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Math 211

Homework #3

February 2, 2001

2.4.3. y ′ + (2/x)y = (cos x)/x2

Answer: Compare y ′ + (2/x) y = (cos x)/x2 with y ′ = a(x)x + f (x) and note that
a(x) = −2/x. Consequently, an integrating factor is found with

u(x) = e

∫
−a(x) dx = e

∫
2/x dx = e2 ln |x| = |x|2 = x2.

Multiply both sides of our equation by the integrating factor and note that the left-hand
side of the resulting equation is the derivative of a product.

x2

(
y ′ + 2

x
y

)
= cos x

x2y ′ + 2xy = cos x

(x2y)′ = cos x

Integrate and solve for x.

x2y = sin x + C

y = sin x + C

x2

2.4.7. (1 + x)y ′ + y = cos x

Answer: Divide both sides by 1 + x and solve for y ′.

y ′ = − 1

1 + x
y + cos x

1 + x

Compare this result with y ′ = a(x)y + f (x) and note that a(x) = −1/(1 + x).
Consequently, an integrating factor is found with

u(x) = e

∫
−a(x) dx = e

∫
1/(1+x) dx = eln |1+x| = |1 + x|.

If 1 + x > 0, then |1 + x| = 1 + x. If 1 + x < 0, then |1 + x| = −(1 + x). In either
case, if we multiply both sides of our equation by either integrating factor, we arrive
at

(1 + x)y ′ + y = cos x.

Check that the left-hand side of this result is the derivative of a product, integrate, and
solve for y.

((1 + x)y)′ = cos x

(1 + x)y = sin x + C

y = sin x + C

1 + x



2 Chapter .

2.4.14. y ′ = y + 2xe2x , y(0) = 3

Answer: Compare y ′ = y + 2xe2x with y ′ = a(x)y + f (x) and note that a(x) = 1.
Consequently, an integrating factor is found with

u(x) = e

∫
−a(x) dx = e

∫
−1 dx = e−x.

Multiply both sides of our equation by the integrating factor and note that the left-hand
side of the resulting equation is the derivative of a product.

e−xy ′ − e−xy = 2xex(
e−xy

)′ = 2xex

Integration by parts yields∫
2xex dx = 2xex −

∫
2ex = 2xex − 2ex + C.

Consequently,

e−xy = 2xex − 2ex + C

y = 2xe2x − 2e2x + cex

The initial condition provides

3 = y(0) = 2(0)e2(0) − 2e2(0) + Ce0 = −2 + C.

Consequently, C = 5 and y = 2xe2x − 2e2x + 5ex .

2.4.16. (1 + t2)y ′ + 4ty = (1 + t2)−2, y(1) = 0

Answer: Solve for y ′.

y ′ = − 4t

1 + t2
y + 1

1 + t2

Compare this with y ′ = a(t)y + f (t) and note that a(t) = −4t/(1 + t2). Conse-
quently, an integrating factor is found with

u(t) = e

∫
−a(t) dx = e

∫
4t/(1+t2) dt = e2 ln |1+t2| = (1 + t2)2.

Multiply both sides of our equation by the integrating factor and note that the left-hand
side of the resulting equation is the derivative of a product.

(1 + t2)2y ′ + 4t (1 + t2) = 1

1 + t2(
(1 + t2)2y

)′ = 1

1 + t2

(1 + t2)2y = tan−1 t + C

The initial condition y(1) = 0 gives

(1 + 12)2(0) = tan−1 1 + C.

Consequently, C = −π/4 and

y = tan−1 t − π
4

(1 + t2)2
.
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2.4.18. xy ′ + 2y = sin x, y(π/2) = 0

Answer:
Solve xy ′ + 2y = sin x for y ′.

y ′ = − 2

x
y + sin x

x

Compare this with y ′ = a(x)y + f (x) and note that a(x) = −2/x and f (x) =
(sin x)/x. It is important to note that neither a nor f is continuous at x = 0, a fact
that will heavily influence our interval of existence.

