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Preface

These informal notes deal with some topics in algebra that seem to be related
to various areas. The reader is expected to have some familiarity with abstract
algebra, although a fair amount of details are often given in the arguments being
considered. At the same time, much of the discussion may be somewhat more
algebraic than in some related matters involving interactions between algebra
and analysis.
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Chapter 1

Modules and tensor
products

1.1 Sums and products of modules

Let k be a commutative ring with a multiplicative identity element, and let I
be a nonempty set. Suppose that for each j ∈ I, Vj is a module over k. It is
easy to see that the Cartesian product∏

j∈I
Vj(1.1.1)

is a module over k too, with respect to coordinatewise addition and scalar
multiplication. This is the direct product of the Vj ’s, j ∈ I.

If v ∈
∏
j∈I Vj and l ∈ I, then let vl be the lth coordinate of v in Vl. Put⊕

j∈I
Vj =

{
v ∈

∏
j∈I

Vj : vl = 0 for all but finitely many l ∈ I

}
.(1.1.2)

This is the direct sum of the Vj ’s, j ∈ I. Of course, this is a submodule of∏
j∈I Vj , as a module over k. If I has only finitely many elements, then (1.1.2)

is the same as
∏
j∈I Vj .

Let Z be another module over k, and suppose that ϕj is a homomorphism
from Vj in Z, as modules over k, for each j ∈ I. If v ∈

⊕
j∈I Vj , then

ϕ(v) =
∑
j∈I

ϕj(vj)(1.1.3)

defines an element of Z, because ϕj(vj) = 0 for all but finitely many j ∈ I. It
is easy to see that

ϕ is a homomorphism from
⊕
j∈I

Vj into Z,(1.1.4)

2
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as modules over k. Conversely, if ϕ is any homomorphism from
⊕

j∈I Vj into
Z, as modules over k, then ϕ corresponds to a unique family of module homo-
morphisms ϕj from Vj into Z, j ∈ I, in this way.

If V is any module over k, then let

Hom(V, Z) = Homk(V, Z)(1.1.5)

be the space of homomorphisms from V into Z, as modules over k. This is a
module over k too, with respect to pointwise addition and scalar multiplication
of mappings from V into Z. The remarks in the previous paragraph show that
there is a natural isomorphism

from Homk

(⊕
j∈I

Vj , Z
)
onto

∏
j∈I

Homk(Vj , Z),(1.1.6)

as modules over k.
Similarly, let V be a module over k, and suppose that Zj is a module over

k for each j ∈ I. Under these conditions, a module homomorphism from V
into

∏
j∈I Zj corresponds exactly to a family of module homomorphisms from

V into Zj , j ∈ I. This leads to a natural isomorphism

from Homk

(
V,

∏
j∈I

Zj

)
onto

∏
j∈I

Homk(V, Zj),(1.1.7)

as modules over k.
Suppose that ϕj is a homomorphism from V into Zj , as modules over k, for

each j ∈ I. Let ϕ be the element of
∏
j∈I Homk(V, Zj) whose jth component is

ϕj for each j ∈ I. This corresponds to the homomorphism

from V into
∏
j∈I

Zj ,(1.1.8)

as modules over k, whose jth coordinate is equal to ϕj , as in the preceding
paragraph.

Suppose for the moment that

ϕ ∈
⊕
j∈I

Homk(V, Zj),(1.1.9)

so that
ϕj = 0 for all but finitely many j ∈ I.(1.1.10)

In this case, we get a homomorphism

from V into
⊕
j∈I

Zj ,(1.1.11)

as modules over k.
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Suppose now that ϕ corresponds to a homomorphism as in (1.1.11), as mod-
ules over k. This means that for each v ∈ V ,

ϕj(v) = 0 for all but finitely many j ∈ I.(1.1.12)

If V is finitely generated as a module over k, then one can verify that (1.1.10)
holds, so that (1.1.9) holds.

Of course, k may be considered as a module over itself. If z ∈ Z, then

t 7→ t · z(1.1.13)

is a homomorphism from k into Z, as modules over k. It is easy to see that
every homomorphism from k into Z, as modules over k, is of this form for a
unique z ∈ Z. This defines an isomorphism

between Homk(k, Z) and Z,(1.1.14)

as modules over k.
A module W over k is said to be free if there is a family {wj}j∈I of elements

of W such that every element of W can be expressed in a unique way as a linear
combination of the wj ’s, j ∈ I, with coefficients in k, and where all but finitely
many of the coefficients are equal to 0. In this case, {wj}j∈I may be called a
basis for W as a module over k, and one may say that W is freely generated by
the wj ’s, j ∈ I, as a module over k. Equivalently, a free module over k can be
expressed as a direct sum of copies of k, as a module over itself.

1.2 Module-valued functions

Let k be a commutative ring with a mutliplicative identity element, and let Z
be a module over k. Also let X be a nonempty set, and let

c(X,Z)(1.2.1)

be the space of all Z-valued functions on X. This is a module over k, with
respect to pointwise addition and scalar multiplication of functions. This is the
same as the direct product of copies of Z indexed by X.

If f ∈ c(X,Z), then the support of f is defined to be the set of x ∈ X such
that f(x) 6= 0. One may consider X to be equipped with the discrete topology,
to be consistent with the analogous definition for functions on topological spaces.
Let

c00(X,Z)(1.2.2)

be the set of such functions whose support has only finitely many elements.
This is a submodule of c(X,Z), as a module over k, which corresponds to the
direct sum of copies of Z indexed by X. If X has only finitely many elements,
then this is the same as c(X,Z).
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In particular, c00(X, k) is a free module over k. If x ∈ X, then let δx be the
k-valued function on X equal to 1 at x and to 0 at every other element of X.
Thus δx ∈ c00(X, k), and c00(X, k) is freely generated by δx, x ∈ X.

If f ∈ c00(X,Z), then ∑
x∈X

f(x)(1.2.3)

reduces to a finite sum, and defines an element of Z. This defines a homomor-
phism from c00(X,Z) into Z, as modules over k.

Let ζ be a Z-valued function on X. If f ∈ c00(X, k), then f · ζ ∈ c00(X,Z),
so that ∑

x∈X
f(x) · ζ(x)(1.2.4)

defines an element of Z, as in the preceding paragraph. This defines a homo-
morphism from c00(X, k) into Z, as modules over k. One can check that every
homomorphism ϕ from c00(X, k) into Z, as modules over k, corresponds to a
unique ζ ∈ c(X,Z) in this way, with

ζ(x) = ϕ(δx)(1.2.5)

for every x ∈ X. This defines an isomorphism between Homk(c00(X, k), Z) and
c(X,Z), as modules over k.

Let W be another module over k, and suppose that for each x ∈ X, ϕx is a
homomorphism from Z into W , as modules over k. Thus

x 7→ ϕx(1.2.6)

is an element of c(X,Homk(Z,W )). If z ∈ Z, then

x 7→ ϕx(z)(1.2.7)

is an element of c(X,W ). The mapping from z ∈ Z to (1.2.7) defines a ho-
momorphism from Z into c(X,W ), as modules over k. Every homomorphism
from Z into c(X,W ), as modules over k, corresponds to a unique element of
c(X,Homk(Z,W )) in this way, as in the previous section, which leads to a nat-
ural isomorphism

from Homk(Z, c(X,W )) onto c(X,Homk(Z,W )),(1.2.8)

as modules over k, as before.
Let (1.2.6) be an element of c(X,Homk(Z,W )) again. If f ∈ c00(X, k) and

z ∈ Z, then
f(x) · ϕx(z)(1.2.9)

defines an element of c00(X,W ), so that∑
x∈X

f(x) · ϕx(z)(1.2.10)
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defines an element of W , as before. It is easy to see that this defines a mapping
from c00(X, k)×Z intoW that is bilinear over k. Conversely, if µ is any mapping
from c00(X, k)× Z into W that is bilinear over k, then

ϕx = µ(δx, ·)(1.2.11)

is a homomorphism from Z into W , as modules over k, for each x ∈ X. One
can check that µ is the same as the mapping from c00(X, k)×Z into W defined
by (1.2.10) under these conditions.

Similarly, if (1.2.6) is an element of c(X,Homk(Z,W )) and F ∈ c00(X,Z),
then

ϕx(F (x))(1.2.12)

defines an element of c00(X,W ), so that∑
x∈X

ϕx(F (x))(1.2.13)

defines an element of W . In particular, if f ∈ c00(X, k) and z ∈ Z, then

F (x) = f(x) · z(1.2.14)

defines an element of c00(X,Z), in which case (1.2.12) and (1.2.13) are the same
as (1.2.9) and (1.2.10), respectively. The mapping from F to (1.2.13) defines a
homomorphism from c00(X,Z) into W , as modules over k. One can verify that
every homomorphism Φ from c00(X,Z) into W , as modules over k, corresponds
to a unique element (1.2.6) of c(X,Homk(Z,W )) in this way. More precisely, if
x ∈ X and z ∈ Z, then δx z defines an element of c00(X,Z), and one can take

ϕx(z) = Φ(δx z).(1.2.15)

1.3 Tensor products over commutative rings

Let k be a commutative ring with a multiplicative identity element, and let V1,
V2 be modules over k. A tensor product of V1 and V2 is a module

V1
⊗

k
V2 = V1

⊗
V2(1.3.1)

over k with the following two properties. First, V1
⊗
V2 should be equipped

with a mapping from V1 × V2 into V1
⊗
V2 that is bilinear over k. The image

of (v1, v2) ∈ V1 × V2 under this mapping may be expressed as v1 ⊗ v2.
Second, let W be a module over k, and let µ be a mapping from V1×V2 into

W that is bilinear over k. Under these conditions, µ can be expressed in a unique
way as the composition of the mapping from V1 × V2 into V1

⊗
V2 mentioned

in the preceding paragraph with a homomorphism from V1
⊗
V2 into W , as

modules over k. This means that there is a unique module homomorphism µ̃
from V1

⊗
V2 into W such that

µ̃(v1 ⊗ v2) = µ(v1, v2)(1.3.2)
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for every v1 ∈ V1 and v2 ∈ V2.
It is well known and not too difficult to show that such a tensor product is

unique up to a suitable isomorphic equivalence. We also have that V1
⊗
V2 is

generated by the associated image of V1 × V2, as a module over k, or simply
as a commutative group with respect to addition. This is easily seen using the
standard construction of tensor products, or the uniqueness of tensor product
up to isomorphism.

Let X be a nonempty set, and let Z be a module over k. If f ∈ c00)(X, k)
and z ∈ Z, then f z ∈ c00(X,Z). This defines a mapping

from c00(X, k)× Z into c00(X,Z)(1.3.3)

that is bilinear over k. One can check that c00(X,Z) satisfies the requirements
of a tensor product of c00(X, k) and Z, as modules over k, with respect to this
mapping. This uses the description of bilinear mappings from c00(X, k)×Z into
other modules over k mentioned in the previous section.

Let W1, W2 be another pair of modules over k, and let ϕj be a homomor-
phism from Vj into Wj for j = 1, 2, as modules over k. This leads to a mapping

(v1, v2) 7→ ϕ1(v1)⊗ ϕ2(v2)(1.3.4)

from V1 × V2 into W1

⊗
W2 that is bilinear over k. Thus we get a unique

homomorphism ϕ

from V1
⊗

V2 into W1

⊗
W2,(1.3.5)

as modules over k, such that

ϕ(v1 ⊗ v2) = ϕ1(v1)⊗ ϕ2(v2)(1.3.6)

for every v1 ∈ V1, v2 ∈ V2.
If ϕj(Vj) =Wj for j = 1, 2, then

ϕ
(
V1

⊗
V2

)
=W1

⊗
W2.(1.3.7)

This follows from the fact that W1

⊗
W2 is generated by the associated image

of W ×W2, as a module over k.
Suppose for the moment that Vj = Wj for j = 1, 2, and that ϕj is the

identity mapping on Vj , j = 1, 2. In this case, the identity mapping on V1
⊗
V2

satisfies (1.3.6), so that ϕ is the identity mapping, by uniqueness.
Let Z1, Z2 be a pair of modules over k, and let ψj be a homomorphism

from Wj into Zj , j = 1, 2, as modules over k. Also let ψ be the corresponding
homomorphism

from W1

⊗
W2 into Z1

⊗
Z2,(1.3.8)

as modules over k, as in (1.3.6). Of course, ψj ◦ ϕj is a module homomorphism
from Vj into Zj , j = 1, 2. One can verify that ψ ◦ ϕ is the same as the module
homomorphism

from V1
⊗

V2 into Z1

⊗
Z2(1.3.9)
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associated to ψj ◦ ϕj , j = 1, 2, as before.
Suppose now that Vj = Zj for j = 1, 2, and that ψj ◦ ϕj is the identity

mapping on Vj , j = 1, 2. Under these conditions, we get that

ψ ◦ ϕ is the identity mapping on V1
⊗

V2,(1.3.10)

as before.
Similarly, if ϕj ◦ ψj is the identity mapping on Wj for j = 1, 2, then ϕ ◦ ψ

is the identity mapping on W1

⊗
W2. If ϕj is a module isomorphism from Vj

onto Wj for j = 1, 2, then it follows that

ϕ is a module isomorphism from V1
⊗

V2 onto W1

⊗
W2.(1.3.11)

1.4 Some properties of tensor products

Let k be a commutative ring with a multiplicative identity element, and let V1,
V2 be modules over k. Observe that

(v1, v2) 7→ v2 ⊗ v2(1.4.1)

defines a mapping from V1×V2 into V2
⊗
V1 that is bilinear over k, which leads

to a homomorphism

from V1
⊗

V2 into V2
⊗

V1,(1.4.2)

as modules over k. Similarly,

(v2, v1) 7→ v1 ⊗ v2(1.4.3)

defines a mapping from V2 × V1 into V1 ⊗ V2 that is bilinear over k, which leads
to a homomorphism

from V2
⊗

V1 into V1
⊗

V2,(1.4.4)

as modules over k. One can check that the compositions of these two homomor-
phisms in either order is equal to the identity mapping on V1

⊗
V2 or V2

⊗
V1,

as appropriate. Thus these homomorphisms are isomorphisms.
Note that scalar multiplication on V1 defines a mapping from V1 × k into V1

that is bilinear over k, where k is considered as a module over itself. One can
verify that

V1 satisfies the requirements of V1
⊗

k,(1.4.5)

using this mapping. Similarly,

V2 satisfies the requirements of k
⊗

V2,(1.4.6)

with respect to the bilinear mapping from k×V2 into V2 corresponding to scalar
multiplication on V2.
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If V3 is another module over k, then it is well known that there is a unique
isomorphism

from (V1
⊗

V2)
⊗

V3 onto V1
⊗

(V2
⊗

V3),(1.4.7)

as modules over k, with

(v1 ⊗ v2)⊗ v3 7→ v1 ⊗ (v2 ⊗ v3)(1.4.8)

for every v1 ∈ V1, v2 ∈ V2, and v3 ∈ V3. Alternatively, one can define tensor
products of finitely many modules over k directly, and get unique isomorphisms
with V1

⊗
V2

⊗
V3 such that (v1 ⊗ v2) ⊗ v3 and v1 ⊗ (v2 ⊗ v3) correspond to

v1 ⊗ v2 ⊗ v3 for every v1 ∈ V1, v2 ∈ V2, and v3 ∈ V3.
Let I be a nonempty set, let Vj be a module over k for every j ∈ I, and let

W , Z be modules over k too. It is easy to see that a bilinear mapping

from
(⊕
j∈I

Vj

)
×W into Z(1.4.9)

corresponds exactly to a family of bilinear mappings from Vj×W into Z, j ∈ I.
In particular, if Zj is a module over k for each j ∈ I, then a family of bilinear
mappings from Vj ×W into Zj , j ∈ I, leads to a bilinear mapping

from
(⊕
j∈I

Vj

)
×W into

⊕
j∈I

Zj .(1.4.10)

It is well known that there is a natural isomorphism

from
(⊕
j∈I

Vj

)⊗
W onto

⊕
j∈I

(Vj
⊗

W ),(1.4.11)

as modules over k. To see this, one can define natural mappings in both direc-
tions, as follows.

If j ∈ I, then Vj
⊗
W comes with a bilinear mapping from Vj × W into

Vj
⊗
W , as in the previous section. This leads to a bilinear mapping

from
(⊕
j∈I

Vj

)
×W into

⊕
j∈I

(Vj
⊗

W ),(1.4.12)

as before. Using this, we get a homomorphism

from
(⊕
j∈I

Vj

)⊗
W into

⊕
j∈I

(Vj
⊗

W ),(1.4.13)

as modules over k, as in the previous section. If v ∈
⊕

j∈I Vj and w ∈W , then
this mapping sends v⊗w to the element of

⊕
j∈I(Vj

⊗
W ) whose jth coordinate

is equal to vj ⊗ w for every j ∈ I. Note that vj = 0 for all but finitely many j,
so that vj ⊗ w = 0 for all but finitely many j.
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If l ∈ I, then there is an obvious inclusion mapping from Vl into
⊕

j∈I Vj ,
which sends vl ∈ Vl to the element of

⊕
j∈I Vj whose lth coordinate is equal to

vl, and whose other coordinates are equal to 0. This leads to a homomorphism

from Vl
⊗

W into
(⊕
j∈I

Vj

)⊗
W,(1.4.14)

as modules over k, using the identity mapping on W . We may combine these
mappings to get a homomorphism

from
⊕
j∈I

(Vj
⊗

W ) into
(⊕
j∈I

Vj

)⊗
W,(1.4.15)

as modules over k, as in Section 1.1. More precisely, if l ∈ I, vl ∈ Vl, and w ∈W ,
then vl ⊗w ∈ Vl

⊗
W , and we get an element of

⊕
j∈I(Vj

⊗
W ) by taking the

jth coordinate in Vj
⊗
W to be 0 when j 6= l. The mapping just described sends

this element of
⊕

j∈I(Vj
⊗
W ) to an element of

(⊕
j∈I Vj

)⊗
W of the form

v ⊗ w, where v ∈
⊕

j∈I Vj has lth coordinate equal to vl, and jth coordinate
equal to 0 when j 6= l.

One can verify that the mappings described in the previous two paragraphs
are inverses of each other, so that we get a module isomorphism, as before. In
particular, if V is a free module over k, then V

⊗
W corresponds to a direct

sum of copies of W . If W is also free as a module over k, then V
⊗
W is free

as well.

1.5 Modules over associative algebras

Let k be a commutative ring with a multiplicative identity element, let A1 be
an associative algebra over k with a multiplicative identity element e1 = eA1 ,
and let V1 be a module over k. Suppose that for every a1 ∈ A1 and v1 ∈ V1,
a1 · v1 is defined as an element of V1, and that the corresponding mapping from
A1 × V1 into V1 is bilinear over k. If we also have that

a1 · (b1 · v1) = (a1 b1) · v1(1.5.1)

and

e1 · v1 = v1(1.5.2)

for every a1, b1 ∈ A1 and v1 ∈ V1, then V1 is said to be a left module over A1.
Let W1 be a submodule of V1, as a module over k. If

a1 · w1 ∈W1(1.5.3)

for every a1 ∈ A1 and w1 ∈ W1, then W1 is said to be a submodule of V1, as
a left module over A1. Of course, this means that W1 is a left module over A1

too.
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Let Z1 be another module over k that is also a left module over A1. A
mapping ϕ1 from V1 into Z1 is said to be a homomorphism from V1 into Z1 as
left modules over A1 if ϕ is linear over k and

ϕ1(a1 · v1) = a1 · ϕ(v1)(1.5.4)

for every a1 ∈ A1 and v1 ∈ V1. We may also say that ϕ1 is linear over A1 on
the left in this case. Note that the kernel of ϕ1 is a submodule of V1, as a left
module over A1, under these conditions. If W1 is a submodule of V1, as a left
module over A1, then the obvious inclusion mapping from W1 into V2 may be
considered as a homomorphism from W1 into V1, as left modules over A1.

Let W1 be a submodule of V1 again, as a left module over A1, and consider
the quotient V1/W1, defined initially as a module over k. If a1 ∈ A1, then we
would like to define the action of a1 on V1/W1 on the left by putting

a1 · q1(v1) = q1(a1 · v1)(1.5.5)

for every v1 ∈ V1, where q1 is the natural quotient mapping from V1 onto
V1/W1. One can check that the right side depends only on a1 and q1(v1), and
that V1/W1 becomes a left module over A1 in this way. By construction, q1 is
a homomorphism from V1 onto V1/W1, as left modules over A1.

Similarly, let A2 be an associative algebra over k with a multiplicative iden-
tity element e2 = eA2

, and let V2 be a module over k. Suppose that for every
a2 ∈ A2 and v2 ∈ V2, v2 · a2 is defined as an element of V2, and that the
corresponding mapping from V2 ×A2 into V2 is bilinear over k. If

(v2 · a2) · b2 = v2 · (a2 b2)(1.5.6)

and
v2 · e2 = v2(1.5.7)

for every a2, b2 ∈ A2 and v2 ∈ V2, then V2 is a right module over A2. Of
course, left and right modules over commutative algebras are basically the same.
One can define submodules of right modules, homomorphisms between right
modules, and quotients of right modules in essentially the same ways as for left
modules.

1.6 Sums, products, and compositions

Let k be a commutative ring with a multiplicative identity element, let A be an
associative algebra over k with a multiplicative identity element e = eA, and let
V , W , and Z be modules over k. Suppose that ϕ is a homomormophism from
V into W , and that ψ is a homomorphism from W into Z, as modules over k,
so that the composition ψ ◦ϕ of ϕ and ψ is a homomorphism from V into Z, as
modules over k. If V , W , and Z are left modules over A, ϕ is a homomorphism
from V into W as left modules over A, and ψ is a homomorphism from W
into Z as left modules over A, then ψ ◦ ϕ is a homomorphism from V into
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Z, as left modules over A. Similarly, if V , W , and Z are right modules over
A, ϕ is a homomorphism from V into W as right modules over A, and ψ is
a homomorphism from W into Z as right modules over A, then ψ ◦ ϕ is a
homomorphism from V into Z, as right modules over A.

Suppose that ϕ is a one-to-one homomorphism from V onto W , as modules
over k, so that the inverse ϕ−1 of ϕ is a homomorphism from W into V , as mod-
ules over k. Equivalently, this means that ϕ is an isomorphism from V onto W ,
as modules over k. If V , W are left modules over A, and ϕ is a homomorphism
from V onto W , as left modules over A, then ϕ−1 is a homomorphism from W
onto V , as left modules over A. Similarly, if V and W are right modules over A,
and ϕ is a homomorphism from V onto W , as right modules over A, then ϕ−1

is a homomorphism from W onto V , as right modules over A. In each case, ϕ
is said to be an isomorphism from V onto W , as left or right modules over A,
as appropriate.

Note that A may be considered as both a left and right module over itself,
in the obvious way. Let w ∈ W be given, and suppose for the moment that W
is a left module over A. In this case,

a 7→ a · w(1.6.1)

defines a homomorphism from A intoW , as left modules over A. It is easy to see
that every homomorphism ϕ from A into W as left modules over A corresponds
to a unique w ∈W in this way, with w = ϕ(e).

Similarly, if W is a right module over A, then

a 7→ w · a(1.6.2)

defines a homomorphism from A into W , as right modules over A. As before,
every homomorphism ϕ from A into W as right modules over A corresponds to
a unique w ∈W in this way, with w = ϕ(e).

Let I be a nonempty set, and let Vj be a module over k for each j ∈ I, so
that the direct sum and product of the Vj ’s may be defined as modules over k as
in Section 1.1. If Vj is a left module over A for every j ∈ I, then

∏
j∈I Vj is a left

module over A too, where the action of A on the left is defined coordinatewise.
Under these conditions,

⊕
j∈I Vj is a submodule of

∏
j∈I Vj , as a left module

over A. Similarly, if Vj is a right module over A for each j ∈ I, then
∏
j∈I Vj

is a right module over A as well, where the action of A on the right is defined
coordinatewise, and

⊕
j∈I Vj is a submodule of

∏
j∈I Vj , as a right module over

A.
A left module over A is said to be free as a left module over A if it is

isomorphic to the direct sum of a family of copies of A, as a left module over
itself. Similarly, a right module over A is said to be free as a right module over
A if it is isomorphic to the direct sum of a family of copies of A, as a right
module over itself.

If X is a nonempty set, and V is a left or right module over A, then the
space c(X,V ) of V -valued functions on X is a left or right module over A, as
appropriate, where the action of A is defined pointwise. This corresponds to



1.7. SPACES OF HOMOMORPHISMS 13

the direct product of copies of V indexed by X. Similarly, the space c00(X,V )
of V -valued functions on X with finite support is a submodule of c(X,V ), as a
left or right module over A, as appropriate. This corresponds to the direct sum
of copies of V indexed by X.

1.7 Spaces of homomorphisms

Let k be a commutative ring with a multiplicative identity element, let A be an
associative algebra over k with a multiplicative identity element e = eA, and let
V , W be modules over k. If V and W are both left moduules over A, then the
space of homomorphisms from V intoW as left modules over A may be denoted

Hom(V,W ) = HomA(V,W ).(1.7.1)

Similarly, if V and W are both right modules over A, then the space of homo-
morphisms from V into W as right modules over A may be denoted in the same
way. In both cases, HomA(V,W ) is a module over k, with respect to pointwise
addition and scalar multiplication of mappings from V into W .

If W is a left module over A, and A is considered as a left module over itself,
then the characterization of homomorphisms from A into W , as left modules
over A, mentioned in the previous section defines an isomorphism

between HomA(A,W ) and W,(1.7.2)

as modules over k. Similarly, if W is a right module over A, and A is considered
as a right module over itself, then the characterization of homomorphisms from
A into W , as right modules over A, discussed in the previous section defines an
isomorphism as in (1.7.2) again, as modules over k.

Let I be a nonempty set, and let Vj be a module over k for each j ∈ I. If
Vj is a left module over A for every j ∈ I, and W is a left module over A, then
there is a natural isomorphism

from HomA

(⊕
j∈I

Vj ,W
)
onto

∏
j∈I

HomA(Vj ,W ),(1.7.3)

as modules over k, as in Section 1.1. Similarly, if Vj is a right module over
A for every j ∈ I, and W is a right module over A, then there is a natural
isomorphism as in (1.7.3), as modules over k.

Let V be a module over k again, and let Wj be a module over k for every
j ∈ I. If V is a left module over A, and Wj is a left module over A for every
j ∈ I, then there is a natural isomorphism

from HomA

(
V,

∏
j∈I

Wj

)
onto

∏
j∈I

HomA(V,Wj),(1.7.4)

as modules over k, as in Section 1.1. Similarly, if V is a right module over
A, and Wj is a right module over A for every j ∈ I, then there is a natural
isomorphism as in (1.7.4), as modules over k.
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Let V , W , Z be modules over k, and let ϕ0 be a homomorphism from V into
W , as modules over k. Observe that

ψ 7→ ψ ◦ ϕ0(1.7.5)

defines a homomorphism

from Homk(W,Z) into Homk(V, Z),(1.7.6)

as modules over k. If

ϕ0(V ) =W,(1.7.7)

then this homomorphism is injective. If ϕ0 is an isomorphism from V onto W ,
as modules over k, then (1.7.5) defines an isomorphism as in (1.7.6), as modules
over k.

If ψ0 is a homomorphism from W into Z, as modules over k, then

ϕ 7→ ψ0 ◦ ϕ(1.7.8)

defines a homomorphism

from Homk(V,W ) into Homk(V, Z),(1.7.9)

as modules over k. If

ψ0 is injective,(1.7.10)

then this homomorphism is injective. If ψ0 is an isomorphism from W onto Z,
as modules over k, then (1.7.5) defines an isomorphism as in (1.7.9), as modules
over k.

Suppose now that V , W , and Z are left modules over A. If ϕ0 is a ho-
momorphism from V into W , as left modules over A, then (1.7.5) defines a
homomorphism

from HomA(W,Z) into HomA(V, Z),(1.7.11)

as modules over k. This homomorphism is injective when ϕ0 is surjective, as
before. If ϕ0 is an isomorphism from V onto W , as left modules over A, then
(1.7.5) defines an isomorphism as in (1.7.11), as modules over k.

Similarly, if ψ0 is a homomorphism from W into Z as left modules over A,
then (1.7.8) defines a homomorphism

from HomA(V,W ) into HomA(V, Z),(1.7.12)

as modules over k. This homomorphism is injective when ψ0 is injective. If ψ0

is an isomorphism from W onto Z, as modules over A, then (1.7.8) defines an
isomorphism as in (1.7.12), as modules over k. Of course, there are analogous
statements when V , W , and Z are right modules over A, ϕ0 is a homomorphism
from V into W as right modules over A, and ψ0 is a homomorphism from W
into Z as right modules over A.
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1.8 Additional structure on Hom(V,W )

Let k be a commutative ring with a multiplicative identity element, let A, B
be associative algebras over k with multiplicative identity elements eA, eB ,
respectively, and let V , W be modules over k. If W is a left or right module
over B, then Homk(V,W ) is a left or right module over B as well, respectively,
where the action of B is defined pointwise. Similarly, if V is a left or right
module over B, then Homk(V,W ) is a right or left module over B, respectively,
in a natural way. More precisely, if ϕ ∈ Homk(V,W ), then the action of an
element b of B on ϕ is defined by composing ϕ with the action of b on V .

Suppose now that V and W are left modules over A, and that W is a left
or right module over B, where the actions of A and B on W commute with
each other. In this case, one may say that W is a bimodule over A and B.
Equivalently, this means that the action of a ∈ A on W is a homomorphism
from W into itself, as a module over B. This is the same as saying that the
action of b ∈ B onW is a homomorphim fromW into itself, as a module over A.
Under these conditions, the space HomA(V,W ) of homomorphisms from V into
W , as left modules over A, is a left or right module over B, where the action
of B is defined pointwise, as usual. Of course, there is an analogous statement
when V and W are right modules over A. This corresponds to some remarks
on p22 of [3].

Suppose that V andW are left modules over A again, and now that V is a left
or right module over B, and that the actions of A andB on V commute with each
other. Under these conditions, the space HomA(V,W ) of homomorphisms from
V into W , as left modules over A, is a right or left module over B, respectively.
As before, the action of b ∈ B on ϕ ∈ HomA(V,W ) is defined by composing ϕ
with the action of b on V . There is an analogous statement when V and W are
right modules over A. This corresponds to some more remarks on p22 of [3].

The left and right actions of A on itself commute, by associativity, so that
A is a bimodule as a left and right module over itself. If W is a left module
over A, then the space HomA(A,W ) of homomorphisms from A into W , as
left modules over A, is a left module over A too, with respect to the action
determined by the action of A on itself on the right. Remember that there is
a natural isomorphism between HomA(A,W ) and W , as modules over k, as in
the previous section. One can check that this is an isomorphism

between HomA(A,W ) and W, as left modules over A,(1.8.1)

as mentioned on p21 of [3]. Similarly, if W is a right module over A, then
the space HomA(A,W ) of homomorphisms from A into W , as right modules
over A, is a right module over A, with respect to the action determined by the
action of A on itself on the left. One can verify that the isomorphism between
HomA(A,W ) and W , as modules over k, mentioned in the previous section is
an isomorphism

between HomA(A,W ) and W, as right modules over A.(1.8.2)
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Let Z be another module over k, and let ϕ0 be a homomorphism from V
into W , as modules over k. Suppose for the moment that V , W , and Z are left
modules over A, and that ϕ0 is a homomorphism from V intoW , as left modules
over A. Suppose also that V and W are both left or both right modules over B,
where the actions of A and B on each of V and W commute, and that ϕ0 is a
homomorphism from V intoW as left or right modules over B too. Under these
conditions, one can check that composition with ϕ0 defines a homomorphism

from HomA(W,Z) into HomA(V, Z), as right or left modules over B,(1.8.3)

as appropriate, as in (1.7.5).
Suppose now that W and Z are both left or both right modules over B,

where the actions of A and B on each of W and Z commute. Let ψ0 be a
homomorphism from W into Z, as modules over k, left modules over A, and
left or right modules over B, as appropriate. In this case, composition with ψ0

defines a homomorphism

from HomA(V,W ) into HomA(V, Z), as left or right modules over B,(1.8.4)

as appropriate, as in (1.7.8).
As usual, there are analogous statements when V , W , and Z are right mod-

ules over A, and ϕ0, ψ0 are homomorphisms from V into W and W into Z,
respectively, as right modules over A.

1.9 Tensor products over algebras

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element e = eA.
Also let V1, V2 be modules over k, with V1 a right module over A, and V2 a left
module over A. A tensor product of V1 and V2 over A is a module V1

⊗
A V2

over k with the following two properties.
First, V1

⊗
A V2 should be equipped with a mapping from V1 × V2 into

V1
⊗

A V2 that is bilinear over k. If v1 ∈ V1 and v2 ∈ V2, then the image of
(v1, v2) under this mapping may be denoted v1 ⊗ v2, or v1 ⊗A v2 to indicate the
role of A. This mapping should also satisfy

(v1 · a)⊗ v2 = v1 ⊗ (a · v2)(1.9.1)

for every a ∈ A, v1 ∈ V1, and v2 ∈ V2.
Second, let W be a module over k, and let b be a mapping from V1×V2 into

W that is bilinear over k. Suppose that

b(v1 · a, v2) = b(v1, a · v2)(1.9.2)

for every a ∈ A, v1 ∈ V , and v2 ∈ V2. Under these conditions, there should be a
unique homomorphism c from V1

⊗
A V2 into W , as modules over k, such that

b(v1, v2) = c(v1 ⊗ v2)(1.9.3)
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for every v1 ∈ V1 and v2 ∈ V2.
Of course, this reduces to the definition in Section 1.3 when A = k. As be-

fore, V1
⊗

A V2 is unique up to a suitable isomorphic equivalence, and V1
⊗

A V2
is generated by the associated image of V1×V2, as a module over k, or even as a
commutative group with respect to addition. The latter follows from the stan-
dard construction of tensor products, or their uniqueness up to isomorphism, as
in the previous case. Note that the bilinear mapping from V1×V2 into V1

⊗
A V2

mentioned earlier leads to a homomorphism

from V1
⊗

k
V2 into V1

⊗
A
V2,(1.9.4)

as modules over k. This homomorphism is a surjection, by the preceding remark.
Let W1, W2 be another pair of modules over k, with W1 a right module over

A, and W2 and left module over k. Suppose that ϕ1 is a homomorphism from
V1 into V2, as right modules over A, and that ϕ2 is a homomorphism from V2
into W2, as left modules over A. Note that

(v1, v2) 7→ ϕ1(v1)⊗ ϕ2(v2)(1.9.5)

is bilinear over k as a mapping from V1×V2 into W1

⊗
AW2. If a ∈ A, v1 ∈ V1,

and v2 ∈ V2, then

ϕ1(v1 · a)⊗ ϕ2(v2) = (ϕ1(v1) · a)⊗ ϕ2(v2)

= ϕ1(v1)⊗ (a · ϕ2(v2)) = ϕ1(v1)⊗ ϕ2(a · v2).(1.9.6)

Using this, we get a unique homomorphism ϕ

from V1
⊗

A
V2 into W1

⊗
A
W2,(1.9.7)

as modules over k, such that

ϕ(v1 ⊗ v2) = ϕ1(v1)⊗ ϕ2(v2)(1.9.8)

for every v1 ∈ V1 and v2 ∈ V2.
If ϕj(Vj) =Wj for j = 1, 2, then

ϕ
(
V1

⊗
A
V2

)
=W1

⊗
A
W2,(1.9.9)

because W1

⊗
AW2 is generated by the associated image of W1 × W2, as a

module over k.
Let Z1, Z2 be a pair of modules over k, with Z1 a right module over A, and

Z2 a left module over A. Also let ψ1 be a homomorphism from W1 into Z1, as
right modules over A, and let ψ2 be a homomorphism from W2 into Z2, as left
modules over A. This leads to a homomorphism ψ

from W1

⊗
A
W2 into Z1

⊗
A
Z2,(1.9.10)
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as modules over k, as before. Note that ψ1 ◦ ϕ1 is a homomorphism from V1
into Z1, as right modules over A, and that ψ2 ◦ ϕ2 is a homomorphism from V2
into Z2, as left modules over A. One can check that ψ ◦ ϕ is the same as the
homomorphism

from V1
⊗

A
V2 into Z1

⊗
A
Z2,(1.9.11)

as modules over k, associated to ψ1 ◦ ϕ1, ψ2 ◦ ϕ2, as before.
Suppose that ϕ1 is an isomorphism from V1 onto W1, as right modules over

A, and that ϕ2 is an isomorphism from V2 onto W2, as left modules over A.
Under these conditions,

ϕ is an isomorphism from V1
⊗

A
V2 onto W1

⊗
A
W2,(1.9.12)

as modules over k. More precisely, ϕ−1 can be obtained from ϕ−1
1 , ϕ−1

2 as a
mapping from W1

⊗
AW2 into V1

⊗
A V2 in the same way as before.

1.10 Additional properties and structure

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element e = eA.
Remember that A may be considered as both a left module and a right module
over itself. If V is a module over k that is a right module over A, then one can
check that

V satisfies the requirements of V
⊗

A
A,(1.10.1)

as a module over k, using the mapping (v, a) 7→ v·a from V ×A into V . Similarly,
if W is a module over k that is a left module over A, then

W satisfies the requirements of A
⊗

A
W,(1.10.2)

as a module over k, using the mapping (a,w) 7→ a · w from A×W into W .
Let I be a nonempty set, and let Vj be a module over k for each j ∈ I.

Suppose that Vj is a right module over A for each j ∈ I, and that W is a
module over k that is a left module over A. Under these conditions, one can get
a natural isomorphism

from
(⊕
j∈I

Vj

)⊗
A
W onto

⊕
j∈I

(Vj
⊗

A
W ),(1.10.3)

as modules over k, as in Section 1.4. Similarly, if Vj is a left module over A for
every j ∈ I, andW is a right module over A, then there is a natural isomorphism

from W
⊗

A

(⊕
j∈I

Vj

)
onto

⊕
j∈I

(W
⊗

A
Vj),(1.10.4)

as modules over k.
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If V is a free right module over A, and W is any left module over A, then it
follows that V

⊗
AW corresponds to a direct sum of copies of W , as a module

over k. Similarly, if V is any right module over A, and W is a free left module
over A, then V

⊗
AW corresponds to a direct sum of copies of V , as a module

over k.
Let V be a right module over A, let W be a left module over A, and let B

be another associative algebra over k with a multiplicative identity element eB .
If V or W is also a left or right module over B, where the actions of A and B
commute, then

V
⊗

A
W is a left or right module over B,(1.10.5)

as appropriate, as on p23 of [3].
More precisely, suppose that V is a left or right module over B, where the

actions of A and B on V commute. If b ∈ B, then the action of b on V is a
homomorphism from V into itself, as a right module over A. Of course, the
identity mapping on W is a homomorphism from W into itself, as a left module
over A. One can use these two module homomorphisms to get a homomorphism
from V

⊗
AW into itself, as a module over k, as in the previous section. This

is used to define the action of b on V
⊗

AW . If v ∈ V and w ∈ W , then
the action of b on v ⊗A w is obtained by combining the action of b on v with
w using ⊗A, and the action of b on V

⊗
AW is uniquely determined by this

property. One can check that this makes V
⊗

AW a left or right module over
B, as appropriate. If W is a left or right module over B, where the actions
of A and B on W commute, then the action of B on V

⊗
AW can be defined

analogously.
In particular, V

⊗
AA is a right module over A in a natural way, because A

is a left and right module over itself, and the actions of A on itself on the left
and right commute. One can check that

V
⊗

A
A corresponds to V as a right module over A,(1.10.6)

as in (1.10.1). Similarly,

A
⊗

A
W corresponds to W as a left module over A,(1.10.7)

as in (1.10.2).
Let V1, V2, W1, W2 be modules over k, with V1, W1 right modules over A,

and V2, W2 left modules over A. Also let ϕ1 be a homomorphism from V1 into
W1, as right modules over A, and let ϕ2 be a homomorphism from V2 into W2,
as left modules over A. This leads to a unique homomorphism ϕ from V1

⊗
A V2

into W1

⊗
AW2, as modules over k, that satisfies (1.9.8). Suppose that V1, W1

are both left modules over B, or both right modules over B, where the actions
of A and B on V1 and W1 commute. Thus V1

⊗
A V2 and W1

⊗
AW2 may be

considered as left or right modules over B, as appropriate. If

ϕ1 is a homomorphism from V1 into W1, as modules over B,(1.10.8)
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then one can check that

ϕ is a homomorphism from V1
⊗

A
V2 into W1

⊗
A
W2,(1.10.9)

as modules over B.

Similarly, suppose instead that V2, W2 are both left or both right modules over
B, where the actions of A and B on V2, W2 commute, so that V1

⊗
A V2 and

W1

⊗
AW2 may be considered as left or right modules over B, as appropriate.

If
ϕ2 is a homomorphism from V2 into W2, as modules over B,(1.10.10)

then one can verify that (1.10.9) holds again.

1.11 Opposite algebras

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k. The corresponding opposite algebra Aop is defined
to be the same as A as a module over k. The product of x, y ∈ Aop in Aop is
defined to be the same as the product y x of y and x in A. It is easy to see
that Aop is an associative algebra over k too. If A has a multiplicative identity
element eA, then eA is the multiplicative identity element in Aop as well.

Of course, if A is a commutative algebra, then Aop is the same as A. Note
that the opposite algebra (Aop)op of Aop is always the same as A.

If x ∈ A, then it may be helpful to use xop to indicate that a is being
considered as an element of Aop. This is similar to the definition on p109 of [3],
with slightly different notation. Using this, multiplication in Aop is given by

xop yop = (y x)op.(1.11.1)

Let B be another associative algebra over k, and let ϕ be a homomorphism
from A into B, as modules over k. Note that ϕ is a homomorphism from A into
B as algebras over k if and only if ϕ is a homomorphism from Aop into Bop, as
algebras over k. Let us say that ϕ is an opposite algebra homomorphism from
A into B if

ϕ(x y) = ϕ(y)ϕ(x)(1.11.2)

for every x, y ∈ A. This is equivalent to asking that ϕ be a homomorphism from
A into Bop, or from Aop into B, as algebras over k. If A, B have multiplicative
identity elements eA, eB , respectively, then one may wish to ask that

ϕ(eA) = eB .(1.11.3)

If ϕ is a one-to-one opposite algebra homomorphism from A onto B, then
the inverse mapping ϕ−1 is an opposite algebra homomorphism from B onto
A. In this case, we may say that ϕ is an opposite algebra isomorphism from A
onto B. If A has a multiplicative identity element eA, then it follows that ϕ(eA)
is the multiplicative identity element in B. An opposite algebra isomorphism
from A onto itself may also be called an opposite algebra automorphism of A.
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An algebra involution on A is an opposite algebra homomorphism from A
into itself whose composition with itself is the identity mapping on A. If k is
the field of complex numbers, then one may also be interested in the analogous
notion for conjugate-linear mappings.

Let n be a positive integer, so that the space Mn(A) of n× n matrices with
entries in A is an associative algebra over k with respect to matrix multiplication.
Of course, Mn(A

op) is an associative algebra over k too. One can check that
the usual mapping from a matrix to its transpose defines an opposite algebra
isomorphism from Mn(A) onto Mn(A

op).
Suppose that A has a multiplicative identity element eA, and let V be a

module over k. If V is a left module over A, then V may be considered as a
right module over Aop, with

v · aop = a · v(1.11.4)

for every a ∈ A and v ∈ V , as on p109 of [3]. Similarly, if V is a right module
over A, then V may be considered as a left module over Aop.

Suppose that V is a right module over A, and that W is a module over k
that is a left module over A. Thus V may be considered as a left module over
Aop, and W may be considered as a right module over Aop, as in the preceding
paragraph. Let V

⊗
AW be a tensor product of V and W over A, and let

W
⊗

Aop V be a tensor product of W and V over Aop. If v ∈ V and w ∈ W ,
then let v ⊗A w and w ⊗Aop v be the corresponding elements of V

⊗
AW and

W
⊗

Aop V , respectively.
Of course,

(v, w) 7→ w ⊗Aop v(1.11.5)

defines a mapping from V ×W into W
⊗

Aop V that is bilinear over k. If a ∈ A,
v ∈ V , and w ∈W , then this mapping sends

(v · a,w) = (aop · v, w)(1.11.6)

and
(v, a · w) = (v, w · aop)(1.11.7)

to
(w · aop)⊗Aop v = w ⊗Aop (aop · v).(1.11.8)

It follows that there is a unique homomorphism from V
⊗

AW into W
⊗

Aop V ,
as modules over k, with

v ⊗A w 7→ w ⊗Aop v(1.11.9)

for every v ∈ V and w ∈W .
Similarly, there is a unique homomorphism from W

⊗
Aop V into V

⊗
AW ,

as modules over k, with
w ⊗Aop v 7→ v ⊗A w(1.11.10)

for every v ∈ V and w ∈ W . It is easy to see that this is the inverse of the
mapping mentioned in the preceding paragraph. Thus we get an isomorphism

from V
⊗

A
W onto W

⊗
Aop

V,(1.11.11)

as on p109 of [3].
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1.12 Some double tensor products

Let k be a commutative ring with a multiplicative identity element, and let A,
B be associative algebras over k, with multiplicative identity elements eA, eB ,
respectively. Also let V , W , and Z be modules over k, and suppose that

V is a right module over A, W is a left module over A,(1.12.1)

W is a right module over B, and Z is a left module over B.

More precisely, the actions of A and B on W should commute, so that W is a
bimodule.

Let V
⊗

AW be a tensor product of V and W over A, and let W
⊗

B Z be
a tensor product of W and Z over B. Thus

V
⊗

A
W may be considered as a right module over B,(1.12.2)

and W
⊗

B
Z may be considered as a left module over A,

as in Section 1.10. Let (
V
⊗

A
W

)⊗
B
Z(1.12.3)

be a tensor product of V
⊗

AW and Z over B, and let

V
⊗

A

(
W

⊗
B
Z
)

(1.12.4)

be a tensor product of V and W
⊗

B Z over A.
Under these conditions, it is well known that there is a unique homomor-

phism from (1.12.3) into (1.12.4), as modules over k, with

(v ⊗A w)⊗B z 7→ v ⊗A (w ⊗B z)(1.12.5)

for every v ∈ V , w ∈ W , and z ∈ Z. To see this, let z ∈ Z be given, and
consider the mapping from V ×W into (1.12.4) with

(v, w) 7→ v ⊗A (w ⊗B z)(1.12.6)

for every v ∈ V and w ∈W . This mapping is bilinear over k, and we have that

(v · a)⊗A (w ⊗B z) = v ⊗A (a · (w ⊗B z)) = v ⊗A ((a · w)⊗B z)(1.12.7)

for every a ∈ A, v ∈ V , and w ∈ W . This leads to a unique homomorphism
from V

⊗
AW into (1.12.4), as modules over k, with

v ⊗A w 7→ v ⊗A (w ⊗B z)(1.12.8)

for every v ∈ V and w ∈W . It is easy to see that this homomorphism is linear
in z over k, by uniqueness.

If b ∈ B, then
(v ⊗A w) · b = v ⊗A (w · b)(1.12.9)



1.13. HOMOMORPHISMS AND TENSOR PRODUCTS 23

is sent to

v ⊗A ((w · b)⊗B z) = v ⊗A (w ⊗B (b · z))(1.12.10)

for every v ∈ V and w ∈ W . Thus we get a mapping from
(
V
⊗

AW
)
× Z

into (1.12.4) that is bilinear over k, and for which the action of b ∈ B on(
V
⊗

AW
)
on the right corresponds to the action of b on Z on the left. This

leads to a unique homomorphism from (1.12.3) into (1.12.4), as modules over
k, associated to the bilinear mapping on

(
V
⊗

AW
)
× Z just mentioned. In

particular, this homomorphism satisfies (1.12.5), and one can check that it is
uniquely determined by this property.

Similarly, there is a unique homomorphism from (1.12.4) into (1.12.3), as
modules over k, with

v ⊗A (w ⊗B z) 7→ (v ⊗A w)⊗B z(1.12.11)

for every v ∈ V , w ∈ W , and z ∈ Z. One can verify that these homomor-
phisms are inverses of each other, and thus isomorphisms. This corresponds
to Proposition 5.1 on p27 of [3]. This was also mentioned in Section 1.4 when
A = B = k.

1.13 Homomorphisms and tensor products

Let k be a commutative ring with a multiplicative identity element, and let A,
B be associative algebras over k with multiplicative identity elements eA, eB ,
respectively, again. Also let V , W , and Z be modules over k, and suppose now
that

V is a left module over A, W is a right module over A,(1.13.1)

W is a left module over B, and Z is a left module over B.

The actions of A and B on W should commute, so that W is a bimodule, as
usual.

Let W
⊗

A V be a tensor product of W and V over A, which may be
considered as a left module over B, as in Section 1.10. Similarly, the space
HomB(W,Z) of homomorphisms from W into Z, as left modules over B, may
be considered as a left module over A, as in Section 1.8. Thus the space

HomA

(
V,HomB(W,Z)

)
(1.13.2)

of homomorphisms from V into HomB(W,Z), as left modules over A, can be
defined as a module over k in the usual way. The space

HomB

((
W

⊗
A
V
)
, Z

)
(1.13.3)

of homomorphisms from W
⊗

A V into Z, as left modules over B, is defined as
a module over k as well.
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An element of (1.13.2) can be evaluated at v ∈ V to get an element of
HomB(W,Z), which can be evaluated at w ∈ W to get an element β(w, v) of
Z. This defines a mapping β from W × V into Z, which is bilinear over k. One
can check that

β(w · a, v) = β(w, a · v)(1.13.4)

for every a ∈ A, v ∈ V , and w ∈W . Similarly,

β(b · w, v) = b · β(w, v)(1.13.5)

for every b ∈ B, v ∈ V , and w ∈ W . Conversely, if β is a mapping from
W × V into Z that is bilinear over k and satsfies these two conditions, then β
determines an element of (1.13.2) in this way.

If β is a mapping from W × V into Z that is bilinear over k and satis-
fies (1.13.4), then there is a unique homomorphism from W

⊗
A V into Z, as

modules over k, with
w ⊗A v 7→ β(w, v)(1.13.6)

for every v ∈ V and w ∈W , as usual. If β satisfies (1.13.5) too and b ∈ B, then
we get that

b · (w ⊗A v) = (b · w)⊗A v 7→ β(b · w, v) = b · β(w, v)(1.13.7)

for every v ∈ V and w ∈ W . This implies that β corresponds to a homomor-
phism from W

⊗
A V into Z, as modules over B. Using this and the remarks in

the preceding paragraph, we get a homomorphism from (1.13.2) into (1.13.3),
as modules over k.

Conversely, if v ∈ V and w ∈W , then an element of (1.13.3) can be evaluated
at w⊗A v to get an element β(w, v) of Z. This defines a mapping β fromW ×V
into Z that is bilinear over k, and one can check that it satisfies (1.13.4) and
(1.13.5). Thus β determines an element of (1.13.2), as before. This defines a
homomorphism from (1.13.3) into (1.13.2), as modules over k.

It is easy to see that the homomorphisms between (1.13.2) and (1.13.3)
described in the previous two paragraphs are inverses of each other. This cor-
responds to Proposition 5.2 on p28 of [3].

Similarly, suppose instead that

V is a right module over A, W is a left module over A,(1.13.8)

W is a right module over B, and Z is a right module over B,

where the actions of A and B onW commute. Let V
⊗

AW be a tensor product
of V and W over A, which may be considered as a right module over B. The
space HomB(W,Z) of homomorphisms from W into Z, as right modules over
B, may be considered as a right module over A. This means that the space
(1.13.2) of homomorphisms from V into HomB(W,Z), as right modules over A,
is defined as a module over k. The space

HomB

((
V
⊗

A
W

)
, Z

)
(1.13.9)
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of homomorphisms from V
⊗

AW into Z, as right modules over B, is defined
as a module over k too.

As before, an element of (1.13.2) can be evaluated at v ∈ V and w ∈ W to
get an element β(v, w) of Z. This defines β as a mapping from V ×W into Z
that is bilinear over k. One can verify that

β(v · a,w) = β(v, a · w)(1.13.10)

for every a ∈ A, v ∈ V , and w ∈W , and that

β(v, w · b) = β(v, w) · b(1.13.11)

for every b ∈ B, v ∈ V , and w ∈ W . Conversely, a mapping β from V ×W
into Z that is bilinear over k and satisfies (1.13.10) and (1.13.11) determines an
element of (1.13.2) in this way.

Of course, if β is a mapping from V ×W into Z that is bilinear over k and
satisfies (1.13.10), then there is a unique homomorphism from V

⊗
AW into Z,

as modules over k, such that

v ⊗A w 7→ β(v, w)(1.13.12)

for every v ∈ V and w ∈W . If β satisfies (1.13.11) as well and b ∈ B, then

(v ⊗A w) · b = v ⊗A (w · b) 7→ β(v, w · b) = β(v, w) · b(1.13.13)

for every v ∈ V and w ∈ W . This implies that β corresponds to a homomor-
phism from V

⊗
AW into Z as right modules over B, as before. This leads to

a homomorphism from (1.13.2) into (1.13.9), as modules over k.
Conversely, an element of (1.13.9) corresponds to a mapping β from V ×W

into Z that is bilinear over k, and one can verify that β satisfies (1.13.12) and
(1.13.13). This determines an element of (1.13.2), as before. Using this, we
get a homomorphism from (1.13.9) into (1.13.2), as modules over k. One can
check that this is the inverse of the homomorphism mentioned in the preceding
paragraph. This corresponds to Proposition 5.2’ on p28 of [3].

1.14 Bilinearity over A, B

Let k, A, and B be as in the previous section, and let V , W , and Z be modules
over k again. In this section, we suppose that

V is a left module over A, W is a right module over B,(1.14.1)

Z is a left module over A, and Z is a right module over B,

where the actions of A and B on Z commute, as usual.
Let V

⊗
kW be a tensor product of V and W , as modules over k. The

actions of A on V and B on W lead to actions of A and B on V
⊗

kW , so that
V
⊗

kW is a left module over A and a right module over B, as before. One can
check that these actions of A and B on V

⊗
kW commute.
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Consider the space

HomA,B

((
V
⊗

k
W

)
, Z

)
(1.14.2)

of homomorphisms from V
⊗

kW into Z, as both left modules over A, and right
modules over B. This is a module over k, with respect to pointwise addition
and scalar multiplication of mappings, as usual.

Let β be a mapping from V ×W into Z that is bilinear over k. This leads to
a unique homomorphism β̃ from V

⊗
kW into Z, as modules over k, such that

β̃(v ⊗ w) = β(v, w)(1.14.3)

for every v ∈ V and w ∈W . Suppose that

for each w ∈W , β(·, w) is a homomorphism(1.14.4)

from V into Z, as left modules over A.

In this case, one can check that β̃ is a homomorphism from V
⊗

kW into Z, as
left modules over A. Similarly, if

for each v ∈ V , β(v, ·) is a homomorphism(1.14.5)

from W into Z, as right modules over B,

then β̃ is a homomorphism from V
⊗

kW into Z, as right modules over B.

Thus, if (1.14.4) and (1.14.5) both hold, then β̃ is an element of (1.14.2).
Conversely, every element of (1.14.2) corresponds to a mapping from V ×W
into Z that is bilinear over k and satisfies (1.14.4) and (1.14.5) in this way. This
can be seen by composing with the natural mapping from V ×W into V

⊗
kW .

Note that the space HomB(W,Z) of homomorphisms from W into Z, as
right modules over B, may be considered as a left module over A, as in Section
1.8. This means that the space

HomA

(
V,HomB(W,Z)

)
(1.14.6)

of homomorphisms from V into HomB(W,Z), as left modules over A, can be
defined in the usual way. Similarly, the space HomA(V, Z) of homomorphisms
from V into Z, as left modules over A, may be considered as a right module
over B. This permits us to define the space

HomB

(
W,HomA(V, Z)

)
(1.14.7)

of homomorphisms from W into HomA(V, Z), as right modules over B, in the
usual way.

It is easy to see that the elements of both (1.14.6) and (1.14.7) correspond
exactly to mappings from V ×W into Z that are bilinear over k and satisfy
(1.14.4) and (1.14.5). This defines a natural isomorphism between (1.14.6) and
(1.14.7), as modules over k, as in Exercise 4 on p32 of [3]. More precisely,
(1.14.6) and (1.14.7) are both isomorphic to (1.14.2), as modules over k, in a
natural way.
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1.15 Direct families of homomorphisms

Let k be a commutative ring with a multiplicative identity element, and let
A be an associative algebra over k with a multiplicative identity element eA.
Suppose for the moment that W and Z are modules over k, that are either both
left modules over A, or both right modules over A. Suppose also that ϕ is a
homomorphism from W into Z, and that ψ is a homomorphism from Z into W ,
as modules over A, such that

ψ ◦ ϕ is the identity mapping on W.(1.15.1)

This implies that ϕ is injective on W , ψ(Z) =W , and

ϕ ◦ ψ is the identity mapping on ϕ(W ).(1.15.2)

Under these conditions, one can check that

Z corresponds to the direct sum of ϕ(W ) and kerψ,(1.15.3)

as a module over A.
Now let V be a module over k, let I be a nonempty set, and let Vj be a

module over k for each j ∈ I. Suppose that these are either all left modules
over A, or all right modules over A. Suppose also that for each j ∈ I, ij is a
homomorphism from Vj into V , and that πj is a homomorphism from V into
Vj , as modules over A, with

πj ◦ ij equal to the identity mapping on Vj .(1.15.4)

If j, l ∈ I and j 6= l, then we suppose in addition that

πl ◦ ij = 0.(1.15.5)

Under these conditions, the family of ij , πj , j ∈ I, is said to be a direct family
of homomorphisms, as on p4 of [3].

Suppose for the moment that⊕
j∈I

Vj ⊆ V ⊆
∏
j∈I

Vj ,(1.15.6)

with V a submodule of
∏
j∈I Vj , as a module over A. If l ∈ I, then let il be

the mapping from Vl into V that sends vl ∈ Vl to the element of
⊕

j∈I Vj with
lth coordinate equal to vl, and all other coordinates equal to 0. If πl is the
restriction of the lth coordinate projection on

∏
j∈I Vj to V , then it is easy to

see that we get a direct family of homomorphisms.
Let V be any left or right module over A again, and suppose that we have a

direct family of homomorphisms ij , πj , j ∈ I, as before. Using the ij ’s, we get
a homomorphism

from
⊕
j∈I

Vj into V,(1.15.7)
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as modules over A. We can also use the πj ’s to get a homomorphism

from V into
∏
j∈I

Vj ,(1.15.8)

as modules over A. It is easy to see that

the composition of these two homomorphisms(1.15.9)

is the identity mapping on
⊕
j∈I

Vj ,

by (1.15.4) and (1.15.5). In particular, this means that the homomorphism
mentioned in (1.15.7) is an injection.

