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Partial Differential kquations

We will now consider differential equations that model changhere there is
more than one independent variable. For example, the textyserin an object
changes with time and with the position within the objecte Tates of change lead
to partial derivatives, and the equations relating themcalied partial differential
equations. The applications of the subject are many, antyfles of equations that
arise have a great deal of variety. We will limit our studyle equations that arise
most frequently in applications. These model heat flow antple waves. The
differential equation models for heat flow and the vibratatigng will be derived
in Sections 1 and 3, where we will also describe some of theipgrties. We will
then systematically study each of the equations, solviegitin some cases using
the method of separation of variables.

13.1 Derivation of the Heat Equation

130

Heat is a form of energy that exists in any material. Like atheoform of energy,
heat is measured in joules (1=J1 Nm). However, it is also measured in calories
(1 cal = 4.184 J) or sometimes in British thermal units (1 BRJ252 cal=
1.054 kJ).

The amount of heat within a given volume is defined only up tadditive
constant. We will assume the convention of saying that theusrinof heat is equal
to 0 when the temperature is equal to 0. Suppose Ahatis a small volume in
which the temperature is almost constant. It has been found experimentally that
the amount of heah Q in AV is proportional to the temperatuseand to the mass
Am = pAV, wherep is the mass density of the material. Thus the amount of heat
in AV is given by

AQ = cpuAV. (1.2)

The new constartis called thespecific heat It measures the amount of heat required
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to raise 1 unit of mass of the material 1 degree of temperateewill usually use
the Celsius or Kelvin scales for temperature.

Let’s consider a thin rod that is insulated along its lengghseen in Figure 1. If
the length of the rod i, the position along the rod is given Bywhere 0O< x < L.
Since the rod is insulated, there is no transfer of heat floanwdd except at its two
ends. We may therefore assume that the temperatdepends only ox and on
the timet.

Ax

( L[ 0

0 X L

Figure 1 The variation of temperature in an insulated
rod.

Consider a small section of the rod betweeandx + Ax. Let Sbe the cross-
sectional area of the rod. The volume of the sectioBAx, so (1.1) becomes

AQ = CoUSAX.

Therefore, the amount of heat at timen the portionU of the rod defined by
a < x < bis given by the integral

b
Q) = S/ cou(t, x) dx. (1.2)

The specific heat and the density sometimes vary from popuittt and more rarely
with time as well. However, we will usually be dealing withrhogeneous, time
independent materials for which both the specific heat amdémsity are constants.

The heat equation models the flow of heat through the matdtialderived by
computing the time rate of change @fin two different ways. The first way is to
differentiate (1.2). Differentiating under the integragjrs, we get

dQ d _ (P ® 9
W_as./a C,OUdX—S/; 8—t[CpU]dX-

Of course, if the specific heat and the density do not vary tiitle, this becomes

dQ b Ju

The second way to compute the time rate of chang@ @fto notice that, in the
absence of heat sources within the rod, the quantity of imédt¢an change only
through the flow of heat across the boundaried aitx = a andx = b. The rate
of heat flow through a section of the rod is called keat flux through the section.
Consider the section of the rod betweer a anda + Ax. Experimental study of
heat conduction reveals that the flow of heat across suchtiaséas the following
properties:
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« Heat flows from hot positions to cold positions at a rate propoal to the
difference in the temperatures on the two sides of the seciitius the heat
flux through the section is proportionaltga + Ax, t) — u(a, t).

« The heat flux through the section is inversely proportiooal x, the width of
the section.

« The heatflux through the section is proportional to the af&obthe boundary
of the section.

Putting these three points together, we see that there isfacdentC such that the
heat fluxinto U atx = a is given approximately by

u@+ Ax,t) —u(a,t)

-CS
AX

(1.4)

The coefficientC is called thethermal conductivity It is positive since, iu(a +
AX, 1) > u(a, t), then the temperature is hotter insidethan it is outside, and the
heat flowsout of U atx = a. The thermal conductivity is usually constant, but it
may depend on the temperatwrand the positionx.

If we let Ax goto 0in (1.4), the difference quotient approachegox, and we
see that the heat flux intd atx = ais

au
—CS—(a, t). 15
PG (1.5)
The same argument at= b shows that the heat flux intd atx = bis
au
CS—(b, 1). 1.6
~(b.D (L6)

The total time rate of change @} is the sum of the rates at the two ends. Using the
fundamental theorem of calculus, this is

dQ au au [P0 au
= S[C&(b, n-Co (@ t)} - s/a - (c&) dx.  (1.7)

If the thermal conductivityC is independent of, this becomes

dQ b 32y
e c:s/a — dx. (1.8)

In equations (1.3) and (1.8) we have two formulas for the o&teeat flow into
U. Setting them equal, we see that

b b 42 b 2
au acu au acu

/C,O—dX=C/ —dx or / co— —C— ) dx =0.
a ot a OX2 a ot ax2

Thisis true for alb < b, which can be true only if the integrand is equal to 0. Hence,
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Table 1 Thermal diffusivities of common materials

Material k (cm?/sec) Material k (cm?/sec)
Aluminum 0.84 Gold 1.18

Brick 0.0057 Granite 0.008-0.018
Castiron 0.17 Ice 0.0104
Copper 1.12 PVC 0.0008
Concrete 0.004-0.008 Silver 1.70

Glass 0.0043 Water 0.0014

throughout the material. If we divide lzy, and sek = C/cp, the equation becomes

au %u . au 92u

a9t ox2 ot ox?

The constank is called thethermal diffusivity of the material. The units df are
(length}/time. The values ok for some common materials are listed in Table 1.

Equation (1.9) is called thkeat equation As we have shown, it models the
flow of heat through a material and is satisfied by the tempegatlt should be
noticed that if we have a wall with height and width that amgdain comparison to
the thicknes4 , then the temperature in the wall away from its ends will aepenly
on the position within the wall. Consequently we have a oneedisional problem,
and the variation of the temperature is modeled by the hestteop in (1.9)

A similar derivation shows that the diffusion of a substaticeugh a liquid or a
gas satisfies the same equation. In this case it is the caatientl that satisfies the
equation. For this reason equation (1.9) is also referred thediffusion equation

(1.9)

I

Subscript notation for derivatives

We will find it useful to abbreviate partial derivatives byingsubscripts to indicate
the variable of differentiation. For example, we will write

u_au u_au y 02U and U _ 9%
“ToaxT Y T oy YT axay’ T ax2

Using this notation, we can write the heat equation in (1ujegsuccinctly as

Ut = Kuyy.

The inhomogeneous heat equation

Equation (1.9) was derived under the assumption that te@@source of heat within
the material. If there are heat sources, we can modify theeftocaccommodate
them. If we look back to equation (1.7), which accounts far thte of flow of
heat intoU, we see that we must modify the right-hand side to accourihfernal
sources. We will assume that the heat source is spread thoatithe material and
that heat is being added at the ratepgfi, x, t) thermal units per unit volume per
second.

Notice that we allow the rate of heat inflow to depend on thepenatureu, as
well as onx andt. An example would be a rod that is not completely insulated
along its length. Then heat would flow into or out of the rochalds length at a rate
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that is proportional to the difference between the tempieeah U and the ambient
temperature, sp(u, X, t) = a[u — T], whereT is the ambient temperature.
Assuming there is a source of heat, equation (1.7) becomes

dQ au au b
T CS[&(b, t) — &(a, t)} + S/;1 p(u, x, t) dx.

The rest of the derivation is unchanged, and in the end we get

ou 9%u au u p
cp— =C— , of —=Kk—s+ —. 1.10
“ P ot %2 + co ( )
Because of the term involving, equation (1.10) is called thehomogeneous heat
equation while equation (1.9) is called tHeomogeneous heat equation.

Initial conditions

We have seen that ordinary differential equations have nsahytions, and to de-
termine a particular solution we specify initial condit®onThe situation is more
complicated for partial differential equations.

For example, specifying initial conditions for a temperatrequires giving the
temperature at each point in the material at the initial tirmethe case of the rod
this means that we give a functidnx) defined for 0< x < L and we look for a
solution to the heat equation that also satisfies

uix,0) = f(x), forO<x<lL. (1.12)

Types of boundary conditions

In addition to specifying the initial temperature, it wikimecessary to specify con-
ditions on the boundary of the material. For example, thepenature may be fixed
at one endpoint of the rod as the result of the material bainigeelded in a source
of heat kept at a constant temperature. The temperaturddg médl be different at
the two ends of the rod. Thus if the temperaturg at 0 is To and that ak = L is
T., then the temperaturgx, t) satisfies

u0,t)=Tp and u(L,t)=T., forallt. (1.12)

Boundary conditions of the form in (1.12) specifying theusbf the temperature at
the boundary are callddirichlet conditions

In other circumstances one or both ends of the rod might hdatesd. This
means that there is no flow of heat into or out of the rod at tpeg&s. According
to the discussion leading to equation (1.5), this means that

u

ax
at an insulated point. This type of boundary condition issthiheNeumann condi-
tion. Arod could satisfy a Dirichlet condition at one boundarjipand a Neumann
condition at the other.

There is a third condition that occurs, for example, whename of the rod is
poorly insulated from the exterior. According to Newtorasvl of cooling, the flow

0 (1.13)
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of heat across the insulation is proportional to the diffieesin the temperatures on
the two sides of the insulation. If this is true at the endpgir= 0, then arguing
along the same lines as we did in the derivation of equatid),(lve see that there
is a positive number such that

au
&(O, t) =a(,t) - T), (1.14)

whereT is the temperature outside the insulation anid the temperature at the
endpointx = 0. Poor insulation at the endpoixt= L leads in the same way to a
boundary condition of the form

au
&(L,t) = —pu(L,t) —T), (1.15)

wheref > 0. Boundary conditions of the type in (1.14) and (1.15) atkeddRobin
conditions

Robin boundary conditions also arise when a solid wall madhsid or a gas.
In such a case a thin boundary layer is formed, which shiélelsest of the fluid or
gas from the temperature in the wall. The consfaig sometimes called thieeat
transfer coefficient.

Initial/boundary value problems

Putting everything together, we see that the temperat(¢eet) in an insulated rod
with Dirichlet boundary conditions must satisfy the heataipn together with initial
and boundary conditions. The complete problem is to find atfanu(x, t) such
that

Ut (X, t) = kuyy, for0O < x < L andt > 0,
u0,t) =Ty, and u(L,t)=T., fort=>0, (1.16)
ux,0 = f(x), forO<x<L.
The functionf (x) is the initial temperature distribution. The initial/balary value
problem is illustrated in Figure 2. As we have indicated, Digchlet boundary

condition at each endpoint in (1.16) could be replaced witeamann or a Robin
condition.

The maximum principle.

One of the major tenets of the theory of heat flow is that heasffoom hot areas
to colder areas. From this starting point, physical reaspailows us to conclude
that the temperatura(t, x) cannot get too hot or too cold in the region where it
satisfies the heat equation. To be precise, let

m= min f(xX) and M = max f(X).
0<x<L O<x=L

Then, ifu(t, x) is a solution to the initial/boundary value problem in (2,16

min{m, To, TL} < u(t,X) <maxM, T, T.} forO<tandO<x < L.
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u(t,0) = T u =ku u(tL) = T

0 u(x,0) = f(x) T > x

Figure 2 The initial/boundary value problem for the heat
equation.

This result is called thenaximum principle for the heat equation.In English it

says that a temperatutgt, x) defined for 0< t and 0 < x < L must achieve
its maximum value (and its minimum value) on the boundaryhefitegion where
it is defined. Thus in Figure 2 The temperatui@, x) in the indicated half-strip
must achieve its maximum and minimum values on the thres livtdch forms its
boundary.

Linearity
If uandv are functions and andpg are constants, then
au ad

%(au—i—ﬁv) =o0—+f

v
— 1.17
aX aX ( )

We will express this standard fact ab@ydx by saying that it is dinear operator.

It is anoperatorbecause it “operates” on a functiorand yields another function
du/ox. Thatitislinear simply means that (1.17) is satisfied. It follows easily that
more complicated differential operators, such as

02 02

— and
0x2 oxoy

are also linear. It then follows that the heat operator

9 92
at X2

is linear. This implies the following theorem.
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THEOREM 1.18 The homogeneous heat equation is a linear equation, methaitiju andv satisfy

Ut = Kuyy and vy = Koyy,

anda and g are constants, then the linear combination= «ou + Bv satisfies
wy = Kwyy, SOw is also a solution to the homogeneous heat equation.

We will make frequent use of Theorem 1.18. It will enable ubudd up more

complicated solutions as linear combinations of basictswis.

EXERCISES

1

Suppose that the temperature at each point of a rod of ldnggloriginally at
15°. Suppose that starting at tinhe= 0 the left end is kept at®zand the right
end at 25. Write down the complete description of the initial/boundealue
problem the temperature in the rod must obey.

Show that the temperature in the rod in Exercise 1 must g&tisfu(x, t) < 25
fort >0and0O< x < L.

Suppose the specific heat, density, and thermal condyctieppend orx, and
are not constant. Show that the heat equation becomes

a (cou] = a C8u
ot T T x| T ax
If our rod is insulated at both ends, we would expect thatdted amount of heat
in the rod does not change with time. Show that this followaTfequation (1.7).

Prove Theorem 1.18 by showing that = kwyy.

6. Solutions to the Dirichlet problem in (1.16) are unique. sTimeans that if both

u andv satisfy the conditions in (1.16), thar(x,t) = v(x,t) fort > 0 and
0 < x < L. Use the linearity of the heat equation and the maximum gplaci
to prove this fact.

Suppose we have an insulated aluminum rod of lehgtBuppose the rod is at a
constant temperature of 45, and that starting at time= 0, the left-hand end
point is kept at 26K and the right-hand endpoint is kept at’B5 Provide the
initial/boundary value problem that must be satisfied byt¢ineperaturei(t, x).

Suppose we have an insulated gold rod of lenigthSuppose the rod is at a
constant temperature of 45, and that starting at time= 0, the left-hand end
pointis kept at 20K while the right-hand endpointis kept insulated. Proviake t
initial/boundary value problem that must be satisfied byt¢imeperaturei(t, x).

Suppose we have an insulated silver rod of lengthSuppose the rod is at
a constant temperature of K5 and that starting at timé = 0, the right-
hand end point is kept at 38 while the left-hand endpoint is only partially
insulated, so heat is lost there at a rate equal.@®13 times the difference
between the temperature of the rod at this point and the arhteenperature
T = 15°K. Provide the initial/boundary value problem that must a&tsfied by
the temperatura(t, x).
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13.2 Separation of Variables for the Heat Equation
We will start this section by solving the initial/boundargiue problem

Ut (X, t) = kuyy(X,t), fort>0andO< x < L, (2.2)
u@,t)=Tg and u(L,t)=T_., fort >0, (2.2)
uix,0 = f(x), forO<x<1L. (2.3)

that we posedin (1.16).

Steady-state temperatures

It is useful for both mathematical and physical purposesptit e problem into
two parts. We first find the steady-state temperature thafieatthe boundary
conditions in (2.2). Asteady-statéemperature is one that does not depend on time.
Thenu; = 0, so the heat equation (2.1) simplifieastg = 0. Hence we are looking
for a functionus(x) defined for 0< x < L such that

9°us (xX)=0, forO<x <L
= < <
X2 ’ ’ (2.4)

Us(0,t) =Ty and ug(L,t)=T_, fort>D0.

The solution to this boundary value problem s easily fosid;e the general solution
ofthe differential equation iss(x) = Ax+ B, whereAandBare arbitrary constants.
Then the boundary conditions reduce to

Uus(0)=B=Ty and us(L)=AL+B=T,.

We conclude thaB = Tp andA = (T — Tp)/L, so the steady-state temperature is
X
Us(X) = (T — TO)E + To.

It remains to findv = u — us. It will be a solution to the heat equation, since
bothu andus are, and the heat equationis linear. The boundary and iodtieditions
thatv satisfies can be calculated from thosedaandus in (2.2), (2.3), and (2.4).
Thus,v = u — us must satisfy

v (X, 1) = kugy (X, 1), for0 < X < L andt > 0,
v(0,t) =v(L,t) =0, fort > 0, (2.5)
v(X,0) =g(xX) = f(X) —us(x), forO<x<L.

The mostimportantfactis that the boundary conditionsfarev (0, t) = v(L,t) =
0. When the right-hand sides are equa)l e say that the boundary conditions are
homogeneousThis will make finding the solution a lot easier.
Having found the steady-state temperatyrand the temperatuig the solution
to the original problem isi(x, t) = us(x) + v(X, t).
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Solution with homogeneous houndary conditions

We will find the solution to the initial/boundary value prebt with homogeneous
boundary conditions in (2.5) using the techniqusegparation of variableslt should
be noted that separation of variables can only be used te swoivnitial/boundary
value problem when the boundary conditions are homogen&ice this is the first
time we are using the technique, and since it is a techniqueilivase throughout
this chapter, we will go through the process slowly. The baiga of the method of
separation of variables is to hunt for solutions in the praidorm

v(X, 1) = X(X)T (1), (2.6)

where T (t) is a function oft and X(x) is a function ofx. We will insist that
the product solution satisfies the homogeneous boundary conditions. Sinee 0
v(0,t) = X(0)T(t) for allt > 0, we conclude thaX(0) = 0. A similar argument
shows thatX (L) = 0. This leads to a two-point boundary value problemXothat
we will solve. In the end we will have found enough solutiofshe factored form
so that we will be able to solve the initial/boundary valuelgem in (2.5) using an
infinite linear combination of them.

There are three steps to the method.

Step 1. Separate the PDE into two ODEs. When we insert = X(X)T(t) into
the heat equation, = kvyy, we get

XOO)T (1) = kX" (x)T (). (2.7)

The key step is to separate the variables by bringing eviexytttepending on to
the left, and everything depending &rio the right. Dividing (2.7) byk X (x)T (1),
we get

T'®)  X'(X

KT() XX

Sincex andt are independent variables, the only way that the left-hade, s
function oft, can equal the right-hand side, a functiorxofs if both functions are
constant. Consequently, there is a constant that we wilevas— X, such that

T'(t) X"(X)
7 - _
KT (O and < :
or
T 4+2kT =0 and X’ +iX = 0. 2.8)

The first equation has the general solution
T(t) = Ce K. (2.9)

We have to work a little harder on the second equation.

Step 2: Set up and solvethetwo-point boundary valueproblem. Since we insist
that the solutionX satisfies the homogeneous boundary conditions, the coenplet
problem to be solved in findin¥ is

X"+ 22X =0 with X(0) = X(L) = 0. (2.10)
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Notice that the problem in (2.10) is not the standard init&le problem we have
been solving up to now. There are two conditions imposednistead of both being
imposed at the initial point = 0, there is one condition imposed at each endpoint
of the interval. Accordingly, this is calledtao-point boundary value problemit

is also called &turm Liouville problem?*

Another point to be made is that the constarns still undetermined. Further-
more, as we will see, for most valuesiothe only solution to (2.10) is the function
that is identically 0. Solving a Sturm Liouville problem aords to finding the
numbers\ for which there are nonzero solutions to (2.10).

DEFINITION 2.11 A numberx is called areigenvaluefor the Sturm Liou-
ville problemin (2.10) if there is a nonzero functidhthat solves (2.10). I£

is an eigenvalue, then any function that satisfies (2.1Q)lled aneigenfunc-
tion.?

The solution to a Sturm Liouville problem like (2.10) is thet bf its eigenvalues
and eigenfunctions. Notice that because of the linearithefdifferential equation
in (2.10), any constant multiple of an eigenfunction is asoeigenfunction. We
will usually choose the constant that leads to the least Gioatpd form for the
eigenfunction.

Let’s return to the examplein (2.10). We will first show tHatite are no negative
eigenvalues. To see this, $et= —r?, wherer > 0. The equation in (2.10) becomes
X" —r?X = 0, which has general solutiod(x) = C,&'* + C,e "*. The boundary
conditions are

0=X(0)=C;+C;
0= X(L) =Ci&'t + Coe .
From the first equatiorG, = —C;. Inserting this into the second equation, we get
0=Cy(e"—e ™).

Sincer # 0, the factor in parenthesis on the right is nonzero. H&hce- 0, which
in turn implies thatC, = 0, so the only solution iX(x) = 0. This means thait is
not an eigenvalu@.

This argument can be repeated.it= 0. In this case the differential equation
becomes” = 0, which has the general solutiofix) = ax + b, wherea andb are
constants. The boundary conditions becomrse B (0) = band0= X (L) = aL+Db,
from which we easily conclude that=b = 0.

! This is our first example of a Sturm Liouville problem. We veétldy them in some detail in Sections 6
and 7.

