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Fourier Series

In 1807, the French mathematician and physicist Joseph Fourier submitted a paper
on heat conduction to the Academy of Sciences of Paris. In this paper Fourier made
the claim that any functionf .x/can be expanded into an infinite sum of trigonometric
functions,

f .x/ D a0

2
C 1X

kD1

Tak cos.kx/C bk sin.kx/U; for �� � x � �:
The paper was rejected after it was read by some of the leadingmathematicians of
his day. They objected to the fact that Fourier had not presented much in the way of
proof for this statement, and most of them did not believe it.

In spite of its less than glorious start, Fourier’s paper wasthe impetus for major
developments in mathematics and in the application of mathematics. His ideas forced
mathematicians to come to grips with the definition of a function. This, together
with other metamathematical questions, caused nineteenth-century mathematicians
to rethink completely the foundationsof their subject, andto put it on a more rigorous
foundation. Fourier’s ideas gave rise to a new part of mathematics, called harmonic
analysis or Fourier analysis. This, in turn, fostered the introduction at the end of
the nineteenth century of a completely new theory of integration, now called the
Lebesgue integral.

The applications of Fourier analysis outside of mathematics continue to multiply.
One important application pertains to signal analysis. Here, f .x/ could represent
the amplitude of a sound wave, such as a musical note, or an electrical signal from a
CD player or some other device (in this casex represents time and is usually replaced
by t). The Fourier series representation of a signal representsa decomposition of
this signal into its various frequency components. The terms sinkx and coskx
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12.1 Computation of Fourier Series 713

oscillate with numerical frequency1 of k=2� . Signals are often corrupted by noise,
which usually involves the high-frequency components (when k is large). Noise can
sometimes be filtered out by setting the high-frequency coefficients (theak andbk

whenk is large) equal to zero.
Data compression is another increasingly important problem. One way to ac-

complish data compression uses Fourier series. Here the goal is to be able to store or
transmit the essential parts of a signal using as few bits of information as possible.
The Fourier series approach to the problem is to store (or transmit) only thoseak and
bk that are larger than some specified tolerance and discard therest. Fortunately, an
important theorem (the Riemann–Lebesgue Lemma, which is our Theorem 2.10) as-
sures us that only a small number of Fourier coefficients are significant, and therefore
the aforementioned approach can lead to significant data compression.

12.1 Computation of Fourier Series

The problem that we wish to address is the one faced by Fourier. Suppose thatf .x/
is a given function on the intervalT��; � U. Can we find coefficients,an andbn, so
that

f .x/ D a0

2
C 1X

nD1

[an cosnx C bn sinnx ] ; for �� � x � �? (1.1)

Notice that, except for the terma0=2, the series is an infinite linear combination of the
basic terms sinnx and cosnx for n a positive integer. These functions are periodic
with period 2�=n, so their graphs trace throughn periods over the intervalT��; � U.
Figure 1 shows the graphs of cosx and cos 5x , and Figure 2 shows the graphs of
sinx and sin 5x . Notice how the functions become more oscillatory asn increases.

π

1

x

−1

−π

Figure 1 The graphs of cos x

and cos 5x.

π

1

x

−1

−π

Figure 2 The graphs of sin x

and sin 5x.

The orthogonality relations

Our task of finding the coefficientsan andbn for which (1.1) is true is facilitated by
the following lemma. These orthogonality relations are oneof the keys to the whole
theory of Fourier series.

1 Be sure you know the difference between angular frequency,k in this case, and numerical frequency. It
is explained in Section 4.1.
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LEMMA 1.2 Let p andq be positive integers. Then we have the followingorthogonality relations.Z ��� sin px dx D Z ��� cospx dx D 0 (1.3)Z ��� sin px cosqx dx D 0 (1.4)Z ��� cospx cosqx dx D (�; if p D q
0; if p 6D q

(1.5)Z ��� sin px sinqx dx D (�; if p D q
0; if p 6D q

(1.6)

We will leave the proof of these identities for the exercises.

Computation of the coefficients

The orthogonality relations enable us to find the coefficients an and bn in (1.1).
Suppose we are given a functionf that can be expressed as

f .x/ D a0

2
C 1X

kD1

Tak coskx C bk sinkxU (1.7)

on the intervalT��; � U. To finda0, we simply integrate the series (1.7) term by term.
Using the orthogonality relation (1.3), we see thatZ ��� f .x/ dx D a0�: (1.8)

To find an for n � 1, we multiply both sides of (1.7) by cosnx and integrate
term by term, gettingZ ��� f .x/ cosnx dx D Z ���  a0

2
C 1X

kD1

Tak coskx C bk sinkxU! cosnx dxD a0

2

Z ��� cosnx dxC 1X
kD1

ak

Z ��� coskx cosnx dxC 1X
kD1

bk

Z ��� sinkx cosnx dx : (1.9)

Using the orthogonality relations in Lemma 1.2, we see that all the terms on the
right-hand side of (1.9) are equal to zero, except for

an

Z ��� cosnx cosnx dx D an � �:
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Hence, equation (1.9) becomesZ ��� f .x/ cosnx dx D an � �; for n � 1;
so, including equation (1.8),2

an D 1� Z ��� f .x/ cosnx dx; for n � 0: (1.10)

To findbn, we multiply equation (1.7) by sinnx and then integrate. By reasoning
similar to the computation ofan, we obtain

bn D 1� Z ��� f .x/ sinnx dx; for n � 1. (1.11)

Definition of Fourier series

If f is a piecewise continuous function on the intervalT��; � U, we can compute the
coefficientsan andbn using (1.10) and (1.11). Thus we can define the Fourier series
for any such function.

DEFINITION 1.12 Suppose thatf is a piecewise continuous function on the
intervalT��; � U. With the coefficients computed using (1.10) and (1.11) , we
define theFourier series associated to f by

f .x/ � a0

2
C 1X

nD1

[an cosnx C bn sinnx ] : (1.13)

The finite sum

SN .x/ D a0

2
C NX

nD1

[an cosnx C bn sinnx ] (1.14)

is called thepartial sum of order N for the Fourier series in (1.13). We say that
the Fourier series converges atx if the sequence of partial sums converges atx as
N !1: We use the symbol� in (1.13) because we cannot be sure that the series
converges. We will explore the question of convergence in the next section, and we
will see in Theorem 2.3 that for functions that are minimallywell behaved, the�
can be replaced by an equals sign for most values ofx .

EXAMPLE 1.15 ◆ Find the Fourier series associated with the function

f .x/ D (
0; for �� � x < 0,� � x; for 0� x � �:

2 We used the expressiona0=2 instead ofa0 for the constant term in the Fourier series (1.7) so formulas
like equation (1.10) would be true forn D 0 as well as for largern.
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We compute the coefficienta0 using (1.8) or (1.10). We have

a0 D 1� Z ��� f .x/ dx D 1� Z �
0
.� � x/ dx D �

2
:

For n � 1, we use (1.10), and integrate by parts to get

an D 1� Z ��� f .x/ cosnx dx D 1� Z �
0
.� � x/ cosnx dxD 1

n� Z �
0
.� � x/ d sinnxD 1

n� .� � x/ sinnx

�����
0

C 1

n� Z �
0

sinnx dxD 1

n2� .1� cosn�/:
Thus, since cosn� D .�1/n, the even numbered coefficients area2n D 0, and the
odd numbered coefficients area2nC1 D 2=T�.2n C 1/2U for n � 0:

We computebn using (1.11). Again we integrate by parts to get

bn D 1� Z ��� f .x/ sinnx dx D 1� Z �
0
.� � x/ sinnx dxD � 1

n� Z �
0
.� � x/ d cosnxD � 1

n� .� � x/ cosnx

�����
0

� 1

n� Z �
0

cosnx dxD 1

n
:

The magnitude of the coefficients is plotted in Figure 3, withjanj in black andjbnj in blue. Notice how the coefficients decay to 0. The Fourier series for f is

f .x/ � �
4
C 2� 1X

nD0

cos.2n C 1/x.2n C 1/2 C 1X
nD1

sinnx

n
: (1.16)

◆

Let’s examine the experimental evidence for convergence ofthe Fourier series

0 10 20 30
0

1

n

|an| and |bn|

Figure 3 The Fourier coefficients

for the function in Example 1.15.

in Example 1.15. The partial sums of orders 3, 30, and 300 for the Fourier series
in Example 1.15 are shown in Figures 4, 5, and 6, respectively. In these figures
the function f is plotted in black and the partial sum in blue. The evidence of
these figures is that the Fourier series converges tof .x/, at least away from the
discontinuity of the function atx D 0:
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0 π

0

π

x
−π

Figure 4 The partial sum of

order 3 for the function in

Example 1.15.

0 π

0

π

x
−π

Figure 5 The partial sum of

order 30 for the function in

Example 1.15.

0 π

0

π

x
−π

Figure 6 The partial sum of

order 300 for the function in

Example 1.15.

Fourier series on a more general interval

It is very natural to consider functions defined onT��; � U when studying Fourier
series because in applications the argumentx is frequently an angle. However,
in other applications (such as heat transfer and the vibrating string) the argument
represents a length. In such a case it is more natural to assume thatx is in an interval
of the formT�L; LU. It is a matter of a simple change of variable to go fromT��; � U
to a more general integral.

Suppose thatf .x/ is defined for�L � x � L : Then the functionF.y/ D
f .Ly=�/ is defined for�� � y � � . For F we have the Fourier series defined in
Definition 1.20. Using the formulay D �x=L, the coefficientsan are given by

an D 1� Z ��� F.y/ cosny dyD 1� Z ��� f

�
Ly� �

cosny dyD 1

L

Z L�L
f .x/ cos

n�x

L
dx :

The formula forbn is derived similarly. Thus equations (1.10) and (1.11) are the
special case forL D � of the following more general result.