Suppose that I has only finitely many elements, so that
⊕

j∈I Vj and
∏
j∈I Vj

are the same, and the homomorphism mentioned in (1.15.8) is a surjection. In
this case, it is easy to see that the homomorphism mentioned in (1.15.7) is a
surjection if and only if the homomorphism mentioned in (1.15.8) is an injection.
This happens if and only if∑

j∈I
ij ◦ πj is the identity mapping on V,(1.15.10)

as on p4 of [3].



Chapter 2

Modules and tensor
products, 2

2.1 Compositions and Hom(·,W )

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with a multiplicative identity element eA. Suppose
that V1, V2, V3, and W are modules over k that are either all left modules over
A, or all right modules over A. Let ϕ1 be a homomorphism from V1 into V2,
and let ϕ2 be a homomorphism from V2 into V3, as modules over A.

If ψ2 is a homomorphism from V2 into W , as modules over A, then

Φ1(ψ2) = ψ2 ◦ ϕ1(2.1.1)

is a homomorphism from V1 into W , as modules over A. Similarly, if ψ3 is a
homomorphism from V3 into W , as modules over A, then

Φ2(ψ3) = ψ3 ◦ ϕ2(2.1.2)

is a homomorphism from V2 into W , as modules over A. Note that Φ1 defines
a homomorphism from HomA(V2,W ) into HomA(V1,W ), and that Φ2 defines a
homomorphism from HomA(V3,W ) into HomA(V2,W ), as modules over k.

Thus Φ1 ◦Φ2 is a homomorphism from HomA(V3,W ) into HomA(V1,W ), as
modules over k. If ψ3 ∈ HomA(V3,W ), then

(Φ1 ◦ Φ2)(ψ3) = Φ1(Φ2(ψ3)) = (Φ2(ψ3)) ◦ ϕ1 = ψ3 ◦ (ϕ2 ◦ ϕ1).(2.1.3)

Of course, ϕ2 ◦ ϕ1 is a homomorphism from V1 into V3, as modules over A. If

ϕ2 ◦ ϕ1 = 0,(2.1.4)

then we get that
Φ1 ◦ Φ2 = 0.(2.1.5)

29
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Note that (2.1.4) is the same as saying that

ϕ1(V1) ⊆ kerϕ2.(2.1.6)

Similarly, (2.1.5) is the same as saying that

Φ2(HomA(V3,W )) ⊆ kerΦ1.(2.1.7)

Alternatively,

kerΦ1 = {ψ2 ∈ HomA(V2,W ) : ϕ1(V1) ⊆ kerψ2},(2.1.8)

by construction. If ψ3 ∈ HomA(V3,W ), then

kerΦ2(ψ3) = kerψ3 ◦ ϕ2 ⊇ kerϕ2.(2.1.9)

Thus (2.1.6) implies that

ϕ1(V1) ⊆ kerΦ2(ψ3),(2.1.10)

so that Φ2(ψ3) ∈ kerΦ1.
Suppose now that

V1
ϕ1−→ V2

ϕ2−→ V3 −→ 0(2.1.11)

is an exact sequence, so that

ϕ1(V1) = kerϕ2, ϕ2(V2) = V3.(2.1.12)

It is well known that

0 −→ HomA(V3,W )
Φ2−→ HomA(V2,W )

Φ1−→ HomA(V1,W )(2.1.13)

is exact under these conditions, so that Φ2 is injective and

Φ2(HomA(V3,W )) = kerΦ1.(2.1.14)

This is known as left exactness of HomA(·,W ), and is part of Proposition 4.4
on p26 of [3].

The injectivity of Φ2 follows from the surjectivity of ϕ2, as in Section 1.7.
We also have that (2.1.7) holds when (2.1.6) holds, as before.

Suppose that ψ2 ∈ HomA(V2,W ) is an element of the kernel of Φ1. We
would like to find ψ3 ∈ HomA(V3,W ) such that

ψ2 = Φ2(ψ3) = ψ3 ◦ ϕ2(2.1.15)

when (2.1.12) holds. Equivalently, this means that

ψ2(v2) = ψ3(ϕ2(v2))(2.1.16)

for every v2 ∈ V2.
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If kerϕ2 ⊆ ϕ1(V ), then
kerϕ2 ⊆ kerψ2,(2.1.17)

by (2.1.8). If v2, v
′
2 ∈ V2 and ϕ2(v2) = ϕ2(v

′
2), then v2 − v′2 ∈ kerϕ2, so that

v2 − v′2 ∈ kerψ2, and thus ψ2(v2) = ψ2(v
′
2). This implies that ψ3 is uniquely

determined on ϕ2(V2) by (2.1.16). It follows that ψ3 is uniquely determined on
V3 by (2.1.16), because ϕ2(V2) = V3, by hypothesis. It is easy to see that ψ3 is
a homomorphism from V3 into W , as modules over A, because of the analogous
properties of ϕ2 and ψ2, as desired.

2.2 Some converse statements

Let us continue with the same notation and hypotheses as in the previous sec-
tion. The remarks in the previous section correspond to the “only if” part (i)
of Proposition 2.9 on p22 of [1]. The “if” part of the proposition deals with the
necessity of the various conditions on ϕ1, ϕ2, in order that the corresponding
conditions on Φ1, Φ2 hold for all W .

If ϕ2 is not surjective, for instance, then ϕ2(V2) is a proper submodule of V3,
as a module over A. This means that the quotient

W = V3/ϕ2(V2)(2.2.1)

is a nontrivial module over A. Let ψ3 be the natural quotient mapping from V3
onto W , which is a nonzero homomorphism from V3 onto W , as modules over
A. In this case,

Φ2(ψ3) = ψ3 ◦ ϕ2 = 0,(2.2.2)

so that Φ2 is not injective. This shows that the surjectivity of ϕ2 is necessary
to get the injectivity of Φ2 for all W .

Similarly, if (2.1.5) holds for every W , then (2.1.4) holds. To see this, one
can take W = V3, and ψ3 to be the identity mapping on V3, considered as a
homomorphism from V3 into W , as modules over A. Thus

(Φ1 ◦ Φ2)(ψ3) = ψ3 ◦ (ϕ2 ◦ ϕ1) = ϕ2 ◦ ϕ1,(2.2.3)

as in (2.1.3). If (2.1.5) holds, then we get that (2.1.4) holds, as desired. Equiv-
alently, this shows that if (2.1.7) holds for every W , then (2.1.6) holds.

Suppose now that

kerΦ1 ⊆ Φ2(HomA(V3,W ))(2.2.4)

for every W , and let us check that

kerϕ2 ⊆ ϕ1(V1).(2.2.5)

Of course, ϕ1(V1) is a submodule of V2, as a module over A, so that

W = V2/ϕ1(V1)(2.2.6)
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is a module over A as well. Let ψ2 be the natural quotient mapping from V2 onto
W , which is a homomorphism from V2 onto W , as modules over A. Observe
that

Φ1(ψ2) = ψ2 ◦ ϕ1 = 0,(2.2.7)

by construction. This means that ψ2 ∈ kerΦ1.
Using (2.2.4), we get that there is a ψ3 ∈ HomA(V3,W ) such that ψ2 =

Φ2(ψ3) = ψ3 ◦ ϕ2. In particular, it follows that the kernel of ϕ2 is contained in
the kernel of ψ2. This implies (2.2.5), because

kerψ2 = ϕ1(V1),(2.2.8)

by construction.

2.3 Compositions and Hom(V, ·)
Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA again.
In this section, we suppose that V , W1, W2, and W3 are modules over k that
are either all left modules over A, or all right modules over A. Let ψ1 be a
homomorphism from W1 into W2, and let ψ2 be a homomorphism from W2 into
W3, as modules over A.

If ϕ1 is a homomorphism from V into W1, as modules over A, then

Ψ1(ϕ1) = ψ1 ◦ ϕ1(2.3.1)

is a homomorphism from V into W2, as modules over A. Similarly, if ϕ2 is a
homomorphism from V into W2, as modules over A, then

Ψ2(ϕ2) = ψ2 ◦ ϕ2(2.3.2)

is a homomorphism from V into W3, as modules over A. As usual, Ψ1 de-
fines a homomorphism from HomA(V,W1) into HomA(V,W2), and Ψ2 defines a
homomorphism from HomA(V,W2) into HomA(V,W3), as modules over k.

Thus Ψ2 ◦Ψ1 is a homomorphism from HomA(V,W1) into HomA(V,W3), as
modules over k. If ϕ1 ∈ HomA(V,W1), then

(Ψ2 ◦Ψ1)(ϕ1) = Ψ2(Ψ1(ϕ1)) = ψ2 ◦ (Ψ1(ϕ1)) = (ψ2 ◦ ψ1) ◦ ϕ1.(2.3.3)

Note that ψ2 ◦ ψ1 is a homomorphism from W1 into W3, as modules over A. If

ψ2 ◦ ψ1 = 0,(2.3.4)

then it follows that
Ψ2 ◦Ψ1 = 0.(2.3.5)

Of course, (2.3.4) is the same as saying that

ψ1(W1) ⊆ kerψ2,(2.3.6)
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and (2.3.5) is the same as saying that

Ψ1(HomA(V,W1)) ⊆ kerΨ2.(2.3.7)

Observe that

kerΨ2 = {ϕ2 ∈ HomA(V,W2) : ϕ2(V ) ⊆ kerψ2}.(2.3.8)

If ϕ1 ∈ HomA(V,W1), then

(Ψ1(ϕ1))(V ) = (ψ1(ϕ1(V ))) ⊆ ψ1(W1).(2.3.9)

This implies that

(Ψ1(ϕ1))(V ) ⊆ kerψ2(2.3.10)

when (2.3.6) holds. This is another way to get that Ψ1(ϕ1) ∈ kerΨ2, using
(2.3.8).

Suppose that

0 −→W1
ψ1−→W2

ψ2−→W3(2.3.11)

is an exact sequence, so that ψ1 is injective, and

ψ1(W1) = kerψ2.(2.3.12)

It is well known that

0 −→ HomA(V,W1)
Ψ1−→ HomA(V,W2)

Ψ2−→ HomA(V,W3)(2.3.13)

is exact in this case, so that Ψ1 is injective, and

Ψ1(HomA(V,W1)) = kerΨ2.(2.3.14)

This means that HomA(V, ·) is left exact, which is another part of Proposition
4.4 on p26 of [3].

The injectivity of Ψ1 follows immediately from the injectivity of ψ1, as in
Section 1.7. We have also seen that (2.3.7) holds when (2.3.6) holds.

Let ϕ2 ∈ HomA(V,W2) be an element of the kernel of Ψ2. We would like to
find ϕ1 ∈ HomA(V,W1) such that

ϕ2 = Ψ1(ϕ1) = ψ1 ◦ ϕ1(2.3.15)

when ψ1 is injective and (2.3.12) holds. More precisely,

ϕ2(V ) ⊆ ψ1(W1)(2.3.16)

when kerψ2 ⊆ ψ1(W1), by (2.3.8). Using this, we can get ϕ1 ∈ HomA(V,W1)
as in (2.3.15), because ψ1 is injective.
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2.4 Some more converse statements

Let us continue with the same notation and hypotheses as in the previous sec-
tion. The remarks in the previous section correspond to the “only if” part of
part (ii) of Proposition 2.9 on p23 of [1]. As before, the “if” part of the propo-
sition concerns the necessity of the conditions on ψ1, ψ2, for the corresponding
conditions on Ψ1, Ψ2 to hold for all V .

If ψ1 is not injective, then the kernel of ψ1 is a nontrivial submodule of W1,
as a module over A. Let us take

V = kerψ1,(2.4.1)

and let ϕ1 be the natural inclusion mapping from V into W1. Thus ϕ1 is a
nonzero homomorphism from V into W1, as modules over A. Clearly

Ψ1(ϕ1) = ψ1 ◦ ϕ1 = 0,(2.4.2)

by construction, so that Ψ1 is not injective. It follows that the injectivity of ψ1

is needed for Ψ1 to be injective for any V .
Suppose that (2.3.5) holds for every V , and let us check that (2.3.4) holds. To

do this, we take V =W1, and ϕ1 to be the identity mapping on W1, considered
as a homomorphism from V into W1, as a module over A. In this case,

(Ψ2 ◦Ψ1)(ϕ1) = (ψ2 ◦ ψ1) ◦ ϕ1 = ψ2 ◦ ψ1,(2.4.3)

as in (2.3.3). Thus (2.3.5) implies (2.3.4), as desired. Equivalently, if (2.3.7)
holds for every V , then (2.3.6) holds.

If
kerΨ2 ⊆ Ψ1(HomA(V,W1))(2.4.4)

for every V , then we would like to verify that

kerψ2 ⊆ ψ1(W1).(2.4.5)

Let us take
V = kerψ2,(2.4.6)

considered as a module over A. More precisely, V is a submodule of W2, and
we take ϕ2 to be the natural inclusion mapping from V into W2. This is a
homomorphism from V into W2, as modules over A, with

Ψ2(ϕ2) = ψ2 ◦ ϕ2 = 0.(2.4.7)

Thus ϕ2 ∈ kerΨ2.
If (2.4.4) holds, then there is a ϕ1 ∈ HomA(V,W1) such that ϕ2 = Ψ1(ϕ1) =

ψ1 ◦ ϕ1. This implies that

kerψ2 = V = ϕ2(V ) ⊆ ψ1(W1),(2.4.8)

as desired.
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2.5 Compositions and tensor products

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with a multiplicative identity element eA. Suppose
that V1, V2, and V3 are right modules over A, and that W is a left module over
A. Let V1

⊗
AW , V2

⊗
AW , and V3

⊗
AW be tensor products of V1, V2, and

V3, respectively, with W over A.
Suppose that ϕ1 is a homomorphism from V1 into V2, and that ϕ2 is a

homomorphism from V2 into V3, as right modules over A. Using ϕ1, we get a
unique homomorphism Φ1 from V1

⊗
AW into V2

⊗
AW , as modules over k,

such that

Φ1(v1 ⊗ w) = ϕ1(v1)⊗ w(2.5.1)

for every v1 ∈ V1 and w ∈ W . More precisely, Φ1 is obtained from ϕ1 and
the identity mapping on W as in Section 1.9. Similarly, there is a unique
homomorphism Φ2 from V2

⊗
AW into V3

⊗
AW , as modules over k, such that

Φ2(v2 ⊗ w) = ϕ2(v2)⊗ w(2.5.2)

for every v2 ∈ V2 and w ∈W .
Of course, ϕ2 ◦ ϕ1 is a homomorphism from V1 into V3, as right modules

over A. This leads to a unique homomorphism from V1
⊗

AW into V3
⊗

AW ,
as modules over k, with

v1 ⊗ w 7→ ϕ2(ϕ1(v1))⊗ w(2.5.3)

for every v1 ∈ V1 and w ∈W , as before. This homomorphism is the same as

Φ2 ◦ Φ1,(2.5.4)

as in Section 1.9. In particular, if

ϕ2 ◦ ϕ1 = 0,(2.5.5)

then

Φ2 ◦ Φ1 = 0.(2.5.6)

Equivalently, if

ϕ1(V1) ⊆ kerϕ2,(2.5.7)

then

Φ1

(
V1

⊗
A
W

)
⊆ kerΦ2.(2.5.8)

Suppose that

V1
ϕ1−→ V2

ϕ2−→ V3 −→ 0(2.5.9)

is an exact sequence, so that ϕ2 is surjective, and

ϕ1(V1) = kerϕ2.(2.5.10)
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Under these conditions, it is well known that

V1
⊗

A
W

Φ1−→ V2
⊗

A
W

Φ2−→ V3
⊗

A
W −→ 0(2.5.11)

is an exact sequence, so that Φ2 is surjective and

Φ1

(
V1

⊗
A
W

)
= kerΦ2.(2.5.12)

This is known as right exactness of V 7→ V
⊗

AW , which is part of Proposi-
tion 4.5 on p26 of [3]. More precisely, the surjectivity of Φ2 follows from the
surjectivity of ϕ2, as in Section 1.9.

To show that (2.5.12) holds, note first that (2.5.8) holds, as before. Of
course, Φ1

(
V1

⊗
AW

)
is a submodule of V2

⊗
AW , as a module over k. Thus

the quotient

Y =
(
V2

⊗
A
W

)
/Φ1

(
V1

⊗
A
W

)
(2.5.13)

is defined as a module over k. Let qY be the natural quotient mapping from
V2

⊗
AW onto Y .

Using (2.5.8), we get that there is a unique homomorphism Φ̃2 from Y into
V3

⊗
AW , as modules over k, such that

Φ̃2 ◦ qY = Φ2.(2.5.14)

We would like to show that Φ̃2 is an isomorphism.
If v2 ∈ V2 and w ∈W , then

qY (v2 ⊗ w)(2.5.15)

is an element of Y . Observe that

qY (ϕ1(v1)⊗ w) = 0(2.5.16)

for every v1 ∈ V1 and w ∈ W , by (2.5.1) and the definition of Y . This implies
that (2.5.15) only depends on ϕ2(v2) and w, because of (2.5.10). This leads to
a mapping from V3 ×W into Y , with

(ϕ2(v2), w) 7→ qY (v2 ⊗ w)(2.5.17)

for every v2 ∈ V2 and w ∈W , because ϕ2(V2) = V3, by hypothesis. It is easy to
see that this mapping is bilinear over k.

If a ∈ A, v2 ∈ V2, and w ∈W , then ϕ2(v2 · a) = ϕ2(v2) · a and (v2 · a)⊗w =
v2 ⊗ (a · w) in V2

⊗
AW . This implies that

(ϕ2(v2) · a,w) and (ϕ2(v2), a · w)(2.5.18)

are mapped to the same element of Y by the mapping described in the preceding
paragraph. This leads to a unique homomorphism from V3

⊗
AW into Y , as

modules over k, with
ϕ2(v2)⊗ w 7→ qY (v2 ⊗ w)(2.5.19)
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for every v2 ∈ V2 and w ∈W .
One can check that the composition of the mapping from V3

⊗
AW into Y

defined in the previous paragraph with Φ̃2 is the identity mapping on V3
⊗

AW .

Similarly, one can verify that the composition of Φ̃2 with the mapping from
V3

⊗
AW into Y defined in the previous paragraph is the identity mapping on

Y . Thus Φ̃2 is an isomorphism from Y onto V3
⊗

AW , as modules over k.

In particular, the kernel of Φ̃2 is trivial. This implies (2.5.12), as desired.
Of course, there is an analogous right exactness property for W 7→ V

⊗
AW ,

which is also part of Proposition 4.5 on p26 of [3].

2.6 Another approach

Let us continue with the same notation and hypotheses as in the previous sec-
tion. The fact that the exactness of (2.5.9) implies the exactness of (2.5.11)
corresponds to Proposition 2.18 on p28 of [1]. The argument in [1] uses the
characterization of exactness of sequences like these in Sections 2.1 and 2.2, as
follows.

Let Z be an arbitrary module over k. Thus, for each j = 1, 2, 3, the space

Homk

(
Vj

⊗
A
W,Z

)
(2.6.1)

of homomorphisms from Vj
⊗

AW into Z, as modules over k, is a module over
k with respect to pointwise addition and scalar multiplication of mappings into
Z, as usual. Let Φ̂1 be the homomorphism

from Homk

(
V2

⊗
A
W,Z

)
into Homk

(
V1

⊗
A
W,Z

)
,(2.6.2)

as modules over k, that sends an element of Homk

(
V2

⊗
AW,Z

)
to its compo-

sition with Φ1. Similarly, let Φ̂2 be the homomorphism

from Homk

(
V3

⊗
A
W,Z

)
into Homk

(
V2

⊗
A
W,Z

)
,(2.6.3)

as modules over k, that sends an element of Homk

(
V3

⊗
AW,Z

)
to its compo-

sition with Φ2.
The exactness of (2.5.11) implies that

0 −→ Homk

(
V3

⊗
A
W,Z

) Φ̂2−→ Homk

(
V2

⊗
A
W,Z

)
(2.6.4)

Φ̂1−→ Homk

(
V1

⊗
A
W,Z

)
is exact, as in Section 2.1. Conversely, in order to show that (2.5.11) is exact,
it sufficies to verify that (2.6.4) is exact for every Z, as in Section 2.2.

Remember that the space Homk(W,Z) of homomorphisms from W into Z,
as modules over k, may be considered as a right module over A in a natural
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way, because W is a left module over A, as in Section 1.8. We have also seen
that (2.6.1) is isomorphic to

HomA

(
Vj ,Homk(W,Z)

)
,(2.6.5)

as modules over k, in a natural way for j = 1, 2, 3, as in Section 1.13.
Let Φ′

1 be the homomorphism

from HomA

(
V2,Homk(W,Z)

)
into HomA

(
V1,Homk(W,Z)

)
,(2.6.6)

as modules over k, that sends an element of HomA

(
V2,Homk(W,Z)

)
to its

composition with ϕ1. Similarly, let Φ′
2 be the homomorphism

from HomA

(
V3,Homk(W,Z)

)
into HomA

(
V2,Homk(W,Z)

)
,(2.6.7)

as modules over k, that sends an element of HomA

(
V3,Homk(W,Z)

)
to its

composition with ϕ2.
One can check that Φ′

1, Φ
′
2 correspond exactly to Φ̂1, Φ̂2, respectively, with

respect to the isomorphisms between (2.6.1) and (2.6.5), j = 1, 2, 3, mentioned
in the preceding paragraph. This uses the way that Φ1, Φ2 are obtained from
ϕ1, ϕ2, respectively, as in the previous section.

It follows that the exactness of (2.6.4) is equivalent to the exactness of

0 −→ HomA

(
V3,Homk(W,Z)

) Φ′
2−→ HomA

(
V2,Homk(W,Z)

)
(2.6.8)

Φ′
1−→ HomA

(
V1,Homk(W,Z)

)
.

The exactness of (2.5.9) implies the exactness of (2.6.8), as in Section 2.1. Thus
the exactness of (2.5.9) implies the exactness of (2.6.4). More precisely, this
works for every module Z over k. This shows that the exactness of (2.5.9)
implies the exactness of (2.5.11), as before.

2.7 Projective modules

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. A
left module V over A is said to be projective if it has the following property.
Let W and Z be left modules over A, and let ψ be a homomorphism from W
onto Z, as left modules over A. If ϕZ is a homomorphism from V into Z, as left
modules over A, then there should be a homomorphism ϕW from V into W , as
left modules over A, such that

ϕZ = ψ ◦ ϕW .(2.7.1)

Of course, projectivity of right modules is defined analogously.
It is easy to see that A is projective as a left module over itself. Indeed,

suppose that W , Z, ψ, and ϕZ are as in the preceding paragraph, with V =
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A. Note that ϕZ is uniquely determined by ϕZ(eA), and similarly that any
homomorphism ϕW from A into W , as left modules over A, is determined by
ϕW (eA). Thus it suffices to choose ϕW (eA) ∈W such that

ϕZ(eA) = ψ(ϕW (eA)),(2.7.2)

and to take ϕW to be the corresponding module homomorphism from A into
W .

Let I be a nonempty set, and let Vj be a left module over A for each j ∈ I.
It is well known that

Vj is projective for every j ∈ I(2.7.3)

if and only if

V =
⊕
j∈I

Vj is projective as a left module over A,(2.7.4)

as in Proposition 2.1 on p6 of [3]. To show that (2.7.3) implies (2.7.4), let W ,
Z, ψ, and ϕZ be given as before. If l ∈ I, then one can ge a homomorphism
ϕl,Z from Vl into Z, as left modules over A, by composing ϕZ with the natu-
ral inclusion mapping from Vl into V . Using the projectivity of Vl, we get a
homomorphism ϕl,W from Vl into W , as left modules over A, such that

ϕl,Z = ψ ◦ ϕl,W .(2.7.5)

One can combine the homomorphisms ϕl,W , l ∈ I, to get a homomorphism ϕW
from V into W , as left modules over A, that satisfies (2.7.1). In particular, if V
is free as a left module over A, then it follows that V is projective.

Conversely, suppose that (2.7.4) holds, and let us check that (2.7.3) holds.
Let l ∈ I be given, letW , Z, and ψ be as before, and let ϕl,Z be a homomorphism
from Vl into Z, as left modules over A. Using ϕl,Z , we can get a homomorphism
ϕZ from V into Z, as left modules over A, whose composition with the natural
inclusion mapping from Vl into V is equal to ϕl,Z , and whose composition with
the natural inclusion mapping from Vj into V is equal to 0 when j 6= l. If
V is projective, then there is a homomorphism ϕW from V into W , as left
modules over A, that satisfies (2.7.1). Let ϕl,W be the composition of ϕW with
the natural inclusion mapping from Vl into V , which is a homomorphism from
Vl into W , as left modules over A. Under these conditions, (2.7.5) follows by
composing both sides of (2.7.1) with the natural inclusion mapping from Vl into
V . This implies that Vl is projective, as desired.

If V is any left module over A, then it is well known that

there is a homomorphism from a free left module over A onto V,(2.7.6)

as left modules over A. Indeed, if X is a free left module over A, then any
mapping from the generators of X, as a free left module over A, into V can
be extended to a homomorphism from X into V , as left modules over A. This
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homomorphism maps X onto the submodule of V , as a left module over A,
generated by the images of the generators of X. If X is freely generated by
sufficiently many elements, then one can use this to get a homomorphism from
X onto V .

Let Y be a left module over A, and let η be a homomorphism from Y onto
V , as left modules over A. If V is projective, then there is a homomorphism ϕ
from V into Y , as modules over A, such that

η ◦ ϕ is the identity mapping on V.(2.7.7)

This corresponds to taking W = Y , Z = V , ψ = η, and ϕZ equal to the identity
mapping on V , in the definition of projectivity. In particular, (2.7.7) implies
that ϕ is injective, and that

ϕ ◦ η is the identity mapping on ϕ(V ).(2.7.8)

Note that

ker η = ker(ϕ ◦ η)(2.7.9)

is a submodule of Y . Under these conditions,

Y corresponds to the direct sum of ϕ(V ) and ker η,(2.7.10)

as a left module over A, by standard arguments. This corresponds to part of
Proposition 2.4 on p7 of [3].

It is well known that a left module V over A is projective if and only if

there is a free left module over A that is isomorphic to(2.7.11)

the direct sum of V and another left module over A,

as left modules over A, as in Theorem 2.2 on p6 of [3]. Of course, the “if” part
follows from the fact that (2.7.4) implies (2.7.3). The “only if” part follows from
(2.7.6) and (2.7.10). Using the “if” part and (2.7.6), we get that projectivity
of V is necessary for the property mentioned in the preceding paragraph, as in
Proposition 2.4 on p7 of [3].

Let V be a left module over A, let U1, U2 be right modules over A, and
let θ be a homomorphism from U1 into U2, as right modules over A. Also let
U1

⊗
A V , U2

⊗
A V be tensor products of U1, U2 with V over A, respectively.

Thus we get a homomorphism

Θ from U1

⊗
A
V into U2

⊗
A
V,(2.7.12)

as modules over k, using θ and the identity mapping on V , as in Section 1.9. If
V is projective and θ is injective, then it is well known that

Θ is injective.(2.7.13)
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More precisely, let U3 be another right module over A, let θ′ be a homomor-
phism from U2 into U3, as right modules over A, and let U3

⊗
A V be a tensor

product of U3 and V over A. As before, we get a homomorphism

Θ′ from U2

⊗
A
V into U3

⊗
A
V,(2.7.14)

as modules over k, using θ′ and the identity mapping on V . Suppose that

U1
θ−→ U2

θ′−→ U3(2.7.15)

is exact, so that θ(U1) = ker θ′. If V is projective, then

U1

⊗
A
V

Θ−→ U2

⊗
A
V

Θ′

−→ U3

⊗
A
V(2.7.16)

is exact, so that Θ
(
U1

⊗
A V

)
= kerΘ′.

This corresponds to Proposition 1.1a on p106 of [3], where “left balanced”
is defined on p97 of [3]. If V is a free module over A, then this can be verified
directly. Otherwise, one can use (2.7.11) to reduce to the case of free modules.
This is related to Exercise 4 on p31 of [1]. There are analogous statements with
the roles of right and left modules interchanged, as usual.

2.8 Injective modules

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. A
left module W over A is said to be injective if it has the following property.
Let V be a left module over A, let V0 be a submodule of V , and let ϕ0 be a
homomorphism from V0 intoW , as left modules over A. Under these conditions,
there should be a homomorphism ϕ from V intoW , as left modules over A, such
that

ϕ = ϕ0 on V0.(2.8.1)

Injectivity of a right module over A is defined in the same way.
Let I be a nonempty set, and let Wj be a left module over A for each j ∈ I.

It is well known that

Wj is injective for every j ∈ I(2.8.2)

if and only if ∏
j∈I

Wj is injective,(2.8.3)

as in Proposition 3.1 on p8 of [3]. To see this, let V be a left module over
A, let V0 be a submodule of V , and suppose that (2.8.2) holds. If ϕ0 is a
homomorphism from V0 into

∏
j∈IWj , as left modules over A, then for each

l ∈ I we get a homomorphism ϕ0,l from V0 into Wl, as left modules over A, in
the usual way. If (2.8.2) holds, then for every l ∈ I, ϕ0,l can be extended to
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a homomorphism ϕl from V into Wl, as left modules over A. This leads to a
homomorphism ϕ from V into

∏
j∈IWj , as left modules over A. The restriction

of ϕ to V0 is equal to ϕ0, by construction.
Conversely, suppose that (2.8.3) holds, and let us check that (2.8.2) holds.

Let l ∈ I be given, let V be a left module over A again, let V0 be a submodule
of V , and let ϕ0,l be a homomorphism from V0 into Wl, as left modules over
A. We can get a homomorphism ϕ0 from V0 into

∏
j∈IWj , as left modules over

A, using the zero homomorphism from V0 into Wj when j 6= l. If (2.8.3) holds,
then there is an extension ϕ of ϕ0 to a homomorphism from V into

∏
j∈IWj ,

as left modules over A. The lth component ϕl of ϕ is an extension of ϕ0,l to a
homomorphism from V into Wl, as left modules over A, as desired.

Let W be a left module over A again, and consider the following condition:

if I is a left ideal in A, and ϕI is a homomorphism(2.8.4)

from I into W, then there is a w0 ∈W such that

ϕI(a) = a · w0 for every a ∈ I.

More precisely, I may be considered as a left module over A, and ϕI is supposed
to be a homomorphism from I into W , as left modules over A. It is well known
that W is injective as a left module over A if and only if this condition holds,
as in Theorem 3.2 on p8 of [3].

To get the necessity of this condition, let I and ϕI be given as before. Note
that A may be considered as a left module over itself, so that I is a submodule
of A. If W is injective, then there is an extension ϕ of ϕI to a homomorphism
from A into W , as left modules over A. In this case, the condition holds with

w0 = ϕ(eA).(2.8.5)

To show the sufficiency of the condition, let V be a left module over A, let
V0 be a submodule of V , and let ϕ0 be a homomorphism from V0 into W , as
left modules over A. Also let v1 ∈ V be given, and observe that

V1 = {a · v1 + v0 : a ∈ A, v0 ∈ V0}(2.8.6)

is a submodule of V that contains V0. Put

I1 = {a ∈ A : a · v1 ∈ V0},(2.8.7)

which is a left ideal in A. If a ∈ I1, then put

ϕI1
(a) = ϕ0(a · v1).(2.8.8)

It is easy to see that this defines a homomorphism from I1 into W , as left
modules over A.

By hypothesis, there is a w1 ∈W such that

ϕ0(a · v1) = ϕI1
(a) = a · w1(2.8.9)



2.8. INJECTIVE MODULES 43

for every a ∈ I1. If a ∈ A and v0 ∈ V0, then we would like to put

ϕ1(a · v1 + v0) = a · w1 + ϕ0(v0).(2.8.10)

One can check that ϕ1 is well-defined as a mapping from V1 into W , using
(2.8.9). More precisely, ϕ1 is a homomorphism from V1 into W , as left modules
over A. Of course,

ϕ1 = ϕ0 on V0,(2.8.11)

by construction.
If V = V1, then there is nothing more to do. If V can be generated by V0

and finitely many other elements as a left module over A, then one can extend
ϕ0 to V by repeating this argument finitely many times. Similarly, if V can be
generated by V0 and an infinite sequence of other elements, as a left module over
A, then one can repeat this argument to extend ϕ0 to an increasing sequence of
submodules of V , whose union is V .

Otherwise, let E be the collection of all ordered pairs (U, ϕU ), where U is a
submodule of V that contains V0, and ϕU is a homomorphism from U into W ,
as left modules over A, that extends ϕ0. If (U1, ϕU1), (U2, ϕU2) ∈ E , then put

(U1, ϕU1
) � (U2, ϕU2

)(2.8.12)

when U1 ⊆ U2 and ϕU2 = ϕU1 on U1. This defines a partial ordering on E , and
one can use Zorn’s lemma or Hausdorff’s maximality principle to get that E
has a maximal element with respect to this partial order. If a maximal element
of E did not correspond to a homomorphism from V into W , then the earlier
construction could be used to get an extension to a larger submodule of V .

It is well known that every left module over A is isomorphic to a submodule
of an injective module, as in Theorem 3.3 on p9 of [3]. We shall return to this
in Sections 3.14 and 3.15.

LetW and Z be left modules over A, and let ζ be an injective homomorphism
from W into Z, as left modules over A. If W is injective as a left module over
A, then there is a homomorphism ϕ from Z into W , as left modules over A,
such that

ϕ ◦ ζ is the identity mapping on W.(2.8.13)

More precisely, one can use the injectivity of W to extend the inverse of ζ on
ζ(W ) to a homomorphism ϕ from Z into W . Note that ϕ(Z) =W , and that

ζ ◦ ϕ is the identity mapping on ζ(W ).(2.8.14)

Of course,
kerϕ = ker(ζ ◦ ϕ)(2.8.15)

is a submodule of Z. One can check that

Z corresponds to the direct sum of ζ(W ) and kerϕ(2.8.16)

as a left module over A, using standard arguments. This corresponds to part of
Proposition 3.4 on p10 of [3].
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In fact, the injectivity of W is necessary for this property to hold, as in
Proposition 3.4 on p10 of [3]. Indeed, if W is any left module over A, then there
is an injective homomorphism from W into an injective module Z, as mentioned
earlier. In this case, (2.8.16) implies that ζ(W ) is injective, as before, so that
W is injective.

Of course, there are analogous statements for right modules over A.

2.9 Covariant ϕ-extensions

Let k be a commutative ring with a multiplicative identity element, and let A,
B be associative algebras over k with multiplicative identity elements eA, eB ,
respectively. Suppose that ϕ is an algebra homomorphism from A into B, with
ϕ(eA) = eB .

Let V be a module over k. If V is a left module over B, then V may be
considered as a left module over A, where the action of a ∈ A on V is defined
to be the given action of ϕ(a) ∈ B on V . Similarly, if V is a right module over
B, then V may be considered as a right module over A. This corresponds to
some remarks on p28f of [3]. If A and B are commutative, then this is called
restriction of scalars, as on p27 of [1].

Of course, B may be considered as a left and right module over itself. Thus
B may be considered as a left and right module over A, as in the preceding
paragraph. Note that the left action on B by A or B commutes with the right
action by A or B. We also have that

ϕ may be considered as a homomorphism from A into B,(2.9.1)

as left and right modules over A.

If V is a right module over A, then let

V(ϕ) = V
⊗

A
B(2.9.2)

be a tensor product of V and B over A, where B is considered as a left module
over A, as in the preceding paragraph. More precisely, B may be considered as
a right module over itself too, and the left action of A on B commutes with the
right action of B on itself. This means that (2.9.2) may be considered as a right
module over B, as in Section 1.10.

Similarly, if V is a left module over A, then let

(ϕ)V = B
⊗

A
V(2.9.3)

be a tensor product of B and V over A, where B is considered as a right module
over A. This may be considered as a left module over B, as before. In each of
these two cases, the resulting module over B is called the covariant ϕ-extension
of V , as on p29 of [3]. This corresponds to extension of scalars when A and B
are commutative, as on p28 of [1].



2.10. MORE ON COVARIANT ϕ-EXTENSIONS 45

Let V be a right module over A again, and remember that V
⊗

AA is iso-
morphic to V , as a right module over A, in a natural way, as in Section 1.10. If
we consider ϕ as a homomorphism from A into B, as left modules over A, then
we get a unique homomorphism from V

⊗
AA into (2.9.2), as modules over k,

with

v ⊗A a 7→ v ⊗A ϕ(a)(2.9.4)

for every a ∈ A and v ∈ V , as in Section 1.9. More precisely, one can check
that this is a homomorphism from V

⊗
AA into (2.9.2), as right modules over

A. This may be identified with a homomorphism

from V into V(ϕ),(2.9.5)

as right modules over A, as on p29 of [3].
If V is a left module over A, then A

⊗
A V is isomorphic to V as a left module

over A in a natural way, as before. If we consider ϕ as a homomorphism from
A into B, as right modules over A, then we get a unique homomorphism from
A
⊗

A V into (2.9.3) with

a⊗A v 7→ ϕ(a)⊗A v(2.9.6)

for every a ∈ A and v ∈ V . One can verify that this is a homomorphism from
A
⊗

A V into (2.9.3), as left modules over A. This may be identified with a
homomorphism

from V into (ϕ)V,(2.9.7)

as left modules over A, as before.

2.10 More on covariant ϕ-extensions

Let us continue with the same notation and hypotheses as at the beginning of
the previous section. Suppose that V is a right module over A, and let Z be a
left module over B. Thus B

⊗
B Z corresponds to Z, as a left module over B,

in a natural way, which may be considered as a left module over A, as before.
This means that

V
⊗

A

(
B
⊗

B
Z
)

(2.10.1)

corresponds to

V
⊗

A
Z(2.10.2)

in a natural way, as modules over k. We also have that (2.10.1) is isomorphic
to

V(ϕ)
⊗

B
Z =

(
V
⊗

A
B
)⊗

B
Z,(2.10.3)

as modules over k, as in Section 1.12. Here B is considered as a left module
over A, and a right module over itself. Thus (2.10.2) is isomorphic to the left
side of (2.10.3), as modules over k, as in (1) on p29 of [3].
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Similarly, suppose that V is a right module over B, and that Z is a left
module over A. One can check that there is a natural isomorphism between
(2.10.2) and

V
⊗

B
(ϕ)Z,(2.10.4)

as modules over k, using the remarks in Section 1.12, as before. This corresponds
to (2) on p29 of [3].

Suppose now that V is a left module over A, and that Z is a left module
over B. There is a natural isomorphism between

HomB((ϕ)V, Z) = HomB

(
B
⊗

A
V, Z

)
(2.10.5)

and

HomA

(
V,HomB(B,Z)

)
,(2.10.6)

as modules over k, as in Section 1.13. We also have that HomB(B,Z) corre-
sponds to Z in a natural way, as a left module over B, as in Section 1.8. This
leads to a natural isomorphism between the left side of (2.10.5) and

HomA(V, Z),(2.10.7)

as modules over k. This corresponds to (3) on p29 of [3].
Similarly, suppose that V is a right module over A, and that Z is a right

module over B. One can get a natural isomorphism between

HomB(V(ϕ), Z)(2.10.8)

and (2.10.7), as modules over k, using the remarks in Section 1.13, as in the
preceding paragraph. This corresponds to (3’) on p30 of [3].

If V is a right module over A that is projective as a module over A, then
Proposition 6.1 on p30 of [3] states that V(ϕ) is projective as a right module over
B. More precisely, one can use the isomorphism between (2.10.8) and (2.10.7)
to reduce the projectivity condition for V(ϕ) to the projectivity condition for V .
Similarly, if V is a left module over A that is projective as a module over A,
then (ϕ)V is projective as a left module over B.

2.11 Contravariant ϕ-extensions

Let us continue with the same notation and hypotheses as at the beginning of
Section 2.9 again.

If V is a right module over A again, then let

V (ϕ) = HomA(B, V )(2.11.1)

be the space of homomorphisms from B into V , as right modules over A. This
may be considered as a right module over B, as in Section 1.8, because B is a
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left module over itself, and the left action commutes with the right action by A.
Similarly, if V is a left module over A, then let

(ϕ)V = HomA(B, V )(2.11.2)

be the space of homomorphisms from B into V , as left modules over A. This
may be considered as a left module over B, because B is a right module over
itself, and the right action commutes with the left action by A, as before. In
both cases, the resulting module over B is called the contravariant ϕ-extension
of V , as on p29 of [3].

Suppose that V is a right module over A again, and remember that the
space HomA(A, V ) of homomorphisms from A into V , as right modules over A,
is isomorphic to V as a right module over A in a natural way, as in Section 1.8.
There is a natural homomorphism

from HomA(B, V ) into HomA(A, V ),(2.11.3)

as modules over k, defined by

ψ 7→ ψ ◦ ϕ,(2.11.4)

as in Section 1.7. In fact, this is a homomorphism as in (2.11.3), as right modules
over A, because ϕ is a homomorphism from A into B, as both left and right
modules over A. This leads to a homomorphism

from V (ϕ) into V,(2.11.5)

as right modules over A, using the isomorphism between HomA(A, V ) and V
mentioned earlier. This corresponds to a remark on p29 of [3].

If V is a left module over A, then the space HomA(A, V ) of homomorphisms
from A into V , as left modules over A, is isomorphic to V as a left module
over A, as in Section 1.8 again. As before, there is a natural homomorphism
as in (2.11.3), as modules over k, defined by (2.11.4). More precisely, this is a
homomorphism as in (2.11.3), as left modules over A, because ϕ is a homomor-
phism from A into B, as both left and right modules over A. This leads to a
homomorphism

from (ϕ)V into V,(2.11.6)

as left modules over A, using the isomorphism between HomA(A, V ) and V .
Suppose now that V is a left module over B, and that Z is a left module

over A. There is a natural isomorphism between

HomB(V,
(ϕ)Z) = HomB

(
V,HomA(B,Z)

)
(2.11.7)

and
HomA

((
B
⊗

B
V
)
, Z

)
,(2.11.8)

as modules over k, as in Section 1.13. Remember that B
⊗

B V corresponds to
V in a natural way, as a left module over B, as in Section 1.10. Thus (2.11.8)
is isomorphic to

HomA(V, Z)(2.11.9)
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in a natural way, as modules over k. This means that the left side of (2.11.7) is
isomorphic to (2.11.9) in a natural way, as modules over k, as in (4) on p29 of
[3].

Similarly, suppose that V is a right module over B, and that Z is a right
module over A. One can use the remarks in Section 1.13 to get a natural
isomorphism between

HomB(V, Z
(ϕ))(2.11.10)

and (2.11.9), as modules over k, as before. This corresponds to (4’) on p30 of
[3].

If Z is a right module over A that is injective as a module over A, then
Proposition 6.1a on p30 of [3] states that Z(ϕ) is injective as a right module
over B. This uses the isomorphism between (2.11.10) and (2.11.9) to reduce the
injectivity of Z(ϕ) to the injectivity of Z. Similarly, if Z is a left module over A
that is injective as a module over A, then (ϕ)Z is injective as a left module over
B.

2.12 ϕ-Projectivity

We continue with the same notation and hypotheses as at the beginning of
Section 2.9.

Let V be a right module over B. Thus V may be considered as a right
module over A, and we use V (A) to refer to V as a module over A. As a right
module over A, we may define its covariant ϕ-extension

V (A)(ϕ) = V (A)
⊗

A
B,(2.12.1)

as before.
Consider the mapping from V (A)×B into V defined by

(v, b) 7→ v · b(2.12.2)

for every v ∈ V (A) and b ∈ B, using the action of B on V on the right. If a ∈ A,
then a acts on V (A) on the right by the action of ϕ(a) ∈ B on V on the right,
as a module over B. Similarly, a acts on B on the left, as a left module over A,
by multiplication on the left by ϕ(a). If we let a act on the right on v ∈ V (A)
in this way, then we get the same result in (2.12.2) as when we let a act on the
left on b ∈ B. More precisely, the result is

(v · ϕ(a)) · b = v · (ϕ(a) b),(2.12.3)

in terms of multiplication on B and the action of B on V on the right, as a
module over B.

It follows that there is a unique homomorphism g from (2.12.1) into V , as
modules over k, such that

g(v ⊗ b) = v · b(2.12.4)
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for every v ∈ V (A) and b ∈ B. More precisely, g is a homomorphism from
V (A)(ϕ) into V , as right modules over B, using the action of B on V (A)(ϕ) as
in Section 2.9. This corresponds to the homomorphism g defined on p30 of [3].

We may consider V (A)(ϕ) as a right module over A, as usual. Remember
that there is a natural homomorphism from V (A) into V (A)(ϕ), as right modules
over A, as in Section 2.9. This mapping was obtained from the homomorphism
from V (A)

⊗
AA into V (A)

⊗
AB, as right modules over A, that corresponds

to the identity mapping on V (A) and ϕ, as a homomorphism from A into B, as
left modules over A. One can check that

the composition of the natural mapping from V (A) into(2.12.5)

V (A)(ϕ) with g is equal to the identity mapping on V (A),

as on p30 of [3]. In particular, this implies that

g(V (A)(ϕ)) = V.(2.12.6)

Of course, the kernel of g is a submodule of V (A)(ϕ), as a right module over
B. Thus ker g may be considered as a submodule of V (A)(ϕ), as a right module
over A. In fact, V (A)(ϕ) corresponds to the direct sum of ker g and the image
of the natural mapping from V (A) into V (A)(ϕ), as a right module over A, by
the remarks in the preceding paragraph.

Note that the natural mapping from V (A) in V (A)(ϕ) is injective, by (2.12.5).
This and the statement in the previous paragraph are mentioned in Exercise 13
on p32 of [1], for modules over commutative rings. More precisely, the natural
mapping from V (A) into V (A)(ϕ) is called g in [1], and the mapping g here is
called p in [1].

If V is projective as a right module over B, then

V (A)(ϕ) corresponds to the direct sum of ker g and another(2.12.7)

submodule of V (A)(ϕ), as a right module over B,

as in Section 2.7. If (2.12.7) holds, then V is said to be ϕ-projective as a right
module over B, as on p30 of [3]. In this case, the restriction of g to the other
submodule of V (A)(ϕ) is an isomorphism from that submodule onto V , as right
modules over B.

If V (A) is projective as a right module over A, then V (A)(ϕ) is projective as
a right module over B, as in Section 2.10. If V is also ϕ-projective, as a right
module over B, then it follows that

V is projective as a right module over B,(2.12.8)

as in Section 2.7. This corresponds to the first part of Proposition 6.2 on p30
of [3].

If B is projective as a right module over A, and V is projective as a right
module over B, then the second part of Proposition 6.2 on p30 of [3] states that

V (A) is projective as a right module over A.(2.12.9)
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To see this, let W and Z be right modules over A, and let ψ be a homomor-
phism from W onto Z, as right modules over A. Consider the contravariant
ϕ-extensions W (ϕ) and Z(ϕ) of W and Z, respectively, as in the previous sec-
tion. Using ψ, we get a homomorphism Ψ fromW (ϕ) into Z(ϕ), as right modules
over B. More precisely, Ψ sends a homomorphism from B intoW , as right mod-
ules over A, to its composition with ψ, to get a homomorphism from B into Z,
as right modules over A.

If B is projective as a right module over A, then

Ψ(W (ϕ)) = Z(ϕ).(2.12.10)

Using Ψ, we get a homomorphism Ψ̂

from HomB(V,W
(ϕ)) into HomB(V, Z

(ϕ)),(2.12.11)

as modules over k. As before, Ψ̂ sends a homomorphism from V into W (ϕ), as
right modules over B, to its composition with Ψ, to get a homomorphism from
V into Z(ϕ), as right modules over B. If V is projective, as a right module over
B, then

Ψ̂
(
HomB(V,W

(ϕ))
)
= HomB(V, Z

(ϕ)).(2.12.12)

Similarly, we can use ψ to get a homomorphism Ψ̃

from HomA(V (A),W ) into HomA(V (A), Z),(2.12.13)

as modules over k. As usual, Ψ̃ sends a homomorphism from V (A) into W , as
right modules over A, to its composition with ψ, to get a homomorphism from
V (A) into Z, as right modules over A. To show that V is projective, as a right
module over A, we would like to check that

Ψ̃
(
HomA(V (A),W )

)
= HomA(V (A), Z).(2.12.14)

Remember that there are natural isomorphisms between HomA(V (A),W ),
HomA(V (A), Z) and HomB(V,W

(ϕ)), HomB(V, Z
(ϕ)), respectively, as modules

over k, as in the previous section. Using this, we get that (2.12.14) follows from
(2.12.12), as desired.

Of course, there are analogous statements for left modules.

2.13 ϕ-Injectivity

We continue with the same notation and hypotheses as at the beginning of
Section 2.9 again.

Let Z be a right module over B, which may be considered as a right module
over A. To be precise, we use Z(A) to refer to Z as a module over A, whose
contravariant ϕ-extension is defined by

Z(A)(ϕ) = HomA(B,Z(A)),(2.13.1)
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as before.
If z ∈ Z, then

b 7→ z · b(2.13.2)

defines a homomorphism from B into Z, as right modules over B. This may
also be considered as a homomorphism from B into Z(A), as right modules over
A, which is to say an element of (2.13.1). This defines a mapping h from Z into
(2.13.1), with

h(z) = (2.13.2)(2.13.3)

for every z ∈ Z, as on p30 of [3]. One can check that h is a homomorphism from
Z into Z(A)(ϕ), as right modules over B, where the action of B on Z(A)(ϕ) on
the right is defined using the action of B on itself on the left, as in Section 2.11.

Remember that there is a natural homomorphism from Z(A)(ϕ) into Z(A),
as right modules over A, as in Section 2.11. This mapping was obtained from the
homomorphism from HomA(B,Z(A)) into HomA(A,Z(A)) defined by composi-
tion with ϕ, by identifying HomA(A,Z(A)) with Z(A) in the usual way. This is
the same as evaluating an element of Z(A)(ϕ) at eB , as a homomorphism from
B into Z(A).

Observe that

the composition of h with the natural mapping from Z(A)(ϕ)(2.13.4)

into Z(A) is equal to the identity mapping on Z(A),

as on p30 of [3]. In particular, this implies that

h is injective on Z.(2.13.5)

Note that h(Z) is a submodule of Z(A)(ϕ), as a right module over B, and
thus as a right module over A. We also have that Z(A)(ϕ) corresponds to the
direct sum of h(Z) and the kernel of the natural mapping from Z(A)(ϕ) into
Z(A), as a right module over A, because of (2.13.4).

If Z is injective as a right module over B, then

Z(A)(ϕ) corresponds to the direct sum of h(Z) and another(2.13.6)

submodule of Z(A)(ϕ), as a right module over B,

as in Section 2.8. If (2.13.6) holds, then Z is said to be ϕ-injective as a right
module over Z, as on p31 of [3].

If Z(A) is injective as a right module over A, then Z(A)(ϕ) is injective as
a right module over B, as in Section 2.11. If Z is also ϕ-injective, as a right
module over B, then it follows that

Z is injective as a right module over B,(2.13.7)

as in Section 2.8. This corresponds to the first part of Proposition 6.2a on p31
of [3].
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Suppose that B is projective as a left module over A, and that Z is injective
as a right module over B. Under these conditions, the second part of Proposition
6.2a on p31 of [3] states that

Z(A) is injective as a right module over A.(2.13.8)

Let V be a right module over A, and let V0 be a submodule of V . Of course,
there is a natural mapping

from HomA(V, Z(A)) into HomA(V0, Z(A)),(2.13.9)

which sends a homomorphism from V into Z(A), as right modules over A, to
its restriction to V0. This defines a homomorphism as in (2.13.9), as a mapping
between modules over k, and we would like to show that this homomorphism is
a surjection.

Let V(ϕ), (V0)(ϕ) be the covariant ϕ-extensions of V , V0, respectively, as in
Section 2.9. The natural inclusion mapping from V0 into V leads to a homo-
morphism

from (V0)(ϕ) into V(ϕ),(2.13.10)

as right modules over B, using the identity mapping on B. This homomorphism
is injective, because B is projective as a left module over A, as in Section 2.7.

There are natural isomorphisms between HomA(V, Z(A)), HomA(V0, Z(A))
and HomB(V(ϕ), Z), HomB((V0)(ϕ), Z), respectively, as modules over k, as in
Section 2.10. There is also a natural homomorphism

from HomB(V(ϕ), Z) into HomB((V0)(ϕ), Z),(2.13.11)

as modules over k, which sends a homomorphism from V(ϕ) into Z, as right
modules over B, to its composition with the homomorphism as in (2.13.10).
This homomorphism maps HomB(V(ϕ), Z) onto HomB((V0)(ϕ), Z), because Z is
injective as a right module over B, and the homomorphism as in (2.13.10) is
injective, as before.

It follows that the natural homomorphism as in (2.13.9) is surjective, as
desired.

2.14 A ϕ-projectivity property

We continue with the notation and hypotheses mentioned at the beginning of
Section 2.9.

Let V be a right module over A, so that V(ϕ) is a right module over B, as in
Section 2.9. The first part of Proposition 6.3 on p31 of [3] states that

V(ϕ) is ϕ-projective,(2.14.1)

in the sense described in Section 2.12.
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Let V(ϕ)(A) be V(ϕ), considered as a right module over A, as in Section 2.12.
The covariant ϕ-extension of V(ϕ)(A) is defined by

(V(ϕ)(A))(ϕ) = V(ϕ)(A)
⊗

A
B,(2.14.2)

as before. Let gV(ϕ)
be the homomorphism from (2.14.2) into V(ϕ), as right

modules over B, defined in Section 2.12. In fact, gV(ϕ)
maps (2.14.2) onto V(ϕ),

as before. We would like to show that (2.14.2) corresponds to the direct sum
of the kernel of gV(ϕ)

and another submodule of (2.14.2), as a right module over
B.

Let B
⊗

AB be a tensor product of B with itself over A, where the first B
is considered as a right module over A, and the second B is considered as a
left module over A. Note that B

⊗
AB may be considered as a left and right

module over B, by considering the first B as a left module over itself, and the
second B as a right module over itself. It is easy to see that these two actions
of B on B

⊗
AB on the left and right commute with each other. It follows that

B
⊗

AB may be considered as a left and right module over A as well.
Let α be the mapping from B into B

⊗
AB defined by

α(b) = eB ⊗ b(2.14.3)

for every b ∈ B. One can check that α is a homomorphism from B into B
⊗

AB,
as left modules over A, and right modules over B, as on p31 of [3].

It is easy to see that there is a unique homomorphism β from B
⊗

AB into
B, as modules over k, such that

β(b1 ⊗ b2) = b1 b2(2.14.4)

for every b1, b2 ∈ B. More precisely, this is a homomorphism from B
⊗

AB into
B as left and right modules over B. In particular, β may be considered as a
homomorphism from B

⊗
AB into B, as left modules over A, as on p31 of [3].

Note that
β ◦ α is the identity mapping on B,(2.14.5)

by construction.
Using the identity mapping on V and α on B, we get a homomorphism α′

from V(ϕ) = V
⊗

A
B into V

⊗
A

(
B
⊗

A
B
)
,(2.14.6)

as modules over k. More precisely, this is a homomorphism as in (2.14.6),
as right modules over B, as on p31 of [3]. Similarly, we can use the identity
mapping on V and β on B

⊗
AB to get a homomorphism β′

from V
⊗

A

(
B
⊗

A
B
)
into V

⊗
A
B = V(ϕ),(2.14.7)

as right modules over B. It is easy to see that

β′ ◦ α′ is the identity mapping on V(ϕ),(2.14.8)
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because of (2.14.5).
As in Section 1.12, there is a natural isomorphism

between V
⊗

A

(
B
⊗

A
B
)
and

(
V
⊗

A
B
)⊗

A
B = (V(ϕ)(A))(ϕ),(2.14.9)

as modules over k. More precisely, this is an isomorphism as in (2.14.9), as right
modules over B. Thus β′ corresponds to a homomorphism

from (V(ϕ)(A))(ϕ) into V(ϕ),(2.14.10)

as right modules over B. In fact, β′ corresponds to the homomorphism gV(ϕ)

mentioned earlier, as on p31 of [3].
Similarly, α′ corresponds to a homomorphism

from V(ϕ) into (V(ϕ)(A))(ϕ),(2.14.11)

as right modules over B. Using (2.14.8), we get that

the composition of this homomorphism with gV(ϕ)
(2.14.12)

is the identity mapping on V(ϕ).

This implies that

(V(ϕ)(A))(ϕ) corresponds to the direct sum of ker gV(ϕ)
(2.14.13)

and the image of V(ϕ) under the homomorphism

corresponding to α′ as in (2.14.11),

as a right module over B, as desired.
Alternatively, there is a natural homomorphism from V into V(ϕ), as right

modules over A, as in Section 2.9. This homomorphism may be described
equivalently by

v 7→ v ⊗ ϕ(ea) = v ⊗ eB(2.14.14)

for each v ∈ V . This leads to a homomorphism from V(ϕ) = V
⊗

AB into
(2.14.2), as right modules on B, using the identity mapping on B. This is the
same as the homomorphism corresponding to α′ as in the preceding paragraph.
The composition of this homomorphism with gV(ϕ)

is the identity mapping on
V(ϕ), as before.

There are analogous statements for left modules over A, as in Proposition
6.3 on p31 of [3].

2.15 A ϕ-injectivity property

We continue with the notation and hypotheses mentioned at the beginning of
Section 2.9 again.

Let V be a right module over A. The second part of Proposition 6.3 on p31
of [3] states that

V (ϕ) is ϕ-injective(2.15.1)



2.15. A ϕ-INJECTIVITY PROPERTY 55

as a right module over B, in the sense described in Section 2.13. Remember
that V (ϕ) is defined as in Section 2.11, and let V (ϕ)(A) be V (ϕ), considered as a
right module over A, as before. Thus the contravariant ϕ-extension of V (ϕ)(A)
is defined by

(V (ϕ)(A))(ϕ) = HomA(B, V
(ϕ)(A)).(2.15.2)

Let hV (ϕ) be the homomorphism from V (ϕ) into (2.15.2), as right modules
over B, defined in Section 2.13. Remember that this homomorphism is injective,
as before. We would like to show that (2.15.2) corresponds to the direct sum of
the image of hV (ϕ) and another submodule of (2.15.2), as a right module over
B.

Observe that

(V (ϕ)(A))(ϕ) = HomA

(
B,HomA(B, V )

)
(2.15.3)

is isomorphic to

HomA

(
B
⊗

A
B, V

)
,(2.15.4)

as modules over k, in a natural way, as in Section 1.13. More precisely, this is
an isomorphism between right modules over B. Here B

⊗
AB is considered as

a right module over A, and as a left module over B, so that the space (2.15.4)
of homomorphisms from B

⊗
AB into V , as right modules over A, may be

considered as a right module over B.
Let α̃ be the mapping from B into B

⊗
AB defined by

α̃(b) = b⊗ eB(2.15.5)

for every b ∈ B. This is a homomorphism from B into B
⊗

AB, as left modules
over B, and right modules over A.