2You will observe that finding the eigenvalues and eigenfionstof a Sturm Liouville problem is similar
in many ways to finding the eigenvalues and eigenvectors adtebm It might be useful to compare the
situation here with Section 9.1.

3This agrees with our physical intuition about heat flow. K were a solutioX with 1 < 0, then
according to (2.6) and (2.9), the product solution to the bgaation would be(x, t) = e " X(x).If » <

0, this solution would grow exponentially in magnitudetascreases. In fact, we notice experimentally
that temperatures tend to remain stable over time in thenabsaf heat sources.
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Next suppose that > 0 and sek = w?. Then the differential equation in (2.10)
is X" 4+ w?X = 0, which has the general solution

X(X) = acoswx + bsinwx.

For this solution the boundary conditiot(0) = 0 becomesa = 0. Then the
boundary conditiorK (L) = 0 becomes

bsinwL = 0.

We are only interested in nonzero solutions, so we must hiavels = 0. This
occurs ifoL = nx for some positive integen. When this is true we have the
eigenvalue. = w? = n?z2/L2. For any nonzero constabf X (x) = bsin(nzx/L)
is an eigenfunction. The simplest thing to do is tolset 1.

In summary, the eigenvalues and eigenfunctions for theSitimuville problem
in (2.10) are

n’mn? nmwx
An = 2 and Xup(X) = sin (T) , forn=1,2,3,.... (2.12)

Finally, by incorporating (2.9) and (2.12), we get the proickolutions,

. nm X
(X, 1) = e Pk gy (%) . forn=1,23 ..., (2.13)

to the heat equation, that also satisfy the boundary camdii(O, t) = v,(L,t) = 0.

Step 3: Satisfying theinitial condition. Having found infinitely many product so-
lutions in (2.13), we can use the linearity of the heat equasee Theorem 1.18) to
conclude that any finite linear combination of them is alsolat®n. Hence, ifo,

is a constant for eaah, then for anyN the function

N N
v, ) =Y bon(x.t) = Y bpe "W/ sin (”LLX)
n=1

n=1

is a solution to the heat equation that satisfies the homagsrimundary conditions.
We are naturally led to consider the infinite series

v(X, t) = Z brun(X, t) = Z bye "KL sin (?) ) (2.14)
n=1

n=1

We will assume that the coefficierttg are such that this series converges, and that
the resulting functiorv satisfies the heat equation and the homogeneous boundary
conditions. These facts are true formdilfhey are also true in the cases that we will
consider, but we will not verify this. To do so requires somregthy mathematical
arguments that would not significantly add to our understandf the issue.

4Formally means that we ignore the mathematical niceties of verifyied we can differentiate the
functionv by differentiating the terms in the infinite series.
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EXAMPLE 2.17 O

Referring back to our original initial/boundary value pl@f in (2.5), we see
that the functiorv defined in (2.14) satisfies everything except the initialditon
v(X, 0) = g(x) = f(x)—us(x). However, we have yet to determine the coefficients
b,. Using the series definition farin (2.14), the initial condition becomes

>\, . /nmX
g(x) = v(x,0) = ;bﬂ sin (T) , for0O<x<L. (2.15)

Equation (2.15) will be recognized as the Fourier sine egjerfor the initial tem-
peratureg. According to Section 12.3, and in particular equation }3Te values
of b, are given by

2 [t . /NmX
b, = E/(; g(x) sin (T> dx. (2.16)

Substituting these values into (2.14) gives a completetisoluio the homoge-
neous initial/boundary value problem in (2.5). As indichpeeviously, the function
u(x,t) = us(x) + v(x,t) satisfies the original initial/boundary value problem in
equations (2.1), (2.2), and (2.3).

Suppose arod of length 1 meter (100cm) is originally°&.G5tarting at time = 0,
one end is kept at the constant temperature of CQ@vhile the other is kept at
0°C. Find the temperature distribution in the rod as a funatibiime and position.
Assume that the thermal diffusivity of the rodkis= 1 cn?/sec.

If we use the meter as the unit of length, thes: 0.0001 nf/sec. The temper-

ature in the rodu(x, t), must solve the initial/boundary value problem
Ut (X, t) = 0.0001uyy(X,t), fort >0andO< x <1,
u©0,t) =0 and u(l,t)=100 fort >0, (2.18)
ux,0 =0, forO<x<1.

Following the discussion at the beginning of this sectioa ywite the tempera-
ture distribution asl = us + v, whereus(x) is the steady-state temperature with the
same boundary conditions asandv is a temperature with homogeneous boundary
conditions, and the same initial conditionas- us. The steady-state temperature
Us must satisfy

ug =0 with ug(0) =0 and us(1) = 100
We easily see thats(x) = 100x.
Then the temperature= u — us must satisfy
v (X, 1) = 0.000vyy(x,t), fort>0andO< x < 1,
v(0,t) =0 and v(1,t)=0, fort>0, (2.19)
v(X,0) = —-100x, forO<x <1.

The boundary values are homogeneous, so we can use the ddiontihe solution
in (2.14), withk = 0.0001 andL = 1, to get

v(X, t) = Z by 00002t gy (2.20)
n=1
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The coefficients are determined by the initial conditionttiBgt = 0 in (2.20) and
usingv(x, 0) = —100x, we obtain

—100x = ) by sinnmx.
n=1

Therefore, théo, are the Fourier sine coefficients 6fL00x on the interval0, 1),
which by (2.16) are

! . ro 200
b, = 2/ (—=100x) sinnTx dx = —200/ xsinnexdx = (=1)"—.
0 0 nmw
Thus,

_ @ - (__]-)nefo.ooomZnZt

n=1
Finally, the temperature in the rod is

v(X, 1)

sinnm X.

200 (—D)" _
u(x, t) = us(x) + v(x, t) = 100x + — Z %e*°'°°°1“2”2‘ sinnzx. (2.21)
T
n=1
u
100 &
50+
0 : >
0 0.5 1

Figure 1 The temperature in the rod in Example 2.17.

The temperature is plotted in Figure 1. The initial tempaeisu(x, 0) = 0°C.
The steady-state temperature is plotted in blue. The blackes represent the
temperature distribution after 200 second intervals. d¢otiow the temperature
increases with time throughout the rod to the steady-stagérature. Heat flows
from hot to cold, so to maintain the new temperature of’Q08t the right endpoint,
heat must flow into the rod at this point. It then flows throulgé tod, raising the
temperature in the process. Some heat has to flow out of thet the left endpoint
to maintain the temperature there. Eventually the rod ressteady state, at which
point as much heat flows out of the rodat= 0 as flows in ak = 1. 0
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The rate of convergence
The general term in the infinite series in equation (2.14) is

. /nmx
bne "L gin (%) . (2.22)

Since the sine function is bounded in absolute value by ¥, tdvim is bounded

by |byle "*7?}/L? By the Riemann-Lebesgue lemma (see Theorem 2.10 in Section
12.2), the Fourier coefficielt, — 0 asn — oo. On the other hand, the exponential
terme "“7/L? 0 extremely rapidly a® — oo, at least if the produdtt is
relatively large. As a result the series in equation (2. bfiverges rapidly for large
values of the timé. The resultis thatthe sum of the seriesin (2.14) can be atslyr
approximated by using relatively few of the terms of the iitéiseries. Sometimes
one term is enough.

EXAMPLE 2.23 ' For the rod in Example 2.17 how many terms of series in (2.2¢)reeeded to
approximate the solution within one degree foe 10, 100, and 1000. Estimate
how long will it take before the heat in the rod is everywheithin 5° of the steady-
state temperature?

The general term in the series in (2.21) is bounded bye2®®°1r*t /nz We
will estimate the error by computing the first omitted tetmfihus we want to find the
smallest integen for which 20G00001n+1t /[y 4 1)7] < 1. Since we cannot
solve this inequality fon, we compute the left-hand side for valuesxaindt until
we get the correct values. Foe 10 we discover that we need 12 terms, while for
t = 100 we need 5, and far= 1000 one term will suffice.

For the temperature of the rod to be withih& the steady-state temperature,
we will certainly need the first term in the infinite series 1) to be less than 5.
If we solve 20@%°00%% /7 — 5 we obtaint = 2, 578sec. We compute that for
t = 2,578, the second term in the series is abo00Q2, sa¢ = 2, 578 sec is a good
estimate. However, in view of the fact that we are ignoringi® and an estimate is
not expected to have four place accuracyp@) sec might be preferable, and since
2,580 sec is 43 minutes, that might be even better. O

Insulated boundary points

As mentioned in Section 1, if the boundary points of the rediasulated, there is no
flow of heat through the endpoints of the rod, and the correahtary conditions
are the Neumann conditiong (0, t) = 0 = ux(L, t). The initial/boundary value
problem to be solved is now

Ut (X, t) = kuyy (X, t), fort>0andO< x < L,
Uy(0,t) =0 and uy(L,t) =0, fort >0, (2.24)
uix,0) = f(x), forO<x<L.

5This is a rough estimate and is not a usually a good idea. usttfied in this case because the terms are
decreasing so rapidly.
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We will use the method of separation of variables againtistaby looking for
product solutionsi(x,t) = X(x)T(t). Notice that since the Neumann boundary
conditions are homogeneous, it is not necessary to findelaegtstate solution first.

Step 1: Separate the PDE into two ODEs. This first step is unchanged. The
productu(x, t) = X(x)T(t) is a solution only if the factors satisfy the differential
equations

T +2kT =0 and X"+aX =0, (2.25)
wherea is a constant. The first equation has the general solution
T(t) = Ce "X, (2.26)

Step 2: Set up and solve the two-point boundary value problem. We will again
insist that the product solution satisfy the boundary ctioils. Since 0= u;(0,t) =
X'(0)T(t) forallt > 0, we must haveX’(0) = 0. A similar argument shows that
X’(L) = 0, so we want to solve

X"+ AX =0 with X(0) = X'(L) =0. (2.27)

This is the two-point or Sturm Liouville boundary value piedn for the Neumann
problem. As before, we find that there are no negative eideesa If . = 0O the
differential equation in (2.27) become§’ = 0, which has the general solution
X(x) = ax + b. The first boundary condition is & X'(0) = a, leaving us with
the constant functioiX (x) = b. This function also satisfies the second boundary
X'(L) = 0, soxr = 0is an eigenvalue. We will choose the simplest nonzero eohst

b = 1 and setXo(x) = 1. The corresponding function in (2.26) g = C, which

is also a constant. Once more we choBGse 1 so the resulting product solution to
the heat equation is the constant function

Up(X,t) = Xo(X)To(t) =1

Forx > 0, we sefs = w?, wherew > 0. Then the differential equation in (2.27) is
X" 4+ w?X = 0, which has the general solution(x) = acoswx + bsinwx. The
boundary conditionX’(0) = 0 becomesvb = 0. Sincew > 0, we haveb = 0.
Then the boundary conditiod’(L) = 0 becomes

wasinwL = 0.

Since we are only interested in nonzero solutions, we mug sinwlL = 0.
Therefore,wL = nxz for some positive integen. When this is true we have
A = w? = n?z?/L? and X(x) = acognmx/L). Again a can be any nonzero
constant, and the simplest choicais- 1.
In summary, the eigenvalues and eigenfunctions for thenBtuiouville problem
in (2.27) are
27.[2
An =

nm X
= and xn(x):cos(%), forn=0,1,2,3,....  (2.28)

Notice that in the case = 0, Xo(x) = 1, as we found earlier. For every nonnegative
integern we get the product solution

Un(X, 1) = e kL2 cos(?) (2.29)
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EXAMPLE 2.33 O

to the heat equation by using (2.26). Observe that this isolatlso satisfies the
boundary conditions
SUn
ax
Step 3: Satisfying the initial conditions. Having found infinitely many product
solutions in (2.29), we can use the linearity of the heat équ#see Theorem 1.18)

to conclude that any linear combination of the product sohg is also a solution.
Hence ifa, is a constant for eaah, the function

au
0,t) = —(L,t) = 0.
ax

u(x,t) = % + Y anUn(X, 1)

i (2.30)

o kn272t /12 nmx

= — e cos( —

2 +n§a” ( L )

is formally a solution. Setting(x, 0) = f (x), we obtain the equation
a - nmx

f(x) == cos|— ). 2.31
0=F+ e () (2:31)

This is the Fourier cosine expansionfobn the interval 0< x < L. From Section 3
of Chapter 12, and especially equation (3.2) in that septiersee that the coefficients
a, are given by

2 [t N7 x
a, = E/(; f(x) COS<T> dx, forn=>0. (2.32)

Substituting these values into (2.30) gives a completetisolto the heat equation
with Neumann boundary conditions.

Notice that each term in the infinite sum in (2.30) tends to 0 as co. Using
this and the definition of the coefficiea we see that

. 1 [t

lim u(x,t) = i = —/ f (x) dx.

t—o00 2 L 0
Thus ag increases in an insulated rod, the temperature tends tostasdrequal to
the average of the initial temperature.

Suppose a rod of length 1 meter made from a material with thediffusivity
k = 1 cn?/sec is originally at steady state with its temperature naéied at 0C
atx = 0 and at 100C atx = 1. (See Example 2.17.) Starting at tirne= 0,
both ends are insulated. Find the temperature distribinitime rod as a function of
time and position. Find the constant temperature which js@grhed as — oc.
Estimate how long it will take for all portions of the rod totde within 5°C of the
final temperature?
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Accordingto our analysis in Example 2.17, the steady-s¢atperature dt= 0
is f(x) = 100x, with x measured in meters. This will be the initial temperature.
With length measured in meteks= 0.0001 nf/sec. Our new initial/boundary value
problem is

Ut (X, t) = 0.0001uyy(X,t), fort>0andO< x <1,
Ux(0,t) = ux(L,t) =0, fort >0, (2.34)
ux,0) = f(x) =100x, forO0O<x <1.

The solution as given in (2.30) with= 0.0001 and. = 1is

o0

ux,t) = % + Zanefo.ooomZnZt cosnmx. (2.35)
n=1

5 - .

Thea, are the Fourier cosine coefficients of D00n the interval0, 1], soag = 100,
and

1 0, forn > 0 even,
ap = 2/ 100x cosnzx dx = 400
0

e for n odd.
T

Substituting into (2.35), using = 2p + 1, we get the solution

400 & 1
ux, ) =50— — > ———
n2 L= (2p+1)

g 00001@p )% oogop 4 T)rx.  (2.36)

Notice that each of the terms in the series, with the excemifahe constant
first term, include an exponential factor that approaches 0 & oo. Thus the
temperature in the rod approaches the constant, steagytestaperature of 5C as
t — oco. Notice also that 5TC is the average of the initial temperature over the rod.
This reflects the fact that the ends are insulated, and ndlbeatinto or out of the
rod.

We suspect that one of the exponential terms (witl: 0) in equation (2.36)
will suffice to find how long it takes for the temperature to bigwm 5° of the constant
steady-state temperature. We solve 0% /72 — 5 to gett = 2, 120 sec.
We check that the contribution to the temperature of phe 1 term is less than
3x 1078, s0 2 120 sec is a good estimate.

The temperature is shown in Figure 2. The initial tempegafuix) = 100x
and the constant steady-state temperature o€ %0e shown plotted in blue. The
black curves are the temperature profiles plotted at tinezvats of 300s. 0

EXERCISES
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u
100 &

50

4; t iy
0.5 1

Figure 2 The temperature for the rod in Example 2.33.

1. Consider a rod 50 cm long with thermal diffusivikcn?/sec. Originally the
rod is at a constant temperature of 100Starting at time = 0 the ends of the
rod are immersed in an ice bath at temperatdf@ @Ghow that the temperature
u(x, t) in the rod fort > 0 is given by

ux,t) = Z __400 e k@p+1)2r?1/2500gjp <@> ) (2.37)
par 2p+Drn 50

If the rod is made of gold, find the thermal diffusivity in Takl on page 753,
and estimate how long it takes the temperature in the roddedse everywhere
to less than 18C. How many terms in the series foare needed to approximate
the temperature within one degreetat= 100sec. On one figure, plot the
temperature versusfor t = 0, 100, 200, 300, 400.

2. Estimate how long it takes the temperature in the rod in Egert to decrease
everywhere to less than 40 if it is made of aluminum, silver, or PVC. For
aluminum and silver, how many terms of the series in (2.3€)rsgeded to
approximate the temperature throughout the rod withimvhent = 100 sec.
For PVC, how many terms are needed to approximate the tetpethroughout
the rod within £ whent = 1 day.

3. Consider a wall made of brick 10 cm thick, which separatesoarim a house
from the outside. The room is kept at20
(a) Originally the outside temperature is"@and the temperature in the wall
has reached steady-state. What is the temperature in thattlaik point?

(b) There is a sudden cold snap and the outside temperaps tr—10°C.
Find the temperature in the wall as a function of position tme.

4. The wall of a furnace is 10 cm thick, and built from a refragtoraterial with
thermal diffusivityk = 5 x 10 °cn?/sec Originally there is no fire in the
furnace and the temperature of the furnace and the outsideath 20C. At
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t = 0, afireis lit and the inside of the furnace is quickly raised 20°C. Find
the temperature in the wall for> 0.

In Exercises 5-8, find the temperatufé, x) inarod modeled by the initial/boundary
value problem

Ut (X, 1) = kuyy (X, t), fort>0andO< x < L,
u0,t)=Tp and u(L,t)=T., fort >0,
uix,0) = f(x), forO<x<L.

with the indicated values of the parameters.
5 k=4,L=1To=0,T. =0, andf(x) = x(1 - x)
6. k=2,L=m,To=0, T =0, and f (x) = sin 2x — sin 4x
7.k=1L=mxTo=0, T =0, andf(x) = sirfx
8 k=1,L=1To=0,T. =2 andf(x) =X

In Exercises 9—12 use the temperature computed in the giezaise. Plot the initial
temperature versusand add the plots of the temperatue versudsr a number of
time values like those in the text that show the significamtipo of the change of
the temperature. (Approximate the solution with an appadermpartial sum.) In
addition, ploty = uy(0,t) andy = ux(L,t) as functions ot. Recall from (1.5)
and (1.6) that these terms are proportional to the heat fhmutih the endpoints of
the rod. Give a physical description of what is happenind&temperatue as time
increases. Include the information from the graphs of thedhd the graphs of the
solution.

9. Exercise 5
10. Exercise 6
11. Exercise 7
12. Exercise 8

In Exercises 13-18, find the temperatwré, x) in a rod modeled by the ini-
tial/boundary value problem

Ut (X, t) = Kuyy(X,t), fort>0andO< x < L,
Uy(0,t) = uy(L,t) =0, fort >0,
ux,0) = f(x), forO<x<L.

with the indicated values of the parameters. Plot the smidtr a number of time
values like those in the text that show the significant partié the change of the
temperature. Give a physical explanation of what is happgeto the solution as
time progresses.

X 0<x<1/2

13. k=1L =1, andfx) = | *
’ andfeO =11 _%.  12<x<1
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1 O<x<l1
4. k=1,L=2andf(x) =1 -
) ,andf (x) {0’ 1<x<2

15. k=1, L =1, andf (x) = sin(zx)
16. k=1, L =1, andf (x) = cogmXx)

17. k= 1. L = 2, andf 0, =X=
ck=Ll=2andtCo=1. 1) 1_x<2

18. k=1/3, L =2, andf (x) = x(2 — x)

In Exercises 19-21, we will consider heat flow in a rod of l&rigtwhere an internal
heat source, given bg(x), is present. As indicated in equation (1.10), this leads to
the initial/boundary value problem

9 92
—u—k—uzM O<x<L,t>0
ot X2 co

u@O,t) = A, u(L,t) =B,

ux,0=f(x) 0<x<Ll,

(2.38)

for the inhomogeneous heat equation, whérand p are given (known) functions
of x and A andB are constants.

19. The corresponding steady-state solution is the function) that satisfies the
partial differential equation and the boundary conditioBsow that (x) satis-
fies

v'(X) = —?, with v(0) = A and v(L) = B.

(Remember that = C/cp, whereC is the thermal conductivity.) Suppose that
Unh(X, t) is the solution to the initial/boundary value problem

au 92u
Th kI _0 0<x<L.t>0,
at X2

Up(0,t) =0 =up(L,t) t >0,

Up(x,0) = f(x) —v(x) 0<x<L.

for the homogeneous heat equation. Show that the funatiort) = up(x, t) +
v(X) is a solution to the initial/boundary value problem in (2.38

20. Use Exercise 19 to find the solution to the initial/boundagjue problem
in (2.38)withk = 1,L =1, p(x)/co = 6X, A= 0,B = 1, andf (x) = sinzx.

