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Error Analysis
e There are N = (b — a)/h steps.

e lruncation error can grow exponentially.

e Computation shows that

Maximum error < C (eX0=%) — 1) .
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M-file batch.m

[teuler,yeuler]=eul (’ben’, [0,3],3,h);
£t=0:0.05:3;
y=1+sqrt (4+sin(t));




