unique morphism e� f : coker( f )! G(C) to make the diagram
below commute, due to the universal property of coker( f ).

X
f

//

!
0

++

!
0

//

Y ↵ f

//

G(�F( f )) ⌘Y

((

coker( f )

9!e� f

✏✏

G(C)

Now, using the bĳection in Proposition 2.24, define:

�F( f ) := ⇣�1
coker( f ),C(e� f ) : F(coker( f ))! C.

This morphism satisfies the desired property, �F( f ) = �F( f ) F(↵ f ), due to the com-
mutative diagram below.

F(Y)
F(↵ f )

//

F(⌘Y )
✏✏

idF(Y)

))

F(coker( f ))

F(e� f )
✏✏

�F( f )

uu

FGF(Y)
FG(�F( f ))

//

"F(Y)
✏✏

FG(C)
"C

✏✏

F(Y)
�F( f )

// C
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Here, the left region commutes by a triangle identity; the top region commutes
by F applied to the previous diagram; the right region is the definition of �F( f );
and the bottom region commutes by the naturality of ". ⇤

These are special cases of a powerful theorem given below on when (co)limits
[§2.3.6] are preserved under functors. See Section 4.5 of Riehl [2016] for details.

Theorem 2.27. Left adjoints preserve colimits, and right adjoints preserve limits. ⇤

§2.5.3. Key examples of adjunction

We now discuss vital examples of adjunction.

Example 2.28 (Tensor-Hom adjunction). A crucial example of adjoint functors is
given by the Tensor-Hom adjunction for vector spaces. Recall §1.1.4iv to get the
adjunction diagrams below, for a fixed vector space V .

Vec

� ⌦k V

))

Homk(V,�)
ii

? Vec ! Vec ⇥ Vec
HomVec(� ⌦k V, �)

++

HomVec(�, Homk(V,�))

33↵◆⇠ ⇣ Set

Vec

V ⌦k �
))

Homk(V,�)
ii

? Vec ! Vec ⇥ Vec
HomVec(V ⌦k �, �)

++

HomVec(�, Homk(V,�))

33↵◆⇠ ⇣ Set

This can be upgraded to a Tensor-Hom adjunction for bimodules by way of
Exercise 1.25; see Exercise 2.43.

Example 2.29 (Free-Forget adjunction). Now we construct a left adjoint to a
forgetful functor Forg : D ! C (see §2.3.2).

A free object on X 2 C consists of the following data:

(a) An object, FreeX , in D,

(b) A mono, ↵X : X ! Forg(FreeX), in C,

such that, for every morphism �X : X ! Forg(Z) in C with Z 2 D, there exists a
unique morphism �X : FreeX ! Z in D with �X = Forg(�X) � ↵X in C. In other
words, the diagram below commutes.

X
↵X

//

8 �X
''

Forg(FreeX)

Forg(�X) 2 C
✏✏

< FreeX

9! �X 2 D
✏✏

Forg(Z) < Z

Here, < means ‘forget structure’, or apply the functor Forg.
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We refer to Free : C ! D, X 7! Free(X) := FreeX as a free functor if this
assignment does indeed yield a functor.

The bĳection between the morphisms �X 2 C and �X 2 D yields an adjunction:

(Free : C ! D) a (Forg : D ! C).

Moreover, the morphisms ↵X can be assembled into the unit IdC ) Forg � Free of
this adjunction; these components are the process of inserting generators.

Specific examples of Free-Forget adjunction include the following, details of
which are left as Exercise 2.44.

• Forg : Group! Set (forgets operation),
Free : Set! Group (free group).

• Forg : A-Mod! Vec (forgets A-action),
Free := A ⌦k � : Vec! A-Mod (free A-module).

For instance, Free(V) � A
�dimkV .

• Forg : Vec! Set (forgets addition and scalar multiplication),
Free : Set! Vec, X 7! { f : X ! k | f

�1(k⇥) is finite}.
For instance, Free({1, . . . , n}) � k

n.

• Forg : Alg ! Vec (forgets multiplication),
Free := T (�) : Vec! Alg (tensor algebra).

Other interesting examples of adjunction appear in Exercises 2.45 and 2.46.

§2.6. Representable functors

In this section, we formalize the discussion of universal property from §1.1.4iii
within the categorical setting introduced in this chapter. This leads to the notion
of a representable functor, and a key result of Yoneda that provides a framework for
studying such functors.

§2.6.1. Universal property revisited

Recall from §1.1.4iii that for a gadget X, we say that Univ(X) is a universal structure
attached to X if it is equippedwitha connection↵X to X, such that forall connections
�X between X and an arbitrary structure Arb(X), there is a unique structure-
preserving map �X between Univ(X) and Arb(X) compatible with ↵X and �X .
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This takes one of two forms.

X
↵X

//

8 �X

''

Univ(X)

9! �X

✏✏

Arb(X)
8 �0

X

''

9! �0
X

✏✏

Arb(X) Univ(X)
↵0

X
// X

We will skip the discussion of the second type. But for the first type, universality
yields the following bĳection of sets:

Homstructure(Univ(X), Arb(X)) � Homgadget(X, Arb(X)gadget), �X $ �X . (2.30)

In particular, X connects to an ‘underlying gadget’ Arb(X)gadget of Arb(X).

We have seen numerous examples of (2.30), such as the following.

• HomVec(V ⌦k W, Z) � Bilin(V ⇥W, Zvs) (see §1.1.4iii)

• Hom(B1,B2)-Bimod(V ⌦A W, Z) � A-Balan(V ⇥W, Z(B1,B2)-bimod) (see §1.4.2iii)

• HomAlg(T (V), Z) � HomVec(V, Zvs) (see §1.2.2)

• HomA-BimodAlg(TA(V), Z) � HomA-Bimod(V, ZA-bimod) (see §1.4.2iv)

• HomAlg(kG, Z) � HomGroup(G, Z
⇥) (see §1.2.6)

• HomGroup(Free(X), Z) � HomSet(X, Zset) (see Example 2.29)

• HomA-Mod(A ⌦k V, Z) � HomVec(V, Zvs) (see Example 2.29)

Let us formalize these examples given the tools in this chapter. We say that a
covariant (resp., contravariant) functor H : D ! Set is representable if

H(�) � HomD(U,�) (resp., H(�) � HomD(�,U))

for some object U 2 D. In this case, U is called the universal object that represents
the functor H, or is referred to as a universal representing object. Universal (rep-
resenting) objects are unique up to iso, as discussed in §2.6.2 below; cf. Exercise 1.2.
We focus on the case when H is covariant below.

Consider the following examples.

• For vector spaces V and W, let H := HV⇥W : Vec ! Set send a vector space
Z to the set of bilinear maps V ⇥ W ! Z. Then, HV⇥W (�) = Bilin(V ⇥ W,�) is
represented by the tensor product V ⌦k W as the universal object. One needs to
verify the naturality of the isomorphism between H(�) and HomVec(V ⌦k W,�).

• For a vector space V , take H := HV : Alg ! Set to be the functor that sends an
algebra Z to the set HomVec(V, Zvs). Now HV (�) :=HomVec(V, (�)vs) is represented
by the tensor algebra T (V) as the universal object.
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• For a set X, take H := HX : Group ! Set to be the functor that sends a group Z

to the set HomSet(X, Zset). Here, HX(�) :=HomSet(X, (�)set) is represented by the
free group Free(X) as the universal object.

In general, if F : C ! D has a right adjoint G : D ! C, then for any object X 2 C,
we get that

HX(�) := HomC(X,G(�)) : D ! Set

is represented by the universal object F(X) in D. Indeed, F a G yields

HomD(F(X),�) � HomC(X,G(�))

by Proposition 2.24. The converse statement holds as well; see Exercise 2.47.

§2.6.2. Yoneda’s Lemma

Now we introduce a result attributed to Yoneda [1954] (see also Section III.2 of
MacLane [1971]) that provides a framework for studying representable functors.

Proposition 2.31 (Yoneda’s Lemma). Let F : D ! Set be a functor from a category
D to Set. Then, for each object U 2 D, there is a bĳection:

�F,U : NatD,Set(HomD(U,�), F) ⇠! F(U).

Proof. We will sketch the proof of this result, and leave the details to the reader.
Take a natural transformation � in NatD,Set(HomD(U,�), F). For Z 2 D, the com-
ponent of � at Z is a set morphism: �Z : HomD(U, Z)! F(Z). Now define

�F,U(�) := �U(idU) 2 F(U).

Next, let us define a set morphism  F,U : F(U)! NatD,Set(HomD(U,�), F). Take
an element x 2 F(U) and object Z 2 D, and define the set morphism:

( F,U(x))Z : HomD(U, Z)! F(Z), f 7! F( f )(x).

These form the components of a natural transformation F,U(x) : HomD(U,�)) F.
Therefore,  F,U is a set morphism from F(U) to NatD,Set(HomD(U,�), F). Lastly,
the set morphisms �F,U and  F,U are mutually inverse. ⇤

We refer the reader to Section 2.2 of Richter [2020] and Section 2.2 of Riehl [2016]
for more discussion. For instance, the result above yields a natural transformation

� : NatD,Set(HomD(⇤,�), F) ⇠) F(⇤)

with the components �⇤=U := �F,U .

Here are some interesting consequences of Yoneda’s Lemma; the proof of which
we leave as an exercise; see Exercise 2.48.

107

Copyright ©2024 Chelsea Walton. Free version by the courtesy of CW and 619 Wreath. https://math.rice.edu/~notlaw/symalgbook.html. 

Enjoy this textbook? Physical copies are available for purchase at https://www.619wreath.com/ and on Amazon. 
<< Please ask your local academic librarian to order a copy for circulation. >> 



C������ 2. C���������

Corollary 2.32. Take a category D, with U,U0 2 D. Then, the following statements hold.

(a) There is a bĳection:

�U0,U : NatD,Set(HomD(U,�),HomD(U0,�)) ⇠! HomD(U0,U).

(b) Suppose that a functor F : D ! Set is represented by universal objects U and U
0

in D, that is, HomD(U,�) � F � HomD(U0,�). Then, U � U
0 in D.

(c) (Yoneda embedding) The functor below is fully faithful:

 : Dop ! Fun(D, Set)
U 7! HomD(U,�)

(g : U ! U
0) 7! ( HomD(U0,�)! HomD(U,�), precompose with g ).

(d) We have that HomD(U,�) � HomD(U0,�) if and only if U � U
0 in D. ⇤

The last consequence above is the most used in practice, as it says that repre-
sentable functors can be understood precisely in terms of their universal repre-
senting objects. A contravariant version of this result is given as follows.

Lemma 2.33. Take a category D, with U,U0 2 D. Then, HomD(�,U) � HomD(�,U0)
if and only if U � U

0 in D. ⇤

One needs to dualize Proposition 2.31 and Corollary 2.32 to verify this result.

§2.7. Simplicity and semisimplicity

Now we focus on the ‘building blocks’ for objects in categories C, namely we
discuss indecomposability and simplicity in the categorical setting. (Compare
this to §§1.4.1, 1.5 on these notions for algebras over a field and their modules.)
This will also lead to the definition of a semisimple category.

Standing hypothesis. We assume here that C is abelian; see §2.2.2.

§2.7.1. Indecomposable and simple objects

We call a nonzero object X 2 C decomposable if X � X1 t X2 for some nonzero
subobjects X1 and X2 of X. Else, we say that X is indecomposable.

Similar to Proposition 1.22, we have the following characterization of indecom-
posable objects; see Exercise 2.49(a).

Proposition 2.34. A nonzero object X 2 C is indecomposable if and only if the only
idempotent morphisms in HomC(X, X) are !0X,X and idX . ⇤
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A nonzero object X 2 C is simple if the only nonzero subobject of X is X itself.

Using Remark 1.27, a simple object must be indecomposable, but the converse
need not hold.

We also have a version of Schur’s Lemma in this setting presented as follows;
see Exercise 2.49(b). Compare to Proposition 1.28.

Proposition 2.35 (Schur’s Lemma). Let X and Y be simple objects in C, and take
f 2 HomC(X, Y). Then, either f =

!
0X,Y , or f is an iso. ⇤

Now the consequence below is straightforward; see Exercise 2.49(c).

Corollary 2.36. If C is k-linear and X is a simple object in C, then we have that
HomC(X, X) is a division algebra over k. ⇤

§2.7.2. Finite length objects

Now we discuss how to measure how far an object X 2 C is from being simple.

A composition series for an object X in C is a sequence of monos,

0 = X0
f0�! X1

f1�! X2 �! · · ·
fn�1�! Xn

fn�! · · · �! X,

such that each composition factor Xi+1/Xi := coker( fi) is a simple object in C.

If X = Xn above for some n, then we say that X has finite length, and we refer
to the minimum such n as the length of X.

Length is well-defined by a version of the Jordan-Hölder theorem for abelian
categories, similar to the result for modules [Theorem 1.29]; see the examples
after Proposition IV.5.3, along with §III.2-3, in Stenström [1975] for more details.
In any case, an object is simple precisely when its length is 1.

Theorem 2.37 (Jordan-Hölder Theorem). Let X be an object of C of finite length. If
X has two composition series

0 = X0 ! X1 ! · · ·! Xn = X and 0 = Y0 ! Y1 ! · · ·! Ym = X,

then n = m and there exists a permutation � of {1, . . . , n} such that X�(i)+1/X�(i) � Yi+1/Yi

as objects, for all i. ⇤

Given an object X of finite length, the number of times a simple object Y is
isomorphic to a composition factor of X is called the multiplicity of Y in X,
denoted by [X : Y]. If Y is a simple object in C and C is k-linear, then

[X : Y] = dimkHomC(X, Y). (2.38)
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We also have a decomposition result for objects of finite length, using indecom-
posability. The proof holds similarly to that for Theorem 1.31 for modules over a
k-algebra.

Theorem 2.39 (Krull-Schmidt Theorem). Take X 2 C of finite length. Then, up to
iso, X � X1 t · · · t Xn, for a unique choice of indecomposable subobjects Xi of X. ⇤

§2.7.3. Semisimple objects and semisimple categories

Now we consider the decomposability of objects in terms of simple objects.

We say that a nonzero object X 2 C is semisimple if X �
`

i2I Xi, for some simple
objects Xi in C. Else, we say that X is nonsemisimple.

A category C is said to be semisimple if each of its objects is semisimple.

Note that we are only guaranteed to have that a coproduct of finitely many
objects exists in an abelian category; infinite coproducts may not exist. So, for the
notion above, one may need to impose that a semisimple object has a finiteness
condition (e.g., finite length) to use decompositions in terms of a coproduct of
simple objects.

Recall that simple objects are indecomposable; we will next discuss the converse
in semisimple categories (cf. Proposition 1.48).

Given a subobject Y of an object X in C, we say that a subobject Y
0 of X is a

complement to Y if Y t Y
0 � X.

The result below follows in a similar manner to the proof for Lemma 1.30; see
Section V.6 of Stenström [1975] for a discussion in a more general categorical
setting.

Proposition 2.40. A subobject of a semisimple object of finite length inC has a complement
in C. Thus, indecomposable objects of finite length in a semisimple category are simple
objects. ⇤

Moreover, we have the useful result below.

Lemma 2.41. If X �
`

i2I Xi and Y �
`

j2J Y j are semisimple objects in C of finite length,
then there exists a bĳection: HomC(X, Y) � HomC(Y, X). ⇤

Proof. By Schur’s Lemma [Proposition 2.35], a morphism �i, j between simple
objects Xi and Yj is an iso or a zero morphism. So,

HomC(Xi, Yj) � HomC(Yj, Xi), (2.42)

where �i, j : Xi ! Yj gets sent to its inverse if �i, j is an iso, or to !0Y j,Xi
if �i, j =

!
0Xi,Yj

.
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Next, since X and Y have finite length, we can take the index sets I and J to be
finite. Therefore, X �

Q
i2I Xi and Y �

Q
j2J Y j. So, we get that

HomC(X, Y) � HomC(
`

i2I Xi,
Q

j2J Y j) �
Q

i2I, j2J HomC(Xi, Yj)

�
Q

i2I, j2J HomC(Yj, Xi) � HomC(Y, X).

Here, the second and last isomorphisms hold by Exercise 2.8, and the third
isomorphism holds by (2.42). ⇤

Finally, we discuss examples of semisimple abelian categories; see also Exer-
cise 2.50.

• A-Mod is semisimple if and only if the algebra A is semisimple (see §1.6). This
is due to Proposition 1.48.

• Vec � k-Mod is semisimple because k is a semisimple algebra.

• (A, B)-Bimod � (A⌦B
op)-Mod is semisimple when A and B are separable algebras,

due to Exercise 1.34(b) and Proposition 1.57.

• G-Mod � kG-Mod is semisimple if and only if G is finite; see Theorem 1.47 and
Exercise 2.30.

• Ab is an abelian category, but it is not semisimple. The best way to see this is to
employ the homological tools in the next section (see Example 2.47 later).

§2.8. Snippet of Homological Algebra

Next, we discuss how close a category C is to being semisimple. This, in turn,
leads us to the field, Homological Algebra, which examines how sequences of
morphisms behave under functors. We will only cover a snippet of this field here
to illustrate that semisimplicity is a strong hypothesis to put on a category, and to
display some of the tools that are used when semisimplicity is not available.

Standing hypothesis. We assume here that C is abelian; see §2.2.2.

§2.8.1. Exactness and splitting

We refer the reader to Section 2.1 in Cohn [2003], and to Sections I.15 and I.19 in
Mitchell [1965], for details about the material below. The reader may also wish to
view Section 2.1 of Rotman [2009] when C is a category of modules. Understanding
the proofs of some of the results below is Exercise 2.51.
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A sequence of morphisms in C,

· · · �! Xi�1
fi�1�! Xi

fi�! Xi+1 ! · · · ,

is exact at Xi, for some i, if ker( fi) = im( fi�1). If the sequence is exact at all Xi, then
the sequence is said to be exact.

Lemma 2.43. We have the following facts about exact sequences.

(a) The sequence 0
!
0X0�! X

0 f�! X is exact if and only if f is monic.

(b) The sequence X
g�! X

00 X00
!
0�! 0 is exact if and only if g is epic.

(c) The sequence 0
!
0X�! X

h�! Y
Y

!
0�! 0 is exact if and only if h is an iso. ⇤

Often the zero morphisms are omitted from the notation above.

A sequence of morphisms in C of particular importance is of the form,

0 �! X
0 f�! X

g�! X
00 �! 0, (2.44)

called a short exact sequence. Here, f is monic, g is epic, and ker(g) = im( f ). Also,
X
0 is a subobject of X, and we have that X

00 � X/X0 as a quotient object of X.

In fact, we can study any exact sequence in terms of short exact sequences via
a method called splicing, as illustrated below. Here, Ki := ker( fi) = im( fi�1).

0

((

0

Ki

66

''· · · // Xi�1

66

fi�1

// Xi

fi
//

((

Xi+1 // · · ·
Ki�1

55

Ki+1
))

0

55

0

Next, we consider some convenient conditions for short exact sequences.

Proposition 2.45. The following statements are equivalent for the sequence (2.44):

(a) There exists a morphism s : X
00 ! X in C such that gs = idX00 ;

(b) There exists a morphism r : X ! X
0 in C such that r f = idX0 .

In either case, we obtain that X � X
0 ⇤ X

00. ⇤

Above, the morphism s is called a section of g, and r is called a retraction of f .
When either part (a) or (b) hold, we say that the sequence (2.44) is split.

Now we have that semisimplicity implies the split condition by the following
result. (This result was previously considered "folklore". But all results need a
careful proof, folklore or not, and it is good that we have one available here.)
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Proposition 2.46 (Lemma 2.1 of Positselski and Šťovíček [2022]). If C is a semisimple
category, then every short exact sequence in C splits. ⇤

See also Remarks 2.2 and 2.4 of Positselski and Šťovíček [2022] for a discussion
about the converse of this result failing, if you are interested. In any case, the
result above helps rule out the semisimple condition for many categories.

Example 2.47. Recall Remark 2.17. In Ab ' Z-Modab, take the short exact sequence

0! Z
f! Z! Z/2Z! 0.

Here, the morphism f is given by multiplication by 2. Suppose that r : Z ! Z

is a group homomorphism with r f = idZ. Then, r f (1) = r(2) = 2n = 1 for some
n 2 Z, which yields a contradiction. Thus, our given short exact sequence is not
split, and the category Ab cannot be semisimple.

We are also interested in how short exact sequences behave under functors.
Given a covariant (resp., contravariant) functor F : C ! D, we say that:

• F is left exact if for every short exact sequence (2.44) in C, we have that the
following sequence is exact in D,

0! F(X0)
F( f )�! F(X)

F(g)�! F(X00) (resp., 0! F(X00)
F(g)�! F(X)

F( f )�! F(X0));

• F is right exact if for every short exact sequence (2.44) in C, we have that the
following sequence is exact in D,

F(X0)
F( f )�! F(X)

F(g)�! F(X00)! 0 (resp., F(X00)
F(g)�! F(X)

F( f )�! F(X0)! 0);

• F is exact if it is left and right exact.

Next, we recall some useful facts about commutative diagrams in abelian
categories with exact rows. See Section VIII.4 of MacLane [1971], which explicitly
covers part (a) of the result below; we leave parts (b) and (c) to the reader.

Lemma 2.48. Consider the statements below.

(a) (Short-Five Lemma) Take the commutative diagram below in C with exact rows:

0 // X
0

//

h
0
✏✏

X //

h

✏✏

X
00

//

h
00
✏✏

0

0 // Y
0

// Y // Y
00

// 0.

If h
0 and h

00 are monic (resp., epic, isos), then so is h.
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(b) (Four Lemma I) Take the commutative diagram below in C with exact rows:

X
0

//

h
0
✏✏

X //

h

✏✏

X
00

//

h
00
✏✏

W

`
✏✏

Y
0

// Y // Y
00

// Z.

If h
0 and h

00 are epic and ` is monic, then h is epic.

(c) (Four Lemma II) Take the commutative diagram below in C with exact rows:

W

`
✏✏

// X
0

//

h
0
✏✏

X //

h

✏✏

X
00

h
00
✏✏

Z // Y
0

// Y // Y
00.

If h
0 and h

00 are monic and ` is epic, then h is monic. ⇤

We will study exactness for tensor and Hom functors in §2.8.2 below. Before
this, here are some useful facts.

Proposition 2.49. The following statements hold for an additive functor F : C ! D.

(a) F is left (resp., right) exact if and only if it preserves kernels (resp., cokernels).

(b) F is left (resp., right) exact when F has a left (resp., right) adjoint G : D ! C.

(c) F preserves split, short exact sequences.

Proof. For part (a), suppose that F is left exact. Take a morphism f : X ! Y , and
factor it as

f : X
↵̃�! im( f )

↵�! Y,

where ↵ is monic and ↵̃ is epic [Exercise 2.14]. This yields short exact sequences:

0! ker(↵̃) �! X
↵̃�! im( f ) �! 0, 0! im( f )

↵�! Y �! coker(↵) �! 0.

Since F is left exact, we obtain the exact sequences below:

0! F(ker(↵̃)) �! F(X)
F(↵̃)�! F(im( f )),

0! F(im( f ))
F(↵)�! F(Y) �! F(coker( f )).

This implies that F(↵) is monic, and that ker(F(↵̃)) � F(ker(↵̃)) [Lemma 2.43(a)].
Now using the fact that ker(gg

0) = ker(g0) if g is monic, we obtain:

F(ker( f )) = F(ker(↵↵̃)) = F(ker(↵̃)) � ker(F(↵̃)) = ker(F(↵)F(↵̃)) = ker(F( f )).

Therefore, F preserves kernels.
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Now suppose that F preserves kernels, and take, 0 ! X
0 f! X

g! X
00 ! 0, a

short exact sequence. Then, ker(F( f )) � F(ker( f )) � F(0) � 0; so F( f ) is monic by
Lemma 2.43(a). Moreover,

ker(F(g)) � F(ker(g)) � F(im( f )) � F(X0) � im(F( f )).

Thus, the sequence of morphisms, 0 ! F(X0)
F( f )! F(X)

F(g)! F(X00), is exact. Thus,
we obtain that F is left exact. Moreover, one can work in the opposite category to
obtain the dual statement for the rest of part (a).

Part (b) follows from part (a) and Proposition 2.26(c). Moreover, part (c) follows
from Lemma 2.6. ⇤

Example 2.50. Let A and B be k-algebras, and take a bimodule Q 2 (B, A)-Bimod.
See also §§1.4.2iii, 1.4.3i. Then, by Exercise 2.43, we have that

(Q ⌦A � : A-Mod! B-Mod) a (HomB-Mod(Q,�) : B-Mod! A-Mod).

So, by Proposition 2.49(b), (Q⌦A �) is right exact, and HomB-Mod(Q,�) is left exact.

§2.8.2. Eilenberg-Watts Theorem

In the more down-to-earth setting for categories of finite-dimensional modules
over finite-dimensional k-algebras, we have the result on exact functors below
due to Eilenberg [1960] and Watts [1960].

Theorem 2.51 (Eilenberg-Watts Theorem). Let A, B be finite-dimensional k-algebras,
and let F : A-FdMod! B-FdMod be a k-linear functor. Then, for the statements below:

(a) F is left exact; (a’) F is right exact;

(b) F has a left adjoint; (b’) F has a right adjoint;

(c) F � HomA-FdMod(P,�), (c’) F � Q ⌦A �,
for some P 2 (A, B)-FdBimod; for some Q 2 (B, A)-FdBimod;

we have that (a), (b), (c), and that (a’), (b’), (c’).

Proof. Proposition 2.49(b) implies that (b) ) (a) and (b’) ) (a’). Also, (c) ) (b)
and (c’)) (b’) hold by Exercise 2.43.

For (a’)) (c’), take V 2 A-FdMod, and denote Q := F(A(Areg)). Then, we obtain
that Q 2 (B, A)-FdBimod (see the proof of Theorem 2.18). Then,

�V := FAreg,V : V � HomA-FdMod(A(Areg),V) �! HomB-FdMod(Q, F(V)).

Now �V 2 HomA-FdMod(V,HomB-FdMod(Q, F(V))) � HomB-FdMod(Q ⌦A V, F(V)) by
Exercise 2.43, and this is natural in V . So, we get a natural transformation:

A-FdMod

Q ⌦A �
,,

F

22

↵◆ � B-FdMod.
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Since V 2 A-FdMod, there exists an epimorphism g : A
�n ! V for a positive

integer n, such that the following sequence is exact in A-FdMod:

0 �! ker(g)
f�! A

�n
g�! V

h�! 0.

Now by the right exactness of F and (Q ⌦A �) (see Example 2.50), and by the fact
that F and (Q ⌦A �) both commute with finite direct sums [Lemma 2.6], we get
the commutative diagram below in B-FdMod.

Q ⌦A ker(g)
idQ ⌦A f

//

�ker(g)
✏✏

Q ⌦A (A�n)
idQ ⌦A g

//

�A�n �
✏✏

Q ⌦A V
idQ ⌦A h

//

�V

✏✏

0

�0
✏✏

F(ker(g))
F( f )

// F(A�n)
F(g)

// F(V)
F(h)

// 0

Since g is epic and F is right exact, F(g) is epic; namely, note that epis are cokernels
and use Proposition 2.49(a). So, �V (idQ ⌦A g) = F(g)�A�n is epic. Thus, �V is epic.
Recall that V is arbitrary, so by taking V = ker(g), we get that �ker(g) is epic.
Also, �0 =

!
00,0 = id0, an iso. We then get that �V is monic by a Four Lemma

[Lemma 2.48(c)]. Now �V is an iso by Proposition 2.4. Therefore, (a’)) (c’).
A similar argument establishes that (a)) (c). ⇤

§2.8.3. Projective and injective objects

Now we summarize how Hom functors preserve short exact sequences. Details
are in Section 2.2 of Cohn [2003], in Sections I.14, V.7, VII.6 of Mitchell [1965], in
Section 3.2 of Popescu [1973], and in Sections 3.1, 3.2 of Rotman [2009] when C is
a category of modules. We encourage the reader to explore these references. The
details of two of the next results are left to Exercise 2.52.

Proposition 2.52. Given objects P,Q in C, the following statements hold.

(a) The functor HomC(P,�) : C ! Ab is covariant and left exact.

(b) The functor HomC(�,Q) : C ! Ab is contravariant and left exact. ⇤

Next, we have precise conditions to obtain when HomC(P,�) is exact.

Proposition 2.53. The following statements are equivalent for an object P 2 C:

(a) The functor HomC(P,�) : C ! Ab is right exact;

(b) Every short exact sequence of the form, 0! X
0 ! X ! P! 0, in C is split;

(c) For every epi p : Y ! Z in C, and every morphism f : P ! Z in C, there exists a
morphism f̃ : P! Y in C such that f = p f̃ .
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Proof. For (a)) (b), take a short exact sequence 0! X
0 ! X

g! P! 0. By part (a)
and Proposition 2.52(a), we obtain a short exact sequence

0 // HomC(P, X0) // HomC(P, X)
HomC(P,g)

// HomC(P, P) // 0.

Since HomC(P, g) is an epic morphism [Lemma 2.43(b)], it is a surjection in Ab

[Exercise 2.1(b)]. Therefore, for idP 2 HomC(P, P), there exists h 2 HomC(P, X) such
that HomC(P, g)(h) = gh = idP. So, 0! X

0 ! X
g! P! 0 splits and part (b) holds.

For (b)) (c), consider the set-up of part (c) and take the short exact sequence:

0 �! ker(p) �! Y
p�! Z �! 0.

This sequence splits by part (b), so there is a morphism s : Z ! Y such that
ps = idZ . Now take f̃ := s f : P! Y . Then, we get that p f̃ = ps f = f , as desired.

For (c)) (a), it suffices to show that HomC(P,�) preserves cokernels (or epis
by normality) by Proposition 2.49(a). Take an epi p : Y ! Z, and consider the
morphism

HomC(P, p) : HomC(P, Y)! HomC(P, Z) 2 Ab.

Then, for f 2 HomC(P, Z), there exists a morphism f̃ 2 HomC(P, Y) such that
HomC(P, p)( f̃ ) = f by part (c). Therefore, HomC(P, p) is surjective, and is epic
[Exercise 2.1(b)], as required. ⇤

We call the object P in Proposition 2.53 a projective object of C.

We also have precise conditions to obtain when the functor HomC(�,Q) is exact.

Proposition 2.54. The following statements are equivalent for an object Q 2 C:

(a) The functor HomC(�,Q) : C ! Ab is right exact;

(b) Every short exact sequence of the form, 0! Q! X ! X
00 ! 0, in C is split;

(c) For every mono q : Z ! Y in C and every morphism g : Z ! Q in C there exists a
morphism g̃ : Y ! Q in C such that g = g̃q. ⇤

We call the object Q in Proposition 2.54 an injective object of C.

Projective and injective objects in C are visualized as follows. Recall from
Lemma 2.43 that the maps to (resp., from) zero objects indicate that p is an epi
(resp., q is a mono) in C. That is, we have exactness at Z for the horizontal maps
below.

P

8 f

✏✏

9 f̃

{{

0 // Z
q

//

8g

✏✏

Y

9 g̃
{{

Y
p

// Z // 0 Q
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We say that C has enough projectives if, for every object Z 2 C, there exists a
projective object P(Z) 2 C along with an epi, ⇡Z : P(Z)! Z, in C.

Dually,C has enough injectives if, for every object Z 2 C, there exists an injective
object I(Z) 2 C along with a mono, �Z : Z ! I(Z), in C.

Sometimes one wants for a given object Z, a projective object that maps to Z, or
an injective object that maps from Z, in a minimal fashion.

A projective cover of Z 2 C is a projective object P(Z) 2 C equipped with an epi
⇡Z : P(Z)! Z in C, such that if f : P! Z is an epi from a projective object P in C,
there is an epi f̃ : P! P(Z) with f = ⇡Z � f̃ in C.

Dually, an injective hull of Z 2 C is an injective object I(Z) 2 C equipped with a
mono �Z : Z ! I(Z) in C, such that if g : Z ! Q is a mono to an injective object Q

in C, there is a mono g̃ : I(Z)! Q with g = g̃ � �Z in C.

Now we discuss some interesting consequences of the propositions above.

Corollary 2.55. Let P1 and P2 be objects in C, and take P := P1 t P2. Then, P1 and P2

are projective when P is a projective object in C.

Proof. Let ↵i : Pi ! P, for i = 1, 2, be the morphisms from the universal property
of the coproduct. Also, let �i : P ! Pi, for i = 1, 2, be the morphisms derived by
the universal property of the coproduct by using the morphisms �i := idPi

and
� j :=

!
0Pj,Pi

, for j , i.
Suppose that P is projective. Take an epi p : Y ! Z in C, along with a morphism

f : P1 ! Z. We want a morphism f̃ in C such that f = p f̃ . Consider the composition
f1 := f�1 : P ! Z. Since P is projective, there exists a morphism f̃1 : P ! Y such
that f1 = p f̃1. Now take f̃ := f̃1↵1 : P1 ! Y . We then get that:

p f̃ = p f̃1↵1 = f1↵1 = f�1↵1 = f .

Thus, P1 is projective by Proposition 2.53. Likewise, P2 is projective. ⇤

Moreover, the next result is a consequence of Propositions 2.46, 2.53, and 2.54.

Corollary 2.56. Each object in a semisimple abelian category is both projective and
injective. ⇤

We also have the following useful result when C = A-Mod.

Proposition 2.57. The following statements are equivalent for a k-algebra A:

(a) A is semisimple;

(b) Every object M in A-Mod (or in Mod-A) is projective;

(c) Every object M in A-Mod (or in Mod-A) is injective. ⇤
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Proof. We have that part (a) implies both parts (b) and (c) by Corollary 2.56.
Next, assume that part (c) holds; we will establish part (b). For M 2 A-Mod, take

an arbitrary short exact sequence 0! X
0 ! X ! M ! 0 in A-Mod. By assumption,

X
0 is injective. Thus, the sequence splits by Proposition 2.54. Since the sequence

is arbitrary, we obtain that M is projective by Proposition 2.53. There is a similar
argument for right A-modules.

Now to get that part (b) implies part (a), it suffices to show that any left (or
right) ideal I of A is a direct summand of A; this follows similarly to the proof of
Proposition 1.48. We have a short exact sequence

0! I ! A! A/I ! 0

in A-Mod (or in Mod-A). By part (b), A/I is projective. So, the sequence splits by
Proposition 2.53. Therefore, A � I � (A/I) by Proposition 2.45, as desired. ⇤

Remark 2.58. The distance from an algebra being semisimple is measured by the
failure of the Hom functors above being right exact. This is captured by Ext groups,
and numerically by global dimension, in Homological Algebra. Indeed, semisimple
algebras are precisely the algebras that have global dimension 0.

Remark 2.59. Let us consider the adjoint counterpart of Hom functors for cate-
gories of (bi)modules, namely tensor functors. For a general (bi)module W over
an algebra A, the functors (W ⌦A �) and (� ⌦A W) are covariant and right exact
(see Exercise 1.20 and Proposition 2.49(a)). But these functors are not necessarily
left exact (see Exercise 1.19 and Proposition 2.49(a)). If the functors (W ⌦A �) and
(� ⌦A W) are left exact, then we call W a flat module. The failure of flatness is
captured by Tor groups in Homological Algebra.

§2.9. Finiteness for linear categories

In this part, we briefly discuss finiteness conditions that are used often in conjunc-
tion with, or in place of, semisimplicity for k-linear categories. See Section 1.8 of
Etingof et al. [2015] for the details of the discussion below.

Standing hypothesis. Assume that C is k-linear and abelian; see §2.2.2.

We say that C is locally finite if the following conditions hold:

• The k-vector space HomC(X, Y) is finite-dimensional, for each X, Y 2 C;

• Each object of C has finite length.
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Proposition 2.60. Assume that C is locally finite, and take an object X 2 C. Then, the
following statements hold.

(a) If X is a simple object, then EndC(X) � k as algebras.

(b) If EndC(X) � k as vector spaces, and if C is semisimple, then X is a simple object.

Proof. (a) This follows from Corollary 2.36 and Lemma 1.36.
(b) If X is not simple, then there exists nonzero simple subobject Y of X, where

X � YtZ � YuZ, for some nonzero object Z in C [Proposition 2.40]. By Exercise 2.8,
EndC(X) has a subspace EndC(Y) � EndC(Z) of vector space dimension greater
than 1, as required. ⇤

An object X 2 C that satisfies the condition that EndC(X) � k as algebras (or,
equivalently, as vector spaces) is said to be absolutely simple.

We also say that C is finite if the following conditions hold:

• C is locally finite;

• C has enough projectives;

• There are finitely many isoclasses of simple objects in C.

In fact, we have the following characterization of finite categories.

Proposition 2.61. We have that C is finite if and only if it is equivalent to the category,
A-FdMod, for some finite-dimensional algebra A.

Proof. We sketch the proof here. First, the category A-FdMod, for A a finite-
dimensional algebra, is finite. On the other hand, take a finite category C, with
a complete set of isoclasses representatives {X1, . . . , Xn} of simple objects in C.
Then, there exist projective covers {P(Xi)}ni=1 in C. Now take A :=

L
n

i=1 EndC(P(Xi)),
which is a finite-dimensional k-algebra. We then get that A

op-FdMod is equivalent
to C via the functor:

C �! A
op-FdMod, Y 7! HomC(

`
n

i=1 P(Xi), Y). ⇤

For instance, FdVec is a key example of a finite category.

Observe from the result above that we can treat finite linear categories like cat-
egories of modules, and understanding such categories boils down to examining
finitely many simple objects and their projective covers.

By Proposition 2.61 and the Eilenberg-Watts Theorem [Theorem 2.51], we also
obtain in the finite setting a converse of Proposition 2.49(b) on the connection
between exactness and adjunction for functors.

Corollary 2.62. A left (resp., right) exact functor between finite categories has a left
(resp., right) adjoint. ⇤
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§2.10. Summary

We introduced the concept of a category, which provides a framework for study-
ing objects and structure-preserving maps between objects. Many examples of
categories were presented, especially derived from structures in Chapter 1. To
do computations in categories, unlike in Chapter 1, we do not necessarily have
elements within objects to manipulate. Instead, we need to perform operations
on the objects themselves, especially by using universal constructions. Thus, it is
convenient to work with categories in which many universal constructions exist,
such as in abelian categories; see Figure 2.1.

Preadditive

Homs are
abelian groups

DEF

Additive

9 binary
biproducts

9 zero object

9 coproducts
& products

9 zero morphisms

DEF
DEF DEF

GET GET
ABELIAN CATEGORY

9 cokernels
& kernels

monos are kernels
& epis are cokernels

9 initial &
terminal objects 9 pushouts

& pullbacks
9 coequalizers
& equalizers

DEF

DEF DEF

GET

GET GET

Figure 2.1: Universal constructions in abelian categories.

We also discussed the various notions of "sameness" in category theory. Just like
we need to generalize equalities to isomorphisms in abstract algebra, we need to
generalize isomorphisms to equivalences in category theory. Moreover, one moves
from a category to another category via functors, and it is interesting to study
sameness for functors as well– for this, one moves from natural isomorphisms to
adjunctions to have a rich theory. See Figure 2.2 below.

Level of Abstraction

X = Y

equality
of objects

X � Y

isomorphism
of objects

C � D

isomorphism
of categories

C ' D

equivalence
of categories

C

F

((

G

hh

? D

adjunction of functors

Figure 2.2: "Sameness" in abstract algebra and in category theory.
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§2.11. Modern applications

We now illustrate how various notions that were introduced in this chapter on
categories are used in modern mathematics. A full understanding of the resources
here is not expected. Instead, we aim to put the chapter’s material into context by
offering videos and content to casually explore.

A welcoming invitation to higher category theory is presented in the videos
below. The notion of an1-category is of particular interest.

Emily Riehl’s 2020 Johns Hopkins President’s Frontier Award lecture on
"What is Category Theory in mathematics?"

https://youtu.be/WLkMBMUk48E

Emily Riehl’s 2021 Mathematical Picture Language Seminar lecture on
"Elements of1-Category Theory"
https://youtu.be/ZVreRhrtUyM

An engaging lecture on category theory and its role in information science is
given below; the slides are also available below.

Peter Hines’ 2020 ForML Lab Colloquium at Augusta University on
"Category Theory in Communication, Cryptography, and Security"

https://youtu.be/Njw5Aad-gBQ

A great course on applied category theory is available below. This may be of
interest to those in computer science and to applied mathematicians.

David Spivak and Brendan Fong’s 2019 MIT Independent Activities Period
Course 18.S097 on "Applied Category Theory"

https://youtu.be/UusLtx9fIjs

An intriguing lecture on category theory in software engineering is presented
below. The speaker’s background in engineering is also highlighted.

Angeline Aguinaldo’s 2021 Topos Institute Berkeley Seminar lecture on
"Diary of a software engineer using categories"

https://youtu.be/gbP5ww3U10g
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§2.12. References for further exploration

• The textbooks by Richter [2020] and Riehl [2016] are excellent introductions
to category theory, particularly with a view towards Homotopy Theory in
Algebraic Topology.

• The classic textbook by MacLane [1971] is absolutely a must-have resource for
those interested in category theory.

• The textbooks by Mitchell [1965], Popescu [1973], and Stenström [1975] are vital
resources for learning category theory with an algebraic point of view.

• On the other hand, for applications of category theory in Noncommutative
Geometry, check out the user-friendly textbook by Khalkhali [2013].

• Fong and Spivak [2019] provides an intriguing introduction to Applied Category
Theory, with a view toward computer science and applied mathematics.

• Eugenia Cheng once said, "Category theory is the mathematics of mathematics."
Her recent book, Cheng [2022], on category theory for a mainstream audience
is a great one.

• Tai-Danae Bradley’s blog, Math3ma, has excellent explanations of categorical
concepts in layman’s terms. It is very highly recommended.

https://www.math3ma.com/categories/category-theory

§2.13. Exercises

2.1 Recall the notions of monos, epis, and isos in a category C from §2.1.1.

(a) Show that the composition of two monos (resp., two epis, two isos) in C

is a mono (resp., an epi, an iso) in C.

(b) Verify that an iso in C is both monic and epic in C.

(c) We say that a morphism g : X ! Y in C is split-monic if there exists a
morphism h : Y ! X in C with hg = idX , and is split-epic if there exists
a morphism f : Y ! X in C with g f = idY .

(i) Show that a split-epic mono in C is an iso in C.

(ii) Show that a split-monic epi in C is an iso in C.
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2.2 Here, we compare the categorical notions of monos and epis from §2.1.1
with injective and surjective maps in specific settings.

(a) Show that in the category Set from §2.1.2i, we have that monos are
precisely injective functions, and epis are precisely surjective functions.

(b) Show that in the category Ab from §2.1.2i, we have that monos are pre-
cisely injective group homomorphisms, and epis are precisely surjective
group homomorphisms.

(c) Take the category Ring from §2.1.2i. Show that the inclusion morphism
Z! Q in Ring is both monic and epic, but is not an iso.

2.3 For a category C, recall the notion of its opposite category C
op from §2.1.1.

Show that the definition of Ob(Cop) and HomCop (X, Y) in §2.1.1 does indeed
give C

op the structure of a category.

2.4 Recall the definition of a groupoid G in §2.1.2i. Explain why if Ob(G) consists
of a single object X, then G can be identified as a group.

2.5 [Open-ended] Recall the examples of categories from §2.1.2i-v.

(a) Derive more examples of categories in addition to what is included in
§2.1.2i-v; try to construct at least one for each mathematical type.

(b) Do the examples in part (a) arise as subcategories of a category in
§2.1.2i-v? If so, are they full subcategories?

2.6 [Open-ended] Determine if each of the amusing collections of objects
and morphisms from §2.1.2vi forms a category. Derive more (non-)
examples of ‘amusing’ categories.

2.7 [Open-ended] Justify the examples of initial, terminal, and zero objects in
§2.2.1i. Then examine the initial, terminal, and zero objects for some other
categories in §2.1.2i-v; in particular, discuss if such objects exist.

2.8 Recall the coproduct and product constructions from §2.2.1ii. Take objects
X, Y, Z, X1, . . . , Xm, Y1, . . . ,Yn in a locally small category C.

(a) Verify that HomC(X t Y, Z) � HomC(X, Z) ⇥HomC(Y, Z).
(b) Verify that HomC(Z, X u Y) � HomC(Z, X) ⇥HomC(Z, Y).
(c) Likewise, show that:

HomC(
`

m

i=1 Xi, Z) �
Q

m

i=1 HomC(Xi, Z),

HomC(Z,
Q

n

j=1 Xj) �
Q

n

j=1 HomC(Z, Xj).
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2.9 Recall the pushouts and pullbacks constructions from §2.2.1iii.

(a) Verify that for X, Y, Z in Set, we have the following statements.

(i) X tZ Y is the quotient set, (X ] Y)/⇠, with f (z) ⇠ g(z) for each z 2 Z,
and ] is disjoint union.

(ii) X uZ Y = {(x, y) 2 X ⇥ Y | f (x) = g(y)}.

(b) Show that X tZ Y and X uZ Y also exist in Top by concretely describing
these topological spaces.

2.10 Recall the universal constructions in a category C from §2.2.1i-iii.

(a) Assume that C has an initial object I and a terminal object T. Show
X tI Y � X t Y and X uT Y � X u Y as objects in C.

(b) Given a pushout (X tZ Y, f : Z ! X, g : Z ! Y, C, ↵X , ↵Y ), show that if
f is epic, then ↵Y is epic.

(c) For a pullback (X uZ Y, f
0 : X ! Z, g

0 : Y ! Z, P, ↵0
X
, ↵0

Y
), show that if

f
0 is monic, then ↵0

Y
is monic.

(d) Verify that (V tY W) tZ X � V tY (W tZ X) as objects in C.

2.11 Recall the coequalizers and equalizers defined in §2.2.1iv.

(a) For parallel morphisms f , g : X ! Y in Set, justify why coeq( f , g) and
eq( f , g) are as claimed in §2.2.1iv.

(b) For parallel morphisms f , g : X ! Y in each of the categories below,
describe coeq( f , g) and eq( f , g):

(i) Ab (ii) Vec (iii) Top.

(c) For a k-algebra A, with V 2 Mod-A and W 2 A-Mod, verify that V ⌦A W

from §1.4.2iii arises as a coequalizer of two morphisms in Vec.

2.12 Recall the universal constructions from §2.2.1ii,iii,iv.

(a) Show that if a category has pushouts and coproducts, then it has
coequalizers. Namely, for morphisms f , g : X ! Y in C, take the unique
morphisms � f ,idY

: X t Y ! Y and �g,idY
: X t Y ! Y defined by the

coproduct, where �X in §2.2.1ii is f and g, respectively. Then, show that
coeq( f , g) is the pushout of � f ,idY

and �g,idY
.

(b) State and prove a connection between pullbacks, products, and equaliz-
ers in a category C similar to the statement in part (a).
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2.13 Recall the coequalizers and equalizers defined in §2.2.1iv, and the cokernels
and kernels of morphisms from §2.2.1vi.

(a) Show that coequalizers are epic, and that equalizers are monic.
(b) Assume that C has a zero object. Show that cokernels in C are epic, and

that kernels in C are monic.
(c) Assume that C has a zero object. Show that a cokernel in C is a certain

coequalizer, and a kernel in C is a certain equalizer.
(d) Assume that C is preadditive as in §2.2.2i. Show that coequalizers (resp.,

equalizers) are cokernels (resp., kernels).

2.14 Assume that a category C has equalizers as in §2.2.1iv. Take f : X ! Y in C

with factorization X
↵̃�! im( f )

↵ mono�! Y . Show that ↵̃ is epic.

2.15 Recall the material in §2.2.1v,vi. Consider the following categories which
have a zero object, and thus, has zero morphisms:

(i) Group; (ii) Ab; (iii) Vec.

Describe the cokernel and kernel of a morphism in each of the above.

2.16 Recall §§2.2.2i,ii. Let C be a preadditive category, and take X, Y 2 C. Complete
the details of the proof of Proposition 2.2 on the simultaneous existence of
the coproduct X t Y , the product X u Y , and the biproduct X ⇤ Y in C.

2.17 Take an additive category C with biproduct ⇤ and zero object 0 as in §2.2.2ii.
Show that for any object X 2 C, we get that X ⇤ 0 � X � 0 ⇤ X as objects in C.

2.18 Complete the details of the proof of Proposition 2.5 in §2.2.2iii about
pushouts existing in abelian categories. Complete the proof for pullbacks as
well, if you are curious.

2.19 Recall the notion of a functor from §2.3.1. We say a functor F preserves a
property P for morphisms if a morphism f having property P implies that
so does F( f ). On the other hand, F reflects a property P for morphisms if a
morphism F( f ) having property P implies that so does f . A similar notion
holds for functors preserving or reflecting properties of objects.

(a) Show that all functors preserve isos.
(b) Provide an example of a functor that does not preserve monos, and of a

functor that does not preserve epis.
(c) Provide an example of a functor that does not reflect isos.
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(d) Show that fully faithful functors reflect isos.
(e) Provide an example of a functor that does not reflect monos, and of a

functor that does not reflect epis.

2.20 Recall the discussion about functors F : C ! D in §2.3.1, and equivalence of
categories from §2.4.2.

(a) Show that the image of F is not necessarily a subcategory of D.
(b) Explain why the essential image Imess(F) is a subcategory of D.
(c) Show that when F is fully faithful, then Imess(F) is equivalent to C.

2.21 Prove Lemma 2.6 in §2.3.1 establishing that a functor between additive
categories is additive if and only if it preserves biproducts.

2.22 [Open-ended] Recall the discussion of functors in §§2.3.1, 2.3.2.

(a) Determine if the functors in §2.3.2 are covariant or contravariant.
(b) Derive examples of functors besides those in §2.3.2, including some

contravariant functors. Feel free to use outside resources.
(c) Explain in detail why Forg : Ring ! Ab is not essentially surjective.
(d) Explain in detail why Forg : Ring ! Ab is not full.
(e) For (some of) the other examples in §2.3.2, and along with those in

part (b), discuss whether these functors are faithful, full, or essentially
surjective.

2.23 Recall Exercise 1.4 on duals and doubles of vector spaces, and recall natural
transformations from §2.3.4. Let us continue Example 2.7.

(a) For a vector space V , consider the morphism in Vec:

jV : V ! V
⇤⇤, v 7! [ f 7! f (v)].

Verify that these morphisms form the components of a natural transfor-
mation j from the identity functor Id : Vec ! Vec to the double dual
functor (�)⇤⇤ : Vec! Vec.

(b) Show that if we replace Vec with FdVec, then the natural transformation
j in part (a) is a natural isomorphism.

(c) Explain why there does not exist a natural transformation from IdVec to
the dual functor (�)⇤ : Vec! Vec.
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2.24 Consider the natural transformations from §2.3.4, and let us continue Exam-
ple 2.8. Consider the functors ⌦� (⌦⇥ Id) and ⌦� (Id⇥⌦) from Vec⇥Vec⇥Vec
toVec. Verify that there exists a natural isomorphism between these functors
with components,

aU,V,W : (U ⌦ V) ⌦W
⇠! U ⌦ (V ⌦W),

for each U,V,W 2 Vec.

2.25 Verify that Fun(C,D) discussed in §2.3.4 is indeed a category.

2.26 Establish the interchange law in (2.9) of §2.3.5 between the vertical and
horizontal compositions of natural transformations.

2.27 Verify the details of Examples 2.10 and 2.11 in §2.3.6 showing that many of
the universal constructions in §2.2.1 arise as colimits and limits.

2.28 Show that the notion of two categories being isomorphic [§2.4.1] is an
equivalence relation (i.e., it is reflexive, symmetric, and transitive). Verify
the same statement for the notion of two categories being equivalent [§2.4.2].

2.29 Recall the notion of isomorphic categories in §2.4.1, and also see Exercise 1.12.
For any algebra A, establish that

A-Mod � Rep(A).

2.30 Recall the notion of isomorphic categories from §2.4.1, and also see Exer-
cise 1.13. Let us continue Example 2.12. Take a group G, with its group
algebra kG, and verify that

G-Mod � Rep(G) � Rep(kG) � kG-Mod.

2.31 Recall the material about functors in §2.3.1, functor categories in §2.3.4, and
representations of groups in §1.3.4. Also recall the notions of isomorphic
and equivalent categories in §§2.4.1, 2.4.2.

For a group G, take Gcat to be the category with one object X, and with
morphisms identified as elements of G (cf. Exercise 2.4). Show that there is
an equivalence of categories:

Rep(G) ' Fun(Gcat,Vec).

Is this an isomorphism of categories?
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2.32 Recall the material about category isomorphism, category equivalence, and
skeletons of categories from §§2.4.1, 2.4.2.

(a) Take the natural numbers n 2 N as objects, with morphisms n! m given
by matrices in Matm⇥n(k), and show that this forms a category: Mat.

(b) Take the category FdVec, and verify that Skel(FdVec) � Mat.
(c) Prove that Mat � FdVec.
(d) Prove that Mat ' FdVec.

2.33 Recall the material about category isomorphism, category equivalence, and
skeletons of categories from §§2.4.1, 2.4.2. Take categories C,D, and show:

(a) Skel(C) � C if and only if Skel(C) = C;
(b) Skel(C) ' C always;
(c) C ' D if and only if Skel(C) � Skel(D).

2.34 Complete the details of the proof for Theorem 2.14 in §2.4.2 on reconciling
the two notions of an equivalence of categories.

2.35 Complete the details of the proof for Theorem 2.18 in §2.4.4 on conditions
when two algebras A and B are Morita equivalent.

2.36 Complete the details of Remark 2.20 in §2.4.4 on verifying that two algebras
A and B are Morita equivalent if and only if there exists a finitely generated,
projective generator M of A-Mod such that B

op � EndA-Mod(M) as algebras.

Hint. Use (the proof of) Morita’s Theorem [Theorem 2.18].

2.37 Complete the details of Example 2.21 in §2.4.4 on verifying that an algebra
A is always Morita equivalent to Matn(A), for any n 2 N�1.

2.38 Proposition 2.22 in §2.4.4 states that if two algebras A and B are Morita
equivalent, then Z(A) � Z(B) as algebras. Complete the steps below to derive
a proof of this result, and of its consequence, Corollary 2.23.

(a) Recall natural transformations from §2.3.4. Define the center of C to be
the collection of natural transformations of IdC : C ! C to itself:

Z(C) := NatC,C(IdC , IdC).

Show that Z(C) is closed under composition of natural transformations,
and there is an identity element with respect to this composition. (That
is, if Z(C) is a set, then it is a monoid under composition.)
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(b) Show that if C is an abelian category, then Z(C) is a ring.

(c) Assume that C and D are abelian categories. Show that if C and D are
equivalent categories, then Z(C) � Z(D) as rings.

(d) Establish that Z(A-Mod) forms an algebra.

(e) Identify the center of Z(A) with the algebra Z(A-Mod) by having
a 2 Z(A) correspond to a natural transformation �a 2 Z(A-Mod) that
has components, �a

M
: M ! M, m 7! a . m, for M 2 A-Mod.

(f) Draw the conclusions of Proposition 2.22 and Corollary 2.23.

2.39 Recall the discussion of Morita equivalence in §2.4.4, especially Theorem 2.18.
Show that the algebraic properties below are Morita invariant:

(a) Simplicity (from §1.5.2);

(b) Semisimplicity (from §1.6).

2.40 Complete the details of the proof for Proposition 2.24 in §2.5.1 on character-
izing adjoint functors.

2.41 Recall the various types of morphisms in Exercise 2.1, and the notion of
adjunction from §2.5.1. Take adjoint functors F a G with unit ⌘ and counit ".