21. Use Exercise 19 to find the solution to the initial/lboundasjue problem
in (2.38) withk = 1, L = 1, p(X)/co = € *, A=1, B = —1/e, and
f (X) = sin 27 x.
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13.3 The Wave Equation

We will start with the derivation of the wave equation in opase dimension. We
will be modeling the vibrations of a wire or a string that isesthed between two
points. A violin string is a very good example. We will alsmloat two techniques
for solving the wave equation.

Derivation of the wave equation in one space variable

We assume the string is stretched fram= 0 tox = L. We are looking for the
functionu(x, t) that describes the vertical displacement of the wire attjpost and
at timet. We assume the string is fixed at both endpointsj@t) = u(L,t) =0
for all t. We will ignore the force of gravity, so at equilibrium we lgaux, t) = 0
for all x andt, which means that the string is in a straight line betweenwtlodixed
endpoints.

To derive the differential equation that models a vibrasitrang, we have to make
some simplifying assumptions. In mathematical terms tlseimptions amount to
assuming that both(x, t), the displacement of the string, afd/dx, the slope of
the string, are small in comparisonltq the length of the string.

T

u(x)

X x+ Ax

Figure 1 The forces acting on a portion of a vibrating
string.

Consider the portion of the string above the small intereaheerx andx + AXx,
as illustrated in blue in Figure 1. The forces acting on tlugipn come from the
tensionT in the string. The tension is a force that the rest of the gteixerts on this
particular part. For the portion in Figure 1, tension acthaendpoints. We assume
that the tension is so large that the string acts as if it weréeptly flexible and can
bend without the requirement of a bending force. With thatiagption, the tension
acts tangentially to the string.

The tension at the poimtis resolved into its horizontal and vertical components
in Figure 2. We are assuming that the positive direction ward. The vertical
componentisly, = —T sind, and the horizontal componentig = — T cosf. The
slope of the graph af at the pointx is

au
— = tand.
X

We are assuming that the slope is very smallg $® small. Therefore, cas~ 1,

Figure 2 The resolution of the
tension at the point x.
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and tard ~ sinf. As a result, we have
au
Tu~ -T—(x,t) and Ty~ —T.
aX

In a similar manner, we find that horizontal component of thed atx + Ax is
approximatelyT, which cancels the horizontal componenkaMore interesting is
the fact that the vertical component of the forcexat Ax is approximately

au
T—X+ AX, 1),
aX

so the total force acting in the vertical direction on the Bipartion of the string is
ou au
FAT|—X4+AX, 1) — —(X,1)].
X axX

The length of the segment of string is close\w. If the string is uniform and has
linear mass density, then the mass of the segmentris= p Ax. The acceleration
of the segment in the vertical directiordidu/at2. By Newton’s second law, we have
F = ma, which translates into

9%u ou ou
AX—~T | —X+ AX, 1) — — (X, 1) ].
PAX= (8x( + ) ax( ))

Dividing by Ax and taking the limit ag\x goes to 0, we have
2

otiim = (B axn - Dxn) =T
P2 = axoo Ax \ax ’ ax )

9%u
ax2’
If we setc? = T/p, the equation becomes
Ut = C2Uyy. (3.1)

This is the wave equation in one space variable. The consthat dimensions
length/time, so it is a velocity.

Notice that the homogeneous wave equation in (3.1) is lin@aice again we
can build complicated solutions out of simpler ones.

Solution to the wave equation by separation of variables

Let’s turn to the solution of the equation for the vibratirigreg. Since the wave
equation is of order 2 it, we are required to specify the initial velocity of the sgrin
as well as the initial displacement. Thus we are led to th#lfboundary value
problem

Ut (X, 1) = CPUyx (X, t), for0 < x < L andt > 0,
u@O,t)=0 and u(L,t)=0, fort >0, (3.2)
ux,0)= f(x) and u(x,0)=g(x), forO<x<L.

We will find the solution using separation of variables. ®irkhe process is
similar to that used in previous examples, we will omit sorhthe details. Notice
that the boundary conditions in (3.2) are homogeneous, scawgroceed directly
with the separation of variables. The starting point is tkléor product solutions
of the formu(x, t) = X(X)T (t).
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Step 1. Separatethe PDE intotwo ODESs. Insertingu(x, t) = X(x)T (t) into the
wave equation and separating variables gives

x//(x) . T//(t)
X(x)  c2T)

Sincex andt are independent variables, each side of this equation noust @
constant, which we will denote byx. Thus the factors must satisfy the differential
equations

X"+1X =0 and T”+ Ac?T =0. (3.3)

Step 2: Set up and solvethetwo-point boundary value problem. The first equa-
tionin (3.3) together with the boundary conditio¢D, t) = 0 = u(L, t) implies that
X must solve the two-point boundary value problem

X"(X) + AX(x) =0 with X(0) =0= X(L). (3.4)

We have seen this Sturm Liouville problem before in (2.100e Folutions, given
in (2.12), are

n . /NmX
An = Iz and Xp(X) :sm(T), forn=1,2,3,....
Step 3: Satisfyingtheinitial conditions. With x,, = n?z2/L?, the second equation
in (3.3)is
. cnmy2_
T+ (T> T =0.

The functions co&nst/L) and sircnzt /L) form a fundamental set of solutions.
Consequently, we have found the product solutions

AL cnrirt o/nmXy . cnrrt
un(x,t)=S|n<T>cos - and vn(x,t)=S|n<T>sm - )

forn=1,2,3,.... Since the wave equation is linear, the function

U, ) = Y [anln(X, ) + byn(x, )]

n=1
= isin <@> [an cos(—cnnt) + by sin (_cnnt)}
& L L ) L

is a solution to the wave equation for any choice of the cdefitsa, andb, that
ensures that the series will converge. Furthéx, t) also satisfies the homogeneous
boundary conditions.

The first initial condition is

(3.5)

f(x) = u(x,0) = Z%sin?.
n=1
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To satisfy this condition, we choose the coefficiemiso be

L
a = 3/ £ 00 sin % dx, (3.6)
L /o L

the Fourier sine coefficients fdr The second initial condition involves the derivative
Ut (x, t). Differentiating (3.5) term by term, we see that

b (%, ) . cnrx sin(nnx) [ ansin<cnm) b cos(cnm)}
t(X, 1) = —_ — )| —_ n —_— |-
oL L L L

The second initial condition now becomes

=, cnw
g(X)ZUt(X,O):an —sin—

n=1

Thereforep,cnzr /L should be the Fourier sine coefficients tgror

2 L . X
b, = cn_n/O gx) smT dx. (3.7)

Inserting the values ad,, andby, into (3.5) gives the complete solution to the wave
equation.

Notice that every solution is an infinite linear combinatairthe product solu-

tions . .
. [cnw . /NmTX cnr . /NmTX
sin (T) sin (T) and CO<T> sin <T>

These solutions are periodic in time with frequengy = ncz/L. All of these
frequencies are integer multiples of thendamental frequency w; = cr/L. In
music the contributions fon > 1 are referred to akigher harmonics. It is the
fundamental frequency that our ears focus on, but the higgm@nonics add body to
the sound. This coupling of a fundamental frequency withhiigher harmonics is
thought to be accountable for the pleasing sound of a vilyatiring. We will see
later that the situation is different for the vibrations afraim.

EXAMPLE 3.8 0 Supposethatastring is stretched and fixedat0 andx = =. The string is plucked
in the middle, which means that its shape is describéd by

X, if0 <x<m/2,
f =
) Tm—X, fr/2<x<m.

At t = 0 the string is released with initial velocig(x) = 0. Find the displacement
of the string as a function of andt. Assume that for this string we hage= 0.002

5The wave equation was derived under the assumption thaighladement and the slopes were small.
While thisis nottrue of this and the other examples that Weewamine, itis true for an initial displacement
of, say, 0001 x f(x). Since the wave equation is linear, the solution with thigsihcondition is 0001x

the solution we find in Example 3.8.
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The solution is given by (3.5). We have only to find the coedfitsa, andby,.
Sinceg(x) = 0, we havés, = 0. The coefficienta, are the Fourier sine coefficients
of f on the interval0, =), and they are given by

2 T
an = —/ f () sinnx dx.
T Jo

Inserting the definition off, and evaluating the integral, we find ttegt= 0 if n is
even, and ih = 2k + 1 is odd we have

4

1k
a1 = (1) kT D2

Substituting into (3.5), we see that

> 4
— _ 1)K i .
uex, t) = k;( 1) TS sin(2k 4+ 1)x - cos Q002(2k + 1)t (3.9)

is the solution. O

The rate of convergence
The general term in the series in equation (3.5) is

sin (?) [an cos(?) + by sin (ﬂft)} . (3.10)

The first factor, sitinzzx/L) is bounded in absolute value by 1. We can express the
second factor in terms of its amplitude and phase,

cnrt . [cnmt cnrt
ancos<Tn> + b, sin (Tn) = A, cos(Tﬂ + ¢n) , (3.11)

where the amplitudd,, = \/aZ + b2. Thus, the general termin (3.10) is bounded by
A, forallt > 0. We can judge the convergence of the solution in equaticy) (¥
the rate of convergence df - ; A,. Notice that the rate of convergenceXf: ; A,
does not change asncreases.

The displacement of the string in Example 3.8 is given by #rees in (3.9). How
many terms must be included if we approximate the solutiothbysum including
all terms satisfyingAz1 > 0.01? How many if we include all terms satisfying
Agt1 > 0.0017?

We see thatAy1 = 4/[7(2k + 1)?]. For any acceptable err@ we have
Axi1 < eif k > 1//me — 1/2. Thus for an acceptable error e= 0.01 we must
keep all terms wittkk < 5, and fore = 0.001 terms withk < 17 are needed. [J

Comparing Examples 2.23 and 3.12, we see that many more sgemseeded
to get the required accuracy for solutions to the wave egudltian are needed for
solutions to the heat equation. The exponential decay dktines in the solution to
the heat equation makes the series converge much faster.
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D’Alembert’s solution

Let’s examine another approach to solving the wave equatione space variable.
We start by finding all solutions to the wave equation

Ugt (X, 1) = C2Uyxx (X, t) (3.13)

without worrying about initial or boundary conditions. We this by introducing
new variableg = x + ct andn = x — ct. By the chain rule,
du duodé dJdudnp Ju aJu
—=——+——=—+—.
X  JEIX  Indx IE  On

Similarly, we havei; = ¢ [us — u,,] . Differentiating once more using the chainrule,
we see that

Uxx = [Ug + Uylx = [Ug + Uy le + [Ug + Uyl = Uge + 2Ug,; + Uy,

Similarly, Uy = ¢?[Uzs — 2Ug, + Uy, 1. Thereforepy — c2uxx = —4c?ug,. Conse-
quently, in the new variables the wave equation has the teym= 0.
If we read this equation as

a
—Us = 0,
an

we can integrate to find that

Ug (6, m) = H(8),

whereH (£) is an arbitrary function of£. We can now integrate once more to find
that

ue,n) = / H (&) dé + G(n),
whereG(n) is an arbitrary function ofj. If we setF () = j H (&) d&, we find that

u,n) = FE) + G,

whereF andG are arbitrary functions.
In terms of the original variables, we see that every sofutiothe wave equa-
tion (3.13) has the form

u(x,t) = F(x + ct) + G(x — ct), (3.14)
whereF andG are arbitrary functions. It is easily verified that any fuantof the

form in (3.14) is a solution to the wave equation. The gensohltion to the wave
equation in (3.14) is called thiAlembert solution

" Although the argument used requires thhis a differentiable function, it is really true that can be
an arbitrary function. The same is true for the functiGhandG that follow.



13.3  The Wave Equation 777

Traveling waves

If we chooseF = 0 in (3.14), we see thai(x,t) = G(x — ct) is a solution to
the wave equation. Let’s get an idea of what this solutiorksolike. Figure 3
shows the graph of a functio@(x) that is a nonzero bump centeredxat= 0.
Figure 4 shows the graph db(x — ct), wheret > 0 is fixed. Notice that
the graph ofG(x — ct) is now centered ak = ct. From this we see that
ast increases, the solution(x,t) = G(x — ct) to the wave equation has a
graph versux that is a bump moving to the right dsincreases. Furthermore,
since the wave has moved a distaoci timet, itis moving to the right with speed

y y
y=G(x) y=Gl—ch
0 * 0 ot *
Figure 3 The graph of G(x). Figure 4 The graph of G(x —
ct) for t > 0.

Similarly, the solutionF (x + ct) represents a wave moving to the left with speed
ast increases. We will call solutions of the for@(x — ct) andF (x + ct) traveling
waves

As a result, we see that the d’Alembert solution in (3.14)espnts the general
solution to the wave equation (3.13) as the sum of two tragekiaves, one moving
to the right with speed and the other moving to the left with speed

Solving the initial/boundary value problem

The d’Alembert solution in (3.14) can be used to find the sotuto the ini-
tial/boundary value problem that we encountered in (3.2).mBke the argument
somewhat easier to follow, we will make the assumption thatinitial velocity is
0, so the initial/boundary value problem we will solve is

Uit (X, 1) = CPUyx(X, 1), for0 < x < L andt > O,
u@,t)=0 and u(L,t) =0, fort >0, (3.15)
ux,0 = f(x) and w((x,00=0, forO<x<L.
In the process we will gain additional information about sieéution.

We start with a d’Alembert solutiom(x, t) = F(x+ct)+G(x—ct) from (3.14).
We will use the initial and boundary conditions in (3.15) todfiout whatF andG
have to be. We will assume thktandG are defined for all values of. Observe
thatui(x, t) = c[F'(x + ct) — G'(x — ct)]. Therefore, the initial conditions imply
that

f(X) =u(x,0) = FXx) + G(x), and
0 = ut(x, 0) = c[F'(x) — G'(X)1.



178 Chapter 13 Partial Differential Equations

EXAMPLE 3.19 O

for 0 < x < L. The second equation can be integrated to yie(d) — G(x) = C,
whereC is a constant. Solving these two linear equations, weFgg) = [ f (x) +
Cl/2andG(x) = [ f(x) — C]/2for 0 < x < L. When we substitute into (3.14), we
see that the constant cancels, so we may as well@ake0. Thus we have

F(x) =G(x) = %f(x), forO<x <L. (3.16)

Next we use the boundary conditions. Setting 0 in (3.14), and using (3.16),
we obtain 0= u(0,t) = F(ct) + F(—ct), or F(—ct) = —F(ct) fort > 0.
Consequently- must be an odd function. From (3.16) we get

F(x) = %fo(X), for -L<x<L, (3.17)

where f, is the odd extension of .2
The second boundary condition is

O=u(L,t) =F(L +ct)+ F(L —ct).

If we setct = y + L in this formula, we geF (y + 2L) + F(—y) = 0. Using the
fact thatF is odd, this becomes

Fly+2L) =—-F(=y)=F(y).

This means that must be periodic with periodl2 Building on (3.17), we conclude
that

F(x) = %fop(x), forall x € R.

wherefq, is the odd periodic extension dfto the whole real line. Thus the solution
to the initial/lboundary value problem in (3.15) is

u(x,t) = % [ fop(X +ct) + fop(x —ct)]. (3.18)

Suppose that a string of length 1 m originally has the shafieeafraph on the leftin
Figure 5, and has initial velocity 0. Assuming tieat 1m/sec, find the displacement
of the string as a function of andt.

The mathematical formula for the functidnis given by

x—3/8, for3/8<x<1/2
f(x)=45/8—x, forl/2<x<5/8
0, otherwise.

According to the previous discussion, the solution is gibgr{3.18). The graph of
the odd extension of is given on the right in Figure 5.

Figure 6 shows the displacement of the string at severaktietice how the
initial wave splits into a forward wave and a backward waveicl then reflect when
they hit the boundary points at= 0 andx = 1. 0
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0.2 0.2

0 0.5 1 -1 0 1

x X

Figure 5 The initial displacement f(x) for the string in
Example 3.19, and its odd extension.

t=0.1 =02 t=04
0.2 0.2 0.2
-0.2 -0.2 -0.2
0 0.5 1 0 0.5 1 0 0.5 1
t=0.5 =08 t=1
0.2 0.2 0.2
0 0 W 0
0.2 -0.2 -0.2
0 0.5 1 0 0.5 1 0 0.5 1

Figure 6 The displacement of the string in Example 3.19 at
several times.

EXERCISES

In Exercises 1-6, use Fourier series to find the displacement) of the string
of length L with fixed endpoints, initial displacementx, 0) = f(x), and initial
velocity ug(x, 0) = g(x). Assume that = 1.

1 f(X)=x(1-—x)/4,0x)=0,andL =1

2 f(x) = | ¥/10 for0=x=5 o) _ 0 andL = 10
1-—x/10, for5 < x < 10,
3. fx)=0,gx)=1,andL =1
—-1/2, forO<x<1/2
4, f =0 = dL =1
() =0,960 {1/2, for12<x<1, &

8We studied periodic extensions in Section 12.2 and odd ag extensions in Section 12.3.
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1, forl<x<?2
0, otherwise,

6. T(X) =x(1-x)/4,9(x) =—1andL = 1.

5 f(x)=0,g(x) = andL =3

In Exercises 7-8, use the d’Alembert solution (3.14) to fieldisplacemeni(x, t)
of the string of lengthL with fixed endpoints, initial displacemeutx, 0) = f (x),
and initial velocityu, (x, 0) = 0. Sketch the solution as a functionxaf0 < x < L,
for the specific values dfthat are given.

7.¢c =2, f(x) = sintx, andL = 1. Plotu(x,t) as a function ofx fort =
0, 1/8, 1/4, 1/2, 3/4, 1.

0, for0 < x <5,

X—5 for5<x<6

8. c=1,L =10, andf(x) = ’ -
(X 7 — X, for6<x <7,
0, for7 < x < 10.

Plotu(x, t) as a function ok fort = 2, 4, 6, 8, 10, 12.

9. Suppose thatwe have a string of lengtk- 1 with fixed endpoints, ancl= 1. In
this section we discussed two methods of finding the disptacdu(x, t) of the
string with initial displacement(x, 0) = f(x), and initial velocityu; (x, 0) =
g(x) = 0. The first solution is

o0
Ui(X.t) = Y agsinnmx cosnt,
n=1

wherea, are the Fourier sine coefficients fdr, i.e. f(x) = ) a,sinnzx.
The second solution is d’Alembert’s solution,

(fop(X 4+ 1) + fop(x — D).

NI -

ux(x,t) =

Showthatthese two solutions are the sarhint( Use the trigonometric identity
sin AcosB = [sin(A+ B) + sin(A — B)] /2 to transformuy into u,.)

10. Use the method of separation of variables to find the genehafign for the
initial/boundary value problem

Ut (X, T) + U (X, 1) + U(X, 1) = uyx(X,t), for0 < x < 1andt > 0,
u0,t) =0=u(l,t) fort > 0,
ux,0 = f(x) forO<x<1,
u(x,00=0 forO<x<1.

Express the solution in terms of the Fourier sine coeffisiefithe functionf
on the interval 0< x < 1. The differential equation in this problem is called
thetelegraph equation.
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D’Alembert’s solution can also be used to find the displacenogx, t) of a
string with fixed endpoints having initial displacemerik, 0) = 0 and initial
velocityu; (x, 0) = g(x). Follow the derivation of the solution in (3.18) to show
that the solution is given by

X+ct
ux,t) = 5/ Oop(s) ds,
X—ct

wheregqy is the odd periodic extension gf (Hint: At some point it will be
necessary to know that the derivative of an even functiodds and vice versa.)

Use Exercise 11 to find the displacemeix, t) of a string of lengthL with
fixed endpoints, where= 1,u(x,0) = 0 and,

0 forO<x < 1,
Ui(x,0) =g(x) = 12 forl<x <2,
0 for2<x <3.

Plotu(x, t) as a function ok fort = 0, 0.25, 0.5, 1.5, 4.5, 6.

Use Exercise 11 and the solution in (3.18) to show that th@aliemenut(x, t)
of a string of lengthL with fixed endpoints having initial displacemerik, 0) =
f (x) and initial velocityu; (x, 0) = g(x) is

1 1 X+ct
ux, t) = = (fop(x + ct) + fop(x — b)) + — / Jop(S) ds.
2 2¢ Jx—o
The displacement of a wire or string that is stretched haialty between two
fixed endpoints actually satisfies the equation

Ut = C2Uyy — G, (3.20)

whereg is the aceleration due to gravity. Usually the force of gnaid ignored
because it is so much smaller than the tension in the strinthi¢ exercise we
will consider a string of lengtl., and include gravity.