Let α̃′ be the mapping

from (2.15.4) into V (ϕ) = HomA(B, V )(2.15.6)

defined by composing an element of (2.15.4) with α̃, to get a homomorphism
from B into V , as right modules over A. This defines a homomorphism from
(2.15.4) into V (ϕ), as right modules over B. Using the isomorphism between
(2.15.3) and (2.15.4) mentioned earlier, we get that α̃′ corresponds to a homo-
morphism

from (V (ϕ)(A))(ϕ) into V (ϕ),(2.15.7)

as right modules over B.
Remember that β is the homomorphism from B

⊗
AB into B determined

by (2.14.4). Let β̃′ be the mapping

from V (ϕ) = HomA(B, V ) into (2.15.4)(2.15.8)

defined by composing an element of HomA(B, V ) with β. This defines a ho-

momorphism as in (2.15.8), as right modules over B. One can verify that β̃′
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corresponds to hV (ϕ) , using the isomorphism between (2.15.3) and (2.15.4) men-
tioned earlier. This uses the way that the action of B on V (ϕ) on the right is
defined.

Of course,
β ◦ α̃ is the identity mapping on B,(2.15.9)

by construction. This implies that

α̃′ ◦ β̃′ is the identity mapping on V (ϕ).(2.15.10)

Equivalently, this means that the composition of hV (ϕ) with the homomorphism
from (V (ϕ)(A))(ϕ) into V (ϕ) corresponding to α̃′ is the identity mapping on V (ϕ).
It follows that (V (ϕ)(A))(ϕ) corresponds to the direct sum of the image of hV (ϕ)

and the kernel of the homomorphism corresponding to α̃′, as a right module
over B, as desired.

Alternatively, there is a natural homomorphism from V (ϕ) into V , as right
modules over A, as in Section 2.11. Equivalently, this homomorphism sends
an element of V (ϕ) = HomA(B, V ) to its value at eB . This leads to a natural
mapping from (2.15.2) into V (ϕ), by composing an element of HomA(B, V

(ϕ)(A))
with the homomorphism just mentioned to get an element of HomA(B, V ). This
defines a homomorphism from (V (ϕ)(A))(ϕ) into V (ϕ), as right modules over B.
This is the same as the homomorphism corresponding to α̃′ mentioned earlier.

One can check that that composition of hV (ϕ) with the homomorphism just
mentioned is the same as the identity mapping on V (ϕ), as before. This basically
reduces to evaluating an element of V (ϕ) = HomA(B, V ) at b eB = b for each
b ∈ B, because of the way that the action of b ∈ B on V (ϕ) on the right is
defined.

There are analogous statements for left modules over A, as usual.
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3.1 Semisimple modules

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V be a module over k that is a left or right module over A. We say that V is
simple as a module over A if A 6= {0}, and V does not have any proper nonzero
submodules, as a module over A. We say that V is semisimple as a module
over A if it is isomorphic to the direct sum of a family of simple modules, as a
module over A.

Let V0 be a submodule of V , as a module over A. It is well known that

V corresponds to the direct sum of V0 and(3.1.1)

another submodule, as a module over A

if and only if

there is a homomorphism ϕ0 from V onto V0, as modules(3.1.2)

over A, that is equal to the identity mapping on V0.

More precisely, if (3.1.2) holds, then V corresponds to the direct sum of V0 and
the kernel of ϕ0, as a module over A.

It is well known that V is semisimple as a module over A if and only if (3.1.1)
holds for every submodule V0 of V , as a module over A, as in Proposition 4.1
on p11 of [3]. To show the “only if” part, suppose that V corresponds to the
direct sum of a family {Vj}j∈I of simple submodules, as a module over A. If I0
is a subset of I, then let V (I0) be the submodule of V generated by Vj , j ∈ I0.

Let W be a submodule of V , as a module over A. Let us say that I0 ⊆ I is
admissible with respect to W if

V (I0) ∩W = {0}.(3.1.3)

57
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We would like to use a subset I1 of I that is admissible with respect to W
and maximal with respect to inclusion. If I has only finitely or countably
many elements, then one can get a maximal admissible subset of I using fairly
straightforward arguments. Otherwise, one can use Zorn’s lemma or Hausdorff’s
maximality principle to get a maximal admissible subset of I.

If j ∈ I \ I1, then I1 ∪ {j} is not admissible with respect to W , so that

V (I1 ∪ {j}) ∩W 6= {0}.(3.1.4)

This means that there is a nonzero element of W that can be expressed as the
sum of elements of V (I1) and Vj . This element of Vj has to be nonzero, because
I1 is admissible with respect to W . It follows that there is a nonzero element of
Vj that can be expressed as the sum of elements of V (I1) and W . Thus

Vj ∩ (V (I1) +W ) 6= {0},(3.1.5)

which implies that
Vj ⊆ V (I1) +W,(3.1.6)

because Vj ∩ (V (I1) +W ) is a submodule of Vj , as a module over A, and Vj is
simple, by hypothesis. This shows that

V = V (I1) +W,(3.1.7)

because (3.1.6) holds for every j ∈ I \ I1. This means that V corresponds to the
direct sum of V (I1) and W , as a module over A, because I1 is admissible with
respect to W .

Conversely, suppose that (3.1.1) holds for every submodule V0 of V , as a
module over A, so that (3.1.2) holds for every submodule V0 of V . Let W be
a submodule of V , and let W0 be a submodule of W , as modules over A. In
particular, W0 is a submodule of V , so that there is a homomorphism from V
onto W0, as modules over A, that is equal to the identity mapping on W0. The
restriction of this homomorphism to W is a homomorphism from W onto W0,
as modules over A, that is equal to the identity mapping on W0. It follows that

W corresponds to the direct sum of W0 and(3.1.8)

another submodule, as a module over A,

as before.
If k is a field, and V has finite dimension as a vector space over k, then

one can use this repeatedly to express V as the direct sum of finitely many
simple submodules, as a module over A. Otherwise, one can use the following
argument.

Let Z be a nonzero submodule of V , as a module over A. We would like to
show that Z contains a nonzero simple submodule, as a module over A. Let z be
a nonzero element of Z. One can use Zorn’s lemma or Hausdorff’s maximality
principle to show that there is a submodule Z0 of Z, as a module over A, such
that

z 6∈ Z0,(3.1.9)
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and Z0 is maximal with respect to inclusion. By hypothesis, there is a sub-
module Z1 of Z such that Z corresponds to the direct sum of Z0 and Z1, as a
module over A, as in (3.1.8). Note that Z1 6= {0}, because of (3.1.9). We would
like to check that Z1 is simple, as a module over A.

If Z1 is not simple, then there is a nonzero proper submodule Z2 of Z1. This
means that Z1 corresponds to the direct sum of Z2 and another nonzero proper
submodule Z3, as a module over A, by hypothesis. Thus Z corresponds to the
direct sum of Z0, Z2, and Z3, as a module over A. It is easy to see that z cannot
be an element of both Z0+Z2 and Z0+Z3, because of (3.1.9). This contradicts
the maximality of Z0, as desired.

Let us say that a collection C of submodules of V is admissble if every
element of C is simple as a module over A, and the submodule of V generated
by C corresponds to the direct sum of the elements of C, as a module over A.
One can use Zorn’s lemma or Hausdorff’s maximality principle to show that
there is an admissble collection C0 that is maximal with respect to inclusion.
Let W be the submodule of V generated by the elements of C0. If W 6= V , then
V corresponds to the direct sum of W and a nonzero submodule Z, as a module
over A, by hypothesis. Let Z0 be a submodule of Z that is simple, as a module
over A, as in the previous paragraphs. Under these conditions, C0 ∪ {Z0} is
admissible, contradicting the maximality of C0. It follows that V =W , so that
V is semisimple as a module over A.

3.2 Direct systems of modules

Let I be a set. A binary relation � on I is said to be a pre-order on I if it is
reflexive and transitive on I. In this case, the binary relation on I defined by

j ' l when j � l and l � j(3.2.1)

defines an equivalence relation on I. If (3.2.1) holds if and only if j = l, then �
is said to be a partial ordering on I.

Let us say that (I,�) is a pre-directed set or a pre-directed system if � is
a pre-ordering on I, and for every j, l ∈ I there is an r ∈ I such that j, l � r.
Thus a directed set or system is the same as a pre-directed set or system, where
the pre-ordering is a partial ordering. Of course, slightly different conventions
are sometimes used.

One can define direct limits using pre-directed sets instead of directed sets,
and we shall do this now for modules. Let k be a commutative ring with a
multiplicative identity element, and let (I,�) be a nonempty pre-directed set.
Also let Vj be a module over k for every j ∈ I. Suppose that for every j, l ∈ I
with j � l we have a homomorphism νj,l from Vj into Vl, as modules over k,
with the following two properties. First, νj,j is the identity mapping on Vj for
every j ∈ I. Second, if j, l, r ∈ I and j � l � r, then

νl,r ◦ νj,l = νj,r.(3.2.2)
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Under these conditions, the family of modules Vj and homomorphisms νj,l is
said to form a direct or inductive system over (I,�), as before. If j, l ∈ I satisfy
(3.2.1), then it follows that νj,l and νl,j are inverses of each other.

If l ∈ I, then let ιl be the natural injection from Vl into the direct sum⊕
j∈I Vj , so that for each vl ∈ Vl, the jth coordinate of ιl(vl) is equal to vl when

j = l, and to 0 when j 6= l. Let U be the subset of
⊕

j∈I Vj consisting of finite
sums of the form

ιl(vl)− ιr(νl,r(vl)),(3.2.3)

where l, r ∈ I, l � r, and vl ∈ Vl. It is easy to see that U is a submodule of⊕
j∈I Vj , as a module over k. Put

lim
−→

Vj =
(⊕
j∈I

Vj

)
/U,(3.2.4)

where the quotient on the right defines a module over k. This is the direct or
inductive limit of the direct system of Vj ’s, j ∈ I, as a module over k.

Let q be the natural quotient mapping from
⊕

j∈I Vj into (3.2.4), and for
each l ∈ I, put

νl = q ◦ ιl.(3.2.5)

This is a homomorphism from Vl into (3.2.4), as modules over k. Note that

νl = νr ◦ νl,r(3.2.6)

for every l, r ∈ I with l � r, by construction. The direct limit consists more pre-
cisely of the module (3.2.4) together with the homomorphisms νl, as in Exercise
14 on p32f of [1].

Every element of (3.2.4) can be expressed as νl(vl) for some l ∈ I and vl ∈ Vl,
as before. This uses the hypothesis that (I,�) be a pre-directed set. If

νl(vl) = 0,(3.2.7)

then there is an r ∈ I such that l � r and

νl,r(vl) = 0.(3.2.8)

This corresponds to Exercise 15 on p33 of [1].
Let Z be another module over k, and let ζl be a homomorphism from Vl into

Z, as modules over k, for each l ∈ I. Suppose that for every l, r ∈ I with l � r,
we have that

ζl = ζr ◦ νl,r.(3.2.9)

Under these conditions, there is a unique homomorphism ζ from (3.2.4) into Z,
as modules over k, such that

ζ ◦ νl = ζl(3.2.10)

for every l ∈ I. The direct limit is uniquely determined up to isomorphism by
this property, as in Exercise 16 on p33 of [1].
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Let A be an associative algebra over k, with a multiplicative identity element
eA. Suppose either that Vj is a left module over A for every j ∈ I, or a right
module over A for every j ∈ I. Suppose also that for every j, l ∈ I, νj,l is a
homomorphism from Vj into Vl, as modules over A. Of course,

⊕
j∈I Vj is a

left or right module over A too, as appropriate. It is easy to see that the set
U defined earlier is a submodule of

⊕
j∈I Vj , as a module over A, in this case.

Thus (3.2.4) may be considered as a left or right module over A, as appropriate.
Similarly, (3.2.5) defines a homomorphism from Vl into (3.2.4), as modules over
A, for each l ∈ I. There are analogues of the remarks in the previous paragraph
for modules over A as well.

3.3 Direct systems of submodules

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V be a left or right module over A, and let (I,�) be a nonempty pre-directed
set. Suppose that Vj is a submodule of V for each j ∈ I, with

Vl ⊆ Vr(3.3.1)

when l, r ∈ I and l � r. Note that ⋃
j∈I

Vj(3.3.2)

is a submodule of V , because (I,�) is a pre-directed set. We can get a direct
system by taking νj,l to be the natural inclusion mapping from Vj into Vl when
j, l ∈ I and j � l. The corresponding direct limit is isomorphic to (3.3.2), as
in Exercise 17 on p33 of [1]. Of course, any collection of submodules of V is
partially ordered by inclusion, and one can simpy ask that such a collection be
a directed set with respect to inclusion.

Now let I be a nonempty set, and let Vj be a left module over A for each
j ∈ I. Thus the direct sum V =

⊕
j∈I Vj is a left module over A as well. Let

I be the collection of nonempty finite subsets of I. It is easy to see that I is a
directed set with respect to the partial ordering defined by inclusion.

If I1 ∈ I, then let V (I1) be the submodule of V consisting of elements whose
jth coordinate is equal to 0 when j ∈ I \ I1. If I2 ∈ I and I1 ⊆ I2, then

V (I1) ⊆ V (I2).(3.3.3)

Clearly

V =
⋃
I1∈I

V (I1).(3.3.4)

As before, we may consider the family of V (I1)’s, I1 ∈ I, as a direct system
of modules, using the natural inclusion mapping from V (I1) into V (I2) when
I1, I2 ∈ I and I1 ⊆ I2. The corresponding direct limit is isomorphic to V , as a
left module over A, as in the preceding paragraph.
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Alternatively, if I1 ∈ I, then put

VI1 =
∏
j∈I1

Vj ,(3.3.5)

which is a left module over A. If I2 ∈ I and I1 ⊆ I2, then there is a natural
injective homomorphism from VI1 into VI2 , as left modules over A. This ho-
momorphism sends an element of VI1 to the element of VI2 with the same jth
coordinates when j ∈ I1, and with all other coordinates equal to 0. Using these
homomorphisms, the family of VI1 ’s, I1 ∈ I, becomes a direct system of mod-
ules. Of course, VI1 is isomorphic to V (I1), as left modules over A, in a natural
way for each I1 ∈ I, and the homomorphism from VI1 into VI2 just mentioned
corresponds exactly to the inclusion of V (I1) into V (I2) when I1 ⊆ I2. This
leads to an isomorphism between the direct limit of the VI1 ’s and the direct
limit of the V (I1)’s, as left modules over A. There are analogous statements for
right modules over A.

3.4 Homomorphisms between direct systems

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k, with a multiplicative identity element eA. Also
let (I,�) be a nonempty directed set, and let Vj , Wj be left modules over A for
every j ∈ I. Suppose that for every j, l ∈ I with j � l, we have homomorphisms
νj,l, µj,l from Vj , Wj into Vl, Wl, respectively, as left modules over A, and that
these homomorphisms satisfy the two conditions mentioned in Section 3.2. Thus
the direct limits of the Vj ’s and Wj ’s can be defined as left modules over A, as
before. If l ∈ I, then we let νl, µl be the corresponding homomorphisms from
Vl, Wl into lim

−→
Vj , lim−→

Wj , respectively.

Let ϕj be a homomorphism from Vj into Wj , as left modules over A, for
each j ∈ I. If j, l ∈ I and j � l, then we ask that

ϕl ◦ νj,l = µj,l ◦ ϕj .(3.4.1)

Under these conditions, the family of ϕj ’s, j ∈ I, is considered to define a
homomorphism between the direct systems of Vj ’s andWj ’s, j ∈ I, as in Exercise
18 on p33 of [1].

In this case, there is a unique homomorphism ϕ = lim
−→

ϕj from lim
−→

Vj into

lim
−→

Wj , as left modules over A, such that

ϕ ◦ νl = µl ◦ ϕl(3.4.2)

for every l ∈ I, as in [1]. Indeed, µl ◦ ϕl defines a homomorphism from Vl into
lim
−→

Wj , as left modules over A, for each l ∈ I. If l, r ∈ I and l � r, then

(µr ◦ ϕr) ◦ νl,r = µr ◦ µl,r ◦ ϕl = µl ◦ ϕl.(3.4.3)
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Using this, we can get the homomorphism ϕ from the homomorphisms µl ◦ ϕl,
l ∈ I, as in Section 3.2.

Let Zj be a left module over A for every j ∈ I, and suppose that for every
j, l ∈ I with j � l, we have a homomorphism ζj,l from Zj into Zl, as left modules
over A, that satisfy the two conditions mentioned in Section 3.2. This means
that the direct limit of the Zj ’s can be defined as a left module over A as before,
and we let ζl be the corresponding homomorphism from Zl into lim

−→
Zj for each

l ∈ I.
Let ψj be a homomorphism from Wj into Zj , as left modules over A, for

each j ∈ I, and suppose that

ψl ◦ µj,l = ζj,l ◦ ψj(3.4.4)

for every j, l ∈ with j � l. This leads to a unique homomorphism ψ = lim
−→

ψj

from lim
−→

Wj into lim
−→

Zj , as left modules over A, such that

ψ ◦ µl = ζl ◦ ψl(3.4.5)

for every l ∈ I, as before.
Of course, ψj ◦ ϕj is a homomorphism from Vj into Zj , as left modules over

A, for every j ∈ I. If j, l ∈ I and j � l, then

(ψl ◦ ϕl) ◦ νj,l = ψl ◦ µj,l ◦ ϕj = ζj,l ◦ (ψj ◦ ϕj).(3.4.6)

We also have that

(ψ ◦ ϕ) ◦ νl = ψ ◦ µl ◦ ϕl = ζl ◦ (ψl ◦ ϕl)(3.4.7)

for every l ∈ I. This means that

lim
−→

(ψj ◦ ϕj) = ψ ◦ ϕ,(3.4.8)

as homomorphisms from lim
−→

Vj into lim
−→

Zj , as left modules over A.

Suppose that
ψj ◦ ϕj = 0(3.4.9)

for every j ∈ I, and observe that

ψ ◦ ϕ = 0.(3.4.10)

In fact, suppose that

Vj
ϕj−→Wj

ψj−→ Zj(3.4.11)

is exact for each j ∈ I, so that we have an exact sequence of homomorphisms
between direct systems, as in Exercise 19 on p33 of [1]. We would like to check
that

lim
−→

Vj
ϕ−→ lim

−→
Wj

ψ−→ lim
−→

Zj(3.4.12)



64 CHAPTER 3. MODULES AND TENSOR PRODUCTS, 3

is exact, as in [1].
Remember that an arbitary element of lim

−→
Wj can be expressed as µl(wl)

for some l ∈ I and wl ∈Wl, as in Section 3.2. If

ψ(µl(wl)) = 0,(3.4.13)

then

ζl(ψl(wl)) = 0,(3.4.14)

by (3.4.5). This implies that there is an r ∈ I such that l � r and

ζl,r(ψl(wl)) = 0,(3.4.15)

as in Section 3.2. It follows that

ψr(µl,r(wl)) = 0,(3.4.16)

by (3.4.4).
Using our exactness hypothesis, we get that there is a vr ∈ Vr such that

µl,r(wl) = ϕr(vr).(3.4.17)

Remember that

µl(wl) = µr(µl,r(wl)),(3.4.18)

as in (3.2.6). Thus

µl(wl) = µr(ϕr(vr)) = ϕ(νr(vr)),(3.4.19)

using (3.4.2) in the second step. This shows that µl(wl) is in the image of lim
−→

Vj

under ϕ, as desired.
Of course, there are analogous statements for right modules.

3.5 Limits of bilinear mappings

Let k be a commutative ring with a multiplicative identity element, and let (I,�)
be a nonempty directed set. Also let Vj be a module over k for each j ∈ I, and
suppose that for every j, l ∈ I with j � l we have a homomorphism νj,l from Vj
into Vl, as modules over k, that satisfies the two conditions mentioned in Section
3.2. This means that the direct limit lim

−→
Vj can be defined as a module over k

as in Section 3.2, and we let νl be the corresponding homomorphism from Vl
into the direct limit, as modules over k, for each l ∈ I, as before.

Let W and Z be modules over k, and suppose that for each j ∈ I, bj is a
mapping from Vj ×W into Z that is bilinear over k. If w ∈W , then

bj,w(v) = bj(v, w)(3.5.1)
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defines a homomorphism from Vj into Z, as modules over k. Suppose that for
every l, r ∈ I with l � r and w ∈W we have that

bl,w = br,w ◦ νl,r.(3.5.2)

This implies that for each w ∈ W there is a unique homomorphism bw from
lim
−→

Vj into Z such that

bw ◦ νl = bl,w(3.5.3)

for every l ∈ I, as in Section 3.2. Of course, (3.5.2) is the same as saying that

bl(vl, w) = br(νl,r(vl), w)(3.5.4)

for every l, r ∈ I with l � r, vl ∈ Vl, and w ∈W .
Consider the mapping b

from
(
lim
−→

Vj
)
×W into Z(3.5.5)

defined by

b(v, w) = bw(v)(3.5.6)

for every v ∈ lim
−→

Vj and w ∈ W . Of course, b(v, w) is linear over k in v,

as in the preceding paragraph. One can check that b(v, w) is linear over k in
w too, because bw is uniquely determined by (3.5.3). Note that b is uniquely
determined by the condition that

b(νl(vl), w) = bl(vl, w)(3.5.7)

for every l ∈ I, vl ∈ Vl, and w ∈W .
Let A be an associative algebra over k with a multiplicative identity element

eA. Suppose for the moment that Vj is a right module over A for every j ∈ I,
and that νj,l is a homomorphism from Vj into Vl, as right modules over A, for
every j, l ∈ I with j � l. This implies that lim

−→
Vj is a right module over A, and

that νl is a homomorphism from Vl into lim
−→

Vj , as right modules over A, for

every l ∈ I. Suppose also that W is a left module over A, and that

bj(vj · a,w) = bj(vj , a · w)(3.5.8)

for every j ∈ I, a ∈ A, vj ∈ Vj , and w ∈ W . If l ∈ I, a ∈ A, vl ∈ Vl, and
w ∈W , then it follows that

b(νl(vl) · a,w) = b(νl(vl · a), w) = bl(vl · a,w)
= bl(vl, a · w) = b(νl(vl), a · w).(3.5.9)

This means that

b(v · a,w) = b(v, a · w)(3.5.10)
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for every a ∈ A, v ∈ lim
−→

Vj , and w ∈W , because every element of lim
−→

Vj can be

expressed as νl(vl) for some l ∈ I and vl ∈ Vl. This leads to a homomorphism β

from
(
lim
−→

Vj
)⊗

A
W into Z,(3.5.11)

as modules over k, in the usual way. More precisely,

β(v ⊗ w) = b(v, w)(3.5.12)

for every v ∈ lim
−→

Vj and w ∈W , and β is uniquely determined by this property.

Equivalently,
β(νl(vl)⊗ w) = b(νl(vl), w) = bl(vl, w)(3.5.13)

for every l ∈ I, vl ∈ Vl, and w ∈ W . Of course, there are analogous statements
when Vj is a left module over A for every j ∈ I, W is a right module over A,
and so on.

3.6 Direct limits and tensor products

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with a multiplicative identity element eA. Also let
(I,�) be a nonempty pre-directed set, and let Vj be a right module over A for
each j ∈ I. Suppose that for each j, l ∈ I with j � l, we have a homomorphism
νj,l from Vj into Vl, as right modules over A, that satisfies the two conditions
mentioned in Section 3.2. Thus the direct limit of the Vj ’s can be defined as a
right module over A as before.

Let W be a left module over A, and for each j ∈ I, let Vj
⊗

AW be a tensor
product of Vj and W over A. If j, l ∈ I and j � l, then we get a homomorphism
θj,l

from Vj
⊗

A
W into Vl

⊗
A
W,(3.6.1)

as modules over k, using νj,l and the identity mapping on W . Note that θj,j is
the identity mapping on Vj

⊗
AW for every j ∈ I, because νj,j is the identity

mapping on Vj . If j, l, r ∈ I and j � l � r, then

θl,r ◦ θj,l = θj,r,(3.6.2)

because of the analogous property of νj,r. Thus the family of Vj
⊗

AW , j ∈ I,
is a direct system of modules over k with respect to these homomorphisms.

This means that the direct limit

lim
−→

(
Vj

⊗
A
W

)
(3.6.3)

may be defined in the usual way, as a module over k. If l ∈ I, then we let θl be
the corresponding homomorphism from Vl

⊗
AW into (3.6.3), as modules over

k. If l, r ∈ I and l � r, then
θl = θr ◦ θl,r,(3.6.4)
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as before.
If l ∈ I, then let νl be the natural homomorphism from Vl into lim

−→
Vj , as

right modules over A. This leads to a homomorphism ρl from Vl
⊗

AW into(
lim
−→

Vj
)⊗

A
W,(3.6.5)

as modules over k, using the identity mapping on W . If r ∈ I satisfies l � r,
then

ρr ◦ θl,r = ρl,(3.6.6)

because of the analogous property for νl,r. It follows that there is a unique
homomorphism ρ from (3.6.3) into (3.6.5), as modules over k, such that

ρ ◦ θl = ρl(3.6.7)

for every l ∈ I. We would like to show that

ρ is an isomorphism from (3.6.3) onto (3.6.5),(3.6.8)

as modules over k, as in Exercise 20 on p33f of [1].
If l ∈ I, vl ∈ Vl, and w ∈W , then put

bl(vl, w) = θl(vl ⊗ w)(3.6.9)

This defines a mapping from Vl ×W into (3.6.3) that is bilinear over k. This is
the same as the composition of the natural bilinear mapping from Vl ×W into
Vl

⊗
AW with θl. In particular,

bl(vl · a,w) = bl(vl, a · w)(3.6.10)

for every a ∈ A. If l, r ∈ I, l � r, vl ∈ Vl, and w ∈W , then

br(νl,r(vl), w) = θr(νl,r(vl)⊗ w) = θr(θl,r(vl ⊗ w))(3.6.11)

= θl(vl ⊗ w) = bl(vl, w).

This leads to a mapping b from(
lim
−→

Vj
)
×W(3.6.12)

into (3.6.3) that is bilinear over k, as in the previous section. More precisely,
b satisfies (3.5.10), which leads to a homomorphism β from (3.6.5) into (3.6.3),
as modules over k, as before. If l ∈ I, vl ∈ Vl, and w ∈W , then

β(νl(vl)⊗ w) = bl(vl, w) = θl(vl ⊗ w).(3.6.13)

In this case, we also have that

ρ(θl(vl ⊗ w)) = ρl(vl ⊗ w) = νl(vl)⊗ w.(3.6.14)

One can use this to check that β and ρ are inverses of each other.
There are analogous statements when the limit is taken in the second factor

in the tensor product.
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3.7 Double limits and bilinear mappings

Let (I1,�1), (I2,�2) be nonempty pre-directed sets, and put I = I1 × I2.
Consider the binary relation � defined on I by

(j1, j2) � (l1, l2) when j1 �1 l1 and j2 �2 l2,(3.7.1)

where j1, l1 ∈ I1 and j2, l2 ∈ I2. It is easy to see that (I,�) is a pre-directed
set.

Let k be a commutative ring with a multiplicative identity element, and
let A be an associative algebra over k with a multiplicative identity element
eA. Also let Vj1 be a right module over A for every j1 ∈ I1, and let Wj2 be a
left module over A for every j2 ∈ I2. Suppose that for every j1, l1 ∈ I1 with
j1 �1 l1 we have a homomorphism νj1,l1 from Vj1 into Vj2 , as right modules
over A, and that these homomorphisms satisfy the two conditions mentioned in
Section 3.2. Similarly, suppose that for every j2, l2 ∈ I2 with j2 �2 l2 we have
a homomorphism µj2,l2 from Wj2 into Wl2 , as left modules over A, that satisfy
the same two conditions.

The direct limits of the Vj1 ’s and Wj2 ’s may be defined as right and left
modules over A, respectively, as before. If l1 ∈ I1 and l2 ∈ I2, then we let νl1 ,
µl2 be the corresponding homomorphisms from Vl1 , Wl2 into lim

−→
Vj1 , lim−→

Wj2 ,

respectively.
Let Z be a module over k, and for each j1 ∈ I1 and j2 ∈ I2, let bj1,j2 be a

mapping from Vj1 ×Wj2 into Z that is bilinear over k. If l1, r1 ∈ I1, l2, r2 ∈ I2,
l1 �1 r1, l2 �2 r2, vl1 ∈ Vl1 , and wl2 ∈Wl2 , then we ask that

bl1,l2(vl1 , wl2) = br1,r2(νl1,r1(vl1), µl2,r2(wl2)).(3.7.2)

We also ask that

bj1,j2(vj1 · a,wj2) = bj1,j2(vj1 , a · wj2)(3.7.3)

for every j1 ∈ I1, j2 ∈ I2, a ∈ A, vj1 ∈ Vj1 , and wj2 ∈Wj2 .
Let j2 ∈ I2 be given. As in Section 3.5, there is a unique mapping bj2

from
(
lim
−→

Vj1
)
×Wj2 into Z(3.7.4)

such that
bj2(νl1(vl1), wj2) = bl1,j2(vl1 , wj2)(3.7.5)

for every l1 ∈ I1, vl1 ∈ Vl1 , and wj2 ∈Wj2 . This mapping is bilinear over k, and
satisfies

bj2(v · a,wj2) = bj2(v, a · wj2)(3.7.6)

for every a ∈ A, v ∈ lim
−→

Vj1 , and wj2 ∈Wj2 .

Similarly, there is a unique mapping b

from
(
lim
−→

Vj1
)
×
(
lim
−→

Wj2

)
into Z(3.7.7)
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such that
b(v, µl2(wl2)) = bl2(v, wl2)(3.7.8)

for every v ∈ lim
−→

Vj1 , l2 ∈ I2, and wl2 ∈ Wl2 . This mapping is bilinear over k,

and satisfies
b(v · a,w) = b(v, a · w)(3.7.9)

for every a ∈ A, v ∈ lim
−→

Vj1 , and w ∈ lim
−→

Wj2 . Note that (3.7.8) is equivalent

to saying that
b(νl1(vl1), µl2(wl2)) = bl1,l2(vl1 , wl2)(3.7.10)

for every l1 ∈ I1, l2 ∈ I2, vl1 ∈ Vl1 , and wl2 ∈Wl2 .
Using b, we get a unique homomorphism β

from
(
lim
−→

Vj1
)⊗

A

(
lim
−→

Wj2

)
into Z,(3.7.11)

as modules over k, such that

β(v ⊗ w) = b(v, w)(3.7.12)

for every v ∈ lim
−→

Vj1 and w ∈ lim
−→

Wj2 . Equivalently, this means that

β(νl1(vl1)⊗ µl2(wl2)) = b(νl1(vl1), µl2(wl2)) = bl1,l2(vl1 , wl2)(3.7.13)

for every l1 ∈ I1, l2 ∈ I2, vl1 ∈ Vl1 , and wl2 ∈Wl2 .

3.8 Double limits and tensor products

Let us continue with the same notation and hypotheses as in the first three
paragraphs of the previous section.

If j1 ∈ I1 and j2 ∈ I2, then let Vj1
⊗

AWj2 be a tensor product of Vj1
and Wj2 over A. If j = (j1, j2), l = (l1, l2) ∈ I and j � l, then we get a
homomorphism θj,l

from Vj1
⊗

A
Wj2 into Vl1

⊗
A
Wl2 ,(3.8.1)

as modules over k, using νj1,l1 and µj2,l2 . In particular, θj,j is the identity
mapping on Vj1

⊗
AWj2 , because νj1,j1 is the identity mapping on Vj1 , and

µj2,j2 is the identity mapping on Wj2 . If j, l, r ∈ I and j � l � r, then

θl,r ◦ θj,l = θj,r,(3.8.2)

beause of the analogous properties of νj1,r1 and µj2,r2 . This shows that the
family of Vj1

⊗
AWj2 , j = (j1, j2) ∈ I, is a direct system of modules over k with

respect to these homomorphisms.
Thus the direct limit

lim
−→

(
Vj1

⊗
A
Wj2

)
(3.8.3)
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may be defined as a module over k in the usual way. If l = (l1, l2) ∈ I, then let θl
be the corresponding homomorphism from Vl1

⊗
AWl2 into (3.8.3), as modules

over k. If l, r ∈ I and l � r, then

θl = θr ◦ θl,r,(3.8.4)

as usual.
If l = (l1, l2) ∈ I, then let ρl be the homomorphism from Vl1

⊗
AWl2 into(

lim
−→

Vj1
)⊗

A

(
lim
−→

Wj2

)
,(3.8.5)

as modules over k, corresponding to νl1 and µl2 . If r = (r1, r2) ∈ I and l � r,
then

ρr ◦ θl,r = ρl,(3.8.6)

because of the analogous properties for νl1,r1 and µl2,r2 . This implies that there
is a unique homomorphism ρ from (3.8.3) into (3.8.5), as modules over k, such
that

ρ ◦ θl = ρl(3.8.7)

for every l ∈ I. We would like to show that

ρ is an isomorphism from (3.8.3) onto (3.8.5),(3.8.8)

as modules over k, as in Proposition 9.2* on p99 of [3].
If l = (l1, l2) ∈ I, vl1 ∈ Vl1 , and wl2 ∈Wl2 , then put

bl1,l2(vl1 , wl2) = θl(vl1 ⊗ wl2),(3.8.9)

which defines a mapping from Vl1 ×Wl2 into (3.8.3) that is bilinear over k. We
also have that

bl1,l2(vl1 · a,wl2) = bl1,l2(vl1 , a · wl2)(3.8.10)

for every a ∈ A, because bl1,l2 is the same as the composition of the natural
bilinear mapping from Vl1 ×Wl2 into Vl1

⊗
AWl2 with θl. If r = (r1, r2) ∈ I

and l � r, then

br1,r2(νl1,r1(vl1), µl2,r2(wl2)) = θr(νl1,r1(vl1)⊗ µl2,r2(wl2))

= θr(θl,r(vl1 × wl2))(3.8.11)

= θl(vl1 ⊗ wl2) = bl1,l2(vl1 , wl2).

Using this, we get a mapping b from(
lim
−→

Vj1
)
×
(
lim
−→

Wj2

)
(3.8.12)

into (3.8.3) that is bilinear over k, as in the previous section. Remember that b
satisfies (3.7.9), which leads to a homomorphism β from (3.8.5) into (3.8.3), as
before. If l = (l1, l2) ∈ I, vl1 ∈ Vl1 , and wl2 ∈Wl2 , then

β(νl1(vl1)⊗ µl2(wl2)) = bl1,l2(vl1 , wl2) = θl(vl1 ⊗ wl2).(3.8.13)

Observe that

ρ(θl(vl1 ⊗ wl2)) = ρl(vl1 ⊗ wl2) = νl1(vl1)⊗ µl2(wl2).(3.8.14)

One can use this to verify that β and ρ are inverses of each other.
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3.9 Iterated direct limits

Let (I1,�1), (I2,�2) be nonempty pre-directed sets again, and let I = I1 × I2
be equipped with the corresponding pre-order �, as in Section 3.7. Also let k
be a commutative ring with a multiplicative identity element, and let A be an
associative algebra over k with a multiplicative identity element eA.

Suppose that for each j = (j1, j2) ∈ I,

Vj = V(j1,j2)(3.9.1)

is a left module over A. If j, l ∈ I, then we ask that νj,l be a homomorphism
from Vj into Vl, as left modules over A, and that these homomorphisms satisfy
the two conditions mentioned in Section 3.2. Thus the direct limit

lim
−→

Vj = lim
−→

IVj(3.9.2)

of the Vj ’s, j ∈ I, can be defined in the usual way, as a left module over A. If
l = (l1, l2) ∈ I, then we get a natural homomorphism

νl = ν(l1,l2) from Vl = V(l1,l2) into (3.9.2),(3.9.3)

as left modules over A, as before. If r = (r1, r2) ∈ I and l � r, then

ν(l1,l2) = νl = νr ◦ νl,r = ν(r1,r2) ◦ νl,r,(3.9.4)

by construction.
Let j2 ∈ I2 be given. If j1, l1 ∈ I1 and j1 �1 l1, then put

j = (j1, j2) and l = (l1, j2)(3.9.5)

for the moment, and observe that j � l. In this case,

νj2j1,l1 = νj,l(3.9.6)

is a homomorphism from Vj = V(j1,j2) into Vl = V(l1,j2), as left modules over A.
It is easy to see that these homomorphisms satisfy the usual two conditions in
Section 3.2, so that the V(j1,j2)’s, j1 ∈ I1, form a direct system of modules. Let

lim
−→

I1V(j1,j2)(3.9.7)

be the corresponding direct limit, which is a left module over A.
If l1 ∈ I1, then we get a natural homomorphism

νj2l1 from V(l1,j2) into (3.9.7),(3.9.8)

as left modules over A, as in Section 3.2. If r1 ∈ I1 and l1 �1 r1, then

νj2l1 = νj2r1 ◦ ν
j2
l1,r1

,(3.9.9)
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as before.
Let l2 ∈ I2 be given, with j2 �2 l2. If j1 ∈ I1, then put

j = (j1, j2) and l = (j1, l2)(3.9.10)

for the moment, and observe that j � l. Under these conditions,

ϕj2,l2j1
= νj,l(3.9.11)

is a homomorphism from Vj = V(j1,j2) into Vl = V(j1,l2), as left modules over A.
If l1 ∈ I1 and j1 �1 l1, then one can check that

ϕj2,l2l1
◦ νj2j1,l1 = νl2j1,l1 ◦ ϕ

j2,l2
j1

.(3.9.12)

More precisely, both sides are the same as the homomorphism

ν(j1,j2),(l1,l2)(3.9.13)

from V(j1,j2) into V(l1,l2).
Of course, V(j1,l2), j1 ∈ I1, forms a direct system of left modules over A, as

before. As in Section 3.4, there is a unique homomorphism

ϕj2,l2 = lim
−→

I1ϕj2,l2j1
from lim

−→
I1V(j1,j2) into lim

−→
I1V(j1,l2)(3.9.14)

such that
ϕj2,l2 ◦ νj2l1 = νl2l1 ◦ ϕj2,l2l1

(3.9.15)

for every l1 ∈ I1.
One can use the uniqueness of ϕj2,l2 to get that these homomorphisms sat-

isfy the two conditions mentioned in Section 3.2. This means that the family
of modules of the form (3.9.7), with j2 ∈ I2, is a direct system. Thus the
corresponding direct limit

lim
−→

I2
(
lim
−→

I1V(j1,j2)
)

(3.9.16)

can be defined as a left module over A in the usual way.
If l2 ∈ I2, then there is a natural homomorphism

ϕl2 from lim
−→

I1V(j1,l2) into (3.9.16),(3.9.17)

as before. If r2 ∈ I2 and l2 � r2, then

ϕl2 = ϕr2 ◦ ϕl2,r2 ,(3.9.18)

as usual.
Let l = (l1, l2) ∈ I be given, and remember that νl2l1 is a homomorphism

from V(l1,l2) into lim
−→

I1V(j1,l2), as left modules over A, as in (3.9.8). Thus

ξl = ϕl2 ◦ νl2l1(3.9.19)
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defines a homomorphism from Vl = V(l1,L2) into (3.9.16), as left modules over
A. Suppose that r = (r1, r2) ∈ I satisfies l � r, so that

νl,r = νr2l1,r2 ◦ ϕ
l2,r2
l1

,(3.9.20)

as in the equality between (3.9.12) and (3.9.13). It follows that

ξr ◦ νl,r = ϕr2 ◦ νr2r1 ◦ νr2l1,r2 ◦ ϕ
l2,r2
l1

= ϕr1 ◦ νr2l1 ◦ ϕl2,r2l1
,(3.9.21)

where the second step is as in (3.9.9). This implies that

ξr ◦ νl,r = ϕr2 ◦ ϕl2,r2 ◦ νl2l1 = ϕl2 ◦ νl2l1 = ξl,(3.9.22)

using (3.9.15) in the first step, and (3.9.18) in the second step.
As in Section 3.2, there is a unique homomorphism

ξ from (3.9.2) into (3.9.16),(3.9.23)

as left modules over A, such that

ξ ◦ νl = ξl(3.9.24)

for every l ∈ I. Here νl is the natural homomorphism from Vl into (3.9.2), as
before.

Let l2 ∈ I2 be given. If l1 ∈ I1, so that l = (l1, l2) ∈ I, then νl = ν(l1,l2)
maps Vl = V(l1.l2) into (3.9.2), as before. If r1 ∈ I1 and l1 � r1, then ν

l2
l1,r1

maps
V(l1,l2) into V(r1,l2), as in (3.9.6). Note that

ν(l1,l2) = ν(r1,l2) ◦ ν
l2
l1,r1

,(3.9.25)

as in (3.9.4).
Using ν(l1,l2), l1 ∈ I1, we get a homomorphism

ηl2 from lim
−→

I1V(j1,l2) into (3.9.2),(3.9.26)

as left modules over A, as in Section 3.2. This homomorphism is characterized
by the property that

ηl2 ◦ νl2l1 = ν(l1,l2)(3.9.27)

for every l1 ∈ I1. Here νl2l1 is the natural homomorphism from V(l1,l2) into

lim
−→

I1V(j1,l2), as in (3.9.8).

Suppose that r2 ∈ I2 satisfies l2 �2 r2, and let ϕl2,r2 be as in (3.9.14). We
would like to verify that

ηr2 ◦ ϕl2,r2 = ηl2 .(3.9.28)

To do this, observe that

ηr2 ◦ ϕl2,r2 ◦ νl2l1 = ηr2 ◦ νr2l1 ◦ ϕl2,r2l1
,(3.9.29)
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by (3.9.15). This implies that

ηr2 ◦ ϕl2,r2 ◦ νl2l1 = ν(l1,r2) ◦ ϕ
l2,r2
l1

,(3.9.30)

by (3.9.27). Using the definition (3.9.11) of ϕl2,r2l1
, we get that

ηr2 ◦ ϕl2,r2 ◦ νl2l1 = ν(l1,r2) ◦ ν(l1,l2),(l1,r2) = ν(l1,l2).(3.9.31)

Here the second step is as in (3.9.4). It follows that (3.9.28) holds, because ηl2

is uniquely determined by (3.9.27).
Thus we can use the ηl2 ’s, l2 ∈ I2, to get a homomorphism

η from (3.9.16) into (3.9.2),(3.9.32)

as left modules over A, as in Section 3.2. This homomorphism is uniquely
determined by the property that

η ◦ ϕl2 = ηl2(3.9.33)

for each l2 ∈ I2, where ϕ
l2 is as in (3.9.17). We would like to check that the

homomorphism ξ from (3.9.23) and η are inverses of each other.
To show that η ◦ ξ is the identity mapping on (3.9.2), it suffices to verify

that
η ◦ ξ ◦ νl = νl(3.9.34)

on Vl for every l = (l1, l2) ∈ I. Note that

η ◦ ξ ◦ νl = η ◦ ξl = η ◦ ϕl2 ◦ νl2l1 ,(3.9.35)

using (3.9.24) in the first step, and (3.9.19) in the second step. Thus

η ◦ ξ ◦ νl = ηl2 ◦ νl2l1 = ν(l1,l2) = νl,(3.9.36)

as desired, using (3.9.33) in the first step, and (3.9.27) in the second step.
To show that ξ ◦ η is the identity mapping on (3.9.16), it suffices to check

that
ξ ◦ η ◦ ϕl2 = ϕl2(3.9.37)

on lim
−→

I1V(j1,l2) for every l2 ∈ I2, where ϕ
l2 is as in (3.9.17). Equivalently, this

means that
ξ ◦ ηl2 = ϕl2(3.9.38)

on lim
−→

I1V(j1,l2), because of (3.9.33). In order to show this, it suffices to verify

that
ξ ◦ ηl2 ◦ νl2l1 = ϕl2 ◦ νl2l1(3.9.39)

on V(l1,l2) for every l1 ∈ I1, where ν
l2
l1

is as in (3.9.8). Observe that

ξ ◦ ηl2 ◦ νl2l1 = ξ ◦ νl = ξl,(3.9.40)

using (3.9.27) in the first step, and (3.9.24) in the second step. Thus (3.9.39)
follows from the definition (3.9.19) of ξl, as desired.

Of course, there are analogous statements for right modules over A.
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3.10 Another property of compositions

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V1, V2, and V3 be right modules over A, and let W1, W2, and W3 be left
modules over A. Suppose that Vj

⊗
AWl is a tensor product of Vj and Wl over

A for each j, l = 1, 2, 3.
Let ϕ1, ψ1 be homomorphisms from V1, W1 into V2, W2, respectively, and

let ϕ2, ψ2 be homomorphisms from V2, W2 into V3, W3, respectively, as modules
over A. If j = 1 or 2 and l = 1, 2, or 3, then there is a unique homomorphism

Φj,l from Vj
⊗

A
Wl into Vj+1

⊗
A
Wl,(3.10.1)

as modules over k, such that

Φj,l(vj ⊗ wl) = ϕj(vj)⊗ wl(3.10.2)

for every vj ∈ Vj and wl ∈ Wl. Equivalently, Φj,l is obtained from ϕj and the
identity mapping on Wl as in Section 1.9. Similarly, if j = 1, 2, or 3 and l = 1
or 2, then there is a unique homomorphism

Ψj,l from Vj
⊗

A
Wl into Vj

⊗
A
Wl+1,(3.10.3)

as modules over k, such that

Ψj,l(vj ⊗ wl) = vj ⊗ ψl(wl)(3.10.4)

for every vj ∈ Vj and wl ∈Wl. This is the same as the homomorphism obtained
from ψl and the identity mapping on Vj , as before.

In the same way, we can use ϕ2 and ψ2 to get a unique homomorphism

Θ2 from V2
⊗

A
W2 into V3

⊗
A
W3,(3.10.5)

as modules over k, such that

Θ2(v2 ⊗ w2) = ϕ2(v2)⊗ ψ2(w2)(3.10.6)

for every v2 ∈ V2 and w2 ∈W2. Note that

Θ2 = Ψ3,2 ◦ Φ2,2 = Φ2,3 ◦Ψ2,2.(3.10.7)

If
ϕ2 ◦ ϕ1 = 0,(3.10.8)

then
Φ2,2 ◦ Φ1,2 = 0.(3.10.9)

This is because Φ2,2 ◦ Φ1,2 is the same as the homomorphism from V1
⊗

AW2

into V3
⊗

AW2 obtained from ϕ2 ◦ ϕ1 and the identity mapping on W2. This
implies that

Θ2,2 ◦ Φ1,2 = 0,(3.10.10)
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by (3.10.7). It follows that

Φ1,2

(
V1

⊗
A
W2

)
⊆ kerΘ2,2(3.10.11)

in this case.
Similarly, if

ψ2 ◦ ψ1 = 0,(3.10.12)

then
Ψ2,2 ◦Ψ2,1 = 0.(3.10.13)

This implies that
Θ2,2 ◦Ψ2,1 = 0,(3.10.14)

so that
Ψ1,2

(
V2

⊗
A
W1

)
⊆ kerΘ2,2,(3.10.15)

as before.
Suppose now that

V1
ϕ1−→ V2

ϕ2−→ V3 −→ 0(3.10.16)

and

W1
ψ1−→W2

ψ2−→W3 −→ 0(3.10.17)

are exact sequences, so that ϕ2, ψ2 are surjective, and

ϕ1(V1) = kerϕ2, ψ1(W1) = kerψ2.(3.10.18)

In this case, it is well known that we get an exact sequence(
V1

⊗
A
W2

)⊕(
V2

⊗
A
W1

)
−→ V2

⊗
A
W2(3.10.19)

Θ2,2−→ V3
⊗

A
W3 −→ 0,

using the mapping obtained from Φ1,2 and Ψ2,1 in the first step. This corre-
sponds to part of Proposition 4.3 on p24f of [3], which is stated more abstractly
and under slightly different conditions, as mentioned at the top of p26 of [3].

The exactness of (3.10.19) means that Θ2,2 is surjective, and that

Φ1,2

(
V1

⊗
A
W2

)
+Ψ2,1

(
V2

⊗
A
W1

)
= kerΘ2,2.(3.10.20)

Of course,

Φ1,2

(
V1

⊗
A
W2

)
+Ψ2,1

(
V2

⊗
A
W1

)
⊆ kerΘ2,2,(3.10.21)

by (3.10.11) and (3.10.15).
To get the exactness of (3.10.19), the statement and argument in [3] uses

the right exactness of the tensor product in each factor, as in Section 2.5. The
surjectivity of Θ2,2 can be obtained from the surjectivity of Φ2,2 and Ψ3,2, or
from the surjectivity of Φ2,3 and Ψ2,2, by (3.10.7). The surjectivity of these
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mappings follows from the surjectivity of ϕ2 and ψ2, as before. If an element
u2,2 of V2

⊗
AW2 is in the kernel of Θ2,2, then

Ψ2,2(u2,2) ∈ kerΦ2,3,(3.10.22)

by (3.10.7). This implies that there is an element u1,3 of V1
⊗

AW3 such that

Ψ2,2(u2,2) = Φ1,3(u1,3),(3.10.23)

as in Section 2.5.
Note that Ψ1,2 is surjective, because ψ2 is surjective, as in Section 1.9. This

means that there is an element u1,2 of V1
⊗

AW2 such that

Ψ1,2(u1,2) = u1,3.(3.10.24)

It is easy to see that

Φ1,3 ◦Ψ1,2 = Ψ2,2 ◦ Φ1,2,(3.10.25)

and more precisely that both sides correspond to the mapping from V1
⊗

AW2

into V2
⊗

AW3 obtained from ϕ1 and ψ2 in the usual way. Thus

Φ1,3(u1,3) = Φ1,3(Ψ1,2(u1,2)) = Ψ2,2(Φ1,2(u1,2)).(3.10.26)

This means that
Ψ2,2(u2,2) = Ψ2,2(Φ1,2(u1,2)),(3.10.27)

by (3.10.23).
Equivalently,

u2,2 − Φ1,2(u1,2) ∈ kerΨ2,2.(3.10.28)

It follows that there is an element u2,1 of V2
⊗

AW1 such that

u2,2 − Φ1,2(u1,2) = Ψ2,1(u2,1),(3.10.29)

as in Section 2.5. This shows that u2,2 is contained in the left side of (3.10.20),
as desired.

Alternatively, we can use an argument like the one in Section 2.5. The
surjectivity of Θ2,2 follows from the surjectivity of ϕ2 and ψ2, as in Section 1.9.
The left side of (3.10.20) is a submodule of V2

⊗
AW2, as a module over k, so

that the quotient

Y =
(
V2

⊗
A
W2

)
/
(
Φ1,2

(
V1

⊗
A
W2

)
+Ψ2,1

(
V2

⊗
A
W1

))
(3.10.30)

is defined as a module over k. Let qY be the natural quotient mapping from
V2

⊗
AW2 onto Y .

Because of (3.10.21), there is a unique homomorphism Θ̃2,2 from Y into
V3

⊗
AW3, as modules over k, such that

Θ̃2,2 ◦ qY = Θ2,2.(3.10.31)
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It suffices to show that Θ̃2,2 is an isomorphism.
If v2 ∈ V2 and w2 ∈W2, then

qY (v2 ⊗ w2)(3.10.32)

is an element of Y . One can check that (3.10.32) only depends on ϕ2(v2) and
ψ2(w2), because of (3.10.18) and (3.10.30). This leads to a mapping from V3×W3

into Y , with
(ϕ2(v2), ψ2(w2)) 7→ qY (v2 ⊗ w2)(3.10.33)

for every v2 ∈ V2 and w2 ∈W2, because ϕ2 and ψ2 are surjective, by hypothesis.
One can also verify that this mapping is bilinear over k.

If a ∈ A, v2 ∈ V2, and w2 ∈W2, then it is easy to see that

(ϕ2(v2) · a, ψ2(w2)) and (ϕ2(v2), a · ψ2(w2))(3.10.34)

are mapped to the same element of Y by the mapping described in the preceding
paragraph. This implies that there is a unique homomorphism from V3

⊗
AW3

into Y , as modules over k, with

ϕ2(v2)⊗ ψ2(w2) 7→ qY (v2 ⊗ w2)(3.10.35)

for every v2 ∈ V2 and w2 ∈W2.
One can check that this homomorphism is the inverse of Θ̃2,2. In particular,

Θ̃2,2 is an isomorphism, as desired.

3.11 Compositions and Hom(·, ·)
Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let Vj and Wl be all left or all right modules over A, for j, l = 1, 2, 3. Suppose
that ϕj , ψj are homomorphisms from Vj , Wj into Vj+1, Wj+1, respectively, as
modules over A, for j = 1, 2.

If j = 1 or 2 and l = 1, 2, or 3, then

Φj,l(αj+1,l) = αj+1,l ◦ ϕj(3.11.1)

defines a homomorphism

from HomA(Vj+1,Wl) into HomA(Vj ,Wl),(3.11.2)

as modules over k. Similarly, if j = 1, 2, or 3 and l = 1 or 2, then

Ψj,l(αj,l) = ψl ◦ αj,l(3.11.3)

defines a homomorphism

from HomA(Vj ,Wl) into HomA(Vj ,Wl+1),(3.11.4)
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as modules over k.
If α3,1 is a homomorphism from V3 into W1, as modules over A, then

Θ(α3,1) = ψ1 ◦ α3,1 ◦ ϕ2(3.11.5)

is a homomorphism from V2 into W2, as modules over A. This defines a homo-
morphism

from HomA(V3, V1) into HomA(V2,W2),(3.11.6)

as modules over k. Equivalently,

Θ = Ψ2,1 ◦ Φ2,1 = Φ2,2 ◦Ψ3,1.(3.11.7)

If
ϕ2 ◦ ϕ1 = 0,(3.11.8)

then
Φ1,2 ◦ Φ2,2 = 0,(3.11.9)

because Φ1,2 ◦Φ2,2 is the same as the homomorphism from HomA(V3,W2) into
HomA(V1,W2) corresponding to composition with ϕ2 ◦ ϕ1. This implies that

Φ2,1 ◦Θ = 0,(3.11.10)

by (3.11.7). This means that

Θ
(
HomA(V3,W1)

)
⊆ kerΦ1,2(3.11.11)

when (3.11.8) holds.
Similarly, if

ψ2 ◦ ψ1 = 0,(3.11.12)

then
Ψ2,2 ◦Ψ2,1 = 0,(3.11.13)

because Ψ2,2 ◦Ψ2,1 is the same as the homomorphism from HomA(V2,W1) into
HomA(V2,W3) corresponding to composition with ψ2 ◦ ψ1. This implies that

Ψ2,2 ◦Θ = 0,(3.11.14)

by (3.11.7). Thus
Θ
(
HomA(V3,W1)

)
⊆ kerΨ2,2(3.11.15)

when (3.11.12) holds.
Suppose from now on in this section that

V1
ϕ1−→ V2

ϕ2−→ V3 −→ 0(3.11.16)

and

0 −→W1
ψ1−→W2

ψ1−→W3(3.11.17)
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are exact sequences. This means that ϕ2 is surjective, ψ1 is injective, and

ϕ1(V1) = kerϕ2, ψ1(W1) = kerψ2.(3.11.18)

It is well known that

0 −→ HomA(V3, V1)
Θ−→ HomA(V2,W2)(3.11.19)

−→ HomA(V1,W2)
⊕

HomA(V2,W3)

is an exact sequence in this case, using the mapping obtained from Φ1,2 and
Ψ2,2 in the last step. This corresponds to part of Proposition 4.3a on p25 of
[3], which is stated more abstractly and under slightly different conditions, as
mentioned at the top of p26 of [3].

The exactness of (3.11.19) means that Θ is injective, and that

Θ
(
HomA(V3,W1)

)
= (kerΦ1,2) ∩ (kerΨ2,2).(3.11.20)

Note that
Θ
(
HomA(V3,W1)

)
⊆ (kerΦ1,2) ∩ (kerΨ2,2),(3.11.21)

by (3.11.11) and (3.11.15).
The statement and argument in [3] use the left exactness of HomA(·, ·) in

each variable, as in Sections 2.1 and 2.3, to get the exactness of (3.11.19). We
can also use arguments like those in Sections 2.1 and 2.3 more directly here. In
particular, the injectivity of Θ can be obtained from the injectivity of Φ2,1 and
Ψ2,1, or from the injectivity of Φ2,2 and Ψ3,1, by (3.11.7). The injectivity of
these mappings follows from the surjectivity of ϕ2 and the injectivity of ψ1, as
before. The injectivity of Θ can be obtained directly from the surjectivity of ϕ2
and the injectivity of ψ1 as well, using the definition (3.11.5) of Θ.

Let α2,2 be a homomorphism from V2 into W2, as modules over A, with

α2,2 ∈ (kerΦ1,2) ∩ (kerΨ2,2).(3.11.22)

The condition that α2,2 ∈ kerΦ1,2 means that

α2,2 ◦ ϕ1 = Φ1,2(α2,2) = 0,(3.11.23)

which is the same as saying that

kerϕ2 = ϕ1(V1) ⊆ kerα2,2.(3.11.24)

This implies that there is a homomorphism α3,2 from V3 into W2, as modules
over A, such that

Φ2,2(α3,2) = α3,2 ◦ ϕ2 = α2,2,(3.11.25)

because ϕ2(V2) = V3, by hypothesis.
Similarly, the condition that α2,2 ∈ kerΨ2,2 means that

ψ2 ◦ α2,2 = Ψ2,2(α2,2) = 0,(3.11.26)



3.12. FINITELY-GENERATED SUBMODULES 81

which is the same as saying that

α2,2(V2) ⊆ kerψ2 = ψ1(W1).(3.11.27)

This implies that

α3,2(V3) = α2,3(ϕ2(V2)) = α2,2(V2) ⊆ ψ1(W1).(3.11.28)

It follows that there is a homomorphism α3,1 from V3 into W1, as modules over
A, such that

Ψ3,1(α3,1) = ψ1 ◦ α3,1 = α3,2,(3.11.29)

because ψ1 is injective, by hypothesis. Combining this with (3.11.25), we obtain
that

Θ(α3,1) = ψ1 ◦ α3,1 ◦ ϕ2 = α3,2 ◦ ϕ2 = α2,2,(3.11.30)

as desired.

3.12 Finitely-generated submodules

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V be a left or right module over A. If V1, V2 are submodules of V , then it
is easy to see that

V1 + V2 = {v1 + v2 : v1 ∈ V1, v2 ∈ V2}(3.12.1)

is a submodule of V as well. If V1, V2 are finitely generated as modules over A,
then V1 + V2 is finitely generated as a module over A too.