(a) Show that F is faithful (resp., is full, is fully faithful) if and only if each
component of ⌘ is monic (resp., is split-epic, is an iso).

(b) Show that G is faithful (resp., is full, is fully faithful) if and only if each
component of " is epic (resp., is split-monic, is an iso).

(c) Complete the details of the proof of Proposition 2.25.

2.42 Complete the proof of Proposition 2.26 in §2.5.2 on how functors that arise
as a left (resp., right) adjoint preserve:

(a) pushouts (resp., pullbacks);
(b) coequalizers (resp., equalizers);
(c) cokernels (resp., kernels).

2.43 Recall Exercise 1.25. Complete the details of Example 2.28 in §2.5.3 on
expressing the Tensor-Hom adjunction for bimodules diagrammatically.
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2.44 Verify that each of the specific pairs of functors, Free and Forg listed in
Example 2.29 in §2.5.3, forms an adjunction Free a Forg.

2.45 Recall the discussion of adjunction in §2.5.1. By using one of the characteri-
zations of adjunction in Proposition 2.24, explain why each of the pairs of
functors F and G below yields an adjunction F a G.

(a) F := IndB

A
and G := ResB

A
, for � : A! B 2 Alg (see §1.4.4).

(b) F := ResB

A
and G := CoindB

A
, for � : A! B 2 Alg (see §1.4.4).

(c) F := k(�) : Group! Alg (form the group algebra), and
G := (�)⇥ : Alg ! Group (take the group of units).

(d) For those with background in topology, take
F : Set! Top (impose discrete topology), and
G : Top! Set (forget topology).

(e) For those with background in topology, take
F : Top! Set (forget topology), and
G : Set! Top (impose indiscrete/ trivial topology).

An aside. Note from parts (a,b) that F := IndB

A
a ResB

A
a CoindB

A
. The

adjunction IndB

A
a ResB

A
is referred to as Frobenius reciprocity. Moreover,

functors L,R : C ! D and G : D ! C, satisfying the condition that L a G a R,
are called an adjoint triple.

2.46 [Open-ended] If L a G a R is an adjoint triple [Exercise 2.45] with L � R,
then G is called a Frobenius functor. (In this case, G a R is also called a
strongly adjoint pair.) That is, Frobenius functors are those that have a
left adjoint that coincides with its right adjoint, up to natural isomorphism.
Explore and discuss instances of Frobenius functors in this chapter and in
the broader literature.

2.47 Recall the discussion of adjoint functors and representability from §§2.5
and 2.6.1. Prove that a functor G : D ! C has a left adjoint F : C ! D if and
only if for any object X 2 C the functor HX below is representable:

HX(�) := HomC(X,G(�)) : D ! Set.

2.48 Recall the discussion of Yoneda’s Lemma from §2.6.2, and establish the proof
of Corollary 2.32.

Hint. You can consult Section 2.2 of Richter [2020] for further details, but it
is best to do this only as needed.
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2.49 Recall the discussion of indecomposability and simplicity in §2.7 in the
setting of abelian categories.

(a) Verify the characterization of an object being indecomposable in this
setting as stated in Proposition 2.34.

(b) Verify the statement of Schur’s Lemma in this setting, namely Proposi-
tion 2.35, on morphisms between simple objects.

(c) Verify the consequence of Schur’s Lemma given in Corollary 2.36.

2.50 [Open-ended] Explore whether the various categories listed in §2.1.2 are
semisimple (see §§2.7.3 and 2.8). Feel free to use outside resources!

2.51 Provide a proof of the results in §2.8.1 below on features of exact sequences.

(a) Lemma 2.43.
(b) Proposition 2.45.

Feel free to use the references provided in §2.8.1 if you get stuck.

2.52 Provide a (detailed) proof of the results in §2.8.3 below on projective and
injective objects.

(a) Proposition 2.52.
(b) Proposition 2.54.

Feel free to use the references provided in §2.8.3 if you get stuck.
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History

A monoidal category is a category C that is equipped with an operation ⌦ and
an object , such that the triple (C,⌦, ) mimics the structure of a monoid. They
were introduced by Bénabou [1963] as catégories avec multiplication, and were
formalized by Mac Lane [1963] and Kelly [1964]. Their current name was coined
by Eilenberg. Duality (or rigidity) was introduced by Saavedra Rivano [1972].
Substantial advances were also made by Joyal andStreet [1993] on braidedmonoidal
categories (covered in a future volume), and by Etingof et al. [2005] on fusion
categories– such monoidal categories are prevalent in representation theory, in
mathematical physics, in quantum information theory, and in many other fields.

Overview

An introduction to monoidal categories is covered in §3.1; many examples are
provided. We compare monoidal categories via monoidal functors in §3.2. Module
categories over monoidal categories are presented in §3.3. A way of simplifying
axioms for these structures is presented in §3.4, and graphical diagrams are
then defined in §3.5 for computations in these structures. Then, various types of
monoidal categories, and module categories over them, are examined, including
those that are rigid in §3.6, pivotal in §3.7, spherical in §3.8, fusion in §3.9, and tensor
in §3.10. We also discuss enriched categories in §3.11. The chapter ends with a
summary discussion in §3.12, modern applications in §3.13, references in §3.14,
and several exercises.

Standing hypotheses. Linear structures are over an algebraically closed
field k of characteristic 0, and algebras over k are associative and unital.

133

Copyright ©2024 Chelsea Walton. Free version by the courtesy of CW and 619 Wreath. https://math.rice.edu/~notlaw/symalgbook.html. 

Enjoy this textbook? Physical copies are available for purchase at https://www.619wreath.com/ and on Amazon. 
<< Please ask your local academic librarian to order a copy for circulation. >> 



C������ 3. M������� ����������

§3.1. Monoidal categories

Building on our discussion of categories C in §2.1, we present here a convenient
operation to combine objects and morphisms within C. This endows C with a rich
structure that mimics the definition of a monoid, with which one can generalize
various algebraic structures in the categorical context (as done in Chapter 4).

§3.1.1. Monoidal categories

A monoidal category consists of the following data.

(a) A category C.

(b) (monoidal product) A bifunctor ⌦ : C ⇥ C ! C.

(c) (monoidal unit object) A distinguished (i.e., a particular) object in C.

(d) (associativity constraint) A natural isomorphism

a : ⌦ � (⌦ ⇥ IdC) ⇠) ⌦ � (IdC ⇥ ⌦)

of functors from C ⇥ C ⇥ C to C. That is, there is a collection of isomorphisms

{aX,Y,Z : (X ⌦ Y) ⌦ Z
⇠! X ⌦ (Y ⌦ Z)}X,Y,Z2C

in C, natural (i.e., respects morphisms) in each variable X, Y , Z.

(e) (left unitality constraint) A natural isomorphism

` : ⌦ IdC
⇠) IdC

of functors from C to C. That is, there is a collection of isos {`X : ⌦ X
⇠! X}X2C

in C, natural in X.

(f) (right unitality constraint) A natural isomorphism

r : IdC ⌦ ⇠) IdC

of functors from C to C. That is, there is a collection of isos {rX : X ⌦ ⇠! X}X2C
in C, natural in X.

This data must satisfy the commutative diagrams below, for all W, X, Y, Z 2 C.

((W ⌦ X) ⌦ Y) ⌦ Z

aW,X,Y ⌦ idZ

vv

aW⌦X,Y,Z

((

(X ⌦ ) ⌦ Y
aX, ,Y
//

rX ⌦ idY

⇠⇠

X ⌦ ( ⌦ Y)

idX ⌦ `Y

⌃⌃

(W ⌦ (X ⌦ Y)) ⌦ Z

aW,X⌦Y,Z
✏✏

(W ⌦ X) ⌦ (Y ⌦ Z)
aW,X,Y⌦Z

✏✏

W ⌦ ((X ⌦ Y) ⌦ Z)
idW ⌦ aX,Y,Z

// W ⌦ (X ⌦ (Y ⌦ Z)) X ⌦ Y

(pentagon axiom) (triangle axiom)

See Exercise 3.1 for identities for the associativity and unitality constraints.
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On the notation ⌦, and C versus A. From now on,⌦ denotes the monoidal
product, and the tensor product over k is denoted by ⌦k.

Moreover, we write A (instead of C) when working with an ordinary cate-
gory that is not necessarily monoidal.

Remark 3.1. A category becoming monoidal involves equipping it with extra
structure. See the chat about structure versus property from §1.1.1. There may be
more than one way of imposing a monoidal structure on a category.

We say that a monoidal category is strict if its associativity and unitality con-
straints are identity maps; we will study this condition in §3.4.

Given a monoidal category C := (C,⌦, , a, `, r), a monoidal subcategory of C is
a subcategory D such that we have:

• closure under ⌦, that is, X ⌦ Y 2 D, for all X, Y 2 D;

• 2 D; and

• the constraints a, `, r restrict to D making D itself a monoidal category.

A monoidal subcategory is full if the underlying subcategory is full.

Moreover, for a monoidal category (C,⌦, , a, `, r), there are numerous notions
of an opposite monoidal category. Towards this, recall the opposite category A

op

from §2.1.1, where we have f
op : Y ! X in A

op for every morphism f : X ! Y

in A. Also, consider the opposite monoidal product,

⌦op : C ⇥ C ! C, (X, Y) 7! X ⌦op
Y := Y ⌦ X.

Now the following are monoidal categories; see Exercise 3.2.

• C
op :=

⇣
C

op, ⌦, , a
op := {a�1

X,Y,Z}, `op := {`�1
X
}, r

op := {r�1
X
}
⌘
.

• C
⌦op :=

⇣
C, ⌦op, , a

⌦op := {a�1
Z,Y,X}, `⌦op := {rX}, r

⌦op := {`X}
⌘
.

• C
rev :=

⇣
C

op, ⌦op, , a
rev := {aZ,Y,X}, `rev := {r�1

X
}, r

rev := {`�1
X
}
⌘
.

Note that this notation varies across the literature; we are using the version from
Turaev and Virelizier [2017] here.

§3.1.2. Examples of monoidal categories

We present examples of monoidal categories, many building on the examples
of categories from §2.1.2. Verifying the details and adding more examples is
Exercise 3.3. Recall that all vector spaces and algebras are over k below.
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i. Algebraic monoidal categories

• Vec: The category of k-vector spaces is monoidal, with ⌦ := ⌦k and := k,
and with associativity and unitality constraints as in Exercise 1.3(a,b). See also
Example 2.8 and Exercise 2.24. This monoidal category is not strict.

• Vec�: The category of k-vector spaces admits another monoidal structure, where
⌦ := � and := 0Vec (the zero vector space). This is also not strict.

• FdVec, FdVec�: Likewise, the category of finite-dimensional k-vector spaces
admits monoidal structures, which, again, are not strict.

• Alg~: The category of k-algebras is monoidal with ⌦ := ~ and := k. See
§1.4.2vi. Indeed, k~ A � A � A~ k, for any A 2 Alg.

• Alg⌦k : Alg is also monoidal with ⌦ := ⌦k and := k. See §1.4.2v.

• Ab: The category of abelian groups (or, of Z-modules with underlying abelian
group structure, as in Exercise 1.14) is monoidal. Here, ⌦ := ⌦Z and := Z.

• Ring: Further, the category of unital rings is monoidal with ⌦ := ⌦Z and := Z.

• G-Mod: The category of (left) modules over a group G is monoidal. For
G-modules (V, .) and (V 0, .0), define (V, .) ⌦ (V 0, .0) := (V ⌦k V

0,I), where

g I (v ⌦k v
0) := (g . v) ⌦k (g .0 v

0),

for g 2 G, v 2 V , v
0 2 V

0. Moreover, is the trivial G-module k, where g . � = �,
for g 2 G and � 2 k.

• A-Bimod: The category of bimodules over an arbitrary k-algebra A admits a
monoidal structure, where ⌦ := ⌦A and := Areg, with the associativity and
unitality constraints given in Exercise 1.18.

• VecN : For an additive monoid N with identity element 0, the category of
N-graded k-vector spaces is monoidal. For V :=

L
n2N

Vn and W :=
L

n02N
Wn0 ,

define:

V ⌦W :=
L

m2N
(V ⌦W)m, where (V ⌦W)m :=

L
n+n0=m

(Vn ⌦k Wn0 ).

Also, :=
L

m2N m, with 0 = k, and with m,0 being the zero vector space.

• VecG: Likewise, for a group G, the category of G-graded k-vector spaces is
monoidal, where for V :=

L
h2G Vh and W :=

L
h02G Wh0 we define:

V ⌦W :=
L

g2G(V ⌦W)g, where (V ⌦W)g :=
L

hh0=g
(Vh ⌦k Wh0 ).

Also, :=
L

g2G g, with e = k, and with g,e being the zero vector space.
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• Vec
0
G

: One can also equip the category VecG with a monoidal structure via

(
L

g2G Vg) ⌦ (
L

g2G Wg) :=
L

g2G(Vg ⌦k Wg)

and :=
L

g2G k. Again, this shows that a category can admit different monoidal
structures. (By ‘different’, we mean not monoidally equivalent; see Example 3.10
later).

• N: Take an additive monoid N with identity element 0. Define a monoidal cate-
gory with elements of N as objects, with identity morphisms idm as morphisms,
with n ⌦ n

0 := n + n
0, for m, n, n0 2 N, and with := 0. This monoidal category is

strict.

• N: Take a monoid N with a partial ordering . Define a monoidal category
with objects being elements of N, with a morphism n! n

0 existing if and only
if n  n

0, with n ⌦ n
0 := n + n

0, and with := 0.

• G, G: One can define similar monoidal categories for a group G.

Another source of algebraic monoidal categories are the categories of modules
over bialgebras and Hopf algebras discussed in a future volume. We also have
monoidal categories of comodules over such algebras (also discussed later).

There is also an extended exercise, Exercise 3.35, that introduces a monoidal
category that has interesting associativity and unitality constraints:

• Vec
!
G

: Take k
⇥ to be the multiplicative group of nonzero elements of k. With

a k
⇥-valued 3-cocycle ! on a group G, we can modify the associativity and

unitality constraints of the monoidal category VecG to form another monoidal
category Vec

!
G

. See Exercise 3.35(a-d).

ii. Logical and categorical monoidal categories

• Set: The category of sets admits a monoidal structure, with ⌦ being cartesian
product ⇥, and with being the singleton set {·}.

• Cat: The category of small categories is monoidal, with ⌦ being the product of
categories introduced in §2.1.3. Also, is the category 1 consisting of a single
object X with Hom1(X, X) = {idX}.

• At: A category A that admits binary coproducts (so, finitely many coproducts)
and an initial object I is monoidal. Here, ⌦ = t and = I. This is called a
cocartesian monoidal category.

• Au: A category A that admits binary products (so, finitely many products)
and a terminal object T is monoidal. Here, ⌦ = u and = T. This is called a
cartesian monoidal category.
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• End(A) := Fun(A,A): The category of endofunctors of a category A is strict
monoidal, with ⌦ being composition �, and with = IdA.

• Aut(A): The category of autoequivalences of a category A is strict monoidal,
with ⌦ being composition �, and with = IdA.

iii. Topological monoidal categories

• nCob: The category of (n � 1)-manifolds with cobordisms of dimension n is
monoidal, with ⌦ being disjoint union, and being the empty manifold.

• Top: The category of topological spaces is a monoidal category, where ⌦ is
cartesian product, and with being a one-point space.

• Braid: The objects are natural numbers N. Moreover, for an object n 2 N, consider
the n-th braid group Bn, which has generators �1, . . . ,�n�1 and relations:

�i�i+1�i = �i+1�i�i+1, for i = 1, . . . , n � 2;
�i� j = � j�i, for |i � j| > 1.

Then, HomBraid(n,m) = Bn if n = m, and is empty otherwise. Morphisms are
drawn as braids; see Figure 3.1. Here, B0 is the empty braid. The monoidal
product on objects is given by n ⌦ m := n + m, with := 0, and the monoidal
product on morphisms is given by putting braids side-by-side.

�1 ��1
1 �2 ��1

2 �1�2

Figure 3.1: Morphisms from [3] to [3] in Braid, read from the top down.

iv. Analytic monoidal categories

• Hilb: The category of Hilbert spaces over field k is monoidal; see Definitions 0.52
and 1.3 of Heunen and Vicary [2019] for details.

• FdHilb: The category of finite-dimensional Hilbert spaces is also monoidal.

v. A combinatorial monoidal category

• V-Quiv: The category of quivers Q := (V,Q1, s, t) (see §1.2.5) for a fixed vertex
set V is monoidal. A morphism from (V,Q1, s, t) to (V,Q01, s

0, t0) is a function
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f : Q1 ! Q
0
1 with s = s

0
f and t = t

0
f . Here, (Q ⌦ Q

0)1 is the set of composable
arrows, {(a, a0) 2 Q1 ⇥ Q

0
1 | s(a) = t

0(a0)}. Also, ( )1 = ?.

§3.1.3. Additive monoidal categories

Now we discuss the interactions between monoidal and additive (or abelian,
linear) features of a category.

A monoidal category (C,⌦, , a, `, r) is additive if the underlying category C is
additive, and the endofunctors (X ⌦ �) and (� ⌦ X) on C are additive, for each
X 2 C. The latter means that for any object X in C, and any morphisms f and f

0 in
C, we get that as morphisms in C:

idX ⌦ ( f + f
0) = (idX ⌦ f )+ (idX ⌦ f

0), ( f + f
0)⌦ idX = ( f ⌦ idX)+ ( f

0 ⌦ idX). (3.2)

A monoidal category (C,⌦, , a, `, r) is abelian if the underlying category C is
abelian, and the endofunctors (X ⌦�) and (�⌦ X) on C are additive, for each X 2 C.

Further, a monoidal category (C,⌦, , a, `, r) is (k-)linear if the underlying cate-
gory C is linear, and the endofunctors (X ⌦ �) and (� ⌦ X) on C are linear, for each
X 2 C. The latter means that for any object X in C, any morphisms f and f

0 in C,
and any scalar � 2 k, we get that (3.2) holds, along with:

idX ⌦ (� f ) = �(idX ⌦ f ), (� f ) ⌦ idX = �( f ⌦ idX).

It is straightforward to see that if C is additive (resp., abelian, or linear) monoidal,
then so is the product category C ⇥ C.

Additive monoidal categories have the following convenient features.

Lemma 3.3. Suppose that C is an additive monoidal category. Then, for any object X 2 C:

idX ⌦
!
0 =

!
0 ,

!
0 ⌦ idX =

!
0 , X ⌦ 0 � 0, 0 ⌦ X � 0.

Moreover, g ⌦ !0 = !0 ⌦ g =
!
0 , for any morphism g.

Proof. By (3.2), idX ⌦
!
0 = idX ⌦ ( f � f ) = (idX ⌦ f )� (idX ⌦ f ) =

!
0 , for any morphism

f 2 C. Now for any object Y 2 C, a morphism g : X ⌦ 0! Y in C must be equal to
g (idX ⌦ id0) = g (idX ⌦

!
0) =

!
0 . So by uniqueness, X⌦0 is an initial object. Similarly,

X ⌦ 0 is terminal. Thus, X ⌦ 0 is a zero object. Likewise, !0 ⌦ idX =
!
0 and 0 ⌦ X � 0.

The last statement follows from the previous statements. ⇤

Moreover, we have the following application of Lemma 2.6.

Lemma 3.4. When C is additive monoidal,⌦ distributes over⇤. That is, for all X, Y, Z 2 C:

X ⌦ (Y ⇤ Z) � (X ⌦ Y) ⇤ (X ⌦ Z), (Y ⇤ Z) ⌦ X � (Y ⌦ X) ⇤ (Z ⌦ X). ⇤
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§3.2. Monoidal functors and equivalence

We introduce monoidal functors, and then discuss isomorphisms and equiva-
lence between monoidal categories. Many examples are also presented. Take
C := (C,⌦C , C , aC , `C , rC) and D := (D,⌦D, D, aD, `D, rD) to be monoidal cate-
gories throughout; superscripts may be omitted later.

§3.2.1. Monoidal functors

A monoidal functor from C to D consists of the following data.

(a) A functor between the underlying categories F : C ! D.

(b) (monoidal product constraint) A natural transformation

F
(2) : F(�) ⌦D F(�) ) F(� ⌦C �)

of functors from C ⇥ C ! D. That is, we have a collection of morphisms
{F(2)

X,Y : F(X) ⌦D F(Y)! F(X ⌦C Y)}X,Y2C , natural in X and Y .

(c) (monoidal unit constraint) A morphism F
(0) : D ! F( C) in D.

This data must satisfy the commutative diagrams below, for all X, Y, Z 2 C.

⇣
F(X) ⌦D F(Y)

⌘
⌦D F(Z)

F
(2)
X,Y ⌦ id

//

a
D
F(X),F(Y),F(Z)

✏✏

F(X ⌦C Y) ⌦D F(Z)
F

(2)
X⌦Y,Z

// F((X ⌦C Y) ⌦C Z)

F

⇣
a
C
X,Y,Z

⌘

✏✏

F(X) ⌦D
⇣
F(Y) ⌦D F(Z)

⌘ id ⌦ F
(2)
Y,Z
// F(X) ⌦D F(Y ⌦C Z)

F
(2)
X,Y⌦Z

// F(X ⌦C (Y ⌦C Z))

(associativity axiom)

D ⌦D F(X)
`D

F(X)
//

F
(0) ⌦ id

✏✏

F(X) F(X) ⌦D D
r
D
F(X)

//

id ⌦ F
(0)

✏✏

F(X)

F( C) ⌦D F(X)
F

(2)
,X
// F( C ⌦C X)

F(`C
X

)

OO

F(X) ⌦D F( C)
F

(2)
X,
// F(X ⌦C C)

F(rC
X

)

OO

(left unitality axiom) (right unitality axiom)

Remark 3.5. The notation for the monoidal product and unit constraints varies
across the literature; sometimes they are given by F

2, F0 or F2, F0. But we use the
notation above to not confuse them with self-compositions (e.g., as in F

2), and to
avoid using iterated subscripts (e.g., as in (F2)X,Y ).
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A monoidal functor (F, F(2), F(0)) is called strict if {F(2)
X,Y }X,Y2C and F

(0) are all
identity morphisms in D.

A monoidal functor (F, F(2), F(0)) is called strong if {F(2)
X,Y }X,Y2C and F

(0) are all
isos in D. Here, we denote (F(2)

X,Y )�1 by F
(�2)
X,Y , and (F(0))�1 by F

(�0).

Remark 3.6. Sometimes in the literature, a monoidal functor as defined above is
called lax (monoidal), and monoidal functors may be assumed to be strong.

One example of a monoidal functor is the identity monoidal functor:

Id(C,⌦) := (IdC , Id(2), Id(0)) : C ! C,

where Id(2)
X,Y := idX⌦CY for X, Y 2 C, and Id(0) := id C ; this is strict and strong.

The composition of monoidal functors is also monoidal; see Exercise 3.4.

§3.2.2. Isomorphism and equivalence of monoidal categories

We have the following notions of ‘sameness’ for monoidal categories.

We say that monoidal categories C and D are isomorphic as monoidal cate-
gories (or are monoidally isomorphic) if there exists a strong monoidal functor
(F, F(2), F(0)) : C ! D, such that the functor F is an isomorphism of categories.
Here, we write C

⌦
� D.

Likewise, C and D are equivalent as monoidal categories (or are monoidally
equivalent) if there is a strong monoidal functor (F, F(2), F(0)) : C ! D, such that
F is an equivalence of categories. In this case, we write C

⌦' D.

One can characterize these notions by preserving the structure between
monoidal functors as follows.

Take monoidal functors (F, F(2), F(0)) and (F0, F0(2), F0(0)) between monoidal cat-
egories C and D. Then, a monoidal natural transformation (resp., monoidal
natural isomorphism) from (F, F(2), F(0)) to (F0, F0(2), F0(0)) is a natural transforma-
tion � : F ) F

0 (resp., natural isomorphism � : F
⇠) F

0), such that the following
diagrams commute for all X, Y 2 C.

F(X) ⌦D F(Y)
F

(2)
X,Y

//

�X ⌦ �Y

✏✏

F(X ⌦C Y)

�X⌦Y

✏✏

F( C)

� C

✏✏

D

F
(0) 55

F
0(0) ))

F
0(X) ⌦D F

0(Y)
F
0(2)
X,Y
// F
0(X ⌦C Y) F

0( C)

In this case, we write � : F
⌦) F

0 (resp., � : F

⌦⇠) F
0, or just F

⌦
� F

0).

Now consider the next result, the proof of which is Exercise 3.5.
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Proposition 3.7. Take monoidal categories C and D. Then, the statements below hold.

(a) We have thatC
⌦
� D if and only if there exists monoidal functors (F, F(2), F(0)) : C ! D

and (G,G(2),G(0)) : D ! C such that as monoidal functors:

GF
⌦
= Id(C,⌦C) and FG

⌦
= Id(D,⌦D).

(b) We have thatC ⌦' D if and only if there exists monoidal functors (F, F(2), F(0)) : C ! D

and (G,G(2),G(0)) : D ! C such that as monoidal functors:

GF
⌦
� Id(C,⌦C) and FG

⌦
� Id(D,⌦D). ⇤

See also Exercise 3.16 for practice with monoidal equivalence.

§3.2.3. Examples of monoidal functors and equivalence

Consider the following examples of monoidal functors and monoidal equivalence.

Example 3.8. For a group G, the forgetful functor

F := Forg: G-Mod! Vec, (V, . : G ⇥ V ! V) 7! V

is monoidal. Here, the monoidal product constraint is given by

F
(2)
(V,.),(V 0,.0) : F(V, .) ⌦Vec F(V 0, .0)! F

⇣
(V, .) ⌦G-Mod (V 0, .0)

⌘
,

where we have that

• F(V, .) ⌦Vec F(V 0, .0) = F(V, .) ⌦k F(V 0, .0) = V ⌦k V
0, and

• F

⇣
(V, .) ⌦G-Mod (V 0, .0)

⌘
= F(V ⌦k V

0,I) = V ⌦k V
0.

Now we define F
(2)
(V,.),(V 0,.0) := idV⌦kV 0 Moreover, for F

(0) : Vec ! F( G-Mod), where
Vec = k and F( G-Mod) = F(k, .) = k, we also define F

(0) := idk. So, (F, F(2), F(0)) is
strict and strong monoidal. See Exercise 3.6 for similar examples.

Not all forgetful monoidal functors are strong; consider the example below.

Example 3.9. The forgetful functor F : FdVec ! Set is monoidal, but not strong
monoidal. In particular, F

(0) : {·} = Set ! F( FdVec) = kset cannot be an isomor-
phism of sets.

Example 3.10. For a group G, the monoidal categories, VecG and Vec
0
G

are iso-
morphic (in fact, equal) as categories. But the functor Id : VecG ! Vec

0
G

does not
admit a monoidal structure. Indeed, let us consider the left unitality axiom,

`
Vec

0
G

V
= `VecG

V
� F

(2)
VecG ,V

� (F(0) ⌦Vec0G idV ),

which is supposed to hold in Vec
0
G

, for V 2 VecG. Now for any g 2 G, the degree
g component of `Vec

0
G

V
is given by (`Vec

0
G

V
)g : k ⌦k Vg

⇠! Vg. On the other hand, for
g , e, we have that ( VecG )g is the zero vector space. So (F(0))g is the zero linear
map for g , e, and the left unitality axiom cannot hold in degree g , e.
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For the examples below, recall the tensor algebra and symmetric algebra con-
structions from §§1.2.2, 1.2.3, and also see Exercise 1.24.

Example 3.11. We denote the monoidal category Vec by Vec⌦k to emphasize its
monoidal structure, and recall Vec� = Vect. Consider the functors below:

T : Vec! Alg (tensor algebra), S : Vec! Alg (symmetric algebra).

(a) We have a strong monoidal functor, (T, T (2), T (0)) : Vec� ! Alg~, where T
(2)
V,W

is given in Exercise 1.24(iv) for all V,W 2 Vec, and T
(0) = idk.

(b) Moreover, the isomorphism in Exercise 1.24(i) gives the monoidal product
constraint for a monoidal functor, (S , S (2), S (0)) : Vec� ! Alg⌦k . One can also
show that S

(0) = idk satisfies the monoidal unit axioms.

The next set of examples involve actions on categories. In Chapter 1, an action of
one algebraic structure S on anotheralgebraic structure U is a structure-preserving
map ⇢ from S to a certain collection of endomorphisms of U. We will mimic this
here, where ⇢ will be replaced by a monoidal functor.

Example 3.12. For a monoidal category (C,⌦, , a, `, r), we will write (C,⌦) for
short, and we will write C for its underlying category.

(a) The left regular action on (C,⌦) on itself is a strong monoidal functor,

⇢ : (C,⌦)! End(C), X 7! (X ⌦ �),

where, for all X, Y, Z 2 C, we define

⇢(2)
X,Y (Z) := a

�1
X,Y,Z : X ⌦ (Y ⌦ Z) ⇠! (X ⌦ Y) ⌦ Z, ⇢(0)(Z) := `�1

Z
: Z
⇠! ⌦ Z.

(b) The right regular action on (C,⌦) on itself is a strong monoidal functor,

⇢ : C⌦op := (C,⌦op)! End(C), X 7! (� ⌦ X),

where, for all X, Y, Z 2 C, we define

⇢(2)
X,Y (Z) := aZ,Y,X : (Z ⌦ Y) ⌦ X

⇠! Z ⌦ (Y ⌦ X), ⇢(0)(Z) := r
�1
Z

: Z
⇠! Z ⌦ .

In general, we define the following notions. See also Exercise 3.7.

• A left action of a monoidal category (C,⌦) on a category A is, by definition, a
strong monoidal functor:

⇢ : (C,⌦)! End(A).
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• A right action of a monoidal category (C,⌦) on a category A is, by definition,
a strong monoidal functor:

⇢ : C⌦op := (C,⌦op)! End(A).

Next, we will consider actions of monoids and groups on categories.

Example 3.13. Recall the monoidal categories N and G, for an additive monoid N

and group G, respectively.

(a) We have a strong monoidal functor, ⇢ : N ! End(VecN), where for n 2 N,

⇢(n) : VecN ! VecN ,
L

m2N
Vm 7!

L
m2N

Vn+m.

(b) We have a strong monoidal functor, ⇢ : G ! Aut(VecG), where for g 2 G,

⇢(g) : VecG
⇠! VecG,

L
h2G Vh 7!

L
h2G Vghg�1 .

Determining ⇢(2) and ⇢(0) in each case is Exercise 3.8.

In general, we define the following notions.

• An action of a monoid N on a category A is defined to be a strong monoidal
functor, ⇢ : N ! End(A).

• An action of a group G on a category A is defined to be a strong monoidal
functor, ⇢ : G ! Aut(A).

• One can also consider the monoidal category Aut⌦(C) of monoidal auto-
equivalences of a monoidal category C. Then an action of a group G on a
monoidal category C is a strong monoidal functor, ⇢ : G ! Aut⌦(C).

The monoidal functors below are vital tools in Quantum Topology.

Example 3.14. The functor Z : nCob! FinHilb (or VecC), the Topological Quantum
Field Theory, mentioned in §2.3.2 can be upgraded to a monoidal functor. See the
textbook by Kock [2004] for the case n = 2, where the target category is VecC.

Now we provide an example of a monoidal equivalence.

Example 3.15. Even though the category A-Mod is not monoidal for an arbitrary
algebra A, we have that the endofunctor category End(A-Mod) is monoidal. In fact,
as monoidal categories, we have that

End(A-Mod)
⌦' A-Bimod.

Here, the underlying functor of the monoidal equivalence is defined by

⇢ : A-Bimod! End(A-Mod), AVA 7! (AVA) ⌦A �.
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Namely, by taking a
A := a

A-Bimod and `A := `A-Bimod, we then get the following
monoidal product and monoidal unit constraints for ⇢:

⇢(2)
V,W (Z) := (aA

V,W,Z)�1 : V ⌦A (W ⌦A Z) ⇠! (V ⌦A W) ⌦A Z,

⇢(0)(Z) := (`A

Z
)�1 : Z

⇠! A ⌦A Z,

for all V,W 2 A-Bimod and Z 2 A-Mod.

Example 3.16. Again, A-Mod is not monoidal for an arbitrary algebra A, but we do
have that kG-Mod is monoidal, for a finite group G. Namely, for V,W in kG-Mod

with action ., we define an action of kG on V ⌦W = V ⌦k W and on = k:
⇣P

g2G �gg

⌘
I (v ⌦k w) :=

P
g2G �g(g . v) ⌦k (g . w),

⇣P
g2G �gg

⌘
I 1k :=

P
g2G �g(g . 1k) =

P
g2G �g,

for g 2 G, v 2 V , and w 2 W. Then, the isomorphism G-Mod � kG-Mod from
Exercise 2.30 can be upgraded to a monoidal isomorphism

G-Mod
⌦
� kG-Mod.

See Exercise 3.6(c).

Deriving more examples of monoidal functors is Exercise 3.9.

§3.3. Module categories and bimodule categories

In this part, we discuss module categories over monoidal categories, which are
defined analogously to modules over algebras; see §1.3.2. This concept might
seem familiar given a certain exercise that was previously assigned in this chapter
(find it!). On a related note, module categories can be viewed as representations of
monoidal categories. Many examples of module categories are provided below, and
these concepts are also extended to bimodule categories.

§3.3.1. Module categories and module functors

Fix a monoidal category C := (C,⌦, , a, `, r).

A left C-module category consists of the following data.

(a) A category M.

(b) (left action bifunctor) A bifunctor “ : C ⇥M!M.

(c) (left module associativity constraint) A natural isomorphism

m : “ � (⌦ ⇥ IdM) ⇠) “ � (IdC ⇥ “)
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of functors from C ⇥ C ⇥M to M. That is, we have a collection of isos

{mX,Y,M : (X ⌦ Y) “ M
⇠! X “ (Y “ M)}X,Y2C,M2M,

natural in X, Y , and M.

(d) (left module unitality constraint) A natural isomorphism

p : “ IdM
⇠) IdM

of functors from M to M. That is, we have a collection of isos

{pM : “ M
⇠! M}M2M,

natural in M.

The following diagrams must also commute, for all X, Y, Z 2 C and M 2M.

((X ⌦ Y) ⌦ Z) “ M

aX,Y,Z “ idM

ww

mX⌦Y,Z,M

''

(X ⌦ ) “ M

mX, ,M
//

rX “ idM

⇠⇠

X “ ( “ M)

idX “ pM

⌃⌃

(X ⌦ (Y ⌦ Z)) “ M

mX,Y⌦Z,M

✏✏

(X ⌦ Y) “ (Z “ M)

mX,Y,Z“M

✏✏

X “ ((Y ⌦ Z) “ M)
idX “ mY,Z,M

// X “ (Y “ (Z “ M)) X “ M

(pentagon axiom) (triangle axiom)

Likewise, a right C-module category consists of the following data.

(a) A category M.

(b) (right action bifunctor) A bifunctor ‹ : M ⇥ C !M.

(c) (right module associativity constraint) A natural isomorphism

n : ‹ � (IdC ⇥ ⌦) ⇠) ‹ � (‹ ⇥ IdC).

(d) (right module unitality constraint) A natural isom. q : IdM ‹ ⇠) IdM.

The following diagrams must also commute, for all X, Y, Z 2 C and M 2M.

M ‹ (X ⌦ (Y ⌦ Z))
idM ‹ a

�1
X,Y,Z

ww

nM,X,Y⌦Z

''

M ‹ ( ⌦ Y)
nM, ,Y

//

idM ‹ `Y

⇠⇠

(M ‹ ) ‹ Y

qM ‹ idY

⌃⌃

M ‹ ((X ⌦ Y) ⌦ Z)

nM,X⌦Y,Z

✏✏

(M ‹ X) ‹ (Y ⌦ Z)

nM‹X,Y,Z

✏✏

(M ‹ (X ⌦ Y)) ‹ Z

nM,X,Y ‹ idZ
// (M ‹ X) ‹ Y) ‹ Z M ‹ Y

(pentagon axiom) (triangle axiom)
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Structure versus ‘structure category’. We have seen previously in §§2.4.1
and 2.4.2 that when moving up a level of abstraction, one replaces equalities
with isomorphisms. Similar moves are needed when generalizing algebraic
structures to the categorical framework as follows.

• underlying structure  category
. (e.g., underlying vector space V of a left A-module  category M)

• structure morphisms  structure functors
. (e.g., action map .  action bifunctor “)

• compatibility equations amongst structure morphisms 
compatibility natural isomorphisms amongst structure functors
. (e.g.,module associativity equation  module associativity constraint)

In short, this is how one forms a ‘structure category’. For instance, complete
Exercise 3.10 after finishing §3.3.1 (and before reading §3.3.3).

We also want to transport from one C-module category to another. Fix left
C-module categories (M,“,m, p) and (M0,“0,m0, p0).

A left C-module functor from (M,“,m, p) to (M0,“0,m0, p0) consists of the
following data.

(a) A functor between the underlying categories F : M!M
0.

(b) (left module functor constraint) A natural isomorphism

s : F� “ ⇠) “0 � (IdC ⇥ F)

from C ⇥M to M
0, i.e., a collection of isos that are natural in each slot:

{sX,M : F(X “ M) ⇠! X “0 F(M)}X2C,M2M.

We also require that the diagrams below commute, for all X, Y 2 C, M 2M.

F((X ⌦ Y) “ M)
F(mX,Y,M)
ww

sX⌦Y,M

''

F( “ M)
s ,M
//

F(pM)

⌫⌫

“0 F(M)

p
0
F(M)

⌥⌥

F(X “ (Y “ M))

sX,Y“M

✏✏

(X ⌦ Y) “0 F(M)

m
0
X,Y,F(M)
✏✏

X “0 F(Y “ M)
idX “0 sY,M

// X “0 (Y “0 F(M)) F(M)

(pentagon axiom) (triangle axiom)
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Likewise, a right C-module functor between right C-module categories,

(M,‹, n, q) �! (M0,‹0, n0, q0),

is a functor F : M!M
0 equipped with right module functor constraint,

t : (F � ‹) ⇠) (‹0 � (F ⇥ IdC)),

satisfying the commutative diagrams below, for all X, Y 2 C and M 2M.

F(M ‹ (X ⌦ Y))
F(nM,X,Y )
ww

tM,X⌦Y

''

F(M ‹ )
tM,
//

F(qM)

⌫⌫

F(M) ‹0

q
0
F(M)

⌥⌥

F((M ‹ X) ‹ Y)

tM‹X,Y
✏✏

F(M) ‹0 (X ⌦ Y)

n
0
F(M),X,Y
✏✏

F(M ‹ X) ‹0 Y
tM,X ‹0 idY

// (F(M) ‹0 X) ‹0 Y F(M)

(pentagon axiom) (triangle axiom)

Two left (resp., right) C-module categories M and M
0 are said to be equiva-

lent as C-module categories if there exists a left (resp., right) C-module functor
(F, s) : M ! M

0 (resp., (F, t) : M ! M
0), where F is an equivalence of the

underlying categories.

The collection of C-module categories forms a category itself. Consider the
following notation.

• C-Mod: The category of left C-module categories as objects, and left C-module
functors as morphisms.

• Mod-C: The category of right C-module categories as objects, and right C-module
functors as morphisms.

With module categories, we can also build monoidal categories resembling
endomorphism algebras. See Exercise 3.11 after reading Example 3.17.

• EndC-Mod(M): the category of left C-module endofunctors of M 2 C-Mod, with
⌦ given by composition �, and with = IdM.

• EndMod-C(M): the category of right C-module endofunctors of module category
M 2 Mod-C, with ⌦ given by composition �, and with = IdM.

§3.3.2. Examples of module categories

Next, we display examples of module categories over a monoidal category. Com-
pleting the details of these examples comprise Exercise 3.12.

The first set of examples pertain to an arbitrary monoidal category C.
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Example 3.17. We have that C is a left and a right C-module category with “ = ⌦C
and ‹ = ⌦C , resp.; these are regular C-module categories, denoted by Creg.

Example 3.18. Take a strong monoidal functor F : C ! D, with a left D-module
category (M,“) . Then, we can define a left C-module category (M,—) with

X — M := F(X) “ M,

for all X 2 C and M 2M. Here, we say that (M,—) 2 C-Mod is the restriction of
(M,“) 2 D-Mod to C along F. Compare to §1.4.4.

For the next examples, let G be a group, and let A and B be k-algebras.

Example 3.19. Consider the monoidal category G-Mod from §3.1.2i. Then, for any
subgroup H of G, we have that H-Mod is a left (or a right) module category over
G-Mod. This holds by applying Exercise 3.6 and Example 3.18 by taking

F = ResG

H
, with C = G-Mod, D =M = H-Mod.

In particular, Vec is a module category over G-Mod.

Example 3.20. Consider the monoidal category VecG from §3.1.2i, and recall
G-actions on categories discussed after Example 3.13. Then, a category M is a
left VecG-module category if and only if M admits an action of G, that is, if there
exists a strong monoidal functor ⇢ : G ! Aut(M).

Example 3.21. Consider the monoidal category A-Bimod from §3.1.2i. Then, we
obtain that (A, B)-Bimod is a left module category over A-Bimod, and (B, A)-Bimod

is a right module category over A-Bimod.

We now discuss module categories over monoidal endofunctor categories.

Example 3.22. Take the monoidal category End(A) from §3.1.2ii.

(a) We have that A is a left End(A)-module category with F “ M := F(M), for all
F 2 End(A) and M 2 A.

(b) For another category B, we have that:

• Fun(B,A) is a left End(A)-module category with F “ G := F � G, for all
F 2 End(A) and G 2 Fun(B,A);

• Fun(A,B) is a right End(A)-module category with G ‹ F := G � F, for all
F 2 End(A) and G 2 Fun(A,B).
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Example 3.23. Take the monoidal category EndMod-C(M), for M 2 Mod-C, from
§3.3.1. For anyN 2 Mod-C, take FunMod-C(M,N ) be the category of right C-module
functors from M to N . Then, we have the following statements.

(a) FunMod-C(N ,M) is a left module category over EndMod-C(M) with
F “ G := F �G, for all F 2 EndMod-C(M) and G 2 FunMod-C(N ,M);

(b) FunMod-C(M,N ) is a right module category over EndMod-C(M) with
G ‹ F := G � F, for all F 2 EndMod-C(M) and G 2 FunMod-C(M,N ).

We now discuss a module category over a topological monoidal category.

Example 3.24. Consider the monoidal category Braid from §3.1.2iii, along with a
similar monoidal category below.

• Perm: The objects are natural numbers N. Moreover, for an object n 2 N, consider
the n-th permutation group S n, which has generators ⌧1, . . . , ⌧n�1 and relations:

⌧2
i
= e, for i = 1, . . . , n � 1;

(⌧i⌧i+1)3 = e, for i = 1, . . . , n � 2;
⌧i⌧ j = ⌧ j⌧i, for |i � j| > 1.

Then, HomPerm(n,m) = Sn if n = m and is empty otherwise. Morphisms are
drawn as braids without overlaps, as we depict for n = 3 below. The monoidal
structure on Perm to similar to that for Braid.

⌧1 ⌧�1
1 ⌧2 ⌧�1

2 ⌧1⌧2

Figure 3.2: Examples of morphisms in the monoidal category Perm, cf. Fig. 3.1.

Since Sn is a quotient group of the braid group Bn, we get a functor from Braid to
Perm sending an object n to n, and by sending a morphism in Bn to its homomorphic
image in Sn. Moreover, this functor can be upgraded to a strong monoidal functor.
Thus, Perm is a left module category over Braid by Example 3.18.

§3.3.3. Bimodule categories

Fix a monoidal categories C and D. A (C,D)-bimodule category is a tuple

(M,“,‹, m, n, p, q, b),

where
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(a) (M,“,m, p) is a left C-module category;

(b) (M,‹, n, q) is a right D-module category; and

(c) (middle associativity constraint) There exists a natural isomorphism

b : ‹ � (“ ⇥ IdD) ⇠) “ � (IdC ⇥ ‹)

from C ⇥M ⇥ D to M, such that the following diagrams commute, for all
X, Y 2 C and Z,W 2 D and M 2M.

((X ⌦ Y) “ M) ‹ Z

mX,Y,M ‹ idZ

uu

bX⌦Y,M,Z

))

(X “ (Y “ M)) ‹ Z

bX,Y“M,Z
✏✏

(X ⌦ Y) “ (M ‹ Z)

mX,Y,M‹Z

✏✏

X “ ((Y “ M) ‹ Z)
idX “ bY,M,Z

// X “ (Y “ (M ‹ Z))

X “ (M ‹ (Z ⌦W))
idX “ nM,Z,W

uu

b
�1
X,M,Z⌦W

))

X “ ((M ‹ Z) ‹ W)

b
�1
X,M‹Z,W

✏✏

(X “ M) ‹ (Z ⌦W)

nX“M,Z,W

✏✏

(X “ (M ‹ Z)) ‹ W

b
�1
X,M,Z ‹ idW

// ((X “ M) ‹ Z) ‹ W

A (C, C)-bimodule category is referred to as a C-bimodule category.

A (C,D)-bimodule functor between (C,D)-bimodule categories,

(M,“,‹,m, n, p, q, b)! (M0,“0,‹0,m0, n0, p0, q0, b0),

is a triple (F, s, t), where (F, s) : (M,“,m, p) ! (M0,“0,m0, p0) is a left C-module
functor, and (F, t) : (M,‹, n, q)! (M0,‹0, n0, q0) is a right D-module functor, such
that the following diagram commutes.

F((X “ M) ‹ Y)
tX“M,Y

//

F(bX,M,Y )
✏✏

F(X “ M) ‹0 Y
sX,M ‹0 idY

// (X “0 F(M)) ‹0 Y

b
0
X,F(M),Y
✏✏

F(X “ (M ‹ Y))
sX,M‹Y

// X “0 F(M ‹ Y)
idX ‹0 tM,Y

// X “0 (F(M) ‹0 Y)

The collection of (C,D)-bimodule categories also form a category:

• (C,D)-Bimod: The category of (C,D)-bimodule categories as objects, and for
morphisms we use (C,D)-bimodule functors.

• C-Bimod: This denotes the category (C, C)-Bimod.
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Two (C,D)-bimodule categories M and M
0 are equivalent as (C,D)-bimodule

categories if there exists a (C,D)-bimodule functor (F, s, t) : M!M
0, where F is

an equivalence of the underlying categories.

Consider the example of a bimodule category below.

Example 3.25. We have that C is a C-bimodule category with “ = ‹ = ⌦C and
bX,Y,Z = a

C
X,Y,Z ; this is the regular C-bimodule category, also denoted by Creg.

Deriving more examples of bimodule categories comprises Exercise 3.13.

§3.3.4. Module categories over additive monoidal categories

To have a rich theory of module categories M over monoidal categories C, it is
common to impose conditions on M that reflect the behavior of C.

For instance, we define a left module category over an additive monoidal
category C to be a left C-module category (M,“) such that M is additive, and the
functors (X “ �) : M !M and (� “ M) : C !M are additive, for each X 2 C

and M 2M. Compare to (3.2).

Likewise, a left module category over an abelian (resp., linear) monoidal cate-
gory C is a left C-module category (M,“), where M is abelian (resp., linear) and
(X “ �) and (� “ M) are additive (resp., linear), for each X 2 C and M 2M.

Analogues for right module and bimodule categories are defined likewise.

In the additive case, we say that a left C-module category M is decomposable
if it is equivalent to a product of nonzero left C-module categories (see §2.2.2ii).
Else, we say that M is indecomposable.

For instance, if C = FdVec, then A-FdMod is a right C-module category for any
k-algebra A. Moreover, A-FdMod is a decomposable module category when A is a
decomposable algebra. See Exercise 3.14.

§3.4. Strictness and coherence

It is often convenient to ignore the associativity and unitality constraints when
performing calculations in monoidal categories and in module categories. To do
so, we use the notions of strictness and coherence discussed below.

§3.4.1. Strictness for monoidal categories

We say a monoidal category (C,⌦, , a, `, r) is strict if the components of the
associativity constraint a and unitality constraints `, r are identity maps.
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In this case, we write:

X ⌦ Y ⌦ Z for (X ⌦ Y) ⌦ Z = X ⌦ (Y ⌦ Z);

X for ⌦ X and X ⌦ .

One example of a strict monoidal category is (End(A), �, IdA), for a category A.

In fact, we will make this assumption often due to the result below, which is
attributed to Mac Lane; see Section XI.3 of Mac Lane [1998].

Theorem 3.26 (Strictification Theorem). Any monoidal category C is monoidally
equivalent to a strict monoidal category.

To prove this, we consider the regular right C-module category Creg from Ex-
ample 3.17. We will then construct a strict monoidal category, denoted by C

str,
which is modeled on EndMod-C(Creg). Moreover, we will show that C is monoidally
equivalent to a full (strict) monoidal subcategory of Cstr. This approach to proving
the Strictification Theorem is modified from Theorem 2.8.5 of Etingof et al. [2015],
which in turn was borrowed from Corollary 1.4 of Joyal and Street [1993].

Definition 3.27. For a monoidal category (C,⌦, , a, `, r), define the monoidal
category C

str as follows.

(a) Objects: endofunctors F : C ! C equipped with a natural isomorphism
u := {uM,X : F(M) ⌦ X

⇠! F(M ⌦ X)}M,X2C , such that the following pentagon
axiom holds for all M, X, Y 2 C.

(F(M) ⌦ X) ⌦ Y

uM,X ⌦ idY

uu

aF(M),X,Y

))

F(M ⌦ X) ⌦ Y

uM⌦X,Y
✏✏

F(M) ⌦ (X ⌦ Y)
uM,X⌦Y

✏✏

F((M ⌦ X) ⌦ Y)
F(aM,X,Y )

// F(M ⌦ (X ⌦ Y))

(b) Morphisms: (F, u)! (F0, u0) is a natural transformation ✓ : F ) F
0 such that

the diagram below commutes, for all M, X 2 C.

F(M) ⌦ X
uM,X

//

✓M ⌦ idX

✏✏

F(M ⌦ X)

✓M⌦X

✏✏

F
0(M) ⌦ X

u
0
M,X

// F
0(M ⌦ X)

(c) Monoidal product: (F, u) ⌦str (F0, u0) := (FF
0, u00), with

u
00
M,X := F(u0

M,X) � uF0(M),X : FF
0(M) ⌦ X ! F(F0(M) ⌦ X)! FF

0(M ⌦ X).

(d) Monoidal unit: str := (IdC , {idM⌦X}M,X2C).
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Note that the natural isomorphism u is the inverse of the monoidal functor
constraint, t

�1, for objects in Mod-C. Moreover, verifying that Cstr is indeed strict
monoidal is Exercise 3.15(a). Next, we relate a monoidal category C with C

str.

Theorem 3.28. For any monoidal category (C,⌦, , a, `, r), there exists a fully faithful,
strong monoidal functor ⇢ : C ! C

str.

Proof. We define a functor ⇢ : C ! C
str on objects Z 2 C by

⇢(Z) :=
�
Z ⌦ �, {uM,X := aZ,M,X}M,X2C

�
,

and on morphisms f : Z ! Z
0 2 C by

⇢( f : Z ! Z
0) := [✓ : (Z ⌦ �) ) (Z0 ⌦ �)], for ✓Y := f ⌦ idY ,

for Y 2 C. Indeed, the compatibility condition in Definition 3.27(a) holds by the
pentagon axiom for C, and the compatibility condition in Definition 3.27(b) holds
by the naturality of a

C .

Claim 1. The functor ⇢ is fully faithful.

Proof of Claim 1. For fullness, take ✓ : (Z ⌦ �) = ⇢(Z) ) ⇢(Z0) = (Z0 ⌦ �) in
C

str. Consider the morphism g := rZ0 ✓ r
�1
Z

: Z ! Z
0. Then, ⇢(g) = ✓ due to the

commutative diagram below.

Z ⌦ Y

✓Y
++

idZ⌦Y

✏✏

idZ ⌦ `�1
Y

// Z ⌦ ( ⌦ Y)
✓ ⌦Y

//

a
�1
Z, ,Y

✏✏

Z
0 ⌦ ( ⌦ Y)

idZ0 ⌦ `Y

//

a
�1
Z0 , ,Y

✏✏

Z
0 ⌦ Y

idZ0⌦Y

✏✏

Z ⌦ Y

r
�1
Z
⌦ idY

//

⇢(g)Y

33

(Z ⌦ ) ⌦ Y
✓ ⌦ idY

// (Z0 ⌦ ) ⌦ Y
rZ0 ⌦ idY

// Z
0 ⌦ Y

Indeed, the top region commutes by the naturality of ✓ at `Y ; the bottom region
commutes by definition; the left and right regions commute by the triangle axiom;
and the middle region commutes by Definition 3.27(b). Thus, ⇢ is full.

For faithfulness, suppose that ⇢( f ) = ⇢(g), for some f , g 2 HomC(Z, Z0). Then,
taking the components at , we obtain that f ⌦ id = g⌦ id in HomC(Z⌦ , Z0 ⌦ ).
Now f = g by the naturality of r, depicted by the commutative diagram below.

Z

f
**

idZ

✏✏

r
�1
Z

// Z ⌦
f ⌦ id

//

idZ⌦
✏✏

Z
0 ⌦

rZ0
//

idZ0⌦
✏✏

Z
0

idZ0

✏✏

Z

r
�1
Z

//

g

44Z ⌦ g ⌦ id
// Z
0 ⌦ rZ0

// Z
0

Claim 1 Q.E.D.
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Claim 2. The functor ⇢ admits a strong monoidal structure.

Proof of Claim 2. Define the monoidal product constraint of ⇢,

⇢(2)
W,Z : [W ⌦ (Z ⌦ �), {(idW ⌦ aZ,M,X) � aW,Z⌦M,X}M,X2C] = ⇢(W) ⌦str ⇢(Z)

�! ⇢(W ⌦ Z) = [(W ⌦ Z) ⌦ �, {aW⌦Z,M,X}M,X2C],

to be the natural transformation a
�1
W,Z,�. Indeed, by the pentagon axiom, the com-

ponents of ⇢(2) satisfy Definition 3.27(b) as depicted below.

(W ⌦ (Z ⌦ M)) ⌦ X
aW,Z⌦M,X

//

a
�1
W,Z,M ⌦ idX

✏✏

W ⌦ ((Z ⌦ M) ⌦ X)
idW ⌦ aZ,M,X

// W ⌦ (Z ⌦ (M ⌦ X))

a
�1
W,Z,M⌦X

✏✏

((W ⌦ Z) ⌦ M) ⌦ X
aW⌦Z,M,X

// (W ⌦ Z) ⌦ (M ⌦ X)

We define the monoidal unit constraint of ⇢ as follows:

⇢(0) :
⇥IdC , {idM⌦X}M,X2C

⇤
= Cstr �! ⇢( C) =

h
C ⌦ �, {a C ,M,X}M,X2C

i
,

to be the natural transformation `�1. By Exercise 3.1(a), the components of this
natural transformation satisfy Definition 3.27(b) as depicted below.

M ⌦ X
idM⌦X

//

`�1
M
⌦ idX

✏✏

M ⌦ X

`�1
M⌦X

✏✏

( C ⌦ M) ⌦ X
a C ,M,X

//

C ⌦ (M ⌦ X)

Exercise 3.15(b) asks us to verify that ⇢(2) and ⇢(0) satisfy the associativity and unit
axioms making (⇢, ⇢(2), ⇢(0)) a strong monoidal functor. Claim 2 Q.E.D.