(a) Find a steady-state solutien This means that is independent of and
satisfies equation (3.20) and the boundary conditions(Xft) is a solution
to (3.20), what equation does(x, t) = u(x, t) — v(x) satisfy?

(b) Use separation of variables to find the solutigr, t) to (3.20) which satis-
fies the boundary conditions0, t) = u(L, t) = 0 and the initial conditions
Ux,0)=0=u(x,0)forO<x < L.

The total energy in a vibrating string is

L
Et) = %/O [puf + Tu] dx. (3.21)

Show that ifu(0,t) = 0 = u(L,t) forallt > 0, thenE(t) is constant. Thus,
the energy in the string is conservediift: Differentiate (3.21) under the
integral. Then use the wave equation and proveuh@ t) = 0 = u¢ (L, t) for
allt >0.)
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13.4 Laplace’s Equation

16. If you pluck a violin string, and then finger the string, fixifigorecisely in the
middle, the tone increases by one octave. In mathematicastihis means that
the frequency is doubled. Explain why this happens.

17. Our derivation of the wave equation ignored any dampinggfef the medium
in which the string is vibrating. If damping is taken into aoat, the equation
becomes

Uit = C2Uyy — 2KUy, (3.22)

wherek is a damping constant which we will assume satisfiesk < wc/L,

wherelL is the length of the string.

(a) Find all product solutiona(x, t) = X(x)T (t) to (3.22) which satisfy the
boundary conditions(0,t) = u(L,t) = 0fort > 0.

(b) Find aseries representation for the solutigx, t) which satisfies the bound-
ary conditions and the initial conditiongx, 0) = f(x) andu¢(x,0) =
g(x).

So far we have considered partial differential equationsretthere was only one
spatial dimension. Now we wantto begin to study situatioheng there is more than
one. Our discussion will be limited to the three most imporexamples, Laplace’s
eqguation, the heat equation, and the wave equation.

The Laplacian operator and Laplace’s equation

The Laplacian operator is a part of all of the partial diffgial equations we will
discuss. The discussion naturally begins with the gradierttvo spatial dimensions
the gradient of a function(x, y) is

au au\'
u=|—, — | .
ax oy

For a functionu(x, y, z) of three variables we have

s (Pu du Bu T
~\ax’ ay’ az)
In greater generality, for a functiam(x), wherex = (X1, Xo, ..., Xn)' € R", the

gradient is the vector

au

W(x)—(au(x) (x) 8“(x))T

This equation also defines the gradient as a vector valuksetittial operator, which

we write as
3 9 3\
V={—y, —, ..., — .
dX1 dXo dXn
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Notice that in dimension = 1, the gradient is just the ordinary derivative,
du
=5
TheLaplacian operatoror, more simply, th&aplacian, is roughly the “square”
of the gradient operator. It is denoted %y, and it is defined by

2 92u 9% 92u
VU=V-VU= ——+ ——+ -+ —.
X5 IXg

ax?
Observe that the dot iV -V is the vector dot product. Thus the Laplacian
operator is the square of the gradient operator if we argyubmdot product. Using
the subscript notation for derivatives, the notation spléags in low dimensions to

Vu

V2U(X) = Uygy(X), forn=1,
V2U(X, y) = Uxx(X, Y) + Uy (X, y), forn=2,
Vau(x, Y, Z) = Uxx(X, Y, 2) + Uyy(X, Y, 2) + Ux(X, Yy, 2), forn=3.

The equation
V2u(x) =0 (4.1)

is calledLaplace’sequation. We have seen thatin one space dimension, stestdy-s
temperatures satisfy Laplace’s equation. This is true mdwthree dimensions as
well. There are many other applications. For example, aerwasive forceF has
a potentialu, which is a function for whictF = —Vu. If in addition the force is
divergence free, then the potentiasatisfies Laplace’s equation. In particular, this
applies to an electric force in regions of space where threra@charges present, or
to a gravitational force in regions where there is no mass.

A solution to Laplace’s equation is calledrermonic function. Laplace’s
equation and harmonic functions are widely studied by nrattieians, both for
their important applications and because of their intdrisierest.

The heat equation

In one space dimension temperatures satisfy the heat equeti= kuy. If we
replaceuyy by the Laplacian ofi, the same is true in higher dimensions. Thus, if
u(x, t) represents the temperature at a paiirt space and at time thenu satisfies
theheat equation

38—‘:(X, t) = kV2u(x, t), (4.2)

wherek is a constant called thteermal diffusivity. In low dimensions we can write
the heat equation as

Uy = K(Uxx + Uyy), forn =2, and u; = K(Uxx + Uyy + Uz), forn = 3.

A steady-state temperature is a temperature which doesepeind ort. Notice
that for a steady-state temperaturehe heat equation in (4.2) reduces to Laplace’s
equation (4.1).

9Many mathematicians and scientists use the notation= V2u. However, we will follow the usage
that we think is most common.
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The wave equation

In one space dimension the displacement of a vibratinggssatisfies the wave
equatioruy = C?uyy. Once again, if we replaagy by the Laplacian ofi, then wave
phenomena in higher dimensions satisfy the same equatioa wave equation is
the equation

U = c2V2u,
wherecis a constantthat has the dimensions of velocity. The wawatérn describes
a variety of oscillatory behavior. For example, in two direiems it describes the
motion of a drum head. In three dimensions it describesreleztgnetic waves.

Linearity

Laplace’s equation, the heat equation, and the wave equat®all linear equa-
tions. We will use this to build up more and more complicatelditfons as linear
combinations of more basic solutions.

Boundary conditions for Laplace’s equation

In this section and the next we will find solutions to Lapla@juation in a rectangle
and in a disk in the planB?. We could do this with any of the boundary conditions
we discussed for the heat equation in Section 1. For exatmgBjrichlet problem

is to solve the boundary value problem

V2U(X, y) = Uxx + Uyy = 0, for (x,y) € D,

ux,y) = f(x,y), for(x,y)eaD, (4.3)

where D is a region inR? and 9D is its boundary. The boundary condition
u(x, y) = f(x,y)is called airichlet condition. The problem of finding a function

u satisfying (4.3) for a giverf defined on the bounda®@D is called theDirich-

let problem Notice that being able to solve the Dirichlet problem metias the
steady-state temperature in a regidiis completely determined by the temperature
on the boundary D.

If the boundary of the regiofD is insulated, there is no flow of heat across the
boundary. This means that the temperature is not varyinggidirection normal to
the boundary. Lenh(x, y) denote the vector of length 1 at the point y) € aD,
which is orthogonal to the boundary @, y) and points out oD. The vectom is
called theunit exterior normal to the boundary oD, anddu/dn = Vu - n is called
thenormal derivativeof u. Since the temperature is not varying in the directipn
adu/on = 0. More generally, we can specify the normal derivative ahgaoint of
the boundary. Then we would have

ou
%(x, y)=9(x,y), for(x,y)eaD, (4.4)

whereg is a function defined on the boundaryf This is called &eumann con-
dition. If we replace the Dirichlet condition in (4.3) with the Nearm condition, the
problem is called th&leumann problem We could also imposeRobin condition

0
%(x, y) — a(x, Yux. y) = h(x.y), for(x,y) € dD, (4.5)

wherex andh are functions defined on the boundaryfto get theRobin problem
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The maximum principle for harmonic functions

Harmonic functions are solutions to Laplace’s equationtaedefore represent
steady-state temperatures. Since heat flows from hot areatder areas, a steady-
state temperature cannot be higher at one point than it igy@here around it.
Therefore, a solution to Laplace’s equation cannot havecal Imaximum (or a
local minimum). This fact is referred to as theaximum principle for harmonic
functions.

If u(x, y)is asolutionto the Dirichlet problem (4.3) in aregiDnthen it follows
from the maximum principle that achieves its maximum and minimum values on
the boundary D. This is also sometimes called the maximum principle.

The mean value property of harmonic functions

Suppose thatl is a harmonic function in a regioD. Suppose also that =
(X0, Yo)" € D, and that > 0 is so small that the disld of radiusr and centep is
completely contained ilD. Thenthe mean value property of harmonic functions
states that the valug(p) is the average af overU. In other words,

1
ulp) = —2/ u(x, y) dxdy.
Tr U

If you think of u as a steady-state temperature, you find that the tempeedture
any point must be the average of the temperatures in any digkied at that point.
Clearly, this fact reflects the fact that heat flows from hatatd.

Solution on a rectangle with Dirichlet boundary conditions
We shall consider the Dirichlet problem for the rectangle

D={x,y)|0<x<aandO< y < b}

illustrated in Figure 1.

. b)“ u(x, b) = h(x) (a, b)
u(0,y) = g(y) U, +u, =0inD u(a, y) = k(y)
©,0) u(x, 0) = fx) (@, 0) *

Figure 1 The Dirichlet problem for the rectangle D.
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The boundary conditions specify the temperatumm each of the four sides as
indicated in Figure 1. The full statement of the Dirichlebplem is

Uxx (X, Y) + Uyy(X,y) =0, for(x,y)e D,
ux,0) = f(x) and u(x,b)=h(x), forO<x<a, (4.6)
u@©,y)=g9g(y) and u(@ y) =k(y), for0<y=<hb,

wheref, g, h, andk are given functions.

We will reduce the problem to one that can be solved usingraépa of vari-
ables by imposing homogeneous boundary conditions on twosife sides of the
rectangle and the correct boundary condition from (4.6 herrémaining sides. The
problemis to findu such that

Uxx (X, Y) + Uyy(X, y) =0, for(x,y) e D,
uix,0 = f(x) and u(x,b)=h(x), forO<x<a, 4.7)
u@0,y)=0 and u(a,y)=0, forO<y<h.

There is the similar problem where homogeneous boundamjitboms are imposed
on the top and bottom of the rectangle, which can be solvedjiise same technique.
Using the linearity of Laplace’s equation, the sum of the tsvile solution to (4.6).

We start the separation of variables by looking for prodotitsons of the form
u(x,y) = X(x)Y(y). We wantu to satisfy the homogeneous boundary conditions,
which means thaX(0) = X(a) = 0. Substitutingu(x, y) = X(X)Y(y) into
Laplace’s equation, we obtain

X"OY(y) + X(x)Y"(y) = 0.
Upon separating variables in the usual way, we obtain tHerdifitial equations
X"+aX=0 and Y'—1Y =0. (4.8)

The functionX must satisfy the homogeneous boundary conditions, so we wan
to solve the Sturm Liouville problem

X"+ 21X =0 with X(0) = X(a) =0. (4.9)
This is the same problem that arose in our study of the heatieouwith Dirichlet
conditions (see (2.10)). The eigenvalues and eigenfumctioe
n’m? . /NTX
hn=—5 and X,00 = sin (T> . forn=1,2.3,.... (4.10)

The factorY satisfies the differential equatiofi” — AY = 0. We now know
that is one of the eigenvalues, so let's write= w?, wherew = nz/a. Then the

equationY” — »?Y = 0 has the fundamental set of solutiei¥ ande~*Y. While
these are the standard solutions, it will be convenientéo us
) ey — @y ] em(yfb) _ efrz)(yfb)
sinhwy = — and sinhw(y — b) = >

These functions are linear combination&€6f ande™*Y, so they are solutions to the
equationY” — w?Y = 0. They are not multiples of each other, so they are linearly
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independent, and therefore form a fundamental set of solsitiThe advantage for
us is that sinlwy vanishes ay = 0, while sinhw (y — b) vanishes ay = b. This
fact will facilitate finding the solution that satisfies thehomogeneous boundary
conditions.

Thus, for each positive integer, we setw = nz/a and we get two product
solutions to Laplace’s equation

Un(X,y) = sinh(n;ay) sin (n;ax) and
(X, y) = sinh(nn();_ b)) sin (ﬂJ;X) ,

that satisfy the homogeneous part of the boundary condition
Using the linearity of Laplace’s equation, the function

(4.11)

U, Y) = Y aqUn(X, Y) + Y bavn(X, y)
n=1

n=1 =

= iansinh(n;ay> sin (n%lx) (4.12)
n=1

+nz;bnsmh(””<ya - b>)sm(”’;X)

is a solution to Laplace’s equation for any constamtandb, for which the series
converges. In addition satisfies the homogeneous part of the boundary conditions.

The coefficients, andb, are chosen to satisfy the inhomogeneous boundary
conditions in (4.7). Foy = 0 the first sum in (4.12) vanishes, so

f00 = u(x,0) = ansinh<””(ab)> sin("2X)
n=1

This will be recognized as the Fourier sine expansioh(@®, so using equation (3.7)
of Section 3 in Chapter 12, we have

. nm(—b) 2 a . /nmTX
bnsmh< 3 >_5/0 f(x)sm(T> dx. (4.13)

Using the fact that sinh is an odd function, we solve for

-2 a . /nTX
bn = asinh(nnb/a)/(; Feasin (T) dx.

Similarly, the boundary condition gt= b requires

2 é . /NTX

Find the steady-state temperatwre, y) in a square plate 1 m on a side where
u(x,1) = x — x?for0 < x < 1, andu(x, y) = 0 on the other three sides.
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The square is the rectangle in Figure 1 wate= b = 1. The boundary temper-
atures are given by = g = k = 0, andh(x) = x — x°. The solution is given by
(4.12). Sincef (x) = 0, (4.13) implies thab, = 0. To computea, we use (4.14).
We compute that

(1 cosnz) = { n373° if nis odd,

1

/ (x —x?) sinnex dx = ——
0 n“z 0, if nis even

This can be accomplished by integrating by parts twice. Tiem (4.12) and (4.14)

we conclude that

o0

8
= in(2k + 1 -sinh(2k + )my.
u(x,y) §(2k+1)3n3sinh(2k+1)n sin(2k + D)z x - sinh(2k 4+ 1)y

Truncating the above sum kt= 10, an approximate solution is graphed in
Figure 2. Note that the solution agrees with the graph(@j = x — x? on the part

of the boundary wherg = 1. The boundary values of the other three sides are all
zero, as specified in (4.7). 0

u(x,y)

Figure 2 An approximate solution to the Dirichlet problem in
Example 4.15.

EXERCISES

1. Consider a rectangular metal plate= 1 m wide ando = 2 m long, as shown
in Figure 1. Suppose that the temperature &C1lOn the bottom edge, and©
on the others. Find the steady-state temperat(xey) throughout the plate.

2. Consider a rectangular metal plaie= 10cm wide andb = 25cm long, as
shown in Figure 1. Suppose that the temperatune(is 2) = 20°C on the
top edgeu(x, 0) = (100°C)x on the bottom, and“@ on the others. Find the
steady-state temperaturéx, y) throughout the plate.
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3. Show thatwherf = h = 0, the general solution of the boundary value problem
in (4.6) is

00

ux,y)=y_ [an sinhanX + by sinh
n=1

nn(x—a)} . Ny
sin b

where
2 b _
% = bsinhinza/b) /0 k(y) sin(nzry/b) dy

and

) b .
by = m/; g(y) sin(nzry/b) dy.

4. Suppose that you have a square plate for which the temperatuone side
is kept at a uniform temperature of 10@nd the other three sides are kept at
0°. What is the temperature in the middle of the squatdiht( Don't do any
compuation of series. Use physical intuition, the symmefrihe square, and
the linearity of the Laplacian.)

Exercises 5-10 are concerned with the boundary value proiol€4.6) in the rec-
tangleD of width a and height shown in Figure 1. Compute the solution for the
given boundary function$, g, h, andk. Draw a hand sketch of what you think the
graph ofu over D should be and then compare with a computer drawn graph of the
exact solution or of the first 10 terms or so of the solution.

bba=b=1,f=g=k=0,and

X forO0<x<1/2
h(x)=1"" - ’
%) {1—x, forl/2<x<1

6.a=2,b=1f=g=k=0,and

for0<x<1
h — 9 J— J— 9
(X {—1, forl<x<2

7.a=1,b=1, f(x) =sin(2zx),andg=h =k =0
8. a=1b=2, f(x) =si’(rx),andg=h=k=0
9.a=1,b=2,fx)=-1,h(x)=1,andg=k=0
10. a=b=1,g=k=0, f(x) =sin(2zx), and

h(x) = X, for0<x <1/2,
X —1, forl/2<x<1
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11. (a) Consider the rectangl®;, = {(x,y)|0 < x <1 and O< vy < L}
Compute the solution of the boundary value problem

Uxx (X, Y) + Uyy(X, y) =0 for(x,y) e D
ux,00= f(x) and u(x,L)=0 forO<x <1,
u@©,y)=0 and u(@y) =0 forO<y<L,

wheref (x) is a piecewise differentiable function on the intervat & < 1,
with the Fourier sine serieb(x) ~ Zﬁ‘;o B, sin(nzx).

(b) Consider the infinite strip = {(x,y) |0 < x <1 and O< y < oco}.
Find the temperature(x, y) on D which is equal to 0 on the infinite sides
and satiasfiea(x, 0) = f(x) for 0 < x < 1. (Hint: Use part (a) to solve
on the rectangle with bounds® x < L, andu(L,y) = 0. Then letL
increase t@o and find the limiting temperature.)

12. Show that the steady-state temperature in a reBigs completely determined
by the temperature on the boundafy. In other words, ifu(x, y) andv(x, y)
are two possible steady-state temperatues which satigfyy) = v(x, y) for
every point(x, y) € aD, thenu(x,y) = v(x, y) at every point(x, y) € D.
(Hint: Considerw = u — v and apply the maximum principle. )

13.5 Laplace’s Equation on a Disk

u(x,y) = flx,y)

Figure 1 The Dirichlet problem
on the disk.

Now we turn our attention to finding steady-state tempeesturregions with circular
symmetry. One example is a metal disk. Another is a pipe, hiés a cross-section
which is a ring or annulus, described mathematically as dggon between two
concentric circles.

Finding a steady-state temperature involves solving thielet problem (4.3).
Therefore, for a metal disk of radiusa centered at the origin, we want to find
such that

ux,y) = f(x,y), if x2+y?=a?

wheref is afunction defined on the boundary of the disk. The geoniltystrated
in Figure 1.

The Laplacian in other coordinate systems

SinceD is a circular domain, our problem will be more easily solvede use polar
coordinates andd. We will derive the form of the Laplacian in polar coordinate
in some detail so the derivation can be a model to be used whgr coordinate
systems.
The original Cartesian coordinatesindy and the polar coordinatesandé are
related by
— 2 __ 2 2
x_rc'ose and r-=x"+y
y =rsing tand = y/x.
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Differentiatingr? = x? + y?, we get 23r/dx = 2x. Solving this equation for the
partial derivative and then doing the same calculationtferytderivative, we get

ar X ar y .
— =—=c09 and — = = =sind.
ax r ay r

In the same way, by differentiating tdn= y/x we find that

a0 y  sinf d a0 x _ cosd
X  rz. ay r2 o
If uis a function, then the chain rule implies that
or R1e, sing
X axX r

Differentiating once more using the chain rule, we see that

0 sinf
Uy = — ur-cosequ-T cosd

ar

9 sin® ] sind
— — |u -cosb —uy - — | —

90 r r

siné cosd Sif 6
= Urr - COSH — 22Uy - — tUs -~
S sin® cost

+ U - + 2uy - 2z

In exactly the same way we compute that

. siné cosd cogh cogh siné cos?
UyyZUrrslnzg'i‘ZUrﬁi'i‘U(-)H 2 Ur‘ - U.a)-iz.
r r r r
Thus
2 1 1
V u= uXx + Uyy - Urr + r_Ur + r—ZU(m (52)
Using this technique, we can find the form of the Laplaciami@ordinate sys-
z tem, although the details can be tedious. We will state twoemesults. Cylindrical
“‘\q) coordinates are defined by the relations
X =T cost r2=x%+4y?

: y=rsing and tanf =y/x
ﬁ — z=12 z=12

. 0 In cylindrical coordinates the Laplacian operator has trenf

92 10 1 92 92
Vie 4+ 4. 5.3
8r2+r8r+r2892+822 ®-3)
Figure 2 Spherical coordinates of Spherical coordinatas 6, andg are illustrated in Figure 2. They are related to

a point in R®. the Cartesian coordinates by
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X = r cosf sing, r2=x2+y>+ 2,
y =r siné sing, and  tand =y/Xx,

Z:rCOS¢ tan¢= /X2+y2/z

The expression for the Laplacian in spherical coordinates i

1 1 1
2, 2 H
Viu = r—z(r Ur)r + m(smqb “Ugp)g + mu%. (5.4)
The Dirichlet problem on the disk
Using polar coordinates, the Dirichlet problem in (5.1) ees
1 1
Urr + r—ur + r—zu% =0, forO<r <a, (5.5)

u(@,f)= f@©H), for0<H <2x.

