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Preface

The usual absolute values of real and complex numbers may be considered as
examples of a broader notion of an absolute value function on a field. In fact,
one can start with the standard absolute value function on the rationals, and
the real line R may be considered as a completion of the field Q of rational
numbers with respect to the metric associated to the standard absolute value
function.

Similarly, if p is a prime number, then the p-adic absolute value |x|p of a
rational number x may be defined in a standard way. The field Qp of p-adic
numbers may be obtained by completing Q with respect to the corresponding
p-adic metric |x− y|p.

The p-adic absolute value satisfies a stronger version of the triangle inequal-
ity, to wit,

|x+ y|p ≤ max(|x|p, |x|p).(0.0.1)

This means that the p-adic metric is an ultrametric. Metrics and ultrametrics
are discussed in Section 1.1, and absolute value functions on arbitrary fields are
discussed in Section 1.2.

Some basic references concerning absolute value functions on fields and p-
adic numbers in particular include [33, 70], Chapter V of [95], and Chapter XII
of [111].
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Chapter 1

Metrics and absolute value
functions

1.1 Metrics, ultrametrics, and quasimetrics

Let X be a set, and let d(x, y) be a nonnegative real-valued function defined
for x, y ∈ X. We say that d(·, ·) is a metric if it satisfies the following three
conditions, as usual. First,

d(x, y) = 0 if and only if x = y.(1.1.1)

Second,
d(x, y) = d(y, x)(1.1.2)

for every x, y ∈ X. Third,

d(x, z) ≤ d(x, y) + d(y, z)(1.1.3)

for every x, y, z ∈ X, which is known as the triangle inequality.
If d(·, ·) satisfies (1.1.1), (1.1.2), and

d(x, z) ≤ max(d(x, y), d(y, z))(1.1.4)

for every x, y, z ∈ X, then d(·, ·) is said to be an ultrametric on X. Note that
(1.1.4) implies (1.1.3), so that an ultrametric is a metric in particular.

The discrete metric is defined on X by putting d(x, y) equal to 1 when x 6= y,
and to 0 when x = y. One can check that this is an ultrametric on X. The
standard Euclidean metric on the real line R is not an ultrametric.

Let us say that d(·, ·) is a quasimetric on X if it satisfies (1.1.1), (1.1.2), and

d(x, z) ≤ C (d(x, y) + d(y, z))(1.1.5)

for some nonnegative real number C and all x, y, z ∈ X. Equivalently, this
means that there is a nonnegative real number C0 such that

d(x, z) ≤ C0 max(d(x, y), d(y, z)).(1.1.6)

1



2 CHAPTER 1. METRICS AND ABSOLUTE VALUE FUNCTIONS

More precisely, (1.1.6) implies (1.1.5), with C = C0. Similarly, (1.1.5) implies
(1.1.6), with

C0 = 2C.(1.1.7)

Of course, a metric on X is a quasimetric in particular.
Let a be a positive real number. If d(·, ·) satisfies (1.1.1) and (1.1.2), then

d(x, y)a(1.1.8)

has the same properties. If d(·, ·) is an ultrametric on X, then it is easy to see
that

d(·, ·)a is an ultrametric on X(1.1.9)

too. Similarly, if d(·, ·) is a quasimetric on X that satisfies (1.1.6) for some
nonnegative real number C0, then (1.1.8) is a quasimetric on X, with

d(x, z)a ≤ Ca
0 max(d(x, y)a, d(y, z)a)(1.1.10)

for all x, y, z ∈ X. If d(·, ·) is the standard Euclidean metric on the real line and
a > 1, then one can check that (1.1.8) is not a metric on R.

1.2 Absolute value functions

Let k be a field, and let |x| be a nonnegative real-valued function defined for
x ∈ k. We say that | · | is an absolute value function on k if it satisfies the
following three conditions. First, for each x ∈ k,

|x| = 0 if and only if x = 0.(1.2.1)

Second,
|x y| = |x| |y|(1.2.2)

for all x, y ∈ k. Third,
|x+ y| ≤ |x|+ |y|(1.2.3)

for all x, y ∈ k, which is another version of the triangle inequality.
If | · | satisfies (1.2.1), (1.2.2), and

|x+ y| ≤ max(|x|, |y|)(1.2.4)

for every x, y ∈ k, then | · | is said to be an ultrametric absolute value function
on k. This implies that | · | is an absolute value function on k in particular.

The trivial absolute value function is defined on k by putting |x| = 1 when
x 6= 0, and of course |0| = 0. It is easy to see that this is an ultrametric absolute
value function on k. The standard absolute value functions on R and the field
C are absolute value functions in this sense, and not ultrametric absolute value
functions.

This definition of an absolute value function corresponds to the definition of
an absolute value in Definition 2.1.1 on p21 of [70], and on p283 of [111]. This
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also corresponds to a real valuation in Definition 1 on p211 of [95]. An ultra-
metric absolute value function is said to be non-archimedean in [70, 111], and
the term valuation is also used in [111]. We shall use the term non-archimedean
in a slightly different way here that turns out to be equivalent, essentially as in
Definition 3 on p213 of [95]. This will be discussed further in Section 1.5.

Let p be a prime number. The p-adic absolute value |x|p of a rational number
x is defined as follows. Of course, |0|p = 0. If x = pj (a/b) for some integers a,
b, and j such that a, b 6= 0 and neither a nor b is a multiple of p, then

|x|p = p−j .(1.2.5)

One can check that this defines an ultrametric absolute value function on the
field Q of rational numbers. This corresponds to (c) on p2 of [33], with γ = 1/p,
as mentioned on p3 of [33]. This also corresponds to Definition 2.1.4 on p24 of
[70] and Example (2) on p211 of [95], and it is mentioned on p284 of [111]. This
is mentioned on p287 of [124] as well, using slightly different terminology.

1.3 Quasimetric absolute value functions

Let k be a field, and let | · | be a nonnegative real-valued function defined on k
again. If | · | satisfies (1.2.1) and (1.2.2), then

|1k| = 1,(1.3.1)

where 1k is the multiplicative identity element in k, and 1 = 1R is the multi-
plicative identity element in R. This follows from the fact that 12k = 1k, so that
|1k| = |12k| = |1k|2. If x ∈ k satisfies xn = 1k for some positive integer n, then

|x| = 1,(1.3.2)

because |x|n = |xn| = 1. In particular,

| − 1k| = 1,(1.3.3)

because (−1k)
2 = 1k.

Let us say that | · | is a quasimetric absolute value function on k if it satisfies
(1.2.1) and (1.2.2), and if there is a positive real number C1 such that

|x+ y| ≤ C1 max(|x|, |y|)(1.3.4)

for all x, y ∈ k. One can check that (1.3.4) is equivalent to asking that for every
z ∈ k with

|z| ≤ 1,(1.3.5)

we have that
|1k + z| ≤ C1(1.3.6)

under these conditions. In fact, (1.3.6) corresponds to the condition (iii) in
the definition of a valuation on p12 of [33]. Note that this holds with C1 = 1
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exactly when | · | is an ultrametric absolute value function on k, as in the first
part of Lemma 1.3 bis on p15 of [33]. This corresponds to the non-archimedean
property in Definition 1.3 on p15 of [33].

If there is a positive real number C2 such that

|x+ y| ≤ C2 (|x|+ |y|)(1.3.7)

for every x, y ∈ k, then (1.3.4) holds, with

C1 = 2C2.(1.3.8)

In particular, if | · | is an absolute value function on k, then | · | is a quasimetric
absolute value function on k, with C1 = 2. Conversely, (1.3.4) implies (1.3.7),
with C2 = C1.

If | · | is a quasimetric absolute value function on k, then

d(x, y) = |x− y|(1.3.9)

defines a quasimetric on k. More precisely, one can take C in (1.1.5) equal to
C2 in (1.3.7), or C0 in (1.1.6) equal to C1 in (1.3.4). If | · | is an absolute value
function on k, then (1.3.9) is a metric on k. If | · | is an ultrametric absolute
value function on k, then (1.3.9) is an ultrametric on k. If | · | is the trivial
absolute value function on k, then (1.3.9) is the discrete metric on k.

If k = R or C and | · | is the standard absolute value function, then (1.3.9)
is the standard Euclidean metric. If k = Q and p is a prime number, then the
ultrametric

dp(x, y) = |x− y|p(1.3.10)

associated to the p-adic absolute value function |·| is known as the p-adic metric
on Q.

1.4 Some helpful inequalities

Let a be a positive real number with a ≤ 1. If r and t are nonnegative real
numbers, then it is well known that

(r + t)a ≤ ra + ta.(1.4.1)

To see this, observe first that

max(r, t) ≤ (ra + ta)1/a.(1.4.2)

This implies that

r + t ≤ max(r, t)1−a (ra + ta) ≤ (ra + ta)((1−a)/a)+1 = (ra + ta)1/a.(1.4.3)

This is equivalent to (1.4.1).
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If dX is a metric on a set X, then it follows that

dX(·, ·)a is a metric on X.(1.4.4)

Similarly, if | · | is an absolute value function on a field k, then

| · |a is an absolute value function on k.(1.4.5)

This corresponds to the first part of Exercise 1 on p214 of [95].
If dX is any quasimetric on a set X, then there is a positive real number δ

and a metric ρX on X such that dX(·, ·)δ and ρX(·, ·) are each bounded by a
constant multiple of the other on X. This corresponds to Proposition 14.5 on
p110 of [77], and it is also mentioned in the proof of Theorem 2 on p261 of [120].

If | · | is a quasimetric absolute value function on a field k, then the corollary
on p14 of [33] says that | · |α is an absolute value function on k for some positive
real number α. We shall say more about this soon.

If | · | is an ultrametric absolute value function on k, then

| · |a is an ultrametric absolute value function on k(1.4.6)

for every a > 0. This corresponds to the second part of Lemma 1.3 bis on p15
of [33], Problem 69 on p43 of [70], and the second part of Exrcise 1 on p214 of
[95]. If | · | is a quasimetric absolute value function on k with a constant C1 > 0
as in (1.3.4), then

|x+ y|a ≤ Ca
1 max(|x|a, |y|a)(1.4.7)

for all x, y ∈ k. This means that | · |a is a quasimetric absolute value function
on k as well, as in Lemma 1.1 on p13 pf [33]. If | · | is the standard absolute
value function on R or C and a > 1, then it is easy to see that | · |a is not an
absolute value function on R or C, as appropriate.

Suppose that | · | is a quasimetric absolute value function on k with constant
C1 as in (1.3.4) again. Let l be a nonnegative integer, and let x1, . . . , x2l be
elements of k. One can check that∣∣∣∣ 2l∑

j=1

xj

∣∣∣∣ ≤ Cl
1 max

1≤j≤2l
|xj |,(1.4.8)

using induction on l. This corresponds to an argument used in part (ii) of the
proof of Lemma 1.2 on p13 of [33]. Of course, there is an analogous statement
for a quasimetric on any set.

