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Abstract. In this work, we introduce the point parameter ring B, a

generalized twisted homogeneous coordinate ring associated to a degen-

erate version of the three-dimensional Sklyanin algebra. The surprising

geometry of these algebras yields an analogue to a result of Artin-Tate-

van den Bergh, namely that B is generated in degree one and thus is a

factor of the corresponding degenerate Sklyanin algebra.

1. Introduction

Let k be an algebraically closed field of characteristic 0. We say a k-
algebra R is connected graded (cg) when R =

⊕
i∈NRi is N-graded with

R0 = k.
A vital development in the field of Noncommutative Projective Algebraic

Geometry is the investigation of connected graded noncommutative rings
with use of geometric data. In particular, a method was introduced by
Artin-Tate-van den Bergh in [3] to construct corresponding well-behaved
graded rings, namely twisted homogeneous coordinate rings (tcr) [2, 12,
18]. However, there exist noncommutative rings that do not have sufficient
geometry to undergo this process [12]. The purpose of this paper is to
explore a recipe suggested in [3] for building a generalized analogue of a tcr
for any connected graded ring. As a result, we provide a geometric approach
to examine all degenerations of the Sklyanin algebras studied in [3].

We begin with a few historical remarks. In the mid-1980s, Artin and
Schelter [1] began the task of classifying noncommutative analogues of the
polynomial ring in three variables, yet the rings of interest were not well
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understood. How close were these noncommutative rings to the commutative
counterpart k[x, y, z]? Were they Noetherian? Domains? Global dimension
3? These questions were answered later in [3] and the toughest challenge
was analyzing the following class of algebras.

Definition 1.1. Let k{x, y, z} denote the free algebra on the noncommuting
variables x, y, and z. The three-dimensional Sklyanin algebras are defined
as

S(a, b, c) =
k{x, y, z} ayz + bzy + cx2,

azx+ bxz + cy2,

axy + byx+ cz2


(1.1)

for [a : b : c] ∈ P2
k \D where

D = {[0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0]} ∪ {[a : b : c] | a3 = b3 = c3 = 1}.

As algebraic techniques were exhausted, two seminal papers [3] and [4]
arose introducing algebro-geometric methods to examine noncommutative
analogues of the polynomial ring. In fact, a geometric framework was specifi-
cally associated to the Sklyanin algebras S(a, b, c) via the following definition
and result of [3].

Definition 1.2. A point module over a ring R is a cyclic graded left R-
module M where dimkMi = 1 for all i.

Theorem 1.3. Point modules for S = S(a, b, c) with [a : b : c] /∈ D are
parameterized by the points of a smooth cubic curve

E = Ea,b,c : (a3 + b3 + c3)xyz − (abc)(x3 + y3 + z3) = 0 ⊂ P2. (1.2)

The curve E is equipped with σ ∈ Aut(E) and the invertible sheaf i∗OP2(1)
from which we form the corresponding twisted homogeneous coordinate ring
B. There exists a regular normal element g ∈ S, homogeneous of degree 3,
so that B ∼= S/gS as graded rings. The ring B is a Noetherian domain and
thus so is S. Moreover for d ≥ 1, we get dimkBd = 3d. Hence S has the
same Hilbert series as k[x, y, z], namely HS(t) = 1

(1−t)3 . �

In short, the tcr B associated to S(a, b, c) proved useful in determining
the Sklyanin algebras’ behavior.

Due to the importance of the Sklyanin algebras, it is natural to understand
their degenerations to the set D.

Definition 1.4. The rings S(a, b, c) from (1.1) with [a : b : c] ∈ D are called
the degenerate three-dimensional Sklyanin algebras. Such a ring is denoted
by S(a, b, c) or Sdeg for short.
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In section 2, we study the basic properties of degenerate Sklyanin algebras
resulting in the following proposition.

Proposition 1.5. The degenerate three-dimensional Sklyanin algebras have
Hilbert series HSdeg

(t) = 1+t
1−2t , they have infinite Gelfand Kirillov dimension,

and are not left or right Noetherian, nor are they domains. Furthermore,
the algebras Sdeg are Koszul and have infinite global dimension.

The remaining two sections construct a generalized twisted homogeneous
coordinate ring B = B(Sdeg) for the degenerate Sklyanin algebras. We are
specifically interested in point modules over Sdeg (Definition 1.2). Unlike
their nondegenerate counterparts, the point modules over Sdeg are not pa-
rameterized by a projective scheme so care is required. Nevertheless, the
degenerate Sklyanin algebras do have geometric data which is described by
the following definition and theorem.

Definition 1.6. A truncated point module of length d over a ring R is a cyclic
graded left R-module M where dimkMi = 1 for 0 ≤ i ≤ d and dimkMi = 0
for i > d. The dth truncated point scheme Vd parameterizes isomorphism
classes of length d truncated point modules.

Theorem 1.7. For d ≥ 2, the truncated point schemes Vd ⊂ (P2)×d corre-
sponding to Sdeg are isomorphic to a union of{

three copies of (P1)×
d−1
2 and three copies of (P1)×

d+1
2 , for d odd;

six copies of (P1)×
d
2 , for d even.

The precise description of Vd as a subset of (P2)×d is provided in Proposition
3.13. Furthermore, this scheme is not a disjoint union and Remark 4.2
describes the singularity locus of Vd.

In the language of [16], observe that the point scheme data of degenerate
Sklyanin algebras does not stabilize to produce a projective scheme (of finite
type) and as a consequence we cannot construct a tcr associated to Sdeg.
Instead, we use the truncated point schemes Vd produced in Theorem 1.7
and a method from [3, page 19] to form the N-graded, associative ring B

defined below.

Definition 1.8. The point parameter ring B =
⊕

d≥0Bd is a ring associated
to the sequence of subschemes Vd of (P2)×d (Definition 1.6). We have Bd =
H0(Vd,Ld) where Ld is the restriction of invertible sheaf

pr∗1OP2(1)⊗ . . .⊗ pr∗dOP2(1) ∼= O(P2)×d(1, . . . , 1)

to Vd. The multiplication map Bi × Bj → Bi+j is defined by applying H0

to the isomorphism pr1,...,i(Li)⊗OVi+j
pri+1,...,i+j(Lj)→ Li+j .



4 CHELSEA WALTON

Despite point parameter rings not being well understood in general, the
final section of this paper verifies the following properties of B = B(Sdeg).

Theorem 1.9. The point parameter ring B for a degenerate three-dimen-
sional Sklyanin algebra Sdeg has Hilbert series HB(t) = (1+t2)(1+2t)

(1−2t2)(1−t) and is
generated in degree one.

Hence we have a surjection of Sdeg onto B, which is akin to the result
involving Sklyanin algebras and corresponding tcrs (Theorem 1.3).

Corollary 1.10. The ring B = B(Sdeg) has exponential growth and there-
fore infinite GK dimension. Moreover B is neither right Noetherian, Koszul,
nor a domain. Furthermore B is a factor of the corresponding Sdeg by an
ideal K where K has six generators of degree 4 (and possibly more of higher
degree).

Therefore the behavior of B(Sdeg) resembles that of Sdeg. It is natural to
ask if other noncommutative algebras can be analyzed in a similar fashion,
though we will not address this here.

Acknowledgements. I sincerely thank my advisor Toby Stafford for in-
troducing me to this field and for his encouraging advice on this project. I
am also indebted to Karen Smith for supplying many insightful suggestions.
I have benefited from conversations with Hester Graves, Brian Jurgelewicz,
and Sue Sierra, and I thank them.

2. Structure of degenerate Sklyanin algebras

In this section, we establish Proposition 1.5. We begin by considering the
degenerate Sklyanin algebras S(a, b, c)deg with a3 = b3 = c3 = 1 (Definition
1.1) and the following definitions from [10].

Definition 2.1. Let α be an endomorphism of a ring R. An α-derivation
on R is any additive map δ : R→ R so that δ(rs) = α(r)δ(s) + δ(r)s for all
r, s ∈ R. The set of α-derivations of R is denoted α-Der(R).

We write S = R[z;α, δ] provided S is isomorphic to the polynomial ring
R[z] as a left R-module but with multiplication given by zr = α(r)z + δ(r)
for all r ∈ R. Such a ring S is called an Ore extension of R.

By generalizing the work of [7] we see that most degenerate Sklyanin
algebras are factors of Ore extensions of the free algebra on two variables.

Proposition 2.2. In the case of a3 = b3 = c3 = 1, assume without loss of
generality a = 1. Then for [1 : b : c] ∈ D we get the ring isomorphism

S(1, b, c) ∼=
k{x, y}[z;α, δ]

(Ω)
(2.1)
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where α ∈End(k{x, y}) is defined by α(x) = −bx, α(y) = −b2y and the
element δ ∈ α-Der(k{x, y}) is given by δ(x) = −cy2, δ(y) = −b2cx2. Here
Ω = xy + byx+ cz2 is a normal element of k{x, y}[z, α, δ].