The functionf is supposed to be defined on the circle of radius a. Since this
circle is parameterized ity — (acosf, asind), we can considef to be a function
of 6. Since it is really a function of sifh and co®, which are periodic with period
27, the functionf must be Z-periodic.

We solve the problem using separation of variables in paterdinates by
looking for product functions of the form(r, 0) = R(r)T (9), which are solutions
to Laplace’s equation. Just like, T must be 2z -periodic.

When we insert the functioa(r, ) = R(r)T (9) into Laplace’s equation, we
obtain

|:R”(r) + %R’(r)} T©) + riZR(r)T”(Q) =0.

We multiply byr2/[R(r) T (9)] to separate thevariable from the variable, obtain-

ing
r’R/(r) +rR(r) _ _T”(Q)

R(r) O TO)
Both sides must be equal to a constanto we obtain the following two equations:

r’R'(r)+rR @) —ARr) =0 and T"(#)+ AT () =0. (5.6)

The functionT must be z-periodic. Therefore, it must solve the Sturm Liou-
ville problem
T"(0) +AT@®) =0 with T 2z-periodic. (5.7)

Notice that the boundary condition is different than in poe¢ Sturm Liouville
problems. These conditions are calfggtiodic boundary conditions

Let's first look for nonzero solutions to (5.7) with < 0. We writex = —s?,
with s > 0. The differential equation becom&$ — s°T = 0, which has the general
solutionT (9) = Ae¥ + Be ¥. However, no function of this type is periodic, so
there are no nonzero solutions fo 0.

If A = 0, the differential equation in (5.7) i$” = 0, which has the general
solutionT (#) = A+ B#A. SinceT must be z -periodic, we conclude thd = 0.
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Thus, forr = 0 the nonzero solutions are any constant function, that islépte
of the function

Co(f) = 1.

Forx > 0 we seth = w?, wherew > 0. Then the differential equation has the
form T” + «?T = 0, which has the general solution

T(®) = Acoswt + Bsinwb.

Since this function must ber2periodic, we conclude that must be a positive
integer. Thus, any linear combination of the functions

Cch(#) =cosnfd and s,(0) = sinnd

will be a solution to the Sturm Liouville problem in (5.7).

To sum up, the eigenvalues for the Sturm Liouville problersiid) arex, = n?,
for n any nonnegative integer. The corresponding eigenfunstae the single
functionce(#) = 1 forn = 0, and the pair of functions,(9) = cosnf ands,(9) =
sinnd forn > 1.

In view of the fact thak. = n?, wheren is a nonnegative integer, the differential
equation forR in (5.6) becomes

r’R'+rR —n?R=0. (5.8)

This is a special case of Euler's equation, which we studie8ection 11.3. A
fundamental set of solutions is

r®=1 and I, forn=0,
(5.9)

n

r" and r", forn>1.

However, there is a hidden boundary condition. We are rdéadlking at functions
defined on the disk, and the point= 0 corresponds to the center of the disk. We
want our solution® to be bounded there, so the solutions for n = 0 andr —" for

n > 0 are not viable. Consequently, we are led to the solution

R,(r)=r", forn>0.
The corresponding product solutions to Laplace’s equatieng(r, ) = 1 and
Un(r, ) = Ry(r)c,(d) =r"cosnd and
un(r, 0) = Ry(r)s,(8) =r"sinng

forn > 1. Since the Laplacian is linear, the function

ur, 6) = % + ) AUn(r, ) + Boun(r. 0)

=t (5.10)
Ao

=5+ > r"(A, cosnd + By sinng)

n=1

101t is good to remember that our solutions represent temperst



7194 Chapter 13 Partial Differential Equations

EXAMPLE 5.11 O

is a solution to Laplace’s equation on the disk for any cantsta, andB,, for which
the series converges.
The boundary condition(a, 6) = f (8) now becomes

Ao

f() =u@b) =— a" (A, cosnd + B,sind).
) =u(a,0) 2+n§ (An + By sing)

This is the complete Fourier series for the boundary functio According to
Theorem 1.11 in Chapter 12, the coefficients must be

1 2
A = / f(@)cosnodo, forn=> 0,
am 0
1 2
B, = / f(0)sinnddd, forn>1.
am 0

Inserting these values into (5.10) yields the solution toltaplace equation (5.2).

A beer can of radius 1 inch is full of beer and lies on its sicafway submerged
in the snow (see Figure 3). The snow keeps the bottom halfeobéer can at@
while the sun warms the top half of the can t&€1Find the steady-state temperature
inside the can.

snow

u=0

Figure 3 The can of beer in Example 5.11.

The boundary of the beer canis a circle of radius 1 inch, wimngolar coordi-
nates can be described by the equatioas 1 and 0< 6 < 27. The temperature
function on the boundary is given by

1, forO<b<nm
fe) =17 - =
©) 0, form <0 < 2m.

Thus, we wish to solve (5.1) with = 1 andf as given.
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We need to compute the Fourier coefficientsfofFirst, we have

1 2 1 T
Ao=—/ f(9)d9=_/ 1dg = 1.
0 T Jo

T

Next, forn > 1,

1 2 1 T
A, = —/ f(0) cosnd db = —/ cosnd dg = 0.
T Jo T Jo

Finally,

2T T _(_ n
anl/ f(9)sinn9d9=£/ sinnadazﬁ.
0 g

b 0 nr

If nis evenB, =0, andifn = 2k + 1 is odd,Bx1 = 2/[(2k + 1) ]. Substituting
the coefficients into (5.10), we see that the solution to)(5.2

1 o 2k+1
0) = — ———sin(2k + 1.
u(r, 9) 2+§n(2k+1)sm( +1)

Figure 4 shows the graph of the partial sum of the solutionodp+ 20 over
the unit disk.

1/

777
05 77
= 7% %4

Figure 4 The temperature of the beer in Example 5.11.

The vertical axis is the temperature of the beer in the canicBlthat the graph
of the temperature on the boundary of the disk jumps from 0 halfway around
the disk as is consistent with the temperature of the sudétiee beer can. 0

EXERCISES

1. Verify that the Laplacian has the form in (5.3) in cylindficaordinates.
2. Verify that the Laplacian has the form in (5.4) in sphericabinates.
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3.

Suppose that the temperature on the surface of the beer &ample 5.11 is
f(x,y) = 1+ y, wherey is the distance above the snow. Find the temperature
throughout the can.Hint: This Exercise is easier than it might look. Keep in
mind that you want to solve the Dirichlet problem in (5.1))

. Suppose that the snow keeps the temperature on the bottbof thed surface of

the beer can in Example 5.11 &(@) but this time suppose the vertical sun’s rays
keep the very top of the can at@ and that the temperature at any other point
on the top half of the can is proportional to the sine of thelahgtween the
sun’s rays and the tangent line to the can. Give an intuitigaraent why this is

a reasonable model for the temperature on the bounétany. (look at how the
intensity of the sunlight on the can’s surface depends omatlgge between the
sun’s rays and the tangent to the can). Compute the tempegdtany point on
the inside of the beer can. Draw a hand sketch of what you fkittke graph

of the solution (over the region8 r < 1 and 0< § < 2x) and then compare
with the graph of the first 10 terms or so of the computed smiuti

In Exercises 5-8, find the temperature in a disk of radiusth,thé given temperature
f(@),for0<0 < 2r.

5.
6. f(0) = cogo

7.

8. f(0) = sinb cos

f(0) = sif o

f(0) =021 — 0)

If we are looking for the steady-state temperature in a rimped plate, then the
hidden boundary condition used to eliminate half of the sohs from (5.9) does
not come into play. Exercises 9—11 deal with this situation.

9.

10.

11.

12.

Consider a plate that is ring shaped. Its boundary consigtsomconcentric
circles with radiia < b. Suppose that the inner circle is kept at a uniform
temperaturel; and the outer circle at a uniform temperatureTef Find the
temperature throughout the platédit: Since in polar coordinates the tem-
perature on the boundary does not depend’pogou can conclude that the
steady-state temperature doesn't either.)

Suppose that the outer boundary, where= b, of the ring shaped plate in
Exercise 9 is insulated, and the inner boundary, whete a, is kept at the
uniform temperaturd . Find the steady-state temperature in the plalént(
According to (4.4), since the plate is insulated at b, the normal derivative
of the temperatura is equal to 0 there. With the circular symmetry we have,
this means that;, = 0.)

Consider once more the plate in Exercise 9. Now supposehtbaemperature
on the inner boundary is uniformly equal t6,@nd on the outer boundary is
given by f (x, y). Find the steady-state temperature throughout the plate.

Suppose we have a semicircular plate of radiuSuppose that the temperature
on the flat base is kept af ,Owhile on the curved portion the temperature is
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described byf (x, y). Find the steady-state temperature through out the plate.

13. Suppose that we have a plate that is shaped like a piece df e segment of
a circle of radiusa, with anglety. Suppose the temperature is fixed aa®bng
the flat portions of the boundary, and is givenbg) for 0 < 6 < 6y along the
curved portion. Find the steady-state temperature througithe plate.

13.6 Sturm Liouville Problems

EXAMPLE 6.2 C

EXAMPLE 6.4 C

One of the steps in the method of separation of variablesisatution of a Sturm

Liouville problem. The prototypical example appeared itl(). It was to find

numbers. and nonzero functionX defined on the intervdD, L] for which
—X"=xX with X(0) = X(L) =0. (6.1)

We have rewritten the differential equation in the form wé adlopt in this section.
The solutions to the Sturm-Liouville problem in (6.1) weorifid in (2.12). They

are
n?m? . /NTX
An = Iz and X,(X) = sm(T>, forn=1,23,....
We saw another example using the same differential equationwith different
boundary conditions in (2.27). Let’s look at some more exasp

Consider a rod of length that is kept at a constant temperature bdtx = 0 and is
insulated ai = L. The temperatura(x, t) in the rod satisfies the initial/boundary
value problem

Ut (X, t) = kuyx(X,t), fort>0andO< x < L,
u0,t) =0 and uy(L,t)=0, fort >0,
ux,0 = f(x), forO<x<lLl,
where f (x) is the temperature in the rod at time= 0. If we look for a product
solutionu(x, t) = X(X)T(t), the functionX must satisfy
—X" =X with X(0) = X'(L) =0. (6.3)
This is a Sturm Liouville problem of a type we have not seemizf 0

Suppose for the same rod that the insulatiox at L is poor and slowly leaks
heat (see (1.14) and (1.15)). Then the boundary conditidghaatpoint will be a
Robin condition. Assuming for simplicity that the ambieairiperature i = 0,
the temperature satisfies the initial/boundary value bl

Ut (X, t) = kuyyx(X,t), fort>0andO< x < L,
u0,t) =0 and uyx(L,t)+ yu(L,t) =0, fort >0,
uix,0) = f(x), forO<x<lLl,

wherey is a positive constant. This time, if we look for a productgi@nu(x, t) =
X(X)T (1), the functionX must satisfy

—X" =X with X(0) =0andX'(L) + y X(L) =0. (6.5)
Again this is a Sturm Liouville problem of a type we have narséefore. 0
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EXAMPLE 6.6 C

Suppose that the insulation along the length of the rod imipta 6.2 is not perfect,
and slowly leaks heat. In this case, by an argument similérabin Section 1, we
are led to the initial/boundary value problem

U (X, t) = K[uxx (X, t) — q(x)u(x,t)], fort >0andO< x < L,
u0,t) =0 and uy(L,t)=0, fort >0,
ux,0 = f(x), for0O<x<lLl,

whereq(x) > 0 is a measure of the leakiness of the insulation. Again letk for
a product solutiom(x, t) = X(x)T (t). We find thatX must satisfy

—X"4+gX =AX with X(0) = X'(L) = 0. (6.7)

This Sturm Liouville problem involves a different differgal operator than the pre-
vious two. 0

As these examples indicate, there is a large variety ofalfiitbundary value
problems that might be solved using the method of separafimariables. Each
of these problems leads to a Sturm Liouville problem. In Hastion and the next
we will study these problems in general. In addition to pdavi us with additional
techniques to solve initial/boundary value problems, tiuel\s of Sturm Liouville
problems in general will provide us with important insighiso much of what we
have studied both in this chapter and in Chapter 12.

The differential operator

We will assume that the differential equation in the Sturuiille problem has the
form

—(p")' +q¢ = rwe, (6.8)

wherep, g, andw are functions ok for a < x < b. It will be convenient to use
operator notation in this section. The differential operatwe will deal with have
the form

Lo = —(pg") + a¢. (6.9)
Using this notation, the differential equation in (6.8) dsnwritten as

Lo = Awe. (6.10)

The functionw(x) is called theweight function

In equations (6.1), (6.3), and (6.5), the differential gper isL¢ = —¢”.
Hencep(x) = 1 andq(x) = 0. In equation (6.7) the differential operatorligp =
—¢” + q¢, so againp(x) = 1 but nowq(x) > 0. In all four cases the differential
equation is written ak¢ = A¢, so the weight function i (x) = 1.

In this section we will only considaronsingular Sturm Liouville problems.
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DEFINITION 6.11 A Sturm-Liouville problem involving the equation
Lo = —(pp) + a¢ = rwe,

is nonsingular if

« the coefficienp(x) and its derivativep’ (x) are both continuous da, b,
andp(x) > 0fora<x <bh,

« the coefficieng(x) is piecewise continuous da, b], and

« the weight functionw is continuous and positive da, b].

These conditions can be relaxed, but only at the endpaiatsdb. If so, that
endpointis said to beingular. For example, ifp(a) = 0, the endpoin& is singular.
We will discuss some singular Sturm Liouville problems ffaitethis chapter.

Operators of the form (6.9) are said to fmemally self-adjoint The most
important property of formally self-adjoint operatorsngine following proposition.

Let L be a differential operator of the type in (6.9). ifandg are two functions
defined on(a, b) that have continuous second derivatives, then

b b
/ Lf-gdx:/ f.Lgdx+ p(fg — f'g)-. (6.13)
a a

We will leave the proof to Exercise 12.

The property of formally self-adjoint operators displayedéroposition 6.12 is
not true for most differential operators. This propertynie inain reason for limiting
our consideration to formally self-adjoint operators. keEcise 13 we will exhibit
a differential operator that does not have this property.

The assumption that our operator is formally self-adjoirghhseem too restric-
tive. We could consider the more general operator

Mg = —P¢” — Q¢ + Rg.

However, assuming th&(x) > 0 for all x € (a, b), it is always possible to find a
functionu so that the operatdr = M is formally self-adjoint. To see this, notice
that
uM¢ = —uP¢” — nQ¢’ + uRp,  while
L =—p¢” — p'¢' +q¢.

For these to be equal, it is necessary to find functjo6s), p(x), andq(x) so that
p=uP, p'=pQ, and g=uR

The quotient of the first two equations gives us the linededghtial equatiorp’ =
(Q/P) p, which can be solved to find. Then we take. = p/P andq = wR. This
process is exemplified in Exercises 6-9.
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The boundary conditions

In each of the examples at the beginning of this section, wesad two boundary
conditions. We will do so in general. The most general bowndandition has the
form

Bo =ag(@) + po'(@) + vy (b) + 8¢’ (b) = 0.

Notice that the condition mixes the valuesfodnd¢’ at the two endpoints. We will
consider only one pair of boundary conditions that mix thdpeints in this way.
These are

Bipg =¢@ —¢(0)=0 and B =¢'(a) —¢'(b)=0. (6.14)

We will call these theperiodic boundary conditionsbecause they are satisfied by a
function¢ that is periodic with perioth — a.

Boundary conditions that involve only one endpoint areechlinmixed We
will consider pairs of unmixed boundary conditions where arf the conditions
applies to each endpoint. The most general unmixed bourdengitions have the
form

Bip = 19’ (@) + p1¢(@) =0 and Byp = ax¢’(b) + B2 (b) =0, (6.15)

whereay, a2, f1, andp, are constants. In order that the boundary conditions be
meaningful, we will insist that the vecto(ss, 81), and(«z, B2) are nonzero.

The general unmixed boundary condition in (6.15) splite itiiree cases, de-
pending on the coefficients. For the endpairthey are

1. ¢(a) = 0. The Dirichlet condition (ife; = 0).
2. ¢’(a) = 0. The Neumann condition (j#; = 0).
3. ¢'(a) + y1¢(a) = 0. The Robin condition ( if neithe®, nor 81 is equal to 0).

You should compare these conditions with our discussionwofbary conditions
in Sections 1 and 4.

The eigenvalues and eigenfunctions

The Sturm Liouville problem for a given operatoyweight functiorw, and boundary
conditionsB; and B, on an interval(a, b) is to find all numbers. and nonzero
functions¢ such that

Ly = 2w¢ ontheintervala, b), and

Big = B = 0. (6.16)

Any numberx for which there is a nonzero functignsatisfying (6.16) is called an
eigenvalueof the Sturm Liouville problem. If is an eigenvalue, then any functign
that satisfies (6.16) is called an associa@gnfunction' Thus, our problem is to
find all of the eigenvalues and eigenfunctions for a Sturnulille boundary value
problem. Notice that it; andc, are constants angh and¢, are eigenfunctions,

1You are encouraged to compare the discussion here of eigeswnd eigenfunctions with the discussion
in Section 9.1 of eigenvalues and eigenvectors of a matrix.
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then, becausek is linear,L (C1¢1 + Co¢2) = C1Lgpy + CoLgpy = Aw(Crp1 + Cogpp),
so any linear combination of eigenfunctions is also an digegtion. In particular,
any constant multiple of an eigenfunction is also an eigection. We will usually
choose the constant for which the eigenfunction has thelsshalgebraic form.

We have seen two examples of the solution to a Sturm Lioupitdelem in (2.9)
and (2.27). Let's look at another.

Find the eigenvalues and eigenfunctions for the opetagoe= —¢” on the interval
[, 7] with periodic boundary conditions, and with weight= 1.

We analyzed what is essentially the same problem in SectioSée equa-
tion (5.7) and the following text. The eigenvalues and eigections are

=0 with c(x)=1 and

2 with cy(x) =cosnx and s,(X) =sinnx, forn> 1.

An =N

We will leave the details to Exercise 14. O

Properties of eigenvalues and eigenfunctions

Themultiplicity of an eigenvalue is the number of linearly independent digen
tions associated to it. Notice that the positive eigenvaineExample 6.17 have
multiplicity 2, while all of the eigenvalues in (2.12) andZ2) have multiplicity 1.

Suppose that is any number, and let’s look at the differential equatioh =
—(po")' + q¢ = rwe. If we write this out and rearrange it, we get

pp” + p'¢d’ + (Aw — Q)¢ = 0. (6.18)

This is a second order, linear differential equation. Fraot®n 4.1 we know that it
has a fundamental set of solutions consisting of two lingadependent functions
¢1(X) andg,(x). The general solution is the linear combination

¢ (X) = Ag1(X) + Bo2(x). (6.19)

For any, the boundary conditions put constraints on the coeffisiédntand B

in (6.19). As we have seen in our examples, for most valuestioé two boundary
conditions will imply that bothA and B are equal to zero, and the only solution is
the zero function. Thus, most numberare not eigenvalues.

In Example 6.17, the boundary conditions were satisfied lgo#itions to the
differential equation, so they did not constrain the cogffits A andB at all. The
multiplicity is 2. In general, if an eigenvalue has multgity 2, then there are two
linearly independent solutions to (6.16). These two sohgiform a fundamental set
of solutions to the differential equation, so every solntio the differential equation
also solves the boundary conditions. The only other pdggitsithat the multiplicity
is 1. In this case, the two boundary conditions put the samé&ir@l constraint on
AandB.

Our examples show that eigenvalues are rare, and the nexetheshows that
this is true in general.
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THEOREM 6.20 The eigenvalues for a nonsingular Sturm Liouville probleithveither unmixed
or periodic boundary conditions, repeated according tar theltiplicity, form a
sequence of real numbers

AM<Ar<A3=<--- where A, — o0. (6.21)

For each eigenvalug, there is an associated eigenfunction which we will denote by
¢n(X). If we have a repeated eigenvalug,= An.1, the eigenfunctiong, andegn.1
can be chosen to be linearly independent. The eigenfursctignall real valued.

The proof of Theorem 6.20 requires techniques that are liEyenscope of this
book, so we will not present i

Example 6.17 shows that eigenvalues with multiplicity 2 dow. However, it
is rare, as is shown by the following result.

PROPOSITION 6.22 Suppose that one of the boundary conditions for a nonsingitlarm Liouville
problem is unmixed. Then every eigenvalue has multiplitity

The proof of Proposition 6.22 is left to Exercisel6. Under ltypotheses of
Proposition 6.22, the eigenvalues satisfy

M <Ar<Aiz<--- and ip— 00, (6.23)

instead of the less restrictive inequalities in (6.21).
There is one additional fact that will frequently speed aarsh for eigenvalues
and eigenfunctions.

