Math 211

Lecture #5

Models of Motion

September 6, 2002

History of models of planetary motion.

History of models of planetary motion.

• Babylonians - 3000 years ago.

History of models of planetary motion.

- Babylonians 3000 years ago.
 - Initiated the systematic study of astronomy.

History of models of planetary motion.

- Babylonians 3000 years ago.
 - Initiated the systematic study of astronomy.
 - Collection of astonomical data.

• Descriptive model - Ptolemy (~ 100).

- Descriptive model Ptolemy (~ 100).
 - Geocentric model.

- Descriptive model Ptolemy (~ 100).
 - Geocentric model.
 - Epicycles.

- Descriptive model Ptolemy (~ 100).
 - Geocentric model.
 - Epicycles.
- Enabled predictions.

- Descriptive model Ptolemy (~ 100).
 - Geocentric model.
 - Epicycles.
- Enabled predictions.
- Provided no causal explanation.

- Descriptive model Ptolemy (~ 100).
 - Geocentric model.
 - Epicycles.
- Enabled predictions.
- Provided no causal explanation.
- This model was refined over the following 1400 years.

Return Greek

• Shifted the center of the universe to the sun.

Return Greeks

- Shifted the center of the universe to the sun.
- Fewer epicycles required.

Return

- Shifted the center of the universe to the sun.
- Fewer epicycles required.
- Still descriptive and provided no causal explanation.

Return

- Shifted the center of the universe to the sun.
- Fewer epicycles required.
- Still descriptive and provided no causal explanation.
- The shift to a sun centered universe was a major change in human understanding of their place in the universe.

• Based on experimental work of Tycho Brahe (1400).

- Based on experimental work of Tycho Brahe (1400).
- Three laws of planetary motion.

- Based on experimental work of Tycho Brahe (1400).
- Three laws of planetary motion.
 - 1. Each planet moves in an ellipse with the sun at one focus.

- Based on experimental work of Tycho Brahe (1400).
- Three laws of planetary motion.
 - 1. Each planet moves in an ellipse with the sun at one focus.
 - 2. The line between the sun and a planet sweeps out equal areas in equal times.

- Based on experimental work of Tycho Brahe (1400).
- Three laws of planetary motion.
 - 1. Each planet moves in an ellipse with the sun at one focus.
 - 2. The line between the sun and a planet sweeps out equal areas in equal times.
 - 3. The ratio of the cube of the semi-major axis to the square of the period is the same for each planet.

- Based on experimental work of Tycho Brahe (1400).
- Three laws of planetary motion.
 - 1. Each planet moves in an ellipse with the sun at one focus.
 - 2. The line between the sun and a planet sweeps out equal areas in equal times.
 - 3. The ratio of the cube of the semi-major axis to the square of the period is the same for each planet.
- This model was still descriptive and not causal.

• Three major contributions.

- Three major contributions.
 - Laws of mechanics.

- Three major contributions.
 - Laws of mechanics.
 - ▶ Second law F = ma.

- Three major contributions.
 - Laws of mechanics.
 - ightharpoonup Second law F = ma.
 - Universal law of gravity.

- Three major contributions.
 - Laws of mechanics.
 - ightharpoonup Second law F=ma.
 - Universal law of gravity.
 - Fundamental theorem of calculus.

- Three major contributions.
 - Laws of mechanics.
 - ▶ Second law F = ma.
 - Universal law of gravity.
 - Fundamental theorem of calculus.
 - $f' = g \Leftrightarrow \int g(x) dx = f(x) + C.$

- Three major contributions.
 - Laws of mechanics.
 - ▶ Second law F = ma.
 - Universal law of gravity.
 - Fundamental theorem of calculus.
 - $f' = g \Leftrightarrow \int g(x) dx = f(x) + C.$
 - Invention of calculus.

- Three major contributions.
 - Laws of mechanics.
 - ightharpoonup Second law F = ma.
 - Universal law of gravity.
 - Fundamental theorem of calculus.

$$f' = g \Leftrightarrow \int g(x) \, dx = f(x) + C.$$

- Invention of calculus.
- Principia Mathematica 1687

Isaac Newton (cont.)

