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e Descriptive model - Ptolemy (~ 100).

Geocentric model.

Epicycles.
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/
T =,

e Solving the system ,

V= —g

e Integrate the second equation:
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Solving for (%)
e Integrating ' = v(t) is sometimes hard.

e Use the trick (see Exercise 2.3.7):
_dv  dv dz  dv

— :—.U

a
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Since v > 0, the acceleration is a = —
dv

equation Ve = a becomes

0

v d’U Lmax dw