PROPOSITION 6.24 Suppose that we have a nonsingular Sturm Liouville problem
Lé = —(ps) + ¢ = rwé,
Bip = c1¢'(@) + p1#(a) =0,
Bag = a2¢p’(b) + B2gp(b) = 0,
where
(@) g(x) >0fora<x <b,and
(b) the boundary conditions on a functigrimply that pp¢’|2 < O.
Then all of the eigenvalues are nonnegativei K 0 is an eigenvalue, the corre-
sponding eigenfunctions are the constant functions.

Proof Suppose that is an eigenvalue angl is an associated eigenfunction. Con-
sider the following computation, where the last step ineslan integration by parts.

b b b
A/ ¢2(X)w(X)dx:/ ¢(X)-[Aw(X)¢(X)]dx:/ d(x) - Lo(x)dx

b b
2/ ¢(p¢’)'dx+/ q¢? dx (6.25)

b b
2/ PP (x)?dx — peg’ Z+/ q0O0)¢ ()2 dx

12SeeLinear Differential Operators by M. A. Naimark.
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Since the Sturm-Liouville problem is nonsingular, the €ioafnt p(x) is always
positive. By our hypotheses, the coefficiaqitx) is nonnegative, and the term
—pe¢’'l2 > 0. Hence all of the terms on the right-hand side of the eqnatie
nonnegative. Consequently,

b
x/ $2(x) w(x) dx = 0,

and since the weight function(x) is positive, we conclude that> 0.

If » = 0is an eigenvalue, then all three terms on the right-harel &id6.25)
must be equalto 0. In particulg(gf p(x)¢’(x)?>dx = 0. Sincep(x) > 0, this means
that¢'(x) = 0, so¢ is a constant function.

Let’s end the section by finding the eigenvalues and eigentifums for the Sturm
Liouville problems in Examples 6.2, 6.4, and 6.6.

Find the eigenvalues and eigenfunctions for the Sturm Lilleuproblem in Exam-
ple 6.2.

Let’s rewrite equation (6.3) witkX (x) replaced byp (x) to get
—¢" =xrp forx e (0,L), with ¢(0)=0=¢'(L).

The coefficients argg = 1 andq = 0. Thusq is nonnegative, and the boundary
condition implies thapgp¢’ = ¢¢’ vanishes at each endpoint. Therefore, by Propo-
sition 6.24, all of the eigenvalues are nonnegative. # 0 is an eigenvalue, then
the eigenfunctio is a constant. Howevep,(0) = 0, so¢ (x) = 0. Thusi =0is
not an eigenvalue.

Thus all eigenvalues are positive. If we set «?, wherew > 0, the differential
equation becomeg” + w?¢ = 0. The general solution i$(x) = Acoswx +
B sinwx. The first boundary condition says that0 ¢ (0) = A. Then the second
boundary condition says théat(L) = wBcoswL = 0. Since we are looking for
nonzero solutionsB # 0. Hence we must have ceg = 0. This is true only
if oL = n/2+ nz = (2n + 1)z /2, wheren is a nonnegative integer. Thus our
eigenvalues and eigenfunctions are

2n + 1)%x2 2n+1
/\nz% and qbn(x):sinw, forn=0,1,2,....
The first five eigenfunctions are shown in Figure 1. 0

Find the eigenvalues and eigenfunctions for the Sturm Lilleuproblem in Exam-
ple 6.4.

Let’s rewrite (6.5) as
—¢" =xrp forx e (0,L), with ¢(0)=0=¢'(L)+yo(L).

Again p = 1 andg = 0. We havep(0)¢ (0)¢’'(0) = 0, while p(L)¢(L)¢'(L) =
—y¢(L)? < 0, sincey > 0. Therefore Proposition 6.24 shows that all of the
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‘9,
o2/ 3w2/ s

Figure 2 The solutions to
tanf = —af.

/2

| AW

Figure 1 The first five eigenfunctions for the Sturm
Liouville problem in Example 6.26.

eigenvalues are nonnegative Al&= 0 is an eigenvalue then the eigenfunctipis a
constant. However, sing(0) = 0, ¢(x) = 0, soAr = 0 is not an eigenvalue. For
A > 0, we writeA = w?, wherew > 0. The differential equation has the general
solutiong (x) = Acoswx + B sinwx, whereA andB are arbitrary constants. The
first boundary condition implies that8 ¢(0) = A. Hencep (x) = Bsinwx. The
second boundary condition implies that

0=¢'(L) +y¢(L) = B[wcoswL + y sinwL].

Since¢g (x) # 0, B # 0. Hence the second factor must vanish. Dividing by«bs
and rearranging, we get

w
tanwlL = ——. (6.28)
4

For those values ob that solve equation (6.28), = »? is an eigenvalue and
¢ (X) = sinwx is an associated eigenfunction.

Equation (6.28) cannot be solved exactly, but it can be soteeany desired
degree of accuracy using numerical methods. To see whabthgoss look like,
let's first simplify the equation somewhat by settiig= wL, anda = 1/(yL).
Then (6.28) becomes

tantd = —ab. (6.29)

In Figure 2, we plotf (9) = tané in black andg(f) = —a6 in blue. The points
where the two graphs intersect correspond to the valugshaft solve (6.29). From
Figure 2 we see that there are infinitely many solutions @906 which we will write
as the increasing sequertgefor j = 1,2, 3,.... Again from Figure 2, we see that

(j =1/ <6; < jm,

and thaw; gets closertqj — 1/2)x asj increases. For eadh w; = 60 /L. This



13.6  Sturm Liouville Problems 805

leads to the eigenvalues and eigenfunctions

2 9]'2 . . 9jX .
A= o) = 2 and ¢;j(X) =sinwjXx = smT, forj=1,23,....
(6.30)
Forthe case whelh = y = 1, thefirstfive eigenfunctions are plotted in Figure 3.
U

¢,

Figure 3 The first five eigenfunctions for the Sturm
Liouville problem in Example 6.27.

EXAMPLE 6.31 0 Find the eigenvalues and eigenfunctions for the Sturm Liluproblem in Exam-
ple 6.6.

Let’s rewrite (6.7) as
—¢" +q¢ = rp, forx e (0,L),with ¢(0) =¢'(L) =0. (6.32)

If the coefficientq is not constant, we will not usually be able to find solutions
explicitly, but Theorem 6.20 guarantees that they existweler, ifq is a positive
constant, we can rewrite the differential equation in (P2

—¢" = —qQe.

Sinceix — q is a constant, we see that the problem is almost the sametas Ehxam-
ple 6.26. To be precisé,— g must be an eigenvalue for the Sturm Liouville problem
in Example 6.26, with the corresponding eigenfunction. Sthe eigenvalues and
eigenfunctions are

_gy 2t 1)2r? (2n 4 Dmx

An=( e and ¢n(X) =sin o0 , forn=0,1,2,....

O
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EXERCISES
1. Which of the following operators are formally self-adjéint
@Lp=0¢"+¢ (d) Lgp = cosx¢” + sinx ¢’
(b) Lo = x¢" + ¢’ (e)L¢ = sinx¢” + cosx ¢’

)Ly =x¢"+2¢"  (f) Lo =(1—xD¢" — 2x¢’

In Exercises 2-5 find the eigenvalues and eigenfunctionthégiven Sturm Liou-
ville problem.

2. —¢" =r¢p with ¢'(0)=¢'(1)=0

3. —¢"=21p with ¢’ (0)=¢(1) =0

4. —¢" =rp with ¢'(0)=¢'(1)+¢(1) =0

5 —¢" =21¢p with ¢'(0)—¢(0)=¢((1)=0
In Exercises 69, use the procedure given after the stateshBmnoposition 6.12 to
transform the given differential equation into a formalkgffsadjoint equation.

6. ¢" +4¢'+r1p =0

7. 2x¢" + 1 =0

8. X(Xx—1)¢" +2x¢p' +2p =0

9. X%¢" —2x¢' + 19 =0

10. Following the lead of Example 6.27, show how to graphicatigfihe eigenval-
ues for the Sturm Liouville problem

—¢" =1¢ with ¢'(0) —¢(0) =¢'(1) +¢(1) =0.
Find the eigenfunctions as well.
11. Consider the Sturm Liouville problem
—¢" =1¢ with ¢(0) =¢(D) —ap(1) =0,
wherea > 0.

(a) Show that this problem does not satisfy the hypotheskBsogfosition 6.24.

(b) Show that all eigenvalues are positive ik0a < 1, that O is the smallest
eigenvalue ifa = 1, and that there is one negative eigenvalwee if 1.

12. Prove Proposition 6.12Hint: Start Wi'[hfab Lf - gdx, insert the definition of
L in (6.9), and then integrate by parts twice.)

13. Not all differential operators have the property in Profiogi6.12.
(a) Use Proposition 6.12 to show thatlifis a formally self-adjoint operator,

then
b b
/Lf-gdx:/ f-Lgdx
a a

for any two functionsf andg that vanish at both endpoints.
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(b) Consider the operatdrt¢p = ¢” + ¢’ on the intervall0, 1]. Show that
the integral identity in part (a) is not true fdr with f(x) = x(1 — x)
andg(x) = x?(1 — x), and thereforeL does not have the property in
Proposition 6.12.

14. Verify that the eigenvalues and eigenfunctions for thei8tuiouville problem
in Example 6.17 are those listed there.

15. Showthatifu(x, t) = X(x)T (t) is a product solution of the differential equation
in Example 6.6, together with the boundary conditions, tkenust be a solution
to the Sturm Liouville problem in (6.7).

16. Prove Proposition 6.22Hint: Suppose that the boundary conditioxat ais
unmixed. Letx be an eigenvalue and suppose thgandg, are eigenfunctions.
Let W be the Wronskian ap; andg,. Use the boundary condition to show that
W(a) = 0. Then use Proposition 1.26 of Section 4.1.)

13.7 Orthogonality and Generalized Fourier Series

You may have noticed that the eigenfunctions in the examgfi&urm Liouville
problems in Sections 2, 3, and 4 were the bases of Fourieasideosine series.
In addition, in Example 6.17 we have a Sturm Liouville probléor which the
eigenfunctions are the basis of complete Fourier series M@y have asked yourself
if the eigenfunctions of other Sturm Liouville problemsdeta similar expansions.
In this section we will carry out the derivation of such serie

Inner products, and orthogonality

The key idea in the derivation of Fourier series in Chaptemwa® the notion of
orthogonality. It will also be important here, and it is tireeput the idea into its
proper framework. This involves the use of an inner product.

DEFINITION 7.1 Suppose thaf andg are piecewise continuous functions
on the intervalla, b]. Theinner productof f andg with weight function
w(X) > 0 is defined to be

b
(1.9 = / £ (0900 w(x) dx. (7.2)
If w(x) =1, we will denote( f, g),, by (f, g). Thus

b
(f, g)=/ f (x)g(x) dx. (7.3)

Notice that
(f, 9w = (f, wg) = (wf, g). (7.4)
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PROPOSITION 7.5

Some elementary properties of the inner product are easibpdered. First,
the inner product isymmetri¢ which means that

(f’ g)w = (9, f)w-

Second, the inner productlisear in each componentFor example, it andb are
constants, then
(af + bg7 h)w = a(fv h)w + b(g’ h)w-

Finally, the inner product ipositive meaning that
(f, f), >0, wunless f(x)=0.
Ouir first result using this new definition will throw some lighh why we write

our differential operator in the formally self-adjoint forof (6.9).

Suppose that we have a nonsingular Sturm Liouville equation

Lo = —(pd) + q¢ = Awa, (7.6)
together with the unmixed boundary conditions

Bi¢p = 19’ (@) + 19 (@) =0,

B2g = a2¢p’(b) + B2gp (b) = 0.

If f andgare two functions defined da, b] that have continuous second derivatives
and satisfy the boundary conditions, then

(Lf,g) = (f,LQ). (7.8)
Proof According to Proposition 6.12 we have

(7.7)

b b
/Lf-gdx:/ f-Lgdx+p(fg'— '),
a a

Hence, to prove (7.8) we need to show tlpdtf g’ — f/g)|:1 = 0 if both f and
g satisfy the boundary conditions. In fadtg’ — f’g is equal to O at each of the
endpoints. We will show this for the endpoint= a. Since bothf andg satisfy the
boundary condition at = a, we get the system of equatiomsf’(a) + 1 f(a) =0
ando;g'(a) + f1g(a) = 0. In matrix form this can be written

f'(a) f(a) ary _(O
g@ g@ 1) \0)"

Since the vectofas, f1)" is nonzero, the determinant of the matriiX(a)g(a) —
f (a)g'(a), must be equal to 0, as we wanted to show.

The property of the boundary value problem with unmixed latzup conditions
expressed in (7.8) is critical to the theory that we are présg. It is important to
the proof of Theorem 6.20, as well as to the results thatviolld/e will say that a
boundary value problem &elf-adjointif (Lf, g) = (f, Lg) for any two functions
that satisfy the boundary conditions.
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DEFINITION 7.9 Two real valued function$ andg defined on the interval
[a, b] are said to berthogonal with respect to the weight if

b
(fa g)w = / f(X)g(X)w(X) dx =0.

You will notice that this is the sense in which we used the terthogonal for
Fourier series in Chapter 12. The eigenfunctions of a Stuouuille problem have
orthogonality properties similar to those we discoveradlie sines and cosines in
Chapter 12.

PROPOSITION 7.10 Suppose thap; andg¢y are eigenfunctions of the Sturm Liouville problem defined
by (7.7) associated to different eigenvalugs# 1. Theng; andgy are orthogonal
with respect to the weight.

Proof Since¢; andgy are eigenfunctions associateditpandiy, we have
Loj = Ajwa; and Lok = Acwao.
Hence

(Loj, d) = Aj(woj, dx) = Aj(dj, d)w and
(Lox, @) = A(wok, dj) = Ak(Pk, @j)w-

Using these equations, the properties of the inner prodact,Proposition 7.5, we
have

)\.](¢J’ ¢k)w = (L¢], ¢k) = (¢J7 L¢k) — )"k((pj, ¢k)w-
Thus
()\‘] - )“k)(¢| ’ ¢k)w =0.

Sinceix; — Ax # 0, we must haveég;, ¢i)., = 0, S0¢; andgy are orthogonal with
respect to the weight.

Generalized Fourier series

In Chapter 12 we saw how the orthogonality properties ofittieesssand cosines led to
Fourier series expansions for functions. The orthogonadgult in Proposition 7.10
will allow us to find an analog to Fourier series based on therdunctions of a Sturm
Liouville problem. You are encouraged to observe the siitylaf this development
with that for Fourier series in Chapter 12.

Firstwe assume that a function can be expressed as an ififieéé combination
of eigenfunctions, and derive a formula for the coefficients

PROPOSITION 7.11 Suppose thafip, |n = 1, 2, ...} is the sequence of orthogonal eigenfunctions for a
nonsingular Sturm Liouville problem on the interyal b]. Suppose that

f(X) = C161(X) + Copa(X) + -+ = Y Cahn(X) (7.12)
n=1
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THEOREM 7.16

fora < x < b. Then

(g fy TO0@(0) w(x) dx
C @ndnde PRZO w0 dx

n

(7.13)

Proof If we compute the inner product of and ¢y using (7.12) and Proposi-
tion 7.10, we géf

(f, p)w = (Z cn¢n,¢k> = Calen. B = S Bk P

n=1 n=1

from which the result follows.

Given a piecewise continuous functidnon [a, b], we can evaluate the inner
products(f, ¢n)., and(¢n, ¢n)., and therefore the coefficients in (7.13). Then
we can write down the infinite series

f(X) ~ C161(X) + Cop2(X) + - = Y _ Capn(X). (7.14)
n=1

DEFINITION 7.15 The series in (7.14) with coefficients given by (7.13) is
called thegeneralized Fourier serie$or the functionf. The coefficients,
are called thgeneralized Fourier coefficientsf f.

Two questions immediately come to mind. Does the serieserge? If the
series converges, does it converge to the funcfi@nThe answers are almost the
same as for Fourier series.

Suppose thafip, |n =1, 2, ...} is the sequence of orthogonal eigenfunctions for a
nonsingular Sturm Liouville problem on the interyal b]. Suppose also thdtis a
piecewise continuous function on the interia/ b].

1. If the left- and right-hand derivatives df exist at a poinky € (a, b), then the
generalized Fourier series in (7.14) converges b

fxg)+ f(x)
—
2. Iftheright-hand derivative of exists ab and f satisfies the boundary condition
ata, then the series convergesaap f (a).

3. Ifthe left-hand derivative of exists ab and f satisfies the boundary condition
atb, then the series convergesdb f (b).

Bwe are quietly assuming that the series foronverges fast enough that we can distribute the sum out
of the inner product.
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Notice that if f is continuous at a poing, € (a, b) and is differentiable there,
thenthe generalized Fourier series convergéstg) atxg by part 1 of Theorem 7.16.

Find the generalized Fourier series for the functfam) = 100x/L on the interval
[0, L] using the eigenfunctions of the Sturm Liouville problem iraiple 6.26.
Discuss the convergence properties of the series.

The eigenfunctions akg, (x) = sin((2n+ 1)z x/(2L)) and the weight function
isw(x) = 1. Hence,

C(to@+Drx L
(¢n’¢n)—/(; Sm272L dX—E.

Next, using integration by parts, we get

100 - (2n+ Dnx 400L
f _ . _— d =(—1 ni.
() === | X sin————dx= D o7
Consequently, the coefficients are
(f, dn) 800
= =)' —, 7.18
AP R TR (7-18)

and the generalized Fourier series is

100k & 800 _(2n+Drx
fx)= — =Y (=1)" .
)= g( S Tz N T oL

Theorem 7.16 guarantees that the series will converdéxofor x in the open
interval(0, L). Sincef satisfies the boundary conditiorat= 0, convergence there
is also guaranteed. In fact,at= 0 we havef (0) = 0, and each term of the series
is also equal to O, so the series converges there. The sum Gfghtwo terms and
the sum of the first eight terms of the generalized Fourigesare shown in blue
in Figure 1, while the functiorf is shown in black. The series seems to converge
very rapidly for all values ok. It appears that the series converges td) = 100
atx = L, although this is not guaranteed by Theorem 7.16. Noticeeker, that
the error seems to be greatest at this endpoint. 0

The results of Example 7.17 will enable us to solve the ilii@ndary value
problem for the heat equation in the next example.

Suppose a rod of length is at steady state, with the temperature maintained at 0
at the left-hand endpoint, and at T0& the right-hand endpoint. At time= 0,

the heat source at the right-hand endpoint is removed arnddhiat is insulated.
Find the temperature in the rod as a functiort @hdx. Suppose that the thermal
diffusivity is k = 1.
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Figure 1 The partial sums of orders 2 and 8 for the
generalized Fourier series in Example 7.17.

The initial temperature distribution in the rod is 20Q. The temperature at
x = 0 is maintained at0 The end ak = L is insulated, so we have a Neumann
boundary condition there. Thus we need to solve the irtiialhdary value problem

Ut (X, 1) = uyx(X, 1), fort>0andO< x < L,
u0,t) =0 and uy(L,t)=0, fort >0, (7.20)
u(x,0) =100x/L, forO<x<L.

Notice that the boundary conditions are already homoge)esmuwe do not
have to find the steady-state temperature first. Substitutia product solution
u(x, t) = X(X)T (1) into the heat equation, and separating variables, we sethéha
factors must satisfy the differential equations

T+AT=0 and X"+AX =0,
where is a constant. The first equation has the general solution
T(t) = Ce ™. (7.21)

As usual, we insist thaX satisfy the boundary conditions, so we want to solve
the Sturm Liouville problem

X"+ 21X =0 with X(0) = X'(L) =0.
We did this is in Example 6.26. The solutions are

= (ZnI—le)znz and Xp(x) = sinw, forn=0,1,2,....
Thus, for every nonnegative integerve get the product solution
sin (2n+ Dz x

2L

An

Un(X, 1) = o (@n+1)?n%/4L?
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to the heat equation by using (7.21). This solution alss8asi the boundary con-
ditionsu, (0, t) = dun/ox(L,t) = 0.
By the linearity of the heat equation, the function

> = _(2n+ Dnx
ux,t) = E Caln(X, 1) = E C,e - (@n+1rit/aL? sm% (7.22)
n=0 n=0

is also a solution to the heat equation, provided the sedegerges. Furthermore,
since each of the functions, satisfies the homogeneous boundary conditions, so
does the linear combinatian

To satisfy the initial condition in (7.20), we must have

X (@2n+Dnx
100x/L = u(x, 0) = CySIN———.
/ (x,0) ;0 n oL

This is the problem we solved in Example 7.17. The coeffisian¢ those in (7.18).
Hence, our solution is

800 (2n+1)2712t/4L2 n (2n + 1)7TX .