Proof. By direct computation α and δ are indeed an endomorphism and α-
derivation of k{x, y} respectively. Moreover x·Ω = Ω·bx, y ·Ω = Ω·by, z ·Ω =
Ω ·z so Ω is a normal element of the Ore extension. Thus both rings of (2.1)
have the same generators and relations. �

Remark 2.3. Some properties of degenerate Sklyanin algebras are easy to
verify without use of the Proposition 2.2. Namely one can find a basis of
irreducible monomials via Bergman’s Diamond lemma [6, Theorem 1.2] to
imply dimk Sd = 2d−13 for d ≥ 1. Equivalently S(1, b, c) is free with a basis
{1, z} as a left or right module over k{x, y}. Therefore, HSdeg

(t) = 1+t
1−2t .

Therefore due to Proposition 2.2 (for a3 = b3 = c3 = 1) or Remark 2.3
we have the following immediate consequence.

Corollary 2.4. The degenerate Sklyanin algebras have exponential growth,
infinite GK dimension, and are not right Noetherian. Furthermore Sdeg is
not a domain.

Proof. The growth conditions follow from Remark 2.3 and the non-Noetherian
property holds by [20, Theorem 0.1]. Moreover if [a : b : c] ∈ {[1 : 0 : 0],
[0 : 1 : 0], [0 : 0 : 1]}, then the monomial algebra S(a, b, c) is obviously not
a domain. On the other hand if [a : b : c] satisfies a3 = b3 = c3 = 1, then
assume without loss of generality that a = 1. As a result we have

f1 + bf2 + cf3 = (x+ by + bc2z)(cx+ cy + b2z),

where f1 = yz + bzy + cx2, f2 = zx + bxz + cy2, and f3 = xy + byx + cz2

are the relations of S(1, b, c). �

Now we verify homological properties of degenerate Sklyanin algebras.

Definition 2.5. Let A be a cg algebra which is locally finite (dimkAi <∞).
When provided a minimal resolution of the left A-module A/

⊕
i≥1Ai

∼= k

determined by matrices Mi, we say A is Koszul if the entries of the Mi all
belong to A1.

Proposition 2.6. The degenerate Sklyanin algebras are Koszul with infinite
global dimension.

Proof. For S = S(a, b, c) with a3 = b3 = c3 = 1, consider the description of S
in Proposition 2.2. Since k{x, y} is Koszul, the Ore extension k{x, y}[z, α, δ]
is also Koszul [9, Definition 1.1, Theorem 10.2]. By Proposition 2.2, the
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element Ω is normal and regular in k{x, y}[z;α, δ]. Hence the factor S is
Koszul by [17, Theorem 1.2].

To conclude gl.dim(S) =∞, note that the Koszul dual of S is

S(1, b, c)! ∼=
k{x, y, z} z2 − cxy, yz − c2x2,

zy − b2yz, y2 − bcxz,
zx− bxz, yx− b2xy


.

Taking the ordering x < y < z, we see that all possible ambiguities of S!

are resolvable in the sense of [6]. Bergman’s Diamond lemma [6, Theorem
1.2] implies that S! has a basis of irreducible monomials {xi, xjy, xkz}i,j,k∈N.
Hence S! is not a finite dimensional k-vector space and by [13, Corollary 5],
S has infinite global dimension.

For S = S(a, b, c) with [a : b : c] ∈ {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}, note
that S is Koszul as its ideal of relations is generated by quadratic monomials
[14, Corollary 4.3]. Denote these monomials m1, m2, m3. The Koszul dual
of S in this case is

S! ∼=
k{x, y, z}

(the six monomials not equal to mi)
.

Since S! is again a monomial algebra, it contains no hidden relations and has
a nice basis of irreducible monomials. In particular, S! contains

⊕
i≥0 kwi

where wi is the length i word:

wi =



xyzxyzx . . .︸ ︷︷ ︸
i

, if [a : b : c] = [1 : 0 : 0]

xzyxzyx . . .︸ ︷︷ ︸
i

, if [a : b : c] = [0 : 1 : 0]

xi, if [a : b : c] = [0 : 0 : 1].

Therefore S! is not a finite dimensional k-vector space. By [13, Corollary
5], the three remaining degenerate Sklyanin algebras are of infinite global
dimension. �

3. Truncated point schemes of Sdeg

The goal of this section is to construct the family of truncated point schemes
{Vd ⊆ (P2)×d} associated to the degenerate three-dimensional Sklyanin al-
gebras Sdeg (see Definition 1.4). These schemes will be used in §4 for the
construction of a generalized twisted homogeneous coordinate ring, namely
the point parameter ring (Definition 1.8). Nevertheless the family {Vd} has
immediate importance for understanding point modules over S = Sdeg.
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Definition 3.1. A graded left S-module M is called a point module if M
is cyclic and HM (t) =

∑∞
i=0 t

i = 1
1−t . Moreover a graded left S-module

M is called a truncated point module of length d if M is again cyclic and
HM (t) =

∑d−1
i=0 t

i.

Note that point modules share the same Hilbert series as a point in pro-
jective space in Classical Algebraic Geometry.

Now we proceed to construct schemes Vd that will parameterize length d

truncated point modules. This yields information regarding point modules
over S(a, b, c) for any [a : b : c] ∈ P2 due to the following result.

Lemma 3.2. [3, Proposition 3.9, Corollary 3.13] Let S = S(a, b, c) for any
[a : b : c] ∈ P2. Denote by Γ the set of isomorphism classes of point modules
over S and Γd the set of isomorphism classes of truncated point modules of
length d + 1. With respect to the truncation function ρd : Γd → Γd−1 given
by M 7→M/Md+1, we have that Γ is the projective limit of {Γd} as a set.

The sets Γd can be understood by the schemes Vd defined below.

Definition 3.3. [3, §3] The truncated point scheme of length d, Vd ⊆ (P2)×d,
is the scheme defined by the multilinearizations of relations of S(a, b, c) from
Definition 1.1. More precisely Vd = V(fi, gi, hi)0≤i≤d−2 where

fi = ayi+1zi + bzi+1yi + cxi+1xi

gi = azi+1xi + bxi+1zi + cyi+1yi

hi = axi+1yi + byi+1xi + czi+1zi.

(3.1)

For example, V1 = V(0) ⊆ P2 so we have V1 = P2. Similarly, V2 =
V(f0, g0, h0) ⊆ P2 × P2.

Lemma 3.4. [3] The set Γd is parameterized by the scheme Vd.

In short, to understand point modules over S(a, b, c) for any [a : b : c] ∈
P2, Lemmas 3.2 and 3.4 imply that we can now restrict our attention to
truncated point schemes Vd.

On the other hand, we point out another useful result pertaining to Vd
associated to S(a, b, c) for any [a : b : c] ∈ P2.

Lemma 3.5. The truncated point scheme Vd lies in d copies of E ⊆ P2

where E is the cubic curve E : (a3 + b3 + c3)xyz − (abc)(x3 + y3 + z3) = 0.

Proof. Let pi denote the point [xi : yi : zi] ∈ P2 and

Mabc,i := Mi :=

(
cxi azi byi

bzi cyi axi

ayi bxi czi

)
∈ Mat3(kxi ⊕ kyi ⊕ kzi). (3.2)
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A d-tuple of points p = (p0, p1, . . . , pd−1) ∈ Vd ⊆ (P2)×d must satisfy the
system fi = gi = hi = 0 for 0 ≤ i ≤ d − 2 by definition of Vd. In other
words, one is given Mabc,j · (xj+1 yj+1 zj+1)T = 0 or equivalently (xj yj zj) ·
Mabc,j+1 = 0 for 0 ≤ j ≤ d−2. Therefore for 0 ≤ j ≤ d−1, det(Mabc,j) = 0.
This implies pj ∈ E for each j. Thus p ∈ E×d. �

3.1. On the truncated point schemes of some Sdeg. We will show that
to study the truncated point schemes Vd of degenerate Sklyanin algebras,
it suffices to understand the schemes of specific four degenerate Sklyanin
algebras. Recall that Vd parameterizes length d truncated point modules
(Lemma 3.4). Moreover note that according to [21], two graded algebras A
and B have equivalent graded left module categories (A-Gr and B-Gr) if A
is a Zhang twist of B. The following is a special case of [21, Theorem 1.2].

Theorem 3.6. Given a Z-graded k-algebra S =
⊕

n∈Z Sn with graded auto-
morphism σ of degree 0 on S, we form a Zhang twist Sσ of S by preserving
the same additive structure on S and defining multiplication ∗ as follows:
a ∗ b = abσ

n
for a ∈ Sn. Furthermore if S and Sσ are cg and generated in

degree one, then S-Gr and Sσ-Gr are equivalent categories. �

Realize D from Definition 1.1 as the union of three point sets Zi:

Z1 := {[1 : 1 : 1], [1 : ζ : ζ2], [1 : ζ2 : ζ]},
Z2 := {[1 : 1 : ζ], [1 : ζ : 1], [1 : ζ2 : ζ2]},
Z3 := {[1 : ζ : ζ], [1 : 1 : ζ2], [1 : ζ2 : 1]},
Z0 := {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}.

(3.3)

where ζ = e2πi/3. Pick respective representatives [1 : 1 : 1], [1 : 1 : ζ],
[1 : ζ : ζ], and [1 : 0 : 0] of Z1, Z2, Z3, and Z0.

Lemma 3.7. Every degenerate Sklyanin algebra is a Zhang twist of one the
following algebras: S(1, 1, 1), S(1, 1, ζ), S(1, ζ, ζ), and S(1, 0, 0).