 Laws of mechanics and gravitation were based on his own experiments and his understanding of the experiments of others.

Return Greeks Copernicus Kepler Newton 1

Isaac Newton (cont.)

- Laws of mechanics and gravitation were based on his own experiments and his understanding of the experiments of others.
- Derived Kepler's three laws of planetary motion.

Return Greeks Copernicus Kepler Newton 1

- Laws of mechanics and gravitation were based on his own experiments and his understanding of the experiments of others.
- Derived Kepler's three laws of planetary motion.
- This was a causal explanation.

Return Greeks Copernicus Kepler Newton 1

- Laws of mechanics and gravitation were based on his own experiments and his understanding of the experiments of others.
- Derived Kepler's three laws of planetary motion.
- This was a causal explanation.
 - For any mechanical motion.

Return Greeks Copernicus Kepler Newton 1

- Laws of mechanics and gravitation were based on his own experiments and his understanding of the experiments of others.
- Derived Kepler's three laws of planetary motion.
- This was a causal explanation.
 - For any mechanical motion.
 - Still used today.

Return Greeks Copernicus Kepler Newton 1

• The Life of Isaac Newton by Richard Westfall, Cambridge University Press 1993.

- The Life of Isaac Newton by Richard Westfall,
 Cambridge University Press 1993.
- Problems with Newton's theory.

- The Life of Isaac Newton by Richard Westfall,
 Cambridge University Press 1993.
- Problems with Newton's theory.
 - The force of gravity was action at a distance.

- The Life of Isaac Newton by Richard Westfall,
 Cambridge University Press 1993.
- Problems with Newton's theory.
 - The force of gravity was action at a distance.
 - Physical anomalies.

- The Life of Isaac Newton by Richard Westfall,
 Cambridge University Press 1993.
- Problems with Newton's theory.
 - The force of gravity was action at a distance.
 - Physical anomalies.
 - ▶ The Michelson-Morley experiment (1881-87).

Return Newton Problem

• Special theory of relativity – 1905.

Return

- Special theory of relativity 1905.
- General theory of relativity 1916.

Return

- Special theory of relativity 1905.
- General theory of relativity 1916.
 - Gravity is due to curvature of space-time.

- Special theory of relativity 1905.
- General theory of relativity 1916.
 - Gravity is due to curvature of space-time.
 - Curvature of space-time is caused by mass.

- Special theory of relativity 1905.
- General theory of relativity 1916.
 - Gravity is due to curvature of space-time.
 - Curvature of space-time is caused by mass.
 - Gravity is no longer action at a distance.

- Special theory of relativity 1905.
- General theory of relativity 1916.
 - Gravity is due to curvature of space-time.
 - Curvature of space-time is caused by mass.
 - Gravity is no longer action at a distance.
- All known anomalies explained.

• Four fundamental forces.

- Four fundamental forces.
 - Gravity, electromagnetism, strong nuclear, and weak nuclear.

- Four fundamental forces.
 - Gravity, electromagnetism, strong nuclear, and weak nuclear.
- Last three can be unified by quantum mechanics.

- Four fundamental forces.
 - Gravity, electromagnetism, strong nuclear, and weak nuclear.
- Last three can be unified by quantum mechanics. —
 Quantum chromodynamics.

- Four fundamental forces.
 - Gravity, electromagnetism, strong nuclear, and weak nuclear.
- Last three can be unified by quantum mechanics. —
 Quantum chromodynamics.
- Currently there are attempts to include gravity.

- Four fundamental forces.
 - Gravity, electromagnetism, strong nuclear, and weak nuclear.
- Last three can be unified by quantum mechanics. —
 Quantum chromodynamics.
- Currently there are attempts to include gravity.
 - String theory.

- Four fundamental forces.
 - Gravity, electromagnetism, strong nuclear, and weak nuclear.
- Last three can be unified by quantum mechanics. —
 Quantum chromodynamics.
- Currently there are attempts to include gravity.
 - String theory.
 - The Elegant Universe: Superstrings, hidden dimensions, and the quest for the ultimate theory by Brian Greene, W.W.Norton, New York 1999.

• It is based on experiment and/or observation.

- It is based on experiment and/or observation.
- It is iterative.