Let L be a positive integer, and let x1, . . . , xL be elements of k. There is a
unique nonnegative integer l such that

2l−1 < L ≤ 2l,(1.4.9)

and we can put xj = 0 when L < j ≤ 2l. Using (1.4.8), we get that∣∣∣∣ L∑
j=1

xj

∣∣∣∣ ≤ C
log2 L+1
1 max

1≤j≤L
|xj |.(1.4.10)

This corresponds to another part of part (ii) of the proof of Lemma 1.2 on p13
of [33].
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1.5 The archimedean property

Let k be a field, and let n be a positive integer. If x ∈ k, then let n · x be the
sum of n x’s in k. Equivalently,

n · x = (n · 1k)x.(1.5.1)

It is well known and easy to see that n 7→ 1k extends to a ring homomorphism
from the ring Z of integers into k.

Let | · | be a quasimetric absolute value function on k. If

|n0 · 1k| > 1(1.5.2)

for some positive integer n0, then

|nj
0 · 1k| = |(n0 · 1k)j | = |n0 · 1k|j → +∞ as j → ∞.(1.5.3)

One may say that | · | is archimedean on k under these conditions, as on p29 of
[70]. The archimedean property is defined in Definitiohn 3 on p213 of [95] in
terms of (1.5.2).

Thus we may say that | · | is non-archimedean on k if the set of nonnegative
real numbers |n · 1k|, where n is an element of the set Z+ of positive integers,
has an upper bound in R. Equivalently, this means that

|n · 1k| ≤ 1(1.5.4)

for every n ∈ Z+. This is the way that the property of being non-archimedean
is defined on p213 of [95]. If | · | is an ultrametric absolute value function on k,
then it is easy to see that | · | is non-archimedean on k in this sense.

Conversely, if | · | is non-archimedean on k in this sense, then | · | is an
ultrametric absolute value function on k. This corresponds to Lemma 1.5 on
p16 of [33]. If | · | is an absolute value function on k, then this corresponds
to Theorem 2.2.2 on p28 of [70] and Theorem 2 on p213 of [95], and it is also
mentioned on p285 of [111]. In fact, the proof in [33] is given for absolute value
functions, and another result is used to reduce to this case. Let us suppose for
simplicity that | · | is an absolute value function on k, and consider quasimetric
absolute value functions afterwards.

Let x, y ∈ k and n ∈ Z+ be given, and note that

(x+ y)n =

n∑
j=0

(
n

j

)
· xj yn−j ,(1.5.5)

by the binomial theorem. Of course,(
n

j

)
· xj yn−j =

((n
j

)
· 1k

)
xj yn−j(1.5.6)

for each j, as in (1.5.1). This implies that∣∣∣∣(nj
)
· xj yn−j

∣∣∣∣ ≤ |x|j |y|n−j(1.5.7)
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for each j, because of (1.5.4). It follows that

|x+ y|n = |(x+ y)n| ≤
n∑

j=0

∣∣∣∣(nj
)
· xj yn−j

∣∣∣∣(1.5.8)

≤
n∑

j=0

|x|j |y|n−j ≤ (n+ 1) max(|x|, |y|)n.

Using this, we get that

|x+ y| ≤ (n+ 1)1/n max(|x|.|y|).(1.5.9)

One can take the limit as n → ∞ on the right side to obtain the ultrametric
version of the triangle inequality.

One could also start here with only the hypothesis that |n · 1k| be bounded,
instead of (1.5.4). This would lead to an additional constant factor on the right
sides of (1.5.7) and (1.5.9). One would also get the nth root of this constant
factor on the right side of (1.5.9), which would not affect the limit as n → ∞.

Suppose now that | · | is a quasimetric absolute value function on k with
constant C1 > 0, as in Section 1.2. In this case, we would get an extra factor of

C
log2(n+1)+1
1(1.5.10)

on the right side of (1.5.8), using (1.4.10) with L = n + 1 in the second step.
This means that we would get an extra factor of

C
(log2(n+1)+1)/n
1(1.5.11)

on the right side of (1.5.9). This would not affect the limit as n → ∞, as before.

1.6 More on the triangle inequality

Let k be a field. If

| · | is an absolute value function on k,(1.6.1)

then

|x+ y| ≤ 2 max(|x|, |y|)(1.6.2)

for all x, y ∈ k, as in Section 1.2. Conversely, if | · | is a quasimetric absolute
value function on k with constant 2, so that (1.6.2) holds, then (1.6.1) holds.
This corresponds to Lemma 1.2 on p13 of [33].

As a refinement of this, let | · | be a quasimetric absolute value function on
k with constant C1, and suppose that there is a positive real number C3 such
that

|n · 1k| ≤ C3 n(1.6.3)
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for every positive integer n. Under these conditions, one can show that (1.6.1)
holds, using the same argument as in [33].

Before getting to that, note that (1.6.2) implies (1.6.3), with C3 = 2, as in
[33]. This follows from (1.3.1) and (1.4.10), with L = n and xj = 1k for each
j = 1, . . . , n. Of coourse, (1.6.1) implies (1.6.3), with C3 = 1.

Let | · | be a quasimetric absolute value function on k with constant C1, and
let x, y ∈ k and n ∈ Z+ be given. Observe that∣∣∣∣(nj

)
· xj yn−j

∣∣∣∣ = ∣∣∣∣(nj
)
· 1k

∣∣∣∣ |x|j |y|n−j(1.6.4)

for each j = 0, 1, . . . , n, by (1.5.6). If (1.6.3) holds, then we get that∣∣∣∣(nj
)
· xj yn−j

∣∣∣∣ ≤ C3

(
n

j

)
|x|j |y|n−j(1.6.5)

for each j.
We also have that

|x+ y|n = |(x+ y)n| ≤ C
log2(n+1)+1
1 max

0≤j≤n

∣∣∣∣(nj
)
· xj yn−j

∣∣∣∣,(1.6.6)

using the binomial theorem and (1.4.10), with L = n+ 1. It follows that

|x+ y|n ≤ C
log2(n+1)+1
1 C3 max

0≤j≤n

(
n

j

)
|x|j |y|n−j ,(1.6.7)

by (1.6.5).
This implies that

|x+ y|n ≤ C
log2(n+1)+1
1 C3

n∑
j=0

(
n

j

)
|x|j |y|n−j .(1.6.8)

This means that

|x+ y|n ≤ C
log2(n+1)+1
1 C3 (|x|+ |y|)n,(1.6.9)

by the binomial theorem.
Equivalently,

|x+ y| ≤ C
(log2(n+1)+1)/n
1 C

1/n
3 |x+ y|(1.6.10)

for every positive integer n. One can take the limit as n → ∞ on the right side
to get the usual version of the triangle inequality for | · | on k.

If | · | is a quasimetric absolute value function on k with constant C1 and a
is a positive real number, then | · |a is a quasimetric absolute value function on
k with constant Ca

1 , as in Section 1.4. If

Ca
1 ≤ 2,(1.6.11)
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then | · |a is an absolute value function on k, as before. This holds when a is
sufficiently small, as in the corollary on p14 of [33].

Suppose that k has characteristic 0, so that there is a natural embedding of
the field Q of rational numbers into k. If | · | is a quasimetric absolute value
function on k, then we get an induced quasimetric absolute value function on
Q. Of course, if (1.6.1) holds, then we get an absolute value function on Q.
Conversely, if | · | is a quasimetric absolute value function on k, and the induced
quasimetric absolute value function on Q is an absolute value function on Q,
then (1.6.3) holds with C3 = 1. This implies that (1.6.1) holds, as before.

1.7 Open and closed balls

Let X be a set, and let d(·, ·) be a quasimetric on X. If x ∈ X and r is a positive
real number, then the open ball in X centered at x with radius r with respect
to d(·, ·) is defined by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) < r},(1.7.1)

as usual. Similarly, if r is a nonnegative real number, then the closed ball in X
cenetered at x with radius r with respect to d(·, ·) is defined by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) ≤ r}.(1.7.2)

A subset U of X is said to be an open set with respect to d(·, ·) if for every
x ∈ U there is an r > 0 such that

B(x, r) ⊆ U,(1.7.3)

as usual. This defines a topology on X, by standard arguments.
If a is a positive real number, then d(·, ·)a is a quasimetric on X too, as in

Section 1.1. Observe that

Bda(x, ra) = Bd(x, r)(1.7.4)

for every x ∈ X and r > 0, and similarly that

Bda(x, ra) = Bd(x, r)(1.7.5)

for every r ≥ 0. In particular, the topology determined on X by d(·, ·)a is the
same as the topology determined by d(·, ·).

If d(·, ·) is a metric onX, then open balls inX with respect to d are open sets,
and closed balls in X with respect to d are closed sets, by standard arguments.
This also works when d(·, ·)a is a metric on X for some a > 0, by the remarks
in the preceding paragraph. A quasimetric associated to a quasimetric absolute
value function on a field is of this type, as in the previous section.

Suppose now that d(·, ·) is an ultrametric on X. If r is a positive real number,
then it is easy to see that

d(x, y) < r(1.7.6)
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defines an equivalence relation on X. The corresponding equivalence classes in
X are the same as the open balls in X of radius r with respect to d(·, ·). In
particular, the complement of an open ball in X of radius r is a union of open
balls in X of radius r. This implies that open balls in X are closed sets in X.

Similarly, if r is a nonnegative real number, then

d(x, y) ≤ r(1.7.7)

defines an equivalence relation on X. The corresponding equivalence class in X
are the same as the closed balls in X of radius r with respect to d(·, ·).

Of course, if r > 0, then (1.7.6) implies (1.7.7). This means that equivalence
classes in X with respect to (1.7.7) are partitioned into equivalence classes in X
with respect to (1.7.6). Equivalently, closed balls in X of radius r are partitioned
into open balls of radius r. It follows that closed balls in X of positive radius
are open sets in X.

1.8 Equivalent absolute value functions

Let k be a field, and let | · |1, | · |2 be quasimetric absolute value functions on
k. Let us say that | · |1 and | · |2 are equivalent on k if there is a positive real
number a such that

|x|2 = |x|a1(1.8.1)

for every x ∈ k. Of course, this is the same as saying that

|x|1 = |x|1/a2(1.8.2)

for every x ∈ k. This corresponds to Definition 1.2 on p13 of [33].
Note that (1.8.1) implies that

|x− y|2 = |x− y|a1(1.8.3)

for all x, y ∈ k. It follows that the corresponding quasimetrics

|x− y|1 and |x− y|2 determine the same topology on k,(1.8.4)

as in the previous section.
It is easy to see that w ∈ k satisfies |w|1 < 1 if and only if

wj → 0 as j → ∞(1.8.5)

with respect to the topology determined by |x − y|1. Of course, the analogous
statement for | · |2 holds for the same reason. If (1.8.4) holds, then we get that

{w ∈ k : |w|1 < 1} = {w ∈ k : |w|2 < 1}.(1.8.6)

It is easy to see that (1.8.6) holds if and only if

{z ∈ k : |z|1 > 1} = {z ∈ k : |z|2 > 1},(1.8.7)
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by taking w = 1/z. In this case, we also have that

{u ∈ k : |u|1 = 1} = {u ∈ k : |u|2 = 1}.(1.8.8)

It is well known that (1.8.6) implies that |·|1 and |·|2 are equivalent on k, and
we shall say more about this in Section 1.10. This means that the equivalence of
| · |1 and | · |2 on k is equivalent to each of (1.8.4) and (1.8.6). This corresponds
to Lemma 3.2 on p20 of [33], and to Lemma 3.1.2 on p42 of [70]. In fact,
equivalence of absolute value functions is defined in Definition 3.1.1 on p42 of
[70] in terms of (1.8.4).