U(X, t) - Z(*l)nme7 SI 2L
n=0

The evolution of the temperaturgXx, t) is depicted in Figure 2. The initial
and steady-state temperatures are plotted in blue. Thé& blawes represent the
temperature after increments ofl8. Notice how the temperature steadily decreases
throughout the rod to the steady-state temperaturé.of 0 0

100 T

501

0 > x
0 L

Figure 2 The temperature distribution in Example 7.19.

EXAMPLE 7.23 1 Suppose that the rod in Example 7.19 is weakly insulated at L, and satisfies

the Robin conditioruy(L,t) + yu(L,t) = 0 posed in Example 6.4. Find the
temperature in the rod as a functiontaindx.
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We will not go into details, since the analysis is very simitethat in the previous
example. The only difference is that the Robin boundary démmdeads to the Sturm
Liouville problem in Example 6.27. The eigenvalues and eigections are

02 _ OhX
An = L—”2 and ¢n(x) = sm”T, (7.24)

whereb, is thenth positive solution of the equation tdn= —6/y L, which comes

from (6.29). If we multiply this equation by L cosd, we see thab, is the nth
positive solution of the equation

6 cosh + yL sin6 = 0. (7.25)

Proposition 7.10 assures us that the eigenfunctions id) a2 orthogonal on
[0, L]. Theorem 7.16 assures us that the generalized Fourier $ases on these
eigenvalues will converge, at least fo<Ox < L. This series has the form

10 & _ OnX
_— C

The coefficients can be calculated using (7.13). The céaloulas similar to the
computation in the previous example. If equation (7.25%&xlto express everything
in terms of co¥,, the result is
200(yL + 1) cosp,
Oh(y L + cog6,)

With y = L = 1 the partial sums of order 2, 8, and 20 are shown in Figure 3.
The solution to the initial/boundary value problem is

n =

(7.26)

ot i, X
ux,t) = che smT,
n=1

where the eigenvalues are given in (7.24), and the coeffcim® given in (7.26).
The temperature is plotted in black in Figure 4 with tempeed given every
0.05s. 0

EXERCISES

In Exercises 1-4 find the generalized Fourier series fomtigated function using
the eigenfunctions from Example 6.26 on the intef@all].

1L fx)=1

2. f(x) = sinzx (Hint: Remember the trigonmetric identity sirsing =
[cosle — B) — cose + B)]/2.)

3. f(X)=1-xX

4. f(x) =siP7x

In Exercises 5-8 find the generalized Fourier series foreafeed function using the
eigenfunctions from Example 6.27 on the interM@l1] with y = 1.
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100 100%
50 50
% 1 % 0.5 T
Figure 3 The partial sums of Figure 4 The temperature
order 2, 8 and 20 for the distribution in Example 7.23.
generalized Fourier series in
Example 7.23.

5. See Exercise 1
6. See Exercise 2
7. See Exercise 3
8. See Exercise 4
In Exercises 9—12 solve the heat equatipr= uyx on the interval O< x < 1 with

the boundary conditions(0, t) = uyx(1,t) = 0, and withu(x, 0) = f(x) for the
referenced functiorf.

9. See Exercise 1
10. See Exercise 2
11. See Exercise 3
12. See Exercise 4
In Exercises 13—-16 solve the heat equatipe= uxx on the interval O< x < 1 with

the boundary conditions(0, t) = uy(1, t) + u(1,t) = 0, and withu(x, 0) = f(x)
for the referenced functiof.

13. See Exercise 5
14. See Exercise 6
15. See Exercise 7
16. See Exercise 8

17. Find the steady-state temperaturén a square plate of side length 1, where
u(x,0) = T1, u(x, 1) = Tp, u(0, y) = 0, anduy(1, y) = 0. (Hint: Look back
at the methods used in Section 4.)

13.8 Temperatures in a Ball—Legendre Polynomials

We solved the problem of finding the steady-state temperatipoints inside a disk
or a rectangle in Sections 4 and 5. Now we want to do the samg tor the ball.
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The ball of radius is defined to be
B={(xv,2|x*+y*+ 7 < a?.
The boundary of the ball is the sphere
S={(x,y. 2 |x*+y*+22=a?}.
According to (4.3), we want to find the functiarix, y, z, t) on B that satisfies

V2u(x,y,z)=0, for(x,y,z) e B,

(8.1)
ux,y,z = f(x,y,z, for(x,y,z €S,

where f is a given function defined on the sph&e
Since we have spherical symmetry, it is best to use sphaxicatinates, 0,
and¢, which we discussed in Section 5. They are related to Canesiordinates

by
X =rcosdsing, y=rsingsing, z=r cosp. (8.2)

The expression for the Laplacian in spherical coordinates i

1
VU= =), + — — U

In spherical coordinates the b&@land its boundary sphe@are described by
B={r.0,¢)|0<r<a —-m<6<m, 0<¢<m}, and
S={@6.¢)| —wr<0<m 0<¢ <m}.

(sing - ug)y +

Since the boundary temperature is define&omherer = a, in spherical coordinates
it is given by

F@®, ») = f(acostsing, asinfd sing, acosep).

Thus the boundary condition in (8.1) can be writteuéa, 0, ¢) = F (0, ¢).

We will solve the problem in the easier case when the temperatis axially
symmetric, meaning that it depends only on the radiaad the polar anglé, and
not on the variabl@. Then the boundary value problem in (8.1) becomes

riz(rzur)r + m(simp “Upy =0, for0O<r <aand0<¢ <, ©.3)
u@a, ¢) = F(p), forO<¢ <m.

For (x, y, z) in the boundary of the ball, we haze= acosg, and¢ = cos*(z/a).
Thus the boundary temperature will be axially symmetriad anly if the function
f (X, y, z) depends only om. Then we havéd-(¢) = f (acosp).

We look for product solutions of the form(r, ) = R(r) - T(¢). For such
functions the differential equation in (8.3) becomes

(r’rR)-T (sing-T)-R
: =0.
re r2sing
After separating the variables, we see that there is a aatristguch that
(r’R) =a1R and — (sing-T) =xising-T. (8.4)
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A singular Sturm Liouville problem
We will solve the second equation in (8.4) first. To be speoiiie want to solve

—(sing - T) =Aising-T, for0<¢ <m. (8.5)

Notice that the points in the ball wheg¢e= 0 are on the positive-axis, andp =
corresponds to the negatizeaxis. The product function must be well behaved
on the entire sphere, including along thaxis. Therefore, the factdr(¢) must be
well behaved ap = 0, .

The differential equation in (8.5) becomes more familiarewtwe make the
substitutions = cos¢. Then sif¢ = 1 — cog¢ = 1 — s?, and by the chain rule,

d dsd ——sin¢d
dp d¢ods ds’
Hence,
_d (sinqde) = —sing d [sinqudT} = —sing d [(1— sz)dT}
d¢ dop ) ds ds | ds ds |’
Therefore, the differential equation in (8.5) becomes
LT = g (1fs2)d—T =T, for-1<s<1
ds ds

Notice that since € [0, 7], s = cosp € [—1, 1]. The operatot in this equation is

formally self-adjoint, but while the coefficiemt(s) = 1 — s? is positive on(—1, 1),

it vanishes at both endpoints. Thus the operat@ singular at both endpoints.
AlthoughL is singular, from Proposition 6.12 we see that

(Lf.9) = (f.Lo)+ @1 sA(fg — f'g[', = (f. Ly,

for any functionsf andg that have continuous second derivativeg-oft, 1]. Thus,

no explicit boundary conditions are needed to make the tpetaself-adjoint,
although we do need thdt andg and their first derivatives are continuous on the
closed interval—1, 1]. Since both the physics and the mathematics agree, we are
led to pose the problem to find numbérand functionsT such that

—(@-AT) =aT, for-1<s<1,

. . (8.6)
with T andT’ continuous ori—1, 1].

Although this is a self-adjoint Sturm Liouville problem,ig singular, so we
cannot blindly apply the results of Sections 6 and 7. Inddeslftheory of singular
Sturm Liouville problems leads to a variety of new phenoméfta example, Theo-
rem 6.20, which states that the eigenvalues of a nonsin§tdam Liouville problem
form a sequence that convergestis not true in general for singular problems. In
fact, it can happen that every positive real number is amegjae. Singular Sturm

4 The expressiomell behaved means bounded, continuous, or continuously differergiablowever, it
is best kept a little vague.
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Liouville problems are best analyzed on an ad hoc basis. Wieedo this for the
problem in (8.6), we discover that all of the results in S&tsié and 7 remain trué.
In particular, the proof of Proposition 6.24 can be easilydified for this case,
and we see that all of the eigenvalues are nonnegative. Heaaan writeh =
n(n + 1) wheren is a nonnegative real number. Writing out the differentcal&tion
in (8.6), we get
(1-sHT" = 2sT' +n(n+ 1T =0.

This will be recognized as Legendre’s equation, which welistliin Section 11.3.
By (8.6), we need solutions that are bounded at both endpoilbtis a fact, not
easily proven, that we get solutions to Legendre’s equdltiahare bounded at both
endpoints only ifn is a nonnegative integer. Furthermore, the only soluti@t th
is bounded at both endpoints % (s), the Legendre polynomial of degree(see
Exercise 23 in Section 11.6 for partial results in this di@y). Thus, the solution
to the Sturm Liouville problem in (8.6) is

Aan=n(n+1) and Py(s), forn=01, 2, .... (8.7)

From Proposition 7.10, we see that two Legendre polynoroiadifferent de-
grees are orthogonal. Since the weight in equation (8.6)$3 = 1, we have

1
(Pj,Pk)zfle(s)Pk(s)ds=O, if j #Kk.

We state without proof that

1
P P) = [ PZs)ds= .
(Pn, Po) /1 2eds= >

According to Theorem 7.16, § is a piecewise continuous function pal, 1], then
it has an associatddegendre series

(g, Pn)  2n
(P, Pn)

>~ 1
g(s) ~ chPn(s), with ¢, = ;lflg(s) P.(s)ds. (8.8)
n=0 -

Solution to the boundary value problem

If we substitutes = cos¢ into (8.7), we see that the solutions to the second equation
in (8.4) are

A=nn+1) and T,(¢) = Py(cosp), forn=0,1, 2,...,

whereP,(s) is the Legendre polynomial of degrae With A, = n(n + 1), the first
equation in (8.4) becomes

r’R'"+2rR —n(n+ 1)R=0.

15SeeLinear Differential Operators by M. A. Naimark.
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This will be recognized as a special case of Euler's equ#étiea Section 11.3). The
only solution that is bounded near= 0 is R(r) = r". Hence the product solutions
are of the form

r"P,(cosp), forn=0, 1,2, ...,

and we look for a solution of the form

u(r, @) = Y Cal "Pr(COSP). (8.9)
n=0

By the linearity of the Laplacian, if the series convergleis, function is a solution
to Laplace’s equation. Thus we need only show that we canlieddefficients,
so that the boundary condition in (8.3),

u@ ¢) =Y cha"Pu(cosp) = F(¢),
n=0

is satisfied. If we again set= cos¢, thenF(¢) = f(acosp) = f(as), so we
want

f(as) = Z cha Py (s). (8.10)
n=0
This is just the Legendre series fbfas), so by (8.8) we need
1
Cra = 2”; l/ f (as)Py(s) ds. (8.11)
-1

Find the steady-state temperature in a ball of radius 1, when the boundary is
kept at the temperaturk(z) = 1 — 22

Since the boundary temperature depends ong ibis axially symmetric. Since
f(s) = 1—s?is a polynomial of degree 2, we expectthatit is a linear coration of
the firstthree Legendre polynomiaRs(s) = 1, Pi(s) = s, andP,(s) = (35>~ 1)/2.
We easily see that in this case (8.10) becorhé® = 2[Py(s) — P2(s)1/3. Then,
using (8.9), we see that the solution is

2
u(r, @) = z[Po(cosg) — r2P,(cosp)]

2 [1r23co§¢—1}
3 2

2 2
_ctr —r?cog ¢.

We can express the temperature in Cartesian coordinates(@s2). In fact, this
is quite easy, since® = x? + y? + z%, andr cosg = z. We see that the steady-state
temperature is given by

24+ X% 4 y? - 27
3 .

ux,y,z =
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EXERCISES

1

Find the steady-state temperature in a ball, assuminghatirface of the ball
is kept at a uniform temperature of

. Find the steady-state temperature in a ball of radius 1, assuming that the

surface of the ball is kept at the temperatdi@) = 1 — z

. Find the steady-state temperature in a ball of radigs 1, assuming that the

surface of the ball is kept at the temperattitg) = z°.

. Find the steady-state temperature in a ball of radius 1, assuming that the

surface of the ball is kept at the temperatdig) = z*.

In Section 11.3 we presented the identtly;(x) — nPy(x) = P;_;(x), and stated
that Pon.1(0) = 0, while Pon(0) = (—1)"=22 You will find these facts useful in
Exercises 5-8.

5.

22n(n!)2‘

Suppose a ball of radius 1 is exactly half immersed into ioghat the bottom
half of the surface is at°@, while the upper half is kept at 10. Find the first
three nonzero terms in the series expansion (8.9) of thdyst&ate temperature
in the ball.

6. Find the complete Legendre series for the temperature inciSee5.

7. Suppose the surface of the ball of radaus- 1 is kept at the temperature

z if0<z<1,

f@=1g i _1<z<0.

Find the first three nonsero terms in the series expansi@hdBthe steady-state
temperature in the ball.

. Find the complete Legendre series for the temperature inckse=7.

9. Withous doing any series computations, what is the tempeat the center of

10.

the ball in Exercise 5?

Suppose we have a spherical shellwith innerradius 1 andi@atiels 2. Suppose
that the inner boundary is kept at,G&nd the outer boundary at 2LOFind the
steady-state temperature throughout the shell.

13.9 The Heat and Wave Equations in Higher Dimension

We have successfully used the method of separation of Vesiab solve the heat
equation and the wave equation when there is only one spaedla The method
is also applicable when there are several space variabietheory, the method is
the same as it is with one space variable. In place of the Stimnville problem
that comes up naturally in one space variable, there is tire general eigenvalue
problem for the Laplacian. When the space domain is a reldang sphere, the
geometric symmetry allows us to solve this problem usingfavorite method of
separation of variables.
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Heat transfer on a rectangle

As an example of the method, let's consider the rectabgtd width a and height
b which we first discussed in Section 3. The rectangle is ilistl in Figure 1,
together with the initial and boundary conditions to bes$ed by the temperature
uct, X, y).

Y

> u(t,x, b) = g,(x)
0.5 2 (a.b)
u(t,0, y) = g,(») u(0,x,y) = f(x,y) in D ut,a, y) = g,(y)
©0,0) u(r.x, 0) = g,() (@, 0) *

Figure 1 The Dirichlet problem for the rectangle D.

Notice that the boundary value of the temperature is desdrdifferently on
each edge of the rectangle. To simplify our notation, we défine the function
g(x, y) on the boundary of the diskD, by

01(x), ify=0,
02(x), ify=Dh,

X, = .
9. y) os(y), ifx=0,
gy, ifx=a.

Then the initial/boundary value problem for the heat equnaith the rectangle is

ug(t, X, y) = kV2u(t, x, y), for(x,y) € Dandt > 0,
ut,x,y)=g(,y), for(x,y) e dDandt >0, (9.1)
u, x,y)= f(x,y), for(x,y)eD.

Let’s suppose that the initial temperature is constantfinoutD:
u@,x,y)= f(x,y)=T;, forO<x<aandO<y<bh. (9.2)
Let’s also suppose that beginning at time= 0 the boundary of the rectangle is
submitted to a source of heat at the constant temperaturélence the boundary
condition is

ut,x,y)=g(x,y) =T, for(x,y)e dD andt > 0. (9.3)

We want to discover how the temperatureDrvaries ag increases.
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Reduction to homogeneous houndary conditions

Ourfirststep is to reduce the problem to one with homogenieowsdary conditions,
as we did in Section 2. We do this by finding the steady-stdteien us that solves
the boundary value problem

V2us(x,y) =0, for(x,y) e D,

(9.4)
Us(X,y) =g(x,y) =To, for(x,y)eaD,

for Laplace’s equation. We showed how to solve this problenitie rectanglé

in Section 4. However, in our case the boundary temperasweristant, so we are

led to expect thatis(x, y) = T,. Substituting into (9.4) verifies that this is correct.
Having found the steady-state temperature, it remains toufig= u — us. By

combining the information in (9.1) and (9.4), we see thatust solve the homoge-

neous initial/boundary value problem

v (t, X, y) = kV2u(t, x,y), forx,ye Dandt> 0.
v(t,x,y) =0, for(x,y) e dD andt > 0. (9.5)
v(0,x,y) = F(X,y) = f(X,y) —us(x,y), for(x,y) e D.

In the case at hand; (x, y) = T; — T,. To solve the problem in (9.5), we use the
method of separation of variables. It will be useful to congpshat we do here with
the method used in Section 2.

Step 1. Separate the PDE into an ODE in t and a PDE in x y . When we
insert the product = T(t)¢(x, y) into the heat equation, = kV?v, we obtain
T (o (x,y) = KT (t) V20 (x, y). Separating the variabtefrom the pair of variables
x andy, we get the two differential equations

T 4+2kT =0 and — V%) =g, (9.6)

wherea is a constant. Notice the similarity with equation (2.8).eThist equation
has the solution

T(t) = Ce ™K. (9.7)

Itis the second equation that requires our attention. Thisit is a partial differential
equation.

Step 2: Solve the eigenvalue problem for the Laplacian. We will insist that the
product solutionv(t, X, y) = T (t)¢ (X, y) satisfy the homogeneous boundary con-
dition coming from (9.5). Since this condition affects oti factorp, the problem

to be solved is finding and¢ such that

—V2p = r¢, withp(x,y) =0for(x,y) e aD. (9.8)

This is called areigenvalue problenfor the Laplacian. Using the same terminology
we used for the Sturm Liouville problem in dimensioa= 1, the numbek is called
an eigenvalue and the functiorp is anassociated eigenfunctianin our case we
have the Dirichlet boundary conditiai(x, y) = 0 for (x, y) € aD, but we could
have Neumann or Robin conditions.
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We look for product solutiong (x, y) = X(X)Y(y). The differential equation be-
comes— X"(X)Y(y) — X(X)Y”(y) = AX(X)Y(y). When we separate variables, we
see that there must be constamtandv such that

—X"=uX and —Y"'=vY, with pu+v=2x (9.9)

Next, look at the boundary condition. For example, we regjtiato (0, y) =
X(0)Y(y) = 0for0 < y < b. This means that we must haxX¢0) = 0. In the same
way, we see thaK(a) = 0, andY(0) = Y(b) = 0. Together with the differential
equations in (9.9), we see that we have Sturm Liouville prots for bothX andyY.
Itis essentially the same problem for both, and it is the [enmbwe solved in Section
2, ending with equation (2.12). According to (2.12), we hsekitions

i2m2 . imX
Wi = 2 and Xj(x) = sm?
JZnZ ) J7Ty
vj = 2 and Yj(y) = smT,
fori,j =1, 2, 3, ....To sum up, the eigenvalue problem for the rectarigleas
solution
|27'[2 127'[2 X JT(y
Aij = =z + 2 and ¢ j(X,y) _sm? sin—= 5 (9.10)

fori,j=1,2,3, ....

Step 3: Solving theinitial/boundary value problem. The finish of the process is
very much like it was in dimension = 1. Notice that for each pair of positive
integersi and j we have the solutiof; j(t) = e X from (9.7). The product
T j(X,y) =€ Mkt g j (X, y) is a solution to the heat equation and the homo-
geneous boundary conditions. Using the linearity of the égaation, and assuming
that there are no convergence problems, we see that anydiéthe form

vt X, y) =Y Y cje Mg o y) =) ¢ e tiMsin—— - sm%
i—1j-1 i—1j-1

will be a solution to the heat equation and will also satisky boundary conditions.
In order that the initial condition be solved, we set 0 to get

ZZCI i%i (X, y)

i=1j=1

v(0,x,y) = F(x,y)

[y
[y

(9.11)
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for0 < x <aand 0< y < b. Equation (9.11) is a Fourier series in botlandy
simultaneously. Using the orthogonality relations for fleuseries, we see that

/¢,J¢, jrdxdy = //sm—smjny sinjgydxdy

i b
2/0 sm%xsmlzxdxfo sm%smjbydy (9.12)

ab
B i—iandi =i
{4 ifi =i"andj = j

0, otherwise.