- It is based on experiment and/or observation.
- It is iterative.
 - For motion we have ≥ 6 iterations.

- It is based on experiment and/or observation.
- It is iterative.
 - For motion we have ≥ 6 iterations.
 - After each change in the model it must be checked by further experimentation and observation.

- It is based on experiment and/or observation.
- It is iterative.
 - For motion we have ≥ 6 iterations.
 - After each change in the model it must be checked by further experimentation and observation.
- It is rare that a model captures all aspects of the phenomenon.

Motion in one dimension

• Motion in one dimension — x(t) is the distance from a reference position.

- Motion in one dimension x(t) is the distance from a reference position.
- Example: motion of a ball in the earth's gravity

- Motion in one dimension x(t) is the distance from a reference position.
- Example: motion of a ball in the earth's gravity x(t) is the height of the ball above the surface of the earth.

- Motion in one dimension x(t) is the distance from a reference position.
- Example: motion of a ball in the earth's gravity x(t) is the height of the ball above the surface of the earth.
- Velocity: v = x'

- Motion in one dimension x(t) is the distance from a reference position.
- Example: motion of a ball in the earth's gravity x(t) is the height of the ball above the surface of the earth.
- Velocity: v = x'
- Acceleration: a = v' = x''.

$$F = -mg$$
, where $g = 9.8m/s^2$

$$F = -mg$$
, where $g = 9.8m/s^2$

 $\overline{\bullet}$ Newton's second law: F=ma

$$F = -mg$$
, where $g = 9.8m/s^2$

- Newton's second law: F = ma
- Equation of motion: ma = -mg

$$F = -mg$$
, where $g = 9.8m/s^2$

- $\overline{\bullet}$ Newton's second law: F = ma
- Equation of motion: ma = -mg, which becomes

$$x'' = -g$$

$$F = -mg$$
, where $g = 9.8m/s^2$

- Newton's second law: F = ma
- Equation of motion: ma = -mg, which becomes

$$x''=-g$$
 or $x'=v,$ $v'=-g.$

$$x' = v,$$

$$v' = -g$$

$$v' = -g$$

$$x' = v,$$

$$x' = v,$$

$$v' = -g$$

$$x' = v,$$

$$x' = v,$$
$$v' = -g$$

$$v(t) = -gt + c_1$$

$$x'=v,$$

$$x' = v,$$

$$v' = -g$$

$$v(t) = -gt + c_1$$

• Substitute into the first equation and integate:

$$x' = v,$$

$$x' = v,$$

$$v' = -g$$

$$v(t) = -gt + c_1$$

• Substitute into the first equation and integate:

$$x(t) = -\frac{1}{2}gt^2 + c_1t + c_2.$$

Acts in the direction opposite to the velocity.

Acts in the direction opposite to the velocity. Therefore

$$R(x,v) = -r(x,v)v$$
 where $r(x,v) \ge 0$.

Acts in the direction opposite to the velocity. Therefore

$$R(x,v) = -r(x,v)v$$
 where $r(x,v) \ge 0$.

There are many models. We will look at two different cases.

Acts in the direction opposite to the velocity. Therefore

$$R(x,v) = -r(x,v)v$$
 where $r(x,v) \ge 0$.

There are many models. We will look at two different cases.

1. The resistance is proportional to velocity.

Acts in the direction opposite to the velocity. Therefore

$$R(x,v) = -r(x,v)v$$
 where $r(x,v) \ge 0$.

There are many models. We will look at two different cases.

- 1. The resistance is proportional to velocity.
- The magnitude of the resistance is proportional to the square of the velocity.

• R(x,v)=-rv, r a positive constant.