THEOREM 1.17 If f .x/ D a0=2CP1
nD1Tan cos.n�x=L/C bn sin.n�x=L/U for �L � x � L, then

an D 1

L

Z L�L
f .x/ cos

n�x

L
dx; for n � 0; (1.18)

bn D 1

L

Z L�L
f .x/ sin

n�x

L
dx; for n � 1: (1.19)

Keep in mind that Theorem 1.17 only shows thatif f can be expressed as a
Fourier series, then the coefficientsan andbn must be given by the formulas in (1.18)
and (1.19). The theorem does not say that an arbitrary function can be expanded into
a convergent Fourier series.
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The special case whenn D 0 in (1.18) deserves special attention. Since cos 0D
1, it says

a0 D 1

L

Z L�L
f .x/ dx :

Thusa0=2 is the average off over the intervalT�L; LU:
We will also extend Definition 1.12 to functions defined on theintervalT�L; LU.

DEFINITION 1.20 Suppose thatf is a piecewise continuous function on the
intervalT�L; LU. With the coefficients computed using (1.18) and (1.19), we
define theFourier series associated to f by

f .x/ � a0

2
C 1X

nD1

h
an cos

�n�x

L

�C bn sin
�n�x

L

�i : (1.21)

Even and odd functions

The computation of the Fourier coefficients can often be facilitated by taking note
of the symmetries of the functionf .

DEFINITION 1.22 A function f .x/ defined on an interval�L � x � L is
said to beeven if f .�x/ D f .x/ for�L � x � L, andodd if f .�x/ D � f .x/
for �L � x � L.

The graph of an even function is symmetric about they-axis as shown in Figure 7.
Examples includef .x/ D x2 and f .x/ D cosx . The graph of an odd function is
symmetric about the origin as shown in Figure 8. Examples include f .x/ D x3 and
f .x/ D sinx .

0 L
x

f(x)

a−a

−L

f(−a) = f(a)

Figure 7 The graph of an

even function.

0 L
x

f(x)

a
−a−L

f(−a) = −f(a)

Figure 8 The graph of an odd

function.

The following properties follow from the definition.

PROPOSITION 1.23 Suppose thatf andg are defined on the interval�L � x � L.

1. If both f andg are even, thenf g is even.
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2. If both f andg are odd, thenf g is even.

3. If f is even andg is odd, thenf g is odd.

4. If f is even, then Z L�L
f .x/ dx D 2

Z L

0
f .x/ dx :

5. If f is odd, then Z L�L
f .x/ dx D 0:

We will leave the proof for the exercises. If we remember thatthe integral off
computes the algebraic area under the graph off , parts 4 and 5 of Proposition 1.23
can be seen in Figures 7 and 8.

The Fourier coefficients of even and odd functions

Parts 4 and 5 of Proposition 1.23 simplify the computation ofthe Fourier coefficients
of a function that is either even or odd. For example, iff is even, then, since
sin.n�x=L/ is odd, f .x/ sin.n�x=L/ is odd by part 3 of Proposition 1.23, and by
part 5,

bn D 1

L

Z L�L
f .x/ sin

n�x

L
dx D 0:

Consequently, no computations are necessary to findbn. Using similar reasoning,
we see thatf .x/ cos.n�x=L/ is even, and therefore

an D 1

L

Z L�L
f .x/ cos

n�x

L
dx D 2

L

Z L

0
f .x/ cos

n�x

L
dx :

Frequently integrating from 0 toL is simpler than integrating from�L to L.
Just the opposite occurs for an odd function. In this case thean are zero and the

bn can be expressed as an integral from 0 toL. We will leave this as an exercise. We
summarize the preceding discussion in the following theorem.

THEOREM 1.24 Suppose thatf is piecewise continuous on the intervalT�L; LU.
1. If f .x/ is an even function, then its associated Fourier series willinvolve only

the cosine terms. That is,f .x/ � a0=2CP1
nD1 an cos.n�x=L/ with

an D 2

L

Z L

0
f .x/ cos

n�x

L
dx; for n � 0:

2. If f .x/ is an odd function, then its associated Fourier series will involve only
the sine terms. That is,f .x/ �P1

nD1 bn sin.n�x=L/ with

bn D 2

L

Z L

0
f .x/ sin

n�x

L
dx; for n � 1:
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Let’s look at another example of a Fourier series.

EXAMPLE 1.25 ◆ Find the Fourier series associated to the functionf .x/ D x on�� � x � � .

The function f is odd, so according to Theorem 1.24 its Fourier series will
involve only the sine terms. The coefficients are

bn D 2� Z �
0

x sin.nx/ dx :
Using integration by parts, we obtain

bn D 2� ��� cosn�
n

C 1

n

Z �
0

cosn�x dx

� D 2
.�1/nC1

n
:

Thus, the Fourier series off .x/ D x on the intervalT��; � U is

f .x/ � 2
1X

nD1

.�1/nC1

n
sinnx : (1.26)

◆

The magnitude of the coefficients is plotted in Figure 9. Thean are not shown,
since they are all equal to 0. The partial sums of orders 5, 11,and 51 for the Fourier
series in (1.26) are shown in Figures 10, 11, and 12 respectively. In these figures

0 10 20 30
0

1

n

|bn|

Figure 9 The Fourier coefficients

for the function in Example 1.25.

the function f .x/ D x is plotted in black and the partial sum in blue. These figures
provide evidence that the Fourier series converges tof .x/, at least on the open
interval.��; �/. At x D �� every term in the series is equal to 0. Therefore the
series converges to 0 at�� , but not to f .��/ D �� .

0 π

0

π

x
−π

−π

Figure 10 The partial sum of

order 5 for f (x) = x.

0 π

0

π

x
−π

−π

Figure 11 The partial sum of

order 11 for f (x) = x.

0 π

0

π

x
−π

−π

Figure 12 The partial sum of

order 51 for f (x) = x.

EXAMPLE 1.27 ◆ Compute the Fourier series for the saw-tooth wavef graphed in Figure 13 on the
intervalT�1; 1U.

The graph in Figure 13 on the intervalT�1; 1U consists of two lines with slopeC2 and�2 respectively. The formula forf on the interval�1� x � 1 is given by

f .x/ D (
1C 2x; if �1� x � 0;
1� 2x; if 0 � x � 1:
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0 1 2 3

0

1

x
−1−2−3

−1

Figure 13 A saw-tooth shaped wave.

The function f is even and is periodic with period 2.
Since f is an even function, we see using Theorem 1.24 that only the cosine

terms appear in the Fourier series, and the coefficients are given by

an D 2
Z 1

0
.1� 2x/ cos.n�x/ dx; for n � 0:

For n D 0 we can compute the integral by observation,

a0 D 2
Z 1

0
.1� 2x/ dx D 0:

For n > 0; we use integration by parts to obtain

an D 2
Z 1

0
.1� 2x/ cos.n�x/ dx D 4

n2�2
.1� cosn�/:

Since cosn� D .�1/n, we see that

a2n D 0 and a2nC1 D 8.2n C 1/2�2
; for n � 0:

Thus we have

f .x/ � 8�2

1X
nD0

1.2n C 1/2 cos..2n C 1/�x/: ◆

The magnitude of the coefficients is plotted in Figure 14. Thebn are not shown,
since they are all equal to 0. Notice how fast the coefficientsdecay to 0, in comparison
to those in Figures 3 and 9. The graph of the partial sum of order 3,

S3.x/ D 8�2

�
cos�x C 1

9
cos 3�x

� ;
is shown in Figure 15. The sum of these two terms gives a prettyaccurate approxima-

0 10 20 30
0

1

n

|an|

Figure 14 The Fourier

coefficients for the function in

Example 1.27.

tion of the saw-tooth wave. This reflects the fact that the coefficients decay rapidly,
as shown in Figure 14. The partial sum of order 9 is plotted in Figure 16. Notice
that the poorest approximation occurs at the “corners” of the graph of the saw-tooth.
This is where the function fails to be differentiable, and these facts are connected.

EXAMPLE 1.28 ◆ Find the Fourier series of the functionf .x/ D sin 3x C 2 cos 4x on the intervalT��; � U.
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1 3

0

1

x
−1−3

−1

Figure 15 The partial sum of order 3 for the saw-tooth

function.

1 3

0

1

x
−1−3

−1

Figure 16 The partial sum of order 9 for the saw-tooth

function.

Since f is already given as a sum of sines and cosines, no work is needed. The
Fourier series off is just sin 3x C 2 cos 4x . This example illustrates an important
point. According to Theorem 1.17, the Fourier coefficients of a function are uniquely
determined by the function. Thus, by inspection,b3 D 1, a4 D 2 and all other
coefficients are equal to 0. By uniqueness, these are the samevalues as would have
been obtained by computing the integrals in Theorem 1.17 forthean andbn. ◆

EXAMPLE 1.29 ◆ Find the Fourier series of the functionf .x/ D sin2 x on the intervalT��; � U.
In this example,f is not explicitly given as a linear combination of sines and

cosines, so there is some work to do. However, if we use the trigonometric identity

sin2 x D 1

2
.1� cos 2x/;

the right side is the desired Fourier series, since it is a finite linear combination of
terms of the form cosnx . ◆

................
EXERCISES

In Exercises 1–6 expand the given function in a Fourier series valid on the interval�� � x � � . Plot the function and two partial sums of your choice over the interval�� � x � � . Plot the same partial sums over the interval�3� � x � 3� .

