Math 211

Lecture #12




Numerical Methods




Numerical Methods

e A numerical “solution” iIs not a solution.




Numerical Methods

e A numerical “solution” iIs not a solution.

e It is a discrete approximation to a solution.




Numerical Methods

e A numerical “solution” iIs not a solution.

e It is a discrete approximation to a solution.




Numerical Methods

e A numerical “solution” iIs not a solution.

e It is a discrete approximation to a solution.




Numerical Approximation

To numerically “solve” 3y’ = f(t,y) with y(a) = yg on the
interval |a, D]




Numerical Approximation

To numerically “solve” 3y’ = f(t,y) with y(a) = yg on the
interval [a, b], we find




Numerical Approximation

To numerically “solve” 3y’ = f(t,y) with y(a) = yg on the
interval [a, b], we find

e a discrete set of points




Numerical Approximation

To numerically “solve” 3y’ = f(t,y) with y(a) = yg on the
interval [a, b], we find

e a discrete set of points




Numerical Approximation

To numerically “solve” 3y’ = f(t,y) with y(a) = yg on the
interval [a, b], we find

e a discrete set of points




Numerical Approximation

To numerically “solve” 3y’ = f(t,y) with y(a) = yg on the
interval [a, b], we find

e a discrete set of points




Types of Solvers




Types of Solvers

e We will discuss and use four solvers




Types of Solvers

e We will discuss and use four solvers

Euler's method,




Types of Solvers

e We will discuss and use four solvers

Euler's method,

second order Runge-Kutta,



Types of Solvers

e We will discuss and use four solvers

Euler's method,

second order Runge-Kutta,




Types of Solvers

e We will discuss and use four solvers

Euler's method,

second order Runge-Kutta,




Types of Solvers

e We will discuss and use four solvers

Euler's method,

second order Runge-Kutta,




Euler's Method




Euler's Method

e Problem: Solve ( approximately )




Euler's Method

e Problem: Solve ( approximately )

y' = f(t,y) with y(a) = yo

on the interval [a, b].



Euler's Method

e Problem: Solve ( approximately )

y' = f(t,y) with y(a) = yo

on the interval [a, b].



Euler's Method

e Problem: Solve ( approximately )

y' = f(t,y) with y(a) = yo

on the interval [a, b].




Euler's Method

e Problem: Solve ( approximately )

y' = f(t,y) with y(a) = yo

on the interval [a, b].




Euler's Method

e Problem: Solve ( approximately )

y' = f(t,y) with y(a) = yo

on the interval [a, b].




Euler's Method

e Problem: Solve ( approximately )

y' = f(t,y) with y(a) = yo

on the interval [a, b].




Euler's Method

e Problem: Solve ( approximately )

y' = f(t,y) with y(a) = yo

on the interval [a, b].




Euler's Method

e Problem: Solve ( approximately )

y' = f(t,y) with y(a) = yo

on the interval [a, b].




Euler's Method

e Problem: Solve ( approximately )

y' = f(t,y) with y(a) = yo

on the interval [a, b].




Euler's Method — First Step




Euler's Method — First Step

e At each step approximate the solution curve by the
tangent line.




Euler's Method — First Step

e At each step approximate the solution curve by the
tangent line.




Euler's Method — First Step

e At each step approximate the solution curve by the
tangent line.

e First step:




Euler's Method — First Step

e At each step approximate the solution curve by the
tangent line.

e First step:




Euler's Method — First Step

e At each step approximate the solution curve by the
tangent line.

e First step:




Euler's Method — First Step

e At each step approximate the solution curve by the
tangent line.

e First step:




Euler's Method — First Step

e At each step approximate the solution curve by the
tangent line.

e First step:




Euler's Method — Second Step




Euler's Method — Second Step

e At each step use the tangent line.




Euler's Method — Second Step

e At each step use the tangent line.

e Second step




Euler's Method — Second Step

e At each step use the tangent line.

e Second step — start at (t1,y1).




Euler's Method — Second Step

e At each step use the tangent line.

e Second step — start at (t1,y1).

New solution g with initial value y(t1) = y;.



Euler's Method — Second Step

e At each step use the tangent line.

e Second step — start at (t1,y1).

New solution g with initial value y(t1) = y;.




Euler's Method — Second Step

e At each step use the tangent line.

e Second step — start at (t1,y1).

New solution g with initial value y(t1) = y;.




Euler's Method — Second Step

e At each step use the tangent line.

e Second step — start at (t1,y1).

New solution g with initial value y(t1) = y;.




Euler's Method — Second Step

e At each step use the tangent line.

e Second step — start at (t1,y1).

New solution g with initial value y(t1) = y;.




Euler's Method — Second Step

e At each step use the tangent line.

e Second step — start at (t1,y1).

New solution g with initial value y(t1) = y;.




Euler's Method — Algorithm




Euler's Method — Algorithm

Input g and yg.