Return Resistance

- R(x,v) = -rv, r a positive constant.
- Total force: F = -mg rv

- R(x,v) = -rv, r a positive constant.
- Total force: F = -mg rv
- Newton's second law: F = ma

- R(x,v) = -rv, r a positive constant.
- Total force: F = -mg rv
- Newton's second law: F = ma
- Equation of motion:

- R(x,v) = -rv, r a positive constant.
- Total force: F = -mg rv
- Newton's second law: F = ma
- Equation of motion:

$$mx'' = -mg - rv$$

- R(x,v) = -rv, r a positive constant.
- Total force: F = -mg rv
- Newton's second law: F = ma
- Equation of motion:

$$mx'' = -mg - rv$$
 or $x' = v,$ $v' = -\frac{mg + rv}{m}.$

- R(x,v) = -rv, r a positive constant.
- Total force: F = -mg rv
- Newton's second law: F = ma
- Equation of motion:

$$mx'' = -mg - rv$$
 or $x' = v,$ $v' = -\frac{mg + rv}{m}.$

The equation $v' = -\frac{mg + rv}{m}$ is separable.

• Solution is
$$v(t) = Ce^{-rt/m} - \frac{mg}{r}$$
.

• Solution is
$$v(t) = Ce^{-rt/m} - \frac{mg}{r}$$
.

Notice

$$\lim_{t \to \infty} v(t) = -\frac{mg}{r}.$$

• Solution is
$$v(t) = Ce^{-rt/m} - \frac{mg}{r}$$
.

Notice

$$\lim_{t \to \infty} v(t) = -\frac{mg}{r}.$$

• The terminal velocity is $v_{\rm term} = -\frac{mg}{r}$.

• R(x,v) = -k|v|v, k a positive constant.

Return Resistance

- $\overline{\bullet} R(x,v) = -k|v|v$, k a positive constant.
- Total force: F = -mg k|v|v.

- $\overline{R(x,v)} = -k|v|v$, k a positive constant.
- Total force: $\overline{F} = -mg k|v|v$.
- Equation of motion:

$$mx'' = -mg - k|v|v$$

- $\overline{\bullet} R(x,v) = -k|v|v$, k a positive constant.
- Total force: F = -mg k|v|v.
- Equation of motion:

$$mx'' = -mg - k|v|v \quad \text{or} \quad \begin{aligned} x' &= v, \\ v' &= -\frac{mg + k|v|v}{m}. \end{aligned}$$

- $\overline{ \bullet \ R(x,v)} = -k|v|v$, k a positive constant.
- Total force: F = -mg k|v|v.
- Equation of motion:

$$mx'' = -mg - k|v|v \quad \text{or} \quad \begin{aligned} x' &= v, \\ v' &= -\frac{mg + k|v|v}{m}. \end{aligned}$$

• The equation for v is separable.

• Suppose a ball is dropped from a high point. Then v < 0.

- Suppose a ball is dropped from a high point. Then v < 0.
- The equation is $v' = \frac{-mg + kv^2}{m}$.

- Suppose a ball is dropped from a high point. Then v < 0.
- The equation is $v' = \frac{-mg + kv^2}{m}$.
- The solution is

$$v(t) = \sqrt{\frac{mg}{k}} \frac{Ae^{-2t\sqrt{kg/m}} - 1}{Ae^{-2t\sqrt{kg/m}} + 1}.$$

- Suppose a ball is dropped from a high point. Then v < 0.
- The equation is $v' = \frac{-mg + kv^2}{m}$.
- The solution is

$$v(t) = \sqrt{\frac{mg}{k}} \frac{Ae^{-2t\sqrt{kg/m}} - 1}{Ae^{-2t\sqrt{kg/m}} + 1}.$$

The terminal velocity is

- Suppose a ball is dropped from a high point. Then v < 0.
- The equation is $v' = \frac{-mg + kv^2}{m}$.
- The solution is

$$v(t) = \sqrt{\frac{mg}{k}} \frac{Ae^{-2t\sqrt{kg/m}} - 1}{Ae^{-2t\sqrt{kg/m}} + 1}.$$

The terminal velocity is

$$v_{\text{term}} = -\sqrt{mg/k}$$
.

Return R=0

• Integrating x' = v(t) is sometimes hard.