1. f .x/ D j sinx j
2. f .x/ D jx j
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3. f .x/ D (
0; �� � x < 0;
x; 0 � x � �:

4. f .x/ D (
0; �� � x < 0;
sinx; 0� x � �:

5. f .x/ D x cosx

6. f .x/ D x sinx

In Exercises 7–16 find the Fourier series for the indicated function on the indicated
interval. Plot the function and two partial sums of your choice over the interval.

7. f .x/ D (
1C x; for �1� x � 0,
1; for 0 < x � 1

on T�1; 1U
8. f .x/ D 4� x2 on T�2; 2U
9. f .x/ D x3 on T�1; 1U

10. f .x/ D sinx cos2 x on T��; � U
11. f .x/ D (

0; for �1� x � 0,
x2; for 0 < x � 1

on T�1; 1U
12. f .x/ D (

sin�x=2; for �2 � x � 0,
0; for 0 < x � 2

on T�2; 2U
13. f .x/ D (

cos�x; for �1� x � 0,
1; for 0 < x � 1

on T�1; 1U
14. f .x/ D (

1C x; for �1� x � 0,
1� x; for 0 < x � 1

on T�1; 1U
15. f .x/ D (

2C x; for �2 � x � 0,�2C x; for 0 < x � 2
on T�2; 2U

16. f .x/ D (
2; for �2 � x � 0,
2� x; for 0 < x � 2

on T�2; 2U
17. Expand the functionf .x/ D x2 in a Fourier series valid on the interval�� �

x � � . Plot both f and the partial sumSN for N D 1; 3; 5; 7. Observe how
the graphs of the partial sums approximate the graph off . Plot the same graphs
over the interval�2� � x � 2� .

18. Expand the functionf .x/ D x2 in a Fourier series valid on the interval�1 �
x � 1. Plot both f and the partial sumSN for N D 1; 3; 5; 7. Observe how the
graphs of the partial sums approximate the graph off . Plot the same graphs
over the interval�2� x � 2.
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In Exercises 19–22 determine if the functionf is even, odd, or neither.

19. f .x/ D j sinx j
20. f .x/ D x C 3x3

21. f .x/ D ex

22. f .x/ D x C x2

23. Use the addition formulas for sin and cos to show that

cos� cos� D 1

2
Tcos.� � �/C cos.� C �/U;

sin� sin� D 1

2
Tcos.� � �/� cos.� C �/U;

sin� cos� D 1

2
Tsin.� � �/C sin.� C �/U:

24. Prove Lemma 1.2.Hint: Use Exercise 23.

25. Complete the derivation of equation 1.11 for the coefficientbn:
26. Prove parts 1, 2, and 3 of Proposition 1.23.

27. Prove parts 4 and 5 of Proposition 1.23.

28. Prove part 2 of Theorem 1.24.

29. From Theorem 1.24, the Fourier series of an odd function consists only of sine-
terms. What additional symmetry conditions onf will imply that the sine
coefficients with even indices will be zero? Give an example of a function
satisfying this additional condition.

30. Suppose thatf is a function which is periodic with periodT and differentiable.
Show thatf 0 is also periodic with periodT .

31. Suppose thatf is a function defined onR. Show that there is an odd function
fodd and an even functionfevensuch thatf .x/ D fodd.x/C feven.x/ for all x .

12.2 Convergence of Fourier Series

Suppose thatf is a piecewise continuous function on the intervalT�L; LU; and that

f .x/ � a0

2
C 1X

nD1

h
an cos

�n�x

L

�C bn sin
�n�x

L

�i
(2.1)

is its associated Fourier series. Two questions arise immediately whenever an infinite
series is encountered. The first question is, does the seriesconverge? The second
question arises if the series converges. Can we identify thesum of the series?
In particular, does the Fourier series of a functionf converge atx to f .x/ or to
something else? These are the questions we will address in this section.3

3 Theorem 1.17 does not answer this question, since it assumesthat f .x/ equals its Fourier series and
then describes what the Fourier coefficients have to be.
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Fourier Series and periodic functions

The partial sums of the Fourier series in (2.1) have the form

SN .x/ D a0

2
C NX

nD1

h
an cos

�n�x

L

�C bn sin
�n�x

L

�i : (2.2)

The functionSN .x/ is a finite linear combination of the trigonometric functions
cos.n�x=L/ and sin.n�x=L/, each of which is periodic with period 2L.4 Hence
for everyN the partial sumSN is a function that is periodic with period 2L. Conse-
quently, if the partial sums converge at each pointx , the limit function must also be
periodic with period 2L :

Let’s consider again the functionf .x/ D x , which we treated in Example 1.25.
f .x/ is defined for all real numbersx , and it is not periodic. We found that its Fourier
series on the interval [��; � ] is

2
1X

nD1

.�1/nC1

n
sinnx :

The partial sums of this series are all periodic with period 2� . Therefore, if the
Fourier series converges, the limit function will be periodic with period 2� . Thus
the limit cannot be equal tof .x/ D x everywhere. The evidence from the graphs of
the partial sums in Figures 10, 11, and 12 of the previous section indicates that the
series does converge tof .x/ D x on the interval.��; �/. Since the limit must be
2� -periodic, we expect that the limit is closely related to theperiodic extension of
f .x/ D x from the interval.��; �/. The situation is illustrated in Figure 1, which
shows the partial sum of order 5 over 3 periods. The periodic extension of f .x/ D x
is shown plotted in black.

Since it will appear repeatedly, let’s denote theperiodic extension of a function
f .x/ defined on an intervalT�L; LU by f p.x/. Usually it is easier to understand
the periodic extension of a function graphically than it is to give an understandable
formula for it. This is illustrated forf .x/ D x in Figure 1. However, for the record,
the formula for the periodic extension5 is

f p.x/ D f .x � 2kL/ for .2k � 1/L < x � .2k C 1/L :
You will notice that f p is periodic with period 2L :

To get a feeling for whether or not the Fourier series off .x/ D x converges
to its periodic extensionf p, we graph bothf p and the partial sum of order 21 in
Figure 2. Note that the graph ofS21 (the blue curve) is close to the graph off p

except at the points of discontinuity off p, which occur at the odd multiples of�:
The accuracy of the approximation off p.x/ by S21.x/ gets worse asx gets closer

4 We studied periodic functions in Section 5.5, but let’s refresh our memory. A functiong.x/ is periodic
with periodT if g.xCT / D g.x/ for all x . Notice that every integral multiple of a period is also a period.
The smallest period of cos.n�x=L/ and sin.n�x=L/ is 2L=n, son � .2L=n/ D 2L is also a period. Thus
each function in the partial sumSN in (2.2) is periodic with period 2L.
5 Notice we use less than (<) at the lower endpoint of each interval and less than or equal(�) at the upper
endpoint. A choice is necessary to avoid having two values atthe endpoints. This is not the only possible
choice, but it is as good as any.



726 Chapter 12 Fourier Series
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−π−3π
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Figure 1 The partial sum of order 5 for the series in

Example 1.25 over three periods.

π 3π

0

π

x
−π−3π

−π

Figure 2 The partial sum of order 21 for the series in

Example 1.25 over three periods.

to a point of discontinuity. This is necessary, simply because each partial sum is a
continuous function, whilef p is not. Furthermore, we see thatSN .�/ D 0 for all
N . Hence the Fourier series converges to 0 at� , and not tof p.�/ D �: The same
phenomenon occurs atx D .2k C 1/� for any integerk, and these are the points of
discontinuity of f p.

We will see these considerations reflected in our convergence theorem.

Piecewise continuous functions

Suppose thatf is a function defined in an interval I. We define theright-hand and
left-hand limits of f at a pointx0 to be

f .xC0 / D lim
x!xC0 f .x/ and f .x�0 / D lim

x!x�0 f .x/:
The function f is continuous atx0 if and only if both limits exist andf .xC0 / D
f .x�0 / D f .x0/:

In Section 5.1, we defined a functionf to bepiecewise continuous if it has
only finitely many points of discontinuity in any finite interval, and if both the left-
and right-hand limits exist at every point of discontinuity. Thus, for a piecewise
continuous function the left- and right-hand limits exist everywhere.

You will notice that the periodic extensionf p of f .x/ D x on the intervalT��; � U that we saw in Example 1.25 is piecewise continuous. The points of
discontinuity for f p are at.2k C 1/� , the odd integral multiples of� . We have
f p.T.2k C 1/� UC/ D �� and f p.T.2k C 1/� U�/ D � . In fact, if f is any function
that is continuous on the intervalT�L; LU, then the periodic extensionf p is piece-
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wise continuous on all ofR, and its only possible points of discontinuity are the odd
multiples ofL.

We will say that the functionf hasleft-hand derivative at x0 if the left-hand
limit f .x�0 / exists and the limit

lim
x!x�0 f .x/� f .x�0 /

x � x0
/

exists. Similarly, we will say thatf hasright-hand derivative at x0 if f .xC0 / exists
and the limit

lim
x!xC0 f .x/� f .xC0 /

x � x0

exists. If f is differentiable atx0, then f has left- and right-hand derivatives there
and both are equal tof 0.x0/:

For an example, we consider again the periodic extensionf p of f .x/ D x on
the intervalT��; � U. The left- and right-hand derivatives exist at every point and
are equal to 1, even at the points of discontinuity. Another example is the saw-tooth
wave in Example 1.27. Notice that the saw-tooth function is continuous everywhere,
but fails to be differentiable wherex is an integer. However, at these points the left-
and right-hand derivatives of the saw-tooth wave exist.

Convergence

Since a Fourier series converges to a periodic function, we may as well assume
from the beginning that the functionf is already periodic. If, as was the case in
Example 1.25, we are given a function that is not periodic, then it is necessary to
look at the periodic extension of the function.