Therefore, if we multiply the series in (9.11) by ;- and integrate over the rectangle
D, we get

ab
/F¢| jrdxdy = ZZCI]/¢I]¢I VdXdy—_Cl"

i=1j=1

Consequently, the coefficients are given by
4
C.j= —/ F(x,y) ¢i.j(x, y)dxdy. (9.13)
ab D
In our case, we havE (X, y) = T; — Ty, SO
4 (T T)/asininxdx/ slnJ yd
GiZapl't 2 0 a o b Y
= (Ty — Tz)%[l —cosir][1— cosjr].
ijm

Henceg ; = 0 unless both andj are odd, and

16(Ty — To)
2+ D2] + D2’

Coi+1.2j+1 =

Thus, the solution to the homogeneous initial/boundaryevgroblem is

oo 00

16M—To) i,k
v(t, X, y) = ZZ 72(2 +1)(21+1)e 12412141 oy 11 27 11(X, Y).

The solution to the original problem is

U(t, X’ y) = uS(X7 y) + U(L X’ y)

[ *Ne o]

16(Ty — Ty) o in o rkt
=T 2+12j+1kt )
2+ 'E:o jE—O 2@ + D@ + l)e G2i+1.2)+1(X, Y)
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Vibrations of a rectangular drum

Without much more work we can analyze the modes of vibratioa i@ctangular
drum. The displacemeni(t, x, y) of the drum is governed by the wave equation
Uy = ¢®V2u. The edge of the drumis fixed, so it satisfies the homogenemursiary
conditionu(t, x, y) = 0 for (x,y) € adD. The drum has an initial displacement
fo(x, y) and initial velocity f1(x, y). Hence the displacement of the drum satisfies
the initial/boundary value problem

uw (t, X, y) = c2Vau(t, x,y), for(x,y) e Dandt > 0,
u(t,x,y)=0, for(x,y)e aD andt > 0,

u(0, x,y) = fo(x,y), for(x,y)e D,
u (0, x,y) = fi(x,y), for(x,y)e D.

(9.14)

We look for product solutions to the wave equation, so weusetx, y) =
T (1)¢ (X, y) and substitute into the wave equation, getting

T (X, y) = T OV(X, Y).
Arguing as we have before, we get the two differential eqpuneti
T +Ac’T =0 and — V%) = ¢, (9.15)

where is a constant. Since are looking for solutions to the secop@igon that
vanish on the boundary @, we have once more the eigenvalue problem in (9.8),
and the solutions are those in (9.10).
It remains to solve the first equation in (9.15) with= %, ;. If we set
i2 j2

wj,j = Cy/Ajj=Crm +E’

the equation becomés” + w,zT = 0. This equation has the fundamental set of
solutions sinw; jt and cosy; jt. Hence for the eigenvalug ; we have two linearly
independent product solutions

sin(wi jt) - ¢i j(X,y) and coswi jt) - i j(X,y), (9.17)

whereg; j (X, y) isthe solution foundin(9.10). Every solution to the inftiundary
value problemin (9.14) is an infinite series in these prodaotitions. Hence ifi is
a solution we have

P (9.16)

ui, x,y) = ZZ[ai.j cosw; jt) + by j sin(wi jt)]¢i j (X, y).

i=1 j=1

Evaluatingu andu; att = 0, we see that

fox,y) =u0,x,y) =YY a ;i j(x.y), and
e (9.18)

10X, y) = u (0. X, y) = Y Y i jbi i j (X, ).

i=1 j=1
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These are double Fourier series like thatin (9.11), so thficeents can be evaluated
using (9.13). We get

4
& =—/ fo(X, y) ¢i.j(x, y)dxdy and
ab Jp

4
aba)i, j

bi;= /D f1(x, y) ¢i j (X, y) dxdy.

Notice that the product solutions in (9.17) are periodidnmet with frequency
wi,j given in (9.16). Unlike the case of the vibrating string, sbdrequencies are
not integer multiples of the lowest frequenoy;. Consequently the vibrations of a
rectangular drum will not have the fine musical qualities afadin.

EXERCISES

in Exercises 1- 6 we will further explore heat transfer wittaisquare plat® of
side length 1. Suppose first that the plate has three sidehwahe kept at Q while
the fourth side is insulated. Then the boundary conditiongte temperature can
be written as

ut,x,0)=u,x,1)=0, and u(t,0,y) =ux(,1,y) =0. (9.19)
Notice that the steady-state temperature in the platé.isThe temperature i

satisfies the heat equatiap= kV?2u.

1. Supposethai(t, x, y) = T(t)¢ (X, y) is a product solution of the heat equation,
together with the boundary conditions in 9.19. Show thateh&a constant
such that

(a) T satisfies the equatioR’ + AT = 0.
(b) ¢ satisfies—V2¢p = r¢, together with the boundary conditions

Pp(x,00=¢(x,1)=0, and ¢(0,y) =¢x(1,y)=0. (9.20)

2. Solve the eigenvalue problem for the Laplacian in part (bExércise 1, and
show that the solutions are

2.2
pq = w + q2n2 with

$p.q(X,y) = sin (Lzl)nx) singry,

for p> 0andq > 1.
3. Show that

1/4, if p=p andg=q’
0, otherwise.

/[;‘Pp-q(X, Y) op.q (X, y) dxdy = {
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4. Suppose that the initial temperatureu, x, y) = f(x, y). Show that the
temperature is given by

U(t, X7 y) = Z Zcp.qe)\p'qkt¢p.q(x7 y),

p=0g=1

where the coefficients are given by

Cpq = 4/;3 f (X, Y)Ppq(X, y) dxdy.

5. How must the solution in Exercise 4 be modified if the boundanyditions are
changed to

ut,x,0)=u(t,x,1) =T, and u(t,0,y) =ux(t, 1, y) =07

6. How must the solution in Exercise 4 be modified if the platesiated on two
opposite edges, so that the boundary conditions are changed

ut,x,0) =u(,x,1) =0, and uy(t,0,y) =ux(t, 1 y) =07?

7. Suppose we have a square drum with side lengttand suppose that it is
plucked in the middle and then released. Then its initigbldisement is given
by f (X, y) = min{x, y, = — X, = — y}, while its initial velocity is 0. The graph of
f is a four-sided pyramid with height/2. Use the techniques of this section to
compute the displacement as a function of both time and sJdie seemingly
daunting task is made easier if you follow these steps.

(a) Show that
fx,y)=[F(x—y) - FXx+yl/2
whereF (z) is the periodic extension of — |z| from the interval—, ']
to the reals. lint: Just check the cases.)
(b) Compute the Fourier series fbron the interval —n, 7 ].

(c) Use the formula in 7a and the addition formula for the iwegd complete
the computation of the double Fourier series for You will notice that
the series has the forri(x, y) = Z%O:l ap sin px sin py. Comparing this
with the series that appear in 9.18, we see that the coefficedrall of the
off-diagonal terms are equal to 0.

(d) Find the displacemeni(t, x, y) in the way described in this section. Is the
vibration of the drum with these initial conditions periodt time?

8. Using the terminology in Exercise 7, show that the function
1
u(t, X, y) = Z[F(X —y+V2ct) + F(x —y — v/2ct)

— F(x+y++v2ct) - F(x+y— v2ct)]

is a solution to the wave equation and also satisfies thaliratid boundary
conditions in Exercise 7.
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13.10 Domains with Circular Symmetry—Bessel Functions

In this section we will analyze the vibrations of a circulauich. LetD be the disk
of radiusa, which we describe as

D ={(x.y) € R*x*+y* < a%}.

The displacemenu(t, x, y) of the circular drum orD satisfies the initial/boundary
value problem in (9.14). Separation of variables leads «® @yain to the two
differential equations in (9.15). Hence we are led to anmeigkie problem for the
disk D, which is to find all numbers and functiong) such that

—V2p(x,y) = rp(x,y), for(x,y) e D,and

¢(x,y) =0, for(x,y)eaD, (10.2)

As we did in Section 5, we will use polar coordinates (see tgud5.2)) to
solve the problem in (10.1). In these coordinates the emesvwproblem in (10.1)
becomes

1 1
- |:¢rr + I’_¢r + r—ZUHHi| (r,0) = Ap(r,0), forr < a,

¢@,0)=0, for0<6 <2m.

(10.2)

When we substitute a product function of the fognr, ) = R(r)U () into the
differential equation in (10.2), we get

R (NU(©) + %R(F)U 0)+ rizR(f)Uee(Q) +AR(MU®) = 0.

To separate variables, we multiply b§/ RU, obtaining

rzR” +rR + AreR " Ugg
R U

=0.

This sum of a function of and a function of) can be equal to 0 only if each is
constant. Hence there is a constarguch that

Ry +rR +ar?R—puR=0 and Uy + uU =0. (10.3)

We will solve the second equation in (10.3) first. Remembatdhrepresents
the polar angle in the disk, so the solutidnmust be periodic with period2in 6.
We examined the resulting Sturm Liouville problem in Exaenpl17 in Section 6,
and found that we must haye= n?, wheren is a nonnegative integer, and that the
eigenfunctions are

1, forn=0

sinng, and cos¥, forn> 1. (10.4)
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Bessel functions

Substituting = n? into the first equation in (10.3) and then rearranging it, we g
the equation
d’R dR
2 2 2
r“— +r— —n“R=—-ar‘R. 10.5
dr? * dr ( )

After dividing byr and multiplying by—1, it becomes
r-]2
—(rR)Y + 3 R=ArR (10.6)

The operatot. defined byL R = —(r R)’+n?R/r that appearsin (10.6) is formally
self-adjoint. However, the coefficiepir) = r vanishes at = 0, and the coefficient
q(r) = n?/r has an infinite discontinuity there. Hence, the operatoinigusar at
r=0.

As we did for the Legendre equation in Section 8, we will reguhat the
eigenfunctions are continuousrat= 0 together with their first derivatives. At the
other boundary point = a, the boundary condition comes from (10.1). Our Sturm
Liouville problem is

n2
f(rR’)’+r—R:)LrR, forO<r <a,

RandR are continuous at =0, (10.7)

R(a) = 0.

Notice that the weight function i®(r) =r.

Once again we are fortunate. Even though the Sturm Lioupiltsblem is
singular, it has all of the properties of nonsingular praidethat we described in
Sections 6 and 7. In particular, Proposition 6.24 remaimes, and we see that all of
the eigenvalues are positive. Hence, we can write v2, wherev > 0. If we make
the change of variables= vr in the differential equation in (10.5) and rearrange i,
it becomes ,

,d°R dR 2

S 92 +Sds +[s*—n“]R=0.
(See Exercise 9 in Section 11.7.) This is Bessel's equaticrdern. In Sec-
tion 11.7 we discovered that a fundamental set of solutiertbe pairJ,(s) and
Yn(s). Therefore, the general solution to the differential emumin (10.7) is
R(r) = AJy(vr) + BY,(vr). However, sinceY,(vr) has an infinite singularity
atr = 0, it does not satisfy the boundary conditiorrat 0 in (10.7). Therefore,
B = 0. TakingA = 1, we haveR(r) = Jy(vr).

It remains to satisfy the boundary conditidf(va) = 0. We discussed the zeros
of the Bessel functions in Section 11.7. There are infiniteny of them. v,k is
thekth zero ofJ,, then we nee@ = v,k = ank/a. Consequently, the solutions to
the Sturm Liouville problem in (10.7) are

Ol2
Ak = aLék and R(r) = J(ankr/a), fork=1, 2, .... (10.8)
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From Proposition 7.10, we see that the functi®asre orthogonal with respect
to the weightw(r) = r. This means that

(Re, Rjr :/ In(@nr/a)n(anjr/ayrdr =0, if j #k.
0

A rather difficult computation shows that

2

(Re. ROy = /0 In(enir /a)2rdr = %J§+1(an.k>.

If fisa piecewise continuous function g al, then its associatefeburier-Bessel

seriesis N
F0) ~ ) ccdnlanu /a). (10.9)
k=1
where the coefficients are given by
(f, Ror 2 /'a
Ck = = f(r)Jdn(ankr/a)r dr. 10.10
“T (RoRor @232 (@np) Jo n(eni/ (10.10)

The integral in (10.10) is difficult to compute, even for tiraglest functionsf . Not
infrequently it is necessary to compute the integral apipnetely for small values
of k.

Solution to the eigenvalue problem on the disk

Bringing together the results in (10.4) and (10.8), we seg ttie solutions to the
eigenvalue problem in (10.1) for the Laplacian on the digk ar

2
a .
how=—5 With  o,(r.6) = Jo(eour /).

forn=0andk=1, 2, 3, ...

ok with | @nk(r.6) = cosnd - Jn(enir/a) - and
a2 Ynk(r, 6) =sinnd - J,(anl /),

forn=1,23,...andk=1,2, 3, ....

(10.11)
Ank =

By integrating using polar coordinates, and using the @uimality relations for the
Bessel functions and the trigonometric functions, we sattkie eigenfunctiong, k
andv, k satisfy the orthogonality relations

wa?d? (any)/2, ifn’=nandk = k.
v d d = n+1370 ’
_/|3¢"'k¢” K axdy {O, otherwise,
wa?d? (any)/2, ifn’=nandk = k.
dxdy = 1 (oni)/2, (10.12)
./Dwn'kl//n K axay {O, otherwise,

/ Onk¥ww dxdy =0, inall cases.
D
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The solution of the wave equation

For the time dependence of the product solution to the wavatemqn, we must
solve the first equation in (9.15). With?, = c®Anx = (Cank/a)?, this equation
becomesl” + a)n «T = 0. The solutions are c@®,t) and siriw, «t). Thus the
product solutions of the wave equation are of the form
coSwnkt) - Pnk(r, ), COSwnkt) - Ynk(r,0),
sin(wnkt) - ¢nk(r,0), and  sifwnt) - Yak(r, 0),
for all appropriate choices of the indices. By linearityydmnction of the form

= r <& G t
ut.r ) =y Jo (= )[Ao.kc 2K | Boysi n—2- }
k=1

(10.13)

o0 o0 ) t
+ Z Z Jn (ar;kr ) [ Ank coSNd + By sinnd | cosCO[;'k (10.14)
n=1 k=1

o t
+ZZJn< i ) ancosn9+ansmn9]sm ;‘k
n=1 k=1

is formally a solution to the wave equation on the disk thasgas Dirichlet boundary
conditions.

The coefficients are evaluated using the initial conditio(@ r, 0) = fo(r, 0)
andu¢(0,r, #) = f1(r, #). Evaluating (10.14) dat= 0, we see that

wnm=§:%kb(

ookl )

+ZZJn (ank ) Anx cosnd + By sinnd] .
n=1 k=1

The coefficients can be found in the usual way, using the gdhality relations
in (10.12). We get

R

A —#/ /Zﬂf(r Q)J(”‘kr>cosn9rdrd9 and
" r@daen Jo Jo 0T ’

Bk = 2 /a/hf(r 6)J ( n'kr>sinn9rdrd9
n‘k_ﬂaszH(Oln.k) o Jo A NP .

Q

(10.15)

The remaining coefficients in (10.14) can be evaluated irsimae way using the
initial velocity. They are

2 a p2m o
Cop = —— [ [ neon(
craonkdy,1(enk) Jo Jo

2 a 21 o
Doy = —— [ [ neon(
Craon k1 (@nk) Jo Jo

r
"ak )cosnerdrde, and

"akr ) sinndr dr do.
(10.16)



The fundamental modes of vibration of a drum
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Notice that the product solutions in (10.12) representatibns of the drum with
frequencywn x = Cuap k/a, and with an amplitude that varies over the drum like the

@ functionsen, xk andyr, . For this reason, the functiows x andvy,  are referred to
and aviolin.
get quite complicated.

.t o as thefundamental modef vibration for the drum.
The frequencies are proportional to the zeros of the Beséafctions. Ac-
_ cording to Table 1 in Section 11.7, the four smallest zer@scgn = 2.4048,
a1 = 3.8317,a07 = 5.1356, andug, = 5.5201 We see that the frequencies
* are clearly not integer multiples of a lowest, fundamentadjiency, which is the
0, %, case for the vibrating string. This explains the quite défe sounds of a kettle drum
The nodal setof a fundamental mode is the set where it vanishes. During a
_ € + vibration in a fundamental mode, the points in the nodal sehat move. Since
¢0.1(r, 0) = Jo(xg1r /@) is notequalto O for < a, its nodal set is empty. Similarly,
¢11 = €osHJi(xgar/a) = 0 only where co8 = 0, so its nodal set is thg-axis.
¢, %5 The nodal sets for several fundamental modes are shown imd~ilg The+ and
— signs indicate regions where the drum head has oppositedépent during the
oscillation. Asn andk get large, the motion of the drum in a fundamental mode can
If you strike a kettle drum in the middle, seemingly a natysalce to do so,
you will get a mixture of all of the frequencies as shown in.(#). The result is
a sound that is really awful. Naturally, professional tymigés avoid this. Instead,
they carefully strike the drum near the edge. The resultasttie lowest frequency
is eliminated from the mixture. In fact, a professional tyanfst gets a sound that is
almost a pure; 1 mode.

D

Figure 1 The nodal sets for some
fundamental modes.

EXERCISES
1. Verify the orthogonality relations in (10.12).
2. Verify the formulas in (10.15) and (10.16).
3. Plot the nodal sets for the fundamental modes, ¢3 2, ande; 4.
4

. Suppose thatthe initial displacement of the drum is a fonet{(0, r, 0) = f(r),
that is independent of the angle and the initial velocity is 0. How does the
series for the solution in (10.14) simplify?

5. Suppose that the initial temperature in a dizkf radiusaisu(0,r,0) = f(r),
wheref (r) is a function of the radiusonly. Itis safe to assume that= u(t, r)
is also independent of the angle

(@) Show thatv?u = u, + uy/r.

(b) Assuming that the temperature vanishes on the boundahedisk, the
initial/boundary value problem in polar coordinates is

1
ut:k[urr-i-Fur}, forO<r <aandt > 0,

ut,a) =0, fort >0,
u@,ry= f(r), for0O<r <a.
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Find the product solutions that satisfy the Dirichlet boarydcondition.
(c) Find a series expansion for the temperatuter, 6).

. Find a series expansion for the solution to the initial/letany value problem
u(t, x, y) = kV2u(t, x, y), for(x,y) e Dandt >0,
ut,x,y)=0, for(x,y)e aD andt> 0,
ut,x,y)= f(x,y), for(x,y)eD,

whereD is the disk of radius.

. Consider the initial/boundary value problem

u(t, X, y) = kV2u(t, x, y), for(x,y) e Dandt >0,
g—z(t, X,y) =0, for(x,y)e oD andt > 0,

ut,x,y) = f(x,y), for(x,y)e D,

whereD is the disk of radius 1. The problem models the temperatwaeircular
plate when the boundary is insulated.

(a) What is the eigenvalue problem for the disk that arisesnyou solve this
problem by separation of variables?

(b) Restate the eigenvalue problem in part (a) in polar doatds.
(c) What are the eigenvalues?

. Consider the cylinder described in cylindrical coordirsaig
C={(r.0,2/0<r<a0<0 <2r,andO0< z < L}.

(See section 13.5 for a discussion of the Laplacian in cyitatlcoordinates.)
(a) Supposea(r, 8, z) = ¢(r, 0)Z(z) is aproduct solution of Laplace’s equation
in C. Show that there is a constansuch that
—V2p =1rp, and Z" =ArZ.
(b) Find the product solutions to Laplace’s equation thatistaon the curved
portion of the boundary of the cylinder, so tifgla, ) = 0for0 < 6 < 2.
(c) Find a series solution to the boundary value problem

vau(r,0,z)=0, for(r,6,z) eC,
ur,0,0 = f(r,0), forO<r <aand0<6 < 2w,
ur,9,L)=0, forO<r <aand0<0 < 2r,
u@f,z2)=0, for0<d <2randO<z< L,
for a steady-state temperatureGn

. Find the solutions to the eigenvalue problem for the Laplacin the cylinder
C. This means we want to find numbérand functionsp such that

~V2p=1¢p inC,and ¢ =0 onthe boundary ct.
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(a) Firstsuppose thdi(r, 8, z) = A(r, #) B(z) and show that there are numbers
w andv such thaiu + v = A for which

—V?A=puA for(r,0)eD
A(a,0) =0 for(r,0) € aD,

and
—-B"=vB forO<z<lL
B(0) = B(L) =0.
(b) Solve the two eigenvalue problems in part (a) to find tlyemvalues and
eigenfunctions for the Laplacian @