Proof. A routine computation shows that the following graded automor-
phisms of degenerate S(a, b, c),

σ : {x 7→ ζx, y 7→ ζ2y, z 7→ z} and τ : {x 7→ y, y 7→ z, z 7→ x},

yield the Zhang twists:

S(1, 1, 1)σ = S(1, ζ, ζ2), S(1, 1, 1)σ
−1

= S(1, ζ2, ζ) for Z1;
S(1, 1, ζ)σ = S(1, ζ, 1), S(1, 1, ζ)σ

−1
= S(1, ζ2, ζ2) for Z2;

S(1, ζ, ζ)σ = S(1, ζ2, 1), S(1, ζ, ζ)σ
−1

= S(1, 1, ζ2) for Z3;
S(1, 0, 0)τ = S(0, 1, 0), S(1, 0, 0)τ

−1
= S(0, 0, 1) for Z0. �

Therefore it suffices to study a representative of each of the four classes
of degenerate three-dimensional Sklyanin algebras due to Theorem 3.6.
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3.2. Computation of Vd for S(1, 1, 1). We now compute the truncated
point schemes of S(1, 1, 1) in detail. Calculations for the other three repre-
sentative degenerate Sklyanin algebras, S(1, 1, ζ), S(1, ζ, ζ), S(1, 0, 0), will
follow with similar reasoning. To begin we first discuss how to build a trun-
cated point module M ′ of length d, when provided with a truncated point
module M of length d− 1.

Let us explore the correspondence between truncated point modules and
truncated point schemes for a given d; say d ≥ 3. When given a truncated
point module M =

⊕d−1
i=0 Mi ∈ Γd−1, multiplication from S = S(a, b, c) is

determined by a point p = (p0, . . . , pd−2) ∈ Vd−1 (Definition 3.3, (3.2)) in
the following manner. As M is cyclic, Mi has basis say {mi}. Furthermore
for x, y, z ∈ S with pi = [xi : yi : zi] ∈ P2, we get the left S-action on mi

determined by pi:

x ·mi = ximi+1, x ·md−1 = 0;

y ·mi = yimi+1, y ·md−1 = 0;

z ·mi = zimi+1, z ·md−1 = 0.

(3.4)

Conversely given a point p = (p0, . . . , pd−2) ∈ Vd−1, one can build a module
M ∈ Γd−1 unique up to isomorphism by reversing the above process. We
summarize this discussion in the following remark.

Remark 3.8. Refer to notation from Lemma 3.2. To construct M ′ ∈ Γd
from M ∈ Γd−1 associated to p ∈ Vd−1, we require pd−1 ∈ P2 such that
p′ = (p, pd−1) ∈ Vd.

Now we begin to study the behavior of truncated point modules over
Sdeg through the examination of truncated point schemes in the next two
lemmas.

Lemma 3.9. Let p = (p0, . . . , pd−2) ∈ Vd−1 with pd−2 6∈ Zi (refer to (3.3)).
Then there exists a unique pd−1 ∈ Zi so that p′ := (p, pd−1) ∈ Vd.

Proof of 3.9. For Z1, we study the representative algebra S(1, 1, 1). If such
a pd−1 exists, then fd−2 = gd−2 = hd−2 = 0 so we would have

M111,d−2 · (xd−1 yd−1 zd−1)T = 0

(Definition 3.3, Eq. (3.2)). Since rank(M111,d−2) = 2 when pd−2 6∈ D, the
tuple (xd−1, yd−1, zd−1) is unique up to scalar multiple and thus the point
pd−1 is unique.

To verify the existence of pd−1, say pd−2 = [0 : yd−2 : zd−2]. We require
pd−2 and pd−1 to satisfy the system of equations:

fd−2 = gd−2 = hd−2 = 0 (Eq. (3.1))
y3
d−2 + z3

d−2 = x3
d−1 + y3

d−1 + z3
d−1 = 0 (pd−2, pd−1 ∈ E, Lemma 3.5).



10 CHELSEA WALTON

However basic algebraic operations imply yd−2 = zd−2 = 0, thus producing a
contradiction. Therefore, without loss of generality pd−2 = [1 : yd−2 : zd−2].
With similar reasoning we must examine the system

yd−1zd−2 + zd−1yd−2 + xd−1 = 0
zd−1 + xd−1zd−2 + yd−1yd−2 = 0
xd−1yd−2 + yd−1 + zd−1zd−2 = 0

1 + y3
d−2 + z3

d−2 = 3yd−2zd−2

x3
d−1 + y3

d−1 + z3
d−1 = 3xd−1yd−1zd−1.

(3.5)

There are three solutions (pd−2, pd−1) ∈ (E \ Z1)× E to (3.5):
([1 : −(1 + zd−2) : zd−2], [1 : 1 : 1]),

([1 : −ζ(1 + ζzd−2) : zd−2], [1 : ζ : ζ2]),
([1 : −ζ(ζ + zd−2) : zd−2], [1 : ζ2 : ζ])

 .

Thus when pd−2 6∈ Z1, there exists an unique point pd−1 ∈ Z1 so that
(p0, . . . , pd−2, pd−1) ∈ Vd.

Now having studied S(1, 1, 1) with care, we leave it to the reader to verify
the assertion for the algebras S(1, 1, ζ), S(1, ζ, ζ), and S(1, 0, 0) in a similar
manner. �

The next result explores the case when pd−2 ∈ Zi.

Lemma 3.10. Let p = (p0, . . . , pd−2) ∈ Vd−1 with pd−2 ∈ Zi. Then for any
[yd−1 : zd−1] ∈ P1 there exists a function θ of two variables so that

pd−1 = [θ(yd−1, zd−1) : yd−1 : zd−1] 6∈ Zi
which satisfies (p0, . . . , pd−2, pd−1) ∈ Vd.

Proof. The point p′ = (p, pd−1) ∈ Vd needs to satisfy fi = gi = hi = 0 for
0 ≤ i ≤ d− 2 (Definition 3.3). Since p ∈ Vd−1, we need only to consider the
equations fd−2 = gd−2 = hd−2 = 0 with pd−2 ∈ Zi.

We study S(1, 1, 1) for Z1 so the relevant system of equations is

fd−2 : yd−1zd−2 + zd−1yd−2 + xd−1xd−2 = 0
gd−2 : zd−1xd−2 + xd−1zd−2 + yd−1yd−2 = 0
hd−2 : xd−1yd−2 + yd−1xd−2 + zd−1zd−2 = 0.

If pd−2 = [1 : 1 : 1] ∈ Z1, then xd−1 = −(yd−1 + yd−1) is required. On
the other hand, if pd−2 = [1 : ζ : ζ2] or [1 : ζ2 : ζ], we require xd−1 =
−ζ(yd−1+ζzd−1) or xd−1 = −ζ(ζyd−1+zd−1) respectively. Thus our function
θ is defined as

θ(yd−1, zd−1) =


−(yd−1 + zd−1), if pd−2 = [1 : 1 : 1]
−(ζyd−1 + ζ2zd−1), if pd−2 = [1 : ζ : ζ2]
−(ζ2yd−1 + ζzd−1), if pd−2 = [1 : ζ2 : ζ].
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The arguments for S(1, 1, ζ), S(1, ζ, ζ), and S(1, 0, 0) proceed in a likewise
fashion. �

Fix a pair (Sdeg, Zi(Sdeg)). We now know if pd−2 6∈ Zi, then from every
truncated point module of length d over Sdeg we can produce a unique
truncated point module of length d + 1. Otherwise if pd−2 ∈ Zi, we get
a P1 worth of length d + 1 modules. We summarize this in the following
statement which is made precise in Proposition 3.13.

Proposition 3.11. The parameter space of Γd over Sdeg is isomorphic to
the singular and nondisjoint union of{

three copies of (P1)×
d−1
2 and three copies of (P1)×

d+1
2 , for d odd;

six copies of (P1)×
d
2 , for d even.

The detailed statement and proof of this proposition will follow from the
results below. We restrict our attention to S(1, 1, 1) for reasoning mentioned
in the proofs of Lemmas 3.9 and 3.10.

3.2.1. Parameterization of Γ2. Recall that length 3 truncated point modules
of Γ2 are in bijective correspondence to points on V2 ⊂ P2×P2 (Lemma 3.4)
and it is our goal to depict this truncated point scheme. By Lemma 3.5, we
know that V2 ⊆ E × E. Furthermore note that with ζ = e2πi/3, the curve
E = E111 is the union of three projective lines:

P1
A : x = −(y + z), P1

B : x = −(ζy + ζ2z), P1
C : x = −(ζ2y + ζz) (3.6)

P1
C YY

��44444444444444444444444444444
P1

BEE

��






























[1:1:1]

[1:ζ:ζ2] [1:ζ2:ζ]

oo // P1
A

Figure 1: The curve E = E111 ⊆ P2 : x3 + y3 + z3 − 3xyz = 0.