We are now in a position to state our main theorem on the convergenceof Fourier
series. A proof is beyond the scope of this text, but one can befound in any advanced
book on Fourier series.

THEOREM 2.3 Supposef .x/ is a piecewise continuous function that is periodic with period 2L.
If the left- and right-hand derivatives off exist atx0 then the Fourier series forf
converges atx0 to

f .xC0 /C f .x�0 /
2

:
If f is continuous atx0, then f .xC0 / D f .x�0 / D f .x0/, so assuming that the

left- and right-hand derivatives off exist atx0, Theorem 2.3 concludes that the
Fourier series converges atx0 to f .x0/.

Theorem 2.3 assumes the existence of the left- and right-hand derivatives off
only at the pointx0, and concludes that the Fourier series convergesonly at x0. This
indicates that it is only the smoothness off nearx0 that affects the convergence
there. However, in most of the examples that we will consider, the left- and right-
hand derivatives will exist everywhere. We will consider this special case in the next
corollary.
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COROLLARY 2.4 Supposef .x/ is a piecewise continuous function that is periodic with period 2L.
Suppose in addition thatf has left- and right-hand derivatives at every point.

1. At every pointx0 where f is continuous the Fourier series forf converges to
f .x0/.

2. At every pointx0 where f is not continuous the Fourier series forf converges
to

f .xC0 /C f .x�0 /
2

: (2.5)

EXAMPLE 2.6 ◆ We have verified that the hypothesis of Corollary 2.4 holds for the periodic extension
f p of f .x/ D x on�� � x � � . Show that the conclusion of Corollary 2.4 holds
at any point of discontinuity.

The points of discontinuity are.2k C 1/� , the odd integral multiples of� . We
have f p.T.2k C 1/� UC/ D �� and f p.T.2k C 1/� U�/ D � . Therefore,

f p.T.2k C 1/� UC/C f p.T.2k C 1/� U�/
2

D 0:
We have also seen that the Fourier series off is

2
1X

nD1

.�1/nC1

n
sinnx :

Whenx D .2kC1/� every term in the series is equal to 0. Hence the series converges
to 0, so the conclusion of Theorem 2.5 is valid atx D .2k C 1/� . ◆

EXAMPLE 2.7 ◆ Let f .x/ D x2 on the interval�1 � x � 1. Without computing the Fourier
coefficients, explicitly describe the sum of the Fourier series of f for all x .6

Of course,f .x/ D x2 is not periodic. Therefore, we must consider its periodic
extension,f p, graphed in black in Figure 3. Note thatf p is continuous everywhere,
and it is differentiable except at the odd integers,x D 2k C 1. At these points the
left- and right-hand derivatives exist. Thus the left- and right-hand derivatives exist
everywhere, and Corollary 2.4 implies that its Fourier series converges tof p.x/ for
all x . ◆

EXAMPLE 2.8 ◆ Consider the function

f .x/ D 8><>:�1; for �1� x � 0,
0; for x D 0,
1; for 0 < x � 1:

Find the Fourier series forf , and describe the sum of its Fourier series.

6 The computation of this series is Exercise 18 in Section 1.
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1 3

0

1

x
−1−3

Figure 3 The partial sum S5(x) for the function in

Example 2.7.

Since f is only defined over the intervalT�1; 1U, we are really looking at the
Fourier series of its periodic extensionf p, shown plotted in black in Figure 4. For
obvious reasons,f p is called thesquare wave. Since f (and f p) is an odd function,
Theorem 1.24 says that only the sine terms are present in the Fourier series, and that
the coefficients are

bn D 2
Z 1

0
f .x/ sinn�x dx D 2

Z 1

0
sinn�x dx D � 2

n� T.�1/n � 1U:
Hence

b2n D 0 and b2nC1 D 4.2n C 1/� :
The Fourier series associated tof p (and to f ) is

f p.x/ � 4� 1X
nD0

1

2n C 1
sin.2n C 1/�x : (2.9)

The function f p is piecewise continuous, with discontinuities at all of theintegers.
In addition, its left- and right-hand derivatives exist everywhere. Thus, the Fourier
series converges tof p.x/ if x is not an integer. Ifx D k is an integer, the series
converges to

f p.kC/C f p.k�/
2

D 1C .�1/
2

D 0:
In fact, each term of the Fourier series in (2.9) is equal to 0 whenx D k is an integer.
The partial sum of the Fourier series of order 11 is shown plotted in Figure 4. ◆

Gibb’s phenomenon

Suppose that the piecewise continuous functionf has a discontinuity atx0, but that
the left- and right-hand derivatives off exist atx0. As Theorem 2.3 points out, the
Fourier series off converges atx0 to T f .xC0 / C f .x�0 /U=2. However, if you look
closely at the graphs of the partial sums near the points of discontinuity in Figures 1,
2, and 4, we see that the graph of the partial sum overreaches the graph of the function
on each side of the discontinuity. This effect is calledGibb’s phenomenon.

To examine Gibb’s phenomenon a little more deeply, let’s look at the graphs of
some high order partial sums for the square wave. The partialsumsS301 andS601
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Figure 4 The partial sum S11(x) for the square wave in

Example 2.8.
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−1

−0.01

Figure 5 The partial sum

S301(x) for the square wave.

0.01

0

1

x

−1

−0.01

Figure 6 The partial sum

S601(x) for the square wave.

are plotted in Figures 5 and 6, but only for�0:01 � x � 0:01; so that we may
see the overrun clearly. Notice that both partial sums display the overrun that is
characteristic of Gibb’s phenomenon. In the two cases the amount of the overrun is
approximately the same, but for the higher order sum the duration is smaller.

It can be proved that whenever a functionf satisfies the hypotheses of Theo-
rem 2.3, but has a discontinuity atx0, the graphs of the partial sums of the Fourier
series display Gibb’s phenomenon nearx0. Furthermore, the ratio of the length
of the interval between the upper peak and the lower peak of the partial sum toj f .xC0 /� f .x�0 /j is approximately 1:179 in every case.

The Riemann–Lebesgue Lemma

Notice that in every example we have considered, the Fouriercoefficients approach 0
as the frequency gets large. This is demonstrated, in particular, in Figures 3, 9, and 14
in Section 1. These examples are typical of the behavior of Fourier coefficients, as
the next theorem, known as the Riemann-Lebesgue lemma, shows.

THEOREM 2.10 Supposef is a piecewise continuous function on the intervala � x � b. Then

lim
k!1 Z b

a
f .x/ coskx dx D lim

k!1 Z b

a
f .x/ sinkx dx D 0:

As we will see in Section 5, this theorem has important applications. Basically,
this theorem states that any given signal can be approximated very well by a few
dominant Fourier coefficients because most of the Fourier coefficients are near zero.
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The intuitive reason behind this theorem is that ask gets very large, sinkx and
coskx oscillate much more rapidly than doesf (see Figures 1 and 2 in Section 1).
If k is large, f .x/ is nearly constant on two adjacent periods of sinkx or coskx . The
integral over each period is almost zero, since the areas above and below thex-axis
almost cancel.

Interpretation of the Fourier coefficients

Suppose thatf is a function that satisfies the hypotheses of Corollary 2.4.Then
f .x/ is equal to its Fourier series

f .x/ D a0

2
C 1X

nD1

h
an cos

�n�x

L

�C bn sin
�n�x

L

�i ; (2.11)

except at those points wheref is not continuous. Let’s look more closely at thenth
summand, which we can rewrite in terms of its amplitude and phase7 as

fn.x/ D an cos
�n�x

L

�C bn sin
�n�x

L

� D An cos
�n�x

L
� �n

� ; (2.12)

whereAn D p
a2

n C b2
n and tan�n D bn=an: We see thatfn.x/, defined in (2.12), is

an oscillation with amplitudeAn and frequency8 !n D n�=L : We will call fn the
component of f at frequency!n D n�=L :Notice that!n D n!1, where!1 D �=L,
so all of the frequencies are integer multiples of thefundamental frequency !1.

We can interpret Corollary 2.4 as saying that any function that satisfies its hy-
potheses is an infinite linear combination of oscillatory components at frequencies
that are integer multiples of the fundamental frequency. The component off at
frequency!n has amplitudeAn D p

a2
n C b2

n. The amplitude is a numerical measure
of the importance of the component in the Fourier expansion.By the Riemann–
Lebesgue lemma, the Fourier coefficients decay to 0 asn increases, so the amplitudes
An do as well. As a result, the components at the smaller frequencies dominate the
Fourier series in (2.11). This fact is illustrated by the plots of the magnitudes of the
coefficients in Figures 3, 9, and 14 in Section 1.

Fourier coefficients for periodic functions

In this section we have been looking at periodic functions, since it is only such
functions that can be the sums of Fourier series. It is worth pointing out that for a
periodic function with period 2L, the coefficients can be computed by an integral
over any interval of length 2L. More precisely, we have the following:

7 See Section 4.4.
8 This is an angular frequency. Remember that we are using angular frequencies instead of numerical
frequencies unless otherwise stated.
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PROPOSITION 2.13 Suppose thatf is a piecewise continuous function that is periodic with period 2L.
Then for anyc the Fourier coefficients forf are given by

an D 1

L

Z cC2L

c
f .x/ cos

n�x

L
dx; for n � 0;

bn D 1

L

Z cC2L

c
f .x/ sin

n�x

L
dx; for n � 1:

We will leave the proof to the exercises.

................
EXERCISES

In Exercises 1–6 determine if the functionf is periodic or not. If it is periodic, find
the smallest positive period.

1. f .x/ D j sinx j
2. f .x/ D cos 3�x

3. f .x/ D x

4. f .x/ D sin.x/C cos.x=2/
5. f .x/ D x2

6. f .x/ D ex

In Exercises 7–14 find the sum of the Fourier series for indicated function at every
point in R without computing the series. Each of these is an exercise inSection 1.
Although that is not very important, the reference is included in parentheses.

