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• A numerical “solution” is not a solution.

• It is a discrete approximation to a solution.

• We make an error on purpose to enable us to compute

an approximation.

• Extremely important to understand the size of the

error.
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To numerically “solve” y′ = f(t, y) with y(a) = y0 on the

interval [a, b], we find

• a discrete set of points

a = t0 < t1 < t2 < · · · < tN−1 < tN = b

• and values y0, y1, y2, . . . , yN−1, yN

with yj approximately equal to y(tj).

• Making an error Ej = y(tj) − yj .
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Types of SolversTypes of Solvers

• We will discuss and use four solvers

� Euler’s method,

� second order Runge-Kutta,

� fourth order Runge-Kutta,

� and ode45.

• Everything works for first order systems almost without

change.
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• Problem: Solve ( approximately )

y′ = f(t, y) with y(a) = y0

on the interval [a, b].

• Discrete set of values of t.

� t0 = a, fixed step size h = (b − a)/N.

� t1 = t0 + h, t2 = t1 + h = t0 + 2h, etc,

� tN = a + Nh = b
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Euler’s Method – First StepEuler’s Method – First Step

• At each step approximate the solution curve by the

tangent line.

• First step:

� y(t0 + h) ≈ y(t0) + y′(t0)h. t1 = t0 + h

� y(t1) ≈ y0 + f(t0, y0)h.

� Set y1 = y0 + f(t0, y0)h, so y(t1) ≈ y1.
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Euler’s Method – Second StepEuler’s Method – Second Step

• At each step use the tangent line.

• Second step – start at (t1, y1).

� New solution ỹ with initial value ỹ(t1) = y1.

� ỹ(t) ≈ ỹ(t1) + ỹ′(t1)(t − t1), t2 = t1 + h

� ỹ(t2) ≈ y1 + f(t1, y1)h.

� Set y2 = y1 + f(t1, y1)h, so y(t2) ≈ ỹ(t2) ≈ y2.
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Euler’s Method – AlgorithmEuler’s Method – Algorithm

Input t0 and y0.

for k = 1 to N set

yk = yk−1 + f(tk−1, yk−1)h
tk = tk−1 + h

Thus,

y1 = y0 + f(t0, y0)h and t1 = t0 + h

y2 = y1 + f(t1, y1)h and t2 = t1 + h

y3 = y2 + f(t2, y2)h and t3 = t2 + h

etc.
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MATLAB routine eulerdemo.mMATLAB routine eulerdemo.m

• Demonstrates truncation error.

• Demonstrates how truncation error can propagate

exponentially.

• Demonstrates how the total error is the sum of

propagated truncation errors.
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• Euler’s approximation

y1 = y0 + f(t0, y0)h; t1 = t0 + h

• Taylor’s theorem

y(t1) = y(t0 + h) = y(t0) + y′(t0)h + R(h)

|R(h)| ≤ Ch2

• y(t1) − y1 = R(h)

• The truncation error at each step is the same as the

Taylor remainder, and |R(h)| ≤ Ch2.
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• There are N = (b − a)/h steps.

• Truncation error can grow exponentially.

• Computation shows that

Maximum error ≤ C
(
eL(b−a) − 1

)
h,

where C & L are constants that depend on f .

• Good news: the error decreases as h decreases.

• Bad news: the error can get exponentially large as the

length of the interval [i.e., b-a] increases.
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Syntax: [t,y] = eul(derfile,[t0, tf ], y0, h);

• derfile - derivative m-file defining the equation.

• t0 - initial time; tf - final time.

• y0 - initial value.

• h - step size.
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The derivative m-file describes the differential equation.

• Example: y′ = y2 − t

• Derivative m-file:

function ypr = george(t,y)

ypr = y^2 - t;

• Save as george.m.
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• Solve y′ = y2 − t.

• Use the derivative m-file george.m.

• Use t0 = 0, tf = 10, y0 = 0.5, and several step sizes.

• Syntax: [t,y] = eul(′george′,[0,10],0.5,h);
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• IVP y′ = cos(t)/(2y − 2) with y(0) = 3

• Exact solution: y(t) = 1 +
√

4 + sin t.

• Solve using Euler’s method and compare with the exact
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Experimental Error AnalysisExperimental Error Analysis

• IVP y′ = cos(t)/(2y − 2) with y(0) = 3

• Exact solution: y(t) = 1 +
√

4 + sin t.

• Solve using Euler’s method and compare with the exact

solution.

• Do this for several step sizes.
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Derivative m-file ben.mDerivative m-file ben.m

function yprime = ben(t,y)

yprime = cos(t)/(2*y-2);
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M-file batch.mM-file batch.m

[teuler,yeuler]=eul(’ben’,[0,3],3,h);

t=0:0.05:3;

y=1+sqrt(4+sin(t));

plot(t,y,teuler,yeuler,’o’)

legend(’Exact’,’Euler’)

shg

z=1+sqrt(4+sin(teuler));

maxerror=max(abs(z-yeuler))