This concludes the proof. ⇤

Now we complete the proof of the Strictification Theorem as follows.

Proof of the Strictification Theorem 3.26. We have that the essential image of the
functor ⇢ : C ! C

str from the theorem above is a strict monoidal category, and is
monoidally equivalent to C. See Exercise 3.16 for details. ⇤

§3.4.2. Strictness for module categories

One can also consider strictness for module categories. Given a strict monoidal
category (C,⌦, ), a left C-module category (M,“,m, p) is strict if the components
of the associativity constraint m and unitality constraint p are all identity maps.

Likewise, one can define strict right C-module categories (M,‹, n, q), and strict
C-bimodule categories (M,“,‹,m, n, p, q, b), where the components of the asso-
ciativity constraints m, n, b and unitality constraints p, q are all identity maps.
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Akin to Strictification Theorem (Theorem 3.26), we have the result below due
to Theorem 1.3.8 of Greenough [2010], the proof of which follows closely to the
proof of Theorem 3.26.

Theorem 3.29. Any right C-module category is equivalent, as a right C-module category,
to a strict right C-module category. ⇤

Likewise, the result is true for left C-module categories. We encourage the
reader to explore if it is true for C-bimodule categories.

§3.4.3. Coherence

Given objects X1, . . . , Xn in a monoidal category (C,⌦, , a, `, r), we call an or-
dered parenthesized monoidal product of X1, . . . , Xn, with possible ’s inserted, an
expression of X1 ⌦ · · ·⌦ Xn. For instance, (X ⌦Y)⌦ ( ⌦Z) and ⌦ [X ⌦ ((Y ⌦ )⌦Z)]
are both expressions of X ⌦ Y ⌦ Z. We are not only interested in expressions of
objects, but we are also interested in how to move one expression to another.

If we have two expressions w and w
0 consisting of 3 non-unit objects, then we

can get from w to w
0 in a unique way using the associativity and unitality isos.

If w and w
0 consist of 4 non-unit objects, then we can still get from w to w

0 in
a unique way using the associativity and unitality isos; the uniqueness is due
to the pentagon and triangle axioms. The Strictification Theorem for monoidal
categories also implies that we can get from w to w

0 in a unique way when w and
w
0 consist of 5 or more non-unit objects. This is summarized in the theorem below,

due to the work of Mac Lane [1998]; see Section VII.2 of that reference.

Theorem 3.30 (Coherence Theorem). Let w(X1, . . . , Xn) and w
0(X1, . . . , Xn) be two

expressions of X1 ⌦ · · · ⌦ Xn in a monoidal category C. Let

f , g : w(X1, . . . , Xn)! w
0(X1, . . . , Xn)

be two isos given by compositions of associativity and unitality isos in C. Then, f = g.

Proof. Using Theorem 3.26, take a monoidal equivalence ⇢ : C ! C
0, for C0 a strict

monoidal category. Let us write f as f1 � · · · � fr, and g as g1 � · · · � gs, where the fi

and g j are associativity or unitality isos. Applying ⇢ to f and g yields the diagram
below.

⇢(w(X1, . . . , Xn)) = ⇢(X1 ⌦ · · · ⌦ Xn)
⇢( f )

**

⇢( f1)
//

✏✏

· · ·
⇢( fr)
// ⇢(X1 ⌦ · · · ⌦ Xn) = ⇢(w0(X1, . . . , Xn))

✏✏

w(⇢(X1), . . . , ⇢(Xn)) id
//

✏✏

· · · id
// w
0(⇢(X1), . . . , ⇢(Xn))

✏✏

⇢(w(X1, . . . , Xn)) = ⇢(X1 ⌦ · · · ⌦ Xn)
⇢(g)

33

⇢(g1)
// · · ·

⇢(gs)
// ⇢(X1 ⌦ · · · ⌦ Xn) = ⇢(w0(X1, . . . , Xn))
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Here, the internal regions are broken up into sub-regions with vertical downward
arrows being a combination of monoidal product or monoidal unit constraints, ⇢(2)

and ⇢(0); each sub-region commutes due to the associativity or unitality axioms
for the monoidal structure of ⇢. Moreover, the middle row of morphisms consists
of identity maps because C

0 is strict. Since ⇢ is strong, the vertical arrows are isos.
Thus, ⇢( f ) = ⇢(g). Finally, f = g as ⇢ is faithful. ⇤

§3.5. Graphical calculus

In this part, we introduce graphical notation to depict objects and morphisms in
monoidal categories C. This will enable us to compute compositions of morphisms
in an elegant fashion when C is strict.

Standing hypothesis for graphical calculus computations. By the
Strictification Theorem [Theorem 3.26], assume that monoidal categories
(C,⌦, , a, `, r) here are strict, that is, of the form (C,⌦, ).

Consider the following conventions:

• An object X in C is depicted by a vertical string labeled by "X".

• A morphism f : X ! Y in C is a vertical line with a box labeled by " f ", with the
string above the box labeled by X, and the string below the box labeled by Y .

• The composition of morphisms g f := g � f : X ! Z in C, for f : X ! Y and
g : Y ! Z in C, is drawn by connecting the string for g below the string for f .
This process is called vertical composition.

• The monoidal product X⌦Y of objects of X and Y is drawn as two vertical strings
side-by-side with the left (resp., right) string labeled by X (resp., Y). Likewise,
the monoidal product of morphisms f : X ! Y and f

0 : X
0 ! Y

0 is drawn
side-by-side. Both processes are called horizontal composition.

• The monoidal unit object is depicted with an empty or a dashed string.

This is illustrated in Figure 3.3. See Exercise 3.17 for practice.

Remark 3.31. A common convention for vertical composition is by stacking
morphisms upward instead of connecting morphisms downward. Some refer to
these, respectively, as the optimist and pessimist conventions. But the author views
these, respectively, as the idealist and realist conventions as one realistically starts
at the top of a sheet of paper and works their way downward to do computations
(at least in many written languages). :)
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:= :=

:=:=:=:=

X X X X X YX ⌦ Y

X X XX
0

X
0

X
0

X ⌦ X
0

X ⌦ X
0

Y ⌦ Y
0

Y Z Z

Y Y YY ⌦ Y
0

Y
0

Y
0

Y
0

Yf

f

f f
0

g

g � f

f ⌦ f
0

f ⌦ f
0

f ⌦ f
0

f ⌦ f
0

Figure 3.3: String diagrams for objects, morphisms in strict monoidal categories.

Various axioms in strict monoidal categories are encoded in string diagrams,
including the associativity and unitality axioms for vertical compositions (see
Figure 3.4), and for horizontal compositions (see Figure 3.5).

= = = =

W

X

Y

Z

W

X

Z

W

Y

Z

X

Y

X

X

Y

X

Y

Y

f

g

h

f

hg

g f

h

f

idX

f

f

idY

Figure 3.4: Diagrammatic associativity and unitality for vertical composition.

= = = =

X⌦X
0⌦X

00

Y⌦Y
0⌦Y

00

X

Y

X
0⌦X

00

Y
0⌦Y

00

X⌦X
0

Y⌦Y
0

X
00

Y
00

X X X

f ⌦ f
0 ⌦ f

00
f f

0 ⌦ f
00

f ⌦ f
0

f
00

Figure 3.5: Diagrammatic associativity and unitality for horizontal composition.

Commutative diagrams can also be encoded in string diagrams. For instance,
having morphisms in different slots is depicted by sliding morphisms up and
down strings, as visualized in Figure 3.6. This is called level exchange.
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X ⌦ X
0 f ⌦ idX0

//

idX ⌦ f
0

✏✏

Y ⌦ X
0

idY ⌦ f
0 !

✏✏

X ⌦ Y
0

f ⌦ idY0
// Y ⌦ Y

0

= =

X X
0

X X
0

X ⌦ X
0

Y Y
0

Y Y
0

Y ⌦ Y
0

f

f
0 f

f
0

f ⌦ f
0

Figure 3.6: Level exchange: commutative diagram vs. string diagram.

§3.6. Rigid categories

Now we begin to discuss various features of monoidal categories that are used
to get richer categorical models for applications. Here, we study when monoidal
categories C contain dual objects and dual morphisms; in this case, C is called rigid or
autonomous. We also examine module categories over such monoidal categories,
namely, dual module categories over rigid monoidal categories.

§3.6.1. Rigid categories

Let us fix a monoidal category (C,⌦, , a, `, r), and an object X in C.

A left dual of X consists of the following data.

(a) An object X
⇤ 2 C.

(b) A morphism evL

X
: X
⇤ ⌦ X ! called left evaluation.

(c) A morphism coevL

X
: ! X ⌦ X

⇤ called left coevaluation.

This data must satisfy the left rigidity axioms below.

• The composition below is equal to idX :

X

`�1
X
// ⌦ X

coevL

X
⌦ id
// (X ⌦ X

⇤) ⌦ X

aX,X⇤ ,X
// X ⌦ (X⇤ ⌦ X)

id ⌦ evL

X
// X ⌦ rX

// X.

• The composition below is equal to idX⇤ :

X
⇤

r
�1
X⇤
// X
⇤ ⌦

id ⌦ coevL

X
// X
⇤ ⌦ (X ⌦ X

⇤)
a
�1
X⇤ ,X,X⇤

// (X⇤ ⌦ X) ⌦ X
⇤

evL

X
⌦ id
// ⌦ X

⇤ `X⇤
// X
⇤.

Likewise, a right dual of X consists of the following data.

(a) An object ⇤X 2 C.

(b) A morphism evR

X
: X ⌦ ⇤X ! called right evaluation.

(c) A morphism coevR

X
: ! ⇤

X ⌦ X called right coevaluation.

This data must satisfy the right rigidity axioms below.
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• The composition below is equal to idX :

X

r
�1
X
// X ⌦

id ⌦ coevR

X
// X ⌦ (⇤X ⌦ X)

a
�1
X,⇤X,X

// (X ⌦ ⇤X) ⌦ X

evR

X
⌦ id
// ⌦ X

`X
// X.

• The composition below is equal to id⇤X :

⇤
X

`�1
⇤X
// ⌦ ⇤X

coevR

X
⌦ id
// (⇤X ⌦ X) ⌦ ⇤X

a⇤X,X,⇤X
//

⇤
X ⌦ (X ⌦ ⇤X)

id ⌦ evR

X
//

⇤
X ⌦ r⇤X

//

⇤
X.

We depict these structures in the strict case in Figure 3.7.

X
⇤

X

X X
⇤

X X
⇤X

X

X
⇤

X
⇤

X

X
⇤

=

,
=

evL

X
coevL

X

Left Rigidity Axioms

X ⇤
X

⇤
X X

X ⇤
X

⇤
X

⇤
X

X

X

⇤
X

X

=

,
=

evR

X
coevR

X

Right Rigidity Axioms

Figure 3.7: (Co)evaluation morphisms and rigidity axioms for left/right duality.

Also, consider the following terminology.

• If both a left dual and a right dual exists for X in C, then X is called rigid.

• C is left (resp., right) rigid if each object in C has a left (resp., right) dual in C.

• C is rigid if it is both left and right rigid (or, if each object is rigid).

One synonym for "rigid" is the term autonomous. Determining whether rigidity
is a structure on or a property of a monoidal category is Exercise 3.18.

We now point out some features of dual objects in a rigid category.

Lemma 3.32. In a rigid category C, the following statements hold.

(a) Left dual objects are unique, up to unique iso compatible with the evaluation and
coevaluation morphisms. Namely, if X, Y1, Y2 2 C are objects equipped with morphisms
ei : Yi ⌦ X ! and ci : ! X ⌦ Yi for i = 1, 2, satisfying left rigidity axioms, then
there is a unique iso f : Y1 ! Y2 in C such that

e1 = e2 � ( f ⌦ idX) and c2 = (idX ⌦ f ) � c1.

(b) Likewise, right dual objects are unique, up to unique iso compatible with the evaluation
and coevaluation morphisms.
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(c) If X 2 C, then ⇤(X⇤) � X � (⇤X)⇤ in C.

(d) We have that ⇤ = = ⇤ .

(e) The opposite monoidal categories Cop, C⌦op, and C
rev are also rigid.

Proof. Part (a) is Exercise 3.19, and part (b) holds likewise. Parts (c) and (d)
comprise Exercise 3.20. Lastly, Exercise 3.21 is to verify part (e). ⇤

Next, we present a vital result about endofunctors obtained by tensoring by an
object, and by tensoring by its dual object.

Proposition 3.33. In a monoidal category C, take X, Y 2 C for which its left and right
dual objects exist in C. Then, we have the following adjunctions.

(a) C

X ⌦ �
((

⇤
X ⌦ �

hh

? C (c) C

� ⌦ ⇤Y
((

� ⌦ Y

hh

? C

(b) C

X
⇤ ⌦ �

((

X ⌦ �
hh

? C (d) C

� ⌦ Y

((

� ⌦ Y
⇤

hh

? C

Proof. By Proposition 2.24, part (d) is equivalent to showing that there is a bĳection
of sets ⇣X,Z : HomC(X ⌦Y, Z)! HomC(X, Z ⌦Y

⇤), that is natural in X and Z. Indeed,
for f : X ⌦ Y ! Z and g : X ! Z ⌦ Y

⇤, we can define

⇣X,Z( f ) := ( f ⌦ idY⇤ ) � a
�1
X,Y,Y⇤ � (idX ⌦ coevL

Y
) � r

�1
X

: X ! Z ⌦ Y
⇤

⇣�1
X,Z(g) := rZ � (idZ ⌦ evL

Y
) � aZ,Y⇤,Y � (g ⌦ idY ) : X ⌦ Y ! Z.

The fact that (⇣�1
X,Z � ⇣X,Z)( f ) = f and (⇣X,Z � ⇣�1

X,Z)(g) = g follows from the rigidity
axioms; see the depiction in the strict case in Figure 3.8. In the non-strict case, this
can be verified with commutative diagrams. We leave it to the reader to examine
naturality. Parts (a)-(c) follow similarly. ⇤

X Y

Y
⇤

=

Z

f

⇣( f )

X Y

Z

f

Fig. 3.7

X

Y

=

Z

g

⇣�1(g)

X

Z

g

Fig. 3.7

Y
⇤

Y
⇤

Figure 3.8: Graphical calculus for part of the proof of Proposition 3.33.
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§3.6.2. Examples of rigid categories

We now present several examples and non-examples of rigid monoidal categories,
building on the examples of monoidal categories in §3.1.2. This is summarized in
Table 3.1, which we discuss further below. Exercise 3.22 pertains to completing
more of the details of Table 3.1.

Key: Rigid (X) Not Rigid (") Sometimes Rigid (⇤) Exercise (?)

FdVec X VecG X Cat ? Top ?

Vec " Vec
0
G

? At ? Braid ?

G-FdMod X VecN " Au ? Hilb "

A-FdBimod ⇤ N ? End(A) " FdHilb X
A-Bimod " G X Aut(A) ? Graph ?

Table 3.1: Examples and non-examples of rigid monoidal categories.

Example 3.34. The category of finite-dimensional k-vector spaces, FdVec, is rigid.
Namely, for V 2 FdVec, we have that V

⇤ = ⇤V = Homk(V, k), with

evL

V
: V
⇤ ⌦k V ! k, coevL

V
: k! V ⌦k V

⇤

f ⌦k v 7! f (v) 1k 7!
PdimkV

i=1 bi ⌦k b
⇤
i
,

where {bi}i is a basis of V . One of the left rigidity axioms holds as follows:

V

`�1
V
// k ⌦k V

coevL

V
⌦ id
// (V ⌦k V

⇤) ⌦k V
aV,V⇤ ,V

// V ⌦k (V⇤ ⌦k V)
id ⌦ evL

V
// V ⌦k k

rV
// V

v
�

// 1k ⌦k v
�

//

P
i(bi ⌦k b

⇤
i
) ⌦k v

�
//

P
i bi ⌦k (b⇤

i
⌦k v) � ⇤⇤ // v ⌦k 1k

�
// v.

For (**), assume that v =
P

j � jb j, for some � j 2 k. Then,
P

i bi ⌦k b
⇤
i
(v) =

P
i, j � jbi ⌦k b

⇤
i
(b j) =

P
i, j � jbi ⌦k �i, j1k =

P
j � jb j = v.

Likewise, the other left rigidity axiom holds. Moreover, there exist linear maps
evR

V
and coevR

V
defined in a similar way that make V right rigid.

Example 3.35. The category of arbitrary k-vector spaces, Vec, is not rigid. Namely,
for V 2 Vec, say there are k-linear maps eV : W ⌦k V ! k and cV : k ! V ⌦k W

satisfying the rigidity axioms. Then, cV (1k) =
P

n

i=1 bi ⌦k wi for some wi 2 W and
some finite n. Now for step (**) in Example 3.34, we get that

P
n

i=1 bi ⌦k wi(v) =
P

n

i=1 � jbi ⌦k eV (wi ⌦k b j).

Since n is finite, there exists a basis element b j of V not in the k-span of {b1, . . . , bn}.
Therefore, the linear map V ! V in Example 3.34 cannot be surjective, and a left
rigidity axiom fails.
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Example 3.36. The category G-FdMod is rigid. Take (V, .) 2 G-FdMod, and define
(V, .)⇤ = ⇤(V, .) = (V⇤,I), with (g I f )(v) := f (g�1 . v) for g 2 G, f 2 V

⇤, and v 2 V .
The (co)evaluation morphisms are similar to that for Example 3.34.

By Exercise 3.35(f), FdVecG, along with each of its 3-cocycle modifications,
FdVec

!
G

, are rigid.

Example 3.37. The category A-Bimod is not rigid, but the category A-FdBimod can
be rigid though this is rarely the case. To see the latter, we mimic Example 3.34.

(a) For M 2 A-FdBimod, take M
⇤ = ⇤M = HomA-FdBimod(M, A). Also, let evL

M
be the

evaluation morphism defined by evL

M
( f ⌦A m) = f (m) for f 2 M

⇤ and m 2 M.
But to define coevL

M
, we need a finite ‘dual basis’ of M, and this is equivalent

to M being finitely generated and projective. See Section 2B of Lam [1999] for
details. Hence, an A-bimodule M is rigid in this setting precisely when it is
finitely generated and projective as both a left and a right A-module.

(b) On the other hand,we see that A-FdBimod is rigid when A is finite-dimensional
and semisimple. Namely, projectivity holds for all A-bimodules M if and only
if A is semisimple [Proposition 2.57]. Moreover, if A is finite-dimensional
(as a k-vector space), then M is finitely generated precisely when it is finite-
dimensional (as a k-vector space). Note that finite-dimensional, semisimple
algebras are classified by the Artin-Wedderburn Theorem [Theorem 1.44].

Example 3.38. Continuing Example 3.37, take A to be the 2-dimensional commu-
tative algebra k[x]/(x

2). Then, we will see below how A-FdBimod is not rigid.

(a) We have by Exercise 1.19 and Proposition 2.49(a) an example of a non-flat
A-module V , that is, an example of a functor (V ⌦A �), which is not left exact.
Now if A-FdBimod is rigid, then by Propositions 3.33(b) and 2.49(b), the functor
(V ⌦A �) must be left exact, a contradiction.

(b) One can also use the discussion in Example 3.37, and the non-semisimplicity
of A [Exercise 1.31(b)], to get that A-FdBimod is not rigid.

Example 3.39. The category G is rigid. For g 2 G, take g
⇤ = ⇤g = g

�1. Here, evL

g
and

evR

g
are given by the group operation, that is, evL

g
: g
�1⌦g! e and evR

g
: g⌦g

�1 ! e.
Also, coevL

g
(e) := g ⌦ g

�1 and coevR

g
(e) := g

�1 ⌦ g.

Example 3.40. The category Set = Setu is not rigid. Take a set X of cardinality
greater than 1. By way of contradiction, suppose that there exists a set Y and
functions eX : Y ⇥ X ! {·} and cX : {·} ! X ⇥ Y that satisfy the rigidity axioms.
Then, the image of cX is equal to a singleton subset {(x, y)} of X ⇥ Y . Moreover, by
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the rigidity axioms, we have:

X = rX (idX ⇥ eX) aX,Y,X (cX ⇥ idX) `�1
X

(X)

= rX (idX ⇥ eX)
⇥{x} ⇥ ({y} ⇥ X)

⇤
= {x}, (contradiction).

Example 3.41. The category End(A) is not rigid in general, but there is an inter-
esting characterization of when dual objects exist. Recall that End(A) is strict, and
take G 2 End(A). For F 2 End(A) to serve as the left dual object of G, we require
natural transformations

e := eG : FG ) IdA and c := cG : IdA ) GF,

such that the following left rigidity axioms hold:

(G ⇤ e) �ver (c ⇤G) = IdG, (e ⇤ F) �ver (F ⇤ c) = IdF .

That is, F is the left dual object of G precisely when it is the left adjoint of G;
see §2.5.1. Likewise, a right dual object of G is its right adjoint.

Therefore, End(A) is rigid precisely when left and right adjoints exist for all
endofunctors of A. This is quite a strong condition on A, and to violate this, it
suffices to cook up an endofunctor of A that fails to preserve some universal
morphism in §2.2.1. See Proposition 2.26.

§3.6.3. Duality functors and functors preserving rigidity

We discussed dual objects in a rigid category C above. Now we define dual
morphisms in C; these are depicted in Figure 3.9 when C is strict.

• The left dual of a morphism f : X ! Y is the composition of morphisms:

f
⇤ := `X⇤ (evL

Y
⌦ idX⇤ ) (idY⇤ ⌦ f ⌦ idX⇤ ) a

�1
Y⇤,X,X⇤ (idY⇤ ⌦ coevL

X
) r
�1
Y⇤ : Y

⇤ ! X
⇤.

• The right dual of a morphism f : X ! Y is the composition:

⇤
f := r⇤X (id⇤X ⌦ evR

Y
) (id⇤X ⌦ f ⌦ id⇤Y ) a⇤X,X,⇤Y (coevR

X
⌦ id⇤Y ) `�1

⇤Y : ⇤Y ! ⇤
X.

f
⇤

X
⇤

Y
⇤

:= ⇤
f

⇤
X

⇤
Y

:=

Y
⇤

f

X
⇤

Y

X

⇤
X

f

X

Y

⇤
Y

Figure 3.9: Duals of a morphism f : X ! Y in a strict monoidal category.

With the duals of objects and morphisms defined above, we can now define
the duality endofunctors for a rigid category C.
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• The left duality functor on a left rigid category C is given by

(�)⇤ : C ! C, X 7! X
⇤ (on objects), f 7! f

⇤ (on morphisms).

• The right duality functor on a right rigid category C is given by

⇤(�) : C ! C, X 7! ⇤
X (on objects), f 7! ⇤

f (on morphisms).

Proposition 3.42. Consider the left duality functor (�)⇤ and right duality functor ⇤(�)
defined above for a rigid category C.

(a) These are contravariant functors; namely, (g � f )⇤ = f
⇤ � g

⇤ and ⇤(g � f ) = ⇤f � ⇤g.
(b) The left and right duality functors,

(�)⇤, ⇤(�) : Crev ! C,

respectively, are strong monoidal functors. Here, Lemma 3.32(d) yields the monoidal
unit. Moreover, the monoidal product constraint components,

d
L

X,Y := (�)⇤(2)
X,Y : X

⇤ ⌦ Y
⇤ ⇠! (X ⌦op

Y)⇤,

d
R

X,Y := ⇤(�)(2)
X,Y : ⇤X ⌦ ⇤Y ⇠! ⇤(X ⌦op

Y),

are compositions of evaluation and coevaluation morphisms.

Proof. Complete Exercise 3.23 for the left duality case; the right duality case holds
likewise. ⇤

Pushing this further, we also have double duals of morphisms in rigid cate-
gories, visualized in the strict case in Figure 3.10.

f
⇤⇤

Y
⇤⇤

X
⇤⇤

:= ⇤⇤
f

⇤⇤
Y

⇤⇤
X

:=

X
⇤⇤

f

Y
⇤⇤

Y

X

⇤⇤
Y

f

X

Y

⇤⇤
X

Y
⇤

X
⇤ ⇤

X ⇤
Y

Figure 3.10: Double duals of a morphism f : X ! Y in a strict monoidal category.

We can then form the double duality functors, which are covariant and strong
monoidal functors:

(�)⇤⇤ : C ! C, X 7! X
⇤⇤, f 7! f

⇤⇤, ⇤⇤(�) : C ! C, X 7! ⇤⇤
X, f 7! ⇤⇤

f .

Proving the double dual analogue to Proposition 3.42 is Exercise 3.24.

Next, we examine how rigidity is preserved under functors between monoidal
categories. This is captured in the result below; the proof is Exercise 3.25.
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Proposition 3.43. Let C and D be monoidal categories, let F : C ! D be a strong
monoidal functor, and let X be an object in C.

(a) If there exists a left dual object (X⇤, evL

X
, coevL

X
) in C, then F(X) has a left dual object

in D, where

• F(X)⇤ := F(X⇤),

• evL

F(X) : F(X⇤) ⌦D F(X)
F

(2)
X⇤ ,X

// F(X⇤ ⌦C X)
F(evL

X
)
// F( C) F

(�0)
//

D,

• coevL

F(X) : D F
(0)

// F( C)
F(coevL

X
)
// F(X ⌦C X

⇤)
F

(�2)
X,X⇤

// F(X) ⌦D F(X⇤).

(b) Likewise, F sends a right dual object in C to a right dual object in D. ⇤

But the result above fails when F is not necessarily strong. To see this, use the
forgetful functor from FdVec to Set, along with Examples 3.9, 3.34, and 3.40.

On a related note, we have the intriguing result below.

Proposition 3.44. IfC is a rigid category andD is a monoidal category, then any monoidal
transformation � : F

⌦) F
0 between two strong monoidal functors F, F0 : C ! D is a

monoidal isomorphism.

Proof. For each X 2 C, we need to display a morphism  X : F
0(X) ! F(X) in D

such that  X � �X = idF(X) and �X �  X = idF0(X). Assume that D is strict (via
Theorem 3.26) for brevity, and define:

 X : F
0(X)

coevL

F(X) ⌦ id
// F(X) ⌦ F(X⇤) ⌦ F

0(X)
id ⌦ �X⇤ ⌦ id

// F(X) ⌦ F
0(X⇤) ⌦ F

0(X)
id ⌦ evL

F0(X)
// F(X),

where evL

F0(X) and coevL

F(X) are defined in Proposition 3.43. Verifying that  X works
is Exercise 3.26. ⇤

§3.6.4. Module categories over rigid categories

With the extra feature of a monoidal category C being rigid, we have an analogue
of Proposition 3.33 for module categories. The proof is Exercise 3.27.

Proposition 3.45. In a monoidal category C, take a rigid object X 2 C. Then, for a left
C-module category (M,“,m, p), we have the following adjunctions.

(a) M

X “ �
))

⇤
X “ �

ii

? M (b) M

X
⇤ “ �

))

X “ �
ii

? M

⇤

Next, with the rigidity of C, we can create new module categories over C from
old module categories over C. We refer to the constructions in the result below
as (left, right) dual module categories, and reserve the proof, along with further
practice, for Exercise 3.28.
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Proposition 3.46. Let C be a rigid category, and take

(M,“,m, p) 2 C-Mod and (N ,‹, n, q) 2 Mod-C.

Recall the natural isomorphisms d
L and d

R in Proposition 3.42(b). Then, the following
statements hold.

(a) M
⇤ := (Mop,€, m̃, p̃) 2 Mod-C, where we define

M € X := X
⇤ “ M, m̃M,X,Y := mY⇤,X⇤,M � ((dL

Y,X)�1 “ idM), p̃M = pM .

This is the left dual of M.

(b) N
⇤ := (N op,—, ñ, q̃) 2 C-Mod, where we define

X — N := N ‹ X
⇤, ñX,Y,N := nN,Y⇤,X⇤ � (idN ‹ (dR

Y,X)�1), q̃N = qN .

This is the left dual of N .

(c) Likewise, there exists a right dual of M and of N , namely ⇤M 2 Mod-C where
M € X := ⇤X “ M, and ⇤N 2 C-Mod where X — N := N ‹ ⇤

X.

This is for all objects M 2M, N 2 N , and X, Y 2 C. ⇤

Recall that the dual of a finite-dimensional vector space V is defined as the collec-
tion of linear functionals Homk(V, k) = HomFdVec(V, k). Moreover in Example 3.37,
the dual of a finite-dimensional A-bimodule M is defined as HomA-FdBimod(M, A)
when M is finitely generated and projective (or when A is ‘finite’ and semisimple).
Likewise, there are finiteness conditions on C, and on a C-module category M

(e.g., see §2.9), for M⇤ and ⇤M to be equivalent to certain categories of C-module
functors from M to C. This leads us to the result below, which is Proposition 2.4.9
in Section 2.4.3 of Douglas et al. [2020].

Proposition 3.47. If C is a finite rigid category, M is a finite left C-module category,
and N is a finite right C-module category, then the following statements hold.

(a) ⇤M ' RexC-Mod(M, Creg) as right C-module categories.

(b) N
⇤ ' RexMod-C(N , Creg) as left C-module categories.

Here, Rex�(�,�) is the subcategory of Fun�(�,�) consisting of right exact C-module
functors, and Creg is the regular (right, left) C-module category. ⇤

Here, RexMod-C(N , Creg) is a left C-module category via Example 3.23(a), and
by Example 3.18 applied to Exercise 3.11. Likewise, RexC-Mod(M, Creg) is right
C-module category. The finiteness conditions are used to handle exactness for
C-module functors; compare to §2.8.
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§3.7. Pivotal categories

Here, we discuss a structure imposed on rigid categories C that identifies objects
with their double left dual, or equivalently, identifies an object’s left and right
dual objects. This is useful for applications, especially since it provides a way of
measuring objects in C, e.g., via their quantum dimension.

Standing hypothesis. C := (C,⌦, , a, `, r, (�)⇤, ⇤(�)) is a rigid category.

§3.7.1. Pivotal categories and pivotal functors

We say that C is pivotal if there exists a monoidal natural isomorphism:

j : IdC
⌦⇠) (�)⇤⇤.

Namely, a pivotal structure on C is a collection of isos j := { jX : X
⇠! X

⇤⇤}X2C
in C, natural in X, such that

jX⌦Y = ((dL

Y,X)⇤)�1 � d
L

X⇤,Y⇤ � ( jX ⌦ jY ) (3.48)

as morphisms from X ⌦ Y to (X ⌦ Y)⇤⇤ in C. The natural isomorphism d
L is from

Proposition 3.42(b). Moreover, the compositions

((dL

Y,X)⇤)�1 � d
L

X⇤,Y⇤ : X
⇤⇤ ⌦ Y

⇤⇤ ⇠! (Y⇤ ⌦ X
⇤)⇤ ⇠! (X ⌦ Y)⇤⇤

are the monoidal product components of the double dual version of Proposi-
tion 3.42 [Exercise 3.24]. The monoidal unit is preserved by j [Lemma 3.32(d)].

Note that a synonym for "pivotal" is the term sovereign.

We can characterize pivotal structures on rigid categories as the rigid categories
for which the left and right duality monoidal functors (from Proposition 3.42)
coincide. See the result below.

Proposition 3.49. A rigid category C has a pivotal structure j if and only if we have a
monoidal natural isomorphism,

ĵ : (�)⇤
⌦⇠) ⇤(�),

for the duality functors introduced in §3.6.3.

By this result, the monoidal natural isomorphism ĵ is also referred to as a
pivotal structure on C.

Proof of Proposition 3.49. Given the components { ĵX : X
⇤ ⇠! ⇤

X}X2C of a monoidal
natural isomorphism between (�)⇤ and ⇤(�), by using Lemma 3.32(c), define
morphisms:

jX := ĵ
⇤

X
: X � (⇤X)⇤ ! X

⇤⇤.
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The morphism jX is an iso because functors, including (�)⇤, preserve isos [Exer-
cise 2.19(a)]. We will show in Figure 3.11 that (3.48) holds. Here, the assumption
that ĵX⌦Y = d

R

Y,X � ( ĵY ⌦ ĵX) � (dL

Y,X)�1 is denoted by (†).

j

(X ⌦ Y)⇤⇤

X ⌦ Y

= ĵ

X ⌦ Y

(X ⌦ Y)⇤⇤

(X ⌦ Y)⇤

⇤(X ⌦ Y)

X ⌦ Y

=

d
R

Y
⇤

X
⇤

⇤
Y

⇤
X

X ⌦ Y

(X ⌦ Y)⇤⇤

=

YX

X

=

Y

(X ⌦ Y)⇤⇤

=
ĵ ĵ

⇤
Y

⇤
X

YX

X Y

(X ⌦ Y)⇤⇤

=

Y
⇤

X
⇤⇤

X
⇤

YX

X

Y
⇤⇤

Y

=

X Y

(Y⇤ ⌦ X
⇤)⇤

=

j

X
⇤⇤

X

j

Y
⇤⇤

d
L

⇣⇣
d

L
⌘⇤⌘�1

(X ⌦ Y)⇤⇤

def

def

Fig. 3.7(†) def

Fig. 3.7 def Fig. 3.7

ĵ ĵ

⇣
d

L
⌘�1

(X ⌦ Y)⇤⇤

id

id
ĵ ĵ

Y

Y

YX

X

id
ĵ ĵ

(X ⌦ Y)⇤⇤

id
j j

id

id id

(X ⌦ Y)⇤⇤

(X ⌦ Y)⇤

X Y

(Y⇤ ⌦ X
⇤)⇤

j j

id

Figure 3.11: Part of the proof of Proposition 3.49.

Conversely, given a pivotal structure j = { jX : X
⇠! X

⇤⇤}X2C on C, by using
Lemma 3.32(c), define morphisms ĵX := ⇤jX : ⇤(X⇤⇤) � X

⇤ ! ⇤
X. With a similar

argument, jX are isos, and we also get that ĵX⌦Y = d
R

Y,X � ( ĵY ⌦ ĵX) � (dL

Y,X)�1 due to j

being a monoidal natural transformation. ⇤

Since we can identify the left and right duality structures in pivotal categories C,
we can also simplify the graphical calculus introduced in Figure 3.7; see Figure 3.12.
For an object X 2 C, use the following notation.

• X
_ := X

⇤, which is isomorphic to ⇤X via ĵX .

• evX := evL

X
: X

_ ⌦ X ! , which is identified with evR

X_ : X
_ ⌦ X

__ ! by
precomposing evL

X
with idX_ ⌦ j

�1
X

.

• coevX := coevL

X
: ! X ⌦ X

_, identified with coevR

X_ : ! X
__ ⌦ X

_ by
composing coevL

X
with jX ⌦ idX_ .

X
_ X

X X
_

XX

X

X
_

X

X
__

X

=

evX coevX Rigidity Axioms (often j is omitted)

=

X
__

X
_j

j
�1

Figure 3.12: (Co)evaluation morphisms and rigidity in pivotal categories.
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These identifications enable us to get a right (resp., left) dual structure from
left (resp., right) dual structure in a pivotal category. Likewise, we write:

• f
_ for the left or right dual of a morphism f in C.

Next, we relate two pivotal categories via functors that respect pivotality. Let
(C, j) and (C0, j

0) be two pivotal categories.

A pivotal functor (C, j)! (C0, j
0) is a strong monoidal functor (F, F(2), F(0)) from

C to C
0, such that the morphisms below from F(X_) to F(X)_ in C

0 are equal, for
each X 2 C. We suppress all subscripts here:

F(X_)
(id ⌦0 coev)r0�1

//

F(X_) ⌦0 �F(X) ⌦0 F(X)_
� a

0�1
//

�
F(X_) ⌦0 F(X)

� ⌦0 F(X)_

F
(2) ⌦0 id
✏✏

F(X)_ F( ) ⌦0 F(X)_
`0(F(�0) ⌦0 id)

oo F(X_ ⌦ X) ⌦0 F(X)_
F(ev) ⌦0 id

oo

F(X_)
(coev ⌦0 id)`0�1

// (F(X)_ ⌦0 F(X)__) ⌦0 F(X_)
(id ⌦0 j

0�1 ⌦0 id) a
0
//

F(X)_ ⌦0 (F(X) ⌦0 F(X_))

id ⌦0 F
(2)

✏✏

F(X)_ F(X)_ ⌦0 F( )
r
0(id ⌦0 F

(�0))
oo F(X)_ ⌦0 F(X ⌦ X

_)
id ⌦0 F

�ev( j ⌦ id)
�

oo

We also say that (C, j) and (C0, j
0) are equivalent (resp., isomorphic) as pivotal

categories if there exists a pivotal functor (F, F(2), F(0)) : (C, j)! (C0, j
0) such that

F is an equivalence (resp., isomorphism) of the underlying categories. In this case,
we write (C, j)

piv.⌦' (C0, j
0) (resp., (C, j)

piv.⌦
� (C0, j

0)).

§3.7.2. Examples of pivotal categories

We now present several examples of pivotal structures on rigid categories,building
on the examples of rigid categories in §3.6.2.

• FdVec: The pivotal structure is given by jV : V ! V
⇤⇤ for V 2 FdVec, where

we define jV (v) := [ f 7! f (v)] 2 V
⇤⇤, for f 2 V

⇤. See Exercises 1.4(d) and 2.23.
Equivalently, the monoidal natural isomorphism ĵ in Proposition 3.49 is given
by ĵV = idHomk(V,k) as V

⇤ = ⇤V = Homk(V, k); see Example 3.34.

• G-FdMod: Likewise, the pivotal structure can be given by Proposition 3.49 with
ĵ(V,.) being the identity morphism; see Example 3.36.

• FdVecG, FdVec
!
G

: These are pivotal categories by Exercise 3.35(g).

• G: The pivotal structure is given by jg := idg : g! g
⇤⇤ (= g), for g 2 G.
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So far, we presented pivotal categories in which the left and right dual objects of
a given object are equal; in this case, the pivotal structure ĵ is the identity monoidal
natural isomorphism. We will see more interesting pivotal structures later in a
future volume. Namely, categories of modules over semisimple Hopf algebras are
pivotal. These have the underlying structure of a finite semisimple category (see
§§2.7.3, 2.9).

In fact, there is a research direction studying the pivotality of certain semisimple
rigid categories called fusion categories (see §3.9.1 later). This is prompted by
Conjecture 2.8 of Etingof et al. [2005], also stated as Question 4.8.3 of Etingof et al.
[2015], which, in general, is the following inquiry.

Research Question 3.50. Are all finite, semisimple, rigid categories pivotal?

§3.7.3. Pivotal trace and pivotal dimension

With a pivotal structure j on a rigid category C, let us attach invariants to mor-
phisms and objects in C as follows. This is modeled on traces of linear endomor-
phisms and dimensions of vector spaces in linear algebra.

Let f : X ! X be a morphism in a pivotal category (C, j). The left pivotal trace
and right pivotal trace of f are defined, respectively, as:

trL

j
( f ) :

coevX_
// X
_ ⌦ X

__idX_ ⌦ j
�1
X
// X
_ ⌦ X

idX_ ⌦ f
// X
_ ⌦ X

evX
// ,

trR

j
( f ) :

coevX
// X ⌦ X

_ f ⌦ idX_
// X ⌦ X

_ jX ⌦ idX_
// X
__ ⌦ X

_ evX_
// .

Pivotal trace is also known as categorical trace, as quantum trace, or simply as
trace in the literature.

Moreover, we define the (left) pivotal dimension of an object X in C as follows:

dim j(X) := trL

j
(idX).

Likewise, pivotal dimension is called categorical dimension or quantum dimen-
sion. Here, we do not use the right trace to define dimension since

trR

j
(idX) = trL

j
(id_

X
) = trL

j
(idX_ ) = dim j(X_). (3.51)

See Exercise 3.30. When C is strict, we depict these invariants in Figure 3.13.

For instance, if C is the pivotal category FdVec (as in §3.7.2), then the pivotal
trace is the usual trace of a linear endomorphism, and the pivotal dimension is
vector space dimension; see Exercise 3.29. See also Exercise 3.31 on how pivotal
trace is preserved under monoidal product.
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X
_

X

X
_X

__

trL

j
( f )

Often j, j
�1

are omitted
in notation.

trR

j
( f )

f

f j

j
�1

X

X

X
__

X X
_

dim j(X)

j
�1

X

X
__

Figure 3.13: Pivotal trace and pivotal dimension

§3.7.4. Module categories over pivotal categories

With the extra structure of a monoidal category C being pivotal, one may want to
construct module categories over C that have extra structure accompanying the
pivotality of C. This has been achieved when C is a finite tensor category (see §3.10.1
later). This is due to the work of K. Shimizu, building on the work of Schaumann
[2015]. After reading the rest of the chapter, we encourage the reader to check out
Shimizu [2020] (especially Section 5.2) and Shimizu [2019] (especially Section 3.6)
for details. In particular, Theorem 3.13 of Shimizu [2019] states that given a pivotal
finite tensor category C, along with a pivotal module category M over C, one obtains
that �

RexC-Mod(M,M)
�⌦op is a pivotal monoidal category.

§3.8. Spherical categories

Recall from §3.7.3 that in a pivotal category (C, j), the pivotal dimension dim j(X)
of an object X in C is defined using the left trace of the morphism idX . Moreover,
the right trace of idX turns out to be dim j(X_) (see (3.51)). Next, we will impose a
property that will imply that dim j(X_) = dim j(X), for each object X in C.

Standing hypothesis. Take (C, j) to be a pivotal category here.

§3.8.1. Trace-spherical categories

A pivotal category (C, j) is said to be trace-spherical if the left and right pivotal
traces of any morphism f : X ! X in C are equal. Often these are called spherical
categories, for short. In this case, we denote

tr j( f ) := trL

j
( f ) = trR

j
( f ).

In this case, we have that dim j(X_) = dim j(X), for each object X in C; see (3.51).
See Figure 3.14 for a visualization of the pivotal trace in this case.
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f

Figure 3.14: Pivotal trace "on" a sphere in a trace-spherical category (cf. Fig. 3.13)

Since sphericality is a property of the pivotal structure on a rigid category, a
functor between spherical categories is simply a pivotal functor. Moreover, two
spherical categories are equivalent if they are equivalent as pivotal categories
(see §3.7.1). See Exercises 3.31 and 3.32 for practice.

Examples of spherical categories include the pivotal categories discussed
in §3.7.2: FdVec, G-FdVec, FdVecG, FdVec

!
G

(see Exercise 3.35(g)), G, and also
categories of modules over semisimple Hopf algebras (discussed in a future vol-
ume).

§3.8.2. DSPS-spherical categories

Recall that Research Question 3.50 inquires whether all finite, semisimple, rigid
categories are pivotal. This question can be extended to trace-sphericality as there
are no counterexamples to date.

On the other hand, in the nonsemisimple setting, sphericality has been gen-
eralized by the work of Douglas–Schommer-Pries–Snyder. See Section 3.5.2 of
Douglas et al. [2020] for their notion of sphericality for finite tensor categories
(see §3.10.1 here); we refer to these as DSPS-spherical categories. In fact, it is shown
in Section 3.5.3 of Douglas et al. [2020] that:

• Semisimple DSPS-spherical categories are trace-spherical.

After reading about Hopf algebras in a future volume, one can appreciate the
examples of (non-)spherical categories presented in Section 3.5.3 of Douglas et al.
[2020] that illustrate the following statements.

• There exist nonsemisimple DSPS-spherical categories, that are not trace-
spherical; see Example 3.5.5 of Douglas et al. [2020].

• There exist nonsemisimple trace-spherical categories, that are not DSPS-
spherical; see Example 3.5.6 of Douglas et al. [2020].
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§3.8.3. Module categories over spherical categories

As for rigidity and pivotality (cf. §§3.6.4, 3.7.4), one may want to have module
categories over spherical categories C that have extra features that accompany
the spherical condition of C . But we have a couple of choices for sphericality:
trace-sphericality or DSPS-sphericality. Recent results in the literature employ
the latter notion as it extends well to the nonsemisimple setting. See the work of
Fuchs–Galindo–Jaklitsch–Schweigert, especially Section 5.6 of Fuchs et al. [2022],
for details about spherical module categories.

§3.9. Fusion categories

Next, we focus on a certain class of k-linear monoidal categories whose behavior
is largely understood in terms of its simple objects. Such categories are used quite
often in applications. Consider the terminology below, which was established in
the article by Etingof et al. [2005]; see also the textbook by Etingof et al. [2015].

§3.9.1. Fusion categories and fusion rules

i. Fusion categories

A monoidal category C := (C,⌦, , a, `, r) is fusion if the items below hold.

(a) C is abelian (see §§2.2.2iii, 3.1.3).

(b) C is k-linear (see §§2.2.2i, 3.1.3). We get that it is enriched over Vec (see §3.11
later). We also obtain that the monoidal product ⌦ is k-bilinear on morphisms:
for f , f

0 : X ! Y and g : W ! Z in C and scalars �, �0 2 k, we have that

(� f + �0 f 0) ⌦ g = �( f ⌦ g) + �0( f
0 ⌦ g), g ⌦ (� f + �0 f 0) = �(g ⌦ f ) + �0(g ⌦ f

0).

(c) C is locally finite (see §2.9), which implies that it is enriched over FdVec.

(d) The unit object is absolutely simple, that is, EndC( ) � k (see §2.9).

(e) C is rigid (see §3.6.1).

(f) C is semisimple (see §2.7.3).

(g) C is finite (see §2.9).

If we omit the condition (d) above, then we have a multifusion category.

By item (a), a fusion category C is decomposable if it is equivalent to a product
of nonzero fusion categories (see §§2.1.3, 2.2.2ii). Else, C is indecomposable.

We have the following result pertaining to item (d).
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Lemma 3.52. Assume that a rigid category C is abelian and linear (i.e., satisfying items
(a,b,e) above). If is absolutely simple, then is a simple object in C. Conversely, with
local finiteness (i.e., item (c)), is absolutely simple when is simple in C.

Proof. This argument is modified from Theorem 4.3.8 of Etingof et al. [2015]. For
the first statement, take a nonzero subobject (X, ◆ : X ! ) of . We aim to show
that X = . Without loss of generality, assume that X is simple. Moreover, it suffices
to show that ◆ is epic. To proceed, consider the short exact sequence:

0 �! X
◆�! �! coker(◆) �! 0.

Since (�)⇤ is exact by Propositions 3.33(b,d) and 2.49(b), we get the following short
exact sequence:

0 �! coker(◆)⇤ �! ◆⇤�! X
⇤ �! 0.

In particular, ⇤ � . Next, by Propositions 3.33(a,b) and 2.49(b), X ⌦ � is exact,
which yields the short exact sequence below:

0 // X ⌦ coker(◆)⇤ // X ⌦ � X
id ⌦ ◆⇤

// X ⌦ X
⇤

// 0.

Note that coevL

X
: ! X⌦X

⇤ is a nonzero morphism, so X⌦X
⇤ is a nonzero object.

Now X is simple, so we obtain that idX ⌦ ◆⇤ is monic. The morphism idX ⌦ ◆⇤ is
already epic, thus idX ⌦ ◆⇤ is an iso. Therefore, we get a nonzero morphism

� := (idX ⌦ ◆⇤)�1 coevL

X
: ! X.

Further, ◆ � : ! is also a nonzero morphism. Since is absolutely simple, we
get that ◆ � a nonzero scalar multiple of id . Hence, ◆ � is an iso, and thus epic.
This implies that ◆ is epic, as desired.

The converse direction holds essentially by Schur’s Lemma [Proposition 2.35].
Namely, Corollary 2.36 implies that EndC( ) is a division algebra over k. Then,
item (c) and Lemma 1.36 implies that EndC( ) � k. ⇤

Two fusion categories C and D are said to be equivalent (resp., isomorphic) if
there exists ak-linear functor F : C ! D that is an equivalence (resp., isomorphism)
of monoidal categories. In this case, we still write C

⌦' D (resp., C
⌦
� D).

Example 3.53. Examples of the rigid categories from §3.6.2 that are fusion in-
clude: FdVec; G-FdMod; FdVecG; along with the categories FdVec

!
G

defined in
Exercise 3.35, for G a finite group. See Exercises 3.33 and 3.35(h).

One nice feature of (not-necessarily-finite) pivotal fusion categories is that
nonzero simple objects have nonzero pivotal dimension.
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Proposition 3.54. Let C be a monoidal category satisfying conditions (a)-(f) above, and
assume that C is pivotal. Take a nonzero simple object X in C. Then, dim j(X) 2 EndC( )
is nonzero (or, equivalently, dim j(X) 2 EndC( ) is invertible).

Proof. Since X is simple, we have by Corollary 2.36 and Lemma 1.36 that
dimkHomC(X, X) = 1. So, dimkHomC( , X_ ⌦ X

__) = 1 by Proposition 3.33(b,d).
Next, take Y to be the image of coevX_ : ! X

_ ⌦ X
__. Then, there exists an

object Z 2 C such that
X
_ ⌦ X

__ � Y t Z (� Y u Z)

in C by Proposition 2.40. Since coevX_ is monic, � Y . Consider

� Y
↵Y

// Y t Z � X
_ ⌦ X

__,

for the morphism ↵Y from the universal property of the coproduct. Using Exer-
cise 2.8, we then have:

1 = dimkHomC( , X_ ⌦ X
__) � dimkHomC( , Y) + dimkHomC( , Z).

As a result, dimkHomC( , Y) = 1 and dimkHomC( , Z) = 0. Therefore, coevX_ is a
nonzero scalar multiple of ↵Y .

We also claim that evX (idX_ ⌦ j
�1
X

) : X
_ ⌦ X

__ ! is a nonzero scalar multiple
of ↵0

Y
: Y u Z ! Y , the morphism arising from the universal property of the

product. By semisimplicity and Lemma 2.41, we have that dimkHomC(Y, ) = 1,
dimkHomC(Z, ) = 0, and dimkHomC(X_ ⌦ X

__, ) = 1. So, the claim holds by
using the morphism,

X
_ ⌦ X

__ � Y u Z
↵0

Y
// Y � .

Now we obtain that dim j(X) := evX (idX_ ⌦ j
�1
X

) coevX_ is a nonzero scalar
multiple of ↵0

Y
↵Y = idY [§2.2.2ii], as desired. For the parenthetical statement in

the result, note that nonzero pivotal dimension is equivalent to invertible pivotal
dimension by the simplicity of and by Schur’s Lemma [Proposition 2.35]. ⇤

ii. Fusion rules and rank

Next, let us delve into the internal structure of fusion categories. Take:

• Irr(C): the finite set of isoclasses of simple objects of C;

• i 2 Irr(C) corresponding to a simple object Xi of C, or to an isoclass [Xi] in C.

The cardinality of the finite set Irr(C) is called the rank of C.

Let {Xi}i2Irr(C) be a collection of representatives of simple objects of C. Then,

Xi ⌦ Xj �
`

k2Irr(C) X
t N

i, j
k

k
, (3.55)

for some N
i, j
k
2 Z�0 by the semisimplicity of C. These integers {Ni, j

k
}i, j,k2Irr(C) are

called the fusion rules of C, also referred to as the fusion rule of C.
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By local finiteness, each object in C has finite length (see §2.7.2). We then obtain
for i, j, k 2 Irr(C) that

N
i, j
k
= [Xi ⌦ Xj : Xk], the multiplicity of Xk in Xi ⌦ Xj. (3.56)

We will see in Example 3.66 below that simple objects and fusion rules are not
enough to fully determine a fusion category, up to equivalence. That is, there exist
inequivalent fusion categories with the same fusion rule.

On the other hand, we do have a powerful finiteness result for fusion categories
that appeared as Theorem 2.27 in the article by Etingof et al. [2005], which was
inspired by unpublished work of A. Ocneanu.

Theorem 3.57 (Ocneanu rigidity). There are only finitely many equivalence classes of
fusion categories that have a given fusion rule. ⇤

Returning to the notion of rank, Ostrik [2003a] inquired if a similar finiteness
result holds for fusion categories, as follows.

Research Question 3.58 (Rank finiteness for fusion categories). Are there only
finitely many equivalence classes of fusion categories of a given rank?

The only fusion category of rank 1 is FdVec, up to equivalence; see Exercise 3.34.
For rank 2, there are precisely four equivalence classes of fusion categories, by
the work of Ostrik [2003a]. So, the question is settled for rank  2. Research
Question 3.58 is settled in higher ranks in special cases, such as for modular fusion
categories (discussed in a future volume) by Bruillard et al. [2016].

§3.9.2. Frobenius-Perron (FP-)dimension

We can study the size of a fusion category C, and the size of objects in C, via its
fusion rules. To do so, consider the result below due to the work of Perron [1907]
and of Frobenius [1912].

Theorem 3.59 (Frobenius-Perron Theorem). Take a square matrix M with entries in
R�0. Then, M has a non-negative real eigenvalue FP(M) that is greater than or equal to
the absolute value of all other eigenvalues of M. ⇤

i. FP-dimension

Now take an object X in C, and consider the square matrix

NX :=
⇣
[X ⌦ Xj : Xk]

⌘
j,k2Irr(C)

. (3.60)

See also (3.55) and (3.56) for the case when X is a simple object of C. We define
the Frobenius-Perron (FP-)dimension of X 2 C to then be

FPdimC(X) := FP(NX) 2 R.

177

Copyright ©2024 Chelsea Walton. Free version by the courtesy of CW and 619 Wreath. https://math.rice.edu/~notlaw/symalgbook.html. 

Enjoy this textbook? Physical copies are available for purchase at https://www.619wreath.com/ and on Amazon. 
<< Please ask your local academic librarian to order a copy for circulation. >> 



C������ 3. M������� ����������

Moreover, the Frobenius-Perron (FP-)dimension of C is defined as:

FPdim(C) :=
P

i2Irr(C) FPdimC(Xi)2.

Frobenius-Perron dimension was introduced by Etingof–Nikshych–Ostrik in
Etingof et al. [2005], and we refer the reader to that article and the book by Etingof
et al. [2015] for a full account of this measure. But here are some useful facts.

The isoclasses [Xi]i2Irr(C) form an unital ring with

[Xi] + [Xj] := [Y], for which 9 a short exact sequence 0! Xi ! Y ! Xj ! 0,

[Xi][Xj] := [Xi ⌦ Xj] =
P

k2Irr(C) [Xi ⌦ Xj : Xk] Xk (3.61)

This is called the Grothendieck ring of C, is denoted by Gr(C), and its unit is [ ].
Objects of Gr(C)k := Gr(C) ⌦Z k, that are not necessarily objects of C, are referred
to as virtual objects of C.

Proposition 3.62. Let C be a fusion category. Then, the following items hold.

(a) If Xi is a simple object of C, then (along with being a real number) FPdimC(Xi) is an
algebraic integer (e.g., a root of a monic polynomial in Z[x]).

(b) If Xi is a simple object of C, we also have that FPdimC(Xi) � 1.

(c) There exists a virtual object RC of C, unique up to rescaling, that satisfies the following
conditions in Gr(C)k, for each object X 2 C:

X ⌦ RC � FPdimC(X) RC � RC ⌦ X.

Moreover, RC �
`

i2Irr(C) FPdimC(Xi) Xi. Here, RC is called the regular object of C.

(d) For any pair of objects X, Y 2 C, we have that

FPdimC(X t Y) = FPdimC(X) + FPdimC(Y),

FPdimC(X ⌦ Y) = FPdimC(X) FPdimC(Y).

(e) If D is another fusion category, and F : C ! D is an exact, faithful, linear, monoidal
functor, then FPdimC(X) = FPdimD(F(X)) for any X 2 C.