7. f .x/ D (
0; �� � x < 0;
x; 0 � x � � on T��; � U (See Exercise 1.3)

8. f .x/ D (
0; �� � x < 0;
sinx; 0� x � � on T��; � U (See Exercise 1.4)

9. f .x/ D (
1C x; for �1� x � 0
1; for 0 < x � 1

on T�1; 1U (See Exercise 1.7)

10. f .x/ D 4� x2 on T�2; 2U (See Exercise 1.8)

11. f .x/ D x3 on T�1; 1U (See Exercise 1.9)

12. f .x/ D (
0; for �1� x � 0;
x2; for 0 < x � 1

on T�1; 1U (See Exercise 1.11)

13. f .x/ D (
sin�x=2; for �2 � x � 0,
0; for 0 < x � 2

on T�2; 2U (See Exercise 1.12)
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14. f .x/ D (
2; for �2 � x � 0,
2� x; for 0 < x � 2

on T�2; 2U (See Exercise 1.16)

15. Compute the Fourier series for the functionf .x/ D jx j on the intervalT��; � U:
(See Exercise 1.2.) Use the result and Theorem 2.3 to show that1X

nD0

1.2n C 1/2 D �2

8
:

16. Compute the Fourier series for the functionf .x/ D x2 on the intervalT��; � U:
(See Example 2.7.) Use the result and Theorem 2.3 to show that1X

nD1

.�1/nC1

n2
D �2

12
and

1X
nD1

1

n2
D �2

6
:

17. Compute the Fourier series for the functionf .x/ D x4 on the intervalT��; � U:
Use the result, Theorem 2.3, and Exercise 16 to show that1X

nD1

.�1/nC1

n4
D 7�4

120
and

1X
nD1

1

n4
D �4

90
:

18. Expand the function

f .x/ D 8><>:0; �1 < x � �1=2;
1; �1=2 < x � 1=2;
0; 1=2 < x � 1;

in a Fourier series valid on the interval�1� x � 1. Plot the graph off and the
partial sums of orderN for N D 5; 10; 20; and 40, as in Exercise 17 in Section
1. Notice how much slower the series converges tof in this example than in
Exercise 17 in Section 1. What accounts for the slow rate of convergence in this
example?

19. Expand the functionf .x/ D erx in a Fourier series valid for�� � x � � . For
the caser D 1=2, plot the partial sums of ordersN D 10; 20; and 30 of the
Fourier series along with the graph off p over the intervals�� � x � � and�2� � x � 2� .

20. Use the previous exercise to compute the Fourier coefficients for the function
f .x/ D sinhx D .ex � e�x/=2 and f .x/ D cosh.x/ D .ex C e�x/=2 over the
interval�� � x � � .

21. Use Theorem 2.3 to determine the sum of the Fourier series of the function f
defined in Exercise 18 for eachx in the interval�1� x � 1.

22. Suppose thatf is periodic with periodT and differntiable. Show thatf 0 is also
periodic with periodT .
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23. Suppose thatf is periodic with periodT . Show thatZ bCT

b
f .x/ dx D Z aCT

a
f .x/ dx

for anya andb. Use this result to prove Proposition 2.13.

24. Suppose thatf is periodic with periodT . Define

F.x/ D Z x

0
f .y/ dy:

Show that if
R T

0 f .y/ dy D 0, thenF is periodic with periodT . (Hint: Use
Exercise 23.)

12.3 Fourier Cosine and Sine Series

In this section we will examine the possibility of finding Fourier series of the forms

f .x/ D 1X
nD1

bn sin
n�x

L
; for 0� x � L;

and

f .x/ D a0

2
C 1X

nD1

an cos
n�x

L
; for 0 � x � L :

The basic idea behind our method comes from Theorem 1.24.

Fourier cosine series

According to Theorem 1.24, the Fourier series of an even function contains only

0 1

0

1

2

x

f(x) = e
x

f
e

(x)

−1

Figure 1 The even extension of

f (x) = e x.

cosine terms. If the functionf .x/ is defined only for 0� x � L, we extend it to�L � x � 0 as an even function. Theeven extension of f is defined by

fe.x/ D (
f .x/; if 0 � x � L,
f .�x/; if �L � x < 0:

For the functionf .x/ D ex on the intervalT0; 1U, the even extensionfe is plotted in
blue in Figure 1.

Since the functionfe is an even function defined onT�L; LU, Theorem 1.24 tells
us that its Fourier series has the form

fe.x/ � a0

2
C 1X

nD1

an cos
�n�x

L

� ; for �L � x � L; (3.1)

where

an D 2

L

Z L

0
fe.x/ cos

�n�x

L

�
dx; for n � 0:
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Since fe.x/ D f .x/ for 0� x � L, this formula becomes

an D 2

L

Z L

0
f .x/ cos

�n�x

L

�
dx; for n � 0: (3.2)

Furthermore, if we restrict ourselves to the intervalT0; LU, where fe.x/ D f .x/,
we can write

f .x/ � a0

2
C 1X

nD1

an cos
�n�x

L

� ; for 0� x � L; (3.3)

with the coefficients given by (3.2). The series in (3.3), with the coefficients given
in (3.2), is called theFourier cosine series for f on the intervalT0; LU.

EXAMPLE 3.4 ◆ Find the Fourier cosine series forf .x/ D ex on the intervalT0; 1U:
The coefficients in (3.2) become

0 10
0

1

n

|an|

Figure 2 The Fourier cosine

coefficients for f (x) = e x.

an D 2
Z 1

0
ex cosn�x dx D 2

1C n2�2

�.�1/ne � 1
� :

This evaluation can be done by direct computation, by looking the integral up in an
integral table, or by using a computer and a symbolic algebraprogram. The magni-
tude of these coefficients is plotted in Figure 2. Notice how quickly the coefficients
decay to 0. The Fourier series is

ex � .e � 1/C 2
1X

nD1

.�1/ne � 1

1C n2�2
cosn�x� .e � 1/� 2.e C 1/

1C �2
cos�x C 2.e � 1/

1C 4�2
cos 2�x C : : : (3.5)

on the intervalT0; 1U:
The partial sumS3.x/ is plotted in blue in Figure 3. The black curve in Figure 3

is the periodic extension of the even extension of the function f .x/ D ex . We will
call this theeven periodic extension of f , and we will denote it byfep. Since, in
this case,fep is continuous and satisfies the hypotheses of Corollary 2.4,the Fourier
series converges everywhere tofep.x/. ◆

Fourier sine series

In a similar manner, a functionf can be expanded in a series which involves only
sine terms. Again motivated by Theorem 1.24, we consider theodd extension of f ,
which is defined by

fo.x/ D 8><>: f .x/; if 0 < x � L;
0; if x D 0;� f .�x/; if �L � x < 0:

The odd extension off .x/ D ex is plotted in blue in Figure 4. Since the functionfo

0 1

0

2

x

f(x) = e
x

f
o

(x)

−1

−2

Figure 4 The odd extension of

f (x) = e x.
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2

x
−1−2−3

Figure 3 The partial sum S3 of the Fourier cosine series for

f (x) = e x plotted over three periods.

is an odd function defined onT�L; LU, Theorem 1.24 tells us that its Fourier series
has only sine terms. Proceeding as before, we find that

f .x/ � 1X
nD1

bn sinnx; for 0 < x � L; (3.6)

where

bn D 2

L

Z L

0
f .x/ sin

�n�x

L

�
dx; for n � 1: (3.7)

The series in (3.6), with the coefficients given in (3.7), is called theFourier sine
series for f on the intervalT0; LU.

EXAMPLE 3.8 ◆ Find the Fourier sine series forf .x/ D ex on the intervalT0; 1U:
The coefficients in (3.7) become

bn D 2
Z 1

0
ex sinn�x dx D 2n� T1� .�1/neU

1C n2�2
:

This evaluation can be done by direct computation, by looking the integral up in an
integral table, or by using a computer and a symbolic algebraprogram. Thus we
have

ex � 1X
nD1

2n� T1� .�1/neU
1C n2�2

sinn�x� 2�.e C 1/
1C �2

sin�x � 4�.e � 1/
1C 4�2

sin 2�x C 6�.e C 1/
1C 9�2

sin 3�x C : : : (3.9)

0 1 2 3

0

2

x
−1−2−3

−2

Figure 6 The partial sum S3 of the Fourier sine series for

f (x) = e x plotted over three periods.
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on the intervalT0; 1U: The magnitude of the coefficients is plotted in Figure 5. Notice

0 10
0

1

n

|bn|

Figure 5 The Fourier sine

coefficients for f (x) = e x.

that the sine coefficients do not decay nearly as rapidly as dothe cosine coefficients
in Figure 2. The partial sum of order 3 is plotted in blue in Figure 6. It is inter-
esting to compare this figure with Figure 3. The black curve inFigure 6 is theodd
periodic extension of f .x/ D ex , which we denote byfop. In this casefop satis-
fies the hypotheses of Corollary 2.4 and fails to be continuous only at the integers.
Consequently, the Fourier sine series converges tofop.x/ everywhere except at the
integers. ◆

Note that while we used the even and odd extensions off ( fe and fo) to help
derive the cosine and sine expansions, the formulas foran andbn involve only the
function f on the intervalT0; LU. This is reflected by the fact that the cosine and sine
expansions converge tof only on.0; L/. Outside this interval the cosine and sine
expansions converge tofep and fop, respectively. Examples 3.4 and 3.8 illustrate
these facts, but another example might help to put things into perspective.