The collection of all finitely generated submodules of V is partially ordered
by inclusion, and in fact it is a directed set, by the remarks in the preceding
paragraph. Note that every element of V is contained in a finitely-generated
submodule of V , because the action of A on any element of V defines a submod-
ule of V . Thus V is the union of all of its finitely-generated submodules, so that
V may be considered as the direct limit of its finitely-generated submodules.
This corresponds to part of Exercise 17 on p33 of [1].

Suppose now that V is a right module over A, let W be a left module over
A, and let V

⊗
AW be a tensor product of V and W . Also let V0, W0 be

submodules of V , W , respectively, as modules over A, and let V0
⊗
W0 be a

tensor product of V0 and W0 over A. If v ∈ V and w ∈ W , then we let v ⊗ w
be the corresponding element of V

⊗
AW , as usual. Similarly, if v ∈ V0 and

w ∈ W0, then let v ⊗0 w be the corresponding element of V0
⊗

AW0. As in
Section 1.9, there is a unique homomorphism from V0

⊗
AW0 into V

⊗
AW , as

modules over k, with

v ⊗0 w 7→ v ⊗ w(3.12.2)

for every v ∈ V0 and w ∈W0.
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Let n be a positive integer, and suppose that v1, . . . , vn ∈ V and w1, . . . , wn
in W satisfy

n∑
j=1

vj ⊗ wj = 0(3.12.3)

in V
⊗

AW . If

v1, . . . , vn ∈ V0 and w1, . . . , wn ∈W0,(3.12.4)

then
n∑
j=1

vj ⊗0 wj(3.12.5)

defines an element of V0
⊗

AW0. Of course, (3.12.3) holds when (3.12.5) is equal
to 0 in V0

⊗
AW0.

In fact, there are finitely-generated submodules V0, W0 of V , W , respec-
tively, as modules over A, such that (3.12.4) holds and (3.12.5) is equal to 0
in V0

⊗
AW0, as in Corollary 2.13 on p25 of [1]. The proof uses the standard

way of constructing tensor products as quotients. Thus (3.12.3) says that a
certain formal expression involving v1, . . . , vn and w1, . . . , wn can be expressed
in terms of finitely many elements of V and W in a suitable way. It suffices
to use finitely-generated submodules V0, W0 of V , W , respectively, such that
(3.12.4) holds, and which contain the finitely many elements of V and W just
mentioned, to get that (3.12.5) is equal to 0 in V0

⊗
AW0.

Alternatively, V
⊗

AW may be obtained as a direct limit of tensor products
of finitely-generated submodules of V and W , as in Section 3.8. This uses
the fact that V and W may be obtained as direct limits of finitely-generated
submodules, as before. One can use this to get that there are finitely-generated
submodules V0, W0 of V , W , respectively, such that (3.12.4) holds and (3.12.5)
is equal to 0 in V0

⊗
AW0, as in Section 3.2.

One could obtain the same conclusion using direct limits in each factor sep-
arately, as in Section 3.6. That is, one can first obtain V ⊗A W as a direct
limit of tensor products of finitely-generated submodules of V with W , as in
Section 3.6. This implies that there is a finitely-generated submodule V0 of V
such that v1, . . . , vn ∈ V0 and (3.12.5) is equal to 0 in V0

⊗
AW0, withW0 =W .

Similarly, one can obtain V0
⊗

AW as a direct limit of tensor products of V0
with finitely-generated submodules of W . This implies that there is a finitely-
generated submodule W0 of W such that (3.12.4) holds, and (3.12.5) is equal to
0 in V0

⊗
AW0.

3.13 An interesting homomorphism

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with a multiplicative identity element eA. Also let
V , W be both left or both right modules over A, and let V0, W0 be submodules
of V , W , respectively. Suppose that ϕ is a homomorphism from V into W , as
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modules over A, with
ϕ(V0) ⊆W0.(3.13.1)

Thus the restriction ϕ0 of ϕ to V0 may be considered as a homomorphism from
V0 into W0, as modules over A. Note that

kerϕ0 = (kerϕ) ∩ V0.(3.13.2)

Of course, the quotients V/V0, W/W0 may be defined as modules over A in
the usual way. Let qV , qW be the natural quotient mappings from V , W onto
V/V0,W/W0, respectively. Because of (3.13.1), there is a unique homomorphism
ϕq from V/V0 into W/W0, as modules over A, such that

ϕq ◦ qV = qW ◦ ϕ,(3.13.3)

as homomorphisms from V into W/W0. In particular,

qV (kerϕ) ⊆ kerϕq.(3.13.4)

Because ϕ(V ) is a submodule of W , the quotient

W/ϕ(V )(3.13.5)

is defined as a module over A. This is known as the cokernel of ϕ, as on p19
of [1], and p3 of [3]. Let qϕ be the natural quotient mapping from W onto
W/ϕ(V ). Similarly,

W0/ϕ0(V0) =W0/ϕ(V0)(3.13.6)

is the cokernel of ϕ0, as a homomorphism from V0 into W0, and we let qϕ0 be
the natural quotient mapping from W0 onto W0/ϕ0(V0).

Suppose that v ∈ V and

qV (v) ∈ kerϕq.(3.13.7)

This implies that
qW (ϕ(v)) = ϕq(qV (v)) = 0,(3.13.8)

so that
ϕ(v) ∈W0.(3.13.9)

We would like to put
∆(qV (v)) = qϕ0

(ϕ(v)),(3.13.10)

which is an element of W0/ϕ0(V0). If u ∈ V and u − v ∈ V0, so that qV (u) =
qV (v), then

ϕ(u)− ϕ(v) = ϕ(u− v) ∈ ϕ0(V0),(3.13.11)

and thus qϕ0
(ϕ(u)) = qϕ0

(ϕ(v)). This shows that the right side of (3.13.10) does
not depend on the choice of v.

It is easy to see that ∆ defines a homomorphism from ker ϕq intoW0/ϕ0(V0),
as modules over A. Let us check that

ker∆ = qV (kerϕ).(3.13.12)
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If v ∈ kerϕ, then (3.13.7) holds, by (3.13.4), and (3.13.10) is equal to 0. This
shows that qV (kerϕ) is contained in the kernel of ∆. If v ∈ V satisfies (3.13.7),
and (3.13.10) is equal to 0, then

ϕ(v) ∈ ϕ0(V0) = ϕ(V0).(3.13.13)

This means that there is a u ∈ V0 such that ϕ(v) = ϕ(u), and thus v−u ∈ kerϕ.
It follows that

qV (v) = qV (v − u) ∈ qV (kerϕ),(3.13.14)

which shows that the kernel of ∆ is contained in qV (kerϕ).
Let us verify that

∆(kerϕq) = qϕ0
(ϕ(V ) ∩W0).(3.13.15)

The fact that ∆ maps kerϕq into the right side follows from the definition of ∆.
If v ∈ V and ϕ(v) ∈W0, then

ϕq(qV (v)) = qW (ϕ(v)) = 0,(3.13.16)

so that qV (v) ∈ kerϕq. This means that ∆(qV (v)) is as in (3.13.10), so that the
right side of (3.13.15) is contained in the image of ∆.

There is a natural homomorphism

from W0/ϕ0(V0) into W/ϕ(V ),(3.13.17)

as modules over A, obtained from the obvious inclusion mapping from W0 into
W . This also uses the fact that ϕ0(V0) = ϕ(V0) is contained in ϕ(V ). It is
easy to see that the kernel of this homomorphism is equal to the right side of
(3.13.15).

The quotient
(W/W0)/ϕq(V/V0)(3.13.18)

is defined as a module over A, because ϕq(V/V0) is a submodule of W/W0. Of
course,

ϕq(V/V0) = ϕq(qV (V )) = qW (ϕ(V )),(3.13.19)

using (3.13.3) in the second step. Thus (3.13.18) is the same as

(W/W0)/qW (ϕ(V )).(3.13.20)

There is a natural homomorphism

from W/ϕ(V ) onto (W/W0)/qW (ϕ(V )),(3.13.21)

as modules over A, which is induced by qW . The kernel of this homomorphism
is equal to

qϕ(W0).(3.13.22)

This is the same as the image of W0/ϕ0(V ) in W/ϕ(V ) under the natural ho-
momorphism as in (3.13.17).

The remarks in this section correspond to Proposition 2.10 and its proof on
p23 of [1], and are related to Lemmas 3.2 and 3.3 on p40 of [3].
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3.14 An abstract construction

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. If V
is a left module over A, then we would like to find a left module D(V ) over V
that contains V as a submodule, and has the following property:

if I is a left ideal in A, and ϕ is a homomorphism(3.14.1)

from I into V, then there is a w ∈ D(V ) such that

ϕ(a) = a · w for every a ∈ I.

Here I may be considered as a left module over A, and ϕ is supposed to be a
homomorphism from I into V , as left modules over A. This corresponds to the
first part of the proof of Theorem 3.3 on p9 of [3].

Let LA be the collection of all left ideals in A, and for each I ∈ LA, let
HomA(I, V ) be the space of all homomorphisms from I into V , as left modules
over A. This is a module over k, and we let

Φ0(I) be a subset of HomA(I, V ) that generates HomA(I, V ),(3.14.2)

as a module over k. Put

Φ0 =
⋃

I∈LA

({I} × Φ0(I)),(3.14.3)

and let Z0 be a free left module over A with a basis consisting of elements
denoted z(I,ϕ), with (I, ϕ) ∈ Φ0. Thus

Z1 = V
⊕

Z0(3.14.4)

is a left module over A.
Let (I, ϕ) ∈ Φ0 be given. If x ∈ I, then ϕ(x) ∈ V , and

(ϕ(x),−x z(I,ϕ))(3.14.5)

is an element of Z1. If a ∈ A, then a x ∈ I, and

a · (ϕ(x),−x z(I,ϕ)) = (a · ϕ(x),−a x z(I,ϕ)) = (ϕ(a x),−a x z(I,ϕ)).(3.14.6)

This implies that the collection of elements of Z1 of the form (3.14.5) with x ∈ I
is a submodule of Z1, as a left module over A.

Let Y be the submodule of Z1, as a left module over A, generated by elements
of the form (3.14.5), with (I, ϕ) ∈ Φ0 and x ∈ I. We would like to take

D(V ) = Z1/Y,(3.14.7)

as a left module over A.
Suppose that v ∈ V and

(v, 0) ∈ Y.(3.14.8)
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This means that there are finitely many distinct elements (Ij , ϕj), 1 ≤ j ≤ n,
of Φ0, and xj ∈ Ij for each j = 1, . . . , n, such that

(v, 0) =

n∑
j=1

(ϕj(xj),−xj z(Ij ,ϕj)).(3.14.9)

It follows that
n∑
j=1

ϕj(xj) = v(3.14.10)

and
n∑
j=1

xj z(Ij ,ϕj) = 0(3.14.11)

in Z0. Because the (Ij , ϕj)’s are distinct elements of Φ0, we get that xj = 0 for
each j = 1, . . . , n. This implies that v = 0, by (3.14.10).

Consider the mapping from V into D(V ) that sends v ∈ V to the image of
(v, 0) under the quotient mapping from Z1 onto D(V ). This is a homomorphism
from V into D(V ), as left modules over A, which is injective, by the remarks
in the preceding paragraph. Thus we may identify V with its image in D(V )
under this mapping.

Let (I, ϕ) ∈ Φ0 be given, so that (0, z(I,ϕ)) is an element of Z1. Let w be the
image of (0, z(I,ϕ)) under the quotient mapping from Z1 onto D(V ). If a ∈ I,
then ϕ(a) ∈ V is identified with the image of (ϕ(a), 0) in the quotient, as before.
This is the same as the image of

(0, a z(I,ϕ)) = a · (0, z(I,ϕ))(3.14.12)

in the quotient, by construction. Thus ϕ(a) is identified with a · w in D(V ).
This shows that (3.14.1) holds when ϕ ∈ Φ0(I). If ϕ is any homomorphism

from I into V , as left modules over A, then ϕ can be expressed as a linear
combination of elements of Φ0(I) with coefficients in k. Using this, one can get
the analogous statement for ϕ, by reducing to the previous case.

3.15 Another abstract construction

Let us continue with the same notation and hypotheses as in the previous sec-
tion. We would like to show that there is an injective left module over A that
contains V as a submodule, as in Theorem 3.3 on p9 of [3].

Let B be an infinite set whose cardinality is strictly larger than the cardinal-
ity of A, and which is as small as possible with these two properties. Suppose
that B is well ordered by �. We would like B to be “minimal” as a well-ordered
set with this cardinality, in the sense that for each β ∈ B, the cardinality of

{α ∈ B : α � β, α 6= β}(3.15.1)
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is strictly less than the cardinality of B. If B does not have this property already,
then there is a smallest β ∈ B such that (3.15.1) has the same cardinality as B.
In this case, we can replace B with (3.15.1), using the restriction of � to this
set.

If β ∈ B, then we would like to define a left module Qβ(V ) over A as follows.
If β is the smallest element of B, then we take Qβ(V ) = V . Otherwise, (3.15.1)
is not empty, and we suppose that Qα(V ) has been defined for every element
α of this set. Suppose for the moment that (3.15.1) has a maximal element α,
which means that β is the minimal element of B with α � β and α 6= β. Under
these conditions, we take

Qβ(V ) = D(Qα(V )).(3.15.2)

If (3.15.1) has no maximal element, then we take

Qβ(V ) =
⋃

{Qα(V ) : α ∈ B, α � β, α 6= β}.(3.15.3)

More precisely, if α1, α2 ∈ B, α1 � α2, and Qα1
(V ), Qα2

(V ) have already been
defined, then Qα1

(V ) should be a submodule of Qα2
(V ). This implies that

(3.15.3) is a left module over A too, that contains Qα(V ) as a submodule when
α is an element of (3.15.1). Thus we can define Qβ(V ) for every β ∈ B, and we
put

Q(V ) =
⋃
β∈B

Qβ(V ).(3.15.4)

This is a left module over A that contains Qβ(V ) as a submodule for every
β ∈ B, as before.

In particular, Q(V ) contains V as a submodule, and we would like to show
that Q(V ) is injective as a left module over A. To do this, let I be a left ideal
in A, and let ϕ be a homomorphism from I into Q(V ), as left modules over A.
If x ∈ I, then we can choose α(x) ∈ B such that

ϕ(x) ∈ Qα(x)(V ).(3.15.5)

One can check that the cardinality of⋃
x∈I

{α ∈ B : α � α(x)}(3.15.6)

is strictly less than the cardinality of B. More precisely, for each x ∈ I, the
cardinality of

{α ∈ B : α � α(x)}(3.15.7)

is strictly less than the cardinality of B, by construction. If I has only finitely
many elements, then one can choose x ∈ I so that α(x) is maximal, and use
this condition on (3.15.7). If I is an infinite set, then A is an infinite set, and
the cardinality of (3.15.7) is less than or equal to the cardinality of A for every
x ∈ I. This implies that the cardinality of (3.15.6) is less than or equal to the
cardinality of I ×A, which is equal to the cardinality of A.
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It follows that (3.15.6) is a proper subset of B. If β ∈ B is not in (3.15.6),
then it is easy to see that

α(x) � β(3.15.8)

for every x ∈ I. This implies that

ϕ(I) ⊆ Qβ(V ).(3.15.9)

Observe that B has no maximal element. Let β1 be the minimal element of
B such that β � β1 and β 6= β1. Thus Qβ1

(V ) = D(Qβ(V )), by construction.
It follows that there is a

w ∈ Qβ1(V ) ⊆ Q(V )(3.15.10)

such that
ϕ(a) = a · w(3.15.11)

for every a ∈ I, as in the previous section. This implies that Q(V ) is injective
as a left module over A, as in Section 2.8.



Chapter 4

Some associative algebras

4.1 Tensor products of algebras

Let k be a commutative ring with a multiplicative identity element, and let A1,
A2 be associative algebras over k. In particular, A1 and A2 are modules over k,
and we take A = A1

⊗
k A2 to be a tensor product of A1 and A2, as modules

over k. We would like to define multiplication on A in such a way that

(a1 ⊗ a2) (b1 ⊗ b2) = (a1 b1)⊗ (a2 b2)(4.1.1)

for every a1, b1 ∈ A1 and a2, b2 ∈ A2.
Note that

(a1, a2, b1, b2) 7→ (a1 b1)⊗ (a2 b2)(4.1.2)

is a multilinear mapping from A1 × A2 × A1 × A2 into A, which is to say that
it is linear over k in each variable. If tensor products of finitely many modules
over k are defined in terms of multilinear mappings, then it follows that there
is a unique homomorphism from a tensor product

A1

⊗
k
A2

⊗
k
A1

⊗
k
A2(4.1.3)

into A, as modules over k, with

a1 ⊗ a2 ⊗ b1 ⊗ b2 7→ (a1 b1)⊗ (a2 b2)(4.1.4)

for every a1, b1 ∈ A1 and a2, b2 ∈ A2.
As in Section 1.4, there is a natural isomorphism between (4.1.3) and a

tensor product (
A1

⊗
k
A2

)⊗
k

(
A1

⊗
k
A2

)
= A

⊗
k
A,(4.1.5)

where a1⊗a2⊗b1⊗b2 corresponds to (a1⊗a2)⊗(b1⊗b2) for every a1, b1 ∈ A1 and
a2, b2 ∈ A2. Thus the module homomorphism from (4.1.3) into A mentioned in

89
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the preceding paragraph corresponds to a unique homomorphism from (4.1.5)
into A, as modules over k, such that

(a1 ⊗ a2)⊗ (b1 ⊗ b2) 7→ (a1 b1)⊗ (a2 b2)(4.1.6)

for every a1, b1 ∈ A1 and a2, b2 ∈ A2.
Of course, A

⊗
k A comes with a mapping from A×A that is bilinear over k.

The composition of this mapping with the module homomorphism from (4.1.5)
into A just mentioned is a bilinear mapping from A×A into A that can be used
to define multiplication on A, and which satisfies (4.1.1), by construction.

Alternatively, if b1 ∈ A1 and b2 ∈ A2, then

(a1, a2) 7→ (a1 b1)⊗ (a2 b2)(4.1.7)

defines a mapping from A1 × A2 into A that is bilinear over k. This leads to a
unique homomorphism from A = A1

⊗
k A2 into itself, as a module over k, such

that
a1 ⊗ a2 7→ (a1 b1)⊗ (a2 b2)(4.1.8)

for every a1 ∈ A1 and a2 ∈ A2. It is easy to see that this homomorphism
depends linearly on b1 and b2, by uniqueness.

If a ∈ A, then the value of the homomorphism just mentioned at a defines
a mapping from A1 × A2 into A, as a function of b1 ∈ A1 and b2 ∈ A2, that is
bilinear over k. This leads to a unique homomorphism from A into itself, as a
module over k, that sends b1 ⊗ b2 to the value of the previous homomorphism
depending on b1 and b2 at a for each b1 ∈ A1 and b2 ∈ A2. This homomorphism
depends linearly on a, by uniqueness.

This defines a mapping from A × A into A that is bilinear over k and can
be used to define multiplication on A, where (4.1.1) holds by construction. One
can check that multiplication on A is associative, because multiplication is asso-
ciative on A1 and A2, by hypothesis. Similarly, if multiplication is commutative
on A1 and A2, then multiplication is commutative on A.

If A1 and A2 have multiplicative identity elements e1 and e2, respectively,
then one can verify that e1 ⊗ e2 is the multiplicative identity element in A. In
this case,

a1 7→ a1 ⊗ e2(4.1.9)

and
a2 7→ e1 ⊗ a2(4.1.10)

are algebra homomorphisms from A1 and A2 into A, respectively. Note that

(a1 ⊗ e2) (e1 ⊗ a2) = (e1 ⊗ a2) (a1 ⊗ e2) = a1 ⊗ a2(4.1.11)

for every a1 ∈ A1 and a2 ∈ A2.
Let C be another associative algebra over k, and let ϕ1, ϕ2 be algebra ho-

momorphisms from A1, A2 into C, respectively. Suppose that

ϕ1(a1)ϕ2(a2) = ϕ2(a2)ϕ1(a1)(4.1.12)
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for every a1 ∈ A1 and a2 ∈ A2. Observe that

(a1, a2) 7→ ϕ1(a1)ϕ2(a2)(4.1.13)

is bilinear over k as a mapping from A1 × A2 into C. This leads to a unique
homomorphism ϕ from A into C, as modules over k, such that

ϕ(a1 ⊗ a2) = ϕ1(a1)⊗ ϕ2(a2)(4.1.14)

for every a1 ∈ A1 and a2 ∈ A2. One can check that ϕ is an algebra homomor-
phism from A into C under these conditions.

4.2 Modules over tensor products

Let k be a commutative ring with a multiplicative identity element, and let A1,
A2 be associative algebras over k, with multiplicative identity elements e1, e2,
respectively. Also let V be a module over k. Suppose for the moment that V is
a left module over each of A1 and A2, and that the actions of A1 and A2 on V
commute with each other. This means that

a1 ·A1
(a2 ·A2

v) = a2 ·A2
(a1 ·A1

v)(4.2.1)

for every a1 ∈ A1, a2 ∈ A2, and v ∈ V , where ·A1
and ·A2

refer to the actions
of A1 and A2 on V .

If v ∈ V , then the mapping from (a1, a2) ∈ A1×A2 to (4.2.1) is bilinear over
k. Let A = A1

⊗
k A2 be a tensor product of A1 and A2, as modules over k. It

follows that there is a unique homomorphism from A into V , as modules over
k, that maps a1 ⊗ a2 to (4.2.1) for every a1 ∈ A1 and a2 ∈ A2. If a ∈ A, then
let a · v = a ·A v be the image of a under this mapping. Using this notation, we
have that

(a1 ⊗ a2) ·A v = a1 ·A1
(a2 ·A2

v) = a2 ·A2
(a1 ·A1

v)(4.2.2)

for every a1 ∈ A1 and a2 ∈ A2.
Of course, one can do this for every v ∈ V , so that a ·A v is defined as an

element of V for every a ∈ A and v ∈ V . Remember that A may be considered
as an associative algebra over k, as in the previous section. One can check that
this makes V into a left module over A, as on p163 of [3].

Conversely, if V is a left module over A, then one can get commuting actions
of A1 and A2 on V , as on p163 of [3]. More precisely, if a1 ∈ A1, a2 ∈ A2, and
v ∈ V , then the actions of a1 and a2 on v are defined to be the actions of a1⊗e2
and e1 ⊗ a2 on V , using the given action of A on V .

There are analogous statements for commuting right actions of A1 and A2

on V , as on p163 of [3].
Suppose now that V is a left module over A1 and a right module over A2,

and that the actions of A1 and A2 on V commute with each other. Thus

a1 ·A1
(v ·A2

a2) = (a1 ·A1
v) ·A2

a2(4.2.3)
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for every a1 ∈ A1, a2 ∈ A2, and v ∈ V . Let Aop2 be the opposite algebra
associated to A2, as in Section 1.11. Remember that we may use aop2 to indicate
that a2 ∈ A2 is being considered as an element of Aop2 . We may consider V as
a left module over Aop2 , with

aop2 ·Aop
2
v = v ·A2 a2(4.2.4)

for every a2 ∈ A2 and v ∈ V , as before.
Under these conditions, we may consider V to be a left module over a tensor

product A1

⊗
k A

op
2 of A1 and Aop2 , as on p163 of [3] again. Similarly, we may

consider V to be a right module over a tensor product of Aop1 and A2, as in [3].

4.3 Formal power series

Let k be a commutative ring with a multiplicative identity element, and let
V be a module over k. Also let n be a positive integer, and let T1, . . . , Tn be
commuting indeterminates. As on p93 of [9], we normally try to use upper-
case letters for indeterminates, and lower-case letters for elements of rings or
modules.

By a multi-index of length n we mean an n-tuple α = (α1, . . . , αn) of non-
negative integers, and we put

|α| = α1 + · · ·+ αn.(4.3.1)

The corresponding formal monomial

Tα = Tα1
1 · · ·Tαn

n(4.3.2)

in T1, . . . , Tn has degree |α|. We use Z+ for the set of all positive integers, so
that (Z+ ∪ {0})n is the set of all multi-indices of length n.

A formal power series in T1, . . . , Tn with coefficients in V can be expressed
as

f(T ) = f(T1, . . . , Tn) =
∑

α∈(Z+∪{0})n
fα T

α,(4.3.3)

where fα ∈ V for every multi-index α. The space V [[T1, . . . , Tn]] of all such
formal power series can be defined as the space of all V -valued functions on
(Z+ ∪ {0})n. This is a module over k with respect to pointwise addition and
scalar multiplication of V -valued functions on (Z+∪{0})n, which corresponds to
termwise addition and scalar multiplication of formal power series as in (4.3.3).

The space V [T1, . . . , Tn] of formal polynomials in T1, . . . , Tn with coefficients
in V may be defined as the subset of V [[T1, . . . , Tn]] consisting of formal power
series as in (4.3.3) such that fα = 0 for all but finitely many multi-indices
α. More precisely, this may be defined as the space of V -valued functions on
(Z+ ∪ {0})n with finite support. This is a submodule of V [[T1, . . . , Tn]], as
a module over k. We may identify V with the submodule of V [T1, . . . , Tn]
consisting of f(T ) as in (4.3.3) such that fα = 0 when α 6= 0.
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Let A be an associative algebra over k, let f(T ) ∈ A[[T1, . . . , Tn]] be as in
(4.3.3), and let

g(T ) =
∑

β∈(Z+∪{0})n
gβ T

β(4.3.4)

be another element of A[[T1, . . . , Tn]]. If γ is a multi-index of length n, then put

hγ =
∑

α,β∈(Z+∪{0})n

α+β=γ

fα gβ .(4.3.5)

Note that the sum on the right has only finitely many terms, and thus defines
an element of A. This means that

h(T ) =
∑

γ∈(Z+∪{0})n
hγ T

γ(4.3.6)

defines an element of A[[T1, . . . , Tn]], and we put

f(T ) g(T ) = h(T ).(4.3.7)

One can check that A[[T1, . . . , Tn]] is an associative algebra over k with
respect to this definition of multiplication. If multiplication on A is commuta-
tive, then A[[T1, . . . , Tn]] is a commutative algebra too. It is easy to see that
A[T1, . . . , Tn] is a subalgebra of A[[T1, . . . , Tn]], which contains A as a subal-
gebra. If A has a multiplicative identity element e, then the corresponding
formal power series is the multiplicative identity element in A[[T1, . . . , Tn]]. In
particular, k[[T1, . . . , Tn]] is a commutative associative algebra over k.

If f(T ) ∈ k[[T1, . . . , Tn]] is as in (4.3.3), and g(T ) ∈ V [[T1, . . . , Tn]] is as in
(4.3.4), then (4.3.5) defines an element of V for each multi-index γ, using scalar
multiplication on V . Under these conditions, we can define h(T ) as an element
of V [[T1, . . . , Tn]] as in (4.3.6), so that f(T ) g(T ) can be defined as in (4.3.7).
One can verify that V [[T1, . . . , Tn]] is a module over k[[T1, . . . , Tn]] in this way.
If f(T ) ∈ k[T1, . . . , Tn] and g(T ) ∈ V [T1, . . . , Tn], then h(T ) is an element of
V [T1, . . . , Tn], which makes V [T1, . . . , Tn] a module over k[T1, . . . , Tn].

Similarly, let A be an associative algebra over k with a multiplicative identity
element e, and suppose that V is a left or right module over A. As before, the ac-
tion of A on V can be extended to an action of A[[T1, . . . , Tn]] on V [[T1, . . . , Tn]],
so that V [[T1, . . . , Tn]] becomes a left or right module over A[[T1, . . . , Tn]]. One
may also consider V [T1, . . . , Tn] as a left or right module over A[T1, . . . , Tn], as
appropriate, in the same way.

Consider the mapping from A[[T1, . . . , Tn]] onto A defined by

f(T ) 7→ f0,(4.3.8)

where f(T ) is as in (4.3.3). It is easy to see that this defines a homomorphism
from A[[T1, . . . , Tn]] onto A, as algebras over k.
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4.4 Polynomial functions

Let k be a commutative ring with a multiplicative identity element, and let n
be a positive integer. If V is a module over k, then let V n be the space of n-
tuples of elements of V , which is a module over k with respect to coordinatewise
addition and scalar multiplication.

If t = (t1, . . . , tn) ∈ kn and α is a multi-index of length n, then tα is defined
as an element of k by

tα = tα1
1 · · · tαn

n ,(4.4.1)

where t
αj

j is interpreted as being the multiplicative identity element 1 in k when
αj = 0, as usual. If β is another multi-index of length n, then

tα+β = tα tβ .(4.4.2)

Let T1, . . . , Tn be n commuting indeterminates, and let V be a module over
k again. Also let f(T ) be a formal polynomial in T1, . . . , Tn with coefficients in
V , as in (4.3.3). If t ∈ kn, then

f(t) =
∑

α∈(Z+∪{0})n
fα t

α(4.4.3)

defines an element of V , where all but finitely many terms in the sum on the
right are equal to 0, by hypothesis. Of course,

f(T ) 7→ f(t)(4.4.4)

is a homomorphism from V [T1, . . . , Tn] into V , as modules over k.
Let A be an associative algebra over k, so that A[T1, . . . , Tn] is an associative

algebra over k too, as in the previous section. If f(T ), g(T ) ∈ A[T1, . . . , Tn],
h(T ) = f(T ) g(T ), and t ∈ kn, then one can check that

h(t) = f(t) g(t).(4.4.5)

Let V be a module over k again, and remember that V [T1, . . . , Tn] may
be considered as a module over k[T1, . . . , Tn]. Let f(T ) ∈ k[T1, . . . , Tn] and
g(T ) ∈ V [T1, . . . , Tn] be given, so that h(T ) = f(T ) g(T ) ∈ V [T1, . . . , Tn]. If
t ∈ kn, then f(t) is defined as an element of k, g(t) and h(t) are defined as
elements of V , and one can verify that (4.4.5) holds.

Let A be an associative algebra over k with a multiplicative identity element
e, and suppose that V is a left or right module over A. If one of f(T ), g(T ) is
in A[T1, . . . , Tn] and the other is in V [T1, . . . , Tn], as appropriate, then h(T ) =
f(T ) g(T ) ∈ V [T1, . . . , Tn], as in the previous section. If t ∈ kn, then f(t), g(t)
are defined as elements of A or V , as appropriate, h(t) ∈ V , and (4.4.5) holds.

Suppose that a = (a1, . . . , an) ∈ A has commuting coordinates, so that

aj al = al aj(4.4.6)
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for every j, l = 1, . . . , n, which holds automatically when n = 1. If α is a
multi-index of length n, then

aα = aα1
1 · · · aαn

n(4.4.7)

defines an element of A, where a
αj

j is interpreted as being equal to e when
αj = 0. If β is another multi-index of length n, then

aα+β = aα aβ .(4.4.8)

Let f(T ) be a formal polynomial in T1, . . . , Tn with coefficients in k, as in
(4.3.3) again. Under these coditions, f(a) is defined as an element of A by

f(a) =
∑

α∈(Z+∪{0})n
fα a

α,(4.4.9)

where all but finitely many terms in the sum on the right are equal to 0, by
hypothesis. If g(T ) ∈ k[T1, . . . , Tn] and h(T ) = f(T ) g(T ), then one can check
that

h(a) = f(a) g(a).(4.4.10)

Thus f(T ) 7→ f(a) defines an algebra homomorphism from k[T1, . . . , Tn] into A.

4.5 Invertibility in A[[T1, . . . , Tn]]

Let k be a commutative ring with a multiplicative identity element, let n be a
positive integer, and let T1, . . . , Tn be n commuting indeterminates. Also let V
be a module over k, let f(T ) ∈ V [[T1, . . . , Tn]] be as in (4.3.3), and let N be a
nonnegative integer. Let us say that f(T ) vanishes to order N if

fα = 0(4.5.1)

for every multi-index α of length n with |α| ≤ N . One may consider this to
hold trivially when N = −1.

Suppose that f(T ) ∈ k[[T1, . . . , Tn]] and g(T ) ∈ V [[T1, . . . , Tn]] vanish to
order N1, N2 ≥ −1, respectively. Under these conditions, one can check that

f(T ) g(T ) vanishes to order N1 +N2 + 1.(4.5.2)

Let A be an associative algebra over k with a multiplicative identity element
e. If f(T ), g(T ) ∈ A[[T1, . . . , Tn]] vanish to order N1, N2 ≥ −1, respectively.
then (4.5.2) holds, as before.

Suppose that a(T ) ∈ A[[T1, . . . , Tn]] vanishes to order 0, and let j be a
nonnegative integer. Observe that

a(T )j vanishes to order j − 1.(4.5.3)



96 CHAPTER 4. SOME ASSOCIATIVE ALGEBRAS

Let l be a nonnegative integer, and consider

l∑
j=0

a(T )j .(4.5.4)

If α is a multi-index of length n, then the coefficient of Tα in (4.5.4) does not
depend on l when

l ≥ |α|,(4.5.5)

because of (4.5.3). In this case, we can define

∞∑
j=0

a(T )j(4.5.6)

as an element of A[[T1, . . . , Tn]] by saying that for each multi-index α of length
n, the coefficient of Tα in (4.5.6) is the same as in (4.5.4) when (4.5.5) holds.

It is easy to see that

(e− a(T ))

l∑
j=0

a(T )j =
( l∑
j=0

a(T )j
)
(e− a(T )) = e− a(T )l+1(4.5.7)

for every l ≥ 0, by a standard argument. One can use this to check that

(e− a(T ))

∞∑
j=0

a(T )j =
( ∞∑
j=0

a(T )j
)
(e− a(T )) = e.(4.5.8)

This shows that e − a(T ) is invertible in A[[T1, . . . , Tn]], with inverse equal to
(4.5.6).

Let f(T ) ∈ A[[T1, . . . , Tn]] be as in (4.3.3), and suppose that f0 is invertible
in A. This implies that f(T ) can be expressed as

f(T ) = f0 (e− a(T )),(4.5.9)

where a(T ) ∈ A[[T1, . . . , Tn]] vanishes to order 0. It follows that f(T ) is invert-
ible in A[[T1, . . . , Tn]], by the remarks in the preceding paragraph.

Conversely, if f(T ) is invertible in A[[T1, . . . , Tn]], then f0 is invertible in A.
This follows from the fact that f(T ) 7→ f0 is an algebra homomorphism from
A[[T1, . . . , Tn]] onto A, as in Section 4.3.

4.6 Partial derivatives

Let n be a positive integer, let α be a multi-index of length n, and let l be an
integer with 1 ≤ l ≤ n. Under these conditions, we define the multi-index α(l)
of length n by

αj(l) = αj when j 6= l(4.6.1)

= αl − 1 when j = l and αl ≥ 1

= 0 when j = l and αl = 0.
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Similarly, the multi-index α+(l) of length n is defined by

α+
j (l) = αj when j 6= l(4.6.2)

= αl + 1 when j = l.

Let k be a commutative ring with a multiplicative identity element, let V
be a module over k, and let T1, . . . , Tn be n commuting indeterminates. If
f(T ) ∈ V [[T1, . . . , Tn]] is as in (4.3.3), then the formal partial derivative of f(T )
in Tl can be defined as an element of V [[T1, . . . , Tn]] by

∂lf(T ) =
∂

∂Tl
f(T ) =

∑
α∈(Z+∪{0})n

(αl + 1) · fα+(l) T
α.(4.6.3)

This is essentially the same as∑
α∈(Z+∪{0})n

αl · fα Tα(l) =
∑

α∈(Z+∪{0})n

αl≥1

αl · fα Tα(l).(4.6.4)

Clearly f(T ) 7→ ∂lf(T ) is a homomorphism from V [[T1, . . . , Tn]] into itself, as a
module over k, which maps V [T1, . . . , Tn] into itself. One can verify that

∂l(∂mf(T )) = ∂m(∂lf(T ))(4.6.5)

for every l,m = 1, . . . , n and f(T ) ∈ V [[T1, . . . , n]].
Let A be an associative algebra over k, so that A[[T1, . . . , Tn]] is an associa-

tive algebra over k too, as in Section 4.3. If f(T ), g(T ) ∈ A[[T1, . . . , Tn]], then
one can check that

∂l(f(T ) g(T )) = (∂lf(T )) g(T ) + f(T ) ∂lg(T )(4.6.6)

for every l = 1, . . . , n. If f(T ) ∈ k[[T1, . . . , Tn]] and g(T ) ∈ V [[T1, . . . , Tn]], then
f(T ) g(T ) ∈ V [[T1, . . . , Tn]], as in Section 4.3, and satisfies (4.6.6). If A has a
multiplicative identity element e, and V is a left or right module over A, then
V [[T1, . . . , Tn]] is a left or right module over A too, as before. One can verify
that the analogue of (4.6.6) holds in this case as well.

Let t ∈ kn be given, and suppose that u ∈ kn satisfies

uj ul = 0(4.6.7)

for each j, l = 1, . . . , n. Let α be a multi-index of length n, so that tα and
(t+ u)α are defined as elements of k as in Section 4.4. It is easy to see that

(tl + ul)
αl = tαl

l + αl · tαl−1
l ul(4.6.8)

for each l = 1, . . . , n with αl ≥ 1, because u2l = 0. This implies that

(tl + ul)
αl = tαl

l + αl · tαl(l)
l ul(4.6.9)
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for every l = 1, . . . , n, which is automatic when αl = 0. It follows that

(t+ u)α = tα +

n∑
l=1

αl · tα(l) ul.(4.6.10)

If V is a module over k and f(T ) ∈ V [T1, . . . , Tn], then we get that

f(t+ u) = f(t) +

n∑
l=1

(∂lf)(t)ul.(4.6.11)

Here f(t), f(t+ u), and (∂lf)(t) are defined as elements of V as in Section 4.4.
Let A be an associative algebra over k with a multiplicative identity element

e, and suppose that a ∈ An has commuting coordinates. Also let u be an
element of An that satisfies (4.6.7), and whose coordinates commute with the
coordinates of a, so that

aj ul = ul aj(4.6.12)

for every j, l = 1, . . . , n. Note that a+ u has commuting coordinates, because u
has commuting coordinates. Let α be a multi-index of length n again, so that
aα and (a+ u)α are defined as elements of A. As in (4.6.9), we have that

(al + ul)
αl = aαl

l + αl · aαl(l)
l ul(4.6.13)

for each l = 1, . . . , n. This means that

(a+ u)α = aα +

n∑
l=1

αl · aα(l) ul,(4.6.14)

as before. If f(T ) ∈ k[T1, . . . , Tn], then it follows that

f(a+ u) = f(a) +

n∑
l=1

(∂lf)(a)ul,(4.6.15)

where f(a), f(a + u), and (∂lf)(a) are defined as elements of A as in Section
4.4.

4.7 Algebras of module homomorphisms

Let k be a commutative ring with a multiplicative identity element, and let V be
a module over k. The space Homk(V, V ) of homomorphisms from V into itself,
as a module over k, is an associative algebra over k, with respect to composition
of mappings. Of course, the identity mapping on V is the multiplicative identity
element in Homk(V, V ).

Let A be an associative algebra over k with a multiplicative identity element
eA. If V is a left module over A, then the space HomA(V, V ) of homomorphisms
from V into itself, as a left module over A, is a subalgebra of Homk(V, V ), as
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an algebra over k. Similarly, if V is a right module over A, then the space
HomA(V, V ) of homomorphisms from V into itself, as a right module over A,
is a subalgebra of Homk(V, V ), as an algebra over k. Note that the identity
mapping on V is an element of HomA(V, V ) in both cases.

A representation of A on a module V over k may be defined as an algebra
homomorphism from A into Homk(V, V ) that sends eA to the identity mapping
on V . Thus a representation of A on V corresponds exactly to an action of
A on V that makes V a left module over A. Similarly, an opposite algebra
homomorphism from A into Homk(V, V ) that sends eA to the identity mapping
on V corresponds exactly to an action of A on V that makes V a right module
over A.

Let n be a positive integer, and let An be the space of n-tuples of elements
of A. This is a module over k with respect to coordinatewise addition and
scalar multiplication, and both a left and right module over A with respect to
left and right multiplication by elements of A coordinatewise on An. Note that
these actions of A on An on the left and the right commute with each other, by
associativity.

Let α = (αj,l) be an n × n matrix with entries in A. If x ∈ An, then let
TLα (x) and T

R
α (x) be the elements of An whose jth coordinates are given by

(TLα (x))j =

n∑
l=1

αj,l xl(4.7.1)

and

(TRα (x))j =

n∑
l=1

xl αj,l,(4.7.2)

respectively, for every j = 1, . . . , n. These define homomorphisms from An into
itself as a module over k, which are the same when A is commutative. More
precisely, TLα is a homomorphism from An into itself, as a right module over A,
and TRα is a homomorphism from An into itself, as a left module over A.

One can check that every homomorphism from An into itself, as a right
module over A, can be expressed as TLα for a unique matrix α. Similarly, every
homomorphism from An, as a left module over itself, can be expressed as TRα
for a unique matrix α. This uses the fact that An is freely generated by the
elements with one coordinate equal to eA and the other coordinates equal to 0,
as a left or right module over A.

One can verify that this defines an isomorphism from the algebra Mn(A) of
n × n matrices with entries in A onto the algebra of homomorphisms from An

onto itself, as a right module over A. Similarly, we get an isomorphism from
the algebra Mn(A

op) of n× n matrices with entries in the opposite algebra Aop

of A onto the algebra of homomorphisms from An into itself, as a left module
over A.
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4.8 Modules over semigroups

Let k be a commutative ring with a multiplicative identity element, and let Σ
be a semigroup, with the semigroup operation expressed multiplicatively, and
with an identity element eΣ. Also let V be a module over k. Suppose that for
every x ∈ Σ and v ∈ V , x · v is defined as an element of V , and that

v 7→ x · v(4.8.1)

is a homomorphism from V into itself, as a module over k. Suppose too that

x · (y · v) = (x y) · v(4.8.2)

for every x, y ∈ Σ and v ∈ V , and that

eΣ · v = v(4.8.3)

for every v ∈ V . Under these conditions, V is said to be a left module over Σ.
Equivalently, the action of Σ on V on the left corresponds to a mapping

from Σ into the algebra Homk(V, V ) of all homomorphisms from V into itself,
as a module over k. The condition (4.8.2) says that this mapping is a homo-
morphism from Σ into Homk(V, V ), as a semigroup with respect to composition
of mappings. Similarly, (4.8.3) says that this mapping sends eΣ to the identity
mapping on V . A mapping from Σ into Homk(V, V ) with these properties is
also known as a representation of Σ on V .

Suppose now that for every x ∈ Σ and v ∈ V , v · x is defined as an element
of V , and that

v 7→ v · x(4.8.4)

is a homomorphism from V into itself, as a module over k. Suppose in addition
that

(v · x) · y = v · (x y)(4.8.5)

for every x, y ∈ Σ and v ∈ V , and that

v · eΣ = v(4.8.6)

for every v ∈ V . In this case, V is said to be a right module over Σ.
The opposite semigroup Σop associated to Σ is defined to be the same as Σ

as a set, with the product of x, y ∈ Σop equal to the product y x of y and x in Σ.
If x ∈ Σ, then it may be helpful to use xop to indicate that x is being considered
as an element of Σop, as in Section 1.11. Thus multiplication in Σop is given by

xop yop = (y x)op,(4.8.7)

as before. Note that eΣ is the identity element in Σop as well. A homomor-
phism from Σop into another semigroup may be called an opposite semigroup
homomorphism from Σ into the other semigroup.

A mapping from Σ into Homk(V, V ) can be used to define an action of Σ on
V on the right, as in (4.8.4). Observe that (4.8.5) is the same as saying that this
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mapping is an opposite semigroup homomorphism, with respect to composition
of mappings on Homk(V, V ). Of course, (4.8.6) is the same as saying that this
mapping sends eΣ to the identity mapping on V . This means that a right
module over Σ corresponds to a representation of Σop. A left or right module
over Σ may be considered as a right or left module over Σop, respectively.

4.9 Semigroup algebras

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let Σ be a semigroup, with the semigroup operation expressed multiplicatively,
and with an identity element eΣ. The corresponding semigroup algebra A(Σ) of
Σ over A basically consists of finite formal sums of the form

a1 x1 + · · ·+ an xn,(4.9.1)

where aj ∈ A and xj ∈ Σ for every j = 1, . . . , n.
More precisely, A(Σ) can be defined as the space c00(Σ, A) of A-valued func-

tions on Σ with finite support. This is a module over k with respect to pointwise
addition and scalar multiplication, and both a left and right module over A with
respect to pointwise multiplication on the left and right by elements of A. An
element x of Σ may be identified with the A-valued function on Σ equal to eA
at x, and equal to 0 at every other element of Σ.

Multiplication on Σ can be extended to A(Σ) in such a way that it is bilinear
over k, and

(a x) (b y) = (a b) (x y)(4.9.2)

for every a, b ∈ A and x, y ∈ Σ, as on p148 of [3]. It is easy to see that A(Σ) is
an associative algebra over k with respect to this definition of multiplication.

The element of A(Σ) corresponding to eΣ is the multiplicative identity ele-
ment of A(Σ). If we identify a ∈ A with a eΣ ∈ A(Σ), then A corresponds to a
subalgebra of A(Σ).

Let V be a module over k, and suppose for the moment that V is a left
module over A(Σ). In particular, this means that V is a left module over A,
because A corresponds to a subalgebra of A(Σ). If x ∈ Σ, then v 7→ x · v defines
a homomorphism from V into itself, as a module over k, and as a left module
over A, by identifying x with an element of A(Σ) as before. This makes V a
left module over Σ, as in the previous section. The condition that the actions
of elements of Σ be homomorphisms from V into itself, as a left module over A,
means that the actions of Σ and A on V commute with each other.

Conversely, suppose that V is a left module over Σ and A, and that the
actions of Σ and A commute with each other. Under these conditions, one can
define an action of A(Σ) on V , so that V becomes a left module over A(Σ), as
an associative algebra over k. This corresponds to some remarks on p149 of [3].

Similarly, if V is a right module over A(Σ), then V is a right module over Σ
and A, and the actions of Σ and A on V commute with each other. Conversely,
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if V is a right module over Σ and A, and the actions of Σ and A commute with
each other, then one can define an action of A(Σ) on V , so that V becomes a
right module over A(Σ), as an associative algebra over k.

Suppose that V is a left module over A, so that the space HomA(V, V ) of
homomorphisms from V into itself, as a left module over A, is a subalgebra
of Homk(V, V ), as an algebra over k. An action of Σ on V by elements of
HomA(V, V ) that makes V a left module over Σ corresponds exactly to a homo-
morphism from Σ into HomA(V, V ), as a semigroup with respect to composition,
that sends eΣ to the identity mapping on V .

Similarly, if V is a right module over A, then the space HomA(V, V ) of
homomorphisms from V into itself, as a right module over A, is a subalgebra
of Homk(V, V ). An action of Σ on A by elements of HomA(V, V ) that makes
V a right module over Σ corresponds exactly to an opposite semigroup homo-
morphism from Σ into HomA(V, V ) that sends eΣ to the identity mapping on
V .

Let B be another associative algebra over k, with a multiplicative identity
element eB . Suppose that ϕA is a homomorphism from A into B, as algebras
over k, such that ϕA(eA) = eB . Let ϕΣ be a homomorphism from Σ into B, as
a semigroup with respect to multiplication, such that ϕΣ(eΣ) = eB . Suppose
also that

ϕA(a)ϕΣ(x) = ϕΣ(x)ϕA(a)(4.9.3)

for every a ∈ A and x ∈ Σ. Under these conditions, there is a unique homomor-
phism ϕA(Σ) from A(Σ) into B, as algebras over k, such that

ϕA(Σ)(a x) = ϕA(a)ϕΣ(x)(4.9.4)

for every a ∈ A and x ∈ Σ.
Note that A(Σ) satisfies the conditions on B mentioned in the preceding

paragraph. This uses the natural mappings from A and Σ into A(Σ) as ϕA and
ϕΣ, respectively.

4.10 Free semigroups

Let E be a nonempty set, and for each positive integer n, let En be the nth
Cartesian power of E, consisting of n-tuples of elements of E. We may con-
sider the elements of En as formal products of n elements of E, which may be
expressed as strings of n elements of E. We take E0 to be a set with a single
element, denoted eΣ, representing the empty string.

Thus

Σ = Σ(E) =

∞⋃
n=0

En(4.10.1)

consists of all finite formal products of elements of E, or finite strings of elements
of E, including the empty string. This is a semigroup with respect to formal
products, which corresponds to concatenation of finite strings of elements of E.



4.11. TENSOR ALGEBRAS USING BIMODULES 103

By construction, eΣ is the identity element in Σ. This is the free semigroup
generated by E.

Let Σ1 be a semigroup with identity element eΣ1
. Any mapping from E into

Σ1 has a unique extension to a semigroup homomorphism from Σ into Σ1 that
sends eΣ to eΣ1

.
Let k be a commutative ring with a multiplicative identity element, and let

A be an associative algebra over k, with a multiplicative identity element eA.
One can use Σ to get the corresponding semigroup algebra A(Σ) over A, as in
the previous section. This is mentioned on p148 of [3], when E is finite. In this
case, A(Σ) corresponds to the free ring mentioned on p146 of [3].

Let B be another associative algebra over k, with a multiplicative identity
element eB . Also let ϕA be a homomorphism from A into B, as algebras over
k, with ϕA(eA) = eB . Suppose that ϕE is a mapping from E into B such that

ϕA(a)ϕE(x) = ϕE(x)ϕA(a)(4.10.2)

for every a ∈ A and x ∈ E. Let ϕΣ be the unique extension of ϕE to a homo-
morphism from Σ into B, as a semigroup with respect to multiplication, such
that ϕΣ(eΣ) = eB . It is easy to see that (4.9.3) holds in this case. This implies
that there is a unique homomorphism ϕA(Σ) from A(Σ) into B, as algebras over
k, that satisfies (4.9.4). As before, A(Σ) satisfies these conditions on B, with
respect to the natural mappings from A and E into A(Σ).

4.11 Tensor algebras using bimodules

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V be a module over k that is a bimodule over A, which is to say that A is
both a left and right module over A, and that the actions of A on V on the left
and right commute with each other.

Let V
⊗

A V be a tensor product of V with itself over A. This is a module
over k, and in fact a left and right module over A, using the action of A on the
left on the left factor of V , and the action of A on the right on the the right
factor of V . Note that the actions of A on V

⊗
A V on the left and on the right

commute with each other.
Put T 1V = V , and T 2V = V

⊗
A V . Similarly, if n ≥ 3 is an integer, then

we take TnV to be a tensor product of n V ’s over A. The order of the n factors
of V is important here, but the way that the n-fold tensor product is arranged
into products of pairs does not really matter, up to natural isomorphisms, as in
Section 1.12.

More precisely, TnV is a left module over A, using the action of A on the
left on the left-most factor of V . Similarly, TnV is a right module over A, using
the action of A on the right on the right-most factor of A. These actions of A
on TnV on the left and right commute with each other.

If n1 and n2 are positive integers, then a tensor product (Tn1V )
⊗

A(T
n2V )

of Tn1V and Tn2V over A is a left and right module over A, using the action
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of A on the left on Tn1V , and the action of A on the right on Tn2V . These
actions of A on (Tn1V )

⊗
A(T

n2V ) on the left and the right commute with each
other, and (Tn1V )

⊗
A(T

n2V ) is isomorphic to Tn1+n2V in a natural way, as a
bimodule over A.

The natural bilinear mapping from (Tn1V )×(Tn2V ) into (Tn1V )
⊗

A(T
n2V )

leads to a mapping

from (Tn1V )× (Tn2V ) into Tn1+n2V(4.11.1)

that is bilinear over k. If u1 ∈ Tn1V and u2 ∈ Tn2V , then let u1 u2 be the
image of (u1, u2) into T

n1+n2V under this mapping. If a ∈ A, then

(u1 · a)u2 = u1 (a · u2),(4.11.2)

by construction. We also have that

(a · u1)u2 = a · (u1 u2)(4.11.3)

and
u1 (u2 · a) = (u1 u2) · a.(4.11.4)

Let us take T 0V = A, which may be considered as a bimodule over A too.
The mapping as in (4.11.1) mentioned earlier can be extended to the cases
where n1 = 0 or n2 = 0, using the action of A on Tn2V on the left when n1 = 0,
the action of A on Tn1V on the right when n2 = 0, and multiplication on A
when n1 = n2 = 0. This extension satisfies (4.11.2), (4.11.3), and (4.11.4) when
n1 = 0 or n2 = 0 as well.

Let n1, n2, and n3 be nonnegative integers, and let uj ∈ TnjV , j = 1, 2, 3,
be given. One can check that

(u1 u2)u3 = u1 (u2 u3)(4.11.5)

in Tn1+n2+n3V . This uses the natural isomorphisms between(
(Tn1V )

⊗
A
(Tn2V )

)⊗
A
(Tn3V ),(4.11.6)

(Tn1V )
⊗

A

(
(Tn2V )

⊗
A
(Tn3V )

)
,(4.11.7)

and Tn1+n2+n3V , as in Section 1.12.
Put

TV =

∞⊕
n=0

TnV,(4.11.8)

which may be considered initially as a module over k, and a bimodule over A.
There is a natural mapping from (TV ) × (TV ) into TV , using the mappings
as in (4.11.1) for every n1, n2 ≥ 0. If u,w ∈ TV , then let uw be the image of
(u,w) in TV under this mapping. This makes TV an associative algebra over
k.
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Let us identify A = T 0V with the corresponding subset of TV , which is a
subalgebra of TV . Multiplication of elements of TV by elements of A on the left
or right is the same as the action of A on TV on the left and right, respectively,
as a bimodule over A. In particular, eA is the multiplicative identity element in
TV .

Let E be a nonempty set, and suppose that V is freely generated, as a
bimodule over A, by E. Thus V corresponds to the direct sum of a family of
copies of A indexed by E, as a bimodule over A. If n is a positive integer, then
we can take TnV to be freely generated by En, as a bimodule over A. This also
works with n = 0, where E0 is interpreted as consisting of a single element, as
in the previous section. If Σ is the free semigroup generated by E, then TV
corresponds to the semigroup algebra A(Σ).

4.12 Tensor algebras and homomorphisms

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Also let B be an associative algebra over k, with a multiplicative identity
element eB . Suppose that ϕA is a homomorphism from A into B, as algebras
over k, with ϕA(eA) = eB . Using this, B may be considered as a bimodule over
A.

Let ϕV be a homomorphism from V into B, as modules over k, and as
bimodules over A. This means that

ϕV (a · v) = ϕA(a)ϕV (v)(4.12.1)

and
ϕV (v · a) = ϕV (v)ϕA(a)(4.12.2)

for every a ∈ A and v ∈ V . If v1, v2 ∈ V and a ∈ A, then it follows that

ϕV (v1 · a)ϕV (v2) = ϕV (v1)ϕA(a)ϕV (v2) = ϕV (v1)ϕV (a · v2).(4.12.3)

Of course,
(v1, v2) 7→ ϕV (v1)ϕV (v2)(4.12.4)

defines a mapping from V ×V into B that is bilinear over k. Using (4.12.3), we
get that there is a unique homomorphism ϕT 2V from T 2V into B, as modules
over k, such that

ϕT 2V (v1 ⊗ v2) = ϕV (v1)ϕV (v2)(4.12.5)

for every v1, v2 ∈ V . More precisely, ϕT 2V is a homomorphism from T 2V into
B, as bimodules over A.

Similarly, we can get a natural homomorphism

ϕTnV from TnV into B(4.12.6)

for every n ≥ 0, as modules over k, and as bimodules over A. We use ϕA when
n = 0, and ϕV when n = 1. If n1, n2 are nonnegative integers and uj ∈ TnjV
for j = 1, 2, then

ϕTn1+n2V (u1 u2) = ϕTn1V (u1)ϕTn2V (u2).(4.12.7)
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Let ϕTV be the mapping from TV into B that corresponds to ϕTnV on TnV
for every n ≥ 0. This is a homomorphism from TV into B, as algebras over k.

Note that TV is generated, as an algebra over k, by A and V = T 1V ,
considered as subsets of TV . This implies that any algebra homomorphism from
TV into B is uniquely determined by its restriction to A and V . In particular,
ϕTV is uniquely determined by ϕA and ϕV .

If ϕ is any algebra homomorphism from TV into B, then we can take ϕA to
be the restriction of ϕ to A, and ϕV to be the restriction of ϕ to V = T 1V .

Observe that TV satisfies the conditions on B here, using the natural map-
pings from A and V into TV .

4.13 Local rings

Let A be a ring, with a nonzero multiplicative identity element eA. Put

I0 = {a ∈ A : a does not have a left inverse in A}.(4.13.1)

We say that A is a local ring if

I0 is a left ideal in A.(4.13.2)

This is the same as the condition (LC) on p147 in [3].
Suppose that A is a local ring. If I is a proper left ideal in A, then

I ⊆ I0,(4.13.3)

as in Proposition 2.1 on p147 of [3]. Indeed, if I is a proper left ideal in A, then
no element of I can have a left inverse in A, so that (4.13.3) holds.

Suppose for the sake of a contradiction that a ∈ I0 and b ∈ A satisfy

a b = eA.(4.13.4)

This implies that
(eA − b a) b = b− b a b = b− b = 0.(4.13.5)

Note that b a ∈ I0, because I0 is a left ideal in A. It follows that eA − b a 6∈ I0,
because eA 6∈ I0. Thus eA − b b has a left inverse c in A. However, this means
that

b = c (ea − b a) b = 0,(4.13.6)

which is a contradiction. This shows that

no element of I0 has a right inverse in A,(4.13.7)

as in Proposition 2.1 on p147 of [3].
If b ∈ A, then I0 b is a left ideal in A, because I0 is a left ideal in A. We

also have that eA 6∈ I0 b, as in the preceding paragraph, so that I0 b 6= A. This
implies that

I0 b ⊆ I0,(4.13.8)
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as in (4.13.3). This means that

I0 is a right ideal in A(4.13.9)

too, as in Proposition 2.1 on p147 of [3].
Let a ∈ A \ I0 be given, so that a has a left inverse b ∈ A. This means that

a is a right inverse of b, so that b 6∈ I0. It follows that b has a left inverse c ∈ A.
This implies that

c = c b a = a,(4.13.10)

so that
a b = c b = eA.(4.13.11)

Thus
every element of A \ I0 has a two-sided inverse in A,(4.13.12)

as in Proposition 2.1 on p147 of [3].
Using the remarks in the previous paragraphs, we get that

I0 = {a ∈ A : a does not have a right inverse in A}.(4.13.13)

This implies that I0 contains every proper right ideal in A, as before. This is
another part of Proposition 2.1 on p147 of [3].