If (1.8.6) holds, then it is easy to see that for every u, v ∈ k,

|u|1 > |v|1 if and only if |u|2 > |v|2.(1.8.9)

This is clear when v = 0, and otherwise one can take w = u/v. Conversely,
(1.8.9) implies (1.8.6), by taking u = 1k. Equivalence of absolute value functions
is defined (using different terminology) in Definition 2 on p212 of [95] in terms
of (1.8.9). Theorem 1 on p212 of [95] states that this implies the equivalence of
| · |1 and | · |2 as defined here.

One may also say that | · |1 and | · |2 are dependent on k if (1.8.4) holds, as
on p283 of [111]. Otherwise, one may say that | · |1 and | · |2 are independent, as
in [111].

1.9 Nontrivial absolute value functions

Let k be a field, and let | · | be a quasimetric absolute value function on k. Note
that | · | is not the trivial absolute value function on k if and only if there is an
x0 ∈ k such that x0 6= 0 and |x0| 6= 1. This implies that there are y0, z0 ∈ k
such that

0 < |y0| < 1 and |z0| > 1,(1.9.1)

using x0 and 1/x0.
In particular,

|yj0| = |y0|j → 0 as j → ∞(1.9.2)

in this case. It follows that the topology determined on k by the quasimetric
|x− y| is not the discrete topology under these conditions.

Conversely, if | · | is the trivial absolute value function on k, then |x − y| is
the discrete metric on k, as in Section 1.2, and the corresponding topology on
k is the discrete topology.

Suppose that | · | is nontrivial on k again, and let y0 ∈ k be as in (1.9.1). If
x ∈ k, then the first part of Exercise 4 on p214 of [95] states that |x| ≤ 1 if and
only if

|y0 xn| < 1(1.9.3)

for every n ∈ Z+. Similarly, |x| = 1 if and only if x 6= 0 and (1.9.3) holds for
every n ∈ Z.
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Let | · |1, | · |2 be quasimetric absolute value functions on k. If | · |1 is the
trivial absolute value function on k and (1.8.6) holds, then it is easy to see that
| · |2 is the trivial absolute value function on k as well, using the remarks at the
beginning of the section. This could also be obtained from (1.8.8). This means
that (1.8.1) holds for every a > 0.

Suppose now that |·|1 is not the trivial absolute value function on k. Suppose
also that for every w ∈ k,

|w|1 < 1 implies that |w|2 < 1.(1.9.4)

Note that (1.9.4) holds when

the topology determined on k by |x− y|1 is at least as strong as(1.9.5)

the topology determined on k by |x− y|2.

Indeed, if this condition holds, and (1.8.5) holds with respect to the topology
determined on k by |x − y|1, then (1.8.5) holds with respect to the topology
determined on k by |x− y|2.

Using (1.9.4), we get that for every z ∈ k,

|z|1 > 1 implies that |z|2 > 1,(1.9.6)

by taking w = 1/z.
We would like to show that for every u ∈ k,

|u|1 = 1 implies that |u|2 = 1,(1.9.7)

which is another part of Exercise 4 on p214 of [95]. This can be obtained from
the characterization of this condition mentioned earlier. An analogous argument
is used in the first part of the proof of Lemma 3.1 on p18 of [33].

This means that (1.8.6), (1.8.7) and (1.8.8) hold, as in [33]. If one can show
that | · |1 and | · |2 are equivalent on k when (1.8.6) holds, then it follows that
| · |1 and | · |2 are equivalent on k when | · |1 is nontrivial on k and (1.9.4) holds,
as in Exercise 4 on p214 of [95]. This is the same as Lemma 3.1 on p18 of [33].

Alternatively, (1.9.6) is the same as saying that for each z ∈ k,

|z|2 ≤ 1 implies that |z|1 ≤ 1.(1.9.8)

Although this seems to be less precise at first, one can use (1.9.4), (1.9.6), and
(1.9.8) to get that | · |1 and | · |2 are equivalent on k when | · |1 is nontrivial on k,
as in the proof of Proposition 1 on p283 of [111]. This is discussed in the next
section.

1.10 Getting equivalence of absolute values

Let k be a field, and let | · |1 and | · |2 be quasimetric absolute value functions
on k. We would like to show that | · |1 and | · |2 are equivalent on k when (1.8.6)
holds, as mentioned in Section 1.8.
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If | · |1 is the trivial absolute value function on k, then | · |2 is the trivial
absolute value function on k as well, as mentioned in the previous section. Thus
we suppose from now on in this section that | · |1 is not the trivial absolute value
function on k.

In this case, it suffices to ask that (1.9.4) hold, instead of (1.8.6). This
corresponds to Lemma 3.1 on p18 of [33], part of Exercise 4 on p214 of [95],
and Proposition 1 on p283 of [111]. Note that (1.9.4) implies that | · |2 is also
nontrivial on k. Although (1.9.4) implies (1.8.6) under these conditions, as in
the previous section, it will be enough to use (1.9.4), (1.9.6), and (1.9.8) here.
This corresponds to the argument in [111], as before.

Because | · |1 is nontrivial on k, there is a z1 ∈ k such that

|z1|1 > 1,(1.10.1)

as in (1.9.1). This implies that

|z1|2 > 1,(1.10.2)

as in (1.9.6). It follows that there is a unique positive real number a such that

|z1|2 = |z1|a1 .(1.10.3)

We would like to show that (1.8.1) holds for all x ∈ k. This is clear when x = 0,
and so we may suppose that x 6= 0.

There is a unique real number α such that

|x|1 = |z1|α1 ,(1.10.4)

because of (1.10.1). Let m, n be integers with

α < m/n(1.10.5)

and n > 0. This implies that

|x|1 < |z1|m/n
1 ,(1.10.6)

so that |xn|1 = |x|n1 < |z1|m1 = |zm1 |1, and thus

|xn/zm1 |1 < 1.(1.10.7)

It follows that
|xn/zm1 |2 < 1,(1.10.8)

by (1.9.4), so that |x|n2 < |z1|m2 , and thus

|x|2 < |z1|m/n
2 .(1.10.9)

This means that
|x|2 ≤ |z1|α2 = |z1|αa

1 = |x|a1 ,(1.10.10)
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using (1.10.3) in the second step, and (1.10.4) in the third step.
Similarly, there is a unique real number β such that

|x|2 = |z1|β2 ,(1.10.11)

because of (1.10.2). Let m, n be integers with

β ≤ m/n(1.10.12)

and n > 0, although one could ask that the inequality be strict here as well.
This implies that

|x|2 ≤ |z1|m/n
2 ,(1.10.13)

so that |xn|2 = |x|n2 ≤ |z1|m2 = |zm1 |2, and thus

|xn/zm1 |2 ≤ 1.(1.10.14)

Using (1.9.8), we get that
|xn/zm1 |1 ≤ 1,(1.10.15)

so that |x|n1 ≤ |z1|m2 , and thus

|x1|1 ≤ |z1|m/n
1 .(1.10.16)

It follows that
|x|1 ≤ |z1|β1 = |z1|β/a2 = |x|1/a2 ,(1.10.17)

using (1.10.3) in the second step, and (1.10.11) in the third step.
Of course, (1.8.1) follows from (1.10.10) and (1.10.17).

1.11 Absolute value functions on Q

Let | · | be an absolute value function on Q. A famous theorem of Ostrowski
states that |·| is either the trivial absolute value function on Q, or |·| is equivalent
to the standard absolute value function on Q, or | · | is equivalent to the p-adic
absolute value on Q for some prime number p. This corresponds to Theorem
2.1 on p16 of [33], and to Theorem 3.1.3 on p44 of [70]. Note that the standard
absolute value function on Q is sometimes denoted | · |∞, as in Example 1 on
p22 of [70].

More precisely, if | · | is an archimedean absolute value function on Q, then
| · | is equivalent to the standard absolute value function on Q, as in Theorem 3
on p214 of [95]. If | · | is a nontrivial ultrametric absolute value function on Q,
then | · | is equivaent to | · |p for some prime number p.

Note that one can just as well state Ostrowski’s theorem for quasimetric
absolute value functions on Q, as in [33]. One can reduce to the case of ordinary
absolute value functions, as in Section 1.6.

If | · | is archimedean on Q, then |n| > 1 for some positive integer n, and one
can take n0 to be the smallest positive integer such that

|n0| > 1,(1.11.1)
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as on p44 of [70]. Let a be the unique positive real number such that

|n0| = na
0 .(1.11.2)

One would like to show that
|x| = |x|a∞(1.11.3)

for every x ∈ Q, where |x|∞ is the standard absolute value of x, as before. It
suffices to do this when x is a positive integer.

One can first show that there is a positive real number C such that

|n| ≤ C na(1.11.4)

for every positive integer n. Note that |n| ≤ 1 when n < n0, by construction.
In order to get (1.11.4), one can express any positive integer n as

n =

l∑
j=0

aj n
j
0,(1.11.5)

where l is a nonnegative integer, aj is a nonnegative integer less than n0 for
each j, and al 6= 0, as on p44 of [70]. More precisely, l is the unique nonnegative
integer such that

nl
0 ≤ n < nl+1

0 ,(1.11.6)

as in [70].
Using (1.11.4), we get that

|n|r = |nr| ≤ C na r(1.11.7)

for all positive integers n and r. This means that

|n| ≤ C1/r na(1.11.8)

for all n, r. It follows that
|n| ≤ na(1.11.9)

for all n ≥ 1, by taking the limit as r → ∞ on the right side of (1.11.8), as in
[70].

To get the oppositve inequality, we observe that

n
a (l+1)
0 = |nl+1

0 | ≤ |nl+1
0 − n|+ |n| ≤ (nl+1

0 − n)a + |n|,(1.11.10)

using (1.11.9) in the third step. One can use this to get that there is a positive
real number c such that

c na ≤ |n|(1.11.11)

for every positive integer n, as in [70]. This implies that

c na r ≤ |nr| = |n|r(1.11.12)
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for all positive integers n and r, and one can use this to obtain that

na ≤ |n|(1.11.13)

for all n, as before. This shows that (1.11.3) holds for all x ∈ Z+, and thus for
all x ∈ Q.

The non-archimedean case will be discussed in the next section, after some
preliminary remarks about ultrametrics.

1.12 The non-archimedean case

Let X be a set, and let d(·, ·) be an ultrametric on X. If x, y, z ∈ X and

d(x, y) < d(y, z),(1.12.1)

then
d(x, z) = d(y, z).(1.12.2)

Indeed,
d(x, z) ≤ d(y, z)(1.12.3)

when d(x, y) ≤ d(y, z). If (1.12.1) holds, then one can use the ultrametric
version of the triangle inequality

d(y, z) ≤ max(d(y, x), d(x, z))(1.12.4)

to get that
d(y, z) ≤ d(x, z).(1.12.5)

The fact that (1.12.1) implies (1.12.2) may be described by saying that “all
triangles are isosceles”, as in Corollary 2.3.4 on p32 of [70].