EXAMPLE 3.10 ◆ Find the complete Fourier series forf .x/ D ex on the intervalT�1; 1U:
From (1.10) we have

an D Z 1�1
ex cosn�x dx D .�1/n e � 1=e

1C n2�2
; for n � 0;

while from (1.11) we have

bn D Z 1�1
ex sinn�x dx D .�1/nC1n�.e � 1=e/

1C n2�2
; for n � 1.

Again there are several ways to verify this. Hence the complete Fourier series forex

0 10
0

1

2

n

|an| and |bn|

Figure 7 The coefficients of the

complete Fourier series for f (x) =

e x.

on T�1; 1U is

ex D �
e � 1

e

�(
1

2
C 1X

nD1

.�1/n

1C n2�2
[cosn�x � n� sinn�x ]

) : (3.11)

The magnitude of the coefficients is plotted in Figure 7, withjanj in black andjbnj in blue. The partial sum of order 3 is plotted in blue Figure 8.
The periodic extension ofex satisfies the hypotheses of Corollary 2.4 and fails to

be continuous only at the odd integers. Consequently, the Fourier series converges
to the periodic extension everywhere except at the odd integers. ◆

Now we have three Fourier series that converge tof .x/ D ex on the interval.0; 1/. The first in (3.5) contains only cosine terms. The second in (3.9) contains only
sine terms. The third in (3.11) contains both sine and cosineterms. It is interesting
to compare graphs of the partial sums in Figures 3, 6, and 8. The difference between
the three is what happens outside of the interval.0; 1/. The cosine series converges
to fep, the even periodic extension off . The sine series converges tofop, the odd
periodic extension off , except at the integers. And, finally, the full Fourier series
converges tof p, the periodic extension off , except at the odd integers.

Of course, the same three series can be considered for any piecewise continuous
function defined on an interval of the formT�L; LU.
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0 1 2 3

1

2

x
−1−2−3

Figure 8 The partial sum S3 of the complete Fourier series

for f (x) = e x plotted over three periods.

................
EXERCISES

In exercises 1–4 sketch the graph of the odd extension of the function f . Also sketch
the graph of the odd periodic extension with period 2 over three periods.

1. f .x/ D 1� x

2. f .x/ D 1� 2x

3. f .x/ D x2 � 1

4. f .x/ D x2 � 2

In exercises 5–8 sketch the graph of the even extension of thefunction f . Also
sketch the graph of the even periodic extension with period 2over three periods.

5. f .x/ D 1� x

6. f .x/ D 1� 2x

7. f .x/ D x2 � 1

8. f .x/ D x2 � 2

In Exercises 9 – 20 expand the given function in a Fourier cosine series valid on the
interval 0� x � � . Plot the function and two partial sums of your choice over the
interval 0� x � � . Plot the same partial sums and the function the series converges
to over the interval�3� � x � 3� .

9. f .x/ D x

10. f .x/ D sinx

11. f .x/ D cosx

12. f .x/ D 1

13. f .x/ D � � x

14. f .x/ D x2

15. f .x/ D x3

16. f .x/ D x4
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17. f .x/ D (
1; 0� x < �=2;
0; �=2� x � �

18. f .x/ D (
x; 0� x < �=2;�=2; �=2 � x � �

19. f .x/ D x cosx

20. f .x/ D x sinx

In Exercises 21 – 32 expand the given function in a Fourier sine series valid on the
interval 0� x � � . Plot the function and two partial sums of your choice over the
interval 0� x � � . Plot the same partial sums and the function the series converges
to over the interval�3� � x � 3� .

21. Same as Exercise 9

22. Same as Exercise 10

23. Same as Exercise 11

24. Same as Exercise 12

25. Same as Exercise 13

26. Same as Exercise 14

27. Same as Exercise 15

28. Same as Exercise 16

29. Same as Exercise 17

30. Same as Exercise 18

31. Same as Exercise 19

32. Same as Exercise 20

33. Show that the functions cos.n�x=L/, n D 0; 1; 2; : : : are orthogonal on the
intervalT0; LU. This means thatZ L

0
cos.n�x=L/ cos.p�x=L/ dx D 0; if p 6D n :

Hint: Use Exercise 23.

34. Show that the functions sin.n�x=L/, n D 1; 2; 3; : : : are orthogonal on the
intervalT0; LU. This means thatZ L

0
sin.n�x=L/ sin.p�x=L/ dx D 0; if p 6D n :

Hint: Use Exercise 23.

35. Show that Z 1

0
cos.2n�x/ sin.2k�x/ dx D 0:
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Hint: Use Exercise 23.

36. If f .x/ is continuous on the interval 0� x � L, show that its even periodic
extension is continuous everywhere. Does this statement hold for the odd peri-
odic extension? What additional condition(s) is (are) necessary to ensure that
the odd periodic extension is everywhere continuous?

12.4 The Complex Form of a Fourier Series

If the piecewise continuous functionf is periodic with period 2L, then its Fourier
series is

f .x/ � a0

2
C 1X

nD1

h
an cos

�n�x

L

�C bn sin
�n�x

L

�i ; (4.1)

where the coefficients are given by

an D 1

L

Z L�L
f .x/ cos

�n�x

L

�
dx; for n � 0; and

bn D 1

L

Z L�L
f .x/ sin

�n�x

L

�
dx; for n � 1: (4.2)

Sometimes it isuseful to express the Fourier series in complex form using the complex
exponentials,einx for n D 0;�1;�2; : : : . This is possible because of the close
connection between the complex exponentials and the trigonometric functions. We
explored this connection in the appendix to this book and in Section 4.3. The most
important facts to know about the complex exponential are Euler’s formula

eiy D cosy C i sin y; (4.3)

which defines the exponential, and that all of the familiar properties of the real
exponential remain true for the complex exponential.

If we write down Euler’s formula withy replaced by�y, we get

e�iy D cosy � i sin y: (4.4)

Solving (4.3) and (4.4) for cosy and siny, we see that

cosy D eiy C e�iy

2
and siny D eiy � e�iy

2i
: (4.5)

Let’s substitute these expressions into the Fourier series(4.1). Thenth term in the
sum is the component off at the frequency!n D n�=L, and it becomes

fn.x/ D an cos
�n�x

L

�C bn sin
�n�x

L

�D an

2

�
ein�x=L C e�in�x=L

�C bn

2i

�
ein�x=L � e�in�x=L

�D an � ibn

2
ein�x=L C an C ibn

2
e�in�x=LD �nein�x=L C ��ne�in�x=L; (4.6)
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where we have substituted�n D an � ibn

2
and ��n D an C ibn

2
; for n � 1. (4.7)

We will also write the constant term asf0.x/ D �0 D a0=2: Separating the positive
and negative terms, the Fourier series can be written as

f .x/ � 1X
nD�1�nein�x=L: (4.8)

Notice that by (4.6), the component off at frequency!n D n�=L is given by
fn.x/ D �nei!n x C ��ne�i!nx : As a result, when we talk in terms of low frequency
components we have to consider the coefficients�n and��n for small values ofn.

We can use (4.2) to express the coefficients�n in terms of the functionf . For
example, forn � 1 we have�n D an � ibn

2D 1

2L

Z L�L
f .x/ hcos

�n�x

L

�� i sin
�n�x

L

�i
dxD 1

2L

Z L�L
f .x/e�in�x=L dx :

The corresponding formulas forn D 0 and forn < 0 can be computed in the same
way, and we discover that�n D 1

2L

Z L�L
f .x/e�in�x=L dx; for all n. (4.9)

It is important to notice that while�n is the coefficient ofein�x=L in the Fourier
series (4.8), it ise�in�x=L which appears in the integral in (4.9).

The series (4.8), with the coefficients computed using (4.9), is called thecom-
plex Fourier series for the function f . There are several differences between the
Fourier series involving cosines and sines, given in Definition 1.20, and the Fourier
series using complex exponentials presented here. First, the complex Fourier series
involves a sum fromn D �1 to n D 1, rather than a sum fromn D 0 to n D 1.
Next, for the complex Fourier series, there is one succinct formula (4.9) for the
Fourier coefficients, rather than the two separate formulasfor an andbn in (1.18)
and (1.19). For this reason, and also because computations using exponentials are
easier than those using trigonometric functions, many scientists and engineers prefer
to use the complex version of the Fourier series.

EXAMPLE 4.10 ◆ Find the complex Fourier series for the functionf .x/ D ex on the intervalT�1; 1U:
This is the function we examined in Examples 3.4, 3.8, and 3.10. For this

function it is much easier to compute the complex Fourier coefficients than the real
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ones. Thenth coefficient is�n D 1

2

Z 1�1
exe�in�x dxD 1

2

Z 1�1
e.1�in�/x dxD 1

2.1� in�/ �e1�in� � e�1Cin��D .�1/n

2.1� in�/.e � 1=e/:
The last identity follows sinceein� D e�in� D .�1/n:

The magnitude of the coefficients is plotted in Figure 1. Notice that we included
negative indices. The complex Fourier series is

0 10

1

n

|αn|

−10

Figure 1 The coefficients of the

complex Fourier series for f (x) =

e x.

ex � e � 1=e

2

1X
nD�1 .�1/n

1� in� ein�x for �1� x � 1: ◆

Relation between the real and complex Fourier series

We derived the complex Fourier series from the real series. In doing so we found that
the complex coefficients can be computed from the real coefficients using (4.7). In
turn, we can solve these relationships for the real coefficients in terms of the complex
coefficients, getting

a0 D 2�0; an D �n C ��n; and bn D i.�n � ��n/; for n � 1: (4.11)

These equations simplify somewhat if the functionf is real valued. In that case
f .x/ D f .x/; so�n D 1

2L

Z L�L
f .x/e�in�x=L dx D 1

2L

Z L�L
f .x/ � e�in�x=L dxD 1

2L

Z L�L
f .x/ein�x=L dx D ��n:

Consequently, iff is real valued,

an D �n C �n D 2 Re�n and bn D i.�n � �n/ D �2 Im�n:
EXAMPLE 4.12 ◆ Compute the coefficients of the real Fourier series for the function f .x/ D ex on the

intervalT�1; 1U:
We computed the complex coefficients in Example 4.10 and found that�n D .�1/n

2.1� in�/.e � 1=e/:
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Since the function is real valued, we can use (4.11) to find that

an D 2 Re�n D .�1/n.e � 1=e/
1C n2�2

and

bn D �2 Im�n D .�1/nC1n�.e � 1=e/
1C n2�2

: ◆

................
EXERCISES

1. Show that the complex Fourier coefficients for an even, real-valued function are
real. Show that the complex Fourier coefficients for an odd, real-valued function
are purely imaginary (i.e., their real parts are zero).