An integrating factor is found with

u(x) = e

∫
−a(x) dx = e

∫
2/x dx = e2 ln |x| = |x|2 = x2.

Multiply both sides of our equation by the integrating factor and note that the left-hand
side of the resulting equation is the derivative of a product.

x2y ′ + 2xy = x sin x(
x2y

)′ = x sin x

Integration by parts yields

∫
x sin x dx = −x cos x +

∫
cos x dx = −x cos x + sin x + C.

Consequently,

x2y = −x cos x + sin x + C,

y = − 1

x
cos x + 1

x2
sin x + C

x2
.

The initial condition provides

0 = y(π/2) = 4

π2
+ 4C

π2
.

Consequently, C = −1 and y = −(1/x) cos x + (1/x2) sin x − 1/x2.
We cannot extend any interval to include x = 0, as our solution is undefined

there. The initial condition y(π/2) = 0 forces the solution through a point with
x = π/2, a fact which causes us to select (0, +∞) as the interval of existence.
The solution curve is shown in Figure . Note how it drops to negative infinity as x

approaches zero from the right.
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Solution of xy ′ + 2y = sin x, y(π/2) = 0.

2.5.1. A tank contains 100 gal of pure water. At time zero, sugar-water solution containing
0.2 lb of sugar per gal enters the tank at a rate of 3 gal per minute. Simultaneously, a
drain is opened at the bottom of the tank allowing sugar-solution to leave the tank at
3 gal per minute. Assume that the solution in the tank is kept perfectly mixed at all
times.

Answer: Let S(t) denote the amount of sugar in the tank, measured in pounds. The
rate in is 3g/m×0.2lb/g = 0.6lb/m. The rate out is 3g/m×S/100lb/g = 3S/100lb/m.

Hence
dS

dt
= rate in − rate out

= 0.6 − 2S/100

This linear equation can be solved using the integrating factor u(t) = e3t/100 to get
the general solution S(t) = 20 + Ce−3t/100. Since S(0) = 0, the constant C = −20
and the solution is S(t) = 20(1 − e−3t/100.

(a) S(20) = 10(1 − e−0.6) ≈ 9.038

(b) S(t) = 15 when e−3t/100 = 1 − 15/20 = 1/4. Taking logarithms this translates to
t = (100 ln 4)/3 ≈ 46.2098.

(c) As t → ∞ S(t) → 20.

2.5.3. A tank initially contains 100 gal of water in which is dissolved 2 lb of salt. Salt-water
solution containing 1 lb of salt for every 4 gal of solution enters the tank at a rate of
5 gal per minute. Solution leaves the tank at the same rate, allowing for a constant
solution volume in the tank.

(a) Use an analytic method to determine the eventual salt content in the tank.

Answer: Let x(t) represent the number of pounds of salt in the tank at time t . The
rate at which the salt in the tank is changing with respect to time is equal to the rate
at which salt enters the tank minus the rate at which salt leaves the tank, i.e.,

dx

dt
= rate in − rate out.
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In order that the units match in this equation, dx/dt , the rate In, and the rate Out must
each be measured in pounds per minute (lb/min).

Solution enters the tank at 5 gal/min, but the concentration of this solution is 1/4
lb/gal. Consequently,

rate in = 5 gal/min × 1

4
lb/gal = 5

4
lb/min.

Solution leaves the tank at 5 gal/min, but at what concentration? Assuming perfect
mixing, the concentration of salt in the solution is found by dividing the amount of
salt by the volume of solution, c(t) = x(t)/100. Consequently,

rate out = 5 gal/min × x(t)

100
lb/gal = 1

20
x(t) lb/min.

As there are 2 lb of salt present in the solution initially, x(0) = 2 and

dx

dt
= 5

4
− 1

20
x, x(0) = 2.

Multiply by the integrating factor, e(1/20)t , and integrate.