Proof. The proofs of parts (a)–(c) are given in Propositions 3.3.4 and 3.3.6 of
Etingof et al. [2015] in the language of fusion rings, and we recommend trying
out the proof for yourself before consulting this reference. Now part (d) holds by
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the computations in Gr(C)k below:

FPdimC(X t Y) RC
(c)
� (X t Y) ⌦ RC

Lem. 3.4
� (X ⌦ RC) t (Y ⌦ RC)

(c)
� (FPdimC(X) + FPdimC(Y)) RC ,

FPdimC(X ⌦ Y) RC
(c)
� (X ⌦ Y) ⌦ RC � X ⌦ (Y ⌦ RC)
(c)
� X ⌦ (FPdimC(Y) RC)

Lem. 3.4
� FPdimC(Y) (X ⌦ RC)

(c)
� (FPdimC(X) FPdimC(Y)) RC .

For part (e), see Proposition 4.5.7 of Etingof et al. [2015]. ⇤

ii. Integrality

Next, we turn our attention to integrality. A fusion category C is said to be integral
if FPdimC(X) 2 Z for all X 2 C, and C is called weakly integral if FPdim(C) 2 Z.

Many curious results imply integrality for fusion categories. For instance, a
fusion category of odd Frobenius-Perron dimension must be integral, not just
weakly integral. See Corollary 3.5.8 of Etingof et al. [2015], which again is given
in the language of fusion rings.

Moreover, a fusion category is integral if and only if it is equivalent to the
category of finite-dimensional modules over a semisimple quasi-Hopf algebra. See
Proposition 6.1.14 of Etingof et al. [2015] for a general result after reading §3.10.

Each of the examples of fusion categories presented in §3.9.1i are integral fusion
categories. We now discuss the integrality of FdVec and G-FdMod as follows, and
leave the discussion of FdVecG and FdVec

!
G

to the reader as Exercise 3.35(i).

Example 3.63. (a) We have that Irr(FdVec) = {[k]} and |Irr(FdVec)| = 1. Now for
V 2 FdVec, we get that

[V ⌦k k : k] = dimkHomVec(V ⌦k k, k) = dimkV;

see (2.38). Thus, FPdimFdVec(V) = dimkV , and FPdim(FdVec) = dimkk = 1.

(b) Take a finite group G. Now kG is a semisimple algebra by Maschke’s Theorem
[Theorem 1.47], and kG is also finite-dimensional. So, the Artin-Wedderburn
Theorem [Theorem 1.44] can be applied to get that

kG �
Q

r

i=1 Matni
(k),

as k-algebras. So, |Irr(FdVec)| = r, and Irr(G-FdMod) = {[V1], . . . , [Vr]}, with
dimkVi = ni by Proposition 1.50. In G-FdMod � kG-FdMod, consider the
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regular module (kG)reg and modules V,W 2 kG-FdMod to get

dimkHomkG-Mod(V ⌦k (kG)reg,W)

Prop.3.33(a)
= dimkHomkG-Mod((kG)reg, ⇤V ⌦k W)

Free-Forget adj.
= dimkHomVec(k, ⇤V ⌦k W)

= dimk(⇤V ⌦k W) = (dimkV)(dimkW).

Therefore, we get that in Gr(C)k:

[V][(kG)reg]
(3.61)
=

P
i2Irr(kG-Mod)[V ⌦k (kG)reg : Vi] [Vi]

(2.38)
=

P
i2Irr(kG-Mod)(dimkV)(dimkVi) [Vi]

= (dimkV)
P

i2Irr(kG-Mod)(dimkVi) [Vi] = (dimkV)[(kG)reg].

So, by Proposition 3.62(c), (kG)reg is the regular object of kG-FdMod, and

FPdimG-FdMod(V) = dimkV .

In particular, FPdimG-FdMod(Vi) = ni. Therefore,

FPdim(G-FdMod) = P
r

i=1 n
2
i
= dimk

�Q
r

i=1 Matni
(k)

�
= dimkkG = |G|.

See Exercise 3.36 for the case when G is the dihedral group D8 of order 8.

(c) As a special case of part (b), suppose that G is a finite abelian group. Then,
kG is a finite-dimensional, semisimple, commutative k-algebra, and thus is
isomorphic to k

�|G| as k-algebra; see Figure 1.2. In this case, kG-FdMod has
rank |G|, and by Exercise 1.30(a), each simple kG-module is 1-dimensional as
a k-vector space (each forming a singleton isoclass of kG-modules).

§3.9.3. More examples of fusion categories

Previously we discussed some numerical invariants of fusion categories, that is,
numerical data that equivalent fusion categories share. This included rank, fusion
rules, and the FP-dimension of objects. However, this data is not enough to fully
determine a fusion category; i.e., such invariants are not complete. We will see
this below as we discuss more examples of fusion categories.

Example 3.64. Consider the Fibonacci fusion category, denoted by Fib, with
simple objects and X, and with fusion rules given by:

⌦ � , ⌦ X � X � X ⌦ , X ⌦ X � t X.
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This is also known as the Yang-Lee fusion category. To determine the Frobenius-
Perron dimension of objects, we have the following matrices from (3.60):

N =

0
BBBB@

1 0
0 1

1
CCCCA and NX =

0
BBBB@

0 1
1 1

1
CCCCA .

Now FPdimFib( ) = FP(N ) = 1 and FPdimFib(X) = FP(NX) = 1+
p

5
2 . The latter

value is the golden ratio for the Fibonacci sequence of integers, prompting the
first name above for this fusion category. Moreover, FPdim(Fib) = 5+

p
5

2 . So, Fib is
neither integral, nor weakly integral.

The example above shows explicitly that rank is not a complete invariant for
fusion categories. Both Z2-Mod and Fib have rank 2, but the FP-dimensions of
simple objects are,respectively, {1, 1} and {1, 1+

p
5

2 }. (See Example 3.63(c).) Therefore,
Z2-Mod and Fib are inequivalent as fusion categories.

Example 3.65. Consider the Ising fusion category, denoted by Ising, with simple
objects , �, and X, and with fusion rules given by:

⌦ � , ⌦ � � � � � ⌦ , ⌦ X � X � X ⌦ ,

� ⌦ � � , � ⌦ X � X � X ⌦ �, X ⌦ X � t �.

This fusion category is weakly integral, but not integral; see Exercise 3.37. A
detailed study of Ising fusion categories can be found in the article by Appendix B
of Drinfeld et al. [2010] (check this reference only after doing Exercise 3.37).

The details about the associativity and unitality constraints (a, `, r) of Fib and
of Ising can be found in the work of Ostrik [2003a] and of Drinfeld et al. [2010],
respectively.

Next, we present more examples of weakly integral fusion categories, that are
sometimes integral. The construction is provided in the work of Tambara and
Yamagami [1998], and we recommend checking out this reference for details.

Example 3.66. For a finite abelian group G, let us consider a Tambara-Yamagami
(TY-)fusion category, with simple objects X and {�g}g2G, where = �e. Here, for
g, h 2 G, the fusion rules are given by:

�g ⌦ �h � �gh, �g ⌦ X � X � X ⌦ �g, X ⌦ X �
`

g2G �g.

The associativity and unitality constraints (a, `, r) of these categories are parame-
terized by a square root ⌧ of |G|, along with a bicharacter of � of G. We denote such
categories by TY(G, �, ⌧).

This extra data (�, ⌧) is used to determine equivalence classes of the TY-fusion
categories. For instance, there are finite abelian groups G for which there exist pairs
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(�, ⌧) and (�0, ⌧0) corresponding to inequivalent TY-fusion categories TY(G, �, ⌧)
and TY(G, �0, ⌧0). Also, no matter what the pairs (�, ⌧) are, we get that:

FPdimTY(G,�,⌧)(�g) = 1, FPdimTY(G,�,⌧)(X) =
p|G|.

So, FPdim(TY(G, �, ⌧)) = 2|G|.
TY-fusion categories also capture many interesting examples of fusion cate-

gories, such as D8-FdMod from Exercise 3.36, and Ising from Example 3.65. Con-
firming the details here, and exploring other facts about TY-fusion categories, is
the open-ended Exercise 3.38.

§3.9.4. Module categories over fusion categories

Recall that a fusion category C is an abelian, k-linear, semisimple, rigid category
with additional finiteness properties (see §3.9.1). To have a rich theory of module
categories M over such C, it is common to impose conditions on M that reflect
the behavior of C.

Namely, a left module category over a (multi)fusion category C is a left
C-module category (M,“,m, p) as in §3.3.1 that satisfies the conditions below.

(a) M is abelian (see §§2.2.2iii, 3.3.4).

(b) M is k-linear (see §§2.2.2i, 3.3.4). In particular, the left action bifunctor “ is
k-bilinear on morphisms.

(c) M is locally finite (see §2.9).

(d) M is semisimple (see §2.7.3).

(e) M is finite (see §2.9).

Likewise, we can define right module categories (resp., bimodule categories)
over (multi)fusion categories. Moreover, two such (left, right, bi) module cate-
gories are equivalent (resp. isomorphic) when they are equivalent (resp., isomor-
phic) in the sense of §3.3.1 via k-linear functors.

The conditions (a)–(e) are useful for examining module categories over fusion
categories for several reasons, including classification results, and for constructing
well-behaved higher categorical structures with such gadgets. See the material in
§§4.10.2 and 4.10.3 later for a preview.

Pertaining to classification, note that equivalence classes of module categories
over the fusion categories Vec!

G
of Exercise 3.35, which are indecomposable in the

sense of §3.3.4, have been characterized by explicit group-theoretical data. This is
due to the work of Ostrik [2003b] and of Natale [2017].
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On the other hand, classification results for module categories over fusion
categories would be far more difficult if the conditions (a)–(e) were removed. For
instance, left module categories over FdVec (just as an abelian monoidal category,
as in §3.3.4) include all of the categories, A-FdMod, for a k-algebra A.

§3.10. Tensor categories

Now we discuss generalizations of fusion categories, where neither semisimplicity
nor finiteness are required. See Chapter 4 of Etingof et al. [2015] for more context.

§3.10.1. Tensor categories

A monoidal category C := (C,⌦, , a, `, r) is tensor if the items below hold.

(a) C is abelian (see §§2.2.2iii, 3.1.3).

(b) C is k-linear (see §§2.2.2i, 3.1.3). Namely, it is enriched over Vec (see §3.11
later). In particular, the monoidal product ⌦ is k-bilinear on morphisms.

(c) C is locally finite (see §2.9), which implies that it is enriched over FdVec.

(d) The unit object is absolutely simple, i.e., EndC( ) � k.

(e) C is rigid (see §3.6.1).

If we omit the condition (d) above, then we have a multitensor category.

See also Lemma 3.52 pertaining to condition (d).

Notice that a tensor category C that is also semisimple and finite is, by definition,
a fusion category (see §3.9.1i).

Example 3.67. (a) Examples of nonsemisimple, non-finite tensor categories in-
clude G-FdMod, for G an infinite group. See Exercise 1.32(a,b) for the case
when G = Z and the ground field is C.

(b) Examples of nonsemisimple, finite tensor categories include FG-FdMod, for G

a finite group, and F an algebraically closed field whose characteristic divides
the order of G. Use Exercise 1.32(c,d) for the case when G is the cyclic group
C2 of order 2, and the ground field is the finite field F2 of order 2.

Two tensor categories C and D are equivalent (resp., isomorphic) if there exists
a k-linear functor F : C ! D that is an equivalence (resp., isomorphism) of
monoidal categories. In this case, we still write C

⌦' D (resp., C
⌦
� D).
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§3.10.2. Exactness, projectivity, and FP-dimension

In losing semisimplicity when moving from fusion categories to tensor categories,
we must now pay attention to exactness. For instance, if C is semisimple, the
functors HomC(P,�) and HomC(�,Q) are exact, for all objects P,Q 2 C. Without
semisimplicity, we need P (resp., Q) to be a projective (resp., an injective) object of
C for right exactness to occur. See Propositions 2.52, 2.53, 2.54 and Corollary 2.56.

Here, we briefly examine exactness and the role of projective objects for both
the monoidal product of tensor categories and in defining FP-dimension for finite
tensor categories. The details are in Sections 4.5 and 6.1 of Etingof et al. [2015].

Proposition 3.68. Let (C,⌦) be an abelian rigid category. Then, the endofunctors (X⌦�)
and (� ⌦ X) of C are exact, for all X 2 C. Here, we say that ⌦ is biexact.

Proof. This follows from Propositions 2.49(b) and 3.33. ⇤

Next, we examine how projectivity is preserved under the monoidal product.

Proposition 3.69. Let (C,⌦, , a, `, r, (�)⇤, ⇤(�)) be an abelian rigid category. If P 2 C is
projective, then P ⌦ X and X ⌦ P are projective objects in C, for all X 2 C.

Proof. By Proposition 3.33(d), we have that as functors:

HomC(P ⌦ X,�) � HomC(P,� ⌦ X
⇤).

The functor (� ⌦ X
⇤) has a right adjoint, namely (� ⌦ X

⇤⇤) by Proposition 3.33(d).
So, (� ⌦ X

⇤) is right exact by Proposition 2.49(b). Moreover, HomC(P,�) is right
exact by Proposition 2.53. Since the composition of right exact functors is right
exact, HomC(P ⌦ X,�) is right exact. Thus, P ⌦ X is projective by Proposition 2.53.
We leave it to the reader to verify that X ⌦ P is projective. ⇤

Now take a finite tensor category C. Then, the FP-dimension of X 2 C is defined
as in the fusion case (see §3.9.2). But the FP-dimension of C is defined as

FPdim(C) :=
P

i2Irr(C) FPdimC(Xi) FPdimC(P(Xi)),

where P(Xi) is the projective cover of Xi (see §2.8.3). Indeed, in the fusion case, we
obtain that P(Xi) = Xi; see Corollary 2.56.

§3.10.3. Module categories over tensor categories

Similar to the fusion case (see §3.9.4), to have a rich theory of module categories
M over tensor categories C, we impose conditions on M that reflect the behavior
of C. As mentioned in §3.10.2, we must take care when handling exactness when
C is tensor.

184

Copyright ©2024 Chelsea Walton. Free version by the courtesy of CW and 619 Wreath. https://math.rice.edu/~notlaw/symalgbook.html. 

Enjoy this textbook? Physical copies are available for purchase at https://www.619wreath.com/ and on Amazon. 
<< Please ask your local academic librarian to order a copy for circulation. >> 



3.10. T����� ����������

In particular, for a left C-module category M (as in §3.3.1), the bifunctor
“ : C ⇥M!M satisfies the condition below:

(*) (X “ �) : M!M is exact, for all X 2 C,

by Propositions 2.49(b) and 3.45.

We define a left module category over a (multi)tensor category C to be a left
C-module category (M,“,m, p) as in §3.3.1 that satisfies the items below.

(a) M is abelian (see §§2.2.2iii, 3.3.4).

(b) M is k-linear (see §§2.2.2i, 3.3.4). In particular, the left action bifunctor “ is
k-bilinear on morphisms.

(c) M is locally finite (see §2.9).

(d) The functor (� “ M) : C !M is exact, for all M 2M.

Moreover, if C is finite, then we require:

(e) M is finite (see §2.9).

Likewise, we can define right module categories (resp., bimodule categories)
over (finite) multitensor categories. Moreover, two such (left, right, bi) module
categories are equivalent (resp. isomorphic) when they are equivalent (resp.,
isomorphic) in the sense of §3.3.1 via k-linear functors.

In particular, if M is the regular left C-module category Creg with “:= ⌦ [Exam-
ple 3.17], then the items (*) and (d) above are consistent with Proposition 3.68.

§3.10.4. Exact module categories

Next, we consider an additional condition on module categories over tensor
categories to be consistent with Proposition 3.69 for the regular module category.

First, one can check that the following condition holds by using Proposi-
tion 3.45(a) and techniques similar to the proof of Proposition 3.69.

• For any object X 2 C and any projective object P 2M, we get that X “ P is a
projective object of M.

This prompts the following notion.

• A left module category (M,“,m, p) over a multitensor category C with enough
projectives is said to be exact if, for any projective object P 2 C and any object
M 2M, we get that P “ M is a projective object of M.
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Likewise, a right module category (M,‹, n, q) over a multitensor category C with
enough projectives is said to be exact if, for any projective object P 2 C and any
object M 2M, we get that M ‹ P is a projective object of M.

Exact module categories were introduced by Etingof and Ostrik [2004]. They
satisfy many useful properties, such as having enough projectives, and having
admitting a Krull-Schmidt decomposition (into a coproduct of indecomposable
module categories). See Section 7.6 of Etingof et al. [2015] for details.

§3.11. Enriched categories

We discussed previously certain categories that are enriched over other categories.
This is also related to monoidal categories for which the monoidal product, with
a variable fixed, has a right adjoint (i.e., to the notion of closure). We define this
terminology here, and refer the reader to Chapter 1 of Kelly [2005] for more details.

Standing hypothesis. Fix a monoidal category V := (V ,⌦V , V , aV , `V , rV ).

§3.11.1. Enriched categories

A V-category A consists of the following data.

(a) A collection of objects, Ob(A), of A. Here, we write X 2 A for X 2 Ob(A).

(b) For every pair of objects X, Y 2 A, a Hom object A(X, Y) in V .

(c) For all triples of objects X, Y, Z 2 A, a composition morphism in V :

�X,Y,Z : A(Y, Z) ⌦VA(X, Y) �! A(X, Z).

(d) For each object X 2 A, a unit morphism, �X : V �! A(X, X), in V .

This data must satisfy the axioms below.

• (associativity) We have the following equality of morphisms in V from the
object [A(Y, Z) ⌦VA(X, Y)] ⌦VA(W, X) to the object A(W, Z):

�W,Y,Z � (idA(Y,Z) ⌦V �W,X,Y ) � a
V
A(Y,Z),A(X,Y),A(W,X) = �W,X,Z � (�X,Y,Z ⌦V idA(W,X)).

• (unitality) We have the following equalities of morphisms in V :

`VA(X,Y) = �X,Y,Y � (�Y ⌦V idA(X,Y)),

r
V
A(X,Y) = �X,X,Y � (idA(X,Y) ⌦V �X).

In this case, A is also said to be enriched over V .
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We have seen examples of enriched categories, including the ones below.

• Locally small categories [§2.1.1] are enriched over (Set,⇥, {⇤}).

• Preadditive categories [§2.2.2i] are enriched over (Ab,⌦Z,Z).

• k-linear categories [§2.2.2i] are enriched over (Vec,⌦k, k).

• Locally finite k-linear categories [§2.9] are enriched over (FdVec,⌦k, k).

Moreover, rigid categories are enriched over themselves; see Exercise 3.39.

Note that a V-category A is not necessarily an ordinary category, i.e., we may
not have a collection of morphisms HomA(X, Y) between objects X, Y 2 A. To
remedy this, consider the underlying category A0 of A defined by the data below.

(a) The same class of objects X, Y, . . . as A.

(b) A morphism f : X ! Y in A0, for each morphism V ! A(X, Y) in V .

(c) The composition of morphisms f : X ! Y and g : Y ! Z corresponding to:

V �
//

V ⌦V V g ⌦ f
// A(Y, Z) ⌦VA(X, Y)

�X,Y,Z
// A(X, Z).

(d) The identity morphism of X corresponding to �X : V ! A(X, X).

We leave it to the reader to verify that A0 is indeed a category.

§3.11.2. Enriched functors and enriched equivalence

To address when two enriched categories are the same, we need to introduce
V-functors. Let A and A

0 be two V-categories.

A V-functor F : A! A
0 consists of the following data.

(a) An object F(X) in A
0, for each X 2 A.

(b) For every pair of objects X, Y 2 A, a morphism in V :

FX,Y : A(X, Y) �! A
0(F(X), F(Y)).

We must also have the equalities of morphisms in V below, for all X, Y, Z 2 A.

• (respects composition) From A(Y, Z) ⌦VA(X, Y) to A
0(F(X), F(Z)):

FX,Z � �X,Y,Z = �0
F(X),F(Y),F(Z) � (FY,Z ⌦V FX,Y ).

• (respects unitality) FX,X � �X = �0F(X) from V to A
0(F(X), F(X)).
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Now two V-categories A andA
0 are said to be V-equivalent, written as A 'VA0,

if there exists a V-functor F : A! A
0 satisfying the two conditions below.

• For each pair of objects X, Y 2 A, we get that FX,Y is an iso in V . Here, we say
that F is V-fully faithful.

• Every object X
0 2 A00 is isomorphic to F(X) in A

0
0, for some object X 2 A0. Here,

we say that F is V-essentially surjective.

§3.11.3. Closed monoidal categories

Next, we will consider monoidal categories, where the monoidal product with a
variable fixed has a right adjoint. These provide examples of enriched categories.

A monoidal category C := (C,⌦, , a, `, r) is said to be left closed monoidal if
the functor (X ⌦ �) : C ! C has a right adjoint

(X ⌦ �) a Hom(X,�) : C ! C,

for each X 2 C. That is,

HomC(X ⌦ Z, Y) � HomC(Z,Hom(X, Y))

for Y, Z 2 C. The object Hom(X, Y) of C is called the left internal Hom of X and Y .

A monoidal category C is said to be right closed monoidal if the functor
(� ⌦ Y) : C ! C has a right adjoint

(� ⌦ Y) a Hom(Y,�) : C ! C,

for each Y 2 C. That is,

HomC(X ⌦ Y, Z) � HomC(X,Hom(Y, Z))

for all X, Z 2 C. The object Hom(Y, Z) of C is the right internal Hom of Y and Z.

For example, C is right closed monoidal when it is left rigid by taking
Hom(Y,�) := � ⌦ Y

⇤. Also, C is left closed monoidal when it is right rigid. See
Exercise 3.40.

Moreover, left (or right) closed monoidal categories C are enriched over them-
selves with C(X, Y) := Hom(X, Y); verifying this fact is Exercise 3.41.

Examples of closed monoidal categories are provided in Exercise 3.42.

§3.11.4. Internal Homs of module categories

Broadening the setting of regular module categories arising via the last section to
arbitrary module categories, we consider the following terminology.
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A left C-module category (M,“) is said to be closed if, for each M 2M, the
functor (� “ M) : C !M has a right adjoint

C

� “ M

))

Hom(M,�)
hh

? M

That is, for all Z 2 C and N 2M:

HomM(Z “ M,N) � HomC(Z,Hom(M,N)).

A right C-module category (M,‹) is said to be closed if, for each M 2M, the
functor (M ‹ �) : C !M has a right adjoint

C

M ‹ �
))

Hom(M,�)
hh

? M

That is, for all Z 2 C and N 2M:

HomM(M ‹ Z,N) � HomC(Z,Hom(M,N)).

In either case, the object Hom(M,N) of C is the internal Hom of M and N.

Example 3.70. If C := (C,⌦, , a, `, r) is right closed monoidal, then the regular
left C-module category Creg (from Example 3.17) is closed. Here, Hom(�,�) is the
internal Hom from the right closed monoidal condition on C.

We also have the result below; the proof holds by Corollary 2.62.

Proposition 3.71. Suppose that C is a finite, abelian, linear, monoidal category, and M

is a left C-module category. If (� “ M) : C !M is right exact for all M 2M, then M

is closed. ⇤

Now the following consequence holds by definition (as in §3.10.3). .

Corollary 3.72. Suppose that C is a finite (multi)tensor category, and M is a left
C-module category. Then, M is closed. ⇤

Similar statements hold for right C-module categories.

We will use internal Homs of module categories in Chapter 4 to build algebras in
monoidal categories. They will also serve as representatives of Morita equivalence
classes of algebras in this context.
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§3.12. Summary

The focus of this chapter was on monoidal categories, which are categories that
come equipped with an operation (⌦) and an object ( ) that mimic the structure
of a monoid. This structure endows a category with a rich structure that allows us
to combine objects and morphisms in a systematic way. For instance, the category
FdVec of finite-dimensional k-vector spaces and k-linear maps is monoidal with
⌦ := ⌦k and := k.

Just as FdVec has dual structures (e.g., the dual space V
⇤ := Homk(V, k) 2 FdVec,

for V 2 FdVec), we discussed when objects of monoidal categories are paired with
dual objects. This led to the concept of a rigid category. One can also ask when
double duality formed in a rigid category is essentially the same as taking no
duals, and this prompted the notion of a pivotal structure on a monoidal category.
With pivotal structure, we can then measure objects via their pivotal dimension,
which recovers vector space dimension for FdVec. Computing pivotal dimension
involves taking a (one-sided) pivotal trace of a morphism,and we defined spherical
categories to cover the case when the left and right pivotal traces of morphisms
are equal. It is an open question of whether finite, semisimple, rigid categories
are automatically pivotal (or spherical).

Next, we imposed various conditions on categories discussed in previous
chapter to endow monoidal categories with richer structure. Recall that abelian
categories were convenient for the plethora of universal constructions that they
contain. This condition, along with linearity (resp., along with semisimplicity and
finiteness), is imposed on rigid categories to form tensor categories (resp., fusion
categories). In particular, there exists another useful measure for objects in fusion
categories and in finite tensor categories: Frobenius-Perron dimension.

We also discussed how to represent the various monoidal categories above with
certain categories that reflect their behavior. This led to the notion of a module
category, which is modeled on modules over algebras presented in the first chapter.
The more complex the monoidal category, the more conditions we require for
its module categories. This, in turn, allows one to have a fruitful representation
theory for monoidal categories, including classification results.

We ended by discussing enriched categories, which include categories whose
collections of morphisms admit the structure of a monoidal category. These
encompass many categories covered in this and in the last chapter. See Figure 3.15
for a summary of the various monoidal categories examined here.
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Figure 3.15: Various monoidal categories.
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§3.13. Modern applications

We now illustrate how various notions that were introduced in this chapter on
monoidal categories are used in modern mathematics. A full understanding of
the resources here is not expected. Instead, we aim to put the chapter’s material
into context by offering videos and content to casually explore.

A fantastic overview of the program to classify fusion categories via tools
presented in this chapter is provided in the video below.

Julia Plavnik’s 2021 Institute for Pure and Applied Mathematics’ lecture on
"Classifying small fusion categories"
https://youtu.be/Vin1VJzw1ZM

An intriguing talk on suitable structures on the category of Hilbert spaces is
given in the video below. Those who like functional analysis will enjoy this.

Chris Heunen’s 2021 Online Worldwide Seminar on Logic and Semantics talk on
"Axioms for the category of Hilbert spaces"

https://youtu.be/c3iOH4pOiko

A friendly invitation to 2-dimensional topological quantum field theories
(2-TQFTs) is presented in the videos below. Monoidal categories, and algebraic
structures within them (as a preview of Chapter 4), play a key role.

Nils Carqueville’s 2019 Young Researchers Integrability School and Workshop
lectures on "Boundaries and defects"

– Part 1 begins with motivation and background on categories and functors.
https://youtu.be/kIIaBHXZB7w

– Part 2 defines monoidal categories, monoidal functors, and 2-TQFTs.
https://youtu.be/JGfBlM_dxIU

– Part 3 goes through examples of 2-TQFTs and discusses state sum models.
https://youtu.be/UWLY1mXWDzo

– Part 4 branches out to open/ closed 2-TQFTs, ending with examples.
https://youtu.be/VlCB-n-eZhw

An insightful talk that highlights the role of monoidal categories and their
module categories in studying conformal field theories is provided below.

Christoph Schweigert’s 2020 lecture for the online workshop on Topological
Orders and Higher Structures: "Bulk fields in conformal field theory"

https://youtu.be/ZbASleujoAU
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§3.14. References for further exploration

• The landmark article by Joyal and Street [1993] is a must-read. Even though the
focus is on braided monoidal categories (studied in a future volume), Section 1
of this work pertains to the material covered in the first half of this chapter.
There, a monoidal category is referred to as a "tensor category". Be aware of
this difference in terminology throughout the literature.

• The textbook by Etingof et al. [2015] is an essential reference for those interested
in the monoidal categories appearing in the last half of this chapter. We adopt
many of the conventions from the textbook here, and this (and the previous)
chapter serves as a starter guide for their textbook. One of the goals of their
book is to provide additional context for the foundational article by Etingof
et al. [2005] on fusion categories.

• The textbook by Turaev and Virelizier [2017] is a comprehensive resource to
learn about monoidal categories and their role in Quantum Topology. The
book begins with background material on monoidal categories, and proceeds
to examine various state sum 3-TQFTs. Braided monoidal categories, along with
spherical and fusion categories, are all used to build the monoidal categories
that go hand-in-hand with 3-TQFTs: modular fusion categories.

• Another great textbook is by Heunen and Vicary [2019], which is a friendly
introduction to the role of monoidal categories in Quantum Information Theory.
It does not need prerequisites beyond what was used to begin Chapters 2 and 3
here. Highlights include connections to quantum computational notions, such
as entanglement, quantum teleportation, and ZX-calculus.

§3.15. Exercises

3.1 In a monoidal category (C,⌦, , a, `, r), verify the identities below, for X, Y 2 C:

(a) `X ⌦ idY = `X⌦Y a ,X,Y ; (b) rX⌦Y = (idX ⌦ rY ) aX,Y, ; (c) ` = r .

Hint. For part (a), it suffices to show that the perimeter of the following
diagram commutes. The bottom region commutes by dividing it into quad-
rangles for naturality, and triangles for the triangle axiom.

⌦ (( ⌦ X) ⌦ Y)
id ⌦ a ,X,Y

//

id ⌦ (`X ⌦ idY )
--

++

⌦ ( ⌦ (X ⌦ Y))

id ⌦ `X⌦Y
qq

( ⌦ ( ⌦ X)) ⌦ Y
++

( ⌦ ) ⌦ (X ⌦ Y)
33

(( ⌦ ) ⌦ X) ⌦ Y

33

⌦ (X ⌦ Y)
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3.2 Recall the discussion of opposite monoidal categories from §3.1.1.

(a) Verify that Cop, C⌦op, and C
rev are monoidal categories.

(b) Consider the monoidal category operations (�)op, (�)⌦op, and (�)rev. Can
one operation be obtained by composing the other two?

3.3 [Open-ended] Recall the monoidal categories from §3.1.2.

(a) Pick your favorite three examples in §3.1.2, and verify in detail that they
are indeed monoidal categories, and discuss whether they are strict.

(b) Derive more examples of monoidal categories in addition to what is in
§3.1.2; try to cook up at least one of each mathematical type.

3.4 Recall monoidal functors from §3.2.1. Given two monoidal functors

(F, F(2), F(0)) : C ! D and (G,G(2),G(0)) : D ! E ,

show that GF : C ! E is monoidal. Namely, describe (GF)(2) and (GF)(0) in
terms of F

(2), G
(2), F

(0), and G
(0).

3.5 Prove Proposition 3.7 on monoidal isomorphism and monoidal equivalence.

3.6 Recall the notion of monoidal functors and monoidally isomorphic cate-
gories in §§3.2.1, 3.2.2. Take a group G and recall §1.3.4.

(a) Verify Example 3.8, showing that Forg : G-Mod ! Vec is strong
monoidal.

(b) Give the category, Rep(G), of representations of G the structure of a
monoidal category, such that G-Mod

⌦
� Rep(G).

(c) Expand on part (b) to then show that kG-Mod from Exercise 2.30 is
monoidally isomorphic to G-Mod.

(d) For a group embedding ◆ : H ! G, show that the restriction functor
below can be given the structure of a strong monoidal functor.

ResG

H
: Rep(G) �! Rep(H), (⇢ : G ! GL(V)) 7! (⇢ ◆ : H ! GL(V)).

(e) Show that part (d) generalizes part (a).

3.7 Recall the actions of monoidal categories on categories from §3.2.3. Show
that a left action, ⇢ : C ! End(A), of a monoidal category C on a category A

is precisely A equipped with a bifunctor ⇤ : C ⇥A! A with two additional
structure natural isomorphisms (corresponding to ⇢(2) and ⇢(0)).
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3.8 Complete the details of Example 3.13 in determining the monoidal prod-
uct and monoidal unit constraints, ⇢(2) and ⇢(0), that define an action of a
monoid N on VecN , and define an action of a group G on VecG.

3.9 [Open-ended] Recall the examples of monoidal functors and monoidal
equivalence in §3.2.3. Derive additional examples of such notions. One may
start by modifying the examples in §3.2.3.

3.10 Recall the discussion about structure versus ‘structure category’ in §3.3.1.
Before reading §3.3.3, for monoidal categories C and D, write down the
definitions of a (C,D)-bimodule category and a (C,D)-bimodule functor.

3.11 Akin to Exercise 1.26(a) for modules over algebras, for a monoidal category C,
and for the regular module category Creg in Example 3.17 of §3.3.2, show
that there exist strong monoidal functors:

⇢1 : C �! EndMod-C(Creg), ⇢2 : C⌦op �! EndC-Mod(Creg).

3.12 Provide the details of Example 3.18, along with the details of two additional
examples from Examples 3.17–3.24 in §3.3.2, including describing explicitly
the module associativity and module unitality constraints, and verifying the
pentagon and triangle axioms.

Hint. For the triangle axiom forExample 3.18,proceedas follows: (i) fill in the
objects and morphisms of the diagram below; (ii) justify why each internal
region commutes; and then (iii) conclude why the perimeter commutes.

(X ⌦ ) — M

mX, ,M
//

rX — idM

++

X — ( — M)

idX — pM

rr

F(X ⌦ ) “ M //

��

⇤ //

✏✏

F(X) “ (F( ) “ M)

||

⇤
((

✏✏

⇤

��

F(X) “ M

X — M

For step (ii), the outer regions should commute by definition. Now justifica-
tion is needed for the commutativity of the right quadrant, the left quadrant,
and the bottom triangle in the interior. Moreover, step (iii) in these types of
arguments does not need a written justification when the diagram has all
paths flowing from one perimeter object to another (e.g., as drawn above).
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3.13 [Open-ended] This pertains to §3.3.3. Derive examples of bimodule cat-
egories over monoidal categories. They could be built from some of the
one-sided module categories examined in Exercise 3.12.

3.14 This pertains to the material in §3.3.4. Let A be a k-algebra.

(a) Show that A-FdMod is a right FdVec-module category.
(b) Verify that if A-FdMod is an indecomposable right FdVec-module cate-

gory, then A is indecomposable as a k-algebra (see §1.4.1).

3.15 Consider the proof of the Strictification Theorem in §3.4.1.

(a) Verify that Cstr from Definition 3.27 is strict monoidal.
(b) Complete the proof of Claim 2 in Theorem 3.26 by showing that ⇢(2) and

⇢(0) defined there satisfy the associativity and unitality axioms making
(⇢, ⇢(2), ⇢(0)) a strong monoidal functor.

3.16 Recall the discussion about monoidal functors and monoidally equivalent
categories in §§3.2.1, 3.2.2. Here, we build on Exercise 2.20.

(a) Show that if F : C ! D is a strong monoidal functor, then its essential
image Imess(F) is a monoidal subcategory of D.

(b) Show that if, further, D is strict, then Imess(F) must be strict.
(c) Prove that, further, when F is fully faithful, then Imess(F)

⌦' C.
(d) Do any of the parts above fail if F is not strong?

3.17 Take a strict monoidal category (C,⌦, ) as in §3.4 with morphisms
f : X ! Y , g : Y ! Z, f

0 : X
0 ! Y

0, g
0 : Y

0 ! Z
0 in C.

(a) Verify that (g � f ) ⌦ (g0 � f
0) = (g ⌦ g

0) � ( f ⌦ f
0).

(b) Depict this identity using the graphical calculus discussed in §3.5.

Hint. For part (a), recall that ⌦ is a functor and revisit this definition.

3.18 Recall the notion of rigidity in §3.6.1, and discuss the following items.

(a) Whether rigidity is a structure on or a property of a monoidal category.
(b) The notion of a monoidal functor being rigid.
(c) The notion of an equivalence of rigid categories.

196

Copyright ©2024 Chelsea Walton. Free version by the courtesy of CW and 619 Wreath. https://math.rice.edu/~notlaw/symalgbook.html. 

Enjoy this textbook? Physical copies are available for purchase at https://www.619wreath.com/ and on Amazon. 
<< Please ask your local academic librarian to order a copy for circulation. >> 



3.15. E��������

3.19 Prove part (a) of Lemma 3.32 in §3.6.1 about the uniqueness of left dual
objects in (left) rigid categories. (You may assume that C is strict to use
graphical calculus.)

3.20 Prove parts (c) and (d) of Lemma 3.32 in §3.6.1 about dual objects in rigid
categories C. Namely, show that ⇤(X⇤) � X � (⇤X)⇤ for each X 2 C, and that
⇤ = = ⇤ in C. (You may assume that C is strict to use graphical calculus.)

3.21 Prove part (e) of Lemma 3.32 in §3.6.1 to show that the opposite monoidal
categories Cop, C⌦op, and C

rev of a rigid category C (from §3.1.1) are rigid.

3.22 [Open-ended] Complete and elaborate on some of the missing details
in Table 3.1 in §3.6.2 for your favorite (non-)examples of rigid monoidal
categories. Also explore other (non-)examples, building on Exercise 3.3.

3.23 Take a left rigid category C as in §3.6.1, and establish the following statements
about the left duality functor (�)⇤ on C; see Proposition 3.42. (Feel free to
assume C is strict to use graphical calculus.)

(a) For morphisms f : X ! Y and g : Y ! Z in C, verify that (g � f )⇤ is equal
to f

⇤ � g
⇤ as morphisms from Z

⇤ to X
⇤ in C.

(b) For objects X, Y 2 C, show that the left dual of X ⌦ Y is Y
⇤ ⌦ X

⇤.
(c) Complete the proof of Proposition 3.42(b) to show that (�)⇤ is a strong

monoidal functor.

3.24 This builds on Exercise 3.23. Take a rigid category C as in §3.6.1, and write
down and prove the double left dual analogue of Proposition 3.42. (Feel free
to assume that C is strict to use graphical calculus.)

3.25 Prove Proposition 3.43 in §3.6.3 on how rigidity is preserved under strong
monoidal functors between monoidal categories.

3.26 Complete the proof of Proposition 3.44 in §3.6.3: If C is a rigid category and
D is a monoidal category, then any monoidal transformation between two
strong monoidal functors C ! D is a monoidal isomorphism.

3.27 Complete the proof of Proposition 3.45 in §3.6.4 on proving that the functor
derived from the action bifunctor for a left module category over a rigid
category, by having the first slot fixed, has a left adjoint and a right adjoint.
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3.28 Recall the discussion of dual module categories in §3.6.4.

(a) Prove Proposition 3.46 in §3.6.4.

(b) Verify for a rigid category C and for M 2 C-Mod that ⇤(M⇤) 'M as left
C-module categories. Likewise, show that (⇤M)⇤ 'M in C-Mod.

(c) Is M⇤⇤ equivalent to M as left C-module categories?

3.29 Recall pivotal trace and pivotal dimension in §3.7.3. Take a finite-dimensional
k-vector space V with basis elements v1, . . . , vn, and take a k-linear endomor-
phism f of V given by vk 7!

P
n

`=1 �k,`v`, for some �k,` 2 k.

(a) Compute trL

j
( f ) and trR

j
( f ), with j for FdVec given in §3.7.2.

(b) Compute dim j(V).

3.30 Recall the pivotal trace from §3.7.3. For a morphism f : X ! X in a pivotal
category (C, j), show that trR

j
( f ) = trL

j
( f
_) and trL

j
( f ) = trR

j
( f
_).

3.31 Recall the pivotal trace from §3.7.3 for a pivotal category (C, j). Consider
the action of EndC( ) on HomC(X, Y) given as follows. For any morphism
� : ! , and any morphism h : X ! Y in C, define

� . h := `Y (� ⌦ h) `�1
X
, h / � := rY (h ⌦ �) r

�1
X
.

(This is defined without pivotality; see Section 1.3.2 of Turaev and Virelizier
[2017] for details.) Take morphisms f : X ! X and g : Y ! Y in C.

(a) Show that trL

j
( f ⌦ g) = trL

j

⇣
trL

j
( f ) . g

⌘
as morphisms from to .

(b) Show that trR

j
( f ⌦ g) = trR

j

⇣
f / trR

j
(g)

⌘
as morphisms from to .

(c) Now show that in a trace-spherical category (C, j), as in §3.8.1, pivotal
trace is ⌦-multiplicative: namely, that tr j( f ⌦ g) = tr j( f ) � tr j(g).

3.32 Recall the discussion about pivotal and trace-spherical categories from
§§3.7.1, 3.8.1. Show that if (C, j) and (C0, j

0) are equivalent pivotal categories,
then trace-sphericality must transfer from one pivotal category to the other.

3.33 Recall fusion categories from §3.9.1i. Verify the following statements.

(a) FdVec is a fusion category.

(b) G-FdMod is a fusion category if and only if G is a finite group.
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3.34 Recall the discussion about fusion categories and rank from §3.9.1. Verify
that the only fusion category of rank 1 is FdVec, up to equivalence.

3.35 This is an extended exercise to modify the monoidal category VecG in §3.1.2i
and study its properties and additional structure. See §§3.1.1, 3.1.2 for
parts (a)–(d), §2.7.3 for part (e), §3.6.1 for part (f), §§3.7.1, 3.8.1 for part (g),
§3.9.1i for part (h), and §3.9.2 for part (i).

First, let us summarize some basic terminology from Group Cohomology.
Take a group G, and as in Exercise 1.14, a left G-module on an abelian group:

M := (M, +M , 0M , . : G ⇥ M ! M).

• An n-cochain of G with value in M is a function from G
n ! M, where

G
n := G ⇥G ⇥ · · ·⇥G (n-times). The collection of such functions is denoted

by C
n(G,M). Here, C

0(G,M) � M, after identifying G
0 with heGi.

• We have that C
n(G,M) is an abelian group via

(� + �0)(g1, . . . , gn) := �(g1, . . . , gn) +M �0(g1, . . . , gn),

and with the identity element being the zero map 0 : G
n ! M, defined by

(g1, . . . , gn) 7! 0M , for g1, . . . , gn 2 G.

• The n-th coboundary map is d
n+1 : C

n(G,M)! C
n+1(G,M) given by

(dn+1�)(g1, . . . , gn+1) := g1 . �(g2, . . . , gn+1)

+
P

n

i=1(�1)i�(g1, . . . , gi�1, gigi+1, gi+2, . . . , gn+1)

+(�1)n+1�(g1, . . . , gn).

Here, + is the operation +M of M. For example,

(d2�)(g1, g2) = g1 . �(g2) � �(g1g2) + �(g1),

(d3�)(g1, g2, g3) = g1 . �(g2, g3) � �(g1g2, g3) + �(g1, g2g3) � �(g1, g2),

(d4�)(g1, g2, g3, g4) = g1 . �(g2, g3, g4) � �(g1g2, g3, g4) + �(g1, g2g3, g4)
� �(g1, g2, g3g4) + �(g1, g2, g3).

(It is common to denote the coboundary maps simply by "d", which we
will not do here.)

• Moreover, we obtain that d
n+1 � d

n is the zero map, so the cochain groups
and their coboundary maps above form a cochain complex for G.

• We denote the kernel of the n-th coboundary map d
n+1 by Z

n(G,M) and
refer to its elements as n-cocycles of G with value in M.

• We denote the image of d
n by B

n(G,M) and refer to its elements as
n-coboundaries of G with value in M.
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• Since d
n+1 � d

n is the zero map, B
n(G,M) is a subgroup of Z

n(G,M). The
corresponding quotient group

H
n(G,M) := Z

n(G,M)/Bn(G,M)

is referred to as the n-cohomology group of G with values in M.

• We say that �, �0 2 Z
n(G,M) are cohomologous if � = �0 in H

n(G,M).

• We call an n-cocycle � 2 Z
n(G,M) cohomologically trivial if � is cohomol-

ogous to the trivial n-cocycle, that is, if � is equal to an n-coboundary.

To proceed with the exercise, take M to be the multiplicative abelian group
k
⇥, on which G acts trivially, that is, g . � = � for all g 2 G, � 2 k. Now take

a k
⇥-valued 3-cocycle ! on G, which is a function ! : G ⇥G ⇥G ! k

⇥ that
satisfies the following condition:

!(g1g2, g3, g4) !(g1, g2, g3g4)

= !(g1, g2, g3) !(g1, g2g3, g4) !(g2, g3, g4),
(3.73)

for all g1, g2, g3, g4 2 G.

(a) Take the monoidal category VecG. Verify that the objects of VecG are
isomorphic to a direct sum of simple objects

�g =
L

k2G(�g)k,

with (�g)g = k, and where (�g)k is the zero vector space for k , g.

(b) Describe the Hom sets of VecG in terms of the simple objects in part (a).
Namely, verify that VecG is k-linear (see §2.2.2iii).

(c) Describe the monoidal product and the unit object of VecG in terms of
the simple objects in part (a).

(d) With the monoidal product and the unit object in part (c), define the
following linear maps (which are linear isomorphisms).

a
!
g,h,k := !(g, h, k) id�ghk

, `�g
:= !(e, e, g)�1 id�g

, r�g
:= !(g, e, e) id�g

.

Show that these maps form the components of associativity and unitality
constraints of a monoidal structure on the category VecG.

• We denote this new monoidal category by Vec
!
G

.

(e) Show that Vec!
G

is a semisimple category.

(f) Verify that FdVec!
G

is rigid with �⇤
g
= ⇤�g = �g�1 , along with:

evL

�g

:= id�e
: �⇤

g
⌦ �g ! , coevL

�g

:= ⌫�1
g

id�e
: ! �g ⌦ �⇤g

evR

�g

:= ⌫g id�e
: �g ⌦ ⇤�g ! , coevR

�g

:= id�e
: ! ⇤�g ⌦ �g.

Here, ⌫g := !(e, e, g) !(g, g�1, g) !(g, e, e).
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(g) Show that FdVec!
G

is pivotal, and further, is trace-spherical.

(h) Prove that FdVec!
G

is fusion if and only if G is a finite group.

(i) For a finite group G, show that FdVec
!
G

is integral, and compute its
Frobenius-Perron dimension.

3.36 Recall the material on fusion categories from §§3.9.1, 3.9.2. Take the dihedral
group D8 of order 8 generated by r and s, with relations r

4 = s
2 = srsr = e.

Consider the following D8-modules.

V1 := kv1, with r . v1 = v1, s . v1 = v1

V2 := kv2, with r . v2 = v2, s . v2 = �v2

V3 := kv3, with r . v3 = �v3, s . v3 = v3

V4 := kv4, with r . v4 = �v4, s . v4 = �v4

V5 := kv5 � kv
0
5, with r . v5 = �v

0
5, s . v5 = v5

r . v
0
5 = v5, s . v

0
5 = �v

0
5

(a) Verify that these finite-dimensional D8-modules are pairwise not iso-
morphic, and that each module is simple.

(b) Determine the Artin-Wedderburn parameters for the corresponding
group algebra kD8; see §1.6.1 and Exercise 3.6(c).

(c) Recall the monoidal product ⌦ = ⌦k and unit of D8-FdMod in §3.1.2.
For each pair of simple modules (V, .) and (V 0, .0) above, compute the
module (V, .)⌦k (V 0, .0) in D8-FdMod. Also, identify the module D8-FdMod.

(d) For each monoidal product (V, .) ⌦k (V 0, .0) in part (c), decompose it into
a direct sum of simple D8-modules, up to isomorphism.

(e) Use part (d) to compute the FP-dimensions of the (isoclasses of) simple
D8-modules, and of the category D8-FdMod.

3.37 Show that the Ising fusion category, Ising, from Example 3.65 in §3.9.3 is
weakly integral, but not integral. In particular, compute:

FPdimIsing( ), FPdimIsing(⌧), FPdimIsing(�), FPdim(Ising).

3.38 [Open-ended] Explore details about the Tambara-Yamagami (TY-)fusion
categories from Example 3.66 in §3.9.3, using the article by Tambara and
Yamagami [1998].

(a) Write down their associativity and unitality constraints (a, `, r), and their
(co)evaluation morphisms, making it a rigid category.
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(b) Discuss when two TY-fusion categories are equivalent.
(c) Verify the FP-dimension of objects, and of the category itself, is as given

in Example 3.66.
(d) Verify that D8-FdMod from Exercise 3.36, and Ising from Example 3.65,

are each TY-fusion categories.
(e) Explore the literature for uses of the TY-fusion categories.

3.39 Recall rigid categories from §3.6.1 and enriched categories from §3.11.1.

(a) Show that a left rigid category C := (C,⌦, , a, `, r, (�)⇤) is enriched over
itself, with Hom objects C(X, Y) := Y ⌦ X

⇤, for all X, Y 2 C.
(b) Likewise, verify that a right rigid category is enriched over itself.
(c) Explore part (a) in detail for C = FdVec. Namely, relate the Hom objects

with k-linear maps between finite-dimensional k-vector spaces.

3.40 Recall rigid categories from §3.6.1, and closed monoidal categories from
§3.11.3. Take C := (C,⌦, , a, `, r) to be a monoidal category.

(a) Show that if C is left rigid, then it is right closed monoidal, where we
have that Hom(Y,�) := � ⌦ Y

⇤.
(b) Likewise, show that if C is right rigid, then it is left closed monoidal.

3.41 Recall the enriched categories from §3.11.1, and closed monoidal categories
from §3.11.3.

(a) Prove that if C is a right closed monoidal category, then C is enriched
over itself with C(Y, Z) := Hom(Y, Z).

(b) Prove a similar statement for left closed monoidal categories.

3.42 Recall the notion of a closed monoidal category from §3.11.3. Establish the
following (counter-)examples of closed monoidal categories.

(a) Show that (Set,⇥, {·}) is closed monoidal.
(b) For an algebra A, prove (A-Bimod,⌦A, A) is closed monoidal.
(c) Prove that the monoidal category (Ring,⌦Z,Z) is not closed monoidal.
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History

An algebra in a monoidal category (C,⌦, ) is an object A in C, equipped with
morphisms m : A ⌦ A ! A and u : ! A in C, such that (A,m, u) mimics the
structure of a monoid. They were introduced by Bénabou [1964] as monoïdes à
unité, and were formalized in Section VII.3 of MacLane [1971]. Modules over
algebras in this setting were introduced in Section VII.4 of MacLane [1971], and
were also studied in detail by Pareigis [1977a]; they were called, resp., objects with
action and A-objects. Key examples of such algebras are in the monoidal category of
endofunctors: monads; they were introduced by Godement [1958] and formalized
by Huber [1961] as standard constructions. More recently, the theory of algebras
in fusion categories was advanced by the work of Ostrik [2003c], and properties
of and further structure on algebras in monoidal categories were used by Fuchs
et al. [2002] to model rational conformal field theories in mathematical physics.

Overview

An introduction to algebras in monoidal categories is covered in §4.1, and sub-
algebras and quotient algebras are covered in §4.2. Constructions of algebras
in monoidal categories via adjunction, including monads, are discussed in §4.3.
Modules and bimodules in monoidal categories, including those over monads, are
presented in §4.4. Various operations of algebras and (bi)modules are examined
in §4.5. Graded algebraic structures in monoidal categories are introduced in
§4.6. Then, capstone results on the Morita equivalence of algebras, namely, the
Generalized Eilenberg-Watts Theorem and the Generalized Morita’s Theorem,
are presented in §4.7. Another capstone result, Ostrik’s Theorem, on representing
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categories of modules in fusion categories by internal End algebras is discussed
in §4.8. Various properties of algebras in monoidal categories are studied in
§4.9; some are intrinsic to algebraic structure, while others are module-theoretic.
Finally, in §4.10, a detailed study of bimodules is presented; this includes a dis-
cussion of the monoidal category of bimodules, using bimodules for a notion of
Morita equivalence for tensor categories, and a discussion of a higher categorical
structure on bimodules. The chapter ends with a summarizing diagram in §4.11,
modern applications in §4.12, references in §4.13, and several exercises.

Standing hypotheses. Linear structures are over an algebraically closed
field k of characteristic 0, and k-algebras are associative and unital. Here, A
is an ordinary category (not necessarily monoidal), and C := (C,⌦, , a, `, r)
is a monoidal category (with additional features as specified below).

§4.1. Algebras in monoidal categories

In this part, we introduce algebras in monoidal categories, which will be analo-
gous to the material in §1.1.5 on k-algebras. Next, we turn our attention to the
Eckmann-Hilton Principle, which relates operations of algebras. Then, we discuss
endomorphism algebras in the enriched setting (see §3.11), which generalizes the
material in §1.2.1 on matrix algebras and endomorphism algebras over k.

§4.1.1. Algebras

An algebra (or an algebra object) in a monoidal category C consists of:

(a) An object A in C;

(b) (multiplication morphism) A morphism m := mA : A ⌦ A! A in C;

(c) (unit morphism) A morphism u := uA : ! A in C.

This data must satisfy the commutative diagrams below.

(A ⌦ A) ⌦ A
aA,A,A

//

m ⌦ id
✏✏

A ⌦ (A ⌦ A)

id ⌦ m
✏✏

⌦ A
u ⌦ id

//

`A

((

A ⌦ A

m

✏✏

A ⌦ A

m

✏✏

A ⌦id ⌦ u
oo

rA

vv

A ⌦ A

m
##

A ⌦ A

m
{{

A A A

(associativity axiom) (left, right unitality axioms)

We sometimes write Aobj to denote the underlying object A of (A,m, u). The
string diagrams for algebras in C (when C is strict) are given in Figure 4.1.
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A

mA uA associativity unitality

A

A A

= = =

Figure 4.1: String diagrams for algebras in (strict) monoidal categories.

Some examples of algebras in monoidal categories include the following.

• Algebras in (Vec,⌦k, k) from §3.1.2i are k-algebras (as in §1.1.5).

• Algebras in (Set,⇥, {·}) from §3.1.2ii are monoids (as in §1.1.1).

• Algebras in (End(A), �, IdA) from §3.1.2ii are monads (see §4.3.2 later).

Verifying the first two examples, along with others, is Exercise 4.1. Moreover,
algebras in the monoidal categories, G-Mod, VecG, and Vec

!
G

are examined respec-
tively in Exercises 4.2, 4.3, and 4.4; see also §3.1.2i and Exercise 3.35.

"Algebra" versus "monoid" in a monoidal category. "Monoid" is the orig-
inal name for the construction above; see Section VII.3 of MacLane [1971].
However the term "algebra" is now frequently used, especially when the
monoidal category has an addition, an additive identity, additive inverses,
and a scalar multiplication, e.g., when objects have the underlying structure
of a vector space. We choose to use the term "algebra" in this textbook due
to our main sources of examples, but "monoid" is equally as descriptive.

Consider the trivial examples of algebras below.

Example 4.1. (a) The unit object of C admits the structure of an algebra in C

with m := ` (= r ) and u = id . We refer to this as the unit algebra of C.

(b) If C has a zero object 0 (see §2.2.1i), then the zero algebra is 0 equipped with
multiplication morphism 0⌦0

!
0 : 0 ⌦ 0! 0 and unit morphism !

0 : ! 0.

Verifying that the associativity and unitality conditions hold is Exercise 4.5.

We also have a useful result below.

Lemma 4.2. The multiplication morphism mA of an algebra A in C is epic.

Proof. Suppose that g, g0 : A! B are morphisms in C such that g mA = g
0
mA. Then,

by the left unitality axiom, we get that:

g = g mA (uA ⌦ idA) `�1
A
= g

0
mA (uA ⌦ idA) `�1

A
= g

0. ⇤
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Next, an algebra morphism between two algebras (A,m, u) and (A0,m0, u0) in C

is a morphism � : A! A
0 in C such that the following diagrams commute.

A ⌦ A
m

//

� ⌦ �
✏✏

A

�
✏✏

A

�
✏✏

u
44

u
0

**

A
0 ⌦ A

0 m
0

// A
0

A
0

Now we can form the category of algebras in a monoidal category C:

• Alg(C): objects are algebras in C and morphisms are algebra morphisms in C.