Now to calculate V2, recall that Γ2 consists of length 3 truncated point
modules M(3) := M0⊕M1⊕M2 where Mi is a 1-dimensional k-vector space
say with basis mi. The module M(3) has action determined by (p0, p1) ∈ V2

(Eq. (3.4)). Moreover Lemmas 3.9 and 3.10 provide the precise conditions
for (p0, p1) to lie in E × E. Namely,



12 CHELSEA WALTON

Lemma 3.12. Refer to (3.6) for notation. The set of length 3 truncated
point modules Γ2 is parametrized by the scheme V2 = V(f0, g0, h0) which is
the union of the six subsets:

P1
A × [1 : 1 : 1]; [1 : 1 : 1]× P1

A;
P1
B × [1 : ζ : ζ2]; [1 : ζ : ζ2]× P1

B;
P1
C × [1 : ζ2 : ζ]; [1 : ζ2 : ζ]× P1

C .

of E × E. Thus Γ2 is isomorphic to 6 copies of P1. �

3.2.2. Parameterization of Γd for general d. To illustrate the parametriza-
tion of Γd, we begin with a truncated point module M(d+1) of length d + 1
corresponding to (p0, p1, . . . , pd−1) ∈ Vd ⊆ (P2)×d. Due to Lemmas 3.5, 3.9,
and 3.10, we know that (p0, p1, . . . , pd−1) belongs to either

(E \ Z1)× Z1 × (E \ Z1)× Z1 × . . .︸ ︷︷ ︸
d

or Z1 × (E \ Z1)× Z1 × (E \ Z1)× . . .︸ ︷︷ ︸
d

where Z1 is defined in (3.3).
By adapting the notation of Lemma 3.10, we get in the first case that the

point (p0, p1, . . . , pd−1) is of the form

([θ(y0, z0) : y0 : z0], [1 : ω : ω2], [θ(y2, z2) : y2 : z2], [1 : ω : ω2], . . . ) ∈ (P2)×d

where ω3 = 1 and θ(y, z) = −(ωy+ω2z). Thus in this case, the set of length
d truncated point modules is parameterized by three copies of (P1)×dd/2e

with coordinates ([y0 : z0], [y2 : z2], . . . , [y2dd/2e−1 : z2dd/2e−1]).
In the second case (p0, p1, . . . , pd−1) takes the form

([1 : ω : ω2], [θ(y1, z1) : y1 : z1], [1 : ω : ω2], [θ(y3, z3) : y3 : z3], . . . ) ∈ (P2)×d

and the set of truncated point modules is parameterized with three copies
of (P1)×bd/2c with coordinates ([y1 : z1], [y3 : z3], . . . , [y2bd/2c−1 : z2bd/2c−1]).

In other words, we have now proved the next result.

Proposition 3.13. Refer to (3.6) for notation. For d ≥ 2 the truncated
point scheme Vd for S(1, 1, 1) is equal to the union of the six subsets

⋃6
i=1Wd,i

of (P2)×d where
Wd,1 = P1

A × [1 : 1 : 1]× P1
A × [1 : 1 : 1]× . . . ,

Wd,2 = [1 : 1 : 1]× P1
A × [1 : 1 : 1]× P1

A × . . . ,
Wd,3 = P1

B × [1 : ζ : ζ2]× P1
B × [1 : ζ : ζ2]× . . . ,

Wd,4 = [1 : ζ : ζ2]× P1
B × [1 : ζ : ζ2]× P1

C × . . . ,
Wd,5 = P1

C × [1 : ζ2 : ζ]× P1
C × [1 : ζ2 : ζ]× . . . ,

Wd,6 = [1 : ζ2 : ζ]× P1
C × [1 : ζ2 : ζ]× P1

C × . . . . �

As a consequence, we obtain the proof of Proposition 3.11 for S(1, 1, 1) and
this assertion holds for the remaining degenerate Sklyanin algebras due to
Lemma 3.7, and analogous proofs for Lemmas 3.9 and 3.10. �
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We thank Karen Smith for suggesting the following elegant way of inter-
preting the point scheme of S(1, 1, 1).

Remark 3.14. We can provide an alternate geometric description of the
point scheme of the Γ of S(1, 1, 1). Let G := Z3 o Z2 =< ζ, σ > where
ζ = e2πi/3 and σ2 = 1. We define a G-action on P2 × P2 as follows:

ζ([x : y : z], [u : v : w]) = ([x : ζ2y : ζz], [u : ζv : ζ2w])

σ([x : y : z], [u : v : w]) = ([u : v : w], [x : y : z])

Note that G stabilizes E × E and acts transitively on the W2,i. We extend
the action of G to (P2 × P2)×∞ diagonally. Now we interpret Γ as

Γ = lim
←−

Vd = lim
←−

V2d = lim
←−

⋃
i

W2d,i = G · (P1
A × [1 : 1 : 1])×∞,

as sets.

4. Point parameter ring of S(1, 1, 1)

We now construct a graded associative algebra B from truncated point
schemes of the degenerate Sklyanin algebra S = S(1, 1, 1). The analogous
result for the other degenerate Sklyanin algebras will follow in a similar
fashion and we leave the details to the reader. As is true for the Sklyanin
algebras themselves, it will be shown that this algebra B is a proper factor
of S(1, 1, 1) and its properties closely reflect those of S(1, 1, 1). We will for
example show that B is not right Noetherian, nor a domain.

The definition of the algebra B initially appears in [3, §3]. Recall that
we have projection maps pr1,...,d−1 and pr2,...,d from (P2)×d to (P2)×d−1.
Restrictions of these maps to the truncated point schemes Vd ⊆ (P2)×d

(Definition 3.3) yield

pr1,...,d−1(Vd) ⊂ Vd−1 and pr2,...,d(Vd) ⊂ Vd−1 for all d.

Definition 4.1. Given the above data, the point parameter ring B = B(S)
is an associative N-graded ring defined as follows. First Bd = H0(Vd,Ld)
where Ld is the restriction of invertible sheaf

pr∗1OP2(1)⊗ . . .⊗ pr∗dOP2(1) ∼= O(P2)×d(1, . . . , 1)

to Vd. The multiplication map µi,j : Bi × Bj → Bi+j is then defined by
applying H0 to the isomorphism

pr∗1,...,i(Li)⊗OVi+j
pr∗i+1,...,i+j(Lj)→ Li+j .

We declare B0 = k.

We will later see in Theorem 4.6 that B is generated in degree one; thus S
surjects onto B.



14 CHELSEA WALTON

To begin the analysis of B for S(1, 1, 1), recall that V1 = P2 so

B1 = H0(V1, pr
∗
1OP2(1)) = kx⊕ ky ⊕ kz

where [x : y : z] are the coordinates of P2. For d ≥ 2 we will compute dimk Bd
and then proceed to the more difficult task of identifying the multiplication
maps µi,j : Bi×Bj → Bi+j . Before we get to specific calculations for d ≥ 2,
let us recall that the schemes Vd are realized as the union of six subsets
{Wd,i}6i=1 of (P2)×d described in Proposition 3.13 and Eq. (3.6). These
subsets intersect nontrivially so that each Vd for d ≥ 2 is singular. More
precisely,

Remark 4.2. A routine computation shows that the singular subset, Sing(Vd),
consists of six points:

vd,1 := ([1 : 1 : 1], [1 : ζ : ζ2], [1 : 1 : 1], [1 : ζ : ζ2], . . . ) ∈Wd,2 ∩Wd,3,

vd,2 := ([1 : 1 : 1], [1 : ζ2 : ζ], [1 : 1 : 1], [1 : ζ2 : ζ], . . . ) ∈Wd,2 ∩Wd,5,

vd,3 := ([1 : ζ : ζ2], [1 : 1 : 1], [1 : ζ : ζ2], [1 : 1 : 1], . . . ) ∈Wd,1 ∩Wd,4,

vd,4 := ([1 : ζ : ζ2], [1 : ζ : ζ2], [1 : ζ : ζ2], [1 : ζ : ζ2], . . . ) ∈Wd,3 ∩Wd,4,

vd,5 := ([1 : ζ2 : ζ], [1 : 1 : 1], [1 : ζ2 : ζ], [1 : 1 : 1], . . . ) ∈Wd,1 ∩Wd,6,

vd,6 := ([1 : ζ2 : ζ], [1 : ζ2 : ζ], [1 : ζ2 : ζ], [1 : ζ2 : ζ], . . . ) ∈Wd,5 ∩Wd,6.

where ζ = e2πi/3.

4.1. Computing the dimension of Bd. Our objective in this section is
to prove

Proposition 4.3. For d ≥ 1, dimk Bd = 3
(

2b
d+1
2
c + 2d

d−1
2
e
)
− 6.

For the rest of the section, let 1 denote a sequence of 1s of appropriate
length. Now consider the normalization morphism π : V ′d → Vd where V ′d
is the disjoint union of the six subsets {Wd,i}6i=1 mentioned in Proposition
3.13. This map induces the following short exact sequence of sheaves on Vd:

0→ OVd
(1)→ (π∗OV ′d)(1)→ S(1)→ 0, (4.1)

where S is the skyscraper sheaf whose support is Sing(Vd), that is S =⊕6
k=1O{vd,k}.

Note that we have

H0(Vd, (π∗OV ′d)(1)) ∼=
k−v.s.

H0(V ′d,OV ′d(1)) (4.2)

since the normalization morphism is a finite map, which in turn is an affine
map [11, Exercises II.5.17(b), III.4.1]. To complete the proof of the propo-
sition, we make the following assertion:

Claim: H1(Vd,OVd
(1)) = 0.
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Assuming that the claim holds, we get from (4.1) the following long exact
sequence of cohomology:

0→ H0(Vd,OVd
(1)) → H0(Vd, (π∗OV ′d)(1))

→ H0(Vd,S(1)) → H1(Vd,OVd
(1)) = 0.