In Exercises 2–11 find the complex Fourier series for the given function on the
intervalT��; � U.

2. f .x/ D x

3. f .x/ D jx j
4. f .x/ D (�1; �� � x < 0;

1; 0� x � �
5. f .x/ D (

0; �� � x < 0;
1; 0� x � �

6. f .x/ D x2

7. f .x/ D ebx

8. f .x/ D x3

9. f .x/ D � � x

10. f .x/ D j cosx j
11. f .x/ D j sinx j
12. Two complex valued functionf andg are said to be orthogonal on the inter-

val Ta; bU if
R b

a f .x/g.x/dx D 0: Show that The functionseipx andeiqx are
orthogonal onT��; � U if p andq are different integers.

13. Use the method of proof of Theorem 1.17, and Exercise 12 to show that if
f .x/ DP1

nD�1 �neinx for �� � x � � , then�n D 1

2� Z ��� f .x/e�inx dx :
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12.5 The Discrete Fourier Transform and the FFT

Suppose thatf .t/ is piecewise continuous for 0� t � 2� .9 Then

f .t/ � 1X
kD�1 �keikt ; where �k D 1

2� Z 2�
0

f .t/e�ikt dt: (5.1)

The Fourier coefficients�k are often too difficult to compute exactly. In such a case
it is useful to approximate the coefficients using a numerical integration technique
such as the trapezoid rule.

We remind you that for a functionF defined on the intervalT0; 2� U, the trapezoid
rule for approximating the integral

R 2�
0 F.t/ dt with step sizeh D 2�=N isZ 2�

0
F.t/ dt � h

�
1

2
F.0/C F.h/C F.2h/C � � � C F..N � 1/h/C 1

2
F.Nh/� :

If F.t/ is 2� -periodic, thenF.0/ D F.2�/ D F.Nh/, and the preceding formula
becomes Z 2�

0
F.t/ dt � h

N�1X
jD0

F. jh/ D 2�
N

N�1X
jD0

F.2� j=N/:
Applying this formula to the integral for the Fourier coefficient in (5.1), we get�k D 1

2� Z 2�
0

f .t/e�ikt dt � 1

N

N�1X
jD0

f .2� j=N/e�2� i j k=N : (5.2)

Let’s set
y j D f .2� j=N/ and w D e2� i=N :

Thenw D e�2� i=N , and the approximation becomes�k � 1

N

N�1X
jD0

y jw j k: (5.3)

The sum on the right side of equation (5.3) involves the discrete valuesy j D
f .2� j=N/. The values of f .t/ for t 6D 2� j=N are ignored. It is a common
occurrence in the digital age to replace a time dependent function with such a discrete
sample of that function. For example,f .t/may represent a music signal that we want
to transmit over the internet. The internet, or any other computer network, allows
only discrete signals, so to transmit the music we replace the continuous signalf .t/
with the discrete sampley j D f .2� j=N/ for j D 0; 1; 2; : : : ; N � 1:

In many digital applications signals arise that are not represented by a continuous
function at all. Instead, they arise as discrete valuesy j at a discrete set of timest j .
Such a signal is illustrated in Figure 1. Here, the horizontal axis represents time,
which has been divided into many small time intervals.

9 In most applications of the material in this section, the function f represents a time dependent signal.
Consequently, we will uset instead ofx as the independent variable.
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The discrete Fourier transform

Even for discrete signals such as that illustrated in Figure1, it is often useful to
consider the transform we found in equation (5.3). We will assume that the signal
is an infinite sequencey D fy j j � 1 < j < 1g that isperiodic with period N ,
meaning thatyNC j D y j for all j . Wherever the sequenceyk comes from, the
transform on the right-hand side of (5.3) is important.

t

Figure 1 A discrete signal.

DEFINITION 5.4 Let y D fy jg be a sequence of complex numbers that is
periodic with periodN . Thediscrete Fourier transform of y is the sequenceby D fbykg, wherebyk D N�1X

jD0

y je
�2� ik j=N D N�1X

jD0

y jw j k; for �1 < k <1: (5.5)

For the last expression in (5.5) we use the notationw D e2� i=N , so thatw D
e�2� i=N .

An important property ofw D e2� i=N is thatwN D e2� i D 1: Of course, it
follows thatwN D 1. From this we see thatbykCN D N�1X

jD0

y jw j .kCN/ D N�1X
jD0

y jw j kw j N D N�1X
jD0

y jw j k D byk:
Thus the discrete Fourier transform is also periodic of period N .

Let’s look back at equation (5.3), where we used the trapezoid rule to approx-
imate�k , the kth Fourier coefficient of the functionf . Using (5.5), we can now
write (5.3) as �k � byk

N
: (5.6)

It follows from the Riemann–Lebesgue lemma that�k ! 0 ask ! �1. On
the other hand, the sequencebyk is periodic. This implies that (5.3) is not a good
approximation for largek. In fact, The trapezoid rule algorithm used to approximate
the integral in (5.2) loses accuracy as the integrandf .t/eikt becomes more oscillatory
as the frequency (and index)k increases. Therefore we would expect equation (5.3)
to provide a good approximation only fork that are relatively small compared toN .

There is another, related factor to consider. We have previously talked of the
importance of the low frequency componentsofa function. When we use the complex
Fourier series, this means that we include both�k and��k for small values ofk.
By (5.6) and the periodicity of the sequenceby,��k � by�k

N
D byN�k

N
:

Therefore, when considering small frequency components while using the discrete
Fourier transform, we must include bothbyk andbyN�k for small nonnegative values
of the indexk.
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EXAMPLE 5.7 ◆ Use the discrete Fourier transform to compute approximately the first 64 Fourier
coefficients of the function

f .t/ D e�t2=10 [sin 2t C 2 cos 4t C 0:4 sint sin 10t ]

on the intervalT0; 2� U.
The function f is plotted in Figure 2. Because of the terms involving sin 2t and

0 π 2π
0

2

t

f(t)

−2

Figure 2 The function in

Example 5.7.

cos 4t , we would expect that the Fourier coefficients of order 2 and 4would be large.
With N D 64; we sety j D f .2� j=N/ for 0 � j � N � 1. Then we use the fast
Fourier transform function in Matlab to compute the discrete Fourier transformby.
The magnitude of thebyk is plotted in Figure 3. Indeed, the coefficients corresponding
to k D 4 andk D 60D N �4 are the largest. Notice how the coefficients with index
k and N � k are largest for smallk. Thus the coefficients corresponding to small
frequency components dominate. ◆

Now let’s look at (5.5) and restrict ourselves tok D 0; 1; : : : ; N � 1. Thekth
equation expressesbyk as a linear combination offy j j 0 � j � N � 1g: TheseN
equations can be expressed as the single matrix equation0BBBBBB� by0by1by2:::byN�1

1CCCCCCA D 0BBBBBB� 1 1 1 � � � 1

1 w w2 � � � wN�1

1 w2 w4 � � � w2.N�1/::: ::: ::: : : : :::
1 wN�1 w2.N�1/ � � � w.N�1/2

1CCCCCCA0BBBBBB� y0

y1

y2:::
yN�1

1CCCCCCA : (5.8)

It will be useful to use vector notation. We will set

y D .y0; y1; : : : ; yN�1/T ; andby D .by0;by1; : : : ;byN�1/T :
With this notation, equation (5.8) becomesby D Fy; (5.9)

where

0 32 63
0

20

k

|yk|ˆ

Figure 3 The discrete Fourier

transform of the discretization of

the function in Example 5.7.

F D 0BBBBBB� 1 1 1 � � � 1

1 w w2 � � � wN�1

1 w2 w4 : : : w2.N�1/::: ::: ::: : : : :::
1 wN�1 w2.N�1/ � � � w.N�1/2

1CCCCCCA : (5.10)
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The inverse discrete Fourier transform

Equation (5.8) gives the formula for computing the discreteFourier coefficients in
terms of the original discrete signal. Many applications require the reverse oper-
ation, the computation of the original discrete signal,yk, from its discrete Fourier
coefficients,byk. Therefore, we would like to solve for theyk in equation (5.8) or,
equivalently, we need to find the inverse of the matrixF in (5.10).

Computing the inverse ofF is somewhat difficult, so we will simply give the
result. Consider the complex conjugate ofF

F D 0BBBBBB� 1 1 1 � � � 1

1 w w2 � � � wN�1

1 w2 w4 � � � w2.N�1/::: ::: ::: : : : :::
1 wN�1 w2.N�1/ � � � w.N�1/2

1CCCCCCA :
Direct computation shows that

F � F D N I or F�1 D 1

N
F :

The computation ofF � F is not too difficult. For example, whenN D 3,

F � F D 0� 1 1 1
1 w w2

1 w2 w4

1A0� 1 1 1
1 w w2

1 w2 w4

1A :
An explicit computation shows that this matrix product is 3I . For example, the.2; 1/-entry of this matrix product is

1Cw Cw2 D 1� w3

1�w D 0;
sincew3 D 1: On the other hand, the.2; 2/-entry is

1C jwj2 C jwj4 D 3:
We summarize this discussion in the next theorem.

