Math 211 Sec. 4

Models of Motion

September 4, 2001

Models of Motion

History of models of planetary motion

- Babylonians - 3000 years ago
- Initiated the systematic study of astronomy.
- Collection of astonomical data.

Greeks

- Descriptive model - Ptolemy (~ 100)

Geocentric model

- Epicycles
- Enabled predictions
- No causal explanation
- This model was refined over the following 1400 years.

Nicholas Copernicus (1543)

- Shifted the center of the universe to the sun.
- Fewer epicycles required.
- Still descriptive and not causal.
- The shift to a sun centered universe was a major change in human understanding of their place in the universe.

Johann Kepler (1609)

- Based on experimental work of Tycho Brahe (1400).
- Three laws of planetary motion.

1. Each planet moves in an ellipse with the sun at one focus.
2. The line between the sun and a planet sweeps out equal areas in equal times.
3. The ratio of the semi-major axis to the cube of the period is the same for each planet.

- This model was still descriptive and not causal.

Isaac Newton

- Three major contributions.

Laws of mechanics.

- Second law - $F=m a$.
- Universal law of gravity.
- Fundamental theorem of calculus.
$f^{\prime}=g \Leftrightarrow \int g(x) d x=f(x)+C$.
- Invention of calculus.
- Principia Mathematica 1687

Isaac Newton (cont.)

- Laws of mechanics and gravitation were based on his own experiments and his understanding of the experiments of others.
- Derived Kepler's three laws of planetary motion.
- This was a causal explanation.
- For any mechanical motion.
- Still used today.

Isaac Newton (cont.)

- The Life of Isaac Newton by Richard Westfall, Cambridge University Press 1993.
- Problems with Newton's theory.
- The force of gravity was action at a distance.
- Physical anomalies.
- The Michelson-Morley experiment (1881-87).

Albert Einstein

- Special theory of relativity - 1905.
- General theory of relativity - 1916.
- Gravity is due to curvature of space-time.
- Curvature of space-time is caused by mass.
- Gravity is no longer action at a distance.
- All known anomalies explained.

Unified Theories

- Four fundamental forces.

Gravity, electromagnetism, strong nuclear, and weak nuclear.

- Last three can be unified by quantum mechanics. Quantum chromodynamics.
- Currently there are attempts to include gravity.
- String theory.
- The Elegant Universe : Superstrings, hidden dimensions, and the quest for the ultimate theory by Brian Greene, W.W.Norton, New York 1999.

The Modeling Process

- It is based on experiment and/or observation.
- It is iterative.
- For motion we have ≥ 6 iterations.
- After each change in the model it must be checked by further experimentation and observation.
- It is rare that a model captures all aspects of the phenomenon.

Linear Motion

- Motion in one dimension $-x(t)$ is the distance from a reference position.
- Example: motion of a ball in the earth's gravity $-x(t)$ is the height of the ball above the surface of the earth.
- Velocity: $v=x^{\prime}$
- Acceleration: $a=v^{\prime}=x^{\prime \prime}$.
- Acceleration due to gravity is (approximately) constant near the surface of the earth

$$
F=-m g, \quad \text { where } \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

- Newton's second law: $F=m a$
- Equation of motion: $m a=-m g$, which becomes

$$
\begin{gathered}
x^{\prime \prime}=-g \quad \text { or } \quad x^{\prime}=v, \\
\quad v^{\prime}=-g .
\end{gathered}
$$

- Solving the system

$$
x^{\prime}=v,
$$

$$
v^{\prime}=-g
$$

- Integrate the second equation:

$$
v(t)=-g t+c_{1}
$$

- Substitute into the first equation and integate:

$$
x(t)=-\frac{1}{2} g t^{2}+c_{1} t+c_{2} .
$$

Resistance of the Medium

- Force of resistance

$$
R(x, v)=-r(x, v) v \quad \text { where } \quad r(x, v) \geq 0
$$

- Resistance proportional to velocity.