The collection of algebra morphisms (A,m, u) ! (A0,m0, u0) is denoted by
HomAlg(C)(A, A0), which is a subcollection of HomC(Aobj, A

0
obj). See Exercise 4.6.

A monic (resp., epic, iso-) morphism of algebras in C is an algebra morphism
that is a mono (resp., an epi, an iso) on the underlying objects in C.

Algebras in the monoidal setting are also preserved under monoidal functors.
Namely, if C and C

0 are monoidal categories, then a monoidal functor C ! C
0

yields a functor Alg(C)! Alg(C0), seen as follows. The proof is Exercise 4.7.

Proposition 4.3. Recall §§3.2.1, 3.2.2. Take a monoidal functor (F, F(2), F(0)) : C ! C
0.

(a) For (A,mA, uA) 2 Alg(C), we have that
⇣
F(A), mF(A) := F(mA) � F

(2)
A,A, uF(A) := F(uA) � F

(0)
⌘
2 Alg(C0).

(b) The assignment in part (a) yields a functor Alg(F) : Alg(C)! Alg(C0), which is an
isomorphism of categories when F is an isomorphism of monoidal categories. ⇤

See Exercises 4.8 and 4.9 for examples and an open-ended task, respectively.

§4.1.2. The Eckmann-Hilton Principle

We examine a way to relate various algebra operations on a given object in a
monoidal category. This was derived from Theorem 4.17 of Eckmann and Hilton
[1962], and it has been applied to many mathematical structures. In this section,we
proceed in the strict case for ease via the Strictification Theorem [Theorem 3.26].

Theorem 4.4 (Eckmann-Hilton (EH-)Principle). Take an object A in a strict monoidal
category (C,⌦, ), and assume that there is a morphism in C, flip : A ⌦ A! A ⌦ A, that
swaps the A’s across ⌦, such that the identities in Figure 4.2 hold.

Next, suppose that there exist morphisms in C,

m1,m2 : A ⌦ A! A and u1, u2 : ! A,
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such that m1 and m2 are multiplication morphisms for A (that are not necessarily associa-
tive), which are unital via u1 and u2, respectively. Now if we have that

m2 (m1 ⌦ m1) = m1 (m2 ⌦ m2) (idA ⌦ flip ⌦ idA) (4.5)

as morphisms A ⌦ A ⌦ A ⌦ A! A in C, then the following statements hold.

(a) u1 = u2 (=: u0) and m1 = m2 (=: m0).

(b) m0 is associative, that is, (A,m0, u0) is an algebra in C.

(c) m0 = m0 � flip, that is, (A,m0, u0) is, in a sense, a commutative algebra in C.

We will define commutative algebras in symmetric monoidal categories in a
future volume. We call (4.5) the Eckmann-Hilton (EH-)condition.

Proof. By employing graphical calculus for this proof, parts (a), (b), and (c) are
verified in Figures 4.3, 4.4, and 4.5, respectively. ⇤

= = =

Figure 4.2: Flip identities.

=

=

= = = =
unitality unitality EH-cond unitality unitality

=
unitality unitality

=
EH-cond

u = u

Figure 4.3: Proof of operation identification in the EH-Principle [Theorem 4.4(a)].
Here, m1 and u1 are depicted in black, and m2 and u2 are depicted in gray.

= = = =
unitality EH-cond Fig. 4.2 unitality

Figure 4.4: Proof of associativity in the EH-Principle [Theorem 4.4(b)].
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= = = =
unitality EH-cond Fig. 4.2 unitality

Figure 4.5: Proof of commutativity in the EH-Principle [Theorem 4.4(c)].

Example 4.6. With the EH-Principle, one gets that each algebra in the monoidal
category of monoids, (Monoid,⇥, {e}), is commutative. That is,

Alg(Monoid) � ComMonoid,

where the latter is the category of commutative monoids. Namely, take a monoid
N = (Nset,?, e), and equip it with a multiplication morphism m : N ⇥ N ! N

and a unit morphism u : {e} ! N such that (N,m, u) 2 Alg(Monoid). Note that
m : N ⇥ N ! N is a morphism in Monoid. So, N ⇥ N being a monoid with product
(? ⇥ ?)(id ⇥ flip ⇥ id) yields the following commutative diagram.

N ⇥ N ⇥ N ⇥ N
(? ⇥ ?)(id ⇥ flip ⇥ id)

//

m ⇥ m
✏✏

N ⇥ N

m
✏✏

N ⇥ N
?

// N

So, the Eckmann-Hilton condition (4.5) holds for (Nset,?, e,m, u) 2 Alg(Monoid)
with m1 = m and m2 = ?. Thus, we achieve the desired result by Theorem 4.4.

Another example involving group objects in categories is introduced in Exer-
cise 4.10. This pertains to the original work of Eckmann and Hilton [1962], which
in turn, has applications to topology and geometry.

Next, we discuss an application of the EH-Principle in the enriched setting.

Example 4.7. Take a monoidal category (C,⌦, ) that is enriched over a monoidal
category (V ,⌦V , V ) as in §3.11.1. Then, the algebra EndC( ) 2 V satisfies the
Eckmann-Hilton condition (4.5) with m1 being the composition � of endomor-
phisms in EndC( ), and with m2 being the monoidal product ⌦ of C; see Exer-
cise 3.17. Both u1 and u2 are the identity morphism id . We call

EndC( ) 2 Alg(V),

the ground algebra of (C,⌦, ). In particular, we have the following results.

(a) If V = (Set,⇥, {⇤}) (e.g., if C is locally small), then EndC( ) 2 ComMonoid.

(b) If V = (Vec,⌦k, k) (e.g., if C is k-linear), then EndC( ) 2 ComAlg.
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Finally, recall the two operations of natural transformations of functors, vertical
and horizontal composition, discussed in §2.3.5.

Example 4.8. Observe that the interchange law (2.9) between vertical composi-
tion �ver and horizontal composition �hor of natural transformations satisfies the
Eckmann-Hilton condition (4.5). In fact, we can consider the collection of natural
transformations from an identity functor, IdA, on a category A to itself, obtaining
that End(IdA) is a commutative algebra (cf. Exercise 2.38). This generalizes the
previous example, but we need higher category theory introduced in a future
volume (see also §4.10.3 later) to fully capture the setting of this example.

§4.1.3. Endomorphism algebras

Here, we examine algebras that generalize the endomorphism algebras Endk(V)
from §1.2.1. Here, V is a k-vector space, and Endk(V) is a k-algebra with multi-
plication �, and with unit idV . But given an object X in a category A, we have
that EndA(X) is just a collection of morphisms without further structure if we
do not impose conditions on A. So, to construct endomorphism algebras in the
categorical context, we consider enriched categories from §3.11.

Take a monoidal category (V ,⌦V , V ) and a V-category A, as in §3.11.1. For
X 2 A, the V-endomorphism algebra EndV (X) of X consists of the following data:

(a) The object A(X, X) of V ; with

(b) Multiplication morphism �X,X,X : A(X, X) ⌦V A(X, X)! A(X, X);

(c) Unit morphism �X : V ! A(X, X).

We leave it to the reader to then verify that EndV (X) 2 Alg(V).

Example 4.9. (a) A (strict) left rigid category C := (C,⌦, , a, `, r, (�)⇤) is enriched
over itself, with Hom objects C(X, Y) := Y ⌦ X

⇤, for all X, Y 2 C [Exercise 3.39].
Now we obtain that

EndC(X) := (X ⌦ X
⇤, m := idX ⌦ evL

X
⌦ idX⇤ , u := coevL

X
) 2 Alg(C).

The associativity and unitality axioms follow from Figure 4.6 below.
(Note: we can replace C being left rigid, with just X 2 C being left rigid here.)

(b) As a special case, recall that the category of finite-dimensional k-vector spaces,
FdVec, is (left) rigid [Example 3.34]. Exercise 4.11 asks us to show that, for
V 2 FdVec, the k-algebra Endk(V) from §1.2.1 arises as follows:

EndFdVec(V) � Endk(V) in Alg(FdVec).

We will also give the internal endomorphisms of §3.11.4 the structure of an
algebra in a monoidal category later in §4.8.
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(associativity)

(unitality)

=

=
Fig.3.7
=

X X
⇤

X X
⇤

X X
⇤

X X
⇤

X X
⇤

X X
⇤

X X
⇤

X X
⇤

=

X X
⇤

X X
⇤

X X
⇤

X X
⇤

X X
⇤

X X
⇤

X X
⇤

X X
⇤

=

X X
⇤

Fig.3.7
=

X X
⇤

X X
⇤

X X
⇤

X X
⇤

X X
⇤

X X
⇤

X X
⇤

X X
⇤

X X
⇤

=

Figure 4.6: Associativity and unitality for EndC(X), for C left rigid.

§4.2. Subalgebras and quotient algebras

Next, we study substructures and quotient structures for algebras in C.

Standing hypothesis. Assume that C is abelian monoidal as in §3.1.3.

§4.2.1. Subalgebras and ideals

A subalgebra of an algebra (A,mA, uA) in C is an algebra (B,mB, uB) in C, such that
Bobj is a subobject of Aobj via a mono ◆A

B
: B! A, where ◆A

B
is an algebra morphism.

If unitality does not necessarily hold (that is, if uB does not exist, or ◆A
B

uB , uA),
then we refer to (B, ◆A

B
,mB) as a nonunital subalgebra of (A,mA, uA) in C.

A left ideal of (A,mA, uA) consists of a subobject (I, ◆A
I

: I ! A) equipped with a
morphism �A

I
: A ⌦ I ! I such that the following diagrams commute.

(A ⌦ A) ⌦ I
aA,A,I

//

mA ⌦ id
✏✏

A ⌦ (A ⌦ I)
id ⌦ �A

I
✏✏

⌦ I
uA ⌦ id

//

`I

⇠⇠

A ⌦ I

�A

I

⌃⌃

A ⌦ I

id ⌦ ◆A
I
//

�A

I

✏✏

A ⌦ A

mA

✏✏

A ⌦ I

�A

I %%

A ⌦ I

�A

Iyy

I I I

◆A
I

// A

A right ideal of (A,mA, uA) consists of a subobject (I, ◆A
I

: I ! A) equipped with
a morphism ⇢A

I
: I ⌦ A! I such that the following diagrams commute.

I ⌦ (A ⌦ A)
a
�1
I,A,A

//

id ⌦ mA
✏✏

(I ⌦ A) ⌦ A

⇢A

I
⌦ id

✏✏

I ⌦ id ⌦ uA
//

rI

⇠⇠

I ⌦ A

⇢A

I

⌃⌃

I ⌦ A

◆A
I
⌦ id

//

⇢A

I

✏✏

A ⌦ A

mA

✏✏

I ⌦ A

⇢A

I %%

I ⌦ A

⇢A

Iyy

I I I

◆A
I

// A
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A (two-sided) ideal of (A,mA, uA) is a tuple (I, ◆A
I
, �A

I
, ⇢A

I
), such that (I, ◆A

I
, �A

I
) is a

left ideal, (I, ◆A
I
, ⇢A

I
) is a right ideal of A, and the diagram below commutes.

(A ⌦ I) ⌦ A
aA,I,A

//

�A

I
⌦ id
✏✏

A ⌦ (I ⌦ A)
id ⌦ ⇢A

I
✏✏

I ⌦ A

⇢A

I &&

A ⌦ I

�A

Ixx

I

Example 4.10. Take (A,mA, uA) 2 Alg(C). We will see in Exercise 4.12 that:

(a) Aobj is an ideal of A, with �A

A
= ⇢A

A
= mA and ◆A

A
= idA;

(b) the zero object 0 is an ideal of A with �A

0
= A⌦0

!
0 , and ⇢A

0
= 0⌦A

!
0 , and ◆A

0
=
!
0A.

Ideals of (A,mA, uA) not of these types are referred to as proper ideals of A in C.

In fact, ideals are nonunital subalgebras as we see below.

Proposition 4.11. Let (I, ◆A
I
, �A

I
, ⇢A

I
) be an ideal of an algebra (A,mA, uA) in C.

(a) We have that �A

I
(◆A

I
⌦ idI) = ⇢A

I
(idI ⌦ ◆AI ) as morphisms I ⌦ I ! I.

(b) Let mI denote the morphism in part (a). Then (I, ◆A
I
,mI) is a nonunital subalgebra of

(A,mA, uA) in C.

Proof. (a) Consider the following diagram.

I ⌦ I

◆A
I
⌦ id

//

id ⌦ ◆A
I
✏✏

A ⌦ I

id ⌦ ◆A
I

✏✏

�A

I

&&

I ⌦ A

⇢A

I **

◆A
I
⌦ id

// A ⌦ A
mA

**

I

◆A
I
✏✏

I

◆A
I

// A

The left region commutes by the level exchange; the right region commutes as
I is a left ideal; and the bottom region commutes as I is a right ideal. Since ◆A

I
is

monic, it is left cancellative. So, the commutative diagram above yields the result.
(b) The result holds by the commutative diagrams below.

(I ⌦ I) ⌦ I

aI,I,I
//

mI ⌦ id

✏✏

◆A
I
⌦ id ⌦ id

✏✏

id ⌦ id ⌦ ◆A
I

**

I ⌦ (I ⌦ I)

id ⌦ id ⌦ ◆A
I

✏✏

id ⌦ mI

✏✏

(A ⌦ I) ⌦ I

id ⌦ id ⌦ ◆A
I

%%

�A

I
⌦ id

⇧⇧

(I ⌦ I) ⌦ A

aI,I,A
//

◆A
I
⌦ id ⌦ id

yy

I ⌦ (I ⌦ A)

id ⌦ ⇢A

I

⇡⇡

◆A
I
⌦ id ⌦ id

yy

(A ⌦ I) ⌦ A

�A

I
⌦ id

yy

aA,I,A
// A ⌦ (I ⌦ A)

id ⌦ ⇢A

I
%%

I ⌦ I

mI
..

id ⌦ ◆A
I
// I ⌦ A

⇢A

I

**

A ⌦ I
�A

I

tt

I ⌦ I

◆A
I
⌦ id
oo

mI
ppI
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I ⌦ I
mI

))

◆A
I
⌦ id

++

◆A
I
⌦ ◆A

I
,,

A ⌦ I

�A

I
//

id ⌦ ◆A
I

✏✏

I

◆A
I
✏✏

A ⌦ A
mA

// A

We leave it to the reader to think about why each sub-region commutes. ⇤

In fact, if I is an ideal that ‘contains’ the unit of A, then I is isomorphic to A. We
see this by the result below; the proof is reserved as Exercise 4.13.

Corollary 4.12. Suppose that I is an ideal of an algebra A in C equipped with a morphism
uI : ! I such that uA = ◆AI uI . Then, I is a unital subalgebra of A, with unit uI , and I is
isomorphic to A as algebras in C. ⇤

Next, we see that the kernel of an algebra morphism is an ideal. See §2.2.1vi.

Proposition 4.13. If � : (A,m, u)! (A0,m0, u0) is a morphism in Alg(C), then the kernel
of �obj : Aobj ! A

0
obj forms an ideal of (A,m, u).

Proof. We sketch the proof here, and leave it to the reader to complete the details
in Exercise 4.14. Let I denote ker(�obj) equipped with morphism ↵0 : I ! A such
that �obj ↵

0 = I

!
0A0 . Then, I is an ideal with

◆A
I

:= ↵0,

and with �A

I
and ⇢A

I
defined uniquely by the universal property of kernels below.

A ⌦ I

id ⌦ ↵0

##

�obj ⌦!0

''

!
0

⌫⌫

9! �A

I

✏✏

I ⌦ A

↵0 ⌦ id
##

!
0 ⌦ �obj

''

!
0

⌫⌫

9! ⇢A

I

✏✏

A ⌦ A

mA

  

�obj ⌦ �obj
// A
0 ⌦ A

0

mA0
""

A ⌦ A

mA

  

�obj ⌦ �obj
// A
0 ⌦ A

0

mA0
""

I
↵0

//

!
0

22A

�obj
// A
0

I
↵0

//

!
0

22A

�obj
// A
0

Here, we apply Lemma 3.3, along with the fact that the (pre-)composition of a
zero morphism with any morphism is a zero morphism (see §2.2.1v).

Next, ↵0�A

I
(idA ⌦ �A

I
) aA,A,I = ↵0�A

I
(mA ⌦ idI) yields one of the compatibility

conditions required for I to be an ideal. Namely,↵0 is monic, so it is left cancellative.
Likewise, one can establish the other compatibility condition to conclude that I is
an ideal of A. ⇤

By taking � : A ! A
0 to be the identity morphism or the zero morphism,

respectively, we obtain that 0 and A are ideals of A; cf. Example 4.10. See also
Exercise 4.15(i,ii) for more examples.
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§4.2.2. Quotient algebras

Now we define quotient algebras in C, which will require several careful commu-
tative diagram arguments using the universal property of cokernels (see §2.2.1vi).
A version of this material appeared in the work of Walton and Yadav [2023].

Standing hypothesis. Assume that C is abelian monoidal as in §3.1.3. Also
assume that the endofunctors (X ⌦ �) and (� ⌦ X) on C are right exact, for
each X 2 C (see §2.8.1); see Remark 4.14, along with Figure 3.15.

Remark 4.14. We can alter the second hypothesis above via the statements below.

(a) The category C is, in addition, right (resp., left) rigid monoidal.

(b) The category C is, in addition, left (resp., right) closed monoidal.

(c) The endofunctor (X ⌦�) (resp., (�⌦ X)) of C has a right adjoint, for each X 2 C.

(d) The endofunctor (X ⌦ �) (resp., (� ⌦ X)) of C is right exact, for each X 2 C.

(e) For any morphism � in C, we have that (X ⌦ �) (resp., (� ⌦ X)) preserves the
cokernel of � for each X 2 C, that is,

X ⌦ coker(�) � coker(idX ⌦ �) (resp., coker(�) ⌦ X � coker(� ⌦ idX)).

Indeed, the implications below hold due to previous results.

(a) Exer. 3.40 +3

Prop. 3.33(a,d)

08(b) ks Def. §3.11.3 +3 (c)
Prop. 2.49(b)

+3 (d) ks
Prop. 2.49(a)

+3 (e).

We also have that (c)( (d) when C is finite and linear [Corollary 2.62].

To proceed, we will need the constructions and preliminary results below. First,
the right exactness condition above yields the useful lemma below.

Lemma 4.15. Take morphisms f1 : X1 ! Y1 and f2 : X2 ! Y2 in C, along with an object
Z 2 C. Then, the following statements hold.

(a) If f1 and f2 are epic in C, then so are the morphisms f1 ⌦ idZ and idZ ⌦ f2.

(b) If f1 and f2 are epic in C, then so is f1 ⌦ f2.

Proof. (a) Since f1 and f2 are epic, the cokernels of these morphisms are zero
morphisms by Lemma 2.43(b). This implies that the cokernel of f1 ⌦ idZ and
idZ ⌦ f2 are also zero morphisms by Remark 4.14(d))(e). Therefore, f1 ⌦ idZ and
idZ ⌦ f2 are epic by Lemma 2.43(b).

(b) This holds by part (a) and Exercise 2.1(a) since f1⌦ f2 = ( f1⌦idY2 )(idX1⌦ f2). ⇤
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C������ 4. A������� �� �������� ����������

Next, recall the pushout of morphisms from §2.2.1iii. Let f1 : X1 ! Y1 and
f2 : X2 ! Y2 be morphisms in C. We define their pushout product to be the
unique morphism f1 t f2 := f1 tX1⌦X2 f2 in the commutative diagram below.

X1 ⌦ X2
f1 ⌦ id

//

id ⌦ f2
✏✏

Y1 ⌦ X2

↵Y1⌦X2
✏✏

id ⌦ f2

��

X1 ⌦ Y2
↵X1⌦Y2

//

f1 ⌦ id
..

(X1 ⌦ Y2) tX1⌦X2 (Y1 ⌦ X2)
f1 t f2

**

Y1 ⌦ Y2

Consider the preliminary results below about the pushout product above.

Lemma 4.16. Retain the notation above. Take a morphism g : Y1 ⌦ Y2 ! Z. Then,
g ( f1 t f2) =

!
0 when g ( f1 ⌦ idY2 ) =

!
0 and g (idY1 ⌦ f2) =

!
0 .

Proof. By the definition of a pushout, we get the commutative diagram below.

X1 ⌦ X2
f1 ⌦ id

//

id ⌦ f2
✏✏

Y1 ⌦ X2

↵Y1⌦X2
✏✏

g (id ⌦ f2)

⌧⌧

X1 ⌦ Y2
↵X1⌦Y2

//

g ( f1 ⌦ id)
..

(X1 ⌦ Y2) tX1⌦X2 (Y1 ⌦ X2)
9! �

**

Z

Now, � = g ( f1 t f2) as this choice of � makes the diagram commute and by �

being unique. Moreover, g ( f1 ⌦ idY2 ) =
!
0 and g (idY1 ⌦ f2) =

!
0 by the hypothesis.

So, � = !0 makes the diagram commute. By uniqueness, g ( f1 t f2) =
!
0 . ⇤

Lemma 4.17. Retain the notation above. Then, the cokernel of the pushout product f1t f2

of f1 and f2 in C is isomorphic to coker( f1) ⌦ coker( f2).

Proof. Recall the cokernel diagrams below, for i = 1, 2:

Xi

fi
//

!
0

))

!
0

//

Yi

↵i
//

8 �i

((

coker( fi)

9! �i

✏✏

C

Next, consider the diagram below for the cokernel of f1t f2, with accompanying
morphism ↵t : Y1 ⌦ Y2 ! coker( f1 t f2).

(X1 ⌦ Y2) tX1⌦X2 (Y1 ⌦ X2)
f1 t f2

//

!
0

++

!
0

..

Y1 ⌦ Y2
↵t

//

↵1 ⌦ ↵2
))

coker( f1 t f2)

9! �t
✏✏

coker( f1) ⌦ coker( f2)
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4.2. S���������� ��� �������� ��������

This diagram commutes since (↵1 ⌦ ↵2)( f1 ⌦ id) =
!
0 and (↵1 ⌦ ↵2)(id ⌦ f2) =

!
0

[Lemma 3.3], and thus, (↵1 ⌦ ↵2)( f1 t f2) =
!
0 [Lemma 4.16].

Now we construct a morphism �⌦ : coker( f1)⌦ coker( f2)! coker( f1 t f2). Note
that ↵t (idY1 ⌦ f2) = ↵t ( f1 t f2)↵Y1⌦X2 =

!
0 . So, we get by the universal property of

cokernels the morphisms e↵ and e� in the commutative diagram below.

Y1 ⌦ X2
id ⌦ f2

//

!
0

**

!
0

..

Y1 ⌦ Y2
e↵

//

↵t
**

coker(idY1 ⌦ f2)

9! e�
✏✏

coker( f1 t f2)

In fact, coker(idY1 ⌦ f2) � Y1 ⌦ coker( f2) and e↵ = idY1 ⌦ ↵2 by Remark 4.14(d))(e).
Then, we construct the morphism �⌦ via the universal property of cokernels in
the commutative diagram below.

X1 ⌦ Y2
id ⌦ ↵2

//

f1 ⌦ id

,,

!
0 22

X1 ⌦ coker( f2)
f1 ⌦ id

//

!
0

**

Y1 ⌦ coker( f2)
↵1 ⌦ id

//

e�
**

coker( f1 ⌦ idcoker( f2))

9! �⌦
✏✏

Y1 ⌦ Y2

id ⌦ ↵2

OO

↵t
// coker( f1 t f2)

Namely, e� ( f1⌦id) (id⌦↵2) = ↵t ( f1⌦id) =
!
0 . Since↵2 is epic (andright-cancellative),

so is id ⌦ ↵2 [Lemma 4.15(a)]. Therefore, e� ( f1 ⌦ id) =
!
0 , as required to construct

the morphism �⌦. Moreover, coker( f1 ⌦ idcoker( f2)) � coker( f1) ⌦ coker( f2) by Re-
mark 4.14(d))(e), and this is the domain of the morphism �⌦.

Finally, the morphisms �t and �⌦ are mutually inverse, due to their uniqueness,
and due to the commutative diagrams below.

coker( f1 t f2)
�t
✏✏

id

uu

Y1 ⌦ Y2

↵t
..

↵t
..

id ⌦ ↵2
// Y1 ⌦ coker( f2)

e�
**

↵1 ⌦ id
// coker( f1) ⌦ coker( f2)

�⌦
✏✏

coker( f1 t f2)

coker( f1) ⌦ coker( f2)
�⌦
✏✏

id

vv

Y1 ⌦ Y2

↵1 ⌦ ↵2
//

↵1 ⌦ ↵2
..

id ⌦ ↵2
//

↵t

22

Y1 ⌦ coker( f2)
e�

//

↵1 ⌦ id
44

coker( f1 t f2)
�t
✏✏

coker( f1) ⌦ coker( f2)

This concludes the proof of the lemma. ⇤
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Now the final result of this section defines the quotient algebra of an algebra
A in C by an ideal I of A in C.

Proposition 4.18. Take (A,mA, uA) 2 Alg(C), with an ideal (I, ◆A
I
, �A

I
, ⇢A

I
) of A. Then, the

object A/I := coker(◆A
I
) equipped with epi ⇡A

I
: A! A/I, forms an algebra:

(A/I, m : A/I ⌦ A/I ! A/I, u : ! A/I) 2 Alg(C).

Here, the morphisms m and u are presented respectively in (4.20) and (4.21) below, which
makes ⇡A

I
a morphism of algebras in C.

Proof. By Lemma 4.17, we have that

A/I ⌦ A/I := coker(◆A
I
) ⌦ coker(◆A

I
) � coker(◆A

I
t ◆A

I
). (4.19)

We will define the multiplication morphism m via this iso by verifying that
⇡A

I
m (◆A

I
t ◆A

I
) =

!
0 . Namely, the latter equation shows there exists a unique

morphism m such that the diagram below commutes.

(A ⌦ I) tI⌦I (I ⌦ A)
◆A
I
t ◆A

I
//

!
0

++

!
0

00

A ⌦ A
↵

//

⇡A

I
m

))

coker(◆A
I
t ◆A

I
)

9! m

✏✏

A/I

Indeed, we have that

⇡A

I
m (◆A

I
⌦ idA) = ⇡A

I
◆A
I
⇢A

I
=
!
0 ⇢A

I
=
!
0

because I is a right ideal. Likewise, ⇡A

I
m (idA ⌦ ◆AI ) =

!
0 because I is a left ideal.

So, ⇡A

I
m (◆A

I
t ◆A

I
) =

!
0 by Lemma 4.16. Thus, the morphism m exists as in the

commutative diagram above. By (4.19), we have that ↵ = ⇡A

I
⌦ ⇡A

I
. So,

m (⇡A

I
⌦ ⇡A

I
) = ⇡A

I
m. (4.20)

Next, m is associative partly due to the diagram below,which commutes by (4.20)
and by the associativity of m.

(A ⌦ A) ⌦ A
aA,A,A

//

(⇡A

I
)⌦3

✏✏

m ⌦ id
((

A ⌦ (A ⌦ A)
(⇡A

I
)⌦3

✏✏

id ⌦ m

vv

(A/I ⌦ A/I) ⌦ A/I

m ⌦ id
✏✏

A ⌦ A

⇡A

I
⌦ ⇡A

Ivv

m

$$

A ⌦ A

⇡A

I
⌦ ⇡A

I ((

m

zz

A/I ⌦ (A/I ⌦ A/I)

id ⌦ m
✏✏

A/I ⌦ A/I

m
++

A

⇡A

I

✏✏

A/I ⌦ A/I

m
ss

A/I

216

Copyright ©2024 Chelsea Walton. Free version by the courtesy of CW and 619 Wreath. https://math.rice.edu/~notlaw/symalgbook.html. 

Enjoy this textbook? Physical copies are available for purchase at https://www.619wreath.com/ and on Amazon. 
<< Please ask your local academic librarian to order a copy for circulation. >> 
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We then get the equation below by the naturality of the associativity constraint:

m (m ⌦ id) (⇡A

I
⌦ ⇡A

I
⌦ ⇡A

I
) = m (id ⌦ m) (⇡A

I
⌦ ⇡A

I
⌦ ⇡A

I
) aA,A,A

= m (id ⌦ m) aA/I,A/I,A/I (⇡A

I
⌦ ⇡A

I
⌦ ⇡A

I
).

Since ⇡A

I
is epic, ⇡A

I
⌦ ⇡A

I
⌦ ⇡A

I
is epic (and is right cancellative) by Lemma 4.15(b).

Thus, m is associative by the equation above.
Lastly, m is unital by using the definition of the monoidal unit for A/I below.

u := ⇡A

I
u : �! A/I. (4.21)

Left unitality holds by the commutative diagram below and by id ⌦ ⇡A

I
being

epic [Lemma 4.15(a)]. In particular, the middle left (resp., top left, top right, right,
bottom) region commutes by the left unitality of A (resp., by level exchange, by
the definition of u, by (4.20), by the naturality of `).

⌦ A

id ⌦ ⇡A

I
//

id ⌦ ⇡A

I

✏✏

u ⌦ id
**

`A

$$

⌦ A/I
u ⌦ id

//

u ⌦ id
**

A/I ⌦ A/I

m

✏✏

A ⌦ A

id ⌦ ⇡A

I
//

m
✏✏

A ⌦ A/I

⇡A

I
⌦ id 44

⌦ A/I

`A/I

33A

⇡A

I
// A/I

A similar computation yields the right unitality axiom for u. ⇤

Continuing Examples 4.1 and 4.10, we have that an algebra A and the zero
algebra are quotient algebras of A by the zero ideal and by A, respectively. See
Exercise 4.15(ii,iii) and Exercise 4.44 (after reading §4.6) for more examples.

§4.3. Algebras via adjunction

We study here two constructions of algebras in monoidal categories that arise via
an adjunction of functors (see §2.5): coinduced algebras and monads.

§4.3.1. Coinduced algebras via Doctrinal Adjunction

Recall from Proposition 4.3 that monoidal functors send algebras to algebras. Now
to proceed, we consider a version of Doctrinal Adjunction due to Kelly [1974].

Theorem 4.22 (Doctrinal Adjunction, special case). Let C and D be monoidal
categories, and take an adjunction between the underlying categories,

(F : C ! D) a (G : D ! C),

with ⌘ : IdC ) GF (unit), " : FG ) IdD (counit). Assume that F is strong monoidal.
Then, the following statements hold.
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C������ 4. A������� �� �������� ����������

(a) We have that G is monoidal, with G
(2)
Y,Y 0 (for Y, Y 0 2 D) and G

(0) defined as follows:

G
(2)
Y,Y0 : G(Y) ⌦C G(Y 0)

⌘G(Y)⌦G(Y0)
**

G

⇣
FG(Y) ⌦D FG(Y 0)

⌘

G("Y ⌦ "Y0 )
))

GF

⇣
G(Y) ⌦C G(Y 0)

⌘

G

⇣
F

(�2)
G(Y),G(Y0)

⌘
44

G

⇣
Y ⌦D Y

0
⌘
,

G
(0) : C ⌘

// GF

⇣
C
⌘G

⇣
F

(�0)
⌘

// G

⇣
D
⌘
.

(b) We have that ⌘ and " are monoidal, that is, for all X, X0 2 C and Y, Y 0 2 D:

⌘X⌦X0 Id(2)
X,X0 = (GF)(2)

X,X0 (⌘X ⌦ ⌘X0 ), (GF)(0) = ⌘ C Id(0),

"Y⌦Y0 (FG)(2)
Y,Y0 = Id(2)

Y,Y0 ("Y ⌦ "Y0 ), Id(0) = " D (FG)(0).

(c) For A 2 Alg(C) and B 2 Alg(D), the component morphisms ⌘A : A ! GF(A) and
"B : FG(B)! B are algebra morphisms in C and D, respectively.

(d) We have that ⌘A is monic (resp., split-epic, an iso) when F is faithful (resp., full, fully
faithful). Likewise, "B is epic (resp., split-monic, an iso) when G is faithful (resp., full,
fully faithful).

Proof. First, we sketch the proof of part (a), and leave the details to the reader. The
monoidal associativity axiom holds by the commutative diagram in Figure 4.8 (in
the strict case via Theorem 3.26). Moreover, the monoidal left unit axiom holds by
the commutative diagram in Figure 4.7. We leave the monoidal right unit axiom
to the reader as part of Exercise 4.16. Parts (b,c) comprise Exercise 4.17. Part (d)
follows from Exercise 2.41(a,b). ⇤

⌦G(Y)
`G(Y)

,,

⌘ ⌦ id

✏✏

G
(0) ⌦ id

⇢⇢

⌘ ⌦G(Y)

))

G(Y) =
//

⌘G(Y)

tt

G(Y)

GFG(Y)

G("Y )

11

G[ ⌦ FG(Y)]
G(`FG(Y))

oo

GF( ) ⌦G(Y)
G(F(�0)) ⌦ id
✏✏

GF[ ⌦G(Y)]
GF(G(0) ⌦ id)

✏✏

GF(`G(Y))
OO

G(F(�2)
,G(Y))

// G[F( ) ⌦ FG(Y)]

G(F(�0) ⌦ id)
OO

G[F(G(0) ⌦ id)]
✏✏

G( ) ⌦G(Y)
⌘G( )⌦G(Y)

//

G
(2)
,Y

33

GF[G( ) ⌦G(Y)]
G(F(�2)

G( ),G(Y))
// G[FG( ) ⌦ FG(Y)]

G(" ⌦ "Y )
// G( ⌦ Y)

G(`Y )

OO

Figure 4.7: Doctrinal Adjunction: left unitality. The left and bottom regions com-
mute by definition. The left internal and top regions (resp., bottom internal)
commute by the naturality of ⌘ (resp., of F

(�2)). The right region commutes by
the naturality of F

(�2) and of ", and a triangle identity. The triangle is a triangle
identity. The middle region commutes by the left unit axiom of F.
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G(Y) ⌦G(Y 0) ⌦G(Y 00)
G

(�2)
Y,Y0 ⌦ id

,,

⌘• ⌦ id
//

id ⌦G
(�2)
Y0 ,Y00

��

id ⌦ ⌘•

✏✏

⌘•

))

GF(G(Y) ⌦G(Y 0)) ⌦G(Y 00)
G(F(�2)

•,• ) ⌦ id
// G(FG(Y) ⌦ FG(Y 0)) ⌦G(Y 00)

G("• ⌦ "•) ⌦ id
// G(Y ⌦ Y

0) ⌦G(Y 00)

⌘•

✏✏

G
(�2)
Y⌦Y0 ,Y00

  

G(Y) ⌦GF(G(Y 0) ⌦G(Y 00))

id ⌦G(F(�2)
•,• )

✏✏

GF[G(Y) ⌦G(Y 0) ⌦G(Y 00)]
GF(⌘• ⌦ id)

//

GF(id ⌦ ⌘•)

✏✏

GF[GF(G(Y) ⌦G(Y 0)) ⌦G(Y 00)]
GF[G("• ⌦ "•) F

(�2)
•,• ⌦ id]
//

G(F(�2)
•,• )

✏✏

GF[G(Y ⌦ Y
0) ⌦G(Y 00)]

G(F(�2)
•,• )

✏✏

G(Y) ⌦G(FG(Y 0) ⌦ FG(Y 00))

id ⌦G("• ⌦ "•)

✏✏

G[FGF(G(Y) ⌦G(Y 0)) ⌦ FG(Y 00)]

G[F(�2)
•,• "• ⌦ id]

✏✏

G[FG(("• ⌦ "•) F
(�2)
•,• ) ⌦ id]
//

G[FG(Y ⌦ Y
0) ⌦ FG(Y 00)]

G("• ⌦ "•)

✏✏

GF[G(Y) ⌦GF(G(Y 0) ⌦G(Y 00))]

GF[id ⌦G(("• ⌦ "•)F(�2)
•,• )]

✏✏

G[(id ⌦ "• ⌦ id) (id ⌦ F
(�2)
•,• ) F

(�2)
•,• ]

//

G[FG(Y) ⌦ FG(Y 0) ⌦ FG(Y 00)]

G("• ⌦ "• ⌦ "•)

))

G(Y) ⌦G(Y 0 ⌦ Y
0)

G
(�2)
Y,Y0⌦Y00

22

⌘•
// GF[G(Y) ⌦G(Y 0 ⌦ Y

00)]
G(F(�2)

•,• )
// G[FG(Y) ⌦ FG(Y 0 ⌦ Y

00)]
G("• ⌦ "•)

// G(Y ⌦ Y
0 ⌦ Y

00)

Figure 4.8: Doctrinal Adjunction: associativity. Bullets replace subscripts. The outer regions commute by
definition. The left (resp., top, right, bottom-right, bottom) internal region commutes by the naturality of ⌘
(resp., of ⌘, of F

(�2), of ", of " and F
(�2)). The middle region commutes by the naturality of ⌘ and of F

(�2), a
triangle identity, and the associativity axiom of F.
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Cooking up examples of algebras via Doctrinal Adjunction is Exercise 4.19. But
our main example here involves restriction and coinduction functors from §1.4.4.

Example 4.23. Take a morphism � : H ! G of finite groups. Then, we have the
adjunction given below (cf., Exercise 2.45(b)):

(ResG

H
: G-Mod! H-Mod) a (CoindG

H
: H-Mod! G-Mod).

Indeed, by the material in §1.4.4, we have that:

• ResG

H

⇣
V, .G

V
: G ⇥ V ! V

⌘
=

⇣
V, .H

V
:= .G

V
(� ⇥ idV ) : H ⇥ V ! V

⌘
; and

• CoindG

H
(HW) = HomH-Mod(kG,W), where (g . f )(g0) := f (g0g) for g, g0 2 G and

f 2 HomH-Mod(kG,W).

We also have that ResG

H
is strong monoidal [Exercise 4.8(c.i)]. Now CoindG

H
is

monoidal by Doctrinal Adjunction. So by Proposition 4.3, we get that:

CoindG

H
(A) := HomH-Mod(kG, A) 2 Alg(G-Mod), for A 2 Alg(H-Mod).

We refer to CoindG

H
(A) as a coinduced algebra of A.

In particular, if H = hei, and A is the unit algebra k in Alg(Vec) [Example 4.1(a)],
then (kG)⇤ := HomVec(kG, k) 2 Alg(G-Mod) (cf., Exercise 4.2). The details of this
discussion are explored in Exercise 4.18.

§4.3.2. Monads via adjunction

We turn our attention to algebras in the (strict) monoidal category of endofunctors,
especially those that we build with adjunctions. Consider the terminology below.

A monad on a categoryA is an algebra in the monoidal category (End(A), �, IdA).
Namely, a monad consists of the following data.

(a) An endofunctor T : A! A.

(b) (multiplication natural transformation) A natural transformation µ : T�T)T .

(c) (unit natural transformation) A natural transformation ⌘ : IdA ) T .

This data must satisfy the commutative diagrams below for associativity and
unitality. Here, T

n denotes the n-fold composition of T with itself. Moreover,
•) •) • represents the vertical composition of natural transformations.

T
3 µ ⇤ T

+3

T ⇤ µ
↵◆

T
2

µ

↵◆

T
⌘ ⇤ T

+3

IdT

 (

T
2

µ

↵◆

T
2

µ

↵◆

T
T ⇤ ⌘
ks

IdT

v~
T

2 µ
+3 T T T
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That is, for all X 2 A, the diagrams below commute.

T
3(X)

µT (X)
//

T (µX)
✏✏

T
2(X)
µX

✏✏

T (X)
⌘T (X)
//

idT (X)
##

T
2(X)
µX

✏✏

T
2(X)
µX

✏✏

T (X)
T (⌘X)
oo

idT (X)
{{

T
2(X)

µX
// T (X) T (X) T (X)

A monad morphism between two monads (T, µ, ⌘) and (T 0, µ0, ⌘0) on A is a
natural transformation � : T ) T

0 such that the following diagrams commute.

T � T
µ

+3

� �hor �
↵◆

T

�
↵◆

IdA
⌘

+3

⌘0
#+

T

�
↵◆

T
0 � T

0 µ0
+3 T 0 T

0

That is, for all X 2 A, the diagrams below commute.

T (T (X))
µX

//

�T 0 (X) � T (�X )
= T

0(�X ) � �T (X)
✏✏

T (X)

�X

✏✏

X
⌘X
//

⌘0
X

##

T (X)

�X

✏✏

T
0(T 0(X))

µ0
X
// T
0(X) T

0(X)

With the objects and morphisms defined above, we can consider the category:

Monad(A) := Alg((End(A), �, IdA)).

Example 4.24. The identity monad on A is given as the endofunctor T = IdA,
with multiplication natural transformation µ = {µX := idX}X2A, and unit natural
transformation ⌘ = {⌘X := idX}X2A. We write this as Id 2 Monad(A).

Example 4.25. Given an algebra (A,m, u) in a strict monoidal category (C,⌦, ),
the endofunctor A ⌦ � : C ! C is a monad on C with operations:

µ = {µX := m ⌦ idX : A ⌦ A ⌦ X ! A ⌦ X}X2C ,

⌘ = {⌘X := u ⌦ idX : X ! A ⌦ X}X2C .

Namely, the associativity and unitality axioms of (A ⌦ �, µ, ⌘) follow from the
associativity and unitality axioms of (A,m, u).

Conversely, given a monad (A ⌦ �, µ, ⌘) on C, we obtain that (A, µ , ⌘ ) is an
algebra in C. Verifying the details is Exercise 4.20.

Otherexamples ofmonads are explored in Exercises 4.21–4.23. The next example
however, is most important, as it gives an abundance of monads in the literature.

Example 4.26. For an adjunction (F : A! B) a (G : B ! A), we obtain that

(GF, G"F, ⌘) 2 Monad(A).
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Here, G"F := G ⇤ " ⇤ F. We also abuse the notation "⌘" using it as both the unit of
the monad and the unit of the adjunction, which happen to be equal in this case.
We refer to this construction as an adjunction monad. Moreover, Examples 4.24
and 4.25 are special cases of this construction. Checking the details is Exercise 4.24.

On the other hand, the endofunctor FG on B, for F and G above, admits the
structure of a comonad on B. This will be discussed in a future volume.

We also note that a converse of the result in Example 4.26 will be presented in
§4.4.3ii. Namely, we will see that every monad arises from an adjunction.

§4.4. Modules and bimodules in monoidal categories

Next, we discuss modules and bimodules over algebras in monoidal categories,
building on the material in §1.3 for (bi)modules over k-algebras.

Remark 4.27. Towards generalizing the material in §1.3.1, one may want to define
a representation of an algebra A in a monoidal category C to be an object X in C

equipped with an algebra morphism A! EndC(X) in C. However, EndC(X) is not
necessarily an algebra (nor an object) in C. To make progress, one can assume that
C is enriched over itself, and use the C-endomorphism algebra presented in §4.1.3.
But we will skip this here, and encourage the reader to explore this if curious.

§4.4.1. Modules

i. Definitions

A left module over an algebra (A,m, u) in C consists of the following data.

(a) An object M in C.

(b) (left action morphism) A morphism . := .M := .A

M
: A ⌦ M ! M in C.

This data must satisfy the commutative diagrams below.

(A ⌦ A) ⌦ M
aA,A,M

//

m ⌦ id
✏✏

A ⌦ (A ⌦ M)

id ⌦ .
✏✏

⌦ M
u ⌦ id

//

`M

��

A ⌦ M

.

✏✏

A ⌦ M

.
%%

A ⌦ M

.
yy

M M

(associativity axiom) (left unitality axiom)

222

Copyright ©2024 Chelsea Walton. Free version by the courtesy of CW and 619 Wreath. https://math.rice.edu/~notlaw/symalgbook.html. 

Enjoy this textbook? Physical copies are available for purchase at https://www.619wreath.com/ and on Amazon. 
<< Please ask your local academic librarian to order a copy for circulation. >> 



4.4. M������ ��� ��������� �� �������� ����������

Likewise, a right module over A 2 Alg(C) consists of the following data.

(a) An object M in C.

(b) (right action morphism) A morphism / := /M := /A

M
: M ⌦ A! M in C.

This data must satisfy the commutative diagrams below.

M ⌦ (A ⌦ A)
a
�1
M,A,A

//

id ⌦ m
✏✏

(M ⌦ A) ⌦ A

/ ⌦ id
✏✏

M ⌦ id ⌦ u
//

rM

��

M ⌦ A

/

✏✏

M ⌦ A

/
%%

M ⌦ A

/
yy

M M

(associativity axiom) (right unitality axiom)

The string diagrams for modules in strict C are given in Figure 4.9.

M

. / left associativity left unitality

A

M

= = =

M A

M

right associativity

=

right unitality

Figure 4.9: String diagrams for modules in (strict) monoidal categories.

Examples of (left) modules over algebras in monoidal categories include the
following. Other examples are explored in Exercise 4.26.

Example 4.28. Let (A,m, u) be an algebra in C.

(a) The regular left A-module in C is the object A := Areg with left action . := m.
Indeed, the left module associativity and left module unitality axioms hold
by the associativity and left unitality axioms for the algebra (A,m, u).

(b) It follows from definition that a left ideal (I, ◆A
I

: I ! A, �A

I
: A ⌦ I ! I) of A is

a left A-module in C with M := I and . := �A

I
.

(c) The free left A-module on an object X in C is the object A⌦ X with left action
. := (m ⌦ idX) a

�1
A,A,X : A ⌦ (A ⌦ X)! A ⌦ X. See Exercise 4.25.

Given two left A-modules (M, .) and (M
0, .0) in C, a morphism � : M ! M

0 in C

is a left A-module morphism if the following diagram commutes.

A ⌦ M
.

//

id ⌦ �
✏✏

M

�
✏✏

A ⌦ M
0 .0

// M
0
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Now we can form the category of left A-modules in C:

• A-Mod(C): left A-modules in C and their morphisms in C.

We denote the collection of left A-module morphisms (M, .) ! (M
0, .0) by

HomA-Mod(C)(M,M0), which is a subcollection of HomC(Mobj,M
0
obj).

A monic (resp., epic, iso-) morphism of left A-modules in C is a left A-module
morphism that is a mono (resp., an epi, an iso) in C.

Example 4.29. Take the unit algebra ( , ` , id ) in C [Example 4.1(a)]. We identify
-Mod(C) with C. Namely, if (M, .M) 2 -Mod(C), then the left unitality axiom

implies that .M = .M (id ⌦ idM) = .M (u ⌦ idM) = `M .

Likewise, the discussion above can be adapted for right A-modules in C, and
we can form the category of right A-modules in C:

• Mod-A(C): right A-modules in C and their morphisms in C.

ii. Substructures and quotient structures

Standing hypothesis. Assume that C is abelian monoidal as in §3.1.3.

Take a left A-module (M, .M) in C. A left A-submodule of (M, .M) consists of:

(a) A subobject (N, ◆M
N

: N ! M) of M in C,

(b) A left action morphism, .N : A ⌦ N ! N, in C

such that the following conditions hold:

• (N, .N) is a left A-module in C; and

• ◆M
N

is a morphism of left A-modules in C.

Given a left A-submodule (N, ◆M
N
, .N) of (M, .M) in C, a left A-quotient module

of M by N consists of:

(a) An object M/N := coker(◆M
N

), equipped with morphism ⇡M

N
: M ! M/N in C,

(b) A left action morphism .M/N : A ⌦ M/N ! M/N in C,

such that the following conditions hold:

• (M/N, .M/N) is a left A-module in C; and

• ⇡M

N
is a morphism of left A-modules in C.

Note that if the endofunctor A ⌦ � on C is right exact, then such a left action
morphism .M/N : A ⌦ M/N ! M/N exists. See Exercise 4.27 and Remark 4.14.

Likewise, we can define a right A-submodule and a right A-quotient module
of a right A-module in C.
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iii. External action

So far, we have discussed categories of modules within C (i.e., internal actions),
but these categories of modules also arise as modules over C (i.e., external action).

Proposition 4.30. Let A be an algebra in C. Then, A-Mod(C) (resp.,Mod-A(C)) is a right
(resp., left) C-module category as in §3.3.1. Here,

‹A : A-Mod(C) ⇥ C ! A-Mod(C), ((M, .), X) 7! (M ⌦ X, I := (. ⌦ idX) a
�1
A,M,X),

“A : C ⇥Mod-A(C)! Mod-A(C), (X, (M, /)) 7! (X ⌦ M, J := (idX ⌦ /) aX,M,A).
⇤

We leave the proof of this result to Exercise 4.28. We also have that the converse
of this result holds under certain conditions. Namely, there are conditions when a
C-module category is equivalent to a category of modules over an algebra A in C.
Here, A is an internal End algebra, and we will discuss this in detail later in §4.8.

iv. Properties

Next, we discuss some properties of A-Mod(C) and Mod-A(C) that are induced by
properties of C and A. More properties of A-Mod(C) will be discussed later in §4.9.

Proposition 4.31. Take A 2 Alg(C). Then, the following statements hold.

(a) A-Mod(C) (resp., Mod-A(C)) is preadditive if C is preadditive and A ⌦ � : C ! C

(resp., � ⌦ A : C ! C) is additive.

(b) A-Mod(C) (resp., Mod-A(C)) is linear if C is linear and the functor A ⌦ � : C ! C

(resp., � ⌦ A : C ! C) is linear.

(c) A-Mod(C) (resp.,Mod-A(C)) is additive if C is additive and the functor A⌦� : C ! C

(resp., � ⌦ A : C ! C) is additive.

(d) A-Mod(C) (resp., Mod-A(C)) is abelian if C is abelian and the functor A ⌦ � : C ! C

(resp., � ⌦ A : C ! C) is additive and exact.

Proof. We sketch the proof for left modules, and leave the rest of the details as
Exercise 4.29. To start, we leave the proof of parts (a,b) as an exercise.

For part (c), assume that C is additive. Part (a) implies that A-Mod(C) is preaddi-
tive. Next, take the zero object 0 of C. Check that (0, A⌦0

!
0) 2 A-Mod(C); this serves

as the zero object of A-Mod(C). Moreover, for modules (M1, .1), (M2, .2) 2 A-Mod(C),
their binary biproduct is defined by

(M1, .1) ⇤ (M2, .2) := (M1 ⇤ M2, I := (.1 ⇤ .2) ),

where  : A⌦ (M1⇤M2) ⇠! (A⌦M1)⇤ (A⌦M2) exists by Lemma 3.4. Thus, A-Mod(C)
is additive.
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For part (d), recall that C is abelian and A ⌦ � : C ! C is exact. Part (c) implies
that A-Mod(C) is additive. Take a morphism � : (M, .)! (M

0, .0) 2 A-Mod(C). Since
C is abelian, the underlying morphism �obj: M ! M

0 in C has a kernel and cokernel
in C. Using the right exactness of (A ⌦ �), we equip coker(�obj) with an action
map I that makes it a left A-module in C. (See Lemma 4.15 and other results in
§4.2.2 for similar arguments.) Here, (coker(�obj),I) is the cokernel of � in A-Mod(C).
Likewise, (A ⌦ �) being left exact implies that A ⌦ ker(�obj) = ker(idA ⌦ �). This
yields an action morphism A ⌦ ker(�obj)! ker(�obj) by the universal property of
kernels, which then defines the kernel of � in A-Mod(C). Thus, each morphism
in A-Mod(C) has a kernel and a cokernel in A-Mod(C). We leave to the reader to
show that every mono (resp., epi) in A-Mod(C) is a kernel (resp., cokernel) of a
morphism in A-Mod(C). Hence, A-Mod(C) is abelian. ⇤

Note that for part (d), if C is assumed to be abelian and rigid, then the functors
(A ⌦ �) and (� ⌦ A) are exact for free by Proposition 3.68.

§4.4.2. Bimodules

i. Definitions

Take algebras (A,mA, uA), (B1,m1, u1), (B2,m2, u2) in C. A (B1, B2)-bimodule in C

consists of the following data.

(a) An object M in C.

(b) (left action morphism) A morphism . : B1 ⌦ M ! M in C.

(c) (right action morphism) A morphism / : M ⌦ B2 ! M in C.

This data must satisfy the conditions below.

• (M, .) 2 B1-Mod(C).

• (M, /) 2 Mod-B2(C).

• (middle associativity axiom) / (. ⌦ idB2 ) = . (idB1 ⌦ /) aB1,M,B2 , depicted in
Figure 4.10 in the strict case.

M B2B1

=

M B2B1

Figure 4.10: Middle associativity constraint for bimodules in C.

We refer to an (A, A)-bimodule in C as an A-bimodule in C.

226

Copyright ©2024 Chelsea Walton. Free version by the courtesy of CW and 619 Wreath. https://math.rice.edu/~notlaw/symalgbook.html. 

Enjoy this textbook? Physical copies are available for purchase at https://www.619wreath.com/ and on Amazon. 
<< Please ask your local academic librarian to order a copy for circulation. >> 



4.4. M������ ��� ��������� �� �������� ����������

Example 4.32. The following are examples of bimodules in monoidal categories.

(a) The regular A-bimodule in C is Areg = (A, . := mA, / := mA).

(b) An ideal (I, ◆A
I

: I ! A, �A

I
: A ⌦ I ! I, ⇢A

I
: I ⌦ A ! I) of A is an A-bimodule

in C with M := I and . := �A

I
and / := ⇢A

I
.

(c) The free (B1, B2)-bimodule on an object X in C is (B1 ⌦ X) ⌦ B2 with actions:

. := (m1 ⌦ idX⌦B2 ) (a�1
B1,B1,X

⌦ idB2 ) a
�1
B1,B1⌦X,B2

: B1 ⌦ ((B1 ⌦ X) ⌦ B2)! (B1 ⌦ X) ⌦ B2,

/ := (idB1⌦X ⌦ m2) aB1⌦X,B2,B2 : ((B1 ⌦ X) ⌦ B2) ⌦ B2 ! (B1 ⌦ X) ⌦ B2.

Given (B1, B2)-bimodules (M, ., /) and (M
0, .0, /0) in C, a morphism � : M ! M

0

in C is a (B1, B2)-bimodule morphism if it is in B1-Mod(C) and in Mod-B2(C).

Now we form the category of (B1, B2)-bimodules in C:
• (B1, B2)-Bimod(C): (B1, B2)-bimodules in C and their morphisms in C.

The collection of (B1, B2)-bimodule morphisms (M, ., /)! (M
0, .0, /0) is denoted

by Hom(B1,B2)-Bimod(C)(M,M0), which is a subcollection of HomC(Mobj,M
0
obj).

A (B1, B2)-bimodule morphism is monic (resp., epic, an iso) it if is a mono (resp.,
an epi, an iso) in C.

ii. Substructures and quotient structures

Standing hypothesis. Assume that C is abelian monoidal as in §3.1.3.

Take a (B1, B2)-bimodule (M, .M , /M) in C. A (B1, B2)-subbimodule of (M, .M , /M)
is a subobject (N, ◆M

N
: N ! M) in C equipped with morphisms .N and /N in C such

that (N, .N) 2 B1-Mod(C), and (N, /N) 2 Mod-B2(C), and ◆M
N
2 (B1, B2)-Bimod(C).