Euler's Method — Algorithm

Input g and yg.
for k=1 to N set




Euler's Method — Algorithm

Input g and yg.
for k=1 to N set

Yr = Yr—1 + f(te—1,y6—1)h




Euler's Method — Algorithm

Input g and yg.

for k =1 to N set
Y = Yk—1 + f(tk—1,Yx—1)h
tr =t_1+ h




Euler's Method — Algorithm

Input g and yg.

for k =1 to N set
Y = Yk—1 + f(tk—1,Yx—1)h
tr =t_1+ h




Euler's Method — Algorithm

Input g and yg.

for k =1 to N set
Y = Yk—1 + f(tk—1,Yx—1)h
tr =t_1+ h




Euler's Method — Algorithm

Input g and yg.

for k =1 to N set
Y = Yk—1 + f(tk—1,Yx—1)h
tr =t_1+ h




Euler's Method — Algorithm

Input g and yg.

for k =1 to N set
Y = Yk—1 + f(tk—1,Yx—1)h
tr =t_1+ h




MatiLag routine eulerdemo .m




MatiLag routine eulerdemo .m

e Demonstrates truncation error.




MatiLag routine eulerdemo .m

e Demonstrates truncation error.

e Demonstrates how truncation error can propagate



MatLas routine eulerdemo .m

e Demonstrates truncation error.

e Demonstrates how truncation error can propagate




Error Analysis — First Step




Error Analysis — First Step

e FEuler's approximation




Error Analysis — First Step

e FEuler's approximation

y1 = Yo + f(to,v0)h; t1=to+h




Error Analysis — First Step

e FEuler's approximation
y1 = Yo + f(to,%0)h; t1=to+h

e Taylor's theorem




Error Analysis — First Step

e FEuler's approximation
y1 = Yo + f(to,%0)h; t1=to+h

e Taylor's theorem




10

Error Analysis — First Step

e FEuler's approximation

y1 = Yo + f(to,v0)h; t1=to+h

e Taylor's theorem




10

Error Analysis — First Step

e FEuler's approximation

y1 = Yo + f(to,v0)h; t1=to+h

e Taylor's theorem




10

Error Analysis — First Step

e FEuler’'s approximation

y1 = Yo + f(to,v0)h; t1=to+h

e Taylor's theorem




10

Error Analysis — First Step

e FEuler’'s approximation

y1 = Yo + f(to,v0)h; t1=to+h

e Taylor's theorem




Error Analysis

e There are N = (b — a)/h steps.




Error Analysis

e There are N = (b — a)/h steps.

e lruncation error can grow exponentially.




11

Error Analysis
e There are N = (b — a)/h steps.

e lruncation error can grow exponentially.

e Computation shows that




11

Error Analysis
e There are N = (b — a)/h steps.

e lruncation error can grow exponentially.

e Computation shows that




11

Error Analysis
e There are N = (b — a)/h steps.

e lruncation error can grow exponentially.

e Computation shows that

Maximum error < C (L= _ 1) p




11

Error Analysis
e There are N = (b — a)/h steps.

e lruncation error can grow exponentially.

e Computation shows that

Maximum error < C (L= _ 1) p




11

Error Analysis
e There are N = (b — a)/h steps.

e lruncation error can grow exponentially.

e Computation shows that

Maximum error < C (eX0=%) — 1) .




MatLaB routine eul .m




MatLaB routine eul .m




12

MatLaB routine eul .m

Syntax: [t,y] = eul(derfile, [to,tf], Yo, R);




MatLaB routine eul .m

Syntax: [t,y] = eul(derfile, [to,tf], Yo, R);

e derfile - derivative m-file defining the equation.




12

MatLaB routine eul .m

Syntax: [t,y] = eul(derfile, [to,tf], Yo, R);

e derfile - derivative m-file defining the equation.




12

MatLaB routine eul .m

Syntax: [t,y] = eul(derfile, [to,tf], Yo, R);

e derfile - derivative m-file defining the equation.




12

MatLaB routine eul .m

Syntax: [t,y] = eul(derfile, [to,tf], Yo, R);

e derfile - derivative m-file defining the equation.




Derivative m-file

The derivative m-file describes the differential equation.




Derivative m-file

The derivative m-file describes the differential equation.

o Example: ¢/ = y* — ¢




Derivative m-file

The derivative m-file describes the differential equation.

o Example: ¢/ = y* — ¢

e Derivative m-file:




13

Derivative m-file

The derivative m-file describes the differential equation.

o Example: ¢/ = y* — ¢

e Derivative m-file:




13

Derivative m-file

The derivative m-file describes the differential equation.

o Example: ¢/ = y* — ¢

e Derivative m-file:




Use of eul .m




Use of eul .m

e Solve y/ = y? —t.




14

Use of eul .m

e Solve y/ = y? —t.




14

Use of eul .m

e Solve y/ = y? —t.




14

Use of eul .m

e Solve y/ = y? —t.




14

Use of eul .m

e Solve y/ = y? —t.




Experimental Error Analysis




Experimental Error Analysis

o IVP 4 =cos(t)/(2y —2) with y(0)=3




Experimental Error Analysis

o IVP y' =cos(t)/(2y —2) with y(0)=3
e Exact solution: y(t) =1+ /4 + sint.




15

Experimental Error Analysis
o IVP y' =cos(t)/(2y —2) with y(0)=3

e Exact solution: y(t) = 1 + /4 + sint.




15

Experimental Error Analysis
o IVP y' =cos(t)/(2y —2) with y(0)=3

e Exact solution: y(t) = 1 + /4 + sint.




Derivative m-file ben.m

function yprime = ben(t,y)



17

M-file batch.m

[teuler,yeuler]=eul (’ben’, [0,3],3,h);
£t=0:0.05:3;
y=1+sqrt (4+sin(t));