Thus, with writing h0(X,L) = dimkH
0(X,L), (4.2) implies that

dimk Bd = h0(OVd
(1)) = h0((π∗OV ′d)(1))− h0(S(1))

= h0(OV ′d(1))− h0(S(1))
=
∑6

i=1 h
0(OWd,i

(1))− 6.

Therefore applying Proposition 3.11 and Künneth’s Formula [8, A.10.37]
completes the proof of Proposition 4.3. It now remains to verify the claim.

Proof of Claim: By the discussion above, it suffices to show that

δd : H0(V ′d,OV ′d(1))→ H0

(
6⋃

k=1

{vd,k}, S(1)

)
is surjective. Referring to the notation of Proposition 3.13 and Remark
4.2, we choose vd,i ∈ Supp(S(1)) and Wd,ki

containing vd,i. This Wd,ki

contains precisely two points of Supp(S(1)) and say the other is vd,j for
j 6= i. After choosing a basis {ti}6i=1 for the six-dimensional vector space
H0(S(1)) where ti(vd,j) = δij , we construct a preimage of each ti. Since
OWd,ki

(1) is a very ample sheaf, it separates points. In other words there
exists s̃i ∈ H0(OWd,ki

(1)) such that s̃i(vd,j) = δij . Extend this section s̃i to
si ∈ H0(OV ′d(1)) by declaring si = s̃i on Wd,ki

and si = 0 elsewhere. Thus
δd(si) = ti for all i and the map δd is surjective as desired. �

This concludes the proof of Proposition 4.3.

Corollary 4.4. We have limd→∞(dimk Bd)1/d =
√

2 > 1 so B has expo-
nential growth hence infinite GK dimension. By [20, Theorem 0.1], B is not
left or right Noetherian. �

On the other hand, we can also determine the Hilbert series of B.

Proposition 4.5. HB(t) =
(1 + t2)(1 + 2t)
(1− 2t2)(1− t)

.

Proof. Recall from Proposition 4.3 that dimk Bd = 3
(

2d
d−1
2
e + 2b

d+1
2
c
)
− 6

for d ≥ 1 and that dimk B0 = 1. Thus

HB(t) = 1 + 3

∑
d≥1

2d
d−1
2 etd +

∑
d≥1

2b
d+1
2 ctd − 2

∑
d≥1

td


= 1 + 3

t
∑
d≥0

2d
d
2 etd + 2t

∑
d≥0

2b
d
2 ctd − 2t

∑
d≥0

td

 .
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Consider generating functions a(t) =
∑

d≥0 adt
d and b(t) =

∑
d≥0 bdt

d for
the respective sequences ad = 2dd/2e and bd = 2bd/2c. Elementary operations
result in a(t) = 1+2t

1−2t2
and b(t) = 1+t

1−2t2
. Hence

HB(t) = 1 + 3

[
t

(
1 + 2t

1− 2t2

)
+ 2t

(
1 + t

1− 2t2

)
− 2t

(
1

1− t

)]
=

(1 + t2)(1 + 2t)

(1− 2t2)(1− t)
.

�

4.2. The multiplication maps µij : Bi × Bj → Bi+j. In this section we
examine the multiplication of the point parameter ring B of S(1, 1, 1). In
particular, we show that the multiplication maps are surjective which results
in the following theorem.

Theorem 4.6. The point parameter ring B of S(1, 1, 1) is generated in
degree one.

With similar reasoning, B = B(Sdeg) is generated in degree one for all Sdeg.

Proof. It suffices to prove that the multiplication maps µd,1 : Bd × B1 →
Bd+1 are surjective for d ≥ 1. Recall from Definition 4.1 that µd,1 = H0(md)
where md is the isomorphism

md : OVd×P2(1, . . . , 1, 0)⊗OVd+1
O(P2)×d(0, . . . , 0, 1)→ OVd+1

(1, . . . , 1).

To use the isomorphism md, we employ the following commutative diagram:

(4.3)

OVd×P2(1, . . . , 1, 0)⊗O
(P2)×d+1

O(P2)×d+1(0, . . . , 0, 1)

��

td

++WWWWWWWWWWWWWWWWWWWWWW

OVd×P2(1, . . . , 1, 0)⊗OVd+1
O(P2)×d+1(0, . . . , 0, 1) md // OVd+1

(1, . . . , 1).

The source of td is isomorphic to OVd×P2(1, . . . , 1) and the map td is given
by restriction to Vd+1. Hence we have the short exact sequence

0 −→ I Vd+1

Vd×P2

(1) −→ OVd×P2(1) td−→ OVd+1
(1) −→ 0, (4.4)

where I Vd+1

Vd×P2

is the ideal sheaf of Vd+1 defined in Vd×P2. Since the Künneth

formula and the claim from §4.1 implies that H1(OVd×P2(1)) = 0, the cok-

ernel of H0(td) is H1
(
I Vd+1

Vd×P2

(1)
)

. Now we assert

Proposition 4.7. H1
(
I Vd+1

Vd×P2

(1)
)

= 0 for d ≥ 1.
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By assuming that Proposition 4.7 holds, we get the surjectivity of H0(td)
for d ≥ 1. Now by applying the global section functor to Diagram (4.3), we
have that H0(md) = µd,1 is surjective for d ≥ 1. This concludes the proof
of Theorem 4.6. �

Proof of 4.7. Consider the case d = 1. We study the ideal sheaf I V2
P2×P2

:= IV2

by using the resolution of the ideal of defining relations (f0, g0, h0) for V2

(Eqs. (3.1)) in the N2-graded ring R = k[x0, y0, z0, x1, y1, z1]. Note that each
of the defining equations have bidegree (1,1) in R and we get the following
resolution:

0→ OP2×P2(−3,−3)→ OP2×P2(−2,−2)⊕3 → OP2×P2(−1,−1)⊕3 → IV2 → 0.

Twisting the above sequence with OP2×P2(1, 1) we get

0→ OP2×P2(−2,−2)→ OP2×P2(−1,−1)⊕3 → O⊕3
P2×P2

f→ IV2(1, 1)→ 0.

Let K = ker(f). Then h0(IV2(1, 1)) = 3 − h0(K) + h1(K). On the other
hand, H1(OP2(j)) = H2(OP2(j) = 0 for j = −1,−2. Thus the Künneth
formula applied the cohomology of the short exact sequence

0→ OP2×P2(−2,−2)→ OP2×P2(−1,−1)⊕3 → K → 0

results in h0(K) = h1(K) = 0. Hence h0(IV2(1, 1)) = 3.
Now using the long exact sequence of cohomology arising from the short

exact sequence

0→ IV2(1, 1)→ OP2×P2(1, 1)→ OV2(1, 1)→ 0,

and the facts:
h0(IV2(1, 1)) = 3,
h0(OP2×P2(1, 1)) = 9
h0(OV2(1, 1)) = dimk B2 = 6,
h1(OP2×P2(1, 1)) = 0,

we conclude that H1(IV2(1, 1)) = 0.
For d ≥ 2 we will construct a commutative diagram to assist with the

study of the cohomology of the ideal sheaf I Vd+1

Vd×P2

(1). Recall from (4.1) that

we have the following normalization sequence for Vd:

0 −→ OVd
−→

6⊕
i=1

OWd,i
−→

6⊕
k=1

O{vd,k} −→ 0. (†d)

Consider the sequence

pr∗1,...,d

(
(†d)⊗O(P2)×d(1)

)
⊗O

(P2)×d+1
pr∗d+1OP2(1)
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and its induced sequence of restrictions to Vd+1, namely

0→ OVd×P2(1)
∣∣
Vd+1

→
6⊕

i=1

OWd,i×P2(1)
∣∣
Vd+1

→
6⊕

k=1

O{vd,k}×P2(1)
∣∣
Vd+1

→ 0. (4.5)

Now Vd+1 ⊆ Vd × P2 and (Wd,i × P2) ∩ Vd+1 = Wd+1,i due to Proposition
3.13 and Remark 4.2. We also have that ({vd,k}×P2)∩ Vd+1 = {vd+1,k} for
all i,k. Therefore the sequence (4.5) is equal to (†d+1) ⊗ O(P2)×d+1(1). In
other words, we are given the commutative diagram:

0 // OVd×P2(1)

��

//
6⊕
i=1

OWd,i×P2(1)

��

//
6⊕

k=1

O{vd,k}×P2(1)

��

// 0

0 // OVd+1
(1) //

6⊕
i=1

OWd+1,i
(1) //

6⊕
k=1

O{vd+1,k}(1) // 0.

Diagram 1: Understanding I Vd+1

Vd×P2

(1, . . . , 1).

where the vertical maps are given by restriction to Vd+1. Observe that the
kernels of the vertical maps (from left to right) are respectively I Vd+1

Vd×P2

(1),⊕
i

I Wd+1,i

Wd,i×P2

(1), and
⊕
k

I {vd+1,k}
{vd,k}×P2

(1), and the cokernels are all 0.

By the claim in §4.1 and the Künneth formula, we have that

H1(OVd×P2(1)) = H1(OVd+1
(1)) = 0.