Given a (B1, B2)-subbimodule (N, ◆M
N
, .N , /N) of (M, .M , /M) in C, we have that a

(B1, B2)-quotient bimodule of M by N is an object M/N := coker(◆M
N

), equipped
with a morphism ⇡M

N
: M ! M/N in C, and action morphisms .M/N and /M/N in C,

such that ⇡M

N
2 (B1, B2)-Bimod(C).

iii. On external action

In contrast to Proposition 4.30 for external actions on categories on modules,
(B1, B2)-Bimod(C) is not a C-bimodule category (as in §3.3.3) in a canonical way.
In fact, we will see later in §4.7.1 that (B1, B2)-Bimod(C) is equivalent to the cate-
gory RexMod-C (B2-Mod(C), B1-Mod(C)) of right exact C-module functors between
B2-Mod(C) and B1-Mod(C). So, one natural way of making (B1, B2)-Bimod(C) is a bi-
module category is to use Example 3.22, with B1 = B2 =: A, to get that A-Bimod(C)
is a bimodule category over itself. We will also see in §4.5 that A-Bimod(C) admits
the structure of a monoidal category.
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iv. Properties

We now present some properties of A-Bimod(C) that are induced by properties of
C and A below (cf. Proposition 4.31). We leave the proof to the reader.

Proposition 4.33. Take B1, B2 2 Alg(C). Then, the following statements hold.

(a) (B1, B2)-Bimod(C) is preadditive if C is preadditive and (B1 ⌦ �), (� ⌦ B2) : C ! C

are additive.

(b) (B1, B2)-Bimod(C) is linear if C is linear and (B1 ⌦ �), (� ⌦ B2) : C ! C are linear.

(c) (B1, B2)-Bimod(C) is additive if C is additive and (B1 ⌦ �), (� ⌦ B2) : C ! C are
additive.

(d) (B1, B2)-Bimod(C) is abelian if C is abelian and if (B1 ⌦ �), (� ⌦ B2) : C ! C are
additive and exact. ⇤

Note that if C is assumed to be abelian and rigid in part (d), then the functors
(B1 ⌦ �) and (� ⌦ B2) are exact for free by Proposition 3.68. Other features of
A-Bimod(C) will be studied in §4.10.1.

§4.4.3. Eilenberg–Moore categories

Next, we turn our attention to modules over the monads introduced in §4.3.2.
Again, we work in the strict monoidal case here. To begin, take a monad T on A,
that is, an algebra T := (T, µ, ⌘) in the monoidal category (End(A), �, IdA).

i. Modules over monads

First, we consider the category of left T -modules in End(A), with objects and
morphisms defined as follows.

A left T -module is a pair (V, �), where V : A ! A is an endofunctor and
� : TV ) V is an action natural transformation, satisfying the commutative
diagrams below.

T
2
V

µ ⇤ V
+3

T ⇤ �
↵◆

TV

�
↵◆

V
⌘ ⇤ V

+3

IdV

$,

TV

�
↵◆

TV
� +3 V V

Here, •) •) • represents the vertical composition of natural transformations.
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That is, for all X 2 A, the diagrams below commute.

T
2
V(X)

µV(X)
//

T (�X)
✏✏

TV(X)

�X

✏✏

V(X)
⌘V(X)

//

idV(X)
))

TV(X)

�X

✏✏

TV(X)
�X

// V(X) V(X)

A T -module morphism between left T -modules (V, �) and (V 0, �0) is a natural
transformation � : V ) V

0 such that � �ver � = �0 �ver (IdT �hor �). That is, for each
X 2 A, the diagram below commutes.

T (V(X))
�X

//

T (�X)
✏✏

V(X)
�X

✏✏

T (V 0(X))
�0

X
// V
0(X)

But for applications and for a richer theory, it is very common to use a subcate-
gory of T -Mod(End(A)) consisting of endofunctors V of A that sends each object
X 2 A to a fixed object Y 2 A. This is studied in the next part.

ii. Eilenberg-Moore (EM-)categories

An Eilenberg-Moore (EM-)object of T consists of the following data:

(a) An object Y in A,

(b) An action morphism ⇠ := ⇠Y : T (Y)! Y in A,

such that the following diagrams commute.

T
2(Y)

µY
//

T (⇠)
✏✏

T (Y)

⇠
✏✏

Y
⌘Y

//

idY

((

T (Y)

⇠
✏✏

T (Y)
⇠

// Y Y

EM-objects of T are also known as T -algebras.

A morphism between EM-objects (Y, ⇠) and (Y 0, ⇠0) is a morphism � : Y ! Y
0

in A, such that the following diagram commutes.

T (Y)
⇠

//

T (�)
✏✏

Y

�
✏✏

T (Y 0)
⇠0

// Y
0

Now we can form the Eilenberg-Moore (EM-)category of a monad T on A:

• A
T : Eilenberg-Moore objects of T on A and their morphisms.

Continuing Examples 4.24 and 4.25 of monads in §4.3.2, we have the following
examples of EM-categories. Verifying these examples is Exercise 4.30.
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Example 4.34. Given Id 2 Monad(A) from Example 4.24, we obtain that AId � A.

Example 4.35. Given (A ⌦ �, µ, ⌘) 2 Monad(C) from Example 4.25, we obtain that

C
(A⌦�) � A-Mod(C).

Remark 4.36. With Example 4.35, questions about algebras A and their modules in
monoidal categories can be translated to questions about monads (A⌦�) and their
EM-categories. For instance, the study of properties of A-Mod(C) inherited from
both C and the algebra A in C (e.g., Proposition 4.31) is a study of the properties
of C(A⌦�) inherited from both C and the monad (A ⌦ �) on C.

See Exercises 4.31 and 4.32 to explore more examples of EM-categories.

Next, as promised in §4.3.2, we will show that not only do adjunctions produce
monads, but we also get that every monad arises from an adjunction. This will
be achieved by generalizing the Free-Forget adjunction,

(Free : C ! A-Mod(C)) a (Forg : A-Mod(C)! C),

introduced in Exercise 4.25, in view of Example 4.35 above.

Theorem 4.37. Let (T, µ, ⌘) be a monad on A. Then, the following statements hold.

(a) There exists a forgetful functor:

ForgT : AT ! A, (Y, ⇠) 7! Y.

(b) There exists a free functor:

FreeT : A! A
T , Y 7! (T (Y), µY ).

Here, (T (Y), µY ) is known as the free EM-object of T on Y .

(c) The functors above form an adjunction: FreeT a ForgT .

(d) We recover the monad T as the monad ForgT � FreeT on A from Example 4.26.

Proof. We leave the proof of parts (a), (b), and (d) to the reader as Exercise 4.33.
For part (c), we need to build a unit ⌘T and counit "T of the desired adjunction.

First, define the components of ⌘T to be the morphisms in A below:

⌘T

Y
:= ⌘Y : Y ! T (Y) = ForgT (FreeT (Y)),

for Y 2 A. Next, define the components of "T to be the morphisms in A
T below:

"T

(Y,⇠) : FreeT (ForgT (Y, ⇠)) = (T (Y), µY )! (Y, ⇠),
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a morphism in A
T given by ⇠ : T (Y)! Y , since ⇠ � µY = ⇠ � T (⇠). We piece together

these components to build the unit and counit of FreeT a ForgT :

⌘T : IdA ) ForgT � FreeT , "T : FreeT � ForgT ) IdAT .

Lastly, we need to show that the adjunction triangle identities hold; we will
verify one identity and leave the other to the reader. For Y 2 A, we have that

["T

FreeT (Y) � FreeT (⌘T

Y
)](T (Y), µY ) = ["T

(T (Y), µY ) � FreeT (Y ! T (Y))](T (Y), µY )

= "T

(T (Y), µY )(T
2(Y), µT (Y)) = [Id(T (Y), µY )](T (Y), µY ).

The remainder of the proof of part (c) is part of Exercise 4.33. ⇤

iii. Beck’s Monadicity Theorem

Recall that an adjunction (F : A! B) a (G : B ! A) yields an adjunction monad
GF [Example 4.26]. Further, by Theorem 4.37, we get an adjunction

(FreeGF : A! A
GF) a (ForgGF : AGF ! A),

where GF = ForgGF � FreeGF . To contrast these two adjunctions involving A, one
uses the comparison functor, defined as follows:

K
GF : B ! A

GF , Y 7!
⇣
G(Y), G("FaG

Y
) : GFG(Y)! G(Y)

⌘
.

We call F a G monadic if K
GF is an equivalence of categories. For instance,⇣

(A⌦�) : C ! A-Mod(C)
⌘
a
⇣
Forg : A-Mod(C)! C

⌘
is monadic due to Example 4.35.

Precise conditions to get that a comparison functor is an equivalence (or in
some references, an isomorphism) of categories is provided by the theorem below.
Towards this, we consider certain coequalizers in categories. For some parallel
morphisms f , g : X ! Y in a category, �coeq( f , g), ↵ : Y ! coeq( f , g)

� is said
to be split if there exist morphisms t : Y ! X and s : coeq( f , g) ! Y such that
↵s = idcoeq( f ,g), and f t = idY , and gt = s↵.

Theorem 4.38 (Beck’s Monadicity Theorem). An adjunction

(F : A! B) a (G : B ! A)

is monadic if and only if the following conditions hold:

(a) G reflects isos; and

(b) Given morphisms f , g : X ! Y in B such that G( f ),G(g) : G(X) ! G(Y) has a
split coequalizer in A, there exists a coequalizer coeq( f , g) in B, and we obtain that
G(coeq( f , g)) � coeq(G( f ),G(g)) in A. ⇤

We refer to Section VI.7 of MacLane [1971] and Section 6.6 of Richter [2020] for
the proof and further details.
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iv. Morphisms of monads versus functors between EM-categories

Next, we will see that a morphism of monads yields a functor between EM-
categories, similar to how a morphism of k-algebras yields a functor between
categories of modules over k (see the restriction functor from §2.3.2 and §1.4.4).
Conversely, we will also see that certain functors between EM-categories come
from morphisms of monads. These correspondences are contravariant.

Theorem 4.39. Let (T, µ, ⌘) and (T 0, µ0, ⌘0) be monads on A. Also, use F (resp., U) to
denote the free (resp., forgetful) functors constructed in Theorem 4.37. Then, the following
statements hold.

(a) A monad morphism � : T ) T
0 in A yields a functor:

�# : AT
0 ! A

T , (Y, ⇠0 : T
0(Y)! Y) 7! (Y, ⇠0 �Y : T (Y)! Y)

Moreover, U
T
0
= U

T �# as functors from A
T
0 to A.

(b) Suppose that  : AT
0 ! A

T is a functor, such that the diagram below commutes.

A
T
0  

//

U
T
0

""

A
T

U
T

||

A

Then, via Theorem 4.37(d),  yields a morphism of monads,

 # : T = U
T

F
T

U
T

F
T ⌘T

0

+3
U

T
F

T
U

T
0
F

T
0

|| hyp.

U
T

F
T

U
T F

T
0

U
T "T F

T
0

+3
U

T F
T
0

|| hyp.

U
T
0
F

T
0
= T

0.

Here, we suppress the notation ⇤ for whiskering.

(c) We obtain that (�#)# = � as morphisms of monads on A, and ( #)# =  as functors
between EM-categories over A.

Proof. We will provide some details of the proof of parts (a) and (b) below, and
leave the rest of the details and part (c) to the reader as Exercise 4.34.

For part (a), note that (Y, ⇠ := ⇠0 �Y ) 2 AT via the commutative diagrams below.

T (T (Y))
µY

//

T (⇠)

!!

T (�Y )
✏✏

T (Y)

�Y

✏✏

⇠

||

Y

⌘Y
//

⌘0
Y

''

idY

  

T (Y)

�Y

✏✏

⇠

||

T (T 0(Y))
�T 0(Y)

//

T (⇠0)
✏✏

T
0(T 0(Y))

µ0
Y
//

T
0(⇠0)
✏✏

T
0(Y)

⇠0

✏✏

T
0(Y)

⇠0

✏✏

T (Y)
�Y

//

⇠
88

T
0(Y)

⇠0
// Y Y
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Indeed, for the left diagram: the top region commutes due to � being a monad
morphism; the left region commutes due to the naturality of �; and the right
region commutes due to (Y, ⇠0) 2 A

T
0 . Moreover, for the right diagram: the top

region commutes since � is a monad morphism; and the bottom region commutes
since (Y, ⇠0) 2 AT

0 . We leave the rest of the proof of part (a) to the reader.
For part (b), we have that  # is a monad morphism, that is,  # �ver ⌘ = ⌘0 and

 # �ver µ = µ0 �ver ( # �hor  #) via the diagrams below.

IdA
⌘ = ⌘T

+3

⌘0 = ⌘T
0

↵◆

U
T

F
T = T

U
T

F
T ⌘T

0

↵◆
 #

px

U
T
0
F

T
0 ⌘T

U
T
0
F

T
0
= ⌘T

U
T F

T
0

+3 UT
F

T
U

T
0
F

T
0
= U

T
F

T
U

T F
T
0

U
T "T F

T
0

↵◆
U

T F
T
0
= U

T
0
F

T
0
= T

0

Here, the top region commutes by the naturality of ⌘T , and the bottom triangle
commutes by an adjunction triangle axiom.

T
2 = U

T
F

T
U

T
F

T

µ '/

U
T "T

F
T

+3

 # �hor  #

#+

U
T

F
T

U
T

F
T ⌘T

0

↵◆

U
T

F
T = T

 #

u}

U
T

F
T ⌘T

0

↵◆
...UT

F
T

U
T

F
T

U
T
0
F

T
0
= U

T
F

T
U

T
F

T
U

T F
T
0U

T "T
F

T
U

T F
T
0
+3

U
T

F
T

U
T "T F

T
0

↵◆

U
T

F
T

U
T
0
F

T
0
= U

T
F

T
U

T F
T
0

U
T "T F

T
0

↵◆
U

T
F

T
U

T
0
F

T
0
= U

T
F

T
U

T F
T
0

U
T

F
T ⌘T

0
U

T
0
F

T
0 (= U

T
F

T
U

T F
T
0
⌘T
0 )

↵◆

U
T "T F

T
0

+3 UT F
T
0

U
T F

T
0
⌘T
0

↵◆
U

T
F

T
U

T
0
F

T
0
U

T
0
F

T
0
= U

T
F

T
U

T F
T
0
U

T
0
F

T
0 U

T "T F
T
0
U

T
0
F

T
0
+3

U
T "T F

T
0
U

T
0
F

T
0

↵◆

U
T F

T
0
U

T
0
F

T
0

U
T "T

0
F

T
0

↵◆
(T 0)2 = U

T F
T
0
U

T
0
F

T
0 U

T
0
"T
0
F

T
0

+3
µ0 /7U

T F
T
0
= U

T
0
F

T
0
= T

0

The top two regions commute by level exchange, and the right triangle commutes
by an adjunction triangle axiom. The parenthetical substitution can be made by
precomposition with the previous transformations. ⇤

As a direct consequence of the result above, along with Example 4.35 and
Exercise 4.25, we obtain the result below.

Corollary 4.40. Take (A,m, u), (A0,m0, u0) 2 Alg(C). Then, the following statements hold.

(a) An algebra morphism � : A! A
0 in C yields a functor:

�# : A
0-Mod(C)! A-Mod(C), (M, .0) 7! (M, .0 (� ⌦ idM)).

Moreover, Forg0 = Forg � �# as functors from A
0-Mod(C) to C.
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(b) Suppose that  : A
0-Mod(C) ! A-Mod(C) is a functor such that Forg0 = Forg �  .

That is, for (M, .0) 2 A
0-Mod(C), with  (M, .0

M
) =: ( (M),  (.0

M
)) in A-Mod(C), we

obtain that  (M) � M. Then,  yields an algebra morphism in C:

 # : A
id ⌦ u

0
// A ⌦ A

0  (.0
A0 ) =  (m0)

// A
0.

(c) We obtain that (�#)# = � as algebra morphisms in C, and ( #)# =  as functors
between categories of modules in C. ⇤

Example 4.41. Take A = be the unit algebra in C. So, mA = ` and uA = id . (Even
though C is strict in this section, we use the morphisms ` and r as placeholders
here.) For Corollary 4.40(a), take � = u

0 : ! A
0, which is in Alg(C). Then,

(u0)# : A
0-Mod(C)! -Mod(C)

Ex.4.29
� C

is the forgetful functor. Indeed, we have that

(u0)#(M, .0) = (M, .0 (u0 ⌦ idM) : ⌦ M ! M) 2 -Mod(C)

corresponds to M 2 C, since .0 (u0 ⌦ idM) = `M by the left unit axiom.
For Corollary 4.40(b), let  : A

0-Mod(C)! -Mod(C) � C be the forgetful functor.
Then, (m0) = `A0 . Therefore, # = `A0 (id ⌦u

0) r
�1 = u

0 ` r
�1 = u

0; see Example 4.29.

Modifying the example above for group algebras over a field is Exercise 4.35.

The discussion in this section, along with §4.3.2, is only the beginning of the
theory of monads and their modules, especially their Eilenberg-Moore categories.
We highly recommend the references presented in §4.13, along with the textbook
by Böhm [2018] and Chapter VI of MacLane [1971], for further exploration.

§4.5. Algebraic operations in monoidal categories

Analogous to the material in Section 1.4, we perform various operations on
algebras and (bi)modules in monoidal categories to create new ones from old
ones. In some cases, algebras or (bi)modules form monoidal categories under
such operations. For ease, we impose the following hypothesis.

Standing hypothesis. Assume that C is abelian monoidal as in §3.1.3.

§4.5.1. Operations on algebras in monoidal categories

Fix algebras (A1,m1, u1), (A2,m2, u2), (A,mA, uA), and (B,mB, uB) in C.
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i. Biproduct of algebras in C

Recall §§2.2.1ii, 2.2.2ii on how to form (bi)products of objects. Here, we define a
biproduct of algebras in C,

(A1,m1, u1) ⇤ (A2,m2, u2) := (A1 ⇤ A2, m⇤, u⇤) 2 Alg(C),

which will generalize Proposition 1.15 in §1.4.1 for C = Vec.

To proceed, the multiplication morphism m⇤ above is defined by the composi-
tion of morphisms below.

(A1 ⇤ A2) ⌦ (A1 ⇤ A2)
m⇤

//

�Lem. 3.4
✏✏

A1 ⇤ A2

(A1 ⌦ A1) ⇤ (A1 ⌦ A2) ⇤ (A2 ⌦ A1) ⇤ (A2 ⌦ A2)
m1 ⇤ (A1⌦A2

!
0 ) ⇤ (A2⌦A1

!
0 ) ⇤ m2

// A1 ⇤ 0 ⇤ 0 ⇤ A2

� Exer. 2.17

OO

Moreover, the unit morphism u⇤ is defined by the universal property of products
as shown below.

u1

vv

u⇤
✏✏

u2

((

A1 A1 ⇤ A2
↵0

A1
oo

↵0
A2

// A2

With this, we achieve that (A1 ⇤ A2, m⇤, u⇤) 2 Alg(C), and we leave the details to
the reader as Exercise 4.36. Note that this can be extended to define the biproduct
of finitely many algebras in C.

We say that an algebra A in C is indecomposable if it is not isomorphic to a
biproduct of nonzero algebras in C (see Example 4.1(b)).

Now with the biproduct, we can endow the category Alg(C) of algebras in C

with a monoidal structure as follows.

• Alg(C)⇤: objects are algebras in C, with monoidal product⇤, and with unit object
being the zero algebra in C from Example 4.1(b).

ii. On products and Homs of algebras in C

We discuss generalizations of the tensor product, free products, and Homs of
k-algebras in §§1.4.2v,vi and §1.4.3iii to the monoidal setting.

To define the monoidal product of algebras, A ⌦ B, in C, one requires an iso
c : A⌦B

⇠! B⌦A of objects in C that is analogous to the flip map in Proposition 1.19.
Such a map c can be obtained via a braiding, which is discussed in a future volume.
On the other hand, one can define a free product of algebras, A~ B, in C exactly
as in §1.4.2vi.
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Lastly, as discussed in §1.4.3iii, there are issues with putting an algebra structure
on the collection of morphisms, HomC(A, B), even if C is enriched over itself. This
can be remedied if B is a coalgebra in C, which is discussed in a future volume.

§4.5.2. Operations on (bi)modules in monoidal categories

Fix (A,mA, uA), (B1,m1, u1), (B2,m2, u2) 2 Alg(C). Next, we discuss operations to form
new (bi)modules over algebras in monoidal categories from old ones.

i. Biproduct of (bi)modules in C

Take two left A-modules (M1, .1) and (M2, .2) in C. Then, the biproduct of underly-
ing objects M1⇤M2 admits the structure of a left A-module in C, which generalizes
Proposition 1.14 in §1.4.1 (when C = Vec). The action morphism is defined below:

I : A ⌦ (M1 ⇤ M2) � Lem.3.4
// (A ⌦ M1) ⇤ (A ⌦ M2)

.1 ⇤ .2
// M1 ⇤ M2.

We leave it to the reader to verify that (M1 ⇤ M2,I) is indeed in A-Mod(C). This
can also be extended to form the biproduct of finitely many left A-modules in C.

We say that a left A-module in C is indecomposable if it is not isomorphic to a
biproduct of nonzero left A-modules in C.

Now, we can endow the category A-Mod(C) with a monoidal structure as follows.

• A-Mod(C)⇤: objects are left A-modules in C, with monoidal product ⇤, and with
unit object being the zero A-module in C given in Examples 4.10(b) and 4.28(b).

Moreover, the discussion above can be translated to forming a biproduct of
finitely many right A-modules in C, and further, a biproduct of finitely many
(B1, B2)-bimodules in C. We can also form the monoidal categories below.

• Mod-A(C)⇤ • (B1, B2)-Bimod(C)⇤

ii. Monoidal product of (bi)modules in C

Towards generalizing §1.4.2i (where C = Vec), take (M, .M) 2 B1-Mod(C) and
(N, /N) 2 Mod-B2(C). Then, the object M ⌦ N is a (B1, B2)-bimodule in C with:

I := (.M ⌦ idN) a
�1
B1,M,N

: B1 ⌦ (M ⌦ N)! M ⌦ N,

J := (idM ⌦ /N) aM,N,B2 : (M ⌦ N) ⌦ B2 ! M ⌦ N.

We leave it to the reader to verify that indeed (M ⌦ N,I,J) 2 (B1, B2)-Bimod(C).
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iii. Monoidal product ⌦A of (bi)modules in C

To generalize §1.4.2iii (where C = Vec), take (M, /) 2 Mod-A(C), (N, .) 2 A-Mod(C).
Then, we can form the object M ⌦A N in C as a coequalizer as follows (see §2.2.1iv):

(M ⌦ A) ⌦ N

f := /M ⌦ id
//

g := (id ⌦ .N) aM,A,N

//

M ⌦ N
↵

// coeq( f , g) =: M ⌦A N.

We refer to M ⌦A N as the tensor product of M and N over A in C.

Proposition 4.42. Suppose that (B1 ⌦�) and (�⌦ B2) are right exact endofunctors of C.
If (M, .M , /M) is a (B1, A)-bimodule in C and (N, .N , /N) is a (A, B2)-bimodule in C, then
M ⌦A N is a (B1, B2)-bimodule in C.

Proof. We will sketch why M ⌦A N is a left B1-module in C, and leave the proof
that M ⌦A N is a right B2-module in C, and further, a (B1, B2)-bimodule in C, to the
reader as Exercise 4.37. With the notation above, note that:

B1 ⌦ (M ⌦A N) = B1 ⌦ coeq( f , g) � coeq(idB1 ⌦ f , idB1 ⌦ g).

This holds by Proposition 2.49(a) and Remark 4.14(d))(e), and since coequalizers
are cokernels [Exercise 2.13(d)]. Now the left B1-action on M ⌦A N in C,

I : B1 ⌦ (M ⌦A N)! M ⌦A N,

is derived via both the iso above and the universal property of coequalizers, as
depicted in the commutative diagram below.

B1 ⌦ ((M ⌦ A) ⌦ N)
id ⌦ f

//

id ⌦ g

//

a
�1
B1 ,M⌦A,N

✏✏

B1 ⌦ (M ⌦ N)
id ⌦ ↵

//

a
�1
B1 ,M,N

✏✏

B1 ⌦ coeq(id ⌦ f , id ⌦ g)
= B1 ⌦ (M ⌦A N)

I

✏✏

(B1 ⌦ (M ⌦ A)) ⌦ N

id ⌦ /M ⌦ id
//

(id ⌦ id ⌦ .N ) aB1⌦M,A,N (a�1
B1 ,M,A

⌦ id)

//

(.M ⌦ id ⌦ id) (a�1
B1 ,M,A

⌦ id)

✏✏

(B1 ⌦ M) ⌦ N

.M ⌦ id

✏✏

(M ⌦ A) ⌦ N

f

//

g

//

M ⌦ N ↵
// M ⌦A N

We defer the argument for the associativity and unitality of I to Exercise 4.37. ⇤

Example 4.43. Take right exact endofunctors (B1⌦�), (�⌦B2) of C, and take A =

as in Example 4.1(a). Then, for M 2 (B1, )-Bimod(C) and N 2 ( , B2)-Bimod(C):

M ⌦ N � M ⌦ N

as (B1, B2)-bimodules in C. Here, M⌦N 2 (B1, B2)-Bimod(C) as in §4.5.2ii. Verifying
this is Exercise 4.38.
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We also have the following identities for A-bimodules in C.

Lemma 4.44. For A-bimodules M,N, P in C, we have the isos below in A-Bimod(C).

(a) (M ⌦A N) ⌦A P � M ⌦A (N ⌦A P).

(b) M ⌦A Areg � M � Areg ⌦A M.

Here, Areg is the regular A-bimodule A with actions mA from Example 4.32(a).

Proof. We will verify that A ⌦A M � M for part (b), and leave the rest of the proof
as Exercise 4.39. To proceed, consider the morphism below:

� : M

`�1
M
// ⌦ M

uA ⌦ id
// A ⌦ M

↵
// A ⌦A M.

On the other hand, we can build a morphism  : A ⌦A M ! M from the universal
property of coequalizers. Consider the diagram below

(A ⌦ A) ⌦ M

/A ⌦ id
//

(id ⌦ .M) aA,A,M

//

A ⌦ M

.M

**

↵
// A ⌦A M

 
✏✏

M

Indeed, /A = mA and .M (mA ⌦ idM) = .M (idA ⌦ .M) aA,A,M by the left module
associativity axiom. Next, we have that  � = .M (uA ⌦ idM) `�1

M
= idM by definition

and by the left module unitality axiom. We also have that:

� ↵ = ↵ (uA ⌦ idM) `�1
M
.M

= ↵ (uA ⌦ idM) (id ⌦ .M) `�1
A⌦M

= ↵ (idA ⌦ .M) (uA ⌦ idA ⌦ idM) `�1
A⌦M

= ↵ (mA ⌦ idM) a
�1
A,A,M (uA ⌦ idA ⌦ idM) `�1

A⌦M

= ↵ (mA ⌦ idM) (uA ⌦ idA ⌦ idM) a
�1
,A,M `�1

A⌦M
= ↵.

These equalities hold, respectively, by definition, by the naturality of `, by level
exchange, by the coequalizer condition, by the naturality of a, and by the unitality
of A with Exercise 3.1(a). Since ↵ is epic [Exercise 2.13(a)], it is right-cancellative.
Hence, � = idA⌦A M , and we have established that A ⌦A M � M in C. ⇤

So, with the result above, we can make A-Bimod(C) a monoidal category:

• A-Bimod(C): objects are A-bimodules in C, with monoidal product ⌦A, and with
unit object being the regular A-bimodule Areg in C from Example 4.32(a).

iv. Homs and duals of (bi)modules in C

Remark 4.45. Towards generalizing the material in §1.4.3i, one would like
HomA-Mod(C)(M,N) 2 A-Mod(C), for each pair of left A-modules M,N in C. However,
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HomA-Mod(C)(M,N) is not necessarily an object in A-Mod(C) (nor an object in C).
Instead, one may want to use enrichment theory (see §3.11) for such an operation.
See Exercise 4.40 for an open-ended exploration.

On the other hand, duality (in the sense of §3.6.1) is a (bi)module operation.
Namely, when the underlying object of a left (resp., right) A-module in C is rigid,
then its dual is a right (resp., left) A-module. We see this in the following result;
the proof is reserved as Exercise 4.41.

Proposition 4.46. Take (M, .) 2 A-Mod(C) and (N, /) 2 Mod-A(C). Suppose that M

(resp., N) is a left (resp., right) rigid object in C. Then, M
⇤ 2 Mod-A(C) and ⇤N 2 A-Mod(C)

with actions pictured in Figure 4.11 in the strict case. ⇤

N

⇤
NM

⇤
A

:=

M
⇤

A

M

M
⇤

A

:=

A
⇤
N

⇤
N

Figure 4.11: Duals of modules in monoidal categories.

§4.6. Graded algebras in the monoidal setting

The goal of this section is to generalize the graded algebras from §1.2.7i and their
modules to the monoidal setting. We proceed in the strict case for ease via the
Strictification Theorem [Theorem 3.26]. A version of this material appeared in the
work of Liu Lopez and Walton [2023]. Here, we study gradings over the additive
monoid of natural numbers N, but this discussion can be generalized to gradings
over any monoid N or group G.

§4.6.1. Graded objects

The category of N-graded objects in C is the product category C
⇥N (see §2.1.3):

(a) Objects are N-tuples X := (Xi)i2N of objects in C, and

(b) Morphisms � from X to Y are N-tuples (� : Xi ! Yi)i2N of morphisms in C.

Note that for the monoidal category (N,+, 0) from §3.1.2i, we have that

C
⇥N � Fun(N, C)

as categories. Verifying this, and the result below, is Exercise 4.42.
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Proposition 4.47. Several features of C are inherited by C
⇥N as follows.

(a) If C is additive (or is abelian), then so is C⇥N.

(b) If C is additive with biproduct ⇤ and zero object 0, then C
⇥N is monoidal where:

X ⌦̄ Y :=
⇣
⇤i

p=0 Xp ⌦ Yi�p

⌘
i2N ,

¯ := ( i)i2N, with 0 := C , i,0 := 0. ⇤

The monoidal structure on C
⇥N above is called the Cauchy monoidal structure.

But as mentioned in Definition 2.1 of Aguiar and Mahajan [2010], there are other
choices for a monoidal structure on C

⇥N as given below.

• Component-wise (or Hadamard) monoidal structure:

X ⌦c
Y := (Xi ⌦ Yi)i2N and c := ( C)i2N.

• Substitution monoidal structure (for C additive, having infinite biproducts ⇤):

X ⌦s
Y :=

⇣
⇤p�0 Xp ⌦

⇣
⇤q1+···+qp=i Yq1 ⌦ · · · ⌦ Yqp

⌘⌘
i2N

s := ( i)i2N, with 1 := C , i,1 := 0.

We will stick with the Cauchy monoidal structure on C
⇥N, but we encourage

the reader to explore the material here via the other monoidal structures above.

For the rest of the section, we impose the following conditions.

Standing hypothesis. Assume that C is abelian monoidal as in §3.1.3.

§4.6.2. Graded algebras

Recall Proposition 4.47. The algebras of interest here are in the category below:

Alg(C⇥N) := Alg(C⇥N, ⌦̄, ¯ ).

But for computations, it is easier to consider the following category.

Let N-GrAlg(C) be the category whose objects consist of the data:

(a) a collection of objects {Ai}i2N in C,

(b) a collection of multiplication morphisms {mi, j : Ai ⌦ Aj ! Ai+ j}i, j2N in C,

(c) a unit morphism u0 : C ! A0 in C,

satisfying the associativity and unitality constraints,

• mi+ j,k (mi, j ⌦ idAk
) = mi, j+k (idAi

⌦ mj,k), for all i, j, k 2 N,

• m0,i (u0 ⌦ idAi
) = idAi

= mi,0 (idAi
⌦ u0), for all i 2 N.
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Morphisms ({Ai}i, {mi, j}i, j, u0) ! ({A0
i
}i, {m0i, j}i, j, u00) are defined to be tuples of

morphisms in C, namely (�i : Ai ! A
0
i
)i2N, where m

0
i, j (�i ⌦ � j) = �i+ j mi, j for all

i, j 2 N, and where �0 u0 = u
0
0.

Proposition 4.48. We have an isomorphism of categories:

Alg(C⇥N) � N-GrAlg(C).

With this, we will interchange objects and morphisms Alg(C⇥N) and N-GrAlg(C)
without mention. Moreover, we refer to these categories simultaneously as the
category of N-graded algebras in C.

Proof of Proposition 4.48. We will sketch the proof and leave the details as Exer-
cise 4.43. First, suppose that (A,m, u) is an object of Alg(C⇥N). After taking degrees,
the data of the multiplication map m : A ⌦̄A ! A amounts to a collection of
morphisms: {mk :⇤k

p=0 Ap ⌦ Ak�p ! Ak}k2N in C. Also, consider the canonical mor-
phisms from the biproduct construction: {↵l,q : Al⌦Aq�l !⇤q

p=0 Ap⌦Aq�p}q2N, l=0,...,q.
Now the collection of multiplication morphisms in N-GrAlg(C) is given as follows:

{mi, j := mi+ j ↵i,i+ j : Ai ⌦ Aj ! Ai+ j}i, j2N.

Moreover, the unit morphism is defined by the degree 0 part of u : ¯ ! A, namely
by u0 : C ! A0.

Conversely, given the data {{Ai}i2N, {mi, j}i, j2N, u0}, take A to be (Ai)i2N. Also, let
m : A ⌦̄A ! A be the tuple of morphisms (mi : ⇤i

p=0 Ap ⌦ Ai�p ! Ai)i2N, where
mi is the biproduct⇤i

p=0 mp,i�p of certain given multiplication morphisms. Lastly,
let u : ¯ ! A be the tuple of morphisms (ui : i ! Ai)i2N, where u0 is the given
morphism C ! A0 above, and ui :=

!
0

i,Ai
for i , 0.

These correspondences yield a bĳection between objects of Alg(C⇥N) and of
N-GrAlg(C), which also extends to morphisms. ⇤

Example 4.49. We can generalize the tensor algebras over k from §1.2.2 as follows.
Take an object X 2 C, and consider X

⌦0 := C . Then, the C-tensor algebra T (X) on
X is the N-graded algebra in C defined as T (X) = (X⌦ i)i2N with

{mT (X)
i, j := idX⌦(i+ j) : X

⌦ i ⌦ X
⌦ j ! X

⌦(i+ j)}i, j2N, u
T (X)
0 := id : C ! X

⌦0.

See Exercise 4.44 for practice. One can also generalize the path algebras over k
from §1.2.5 (especially via Exercise 1.21). See the open-ended Exercise 4.45.

Remark 4.50. One may want to form C-symmetric algebras S (X), or form C-exterior
algebras ⇤(X), generalizing the versions of such k-algebras in §§1.2.3, 1.2.4. But
one needs suitable isos X ⌦ Y

⇠! Y ⌦ X, for X, Y 2 C to do so; this is achieved with
braidings studied in a future volume.
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Remark 4.51. The notions above forgradedalgebras can be generalized to examine
filtered algebras in monoidal categories, achieved by working in Fun(N, C) in
place of Fun(N, C), for the monoidal category N given in §3.1.2i. One can form
associated graded algebras in monoidal categories as well. See, e.g., the work of
Walton and Yadav [2023] for details, and compare to §§1.2.7ii,iii.

§4.6.3. Graded modules

The modules of interest here are objects in the category below:

A-Mod(C⇥N), for A 2 Alg(C⇥N).

But for computations, it is easier to consider instead the following category.

Take A := ({Ai}i, {mi, j}i, j, u0) 2 N-GrAlg(C), corresponding to A 2 Alg(C⇥N). Let
N-GrModA(C) be the category whose objects consist of the data:

(a) a collection of objects {Mj} j2N in C,

(b) a collection of (left) action morphisms {.i, j : Ai ⌦ Mj ! Mi+ j}i, j2N in C,

satisfying the associativity and unitality constraints, respectively,

• .i+ j,k (mi, j ⌦ idAk
) = .i, j+k (idAi

⌦ . j,k), for all i, j, k 2 N,

• .0,i (u0 ⌦ idMi
) = idMi

, for all i 2 N.

Morphisms ({Mj} j, {.i, j}i, j) ! ({M0
j
} j, {.0i, j}i, j) are tuples (� j : Mj ! M

0
j
) j2N of mor-

phisms in C, where .0
i, j (idAi

⌦ � j) = �i+ j .i, j for all i, j 2 N.

Now the following result follows similarly to the proof of Proposition 4.48.

Proposition 4.52. Given an N-graded algebra A in C, we have a category isomorphism:

A-Mod(C⇥N) � N-GrAlg
A
(C). ⇤

With this, we interchange objects and morphisms A-Mod(C⇥N) and N-GrAlg
A
(C),

and call these the category of N-graded left A-modules in C.

Likewise, we can define categories of N-graded right modules and of N-graded
bimodules over A in C to yield:

Mod-A(C⇥N) � N-GrAlg(C)A and (B1, B2)-Mod(C⇥N) � N-GrAlg
B1

(C)B2 .

We leave it to the reader to explore this, and we will revisit these categories briefly
later when discussing graded Morita equivalence in monoidal categories in §4.7.3.
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§4.7. Morita equivalence in the monoidal setting

Now we extend the notion of Morita equivalence ofk-algebras introduced §2.4.4 to
the monoidal setting for algebras in C. But first, we generalize the Eilenberg-Watts
Theorem, namely parts (a’)-(c’) of Theorem 2.51 for C = FdVec, to a more general
monoidal setting.

Standing hypothesis. Assume that C is abelian monoidal as in §3.1.3, and
that (X ⌦�) and (�⌦ X) are right exact, for each object X 2 C (see §2.8.1). See
Remark 4.14, along with Figure 3.15, about the latter condition.

Consider the following lemma.

Lemma 4.53. Let A and B be algebras in C. Then, the functor

Q ⌦A � : A-Mod(C)! B-Mod(C)

is right exact, for any Q 2 (B, A)-Bimod(C).

Proof. We will sketch the proof, and leave the details to the reader as part of
Exercise 4.46. By Proposition 2.49(a), it suffices to show that Q ⌦A � preserves
cokernels. In particular, the cokernel of any morphism � : M ! N in A-Mod(C),

(coker(�), ↵ : N ! coker(�)),

exists in A-Mod(C) by Proposition 4.31(d). We want that as left B-modules in C:

Q ⌦A coker(�) � coker(idQ ⌦A �).

Now ↵� =
!
0M,coker(�), so (idQ ⌦A ↵)(idQ ⌦A �) =

!
0Q⌦A M,Q⌦Acoker(�). Hence, we get a

unique morphism

�1 : coker(idQ ⌦A �)! Q ⌦A coker(�)

by the universal property of cokernels. It can be shown that �1 is a morphism
in B-Mod(C) using the assumption that (B ⌦ �) is right exact (and thus preserves
cokernels by Proposition 2.49(a)). On the other hand, we can use the standing
hypothesis and Proposition 2.49(a) to get that (Q ⌦ �) preserves cokernels. This,
in turn, with the universal property of coequalizers, yields a unique morphism

�2 : Q ⌦A coker(�)! coker(idQ ⌦A �).

The morphisms �1 and �2 are then mutually inverse. ⇤
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§4.7.1. Generalized Eilenberg-Watts Theorem

We begin by reintroducing a category from §3.6.4 attached to right C-module
categories M and N .

• RexMod-C(M,N ): objects are right exact, right C-module functors (F, t) from M

to N , and morphisms are natural transformations � between such functors that
are compatible with the right C-actions. That is, for � : F ) F

0, we have that
(�M ‹ idX) tM,X = t

0
M,X �M‹X , for all X 2 C and M 2M.

Theorem 4.54 (Generalized Eilenberg-Watts Theorem). Let A and B be algebras
in C. Take the right C-module actions ‹A on A-Mod(C) and ‹B on B-Mod(C) given in
Proposition 4.30. Then, we have the equivalence of categories below.

RexMod-C (A-Mod(C), B-Mod(C)) ' (B, A)-Bimod(C)

[F : A-Mod(C)! B-Mod(C)]
��! F(AAreg)

[Q ⌦A � : A-Mod(C)! B-Mod(C)]
  � BQA

In particular, F(AAreg) 2 Mod-A(C) via:

/A

F(A) : F(A) ⌦ A = F(A) ‹B A � F(A ‹A A) = F(A ⌦ A)
F(mA)�! F(A).

Proof. We will sketch the proof, and leave the details to the reader as part of
Exercise 4.46. First, it is straightforward to check that F(AAreg) 2 (B, A)-Bimod(C).
With this, the functor � is well-defined. Towards defining the functor  , we have
that Q ⌦A M 2 B-Mod(C) for M 2 A-Mod(C) by Proposition 4.42, which uses the
right exactness of (B ⌦ �). Moreover, (Q ⌦A �) is a right C-module functor with
structure morphisms tM,X , for M 2 A-Mod(C) and X 2 C, given by:

tM,X : Q ⌦A (M ‹A X) = Q ⌦A (M ⌦ X) � (Q ⌦A M) ⌦ X = (Q ⌦A M) ‹B X.

For the iso, see Example 4.43 and modify Lemma 4.44(a). We also have that (Q⌦A�)
is right exact by Lemma 4.53. So, the functor  is well-defined.

Next, we obtain that � � Id(B,A)-Bimod(C) due to the computation below:

� (BQA) = �(Q ⌦A �) = Q ⌦A AAreg � Q.

The last iso holds by Lemma 4.44(b).
Finally, we verify that  �(F) � F, for all F 2 RexMod-C (A-Mod(C), B-Mod(C)).

That is, for each M 2 A-Mod(C), we need to show that F(AAreg)⌦A M � F(M) as left
B-modules in C. Since F is a right C-module functor, we get the first two vertical
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isos in the commutative diagram in C below.

F(A) ⌦ A ⌦ M
OO

�
✏✏

/ ⌦ id
//

id ⌦ .
//

F(A) ⌦ M //

OO

�
✏✏

F(A) ⌦A M

✏✏

F(A ⌦ A ⌦ M)
F(/ ⌦ id)

//

F(id ⌦ .)
//

F(A ⌦ M) // F(A ⌦A M) � F(M)

OO

The vertical dashed arrows arise by the universal property of coequalizers. But
for the upward dashed arrow, we also use the assumption that F is right exact,
so it preserves coequalizers [Proposition 2.49(a), Exercise 2.13(d)]. These vertical
dashed arrows are mutually inverse morphisms in B-Mod(C), as required. ⇤

Remark 4.55. With a similar argument,we also obtain a version of the Generalized
Eilenberg-Watts Theorem for right modules in C:

RexC-Mod (Mod-A(C),Mod-B(C)) ' (A, B)-Bimod(C).

Here, the correspondences are given by �(F) := F((Areg)A) and  (APB) = � ⌦A P.

§4.7.2. Morita equivalence of algebras

We say that A, B 2 Alg(C) are Morita equivalent if A-Mod(C) and B-Mod(C) are
equivalent as right C-module categories, with the right C-module actions ‹A on
A-Mod(C) and ‹B on B-Mod(C) given in Proposition 4.30.

Morita equivalence here is an equivalence relation for algebras in C [Exer-
cise 2.28]. Next, we provide a useful characterization of this notion below, which
generalizes Theorem 2.18.

Theorem 4.56 (Generalized Morita’s Theorem). Take A, B 2 Alg(C). Then, the
following statements are equivalent.

(a) (A-Mod(C),‹A) ' (B-Mod(C),‹B), as right C-module categories.

(b) There exist bimodules P 2 (A, B)-Bimod(C) and Q 2 (B, A)-Bimod(C) such that
P ⌦B Q � Areg as A-bimodules in C and Q ⌦A P � Breg as B-bimodules in C.

Bimodules P and Q satisfying the conditions in part (b) are said to be invertible.

Proof. Note that (b)) (a) is the more elementary direction. To prove this, consider
the functors F and G below, which are defined by Proposition 4.42:

F := (BQA) ⌦A � : A-Mod(C)! B-Mod(C),

G := (APB) ⌦B � : B-Mod(C)! A-Mod(C).

Now for M 2 A-Mod(C), we obtain that:

GF(M) = P ⌦B (Q ⌦A M) � (P ⌦B Q) ⌦A M � Areg ⌦A M � M.
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Here, the first iso holds by a modification of Lemma 4.44(a), and the last iso holds
by Lemma 4.44(b). Therefore, GF � IdA-Mod(C). Likewise, FG � IdB-Mod(C). So, the
functors F and G imply that A-Mod(C) ' B-Mod(C) as categories. This is updated
to an equivalence of right C-module categories via the structures morphisms tM,X

for F defined below, for M 2 A-Mod(C) and X 2 C:

tM,X : F(M ‹A X) = F(M ⌦ X) = Q ⌦A (M ⌦ X)

� (Q ⌦A M) ⌦ X = F(M) ⌦ X = F(M) ‹B X.

For the iso, see Example 4.43 and modify Lemma 4.44(a). Thus, we established
that (b)) (a).

Now for (a)) (b), take quasi-inverse functors F : A-Mod(C) ! B-Mod(C) and
G : B-Mod(C) ! A-Mod(C), which are both equivalences of categories (see, e.g.,
Exercise 2.28). So, F and G have right adjoints by Proposition 2.25(b), and thus are
right exact by Proposition 2.49(b). So by the Generalized Eilenberg Watts Theorem
[Theorem 4.54], there exist bimodules P 2 (A, B)-Bimod(C) and Q 2 (B, A)-Bimod(C)
such that F � (Q ⌦A �) and G � (P ⌦B �). We will proceed with showing that
P⌦B Q � Areg as A-bimodules in C, and leave the other required isomorphism to the
reader. By the assumption, we have a natural isomorphism � : GF

⇠) IdA-Mod(C),
with component,

�A := �Areg : P ⌦B Q � GF(Areg) ⇠! Areg,

being an isomorphism of left A-modules in C. Here, the right A-action on P ⌦B Q

is given as follows:

/A

P⌦BQ
: (P ⌦B Q) ⌦ A � P ⌦B ((Q ⌦A A) ⌦ A) � P ⌦B (F(A) ⌦ A) � P ⌦B F(A ⌦ A)

GF(mA)�! P ⌦B F(A) � P ⌦B (Q ⌦A A) � P ⌦B Q.

For the above, note that F(A ⌦ A) = F(A ‹A A) � F(A) ‹B A = F(A) ⌦ A since F is a
right C-module functor. Finally, �A is a morphism of right A-modules in C since:

�A � /A

P⌦BQ
= �A �GF(mA) = mA � �A⌦A = mA � (�A ⌦ idA).

The second equation holds by the naturality of �, and the third equation holds
since F,G are right C-module functors. So, P ⌦B Q � Areg as A-bimodules in C. ⇤

To use the characterization above in practice, one first produces morphisms
P ⌦B Q ! A and Q ⌦A P ! B using the universal property of coequalizers. But
obtaining morphisms in the reverse direction is trickier. It may be helpful to use
the result below, which is a generalization of a standard fact in Morita theory;
see Lemma 4.5.2 of Cohn [2003]. This result is Proposition 2.20 of Morales et al.
[2022], and we leave the proof as Exercise 4.47 for a curious reader.
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Proposition 4.57. Take algebras A, B 2 C, and take bimodules P 2 (A, B)-Bimod(C) and
Q 2 (B, A)-Bimod(C). If there exist epis

�A : P ⌦B Q! Areg 2 A-Bimod(C), �B : Q ⌦A P! Breg 2 B-Bimod(C)

that make the following diagrams commute,

(P ⌦B Q) ⌦A P
�
//

�A ⌦A id
✏✏

P ⌦B (Q ⌦A P)
id ⌦B �B

✏✏

(Q ⌦A P) ⌦B Q
�
//

�B ⌦B id
✏✏

Q ⌦A (P ⌦B Q)
id ⌦A �A

✏✏

A ⌦A P

�
%%

P ⌦B B

�
yy

B ⌦B Q

�
%%

Q ⌦A A

�
yy

P Q

then �A and �B are isomorphisms of bimodules in C. ⇤

The data (A, B, P,Q, �A, �B) in the hypotheses of Proposition 4.57, with �A and
�B not necessarily epic, is called a Morita context.

Example 4.58. If X is a left rigid object in C and is a simple object in C (e.g., if C is
a tensor category as from §3.10.1), then the C-endomorphism algebra X ⌦ X

⇤ from
Example 4.9(a) is Morita equivalent to the unit algebra from Example 4.1(a).
This specializes to the fact that Matn(k) is Morita equivalent to k as k-algebras
[Example 2.21]. Verifying the details here and more is Exercise 4.48.

See also Exercises 4.49 and 4.50 for additional practice.

Remark 4.59. Note that everything in §4.7 can be stated and proved in terms of
right modules in C via the version of the Generalized Eilenberg-Watts Theorem
in Remark 4.55. Therefore, one can obtain that algebras A and B in C are Morita
equivalent if and only if Mod-A(C) ' Mod-B(C) as left C-module categories. This
implies that Morita equivalence in C is a left-right symmetric condition.

§4.7.3. On Morita equivalence of graded algebras

Here, we consider when two graded algebras in a monoidal category have equiv-
alent module categories consisting of graded modules.

Note that in §4.6.1 morphisms between graded objects preserve degree. That is,
for objects X, Y 2 C⇥N, components of a morphism � : X ! Y sends a component
Xi of X to the component Yi of Y , for all i 2 N. However, traditional graded Morita
equivalence allows for morphisms of any degree. Namely, � is of degree d if Xi

sent to Yi+d for all i 2 N. See, for instance, Theorem 3.2(6) in the work of Boisen
[1994]. But note that a category with such morphisms is not additive as the sum
of morphisms of different degrees is no longer graded. We like abelian categories
here, so we work in categories of graded objects with morphisms in degree 0,
such as the product category C

⇥N used in §4.6.
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Another framework for studying the Morita equivalence of graded algebras (in
categories with morphisms of degree 0) was set up in the work of Zhang [1996] for
k-algebras. There, twisting systems of graded algebras were introduced, and it was
shown that N-graded k-algebras A and B have equivalent categories of graded
modules over k with morphisms in degree 0 when A is a twist of B. The converse
statement holds when the algebras satisfy the condition that A0 = B0 = k.

This was generalized to the monoidal/enriched setting in the work of Liu Lopez
and Walton [2023] by first generalizing the twisting systems of Zhang [1996]. Then,
it was shown that if A, B 2 N-GrAlg(C) and A is a twist of B, we have that

N-GrMod(C)A 'C N-GrMod(C)B.

(See §3.11.2 for details about enriched equivalence.) The equivalence of graded
modules here is called Zhang-Morita equivalence. The converse statement also
holds under certain conditions.

§4.8. Internal Homs and Ends

In the last section, we discussed how algebras in C are considered the ‘same’ if
their categories of modules in C are equivalent as module categories over C. In
this section, we will explore when these internal and external notions of module
categories coincide. Recall Proposition 4.30, and consider the terminology below.

A left (resp., right) C-module category M is represented by A 2 Alg(C) if

M ⇠ Mod-A(C) as left C-module categories

(resp., M ⇠ A-Mod(C) as right C-module categories).

The algebra representatives of C-module categories constructed here will arise
as internal Ends as in §3.11.4. We will stick with left C-module categories in the
discussion below, but it can be translated for right C-module categories in a
straightforward way.

§4.8.1. Internal End algebras

Recall from §3.11.4 that a left C-module category (M,“,m, p) is closed if, for each
M 2M, the functor (� “ M) : C !M has a right adjoint, which we denote by

Hom(M,�) : M! C.

Here, we have a bĳection for each Z 2 C and N 2M:

⇣ := ⇣Z,N : HomM(Z “ M,N) ⇠! HomC(Z, Hom(M,N)). (4.60)
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The object Hom(M,N) 2 C is the internal Hom of M,N 2M, and we call the object

End(M) := Hom(M,M) 2 C

the internal End of M 2M.

To give internal Homs and internal Ends algebraic structure, first consider the
following morphism derived from the adjunction above, for each M,N 2M:

evM,N := ⇣�1(idHom(M,N)) : Hom(M,N) “ M ! N. (4.61)

Moreover, consider the composition of morphisms,evM,N,P, for each M,N, P 2M:

⇣
Hom(N, P) ⌦Hom(M,N)

⌘
“ M

evM,N,P
//

mHom(N,P),Hom(M,N),M
✏✏

P

Hom(N, P) “
⇣
Hom(M,N) “ M

⌘ id “ evM,N
// Hom(N, P) “ N.

evN,P

OO

One then gets the morphisms below in C, for each M,N, P 2M:

comp
M,N,P := ⇣(evM,N,P) : Hom(N, P) ⌦Hom(M,N)! Hom(M, P).

Also, for M 2M, take:

coev ,M := ⇣(pM) : ! Hom(M,M).

Now with these morphisms, internal Ends and internal Homs arise, resp., as
algebras and modules in C as described below. We leave the proof as Exercise 4.51.

Proposition 4.62. Suppose that (M,“,m, p) is a closed left C-module category. Then,
the following statements hold.

(a) For any M 2M, we obtain that End(M) is an algebra in C with

mEnd(M) := comp
M,M,M : End(M) ⌦ End(M)! End(M),

uEnd(M) := coev ,M : ! End(M),

(b) Hom(M,N) is a right End(M)-module in C, for any M,N 2M, with right action:

/ Hom(M,N) := comp
M,M,N : Hom(M,N) ⌦ End(M)! Hom(M,N).

(c) Hom(N,M) is a left End(M)-module in C, for any M,N 2M, with left action:

. Hom(M,N) := comp
N,M,M : End(M) ⌦Hom(N,M)! Hom(N,M). ⇤
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We refer to the algebras constructed in part (a) above as internal End algebras,
and refer to the modules constructed in parts (b,c) as internal Hom modules.

Example 4.63. Recall from Example 3.70 that if C is right closed monoidal [§3.11.3],
then the regular left C-module category Creg is closed. Here, Hom(�,�) is the left
internal Hom from the right closed monoidal condition on C. In particular by
Exercise 3.40, when C is left rigid, we get for Y, Z 2 Creg that

Hom(Y, Z) := Z ⌦ Y
⇤

as an object in C. The bĳections ⇣X,Z : HomC(X ⌦Y, Z) ⇠! HomC(X, Z ⌦Y
⇤) are given

in Proposition 3.33(d). Using these maps, we obtain that

End(Y) = Y ⌦ Y
⇤ 2 Alg(C).

is the C-endomorphism algebra from Example 4.9. See Exercise 4.52.

Upgrading the example above (when C is rigid and abelian) for the leftC-module
category M = Mod-A(C) comprises Exercise 4.53.

Example 4.64. Take a group G, and consider the monoidal category (G-Mod,⌦k, k).
Recall from Example 3.19 that the (strong monoidal) forgetful functor
G-Mod ! Vec equips Vec with the structure of a left (G-Mod)-module category.
Namely, for (X, .) 2 G-Mod and V 2 Vec we have the action:

(X, .) “ V := X ⌦k V 2 Vec.

The internal End algebra of the object k 2 Vec exists, and we claim that End(k) is
the dual group algebra (kG)⇤ 2 Alg(G-Mod) from Exercise 4.2. Indeed, consider
the bĳection that End(k) must satisfy:

⇣ : HomVec(X, k) = HomVec((X, .) “ k, k) ⇠! HomG-Mod((X, .), End(k)).

Taking End(k) = (kG)⇤ works via the assignments below:

⇣(� : X ! k) = [⇣(�) : (X, .)! (kG)⇤], for ⇣(�)(x) = [kG ! k, g
0 7! �(g0 . x)]

⇣�1( : (X, .)! (kG)⇤) = [⇣�1( ) : X ! k], for ⇣�1( )(x) =  (x)(eG),

for all linear maps � : X ! k, all left G-module maps  : (X, .) ! (kG)⇤, and all
elements x 2 X, g

0 2 G. Completing the details here is part of Exercise 4.54.