(
e(1/20)t x

)′ = 5

4
e(1/20)t

e(1/20)t x = 25e(1/20)t + C

x = 25 + Ce−(1/20)t

The initial condition x(0) = 2 gives C = −23 and

x(t) = 25 − 23e−(1/20)t .

Thus, the concentration at time t is given by

c(t) = x(t)

100
= 25 − 23e−(1/20)t

100
,

and the eventual concentration can be found by taking the limit as t → +∞.

lim
t→+∞

25 − 23e−(1/20)t

100
= 1

4
lb/gal

Note that this answer is quite reasonable as the concentration of solution entering the
tank is also 1/4 lb/gal.

(b) Use a numerical solver to determine the eventual salt content in the tank and compare
your approximation with the analytical solution found in part (a).

Answer: We found it convenient to manipulate our original differential equation
before using our solver. The key idea is simple: we want to sketch the concentration
c(t), not the salt content x(t). However,

c(t) = x(t)

100
or x(t) = 100c(t).
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Consequently, x ′(t) = 100c′(t). Substituting these into our balance equation gives

x ′ = 5

4
− 1

20
x,

100c′ = 5

4
− 1

20
(100c),

c′ = 1

80
− 1

20
c,

with c(0) = x(0)/100 = 2/100 = 0.02. The numerical solution of this ODE is
presented in Figure . Note how the concentration approaches 0.25 lb/gal.

0 50 100
0

0.1

0.2

0.3

t

c

c ’ = 1/80 − 1/20 c

Solution of c′ = 1/80 − (1/20)c, c(0) = 0.02.

2.5.6. A tank initially contains 100 gal of a salt-water solution containing 0.05 lb of salt for
each gallon of water. At time zero, pure water is poured into the tank at a rate of 2 gal
per minute. Simultaneously, a drain is opened at the bottom of the tank that allows
salt-water solution to leave the tank at a rate of 3 gal per minute. What will be the
salt content in the tank when precisely 50 gal of salt solution remain?

Answer: The volume in the tank is decreasing at 1 g/m, so the volume is V (t) =
100 − t. There is no sugar coming in, and the rate out is 3g/m × S(t)/V (t). Hence
the differential equation is

dS

dt
= −3S

100 − t
.

This equation is linear and homogenous. It can be solved by separating variables.
The general solution is S(t) + A(100 − t)3. Since S(0) = 100 × 0.05 = 5, we see
that A = 5 × 10−6, and the solution is S(t) = 5 × 10−6 × (100 − t)3.

When V (t) = 100 − t = 50g,

S(t) = 5 × 10−6 × 503 = 0.625lb.
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2.5.8. Suppose that a solution containing a drug enters an organ at the rate a cm3/s, with
drug concentration κ g/cm3. Solution leaves the organ at a slower rate of b cm3/s.
Further, the faster rate of infusion causes the organ’s volume to increase with time
according to V (t) = V0 + rt , with V0 its initial volume. If there is no initial quantity
of the drug in the organ, show that the concentration of the drug in the organ is given
by

c(t) = aκ

b + r

[
1 −

(
V0

V0 + rt

)(b+r)/r
]

.

Answer: Let x(t) represent the amount of drug in the organ at time t . The rate at
which the drug enters the organ is

rate In = a cm3/s × κ g/cm3 = aκ g/s.

The rate at which the drug leaves the organ equals the rate at which fluid leaves the
organ, multiplied by the concentration of the drug in the fluid at that time. Hence,

rate out = b cm3/s × x(t)

V0 + rt
g/cm3 = b

V0 + rt
x(t) g/s.

Consequently,
dx

dt
= aκ − b

V0 + rt
x.

The integrating factor is

u(t) = e

∫
b/(V0+rt) dt = e(b/r) ln(V0+rt) = (V0 + rt)b/r .