Hence the application of the global section functor to Diagram 1 yields
Diagram 2 below. Now by the Snake Lemma, we get the following sequence:

. . . −→
6⊕
i=1

H0

(
I Wd+1,i

Wd,i×P2
(1)

)
ψ−→

6⊕
k=1

H0

(
I {vd+1,k}
{vd,k}×P2

(1)

)

−→ H1

(
I Vd+1

Vd×P2
(1)
)
−→

6⊕
i=1

H1

(
I Wd+1,i

Wd,i×P2
(1)

)
→ . . . .

In Lemma 4.8, we will show that
⊕
i

H1
(
I Wd+1,i

Wd,i×P2

(1)
)

= 0 for d ≥ 2.

Furthermore the surjectivity of the map ψ will follow from Lemma 4.9.
This will complete the proof of Proposition 4.7.
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Lemma 4.8.
6⊕
i=1

H1
(
Wd,i × P2, I Wd+1,i

Wd,i×P2

(1)
)

= 0 for d ≥ 2.

Proof. We consider the different parities of d and i separately. For d even
and i odd,

I Wd+1,i

Wd,i×P2

∼= OWd,i×P2(0, . . . , 0,−1)

because Wd+1,i is defined in Wd,i×P2 by one equation of degree (0, . . . , 0, 1)
(Proposition 3.13). Twisting by O(P2)×d+1(1, . . . , 1) results in

H1

(
I Wd+1,i

Wd,i×P2

(1, . . . , 1)

)
∼= H1

(
OWd,i×P2(1, . . . , 1, 0)

)
. (4.6)

Since Wd,i is the product of P1 and points lying in P2 and H1(OP1(1)) =
H1(O{pt}(1)) = H1(OP2) = 0, the Künneth formula implies that the right
hand side of (4.6) is equal to zero.

Consider the case of d and i even. As pr1,...,d(Wd+1,i) = Wd,i and
prd+1(Wd+1,i) = [1 : ω : ω2] for ω = ωd,i a third of unity, we have that Wd+1,i

is defined in Wd,i×P2 by two equations of degree (0, . . . , 0, 1). The defining
equations (in variables x, y, z) of [1 : ω : ω2] form a k[x, y, z]-regular sequence
and so we have the Koszul resolution of I Wd+1,i

Wd,i×P2

⊗O(P2)×d+1(1, . . . , 1):

0→ OWd,i×P2(1, . . . , 1,−1)→ OWd,i×P2(1, . . . , 1, 0)⊕2

→ I Wd+1,i

Wd,i×P2

(1, . . . , 1) → 0. (4.7)

Now apply the global section functor to sequence (4.7) and note that

Hj(OWd,i
(1, . . . , 1)) = Hj(OP2) = Hj(OP2(−1)) = 0 for j = 1, 2.

Hence the Künneth formula yields

H1
(
OWd,i×P2(1, . . . , 1, 0)

)⊕2
= H2

(
OWd,i×P2(1, . . . , 1,−1)

)
= 0.

Therefore H1
(
I Wd+1,i

Wd,i×P2

(1)
)

= 0 for d and i even.

We conclude that for d even, we know
6⊕
i=1

H1
(
I Wd+1,i

Wd,i×P2
(1)
)

= 0. For d

odd, the same conclusion is drawn by swapping the arguments for the i even
and i odd subcases. �

Lemma 4.9. The map ψ is surjective for d ≥ 2.

Proof. Refer to the notation from Diagram 2. To show ψ is onto, here is our
plan of attack.
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(1) Choose a basis of
⊕
k

H0
(
I {vd+1,k}
{vd,k}×P2

(1)
)

so that each basis element t

lies in H0
(
I {vd+1,k0

}

{vd,k0
}×P2

(1)
)

for some k = k0. For such a basis element

t, identify its image under λ in
⊕
k

H0
(
O{vd,k}×P2(1)

)
.

(2) Construct for λ(t) a suitable preimage s ∈ ν−1(λ(t)).
(3) Prove s ∈ ker(β).

As a consequence, s lies in
⊕
i

H0
(
I Wd+1,i

Wd,i×P2
(1)
)

and serves as a preimage to

t under ψ. In other words, ψ is surjective. To begin, fix such a basis element
t and integer k0.

Step 1: Observe that pr1,...,d({vd+1,k0}) = {vd,k0} and prd+1({vd+1,k0}) =
[1 : ω : ω2] for some ω, a third root of unity (Remark 4.2). Thus our basis
element t ∈

⊕
k

H0
(
I {vd+1,k}
{vd,k}×P2

(1)
)

is of the form

t = a(ωxd − yd) + b(ω2xd − zd) (4.8)

for some a, b ∈ k, with {ωxd − yd, ω2xd − zd} defining [1 : ω : ω2] in the
(d + 1)st copy of P2. Note that λ is the inclusion map so we may refer to
λ(t) as t. This concludes Step 1. �

Step 2: Next we construct a suitable preimage s ∈ ν−1(λ(t)). Referring to
Remark 4.2, let us observe that for all k, there is an unique even integer := i′′k
and unique odd integer := i′k so that vd,k ∈Wd,i′′k

∩ Wd,i′k
for all k = 1, . . . , 6.

For instance with k0 = 1, we consider the membership vd,1 ∈ Wd,2 ∩Wd,3;
hence i′′1 = 2 and i′1 = 3.

As a consequence, λ(t) has preimages under ν in

H0

(
Wd,i′′k0

× P2,OWd,i′′
k0
×P2(1)

)
⊕ H0

(
Wd,i′k0

× P2,OWd,i′
k0
×P2(1)

)
.

For d even (respectively odd) we write ik0 := i′′k0 (respectively ik0 := i′k0).

Therefore we intend to construct s ∈ ν−1(t) belonging toH0
(
OWd,ik0

×P2(1)
)

.
However this Wd,ik0

will also contain another point vd,j for some j 6= k0.

Let us define the global section s̃ ∈ H0
(
OWd,ik0

×P2(1)
)

as follows. Since

OWd,ik0
(1) is a very ample sheaf, we have a global section s̃k0 separating the

points vd,k0 and vd,j ; say s̃k0(vd,k) = δk0,k. We then use (4.8) to define s̃ by

s̃ = s̃k0 · [a(ωxd − yd) + b(ω2xd − zd)].

where [1 : ω : ω2] = prd+1({vd+1,k0}). We now extend this section s̃ to

s ∈
6⊕
i=1

H0
(
OWd,i×P2(1)

) ∼= ( 6⊕
i=1

H0
(
OWd,i

(1)
))
⊗H0(OP2(1)).
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This is achieved by setting s = s̃ on Wd,ik0
× P2 and 0 elsewhere. To check

that ν(s) = t, note

s =
6⊕
i=1

si where si ∈ H0
(
OWd,i×P2(1)

)
, si =

{
s̃, i = ik0 ,

0, i 6= ik0 ;
(4.9)

Therefore by the construction of s̃, we have ν(s̃) = t
∣∣
{vd,k0

}×P2 . Hence we

have built our desired preimage s ∈ ν−1(t) and this concludes Step 2. �

Step 3: Recall the structure of s from (4.9). By definition of β, we have
that β(s) = β

(⊕6
i=1 si

)
is equal to

⊕6
i=1

(
si
∣∣
Wd+1,i

)
.

For i 6= ik0 , we clearly get that si
∣∣
Wd+1,i

= 0. On the other hand, the

key point of our construction is that Wd+1,ik0
= Wd,ik0

× [1 : ε : ε2] for
some ε3 = 1 as ik0 is chosen to be even (respectively odd) when d is even
(respectively odd) (Proposition 3.13). Moreover vd+1,k0 ∈Wd+1,ik0

and

prd+1(Wd+1,ik0
) = prd+1({vd+1,k0}) = [1 : ω : ω2]

where ω is defined by Step 1 and Remark 4.2. Thus ε = ω. Now we have

sik0

∣∣
Wd+1,ik0

= s̃k0 · [a(ωxd − yd) + b(ω2xd − zd)]
∣∣∣
[1:ω:ω2]

= 0.

Therefore si
∣∣
Wd+1,i

= 0 for all i = 1, . . . , 6. Hence β(s) = 0. �

Hence Steps 1-3 are complete which concludes the proof of Lemma 4.9. �

Consequently, we have verified Proposition 4.7. �

One of the main results why twisted homogeneous coordinate rings are so
useful for studying Sklyanin algebras is that tcrs are factors of their corre-
sponding Sklyanin algebra (by some homogeneous element; refer to Theorem
1.3). The following corollaries to Theorem 4.6 illustrate an analogous result
for Sdeg.

Corollary 4.10. Let B be the point parameter ring of a degenerate Sklyanin
algebra Sdeg. Then B ∼= Sdeg/K for some ideal K of Sdeg that has six
generators of degree 4 and possibly higher degree generators.