Let k be a field, and let | · | be an ultrametric absolute value function on k.
If u, v ∈ k and

|u| < |v|,(1.12.6)

then
|u− v| = |v|,(1.12.7)

as before. This also corresponds to Lemma 1.4 on p15 of [33], and to the first
part of Exercise 2 on p214 of [95].

Suppose now that | · | is an ultrametric absolute value function on Q, so that
|n| ≤ 1 for every n ∈ Z+. If |n| = 1 for every n ∈ Z+, then it is easy to see
that | · | is the trivial absolute value function on Q. Suppose that | · | is not the
trivial absolute value function on Q, so that |n| < 1 for some n ∈ Z+. Let p be
the smallest positive integer such that

|p| < 1.(1.12.8)

It is easy to see that p is a prime number under these conditions.
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There is a unique positive real number a such that

|p| = p−a.(1.12.9)

We would like to show that
|x| = |x|ap(1.12.10)

for every x ∈ Q. It suffices to show that this holds when x is a positive integer.
More precisely, it is enough to check that

|n| = 1(1.12.11)

when n is a positive integer that is not a multiple of p. Note that this holds
when n < p, by construction.

If n is not a multiple of p, then

n = p l + r(1.12.12)

for some integers l, r with l ≥ 0 and 1 ≤ r < p. Observe that

|p l| = |p| |l| < 1,(1.12.13)

and |r| = 1, as before. Using this, one can obtain (1.12.11) as in (1.12.7). This
is the argument on p46 of [70], which corresponds to the proof of (ii) on p18 of
[33]. This is also basically the same as the proof of Theorem 4 on p215 of [95],
with some differences in the way that it is explained.

1.13 Some remarks about uniform continuity

Let (X, dX(·, ·)) be a metric space, and let E be a subset of X. Of course, the
restriction of dW (x,w) to x,w ∈ E is a metric on E. If dX(·, ·) is an ultrametric
on X, then its restriction to E is an ultrametric on E.

Suppose for the moment that E is a dense set in X. If the restriction of
dX(·, ·) to E is an ultrametric on E, then one can check that dX(·, ·) is an
ultrametric on X.

If X is complete as a metric space with respect to dX and E is a closed set
in X, then one can check that E is complete with respect to the restriction of
dX to E. Conversely, if E is complete with respect to the restriction to dX to
E, then E is a closed set in X. Indeed, if {xj}∞j=1 is a sequence of elements of E
that converges to an element x of X, then {xj}∞j=1 is a Cauchy sequence in X.
This implies that {xj}∞j=1 is a Cauchy sequence in E, so that {xj}∞j=1 converges
to an element of E, by hypothesis. It follows that x ∈ E, because the limit of a
convergent sequence in a metric space is unique.

Let (Y, dY ) be another metric space, and suppose for the moment that f is a
uniformly continuous mapping from X into Y . If {xj}∞j=1 is a Cauchy sequence
in X, then one can check that

{f(xj)}∞j=1 is a Cauchy sequence in Y.(1.13.1)
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In particular, if Y is complete as a metric space with respect to dY , then it
follows that {f(xj)}∞j=1 converges to an element of Y .

Suppose for the moment that {xj}∞j=1 and {wj}∞j=1 are sequences of elements
of X such that

lim
j→∞

dX(xj , wj) = 0.(1.13.2)

One can verify that
lim
j→∞

dY (f(xj), f(wj)) = 0.(1.13.3)

In fact, this propery characterizes uniform continuity. If either {xj}∞j=1 or
{wj}∞j=1 is a Cauchy sequence in X, then it is easy to see that the other is
a Cauchy sequence too. In this case, if Y is complete, then (1.13.3) implies that

lim
j→∞

f(xj) = lim
j→∞

f(wj).(1.13.4)

Suppose that E is a dense subset of X again, and that f is a uniformly
continuous mapping from E into Y , with respect to the restriction of dX to
E. If Y is complete, then it is well known that there is a unique extension
of f to a uniformly continuous mapping from X into Y . More precisely, the
uniqueness part only uses the continuity of the extension, and does not involve
the completeness of Y .

To get the existence part of the extension, let x ∈ X be given, and let
{xj}∞j=1 be a sequence of elements of E that converges to x. It is well known
and easy to see that {xj}∞j=1 is a Cauchy sequence in X, and we may consider it
as a Cauchy sequence in E. It follows that {f(xj)}∞j=1 converges to an element
of Y , as before. If x ∈ E, then {f(xj)}∞j=1 converges to f(x) in Y , because f
is continuous at x. Otherwise, one would like to define f(x) to be the limit of
{f(xj)}∞j=1 in Y .

If {wj}∞j=1 is another sequence of elements of E that converges to x, then it
is easy to see that (1.13.2) holds. This implies that (1.13.4) holds, so that this
definition of f(x) does not depend on the particular sequence of elements of E
that converges to x.

The uniform continuity of f on E means that for every ϵ > 0 there is a
δ(ϵ) > 0 such that for every u, v ∈ E with

dX(u, v) < δ(ϵ),(1.13.5)

we have that
dY (f(u), f(v)) < ϵ.(1.13.6)

If u, v ∈ X satisfy (1.13.5), then one can check that this extension of f to X
has the property that

dY (f(u), f(v)) ≤ ϵ.(1.13.7)

This implies that this extension of f to X is uniformly continuous as well.
A mapping ϕ from X into Y is said to be an isometric embedding if

dY (ϕ(x), ϕ(w)) = dX(x,w)(1.13.8)
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for every x,w ∈ X. This implies that ϕ is uniformly continuous and one-to-one
on X. If ϕ(X) = Y , then the inverse of ϕ is an isometry from Y onto X. If E is
a dense subset of X and Y is complete, then an isometric embedding of E into
Y has a unique extension to an isometric embedding of X into Y .

If X is complete and ϕ is an isometric embedding of X into Y , then ϕ(X) is
a closed set in Y . More precisely, if X is complete, then ϕ(X) is complete with
respect to the restriction of dY to ϕ(X). This implies that ϕ(X) is a closed set
in Y , as before. If ϕ(X) is dense in Y , then it follows that ϕ(X) = Y .

A completion of X may be defined as an isometric embedding of X onto a
dense set in a complete metric space. It is well known that such a completion
always exists. The remarks in the previous paragraphs may be used to show
that completions are unique up to a suitable isometric equivalence. Note that
a completion of an ultrametric space is an ultrametric space, by a remark near
the beginning of the section.

1.14 Continuity of field operations

Let k be a field with an absolute value funtion | · |. It is well known that the
field operations on k are continuous with respect to the metric associated to | · |.
This corresponds to Problem 43 on p30 of [70], and to Exercise 1 on p221 of
[95].

More precisely, this means that addition and multiplication are continuous
as mappings from k × k into k, with respect to a suitable product metric on
k × k, obtained from the metric on k associated to | · |. Similarly,

x 7→ x−1(1.14.1)

is continuous as a mapping from k\{0} onto itself, with respect to the restriction
to k \ {0} of the metric on k associated to | · |.

The space k2 = k× k of ordered pairs of elements of k may be considered as
a two-dimensional vector space over k, with respect to coordinatewise addition
and scalar multiplication. One can define suitable norms on this space with
respect to | · | on k, and we shall discuss this further in Section 2.2. These norms
determine metrics on k × k, and we may use such a metric as in the preceding
paragraph.

In fact, it is easy to see that addition on k defines a uniformly continuous
mapping from k × k into k, with respect to such a metric on k × k. One can
also check that multiplication on k defines a mapping from k × k into k whose
restriction to any bounded set in k × k is uniformly continuous with respect to
such a metric.

If r is a positive real number, then one can also verify that (1.14.1) is uni-
formly continuous as a mapping from

{x ∈ k : |x| ≥ r}(1.14.2)

into k, with respect to the metric on k associated to | · | and its restriction to
this set.
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1.15 Completing fields with absolute values

Let k be a field with an absolute value function | · |. If k0 is a subfield of k,
then the restriction of | · | to k0 is an absolute value function on k0. If | · |
is an ultrametric absolute value function on k, then its restriction to k0 is an
ultrametric absolute value function on k0.

If k0 is a dense set in k with respect to the metric associated to | · |, and if
the restriction of | · | to k0 is an ultrametric absolute value function on k0, then
| · | is an ultrametric absolute value function on k, as in the analogous remarks
for metric spaces near the beginning of Section 1.13. However, the characteriza-
tion of ultrametric absolute value functions as non-archimedean absolute value
functions in Section 1.5 implies that this works without asking that k0 be dense
in k. This corresponds to Corollary 1 to Lemma 1.5 on p16 of [33].

Let k1 be another field with an absolute value function | · |1, and let ϕ be an
embedding of k as a field into k1. If

|ϕ(x)|1 = |x|(1.15.1)

for every x ∈ k, then one may say that ϕ is an isometric embedding from k
into k1 with respect to these absolute value functions. This means that ϕ is an
isometric embedding with respect to the corresponding metrics, as in Section
1.13.

Suppose that k0 is a subfield of k that is dense in k with respect to the
metric associated to | · |. Suppose also that ϕ0 is an embedding of k0 as a field
into k1 that is an isometry with respect to the restriction of | · | to k0 and | · |1 on
k1. If k1 is complete with respect to the metric associated to | · |1, then ϕ0 has
a unique extension to an isometry from k into k1 as metric spaces, with respect
to the metrics associated to their absolute value functions. One can check that
this extension is also an embedding of k as a field into k1, using the continuity
of the field operations, as in the previous section.

Suppose that k1 is complete with respect to the metric associated to | · |1. If
ϕ is an embedding of k as a field into k1 that is an isometry, and if

ϕ(k) is dense in k1(1.15.2)

with respect to the metric associated to | · |1, then k1 may be considered as
a completion of k with respect to ϕ and these absolute value functions. In
particular, this is a completion of k as a metric space with respect to the metric
associated to | · |, and using the metric on k1 associated to | · |1. Sometimes one
may wish to have k be a subfield of k1, and anyway one may identify k with
ϕ(k).

One way to get a completion of k in this sense is to start with a completion
of k as a metric space, and to show that the field operations may be extended
to the completion. The absolute value function on the completion may be
defined as the distance to 0, although one should also verify that this satisfies
the appropriate properties. This is the approach used in the proof of Theorem
4.1 on p24 of [33]. One can use the uniform continuity properties of the field



1.15. COMPLETING FIELDS WITH ABSOLUTE VALUES 21

operations mentioned in the previous sectio here, as well as the results about
extensions of uniformly continuous mappings mentioned in Section 1.13.