Multiply by the integrating factor and integrate.(
(V0 + rt)b/rx

)′ = aκ(V0 + rt)b/r

(V0 + rt)b/rx = aκ

r(b/r + 1)
(V0 + rt)b/r+1 + L

x = aκ

b + r
(V0 + rt) + L(V0 + rt)−b/r

No drug in the system initially gives x(0) = 0 and L = −aκV
b/r+1

0 /(b + r). Con-
sequently,

x = aκ

b + r
(V0 + rt) − aκV

b/r+1
0

b + r
(V0 + rt)−b/r ,

x = aκ

b + r
(V0 + rt)

[
1 − V

b/r+1
0 (V0 + rt)−b/r−1

]
,

x = aκ

b + r
(V0 + rt)

[
1 −

(
V0

V0 + rt

)b/r+1
]

.

The concentration is found by dividing x(t) by V (t) = V+rt . Consequently,

c(t) = aκ

b + r

[
1 −

(
V0

V0 + rt

)(b+r)/r
]

.
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2.7.1. Is the initial value problem y ′ = 4 + y2, y(0) = 1 guaranteed a unique solution by
the hypotheses of Theorem 7.12? Justify your answer.

Answer: The right hand side of the equation is f (t, y) = 4+y2. f is continuous in the
whole plane. Its partial derivative ∂f/∂y = 2y is also conitnous on the whole plane.
Hence the hypotheses are satisfied and the theorem guarantees a unique solution.

2.7.2. Is the initial value problem y ′ = √
y, y(4) = 0 guaranteed a unique solution by the

hypotheses of Theorem 7.12? Justify your answer.

Answer: The right hand side of the equation is f (t, y) = √
y. f is defined only

where y ≥ 0, and it is continuous there. Our initial condition is at y0 = 0, and t0 = 4.
There is no rectangle containing (t0, y0) where f (t, y) is defined and continuous.
Consequently the hypotheses of the theorem are not satisfied.

2.7.8. ty ′ = 2y − t, y(0) = 2

(i) Find the general solution of the differential equation. Sketch several members of the
family of solutions portrayed by the general solution.

Answer: The equation is linear. The general solution is y(t) = t + 2Ct2.

−1 −0.5 0 0.5 1
−2

−1

0

1

2

t

y

(ii) Show that there is no solution satisfying the given initial condition. Explain why this
lack of solution does not contradict the existence theorem.

Answer: Since the general solution is y(t) = t + 2Ct2, every solution satisfies
y(0) = 0. There is no solution with y(0) = 2. If we put the equation into normal
form

dy

dt
= 2y − t

t
,

we see that the right hand side f (t, y) = 2y − t

t
fails to be continuous at t = 0.

Consequently the hypotheses of the existence theorem are not satisfied.
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2.7.29. Suppose that y is a solution to the initial value problem

y ′ = (y2 − 1)ety and y(1) = 0.

Show that −1 < y(t) < 1 for all t for which y is defined.

Answer: Notice that the right hand side of the equation is f (t, y) = (y2 −1)ety . f is
continuous on the whole plane. Its partial derivative ∂f/∂y = 2yety + t (y2 −1)ety is
also continuous on the whole plane. Thus the hypotheses of the uniqueness theorem
are satisfied. By direct substitution we discover that y1(t) = −1 and y2(t) = 1 are
both solutions to the differential equation. If y is a solution and satisfies y(1) = 0,
then y1(1) < y(1) < y2(1). By the uniqueness theorem we must have y1(t) < y(t) <

y2(t) for all t for which y is defined. Hence −1 < y(t) < 1 for all t for which y is
defined.

M2.8.

Answer: We derive the model in terms of P(t), the amount of pollutant in the lake,
measured in km3. The rate in is p km3/h. the rate out is (ri + p) × P/V . Hence the
model is

P ′ = p − (ri + p)P

V
.

To put this in terms of the concentration we notice that c = P/V . Since the volume
is constant the derivative is c′ = P ′/V . Hence

c′ = 1

V
P ′

= p

V
− (ri + p)P

V 2

= p

V
− (ri + p)c

V
.

Hence we have

c′ + (ri + p)c

V
= p

V
.

M2.9.