Proof. By Theorem 4.6, Sdeg surjects onto B say with kernel K. By Remark
2.3 we have that dimk S4 = 57, yet we know dimk B4 = 63 by Proposition
4.3. Hence dimkK4 = 6. The same results also imply that dimk Sd =
dimk Bd for d ≤ 3. �

Corollary 4.11. The ring B = B(Sdeg) is neither a domain or Koszul.
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Proof. By Corollary 2.4, there exist linear nonzero elements u, v ∈ S with
uv = 0. The image of u and v are nonzero, hence B is not a domain due
to Corollary 4.10. Since B has degree 4 relations, it does not possess the
Koszul property. �
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CORRIGENDUM TO “DEGENERATE SKLYANIN ALGEBRAS AND

GENERALIZED TWISTED HOMOGENEOUS COORDINATE RINGS”,

J. ALGEBRA 322 (2009) 2508-2527

CHELSEA WALTON

There is an error in the computation of the truncated point schemes Vd of the degenerate Sklyanin

algebra S(1, 1, 1). We are grateful to S. Paul Smith for pointing out that Vd is larger than was

claimed in Proposition 3.13. All 2 or 3 digit references are to the above paper, while 1 digit

references are to the results in this corrigendum. We provide a description of the correct Vd in

Proposition 5 below. Results about the corresponding point parameter ring B associated to the

schemes {Vd}d≥1 are given afterward.

Acknowledgments. I thank Sue Sierra for pointing out a typographical error in Lemma 3.9, and

for providing several insightful suggestions. I also thank Paul Smith for suggesting that a quiver

could be used for the bookkeeping required in Proposition 5. Moreover, I am grateful to Paul

Smith and Toby Stafford for providing detailed remarks, which improved the exposition of this

manuscript.

1. Corrections

The main error in the above paper is to the statement of Lemma 3.10. Before stating the correct

version, we need some notation.

Notation. Given ζ = e2πi/3, let pa := [1 : 1 : 1], pb := [1 : ζ : ζ2], and pc := [1 : ζ2 : ζ]. Also, let

P̌1
A := P1

A \ {pb, pc}, P̌1
B := P1

B \ {pa, pc}, and P̌1
C := P1

C \ {pa, pb}.

We also require the following more precise version of Lemma 3.9; the original result is correct

though there is a slight change in the proof as given below.

Lemma 1. (Correction of Lemma 3.9) Let p = (p0, . . . , pd−2) ∈ Vd−1 with pd−2 ∈ P̌1
A, P̌1

B, or P̌1
C .

If p′ = (p, pd−1) ∈ Vd, then pd−1 = pa, pb, or pc respectively.

Proof. The proof follows from that of Lemma 3.9, except that there is a typographical error in

the case when pd−2 = [0 : yd−2 : zd−2]. Here, we require that (pd−2, pd−1) satisfies the system of

equations:

fd−2 = gd−2 = hd−2 = 0,

y3d−2 + z3d−2 = 0,

x3d−1 + y3d−1 + z3d−1 − 3xd−1yd−1zd−1 = 0.

This implies that either yd−2 = zd−2 = 0 or xd−1 = yd−1 = zd−1 = 0, which produces a contradic-

tion. �
1
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Now the correct version of Lemma 3.10 is provided below. The present version is slightly weaker

the original result, where it was claimed that pd−1 ∈ P̌1
∗ instead of pd−1 ∈ P1

∗. Here, P1
∗ denotes

either P1
A, P1

B, or P1
C .

Lemma 2. (Correction of Lemma 3.10) Let p = (p0, . . . , pd−2) ∈ Vd−1 with pd−2 = pa, pb, or pc.

If p′ = (p, pd−1) ∈ Vd, then pd−1 ∈ P1
A, P1

B, or P1
C respectively.

Proof. The proof from follows that of Lemma 3.10 with the exception that there is a typographical

error in the definition of the function θ; it should be defined as:

θ(yd−1, zd−1) =


−(yd−1 + zd−1) if pd−2 = pa,

−(ζ2yd−1 + ζzd−1) if pd−2 = pb,

−(ζyd−1 + ζ2zd−1) if pd−2 = pc.
�

Remark 3. There are two further minor typographical corrections to the paper.

(1) (Correction of Figure 3.1) The definition of the projective lines P1
B and P1

C should be
interchanged. More precisely, the curve E111 is the union of three projective lines:

P1
A : x+ y + z = 0,

P1
B : x+ ζ2y + ζz = 0,

P1
C : x+ ζy + ζ2z = 0.

(2) (Correction to Corollary 4.10) The numbers 57 and 63 should be replaced by 24 and 18

respectively.

2. Consequences

The main consequence of weakening Lemma 3.10 to Lemma 3 is that the truncated point schemes

{Vd}d≥1 of S = S(1, 1, 1) are strictly larger than the truncated point schemes computed in Propo-

sition 3.13 for d ≥ 4. We discuss such results in §2.1 below. Furthermore, the corresponding point

parameter ring associated to the correct point scheme data of S is studied in §2.2.

Notation. (i) Let Wd :=
⋃6
i=1Wd,i with Wd,i defined in Proposition 3.13.

(ii) Let B :=
⊕

d≥0H
0(Vd,OVd(1)) be the point parameter ring of S(1, 1, 1) as in Definition 1.8.

(iii) Likewise let P :=
⊕

d≥0H
0(Wd,OWd

(1)) be the point parameter ring associated to the schemes

{Wd}d≥1.

The results of §4 of the paper are still correct; we describe the ring P , and we show that it

is a factor of S(1, 1, 1). Unfortunately, the ring P is not equal to the point parameter ring B of

S(1, 1, 1). More precisely, the following corrections should be made.

Remark 4. (1) The scheme Vd should be replaced by Wd in Theorem 1.7, in Proposition 3.13, in

Remark 3.14, and in all of §4 after Definition 4.1.

(2) The ring B should be replaced by P in §1 after Definition 1.8, and in all of §4 with the exception

of the second paragraph.
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2.1. On the truncated point schemes {Vd}d≥1. We provide a description of the truncated point

schemes {Vd}d≥1 as follows.

Notation. Let {Vd,i}i∈Id denote the |Id| irreducible components of the dth truncated point scheme

Vd.

Proposition 5. (Description of Vd) For d ≥ 2, the length d truncated point scheme Vd is realized

as the union of length d paths of the quiver Q below. With d = 2, for example, the path P1
A −→ pa

corresponds to the component P1
A × pa of V2.

P1
A

~~
pa

CC

��||
pb

pp

<<

**
pc

��

TT

jj

P1
B

//

P1
C

QQ

The quiver Q

Proof. We proceed by induction. Considering the d = 2 case, Lemma 3.12 still holds so V2 = W2,

the union of the irreducible components:

P1
A × pa, P1

B × pb, P1
C × pc

pa × P1
A, pb × P1

B , pc × P1
C .

One can see these components correspond to length 2 paths of the quiver Q. Conversely, any length

2 path of Q corresponds to a component that lies in V2.

We assume the proposition holds for Vd−1, and recall that Lemmas 2 and 3 provide the recipe to

build Vd from Vd−1. Take a point (p0, . . . , pd−2) ∈ Vd−1,i, where the irreducible component Vd−1,i of

Vd−1 corresponds to a length d−1 path of Q. Let {Vd,ij}j∈J be the set of |J | irreducible components

of Vd with

(p0, . . . , pd−2, pd−1) ∈ Vd,ij ⊆ Vd

for some pd−1 ∈ P2. There are two cases to consider.

Case 1: We have that (pd−3, pd−2) lies in one of the following products:

P1
A × pa, P1

B × pb, P1
C × pc,

pa × P̌1
A, pb × P̌1

B, pc × P̌1
C .

For the first three choices, Lemma 2 implies that prd(Vd,ij) = P1
A, P1

B, or P1
C , respectively. For the

second three choices, pd−2 belongs to P̌1
A, P̌1

B, or P̌1
C , and Lemma 1 implies that prd(Vd,ij) = pa, pb,

or pc, respectively. We conclude by induction that the component Vd,ij yields a length d path of Q.
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Case 2: We have that (pd−3, pd−2) is equal to one of the following points:

pa × pb, pa × pc,
pb × pa, pb × pc,
pc × pa, pc × pb.

Now Lemma 2 implies that:

prd(Vd,ij) =


P1
A if pd−2 = pa,

P1
B if pd−2 = pb,

P1
C if pd−2 = pc.

Again we have that in this case, the component Vd,ij yields a length d path of Q.

Conversely (in either case), let P be a length d path of Q. Then, by induction, the embedded

length d−1 path P ′ ending at the d−1st vertex v′ of P yields a component X ′ of Vd−1. Say v is the

dth vertex of P. If v′ is equal to P1
A, P1

B, or P1
C , then v must be pa, pb, or pc by the definition of Q,

respectively. Lemma 2 then ensures that P yields a component X of Vd so that pr1...d−1(X) = X ′.

On the other hand, if v′ is equal to pa, pb, or pc, then v lies in P1
A, P1

B, or P1
C , respectively. Likewise,

Lemma 3 implies that P yields a component X of Vd so that pr1...d−1(X) = X ′. �

Corollary 6. We have that Vd = Wd for d = 1, 2, 3, and that Vd )Wd for d ≥ 4.

Proof. First, V1 = P2 = W1. Next, as mentioned in proof of Proposition 5, V2 = W2 is the union of

the irreducible components:

P1
A × pa, P1

B × pb, P1
C × pc

pa × P1
A, pb × P1

B , pc × P1
C .