A standard way to obtain a completion of a metric space is to use a space
of equivalence classes of Cauchy sequences in the metric space. Using this
construction, the extension of the field operations to the completion can be
obtained more directly. This is outlined in Exercise 1 on p31 of [33], and this is
the approach used in Section 3.2 of [70], Section 4 of Chapter V of [95], and in
the proof of Proposition 2 on p286 of [111]. More precisely, the space of Cauchy
sequences in k may be considered a commutative ring in a suitable way, and the
space of sequences of elements of k that converge to 0 is an ideal in this ring.
The completion of k may be obtained as the quotient of this ring by this ideal.

A completion of k is unique up to a suitable isomorphic isometric equiva-
lence. This can be obtained from some of the previous remarks about extending
isometric embeddings into a complete field with an absolute value function.

Of course, R may be considered as the completion of Q with respect to the
standard absolute value function.

If p is a prime number, then the field Qp of p-adic numbers may be obtained
by completing Q with respect to the p-adic absolute value | · |p. We consider Q
as a subfield of Qp, and the corresponding extension of | · |p to an ultrametric
absolute value function on Qp is also denoted |·|p, and called the p-adic absolute
value on Qp. The associated metric is called the p-adic metric on Qp.



Chapter 2

Norms and ultranorms

2.1 Norms on vector spaces

Let k be a field with an absolute value function | · |, and let V be a vector space
over k. A nonnegative real-valued function N on V is said to be a norm on V
with respect to | · | on k if it satisfies the following three conditions. First, for
each v ∈ V ,

N(v) = 0 if and only if v = 0.(2.1.1)

Second, if v ∈ V and t ∈ k, then

N(t v) = |t|N(v).(2.1.2)

Third, if v, w ∈ V , then

N(v + w) ≤ N(v) +N(w).(2.1.3)

Of course, this is the usual definition of a norm when k = R or C, with
the standard absolute value function. This definition of a norm corresponds to
Definition 2.1 on p115 of [33] when k and | · | are arbitrary. This is also the
same as Definition 5.1.1 on p133 of [70], although some additional conditions
on k and | · | are considered there.

In the definition of a norm on p287 of [111], (2.1.2) is replaced with

N(t v) ≤ |t|N(v).(2.1.4)

This implies that N(0) = 0 when t = 0, and if t 6= 0, then we have that

N(v) = N(t−1 (t v)) ≤ |t|−1 N(t v).(2.1.5)

This means that
|t|N(v) ≤ N(t v),(2.1.6)

so that (2.1.2) holds. Note that |·| is asked to be nontrivial on k in the definition
of a norm in [111].

22
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A nonnegative real-valued function N on V is said to be an ultranorm on V
with respect to | · | on k if it satisfies (2.1.1) and (2.1.2), and if

N(v + w) ≤ max(N(v), N(w))(2.1.7)

for every v, w ∈ V . Clearly (2.1.7) implies (2.1.3), so that an ultranorm is a
norm in particular. If N is a norm on V and V 6= {0}, then one can use (2.1.2)
with v 6= 0 to get that | · | is an ultrametric absolute value function on k.

If N is a norm on V , then it is easy to see that

dN (v, w) = N(v − w)(2.1.8)

is a metric on V . If V is an ultranorm on V , then (2.1.8) is an ultrametric on
V .

We may consider k as a one-dimensional vector spaces over itself, and | · |
as a norm on k with respect to itself. This is an ultranorm when | · | is an
ultrametric absolute value function on k.

If k1 is a field that contains k as a subfield, then k1 may be considered as a
vector space over k. If | · |1 is an absolute value function on k1 that is equal to
| · | on k, then | · |1 may be considered as a norm on k1 with respect to | · | on k. If
| · |1 is an ultrametric absolute value function on k1, then it may be considered
as an ultranorm on k1 as a vector space over k. Remember that this happens
exactly when | · | is an ultrametric absolute value function on k, as mentioned
near the beginning of Section 1.15.

If k is any field, then we can take | · | to be the trivial absolute value function.
Similarly, if V is any vector space over k, then the trivial ultranorm may be
defined by putting N(v) = 1 when v 6= 0, and N(0) = 0. It is easy to see that
this is an ultranorm on V with respect to the trivial absolute value function on
k. The corresponding ultrametric (2.1.8) is the same as the discrete metric on
V .

2.2 Some norms on kn

Let k be a field with an absolute value function |·|, and let n be a positive integer.
Also let kn be the space of n-tuples of elements of k, considered as a vector
space over k with respect to coordinatewise addition and scalar multiplication.
If v = (v1, . . . , vn) ∈ kn, then put

‖v‖∞ = max(|v1|, . . . , |vn|).(2.2.1)

One can check that this defines a norm on kn with respect to | · | on k. If | · | is
an ultrametric absolute value function on k, then this defines an ultranorm on
kn with respect to | · | on k.

If r is a positive real number, then put

‖v‖r =
( n∑

j=1

|vj |r
)1/r

(2.2.2)
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for every v ∈ kn. It is easy to see that this satisfies the first two conditions in
the definition of a norm. It is also easy to see that this satisfies the triangle
inequality when r = 1.

Suppose for the moment that k = R, with the standard absolute value
function. If r = 2, then (2.2.2) is the standard Euclidean norm on Rn. If
1 < r < ∞, then it is well known that (2.2.2) satisfies the triangle inequality,
and is thus a norm. This is Minkowski’s inequality for finite sums.

One can use this to get that (2.2.2) satisfies the triangle inequality on kn

when r ≥ 1, for arbitrary k and | · |. This means that (2.2.2) defines a norm on
kn when r ≥ 1.

Of course, if n = 1, then (2.2.1) and (2.2.2) are the same as the absolute
value function on k. If n ≥ 2, then one can check that (2.2.2) does not satisfy
the triangle inequality on kn when r < 1.

If r ≤ 1 and v, w ∈ kn, then

‖v + w‖rr =

n∑
j=1

|vj + wj |r ≤
n∑

j=1

(|vj |+ |wj |)r(2.2.3)

≤
n∑

j=1

(|vj |r + |wj |r) = ‖v‖rr + ‖w‖rw,

where the third step is as in Section 1.4. One can use this to get that

‖v − w‖rr(2.2.4)

defines a metric on kn. Note that | · |r is an absolute value function on k in this
case as well. In fact, ‖ · ‖rr is a norm on kn with respect to | · |r on k. This is
the same as the analogue of (2.2.2) with r = 1 using | · |r in place of | · |.

Observe that
‖v‖∞ ≤ ‖v‖r ≤ n1/r ‖v‖∞(2.2.5)

for every v ∈ kn and r > 0.
Open and closed balls in kn with respect to the metric associated to ‖ · ‖∞

correspond exactly to products of open and closed balls in k with respect to
the metric associated to | · |, respectively. One can use this to check that the
topology determined on kn by the metric associated to ‖ · ‖∞ is the same as the
product topology, using the topology determined on k by the metric associated
to | · |. If r ≥ 1, then the topology determined on kn by the metric associated to
‖ · ‖r is the same as the topology determined by the metric associated to ‖ · ‖∞,
because of (2.2.5). Similarly, if r < 1, then this is the same as the topology
determined on kn by (2.2.4).

2.3 Products of two vector spaces

Let k be a field with an absolute value function | · |, and let V , W be vector
spaces over k with norms NV , NW with respect to | · | on k, respectively. The
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Cartesian product V ×W of V and W may be considered as a vector space over
k as well, with respect to coordinatewise addition and scalar multiplication.
This corresponds to the direct sum of V and W , as a vector space over k.

If v ∈ V and w ∈ W , then put

‖(v, w)‖V×W,∞ = max(NV (v), NW (w)).(2.3.1)

One can check that this defines a norm on V ×W with respect to | · | on V . If
NV and NW are ultranorms on V and W , respectively, then this is an ultranorm
on V ×W .

If r is a positive real number, then

‖(v, w)‖V×W,r = (NV (v)
r +NW (w)r)1/r(2.3.2)

satisfies the first two conditions in the definition of a norm. It is easy to see
that this satisfies the triangle inequality when r = 1, and for r > 1 this can be
obtained from the triangle inequality for (2.2.2) on R2. We also have that

‖(v, w)‖V×W,∞ ≤ ‖(v, w)‖V×W,r ≤ 21/r ‖(v, w)‖V×W,∞(2.3.3)

for every r > 0.
Open and closed balls in V × W with respect to the metric associated to

(2.3.1) corresponds exactly to products of open and closed balls in V and W
with respect to the metrics associated to NV and NW , respectively. This implies
that the topology determined on V ×W by the metric associated to (2.3.1) is
the same as the product topology, using the topologies on V and W determined
by the metrics associated to NV and NW , respectively. This is the same as the
topology determined on V ×W by the metric associated to (2.3.2) when r ≥ 1.

In particular, we can take V = W and NV = NW , to get some norms and
metrics on V × V . It is easy to see that addition on V is uniformly continuous
as a mapping from V ×V into V , with respect to such a metric, and the metric
on V associated to NV .

Similarly, we can get some norms and metrics on k×V , using | · | on k. One
can check that scalar multiplication on V defines a mapping from k× V into V
that is uniformly continuous on bounded subsets of k × V with respect to such
a metric.

If v ∈ V , then it is easy to see that

t 7→ t v(2.3.4)

is uniformly continuous as a mapping from k into V , with respect to the metrics
associated to | · | and NV . Similarly, if t ∈ k, then

v 7→ t v(2.3.5)

is uniformly continuous as a mapping from V into itself, with respect to the
metric associated to NV .

Let a be a positive real number with a ≤ 1, and remember that | · |a is an
absolute value function on k, as in Section 1.4. One can check that NV (·)a is
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a norm on V with respect to | · |a on k. If | · | is an ultrametric absolute value
function on k, then | · |a is an ultrametric absolute value function on k for every
a > 0, as before. If NV is an ultranorm on V with respect to | · | on k, then
NV (·)a is an ultranorm on V with respect to | · |a on k for every a > 0.

2.4 Completions and isometric linear mappings

Let k be a field with an absolute value function | · |, let V be a vector space
over k, and let NV be a norm on V with respect to | · | on k. If V0 is a linear
subspace of V , then the restriction of NV to V0 is a norm on V0 with respect
to | · | on k. If NV is an ultranorm on V , then the restriction of NV to V0 is an
ultranorm on V0. If V0 is dense in V with respect to the metric associated to
NV , and if the restriction of NV to V0 is an ultranorm with respect to | · | on k,
then one can check that NV is an ultranorm on V .

Suppose for the moment that V is complete with respect to the metric
associated to NV . If k is not already complete with respect to the metric
associated to | · |, then one can get a completion of k as in Section 1.15. One can
show that scalar multiplication on V can be extended to the completion of k, so
that V may be considered as a vector space over the completion of k, and NV

may be considered as a norm on V with respect to the extension of | · | to the
completion of k. To do this, one can first observe that for each v ∈ V , (2.3.4)
can be extended to a uniformly continuous mapping from the completion of k
into V . This extends scalar multiplication on V to the completion of k, and one
can check that this extension has the appropriate properties.

Let W be another vector space over k with a norm NW . A linear mapping
T from V into W is said to be isometry if

NW (T (v)) = NV (v))(2.4.1)

for every v ∈ V . This implies that T is an isometric embedding with respect to
the corresponding metrics, as in Section 1.13.