Answer:

(a) From problem 8, one obtains the differential equation c′ = p/V − ((p + ri)/V )c.
Substituting p = 2, r = 50, and V = 100 and simplifying gives c′ = 1/50 −
(26/50)c. So, write c’ = 1/50 - (26/50)*c in the dialog for dfield5, let t run
from 0 to 5 and c from -0.02 to 0.05, and obtain Figure 1.
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

t

c

c ’ = − (13/25) c + (1/50)

Figure 1.

(b) Using the zoom box technique, one can obtain a picture much like that given in Figure
2, showing that when t = 1.4101, then c = 0.02, which is 2%.

1.4101 1.4101 1.4101 1.4101 1.4101
0.02

0.02

0.02

0.02

0.02

0.02

0.02

t

c

c ’ = − (13/25) c + (1/50)

Figure 2.

(c) The limiting value of c can be found either by explicitly solving the differential
equation or by looking at long-term behaviour of the differential equation in dfield5.
If one solves the differential equation, one should obtain

c(t) = 1/26 − 1/26e−13t/25.
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Taking the limit limt→∞ c(t), the exponential term goes to zero, leaving 1/26. Hence
the limiting value of c(t) is 1/26, or about 3.85%. Using dfield5 and setting the
parameter t to go from 0 to 50, for instance, one can see that the value of c approaches
0.0385, as expected. To find the approximate value of t when c = 0.035 — that is,
3.5% — use the zoom box technique to obtain a picture like Figure 3. From this, one
can see that t = 4.63.

4.6295 4.63 4.6305 4.631 4.6315 4.632 4.6325 4.633 4.6335 4.634

0.035

0.035

0.035

0.035

0.035

0.035

0.035

t

c

c ’ = − (13/25) c + (1/50)

Figure 3.

M2.10.

Answer: This problem can be answered analytically. Since there is no input of
poluttant, we now have p = 0 and the model equation changes to

c′ = − 50

100
c = − c

2
.

The solution to this linear, homogenous equation is c(t) = c0e
−t/2. For c0 = 0.035,

we get c(t) = 0.02 when t = 2 ln(7/4) ≈ 1.1192.

We get the same answer (approximately) using dfield5. See Figure 4.
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Figure 4.

M2.11.

Answer:

(a) In the dfield5 setup dialog, enter c’ = 1/50 - ((2 + r)/100)*c and in one
parameter box, enter r = 50 + 20*cos(2*pi*(t - 1/3)). In Figure 5 presented
below, the initial conditions given were t = 0, c = 0; t = 0, c = 0.01; t = 0, c =
0.02; t = 0, c = 0.03; t = 0, c = 0.04. As one can see, each solution tends towards
a single oscillatory pattern.



. 13
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0.005
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0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

t

c

c ’ = 2/100 − ((2 + r)/100) c             r = 50 + 20 cos(2 pi (t − (1/3)))

Figure 5.

(b) In Figure 6 below, the t varies from 10 to 11, representing the passage of time over
a single year. As one can see, the concentration reaches a maximum at t = 10.07,
which is shortly before the beginning of February.

10 10.2 10.4 10.6 10.8 11

0.035

0.036

0.037

0.038

0.039

0.04

0.041

t

c

c ’ = 2/100 − ((2 + r)/100) c             r = 50 + 20 cos(2 pi (t − (1/3)))

Figure 6.
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M2.25.

Answer: In Figure 7 below, the circle indicates the point t = 4, x = 0, and the
four curves are given by initial conditions t = 0, x = 0.728; t = 0, x = 0.7285;
t = 0, x = 0.728989 (the one which hits the target); and t = 0, x = 0.7295.

−2 0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

t

x
x ’ = x2 − t

Figure 7.

M2.27.

Answer: In Figure 8 below, the circle indicates the point t = 5, x = 0, and the four
curves are given by the initial conditions t = 0, x = −3.2; t = 0, x = −3.232;
t = 0, x = −3.2320905 (the one which hit the target); and t = 0, x = −3.3.
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Figure 8.