Upgrading the example above for the module category H-Mod from Exam-
ple 3.19, with H a subgroup of G, is also part of Exercise 4.54.

Moreover, Exercises 4.55 and 4.56 use other module categories to produce
examples of internal End algebras and internal Hom modules.

We end this part with a useful lemma.
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Lemma 4.65. If C is left rigid, and M is a closed left C-module category, then

Hom(M, X “ N) � X ⌦ Hom(M,N)

for all X 2 C and M,N 2M.

Proof. Take an arbitrary object Y 2 C. Then, consider the computation below:

HomC(Y, Hom(M, X “ N))
(4.60)
� HomM(Y “ M, X “ N)

Prop. 3.45(b)
� HomM(X⇤ “ (Y “ M), N)

mod. assoc.
� HomM((X⇤ ⌦ Y) “ M, N)

(4.60)
� HomC(X⇤ ⌦ Y, Hom(M,N))

Prop. 3.33(b)
� HomC(Y, X ⌦Hom(M,N)).

The result then holds by the contravariant Yoneda’s lemma, Lemma 2.33. ⇤

§4.8.2. Ostrik’s Theorem

Here, we will discuss how, after imposing certain conditions on C, the internal End
algebras from Proposition 4.62(a) serve as Morita equivalence class representatives
of algebras in C. This is due to the work of Ostrik [2003c].

First, recall that internal Homs do not exist in general. But when C is a finite
multitensor category and M is a left C-module category, then M is closed [Corol-
lary 3.72]; thus, internal Homs exist in this case. So, we impose the hypothesis
below for the rest of this section.

Standing hypothesis. Assume that C is a finite multitensor category here.

To proceed, recall the assumptions on C-module categories introduced in §3.10.3.
Now we collect some results from Douglas et al. [2019] about C-module categories
in this setting. The reader is encouraged to explore the proof of the result below
before consulting the aforementioned reference.

Lemma 4.66. Let M be a left nonzero C-module category.

(a) If M is a projective object in M, then the functor Hom(M,�) is right exact.

(b) If M is semisimple, then Hom(M,�) is exact for all M 2M.

(c) The morphism evM,N : Hom(M,N) “ M ! N from (4.61) is epic for each N 2M if
and only if the functor Hom(M,�) : M! C is faithful.

(d) If M is semisimple and indecomposable, then part (c) holds for all nonzero M 2M.
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Proof. Parts (a) and (c) are in the extended preprint version of the article by
Douglas et al. [2019]. Namely, see Lemma 2.22 and the proof of Lemma 2.25 of
Douglas et al. [2018].

Part (b) then follows from part (a), Proposition 2.49(b), and Corollary 2.56.
For part (d), note that if M is semisimple and indecomposable, then

HomM(M,�) is faithful as the objects N 2M for which HomM(M,N) = 0 forms
a C-module subcategory of M. ⇤

This brings us to the main result of the section. Recall the assumptions on
C-module categories in §3.9.4 when C is semisimple (e.g., when C is multifusion).

Theorem 4.67 (Ostrik’s Theorem). Suppose that C is semisimple, i.e., C is multifusion.
If M is a nonzero, indecomposable left C-module category, then for any nonzero object
M 2M, we obtain that

M ' Mod-(End(M))(C) as left C-module categories

Here, End(M) 2 Alg(C) via Proposition 4.62(a).

Proof. First, M is closed by Corollary 3.72, so internal Homs and internal Ends
for M exist. Then, for any nonzero object M 2M, denote

A := End(M),

and, again, note that A 2 Alg(C) by Proposition 4.62(a). Further by Proposi-
tion 4.62(b), we have the functor below:

F : M! Mod-A(C), N 7! Hom(M,N).

In particular, Hom(M,�) is covariant, so for a morphism f : N ! N
0 in M, we

have that F( f ) is a morphism Hom(M,N)! Hom(M,N0) in Mod-A(C). We aim to
show that F is an equivalence of left C-module categories.

To proceed, note that F is a left C-module functor due to Lemma 4.65. Namely,
for the left C-module categories (M,“) and (Mod-A(C),“A) [Proposition 4.30], and
for all X 2 C and N 2M, we have that

F(X “ N) = Hom(M, X “ N)
Lem. 4.65
� X ⌦Hom(M,N) = X “A F(N).

Next, we will show that F is fully faithful, that is,

FN,N0 : HomM(N,N0)! HomMod-A(C)(F(N), F(N0)), f 7! F( f ).

is an isomorphism. This is true when N 2M is an object of the form:

N = X “ M, for some X 2 C. (†)
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To see this, observe that F(N) = Hom(M, X “ M) � X ⌦ A by Lemma 4.65, which is
a free object in Mod-A(C). Now under the assumption (†) above, F is fully faithful
as follows:

HomMod-A(C)(F(N), F(N0)) � HomMod-A(C)(X ⌦ A, F(N0))

� HomC(X, Forg(F(N0))) (Exer. 4.25(c) for Mod-A(C))

= HomC(X, Hom(M,N0)) (definition of F)

� HomM(X “ M, N
0) (M closed)

= HomM(N,N0). (†)

In general, we can remove the assumption (†) towards faithfulness. Namely, by
Lemma 4.66(d), the composition of F with the forgetful functor Mod-A(C)! C is
faithful. Thus, F is faithful. This means that FL,N0 is monic, for all L 2M.

Now to remove the assumption (†) for fullness,note that again by Lemma 4.66(d),
the morphism evM,N is epic for each N 2M. Thus, we obtain the exact sequence
in C below, for X := Hom(M,N) and K := ker(evM,N):

0 �! K �! X “ M �! N �! 0.

Next, by Lemma 4.66(b), we get the exact sequence in C below:

0 �! F(K) �! F(X “ M) �! F(N) �! 0.

Apply the left exact, contravariant functors, HomM(�,N0), HomMod-A(C)(�, F(N0)),
respectively to the sequences above to yield the commutative diagram below.

0 //

F0,0

✏✏

HomM(N,N0) //

F
N,N0

✏✏

HomM(X “ M,N0) //

F(X“M),N0

✏✏

HomM(K,N0)

F
K,N0

✏✏

0 // HomMod-A(C)(F(N), F(N0)) // HomMod-A(C)(F(X “ M), F(N0)) // HomMod-A(C)(F(K), F(N0))

The first and third vertical maps are isos, trivially and as shown under the assump-
tion (†), respectively. Moreover, FK,N0 is monic due to the faithfulness of F. Hence,
FN,N0 is epic by a Four Lemma [Lemma 2.48(b)]. Together with the faithfulness of
F, we get that FN,N0 is an isomorphism [Proposition 2.4]. Thus, F is fully faithful.

To obtain that F is essentially surjective, consider the adjunction

⇣X,Y : HomMod-A(C)(X ⌦ A, Y) ⇠! HomC(X, Forg(Y));

see Exercise 4.25 adapted for right modules. Take Z 2 Mod-A(C). Then, we get that
⇣�1

Forg(Z),Z(idZ) : Z ⌦ A ! Z is an epi in Mod-A(C) (using the counit for Free-Forget
adjunction here and Exercise 2.41(b)). Take X to be the kernel of this morphism,
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and by composing with the epi ⇣�1
Forg(X),X(idX), we get the sequence of morphisms,

0

%%

0

X

%%

99

X ⌦ A
�

//

⇣�1(idX ) 99

Z ⌦ A
⇣�1(idZ )

// Z // 0

in Mod-A(C), for A := End(M). We then get that

HomMod-A(C)(X ⌦ A, Z ⌦ A) � HomMod-A(C)(F(X “ M), F(Z “ M)) (Lemma 4.65)

� HomM(X “ M, Z “ M). (F is fully-faithful)

Take �0 : X “ M ! Z “ M in M to be the image of � under the isomorphism
above. Then, F(coker(�0)) � coker(F(�0)) since F is right exact [Lemma 4.66(b)].
Further, the cokernel of F(�0), which is isomorphic to the cokernel of �, is in turn
isomorphic to Z. Thus, F is essentially surjective since F(coker(�0)) � Z. ⇤

Note that the semisimplicity of C (which implies thatM is semisimple by defini-
tion), along with the indecomposability of M, were used to employ Lemma 4.66.

Remark 4.68. The hypothesis of Ostrik’s Theorem [Theorem 4.67] can be weak-
ened to achieve generalizations, as shown in the works mentioned below.

(a) In Theorem 7.10.1 of the textbook by Etingof et al. [2015], the authors achieve
the conclusion of Theorem 4.67 without imposing semisimplicity. Instead, C
is assumed to be finite tensor, and M is exact and indecomposable.

(b) The work of Douglas et al. [2018] (namely, their Theorem 2.24) achieves the
conclusion of Theorem 4.67 with neither semisimplicity nor rigidity imposed.
There, the conditions in Lemma 4.66(a,c) for Hom(M,�) are still imposed.

Remark 4.69. We have shown that internal End algebras serve as representatives
of Morita equivalence classes of algebras in numerous monoidal categories, but
in practice one may want to work with explicit algebra representatives.

For instance, take the fusion categoryVec
!
G

from Exercise 3.35. Then, the twisted
group algebras kL from Exercise 4.4 (and Exercise 4.50) serve as representatives
of Morita equivalence classes of algebras in Vec

!
G

. This is due to the works of
Ostrik [2003b] and of Natale [2017]. Exercise 4.57 compares these two collections
of algebra representatives of Morita equivalence classes in Alg(Vec!

G
).

§4.9. Properties of algebras in monoidal categories

Now we turn our attention to various properties for algebras A in monoidal
categories C, building on those introduced in Chapter 1 for algebras over a field.
We will also highlight when these properties satisfy the following conditions.
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• If a property P of A 2 Alg(C) is given in terms of the underlying object and the
structure morphisms of A, then we say that P is intrinsic.

• If a property P of A 2 Alg(C) is given in terms of a category of A-modules in C,
then we say that P is module-theoretic.

Module-theoretic properties are often Morita invariant, i.e., if an algebra has such
a property, then so does any algebra that is Morita equivalent to it (see §4.7.2).

For ease, we set the following hypotheses.

Standing hypothesis. Assume that C is a tensor category as in §3.10; see
also §3.1.3 and Remark 4.14, along with Figure 3.15, for related conditions.

One useful observation is the following.

Remark 4.70. Under the standing assumption, the category A-Mod(C) is abelian
for any algebra A in C, due to Propositions 3.68 and 4.31(d).

Here, we will discuss the following properties, implications, and question below.

Connectedness
§4.9.1

(intrinsic)

Indecomposability
§4.9.2

(intrinsic)

Simplicity
§4.9.3

(intrinsic)

Semisimplicity
§4.9.4

(module-theoretic)

Separability
§4.9.5

(intrinsic)

Exactness
§4.9.6

(module-theoretic)

?

Rem. 4.73(a) Rem. 4.78(a)

C semisimp.
Prop. 4.85Rem. 4.89

Rem. 4.86(c)

Figure 4.12: Properties for algebras in monoidal categories.

The properties in Figure 4.12 are illustrated here via the algebras below.

• The unit algebra from Example 4.1(a), discussed throughout the section.

• The C-endomorphism algebra X ⌦ X
⇤ from Example 4.9, discussed throughout.

• Monads from §4.3.2, specifically towards separability, in Exercise 4.60.

• The twisted group algebras mentioned Remark 4.69, explored in Exercise 4.61.

§4.9.1. Connected algebras

One intrinsic property that is used often in the literature is the following: we say
that A 2 Alg(C) is connected or haploid if dimkHomC( , A) = 1.
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Connectedness is a strong condition on A 2 Alg(C). For instance, when C = Vec,
we have that A is connected if and only if dimkA = dimkHomVec(k, A) = 1.

We also see that connectedness is not Morita invariant (so, there is little hope
that connectedness could be module-theoretic). Namely, take C = Vec, and recall
that Matn(k) is Morita equivalent to k for all n � 1 [Example 2.21]. Now, k is
connected, yet Matn(k) is connected only when n = 1.

Next, we introduce our running examples for the section.

Example 4.71. Consider the unit algebra from Example 4.1(a). Also, consider the
C-endomorphism algebra X ⌦ X

⇤, for X a nonzero object of C, from Example 4.9(a).

(a) The algebra is connected. Indeed, HomC( , ) � k since 2 C is assumed to
be absolutely simple.

(b) The algebra X ⌦ X
⇤ is connected if and only if X is an absolutely simple object

of C. Indeed, HomC( , X⌦X
⇤) �HomC(X, X) by Proposition 3.33(d). Therefore,

by Proposition 2.60, X ⌦ X
⇤ is connected if X is a simple object of C, and the

converse holds when C is semisimple.

(c) As a special case of part (a), take C = FdVec and recall from Example 4.9(b)
that X ⌦ X

⇤ � Matn(k) as k-algebras, for n = dimkX. Now X is an (absolutely)
simple object of C if and only if X � k. So, we recover the precise condition for
Matn(k) to be connected (namely, n = 1) discussed above.

Exploring connectedness when C = G-Mod, for a group G, is Exercise 4.58.

One useful characterization of connectedness is given as follows; this expands
on Example 1.23, and on Exercise 1.26(a), in the case when C = Vec.

Proposition 4.72. Take an algebra (A,mA, uA) in C, and consider the following triple:
⇣
HomC( , A), mHomC( ,A)( f ⌦ f

0) := mA ( f ⌦ f
0) `�1, uHomC( ,A)( f ) := uA

⌘
.

Here, f and f
0 are morphisms in the k-vector space HomC( , A).

(a) We have that (HomC( , A), mHomC( ,A), uHomC( ,A)) is a k-algebra.

(b) We have that as k-algebras:

HomC( , A) � EndMod-A(C)((Areg)A), HomC( , A)op � EndA-Mod(C)(A(Areg)).

(c) A is connected if and only if any of the k-algebras in part (b) is 1-dimensional.

Proof. Most of the details are reserved as Exercise 4.59, including the verification
of part (a). Towards part (b), the first isomorphism is given below:

� : HomC( , A)! EndMod-A(C)((Areg)A), f 7! mA ( f ⌦ idA) `�1
A
.

The inverse  of � is defined by  (g) := g uA, for g 2 EndMod-A(C)((Areg)A). Part (c)
follows immediately from part (b). ⇤
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§4.9.2. Indecomposable algebras

Recall from §4.5.1i that an algebra A in C is indecomposable if it is not isomorphic
as algebras to a biproduct of nonzero algebras in C.

Remark 4.73. (a) Connected algebras are indecomposable. Indeed, if A � A1⇤A2,
for nonzero algebras A1, A2 in C, then the morphisms uA1 , uA2 yield morphisms
ui : ! Ai ! A, for i = 1, 2, that are not scalar multiples of each other.

(b) Indecomposable algebras are not necessarily connected. For instance, for
each n � 1, Matn(k) is indecomposable as a k-algebra since Z(Matn(k)) � k

[Proposition 1.17]. But Matn(k) is not connected when n > 1 [Example 4.71(c)].

Next, we continue our running examples of the section.

Example 4.74. Consider the unit algebra [Example 4.1(a)]. Also, consider the
C-endomorphism algebra X ⌦ X

⇤, for X a nonzero object of C [Example 4.9(a)].

(a) The algebra is indecomposable by Example 4.71(a) and Remark 4.73(a).

(b) The algebra X ⌦ X
⇤ is indecomposable by Example 4.80(b) and Remark 4.78(a)

in §4.9.3 below.

Even though the connected condition is not Morita invariant, indecomposability
is module-theoretic due to the result below (cf. Exercise 3.14).

Proposition 4.75. Take A, A1, A2 2 Alg(C), and recall Proposition 4.30. Then, the fol-
lowing statements hold.

(a) (A1 ⇤ A2)-Mod(C) ' A1-Mod(C) ⇥ A2-Mod(C) as right C-module categories.

(b) Mod-(A1 ⇤ A2)(C) ' Mod-A1(C) ⇥Mod-A2(C) as left C-module categories.

(c) If A-Mod(C) (or, Mod(C)-A) is indecomposable as a right (or, left) C-module category,
then A is an indecomposable algebra in C.

Proof. The equivalence in part (a) holds via the functors below,

F : (A1 ⇤ A2)-Mod(C) �! A1-Mod(C) ⇥ A2-Mod(C),

G : A1-Mod(C) ⇥ A2-Mod(C) �! (A1 ⇤ A2)-Mod(C),

where F(M, . : (A1⇤A2)⌦M ! M) :=
�
(M, .↵1), (M, .↵2)

�. Here,we use Lemma 3.4,
and the morphisms below that come from the universal property of the biproduct:

↵1 : A1 ⌦ M ! (A1 ⌦ M) ⇤ (A2 ⌦ M), ↵2 : A2 ⌦ M ! (A1 ⌦ M) ⇤ (A2 ⌦ M).

Also, G
�
(M1, .1), (M2, .2)

�
:=

�
M1 ⇤M2, .0

�, where by way of Lemma 3.4, we define:

.0 := .1 ⇤ A1⌦M2

!
0 ⇤ A2⌦M1

!
0 ⇤ .2 : (A1 ⇤ A2) ⌦ (M1 ⇤ M2)! M1 ⇤ M2.

We leave it to the reader to complete the details. Part (b) follows likewise. Part (c)
then follows from parts (a,b). ⇤

257

Copyright ©2024 Chelsea Walton. Free version by the courtesy of CW and 619 Wreath. https://math.rice.edu/~notlaw/symalgbook.html. 

Enjoy this textbook? Physical copies are available for purchase at https://www.619wreath.com/ and on Amazon. 
<< Please ask your local academic librarian to order a copy for circulation. >> 



C������ 4. A������� �� �������� ����������

Exploration 4.76. The reader is encouraged to investigate a monoidal general-
ization of Propositions 1.17 and 1.22 in Chapter 1. Those results provide char-
acterizations of indecomposability for algebras and modules in Vec in terms of
idempotent elements.

§4.9.3. Simple algebras

Next, we generalize the notion of simplicity for algebras, introduced in §1.5.2 for
algebras over a field. We say that an algebra A 2 Alg(C) is simple if the only ideals
of A are the zero ideal and itself; see §4.2.1 and Example 4.10.

Simple algebras in the monoidal context have not been explored deeply in the
literature to date, so many of the results in §§1.5.2, 1.5.3 are open for generalization.
In particular, the classification of finite-dimensional simple k-algebras is achieved
via the Cartan-Wedderburn Theorem [Theorem 1.37], but its generalization to the
monoidal context is an open problem.

Research Problem 4.77. (a) Establisha generalization of the Cartan-Wedderburn
Theorem [Theorem 1.37] for algebras in C. A finiteness hypothesis should be
imposed since finite-dimensionality is needed for the setting of k-algebras.

(b) Provide an example of an ‘infinite’ simple algebra in C, outside of the classifi-
cation of simple algebras in part (a). Compare to Remark 1.39.

Towards resolving this problem and towards understanding simple algebras in
C in general, consider the following results.

Remark 4.78. (a) A simple algebra in C is indecomposable. Indeed, if A � A1 ⇤A2

is a decomposable algebra in C, then (A1)reg ⇤ 0 is a proper ideal of A in C.

(b) Indecomposable algebras are not necessarily simple. Recall from Remark 1.33
that k[v] is an indecomposable k-algebra that is not a simple k-algebra.

Next, we will see that simplicity is Morita invariant.

Proposition 4.79. Let A and B be Morita equivalent algebras in C. If B is simple as an
algebra in C, then so is A.

Proof. We proceed in the strict case via the Strictification Theorem [Theorem 3.26].
Since A and B are Morita equivalent, there are bimodules P 2 (A, B)-Bimod(C) and
Q 2 (B, A)-Bimod(C) such that P ⌦B Q � Areg as A-bimodules and Q ⌦A P � Breg

as B-bimodules, due to the Generalized Morita Theorem [Theorem 4.56]. For an
ideal I of A in C, we have that Q ⌦A I ⌦A P is isomorphic to an ideal of B in C via
the morphism below:

◆ : Q ⌦A I ⌦A P

idQ ⌦A ◆AI ⌦A idP
// Q ⌦A A ⌦A P � Q ⌦A P � B.

258

Copyright ©2024 Chelsea Walton. Free version by the courtesy of CW and 619 Wreath. https://math.rice.edu/~notlaw/symalgbook.html. 

Enjoy this textbook? Physical copies are available for purchase at https://www.619wreath.com/ and on Amazon. 
<< Please ask your local academic librarian to order a copy for circulation. >> 



4.9. P��������� �� �������� �� �������� ����������

(We leave the details to the reader; see also Lemma 4.44.) Now if B is simple, then
Q ⌦A I ⌦A P is isomorphic to 0, or to B, as B-bimodules in C. This implies that

I � A ⌦A I ⌦A A � P ⌦B Q ⌦A I ⌦A P ⌦B Q

is isomorphic to P ⌦B 0 ⌦B Q � 0, or to P ⌦B B ⌦B Q � A, as A-bimodules in C. This
implies that A is a simple algebra in C. ⇤

Example 4.80. Take the unit algebra [Example 4.1(a)], and the C-endomorphism
algebra X ⌦ X

⇤, for X a nonzero object of C [Example 4.9(a)].

(a) The algebra is simple since as an object is simple.

(b) The algebra X ⌦ X
⇤ is simple via Proposition 4.79 and part (a) because it is

Morita equivalent to the unit algebra [Example 4.58].

§4.9.4. Semisimple algebras

As one would expect, the study of semisimple algebras in the monoidal context
prompts more questions than answers at this point. The definition of a semisimple
k-algebra in §1.6 is module-theoretic, but we obtain by the Artin-Wedderburn
theorem [Theorem 1.44] an intrinsic characterization of such algebras.

Following the approach in §1.6,we say that A 2 Alg(C) is semisimple if A-Mod(C)
is a semisimple category.

Note that semisimplicity for algebras in C is Morita invariant.

Example 4.81. Take the unit algebra from Example 4.1(a), and consider the
C-endomorphism algebra X ⌦ X

⇤, for X a nonzero object of C, from Example 4.9(a).

(a) The algebra is semisimple if andonly ifC is semisimple because -Mod(C) � C

[Example 4.29].

(b) The algebra X ⌦ X
⇤ is semisimple if and only if C is semisimple, due to part (a)

and X ⌦ X
⇤ being Morita equivalent to [Example 4.58].

Following up with Research Problem 4.77, we also propose the task below.

Research Problem 4.82. Establish a version of the Artin-Wedderburn theorem
[Theorem 1.44] in the (semisimple) monoidal context, thereby providing an in-
trinsic description of semisimple algebras in C.

One useful (module-theoretic) characterization is given below, which partially
generalizes Proposition 2.57 in §2.8.3.

Proposition 4.83. An algebra A in C is semisimple if and only if each object in A-Mod(C)
(or in Mod-A(C)) is projective.
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Proof. We will discuss the arguments for left modules; the arguments for right
modules hold similarly. If A is a semisimple algebra in C, then A-Mod(C) is a
semisimple, abelian category by the definition and by Remark 4.70. Then, each
object in A-Mod(C) is projective by Corollary 2.56.

Conversely, suppose that each object in A-Mod(C) is projective. Then, similar to
the proof of Proposition 2.57, it suffices to show that every left ideal I of A has a
complement in C. Indeed, the short exact sequence 0 ! I ! A ! A/I ! 0 splits
in A-Mod(C). So, I ⇤ (A/I) � A in A-Mod(C), as desired. ⇤

§4.9.5. Separable algebras

Now we generalize the notion of separability from §1.7.

An algebra (A,m, u) in C is said to be separable if there exists a right-inverse
� : A ! A ⌦ A of m in A-Bimod(C). Here, m� = idA, and � 2 A-Bimod(C) with the
A-actions on A given by .A = m = /A, and with the A-actions on A ⌦ A given by
.A⌦A = (m ⌦ idA) a

�1
A,A,A and /A⌦A = (idA ⌦ m) aA,A,A.

Let us continue the running example of this section.

Example 4.84. Consider the unit algebra from Example 4.1(a). Also, consider the
C-endomorphism algebra X ⌦ X

⇤, for X a nonzero object of C, from Example 4.9(a).

(a) The algebra ( ,m := ` , u := id ) in C is separable by using � = `�1.

(b) Suppose that C is pivotal [§3.7], and take C to be strict via Theorem 3.26.
Moreover, take an object X 2 C with invertible pivotal dimension, dim jX.
(Recall that dim jX is the morphism evX (idX_ ⌦ j

�1
X

) coevX_ : ! .) Then, the
algebra A := X ⌦ X

_ is separable. Here, mA := idX ⌦ evX ⌦ idX_ , and we use

�A := (dim jX)�1 [idX ⌦ (idX_ ⌦ j
�1
X

) coevX_ ⌦ idX_ ].

Indeed, mA �A = idA. Moreover, �A 2 A-Mod(C) since

�A � .A = (dim jX)�1 [idX ⌦ (idX_ ⌦ j
�1
X

) coevX_ ⌦ idX_ ] [idX ⌦ evX ⌦ idX_ ]

= (dim jX)�1 [idX ⌦ evX ⌦ idX_⌦X⌦X_ ] [idX⌦X_⌦X ⌦ (idX_ ⌦ j
�1
X

) coevX_ ⌦ idX_ ]

= .A⌦A � (idA ⌦ �A).

Likewise, �A 2 Mod-A(C). Therefore, �A 2 A-Bimod(C).

An exercise on separable monads [§4.3.2] is provided in Exercise 4.60.

Next, we see that when C is semisimple, separability is a module-theoretic
property. This result first appeared as Proposition 2.7 of Davydov et al. [2013].
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Proposition 4.85. Assume that C is a multifusion category. Then, the following state-
ments are equivalent for A 2 Alg(C).

(a) A is separable. (c) Mod-A(C) is semisimple.

(b) A-Mod(C) is semisimple. (d) A-Bimod(C) is semisimple.

Proof. For part (a) to imply part (b), suppose that A is a separable algebra. Then,
by Lemma 4.2, we get the short exact sequence in A-Bimod(C):

0 �! ker(mA) �! A ⌦ A
mA�! A �! 0.

An argument similar to the proof of Proposition 4.13 shows why K := ker(mA) is
in A-Bimod(C). Next, Proposition 2.45, along with A being separable, implies that
A ⌦ A � A ⇤ K in A-Bimod(C). Then, for any M 2 A-Mod(C) in C, we obtain that:

A ⌦ M � (A ⌦ A) ⌦A M � (A ⇤ K) ⌦A M

� (A ⌦A M) ⇤ (K ⌦A M) � M ⇤ (K ⌦A M),

as left A-modules in C. The isos above follow from Lemmas 4.44 and 3.4, and using
⌦A as the monoidal product of A-Bimod(C). Now the adjunctions in Exercise 4.25(c)
and Proposition 3.33(d) imply that for all Z 2 A-Mod(C):

HomA-Mod(C)(A ⌦ M, Z) � HomC(M, Forg(Z))

� HomC( ⌦ M, Forg(Z)) � HomC( , Forg(Z) ⌦ M
⇤).

The functor Forg is exact, and the functor �⌦M
⇤ is exact by Proposition 3.68. Also,

C is semisimple, so is projective by Corollary 2.56; thus, HomC( ,�) is exact
[Propositions 2.52(a) and 2.53(a)]. The composition of these functors is then exact,
and via the isomorphism above, HomA-Mod(C)(A ⌦M,�) is exact. Hence, A ⌦M is a
projective object in A-Mod(C) by Proposition 2.53(a). Since A ⌦ M � M ⇤ (K ⌦A M)
in A-Mod(C), Corollary 2.55 implies that M is a projective object in A-Mod(C). So,
A-Mod(C) is semisimple by Proposition 4.83.

Next, part (b) implies part (d) as follows. Note that A-Bimod(C) is equivalent to
RexMod-C(A-Mod(C), A-Mod(C)) by the Generalized Eilenberg-Watts Theorem [The-
orem 4.54]. The latter category is then semisimple by part (b) and by the powerful
result,Theorem 2.18 of Etingof et al. [2005]:RexMod-C(M1,M2) is semisimple when
the right C-module categoriesM1 andM2 are semisimple. Indeed, semisimplicity
is preserved across an equivalence of categories.

Likewise, part (a) implies part (c), and part (c) implies part (d).
Part (d) implies part (a) due to Proposition 2.46 applied to the epi mA : A⌦A! A

in A-Bimod(C); see Lemma 4.2. ⇤
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Remark 4.86. Regarding the proof of Proposition 4.85, observe the following.

(a) Separability and semisimplicity are interchangeable for algebras in multifu-
sion categories. Semisimplicity is both right- and left-module theoretic here.

(b) Since FdVec is multifusion,Proposition 4.85 recovers Proposition 1.57. Namely,
algebras in FdVec are semisimple if and only if they are separable.

(c) Resolving Research Problem 4.77 (Generalized Cartan-Wedderburn Theorem)
should imply that ‘finite’ simple algebras are separable; see Example 1.54. One
may want to first consider this problem in the semisimple setting.

(d) But separability and semisimplicity are not interchangeable outside of the
semisimple setting. Namely, the unit algebra is always separable [Exam-
ple 4.84(a)], but it is not necessarily semisimple [Example 4.81(a)].

§4.9.6. Exact algebras

Separable and semisimple algebras are best behaved in semisimple categories;
see, e.g., Proposition 4.85 and Remark 4.86. But for the nonsemisimple setting, the
following module-theoretic property for algebras is often imposed.

We say that an algebra A in C is exact if the category A-Mod(C) is exact as a right
C-module category; that is, for all projective P 2 C and all M 2 A-Mod(C), we have
that M ⌦ P is a projective object in A-Mod(C) [§3.10.4, Proposition 4.30].

As defined here, exactness is left-module theoretic, but sometimes a right-
module theoretic definition is used in the literature. To resolve this ambiguity (as
done for separable/semisimple algebras in the semisimple setting), and towards
furthering the applications of exact algebras/modules, many researchers as of
the date of publication have asked the question below.

Research Question 4.87. Is there an intrinsic notion of an exact algebra in C?

Towards resolving this question, characterizations of exact module categories
(and, thus, of exact algebras) are useful; one from Sections 7.6 and 7.9 of Etingof
et al. [2015] is given below.

Proposition 4.88. Suppose that C is a finite tensor category. A left C-module category
M is exact if and only if any left C-module functor from M is exact. A similar statement
holds for right module categories.

Proof. Suppose that M is exact, and take a left C-module functor F : M ! N .
Suppose there exists a short exact sequence 0 ! M

0 ! M ! M
00 ! 0 in M, but

0! F(M
0)! F(M)! F(M

00)! 0 is not exact in N , by way of contradiction. Now
for any projective P 2 C, we get that 0! P “ M

0 ! P “ M ! P “ M
00 ! 0 is exact

as (P “ �) is exact [Propositions 2.49(b), 3.45], and is split as P “ M
00 is projective
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[Proposition 2.53]. Thus, 0! F(P “ M
0)! F(P “ M)! F(P “ M

00)! 0 is exact
by Proposition 2.49(c). Since F is a module category functor, we obtain that

0! P “ F(M
0)! P “ F(M)! P “ F(M

00)! 0

is exact. This contradicts the non-exactness of 0! F(M
0)! F(M)! F(M

00)! 0,
since (P “ �) is exact. Thus, F is an exact functor.

Conversely, suppose that any left C-module functor F : M! N is exact. Then,
the internal Hom functor Hom(M,�) : M! C is exact for any M 2M. (Internal
Homs exist here by Corollary 3.72.) Therefore, by Proposition 2.53,

HomM(P “ M,�) � HomC(P,Hom(M,�))

is exact, for any projective object P 2 C. Therefore, P “ M is projective in this case,
and again, by Proposition 2.53, M is exact. ⇤

Another characterization is given in terms of relative Serre functors when C is a
finite tensor category; see Proposition 4.24 of Fuchs et al. [2020] for details.

Returning to exact algebras, consider the following observations and examples.

Remark 4.89. Semisimple algebras in C are exact. Indeed, if A is semisimple, then
A-Mod(C) is semisimple andall left A-modules in C are projective [Proposition 4.83].
Therefore, for any projective P 2 C and any M 2 A-Mod(C), we obtain that M ⌦ P

is a projective left A-module in C, as required.

Example 4.90. Take the unit algebra from Example 4.1(a), and consider the
C-endomorphism algebra X ⌦ X

⇤, for X a nonzero object of C, from Example 4.9(a).

(a) The unit algebra is always exact due to Example 4.29 and Proposition 3.69.

(b) Exactness for algebras is Morita invariant. So, the algebra X ⌦ X
⇤ is exact by

part (a) and Example 4.58.

§4.10. Bimodules and beyond

The final bit of material that we will introduce in this book is on bimodules over
algebras in monoidal categories– on their categorical structure, on a related notion
of sameness, and briefly, on their higher category theory.

Standing hypothesis. Assume that C is a tensor category as in §3.10; see
also §3.1.3 and Remark 4.14, along with Figure 3.15, for related conditions.
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§4.10.1. On the monoidal category of bimodules

The main result of the section is on how close a monoidal category of bimodules
(from §4.5.2iii) is to being (multi)tensor or (multi)fusion. Compare to Figure 3.15.
See also Section 7.11 of Etingof et al. [2015].

Theorem 4.91. Take A 2 Alg(C). Then, the following statements hold for the monoidal
category (A-Bimod(C),⌦A, Areg).

(a) It is always abelian, linear, locally finite, and ⌦A is bilinear on morphisms.

(b) It has an absolutely simple monoidal unit when A is connected.

(c) It is finite when C is finite.

(d) It is semisimple when C is semisimple and A is separable.

(e) It is rigid when C is finite and A is exact.

As a consequence, (A-Bimod(C),⌦A, Areg) is a finite tensor (resp., fusion) category when
C is finite tensor (resp., fusion), A is connected, and A is exact (resp., separable).

Proof. (a) The category A-Bimod(C) is abelian and k-linear by Proposition 4.33.
Moreover, we leave it to the reader to consider how A-Bimod(C) inherits the locally
finite condition from C, and how ⌦A is bilinear on morphisms as this holds for ⌦.

(b) Since EndA-Bimod(C)(Areg) contains the identity map, it is a nonzero subspace
of EndMod-A(C)(Areg). The latter is 1-dimensional since A is connected [Proposi-
tion 4.72(c)]. Thus, dimkEndA-Bimod(C)(Areg) = 1 as required.

(c) We have that A-Bimod(C) is locally finite from part (a). Also, A-Bimod(C) has
finitely many isoclasses of simple objects as C does. Next, take M 2 A-Bimod(C),
and (by abusing notation) consider the object M 2 C after forgetting the A-actions.
Since C has enough projectives, there exists an epi ⇡M : P(M)! M in C, with P(M)
a projective object in C. Consider the morphism:

⇡A

M
: (A ⌦ P(M)) ⌦ A

id ⌦ ⇡M ⌦ id
// (A ⌦ M) ⌦ A

/ (. ⌦ id)
// M.

Now (A ⌦ P(M)) ⌦ A 2 A-Bimod(C) is projective via Propositions 2.53 and 3.33 as

HomA-Bimod(C)((A ⌦ P(M)) ⌦ A,�) � HomC(P(M), ⇤A ⌦ (� ⌦ A
⇤))

is (right) exact. Namely, the functors �⌦A
⇤ and ⇤A⌦� are exact by Proposition 3.68,

and the functor HomC(P(M),�) is exact by Proposition 2.53. Moreover, / (. ⌦ id)
is epic (cf. Lemma 4.2), and so is id ⌦ ⇡M ⌦ id. Thus, ⇡A

M
is epic. Thus, A-Bimod(C)

has enough projectives, and is finite as a result.
(d) This holds by Proposition 4.85.
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(e) By the Generalized Eilenberg-Watts Theorem [Theorem 4.54], it suffices to
show that RexMod-C (A-Mod(C), A-Mod(C)) is rigid. Duals in categories of endofunc-
tors are adjoint functors [Example 3.41]. Now the result holds by Proposition 4.88,
Corollary 2.62, and part (c). ⇤

Remark 4.92. Observe from Examples 3.37 and 3.38 that the monoidal category
�
A-Bimod(C),⌦A, Areg

� is often not rigid, even when C = FdVec. The exactness of
the algebra A plays a key role in rigidity.

Remark 4.93. When C is a braided tensor category, one can form a commutative al-
gebra in C; this is discussed in a future volume. One can then construct a monoidal
category RepC(A) of A-bimodules in C, where the right A-action on an object in C

is induced by the left A-action (just as a left module over a commutative algebra
A over k forms an A-bimodule over k). If, further, C is finite and A is separable,
then the monoidal category (RepC(A),⌦A, Areg) is rigid due to Proposition 3.11 and
Lemma 4.20 in the work of Laugwitz and Walton [2023]. It is expected that this
result holds when the separability of A is replaced by exactness.

Remark 4.94. A generalized notion of rigidity can also be used to examine
monoidal categories of bimodules: namely, Grothendieck-Verdier (GV-)duality. This
was introduced by Boyarchenko and Drinfeld [2013]. Here, the anti-equivalence
(�)⇤ is replaced with a more general duality functor, such that its quasi-inverse
specializes to ⇤(�). This circumvents the need for strong hypotheses on A, while
achieving many results that one would get if A-Bimod(C) is rigid. For instance, see
the work of Fuchs et al. [2023] where it is shown that A-Bimod(FdVec) satisfies
GV-duality. See also the work of Allen et al. [2021], where GV-duality is used to
study the representation theory of vertex operator algebras.

Example 4.95. One vital collection of monoidal categories of bimodules are those
formed by taking the twisted group algebras kL in the monoidal category Vec

!
G

;
see Exercises 4.4 and 3.35. The resulting category, (kL )-Bimod(Vec!

G
) is called a

group-theoretical fusion category, and is denoted by C(G,!, L, ). Verifying that
C(G,!, L, ) is indeed a fusion category is Exercise 4.62. Group-theoretical fusion
categories often serve as a test case for a result about fusion categories.

§4.10.2. Categorical Morita equivalence

By replacing algebras and their categories of modules with tensor categories
and their module categories, we can consider a notion of sameness for tensor
categories in the context of Morita equivalence. That is, for tensor categories C

and D, we want a way of saying that:

C-Mod ' D-Mod, (4.96)
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for these collections of module categories. To do this properly, one needs to go ‘up’
a categorical level as discussed in §4.10.3 below. Namely, we want to keep track
module categories, module functors between them, and we want to compare such
structures with transformations. But for now, we proceed as follows.

By Theorem 2.18 and Remark 2.20, we have that two k-algebras A and B are
Morita equivalent precisely when one of the equivalent conditions below holds.

(?) There exist bimodules APB and BQA such that P ⌦B Q � Areg as A-bimodules
and Q ⌦A P � Breg as B-bimodules.

(??) We have that B
op � EndA-Mod(M) as algebras, for some finitely generated,

projective generator M of A-Mod.

Motivated by the characterization (??), we say that tensor categories C andD are
categorically Morita equivalent if there exists an exact left C-module category
M such that, as tensor categories:

D
⌦op ⌦' �

RexC-Mod(M,M), �, IdM
�
.

Categorical Morita equivalence is indeed an equivalence relation. See Sec-
tion 7.12 of the book by Etingof et al. [2015] for details about this fact and more.

Remark 4.97. When the setting of (a generalized) Ostrik’s Theorem holds [Theo-
rem 4.67, Remark 4.68], we get that M ' Mod-A(C), for some A 2 Alg(C). Here,

RexC-Mod(M,M)
⌦' (A-Bimod(C))⌦op

as tensor categories by way of the Generalized Eilenberg-Watts Theorem [Re-
mark 4.55]. If F1, F2 2 RexC-Mod(M,M) corresponds to M1,M2 2 A-Bimod(C), re-
spectively, then F1 � F2 2 RexC-Mod(M,M) corresponds to M2 ⌦A M1 2 A-Bimod(C).
Therefore, D is categorically Morita equivalent to C in this setting if and only if
there exists an exact algebra A in C such that, as tensor categories:

D
⌦' �

A-Bimod(C), ⌦A, Areg
�
.

Example 4.98. Take a finite group G. We have that the tensor categories,
G-Mod andVecG, are categorically Morita equivalent. Indeed, the forgetful functor
VecG ! Vec is strong monoidal (check this), so Vec is a left module category over
VecG [Example 3.18]. This module category is exact since Vec is a semisimple,
abelian category [§§2.7.3, 2.2.2iii, Corollary 2.56]. Now:

RexVecG-Mod(Vec,Vec)
⌦' (G-Mod)⌦op,

given by sending a module functor (F, s) 2 RexVecG-Mod(Vec,Vec) to the left
G-module F(k) =: V , with action g . v := s�g,k(v). Here, �g is the simple object
of VecG from Exercise 3.35(a). Completing the details here is Exercise 4.63.
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Next, we discuss briefly Morita equivalence in the context of (?) above.

Remark 4.99. Take tensor categories C and D, along with a (C,D)-bimodule
category P and a (D, C)-bimodule category Q (which are abelian as in §3.3.4).

• The Deligne product of P and Q is an abelian category P ⇥ Q consisting of
objects P⇥ Q for P 2 P and Q 2 Q, and morphisms f ⇥ g for f 2 P and g 2 Q.

• A functor F : P ⇥ Q ! Z is D-balanced if there is a natural isomorphism
{F((P ‹ Y)⇥Q) ⇠! F(P⇥ (Y “ Q))}P2P ,Q2Q,Y2D satisfying an associativity axiom.

• The relative (or balanced) tensor product of P and Q is an abelian category
P ⇥D Q, equipped with a right exact D-balanced functor P ⇥Q! P ⇥D Q that
is universal amongst all right exact D-balanced functors from P ⇥Q.

• Then, P ⇥D Q is a C-bimodule category. Also, Q⇥C P is a D-bimodule category.

Now by Proposition 4.2 of Etingof et al. [2010], C and D are categorically Morita
equivalent if and only if there exists P , Q as above, where, as bimodule categories:

P ⇥D Q ' Creg, Q⇥C P ' Dreg.

Here, P and Q are said to be invertible bimodule categories.

Check out the article by Etingof et al. [2010], along with the work of Greenough
[2013], for further details. See also the work of Douglas et al. [2019] on how to
apply Ostrik’s Theorem [Theorem 4.67] to this setting; compare to Remark 4.97.

§4.10.3. On the higher category theory of bimodules

When determining if two structures have the same representation theory, it is
best to work in a framework that is increased by one categorical level. Indeed, two
k-algebras (at "categorical level 0") have the same representation theory precisely
when their categories of modules (at "categorical level 1") are equivalent. Also, two
tensor categories C and D (at "categorical level 1") have the same representation
theory precisely when (4.96) holds, and this condition resides at "categorical
level 2" in a sense. So, the goal of this section is to discuss briefly higher category
theory. In particular, this framework captures the Morita theory of algebras and
categorical Morita theory, both involving bimodules.

A higher categorical structure is an entity that is comprised of objects, mor-
phisms between objects, morphisms between morphisms (that is, 2-morphisms),
and possibly ‘higher’ morphisms. How, precisely, these entities contain identities,
compositions, and possess compatibilities between operations, vary from one
higher categorical structure to another. For instance, 2-categorical structures in-
volve objects, morphisms, and 2-morphisms, and these include (strict) 2-categories,
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bicategories, and double categories, just to mention a few. But we will only peek into
this Pandora’s box and not crack it wide open here...for there are beasts inside.

A 2-category (also called a strict 2-category) E consists of the data (a)-(h) below.

(a) A collection of 0-cells, E0.

(b) A collection of 1-cells, E1(X, Y), for any X, Y 2 E0.

X // Y

(c) A collection of 2-cells, E2( f , f
0) := E

X,Y
2 ( f , f

0) , for any f , f
0 2 E1(X, Y).

X

f

((

f
0

66↵◆ Y

(d) An identity 1-cell, idX 2 E1(X, X), for any X 2 E0.

(e) An identity 2-cell, Id f := IdX,Y
f
2 E2( f , f ), for any f 2 E1(X, Y).

(f) A horizontal composition of 1-cells, g f 2 E1(W, Y), for f 2 E1(W, X), g 2 E1(X, Y).

g f : W
f
// X

g
// Y

(g) A vertical composition of 2-cells, F
0 �ver

F 2 EX,Y
2 ( f , f

00), for any F 2 EX,Y
2 ( f , f

0)
and F

0 2 EX,Y
2 ( f

0, f
00), with f , f

0, f
00 2 E1(X, Y).

X

f

**

f
00

44↵◆ F
0 �ver

F Y := X

f

$$↵◆ F
::

f
00
↵◆ F
0

f
0

// Y

(h) A horizontal composition of 2-cells, G �hor
F 2 EW,Y

2 (g f , g0 f 0), which exists for
any F 2 EW,X

2 ( f , f
0) and G 2 EX,Y

2 (g, g0), with f , f
0 2 E1(W, X) and g, g0 2 E1(X, Y).

W

g f

**

g
0
f
0

44↵◆ G �hor
F Y := W

f

((

f
0

66↵◆ F X

g

((

g
0

66↵◆ G Y

This data must satisfy the compatibility axioms (i)-(viii) below.

(i) (1-cell horizontal composition associativity)

(hg) f = h(g f ) in E1(W, Z),

for f 2 E1(W, X), g 2 E1(X, Y), h 2 E1(Y, Z).

(ii) (1-cell horizontal composition unitality)

idX f = f in E1(W, X), g idX = g in E1(X, Y),

for f 2 E1(W, X) and g 2 E1(X, Y).
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(iii) (2-cell vertical composition associativity)

(F00 �ver
F
0) �ver

F = F
00 �ver (F0 �ver

F) in E2( f , f
000),

for F 2 E2( f , f
0), F

0 2 E2( f
0, f
00), F

00 2 E2( f
00, f

000).

(iv) (2-cell vertical composition unitality)

Id f 0 �ver
F = F in E2( f , f

0), F
0 �ver Id f 0 = F

0 in E2( f
0, f
00),

for F 2 E2( f , f
0) and F

0 2 E2( f
0, f
00).

(v) (2-cell horizontal composition associativity)

(H �hor
G) �hor

F = H �hor (G �hor
F) in E2(hg f , h0g0 f 0),

for F 2 E2( f , f
0), G 2 E2(g, g0), H 2 E2(h, h0).

(vi) (2-cell horizontal composition unitality)

IdidX
�hor

F = F in E
W,X
2 ( f , f

0), G �hor IdidX
= G in E

X,Y
2 (g, g0),

for F 2 EW,X
2 ( f , f

0) and G 2 EX,Y
2 (g, g0).

(vii) (interchange law for 2-cell identities)

Idg �hor Id f = Idg f ,

for f 2 E1(W, X) and g 2 E1(X, Y).

(viii) (interchange law for 2-cell compositions) As illustrated below,

(G0 �ver
G) �hor (F0 �ver

F) = (G0 �hor
F
0) �ver (G �hor

F).

W

f

((

f
00

66↵◆ F
0�ver

F X

g

((

g
00

66↵◆ G
0�ver

G Y = W

f

⇡⇡↵◆ F
EE

f
00
↵◆ F
0

f
0
// X

g

⇡⇡↵◆ G

EE

g
00
↵◆ G
0

g
0
// Y = W

g f

$$↵◆ G�hor
F

::

g
00

f
00
↵◆ G0�hor

F
0

g
0
f
0

// Y

Remark 4.100. There are many underlying categories within the data above.

• The data (a), (b) (d), (f), along with axioms (i) and (ii), forms a traditional category
as defined in §2.1.1.

• The data (b), (c), (e), (g), along with axioms (iii) and (iv), also forms a category.

• Likewise, the data (b), (c), (e), (h), with axioms (v) and (vi), forms a category.
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Example 4.101. The 2-category of categories, Cat, is defined by taking:

(a) Cat0 to be the collection of all categories;

(b) Cat1(A,B) to be the collection of functors from a category A to a category B;

(c) CatA,B2 (F, F0) to be the collection of natural transformations from a functor
F : A! B to a functor F

0 : A! B.

Verifying the details of this example is Exercise 4.64.

Returning to the theme of the section, let us consider some higher categorical
data pertaining to bimodules. This is motivated by the Generalized Morita’s
Theorem [Theorem 4.56], which states that two algebras A and B in C are Morita
equivalent if and only if there exists an invertible (A, B)-bimodule in C. The
2-categorical structure that arises in this context is beyond the scope of strict
2-categories because one needs to consider invertibility using isomorphisms of
bimodules. Equalities are too restrictive. Now consider the following notion.

A bicategory (also called a weak 2-category) consists of the data (a)–(h) from
the definition of a strict 2-category, subject to the same axioms (iii) and (iv) for
2-cell vertical composition. However, the axioms (v) and (vi) for 2-cell horizontal
composition are replaced with an associator and two unitor natural isomorphisms,
subject to a pentagon axiom and a triangle axiom. As a result, a weaker version of
axioms (i) and (ii) for 1-cell horizontal composition arise in this construction, and
the interchange axioms (vii) and (viii) still hold. We refer the reader to Chapter 2
of the textbook by Johnson and Yau [2021] for more details.

Example 4.102. The bicategory of bimodules overalgebras in C,denoted byBim(C),
is given by the following data.

(a) Bim(C)0 as the collection of algebras in C.

(b) Bim(C)1(A, B) as the collection of (A, B)-bimodules in C, for algebras A, B in C.

(c) Bim(C)A,B
2 (M,N) as the morphisms M ! N of (A, B)-bimodules in C.

(d) Regular bimodules A(Areg)A as the identity 1-cells.

(e) Identity bimodule morphisms in C as the identity 2-cells.

(f) Tensor product ⌦A of bimodules in C as the horizontal composition of 1-cells.

(g) Bimodule morphism composition in C as the vertical composition of 2-cells.

(h) Tensor product ⌦A of bimodule morphisms in C as the horizontal composition
of 2-cells.

Here, Bim(C) fails to be a strict 2-category. Namely, axiom (i) fails as the tensor
product of bimodules over algebras in C is not associative, nor unital, on the
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nose; this only holds up to isomorphism [Lemma 4.44]. But with Bim(C) being a
bicategory, the Morita equivalence of algebras in C is captured by the invertibility
of 1-cells. For this reason, Bim(C) is sometimes referred to as a Morita 2-category.

On a similar note, recall Remark 4.99, and consider the bicategory below.

Example 4.103. The bicategory of bimodule categories over tensor categories,
denoted by BimCat, is given by:

(a) BimCat0 as the collection of tensor categories;

(b) BimCat1(C,D) as the collection of (C,D)-bimodule categories, for tensor cate-
gories C and D;

(c) BimCatC,D2 (M,N ) consisting of (C,D)-bimodule functors M! N .

Now, two tensor categories C and D are categorically Morita equivalent if and
only if there exists an invertible 1-cell in the bicategory BimCat1(C,D).

But this is getting quite fancy. So, we should end here.

References for further exploration

Here are some nice references on the higher category theory of bimodules.

• As mentioned in §4.10.2, the articles, "Fusion categories and homotopy theory"
by Etingof et al. [2010] and "Monoidal 2-structure of bimodule categories" by
Greenough [2013], are great references for the details of Example 4.103.

• The work in the articles, "A trace for bimodule categories" by Fuchs et al. [2017]
and "State sum models with defects based on spherical fusion categories"
by Meusburger [2023], use higher categorical structures involving bimodule
categories to produce topological invariants. For the latter reference, see:

Catherine Meusburger’s 2023 SwissMAP Research Station workshop talk on
"Turaev-Viro-Barrett-Westbury state sums with defects".

https://youtu.be/u0nLxahjQGU

• In a different direction, the results in "Cell 2-representations of finitary 2-
categories" by Mazorchuk and Miemietz [2011] introduce a way of generalizing
the representation theory of k-algebras within the framework of 2-categorical
structures. The role of bimodules is prominent throughout their theory. See:

Vanessa Miemietz’s 2023 International Centre for Mathematical Sciences
workshop talk on "Higher Representation Theory".

https://youtu.be/BlXoh1ZS0qA
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§4.11. Summary

The goal of this final chapter was to upgrade the constructions and results in
abstract algebra presented in Chapter 1 to the monoidal setting developed in
Chapters 2 and 3. See Figure 4.13. We began with the definition of an algebra in
a monoidal category, which boiled down to algebras over a field k when in the
monoidal category (Vec,⌦k, k). Monads are key examples of algebras; they arise
in the monoidal category of endofunctors. General constructions of algebras are
images of monoidal functors. In fact, right adjoints of strong monoidal functors
are monoidal, so we can build algebras in monoidal categories via adjunction.

We also studied subalgebras, ideals, and quotient algebras here, in which case
we needed to require that monoidal categories were abelian to work with kernels
and cokernels of morphisms. Moreover, we examined the further hypotheses
needed to form quotient algebras, and saw that rigidity suffices.

Next, we studied modules over algebras in the monoidal setting. Key construc-
tion included Eilenberg-Moore categories for monads (and this is not the entire
category of modules over a monad). Operations on, and graded structures of,
algebras and modules were discussed.

The three capstone results of the book, (1) the Generalized Eilenberg-Watts
Theorem, (2) the Generalized Morita’s Theorem, and (3) Ostrik’s theorem were
presented here. The first theorem is a generalization of a Chapter 2 result, on how
right exact functors between categories of modules are given by tensoring with a
bimodule. The second result is also a generalization of a result in Chapter 2, on
when categories of modules are equivalent as module categories. The last result
is new to the monoidal setting: it provides conditions when a module category
over a monoidal category C is realized as a category of modules in C. That is,
Ostrik’s theorem shows how external representations of C are realized as internal
representations in C; the algebras that resolve this problem are internal Ends.

We then examined several properties attached to algebras in monoidal cate-
gories. Some of these generalize properties in Chapter 1, and some are new to the
monoidal setting. Moreover, some are intrinsic to the structure of the algebra, and
others are defined by their categories of modules (pertaining to Morita theory).
But there are still many research questions to consider here, like cooking up an
extensive generalization of the Artin-Wedderburn Theorem from Chapter 1.