THEOREM 5.11 The original signaly j , j D 0; : : : ; N �1, can be computed from its discrete Fourier
transform,byk, k D 0; : : : ; N � 1, using

y j D 1

N

N�1X
kD0

bykw j k; for �1 < j <1:
We can write this in matrix form as

y D 1

N
Fby: (5.12)
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Noise filtering

Practical applications of this theorem are numerous. We will mention two. The
first involves filtering noise from a signal. When a signal is transmitted, it is often
corrupted by interference from background radiation or other sources. The corrupted
part of the signal is called noise. In many applications, thenoise appears with a certain
frequency range that is different from the dominant frequencies of the original signal.
To filter out noise, a discrete Fourier transform of the signal is computed using (5.8).
Then, the Fourier coefficients,byk, corresponding to the noisy, undesirable frequencies
are set equal to zero. The signal is then recomputed from the new Fourier coefficients
using equation (5.12). Since the frequency components corresponding to the noise
have been removed, the resulting signal should contain muchless noise than the
original.

Frequently, noise occurs at relatively high frequencies. Suppose that we add the
noise termN.t/ D 2 sin.50t/ to the function in Example 5.7. The resulting signal
is g.t/ D f .t/ C N.t/; and it is plotted in Figure 4. It is difficult to see that the
signal of interest is the functionf .t/ plotted in Figure 2. We sety j D g.2� j=N/ for
0 � j � N � 1, with N D 256, and take the discrete Fourier transform. The result
is plotted in Figure 5. Notice the large terms atk D 50 andk D 206D N � 50: To
eliminate the high frequency noise, we “zero out” the high frequency coefficients by
settingbyk D 0 for 13� k � N �13D 243; and compute the inverse transform. The
resulting function is plotted in blue in Figure 6, while the original function f is plotted
in black. The graphical comparison shows that we have effectively recovered the
wanted signal from the noisy one. The most significant difference occurs at the two
endpoints. This is a result of Gibb’s phenomenon. Sincef p, the periodic extension
of f , is not continuous, we have to expect this.

0 π 2π
0

2

t

g(t)

−2

Figure 4 A signal in the

presence of high frequency

noise.

0 128 255
k

|yk|ˆ

Figure 5 The discrete Fourier

transform of the noisy signal.

0 π 2π
0

2

t

−2

Figure 6 The result of filtering

out the high frequencies.

Data compression

A second application involves data compression. The goal isto store or transmit
a signal using the fewest possible bits of data. One way to accomplish this is to
store or transmit only the dominant Fourier coefficients of agiven signal. In view
of the Riemann–Lebesgue Lemma, Theorem 2.10, only a finite number of Fourier
coefficients are dominant, since these coefficients get verysmall as the frequency
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gets large. Thus, a compression routine can be implemented in a three-step process.
First, we compute the discrete Fourier coefficients using equation (5.8). Then we set
all of the small Fourier coefficients equal to zero, storing only the dominant Fourier
coefficients. Finally, to recover the compressed signal, use equation (5.12). What
constitutes “small” depends on the application and the tolerance for error. There is
a trade-off between the number of Fourier coefficients that are set equal to zero and
the accuracy of the compressed signal. The larger the amountof compression, the
more coefficients that are set equal to zero, and the greater the difference between
the compressed signal and the original signal.

As an example, we set all coefficients for the function in Example 5.7 equal to
0 that were smaller than 1=10 of the largest coefficient. This resulted in 21 nonzero
coefficients. Again we computed the inverse transform, and plotted the result in blue

0 π 2π
0

2

t

f(t)

−2

Figure 7 The result of removing

small coefficients.

in Figure 7. The functionf .t/ is plotted in black. The comparison shows that there
is loss, but not a great deal.

The fast Fourier transform

Calculating the discrete Fourier transform using equation(5.5) or (5.8) involves lots
of computations. Computing eachbyk using (5.5) requires the sum ofN products of
two numbers. We will call the combination of a multiplication and an addition a
multiply-add, and we will refer to it as an MA. Thus computing eachbyk requiresN
MAs. Computing the complete discrete Fourier transform means computingbyk for
0� k � N � 1: This requiresN2 MAs.

The computation can be speeded up using the multiplicative nature ofN . Sup-
pose thatN D pq, where the factorsp andq are both bigger than 1. The index in the
sum in (5.5) can be written asj D �pC�, where 0� � � q�1 and 0� � � p�1:
In terms of� and�, the sum in (5.5) becomes the double sumbyk D p�1X�D0

q�1X�D0

y�pC�w.�pC�/k D p�1X�D0

 
q�1X�D0

y�pC�w�pk

!w�k : (5.13)

We will isolate the inner sum by settingby�;k D q�1X�D0

y�pC�w�pk: (5.14)

Then (5.13) becomesbyk D p�1X�D0

by�;kw�k ; for 0� k � N � 1: (5.15)

The idea is to computeby�;k first using (5.14), and then compute the Fourier
transform using (5.15). The savings in the computation comes from realizing thatby�;k is periodic ink with periodq. To see this, we first remember thatwN D 1 and
N D pq. Then we haveby�;kCq D q�1X�D0

y�pC�w�p.kCq/ D q�1X�D0

y�pC�w�pk D by�;k:
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Thus we only need to computeby�;k for 0 � � � p � 1 and 0� k � q � 1. Since
computing eachby�;k requiresq MAs, computing all of them requirespq �q D pq2 D
Nq MAs. Now computing theN components of the Fourier transform using (5.15)
requiresNp additional MAs, for a total ofN.p C q/. If N , p, andq are all large
numbers, the sump C q is much smaller than the productN D pq.

The process outlined in the previous paragraph can be iterated if N has more
factors. If N D p1 � p2 � : : : � pn, the number of MAs required is reduced to
N.p1C p2C� � �C pn/. This algorithm for computing the discrete Fourier transform
is called thefast Fourier transform (FFT). Clearly the FFT works best ifN has a
large number of very small factors, the best being whenN is a power of 2. This
is the most commonly used case. WhenN D 2L the FFT can compute the Fourier
coefficients with only aboutN � 2L D 2N log2 N MAs. For example, ifN D 210 D
1024, the FFT requires only about 20,000 MAs versus the one million or so that
are required using (5.8). The savings get more impressive asN gets larger. A
similar FFT routine exists for computing the inverse discrete Fourier transform. The
mathematical computer programs Matlab, Mathematica, and Maple all have built-in
commands for the FFT and inverse FFT.

................
EXERCISES

All of these exercises are designed to be done with a mathematical computer program
such as Matlab, Maple, or Mathematica.

1. Consider the function

f .t/ D e�t2=10 .cos 2t C 2 sin 4t C 0:4 cos 2t cos 40t/ :
For what values ofn would you expect the Fourier coefficients to be largest?
Why? Compute the coefficients numerically throughn D 50 and see if you are
right. (You can use a fast Fourier transform algorithm withN D 256 to do this if
you wish.) Plot the partial sum of the Fourier series of ordern D 6 and compare
with the plot of the originalf .x/.

2. Consider the function

g.t/ D e�t2=8 [cos 2t C 2 sin 4t C 0:4 cos 2t cos 10t ] ;
for 0 � t � 2�: Compute numerically the partial sum of the Fourier series of
orderN D 25. Zero out any coefficients that have absolute value smaller than
10% of the maximum. Plot the resulting series and compare with the original
functiong.t/. Try experimenting with different tolerances (other than 10%).

3. Show that ify D fymg is a sequence of real numbers that is periodic with period
N andby is the discrete Fourier transform ofy, then the complex conjugate ofbym

isbyN�m. (As a result, whenm is small relative toN ,byN�m has to be considered
a low frequency coefficient, since it is equal to the conjugate ofbym, which is
approximately equal to the conjugate of themth Fourier coefficient.)

The next three problems require the use of the fast Fourier transform on a computer
(e.g., Maple or Matlab’s FFT routine).



12.5 The Discrete Fourier Transform and the FFT 751

4. Filtering Let

f .t/ D e�t2=10 .sin.2t/C 2 cos.4t/C 0:4 sin.t/ sin.50t// :
Discretize f by settingyk D f .2k�=256/; for k D 0 : : :255. Use the fast
Fourier transform to computebyk for 0 � k � 255. According to Exercise 3, the
low-frequency coefficients areby0 : : :bym andby256�m : : :by255 for some low value
of m. Filter out the high-frequency terms by settingbyk D 0 form � k � 255�m
with m D 6. Apply the inverse fast Fourier transform to this new set ofbyk to
compute theyk (now filtered); plot the new values ofyk and compare with the
original function. Experiment with other values ofm.

5. Compression Let tol D 0:01. In Exercise 4, ifjbykj < tol � M, whereM D
max0�k�255 jbykj, setbyk equal to zero. Apply the inverse fast Fourier transform
to this new set ofbyk to compute theyk. Plot the new values ofyk and compare
with the original function. Experiment with other values oftol. Keep track of
the percentage of Fourier coefficients that have been filtered out. Matlab’s sort
command is useful for finding a value for tol in order to filter out a specified
percentage of coefficients.

6. Repeat the previous two exercises over the interval 0� t � 1 with the function

f .t/ D �52t4 C 100t3 � 49t2 C 2C N.100.t � 1=3//C N.200.t � 2=3//
whereN.t/ D te�t2:


