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Models of MotionModels of Motion

History of models of planetary motion

• Babylonians - 3000 years ago

� Initiated the systematic study of astronomy.

� Collection of astonomical data.
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GreeksGreeks

• Descriptive model - Ptolemy (˜ 100)

� Geocentric model

� Epicycles

• Enabled predictions

• No causal explanation

• This model was refined over the following 1400 years.
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Nicholas Copernicus (1543)Nicholas Copernicus (1543)

• Shifted the center of the universe to the sun.

• Fewer epicycles required.

• Still descriptive and not causal.

• The shift to a sun centered universe was a major

change in human understanding of their place in the

universe.
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Johann Kepler (1609)Johann Kepler (1609)

• Based on experimental work of Tycho Brahe (1400).

• Three laws of planetary motion.

1. Each planet moves in an ellipse with the sun at

one focus.

2. The line between the sun and a planet sweeps out

equal areas in equal times.

3. The ratio of the semi-major axis to the cube of the

period is the same for each planet.

• This model was still descriptive and not causal.
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Isaac NewtonIsaac Newton

• Three major contributions.

� Laws of mechanics.

� Second law — F = ma.

� Universal law of gravity.

� Fundamental theorem of calculus.

� f ′ = g ⇔ ∫
g(x) dx = f(x) + C.

� Invention of calculus.

� Principia Mathematica 1687
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Isaac Newton (cont.)Isaac Newton (cont.)

• Laws of mechanics and gravitation were based on his

own experiments and his understanding of the

experiments of others.

• Derived Kepler’s three laws of planetary motion.

• This was a causal explanation.

� For any mechanical motion.

� Still used today.
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Isaac Newton (cont.)Isaac Newton (cont.)

• The Life of Isaac Newton by Richard Westfall,

Cambridge University Press 1993.

• Problems with Newton’s theory.

� The force of gravity was action at a distance.

� Physical anomalies.

� The Michelson-Morley experiment (1881-87).
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Albert EinsteinAlbert Einstein

• Special theory of relativity – 1905.

• General theory of relativity – 1916.

� Gravity is due to curvature of space-time.

� Curvature of space-time is caused by mass.

� Gravity is no longer action at a distance.

• All known anomalies explained.
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Unified TheoriesUnified Theories

• Four fundamental forces.

� Gravity, electromagnetism, strong nuclear, and weak

nuclear.

• Last three can be unified by quantum mechanics. —

Quantum chromodynamics.

• Currently there are attempts to include gravity.

� String theory.

� The Elegant Universe : Superstrings, hidden

dimensions, and the quest for the ultimate theory

by Brian Greene, W.W.Norton, New York 1999.
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The Modeling ProcessThe Modeling Process

• It is based on experiment and/or observation.

• It is iterative.

� For motion we have ≥ 6 iterations.

� After each change in the model it must be checked

by further experimentation and observation.

• It is rare that a model captures all aspects of the

phenomenon.
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Linear MotionLinear Motion

• Motion in one dimension — x(t) is the distance from a

reference position.

• Example: motion of a ball in the earth’s gravity — x(t)
is the height of the ball above the surface of the earth.

• Velocity: v = x′

• Acceleration: a = v′ = x′′.
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• Acceleration due to gravity is (approximately) constant

near the surface of the earth

F = −mg, where g = 9.8m/s2

• Newton’s second law: F = ma

• Equation of motion: ma = −mg,

which becomes

x′′ = −g or
x′ = v,

v′ = −g.
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• Solving the system
x′ = v,

v′ = −g

• Integrate the second equation:

v(t) = −gt + c1

• Substitute into the first equation and integate:

x(t) = −1
2
gt2 + c1t + c2.
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Resistance of the MediumResistance of the Medium

• Force of resistance

R(x, v) = −r(x, v)v where r(x, v) ≥ 0.

• Resistance proportional to velocity.

R(x, v) = −rv, r a positive constant.

• Magnitude of resistance proportional to the square of

the velocity.

R(x, v) = −k|v|v, k a positive constant.
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R(x, v) = −rvR(x, v) = −rv

• Total force: F = −mg − rv

• Newton’s second law: F = ma

• Equation of motion:

mx′′ = −mg − rv or
x′ = v,

v′ = −mg + rv

m
.
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• The equation v′ = −mg + rv

m
for v is separable.

• Solution is v(t) = Ce−rt/m − mg

r
.

• Notice

lim
t→∞ v(t) = −mg

r
.

• The terminal velocity is vterm = −mg

r
.
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R(x, v) = −k|v|vR(x, v) = −k|v|v
• Total force: F = −mg − k|v|v.

• Equation of motion:

mx′′ = −mg − k|v|v or
x′ = v,

v′ = −g − k|v|v
m

.

• The equation for v is separable.
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• Suppose a ball is dropped from a high point. Then

v < 0.

• The equation is

v′ =
−mg + kv2

m

= − k

m

[mg

k
− v2

]

= − k

m

[
α2 − v2

]
, where α =

√
mg/k.
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• The solution is

v(t) =
√

mg

k

Ae−2t
√

kg/m − 1

Ae−2t
√

kg/m + 1
.

• The terminal velocity is

vterm = −
√

mg/k.
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Solving for x(t)Solving for x(t)

• Integrating x′ = v(t) is sometimes hard.

• Use the trick (see Exercise 2.3.7):

a =
dv

dt
=

dv

dx
· dx

dt
=

dv

dx
· v

• The equation

v
dv

dx
= a

is usually separable.
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A ball is projected from the surface of the earth with

velocity v0. How high does it go?

• At t = 0, we have x(0) = 0 and v(0) = v0.

• At the top we have t = T , x(T ) = xmax, and

v(T ) = 0.

• R = 0 ⇒ a = −g.

v dv = −g dx∫ 0

v0

v dv = −
∫ xmax

0

g dx

xmax =
v2
0

2g
.
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• R = −rv ⇒ a = −g − rv/m.

v dv

v + mg/r
= − r

m
dx.

xmax =
m

r

[
mg

r
ln

(
1 +

v0r

mg

)
− v0

]
.
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• R = −k|v|v ⇒ a = −g − kv2/m.

v dv

v2 + mg/k
= − k

m
dx.

xmax =
m

2k
ln

(
1 +

kv2
0

mg

)
.