Let V0 be a linear subspace of V that is dense in V with respect to the metric
associated to NV . Also let T0 be an isometric linear mapping from V0 into W ,
with respect to the restriction of NV to V0. If W is complete with respect to
the metric associated to NW , then T0 has a unique extension to an isometry
from V into W , with respect to the metrics associated to their norms, as in
Section 1.13. One can check that this extension is a linear mapping too, using
the continuity of the vector space operations on V and W , as in the previous
section.

Suppose that W is complete with respect to the metric associated to NW .
If T is an isometric linear mapping from V into W , and if

T (V ) is dense in W(2.4.2)

with respect to the metric associated to NW , then W may be considered as a
completion with respect to T and these norms. Of course, this is a completion
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of V as a metric space in particular, with respect to the metric assocuated to
NV , and using the metric on W associated to NW . Sometimes one might like to
have V be a linear subspace of W , and one can identify V with T (V ) anyway.

If V is complete with respect to the metric associated to NV , then V is said
to be a Banach space with respect to NV . Otherwise, one can get a completion
that is also a vector space over k with a norm with respect to | · | on k. As
before, one can start with a completion of V as a metric space, and show that
the vector space operations on V can be extended to the completion. The norm
on the completion may be defined as the distance to 0, and one can verify that
this has the appropriate properties.

Alternatively, one can show that the space of Cauchy sequences in V is a
vector space over k in a suitable way, and that the space of sequences of elements
of V converging to 0 is a linear subspace of this vector space. The completion of
V may be defined initially as a vector space over k as the corresponding quotient
space, and it is not too difficult to define a norm on this quotient in a suitable
way.

One can show that s completion of V is unique up to a suitable isometric
linear equivalence, using some of the previous remarks about extending isometric
linear mappings on a dense linear subspace of a vector space with a norm into
a Banach space.

2.5 Equivalent norms

Let k be a field with an absolute value function | · |, and let V be a vector space
over k. Also let N1 and N2 be norms on V with respect to | · | on k. We say
that N1 and N2 are equivalent as norms on V if there are positive real numbers
C1,2, C2,1 such that

N1(v) ≤ C1,2 N2(v)(2.5.1)

and
N2(v) ≤ C2,1 N1(v)(2.5.2)

for every v ∈ V . This corresponds to Definition 2.2 on p116 of [33]. This also
corresponds to Definition 5.1.3 on p135 of [70], and it is mentioned on p287
of [111] as well, although the discussions in [70, 111] include some additional
conditions on | · | on k.

Let dN1 , dN2 be the metrics on V corresponding to N1, N2, respectively, as
in Section 2.1. Note that (2.5.1) is the same as saying that

dN1
(v, w) ≤ C1,2 dN2

(v, w)(2.5.3)

for every v, w ∈ V . This implies that the topology determined on V by dN2 is
at least as strong as the topology determined by dN1

. Similarly, (2.5.2) is the
same as saying that

dN2
(v, w) ≤ C2,1 dN1

(v, w)(2.5.4)

for every v, w ∈ V . This implies that the topology determined on V by dN1
is

at least as strong as the topology determined by dN2
.
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Let us use BN1(v, r) and BN2(v, r) for the open balls in V centered at v ∈ V
with radius r > 0 with respect to dN1 and dN2 , respectively. If the topology
determined on V by dN2

is at least as strong as the topology determined by
dN1

, then there is a positive real number r2 such that

BN2
(0, r2) ⊆ BN1

(0, 1).(2.5.5)

Similarly, if the topology determined on V by dN1 is at least as strong as the
topology determined by dN2

, then there is an r1 > 0 such that

BN1(0, r1) ⊆ BN2(0, 1).(2.5.6)

If t ∈ k and E ⊆ V , then put

t E = {t v : v ∈ E}.(2.5.7)

If t 6= 0 and r is a positive real number, then

tBN1
(0, r) = BN1

(0, |t| r),(2.5.8)

and similarly for N2. Thus (2.5.5) implies that

BN2
(0, |t| r2) ⊆ BN1

(0, |t|),(2.5.9)

and (2.5.6) implies that

BN1
(0, |t| r1) ⊆ BN2

(0, |t|).(2.5.10)

Suppose for the moment that | · | is not the trivial absolute value function
on k. If (2.5.5) holds, then one can use (2.5.9) to get that (2.5.1) holds for
some C1,2 > 0. Similarly, if (2.5.6) holds, then one can use (2.5.10) to get
that (2.5.2) holds for some C2,1 > 0. In particular, if dN1

and dN2
determine

the same topology on V , then it follows that N1 and N2 are equivalent on V .
This corresponds to Problem 194 on p135 of [70], and to part of the proof of
Proposition 3 on p288 of [111].

Suppose that k is complete with respect to the metric associated to | · |. If
V has finite dimension over k, then it is well known that any two norms on V
with respect to | · | on k are equivalent. We also get that V is complete with
respect to the metric associated to any norm. This corresponds to Lemma 2.1
on p116 of [33], Theorem 5.2.1 on p137 of [70], and Proposition 3 on p288 of
[111]. More precisely, the completeness part corresponds to part of Proposition
4 on p291 of [111], and its proof.

If the dimension of V is equal to one, then any norm on V with respect to
| · | on k is a positive multiple of any other norm. It is easy to see that V is
complete with respect to the metric associated to any norm on this case, because
k is complete, by hypothesis.

We can reduce to the case where V = kn for some positive integer n, using a
basis for V . The proof uses induction on n, and is discussed in the next section.
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2.6 More on norms on kn

Let k be a field with an absolute value function | · |, let n be a positive integer,
and let N be a norm on kn with respect to | · | on k. Also let e1, . . . , en be the
standard basis vectors in kn, so that the lth component of ej is equal to 1 when
j = l, and to 0 when j 6= l. If v ∈ kn, then

v =

n∑
j=1

vj ej ,(2.6.1)

so that

N(v) ≤
n∑

j=1

|vj |N(ej).(2.6.2)

If N is an ultranorm on kn, then

N(v) ≤ max
1≤j≤n

(|vj |N(ej)).(2.6.3)

Using (2.6.2), we get that

N(v) ≤
( n∑

j=1

N(ej)
)
‖v‖∞,(2.6.4)

where ‖v‖∞ is as in Section 2.2. If N is an ultranorm on kn, then

N(v) ≤
(

max
1≤j≤n

N(ej)
)
‖v‖∞,(2.6.5)

because of (2.6.3).
Suppose from now on in this section that k is complete with respect to the

metric associated to | · |. We would like to show that there is a positive real
number C such that

‖v‖∞ ≤ C N(v)(2.6.6)

for every v ∈ V .
It is easy to see that kn is complete with respect to the metric associated to

‖ · ‖∞. One can use this to get that kn is complete with respect to the metric
associated to N , once we have (2.6.6).

We may as well suppose that n ≥ 2, as in the previous section. We can use
the induction hypothesis to get that there is a positive real number C0 such that

‖v‖∞ ≤ C0 N(v)(2.6.7)

for every v ∈ kn with vn = 0. We also get that

{v ∈ kn : vn = 0}(2.6.8)

is a complete as a metric space, with respect to the metric associated to the
restriction of N to this subspace. This is the same as the restriction to this
subspace of the metric on kn associated to N .
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One can use the completeness of (2.6.8) with respect to the restriction of the
metric on kn associated to N to get that (2.6.8) is a closed set in kn with respect
to this metric. One can use this to get that there is a positive real number c
such that

N(v) ≥ c(2.6.9)

when vn = 1. This implies that

N(v) ≥ c |vn|(2.6.10)

for every v ∈ kn. One can use this and (2.6.7) to get that (2.6.6) holds for some
C > 0.

This means that N is equivalent to ‖·‖∞ on kn, because of (2.6.4). It follows
that any two norms on kn are equivalent.

2.7 Corollaries about uniqueness and complete-
ness

Let k0 be a field, and let | · |1, | · |2 be absolute value functions on k0. Suppose
that there is a positive real number C1,2 such that

|x|1 ≤ C1,2 |x|2(2.7.1)

for every x ∈ k0. This implies that

|x|n1 = |xn|1 ≤ C1,2 |xn|2 = C1,2 |x|n2(2.7.2)

for every x ∈ k0 and positive integer n, so that

|x|1 ≤ C
1/n
1,2 |x|2.(2.7.3)

It follows that

|x|1 ≤ |x|2(2.7.4)

for every x ∈ k0, by taking the limit as n → ∞ on the right side of (2.7.3). Of
course, the same type of argument was used in Section 1.11.

Similarly, if there is a posiitve real number C2,1 such that

|x|2 ≤ C2,1 |x|1(2.7.5)

for every x ∈ k0, then

|x|2 ≤ |x|1(2.7.6)

for every x ∈ k0. If there are positive real numbers C1,2 and C2,1 such that
(2.7.1) and (2.7.5) hold for every x ∈ k0, then we get that

|x|1 = |x|2(2.7.7)
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for every x ∈ k0. This is analogous to the discussion of equivalent absolute value
functions starting in Section 1.8, with stronger hypotheses and some simplifica-
tions.

Let k be a field with an absolute value function | · |, and suppose that k is
complete with respect to the metric associated to | · |. Also let k1 be a field that
contains k as a subfield, and suppose that k1 is a finite extension of k, so that
k1 has finite dimension as a vector space over k. Under these conditions, there
is at most one absolute value function on k1 that agrees with | · | on k. This is
Corollary 1 on p118 of [33], and part of the uniqueness part of Proposition 4 on
p291 of [111]. This corresponds to Corollary 5.3.2 on p143 of [70] when k = Qp

for some prime number p, with the p-adic absolute value function.

Indeed, an absolute value function on k1 that agrees with | · | on k may be
considered as a norm on k1, as a vector space over k, with respect to | · | on k.
Any two such absolute value functions on k1 are equivalent as norms, as in the
previous two sections. This implies that these two absolute value functions are
the same on k1, by the remarks at the beginning of the section.

Of course, if | · | is the trivial absolute value function on k, then the trivial
absolute value function on k1 is equal to | · | on k. In this case, we get that any
absolute value function on k1 that is equal to the trivial absolute value function
on k is the trivial absolute value function on k1. Another approach to this will
be mentioned in the next section.

If | · | is nontrivial on k, then the uniqueness of an extension of | · | to an
absolute value function on k1 is part of Theorem 15 on p258 of [95] as well.
The argument used there is somewhat different in some ways, and this will be
discussed further in Section 2.9.

One could also use the fact that the metrics associated to any two absolute
value functions on k1 that are equal to | · | on k determine the same topology
on k1, because they are equivalent as norms on k1 with respect to | · | on k, as
before. This implies that they are equivalent as absolute value functions on k1,
as in Section 1.8. One can use this to get that the two absolute value functions
on k1 are the same when | · | is nontrivial on k, and otherwise one can observe
that they are both equivalent to the trivial absolute value function on k1.