Lastly,we circled back to bimodules and studied the properties of theirmonoidal
categorical structure, chatted about their higher categorical structure, and used
these notions to examine a type of Morita equivalence for tensor categories.
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(CHAPTER 1)
ALGEBRAS OVER A FIELD

ALGEBRAS IN A MONOIDAL CATEGORY
(CHAPTER 4)

MONOIDAL CATEGORIES
(CHAPTER 3)

(CHAPTER 2)
CATEGORIES

ALGEBRAIC
STRUCTURES

EXAMPLES &
CONSTRUCTIONS

OPERATIONS PROPERTIES

CAPSTONE
RESULTS

ALGEBRAIC
STRUCTURES

EXAMPLES &
CONSTRUCTIONSOPERATIONS PROPERTIES

CAPSTONE
RESULTS

Algebras
(§1.1.5)

Subalgebras
(§1.1.5)

Quotient algebras
(§§1.1.5,1.2.2)

Representations
(§1.3.1)

Modules
(§1.3.2)

Bimodules
(§1.3.3)

Direct products
Sums

Direct sums
(§1.4.1)

Tensor products
Free products

(§1.4.2)

Homs
(§1.4.3)

Restriction
(Co)Induction

(§1.4.4)

Endom./Matrix algs
(§1.2.1)

Free/Tensor algebras
(§1.2.2)

Symmetric/Poly. algs
(§1.2.3)

Exterior algebras
(§1.2.4)

Path algebras
(§1.2.5)

Group algebras
(§1.2.6)

Graded/Filtered algs
(§1.2.7)

Indecomp’ty
(§1.4.1)

Simplicity
(§1.5.2)

Semisimplicity
(§1.6.1)

Separability
(§1.7)

Cartan-
Wedderburn

Theorem
[Theorem 1.37]

Artin-
Wedderburn

Theorem
[Theorem 1.44]

Morita’s Theorem
[Theorem 2.18]

Eilenberg-Watts
Theorem

[Theorem 2.51]

Algebras
(§4.1.1)

Subalgebras
(§4.2.1)

Quotient algebras
(§4.2.2)

Representations
[Remark 4.27]

Monads
(§4.3.2)

Modules
(§4.4.1)

Bimodules
(§4.4.2)

EM-categories
(§4.4.3)

Biproducts
(§§4.5.1i,4.5.2i)

Monoidal
products

(§§4.5.1ii,4.5.2ii)

Tensor products
(§4.5.2iii)

Homs
(§§4.5.1ii,4.5.2iv)

Endomorphism algs
(§4.1.3)

Tensor algebras
[Example 4.49]

Symmetric algebras
[Remark 4.50]

Exterior algebras
[Remark 4.50]
Path algebras
[Exercise 4.45]

Graded algebras
(§4.6.2)

Filtered algebras
[Remark 4.51]

Connectedness
(§4.9.1)

Indecomp’ty
(§4.9.2)

Simplicity
(§4.9.3)

Semisimplicity
(§4.9.4)

Separability
(§4.9.5)

Exactness
(§4.9.6)

Eilenberg-Watts
Theorem

[Theorem 4.54]

Morita’s Theorem
[Theorem 4.56]

Ostrik’s Theorem
[Theorem 4.67]

CW Theorem
[Problem 4.77]

AW Theorem
[Problem 4.82]

When A-Bimod(C)
is fusion

[Theorem 4.91]

Figure 4.13: Summary of how Chapter 4 upgrades Chapter 1.
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§4.12. Modern applications

We now illustrate how various notions that were introduced in this chapter
on algebras in monoidal categories are used in modern mathematics. A full
understanding of the resources here is not expected. Instead, we aim to put the
chapter’s material into context by offering videos and content to casually explore.

Group actions on algebras (that is, A 2 Alg(G-Mod)) is the original setting for
Symmetries of Algebras. The friendly talk below discusses classical results on
invariant subalgebras, and how they can be expanded in general invariant theory.

Ellen Kirkman’s 2020 Simons Laufer Mathematical Sciences Institute lecture on
"Invariants of actions of Artin-Schelter regular algebras"

https://vimeo.com/908089874/949b3cf63c

Here is an accessible talk on monads in functional programming. It is through
the lens of not getting bogged down in mathematical details (quite different than
this book, of course). Still, it is good to see monads ’out in the wild’.

César Tron-Lozai’s 2022 Devoxx UK lecture on "No Nonsense Monad & Functor -
The foundation of Functional Programming"

https://youtu.be/e6tWJD5q8uw

Algebras in fusion categories model various physical phenomena, so it is worth
classifying such structures. This problem is addressed in the enlightening talk
below for group-theoretical fusion categories, up to Morita equivalence.

Ana Ros Camacho’s 2021 Rocky Mountain Representation Theory seminar talk
on "Algebra objects in group-theoretical fusion categories"

https://youtu.be/o59jvTXSAS4

The talkbelow is a sneakpeekofhow algebraic structures in monoidal categories
are used fruitfully in subfactor theory, a subfield of the study of von Neumann
algebras. The video is a tad blurry, but connections to this chapter are quite clear.

Noah Snyder’s 2022 Hausdorff Center for Mathematics lecture on
"An algebraic version of the small index subfactor classification"

https://youtu.be/35Q4zhZ9Rb8

The intriguing talk below introduces a way of developing a Morita context in
the higher categorical setting by using exact module categories (or exact algebras).
If you enjoyed the concluding material in this chapter, you will enjoy this talk.

César Galindo’s 2022 Centre de recherches mathématiques lecture on
"Spherical Morita contexts and relative Serre functors"

https://youtu.be/7IjTxYTfP6Q
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§4.13. References for further exploration

• The series of articles by Bodo Pareigis from the late 1970s on "Non-additive ring
and module theory" are must-reads if you like the material in this chapter.

- In the first installment, "I. General theory of monoids" by Pareigis [1977a],
algebras (or, there, monoids) and A-modules (or, there, A-objects) in a monoidal
category are introduced. Commutative algebras in symmetric monoidal cate-
gories are also discussed; these will make an appearance in a future volume.
Monads, tensor products over algebras, and internal Homs, are also studied.

- The second installment, "II. C-categories, C-functors and C-morphisms" by
Pareigis [1977b],develops the theory ofC-module categories and their functors,
especially for categories of modules over algebras in C.

- The third installment, "III. Morita equivalences" by Pareigis [1978] introduces
Morita equivalence in the same manner as it is done in this chapter; there, it
is called C-equivalence. A monoidal version of the fact that Morita equivalent
k-algebras have isomorphic centers [Proposition 2.22] is also presented.

• If you are curious about the formal theory of monads and their Eilenberg-
Moore categories, check out the foundational article by Street [1972]. Interesting
duality theorems are explored in this work, where the author uses opposites of
the various underlying categories of the 2-category Cat. Follow-up work was
provided more recently by Lack and Street [2002].

• An important study of algebras in the monoidal categories G-Mod and VecG, for
G a finite group, is established by Cohen and Montgomery [1984]. Their duality
theorems start with such an algebra A, and uses its G-symmetry to build certain
extensions of A, that eventually yield the matrix algebra Matn(A) for n = |G|. In
short, they show how G-symmetries can produce Morita contexts. As stated in
its MathSciNet review, the article "introduces a machine that really works".

• Vital results on algebras on monoidal categories are presented in the work of
Ostrik [2003c], which was partly covered in §4.8. In this work, algebras in G-Mod,
and in a Lie-theoretic monoidal category C` of bsl2-modules at level ` 2 Z>0, are
classified up to Morita equivalence. The latter is used to produce invariants of
modular tensor categories; these categories are discussed in a future volume.

• The work by Fuchs et al. [2002] employs certain kinds of algebras in monoidal
categories to understand rational conformal field theories in mathematical physics.
Here, Frobenius algebras (examined in a future volume) in modular tensor cate-
gories are the key structures at play, and bimodules over such algebras are used
to model the boundaries of the physical theories of interest.
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§4.14. Exercises

4.1 Recall the definition of an algebra in a monoidal category from §4.1.1 and
various examples of monoidal categories from §3.1.2.

(a) Verify that algebras in (Vec,⌦k, k) are k-algebras.
(b) Verify that algebras in (Set,⇥, {·}) are monoids.
(c) Describe the algebras in the following monoidal categories.

(i) (Ab,⌦Z,Z) (ii) (Cat,⇥, 1)

4.2 Recall the notion of an algebra in a monoidal category from §4.1.1, and take
a group G. A G-module algebra (or a G-algebra) is, by definition, an algebra
in the monoidal category (G-Mod,⌦k, k) (see §3.1.2i). This is a left G-module
(A, .A : G ⇥ A ! A) as in §1.3.4, equipped with left G-module morphisms,
mA : A ⌦k A! A, uA : k! A, that satisfy associativity and unitality axioms.

(a) Show that a k-vector space A is a G-module algebra if and only if A is a
k-algebra, where for g 2 G and a, b 2 A:

g . (ab) = (g . a) ⌦k (g . b), g . 1A = 1A.

Here, A := (A,m, u), with ab := m(a ⌦k b) and 1A := u(1k).

(b) Take G to be a finite group. Consider the k-vector space Homk(kG, k),
which has basis elements pg : G ! k, with pg(g0) = �g,g01k, for all g, g0 2 G.
Show that this is a G-module algebra, where for g, g0, g1, g2 2 G:

g . pg0 := pg0g, m(pg1 ⌦k pg2 ) := �g1,g2 pg1 , u(1k) :=
P

g2G pg,

extended k-linearly to elements of Homk(kG, k). We call this a G-dual
group algebra, and denote it by (kG)⇤.

4.3 Recall the definition of an algebra in a monoidal category from §4.1.1 and
the monoidal category (VecG,⌦k, k), for a group G, from §3.1.2i.

(a) Describe the algebras in VecG. These are called G-graded algebras.
(b) Take a subgroup L of G, and consider the k-vector space

kL �
L

l2L
�l,

where �l is a 1-dimensional G-graded vector space, with (�l)l = k, and
(�l)k = 0 for k , l; see Exercise 3.35. Show that this is a G-graded algebra,
where for l1, l2 2 L:

m(�l1 ⌦k �l2 ) := �l1l2 , u(1k) := �e.

This is a (G-graded) group algebra, denoted by G-kL, or by kL for short.
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4.4 Recall the definition of an algebra in a monoidal category from §4.1.1. For a
group G and 3-cocycle! on G, also recall the monoidal category (Vec!

G
,⌦k, k)

from Exercise 3.35. Take the following data:

(i) A subgroup L of G such that !|L⇥L⇥L is cohomologically trivial;
(ii) A k

⇥-valued 2-cocycle  on G with d
3 = !|L⇥L⇥L, which is a function

 : L ⇥ L! k
⇥ that satisfies

 (l1, l2l3)  (l2, l3) = !(l1, l2, l3)  (l1l2, l3)  (l1, l2),

for all l1, l2, l3 2 L.

Show that the k-vector space kL �
L

l2L
�l as in Exercise 4.3(b) is an algebra

in Vec
!
G

, where for l1, l2 2 L, we define:

m(�l1 ⌦k �l2 ) :=  (l1, l2)�1 �l1l2 , u(1k) :=  (e, e) �e.

We call this algebra in Vec
!
G

a twisted (G-graded) group algebra, and denote
it by G-kL , or by kL , for short.

4.5 Complete the details of Example 4.1 in §4.1.1 in verifying the associativity
and unitality axioms for the unit algebra ( , ` , id ), and for the zero algebra
(0, 0⌦0

!
0 ,

!
0), in C. Assume that C has a zero object 0 for the latter task.

4.6 Verify that the collection of Alg(C) of algebras in a monoidal category C,
along with algebra morphisms, from §4.1.1 forms a category.

4.7 Complete the proof of Proposition 4.3 in §4.1.1 on how monoidal functors
send algebras to algebras, functorially.

Hint. By The Strictification Theorem [Theorem 3.26], it suffices to establish
the result in the strict case. To show that mF(A) is associative and left unital,
with unit uF(A), complete and justify the commutative diagrams below.

F(A) ⌦0 F(A) ⌦0 F(A)
mF(A) ⌦0 id

//

id ⌦0 mF(A)

✏✏

++

&&

F(A) ⌦0 F(A)

mF(A)

✏✏

{{

F(A)
uF(A) ⌦0 id

//

id
""

((

F(A) ⌦0 F(A)

mF(A)

✏✏

{{

⇤
44

✏✏

⇤
44

✏✏

⇤

xx

// ⇤ //
✏✏

⇤

##

⇤
id

&&

// ⇤

##

⇤
**

F(A) ⌦0 F(A)
mF(A)

//

33

F(A) F(A)

4.8 Here, we continue Exercise 4.2 on G-algebras, for a group G.

(a) Use the monoidal isomorphisms from Exercise 3.6(b,c) to describe each
of the categories, and to verify category isomorphisms, below:

Alg(G-Mod) � Alg(Rep(G)) � Alg(Rep(kG)) � Alg(kG-Mod).

277

Copyright ©2024 Chelsea Walton. Free version by the courtesy of CW and 619 Wreath. https://math.rice.edu/~notlaw/symalgbook.html. 

Enjoy this textbook? Physical copies are available for purchase at https://www.619wreath.com/ and on Amazon. 
<< Please ask your local academic librarian to order a copy for circulation. >> 



C������ 4. A������� �� �������� ����������

(b) For a subgroup L of G, describe the image of the G-dual group algebra,
(kL)⇤, under the isomorphisms above.

(c) Now take another subgroup H of G.

(i) Construct a restriction functor ResG

H
: G-Mod ! H-Mod that is

strong monoidal; cf. Exercise 3.6(d).

(ii) For a subgroup L of G, describe the H-algebra, ResG

H
((kL)⇤). In

particular, describe ResG

hei((kL)⇤) 2 Alg(Vec).

4.9 [Open-ended] Explore examples of algebras in various monoidal categories
in §3.1.2 (other than what is done in the exercises above), say by:

(a) Constructing algebras directly, and by

(b) Using Proposition 4.3 and examples of monoidal functors from §3.2.3.

4.10 Take Au := (A,u, T ) to be cartesian monoidal category; see §§2.2.1i,ii, 3.1.2ii.
Also, recall the definition of an algebra inAu presented in §4.1.1,and consider
it as a "monoid" in Au (in name) for the purpose of this exercise.

(a) Define the category: Group(Au). Objects should be tuples (G,m, u, i),
where G is an object of A, and m : G u G ! G, u : T ! G, i : G ! G

are morphisms in A (group objects) satisfying group compatibility
conditions. Then, obtain the isomorphism of categories below:

Group((Set,⇥, {·})) � Group.

(b) Recall the Eckmann-Hilton Principle from §4.1.2. Verify that

Group((Group,⇥, {e})) � Ab.

(c) Show that an object G admits the structure of a group object in Au if
and only if, for each object X of A, there exists a contravariant functor:

A! Group, X 7! HomA(X,G).

An aside. Examples of groups in monoidal categories include topological
groups (resp., Lie groups, algebraic groups) in the monoidal category of topo-
logical spaces (resp., of smooth manifolds, of affine varieties).

4.11 Recall the notion of an endomorphism algebra of an object in an enriched
(e.g., rigid) category from §4.1.3. For V 2 FdVec, show that EndFdVec(V) and
Endk(V) are isomorphic as algebras in FdVec, as stated in Example 4.9(b).
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4.12 Complete the details of Example 4.10 in §4.2.1 in showing that, for an algebra
A in C, both Aobj and the zero object 0 are ideals of A in C.

4.13 Prove Corollary 4.12 in §4.2.1 on showing that if I is an ideal that ‘contains’
the unit of an algebra A in C, then I � A as algebras in C.

Hint. Show that a right inverse  of ◆A
I

is a two-sided inverse, since ◆A
I

: I ! A

is monic. Use a unit axiom and an ideal condition to construct  . Do not
forget to establish an isomorphism of algebras, not just of objects.

4.14 Complete the proof of Proposition 4.13 in §4.2.1 in showing that the kernel
of an algebra morphism � : A! A

0 in C is an ideal of A in C.

4.15 Recall from §§4.2.1, 4.2.2 material on subalgebras, ideals, and quotient alge-
bras of algebras in a monoidal category. Take a group G with subgroup L.
Continuing Exercises 4.2, 4.3, 4.4 above, construct a non-trivial example of:

(i) a subalgebra, (ii) an ideal, (iii) a quotient algebra,

of each of the following algebras in monoidal categories.

(a) A G-dual group algebra, (kG)⇤, in Alg(G-Mod).
(b) A G-graded group algebra, kL, in Alg(VecG).
(c) A twisted G-graded group algebra, kL , in Alg(Vec!

G
).

Hint. For a group G, one may want to use (normal) subgroups, or use the
k-vector space (kG)+ with basis {g � e}g2G. The latter generates the augmen-
tation ideal of the group algebra kG over k.

4.16 Recall the proof of part (a) of Theorem 4.22, the special case of Doctrinal
Adjunction in §4.3.1.

(a) Verify that the diagram in Figure 4.7 commutes. In particular, provide
details to show that each region is a commutative diagram.

(b) If part (a) is fun for you, construct the analogue of Figure 4.7 to verify
the monoidal right unitality axiom.

(c) If part (a) is really fun for you, verify that the diagram in Figure 4.8
commutes. In particular, provide details to show that each region in
Figure 4.8 is a commutative diagram.

4.17 Prove parts (b,c) of Theorem 4.22, the special case of Doctrinal Adjunction
in §4.3.1. Recall that part (a) states the right adjoint G of a strong monoidal
functor F is monoidal. Part (b) claims that the unit and counit of F a G are
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monoidal natural transformations, and part (c) claims the components of
the unit and counit at algebras are algebra morphisms.

Hint. For part (b), use Exercise 3.4, along with the triangle identities for
adjunction (see §2.5.1), and several instances of naturality (see §2.3.4).

4.18 For a morphism � : H ! G of finite groups, recall the coinduced algebra:

CoindG

H
(A) := HomH-Mod(kG, A) 2 Alg(G-Mod),

for A 2 Alg(H-Mod) from Example 4.23 in §4.3.1.

(a) Write down the unit ⌘ and counit " of adjunction, ResG

H
a CoindG

H
.

(b) Use the solution of Exercise 4.8(c.i) and the special case of Doctrinal
Adjunction, Theorem 4.22(a), to give CoindG

H
a monoidal structure.

(c) Use part (b) and Proposition 4.3 to endow CoindG

H
(A) with a multiplica-

tion morphism and unit morphism to get CoindG

H
(A) 2 Alg(G-Mod).

(d) Now take H = hei, and A = k to be the unit algebra in G-Mod. Describe
the coinduced algebra: CoindG

hei(k) (cf. Exercise 4.2(b)).

4.19 [Open-ended] Recall the Doctrinal Adjunction from Theorem 4.22(a)
in §4.3.1: For an adjunction (F : C ! D) a (G : D ! C), with F strong
monoidal, we get that G is monoidal. Use this to construct examples of
algebras G(A) 2 Alg(C), for A 2 Alg(D). Do this for boring and interesting
right adjoint functors G, besides what is presented in Exercise 4.18.

4.20 Verify the details of Example 4.25 in §4.3.2. Namely, given an object A 2 C,
for C strict, we obtain that algebra structures on A in C are in bĳective
correspondence with monad structures on the endofunctor (A ⌦ �) on C.

4.21 Recall the notion of a monad on a category from §4.3.2. Consider the end-
ofunctor P : Set ! Set, that sends a set X to its power set P(X) (the set
whose elements are all subsets of X). Construct natural transformations
µ : P � P) P and ⌘ : IdSet ) P, such that (P, µ, ⌘) 2 Monad(Set). We refer to
this as a power set monad.

4.22 Let C be an additive monoidal category with infinite biproducts ⇤. Consider
the endofunctor T : C ! C, that sends X to ⇤n�0X

⌦n. Endow T with the
structure of a monad on C (see §4.3.2). We call this a free algebra monad (or
tensor algebra monad) on C.

4.23 [Open-ended] Explore more examples of monads on categories in the liter-
ature, other than what is presented in the last two exercises. For instance,
explore special cases of Example 4.26 in §4.3.2.
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4.24 Recall the notion of a monad from §4.3.2.

(a) Verify the details of Example 4.26: Given a pair of adjoint functors
(F : A! B) a (G : B ! A), we obtain that (GF, G"F, ⌘) 2 Monad(A).

(b) Show that the identity monad in Example 4.24 arises as a special case of
the adjunction monad in part (a).

(c) Show that the monad (A ⌦ �) in Example 4.25 arises as a special case of
the adjunction monad in part (a) (after reading §4.4.1).

4.25 Take an algebra A in C, and recall from Example 4.28(c) in §4.4.1i the free
left A-module A ⌦ X on an object X in C.

(a) Verify that (A ⌦ X, .A⌦X := (m ⌦ idX) a
�1
A,A,X) 2 A-Mod(C).

(b) Show that Free: C ! A-Mod(C), X 7! (A ⌦ X, .A⌦X), is a functor.
(c) Consider the forgetful functor, Forg: A-Mod(C) ! C, (M, .) 7! M. Estab-

lish Free-Forget adjunction (see §2.5.3) in this context:

(Free : C ! A-Mod(C)) a (Forg : A-Mod(C)! C).

4.26 Recall the notion of a (bi)module in a monoidal category from §§4.4.1i, 4.4.2i.
Take the V-endomorphism algebra A := EndV (X) from §4.1.3, and construct
examples of objects in the categories of (bi)modules below:

(a) A-Mod(V), (b) Mod-A(V), (c) A-Bimod(V).

Illustrate these examples in the setting of Example 4.9 from §4.1.3.

4.27 Take an algebra A in C, and a left A-module (M, .) in C. Recall from §4.4.1ii the
discussion about left quotient modules over A. Verify that if the endofunctor
A⌦� on C is right exact, then there exists a morphism .M/N : A⌦M/N ! M/N

in C that makes ⇡M

N
: M ! M/N a morphism of left A-modules in C.

Hint. Use Remark 4.14(d))(e) and part of the proof of Proposition 4.18.

4.28 Take A 2 Alg(C). Prove Proposition 4.30 from §4.4.1iii verifying that A-Mod(C)
(resp., Mod-A(C)) is a right (resp., left) C-module category as in §3.3.1.

4.29 For A 2 Alg(C), complete the proof of Proposition 4.31 from §4.4.1iv on
various properties of A-Mod(C) and Mod-A(C) inherited from C and A.

4.30 Verify the details of Examples 4.34 and 4.35 in §4.4.3ii. Namely,

(a) For the identity monad on Id on A, explain why A
Id � A.

(b) Given a monad (A ⌦ �) on C, show that its Eilenberg-Moore category
C

(A⌦�) is isomorphic to A-Mod(C).
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4.31 [Open-ended] Recall the power set monad P on Set from Exercise 4.21.
Now, pertaining to §4.4.3ii, the Eilenberg-Moore objects of P are sup-complete
(semi)lattices. Investigate this in the literature and discuss such constructions.

4.32 Recall the free algebra monad T on an additive monoidal category C (with
infinite biproducts) from Exercise 4.22. Pertaining to §4.4.3ii, what are the
Eilenberg-Moore objects of T?

4.33 Complete the details of the proof of Theorem 4.37 in §4.4.3ii in establishing
that every monad T on a category A yields an adjunction:

(FreeT : A! A
T ) a (ForgT : AT ! A),

and that T is recovered as the adjunction monad: ForgT � FreeT .

4.34 Complete the details of the proof of Theorem 4.39 in §4.4.3iv in establishing
the contravariant correspondence between monad morphisms and functors
between their EM-categories: (T ) T

0)! (AT
0 ! A

T ).

4.35 In the manner of Example 4.41 in §4.4.3iv, take a group G with subgroup H,
and illustrate Corollary 4.40 for the group algebras A = kH and A

0 = kG in
the monoidal category C = (Vec,⌦k, k).

4.36 Complete the details of §4.5.1i in showing that the biproduct ⇤ of algebras
in C is an algebra in C, and that Alg(C)⇤ := (Alg(C),⇤, 0) is a monoidal
category.

4.37 Complete the details of the proof of Proposition 4.42 in §4.5.2iii in showing
that when (B1 ⌦ �) and (� ⌦ B2) are right exact endofunctors of C, and when
M is a (B1, A)-bimodule in C and N is a (A, B2)-bimodule in C, we obtain that
M ⌦A N is a (B1, B2)-bimodule in C.

4.38 Following up with Example 4.43 in §4.5.2iii, suppose that (B1⌦�) and (�⌦B2)
are right exact endofunctors of C, and take bimodules M 2 (B1, )-Bimod(C)
and N 2 ( , B2)-Bimod(C), for the unit algebra . Verify that

M ⌦ N � M ⌦ N

as (B1, B2)-bimodules in C. Here, M ⌦ N 2 (B1, B2)-Bimod(C) as in §4.5.2ii.

4.39 Complete the proof of Lemma 4.44 in §4.5.2iii in showing that, for
A-bimodules M,N, P in C, we have the following identities in A-Bimod(C).

(a) (M ⌦A N) ⌦A P � M ⌦A (N ⌦A P).
(b) M ⌦A Areg � M � Areg ⌦A M.
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4.40 [Open-ended] Here, we follow up with Remark 4.45 in §4.5.2iv. It is shown in
Section 3 of Liu Lopez and Walton [2023] that if C is a right closed monoidal
category as in §3.11.3, then Mod-A(C) is enriched over C. Explore this result
and other related results in this reference.

4.41 Recall Proposition 4.46 from §4.5.2iv on constructing duals of modules in
(rigid) monoidal categories.

(a) Prove Proposition 4.46 (in the strict case) using graphical calculus.
(b) Formulate and prove a non-strict version of Proposition 4.46 using

equations or commutative diagrams. Namely, show that when given
actions . : A ⌦ M ! M and / : N ⌦ A! N, with M left rigid and N right
rigid, we obtain induced actions J : M

⇤ ⌦ A! M
⇤ and I : A ⌦ ⇤N ! ⇤

N.

4.42 Recall the product category C
⇥N examined in §4.6.1.

(a) Verify that C⇥N � Fun(N, C) as categories.
(b) Establish part of Proposition 4.47(a): If C is additive, then so is C⇥N.
(c) Verify the rest of Proposition 4.47(a): If C is abelian, then so is C⇥N.
(d) Prove that if C is additive, then C

⇥N has the Cauchy monoidal structure
given in Proposition 4.47(b).

4.43 Complete the proof of Proposition 4.48 in §4.6.2 in establishing that Alg(C⇥N)
is isomorphic to N-GrAlg(C) as categories.

4.44 Let X 2 C, and recall the C-tensor algebra T (X) in Alg(C⇥N) � N-GrAlg(C)
described in Example 4.49 from §4.6.2. Complete the following tasks.

(a) Show that I(X) := (0, X, X⌦2, X⌦3, . . . ) is an ideal of T (X) in Alg(C⇥N) (or in
N-GrAlg(C)); see §4.2.1.

(b) Describe the quotient algebra T (X)/I(X) in Alg(C⇥N) (or in N-GrAlg(C));
see §4.2.2.

(c) Take the object I(X)r := (0, . . . , 0, X⌦r, X⌦(r+1), X⌦(r+2), . . . ), and show
that this is an ideal of T (X). Moreover, describe the quotient algebra
T (X)/I(X)r in Alg(C⇥N) (or in N-GrAlg(C)).

4.45 [Open-ended] Recall the C-tensor algebras in Alg(C⇥N) from Example 4.49 in
§4.6.2, which generalize the tensor algebras over k from §1.2.2. Define C-path
algebras in Alg(C⇥N) (� N-GrAlg(C)) that generalize the path algebras over k
from §1.2.5. Such C-path algebras should specialize to C-tensor algebras.
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4.46 In this exercise, we examine the details of preparatory results towards
proving the Generalized Morita’s Theorem in §4.7.2

(a) Complete the details of the proof of Lemma 4.53 in §4.7.
(b) Complete the details of the proof of the Generalized Eilenberg-Watts

Theorem [Theorem 4.54] in §4.7.1.

4.47 Establish Proposition 4.57 in §4.7.2, which provides another characterization
of when two algebras in C are Morita equivalent.

Hint. It suffices to show that the morphisms �A and �B are monos since
A-Bimod(C) and B-Bimod(C) are abelian [Proposition 4.33]. To do so for �A,
take f1, f2 : W ! P ⌦B Q 2 A-Bimod(C) with �A f1 = �A f2. Next, show that
the diagram below is commutative (suppressing associativity for brevity).

W ⌦A P ⌦B Q
id ⌦A �A

//

f1 ⌦A id ⌦B id,
f2 ⌦A id ⌦B id

✏✏

W ⌦A A
f1 ⌦A id, f2 ⌦A id

// P ⌦B Q ⌦A A

�
✏✏

P ⌦B Q ⌦A P ⌦B Q
�A ⌦A id ⌦B id

// A ⌦A P ⌦B Q
�

// P ⌦B Q

This will imply that f1 ⌦A idA = f2 ⌦A idA, which yields f1 = f2, as required.

4.48 Recall the notion of Morita equivalence from §4.7.2, with Example 4.58.

(a) Show that if 2 C is a simple object and if X is a left rigid object in C, then
the algebra EndC(X) = X ⌦ X

⇤ from Example 4.9(a) is Morita equivalent
to the algebra from Example 4.1(a).

(b) Show that part (a) specializes to the statement from Example 2.21:
Matn(k) is Morita equivalent to k as k-algebras.

(c) Recall the full result of Example 2.21: Matn(A) is Morita equivalent to A,
for any k-algebra A. Formulate and prove a generalization of this fact in
the setting of §4.7.2.

Hint. Use Proposition 4.57. Moreover, for part (a), the assumption that 2 C
is simple implies that evaluation morphisms in C are epic.

4.49 Recall Exercise 4.3 and §4.7.2, and take the monoidal category (VecC2 ,⌦k, k),
for the cyclic group C2 of order 2. Are the group algebras khei and kC2 Morita
equivalent as algebras in VecC2?

4.50 [Open-ended] Recall Exercise 4.4, along with §4.7.2. Here, we work in
(Vec!

C2⇥C2
,⌦k, k), for the Klein-four group C2 ⇥C2. Note that

H
2(C2 ⇥C2, k

⇥) � C2, H
3(C2 ⇥C2, k

⇥) � C2 ⇥C2 ⇥C2.
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(a) Are there non-cohomologous 2-cocycles  and  0 of C2 ⇥ C2 such that
the twisted group algebras k(C2 ⇥ C2) and k(C2 ⇥ C2) 0 are Morita
equivalent as algebras in Vec

1
C2⇥C2

? Here, the superscript "1" denotes the
trivial 3-cocycle on C2 ⇥C2.

(b) Pick a 3-cocycle ! on C2 ⇥C2 that is not cohomologically trivial. Explore
whether you can construct non-cohomologous 2-cocycles  and  0 of
C2 ⇥C2 such that the twisted group algebras k(C2 ⇥C2) and k(C2 ⇥C2) 0
are Morita equivalent as algebras in Vec

!
C2⇥C2

.

4.51 Verify Proposition 4.62 in §4.8.1, which claims that internal Ends arise as
algebras in C, and internal Homs arise as modules over such algebras in C.

4.52 Here, we follow up on Example 4.63 in §4.8.1. Assume that C is left rigid
and take M to be the regular left C-module category Creg.

(a) For Y 2 Creg, show that the internal End algebra End(Y) 2 C in Proposi-
tion 4.62(a) is the C-endomorphism algebra from Example 4.9 in §4.1.3.

(b) If you previously completed Exercise 4.26, is one of your examples for
part (b) of that exercise the same as the internal Hom module from
Proposition 4.62(b)?

4.53 Assume that C is rigid and abelian. Upgrade the previous exercise for the
left C-module category M = Mod-A(C), for an algebra A 2 C. Namely, recall
Proposition 4.62 in §4.8.1 and complete the following tasks.

(a) Given M,N 2 Mod-A(C), compute the internal Hom object Hom(M,N).
(b) Describe the multiplication morphism and the unit morphism for the

internal End algebra End(M) 2 C from Proposition 4.62(a). Show that
the multiplication is indeed associative and unital.

(c) Describe the action morphism for the right End(M)-module Hom(M,N)
in C from Proposition 4.62(b), and verify that it is associative and unital.

(d) Describe the action morphism for the left End(M)-module Hom(N,M)
in C from Proposition 4.62(c), and verify that it is associative and unital.

Hint. For part (a), note that the internal Hom object Hom(X, Y) := Y ⌦ X
⇤ in

Exercise 4.52 is isomorphic to the object (X ⌦ ⇤Y)⇤ in C.

4.54 Recall the notion of an internal End algebra from §4.8.1.

(a) Complete the details of Example 4.64 on showing that when C is the
monoidal category (G-Mod,⌦k, k), for a group G, and M = Vec is the left
C-module category via the forgetful functor [Example 3.19], then End(k)
is the dual group algebra (kG)⇤ 2 Alg(G-Mod) from Exercise 4.2.
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(b) Take a subgroup H of G, and let M be the left C-module category H-Mod

from Example 3.19 via the restriction functor ResG

H
. Then, provide an

example of an internal End algebra in G-Mod, with respect to H-Mod.

4.55 Recall from Example 3.21 that C := (A-Bimod,⌦A, A) is a monoidal category
and M := (A, B)-Bimod is a left C-module category, for k-algebras A, B. Also
recall the material from §4.8.1.

(a) Provide an example of an internal End algebra in C with respect to M.
(b) Provide an example of an internal Hom module in C over the internal

End algebra in part (a).

4.56 [Open-ended] Recall the notions of an internal End algebra and an internal
Hom module from §4.8.1. Produce examples of suchstructures using module
categories (say from §3.3.2) different than those in Examples 4.63, 4.64, and
in Exercises 4.54, 4.55.

4.57 Continuing Exercise 4.53 and Remark 4.69 in §4.8.2, do the twisted group
algebras kL 2 Vec!G from Exercise 4.4 arise as internal End algebras in Vec

!
G

?

4.58 For a group G, recall the definition of a G-module algebra A 2 Alg(G-Mod)
from Exercise 4.2. Consider its invariant subalgebra:

A
G = {a 2 A | g . a = a, 8g 2 G}.

Show that A 2 Alg(G-Mod) is connected as in §4.9.1 if and only if dimkA
G = 1.

Hint. Show there exists a k-algebra structure on HomG-Mod(k, A) and that it
is isomorphic to A

G as k-algebras.

4.59 Complete the details of the proof of Proposition 4.72 in §4.9.1 about the
k-algebra HomC( , A) and its relationship with endomorphism algebras.

4.60 Let A be a category, and recall from §4.3.2 that a monad on A is an algebra
(T : A ! A, µ : T

2 ) T, ⌘ : IdA ) T ) in (End(A), �, IdA). Moreover, for a
pair of adjoint functors (F : A! B) a (G : B ! A) with unit ⌘ and counit ",
recall that (GF, G"F, ⌘) is a monad on A [Example 4.26]. Here, we study the
separability property of the monad GF; see §4.9.5.

(a) A monad on A is said to be separable if it is separable as an algebra in
End(A). Write down the precise conditions of this definition.

(b) A functor G : B ! A is separable if for any pair of objects X, Y 2 B there
exists an assignment, G

0
X,Y : HomA(G(X),G(Y)) ! HomB(X, Y), that is

natural in X and Y , such that G
0
X,Y (G( f )) = f for any f : X ! Y 2 B.

Show that when G is a right adjoint of a functor F : A! B with counit
" : FG ) IdB, then G is separable if and only if there exists a natural
transformation ✓ : IdB ) FG such that " �ver ✓ = IdB.
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(c) For the adjunction F a G, verify that the monad GF is separable (as in
part (a)) when the functor G is separable (as in part (b)).

(d) For an algebra A in a monoidal category C, illustrate part (c) for the
adjunction from Example 4.28(c) and Exercise 4.25:

(Free : C ! A-Mod(C)) a (Forg : A-Mod(C)! C).

Does the converse statement of part (c) also hold? That is, if Forg � Free
is a separable monad on C, is the functor Forg separable?

4.61 Consider the twisted group algebras kL in Vec
!
G

from Exercise 4.4, and
recall the various algebraic properties discussed in §§4.9.1–4.9.6. Here, G is
a finite group, and ! is a k-valued 3-cocycle on G. Moreover, L is a subgroup
of G, and  is a k-valued 2-cocycle on G with d

3 = !|L⇥L⇥L.

Discuss when kL possesses each of the following properties:

(a) connected; (c) simple; (e) separable;

(b) indecomposable; (d) semisimple; (f) exact.

Hint. Try special cases at first, say with trivial cocycles ! and  .

4.62 Continuing Exercise 4.61, consider the monoidal category of bimodules

C(G,!, L, ) := (kL )-Bimod(Vec!
G

)

as discussed in Example 4.95 in §4.10.1. Verify that C(G,!, L, ) is always a
fusion category, justifying its name: a group-theoretical fusion category.

4.63 Recall the discussion of categorical Morita equivalence from §4.10.2. Com-
plete the details of Example 4.98 in verifying that, for a finite group G, the
tensor categories G-Mod and VecG are categorically Morita equivalent.

4.64 Recall the discussion of 2-categories from §4.10.3. Verify that Cat from
Example 4.101 is a (strict) 2-category.
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E2( f , f
0), 268

E
X,Y
2 ( f , f

0), 268
G, 72
L, 88
L(X), 88
M, 145
M
⇤, 167

⇤
M, 167
N
⇤, 167

⇤
N , 167
O, 88, 97
O(G), 8
Oq(GL2(C)), 7
Oq(X), 6
O(GL2(C)), 7
O(Xq), 6
O(C2), 5
V , 186
Z(C), 129
T ES T

BimCat, 271
Bim(C), 270
Cat, 270
T ES T

!
0X , 76
0, 76
X

!
0 , 76

1, 137
80sMusic, 74
(A, B)-Bimod, 73
(A, B)-FdBimod, 73
(B1, B2)-Bimod(C), 227
(B1, B2)-Bimod(C)⇤, 236
(C,D)-Bimod, 151
A-Bimod, 73, 136
A-Bimod(C), 238
A-FdBimod, 73
A-FdMod, 73
A-Mod, 73
A-Mod(C), 224
A-Mod(C)⇤, 236
G-Mod, 8, 73, 136
N-GrAlg, 72
R-Modab, 97

V-Quiv, 138
N-GrAlg, 72
N-GrAlg(C), 240
N-GrModA(C), 242
N-GrAlg(C)A, 242
N-GrAlgB1 (C)B2 , 242
C-Bimod, 151
C-Mod, 148
nCob, 74, 138
Ab, 72, 136
A↵, 73, 97
Alg, 72
Alg(C), 206
Alg(C)⇤, 235
Alg~, 136
Alg⌦k , 136
Aut(A), 138
Aut(C), 96
Ban, 74
Bim, 73, 99
Braid, 138
Cat, 73, 137
ComAlg, 72
ComRing, 72
Comod-O(G), 8
DirGraph, 74
End(C), 90
End(A), 138
EndC-Mod(M), 148
EndMod-C(M), 148
FdAlg, 72
FdHilb, 74, 138
FdMod-A, 73
FdRep(A), 73
FdVec, 72, 136
FdVec�, 136
FgAlg, 72
FgRedComAlg, 97
Fib, 180
FinSet, 73
Fun(C,D), 90
FunMod-C(M,N ), 150
Graph, 74
Group, 72

Group(Au), 278
Gcat, 96
Hilb, 74, 138
Ising, 181
I, 76
Mat, 129
Meas, 74
Mfld, 73
Mod-A, 73
Mod-A(C), 224
Mod-A(C)⇤, 236
Mod-G, 73
Mod-C, 148
Monad(A), 221
Monoid, 72
Perm, 150
Poset, 74
Quiv, 74
Rel, 73
Rep(A), 72
Rep(G), 73
RexC-Mod(M,N ), 167
RexMod-C(M,N ), 167, 244
Ring, 72, 136
Rng, 72
SameTaste, 74
Scheme, 97
Set, 73, 137
Set⇤, 73
SharePw, 74
Skel(C), 94
TY(G, �, ⌧), 181
Top, 74, 138
Top⇤, 74
T, 76
Vec, 72, 136
Vec

0
G

, 137
VecG , 136
Vec

!
G

, 137
VecN , 72, 136
VecC, 8
Vec�, 136
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0-cell, 268
1-cell, 268

horizontal composition associativity, 268
horizontal composition unitality, 268

2-category, 268
of categories, 270

2-cell, 268
horizontal composition unitality, 269
horizontal composition associativity, 269
vertical composition associativity, 269
vertical composition unitality, 269

G-algebra, 276
G-dual group algebra, 276
G-graded

algebra, 276
group algebra, 276

G-module, 64
algebra, 276

G-set, 64
R-module, 64
T -algebra, 229
C-balanced functor, 267
C-path algebra, 283
C-tensor algebra, 241
V-category, 186
V-endomorphism algebra, 209
V-functor, 187
Ab-category, 81

abelian category, 83
abelian group, 16
abelian monoidal category, 139
absolutely simple object, 120
action

bifunctor for a module category, 145
map of a module, 38
morphism of a module in C, 222
morphism of an EM-object, 229
morphisms in a graded module in C, 242

natural transformation, 228
of a group on a category, 144
of a group on a monoidal category, 144
of a monoid on a category, 144
of a monoidal category on a category, 143

acyclic path, 33
addition, 16, 19
additive

category, 83
functor, 86
monoidal category, 139

adjoint
pair of functors, 100
triple, 131

adjunction, 100
monad, 222

algebra
homomorphism, 28
in a monoidal category, 204
object in C, 204
over a field, 3, 8, 15, 27

algebraic deformation, 5
algebraic group, 278
algebraically closed, 16
Artin-Wedderburn

parameters, 55
Theorem, 54

Artinian algebra, 53
associated graded algebra, 36
associativity axiom

for a category, 70
for a module in C, 222
for a monoidal functor, 140
for an algebra in C, 204
for an algebra over a field, 27
for an enriched category, 186

associativity constraint
for a module category, 145
for a monoidal category, 134
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augmentation ideal, 279
autoequivalence

category, 96
of a category, 96

autonomous category, 160

balanced
map, 43
tensor product, 267

basis of a vector space, 21
Beck’s Monadicity Theorem, 231
bialgebra, 43
bicategory, 270

of bimodules over algebras in C, 270
of bimodules over tensor categories, 271

biexact monoidal product, 184
bifunctor, 88
bilinear

form, 23
map, 23

bimodule
algebra, 44
algebra morphism, 44
category, 150
functor, 151
morphism, 40
over an algebra, 40
over an algebra in C, 226
tensor algebra, 44

biproduct of objects, 82
braid group, 138

Cartan-Wedderburn Theorem, 52
cartesian monoidal category, 137
categorical

dimension, 171
trace, 171

categorical Morita equivalence, 266
category, 8, 69, 70
Cauchy monoidal structure, 240
center

of a category, 129
of a ring, 20

central idempotent, 43
characteristic of a field, 16
Classical Symmetry, 2
closed

module category, 189
monoidal category, 188

coalgebra, 47
coassociativity axiom for a coalgebra, 47

coboundary
map for a group, 199
of a group, 199

cocartesian monoidal category, 137
cochain

complex for a group, 199
of a group, 199

coconstant morphism, 79
cocycle of a group, 199
codomain

of a functor, 86
of a morphism, 70

coequalizer of parallel morphisms, 78
coevaluation, 159
Coherence Theorem, 156
cohomologically trivial cocycle, 200
cohomologous cocycles, 200
coinduced algebra, 220
coinduction of a module, 48
cokernel

of a group map, 18
of a linear map, 22
of a morphism, 80
of a ring map, 20
of an algebra map, 29

colimit of a functor, 92
commutative

algebra, 28
diagram, 17
processes, 2
ring, 19

comparison functor, 231
complement

of a submodule, 49
of an object, 110

complete numerical invariant, 180
completely reducible module, 55
component-wise monoidal structure, 240
composable morphisms, 70
composition

morphism of an enriched category, 186
of functors, 86
of morphisms, 70

composition factor of an object, 109
composition series

of a module, 49
of an object, 109

connected algebra in C, 255
connected quiver, 33
constant morphism, 79
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contravariant functor, 5, 85
convolution algebra, 47
coordinate algebra, 5, 88
coproduct of objects, 76
corank, 22
coset of a subgroup, 18
counit of adjunction, 100
counitality axiom for a coalgebra, 47
covariant functor, 85
cyclic path, 33

decomposable
algebra, 43
category, 83
module, 42
module category, 152
object, 108

deformation of an algebra, 4
degree

of a morphism, 247
of a representation, 37

Deligne product of categories, 267
diagonal action, 41
diagonal functor, 92
diagonal morphism, 77
Diamond Lemma, 31
dimension

of a module, 38
of a vector space, 21
of an algebra, 28

direct product
of algebras, 42
of modules, 41
of vector spaces, 22

direct sum
of algebras, 42
of modules, 41
of vector spaces, 22

division
algebra, 15, 28
ring, 19

Doctrinal Adjunction, 217
domain

of a functor, 86
of a morphism, 70

domain as a ring, 19
double dual

of a morphism, 165
space, 62

double duality functor, 165

DSPS-spherical category, 173
dual

module category, 166
of a module category, 167
of a morphism, 164
of an object, 159
space, 26

duality functor, 165

Eckmann-Hilton (EH-)
condition, 207
Principle, 206

Eilenberg-Moore (EM-)
category, 229
object, 229

Eilenberg-Watts Theorem, 115
elementary matrix, 29
embedding

functor, 86
morphism, 17

endofunctor, 86
category, 90

endomorphism algebra over a field, 29
enough

injectives, 118
projectives, 118

enriched
category, 186
functor, 187
over Ab, 81
over Vec, 82

epi, 71
epic, 71
equalizer of parallel morphisms, 79
equivalence

of bimodule categories, 152
of categories, 94, 95
of enriched categories, 188
of fusion categories, 175
of module categories, 148
of monoidal categories, 141
of pivotal categories, 170
of representations, 38
of spherical categories, 173
of tensor categories, 183

essential image, 86
essentially surjective

enriched functor, 188
functor, 86

evaluation, 159
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exact
algebra in C, 262
functor, 113
module category, 185
sequence, 112

exactness at an object, 112
expression, 156
exterior algebra, 32

faithful
functor, 86
module, 39
representation, 41

faithful representation, 37
fiber

coproduct, 77
product, 78

Fibonacci fusion category, 180
field, 19
filtered

algebra, 36
algebra morphism, 36
deformation, 63
part of an algebra, 36

finite
category, 120
group, 16
quiver, 33

finite length
module, 49
object, 109

finitely generated
algebra, 31
module, 42

finitely presented algebra, 31
flat module, 119
forgetful functor, 87
Four Lemma, 114
free

algebra, 30
algebra monad, 280
bimodule in C, 227
Eilenberg-Moore object, 230
functor, 87, 105
module in C, 223
object, 87, 104

free product of algebras, 45
Free-Forget adjunction, 104, 281
Frobenius functor, 131
Frobenius reciprocity, 66, 131

Frobenius-Perron (FP-)dimension, 177
of a fusion category, 178
of a tensor category, 184
of an object, 177, 184

Frobenius-Perron Theorem, 177
full

functor, 86
monoidal subcategory, 135
subcategory, 71

fully faithful
enriched functor, 188
functor, 86

functor, 85
category, 90

fusion category, 174
fusion rules, 176

general linear group, 40
Generalized Eilenberg-Watts Theorem, 244
Generalized Morita’s Theorem, 245
generating space, 4
generator module, 99
generators of an algebra, 31
graded

algebra, 35
algebra morphism, 36
bimodule, 40
module, 39
Morita equivalence, 247
vector space, 36

Grothendieck ring, 178
ground algebra of C, 208
ground field, 16
group, 1, 16

algebra, 35
automorphism, 17
cohomology, 199
endomorphism, 17
epimorphism, 17
homomorphism, 16
isomorphism, 17
monomorphism, 17
object, 278
of units, 35

group-theoretical fusion category, 265
groupoid, 72

Hadamard monoidal structure, 240
haploid algebra in C, 255
has zero morphisms, 80
higher categorical structure, 267
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Hilbert series, 63
Hom

object, 186
space, 26

homogeneous part of an algebra, 36
horizontal composition

of 1-cells, 268
of 2-cells, 268
of morphisms, 157
of natural transformations, 91

hypercomplex numbers, 15

ideal, 20
in C, 210

identity
1-cell, 268
2-cell, 268
functor, 86
map, 17
monad, 221
monoidal functor, 141
morphism, 70
natural isomorphism, 90

image
of a group map, 18
of a linear map, 22
of a morphism, 81
of a ring map, 20
of an algebra map, 28

inclusion as a functor, 87
indecomposable

algebra, 43
algebra in C, 235, 257
category, 83
module, 42
module category, 152
module in C, 236
object, 108

index category, 92
induction of a module, 48
infinite group, 16
initial object, 76
injective

hull of an object, 118
object, 117

integral fusion category, 179
interchange law, 92

for 2-cell compositions, 269
for 2-cell identities, 269

internal End, 249

algebra, 250
internal Hom, 249

for a module category, 189
for a monoidal category, 188
module, 250

intrinsic property of an algebra, 255
invertible bimodule, 98

category, 267
irreducible representation, 48
Ising fusion category, 181
iso, 71
isomorphism

of categories, 93
of fusion categories, 175
of monoidal categories, 141
of pivotal categories, 170
of tensor categories, 183

Jordan-Hölder Theorem, 49, 109

kernel
of a group map, 18
of a linear map, 21
of a morphism, 80
of a ring map, 20
of an algebra map, 28

Krull-Schmidt Theorem, 50, 110

large category, 70
lax monoidal functor, 141
left adjoint, 100
left cancellative, 71
left exact functor, 113
left rigid category, 160
length

of a module, 49
of a path, 33
of an object, 109

level exchange, 158
Lie group, 278
limit of a functor, 93
linear

category, 81
form, 26
functional, 26
functor, 86
map, 21
monoidal category, 139

linearization, 3
linearly independent vectors, 21
locally finite category, 119
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locally small category, 70

Maschke’s Theorem, 55
matrix algebra

over a field, 29
over an algebra, 29

matrix comultiplication, 7
matrix of a linear map, 21
middle associativity

axiom of a bimodule in C, 226
constraint for a bimodule category, 151

minimal ideal, 50
Mitchell’s Embedding Theorem, 97
module

endomorphism algebra, 46
morphism, 39
over a group, 41, 64
over a monad, 228
over a ring, 64
over an algebra, 38
over an algebra in C, 222

module category, 145
over a (multi)fusion category, 182
over a (multi)tensor category, 185
over a linear monoidal category, 152
over an abelian monoidal category, 152
over an additive monoidal category, 152

module functor, 147
constraint, 147

module-theoretic property of an algebra, 255
monad, 205, 220
monadic adjunction, 231
monic, 71
mono, 71
monoid, 1, 16
monoidal

category, 8, 133, 134
functor, 140
natural isomorphism, 141
natural transformation, 141
product, 134
product constraint, 140
subcategory, 135
unit constraint, 140
unit object, 134

monoidally
equivalent, 141
isomorphic, 141

Morita
2-category, 271

context, 247
equivalence in C, 245
equivalence of algebras, 97
invariant property, 99
invariant property of an algebra, 255

Morita’s Theorem, 98
morphism, 70

of algebras in C, 206
of bimodules in C, 227
of Eilenberg-Moore objects, 229
of modules in C, 223
of modules over a monad, 229
of monads, 221

multifunctor, 89
multifusion category, 174
multilinear

form, 23
map, 23

multiplication, 19
morphism of an algebra in C, 204
morphisms of a graded algebra in C, 240
natural transformation, 220

multiplicity of an object, 109
multitensor category, 183

natural isomorphism, 89
natural transformation, 89

component at an object, 89
naturality at a morphism, 89

Noetherian algebra, 53
nondegenerate bilinear map, 23
nonsemisimple

algebra, 53
object, 110

nonunital subalgebra, 28
in C, 210

normal
epi, 80
mono, 80

normal subgroup, 18
nullity, 21
nullspace, 21
numerical invariant, 180

object, 70
Ocneanu rigidity, 177
opposite

category, 71
monoidal category, 135
monoidal product, 135
ring, 19
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order of a group element, 16
Ostrik’s Theorem, 252

parallel morphisms, 78
path algebra of a quiver, 33
path of a quiver, 33
pentagon axiom

for a module category, 146
for a module functor, 147, 148
for a monoidal category, 134

pivotal
category, 168
dimension, 171
functor, 170
structure, 168
trace, 171

polynomial algebra, 31
power set monad, 280
preadditive category, 81
presentation of an algebra, 31
preserves property, 126
product

category, 75
of objects, 76

projection morphism, 17
projective

cover of an object, 118
module, 99
object, 117

proper ideal in C, 211
property, 18
pullback of morphisms, 78
pushout

of morphisms, 77
product of morphisms, 214

quantum
2-space, 5
determinant, 7
dimension, 171
exterior algebra, 36
polynomial algebra, 5, 36
state space, 3
superposition, 3
trace, 171

Quantum Symmetry, 3
quasi-Hopf algebra, 179
quasi-inverse of a functor, 94
quiver, 33
quotient

algebra, 28

algebra in C, 216
bimodule, 40
bimodule in C, 227
group, 18
module, 39
module in C, 224
object, 71, 80
representation, 38
ring, 20
space, 21

range of a linear map, 22
rank

of a fusion category, 176
of a linear map, 22

Rank finiteness for fusion categories, 177
Rank-Nullity Theorem, 22
reflects property, 126
regular

action on a monoidal category, 143
bimodule, 40
bimodule category, 152
bimodule in C, 227
module, 39
module category, 149
module in C, 223
object, 178
representation, 37

relations of an algebra, 31
relative tensor product, 267
representable functor, 106
representation

morphism, 38
of a group, 40
of a groupoid, 96
of a monoidal category, 145
of an algebra, 37

representing a module category, 248
restriction

of a module, 47
of a module category, 149

retraction of a morphism, 112
right adjoint, 100
right cancellative, 71
right exact functor, 113
right rigid category, 160
rigid

category, 160
object, 160

rigidity axioms, 159
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ring, 19
homomorphism, 19

scalar multiplication, 21
Schur’s Lemma, 49, 109
section of a morphism, 112
semisimple

algebra, 53
algebra in C, 259
category, 110
module, 53
object, 110

separability idempotent, 57
separable

algebra, 57
algebra in C, 260
functor, 286
monad, 286

short exact sequence, 112
Short-Five Lemma, 113
simple

algebra, 50
algebra in C, 258
module, 48
object, 109
tensor, 23

skeleton of a category, 94
skew field, 19
small category, 70
sovereign category, 168
span of a vector space, 21
spherical category, 172
splicing, 112
split

-epic, 123
-monic, 123
coequalizer, 231
short exact sequence, 112

strict
module category, 155
monoidal category, 135
monoidal functor, 141

strict 2-category, 267, 268
Strictification Theorem, 153
strong monoidal functor, 141
strongly adjoint pair, 131
structure, 18

category, 147
sub

algebra, 28

algebra in C, 210
bimodule, 40
bimodule in C, 227
category, 71
group, 18
module, 39
module in C, 224
object, 71
representation, 38
ring, 19
space, 21

substitution monoidal structure, 240
sum

of algebras, 42
of modules, 41
of vector spaces, 22

sup-complete lattice, 282
symmetric algebra, 32
symmetry, 1

Tambara-Yamagami (TY-)fusion category, 181
tensor algebra, 30

monad, 280
tensor category, 183
tensor product

of algebras, 45
of modules, 44
of modules in C, 237
of vector spaces, 23

Tensor-Hom adjunction, 26, 104
terminal object, 76
topological group, 278
Topological Quantum Field Theory, 88
trace, 171
trace-spherical category, 172
triangle axiom

for a module category, 146
for a module functor, 147, 148
for a monoidal category, 134

triangle identities for adjunction, 100
trivial

bimodule, 40
module, 38
path, 33
representation, 37

twisted (G-graded) group algebra, 277

underlying category of an enriched cat., 187
unit

algebra in C, 205
natural transformation, 220
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of adjunction, 100
unit morphism

of a graded algebra in C, 240
of an algebra in C, 204
of an enriched category, 186

unital
ring, 19
ring map, 19
subring, 19

unitality axiom(s)
for a category, 70
for a module in C, 222
for a monoidal functor, 140
for an algebra, 27
for an algebra in C, 204
for an enriched category, 186

unitality constraint(s)
for a module category, 146
for a monoidal category, 134

universal
morphism, 75
object, 75
representing object, 106
structure, 105

universal property, 24
of a free product of algebras, 45
of a group algebra, 35
of a path algebra, 34
of a tensor algebra, 30

of a tensor product of modules, 44
of a tensor product of vector spaces, 25, 26

universal structure, 24

vector, 21
vector space, 3, 20

homomorphism, 21
vertical composition

of 2-cells, 268
of morphisms, 157
of natural transformations, 91

virtual object, 178

weak 2-category, 270
weakly integral fusion category, 179
Weyl algebra, 36
whiskering, 91
word, 30

Yang-Lee fusion category, 181
Yoneda’s Lemma, 107

zero
algebra in C, 205
algebra over a field, 28
category, 83
morphism, 79
object, 76

Zhang-Morita equivalence, 248
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(That’s all, folks. See you later in Volumes 2 and 3.)
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