$$
R(x, v)=-r v, \quad r \text { a positive constant. }
$$

- Magnitude of resistance proportional to the square of the velocity.

$$
R(x, v)=-k|v| v, \quad k \text { a positive constant. }
$$

$$
R(x, v)=-r v
$$

- Total force: $F=-m g-r v$
- Newton's second law: $F=m a$
- Equation of motion:

$$
\begin{aligned}
& x^{\prime} \\
& m x^{\prime \prime}=v, \\
& \quad \text { or } \quad v^{\prime} \\
&=-\frac{m g+r v}{m}
\end{aligned}
$$

- The equation $v^{\prime}=-\frac{m g+r v}{m}$ for v is separable.
- Solution is $v(t)=C e^{-r t / m}-\frac{m g}{r}$.
- Notice

$$
\lim _{t \rightarrow \infty} v(t)=-\frac{m g}{r}
$$

- The terminal velocity is $v_{\text {term }}=-\frac{m g}{r}$.

$$
R(x, v)=-k|v| v
$$

- Total force: $F=-m g-k|v| v$.
- Equation of motion:

$$
\begin{array}{ll}
m x^{\prime \prime}=-m g-k|v| v \quad \text { or } \quad x^{\prime}=v, \\
v^{\prime}=-g-\frac{k|v| v}{m} .
\end{array}
$$

- The equation for v is separable.
- Suppose a ball is dropped from a high point. Then $v<0$.
- The equation is

$$
\begin{aligned}
v^{\prime} & =\frac{-m g+k v^{2}}{m} \\
& =-\frac{k}{m}\left[\frac{m g}{k}-v^{2}\right] \\
& =-\frac{k}{m}\left[\alpha^{2}-v^{2}\right], \quad \text { where } \alpha=\sqrt{m g / k} .
\end{aligned}
$$

- The solution is

$$
v(t)=\sqrt{\frac{m g}{k}} \frac{A e^{-2 t \sqrt{k g / m}}-1}{A e^{-2 t \sqrt{k g / m}}+1} .
$$

- The terminal velocity is

$$
v_{\text {term }}=-\sqrt{m g / k}
$$

Return

Solving for $x(t)$

- Integrating $x^{\prime}=v(t)$ is sometimes hard.
- Use the trick (see Exercise 2.3.7):

$$
a=\frac{d v}{d t}=\frac{d v}{d x} \cdot \frac{d x}{d t}=\frac{d v}{d x} \cdot v
$$

- The equation

$$
v \frac{d v}{d x}=a
$$

is usually separable.

A ball is projected from the surface of the earth with velocity v_{0}. How high does it go?

- At $t=0$, we have $x(0)=0$ and $v(0)=v_{0}$.
- At the top we have $t=T, x(T)=x_{\max }$, and $v(T)=0$.
- $R=0 \Rightarrow a=-g$.

$$
\begin{aligned}
v d v & =-g d x \\
\int_{v_{0}}^{0} v d v & =-\int_{0}^{x_{\max }} g d x \\
x_{\max } & =\frac{v_{0}^{2}}{2 g} .
\end{aligned}
$$

- $R=-r v \Rightarrow a=-g-r v / m$.

$$
\begin{gathered}
\frac{v d v}{v+m g / r}=-\frac{r}{m} d x . \\
x_{\max }=\frac{m}{r}\left[\frac{m g}{r} \ln \left(1+\frac{v_{0} r}{m g}\right)-v_{0}\right] .
\end{gathered}
$$

- $R=-k|v| v \Rightarrow a=-g-k v^{2} / m$.

$$
\frac{v d v}{v^{2}+m g / k}=-\frac{k}{m} d x .
$$

$$
x_{\max }=\frac{m}{2 k} \ln \left(1+\frac{k v_{0}^{2}}{m g}\right) .
$$