Let |·|1 be an absolute value function on k1 that is equal to |·| on k. Note that
k1 is complete with respect to the metric associated to | · |1, as in the previous
two sections. This is Corollary 2 on p118 of [33], and part of Proposition 4 on
p291 of [111]. If | · | is nontrivial on k, then this is the same as the consequence
(2) on p258 of [95] of Lemma 1 on p257 of [95], and it is mentioned again in
Theorem 17 on p262 of [95]. This also corresponds to part of Proposition 5.3.1
on p142 of [70] when k = Qp for some prime number p, with the p-adic absolute
value function.
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2.8 Another uniqueness argument

Let k be a field with an ultrametric absolute value function |·|, and let x1, . . . , xn

be finitely many elements of k such that

n∑
j=1

xj = 0.(2.8.1)

Under these conditions, the second part of Exercise 2 on p214 of [95] states that

|xj | = |xl|(2.8.2)

for some j 6= l. Otherwise, one could show that∣∣∣∣ n∑
j=1

xj

∣∣∣∣ = max(|x1|, . . . , |xn|),(2.8.3)

using a remark in Section 1.12.
Now let k1 be a field, let k0 be a subfield of k, and let | · |1 be an absolute

value function on k1. Suppose that the restriction of | · |1 to k0 is the trivial
absolute value function on k0. This implies that | · |1 is non-archimedean on k1,
so that | · |1 is an ultrametric absolute value function on k1, as in Section 1.5.

Suppose that x ∈ k1 is algebraic over k0, so that x satisfies a nontrivial
polynomial equation with coefficients in k0. This means that there are a positive
inetger m and elements a0, a1, . . . , am of k0 such that

m∑
j=0

aj x
j = 0.(2.8.4)

We would like to check that
|x|1 = 1(2.8.5)

when x 6= 0.
If we leave out the terms on the left side of (2.8.4) where aj = 0, then we

get a sum of n terms of the form aj x
j that is equal to 0 for some n ≤ m. The

remark at the beginning of the section implies that

|aj xj |1 = |al xl|1(2.8.6)

for some j, l with j 6= l and aj , al 6= 0. This implies that

|x|j1 = |x|l1,(2.8.7)

because |aj |1 = |al|1 = 1, by hypothesis. It follows that (2.8.5) holds when
x 6= 0.

Suppose that k1 is an algebraic extension of k0, so that every element of k1
is algebraic over k0. In this case, we get that | · |1 is the trivial abslute value
function on k1 as well. This is Exercise 3 on p214 of [95].
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2.9 More on completeness

Let k be a field with an absolute value function | · |, and suppose that k is
complete with respect to the metric associated to | · |. Also let k1 be a field
that contains k as a subfield, and let | · |1 be an absolute value function on k1
that agrees with | · | on k. Remember that k1 may be considered as a vector
space over k, and let u1, . . . , un be finitely many elements of k1 that are linearly
independent in k1, as a vector space over k.

Let {vj}∞j=1 be a sequence of elements of the linear span of u1, . . . , un in k1,
as a vector space over k. Thus

vj =

n∑
l=1

vj,l ul(2.9.1)

for each j, where vj,l ∈ k for l = 1, . . . , n are uniquely determined by vj . If
| · | is nontrivial on k, then Lemma 1 on p257 of [95] states that {vj}∞j=1 is a
Cauchy sequence in k1 with respect to the metric associated to | · |1 if and only
if {vj,l}∞j=1 is a Cauchy sequence in k with respect to the metric associated to
| · | for each l = 1, . . . , n.

Note that

ϕ(w) =

n∑
l=1

wl ul(2.9.2)

defines a one-to-one linear mapping from kn into k1, as vector spaces over k.
Using this, it is easy to see that

N(w) = |ϕ(w)|1(2.9.3)

is a norm on kn with respect to | · | on k. We also have that N si equivalent to
the usual norm ‖ · ‖∞ on kn, as in Section 2.6.

Let {wj}∞j=1 be a sequence of elements of kn. The equivalence of N and
‖ · ‖∞ on kn implies that {wj}∞j=1 is a Cauchy sequence with respect to the
metric on kn associated to the norm ‖ · ‖∞ if and only if {wj}∞j=1 is a Cauchy
sequence with respect to the metric on kn associated to N . This means that
{wj}∞j=1 is a Cauchy sequence with respect to the metric on kn associated to
‖ · ‖∞ if and only if {ϕ(wj)}∞j=1 is a Cauchy sequence in k1 with respect to the
metric associated to | · |1. This is equivalent to the conclusion of Lemma 1 on
p257 of [95].

Similarly, {wj}∞j=0 converges to 0 with respect to the metric on kn associated
to ‖ · ‖∞ if and only if {wj}∞j=1 converges to 0 with respect to the metric on kn

associated to N . This means that {wj}∞j=1 converges to 0 with respect to the
metric on kn associated to ‖ · ‖∞ if and only if {ϕ(wj)}∞j=1 converges to 0 in k1
with respect to the metric associated to | · |1. The “if” part of this statement
corresponds to the consequence (1) on p258 of [95] of Lemma 1 on p257 of [95].

Suppose now that k1 is a finite extension of k, so that we can take u1, . . . , un

to be a basis for k1, as a vector space over k. In this case, consequence (2) on
p258 of [95] of Lemma 1 on p257 of [95] says that k1 is complete with respect
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to the metric associated to | · |1, as mentioned in Section 2.7. Alternatively,
kn is complete with respect to the metric associated to ‖ · ‖∞, as mentioned in
Section 2.6, so that kn is complete with respect to the metric associated to N .
This implies that k1 is complete with respect to the metric associated to | · |1,
because ϕ(kn) = k1 under these conditions, as before.

The uniqueness of | · |1 on k1 is part of Theorem 15 on p258 of [95], as
mentioned in Section 2.7. The proof uses consequence (1) of Lemma 1 on p257
of [95] mentioned earlier. The proof uses some other properties of field extensions
too, and we shall return to those later.

2.10 Infinite series

Let k be a field with an absolute value function | · |, and let V be a vector space
over k with a norm N with respect to | · | on k. An infinite series

∑∞
j=1 vj

of elements of V is said to converge with respect to N if the corresponding
sequence of partial sums

n∑
j=1

vj(2.10.1)

converges in V with respect to the metric associated to N . In this case, the sum
of the series is defined as an element of V by

∞∑
j=1

vj = lim
n→∞

n∑
j=1

vj ,(2.10.2)

as usual. If t ∈ k, then it is easy to see that
∑∞

j=1 t vj converges as well, with

∞∑
j=1

t vj = t

∞∑
j=1

vj .(2.10.3)

If
∑∞

j=1 wj is another convergent series of elements of V , then
∑∞

j=1(vj + wj)
converges too, with

∞∑
j=1

(vj + wj) =

∞∑
j=1

vj +

∞∑
j=1

wj .(2.10.4)

It is easy to see that the sequence of partial sums (2.10.1) is a Cauchy
sequence in V with respect to the metric associated to N if and only if for every
ϵ > 0 there is a positive integer L such that

N
( n∑

j=l

vj

)
< ϵ(2.10.5)

when n ≥ l ≥ L. A necessary condition for this to hold is that

lim
j→∞

N(vj) = 0,(2.10.6)
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by taking l = n in (2.10.5). This is the same as saying that {vj}∞j=1 converges
to 0 in V , with respect to the metric associated to N . Note that

N
( n∑

j=l

vj

)
≤

n∑
j=l

N(vj)(2.10.7)

for all n ≥ l ≥ 1.
If

∞∑
j=1

N(vj)(2.10.8)

converges as an infinite series of nonnegative real numbers, then
∑∞

j=1 vj is
said to converge absolutely with respect to N . This implies that the sequence
of partial sums (2.10.1) is a Cauchy sequence in V with respect to the metric
associated to N , because of the remarks in the previous paragraph. If V is a
Banach space with respect to N , then it follows that

∑∞
j=1 vj converges in V .

Under these conditions, we also have that

N
( ∞∑

j=1

vj

)
≤

∞∑
j=1

N(vj).(2.10.9)

Suppose now that N is an ultranorm on V with respect to | · | on k. This
means that

N
( n∑

j=l

vj

)
≤ max

l≤j≤n
N(vj)(2.10.10)

for all n ≥ l ≥ 1. If (2.10.6) holds, then it is easy to see that the sequence
of partial sums (2.10.1) is a Cauchy sequence in V with respect to the metric
associated to N , using (2.10.10) and the earlier characterization in terms of
(2.10.5). If V is also a Banach space respect to N , then we get that

∑∞
j=1 vj

converges in V .
Of course, if

∑∞
j=1 vj converges in V , then the corresponding sequence of

partial sums is a Cauchy sequence, so that (2.10.6) holds. If N is an ultranorm
on V , then

N
( ∞∑

j=1

vj

)
≤ max

j≥1
N(vj),(2.10.11)

because of (2.10.10). More precisely, the maximum on the right is automatically
attained when (2.10.6) holds. Indeed, if vj 6= 0 for some j, then the maximum
on the right side may be reduced to the maximum of finitely many terms.

2.11 Norms on associative algebras

Let k be a field, and let A be an associative algebra over k. This means that A
is a vector space over k, equipped with a binary operation that is bilinear over
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k and associative. Sometimes one may also ask that A have a multiplicative
identity element e = eA.

Let | · | be an absolute value function on k, and let N be a norm on A with
respect to | · | on k. We say that N is submultiplicative on A if

N(x y) ≤ N(x)N(y)(2.11.1)

for every x, y ∈ A.
If A has a multiplicative identity element e, then (2.11.1) implies that

N(e) ≤ N(e)2.(2.11.2)

Of course, if e = 0, then A = {0}. Otherwise, (2.11.2) implies that N(e) ≥ 1.
Sometimes one may ask that N(e) = 1.

One can use submultiplicativity to get that multiplication is continuous as
a mapping from A × A into A, using a suitable norm on A × A, as in Section
2.3. In fact, the restriction of this mapping to any bounded subset of A× A is
uniformly continuous.

If N is submultiplicative on A, and A is complete with respect to the metric
associated to N , then A is said to be a Banach algebra over k with respect to
N . Otherwise, one can use a completion of A to get a Banach algebra, as usual.

More precisely, one can extend multiplication on A to a completion using the
uniform continuity of multiplication on bounded subsets of A × A. If one uses
the space of Cauchy sequences in A to get a completion, then one can define
multiplication on the completion more directly in terms of products of Cauchy
sequences.

Suppose that A has a multiplicative identity element e, and let x ∈ A be
given. Let n be a nonnegative integer, and note that

(e− x)

n∑
j=0

xj =
( n∑

j=0

xj
)
(e− x) = e− xn+1,(2.11.3)

by a standard argument, where x0 is interpreted as being equal to e, as usual.
If e− x has a multiplicative inverse in A, then

n∑
j=0

xj = (e− x)−1 (e− xn+1) = (e− xn+1) (e− x)−1.(2.11.4)

If N is submultiplicative on A, then

N(xl) ≤ N(x)l(2.11.5)

for every positive integer l. If
N(x) < 1,(2.11.6)

then it follows that
∑∞

j=0 x
j converges in A, with

∞∑
j=0

xj = (e− x)−1.(2.11.7)



2.12. MORE ON THE ARCHIMEDEAN PROPERTY 37

In fact, (2.11.6) implies that
∑∞

j=0 x
j converges absolutely with respect to

N , because of (2.11.5). If A is a Banach algebra, then it follows that
∑∞

j=0 x
j

converges in A, as in the previous section. In this case, one can use (2.11.3) to
get that e− x has a multiplicative inverse in A, as in (2.11.7).