By Proposition 5, we have that V3 = X3,1∪X3,2 where X3,1 consists of the irreducible components:

P1
A × pa × P1

A, P1
B × pb × P1

B , P1
C × pc × P1

C ,

pa × P1
A × pa, pb × P1

B × pb, pc × P1
C × pc,

and X3,2 is the union of:

P1
A × pa × pb, P1

A × pa × pc, pa × pb × P1
B , pa × pc × P1

C ,

pa × pb × pa, pa × pb × pc, pa × pc × pa, pa × pc × pb,
P1
B × pb × pc, P1

B × pb × pa, pb × pc × P1
C , pb × pa × P1

A,

pb × pc × pb, pb × pc × pa, pb × pa × pb, pb × pa × pc,
P1
C × pc × pa, P1

C × pc × pb, pc × pa × P1
A, pc × pb × P1

B ,

pc × pa × pc, pc × pa × pb, pc × pb × pc, pc × pb × pa.

Note that X3,2 is contained in X3,1; hence V3 = X3,1 = W3. Furthermore, one sees that Wd ( Vd
for d ≥ 4 as follows. The components of Wd are read off the subquiver Q′ of Q below.
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P1
A

~~
pa

CC

pb

pp

pc

��
P1
B

//

P1
C

QQ

The quiver Q′

On the other hand, for d ≥ 4, the length d path containing

P1
A −→ pa −→ pb −→ P1

B

corresponds to a component of Vd not contained in Wd. �

2.2. On the point parameter ring B({Vd}). The result that there exists a ring surjection from

S = S(1, 1, 1) onto the ring P ({Wd}) remains true. However, by Lemma 7 below, B is a larger ring

than P , and whether there is a ring surjection from S onto B is unknown. We know that there

is a ring homomorphism from S to B with S1 ∼= B1 by [1, Proposition 3.20], and computational

evidence suggests that S ∼= B. The details are given as follows.

Lemma 7. The k-vector space dimension of Bd is equal to dimk S(1, 1, 1)d for d = 0, 1, . . . , 4. In

particular, dimk B4 6= dimk P4.

It is believed that analogous computations will show that dimk Bd = dimk S(1, 1, 1)d = 3 · 2d−1

for d = 5, 6.

Proof. By Corollary 6, we know that Vd = Wd for d = 1, 2, 3; hence

dimk Bd = 3 · 2d−1 = dimk S(1, 1, 1)d for d = 0, 1, 2, 3.

To compute dimk B4, note that by Proposition 5, V4 equals the union X4,1 ∪ X4,2 ⊆ (P2)×4 as

follows. Here, X4,1 consists of the following irreducible components

P1
A × pa × P1

A × pa, pa × P1
A × pa × P1

A,

P1
B × pb × P1

B × pb, pb × P1
B × pb × P1

B ,

P1
C × pc × P1

C × pc, pc × P1
C × pc × P1

C ;

and X4,2 is the union of

P1
A × pa × pb × P1

B , P1
A × pa × pc × P1

C ,

P1
B × pb × pa × P1

A, P1
B × pb × pc × P1

C ,

P1
C × pc × pa × P1

A, P1
C × pc × pb × P1

B .

We consider a component such as P1
A × pa × pb × pa contained in P1

A × pa × pb × P1
B to be included

as part of X4,2.

Since X4,1 = W4 we get that h0(OX4,1(1, 1, 1, 1)) = 6 · 4− 6 = 18 by Proposition 4.3. Moreover,

h0(OX4,2(1, 1, 1, 1)) = 6 · 4 = 24 as X4,2 is a disjoint union of its irreducible components.
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Consider the finite morphism

π1 : X4,1 ]X4,2 −→ V4 = X4,1 ∪X4,2,

which by twisting by O(P2)×4(1, 1, 1, 1), we get the exact sequence:

0 −→ OV4(1, 1, 1, 1) −→ [(π1)∗OX4,1]X4,2 ](1, 1, 1, 1)

−→ OX4,1∩X4,2(1, 1, 1, 1)

−→ 0.

(†)

Here, X4,1 ∩X4,2 is the union of the following irreducible components:

P1
A × pa × pb × pa, pb × pa × pb × P1

B ,

P1
A × pa × pc × pa, pc × pa × pc × P1

C ,

P1
B × pb × pa × pb, pa × pb × pa × P1

A,

P1
B × pb × pc × pb, pc × pb × pc × P1

C ,

P1
C × pc × pa × pc, pa × pc × pa × P1

A,

P1
C × pc × pb × pc, pb × pc × pb × P1

B ,

a union that is not disjoint. Let (X4,1 ∩ X4,2)
′ be the disjoint union of these twelve components

and consider the finite morphism

π2 : (X4,1 ∩X4,2)
′ → X4,1 ∩X4,2.

Again by twisting by OP2(1, 1, 1, 1), we get the exact sequence:

0 −→ OX4,1∩X4,2(1, 1, 1, 1) −→ [(π2)∗O(X4,1∩X4,2)′ ](1, 1, 1, 1)

−→ OS(1, 1, 1, 1)

−→ 0,

(‡)

where S is the union of the following six points:

pa × pb × pa × pb, pb × pa × pb × pa, pa × pc × pa × pc,
pc × pa × pc × pa, pb × pc × pb × pc, pc × pb × pc × pb.

Claim 1. H1(OX4,1∩X4,2(1, 1, 1, 1)) = 0.

Note thatH0([(π2)∗O(X4,1∩X4,2)′ ](1, 1, 1, 1)) ∼= H0(O(X4,1∩X4,2)′(1, 1, 1, 1)) as k-vector spaces since

π2 is an affine map [2, Exercise III 4.1]. Hence, if Claim 1 holds, then by (‡):

h0(OX4,1∩X4,2(1, 1, 1, 1)) = h0(O(X4,1∩X4,2)′(1, 1, 1, 1))− h0(OS(1, 1, 1, 1))

= 12 · 2− 6 = 18.

Claim 2. H1(OV4(1, 1, 1, 1)) = 0.

Note that H0([(π1)∗OX4,1]X4,2 ](1, 1, 1, 1)) ∼= H0(OX4,1]X4,2(1, 1, 1, 1)) as k-vector spaces since π1
is an affine map [2, Exercise III 4.1]. Hence, if Claim 2 is also true, then by (†) and the computation

above, we note that:
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dimk B4 = h0(OV4(1, 1, 1, 1))

= h0(OX4,1]X4,2
(1, 1, 1, 1))− h0(OX4,1∩X4,2

(1, 1, 1, 1))

= h0(OX4,1
(1, 1, 1, 1)) + h0(OX4,2

(1, 1, 1, 1))− h0(OX4,1∩X4,2
(1, 1, 1, 1))

= 18 + 24− 18 = 24.

Therefore,

dimk B4 = dimk S(1, 1, 1)4 = 24 6= 18 = dimk P4.

Now we prove Claims 1 and 2 above. Here, we refer to the linear components of (P2)×4 of

dimensions 1 or 2 by “lines” or “planes”, respectively.

Proof of Claim 1. It suffices to show that

θ : H0
(
O(X4,1∩X4,2)′(1, 1, 1, 1)

)
−→ H0(OS(1, 1, 1, 1))

is surjective. Say S = {vi}6i=1, the union of points vi. Each point vi is contained in two lines of

(X1 ∩X2)
′, and each of the twelve lines of (X1 ∩X2)

′ contains a unique point of S.

Choose a basis {ti}6i=1 for H0(S(1, 1, 1, 1)), where ti(vj) = δij . For each i, there exists a unique

line Li of (X4,1 ∩X4,2)
′ containing vi so that pr234(Li) = pr234(vi). Now we define a preimage of ti

by first extending ti to a global section si of OLi(1, 1, 1, 1). Moreover, extend si to a global section

s̃i on O(X4,1∩X4,2)′(1, 1, 1, 1) by declaring that s̃i = si on Li and zero elsewhere. Now θ(s̃i) = ti for

all i, and θ is surjective. �

Proof of Claim 2. It suffices to show that

τ : H0(OX4,1]X4,2(1, 1, 1, 1)) −→ H0(OX4,1∩X4,2(1, 1, 1, 1))

is surjective.

Recall that X4,1 ∩X4,2 is the union of twelve lines {Li}, and X4,1 ]X4,2 is the union of twelve

planes {Pi}. Here, each line Li of X4,1 ∩X4,2 is contained in precisely two planes of X4,1 ]X4,2,

and each plane Pi of X4,1 ]X4,2 contains precisely two lines of X4,1 ∩X4,2.

Choose a basis {ti}12i=1 of H0
(
OX4,1∩X4,2(1, 1, 1, 1)

)
so that ti(Lj) = δij . For each i, we want a

preimage of ti in H0
(
OX4,1]X4,2(1, 1, 1, 1)

)
.

Say Pi is a plane of X4,1 ]X4,2 that contains Li, and Lj is the other line that is contained in Pi.

Since OPi(1, 1, 1, 1) is very ample, its global sections separate the lines Li and Lj . In other words,

there exists si ∈ H0(OPi(1, 1, 1, 1)) so that si(Lk) = δik. Extend si to s̃i ∈ H0
(
OX4,1∩X4,2(1, 1, 1, 1)

)
by declaring that s̃i = si on Li, and zero elsewhere. Now τ(s̃i) = ti for all i, and τ is surjective. �
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