Return R=0 R=-rv

- Integrating x' = v(t) is sometimes hard.
- Use the trick (see Exercise 2.3.7):

Return R=0 R=-rv R=-k|v|v

- Integrating x' = v(t) is sometimes hard.
- Use the trick (see Exercise 2.3.7):

$$a = \frac{dv}{dt}$$

Return R=0 R=-rv R=-k|v|

- Integrating x' = v(t) is sometimes hard.
- Use the trick (see Exercise 2.3.7):

$$a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt}$$

Return $R=0 \qquad \qquad R=-rv \qquad \qquad R=-k|v|^{\alpha}$

- Integrating x' = v(t) is sometimes hard.
- Use the trick (see Exercise 2.3.7):

$$a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt} = \frac{dv}{dx} \cdot v$$

Return $R=0 \qquad \qquad R=-rv \qquad \qquad R=-k|v|^{\alpha}$

- Integrating x' = v(t) is sometimes hard.
- Use the trick (see Exercise 2.3.7):

$$a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt} = \frac{dv}{dx} \cdot v$$

The equation

$$v\frac{dv}{dx} = a$$

is usually separable.

Return R=0 R=-rv R=-k|v|v

Problem

A ball is projected from the surface of the earth with velocity v_0 . How high does it go?

Problem

A ball is projected from the surface of the earth with velocity v_0 . How high does it go?

• At t = 0, we have x(0) = 0 and $v(0) = v_0$.

Problem

A ball is projected from the surface of the earth with velocity v_0 . How high does it go?

- At $\overline{t}=0$, we have $x(0)=\overline{0}$ and $v(0)=\overline{v_0}$.
- At the top we have t=T, $x(T)=x_{\mathrm{max}}$, and v(T)=0.

$$R = 0$$

$$R = 0$$

The acceleration is a = -g.

$$R = 0$$

$$v \, dv = -g \, dx$$

$$R=0$$

$$v \, dv = -g \, dx$$

$$\int_{v_0}^0 v \, dv = -\int_0^{x_{\text{max}}} g \, dx$$

$$R=0$$

$$v dv = -g dx$$

$$\int_{v_0}^{0} v dv = -\int_{0}^{x_{\text{max}}} g dx$$

$$-\frac{v_0^2}{2} = -gx_{\text{max}}$$

$$R=0$$

$$v \, dv = -g \, dx$$

$$\int_{v_0}^0 v \, dv = -\int_0^{x_{\text{max}}} g \, dx$$

$$-\frac{v_0^2}{2} = -gx_{\text{max}}$$

$$x_{\text{max}} = \frac{v_0^2}{2g}.$$

$$R = -rv$$

$$R = -rv$$

The acceleration is a = -(mg + rv)/m.

$$R = -rv$$

$$R = -rv$$

$$\int_{v_0}^{0} \frac{v \, dv}{rv + mg} = -\int_{0}^{x_{\text{max}}} \frac{dx}{m}.$$

$$R = -rv$$

$$\int_{v_0}^{0} \frac{v \, dv}{rv + mg} = -\int_{0}^{x_{\text{max}}} \frac{dx}{m}.$$

Solving, we get

$$x_{\text{max}} = \frac{m}{r} \left[v_0 - \frac{mg}{r} \ln \left(1 + \frac{rv_0}{mg} \right) \right].$$

$$R = -k|v|v$$

$$R = -k|v|v$$

Since v > 0, the acceleration is

$$R = -k|v|v$$

Since
$$v > 0$$
, the acceleration is $a = -\frac{mg + kv^2}{m}$.

$$R = -k|v|v$$

Since v>0, the acceleration is $a=-\frac{mg+kv^2}{m}$. The equation $v\frac{dv}{dx}=a$ becomes

$$R = -k|v|v$$

Since v>0, the acceleration is $a=-\frac{mg+kv^2}{m}$. The equation $v\frac{dv}{dx}=a$ becomes

$$\int_{v_0}^{0} \frac{v \, dv}{kv^2 + mg} = -\int_{0}^{x_{\text{max}}} \frac{dx}{m}.$$

$$R = -k|v|v$$

Since v>0, the acceleration is $a=-\frac{mg+kv^2}{m}$. The equation $v\frac{dv}{dx}=a$ becomes

$$\int_{v_0}^{0} \frac{v \, dv}{kv^2 + mg} = -\int_{0}^{x_{\text{max}}} \frac{dx}{m}.$$

Solving, we get

$$x_{\text{max}} = \frac{m}{2k} \ln \left(1 + \frac{kv_0^2}{mg} \right).$$