2.12 More on the archimedean property

Let k be a field with an absolute value function | · |, and suppose that | · | is
archimedean on k, as in Section 1.5. Note that this implies that k has charac-
teristic 0. This means that there is an embedding of Q into k, as usual. This
leads to an absolute value function on Q, corresponding to | · | on k.

It is easy to see that this absolute value function on Q is archimedean too.
This implies that this absolute value function on Q is equivalent to the standard
absolute value function on Q, as in Section 1.11.

If a is any positive real number, then | · |a is a quasimetric absolute value
function on k, as in Section 1.4. We can choose a so that |·|a corresponds exactly
to the standard absolute value function on Q with respect to the standard
embedding of Q into k, as in the preceding paragraph. This implies that | · |a
is an absolute value function on k, as in Section 1.6. This shows that | · |
is equivalent to an absolute value function on k such that the corresponding
absolute value function on Q is the standard absolute value function.

Suppose now that the absolute value function on Q induced by | · | on k is
the standard absolute value function on k. Suppose also that k is complete with
respect to the metric associated to |·| on k. Under these conditions, the standard
embedding from Q into k has a unique extension to an embedding from R into
k such that | · | on k corresponds to the standard absolute value function on R
with respect to this embedding, as in Section 1.15. This corresponds to some
remarks after the statement of Theorem 1.1 on p33 of [33], and at the beginning
of the proof of Theorem 16 on p260 of [95].

Another famous theorem of Ostrowski states that either this embedding of
R into k is surjective, or otherwise k is isomorphic to C, in such a way that |·| on
k corresponds to the standard absolute value function on C. This corresponds
to Theorem 1.1 on p33 of [33], and Theorem 16 on p260 of [95]. This also
corresponds to the corollary on p291 of [111], where one starts with a field with
an absolute value function that contains R, and where the restriction of the
absolute value function on the larger field to R is the standard absolute value
function on R. Note that the fact that an archimedean absolute value function
on Q is equivalent to the standard absolute value function on Q is mentioned
on p285 of [111].

Observe that the standard absolute value function on C is the only absolute
value function on C that agrees with the standard absolute value function on
R, as in Section 2.7. This corresponds to Lemma 2.1 on p34 of [33], and to a
remark near the top of p261 of [95].

If k is as before and k contains an element whose square is −1, then the
previous embedding of R into k may be extended to an embedding of C into k.
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The remark in the preceding paragraph implies that the absolute value function
on k corresponds to the standard absolute value function on C with respect to
this embedding.

In this case, Ostrowski’s theorem is related to a well-known result about
complex Banach algebras, and this will be discussed further in the next section.

2.13 Algebras over the complex numbers

Let A be an associative algebra over the complex numbers with a nonzero mul-
tiplicative identity element e, and let N be a submultiplicative norm on A with
respect to the standard absolute value function on C. If x ∈ A, then it is well
known that there is a λ ∈ C such that λ e − x is not invertible in A. This is
normally stated for complex Banach algebras, and one can reduce to that case
using a completion of A.

Otherwise, if λ e − x is invertible in A for every λ ∈ C, then one can show
that

(λ e− x)−1(2.13.1)

is holomorphic as an A-valued function of λ on the complex plane. In particular,
if µ is a continuous linear functional on A, then

µ((λ e− x)−1)(2.13.2)

is a holomorphic complex-valued function of λ ∈ C. One can also show that
these functions then to 0 as |λ| → ∞. This implies that

µ((λ e− x)−1) = 0(2.13.3)

for every λ ∈ C, by standard results in complex analysis.
It is well known that the continuous linear functionals on A separate points,

because of the Hahn–Banach theorem. Thus (2.13.3) implies that (2.13.1) is
equal to 0 for every λ ∈ C. However, (2.13.1) is nonzero for every λ, because
e 6= 0, by hypothesis.

If every nonzero element of A is invertible, then it follows that every element
of A is of the form λ e for some λ ∈ C. This is a famous theorem of Gelfand
and Mazur. This is also normally stated for complex Banach algebras, although
completeness does not seem to be needed here.

This implies Ostrowski’s theorem in the case where the field contains an
element whose square is −1, as in the previous section. This is related to some
remarks beginning on p39 of [33]. See also [98, 175, 195].

See also Lemma 3.1 on p38 of [33] and the proof of Theorem 16 on p260 of
[95] for Ostrowski’s theorem in this case,

Of course, A may be considered as an associative algebra over the real num-
bers as well. Suppose now that N is a norm on A as a vector space over the
real numbers, and that N is submultiplicative on A. If A is commutative, then
Theorem 1 on p289 of [111] states that for every x ∈ A there is a λ ∈ C such
that λ e− x is not invertible in A, as before. The proof, due to Tornheim, does
not use complex analysis.
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2.14 The case where there is no square root of
−1 in k

To finish the proof of Ostrowski’s theorem from Section 2.12, one should consider
the case where there is no element of k whose square is equal to −1. One would
like to show that the natural embedding from R into k discussed previously is
surjective under these conditions.

To do this, one can adjoin a square root of −1 to k, and try to show that this
larger field is equivalent to C. In the proof of the corollary on p290 of [111], a
submultiplicative norm is defined on the extension, considered as a commutative
algebra over the real numbers. Theorem 1 on p289 of [111] can be used to get
that the extension is equivalent to C, so that k is equivalent to R.

Alternatively, Lemma 2 on p259 of [95] states that the absolute value func-
tion on k can be extended to an absolute value function on the extension of k
mentioned earlier.

Lemma 2.3 on p37 of [33] says that the absolute value function on k can
be extended to a quasimetric absolute value function on the extension of k
mentioned before, which works here too.
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3.1 Rearrangements

Let π be a one-to-one mapping from Z+ onto itself. The infinite series

∞∑
j=1

vπ(j)(3.1.1)

is said to be a rearrangement of
∑∞

j=1 vj . If
∑∞

j=1 aj is an infinite series of
nonnegative real numbers, then it is well known and not difficult to show that∑∞

j=1 aj converges if and only if
∑∞

j=1 aπ(j) converges, in which case the two
sums are equal.

3.2 Cauchy products

Let A be a ring, and let
∑∞

j=0 aj and
∑∞

l=0 bl be infinite series with terms in A.
Put

cn =

n∑
j=0

aj bn−j(3.2.1)

for each nonnegative inetger n. The corresponding series
∑∞

n=0 cn is called the
Cauchy product of the series

∑∞
j=0 aj and

∑∞
l=0 bl. If aj = 0 for all but finitely

many j, and bl = 0 for all but finiely many l, then one can check that cn = 0
for all but finitely many n, and that

∞∑
n=0

cn =
( ∞∑

j=0

aj

)( ∞∑
l=0

bl

)
.(3.2.2)

Suppose for the moment that the aj ’s and bl’s are nonnegative real numbers.
If N is a nonnegative integer, then it is easy to see that

N∑
n=0

cn ≤
( N∑

j=0

aj

)( N∑
l=0

bl

)
≤

2N∑
n=0

cn.(3.2.3)

40
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If
∑∞

j=0 aj and
∑∞

l=0 bl converge in R, then it follows that
∑∞

n=0 cn converges

too, and that (3.2.2) holds. Conversely, if
∑∞

n=0 cn converges, aj > 0 for some
j, and bl > 0 for some l, then

∑∞
j=0 aj and

∑∞
l=0 bl converge.

Let k be a field with an absolute value function | · |, and suppose that A is
an associative algebra over k with a submultipicative norm ‖ · ‖A with respect
to | · | on k. Observe that

‖cn‖A ≤
n∑

j=0

‖aj‖A ‖bn−l‖N(3.2.4)

for each n ≥ 0. The right side is the nth term of the Cauchy product of the
series

∑∞
j=0 ‖aj‖A and

∑∞
l=0 ‖bl‖A. If these series converge, then it follows that∑∞

n=0 ‖cn‖A converges, with

∞∑
n=0

‖cn‖A ≤
∞∑

n=0

( n∑
j=0

‖aj‖A ‖bn−j‖A
)
=

( ∞∑
j=0

‖aj‖A
)( ∞∑

l=0

‖bl‖A
)
.(3.2.5)

Suppose that
∑∞

j=0 aj and
∑∞

l=0 bl also converge in A, which holds auto-
matically when A is a Banach algebra with respect to ‖ · ‖A, as in Section 2.10.
Under these conditions,

∑∞
n=0 cn converges in A, with sum as in (3.2.2). Indeed,

if N is a nonnegative integer, then

( N∑
j=0

aj

)( N∑
l=0

bl

)
−

N∑
n=0

cn =
∑
j,l≤N
j+l>N

aj bl,(3.2.6)

where more precisely the sum on the right is taken over all nonnegative integers
j, l satisfying the indicated conditions. This implies that∥∥∥∥( N∑

j=0

aj

)( N∑
l=0

bl

)
−

N∑
n=0

cn

∥∥∥∥
A

≤
∑
j,l≤N
j+l>N

‖aj‖A ‖bl‖A.(3.2.7)

One can check that the right side tends to 0 as N → ∞ when
∑∞

j=0 ‖aj‖A and∑∞
l=0 ‖bl‖A converge.
If ‖ · ‖A is an ultranorm on A, then

‖cn‖A ≤ max
0≤j≤n

(‖aj‖A ‖bn−j‖A)(3.2.8)

for each n ≥ 0. Using this, one can check that

‖cj‖A → 0 as n → ∞(3.2.9)

when

‖aj‖A → 0 as j → ∞ and ‖bl‖A → 0 as l → ∞.(3.2.10)
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We also have that∥∥∥∥( N∑
j=0

aj

)( N∑
l=0

bl

)
−

N∑
n=0

cn

∥∥∥∥
A

(3.2.11)

≤ max{‖aj‖A ‖bl‖A : j, l ≤ N, j + l > N}

for every nonnegative integer N in this case. One can verify that the right side
tends to 0 as N → ∞ when (3.2.10) holds. This implies that

∑∞
n=0 cn converges

in A, with sum as in (3.2.2), when
∑∞

j=0 aj and
∑∞

l=0 bl converge in A.
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Formal polynomials and
power series

4.1 Formal polynomials

If n is a positive integer, then a multi-index of length n is an n-tuple α =
(α1, . . . , αn) of nonnegative integers. In tis case, we may put

|α| =
n∑

j=1

αj .(4.1.1)

Let A be a ring, and let T1, . . . , Tn be n distinct commuting indeterminates,
which are also considered to commute with the elements of A. If α is a multi-
index, then

Tα = Tα1
1 · · ·Tαn

n(4.1.2)

is the corresponding formal monomial in T1, . . . , Tn. If β is another multi-index,
then we put

Tα T β = Tα+β .(4.1.3)
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5.1 Some remarks about field extensions

Let k be a field, and let k1 be a field that contains k1 as a subfield.

44
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