Because I0 is a two-sided ideal in A, the quotient A/I0 is defined as a ring.
Of course, this ring is nontrivial, because I0 6= A. In fact, A/I0 is a division
ring, which is to say that every nonzero element of A/I0 has a multiplicative
inverse in A/I0, as in Proposition 2.1 on p147 of [3].

One might consider the previous definition of a local ring as being the defini-
tion of a “left local ring”, and define a notion of “right local ring” analogously.
The earlier remarks show that left local rings are right local rings, and the con-
verse holds similarly. Thus one may simply define local rings in this way, as on
p148 of [3].

Suppose for the moment that A is commutative. In this case, the property of
being a local ring is often defined in terms of the uniqueness of a maximal proper
ideal in A, as on p4 of [1]. If A is a local ring in the sense of (4.13.2), then I0 is
the unique maximal ideal in A. Conversely, if A has a unique maximal proper
ideal, then A is a local ring in the sense considered in this section. Indeed,
every non-invertible element of A generates a proper ideal in A. There are also
well-known arguments for showing that every proper ideal in A is contained in a
maximal proper ideal, using Zorn’s lemma or Hausdorff’s maximality principle.
If there is a unique maximal proper ideal in A, then it consists exactly of the
noninvertible elements of A.

4.14 Local rings and power series

Let A be any ring with a nonzero multiplicative identity element eA again, let n
be a positive integer, and let T1, . . . , Tn be commuting indeterminates. Consider
the corresponding ring A[[T1, . . . , Tn]] of formal power series in T1, . . . , Tn with
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coefficients in A, as in Section 4.3. Remember that A may be identified with
the subring of A[[T1, . . . , Tn]] consisting of formal power series for which the
coefficient of Tα is equal to 0 when α 6= 0.

We have also seen that the mapping from an element of A[[T1, . . . , Tn]] to
its coefficient of T 0 defines a ring homomorphism from A[[T1, . . . , Tn]] onto A.
If a ∈ A has a left or right inverse in A[[T1, . . . , Tn]], then it follows that a has
a left or right inverse in A, as appropriate.

Let f(T ) =
∑
α∈(Z+∪{0})n fα T

α be an element of A[[T1, . . . , Tn]]. If f(T )

has a left or right inverse in A[[T1, . . . , Tn]], then f0 has a left or right inverse
in A, as appropriate, because of the homomorphism mentioned in the preceding
paragraph. Conversely, if f0 has a left or right inverse in A, then f(T ) has a
left or right inverse in A[[T1, . . . , Tn]], as appropriate. This follows from the
invertibility of the elements of A[[T1, . . . , Tn]] for which the coefficient of T 0 is
eA, as in Section 4.5.

Let I0 be as in (4.13.1), and consider

{f(T ) ∈ A[[T1, . . . , Tn]] : f0 ∈ I0}.(4.14.1)

This is the same as

{f(T ) ∈ A[[T1, . . . , Tn]] : f(T ) does not have(4.14.2)

a left inverse in A[[T1, . . . , Tn]]},

by the remarks in the preceding paragraph. It is easy to see that (4.14.1) is a
left ideal in A[[T1, . . . , Tn]] if and only if I0 is a left ideal in A. This implies that

A[[T1, . . . , Tn]] is a local ring(4.14.3)

if and only if A is a local ring, as in Exercise 6 on p159 of [3]. In particular,
(4.14.3) holds when A is a division ring, as on p148 of [3].

4.15 Exterior rings

Let A be a ring with a nonzero multiplicative identity element, let n be a positive
integer, and let x1, . . . , xn be indeterminates. We would like to consider the
corresponding exterior or Grassmann ring EA(x1, . . . , xn) in x1, . . . , xn with
coefficients in A.

Let I = {j1, . . . , jr} be a subset of {1, . . . , n}, where

1 ≤ j1 < j2 < · · · < jr ≤ n.(4.15.1)

Put
xI = xj1 ∧ xj2 ∧ · · · ∧ xjr ,(4.15.2)

which may be considered as a formal expression, for the moment. We can define
EA(x1, . . . , xn) initially as the space of formal sums of the form∑

I⊆{1,...,n}

aI xI ,(4.15.3)
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where aI ∈ A for each I ⊆ {1, . . . , n}. More precisely, this can be defined as
the set of all A-valued functions on the set of all subsets of {1, . . . , n}, which
are identified with formal sums as in (4.15.3). If I = ∅, then we may identify
xI with eA, so that a ∈ A is identified with a xI .

Of course, EA(x1, . . . , xn) is a left and right module over A, with respect to
termwise addition and multiplication on the left or right by elements of A. Note
that EA(x1, . . . , xn) is freely generated by xI , I ⊆ {1, . . . , n}, as a left or right
module over A. If I1, I2 ⊆ {1, . . . , n}, then we would like to define the product
of xI1 and xI2 . Put

xI1 ∧ xI2 = 0 when I1 ∩ I2 6= ∅.(4.15.4)

Suppose now that I1 and I2 are disjoint sets, with r1, r2 elements, respec-
tively. Let σ be the permutation on I1 ∪ I2 that sends the elements of I1 to
the first r1 elements of I1 ∪ I2, in order, and send I2 to the next r2 elements
of I1 ∪ I2, in order. This can be extended to a permutation on {1, . . . , n}, by
sending any element of {1, . . . , n} \ (I1 ∪ I2) to itself. Put

xI1 ∧ xI2 = xI1∪I2 when σ is an even permutation,(4.15.5)

= −xI1∪I2 when σ is an odd permutation.

We can use this to define multiplication on EA(x1, . . . , xn) in an obvious
way, where xI commutes with every element of A for each I ⊆ {1, . . . , n}.
It is well known that EA(x1, . . . , xn) a ring with respect to this definition of
multiplication, which contains A as a subring, and with eA as the multiplicative
identity element in EA(x1, . . . , xn). If A is an algebra over a commutative ring
k with a multiplicative identity element, then EA(x1, . . . , xn) is an algebra over
k as well.

Let V be a left or right module over A, and let EV (x1, . . . , xn) be the space
of formal sums ∑

I⊆{1,...,n}

vI xI ,(4.15.6)

with vI ∈ V for each I ⊆ {1, . . . , n}. As before, this can be defined more
precisely as the space of V -valued functions on the set of all subsets if {1, . . . , n},
which are identified with formal sums as in (4.15.6). This is a left or right module
over A too, as appropriate, with respect to termwise addition, and where A acts
termwise on the coefficients vI in (4.15.6).

In fact, EV (x1, . . . , xn) is a left or right module over EA(x1, . . . , xn), as
appropriate. If I0 ⊆ {1, . . . , n}, then we put

xI0 ·
( ∑
I⊆{1,...,n}

vI xI

)
=

∑
I⊆{1,...,n}

vI xI0 ∧ xI(4.15.7)

when V is a left module over A, and( ∑
I⊆{1,...,n}

vI xI

)
· xI0 =

∑
I⊆{1,...,n}

vI xI ∧ xI0(4.15.8)
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when V is a right module over A. One can use this and the action of A on V
to define the action of EA(x1, . . . , xn) on EV (x1, . . . , xn) on the left or right, as
appropriate, in an obvious way.
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Chapter 5

Differentiation and dual
numbers

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V , W be modules over k that are either both left modules over A, or both
right modules over A. If ϕ is a homomorphism from V into W , as modules over
A, then

the cokernel of ϕ is W/ϕ(V ),(5.0.1)

as on p19 of [1] and p3 of [3]. Similarly,

the coimage of ϕ is V/ kerϕ.(5.0.2)

Note that ϕ induces an isomorphism from its coimage onto its image ϕ(V ), as
modules over A.

5.1 Modules with differentiation

Let k and A be as before, and let V be a module over k that is a left or right
module over A. Supose that dV is a homomorphism from V into itself, as a
module over A, such that

dV ◦ dV = 0.(5.1.1)

Under these conditions, V is said to be a module with differentiation, as on p53
of [3].

Put
Z(V ) = ker dV , B(V ) = dV (V ),(5.1.2)

which are submodules of V , as a module over A. Note that

B(V ) ⊆ Z(V ),(5.1.3)

by (5.1.1).

112
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Similarly, put
Z ′(V ) = V/dV (V )(5.1.4)

and
B′(V ) = V/ ker dV ,(5.1.5)

which are also modules over A, as quotients of V . Equivalently, Z ′(V ) is the
cokernel of dV , and B

′(V ) is the coimage of dV , as on p53 of [3].
The natural quotient mapping from V onto B′(V ) can be expressed as the

composition of the natural quotient mapping from V onto Z ′(V ) with a unique
homomorphism

from Z ′(V ) onto B′(V ),(5.1.6)

as modules over A, because dV (V ) ⊆ ker dV . We also have that dV can be
expressed as the composition of the natural quotient mapping from V onto
B′(V ) with a unique isomorphism

δ from B′(V ) onto B(V ),(5.1.7)

as modules over A, as on p53 of [3].
Thus dV can be factored into a composition of module homomorphisms,

V −→ Z ′(V ) −→ B′(V )
δ−→ B(V ) −→ Z(V ) −→ V,(5.1.8)

as on p53 of [3]. The first step uses the natural quotient mapping, and the
second step uses the mapping obtained from the natural quotient mapping as
in (5.1.6). The last two steps use the natural inclusion mappings.

This leads to a homomorphism

d̃V from Z ′(V ) into Z(V ),(5.1.9)

as modules over A, as on p54 of [3]. More precisely, d̃V is obtained by composing
the second, third, and fourth homomorphisms indicated in (5.1.8). Equivalently,

d̃V is induced by dV in an obvious way.
Observe that

d̃V (Z
′(V )) = B(V ),(5.1.10)

so that
the cokernel of d̃V is equal to Z(V )/B(V ).(5.1.11)

The kernel of d̃V is the same as the kernel of the mapping in (5.1.6), because
the third and fourth homomorphisms indicated in (5.1.8) are injections. This
means that

ker d̃V = ker dV /dV (V ) = Z(V )/B(V ),(5.1.12)

as on p54 of [3]. Put
H(V ) = Z(V )/B(V ),(5.1.13)

which is the homology module of V with respect to dV , as on p54 of [3]. This
may be considered as a submodule of Z ′(V ), as a module over A.
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If W is any left or right module over A, then W may be considered as a
module with differentiation, by taking dW = 0. In this case,

Z(W ) = Z ′(W ) = H(W ) =W, B(W ) = B′(W ) = {0}.(5.1.14)

If V is any module with differentiation, then Z(V ), Z ′(V ), H(V ), B(V ), and
B′(V ) may be considered as modules with differentiation equal to 0, as on p55
of [3].

5.2 Mappings and differentiation

Let k be a commutative ring with a multiplicative identity element again, and
let A be an associative algebra over k with a multiplicative identity element eA.
Suppose that (V, dV ), (W,dW ) are both left modules or both right modules over
A, with differentiation. Let ϕ be a homomorphism from V into W , as modules
over A. We say that ϕ is a homomorphism from V into W as modules with
differentiation if

dW ◦ ϕ = ϕ ◦ dV ,(5.2.1)

as on p54 of [3]. One may refer to ϕ as a map or mapping from V into W , as
modules with differentiation, as well, as in [3].

In this case, we get that

ϕ(Z(V )) ⊆ Z(W )(5.2.2)

and
ϕ(B(V )) ⊆ B(W ).(5.2.3)

We also obtain induced homomorphisms

ϕZ′ from Z ′(V ) into Z ′(W )(5.2.4)

and
ϕB′ from B′(V ) into B′(W ),(5.2.5)

as modules over A. Note that

ϕZ′(H(V )) ⊆ H(W ),(5.2.6)

because of (5.2.2). The restriction of ϕZ′ to H(V ) may be denoted ϕH , consid-
ered as a homomorphism from H(V ) into H(W ), as modules over A.

Remember that d̃V is the homomorphism from Z ′(V ) into Z(V ) induced by

dV , and let d̃W be the analogous homomorphism for W . It is easy to see that

ϕ ◦ d̃V = d̃W ◦ ϕZ′ ,(5.2.7)

as homomorphisms from Z ′(V ) into Z(W ). This corresponds to the commuta-
tivity of the diagram at the bottom of p54 of [3].
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If ϕ is injective, then it is easy to see that

ϕ(Z(V )) = ϕ(V ) ∩ Z(W ).(5.2.8)

Similarly, we get that
ϕB′ is injective.(5.2.9)

Suppose for the moment that

ϕ(V ) =W.(5.2.10)

Observe that
ϕZ′(Z ′(V )) = Z ′(W )(5.2.11)

and
ϕB′(B′(V )) = B′(W ).(5.2.12)

One can check that
ϕ(B(V )) = B(W ).(5.2.13)

Let ψ be another homomorphism from V into W , as modules over A, and as
modules with differentiation. A homomorphism σ from V into W , as modules
over A, is said to be a homotopy between ϕ and ψ if

dW ◦ σ + σ ◦ dV = ϕ− ψ,(5.2.14)

as on p54 of [3]. This implies that

(ϕ− ψ)(Z(V )) ⊆ B(W ).(5.2.15)

It follows that
ϕH = ψH ,(5.2.16)

as on p54 of [3].
Let (W1, dW1) be another left or right module over A with differentiation,

depending on whether V , W are left or right modules over A. Also let ϕ1 be a
homomorphism from W into W1, as modules over A with differentiation. This
implies that ϕ1 ◦ϕ is a homomorphism from V into W1, as modules over A with
differentiation. One can verify that

(ϕ1 ◦ ϕ)Z′ = (ϕ1)Z′ ◦ ϕZ′(5.2.17)

and
(ϕ1 ◦ ϕ)B′ = (ϕ1)B′ ◦ ϕB′ .(5.2.18)

In particular,
(ϕ1 ◦ ϕ)H = (ϕ1)H ◦ ϕH .(5.2.19)

Note that
dV (kerϕ) ⊆ kerϕ,(5.2.20)

by (5.2.1). Similarly,
dW (ϕ(V )) ⊆ ϕ(V ).(5.2.21)
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5.3 Submodules and quotients

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V be a left or right module over A with differentiation, and let V0 be a
submodule of V , as a module over A. Let us say that V0 is a submodule of V
as a module with differentiation if

dV (V0) ⊆ V0.(5.3.1)

In this case, V0 is a module with differentiation too, with dV0
equal to the

restriction of dV to V0. Of course, the natural inclusion mapping from V0 into
V is a homomorphism from V0 into V , as modules with differentiation.

Let q0 be the natural quotient mapping from V onto V/V0. Note that q0 ◦dV
is equal to 0 on V0, by (5.3.1), so that there is a unique homomorphism dV/V0

from V/V0 into itself, as a module over A, such that

dV/V0
◦ q0 = q0 ◦ dV .(5.3.2)

It is easy to see that
dV/V0

◦ dV/V0
= 0,(5.3.3)

so that V/V0 is a module with differentiation with respect to dV/V0
. By construc-

tion, q0 is a homomorphism from V onto V/V0, as modules with differentiation.
Observe that

Z(V ) ∩ (ker q0) = Z(V ) ∩ V0 = Z(V0).(5.3.4)

This is basically the same as (5.2.8), and it corresponds to the exactness of the
bottom row of the diagram on the bottom of p54 of [3].

Remember that
q0(B(V )) = B(V/V0),(5.3.5)

as in (5.2.13). Suppose that v ∈ V satisfies

q0(v) ∈ B(V/V0).(5.3.6)

This means that there is a u ∈ V such that

q0(v) = q0(dV (u)),(5.3.7)

by (5.3.5). Equivalently, there is a v0 ∈ V0 such that

v − dV (u) = v0.(5.3.8)

It follows that

the images of v and v0 under the natural quotient mapping(5.3.9)

from V onto Z ′(V ) are the same.
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This corresponds to the exactness of the top row of the diagram on the
bottom of p54 of [3]. Similarly, if we also have that

v ∈ Z(V ),(5.3.10)

then

v0 ∈ Z(V0),(5.3.11)

by (5.3.8). This corresponds to the exactness of the first part of the sequence
in (4) on p55 of [3].

There is a natural homomorphism

∆ from H(V/V0) into H(V0),(5.3.12)

as modules over A, as on p55 of [3]. To see this, let an element of

H(V/V0) = Z(V/V0)/B(V/V0)(5.3.13)

be given. This can be represented by the image of q0(v) ∈ Z(V/V0) in this
quotient, where v ∈ V . Observe that

q0(dV (v)) = dV/V0
(q0(v)) = 0,(5.3.14)

so that dV (v) ∈ V0. More precisely,

dV (v) ∈ Z(V0).(5.3.15)

We would like to take ∆ of the image of q0(v) in (5.3.13) to be the image of
dV (v) in

H(V0) = Z(V0)/B(V0).(5.3.16)

To show that this is well defined, suppose that v′ ∈ V and the image of q0(v
′)

in (5.3.13) is the same as the image of q0(v), so that

q0(v − v′) = q0(v)− q0(v
′) ∈ B(V/V0).(5.3.17)

This means that there is a u ∈ V such that

q0(v − v′) = dV/V0
(q0(u)) = q0(dV (u)),(5.3.18)

and thus

v − v′ − dV (u) ∈ V0.(5.3.19)

It follows that

dV (v)− dV (v
′) = dV (v − v′ − dV (u)) ∈ B(V0),(5.3.20)

so that the images of dV (v) and dV (v
′) in (5.3.16) are the same. It is easy to

see that ∆ is a homomorphism from H(V/V0) into H(V0), as modules over A.
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Let (q0)Z′ be the homomorphism from Z ′(V ) into Z ′(V/V0), as modules over
A, induced by q0, as in the previous section. The restriction of (q0)Z′ to H(V )
is denoted (q0)H , and maps H(V ) into H(V/V0), as before. Let us check that

∆ ◦ (q0)H = 0.(5.3.21)

If v ∈ Z(V ), so that dV (v) = 0, then ∆ of the image of q0(v) in H(V/V0) is
equal to 0, by construction. This means that ∆ ◦ (q0)H of the image of v in
H(V ) = Z(V )/B(v) is equal to 0, as desired.

Suppose that v ∈ V , q0(v) ∈ Z(V/V0), and that ∆ maps the image of q0(v)
in H(V/V0) to 0 in H(V0). This means that

dV (v) ∈ B(V0),(5.3.22)

so that dV (v) = dV (u) for some u ∈ V0. It follows that

q0(v) = q0(v − u) and v − u ∈ Z(V ).(5.3.23)

Thus the image of q0(v) in H(V/V0) is the same as the image of q0(v − u) in
H(V/V0), and the image of q0(v − u) in H(V/V0) is the same as (q0)H of the
image of v − u in H(V ). This shows that

(q0)H(H(V )) = ker∆,(5.3.24)

which corresponds to the exactness of part of the sequence (4) on p55 of [3].
Let ι0 be the natural inclusion mapping from V0 into V . This leads to

an induced homomorphism (ι0)Z′ from Z ′(V0) into Z ′(V ), as in the previous
section. The restriction of (ι0)Z′ to H(V0) is denoted (ι0)H , as usual, and maps
H(V0) into H(V ). It is easy to see that

(ι0)H ◦∆ = 0,(5.3.25)

by construction. This is because the element of Z(V0) in (5.3.15) is automati-
cally in B(V ).

Suppose that w ∈ Z(V0), and that the image of w in H(V0) is in the kernel
of (ι0)H . This means that there is a v ∈ V such that

w = dV (v).(5.3.26)

This implies that

dV/V0
(q0(v)) = q0(dV (v)) = q0(w) = 0,(5.3.27)

so that q0(v) ∈ Z(V/V0). It follows that the image of w in H(V0) is the same
as ∆ of the image of q0(v) in H(V/V0). Thus

ker(ι0)H = ∆(H(V/V0)),(5.3.28)

which corresponds to the exactness of another part of the sequence (4) on p55
of [3].
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5.4 Dual numbers

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let d be a formal symbol, which is taken to commute with all elements of k
and A, and satisfy d2 = 0. The algebra A[d] of dual numbers associated to A
consists of expressions of the form a1 + a2 d, with a1, a2 ∈ A, as on p56 of [3].

More precisely, A[d] is free as a left and right module over A, with generators
eA and d. If a1, a2, b1, b2 ∈ A, then we put

(a1 + a2 d) (b1 + b2 d) = a1 b1 + (a1 b2 + a2 b1) d.(5.4.1)

One can check that this makes A[d] into an associative algebra over k that
contains A as a subalgebra, and with eA as the multiplicative identity element.

A left or right module (V, dV ) over A with differentiation corresponds ex-
actly to a left or right module over A[d], as appropriate, as on p56 of [3]. In this
case, dV corresponds to the action of d on V , as a module over A[d]. Similarly,
a homomorphism between left or right modules over A with differentiation cor-
responds exactly to a homomorphism between left or right modules over A[d],
as appropriate.

Remember that any module V over A may be considered as a module with
differentiation, by taking dV = 0. Equivalently, V may be considered as a
module over A[d], where the action of d on V is equal to 0. In particular, A
may be considered as a left and right module over A[d] in this way, as on p56
of [3].

Let (V, dV ) be a left module over A with differentiation, which may be
considered as a left module over A[d]. If v ∈ V , then

a 7→ a · v(5.4.2)

defines a homomorphism from A into V , as left modules over A. Every homo-
morphism from A into V , as left modules over A, corresponds to a unique v ∈ V
in this way. If v ∈ Z(V ), then (5.4.2) defines a homomorphism from A into V ,
as left modules over A with differentiation, or equivalently as left modules over
A[d]. Conversely, if (5.4.2) defines a homomorphism from A into V as left mod-
ules over A with differentiation, or equivalently as left modules over A[d], then
one can check that v ∈ Z(V ).

This defines an isomorphism

between HomA[d](A, V ) and Z(V ),(5.4.3)

as modules over k, as on p56 of [3]. More precisely, HomA[d](A, V ) may be
considered as a left module over A, by considering A as a right module over
itself. In fact, we have an isomorphism as in (5.4.3) as left modules over A. This
may also be considered as an isomorphism between left modules over A with
differentiation, or left modules over A[d], with differentiation equal to 0, which
corresponds to considering A as a right module over itself with differentiation
equal to 0. There are analogous statements for right modules, as usual.
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Let us check that

A
⊗

A[d]
V = Z ′(V ) = V/dV (V ),(5.4.4)

as on p56 of [3]. More precisely, this means that Z ′(V ) satisfies the requirements
of a tensor product, initially as a module over k.

Let W be a module over k, and let b be a mapping from A× V into W that
is bilinear over k. We may be interested in situations where

b(a · α, v) = b(a, α · v)(5.4.5)

for every a ∈ A, α ∈ A[d], and v ∈ V . This happens if and only if

b(a a1, v) = b(a, a1 · v)(5.4.6)

and
0 = b(a · d, v) = b(a, d · v) = b(a, dV (v))(5.4.7)

for every a, a1 ∈ A and v ∈ V .
There is an obvious mapping from A× V into Z ′(V ), defined by

(a, v) 7→ the image of a · v in Z ′(V ) = V/dV (V ).(5.4.8)

It is easy to see that this mapping satisfies (5.4.6), (5.4.7), and thus (5.4.5).
Let W be a module over k again, and let b be a mapping from A × V into

W that is bilinear over k and satisfies (5.4.5). Observe that

b(a, v) = b(eA, a · v)(5.4.9)

and
b(eA, dV (v)) = 0(5.4.10)

for every a ∈ A and v ∈ V . Because of (5.4.10), there is a unique homomorphism
c from Z ′(V ) into W such that

the composition of the natural quotient mapping(5.4.11)

from V onto Z ′(V ) with c

is the same as
v 7→ b(eA, v).(5.4.12)

It follows that

b is the same as the composition of (5.4.8) with c,(5.4.13)

by (5.4.9). It is easy to see that c is uniquely determined by this property as
well.

This shows that Z ′(V ) satisfies the requirements of a tensor product of A
and V over A[d], as a module over k, and using the mapping (5.4.8) from A×V
into Z ′(V ). Such a tensor product is also a left module over A in a natural way,
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because A is a left module over itself. It is easy to see that this corresponds to
Z ′(V ) as a left module over A, as a quotientof V .

Similarly, if V is a right module over A with differentiation, and thus a right
module over A[d], then Z ′(V ) satisfies the requirements of a tensor product
of V and A over A[d], as a module over k. Such a tensor product is a right
module over A in a natural way, because A is a right module over itself, which
corresponds to Z ′(V ) as a right module over A, as a quotient of V .

5.5 Easy differentiation

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let W1, W2 be modules over k that are both left or both right modules over A,
and let ψ1,2 be a homomorphism from W1 into W2, as modules over A. Put

W1,2 =W1 ×W2,(5.5.1)

considered as a left or right module over A, as appropriate, where the module
operations are defined coordinatewise. Equivalently, W1,2 is the direct sum of
W1 and W2, as a module over A.

If w1 ∈W1 and w2 ∈W2, then put

dW1,2
((w1, w2)) = (0, ψ1,2(w1)).(5.5.2)

This defines a homomorphism from W1,2 into itself, as a module over A, with

dW1,2
◦ dW1,2

= 0.(5.5.3)

This makes W1,2 a module with differentiation.
Observe that

Z(W1,2) = (kerψ1,2)×W2(5.5.4)

and
B(W1,2) = {0} × ψ1,2(W1).(5.5.5)

It follows that

Z ′(W1,2) is isomorphic to W1 × (W2/ψ1,2(W1))(5.5.6)

and
B′(W1,2) is isomorphic to (W1/(kerψ1,2))× {0},(5.5.7)

as modules over A. Similarly,

H(W1,2) is isomorphic to (kerψ1,2)× (W2/ψ1,2(W1)),(5.5.8)

as a module over A.
Let W be a left or right module over A, and put

W x =W ×W,(5.5.9)
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following the notation on p57 of [3]. This is the same as W1,2, with W1 =W2 =
W . More precisely, W x is a module with differentiation, with

dWx((w1, w2)) = (0, w1)(5.5.10)

for every w1, w2 ∈ W , as on p57 of [3]. This is the same as dW1,2
, with ψ1,2

equal to the identity mapping on W .
In this case,

Z(W x) = B(W x) = {0} ×W.(5.5.11)

Similarly,
Z ′(W x) = B′(W x) =W x/({0} ×W ),(5.5.12)

which is isomorphic to W in an obvious way, as a module over A. Of course,

H(W x) = {0}.(5.5.13)

Let d and A[d] be as in the previous section, and let η be the obvious inclusion
mapping from A into A[d], as on p57 of [3]. If W is a left module over A, then

(η)W = A[d]
⊗

A
W(5.5.14)

is a left module over A[d], which is the covariant η-extension of W , as in Section
2.9. Similarly,

(η)W = HomA(A[d],W )(5.5.15)

is a left module over A[d], which is the contravariant η-extension of W , as in
Section 2.11.

Consider the mapping

(w1, w2) 7→ eA ⊗ w1 + (eA d)⊗ w2(5.5.16)

from W x into (5.5.14). This defines an isomorphism from W x onto (5.5.14),
as modules over k, and left modules over A. More precisely, this defines an
isomorphism fromW x onto (5.5.14), as left modules over A[d]. This corresponds
to a remark on p57 of [3].

If w1, w2 ∈W , then

a1 + a2 d 7→ a1 · w2 + a2 · w1(5.5.17)

defines a homomorphism from A[d] into W , as left modules over A. Thus

(w1, w2) 7→ (5.5.17)(5.5.18)

defines a mapping from W x into (5.5.15). It is easy to see that this is an
isomorphism from W x onto (5.5.15) as modules over k, and left modules over
A.

If w1, w2 ∈W , then the analogue of (5.5.17) for dWx((w1, w2)) = (0, w1) is

a1 + a2 d 7→ a1 · w1.(5.5.19)
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Equivalently, this is the image of dWx((w1, w2)) in (5.5.15) under the mapping
(5.5.18). If a1, a2 ∈ A, then

(a1 + a2 d) d = a1 d(5.5.20)

is mapped to
a1 · w1(5.5.21)

by (5.5.17). This implies that (5.5.18) defines an isomorphism from W x onto
(5.5.15), as left modules over A[d]. This corresponds to another remark on p57
of [3].

Of course, there are analogous statements when W is a right module over A.

5.6 Some isomorphisms with W x

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra with a multiplicative identity element eA. Also let
d and A[d] be as in Section 5.4, and let η be the obvious inclusion mapping
from A into A[d], as before. Suppose that (V, dV ) is a left module over A with
differentiation, which may be considered as a left module over A[d]. Let σ be a
homomorphism from V into itself, as a module over A, and suppose that

dV ◦ σ + σ ◦ dV is the identity mapping on V.(5.6.1)

Equivalently, this means that σ is a homotopy between the identity mapping
and the zero mapping on V , as homomorphisms from V into itself as a module
with differentiation, as in Section 5.2.

If v ∈ Z(V ), then (5.6.1) implies that

v = dV (σ(v)) ∈ B(V ).(5.6.2)

This means that
B(V ) = Z(V )(5.6.3)

in this case. Put
W = B(V ),(5.6.4)

which is a left module over A. Thus W x may be defined as in the previous
section.

Consider the mapping ϕ from V into W x defined by

ϕ(v) = (dV (v), dV (σ(v)))(5.6.5)

for every v ∈ V . Note that this is a homomorphism from V intoW x, as modules
over A. If v ∈ V , then

ϕ(dV (v)) = (dV (dV (v)), dV (σ(dV (v))))

= (0, dV (v)− dV (dV (σ(v)))) = (0, dV (v)) = dWx(ϕ(v)),(5.6.6)
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using (5.6.1) in the second step. This shows that ϕ is a homomorphism from V
into W x, as modules with differentation. If ϕ(v) = 0, then

v = σ(dV (v)) + dV (σ(v)) = 0,(5.6.7)

using (5.6.1) in the second step again.
Let w ∈W be given, and observe that

dV (σ(w)) = w,(5.6.8)

by (5.6.1). We also have that

dV (σ(σ(w))) = σ(w)− σ(dV (σ(w)))(5.6.9)

= σ(w)− σ(w) + σ(σ(dV (w))) = 0,

using (5.6.1) in the first and second steps. It follows that

ϕ(w) = (0, w)(5.6.10)

and
ϕ(σ(w)) = (w, 0).(5.6.11)

This implies that ϕ(V ) = W x. This shows that ϕ is an isomorphism from V
onto W x, as modules with differentiation.

Using this, we get that

V is isomorphic to (5.5.14)(5.6.12)

and
V is isomorphic to (5.5.15),(5.6.13)

as modules over A[d]. This corresponds to the fact that (b) implies (c), (c’) in
Proposition 2.3 on p57 of [3].

5.7 Some related properties of (V, dV )

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let d and A[d] be as in Section 5.4, and let η be the obvious inclusion mapping
from A into A[d], as in the previous sections. Suppose that (V, dV ) is a left
module over A with differentiation, which may be considered as a left module
over A[d], as before.

If there is a left module W over A such that (5.6.12) holds, then

V is η-projective,(5.7.1)

as in Section 2.14. Similarly, if there is a left moduleW over A such that (5.6.13)
holds, then

V is η-injective,(5.7.2)
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as in Section 2.15. These statements correspond to (c) implies (a) and (c’)
implies (a’) in Proposition 2.3 on p57 of [3].

Suppose that (5.7.1) holds, and let us show that there is a homomorphism σ
from V into itself, as a module over A, that satisfies (5.6.1). This corresponds
to the fact that (a) implies (b) in Proposition 2.3 on p57 of [3]. Let us use V (A)
to refer to V as a left module over A, so that

(η)V (A) = A[d]
⊗

A
V (A),(5.7.3)

as in Section 2.9. This is isomorphic to V (A)x in a natural way, as left modules
over A[d], as in Section 5.5.

There is a natural homomorphism from (5.7.3) into V , as left modules over
A[d], obtained from the action of A[d] on V on the left, as in Section 2.12. If we
identify (5.7.3) with V (A)x, as in the preceding paragraph, then this mapping
corresponds to the mapping f from V (A)x into V defined by

f((v1, v2)) = v1 + dV (v2)(5.7.4)

for every v1, v2 ∈ V . Our hypothesis (5.7.1) is the same as saying that V (A)x

corresponds to the direct sum of the kernel of f and another submodule of
V (A)x, as a left module over A[d], as in Section 2.12. This means that there is
a homomorphism g from V into V (A)x, as left modules over A[d], such that

f ◦ g is the identity mapping on V.(5.7.5)

We can express g as
g(v) = (τ(v), σ(v))(5.7.6)

for every v ∈ V , where σ, τ are mappings from V into itself, by definition of
V (A)x. More precisely, σ and τ are homomorphisms from V into itself, as a
left module over A, because g is a homomorphism from V into V (A)x as left
modules over A[d], and thus over A. The condition that g be a homomorphism
from V into V (A)x as left modules over A[d] implies that

(0, τ(v)) = dV (A)x(g(v)) = g(dV (v)) = (τ(dV (v)), σ(dV (v)))(5.7.7)

for every v ∈ V . We also have that

v = f(g(v)) = τ(v) + dV (σ(v))(5.7.8)

for every v ∈ V , by (5.7.5). It is easy to obtain (5.6.1) from (5.7.7) and (5.7.8),
as desired.

Suppose now that (5.7.2) holds, and let us check that there is a homomor-
phism σ from V into itself, as a module over A, that satisfies (5.6.1). This
corresponds to (a’) implies (b) in Proposition 2.3 on p57 of [3]. Remember that

(η)V (A) = HomA(A[d], V (A)),(5.7.9)

as in Section 2.11. This is isomorphic to V (A)x in a natural way, as left modules
over A[d], as in Section 5.5 again.
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There is a natural homomorphism from V into (5.7.9), as left modules over
A[d], obtained from the action of A[d] on V on the left, as in Section 2.13. Using
the identification of (5.7.9) with V (A)x mentioned in the preceding paragraph,
we get that this mapping corresponds to the mapping f from V into V (A)x

defined by
f(v) = (dV (v), v)(5.7.10)

for every v ∈ V .
As in Section 2.13, (5.7.2) means that V (A)x corresponds to the direct sum

of f(V ) and another submodule of V (A)x, as a left module over A[d]. This
implies that there is a homomorphism g from V (A)x into V , as left modules
over A[d], such that

g ◦ f is the identity mapping on V.(5.7.11)

We may express g as
g((v1, v2)) = σ(v1) + τ(v2)(5.7.12)

for some homomorphisms σ, τ from V into itself, as a left module over A, and
every v1, v2 ∈ V .

Because g is a homomorphism from V (A)x into V as left modules over A[d],
we have that

dV (σ(v1)) + dV (τ(v2)) = dV (g((v1, v2)))

= g(dV (A)x((v1, v2))) = g((0, v1)) = τ(v1)(5.7.13)

for every v1, v2 ∈ V . We also have that

σ(dV (v)) + τ(v) = v(5.7.14)

for every v ∈ V , by (5.7.11). One can get (5.6.1) by taking v1 = v and v2 = 0
in (5.7.13), and combining the result with (5.7.14).

If V satisfies (5.7.1) or (5.7.2), then it follows that

H(V ) = {0},(5.7.15)

by (5.6.3). This corresponds to Corollary 2.4 on p58 of [3].

5.8 Some more properties of (V, dV )

Let us continue with the same notation and hypotheses as at the beginning of
the previous section.

Suppose for the moment that

V is projective as a left module over A[d].(5.8.1)

This automatically implies that V is η-projective, as in Section 2.12. Put W =
B(V ), considered as a left module over A, as in Section 5.6. The remarks in the
previous two sections imply that

V is isomorphic to W x, as a left module over A[d].(5.8.2)
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Equivalently,

V is isomorphic to (η)W, as a left module over A[d].(5.8.3)

Using (5.8.1), we also get that

V is projective as a left module over A,(5.8.4)

as in Section 2.12. More precisely, this uses the fact that A[d] is projective as
a left module over A, by construction. Note that V is isomorphic to W x, as a
left module over A, by (5.8.2). Of course, W x is isomorphic to the direct sum
of two copies of W , as a left module over A, by construction. It follows that

W is projective as a left module over A.(5.8.5)

Conversely, suppose that there is a left module W over A such that (5.8.3)
and (5.8.5) hold. Using (5.8.3), we get that V is η-projective, as in Section 2.14.
As before, (5.8.3) is equivalent to (5.8.2), which implies that V is isomorphic
to W x, as a left module over A. Of course, W x is projective as a left module
over A, by (5.8.5). This means that (5.8.4) holds. It follows that (5.8.1) holds,
because V is η-projective, as in Section 2.12. This corresponds to the first part
of Proposition 2.5 on p58 of [3].

Similarly, suppose for the moment that

V is injective as a left module over A[d].(5.8.6)

This implies that V is η-injective, as in Section 2.13. If W = B(V ), as a left
module over A again, then (5.8.2) holds, as in the previous two sections. This
is equivalent to saying that

V is isomorphic to (η)W, as a left module over A[d],(5.8.7)

as before.
Note that A[d] is projective as a right module over A. Using this and (5.8.6),

we obtain that
V is injective as a left module over A,(5.8.8)

as in Section 2.13. As before, (5.8.2) implies that V is isomorphic to W x, as a
left module over A. It follows that

W is injective as a left module over A,(5.8.9)

becauseW x is isomorphic to the direct sum of two copies of W , as a left module
over A, by construction.

Conversely, suppose that (5.8.7) and (5.8.9) hold for some left module W
over A. As in Section 2.15, (5.8.7) implies that V is η-injective. Because (5.8.7)
is equivalent to (5.8.2), as before, we get that V is isomorphic to W x, as a left
module over A. Note that W x is injective as a left module over A, by (5.8.9).
Thus (5.8.8) holds. This implies that (5.8.6) holds, because V is η-injective, as
in Section 2.13. This corresponds to the second part of Proposition 2.5 on p58
of [3].
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5.9 Graded modules

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V be a left or right module over A. Of course, Z denotes the set of integers.

As on p58 of [3], a grading of V is defined by a family of submodules V j ,
j ∈ Z, such that V corresponds to the direct sum of the V j ’s, as a module over
A. One may refer to this as a Z-grading of V , to be more precise.

In this case, if v ∈ V , then v can be expressed in a unique way as

v =

∞∑
j=−∞

vj ,(5.9.1)

where vj ∈ V j for each j, and vj = 0 for all but finitely many j. If j ∈ Z,
then vj is called the homogeneous component of v of degree j, as in [3]. Every
element of V j is said to be homogeneous of degree j, so that 0 is homogeneous
of every degree.

If V j = {0} when j < 0, then V is said to be positive as a graded module, as
on p58 of [3]. Similarly, if V j = {0} when j > 0, then V is said to be negative
as a graded module.

It is sometimes convenient to put

Vj = V −j(5.9.2)

for each j ∈ Z, particularly when V is negative as a graded module.
Let U be a submodule of V , as a module over A. Thus

U j = U ∩ V j(5.9.3)

is a submodule of U , as a module over A, for every j ∈ Z. If every element of
U can be expressed as the sum of elements of finitely many U j ’s, then U is said
to be homogeneous, as a submodule of V , as on p58 of [3]. This means that U
corresponds to the direct sum of the U j ’s, j ∈ Z, as a module over A, so that
U is graded too.

Of course, the quotient V/U is a module over A as well. If j ∈ Z, then the
natural quotient mapping leads to a homomorphism

from V j/U j onto (V j + U)/U,(5.9.4)

as modules over A. More precisely, the kernel of this homomorphism is trivial,
by definition of U j , and so we get an isomorphism as in (5.9.4). Note that every
element of V/U may be expressed as the sum of elements of finitely many of the
submodules (V j + U)/U , because every element of V can be expressed as the
sum of elements of finitely many V j ’s.

If U is a homogeneous submodule of V , then it is easy to see that V/U
corresponds to the direct sum of the submodules (V j + U)/U , j ∈ Z. This
implies that V/U is graded as a module over A, with

(V/U)j = (V j + U)/U(5.9.5)
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for each j ∈ Z, as on p58 of [3]. It is sometimes convenient to identify V/U with
the direct sum of V j/U j , j ∈ Z, under these conditions.

Let W be another left or right module over A, depending on whether V is a
left or right module over A, and suppose thatW is graded too. A homomorphism
ϕ from V into W , as modules over A, is said to have degree m ∈ Z if

ϕ(V j) ⊆W j+m(5.9.6)

for every j ∈ Z, as on p58 of [3]. If j ∈ Z, then the restriction of ϕ to V j ,
considered as a mapping from V j into W j+m, is denoted ϕj , and called the jth
component of ϕ, as in [3].

Observe that

kerϕ is a homogeneous submodule of V(5.9.7)

and
ϕ(V ) is a homogeneous submodule of W(5.9.8)

in this case. More precisely, if j ∈ Z, then

(kerϕ)j = (kerϕ) ∩ V j = kerϕj(5.9.9)

and
(ϕ(V ))j = ϕ(V ) ∩W j = ϕj−m(V j−m).(5.9.10)

Thus the coimage V/ kerϕ and cokernel W/ϕ(V ) of ϕ may be considered as
graded modules over A, as on p58 of [3]. If j ∈ Z, then

(V/ kerϕ)j is isomorphic to V j/(kerϕ)j = V j/ kerϕj(5.9.11)

and

(W/ϕ(V ))j is isomorphic to W j/(ϕ(V ))j =W j/ϕj−m(V j−m),(5.9.12)

as modules over A, as before.
Note that the isomorphism from V/ kerϕ onto ϕ(V ), as modules over A,

induced by ϕ has degree m. As a result, this should not normally be used to
identify the coimage of ϕ with ϕ(V ), as mentioned on p58 of [3].

If U is a homogeneous submodule of V , then the natural quotient mapping
from V onto V/U has degree 0, with respect to the grading on V/U defined
earlier.

Let Z be another left or right module over A, depending on whether V , W
are left or right modules over A, and suppose that Z is graded as well. Also
let ϕ be a homomorphism from V into W of degree m again, and let ψ be a
homomorphism from W into Z, as modules over A, or degree n ∈ Z. Under
these conditions,

ψ ◦ ϕ has degree m+ n,(5.9.13)

as a homomorphism from V into Z.
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5.10 Complexes

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. A
left or right module (V, dV ) with differentiation is said to be a complex if V is
graded and dV has degree 1, as on p58 of [3].

Equivalently, suppose that V is a graded left or right module over A, and
that for each j ∈ Z, djV is a homomorphism from V j into V j+1, as modules over
A. This leads to a unique homomorphism dV from V into itself, as a module
over A, of degree 1, with jth component equal to djV for each j ∈ Z. The
condition that dV ◦ dV = 0 on V is the same as saying that

dj+1
V ◦ djV = 0(5.10.1)

on Vj for each j ∈ Z, as on p58 of [3].
The term “cochain complex” is often used for a complex in this sense, as

mentioned on p58 of [3]. Similarly, a “chain complex” may be obtained by
lowering indices, as in (5.9.2).

If (V, dV ) is a complex, then Z(V ) = ker dV and B(V ) = dV (V ) are homo-
geneous submodules of V , as in the previous section. If j ∈ Z, then

Z(V )j = (ker dV )
j = (ker dV ) ∩ V j = ker djV(5.10.2)

and
B(V )j = (dV (V ))j = dV (V ) ∩ V j = dj−1

V (V j−1),(5.10.3)

as in the previous section.
This leads to natural gradings on Z ′(V ) = V/dV (V ), B′(V ) = V/ ker dV ,

and H(V ) = Z(V )/B(V ), as before. If j ∈ Z, then

Z ′(V )j = (V/dV (V ))j is isomorphic to(5.10.4)

V j/(dV (V ))j = V j/dj−1
V (V j−1)

and

B′(V )j = (V/ ker dV )
j is isomorphic to(5.10.5)

V j/(ker dV )
j = V j/ ker djV ,

as modules over A. Similarly,

H(V )j = (Z(V )/B(V ))j is isomorphic to(5.10.6)

Z(V )j/B(V )j = (ker djV )/d
j−1
V (V j−1),

as modules over A. Note that

H(V ) is homogeneous as a submodule of Z ′(V ).(5.10.7)

Remember that d̃V is the homomorphism from Z ′(V ) into Z(V ), as modules

over A, induced by dV in the obvous way. It is easy to see that d̃V has degree
1, because of the same property of dV .
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Let U be a submodule of V , as a module over A with differentiation. Thus U
may be considered as a module over A with differentiation too, with dU equal to
the restriction of dV to U . Suppose that U is also homogeneous as a submodule
of V , so that U is graded as well. Of course, dU has degree 1 on U , so that
(U, dU ) is a complex.

As in Section 5.3, V/U is a module over A with differentiation, where dV/U
is induced on V/U by dV in the usual way. Similarly, V/U is graded in a natural
way, because U is homogeneous, as in the previous section. It is easy to see that
dV/U has degree 1 on V/U , so that (V/U, dV/U ) is a complex too.

5.11 Maps between complexes

Let k be a commutative ring with a mutliplcative identity element, and let A be
an associative algebra over k with a multiplicative identity element eA. Also let
(V, dV ), (W,dW ) be both left or both right modules over A with differentiation
that are complexes. Let ϕ be a homomorphism from V into W , as modules over
A with differentiation. If ϕ has degree 0, then ϕ is said to be a map from V
into W as complexes, as on p59 of [3]. Note that dW ◦ ϕ = ϕ ◦ dV is the same
as saying that

djW ◦ ϕj = ϕj+1 ◦ djV(5.11.1)

for every integer j.
As in Section 5.2, we have that ϕ(Z(V )) ⊆ Z(W ), or equivalently

ϕj(Z(V )j) ⊆ Z(W )j(5.11.2)

for each j. Similarly, ϕ(B(V )) ⊆ B(W ), which means that

ϕj(B(V )j) ⊆ B(W )j(5.11.3)

for every j.
Remember that ϕZ′ , ϕB′ are the homomorphisms from Z ′(V ), B′(V ) into

Z ′(W ), B′(W ), respectively, induced by ϕ. It is easy to see that ϕZ′ and ϕB′

have degree 0. Thus the restriction ϕH of ϕZ′ to H(V ) has degree 0, as a
homomorphism into H(W ). We also have that

ϕj+1 ◦ d̃jV = d̃jW ◦ ϕjZ′(5.11.4)

for each j, because of the analogous statement for ϕ in Section 5.2. This corre-
sponds to some remarks on p59 of [3].

Let ψ be another map from V into W , as complexes. Suppose that σ is a
homomorphism from V into W , as modules over A, of degree −1. If

dW ◦ σ + σ ◦ dV = ϕ− ψ,(5.11.5)

then σ is said to be a homotopy between ϕ and ψ, as maps between complexes,
as on p59 of [3]. Equivalently, this means that

dj−1
W ◦ σj + σj+1 ◦ djV = ϕj − ψj(5.11.6)
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for every j. This implies that

(ϕj − ψj)(Z(V )j) ⊆ B(W )j(5.11.7)

for each j, so that

ϕjH = ψjH(5.11.8)

for each j, as before.

Note that ϕ is injective on V if and only if

ϕj is injective on V j(5.11.9)

for each j. In this case, ϕ maps Z(V ) onto the intersection of ϕ(V ) and Z(W ),
as in Section 5.2. Equivalently,

ϕj(Z(V )j) = ϕj(V j) ∩ Z(W )j(5.11.10)

for each j. It follows that ϕB′ is injective on B′(V ), as before, which means that

ϕjB′ is injective on B′(V )j(5.11.11)

for each j.

Similarly, ϕ maps V onto W if and only if

ϕj(V j) =W j(5.11.12)

for each j. Under these conditions, ϕZ′ is surjective, which is the same as saying
that

ϕjZ′(Z
′(V )j) = Z ′(W )j(5.11.13)

for each j. We also have that ϕB′ is surjective, or equivalently

ϕjB′(B
′(V )j) = B′(W )j(5.11.14)

for every j.

The surjectivity of ϕ implies that ϕ maps B(V ) onto B(W ), as in Section
5.2. This means that

ϕj(B(V )j) = B(W )j(5.11.15)

for each j.

If ϕ is any map from V into W as complexes, then the kernel of ϕ is a sub-
module of V , as a module over A with differentiation, and ker ϕ is homogeneous
as a submodule of V . Similarly, ϕ(V ) is a submodule of W , as a module over
A with differentiation, and ϕ(V ) is homogeneous as a submodule of W . This
means that kerϕ and ϕ(V ) are complexes, with respect to the restriction of dV
to kerϕ, and the restriction of dW to ϕ(V ), respectively.
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5.12 Some related homomorphisms

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with a multiplicative identity element eA. Also let
(V, dV ) be a left or right module over A with differentiation that is a complex.
Suppose that U is a submodule of V , as a module over A with differentiation,
so that U is a module with differentiation too, with dU equal to the restriction
of dV to U . Suppose that U is homogeneous as a submodule of V as well, so
that (U, dU ) is a complex. Note that the natural inclusion mapping from U into
V is a map between complexes.

Remember that V/U is a module over A with differentiation, where dV/U
is induced by dV in the usual way, and that V/U is a complex. The natural
quotient mapping q from V onto V/U is a map between complexes.

Observe that

Z(V )j ∩ (ker qj) = Z(V )j ∩ U j = Z(U)j(5.12.1)

for each j. This corresponds to a remark in Section 5.3, and is basically the
same as (5.11.10). This is also related to some remarks on p59 of [3].

As in (5.11.15), we have that

qj(B(V )j) = B(V/U)j(5.12.2)

for every integer j. If vj ∈ V j for some j and

qj(vj) ∈ B(V/U)j ,(5.12.3)

then there is a wj−1 ∈ V j−1 such that

qj(vj) = qj(dj−1
V (wj−1)),(5.12.4)

by (5.12.2). This means that there is a uj ∈ U j such that

vj − dj−1
V (wj−1) = uj .(5.12.5)

This implies that

the images of vj and uj in Z ′(V )j , under the natural(5.12.6)

quotient mapping from V onto Z ′(V ), are the same.

This corresponds to a remark in Section 5.3, and is related to some remarks on
p59 of [3].

If we also have that
vj ∈ Z(V )j ,(5.12.7)

then we get that
uj ∈ Z(U)j ,(5.12.8)

by (5.12.5). This corresponds to another remark in Section 5.3, and is related
to some remarks on p59 of [3].
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Remember that there is a natural homomorphism ∆ from H(V/U) into
H(U), as modules over A, as in Section 5.3. In fact, this homomorphism has
degree 1. Indeed, let an integer j and an element of H(V/U)j be given. This
element can be represented as the image of

qj(vj) ∈ Z(V/U)j(5.12.9)

under the natural quotient mapping from Z(V/U) ontoH(V/U), where vj ∈ V j .
Using (5.12.9), we get that

qj+1(djV (v
j)) = djV/U (q

j(vj)) = 0,(5.12.10)

so that djV (v
j) ∈ U j+1.

More precisely,

djV (v
j) ∈ Z(U)j+1.(5.12.11)

Remember that ∆ of the image of qj(vj) in H(V/U)j is equal to the image of
djV (v

j) in H(U), under the natural quotient mapping from Z(U) onto H(U).
It follows that ∆ of the image of qj(vj) in H(V/U) is an element of H(U)j+1,
because of (5.12.11). This means that

∆(H(V/U)j) ⊆ H(U)j+1,(5.12.12)

as desired.
Let qZ′ be the homomorphism from Z ′(V ) into Z ′(V/U) induced by q, as

usual. The restriction qH of qZ′ to H(V ) maps H(V ) into H(V/U). Remember
that ∆ ◦ qH = 0, as in Section 5.3. This implies that

∆j ◦ qjH = 0(5.12.13)

for every j.
Let an integer j and vj ∈ V j be given, with qj(vj) ∈ Z(V/U)j , and suppose

that ∆j maps the image of qj(vj) in H(V/U)j to 0 in H(U)j+1. This means
that

djV (v
j) ∈ B(U)j+1,(5.12.14)

which is to say that djV (v
j) = djV (u

j) for some uj ∈ U j . Thus

qj(vj) = qj(vj − uj) and vj − uj ∈ Z(V )j .(5.12.15)

This implies that qjH of the image of vj − uj in H(V )j is the same as the image
of qj(vj) in H(V/U)j . It follows that

qjH(H(V )j) = ker∆j ,(5.12.16)

as in Section 5.3, and which is related to some remarks on p59 of [3].
Let ι be the natural inclusion mapping from U into V , and let ιZ′ be the

induced mapping from Z ′(U) into Z ′(V ), as usual. The restriction of ιZ′ to
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H(U) is denoted ιH , as before, and maps H(U) into H(V ). Remember that
ιH ◦∆ = 0, as in Section 5.3, so that

ιj+1
H ◦∆j = 0(5.12.17)

for every j.
Let an integer j and wj+1 ∈ Z(U)j+1 be given, and suppose that the image

of wj+1 in H(U)j+1 is in the kernel of ιj+1
H . This implies that there is a vj ∈ V j

such that
wj+1 = djV (v

j).(5.12.18)

It follows that

djV/U (q
j(vj)) = qj+1(djV (v

j)) = qj+1(wj+1) = 0,(5.12.19)

so that qj(vj) ∈ Z(V/U)j . This means that the image of wj+1 in H(U)j+1 is
the same as ∆j of the image of qj(vj) in Hj(V/U). This shows that

ker ιj+1
H = ∆j(H(V/U)j),(5.12.20)

as in Section 5.3, and which is related to some remarks on p59 of [3].

5.13 Double gradings

Let k be a commutative ring with a multiplicative identity element, let A be an
associative algebra over k with a multiplicative identity element eA, and let V
be a left or right module over A. A double grading or bi-grading of V is defined
by a family of submodules V j,l, j, l ∈ Z, such that V corresponds to the direct
sum of the V j,l’s, as a module over A, as on p60 of [3]. One may also refer to
this as a Z2-grading of V , as a module over A. The elements of V j,l are said to
be bihomogeneous of bidegree (j, l).

If r ∈ Z, then put

V r =
∑
j+l=r

V j,l,(5.13.1)

which is the subset of V consisting of finite sums of elements of V j,l, with j, l ∈ Z
and j + l = r. This is a submodule of V , which corresponds to the direct sum
of the V j,l’s with j + l = r, as a module over A. Note that V corresponds to
the direct sum of the V r’s, r ∈ Z, as a module over A. This is the associated
grading of V by the given double grading, as on p60 of [3]. A bihomogeneous
element of V of bidegree (j, l) is thus homogeneous of degree j + l with respect
to the associated grading.

If V j,l = {0} when j < 0 or l < 0, then V is said to be positive as a
doubly-graded module, as on p60 of [3]. Similarly, if V j,l = {0} when j > 0 or
l > 0, then V is said to be negative as a doubly-graded module. As before, it is
sometimes convenient to put

Vj,l = V −j,−l(5.13.2)
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for every j, l ∈ Z, particularly when V is negative as a doubly-graded module.
Let U be a submodule of V , as a module over A, so that

U j,l = U ∩ V j,l(5.13.3)

is a submodule of U for every j, l ∈ Z. If every element of U can be expressed as
the sum of elements of finitely many U j,l’s, then U is said to be bihomogeneous,
as a submodule of V , as on p60 of [3]. In this case, U corresponds to the direct
sum of the U j,l’s, j, l ∈ Z, as a module over A, so that U is doubly-graded
as well. Note that this implies that U is a homogeneous submodule of V with
respect to the associated grading.

If j, l ∈ Z, then the natural quotient mapping from V onto V/U leads to a
homomorphism

from V j,l/U j,l onto (V j+l + U)/U,(5.13.4)

as modules over A. The kernel of this homomorphism is trivial, by the definition
of U j,l, so that we get an isomorphism as in (5.13.4). Every element of V/U
can be expressed as the sum of elements of finitely many of the submodules
(V j,l+U)/U , because every element of V can be expressed as the sum of finitely
many V j,l’s.

If U is a bihomogeneous submodule of V , then one can check that V/U
corresponds to the direct sum of the submodules (V j,l + U)/U , j, l ∈ Z. This
means that V/U is doubly-graded as a module over A, with

(V/U)j,l = (V j,l + U)/U(5.13.5)

for every j, l ∈ Z. In this case, it is sometimes convenient to identify V/U with
the direct sum of V j,l/U j,l, as on p60 of [3].

Let W be another doubly-graded left or right module over A, depending on
whether V is a left or right module over A. Also let ϕ be a homomorphism
from V into W , as modules over A, and let p, q be integers. We say that ϕ has
bidegree (p, q) if

ϕ(V j,l) ⊆W j+p,l+q(5.13.6)

for every j, l ∈ Z, as on p60 of [3]. Under these conditions, if j, l ∈ Z, then
the restriction of ϕ to V j,l, considered as a mapping from V j,l into W j+p,l+q, is
denoted ϕj,l, and called the (p, q)-component of ϕ, as in [3]. A homomorphism of
bidegree (p, q) from V into W may be considered as a homomorphism of degree
p+ q with respect to the associated gradings on V , W .

In this case, it is easy to see that

kerϕ is a bihomogeneous submodule of V(5.13.7)

and
ϕ(V ) is a bihomogeneous submodule of W.(5.13.8)

If j, l ∈ Z, then
(kerϕ)j,l = (kerϕ) ∩ V j,l = kerϕj,l(5.13.9)
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and

(ϕ(V ))j,l = ϕ(V ) ∩W j,l = ϕj−p,l−q(V j−p,l−q).(5.13.10)

The coimage V/ kerϕ and cokernel W/ϕ(V ) of ϕ may be considered as
doubly-graded modules over A. If j, l ∈ Z, then

(V/ kerϕ)j,l is isomorphic to V j,l/(kerϕ)j,l = V j,l/ kerϕj,l(5.13.11)

and

(W/ϕ(V ))j,l is isomorphic to(5.13.12)

W j,l/ϕ(V )j,l =W j,l/ϕj−p,l−q(V j−p,l−q),

as modules over A. The isomorphism from V/ kerϕ onto ϕ(V ), as modules over
A, induced by ϕ has bidegree (p, q) as well. This is related to some remarks on
p60 of [3].

If U is a bihomogeneous submodule of V , then the natural quotient mapping
from V onto V/U has bidegree (0, 0), with respect to the double grading on V/U
defined previously.

Let Z be another doubly-graded left or right module over A, depending on
whether V , W are left or right modules over A. If ψ is a homomorphism from
W into Z, as modules over A, of bidegree (p′, q′), then

ψ ◦ ϕ has bidegree (p+ p′, q + q′),(5.13.13)

as a homomorphism from V into Z.
One may also consider n-graded modules over A for any positive integer n,

as on p62 of [3].

5.14 Double complexes

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V be a doubly-graded left or right module over A.

Suppose that d1 = dV,1 and d2 = dV,2 are two differentiation operators on V ,
which is to say that d1, d2 are homomorphisms from V into itself, as a module
over A, such that

d1 ◦ d1 = d2 ◦ d2 = 0.(5.14.1)

Suppose as well that d1 has bidegree (1, 0) on V , d2 has bidegree (0, 1), and
that d1, d2 anticommute on V , so that

d2 ◦ d1 + d1 ◦ d2 = 0.(5.14.2)

Under these conditions, V is said to be a double complex with respect to d1, d2,
as on p60 of [3].
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If j, l ∈ Z, then we get homomorphisms dj,l1 , dj,l2 from V j,l into V j+1,l, V j,l+1,
respectively, as modules over A, as in the previous section. As before, (5.14.1)
is the same as saying that

dj+1,l
1 ◦ dj,l1 = 0(5.14.3)

nad

dj,l+1
2 ◦ dj,l2 = 0(5.14.4)

on V j,l for every j, l ∈ Z. Similarly, (5.14.2) is the same as asking that

dj+1,l
2 ◦ dj,l1 + dj,l+1

1 ◦ dj,l2 = 0(5.14.5)

on V j,l for every j, l ∈ Z.
Remember that V may be considered as a singly-graded module over A, with

V r as in (5.13.1) for every r ∈ Z. Put

d = dV = d1 + d2,(5.14.6)

which is a homomorphism from V into itself of degree 1, as a singly-graded
module over A. Observe that d ◦ d = 0 on V , by (5.14.1) and (5.14.2). Thus
V is a single complex with respect to d, as on p61 of [3]. One calls d the total
differentiation operator on V , as in [3]. If j, l ∈ Z, then the restriction of d to
V j,l is equal to

dj,l1 + dj,l2 .(5.14.7)

In particular,

d(V j,l) ⊆ V j+1,l + V j,l+1.(5.14.8)

Conversely, suppose that d is a homomorphism from V into itself of degree 0,
as a singly-graded module over A, such that d◦d = 0 and (5.14.8) holds for every

j, l ∈ Z. If j, l ∈ Z, then there are unique homomorphisms dj,l1 , dj,l2 from V j,l

into V j+1,l, V j,l+1, respectively, as modules over A, such that the restriction of
d to V j,l is equal to (5.14.7). One can check that (5.14.3), (5.14.4), and (5.14.5)
hold for every j, l ∈ Z in this case. Let d1, d2 be the homomorphisms from V
into itself whose restrictions to V j,l are equal to dj,l1 , dj,l2 , respectively, for every
j, l ∈ Z. It follows that V is a double complex with respect to d1, d2, and that
d is the corresponding total differentiation operator, as on p61 of [3].

If V is a double complex, then the corresponding modules Z(V ), B(V ),
Z ′(V ), B′(V ), and H(V ) are defined by considering V as a single complex, as
before. More precisely, these are singly-graded modules over A.

If n is any positive integer, then one may consider n-complexes over A, as
on p62 of [3].

5.15 Maps between double complexes

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with multiplicative identity element eA. Also let
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V and W be both left or both right modules over A that are double complexes,
with differentiation operators dV,1, dV,2 and dW,1, dW,2, respectively.

Suppose that ϕ is a homomorphism from V into W , as modules over A, of
bidegree (0, 0). If

dW,1 ◦ ϕ = ϕ ◦ dV,1(5.15.1)

and
dW,2 ◦ ϕ = ϕ ◦ dV,2,(5.15.2)

then ϕ is said to be a map from V into W , as double complexes, as on p61 of
[3]. In this case, it is easy to see that ϕ is a map from V into W , considered as
single complexes, as in the previous section.

Note that (5.15.1) is the same as saying that

dj,lW,1 ◦ ϕ
j,l = ϕj+1,l ◦ dj,lV,1(5.15.3)

for every j, l ∈ Z. Similarly, (5.15.2) is the same as saying that

dj,lW,2 ◦ ϕ
j,l = ϕj,l+1 ◦ dj,lV,2(5.15.4)

for every j, l.
Let ϕ and ψ be maps from V into W , as double complexes. Also let σ1, σ2

be homomorphisms from V into W , as modules over A, of bidegrees (−1, 0),
(0,−1), respectively. Suppose that

dW,1 ◦ σ1 + σ1 ◦ dV,1 + dW,2 ◦ σ2 + σ2 ◦ dV,2 = ϕ− ψ.(5.15.5)

Suppose in addition that

σ1 ◦ dV,2 + dW,2 ◦ σ1 = 0(5.15.6)

and
σ2 ◦ dV,1 + dW,1 ◦ σ2 = 0.(5.15.7)

Under these conditions, (σ1, σ2) is said to define a homotopy between ϕ and ψ,
as on p61 of [3].

Of course, (5.15.5) is the same as saying that

dj−1,l
W,1 ◦ σj,l1 + σj+1,l

1 ◦ dj,lV,1 + dj,l−1
W,2 ◦ σj,l2 + σj,l+1

2 ◦ dj,lV,2(5.15.8)

= ϕj,l − ψj,l

for every j, l ∈ Z. Similarly, (5.15.6) is the same as saying that

σj,l+1
1 ◦ dj,lV,2 + dj−1,l

W,2 ◦ σj,l1 = 0(5.15.9)

for every j, l. We also have that (5.15.7) is the same as saying that

σj+1,l
2 ◦ dj,lV,1 + dj,l−1

W,1 ◦ σj,l2 = 0(5.15.10)

for every j, l.
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Put
σ = σ1 + σ2,(5.15.11)

which is a homomorphism from V intoW of degree −1, as singly-graded modules
over A. Let dV , dW be the total differentiation operators on V , W , respectively.
One can check that

dW ◦ σ + σ ◦ dV = ϕ− ψ,(5.15.12)

using (5.15.8), (5.15.9), and (5.15.10). This means that σ is a homotopy between
ϕ and ψ, as maps from V into W , as single complexes over A, as on p62 of [3].
If j, l ∈ Z, then the restriction of σ to V j,l is equal to

σj,l1 + σj,l2 ,(5.15.13)

so that
σ(V j,l) ⊆ V j−1,l + V j,l−1,(5.15.14)

as in [3].
Conversely, suppose that σ is a homotopy between ϕ and ψ, as maps from V

into W , as single complexes over A, that satisfies (5.15.14) for every j, l ∈ Z. In

this case, if j, l ∈ Z, then there are unique homomorphisms σj,l1 , σj,l2 from V j,l

into V j−1,l, V j,l−1, respectively, as modules over A, such that the restriction
of σ to V j,l is equal to (5.15.13). This leads to homomorphisms σ1, σ2 from
V into W , as modules over A, of bidegrees (−1, 0), (0,−1), respectively, whose

restrictions to V j,l are equal to σj,l1 , σj,l2 , respectively, for each j, l ∈ Z. One can
check that (5.15.8), (5.15.9), and (5.15.10) hold for every j, l ∈ Z, because of
(5.15.12). This implies that (5.15.5), (5.15.6), and (5.15.7) hold, so that (σ1, σ2)
is a homotopy between ϕ and ψ, as maps from V into W as double complexes,
as on p62 of [3].



Chapter 6

More on differentiation

6.1 Tensor products and gradings

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V be a graded right module over A, and let W be a graded left module over
A.

Suppose that V
⊗

AW is a tensor product of V and W , as right and left
modules over A, respectively. Thus V

⊗
AW is a module over k that is isomor-

phic to the direct sum of a family of tensor products V j
⊗

AW
l, j, l ∈ Z+. This

means that V
⊗

AW is a doubly-graded module over k, with(
V
⊗

A
W

)j,l
= V j

⊗
A
W l(6.1.1)

for every j, l ∈ Z, considered as a submodule of V
⊗

AW . This corresponds to
a remark on p63 of [3].

If r ∈ Z, then put(
V
⊗

A
W

)r
=

∑
j+l=r

(
V
⊗

A
W

)j,l
=

∑
j+l=r

V j
⊗

A
W l,(6.1.2)

as in Section 5.13. This is the subset of V
⊗

AW consisting of finite sums of
elements of (6.1.1), with j, l ∈ Z and j + l = r, as before. This is a submodule
of V

⊗
AW , as a module over k, which corresponds to the direct sum of (6.1.1)

with j + l = r, as a module over k. We also have that V
⊗

AW corresponds
to the direct sum of (6.1.2) with r ∈ Z, as a module over k. This defines the
grading on V

⊗
AW associated to the double grading defined in the preceding

paragraph, as in Section 5.13.
Let V1 be another graded right module over A, let W be another graded left

module over A, and let V1
⊗

AW1 be a tensor product of V1 and W1 over A.
This is a doubly-graded module over k, as before.

Let ϕ1, ψ1 be homomorphisms from V ,W into V1,W1, as modules over A, of
degrees p1, q1 ∈ Z, respectively. The corresponding mapping from V

⊗
AW into

141
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V1
⊗

AW1 is defined a bit differently from before, without gradings. Namely,
there is a unique homomorphism

ϕ1 ⊗ ψ1 from V
⊗

A
W into V1

⊗
A
W1,(6.1.3)

as modules over k, such that for every j, l ∈ Z, vj ∈ V j , and wl ∈ Wl, we have
that

(ϕ1 ⊗ ψ1)(v
j ⊗ wl) = (−1)j q1(ϕ1(v

j)⊗ ψ1(w
l)),(6.1.4)

as on p64 of [3]. Note that

ϕ1 ⊗ ψ1 has bidegree (p1, q1).(6.1.5)

Equivalently, if j, l ∈ Z, then the restriction (ϕ1 ⊗ ψ1)
j,l of ϕ1 ⊗ ψ1 to(

V
⊗

AW
)j,l

is a homomorphism into
(
V1

⊗
AW1

)j+p1,l+q1
, as modules over k.

This homomorphism corresponds to

(−1)j q1 times the homomorphism from V j
⊗

A
W l into(6.1.6)

V j+p11

⊗
A
W l+q1

1 , as modules over k, associated to ϕj1 and ψl1

in the usual way, as on p63 of [3].
Let V2 be a third graded right module over A, let W2 be a third graded left

module over A, and let V2
⊗

AW2 be a tensor product of V2 and W2 over A,
which is a doubly-graded module over k. Also let ϕ2, ψ2 be homomorphisms
from V1, W2 into V2, W2, as modules over A, of degrees p2, q2 ∈ Z, respectively.
This leads to a homomorphism ϕ2 ⊗ ψ2 from V1

⊗
AW1 into V2

⊗
AW2, as

modules over k, of bidegree (p2, q2), as before.
Similarly, ϕ2 ◦ ϕ1, ψ2 ◦ ψ1 are homomorphisms from V , W into V2, W2,

as modules over A, of degrees p1 + p2, q1 + q2, respectively. This leads to a
homomorphism (ϕ2 ◦ϕ1)⊗ (ψ2 ◦ψ1) from V

⊗
AW into V2

⊗
AW2, as modules

over k, of bidegree (p1 + p2, q1 + q2). One can check that

(ϕ2 ◦ ϕ1)⊗ (ψ2 ◦ ψ1) = (−1)p1 q2 (ϕ2 ⊗ ψ2) ◦ (ϕ1 ⊗ ψ1),(6.1.7)

as on p63 of [3].

6.2 Tensor products of complexes

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with a multiplicative identity element eA. Also let
(V, dV ) be a graded right module over A with differentiation that is a complex,
and let (W,dW ) be a graded left module over A with differentiation that is a
complex. Suppose that V

⊗
AW is a tensor product of V and W over A, which

is doubly-graded as a module over k, as in the previous section.
The identity mappings IV , IW on V , W are homomorphisms from V , W

into themselves, respectively, as modules over A, of degree 0. Let

δ1 = dV ⊗ IW(6.2.1)
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and
δ2 = IV ⊗ dW(6.2.2)

be the homomorphisms from V
⊗

AW into itself, as a module over k, defined
as in the previous section. If j, l ∈ Z, vj ∈ Vj , and w

l ∈W l, then

δ1(v
j ⊗ wl) = dV (v

j)⊗ wl(6.2.3)

and
δ2(v

j ⊗ wl) = (−1)j (vj ⊗ dW (wl)),(6.2.4)

and δ1, δ2 are uniquely determined by these properties. Of course, δ1 has
bidegree (1, 0), and δ2 has bidegree (0, 1).

Observe that
δ1 ◦ δ1 = δ2 ◦ δ2 = 0(6.2.5)

on V
⊗

AW , because dV ◦ dV = 0 on V and dW ◦ dW = 0 on W . We also have
that

δ1 ◦ δ2 + δ2 ◦ δ1 = 0(6.2.6)

on V
⊗

AW , by (6.1.7). This shows that

V
⊗

A
W is a double complex with respect to δ1 and δ2,(6.2.7)

as on p63f of [3].
Let (V0, dV0

) be another graded right module over A with differentiation
that is a complex, let (W0, dW0

) be another graded left module over A with
differentiation that is a complex, and let V0

⊗
AW0 be a tensor product of V0

and W0 over A. This is a double complex with respect to the corresponding
differentiation operators δ1,0 and δ2,0, as before.

Let ϕ, ψ be mappings from V , W into V0, W0, respectively, as complexes.
In this case, ϕ ⊗ ψ is the same as the mapping from V

⊗
AW into V0

⊗
AW0

defined without using gradings, because ψ has degree 0, by hypothesis. One can
check that

ϕ⊗ ψ is a map from V
⊗

A
W into V0

⊗
A
W0,(6.2.8)

as double complexes, as on p63 of [3].
Let ϕ0, ψ0 be another pair of mappings from V , W into V0, W0, respectively,

as complexes. Suppose that σ, τ are homotopies between ϕ, ψ and ϕ0, ψ0, re-
spectively. Thus σ, τ are homomorphisms from V , W into V0, W0, respectively,
as modules over A, and with degree −1, such that

dV0 ◦ σ + σ ◦ dV = ϕ− ϕ0(6.2.9)

and
dW0

◦ τ + τ ◦ dW = ψ − ψ0.(6.2.10)

Put
σ1 = σ ⊗ ψ(6.2.11)
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and

σ2 = ϕ0 ⊗ τ,(6.2.12)

which are homomorphisms from V
⊗

AW into V0
⊗

AW0, as modules over k,
with bidegrees (−1, 0) and (0,−1), respectively.

Observe that

σ1 ◦ δ2 = (σ ⊗ ψ) ◦ (IV ⊗ dW ) = σ ⊗ (ψ ◦ dW ) = σ ⊗ (dW0
◦ ψ)

= −(IV0
⊗ dW0

) ◦ (σ ⊗ ψ) = −δ2,0 ◦ σ1,(6.2.13)

by (6.1.7). Similarly,

σ2 ◦ δ1 = (ϕ0 ⊗ τ) ◦ (dV ⊗ IW ) = −(ϕ0 ◦ dV )⊗ τ = −(dV0
◦ ϕ0)⊗ τ

= −(dV0
⊗ IW0

) ◦ (ϕ0 ⊗ τ) = −δ1,0 ◦ σ2.(6.2.14)

We also have that

δ1,0 ◦ σ1 = (dV0
⊗ IW0

) ◦ (σ ⊗ ψ) = (dV0
◦ σ)⊗ ψ(6.2.15)

and

σ1 ◦ δ1 = (σ ⊗ ψ) ◦ (dV ⊗ IW ) = (σ ◦ dV )⊗ ψ.(6.2.16)

This implies that

δ1,0 ◦ σ1 + σ1 ◦ δ1 = (dV0
◦ σ + σ ◦ dV )⊗ ψ = (ϕ− ϕ0)⊗ ψ.(6.2.17)

Similarly,

δ2,0 ◦ σ2 = (IV0
⊗ dW0

) ◦ (ϕ0 ⊗ τ) = ϕ0 ⊗ (dW0
◦ τ)(6.2.18)

and

σ2 ◦ δ2 = (ϕ0 ⊗ τ) ◦ (IV ⊗ dW ) = ϕ0 ⊗ (τ ◦ dW ).(6.2.19)

It follows that

δ2,0 ◦ σ2 + σ2 ◦ δ2 = ϕ0 ⊗ (dW0 ◦ τ + τ ◦ dW ) = ϕ0 ⊗ (ψ − ψ0).(6.2.20)

Combining (6.2.17) and (6.2.20), we obtain that

δ1,0 ◦ σ1 + σ1 ◦ δ1 + δ2,0 ◦ σ2 + σ2 ◦ δ2(6.2.21)

= (ϕ− ϕ0)⊗ ψ + ϕ0 ⊗ (ψ − ψ0) = ϕ⊗ ψ − ϕ0 ⊗ ψ0.

This shows that

(σ1, σ2) defines a homotopy between ϕ⊗ ψ and ϕ0 ⊗ ψ0,(6.2.22)

as maps from V
⊗

AW into V0
⊗

AW0, as double complexes. This corresponds
to a remark on p63 of [3].
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6.3 Gradings and homomorphisms

Let k be a commutative ring with a multiplicative identity element, and let
A be an associative algebra over k with a multiplicative identity element eA.
Suppose for the moment that V , W are both left or both right modules over A,
so that the corresponding space HomA(V,W ) of homomorphisms from V into
W , as modules over A, is a module over k.

Let V1, W1 be left or right modules over A, depending on whether V , W
are left or right modules over A. Also let ϕ1 be a homomorphism from V1 into
V , and let ψ1 be a homomorphism from W into W1, as modules over A. If
α ∈ Hom(V,W ), then put

(Hom(ϕ1, ψ1))(α) = ψ1 ◦ α ◦ ϕ1,(6.3.1)

as on p20 of [3]. Note that Hom(ϕ1, ψ1) defines a homomorphism

from HomA(V,W ) into HomA(V1,W1),(6.3.2)

as modules over k, as in [3].
Let V2, W2 be left or right modules over A as well, depending on whether

V , W are left or right modules over A. Suppose that ϕ2 is a homomorphism
from V2 into V1, and that ψ2 is a homomorphism from W1 into W2, as modules
over A. Thus Hom(ϕ2, ψ2) defines a homomorphism

from HomA(V1,W1) into HomA(V2,W2),(6.3.3)

as modules over k, as before.
Under these conditions, ϕ1 ◦ ϕ2 is a homomorphism from V2 into V , and

ψ2 ◦ ψ1 is a homomorphism from W into W2, as modules over A. This means
that Hom(ϕ1 ◦ ϕ2, ψ2 ◦ ψ1) defines a homomorphism

from HomA(V,W ) into HomA(V2,W2),(6.3.4)

as usual. One can check that

Hom(ϕ1 ◦ ϕ2, ψ2 ◦ ψ1) = Hom(ϕ2, ψ2) ◦Hom(ϕ1, ψ1).(6.3.5)

Suppose now that V , W are graded modules over A. We would like to define
Homgr

A (V,W ) as a doubly-graded module over k, with(
Homgr

A (V,W )
)j,l

= HomA(V
−j ,W l)(6.3.6)

for every j, l ∈ Z, as on p62 of [3]. We can simply take Homgr
A (V,W ) to be

the direct sum of (6.3.6), as a module over k, but it is sometimes convenient to
realize it in a slightly different way.

Let |V |, |W | be the underlying modules over A corresponding to V , W ,
respectively, without gradings, as on p63 of [3]. If α ∈ Homgr

A (V,W ) and j, l ∈ Z,
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then let αj,l be the corresponding element of (6.3.6), as usual. This leads to a
unique homomorphism from |V | into |W |, that we shall also denote by α, with

α =

∞∑
l=−∞

αj,l on V −j(6.3.7)

for every j ∈ Z. More precisely, αj,l = 0 for all but finitely many (j, l) ∈ Z2,
by hypothesis. This implies that all but finitely many terms in the sum on the
right side of (6.3.7) are equal to 0 for any j, and that all of the terms in the
sum are equal to 0 for all but finitely many j.

If j, l ∈ Z, then αj,l is uniquely determined by this homomorphism from |V |
into |W |, by restricting the homomorphism to V −j , and taking the component
of this restriction that maps into W l. This defines an injective homomorphism

from Homgr
A (V,W ) into HomA(|V |, |W |),(6.3.8)

as modules over k, and we may identify Homgr
A (V,W ) with the corresponding

submodule of HomA(|V |, |W |), as a module over k. Note that Homgr
A (V,W )

normally corresponds to a proper submodule of HomA(|V |, |W |), as on p63 of
[3].

If r ∈ Z, then put(
Homgr

A (V,W )
)r

=
∑
j+l=r

(
Homgr

A (V,W )
)j,l

,(6.3.9)

as in Section 5.13. This is a submodule of Homgr
A (V,W ), as a module over k,

which corresponds to the direct sum of (6.3.6) over all j, l ∈ Z with j + l = r.
As before, Homgr

A (V,W ) corresponds to the direct sum of (6.3.9) over r ∈ Z, as
a module over k, which defines the grading on Homgr

A (V,W ) associated to the
double grading already defined.

Let Mr(V,W ) be the space of homomorphisms from V into W , as modules
over A, of degree r, as in Exercise 5 on p73 of [3]. This is a submodule of
HomA(|V |, |W |), as a module over k. Observe that(

Homgr
A (V,W )

)r
=

(
Homgr

A (V,W )
)
∩Mr(V,W ).(6.3.10)

Put

M(V,W ) =

∞∑
r=−∞

Mr(V,W ),(6.3.11)

as in Exercise 5 on p73 of [3]. This is a submodule of HomA(|V |, |W |), as a
module over k, which corresponds to the direct sum of Mr(V,W ), r ∈ Z. We
also have that

Homgr
A (V,W ) ⊆M(V,W ),(6.3.12)

by (6.3.10).
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6.4 Induced homomorphisms on Homgr
A (V,W )

Let us continue with the same notation and hypotheses as in the previous
section. Let V1, W1 be left or right graded modules over A, depending on
whether V , W are left or right modules over A. Also let ϕ1 be a homomorphism
from V1 into V , and let ψ1 be a homomorphism from W into W1, as modules
over A, of degrees p1, q1 ∈ Z, respectively. The corresponding homomorphism
Homgr(ϕ1, ψ1)

from Homgr
A (V,W ) into Homgr

A (V1,W1),(6.4.1)

as modules over k, is defined a bit differently from before, without gradings.
More precisely,

Homgr(ϕ1, ψ1) has bidegree (p1, q1).(6.4.2)

If j, l ∈ Z, then Homgr(ϕ1, ψ1) should map(
Homgr

A (V,W )
)j,l

into
(
Homgr

A (V1,W1)
)j+p1,l+q1

.(6.4.3)

This corresponds to a mapping

from HomA(V
−j ,W l) into HomA(V

−j−p1
1 ,W l+q1

1 ),(6.4.4)

as in (6.3.6). Note that

ϕ−j−p11 (V −j−p1
1 ) ⊆ V −j(6.4.5)

and
ψl1(W

l) ⊆W l+q1
1 ,(6.4.6)

by hypothesis. Thus Hom(ϕ−j−p11 , ψl1) defines a homomorphism as in (6.4.4),
as modules over k.

We would like to take

the restriction of Homgr(ϕ1, ψ1) to
(
Homgr

A (V,W ))j,l to be(6.4.7)

the mapping corresponding to (−1)j q1 Hom(ϕ−j−p11 , ψl1),

as on p63 of [3]. Of course, there is a unique homomorphism as in (6.4.1), as
modules over k, with this property.

Let V2, W2 be another pair of left or right graded modules over A, de-
pending on whether V , W are left or right modules over A. Also let ϕ2 be a
homomorphism from V2 into V1, and let ψ2 be a homomorphism from W1 into
W2, as modules over A, of degrees p2, q2 ∈ Z, respectively. This leads to a
homomorphism Homgr(ϕ2, ψ2)

from Homgr
A (V1,W1) into Homgr

A (V2,W2),(6.4.8)

as modules over k, as before. Of course, this homomorphism has bidegree
(p2, q2).
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It follows that ϕ1 ◦ ϕ2 is a homomorphism from V2 into V , and that ψ2 ◦ ψ1

is a homomorphism from W into W2, as modules over A, of degrees p1 + p2,
q1 + q2, respectively. Thus we get a homomorphism Homgr(ϕ1 ◦ ϕ2, ψ2 ◦ ψ1)

from Homgr
A (V,W ) into Homgr

A (V2,W2),(6.4.9)

as modules over k, of bidegree (p1 + p2, q1 + q2). One can verify that

Homgr(ϕ1 ◦ ϕ2, ψ2 ◦ ψ1) = (−1)p1 q2 Homgr(ϕ2, ψ2) ◦Homgr(ϕ1, ψ1),(6.4.10)

as on p63 of [3]. More precisely, it suffices to check that this holds on (6.3.6)
for each j, l ∈ Z. This uses (6.3.5), and the way that these homomorphisms are
defined.

6.5 Complexes and homomorphisms

Let k be a commutative ring with a multiplicative identity element, and let
A be an associative algebra over k with a multiplicative identity element eA.
Also let (V, dV ) and (W,dW ) be both left or both right graded modules over A
with differentiation that are complexes. Thus Homgr

A (V,W ) is a doubly-graded
module over k, as in Section 6.3.

The identity mappings IV , IW on V , W are homomorphisms from V , W
into themselves, respectively, of degree 0, as before. Let

δ1 = Homgr(dV , IW )(6.5.1)

and
δ2 = Homgr(IV , dW )(6.5.2)

be the homomorphisms from Homgr
A (V,W ) into itself, as a module over k, de-

fined as in the previous section. Remember that δ1 has bidegree (1, 0), and δ2
has bidegree (0, 1).

It is easy to see that
δ1 ◦ δ1 = δ2 ◦ δ2 = 0(6.5.3)

on Homgr
A (V,W ), because dV ◦ dV = 0 on V and dW ◦ dW = 0 on W , and using

(6.4.10). One can also use (6.4.10) to get that

δ1 ◦ δ2 + δ2 ◦ δ1 = 0(6.5.4)

on Homgr
A (V,W ). This means that

Homgr
A (V,W ) is a double complex with respect to δ1 and δ2,(6.5.5)

as on p63 of [3].
Let (V0, dV0), (W0, dW0) be another pair of left or right graded modules over

A with differentiation that are complexes, depending on whether V , W are left
or right modules over A. As before, Homgr

A (V0,W0) is a doubly-graded module
over k, and we let δ1,0, δ2,0 be the corresponding differentiation operators on it.
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Let ϕ be a map from V0 into V , and let ψ be a map from W into W0, as
complexes. This leads to a homomorphism Homgr(ϕ, ψ) from Homgr

A (V,W ) into
Homgr

A (V0,W0), as modules over k, of bidegree (0, 0), as in the previous section.
This is the same as the homomorphism Hom(ϕ, ψ) defined as in Section 6.3
without using gradings, restricted to Homgr

A (V,W ), because ψ has degree 0.
One can verify that

Homgr(ϕ, ψ) is a map from Homgr
A (V,W ) into Homgr

A (V0,W0),(6.5.6)

as double complexes, as on p63 of [3].
Let ϕ0 be another map from V0 into V , and let ψ0 be another map from W

into W0, as complexes. Also let σ, τ be homotopies between ϕ, ψ and ϕ0, ψ0,
respectively. This means that σ is a homomorphism from V0 into V , as modules
over A, with degree −1, such that

dV ◦ σ + σ ◦ dV0
= ϕ− ϕ0.(6.5.7)

Similarly, τ is a homomorphism from W into W0, as modules over A, of degree
−1, with

dW0 ◦ τ + τ ◦ dW = ψ − ψ0.(6.5.8)

Note that
σ1 = Homgr(σ, ψ)(6.5.9)

and
σ2 = Homgr(ϕ0, τ)(6.5.10)

are homomorphisms from Homgr
A (V,W ) into Homgr

A (V0,W0), as modules over
k, of bidegrees (−1, 0) and (0,−1), respectively.

It is easy to see that

σ1 ◦ δ2 = Homgr(σ, ψ) ◦Homgr(IV , dW )(6.5.11)

= Homgr(σ, ψ ◦ dW ) = Homgr(σ, dW0 ◦ ψ)
= −Homgr(IV0 , dW0) ◦Homgr(σ, ψ) = −δ2,0 ◦ σ1,

using (6.4.10). Similarly,

σ2 ◦ δ1 = Homgr(ϕ0, τ) ◦Homgr(dV , IW )(6.5.12)

= −Homgr(dV ◦ ϕ0, τ) = −Homgr(ϕ0 ◦ dV0
, τ)

= −Homgr(dV0 , IW0) ◦Hom
gr(ϕ0, τ) = −δ1,0 ◦ σ2.

Observe that

δ1,0 ◦ σ1 = Homgr(dV0 , IW0) ◦Hom
gr(σ, ψ) = Homgr(σ ◦ dV0 , ψ)(6.5.13)

and

σ1 ◦ δ1 = Homgr(σ, ψ) ◦Homgr(dV , IW ) = Homgr(dV ◦ σ, ψ).(6.5.14)



150 CHAPTER 6. MORE ON DIFFERENTIATION

This shows that

δ1,0 ◦ σ1 + σ1 ◦ δ1 = Homgr(dV0 ◦ σ + σ ◦ dV , ψ)(6.5.15)

= Homgr(ϕ− ϕ0, ψ).

Similarly,

δ2,0 ◦ σ2 = Homgr(IV0
, dW0

) ◦Homgr(ϕ0, τ) = Homgr(ϕ0, dW0
◦ τ)(6.5.16)

and

σ2 ◦ δ2 = Homgr(ϕ0, τ) ◦Homgr(IV , dW ) = Homgr(ϕ0, τ ◦ dW ).(6.5.17)

This implies that

δ2,0 ◦ σ2 + σ2 ◦ δ2 = Homgr(ϕ0, dW0
◦ τ + τ ◦ dW )(6.5.18)

= Homgr(ϕ0, ψ − ϕ0).

It follows that

δ1,0 ◦ σ1 + σ1 ◦ δ1 + δ2,0 ◦ σ2 + σ2 ◦ δ2(6.5.19)

= Homgr(ϕ− ϕ0, ψ) + Homgr(ϕ0, ψ − ψ0)

= Homgr(ϕ, ψ) + Homgr(ϕ0, ψ0).

This means that

(σ1, σ2) defines a homotopy between(6.5.20)

Homgr(ϕ, ψ) and Homgr(ϕ0, ψ0),

as maps from Homgr
A (V,W ) into Homgr

A (V0,W0), as double complexes. This
corresponds to a remark on p63 of [3], as before.

6.6 Maps of any degree

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let (V, dV ), (W,dW ) be both left or both right graded modules over A with
differentiation that are complexes.

Suppose that ϕ is a homomorphism from V into W , as modules over A, of
degree r ∈ Z such that

dW ◦ ϕ = (−1)r ϕ ◦ dV .(6.6.1)

Under these conditions, ϕ is considered to be a map of degree r from V into W ,
as complexes, as in Exercise 1 on p72 of [3]. If r = 0, then this reduces to the
definition of a map between complexes in Section 5.11. Of course, (6.6.1) is the
same as saying that

dj+rW ◦ ϕj = (−1)r ϕj+1 ◦ djV(6.6.2)
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for each integer j.
It is easy to see that ϕ(Z(V )) ⊆ Z(W ) in this case, as in Section 5.2. More

precisely, we have that

ϕj(Z(V )j) ⊆ Z(W )j+r(6.6.3)

for every integer j, as in Section 5.11. Similarly, ϕ(B(V )) ⊆ B(W ), and in fact

ϕj(B(V )j) ⊆ B(W )j+r(6.6.4)

for every j.
As in Section 5.2, ϕ induces homomorphisms ϕZ′ , ϕB′ from Z ′(V ), B′(V )

into Z ′(W ), B′(W ), respectively, as modules over A. We also have that ϕZ′

maps H(V ) into H(W ), and we let ϕH be the restriction of ϕZ′ to H, as before.
Note that ϕZ′ , ϕB′ , and ϕH have degree r, as in Section 5.11.

Remember that d̃V , d̃W are the homomorphisms from Z ′(V ), Z ′(W ) into
Z(V ), Z(W ) induced by dV , dW , respectively, as in Section 5.1. One can check
that

ϕ ◦ d̃V = (−1)r d̃W ◦ ϕZ′ ,(6.6.5)

as in Section 5.2. Equivalently, this means that

ϕj+1 ◦ d̃jV = (−1)r d̃j+rW ◦ ϕjZ′(6.6.6)

for every j, as in Section 5.11.
Let ψ be another map of degree r from V into W , as complexes, and let σ

be a homomorphism from V into W , as modules over A, of degree r − 1. If

dW ◦ σ + (−1)r σ ◦ dV = ϕ− ψ,(6.6.7)

then σ is said to be a homotopy between ϕ and ψ, as maps of degree r between
complexes, as in Exercise 1 on p72 of [3]. This reduces to the definition of a
homotopy between maps between complexes when r = 0, as in Section 5.11.
This is the same as saying that

dj+r−1
W ◦ σj + (−1)r σj+1 ◦ djV = ϕj − ψj(6.6.8)

for every j, as usual. This implies that

(ϕj − ψj)(Z(V )j) ⊆ B(W )j+r(6.6.9)

for every j, so that ϕjH = ψjH for each j, as before.
Let (W1, dW1) be another left or right graded module over A with differen-

tiation that is a complex, depending on whether V , W are left or right modules
over A. Also let ϕ1 be a map of degree r1 ∈ Z from W into W1, as complexes.
Thus ϕ1 ◦ ϕ is a homomorphism from V into W1, as modules over A, of degree
r + r1. Observe that

dW1
◦ ϕ1 ◦ ϕ = (−1)r1 ϕ1 ◦ dW ◦ ϕ = (−1)r+r1 ϕ1 ◦ ϕ ◦ dV ,(6.6.10)
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so that ϕ1 ◦ ϕ is a map of degree r + r1 from V into W1, as complexes. This
corresponds to part of Exercise 1 on p72f of [3].

Let ψ1 be another map of degree r1 from W into W1, as complexes, and let
σ1 be a homotopy between ϕ1 and ψ1, as maps of degree r1 between complexes.
Put

τ = σ1 ◦ ϕ+ (−1)r1 ψ1 ◦ σ,(6.6.11)

where ϕ, ψ, and σ are as before. This is a homomorphism from V into W1, as
modules over A, of degree r + r1 − 1. We would like to verify that

τ is a homotopy between ϕ1 ◦ ϕ and ψ1 ◦ ψ,(6.6.12)

as maps of degree r + r1 between complexes, as in Exercise 1 on p72f of [3].
More precisely,

σ1 ◦ ϕ is a homotopy between ϕ1 ◦ ϕ and ψ1 ◦ ϕ,(6.6.13)

and

(−1)r1 ψ1 ◦ σ is a homotopy between ψ1 ◦ ϕ and ψ1 ◦ ψ,(6.6.14)

as maps of degree r + r1 between complexes. Of course, these are homomor-
phisms from V into W1, as modules over A, of degree r + r1 − 1, as before.
Observe that

dW1 ◦ σ1 ◦ ϕ+ (−1)r+r1 σ1 ◦ ϕ ◦ dV(6.6.15)

= dW1 ◦ σ1 ◦ ϕ+ (−1)r1 σ1 ◦ dW ◦ ϕ
= (ϕ1 − ψ1) ◦ ϕ,

which implies (6.6.13). Similarly,

(−1)r1 dW1
◦ ψ1 ◦ σ + (−1)r+r1 (−1)r1 ψ1 ◦ σ ◦ dV(6.6.16)

= ψ1 ◦ dW1
◦ σ + (−1)r ψ1 ◦ σ ◦ dV

= ψ1 ◦ (ϕ− ψ),

which implies (6.6.14). Combining these two equations, we get that

dW1 ◦ τ + (−1)r+r1 τ ◦ dV = ϕ1 ◦ ϕ− ψ1 ◦ ψ,(6.6.17)

which implies (6.6.12).

6.7 Double complexes and any bidegree

Let k be a commutative ring with a mutliplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V , W be both left or both right modules over A that are double complexes,
with differentiation operators dV,1, dV,2 and dW,1, dW,2, respectively.
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Suppose that ϕ is a homomorphism from V into W , as modules over A, of
bidegree (p, q) for some p, q ∈ Z. If

dW,1 ◦ ϕ = (−1)p+q ϕ ◦ dV,1(6.7.1)

and
dW,2 ◦ ϕ = (−1)p+q ϕ ◦ dV,2,(6.7.2)

then ϕ is considered to be a map of bidegree (p, q) from V into W , as double
complexes, as in Exercise 2 on p73 of [3]. This reduces to the definition of a
map between double complexes in Section 5.15 when p, q = 0. As usual, (6.7.1)
and (6.7.2) are the same as saying that

dj+p,l+qW,1 ◦ ϕj,l = (−1)p+q ϕj+1,l ◦ dV1
(6.7.3)

and
dj+p,l+qW,2 ◦ ϕj,l = (−1)p+q ϕj,l+1 ◦ dV,2(6.7.4)

for all integers j, l.
Remember that V ,W may be considered as single complexes, using the total

differentiation operators

dV = dV,1 + dV,2, dW = dW,1 + dW,2,(6.7.5)

as in Section 5.14. If ϕ is a map of bidegree (p, q) from V into W , as double
complexes, then it is easy to see that ϕ is a map of degree p+ q from V into W ,
as single complexes, as in the previous section.

Let ψ be another map of bidegree (p, q) from V intoW , as double complexes,
and let σ1, σ2 be homomomorphisms from V into W , as modules over A, of
bidegrees (p− 1, q), (p, q − 1), respectively. Suppose that

dW,1 ◦ σ1 + (−1)p+q σ1 ◦ dV,1 + dW,2 ◦ σ2 + (−1)p+q σ2 ◦ dV,2(6.7.6)

= ϕ− ψ.

Suppose also that
(−1)p+q σ1 ◦ dV,2 + dW,2 ◦ σ1 = 0(6.7.7)

and
(−1)p+q σ2 ◦ dV,1 + dW,1 ◦ σ2 = 0.(6.7.8)

In this case, (σ1, σ2) defines a homotopy between ϕ and ψ, as maps of bidegree
(p, q) between double complexes, as in Exercise 2 on p73 of [3]. This reduces
to the definition of a homotopy between maps between double complexes in
Section 5.15 when p = q = 0.

Note that (6.7.6) is the same as saying that

dj+p−1,l+q
W,1 ◦ σj,l1 + (−1)p+q σj+1,l

1 ◦ dj,lV,1(6.7.9)

+dj+p,l+q−1
W,2 ◦ σj,l2 + (−1)p+q σj,l+1

2 ◦ dj,lV,2
= ϕj,l − ψj,l
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for all integers j, l. Similarly, (6.7.7) is the same as saying that

(−1)p+q σj,l+1
1 ◦ dj,lV,2 + dj+p−1,l+q

W,2 ◦ σj,l1 = 0(6.7.10)

for every j, l, and (6.7.8) is the same as saying that

(−1)p+q σj+1,l
2 ◦ dj,lV,1 + dj+p,l+q−1

W,1 ◦ σj,l2 = 0(6.7.11)

for every j, l.
Put

σ = σ1 + σ2,(6.7.12)

which is a homomorphism from V into W of degree p+ q − 1, as singly-graded
modules over A. One can verify that

dW ◦ σ + (−1)p+q σ ◦ dV = ϕ− ψ,(6.7.13)

using (6.7.6), (6.7.7), and (6.7.8). This implies that σ is a homotopy between
ϕ and ψ, as maps of degree p + q from V into W as single complexes over A,
as in the previous section. This reduces to the analogous statement in Section
5.15 when p = q = 0.

Let W̃ be another left or right module over A that is a double complex,
depending on whether V , W are left or right modules over A, and let d

W̃ ,1
,

d
W̃ ,2

be the corresponding differentiation operators on W̃ . Also let ϕ̃ be a map

of bidegree (p̃, q̃) from W into W̃ , as double complexes, for some p̃, q̃ ∈ Z. It

is easy to see that ϕ̃ ◦ ϕ is a map of bidegree (p + p̃, q + q̃) from V into W̃ , as
double complexes.

Let ψ̃ be another map of bidegree (p̃, q̃) fromW into W̃ , as double complexes,

and let (σ̃1, σ̃2) be a homotopy between ϕ̃ and ψ̃, as maps of bidegree (p̃, q̃)
between double complexes. One can check that

(σ̃1 ◦ ϕ, σ̃2 ◦ ϕ) is a homotopy between ϕ̃ ◦ ϕ and ψ̃ ◦ ϕ,(6.7.14)

as maps of bidegree (p+ p̃, q + q̃) between double complexes. Similarly,

((−1)p̃+q̃ ψ̃ ◦ σ1, (−1)p̃+q̃ ψ̃ ◦ σ2) is a homotopy between(6.7.15)

ψ̃ ◦ ϕ and ψ̃ ◦ ψ,

as maps of bidegree (p+ p̃, q + q̃) between double complexes. This is analogous
to the corresponding statements in the previous section.

Put
τj = σ̃j ◦ ϕ+ (−1)p̃+q̃ ψ̃ ◦ σj ,(6.7.16)

for j = 1, 2. The remarks in the preceding paragraph imply that

(τ1, τ2) is a homotopy between ϕ̃ ◦ ϕ and ψ̃ ◦ ψ,(6.7.17)

as maps of bidegree (p+ p̃, q + q̃) between double complexes. This corresponds
to part of Exercise 2 on p73 of [3].
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6.8 Tensor products and any degrees

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with a multiplicative identity element eA. Suppose
that (V, dV ), (V0, dV0

) are graded right modules over A with differentiation that
are complexes, and that (W,dW ), (W0, dW0) are graded left modules over A with
differentiation that are complexes. Let V

⊗
AW , V0

⊗
AW0 be tensor products

of V , W and V0, W0 over A, respectively. These are double complexes over k
with respect to the corresponding differentiation operators δ1, δ2 and δ1,0, δ2,0,
respectively, discussed in Section 6.2.

Let ϕ, ψ be maps of degrees p, q ∈ Z from V , W into V0, W0, respectively, as
complexes. This leads to a homomorphism ϕ⊗ψ from V

⊗
AW into V0

⊗
AW0,

as modules over k, of bidegree (p, q), as in Section 6.1. Let us check that

ϕ⊗ ψ is a map of bidegree (p, q) from V
⊗

A
W into V0

⊗
A
W0,(6.8.1)

as double complexes. This is part of Exercise 2 on p73 of [3], and the analogous
statement for p = q = 0 was mentioned in Section 6.2.

We shall use (6.1.7) repeatedly, as before. Observe that

δ1,0 ◦ (ϕ⊗ ψ) = (dV0 ⊗ IW0) ◦ (ϕ⊗ ψ) = (dV0 ◦ ϕ)⊗ ψ

= (−1)p (ϕ ◦ dV )⊗ ψ = (−1)p+q (ϕ⊗ ψ) ◦ (dV ⊗ IW )(6.8.2)

= (−1)p+q (ϕ⊗ ψ) ◦ δ1.

Similarly,

δ2,0 ◦ (ϕ⊗ ψ) = (IV0 ⊗ dW0) ◦ (ϕ⊗ ψ) = (−1)p ϕ⊗ (dW0 ◦ ψ)
= (−1)p+q ϕ⊗ (ψ ◦ dW ) = (−1)p+q (ϕ⊗ ψ) ◦ (IV ⊗ dW )(6.8.3)

= (−1)p+q (ϕ⊗ ψ) ◦ δ2,

as desired.
Let ϕ0, ψ0 be another pair of mappings of degrees p, q from V , W into V0,

W0, respectively, as complexes. Also let σ, τ be homotopies between ϕ, ψ and
ϕ0, ψ0, as maps of degrees p, q between complexes, respectively. This means
that σ, τ are homomorphisms from V , W into V0, W0, as modules over A, with
degrees p− 1, q − 1, respectively, such that

dV0
◦ σ + (−1)p σ ◦ dV = ϕ− ϕ0(6.8.4)

and
dW0 ◦ τ + (−1)q τ ◦ dW = ψ − ψ0,(6.8.5)

as in Section 6.6. Put
σ1 = σ ⊗ ψ(6.8.6)

and
σ2 = (−1)p ϕ0 ⊗ τ.(6.8.7)
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These are homomorphisms from V
⊗

AW into V0
⊗

AW0, as modules over k,
of bidegrees (p− 1, q) and (p, q − 1), respectively.

The basic properties of σ1 and σ2 are analogous to those in Section 6.2.
First,

σ1 ◦ δ2 = (σ ⊗ ψ) ◦ (IV ⊗ dW ) = σ ⊗ (ψ ◦ dW )

= (−1)q σ ⊗ (dW0
◦ ψ) = (−1)p−1+q (IV0

⊗ dW0
) ◦ (σ ⊗ ψ)(6.8.8)

= −(−1)p+q δ2,0 ◦ σ1.

Similarly,

σ2 ◦ δ1 = (−1)p (ϕ0 ⊗ τ) ◦ (dV ⊗ IW ) = (−1)p+q−1 (ϕ0 ◦ dV )⊗ τ

= (−1)q−1 (dV0
◦ ϕ0)⊗ τ = (−1)q−1 (dV0

⊗ IW0
) ◦ (ϕ0 ⊗ τ)(6.8.9)

= −(−1)p+q δ1,0 ◦ σ2.

Next,
δ1,0 ◦ σ1 = (dV0 ⊗ IW0) ◦ (σ ⊗ ψ) = (dV0 ◦ σ)⊗ ψ(6.8.10)

and
σ1 ◦ δ1 = (σ ⊗ ψ) ◦ (dV ⊗ IW ) = (−1)q (σ ◦ dV )⊗ ψ.(6.8.11)

It follows that

δ1,0 ◦ σ1 + (−1)p+q σ1 ◦ δ1 = (dV0
◦ σ)⊗ ψ + (−1)p (σ ◦ dV )⊗ ψ

= (dV0
◦ σ + (−1)p σ ◦ dV )⊗ ψ = (ϕ− ϕ0)⊗ ψ.(6.8.12)

Similarly,

δ2,0 ◦ σ2 = (−1)p (IV0
⊗ dW0

) ◦ (ϕ0 ⊗ τ) = ϕ0 ⊗ (dW0
◦ τ)(6.8.13)

and
σ2 ◦ δ2 = (−1)p (ϕ0 ⊗ τ) ◦ (IV ⊗ dW ) = (−1)p ϕ0 ⊗ (τ ◦ dW ).(6.8.14)

This implies that

δ2,0 ◦ σ2 + (−1)p+q σ2 ◦ δ2 = ϕ0 ⊗ (dW0
◦ τ) + (−1)q ϕ0 ⊗ (τ ◦ dW )

= ϕ0 ⊗ (dW0
◦ τ + (−1)q τ ◦ dW )(6.8.15)

= ϕ0 ⊗ (ψ − ψ0).

We can combine (6.8.12) and (6.8.15) to get that

δ1,0 ◦ σ1 + (−1)p+q σ1 ◦ δ1 + δ2,0 ◦ σ2 + (−1)p+q σ2 ◦ δ2(6.8.16)

= ϕ⊗ ψ − ϕ0 ⊗ ψ0.

This shows that

(σ1, σ2) is a homotopy between ϕ⊗ ψ and ϕ0 ⊗ ψ0,(6.8.17)

as maps of bidegree (p, q) from V
⊗

AW into V0
⊗

AW0, as double complexes.
This is another part of Exercise 2 on p73 of [3].
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6.9 Homomorphisms and any degrees

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with a multiplicative identity element eA. Suppose
that (V, dV ), (V0, dV0

), (W,dW ), and (W0, dW0
) are all left or all right graded

modules over A with differentiation that are complexes. Thus Homgr
A (V,W ) and

Homgr
A (V0,W0) are double complexes over k with respect to the corresponding

differentiation operators δ1, δ2 and δ1,0, δ2,0 discussed in Section 6.5.
Let ϕ be a map of degree p ∈ Z from V0 into V , and let ψ be a map

of degree q ∈ Z from W into W0, as complexes. This leads to a homomor-
phism Homgr(ϕ, ψ) from Homgr

A (V,W ) into Homgr
A (V0,W0), as modules over k,

of bidegree (p, q), as in Section 6.4. We would like to verify that

Homgr(ϕ, ψ) is a map of bidegree (p, q)(6.9.1)

from Homgr
A (V,W ) into Homgr

A (V0,W0),

as double complexes. This is part of Exercise 2 on p73 of [3], and the analogous
statement for p = q = 0 was mentioned in Section 6.5.

We shall use (6.4.10) repeatedly in this section, as before. In particular, we
have that

δ1,0 ◦Homgr(ϕ, ψ) = Homgr(dV0
, IW0

) ◦Homgr(ϕ, ψ)

= Homgr(ϕ ◦ dV0 , ψ) = (−1)pHomgr(dV ◦ ϕ, ψ)(6.9.2)

= (−1)p+q Homgr(ϕ, ψ) ◦Homgr(dV , IW )

= (−1)p+q Homgr(ϕ, ψ) ◦ δ1.

Similarly,

δ2,0 ◦Homgr(ϕ, ψ) = Homgr(IV0 , dW0) ◦Hom
gr(ϕ, ψ)

= (−1)pHomgr(ϕ, dW0 ◦ ψ) = (−1)p+q Homgr(ϕ, ψ ◦ dW )(6.9.3)

= (−1)p+q Homgr(ϕ, ψ) ◦Homgr(IV , dW )

= (−1)p+q Homgr(ϕ, ψ) ◦ δ2.

Let ϕ0 be another map of degree p from V0 into V , and let ψ0 be another map
of degree q from W into W0, as complexes. Suppose that σ, τ are homotopies
between ϕ, ψ and ϕ0, ψ0, as maps of degree p, q between complexes, respectively.
Thus σ is a homomorphism from V0 into V , as modules over A, with degree p−1,
such that

dV ◦ σ + (−1)p σ ◦ dV0 = ϕ− ϕ0.(6.9.4)

Similarly, τ is a homomorphism from W into W0, as modules over A, with
degree q − 1, such that

dW0
◦ τ + (−1)q τ ◦ dW = ψ − ψ0.(6.9.5)

Put
σ1 = (−1)pHomgr(σ, ψ)(6.9.6)
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and
σ2 = (−1)pHomgr(ϕ0, τ).(6.9.7)

These are homomorphisms from Homgr
A (V,W ) into Homgr

A (V0,W0), as modules
over k, of bidegrees (p−1, q) and (p, q−1), respectively. The basic properties of
these homomorphisms are analogous to those in Section 6.5. Observe first that

σ1 ◦ δ2 = (−1)pHomgr(σ, ψ) ◦Homgr(IV , dW )

= (−1)pHomgr(σ, ψ ◦ dW ) = (−1)p+q Homgr(σ, dW0
◦ ψ)(6.9.8)

= (−1)q−1 Homgr(IV0
, dW0

) ◦Homgr(σ, ψ) = −(−1)p+q δ2,0 ◦ σ1.

Similarly,

σ2 ◦ δ1 = (−1)pHomgr(ϕ0, τ) ◦Homgr(dV , IW )

= (−1)p+q−1 Homgr(dV ◦ ϕ0, τ) = (−1)q−1 Homgr(ϕ0 ◦ dV0 , τ)

= (−1)q−1 Homgr(dV0 , IW0) ◦Homgr(ϕ0, τ) = −(−1)p+q δ1,0 ◦ σ2.

We also have that

δ1,0 ◦ σ1 = (−1)pHomgr(dV0
, IW0

) ◦Homgr(σ, ψ)(6.9.9)

= (−1)pHomgr(σ ◦ dV0 , ψ)

and

σ1 ◦ δ1 = (−1)pHomgr(σ, ψ) ◦Homgr(dV , IW )(6.9.10)

= (−1)p+q Homgr(dV ◦ σ, ψ).

This implies that

δ1,0 ◦ σ1 + (−1)p+q σ1 ◦ δ1 = Homgr((−1)p σ ◦ dV0
+ dV ◦ σ, ψ)

= Homgr(ϕ− ϕ0, ψ).(6.9.11)

Similarly,

δ2,0 ◦ σ2 = (−1)pHomgr(IV0 , dW0) ◦Homgr(ϕ0, τ)(6.9.12)

= Homgr(ϕ0, dW0
◦ τ)

and

σ2 ◦ δ2 = (−1)pHomgr(ϕ0, τ) ◦Homgr(IV , dW )(6.9.13)

= (−1)pHomgr(ϕ0, τ ◦ dW ).

It follows that

δ2,0 ◦ σ2 + (−1)p+q σ2 ◦ δ2 = Homgr(ϕ0, dW0
◦ τ + (−1)q τ ◦ dW )

= Homgr(ϕ0, ψ − ψ0).(6.9.14)
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Combining (6.9.11) and (6.9.14), we get that

δ1,0 ◦ σ1 + (−1)p+q σ1 ◦ δ1 + δ2,0 ◦ σ2 + (−1)p+2 σ2 ◦ δ2(6.9.15)

= Homgr(ϕ, ψ) + Homgr(ϕ0, ψ0).

This shows that

(σ1, σ2) is a homotopy between Homgr(ϕ, ψ) and Homgr(ϕ0, ψ0),(6.9.16)

as maps of bidegree (p, q) from Homgr
A (V,W ) into Homgr

A (V0,W0), as double
complexes. This is another part of Exercise 2 on p73 of [3].

6.10 The complex M(V,W )

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with a multiplicative identity element eA. Also let
(V, dV ), (W,dW ) be both left or both right modules over A with differentiation
that are complexes. As in Section 6.3, we let |V |, |W | be the underlying modules
over A corresponding to V , W , without gradings.

If r ∈ Z, then Mr(V,W ) is the space of homomorphisms from V into
W , as modules over A, of degree r, as in Section 6.3. This is a submodule
of HomA(|V |, |W |), as a module over k, and M(V,W ) is the submodule of
HomA(V,W ) spanned by the Mr(V,W )’s, r ∈ Z, as before. More precisely,
M(V,W ) corresponds to the direct sum of the Mr(V,W )’s, r ∈ Z, as a module
over k, so that M(V,W ) may be considered as a graded module over k.

If ϕ ∈Mr(V,W ) for some r ∈ Z, then put

dr1(ϕ) = ϕ ◦ dV(6.10.1)

and
dr2(ϕ) = (−1)r+1 dW ◦ ϕ,(6.10.2)

which are elements of Mr+1(V,W ). These define unique homomorphisms d1,
d2 from M(V,W ) into itself, as a module over k, of degree 1, whose restrictions
to Mr(V,W ) are equal to dr1, d

r
2, respectively, for each r ∈ Z. Observe that

d1 ◦ d1 = d2 ◦ d2 = 0(6.10.3)

on M(V,W ), because dV ◦ dV = 0 on V and dW ◦ dW = 0 on W , by hypothesis.
One can also verify that

d1 ◦ d2 + d2 ◦ d1 = 0(6.10.4)

on M(V,W ).
Put

d = d1 + d2,(6.10.5)

which is a homomorphism from M(V,W ) into itself, as a module over k, of
degree 1. It is easy to see that

d ◦ d = 0(6.10.6)
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on M(V,W ). This means that M(V,W ) is a module with differentiation with
respect to d, and in fact a complex. This corresponds to part of Exrcise 5 on
p73 of [3].

If r ∈ Z, then let Mapr(V,W ) be the space of maps of degree r from V into
W , as complexes. This is a submodule of Mr(V,W ), as a module over k. It is
easy to see that

Z(M(V,W ))r = Mapr(V,W ),(6.10.7)

where the left side is defined by considering M(V,W ) as a complex with respect
to d. This is part of Exercise 5 on p73f of [3].

Let Mapr0(V,W ) be the subset of Mapr(V,W ) consisting of maps of degree
r that are homotopic to 0, as maps of degree r between complexes. This is a
submodule of Mapr(V,W ), as a module over k. One can check that

B(M(V,W ))r = Mapr0(V,W ),(6.10.8)

where the left side is defined by considering M(V,W ) as a complex with respect
to d again. This is another part of Exercise 5 on p73f of [3].

Let Homgr
A (V,W ) be the doubly-graded module over k defined in Section

6.3. Remember that Homgr
A (V,W ) corresponds to a submodule of M(V,W ), as

a module over k, and that the single grading on Homgr
A (V,W ) obtained from

the double grading is compatible with the grading on M(V,W ). We also have
that Homgr

A (V,W ) is a double complex with respect to the homomorphisms δ1,
δ2 defined in Section 6.5.

One can verify that δ1 is the same as the restriction of d1 to Homgr
A (V,W ).

More precisely, if j, l ∈ Z, then the restriction of δ1 to
(
Homgr

A (V,W )
)j,l

is
defined by composition with dV , which is the same as d1. Similarly,

the restriction of δ2 to
(
Homgr

A (V,W )
)j,l

is (−1)j(6.10.9)

times the mapping defined by composition with dW .

However,

the restriction of d2 to
(
Homgr

A (V,W )
)j,l

is (−1)j+l+1(6.10.10)

times the mapping defined by composition with dW ,

because
(
Homgr

A (V,W )
)j,l

corresponds to a submodule of Mr(V,W ), with r =
j + l.

6.11 Tensor products and homology

Let k be a commutative ring with a multiplicative identity element, and let
A be an associative algebra over k with a multiplicative identity element eA.
Also let (V, dV ) be a graded right module over A with differentiation that is a
complex, and let (W,dW ) be a graded left module over A with differentiation
that is a complex. Suppose that V

⊗
AW is a tensor product of V and W over
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A, which is a double complex over k with respect to the double grading and
differentiation operators δ1, δ2 defined in Sections 6.1 and 6.2, respectively.

Remember that V
⊗

AW may be considered as a single complex over k,
with respect to the single grading obtained from the double grading, and the
corresponding total differentiation operator

δ = δ1 + δ2,(6.11.1)

as in Section 5.14. In particular,

Z
(
V
⊗

A
W

)
, B

(
V
⊗

A
W

)
, and H

(
V
⊗

A
W

)
(6.11.2)

are defined as singly-graded modules over k in the usual way, by considering
V
⊗

AW as a single complex.
Let j, l ∈ Z be given. Of course,

(vj , wl) 7→ vj ⊗ wl(6.11.3)

defines a mapping from V j×W l into V j
⊗

AW
l =

(
V
⊗

AW
)j,l

that is bilinear
over k and satisfies

(vj · a)⊗ wl = vj ⊗ (a · wl)(6.11.4)

for every a ∈ A, vj ∈ V j , and wl ∈W l. Observe that

δ1(v
j ⊗ wl) = 0(6.11.5)

when dV (v
j) = 0, and

δ2(v
j ⊗ wl) = 0(6.11.6)

when dW (wl) = 0. This means that

δ(vj ⊗ wl) = 0(6.11.7)

when dV (v
j), dW (wl) = 0.

Equivalently,

vj ⊗ wl ∈ Z
(
V
⊗

A
W

)j+l
(6.11.8)

when vj ∈ Z(V )j and wl ∈ Z(W )l. Let Z(V )
⊗

A Z(W ) be a tensor product of
Z(V ) and Z(W ) over A, which is a doubly-graded module over k. In particular,(

Z(V )
⊗

A
Z(W )

)j,l
= Z(V )j

⊗
A
Z(W )l(6.11.9)

is a tensor product of Z(V )j and Z(W )l over A. The restriction of (6.11.3) to

Z(V )j × Z(W )l is a bilinear mapping over k into
(
V
⊗

W W
)j+l

that satisfies
(6.11.4). This leads to a homomorphism

from Z(V )j
⊗

A
Z(W )l into Z

(
V
⊗

A
W

)j+l
,(6.11.10)

as modules over k, in the usual way.
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This defines a homomorphism

from Z(V )
⊗

A
Z(W ) into Z

(
V
⊗

A
W

)
,(6.11.11)

as modules over k. This homomorphism has degree 0, with respect to the single
grading on Z(V )

⊗
A Z(W ) obtained from the double grading mentioned earlier.

This leads to a homomorphism

η from Z(V )
⊗

A
Z(W ) into H

(
V
⊗

A
W

)
,(6.11.12)

as modules over k, by composing the homomorphism as in (6.11.11) with the
natural quotient mapping

from Z
(
V
⊗

A
W

)
onto H

(
V
⊗

A
W

)
.(6.11.13)

This corresponds to the homomorphism η in the diagram (1) on p64 of [3],
under slightly different conditions. This homomorphism has degree 0 too, with
respect to the single grading on Z(V )

⊗
A Z(W ) obtained from the double grad-

ing. More precisely, the restriction of this homomorphism to (6.11.9) is the
homomorphism

from Z(V )j
⊗

A
Z(W )l into H

(
V
⊗

A
W

)j+l
,(6.11.14)

as modules over k, obtained by composing the homomorphism as in (6.11.10)
with the natural quotient mapping

from Z
(
V
⊗

A
W

)j+l
onto H

(
V
⊗

A
W

)j+l
.(6.11.15)

Similarly, one can check that

vj ⊗ wl ∈ B
(
V
⊗

A
W

)j+l
(6.11.16)

when
vj ∈ B(V )j and wl ∈ Z(W )l,(6.11.17)

and when
vj ∈ Z(V )j and wl ∈ B(W )l.(6.11.18)

This means that

vj ⊗ wl is mapped to 0 in H
(
V
⊗

A
W

)j+l
(6.11.19)

by the homomorphism in (6.11.14)

when either (6.11.17) or (6.11.18) holds.
Consider the mapping

from Z(V )j × Z(W )l into H
(
V
⊗

A
W

)j+l
,(6.11.20)
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with

(vj , wl) 7→ the image of vj ⊗ wl under(6.11.21)

the quotient mapping (6.11.15)

for every vj ∈ V j and wl ∈W l. This mapping is equal to 0 on B(V )j ×Z(W )l,
and on Z(V )j×B(W )l, as in the preceding paragraph. If vj ∈ V j and wl ∈W l,
then it follows the image of (vj , wl) under this mapping only depends on the
images of vj , wl under the natural quotient mappings from Z(V )j , Z(W )l onto
H(V )j , H(W )l, respectively. This leads to a mapping

from H(V )j ×H(W )l into H
(
V
⊗

A
W

)j+l
,(6.11.22)

that is bilinear over k.
Remember that H(V ) is a graded right module over A, and that H(W ) is a

graded left module over A. Let H(V )
⊗

AH(W ) be a tensor product of H(V )
and H(W ) over A, which is a doubly-graded module over k. Thus(

H(V )
⊗

A
H(W )

)j,l
= H(V )j

⊗
A
H(W )l(6.11.23)

is a tensor product of H(V )j and H(W )l over A. Using (6.11.4), we get that
the mapping in (6.11.22) satisfies the analogous property with respect to the
actions of A on H(V )j on the right and on H(W )l on the left. This leads to a
homomorphism

from H(V )j
⊗

A
H(W )l into H

(
V
⊗

A
W

)j+l
,(6.11.24)

as modules over k.
This defines a homomorphism

α from H(V )
⊗

A
H(W ) into H

(
V
⊗

A
W

)
,(6.11.25)

as modules over k. This homomorphism has degree 0, with respect to the
single grading on H(V )

⊗
AH(W ) obtained from the double grading. This

corresponds to the homomorphism in Proposition 6.1 on p64 of [3], under slightly
different conditions.

6.12 Some homomorphisms related to α

Let us continue with the same notation and hypotheses as in the previous sec-
tion.

Using the natural quotient mappings from Z(V ), Z(W ) onto H(V ), H(W ),
respectively, we get a homomorphism

ξ from Z(V )
⊗

A
Z(W ) onto H(V )

⊗
A
H(W ),(6.12.1)
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as modules over k. This corresponds to the homomorphism ξ in the diagram
(1) on p64 of [3], under slightly different conditions. More precisely, the surjec-
tivity of ξ follows from the surjectivity of the quotient mappings, as in Section
1.9. Note that ξ has bidegee (0, 0) with respect to the usual double gradings
on Z(V )

⊗
A Z(W ) and H(V )

⊗
AH(W ), because the quotient mappings have

degree 0. In particular, ξ has degree 0 with respect to the corresponding single
gradings.

By construction,
α ◦ ξ = η,(6.12.2)

where η is as in (6.11.12). This corresponds to part of Proposition 6.1 on p64
of [3], and in fact α is uniquely determined by this property.

Remember that Z ′(V ) = V/dV (V ), Z ′(W ) = W/dW (W ), as in Section 5.1.
Let Z ′(V )

⊗
A Z

′(W ) be a tensor product of Z ′(V ) and Z ′(W ) over A, which
is a doubly-graded module over k. Using the natural quotient mappings from
V , W onto Z ′(V ), Z ′(W ), respectively, we get a homomorphism

from V
⊗

A
W onto Z ′(V )

⊗
A
Z ′(W ),(6.12.3)

as modules over k. This homomorphism has bidegree (0, 0) with respect to the
induced double gradings, and thus degree 0 with respect to the associated single
gradings.

The natural inclusion mappings from Z(V ), Z(W ) into V , W , respectively,
lead to a natural homomorphism

from Z(V )
⊗

A
Z(W ) into V

⊗
A
W,(6.12.4)

as modules over k. This homomorphism has bidegree (0, 0) with respect to the
appropriate double gradings, and thus degree 0 with respect to the associated
single gradings. We can compose this homomorphism with the one in (6.12.3)
to get a natural homomorphism

from Z(V )
⊗

A
Z(W ) into Z ′(V )

⊗
A
Z ′(W ),(6.12.5)

as modules over k. This homomorphism ha bidegree (0, 0) with respect to the
usual double gradings, and thus degree 0 with respect to the associated single
gradings.

Alternatively, the restrictions of the natural quotient mappings from V , W
onto Z ′(V ), Z ′(W ) to Z(V ), Z(W ) define natural homomorphisms

from Z(V ), Z(W ) into Z ′(V ), Z ′(W ),(6.12.6)

respectively, as modules over A. The homomorphism in (6.12.5) is the same as
the one obtained from these homomorphisms in the usual way.

Of course, H(V ) = Z(V )/dV (V ), H(W ) = Z(W )/dW (W ) are homogeneous
submodules of Z ′(V ), Z ′(W ), as graded modules over A, as in Section 5.10.
Using the corresponding inclusion mappings, we get a natural homomorphism

τ from H(V )
⊗

A
H(W ) into Z ′(V )

⊗
A
Z ′(W ),(6.12.7)
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as modules over k. This corresponds to the homomorphism τ in the diagram
(1) on p64 of [3], under slightly different conditions. This homomorphism has
bidegree (0, 0) with respect to the appropriate double gradings, and thus degree
0 with respect to the associated single gradings.

The homomorphisms as in (6.12.6) are the same as the compositions of
the natural quotient mappings from Z(V ), Z(W ) onto H(V ), H(W ) with the
natural inclusion mappings into Z ′(V ), Z ′(W ), respectively. This implies that

τ ◦ ξ is the same as the homomorphism as in (6.12.5).(6.12.8)

More precisely, the homomorphism as in (6.12.4)

maps Z(V )
⊗

A
Z(W ) into Z

(
V
⊗

A
W

)
,(6.12.9)

as in the previous section. Equivalently, the homomorphism as in (6.12.4) is
essentially the same as the one as in (6.11.11), because Z

(
V
⊗

AW
)
is a sub-

module of V
⊗

AW .
The restriction of the homomorphism as in (6.12.3) to Z

(
V
⊗

AW
)
defines

a homomorphism

from Z
(
V
⊗

A
W

)
into Z ′(V )

⊗
A
Z ′(W ),(6.12.10)

as modules over k. This homomorphism has degree 0 with respect to the corre-
sponding single gradings.

One can check that

the homomorphism as in (6.12.10)(6.12.11)

is equal to 0 on B
(
V
⊗

A
W

)
.

This leads to a homomorphism

ζ from H
(
V
⊗

A
W

)
into Z ′(V )

⊗
A
Z ′(W ),(6.12.12)

as modules over k. This corresponds to the homomorphism ζ in the diagram
(1) on p64 of [3], under slightly different conditions. This homomorphism has
degree 0 with respect to the appropriate single gradings.

It is easy to see that

ζ ◦ η is the same as the homomorphism as in (6.12.5),(6.12.13)

where η is as in (6.11.12), by construction. This means that

τ ◦ ξ = ζ ◦ η,(6.12.14)

by (6.12.8). This corresponds to the commutativity of the diagram (1) on p64
of [3], under slightly different conditions.

Observe that
ζ ◦ α ◦ ξ = ζ ◦ η = τ ◦ ξ,(6.12.15)
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using (6.12.2) in the first step. This implies that

ζ ◦ α = τ,(6.12.16)

because ξ is surjective, as in (6.12.1). This corresponds to part of Proposition
6.1 on p64 of [3], under slightly different conditions.

6.13 Homology and Homgr
A (V,W )

Let k be a commutative ring with a multiplicative identity element, and let
A be an associative algebra over k with a multiplicative identity element eA.
Also let (V, dV ) and (W,dW ) be both left or both right graded modules over A
with differentiation that are complexes. Remember that Homgr

A (V,W ) may be
defined as a doubly-graded module over k as in Section 6.3, and as a double
complex with respect to the differentiation operators δ1, δ2 discussed in Section
6.5. It follows that Homgr

A (V,W ) may be considered as a single complex over
k, with respect to the single grading obtained from the double grading, and the
total differentiation operator

δ = δ1 + δ2.(6.13.1)

Using this,

Z
(
Homgr

A (V,W )
)
, B

(
Homgr

A (V,W )
)
, and H

(
Homgr

A (V,W )
)

(6.13.2)

may be defined as singly-graded modules over k in the usual way.
Let j, l ∈ Z and

ϕj,l ∈
(
Homgr

A (V,W )
)j,l

= HomA(V
−j ,W l)(6.13.3)

be given. Of course, ϕj,l may be considered as an element of Homgr
A (V,W ) as

well. By construction,
δ1(ϕ

j,l) = ϕj,l ◦ d−j−1
V ,(6.13.4)

which is an element of Homgr
A (V,W )j+1,l, and

δ2(ϕ
j,l) = (−1)j dlW ◦ ϕj,l,(6.13.5)

which is an element of Homgr
A (V,W )j,l+1. This means that

δ1(ϕ
j−1,l) = ϕj−1,l ◦ d−jV(6.13.6)

and
δ2(ϕ

j,l−1) = (−1)j dl−1
W ◦ ϕj,l−1(6.13.7)

are elements of
(
HomA gr(V,W )

)j,l
.

Let ϕ ∈ Homgr
A (V,W ) be given, and let ϕj,l be the component of ϕ in(

Homgr
A (V,W )

)j,l
, as usual. Observe that

(δ1(ϕ))
j,l = ϕj−1,l ◦ d−jV(6.13.8)
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and
(δ2(ϕ))

j,l = (−1)j dl−1
W ◦ ϕj,l−1,(6.13.9)

as in the preceding paragraph. Thus

(δ(ϕ))j,l = ϕj−1,l ◦ d−jV + (−1)j dl−1
W ◦ ϕj,l−1.(6.13.10)

It follows that ϕ ∈ Z
(
Homgr

A (V,W )
)
if and only if

ϕj−1,l ◦ d−jV + (−1)j dl−1
W ◦ ϕj,l−1 = 0(6.13.11)

for every j, l. Equivalently, this means that

ϕj−1,l+1 ◦ d−jV + (−1)j dlW ◦ ϕj,l = 0(6.13.12)

for every j, l. This is also the same as saying that

ϕj,l ◦ d−j−1
V + (−1)j+1 dl−1

W ◦ ϕj+1,l−1 = 0(6.13.13)

for every j, l.
Let j, l ∈ Z be given, and remember that ϕj,l is a homomorphism from V −j

into W l, as modules over A. If ϕ ∈ Z
(
Homgr

A (V,W )
)
, then

ϕj,l(Z(V )−j) ⊆ Z(W )l,(6.13.14)

by (6.13.12). In this case, we also have that

ϕj,l(B(V )−j) ⊆ B(W )l,(6.13.15)

by (6.13.13). This implies that ϕj,l induces a homomorphism

from H(V )−j into H(W )l,(6.13.16)

as modules over A. Note that this induced homomorphism is equal to 0 for all
but finitely many (j, l), because ϕj,l = 0 for all but finitely many (j, l), by the
definition of Homgr

A (V,W ).
Let Homgr

A (H(V ),H(W )) be the doubly-graded module over k obtained
from H(V ), H(W ) as singly-graded modules over A as in Section 6.3. Us-
ing the induced homomorphisms in (6.13.16) for all j, l, we get an element of
Homgr

A (H(V ),H(W )) from ϕ. This defines a homomorphism

from Z
(
Homgr

A (V,W )
)
into Homgr

A (H(V ),H(W )),(6.13.17)

as modules over k. Remember that Z
(
Homgr

A (V,W )
)
is a singly-graded module

over k, and that Homgr
A (H(V ),H(W )) has a single grading induced by the

double grading. It is easy to see that the homomorphism in (6.13.17) has degree
0 with respect to these single gradings.

Suppose for the moment that ϕ ∈ B
(
Homgr

A (V,W )
)
, so that

ϕ = δ(ψ)(6.13.18)
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for some ψ ∈ Homgr
A (V,W ). This means that

ϕj,l = (δ(ψ))j,l = ψj−1,l ◦ d−jV + (−1)j dl−1
W ◦ ψj,l−1(6.13.19)

for every j, l, as in (6.13.10). It follows that

ϕj,l(Z(V )−j) ⊆ B(W )l(6.13.20)

for every j, l. This implies that the induced homomorphism as in (6.13.16) is
equal to 0 for every j, l. Equivalently, ϕ is mapped to 0 by the homomorphism
as in (6.13.17).

This shows that the homomorphism as in (6.13.17) leads to a homomorphism

α′ from H
(
Homgr

A (V,W )
)
into Homgr

A (H(V ),H(W )).(6.13.21)

This homomorphism has degree 0 with respect to the appropriate single grad-
ings. This corresponds to the homomorphism in Proposition 6.1a on p65f of [3],
under slightly different conditions.

6.14 Some properties of Homgr
A (Z

′(V ), Z(W ))

We continue with the same notation and hypotheses as in the previous section.
Remember that Z ′(V ) = V/dV (V ) and Z(W ) may be considered as singly-
graded modules over A, as in Section 5.10. Thus Homgr

A (Z ′(V ), Z(W )) may be
defined as a doubly-graded module over k, as in Section 6.3.

Using the natural quotient mapping from V onto Z ′(V ), and the natural
inclusion mapping from Z(W ) into W , we get a natural homomorphism

from Homgr
A (Z ′(V ), Z(W )) into Homgr

A (V,W ),(6.14.1)

as modules over k, as in Section 6.4. This homomorphism has bidegree (0, 0),
because the quotient and inclusion mappings mentioned before have degree 0.
This homomorphism is also injective.

Let ϕ ∈ Homgr
A (V,W ) be given. Suppose that

ϕj,l(V −j) ⊆ Z(W )l(6.14.2)

for every j, l. Suppose too that

ϕj,l = 0 on B(V )−j(6.14.3)

for every j, l. It is easy to see that ϕ is in the image of the homomorphism as
in (6.14.1) under the conditions. Conversely, every element of the image of the
homomorphism as in (6.14.1) has these two properties.

Observe that (6.14.3) is the same as saying that

δ1(ϕ
j,l) = 0(6.14.4)
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in
(
Homgr

A (V,W )
)j+1,l

, by (6.13.4). Similarly, (6.14.2) is the same as saying
that

δ2(ϕ
j,l) = 0(6.14.5)

in Homgr
A (V,W )j,l+1, by (6.13.5). It follows that (6.14.3) holds for every j, l if

and only if
δ1(ϕ) = 0.(6.14.6)

Similarly, (6.14.2) holds for every j, l if and only if

δ2(ϕ) = 0.(6.14.7)

In particular, the natural homomorphism as in (6.14.1) may be considered
as a homomorphism

from Homgr(Z ′(V ), Z(W )) into Z
(
Homgr

A (V,W )
)
,(6.14.8)

as modules over k. This homomorphism has degree 0, with respect to the
appropriate single gradings. This leads to a natural homomorphism

η from Homgr
A (Z ′(V ), Z(W )) into H

(
Homgr

A (V,W )
)
,(6.14.9)

as modules over k, by composing the homomorphism as in (6.14.8) with the
natural quotient mapping from Z

(
Homgr

A (V,W )
)
onto H

(
Homgr

A (V,W )
)
. This

homomorphism has degree 0 with respect to the appropriate single gradings as
well. This corresponds to the homomorphism η in the diagram (1) on p64 of
[3], under slightly different consitions.

There is also a natural homomorphism

ξ from Homgr
A (Z ′(V ), Z(W )) into Homgr

A (H(V ),H(W )),(6.14.10)

as modules over k. This uses the natural inclusion mapping from H(V ) into
Z ′(V ), and the natural quotient mapping from Z(W ) onto H(W ), as in Section
6.4 again. This homomorphism has bidegree (0, 0), because these inclusion and
quotient mappings have degree 0. This corresponds to the homomorphism ξ in
the diagram (1) on p64 of [3], under slightly different conditions.

One can check that
α′ ◦ η = ξ,(6.14.11)

as homomorphisms from Homgr
A (Z ′(V ), Z(W )) into Homgr

A (H(V ),H(W )). To
see this, observe first that α′ ◦ η is the same as the composition of the homo-
morphisms as in (6.14.8) and (6.13.17). It is easy to see that this composition
is the same as ξ. This corresponds to part of Proposition 6.1a on p65f of [3],
under slightly different conditions.

6.15 Some properties of Homgr
A (Z(V ), Z ′(W ))

Let us continue with the same notation and hypotheses as in the previous two
sections. As before, Z(V ) and Z ′(W ) = W/dW (W ) may be considered as
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singly-graded modules over A, so that Homgr
A (Z(V ), Z ′(W )) may be defined as

a doubly-graded module over k.
We can use the natural inclusion mapping from Z(V ) into V , and the natural

quotient mapping from W onto Z ′(W ), to get a natural homomorphism

from Homgr
A (V,W ) into Homgr

A (Z(V ), Z ′(W )),(6.15.1)

as modules over k, as in Section 6.4. This homomorphism has bidegree (0, 0),
because the inclusion and quotient maps being used have degree 0.

Of course, there are natural homomorphisms

from Z(V ), Z(W ) into Z ′(V ), Z ′(W ),(6.15.2)

respectively, as modules over A. These homomorphisms are obtained by com-
posing the natural inclusion mappings from Z(V ), Z(W ) into V , W with the
natural quotient mappings from V , W onto Z ′(V ), Z ′(W ), respectively. Note
that these homomorphisms have degree 0.

Using these homomorphisms, we get a natural homomorphism

from Homgr
A (Z ′(V ), Z(W )) into Homgr

A (Z(V ), Z ′(W )),(6.15.3)

as modules over k, as in Section 6.4 again. This homomorphism has bidegree
(0, 0), as before. This homomorphism is the same as the composition of the
homomorphism as in (6.14.1) with the homomorphism as in (6.15.1).

If ϕ ∈ B
(
Homgr

A (V,W )
)
, then ϕ maps Z(V )−j into B(W )l for every j, l,

as in (6.13.20). This means that ϕ is mapped to 0 in Homgr
A (Z(V ), Z ′(W ))

by the homomorphism as in (6.15.1). In particular, this leads to a natural
homomorphism

ζ from H
(
Homgr

A (V,W )
)
into Homgr

A (Z(V ), Z ′(W )),(6.15.4)

as modules over k. This homomorphism has degree 0 with respect to the appro-
priate single gradings. This corresponds to the homomorphism ζ in the diagram
(1) on p64 of [3], under slightly different conditions.

Remember that η is the homomorphism as in (6.14.9). It is easy to see that

ζ ◦ η is the same as the homomorphism as in (6.15.3).(6.15.5)

Using the natural quotient mapping from Z(V ) onto H(V ), and the natural
inclusion mapping from H(W ) into Z ′(W ), we get a natural homomorphism

τ from Homgr
A (H(V ),H(W )) into Homgr

A (Z(V ), Z ′(W )),(6.15.6)

as modules over k, as in Section 6.4. Note that

τ is injective,(6.15.7)

as has bidegree (0, 0), as usual. This corresponds to the homomorphism τ in
diagram (1) on p64 of [3], under slightly different conditions.
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Remember that ξ is the homomorphism in (6.14.10). It is easy to see that

τ ◦ ξ is the same as the homomorphism as in (6.15.3).(6.15.8)

It follows that
τ ◦ ξ = ζ ◦ η,(6.15.9)

by (6.15.5). This corresponds to the commutativity of the diagram (1) on p64
of [3], under slightly different conditions.

Remember that α′ is the homomorphism as in (6.13.21). One can check that

τ ◦ α′ = ζ,(6.15.10)

as homomorphisms from H
(
Homgr

A (V,W )
)
into Homgr

A (Z(V ), Z ′(W )). In fact,
α′ is uniquely determined by this property, because τ is injective. This corre-
sponds to part of Proposition 6.1a on p65f of [3], under slightly different condi-
tions. Note that (6.14.11) could also be obtained from (6.15.10), by composing
both sides with η, and using (6.15.9).



Chapter 7

More on differentiation, 2

7.1 Some splitting and α

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. As in
Section 6.11, we let (V, dV ) be a graded right module over A with differentiation
that is a complex, and (W,dW ) be a graded left module over A with differenti-
ation that is a complex. We also let V

⊗
AW be a tensor product of V and W

over A, which is a double complex over k with respect to the double grading and
differentiation operators δ1, δ2 defined in Sections 6.1 and 6.2. Thus V

⊗
AW

may be considered as a single complex over k too, with respect to the single
grading obtained from the double grading, and the total differentiation operator
δ = δ1 + δ2, as in Section 5.14.

Remember that

Z ′(V ) = V/dV (V ), Z ′(W ) =W/dW (W )(7.1.1)

are graded modules over A, and thatH(V ), H(W ) are homogeneous submodules
of Z ′(V ), Z ′(W ), respectively, as in Section 5.10. In this section, we suppose
that

Z ′(V ) corresponds to the direct sum of H(V )(7.1.2)

and another homogeneous submodule of Z ′(V ),

as a right module over A, and similarly that

Z ′(W ) corresponds to the direct sum of H(W )(7.1.3)

and another homogeneous submodule of Z ′(W ),

as a left module over A. This means that Z ′(V ), Z ′(W ) correspond to the direct
sums of H(V ), H(W ) and other submodules, respectively, as graded modules
over A.

172
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Equivalently,

there are homomorphisms from Z ′(V ), Z ′(W ) onto H(V ),H(W ),(7.1.4)

as modules over A, that are equal to the identity mappings

on H(V ),H(W ), respectively, and that have degree 0.

We can compose the natural quotient mappings from V , W onto Z ′(V ), Z ′(W ),
respectively, with the homomorphisms as in (7.1.4) to get homomorphisms

β, γ from V,W onto H(V ),H(W ),(7.1.5)

respectively, as modules over A, of degree 0.
Of course, the natural quotient mappings from V , W onto Z ′(V ), Z ′(W ) are

equal to 0 on dV (V ), dW (W ), respectively. This means that the compositions
of these quotient mappings with dV , dW , respectively, are equal to 0. It follows
that

β ◦ dV , γ ◦ dW = 0.(7.1.6)

Let H(V )
⊗

AH(W ) be a tensor product of H(V ) and H(W ), which is a
doubly-graded module over k. Using β and γ, we get a homomorphism β ⊗ γ
from V

⊗
AW onto H(V )

⊗
AH(W ), as modules over k, of bidegree (0, 0), as

in Section 6.1. It is easy to see that

(β ⊗ γ) ◦ δ1 = (β ⊗ γ) ◦ δ2 = 0,(7.1.7)

using (7.1.6). This implies that

(β ⊗ γ) ◦ δ = 0.(7.1.8)

This leads to a homomorphism

from H
(
V
⊗

A
W

)
into H(V )

⊗
A
H(W ),(7.1.9)

as modules over k, in a natural way. More precisely, the composition of the nat-
ural quotient mapping from Z

(
V
⊗

AW
)
onto H

(
V
⊗

AW
)
with this homo-

morphism is the same as the restriction of β⊗γ to Z
(
V
⊗

AW
)
. This homomor-

phism has degree 0, with respect to the usual single grading on H
(
V
⊗

AW
)
,

and the single grading on H(V )
⊗

AH(W ) obtained from the double grading
in the usual way.

Let α be the homormophism from H(V )
⊗

AH(W ) into H
(
V
⊗

AW
)
dis-

cussed in Section 6.11. One can check that

the composition of α with the homomorphism as in (7.1.9)(7.1.10)

is the identity mapping on H(V )
⊗

A
H(W ).

This implies that

α is injective on H(V )
⊗

A
H(W ).(7.1.11)
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We also get that

H
(
V
⊗

A
W

)
corresponds to the direct sum of(7.1.12)

α
(
H(V )

⊗
A
H(W )

)
and another homogeneous

submodule of H
(
V
⊗

A
W

)
,

as a singly-graded module over k. This corresponds to Proposition 6.2 on p66
of [3], under slightly different conditions.

7.2 More splitting and α

Let us return to the same notation and hypotheses as at the beginning of the
previous section. Put

V1 = B(V ) = dV (V ), W1 = B(W ) = dW (W ),(7.2.1)

which are homogeneous submodules of V , W , respectively. Suppose that

V2, V3 are homogeneous submodules of V(7.2.2)

and

W2,W3 are homogeneous submodules of W,(7.2.3)

with the following two properties. First,

V corresponds to the direct sum of V1, V2, and V3,(7.2.4)

as a right module over A, and

W corresponds to the direct sum of W1,W2, and W3,(7.2.5)

as a left module over A. Second,

Z(V ) = V1 + V2(7.2.6)

and

Z(W ) =W1 +W2.(7.2.7)

More precisely, Z(V ) and Z(W ) correspond to the direct sums of V1, V2 and
W1, W2, respectively, as graded modules over A. It follows that the restrictions
of the natural quotient mappings from Z(V ), Z(W ) onto H(V ), H(W ) to V2,
W2 are isomorphisms

from V2,W2 onto H(V ),H(W ),(7.2.8)

respectively, as graded modules over A.
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Similarly, the restrictions of the natural quotient mappings from V , W onto
Z ′(V ), Z ′(W ) to V2 + V3, W2 +W3 are isomorphisms

from V2 + V3,W2 +W3 onto Z ′(V ), Z ′(W ),(7.2.9)

respectively, as modules over A. The images of V2, W2 under these quotient
mappings are the same as the images of Z(V ), Z(W ), by hypothesis. Thus
these images correspond to H(V ), H(W ), respectively. Of course, V2 + V3 and
W2 +W3 correspond to the direct sums of V2, V3 and W2, W3, respectively, as
modules over A. It follows that (7.1.2) and (7.1.3) hold under these conditions.

Let Va
⊗

AWb be a tensor product of Va andWb over A for each a, b = 1, 2, 3.
Of course, V

⊗
AW is isomorphic to the direct sum of Va

⊗
AWb, a, b = 1, 2, 3,

as a doubly-graded module over k. Thus we may identify Va
⊗

AWb with a
bihomogeneous submodule of V

⊗
AW , as a doubly-graded module over k, for

each a, b = 1, 2, 3.
If a = 1, 2, or 3, then we may take Va

⊗
A Z(W ) to be the bihomogeneous

submodule of V
⊗

AW corresponding to the direct sum of Va
⊗

AWb, b = 1, 2.
Similarly, if b = 1, 2, or 3, then we may take Z(V )

⊗
AWb to be the bihomo-

geneous submodule of V
⊗

AW corresponding to the direct sum of Va
⊗

AWb,
a = 1, 2. We may take Z(V )

⊗
A Z(W ) to be the bihomogeneous submodule of

V
⊗

AW corresponding to the direct sum of Va
⊗

AWb, a, b = 1, 2, as well.
The restrictions of dV , dW to V3, W3 are one-to-one mappings onto V1, W1,

respectively. If a = 1, 2, or 3, then it follows that

the restriction of δ2 to Va
⊗

A
W3(7.2.10)

is a one-to-one mapping onto Va
⊗

A
W1.

If a = 1 or 2, then δ1 = 0 on Va
⊗

AW3, so that δ = δ2 on Va
⊗

AW3, and thus

the restriction of δ to Va
⊗

A
W3(7.2.11)

is a one-to-one mapping onto Va
⊗

A
W1.

Similarly, if b = 1, 2, or 3, then

the restriction of δ1 to V3
⊗

A
Wb(7.2.12)

is a one-to-one mapping onto V1
⊗

A
Wb.

If b = 1 or 2, then δ2 = 0 on V3
⊗

AWb, so that δ = δ1 on V3
⊗

AWb, and

the restriction of δ to V3
⊗

A
Wb(7.2.13)

is a one-to-one mapping onto V1
⊗

A
Wb.

Observe that

the restriction of δ to V3
⊗

A
W3 is a one-to-one(7.2.14)

mapping into
(
V1

⊗
A
W3

)
+

(
V3

⊗
A
W1

)
,
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by (7.2.10) and (7.2.12), with a = b = 3. Of course,

Z(V )
⊗

A
Z(W ) ⊆ Z

(
V
⊗

A
W

)
.(7.2.15)

One can check that

Z
(
V
⊗

A
W

)
⊆

(
Z(V )

⊗
A
Z(W )

)
+
(
V1

⊗
A
W3

)
+

(
V3

⊗
A
W1

)
,(7.2.16)

using the earlier remarks.
It is easy to see that

B
(
V
⊗

A
W

)
=

(
V1

⊗
A
W1

)
+

(
V2

⊗
A
W1

)
+
(
V1

⊗
A
W2

)
+δ

(
V3

⊗
A
W3

)
,(7.2.17)

using (7.2.11) and (7.2.13). Note that

δ
(
V3

⊗
A
W3

)
⊆ Z

(
V
⊗

A
W

)
∩
((
V1

⊗
A
W3

)
+
(
V3

⊗
A
W1

))
.(7.2.18)

We would like to verify that

δ
(
V3

⊗
A
W3

)
= Z

(
V
⊗

A
W

)
∩
((
V1

⊗
A
W3

)
+
(
V3

⊗
A
W1

))
.(7.2.19)

Every element of V1
⊗

AW3 can be expressed as δ1(y) for a unique y in
V3

⊗
AW3, by (7.2.12), with b = 3. Similarly, every element of V3

⊗
AW1 can

be expressed as δ2(z) for a unique z ∈ V3
⊗
W3, by (7.2.10), with a = 3. We

also have that
δ(δ1(y) + δ2(z)) = δ2(δ1(y)) + δ1(δ2(z)).(7.2.20)

This is equal to 0 when y = z, as in Section 6.2.
Conversely, if (7.2.20) is equal to 0, then one can check that y = z, using

(7.2.10) and (7.2.12). This implies that (7.2.19) holds.
It follows that

Z
(
V
⊗

A
W

)
=

(
Z(V )

⊗
A
Z(W )

)
+ δ

(
V3

⊗
A
W3

)
.(7.2.21)

Using this, we get that

H
(
V
⊗

A
W

)
is isomorphic to V2

⊗
A
W2,(7.2.22)

as graded modules over k. Equivalently,

H
(
V
⊗

A
W

)
is isomorphic to H(V )

⊗
A
H(W ),(7.2.23)

as graded modules over k. More precisely,

α is an isomorphism from H(V )
⊗

A
H(W ) onto H

(
V
⊗

A
W

)
,(7.2.24)

as graded modules over k under these conditions, where α is as in Section 6.11.
This corresponds to Proposition 7.4 on p70 of [3].
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7.3 Some splitting and α′

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. As
in Section 6.13, we let (V, dV ) and (W,dW ) be both left or both right graded
modules over A with differentiation that are complexes. Thus Homgr

A (V,W )
may be defined as a doubly-graded module over k, and in fact as a double
complex with respect to the appropriate differentiation operators δ1, δ2, as in
Sections 6.3 and 6.5. This implies that Homgr

A (V,W ) is a single complex over
k with respect to the single grading obtained from the double grading and the
total differentation operator δ = δ1 + δ2, as before.

Suppose that Z ′(V ) satisfies (7.1.2), as a left or right module over A, as
appropriate. In this section, we also ask that

Z(W ) corresponds to the direct sum of B(W )(7.3.1)

and another homogeneous submodule of Z(W ),

as a module over A. Equivalently, this means that Z(W ) corresponds to the
direct sum of B(W ) and another submodule, as a graded module over A.

As before, the condition on Z ′(V ) is the same as saying that there is a
homomorphism from Z ′(V ) onto H(V ), as modules over A, that is equal to the
identity mapping on H(V ), and has degree 0. This leads to a homomorphism

β from V onto H(V ),(7.3.2)

as modules over A, with degree 0, by composing the natural quotient mapping
from V onto Z ′(V ) with the previous homomorphism from Z ′(V ) onto H(V ).
Note that

β ◦ dV = 0.(7.3.3)

Using (7.3.1), we get that

there is a homomorphism from H(W ) into Z(W ),(7.3.4)

as modules over A, of degree 0, whose composition

with the natural quotient mapping from Z(W ) onto H(W )

is the identity mapping on H(W ).

More precisely, Z(W ) corresponds to the direct sum of B(W ) and the image
of H(W ) under this homomorphism, as a graded module over A. Let γ̃ be the
homomorphism as in (7.3.4), considered as a homomorphism

from H(W ) into W.(7.3.5)

Alternatively, γ̃ may be considered as the composition of the homomorphism in
(7.3.4) with the natural inclusion mapping from Z(W ) into W . Of course,

dW ◦ γ̃ = 0,(7.3.6)
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because γ̃(H(W )) ⊆ Z(W ).
Note that Homgr

A (H(V ),H(W )) may be defined as a doubly-graded module
over k, as in Section 6.3. As in Section 6.4, we can use β and γ̃ to get a
homomorphism

Homgr(β, γ̃) from Homgr
A (H(V ),H(W )) into Homgr

A (V,W ),(7.3.7)

as modules over k, of bidegree (0, 0).
One can check that

δ1 ◦Homgr(β, γ̃) = 0,(7.3.8)

using (7.3.3). Similarly,
δ2 ◦Homgr(β, γ̃) = 0,(7.3.9)

because of (7.3.6). This implies that

δ ◦Homgr(β, γ̃) = 0.(7.3.10)

Equivalently,

Homgr(β, γ̃)
(
Homgr

A (H(V ),H(W ))
)
⊆ Z

(
Homgr

A (V,W )
)
.(7.3.11)

This leads to a homomorphism

from Homgr
A (H(V ),H(W )) into H

(
Homgr

A (V,W )
)
,(7.3.12)

as modules over k, by composing Homgr(β, γ̃) with the natural quotient mapping

from Z
(
Homgr

A (V,W )
)
onto H

(
Homgr

A (V,W )
)
.(7.3.13)

This homomorphism has degree 0, with respect to the single grading associ-
ated to the double grading on Homgr

A (H(V ),H(W )), and the appropriate single
grading on H

(
Homgr

A (V,W )
)
.

Let α′ be the homomorphism

from H
(
Homgr

A (V,W )
)
into Homgr

A (H(V ),H(W ))(7.3.14)

discussed in Section 6.13. One can check that

the composition of the homomorphism as in (7.3.12) with α′(7.3.15)

is the identity mapping on Homgr
A (H(V ),H(W )).

It follows that

α′(H(
Homgr

A (V,W )
))

= Homgr
A (H(V ),H(W )).(7.3.16)

We also get that

H
(
Homgr

A (V,W )
)
corresponds to the direct sum of kerα′(7.3.17)

and another homogeneous submodule of H
(
Homgr

A (V,W )
)
,

as a singly-graded module over k. This corresponds to Proposition 6.2a on p66
of [3], under slightly different conditions.
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7.4 More splitting and α′

We return to the same notation and hypotheses as at the beginning of the
previous section. As in Section 7.2, we would like to consider stronger splitting
conditions on V and W now.

As before, we put
V1 = B(V ), W1 = B(W ),(7.4.1)

which are homogeneous submodules of V , W , respectively. We suppose again
that V2, V3 are homogeneous submodules of V , and that V corresponds to the
direct sum of V1, V2, and V3, as a module over A. Similarly, we suppose that
W2, W3 are homogeneous submodules of W , and that W corresponds to the
direct sum of W1, W2, and W3, as a module over A. We also ask that

Z(V ) = V1 + V2, Z(W ) =W1 +W2,(7.4.2)

as before, so that Z(V ) and Z(W ) correspond to the direct sums of V1, V2
and W1, W2, respectively, as graded modules over A. This implies that the
restrictions of the natural quotient mappings from Z(V ), Z(W ) onto H(V ),
H(W ) to V2, W2 are isomorphisms onto H(V ), H(W ), respectively, as graded
modules over A, as before.

It follows that Z ′(V ) corresponds to the direct sum of H(V ) and another
homogeneous submodules of Z ′(V ), as a module over A, as in Section 7.2. Of
course, (7.3.1) holds, by hypothesis. This means that V and W satisfy the
conditions mentioned in the previous section.

Note that Homgr
A (Va,Wb) may be defined as a doubly-graded module over k

as in Section 6.3 for each a, b = 1, 2, 3. It is easy to see that

Homgr
A (V,W ) is isomorphic to the direct sum of(7.4.3)

Homgr
A (Va,Wb), a, b = 1, 2, 3,

as a doubly-graded module over k, in a natural way. We shall use this to
identify Homgr

A (Va,Wb) with a bihomogeneous submodule of Homgr
A (V,W ), as

a doubly-graded module over k, for each a, b = 1, 2, 3.
Similarly, if a = 1, 2, or 3, then

Homgr
A (Va, Z(W )) is isomorphic to the direct sum of(7.4.4)

Homgr
A (Va,Wb), b = 1, 2,

as a doubly-graded module over k in a natural way. If b = 1, 2, or 3, then

Homgr
A (Z(V ),Wb) is isomorphic to the direct sum of(7.4.5)

Homgr
A (Va,Wb), a = 1, 2,

as a doubly-graded module over k in a natural way. We also have that

Homgr
A (Z(V ), Z(W )) is isomorphic to the direct sum of(7.4.6)

Homgr
A (Va,Wb), a, b = 1, 2,
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as a doubly-graded module over k in a natural way. These modules may be
identified with bihomogeneous submodules of Homgr

A (V,W ), as a doubly-graded
module over k, as before.

If a = 2 or 3, then one can check that

δ1 = 0 on Homgr
A (Va,Wb)(7.4.7)

for each b = 1, 2, 3. This uses the way that Homgr
A (Va,Wb) is identified with a

submodule of Homgr
A (V,W ), so that an element of Homgr

A (Va,Wb) corresponds
to an element of Homgr

A (V,W ) whose components in Homgr
A (Va′ ,Wb′) are equal

to 0 when a 6= a′ or b 6= b′. This also uses the fact that V1 = dV (V ), by
construction. Of course,

δ2 = 0 on Homgr
A (Va,Wb)(7.4.8)

for each a = 1, 2, 3 and b = 1, 2, because dW = 0 on W1, W2.
The restrictions of dV , dW to V3, W3 are one-to-one mappings onto V1, W1,

respectively, as in Section 7.2. If a = 1, 2, or 3, then it follows that

the restriction of δ2 to Homgr
A (Va,W3)(7.4.9)

is a one-to-one mapping onto Homgr
A (Va,W1).

If a = 2 or 3, then δ1 = 0 on Homgr
A (Va,W3), as in (7.4.7), so that δ = δ2 on

Homgr
A (Va,W3). This implies that

the restriction of δ to Homgr
A (Va,W3)(7.4.10)

is a one-to-one mapping onto Homgr
A (Va,W1)

when a = 2 or 3.
If b = 1, 2, or 3, then it is easy to see that

the restriction of δ1 to Homgr
A (V1,Wb)(7.4.11)

is a one-to-one mapping onto Homgr
A (V3,Wb).

If b = 1 or 2, then δ2 = 0 on Homgr
A (V1,Wb), so that δ = δ1 on Homgr

A (V1,Wb),
and thus

the restriction of δ to Homgr
A (V1,Wb)(7.4.12)

is a one-to-one mapping onto Homgr
A (V3,Wb).

Note that

the restriction of δ to Homgr
A (V1,W3) is a one-to-one(7.4.13)

mapping into Homgr
A (V3,W3) + Homgr

A (V1,W1),

by (7.4.9) with a = 1, and (7.4.11) with b = 3.
Clearly

δ = 0 on Homgr
A (Va,Wb)(7.4.14)
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when a = 2 or 3 and b = 1 or 2, by (7.4.7) and (7.4.8). This means that

Homgr
A (V2, Z(W )) + Homgr

A (V3, Z(W )) ⊆ Z
(
Homgr

A (V,W )
)
.(7.4.15)

Observe that

δ
(
Homgr

A (V1,W1)
)
= δ

(
Homgr

A (V3,W3)
)
= Homgr

A (V3,W1),(7.4.16)

by (7.4.10) with a = 3, and (7.4.12) with b = 1. One can verify that

Z
(
Homgr

A (V,W )
)

⊆ Homgr
A (V2, Z(W )) + Homgr

A (V3, Z(W ))

+Homgr
A (V1,W1) + Homgr

A (V3,W3).(7.4.17)

This uses (7.4.10) with a = 2, (7.4.12) with b = 2, and (7.4.13).
We also have that

B
(
Homgr

A (V,W )
)

= Homgr
A (V2,W1) + Homgr

A (V3,W1) + Homgr
A (V3,W2)

+δ
(
Homgr

A (V1,W3)
)
,(7.4.18)

by (7.4.10), (7.4.12), and (7.4.14). Of course,

δ
(
Homgr

A (V1,W3)
)

⊆ Z
(
Homgr

A (V,W )
)
∩
(
Homgr

A (V1,W1) + Homgr
A (V3,W3)

)
,(7.4.19)

by (7.4.13). We would like to check that

δ
(
Homgr

A (V1,W3)
)

= Z
(
Homgr

A (V,W )
)
∩
(
Homgr

A (V1,W1) + Homgr
A (V3,W3)

)
.(7.4.20)

Every element of Homgr
A (V1,W1) can be expressed as

δ2(ϕ)(7.4.21)

for a unique ϕ ∈ Homgr
A (V1,W3), by (7.4.9), with a = 1. Similarly, every element

of Homgr
A (V3,W3) can be expressed as

δ1(ψ)(7.4.22)

for a unique ψ ∈ Homgr
A (V1,W3), by (7.4.11) with b = 3. Note that

δ(δ2(ϕ) + δ1(ψ)) = δ1(δ2(ϕ)) + δ2(δ1(ψ)).(7.4.23)

This is equal to 0 when ϕ = ψ, as in Section 6.5. Conversely, if (7.4.23) is equal
to 0, then one can check that ϕ = ψ, using (7.4.9) and (7.4.11).

This implies (7.4.20). It follows that

Z
(
Homgr

A (V,W )
)

= Homgr
A (V2, Z(W )) + Homgr

A (V3, Z(W ))

+δ
(
Homgr

A (V1,W3)
)
,(7.4.24)
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by (7.4.15) and (7.4.17).
Combining this with (7.4.18), we obtain that

H
(
Homgr

A (V,W )
)
is isomorphic to Homgr

A (V2,W2),(7.4.25)

as graded modules over k. This means that

H
(
Homgr

A (V,W )
)
is isomorphic to Homgr

A (H(V ),H(W )),(7.4.26)

as graded modules over k. In fact,

α′ is an isomorphism from H
(
Homgr

A (V,W )
)

(7.4.27)

onto Homgr
A (H(V ),H(W ))

as graded modules over k in this case, where α′ is as in Section 6.13. This
corresponds to Proposition 7.4 on p70 of [3] again.

7.5 Transforming modules and complexes

We have seen a couple of basic ways in which pairs of singly-graded modules or
complexes can be combined to get doubly-graded modules or complexes, as in
the previous chapter. This is discussed more broadly in Section 5 of Chapter
IV of [3], for combining r singly-graded modules of complexes into r-graded
modules and r-tuple complexes for any r. In particular, one can take r = 1,
and consider transformations of singly-graded modules or complexes into other
singly-graded modules or complexes. We shall consider some instances of this
here, and in later sections.

Let k be a commutative ring with a multiplicative identity element, and let
A be an associative algebra over k with a multiplicative identity element eA.
Also let V be a right module over A, let W be a left module over A, and let
V
⊗

AW be a tensor product of V and W over A. In this section, we shall
normally consider W as fixed, and consider V

⊗
AW as a transform of V . Of

course, one could just as well consider V
⊗

AW as a transform of W , with V
fixed.

If V is a graded module over A, then V
⊗

AW is graded as a module over k
in a natural way. More precisely, if V j

⊗
AW is a tensor product of V j with W

over A for each j, then V
⊗

AW is isomorphic to the direct sum of V j
⊗

AW ,
j ∈ Z. Thus we can identify V j

⊗
AW with a submodule of V

⊗
AW for each

j, as a module over k, and take(
V
⊗

A
W

)j
= V j

⊗
A
W.(7.5.1)

This corresponds to some remarks on p62 of [3], with r = 1.
We may consider W as a graded module over A, with

W l = W when l = 0(7.5.2)

= {0} when l 6= 0,
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as on p75 of [3]. If V is a graded module over A, then V
⊗

AW may be
considered as a doubly-graded module over k, as in Section 6.1, with(

V
⊗

A
W

)j,l
= V j

⊗
A
W l = V j

⊗
A
W when l = 0(7.5.3)

= {0} when l 6= 0.

In this case, the single grading on V
⊗

AW associated to the double grading is
the same as the single grading in the preceding paragraph.

Suppose now that (V, dV ) is a right module over A with differentiation. Let

d = dV
⊗

A
W(7.5.4)

be the homomorphism from V
⊗

AW into itself, as a module over k, obtained
from dV and the identity mapping on W in the usual way. Thus

d(v ⊗ w) = dV (v)⊗ w(7.5.5)

for every v ∈ V and w ∈ W , and d is uniquely determined by this property. It
is easy to see that

d ◦ d = 0 on V
⊗

A
W,(7.5.6)

so that V
⊗

AW is a module with differentiation with respect to d.
Suppose that (V, dV ) is in fact a graded right module over A with differen-

tiation that is a complex. We may consider W as a graded left module over
A with differentiation that is a complex, with the grading as in (7.5.2), and
differentiation operator dW = 0, as on p75 of [3]. In this case, V

⊗
AW is a

double complex, with differentiation operators

δ1 = d, δ2 = 0,(7.5.7)

as in Section 6.2. This means that V
⊗

AW is a single complex with respect to
the total differentiation operator

δ = δ1 + δ2 = d,(7.5.8)

and the single gradng associated to the double grading on V
⊗

AW , as in Section
5.14.

Alternatively, if V
⊗

AW is considered as a singly-graded module over k as
in (7.5.1), then it is easy to see that d has degree 1. This makes V

⊗
AW into

a single complex, as on p63 of [3]. It is easy to see that this is the same as
considering V

⊗
AW as a single complex as in the preceding paragraph.

7.6 Induced mappings and homotopies

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
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let V be a right module over A, let W be a left module over A, and let V
⊗

AW
be a tensor product of V and W over A, as before.

Suppose for the moment that (V, dV ) is a right module over A with differen-
tiation, and let d = dV

⊗
A
W be defined on V

⊗
AW as in (7.5.4). Let (V0, dV0

)

be another right module over A with differentiation, and let V0
⊗

AW be a
tensor product of V0 and W over A. We can define

d0 = dV0

⊗
A
W(7.6.1)

on V0
⊗

AW in the same way as before, so that V0
⊗

AW is a module with
differentiation with respect to d0.

Let ϕ be a homomorphism from V into V0, as right modules over A with
differentiation. This leads to a homomorphism Φ

from V
⊗

A
W into V0

⊗
A
W,(7.6.2)

as modules over k, using the identity mapping on W . It is easy to see that Φ is
a homomorphism as in (7.6.2), as modules with differentiation.

Let ψ be another homomorphism from V into V0, as right modules over
A with differentiation, and let Ψ be the corresponding homomorphism as in
(7.6.2), as modules over k with differentiation. Suppose that σ is a homotopy
between ϕ and ψ, so that σ is a homomorphism from V into V0, as right modules
over A, such that

dV0
◦ σ + σ ◦ dV = ϕ− ψ.(7.6.3)

Let Σ be the homomorphism as in (7.6.2), as modules over k, corresponding to
σ and the identity mapping on W . Observe that

d0 ◦ Σ+ Σ ◦ d = Φ−Ψ,(7.6.4)

so that Σ is a homotopy between Φ and Ψ.
Suppose now that V , V0 are graded right modules over A, so that V

⊗
AW ,

V0
⊗

AW may be considered as graded modules over k, as in (7.5.1). Let ϕ be
a homomorphism from V into V0, as right modules over A, and let Φ be the
homomorphism as in (7.6.2) corresponding to ϕ and the identity mapping on
W , as usual. Suppose that ϕ has degree p ∈ Z, and note that Φ has degree p as
well.

If we consider W as a graded module as in (7.5.2), then V
⊗

AW , V0
⊗

AW
may be considered as doubly-graded modules over k, as in (7.5.3). It is easy
to see that Φ is the same as the homomorphism as in (7.6.2) of bidegree (p, 0)
associated to ϕ and the identity mapping on W as in Section 6.1 in this case.

Now let (V, dV ), (V0, dV0
) be graded right modules over A with differentiation

that are complexes, so that V
⊗

AW , V0
⊗

AW may be considered as single
complexes too, as in the previous section. Suppose that ϕ is a map of degree p
from V into V0, as complexes, as in Section 6.6. Let Φ be the homomorphism
as in (7.6.2), as modules over k, corresponding to ϕ and the identity mapping
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on W , as usual. It is easy to see that Φ is a map of degree p as in (7.6.2), as
complexes.

Let ψ be another map of degree p from V into V0, as complexes, and let
Ψ be the corresponding map of degree p as in (7.6.2), as complexes, as in the
preceding paragraph. Suppose that σ is a homotopy between ϕ and ψ, as maps
of degree p between complexes, as in Section 6.6. Let Σ be the homomorphism
as in (7.6.2), as modules over k, corresponding to σ and the identity mapping
on W , as before. One can check that Σ is a homotopy between Φ and Ψ, as
maps of degree p between complexes.

As in the previous section, we may consider W as a complex, with dW = 0.
Using this, we may consider V

⊗
AW , V0

⊗
AW as double complexes, as before.

We may also consider Φ, Ψ as maps of bidegree (p, 0) as in (7.6.2), as double
complexes, as in Section 6.8. Under these conditions, (Σ, 0) defines a homotopy
between Φ and Ψ, as maps of bidegree (p, 0) as in (7.6.2), as double complexes,
as in Section 6.8.

Of course, if p = 0, then the remarks in the preceding paragraph correspond
to some in Section 6.2.

7.7 An analogue of α

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. As
before, we let V be a right module over A, W be a left module over A, and
V
⊗

AW be a tensor product of V and W over A. Suppose that (V, dV ) is a
right module over A with differentiation again, so that V

⊗
AW is a module

over k with differentiation operator d = dV
⊗

A
W as in (7.5.4).

If v ∈ Z(V ) and w ∈W , then

d(v ⊗ w) = dV (v)⊗ w = 0,(7.7.1)

so that v ⊗ w ∈ Z
(
V
⊗

AW
)
. Thus

(v, w) 7→ v ⊗ w(7.7.2)

defines a mapping from Z(V )×W into Z
(
V
⊗

AW
)
that is bilinear over k. If

a ∈ A, v ∈ Z(V ), and w ∈W , then the values of this mapping at (v · a,w) and
(v, a · w) are the same. Let Z(V )

⊗
AW be a tensor product of Z(V ) and W

over A. This leads to a natural homomorphism

from Z(V )
⊗

A
W into Z

(
V
⊗

A
W

)
,(7.7.3)

as modules over k. Equivalently, there is a natural homomorphism

from Z(V )
⊗

A
W into V

⊗
A
W,(7.7.4)

as modules over k, associated to the obvious inclusion mapping from Z(V ) into
V and the identity mapping on W . One can check that this homomorphism
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maps Z(V )
⊗

AW into Z
(
V
⊗

AW
)
, because of (7.7.1), so that we get a ho-

momorphism as in (7.7.3).
Similarly, if v ∈ B(V ) and w ∈W , then v = dV (u) for some u ∈ V , so that

v ⊗ w = dV (u)⊗ w = d(u⊗ w)(7.7.5)

is an element of B
(
V
⊗

AW
)
. If B(V )

⊗
AW is a tensor product of B(V ) and

W over A, then one can use this to get a natural homomorphism

from B(V )
⊗

A
W into B

(
V
⊗

A
W

)
,(7.7.6)

as modules over k, as before. Equivalently, there is a natural homomorphism

from B(V )
⊗

A
W into V

⊗
A
W,(7.7.7)

as modules over k, associated to the obvious inclusion mapping from B(V ) into
V and the identity mapping on W . This homomorphism maps B(V )

⊗
AW

into B
(
V
⊗

AW
)
, because of (7.7.5), and thus may be considered as a homo-

morphism as in (7.7.6).
Of course, there is a natural homomorphism

from B(V )
⊗

A
W into Z(V )

⊗
A
W,(7.7.8)

obtained from the obvious inclusion mapping from B(V ) into Z(V ) and the iden-
tity mapping on W . The composition of this homomorphism with the one as in
(7.7.3) is the same as the composition of the homomorphism as in (7.7.6) with
the obvious inclusion mapping from B

(
V
⊗

AW
)
into Z

(
V
⊗

AW
)
. Equiva-

lently, the composition of the homomorphism as in (7.7.8) with the one as in
(7.7.4) is the same as the homomorphism as in (7.7.7).

Consider the natural quotient mapping

from Z
(
V
⊗

A
W

)
onto H

(
V
⊗

A
W

)
.(7.7.9)

The composition of the homomorphism as in (7.7.3) with this quotient mapping
leads to a natural homomorphism

η from Z(V )
⊗

A
W into H

(
V
⊗

A
W

)
,(7.7.10)

as modules over k.
If v ∈ Z(V ) and w ∈W , then v⊗w ∈ Z

(
V
⊗

AW
)
, as before, which can be

mapped into H
(
V
⊗

AW
)
by the natural quotient mapping. It is easy to see

that the image in H
(
V
⊗

AW
)
depends only on w and the image of v under

the natural quotient mapping from Z(V ) onto H(V ). This defines a mapping
from H(V ) ×W into H

(
V
⊗

AW ) that is bilinear over k, and has the usual
compatibility property for the actions of A on H(V ) on the right, and on W on
the left. If H(V )

⊗
AW is a tensor product of H(V ) and W over A, then we

get a natural homomorphism

α from H(V )
⊗

A
W into H

(
V
⊗

A
W

)
,(7.7.11)
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as modules over k.
Using the natural quotient mapping from Z(V ) onto H(V ) and the identity

mapping on W , we get a homomorphism

ξ from Z(V )
⊗

A
W onto H(V )

⊗
A
W,(7.7.12)

as modules over k. The surjectivity of ξ follows from a remark in Section 1.9,
as usual. It is easy to see that

α ◦ ξ = η,(7.7.13)

by construction. This determines α uniquely, because ξ is surjective.

7.8 Analogues of τ , ζ

Let us continue with the same notation and hypotheses as in the previous sec-
tion.

Let Z ′(V )
⊗

AW be a tensor product of Z ′(V ) = V/dV (V ) and W over A.
We can use the natural quotient mapping from V onto Z ′(V ) and the identity
mapping on W to get a homomorphism

from V
⊗

A
W onto Z ′(V )

⊗
A
W,(7.8.1)

as modules over k. The composition of the homomorphism as in (7.7.4) with
this one defines a homomorphism

from Z(V )
⊗

A
W into Z ′(V )

⊗
A
W,(7.8.2)

as modules over k. Alternatively, the restriction to Z(V ) of the natural quotient
mapping from V onto Z ′(V ) defines a homomorphism

from Z(V ) into Z ′(V ),(7.8.3)

as modules over k. The homomorphism as in (7.8.2) is the same as the one
obtained from the homomorphism as in (7.8.3) and the identity mapping on W
in the usual way.

We can use the inclusion mapping from H(V ) into Z ′(V ) and the identity
mapping on W to get a natural homomorphism

τ from H(V )
⊗

A
W into Z ′(V )

⊗
A
W,(7.8.4)

as modules over k. The homomorphism as in (7.8.3) is the same as the compo-
sition of the natural quotient mapping from Z(V ) onto H(V ) with the natural
inclusion mapping into Z ′(V ). This implies that

τ ◦ ξ is the same as the homomorphism as in (7.8.2).(7.8.5)
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The restriction of the homomorphism as in (7.8.1) to Z
(
V
⊗

AW
)
defines a

homomorphism

from Z
(
V
⊗

A
W

)
into Z ′(V )

⊗
A
W,(7.8.6)

as modules over k. It is easy to see that this homomorphism is equal to 0 on
B
(
V
⊗

AW
)
. This leads to a homomorphism

ζ from H
(
V
⊗

A
W

)
into Z ′(V )

⊗
A

W,(7.8.7)

as modules over k.
Observe that

ζ ◦ η is the same as the homomorphism as in (7.8.2),(7.8.8)

by construction. Thus
τ ◦ ξ = ζ ◦ η,(7.8.9)

by (7.8.5).
This implies that

ζ ◦ α ◦ ξ = ζ ◦ η = τ ◦ ξ,(7.8.10)

by (7.7.13). It follows that
ζ ◦ α = τ,(7.8.11)

because ξ is surjective, as in (7.7.12). This could also be verified more directly
from the definitions.

Suppose now that (V, dV ) is a graded right module over A with differentiation
that is a complex. Thus V

⊗
AW may be considered as a graded module over

k, as in (7.5.1), and in fact as a complex with respect to d, as in Section 7.5.
Similarly,

B(V )
⊗

A
W, Z(V )

⊗
A
W, H(V )

⊗
A
W, and Z ′(V )

⊗
A
W(7.8.12)

may be considered as graded modules over k. In this case, it is easy to see that
the various homomorphisms mentioned earlier have degree 0. The properties of
these homomorphisms correspond to the commutativity of the diagram (1) and
parts of Proposition 6.1 on p64 of [3], under slightly different conditions.

We may also consider W as a graded left module over A with differentiation
that is a complex, with the grading as in (7.5.2) and dW = 0, as in Section 7.5.
This means that B(W ) = {0}, and Z(W ) = H(W ) = Z ′(W ) =W . Under these
conditions, the remarks in this and the previous section correspond to those in
Sections 6.11 and 6.12.

7.9 Splitting Z ′(V ) and α

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
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let V be a right module over A, let W be a left module over A, and let V
⊗

AW
be a tensor product of V and W over A, as before. We suppose that (V, dV ) is
a right module over A with differentiation again, so that V

⊗
AW is a module

over k with differentiation operator d = dV
⊗

A
W as in (7.5.4).

Suppose that

Z ′(V ) corresponds to the direct sum(7.9.1)

of H(V ) and another submodule of Z ′(V ),

as a right module over A. Equivalently, this means that

there is a homomorphism from Z ′(V ) onto H(V ), as modules(7.9.2)

over A, that is equal to the identity mapping on H(V ).

We can compose the natural quotient mapping from V onto Z ′(V ) = V/dV (V )
with this homomorphism to get a homomorphism

β from V onto H(V ),(7.9.3)

as modules over A. Note that

β ◦ dV = 0(7.9.4)

on V .
Using β and the identity mapping on W , we get a homomorphism

from V
⊗

A
W onto H(V )

⊗
A
W,(7.9.5)

as modules over k. Remember that d is the homomorphism from V
⊗

AW into
itself associated to dV and the identity mapping on W . It is easy to see that

the composition of d with the homomorphism as in (7.9.5)(7.9.6)

is equal to 0 on V
⊗

A
W.

This implies that the homomorphism as in (7.9.5) is equal to 0 on B
(
V
⊗

AW
)
.

In particular, this leads to a homomorphism

from H
(
V
⊗

A
W

)
into H(V )

⊗
A
W,(7.9.7)

as modules over k. Namely, the composition of the natural quotient mapping
from Z

(
V
⊗

AW
)
onto H

(
V
⊗

AW
)
with this homomorphism is the same as

the restriction of the homomorphism as in (7.9.5) to Z
(
V
⊗

AW
)
. One can

verify that

the composition of α with the homomorphism as in (7.9.7)(7.9.8)

is the identity mapping on H(V )
⊗

A
W,
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where α is as in (7.7.11).

It follows that

α is injective on H(V )
⊗

A
W.(7.9.9)

This also implies that

H
(
V
⊗

A
W

)
corresponds to the direct sum of(7.9.10)

α
(
H(V )

⊗
A
W

)
and another submodule of H

(
V
⊗

A
W

)
,

as a module over k.

If (V, dV ) is a complex, then V
⊗

AW may be considered as a complex with
respect to d, as in Section 7.5. In this case, one can ask that (7.9.1) hold for
Z ′(V ) as a graded right module over A, which is to say that the other submodule
of Z ′(V ) is homogeneous too. This implies that the homomorphisms mentioned
in the previous paragraphs have degree 0. It follows that the other submodule of
H
(
V
⊗

AW
)
mentioned in (7.9.10) is homogeneous as well. This corresponds

to Proposition 6.2 on p66 of [3], under slightly different conditions.

We may also considerW as a complex, with grading as in (7.5.2) and dW = 0,
as before. This permits one to consider the remarks in this section as a simpler
version of those in Section 7.1.

7.10 An injectivity condition and α

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. As
usual, we let V be a right module over A, W be a left module over A, and
V
⊗

AW be a tensor product of V and W over A. Suppose again that (V, dV )
is a right module over A with differentiation, so that V

⊗
AW is a module over

k with differentiation operator d = dV
⊗

A
W as in (7.5.4). In this section, we

shall consider an additional injectivity condition related to V and W , and its
consequences for V

⊗
AW .

Let B(V )
⊗

AW be a tensor product of B(V ) and W over A again. As
before, there is a natural homomorphism

from B(V )
⊗

A
W into V

⊗
A
W,(7.10.1)

as modules over k, corresponding to the obvious inclusion mapping from B(V )
into V and the identity mapping on W . More precisely, this homomorphism
maps B(V )

⊗
AW into the submodule B

(
V
⊗

AW
)
of V

⊗
AW , as in Section

7.7. In fact, one can check that

the homomorphism as in (7.10.1)(7.10.2)

maps B(V )
⊗

A
W onto B

(
V
⊗

A
W

)
.
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Let us suppose now that

the homomorphism as in (7.10.1) is injective on B(V )
⊗

A
W.(7.10.3)

There is a natural homomorphism

from V
⊗

A
W onto B(V )

⊗
A
W,(7.10.4)

as modules over k, corresponding to dV as a mapping from V onto B(V ), and
the identity mapping on W . Observe that

d is the same as the composition of the(7.10.5)

homomorphisms as in (7.10.4) and (7.10.1),

as a homomorphism from V
⊗

AW into itself, as a module over k. In particular,

the kernel of the homomorphism as in (7.10.4)(7.10.6)

is contained in ker d.

Using (7.10.3), we get that

the kernel of the homomorphism as in (7.10.4) is equal to ker d,(7.10.7)

as submodules of B
⊗

AW .
Let Z(V )

⊗
AW be a tensor product of Z(V ) and W over A again too. As

usual, there is a natural homomorphism

from Z(V )
⊗

A
W into V

⊗
A
W,(7.10.8)

as modules over k, corresponding to the obvious inclusion mapping from Z(V )
into V , and the identity mapping onW . This homomorphism maps Z(V )

⊗
AW

into Z
(
V
⊗

AW
)
, as in Section 7.7.

Of course,

0 −→ Z(V ) −→ V
dV−→ B(V ) −→ 0(7.10.9)

is an exact sequence of right modules over A, using the obvious inclusion map-
ping from Z(V ) into V . It follows that

Z(V )
⊗

A
W −→ V

⊗
A
W −→ B(V )

⊗
A
W −→ 0(7.10.10)

is an exact sequence of modules over k, using the homomorphism as in (7.10.8)
in the first step, and the homomorphism as in (7.10.4) in the second step, as in
Section 2.5. This means that

the homomorphism as in (7.10.8) maps Z(V )
⊗

A
W(7.10.11)

onto the kernel of the homomorphism as in (7.10.4).
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Combining this with (7.10.7), we obtain that

the homomorphism as in (7.10.8)(7.10.12)

maps Z(V )
⊗

A
W onto Z

(
V
⊗

A
W

)
,

under these conditions.
Remember that the homomorphism η from Z(V )

⊗
AW into H

(
V
⊗

AW
)

as in (7.7.10) is defined by taking the composition of the homomorphism as in
(7.10.8), considered as a homomorphism from Z(V )

⊗
AW into Z

(
V
⊗

AW
)
,

with the natural quotient mapping from Z
(
V
⊗

AW
)
onto H

(
V
⊗

AW
)
. Using

(7.10.12), we get that

η maps Z(V )
⊗

A
W onto H

(
V
⊗

A
W

)
.(7.10.13)

Let H(V )
⊗

AW be a tensor product of H(V ) and W over A again, and
remember that α is the homomorphism from H(V )

⊗
AW into H

(
V
⊗

AW
)

as in (7.7.11). As before, we let ξ be the homomorphism from Z(V )
⊗

AW
onto H(A)

⊗
AW , as modules over k, corresponding to the natural quotient

mapping from Z(V ) onto H(V ), and the identity mapping on W . We have
seen that α ◦ ξ = η, as in (7.7.13), which determines α uniquely, because ξ is
surjective. This implies that

α maps H(V )
⊗

A
W onto H

(
V
⊗

A
W

)
,(7.10.14)

because of (7.10.13). This is related to Theorem 7.2 on p68 of [3], and some
remarks on p70 of [3].

Suppose that V corresponds to the direct sum of B(V ) and another submod-
ule of V , as a right module over A. This implies that V

⊗
AW is isomorphic to

the direct sum of B(V )
⊗

AW and a tensor product of the other submodule of
V with W over A, as modules over k. In particular, (7.10.3) holds in this case.
This is related to Proposition 7.4 on p70 of [3].

7.11 Injectivity of α

Let us return to the same notation and hypotheses as at the beginning of the
previous section. As usual, we let B(V )

⊗
AW , Z(V )

⊗
AW , and H(V )

⊗
AW

be tensor products of B(V ), Z(V ), and H(V ) with W over A, respectively.
Although we do not ask that (7.10.3) hold for the moment, some of the remarks
in the previous section can still be used here.

There is a natural homomorphism

from B(V )
⊗

A
W into Z(V )

⊗
A
W,(7.11.1)

as modules over k, corresponding to the obvious inclusion mapping from B(V )
into Z(V ), and the identity mapping on W . Remember that

the homomorphism as in (7.10.1) is the same as(7.11.2)
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the composition of the homomorphism as in (7.11.1)

with the homomorphism as in (7.10.8),

as in Section 7.7.
Clearly

0 −→ B(V ) −→ Z(V ) −→ H(V ) −→ 0(7.11.3)

is an exact sequence of right modules over A, using the appropriate inclusion
and quotient mappings. This implies that

B(V )
⊗

A
W −→ Z(V )

⊗
A
W

ξ−→ H(V )
⊗

A
W −→ 0(7.11.4)

is an exact sequence of modules over k, as in Section 2.5. This uses the ho-
momorphism as in (7.11.1) in the first step, and ξ is the homomorphism cor-
responding to the natural quotient mapping from Z(V ) onto H(V ) and the
identity mapping on W , as before.

Remember that the homomorphism as in (7.10.8) maps Z(V )
⊗

AW into
Z
(
V
⊗

AW
)
. Observe that

B
(
V
⊗

A
W

)
is contained in the image of Z(V )

⊗
A
W(7.11.5)

under the homomorphism as in (7.10.8),

by (7.10.2) and (7.11.2).
Remember that η is the composition of the homomorphism as in (7.10.8),

considered as a homomorphism from Z(V )
⊗

AW into Z
(
V
⊗

AW
)
, with the

natural quotient mapping from Z
(
V
⊗

AW ) onto H
(
V
⊗

AW
)
. Thus

ker η is the same as the inverse image of B
(
V
⊗

A
W

)
(7.11.6)

under the homomorphism as in (7.10.8).

In fact,

ker η is the submodule of Z(V )
⊗

A
W spanned by(7.11.7)

the kernel of the homomorphism as in (7.10.8)

and the image of B(V )
⊗

A
W

under the homomorphism as in (7.11.1),

because of (7.10.2) and (7.11.2).
The exactness of (7.11.4) implies that

ker ξ is the same as the image of B(V )
⊗

A
W(7.11.8)

under the homomorphism as in (7.11.1).

This means that

ker η is the submodule of Z(V )
⊗

A
W spanned by(7.11.9)

the kernel of the homomorphism as in (7.10.8) and ker ξ.
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Remember that α is the homomorphism from H(V )
⊗

AW into H
(
V
⊗

AW
)

as in (7.7.11). We have seen that α◦ξ = η, as in (7.7.13), and that α is uniquely
determined by this property, because ξ is surjective. Observe that

α is injective if and only if ker η = ker ξ.(7.11.10)

This happens if and only if

the kernel of the homomorphism as in (7.10.8)(7.11.11)

is contained in the image of B(V )
⊗

A
W

under the homomorphism as in (7.11.1).

In particular, α is injective when

the homomorphism as in (7.10.8) is injective on Z(V )
⊗

A
W.(7.11.12)

Note that (7.10.3) implies that

the homomorphism as in (7.11.1) is injective on B(V )
⊗

A
W.(7.11.13)

We also have that (7.10.3) follows from (7.11.12) and (7.11.13).
Let Z ′(V )

⊗
AW be a tensor product of Z ′(V ) = V/dV (V ) and W over A,

and let τ be the natural homomorphism from H(V )
⊗

AW into Z ′(V )
⊗

AW ,
as modules over k, corresponding to the obvious inclusion mapping from H(V )
into Z ′(V ) and the identity mapping on W , as in Section 7.8. Remember that
τ is equal to the composition of α with the homomorphism ζ defined in Section
7.8, as in (7.8.11). This implies that

α is injective when τ is injective.(7.11.14)

These criteria for the injectivity of α are related to Theorem 7.2 on p68 of
[3], and some remarks on p70 of [3].

If V corresponds to the direct sum of Z(V ) and another submodule, as a right
module over A, then V

⊗
AW is isomorphic to the direct sum of Z(V )

⊗
AW

and a tensor product of the other submodule of V with W over A, as mod-
ules over k. This implies that the homomorphism as in (7.10.8) is injective on
Z(V )

⊗
AW , so that α is injective, as before. Similarly, if Z ′(V ) corresponds

to the direct sum of H(V ) and another submodule of Z ′(V ), as a right module
over A, then α is injective, as in Section 7.9, which could also be obtained from
the injectivity of τ in this case. This is related to Proposition 7.4 on p70 of [3].

7.12 Differentiation and Hom(V, ·)
Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V , W be both left or both right modules over A.
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Suppose for the moment that (W,dW ) is a module with differentiation. Let

d = dHomA(V,W )(7.12.1)

be the homomorphism from HomA(V,W ) into itself, as a module over k, defined
by composition with dW . Thus, if ϕ ∈ HomA(V,W ), then we put

d(ϕ) = dW ◦ ϕ.(7.12.2)

Observe that
d ◦ d = 0 on HomA(V,W ),(7.12.3)

so that HomA(V,W ) is a module with differentiation with respect to d.
Suppose now that W is a graded module over A. We would like to define

Homgr
A (V,W ) as a graded module over k, with(

Homgr
A (V,W )

)l
= HomA(V,W

l)(7.12.4)

for every l ∈ Z, as on p62 of [3], with r = 1. Although we can simply take
Homgr

A (V,W ) to be the direct sum of (7.12.4) over l, it is also sometimes con-
venient to consider it as a submodule of related modules over k.

Let |W | be the underlying module over A corresponding to W , without a
grading, as on p63 of [3]. If ϕ ∈ Homgr

A (V,W ) and l ∈ Z, then let ϕl be the
corresponding element of (7.12.4), as usual, so that ϕl = 0 for all but finitely
many l. It follows that

∞∑
l=−∞

ϕl(7.12.5)

defines a homomorphism from V into |W |, as modules over A. It is easy to see
that ϕ is uniquely determined by (7.12.5), and so we shall often identify ϕ with
(7.12.5).

This defines an injective homomorphism

from Homgr
A (V,W ) into HomA(V, |W |),(7.12.6)

as modules over k, and we may identify Homgr
A (V,W ) with the corresponding

submodule of HomA(V, |W |), as a module over k. Note that Homgr
A (V,W )

may correspond to a proper submodule of HomA(V, |W |), as on p63 of [3].
If V is finitely generated as a module over A, then one can check that the
homomorphism as in (7.12.6) maps Homgr

A (V,W ) onto HomA(V, |W |).
Of course, |W | may be considered as a submodule of

∏∞
l=−∞Wl, as a module

over A, so that HomA(V, |W |) corresponds to a submodule of

HomA

(
V,

∞∏
l=−∞

Wl

)
,(7.12.7)

as a module over k. Remember that there is a natural isomorphism from (7.12.7)
onto

∞∏
l=−∞

HomA(V,Wl),(7.12.8)
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as modules over k, as in Section 1.7. Thus Homgr
A (V,W ) corresponds to the

submodule of HomA(V, |W |), as a module over k, that correesponds to the
submodule of (7.12.8) given by the direct sum.

As in Section 7.5, V may be considered as a graded module over A, with

V j = V when j = 0(7.12.9)

= {0} when j 6= 0.

Using this, Homgr
A (V,W ) may be defined as a doubly-graded module over k, as

in Section 6.3, with(
Homgr

A (V,W )
)j,l

= HomA(V
−j ,W l) = HomA(V,W

l) when j = 0

= {0} when j 6= 0.(7.12.10)

The single grading on Homgr
A (V,W ) associated to this double grading is the

same as in (7.12.4).
Suppose that (W,dW ) is a graded module over A that is a complex. In par-

ticular, Homgr
A (V,W ) may be defined as a graded module over k as in (7.12.4).

We can define
d = dHomgr

A
(V,W )(7.12.11)

on Homgr
A (V,W ) as follows. If ϕ ∈ Homgr

A (V,W ), then d(ϕ) may be defined as
an element of Homgr

A (V,W ) by putting

d(ϕ)l+1 = dlW ◦ ϕl(7.12.12)

for each l. It is easy to see that Homgr
A (V,W ) is a complex with respect to d,

as on p63 of [3].
The underlying module |W | over A corresponding to W may be considered

as a module with differentiation with respect to dW , so that d = dHomA(V,|W |)
may be defined on HomA(V, |W |) as in (7.12.1). If we consider Homgr

A (V,W )
as a submodule of HomA(V, |W |), as a module over k, then the restriction
of d on HomA(V, |W |) to Homgr

A (V,W ) is the same as the definition of d on
Homgr

A (V,W ) in the preceding paragraph. Thus Homgr
A (V,W ) may be consid-

ered as a submodule of HomA(V, |W |), as a module over k with differentiation.
We may consider V as a complex, using the grading in (7.12.9), and differ-

entiation operator dV = 0, as on p75 of [3]. If we consider Homgr
A (V,W ) as

a doubly-graded module over k as in (7.12.10), then Homgr
A (V,W ) is a double

complex, with
δ1 = 0, δ2 = d = dHomgr

A
(V,W ),(7.12.13)

as in Section 6.5. This implies that Homgr
A (V,W ) is a single complex with

respect to the total differentiation operator

δ = δ1 + δ2 = d = dHomgr
A

(V,W ),(7.12.14)

and the single grading associated to the double grading on Homgr
A (V,W ), as in

Section 5.14. This is the same as considering Homgr
A (V,W ) as a single complex

as before.
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7.13 Induced mappings and Hom(V, ·)
Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V , W , and W0 be all left or all right modules over A.

Suppose that (W,dW ) and (W0, dW0
) are modules with differentiation. Let

d = dHomA(V,W ) be defined on HomA(V,W ) as in (7.12.1), and define

d0 = dHomA(V,W0)(7.13.1)

on HomA(V,W0) in the same way.
Let ϕ be a homomorphism from W into W0, as modules over A. Consider

the homomorphism Φ

from HomA(V,W ) into HomA(V,W0),(7.13.2)

as modules over k, defined by composing an element of HomA(V,W ) with ϕ to
get an element of HomA(V,W0). Suppose now that ϕ is a homomorphism from
W into W0, as modules over A with differentiation. It is easy to see that Φ is
a homomorphism as in (7.13.2), as modules over k with differentiation, in this
case.

Let ψ be another homomorphism from W into W0, as modules over A with
differentiation, and let Ψ be the corresponding homomorphism as in (7.13.2),
as modules over k with differentiation. Suppose that σ is a homotopy between
ϕ and ψ, which means that σ is a homomorphism from W into W0, as modules
over A, such that

dW0
◦ σ + σ ◦ dW = ϕ− ψ.(7.13.3)

Let Σ be the homomorphism as in (7.13.2), as modules over k, that corresponds
to σ as before. It is easy to see that

d0 ◦ Σ+ Σ ◦ d = Φ−Ψ,(7.13.4)

so that Σ is a homotopy between Φ and Ψ.
Suppose now that W , W0 are graded modules over A, so that Homgr

A (V,W ),
Homgr

A (V,W0) may be defined as graded modules over k as in (7.12.4). Let ϕ
be a homomorphism from W into W0, as modules over A, of degree p ∈ Z. This
leads to a homomorphism Φ

from Homgr
A (V,W ) into Homgr

A (V,W0),(7.13.5)

as modules over k, of degree p too. More precisely, if l ∈ Z, then Φ acts on
(7.12.4) by composition with ϕ, as on p63 of [3].

Let |W |, |W0| be the underlying modules over A corresponding to W , W0,
respectively, without gradings, as on p63 of [3]. Remember that Homgr

A (V,W )
and Homgr

A (V,W0) may be considered as submodules of HomA(V, |W |) and
HomA(V, |W0|), respectively, as modules over k, as in the previous section. Us-
ing this, we have that the homomorphism Φ as in (7.13.5) is the same as the
restriction of the homomorphism Φ

from HomA(V, |W |) into HomA(V, |W0|)(7.13.6)
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as in (7.13.2) to Homgr
A (V,W ).

If V is considered as a graded module over A as in (7.12.9), then we can
define Homgr

A (V,W ) and Homgr
A (V,W0) as doubly-graded modules over k, as in

Section 6.3. In this case,

the homomorphism Φ as in (7.13.5)(7.13.7)

corresponds to Homgr(IV , ϕ),

in the notation of Section 6.4, where IV is the identity mapping on V .
Suppose that (W,dW ), (W0, dW0) are graded modules over A with differenti-

ation that are complexes, so that Homgr
A (V,W ), Homgr

A (V,W0) may be consid-
ered as single complexes, as in the previous section. Let ϕ be a map of degree
p ∈ Z from W into W0, as complexes, as in Section 6.6. If Φ is the correspond-
ing homomorphism as in (7.13.5), then Φ is a map of degree p as in (7.13.5), as
complexes.

Let ψ be another map of degree p from W into W0, as complexes, and let
Ψ be the corresponding map of degree p as in (7.13.5), as complexes. Also let
σ be a homotopy between ϕ and ψ, as maps of degree p between complexes, as
in Section 6.6. In particular, σ is a homomorphism from W into W0 of degree
p − 1, as modules over A. Let Σ be the corresponding homomorphism as in
(7.13.5), as modules over k, which has degree p− 1 as well. One can verify that
Σ is a homotopy between ϕ and ψ, as maps of degree p between complexes.

Let us consider V as a complex, with dV = 0, and graded as in (7.12.9).
Thus we may consider Homgr

A (V,W ) and Homgr
A (V,W0) as double complexes,

as in the previous section. In this case, Φ and Ψ may be considered as maps of
bidegree (0, p) as in (7.13.5), as double complexes, as in Section 6.9. We also get
that (0,Σ) defines a homotopy between Φ and Ψ, as maps of bidegree (0, p) as
in (7.13.5), as double complexes, as in Section 6.9. If p = 0, then these remarks
correspond to some of those in Section 6.5.

7.14 An analogue of α′

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with a multiplicative identity element eA. Also let
V and W be both left or both right modules over A, and suppose that (W,dW )
is a module over A with differentiation. Thus HomA(V,W ) is a module over k
with differentiation operator d = dHomA(V,W ) as in (7.12.1).

By definition, Z
(
HomA(V,W )

)
consists of ϕ ∈ HomA(V,W ) such that

d(ϕ) = dW ◦ ϕ = 0(7.14.1)

on V . This is the same as saying that

ϕ(V ) ⊆ Z(W ),(7.14.2)

so that
Z
(
HomA(V,W )

)
= HomA(V, Z(W )),(7.14.3)
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where the latter is considered as a submodule of HomA(V,W ).
Similarly, ϕ ∈ B

(
HomA(V,W )

)
if and only if

ϕ = d(ψ) = dW ◦ ψ(7.14.4)

for some ψ ∈ HomA(V,W ). In this case,

ϕ(V ) = dW (ψ(V )) ⊆ dW (W ) = B(W ).(7.14.5)

This means that

B
(
HomA(V,W )

)
⊆ HomA(V,B(W )),(7.14.6)

where the latter is considered as a submodule of HomA(V,W ).
There is a natural homomorphism

ξ from HomA(V, Z(W )) into HomA(V,H(W )),(7.14.7)

as modules over k, defined by sending an element of HomA(V, Z(W )) to its
composition with the natural quotient mapping from Z(W ) onto H(W ). Equiv-
alently, ξ may be considered as a homomorphism

from Z
(
HomA(V,W )

)
into HomA(V,H(W )),(7.14.8)

by (7.14.3). Note that
ker ξ = HomA(V,B(W )),(7.14.9)

considered as a submodule of (7.14.3). This leads to a natural homomorphism

α′ from H
(
HomA(V,W )

)
into HomA(V,H(W )),(7.14.10)

because of (7.14.6).
The natural quotient mapping from Z

(
HomA(V,W )

)
ontoH

(
HomA(V,W )

)
may be considered as a homomorphism

η from HomA(V, Z(W )) onto H
(
HomA(V,W )

)
,(7.14.11)

as modules over k, by (7.14.3). By construction,

α′ ◦ η = ξ.(7.14.12)

This determines α′ uniquely, because η is surjective.
There is a natural homomorphism

from HomA(V,W ) into HomA(V, Z
′(W )),(7.14.13)

as modules over k, which sends an element of HomA(V,W ) to its composition
with the natural quotient mapping from W onto Z ′(W ) = W/dW (W ). This
leads to a natural homomorphism

from HomA(V, Z(W )) into HomA(V, Z
′(W )),(7.14.14)
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as modules over k, which is defined by restricting the homomorphism as in
(7.14.13) to HomA(V, Z(W )), considered as a submodule of HomA(V,W ). This
homomorphism could also be described by saying that it sends an element of
HomA(V, Z(W )) to its composition with the restriction to Z(W ) of the natural
quotient mapping from W onto Z ′(W ).

Of course, H(W ) may be considered as a submodule of Z ′(W ), as a mod-
ule over A, so that HomA(V,H(W )) may be considered as a submodule of
HomA(V, Z

′(W )), as a module over k. The inclusion mapping

τ from HomA(V,H(W )) into HomA(V, Z
′(W ))(7.14.15)

is an injective module homomorphism, and we get that

τ ◦ ξ is the same as the homomorphism as in (7.14.14).(7.14.16)

Note that

the kernel of the homomorphism as in (7.14.14)(7.14.17)

is equal to HomA(V,B(W )),

considered as a submodule of HomA(V, Z(W )), as a module over k. This can
be seen directly, or using (7.14.9) and (7.14.16). This leads to a natural homo-
morphism

ζ from H
(
HomA(V,W )

)
into HomA(V, Z

′(W )),(7.14.18)

because of (7.14.3) and (7.14.6).
It is easy to see that

ζ ◦ η is the same as the homomorphism as in (7.14.14),(7.14.19)

by construction. This means that

τ ◦ ξ = ζ ◦ η,(7.14.20)

by (7.14.16).
One can verify that

τ ◦ α′ = ζ,(7.14.21)

as homomorphisms from H
(
HomA(V,W )

)
into HomA(V, Z

′(W )). Of course, α′

is uniquely determined by this property, because τ is injective. Each of (7.14.12)
and (7.14.21) can be obtained from the other using (7.14.20), by composing with
η or τ , as appropriate.

7.15 Complexes and α′

Let us continue with the same notation and hypotheses as in the previous sec-
tion, and suppose now that (W,dW ) is a graded module over A that is a complex.
Thus Homgr

A (V,W ) may be defined as a graded module over k as in (7.12.4),
and as a complex, with differentiation operator d = dHomgr

A
(V,W ) as in (7.12.11).
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The underlying module |W | over A corresponding to W may be considered
as a module with differentiation with respect to dW , so that HomA(V, |W |) is
a module over k with differentiation operator d = dHomA(V,|W |) defined as in
(7.12.1). Remember that Homgr

A (V,W ) may be considered as a submodule of
HomA(V, |W |), as a module over k with differentiation, as in Section 7.12.

Note that

Homgr
A (V,B(W )), Homgr

A (V, Z(W )), Homgr
A (V,H(W )),(7.15.1)

and Homgr
A (V, Z ′(W ))

may be defined as graded modules over k as in (7.12.4) too. More precisely,

Homgr
A (V,B(W )) and Homgr

A (V, Z(W ))(7.15.2)

are homogeneous submodules of Homgr
A (V,W ),

and

Homgr
A (V,H(W )) is a homogeneous submodule(7.15.3)

of Homgr
A (V, Z ′(W )).

The remarks in the previous section can be applied to |W |, and we would
like to consider the analogous statements for Homgr

A (V, ·) in place of HomA(V, ·).
We have that

Z
(
HomA(V, |W |)

)
= HomA(V, Z(|W |)),(7.15.4)

as in (7.14.3), for instance, and similarly

Z
(
Homgr

A (V,W )
)
= Homgr

A (V, Z(W )).(7.15.5)

We also have that

B
(
HomA(V, |W |)

)
⊆ HomA(V,B(|W |)),(7.15.6)

as in (7.14.6), and

B
(
Homgr

A (V,W )
)
⊆ Homgr

A (V,B(W )).(7.15.7)

One can check that

B
(
Homgr

A (V,W )
)
= Homgr

A (V,W ) ∩B
(
HomA(V, |W |)

)
.(7.15.8)

Using this,

we may consider H
(
Homgr

A (V,W )
)

(7.15.9)

as a submodule of H
(
HomA(V, |W |)

)
,

as a module over k. Similarly,

we may consider Z ′(Homgr
A (V,W )

)
(7.15.10)

as a submodule of Z ′(HomA(V, |W |)
)
,
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as a module over k.
There is a natural homomorphism

ξ from HomA(V, Z(|W |)) into HomA(V,H(|W |)),(7.15.11)

as modules over k, as in (7.14.7). This may be considered as a homomorphism

from Z
(
HomA(V, |W |)

)
into HomA(V,H(|W |)),(7.15.12)

by (7.15.4), as before. It is easy to see that

ξ maps Homgr
A (V, Z(W )) into Homgr

A (V,H(W )),(7.15.13)

and that

the restriction of ξ to Homgr
A (V, Z(W )) has degree 0.(7.15.14)

Remember that
ker ξ = HomA(V,B(|W |)),(7.15.15)

as in (7.14.9). This implies that

the kernel of the restriction of ξ to Homgr
A (V, Z(W ))(7.15.16)

is Homgr
A (V,B(W )).

Using (7.15.15), we get a natural homomorphism

α′ from H
(
HomA(V, |W |)

)
into HomA(V,H(|W |)),(7.15.17)

as in (7.14.10). One can check that

α′ maps H
(
Homgr

A (V,W )
)
into Homgr

A (V,H(W )),(7.15.18)

and that

the restriction of α′ to H
(
Homgr

A (V,W )
)
has degree 0.(7.15.19)

Because of (7.15.4), the natural quotient mapping from Z
(
HomA(V, |W |)

)
onto H

(
HomA(V, |W |)

)
may be considered as a homomorphism

η from HomA(V, Z(|W |)) onto H
(
HomA(V, |W |)

)
,(7.15.20)

as modules over k, as in (7.14.11). One can verify that

η maps Homgr
A (V, Z(W )) onto H

(
Homgr

A (V,W )
)
,(7.15.21)

and that

the restriction of η to Homgr
A (V, Z(W )) has degree 0.(7.15.22)
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More precisely, the restriction of η to Homgr
A (V, Z(W )) corresponds to the nat-

ural quotient mapping from Z
(
Homgr

A (V,W )
)
onto H

(
Homgr

A (V,W )
)
, because

of (7.15.5) and (7.15.8). We also have that α′ ◦ η = ξ, as in (7.14.12). In
particular, this holds on Homgr

A (V, Z(W )).
There is a natural homomorphism

from HomA(V, |W |) into HomA(V, Z
′(|W |)),(7.15.23)

as modules over k, as in (7.14.13). This leads to a natural homomorphism

from HomA(V, Z(|W |)) into HomA(V, Z
′(|W |)),(7.15.24)

as modules over k, as in (7.14.14), by restricting the homomorphism as in
(7.15.23) to HomA(V, Z(|W |)). It is easy to see that

the homomorphism as in (7.15.23)(7.15.25)

maps Homgr
A (V,W ) into Homgr

A (V, Z ′(W )),

and that

the restriction of the homomorphism as in (7.15.23)(7.15.26)

to Homgr
A (V,W ) has degree 0.

Thus the restriction of the homomorphism as in (7.15.24) to Homgr
A (V, Z(W ))

defines a natural homomorphism

from Homgr
A (V, Z(W )) into Homgr

A (V, Z ′(W ))(7.15.27)

of degree 0.
The inclusion mapping

τ from HomA(V,H(|W |)) into HomA(V, Z
′(|W |))(7.15.28)

is an injective module homomorphism, as in (7.14.15). Of course, τ maps
Homgr

A (V,H(W )) into Homgr
A (V, Z ′(W )). Remember that τ ◦ ξ is the same

as the homomorphism as in (7.15.24), as in (7.14.16).
Remember that the kernel of the homomorphism as in (7.15.24) is equal to

HomA(V,B(|W |)), as in (7.14.17). This leads to a natural homomorphism

ζ from H
(
HomA(V, |W |)

)
into HomA(V, Z

′(|W |)),(7.15.29)

as in (7.14.18). It is easy to see that

ζ
(
H
(
Homgr

A (V,W )
))

⊆ Homgr
A (V, Z ′(W ))(7.15.30)

and
the restriction of ζ to H

(
Homgr

A (V,W )
)
has degree 0,(7.15.31)

because of the analogous properties of the homomorphism as in (7.15.27).
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As in (7.14.19), ζ ◦ η is the same as the homomorphism as in (7.15.24).
This means that τ ◦ ξ = ζ ◦ η, as in (7.14.20). In particular, this holds on
Homgr

A (V, Z(W )).
Similarly, τ ◦ α′ = ζ on H

(
HomA(V, |W |)

)
, as in (7.14.21). In particular,

this holds on H
(
Homgr

A (V,W )
)
.

These homomorphisms and their properties correspond to the commutative
diagram (1) on p64 of [3], and parts of Proposition 6.1a on p65 of [3], under
slightly different conditions.

Remember that V may be considered as a graded module over A with dif-
ferentiation that is a complex, with grading as in (7.12.9) and dV = 0, as in
Section 7.12. Of course, B(V ) = {0}, and Z(V ) = H(V ) = Z ′(V ) = V in this
case. Using this, the remarks in this and the previous section correspond to
those in Sections 6.13 – 6.15.



Chapter 8

More on differentiation, 3

8.1 Splitting Z(W ) and α′

Let k be a commutative ring with a multiplicative identity element, and let
A be an associative algebra over k with a multiplicative identity element eA.
Also let V and W be both left or both right modules over A, and suppose that
(W,dW ) is a module over A with differentiation. Remember that HomA(V,W )
is a module over k with differentiation operator d = dHomA(V,W ) as in (7.12.1).

Suppose that

Z(W ) corresponds to the direct sum(8.1.1)

of B(W ) and another submodule of Z(W ),

as a module over A. This means that

there is a homomorphism from H(W ) into Z(W ),(8.1.2)

as modules over A, whose composition with the

natural quotient mapping from Z(W ) onto H(W )

is the identity mapping on H(W ).

Indeed, Z(W ) corresponds to the direct sum of B(W ) and the image of H(W )
under this homomorphism in this case, as a module over A.

Let γ̃ be the homomorphism as in (8.1.2), considered as a homomorphism

from H(W ) into W.(8.1.3)

Equivalently, γ̃ may be considered as the composition of the homomorphism in
(8.1.2) with the natural inclusion mapping from Z(W ) into W . Note that

dW ◦ γ̃ = 0,(8.1.4)

because γ̃(H(W )) ⊆ Z(W ).

205
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Using γ̃, we get a homomorphism

from HomA(V,H(W )) into HomA(V,W ),(8.1.5)

as modules over k. This homomorphism sends an element of HomA(V,H(W ))
to its composition with γ̃. This may be considered as a homomorphism

from HomA(V,H(W )) into Z
(
HomA(V,W )

)
,(8.1.6)

or equivalently into HomA(V, Z(W )).
This leads to a homomorphism

from HomA(V,H(W )) into H
(
HomA(V,W )

)
,(8.1.7)

as modules over k, by composing the previous homomorphism as in (8.1.6) with
the natural quotient mapping

from Z
(
HomA(V,W )

)
onto H

(
HomA(V,W )

)
.(8.1.8)

Let α′ be the homomorphism from H
(
HomA(V,W )

)
into HomA(V,H(W )) de-

fined in Section 7.14. One can verify that

the composition of the homomorphism as in (8.1.7) with α′(8.1.9)

is the identity mapping on HomA(V,H(W )).

This implies that

α′(H(
HomA(V,W )

))
= HomA(V,H(W )).(8.1.10)

We also obtain that

H
(
HomA(V,W )

)
corresponds to the direct sum of kerα′(8.1.11)

and another submodule of H
(
HomA(V,W )

)
,

as a module over k.
Suppose now that (W,dW ) is a graded module over A with differentiation

that is a complex, and that

Z(W ) corresponds to the direct sum of B(W )(8.1.12)

and another homogeneous submodule of Z(W ),

as a module over A. This means that Z(W ) corresponds to the direct sum of
B(W ) and another submodule, as a graded module over A. It follows that

the homomorphism as in (8.1.2) has degree 0,(8.1.13)

so that
the homomorphism γ̃ as in (8.1.3) has degree 0.(8.1.14)
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Remember that Homgr
A (V,W ) may be defined as a graded module over k as

in (7.12.4), and as a complex, with differentiation operator d = dHomgr
A

(V,W ) as

in (7.12.11). We may also consider the underlying module |W | over A corre-
sponding toW , without a grading, as a module with differentiation with respect
to dW , so that HomA(V, |W |) is a module over k with differentiation operator
d = dHomA(V,|W |) defined as in (7.12.1). As in Section 7.12, we may consider
Homgr

A (V,W ) as a submodule of HomA(V, |W |), as a module over k with differ-
entiation.

We can use γ̃ to get a homomorphism

from HomA(V,H(|W |)) into HomA(V, |W |),(8.1.15)

as modules over k, as in (8.1.5). This may be considered as a homomorphism

from HomA(V,H(|W |)) into Z
(
HomA(V, |W |)

)
,(8.1.16)

as in (8.1.6), or equivalently into HomA(V, Z(|W |)). It is easy to see that

the homomorphism as in (8.1.15)(8.1.17)

maps Homgr
A (V,H(W )) into Homgr

A (V,W ).

The restriction of this homomorphism to Homgr
A (V,H(W )) may be considered

as a homomorphism

from Homgr
A (V,H(W )) into Z

(
Homgr

A (V,W )
)
,(8.1.18)

or equivalently into Homgr
A (V, Z(W )), as before. Note that

the homomorphism as in (8.1.18) has degree 0,(8.1.19)

because of (8.1.14).
As before, we get a homomorphism

from HomA(V,H(|W |)) into H
(
HomA(V, |W |)

)
,(8.1.20)

as modules over k, by composing the homomorphism as in (8.1.16) with the
natural quotient mapping

from Z
(
HomA(V, |W |)

)
onto H

(
HomA(V, |W |)

)
.(8.1.21)

One can check that the homomorphism as in (8.1.20) maps Homgr
A (V,H(W ))

into H
(
Homgr

A (V,W )
)
. More precisely, the restriction of this homomorphism

to Homgr
A (V,H(W )) is the same as the homomorphism

from Homgr
A (V,H(W )) into H

(
Homgr

A (V,W )
)

(8.1.22)

obtained by composing the homomorphism as in (8.1.18) with the natural quo-
tient mapping

from Z
(
Homgr

A (V,W )
)
onto H

(
Homgr

A (V,W )
)
.(8.1.23)
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It is easy to see that

the homomorphism as in (8.1.22) has degree 0,(8.1.24)

because of (8.1.19).
Let α′ be the homomorphism

from H
(
HomA(V, |W |)

)
into HomA(V,H(|W |))(8.1.25)

discussed in Sections 7.14 and 7.15. As in (8.1.9),

the composition of the homomorphism as in (8.1.20) with α′(8.1.26)

is the identity mapping on HomA(V,H(|W |)).

It follows that

α′(H(
HomA(V, |W |)

))
= HomA(V,H(|W |))(8.1.27)

and

H
(
HomA(V, |W |)

)
corresponds to the direct sum of kerα′(8.1.28)

and another submodule of H
(
HomA(V, |W |)

)
,

as a module over k, as in (8.1.10) and (8.1.11).
Under these conditions, α′ maps H

(
Homgr

A (V,W )
)
into Homgr

A (V,H(W )),

and the restriction of α′ to H
(
Homgr

A (V,W )
)
has degree 0, as in (7.15.18) and

(7.15.19). Using (8.1.26), we get that

the composition of the homomorphism as in (8.1.22)(8.1.29)

with the restriction of α′ to H
(
Homgr

A (V,W )
)

is the identity mapping on Homgr
A (V,H(W )).

In particular, this implies that

α′(H(
Homgr

A (V,W )
))

= Homgr
A (V,H(W )).(8.1.30)

Of course,

the kernel of the restriction of α′ to H
(
Homgr

A (V,W )
)

(8.1.31)

is a homogeneous submodule of H
(
Homgr

A (V,W )
)
,

as a graded module over k, because the restriction of α′ to H
(
Homgr

A (V,W )
)

has degree 0. Similarly,

the image of Homgr
A (V,H(W ))(8.1.32)

under the homomorphism as in (8.1.22)

is a homogeneous submodule of H
(
Homgr

A (V,W )
)
,
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because of (8.1.24). In fact,

H
(
Homgr

A (V,W )
)
corresponds to the direct sum(8.1.33)

of the homogeneous submodules in (8.1.31) and (8.1.32),

as a graded module over k, because of (8.1.29). This corresponds to Proposition
6.2a on p66 of [3], under slightly different conditions.

We may consider V as a complex, with the grading as in (7.12.9), and dV = 0,
as in Section 7.12. In this case, the previous remarks correspond to those in
Section 7.3.

8.2 Surjectivity conditions and α′

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V and W be both left or both right modules over A again, and suppose that
(W,dW ) is a module over A with differentiation. Thus HomA(V,W ) is a module
over k with differentiation operator d = dHomA(V,W ) as in (7.12.1), as before.

Remember that Z
(
HomA(V,W )

)
is the same as HomA(V, Z(W )), and that

B
(
HomA(V,W )

)
is contained in HomA(V,B(W )), as in Section 7.14. Consider

the condition that

B
(
HomA(V,W )

)
= HomA(V,B(W )),(8.2.1)

which is to say that d maps HomA(V,W ) onto HomA(V,B(W )). In particular,
this holds when V is projective as a module over A.

Alternatively, let W0 be a submodule of W , as a module over A. If

W corresponds to the direct sum of Z(W ) and W0,(8.2.2)

as a module over A, then

the restriction of dW to W0 is a one-to-one mapping onto B(W ).(8.2.3)

Conversely, one can check that (8.2.3) implies (8.2.2). It is easy to see that
(8.2.3) implies (8.2.1).

Let α′ be the homomorphism from H
(
HomA(V,W )

)
into HomA(V,H(W ))

defined in Section 7.14. One can verify that the kernel of α′ is the same as
the image of HomA(V,B(W )) under the natural quotient homomorphism from
Z
(
HomA(V,W )) onto H

(
HomA(V,W )

)
, by construction. In particular,

α′ is injective on H
(
HomA(V,W )

)
if and only if (8.2.1) holds.(8.2.4)

Remember that ξ is the natural homomorphism from HomA(V, Z(W )) into
HomA(V,H(W )) defined by composing an element of HomA(V, Z(W )) with the
natural quotient mapping from Z(W ) onto H(W ), as in Section 7.14. Observe
that

α′(H(
HomA(V,W )

))
= ξ

(
HomA(V, Z(W ))

)
,(8.2.5)
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by construction. In particular,

α′(H(
HomA(V,W )

))
= HomA(V,H(W ))(8.2.6)

if and only if

ξ
(
HomA(V, Z(W ))

)
= HomA(V,H(W )).(8.2.7)

If V is projective as a module over A, then (8.2.7) holds. This implies that
(8.2.6) holds, as in the preceding paragraph.

If Z(W ) corresponds to the direct sum of B(W ) and another submodule, as
a module over A, then one can check directly that (8.2.7) holds. This means
that (8.2.6) holds, which could also be obtained as in (8.1.10).

8.3 Surjectivity conditions and complexes

Let us continue with the same notation and hypotheses as in the previous sec-
tion, and suppose in addition that (W,dW ) is a graded module over A that is a
complex. This means that Homgr

A (V,W ) may be defined as a graded module over
k as in (7.12.4), and as a complex, with differentiation operator d = dHomgr

A
(V,W )

as in (7.12.11).
As in Section 7.15, Z

(
Homgr

A (V,W )
)
is the same as Homgr

A (V, Z(W )), and

B
(
Homgr

A (V,W )
)
is contained in Homgr

A (V,B(W )). Consider the condition that

B
(
Homgr

A (V,W )
)
= Homgr

A (V,B(W )),(8.3.1)

which means that d maps Homgr
A (V,W ) onto Homgr

A (V,B(W )). One can check
that this holds when V is projective as a module over A, as before.

Let W0 be a homogeneous submodule of W , as a graded module over A.
Note that

W corresponds to the direct sum of Z(W ) and W0,(8.3.2)

as a module over A, if and only if this holds with for W as a graded module
over A. Of course, the restriction of dW to W0 is a homomorphism into B(W ),
as modules over A, of degree 1. As in the previous section, (8.3.2) holds if and
only if

the restriction of dW to W0 is a one-to-one mapping onto B(W ).(8.3.3)

One can verify that (8.3.1) holds when (8.3.3) holds.
Remember that the underlying module |W | over A corresponding to W ,

without a grading, may be considered as a module over A with differentiation
with respect to dW , so that HomA(V, |W |) may be considered as a module
over k with differentiation operator d = dHomA(V,W ) as in (7.12.1). We may
also consider Homgr

A (V,W ) as a submodule of HomA(V, |W |), as a module over
k with differentiation, as in Section 7.12. Similarly, Homgr

A (V,B(W )) may be
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considered as a submodule of HomA(V,B(|W |)), as a module over k, which may
be considered as a submodule of HomA(V, |W |). It is easy to see that

Homgr
A (V,B(W )) = Homgr

A (V,W ) ∩HomA(V,B(|W |)),(8.3.4)

as submodules of HomA(V, |W |).
Let α′ be the homomorphism

from H
(
HomA(V, |W |)

)
into HomA(V,H(|W |))(8.3.5)

defined in Sections 7.14 and 7.15. As in the previous section, the kernel of
α′ is the same as the image of HomA(V,B(|W |)) under the natural quotient
homomorphism

from Z
(
HomA(V, |W |)

)
onto H

(
HomA(V, |W |)

)
.(8.3.6)

Remember that the restriction of α′ to H
(
Homgr

A (V,W )
)
is a homomorphism

into Homgr
A (V,H(W )) of degree 0. as in Section 7.15. The kernel of the restric-

tion of α′ to H
(
Homgr

A (V,W )
)
is the same as the image of Homgr

A (V,B(W ))
under the natural quotient homomorphism

from Z
(
Homgr

A (V,W )
)
onto H

(
Homgr

A (V,W )
)
,(8.3.7)

because of (8.3.4). It follows that

the restriction of α′ to H
(
Homgr

A (V,W )
)
is injective(8.3.8)

if and only if (8.3.1) holds.

Let ξ be the natural homomorphism

from HomA(V, Z(|W |)) into HomA(V,H(|W |))(8.3.9)

defined by composing an element of HomA(V, Z(|W |)) with the natural quotient
mapping from Z(|W |) onto H(|W |), as in Sections 7.14 and 7.15. Thus

α′(H(
HomA(V, |W |)

))
= ξ

(
HomA(V, Z(|W |))

)
,(8.3.10)

as in (8.2.5). The restriction of ξ to Homgr
A (V, Z(W )) is a homomorphism into

Homgr
A (V,H(W )) of degree 0, as in Section 7.15. We also have that

α′(H(
Homgr

A (V,W )
))

= ξ
(
Homgr

A (V, Z(W ))
)
,(8.3.11)

by construction. This means that

α′(H(
Homgr

A (V,W )
))

= Homgr
A (V,H(W ))(8.3.12)

if and only if
ξ
(
Homgr

A (V, Z(W ))
)
= Homgr

A (V,H(W )).(8.3.13)

One can verify that (8.3.13) holds when V is projective as a module over A.
Thus (8.3.12) holds in this case.
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Suppose that Z(W ) corresponds to the direct sum of B(W ) and another
homogeneous submodule of Z(W ), as a module over A, and thus as a graded
module over A. One can check directly that (8.3.13) under these conditions, so
that (8.3.12) holds. This could also be obtained as in (8.1.30).

These properties of α′ are related to Propositions 7.2 and 7.4 on p68, 70 of
[3], and some remarks on p70 of [3].

8.4 Differentiation and Hom(·,W )

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V , W be both left or both right modules over A.

Suppose for the moment that (V, dV ) is a module with differentiation. Let

d = dHomA(V,W )(8.4.1)

be the homomorphism from HomA(V,W ) into itself, as a module over A, defined
by composing dV with elements of HomA(V,W ). That is to say, if ϕ is an element
of HomA(V,W ), then we put

d(ϕ) = ϕ ◦ dV .(8.4.2)

Clearly
d ◦ d = 0 on HomA(V,W ),(8.4.3)

so that HomA(V,W ) is a module with differentiation with respect to d.
Suppose now that V is a graded module over A. We would like to define

Homgr
A (V,W ) as a graded module over k, with(

Homgr
A (V,W )

)j
= HomA(V

−j ,W )(8.4.4)

for every j ∈ Z, as on p62 of [3], with r = 1. As in previous situations like this,
we can simply take Homgr

A (V,W ) to be the direct sum of (8.4.4) over j ∈ Z, as
a module over k, but it is sometimes convenient to consider it as a submodule
of related modules over k.

Let |V | be the underlying module over A corresponding to V , without a
grading, as on p63 of [3]. If ϕ ∈ Homgr

A (V,W ), then let ϕj be the corresponding
element of (8.4.4) for each j ∈ Z, as usual, so that ϕj = 0 for all but finitely
many j. This leads to a unique homomorphism from |V | into W , as modules
over A, that we shall also denote by ϕ, with

ϕ = ϕj on V −j(8.4.5)

for each j ∈ Z.
This defines an injective homomorphism

from Homgr
A (V,W ) into HomA(|V |,W ),(8.4.6)
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as modules over k, so that we may identify Homgr
A (V,W ) with the corresponding

submodule of HomA(|V |,W ), as a module over k. More precisely, Homgr
A (V,W )

corresponds to the submodule of HomA(V,W ) consisting of the homomorphisms
from |V | intoW , as modules over A, whose restrictions to V −j are equal to 0 for
all but finitely many j ∈ Z. This is related to a remark on p63 of [3]. Remember
that HomA(|V |,W ) corresponds to a direct product of HomA(V

−j ,W ), j ∈ Z,
as a module over k, as in Section 1.7.

Suppose for the moment that W is considered as a graded module over A,
with

W l = W when l = 0(8.4.7)

= {0} when l 6= 0,

as in Section 7.5. This permits us to consider Homgr
A (V,W ) as a doubly-graded

module over k, as in Section 6.3, with(
Homgr

A (V,W )
)j,l

= HomA(V
−j ,Wl) = HomA(V

−j ,W ) when l = 0

= {0} when l 6= 0.(8.4.8)

Note that the single grading associated to this double grading is the same as in
(8.4.4).

Suppose for the rest of the section that (V, dV ) is a graded module over A
that is a complex. Thus Homgr

A (V,W ) may be defined as a graded module over
k as in (8.4.4). Let us define

d = dHomgr
A

(V,W )(8.4.9)

on Homgr
A (V,W ) as follows. If ϕ ∈ Homgr

A (V,W ), then d(ϕ) is defined as an
element of Homgr

A (V,W ) by putting

d(ϕ)j+1 = ϕj ◦ d−j−1
V(8.4.10)

for each j. One can check that Homgr
A (V,W ) is a complex with respect to d, as

on p63 of [3].
The underlying module |V | over A corresponding to V may be considered

as a module with differentiation with respect to dV , so that d = dHomA(|V |,W )

may be defined on HomA(|V |,W ) as in (8.4.1). It is easy to see that the re-
striction of d on HomA(|V |,W ) to Homgr

A (V,W ), considered as a submodule
of HomA(|V |,W ), as a module over k, is the same as the definition of d on
Homgr

A (V,W ) in the preceding paragraph. This means that Homgr
A (V,W ) may

be considered as a submodule of HomA(|V |,W ), as a module over k with dif-
ferentiation.

Let us consider W as a complex, with the grading as in (8.4.7), and dif-
ferentiation operator dW = 0, as on p75 of [3]. This permits us to consider
Homgr

A (V,W ) as a double complex, with double grading as in (8.4.8), and

δ1 = d = dHomgr
A

(V,W ), δ2 = 0,(8.4.11)
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as in Section 6.5. It follows that Homgr
A (V,W ) is a single complex with respect

to the total differentiation operator

δ = δ1 + δ2 = d = dHomgr
A

(V,W ),(8.4.12)

and the single grading associated to the double grading on Homgr
A (V,W ), as in

Section 5.14. This is equivalent to considering Homgr
A (V,W ) as a single complex

as before.

8.5 Induced mappings and Hom(·,W )

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V , V0, and W be all left or all right modules over A.

Suppose for the moment that (V, dV ) and (V0, dV0
) are modules with differ-

entiation. Let d = dHomA(V,W ) be defined on HomA(V,W ) as in (8.4.1), and
let

d0 = dHomA(V0,W )(8.5.1)

be defined on HomA(V0,W ) in the same way.
Let ϕ be a homomorphism from V0 into V , as modules over A. Consider the

homomorphism Φ

from HomA(V,W ) into HomA(V0,W ),(8.5.2)

as modules over k, defined by composing ϕ with an element of HomA(V,W ) to
get an element of HomA(V0,W ). Suppose now that ϕ is a homomorphism from
V0 into V , as modules over A with differentiation. In this case, one can check
that Φ is a homomorphism as in (8.5.2), as modules over k with differentiation.

Let ψ be another homomorphism from V0 into V , as modules over A with
differentiation, and let Ψ be the corresponding homomorphism as in (8.5.2), as
modules over k with differentiation. Also let σ be a homotopy between ϕ and
ψ, so that σ is a homomorphism from V0 into V , as modules over A, such that

dV ◦ σ + σ ◦ dV0 = ϕ− ψ.(8.5.3)

Suppose that Σ is the homomorphism as in (8.5.2), as modules over k, that
corresponds to σ in the same way as before. One can check that

d0 ◦ Σ+ Σ ◦ d = Φ−Ψ,(8.5.4)

so that Σ is a homotopy between Φ and Ψ.
Suppose now that V , V0 are graded modules over A, so that Homgr

A (V,W )
and Homgr

A (V0,W ) may be defined as graded modules over k as in (8.4.4). Let
ϕ be a homomorphism from V0 into V , as modules over A, of degree p ∈ Z.
This leads to a homomorphism Φ

from Homgr
A (V,W ) into Homgr

A (V0,W ),(8.5.5)
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as modules over k, of degree p as well. More precisely, if j ∈ Z, then Φ acts on
(8.4.4) by composing the restriction of ϕ to V −j−p

0 with an element of (8.4.4)
to get an element of(

Homgr
A (V0,W )

)j+p
= HomA(V

−j−p
0 ,W ),(8.5.6)

as on p63 of [3].

Let |V |, |V0| be the underlying modules over A corresponding to V , V0, re-
spectively, without gradings, as on p63 of [3]. We may consider Homgr

A (V,W )
and Homgr

A (V0,W ) as submodules of HomA(|V |,W ) and HomA(|V0|,W ), respec-
tively, as modules over k, as in the previous section. Using this identification,
the homomorphism Φ as in (8.5.5) is the same as the restriction of the homo-
morphism Φ

from HomA(|V |,W ) into HomA(|V0|,W )(8.5.7)

as in (8.5.2) to Homgr
A (V,W ).

If we consider W as a graded module as in (8.4.7), then Homgr
A (V,W ) and

Homgr
A (V0,W ) may be defined as doubly-graded modules over k, as in Section

6.3. Under these conditions,

the homomorphism Φ as in (8.5.5)(8.5.8)

corresponds to Homgr(ϕ, IW ).

This uses the notation in Section 6.4, with IW being the identity mapping on
W .

Suppose that (V, dV ), (V0, dV0
) are graded modules over A with differen-

tiation that are complexes, so that Homgr
A (V,W ) and Homgr

A (V0,W ) may be
considered as single complexes too, as in the previous section. Let ϕ be a map
of degree p ∈ Z from V0 into V , as complexes, as in Section 6.6. If Φ is the
corresponding homomorphism as in (8.5.5), then it is easy to see that Φ is a
map of degree p as in (8.5.5), as complexes.

Let ψ be another map of degree p from V0 into V , as complexes, and let Ψ
be the corresponding map of degree p as in (8.5.5), as complexes. Suppose that
σ is a homotopy between ϕ and ψ, as maps of degree p between complexes, as in
Section 6.6. Remember that this means in particular that σ is a homomorphism
from V0 into V of degree p−1, as modules over A. Thus we get a homomorphism
Σ as in (8.5.5), as modules over k, of degree p− 1. One can check that (−1)p Σ
is a homotopy between ϕ and ψ, as maps of degree p between complexes.

We may consider W as a complex, with dW = 0, and graded as in (8.4.7).
This permits us to consider Homgr

A (V,W ) and Homgr
A (V0,W ) as double com-

plexes, as in the previous section. We may also consider Φ and Ψ as maps of
bidegree (p, 0) as in (8.5.5), as double complexes, as in Section 6.9. Under these
conditions, ((−1)p Σ, 0) defines a homotopy between Φ and Ψ, as maps of bid-
gree (p, 0) as in (8.5.5), as double complexes, as in Section 6.9. These remarks
correspond to some of those in Section 6.5 when p = 0.
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8.6 Another analogue of α′

Let k be a commutative ring with a multiplicative identity element, and let
A be an associative algebra over k with a multiplicative identity element eA.
Also let V and W be both left or both right modules over A, and suppose that
(V, dV ) is a module over A with differentiation. This means that HomA(V,W )
is a module over k with differentiation operator d = dHomA(V,W ) as in (8.4.1).

In this case, Z
(
HomA(V,W )

)
consists of ϕ ∈ HomA(V,W ) such that

d(ϕ) = ϕ ◦ dV = 0(8.6.1)

on V . Equivalently, this means that

B(V ) ⊆ kerϕ.(8.6.2)

Of course, if ϕ ∈ HomA(V,W ), then the restriction of ϕ to Z(V ) defines a
homomorphism from Z(V ) intoW , as modules over A. If ϕ ∈ Z

(
HomA(V,W )

)
,

then the restriction of ϕ to Z(V ) induces a homomorphism

from H(V ) into W,(8.6.3)

as modules over A, because of (8.6.2). This defines a homomorphism

from Z
(
HomA(V,W )

)
into HomA(H(V ),W ),(8.6.4)

as modules over k.
Suppose for the moment that ϕ ∈ B

(
HomA(V,W )

)
, so that

ϕ = d(ψ) = ψ ◦ dV(8.6.5)

for some ψ ∈ HomA(V,W ). This implies that

Z(V ) ⊆ kerϕ.(8.6.6)

This means that the induced homomorphism as in (8.6.3) is equal to 0. This is
the same as saying that ϕ is mapped to 0 by the homomorphism as in (8.6.4).

Thus B
(
HomA(V,W )

)
is contained in the kernel of the homomorphism as in

(8.6.4). It follows that the homomorphism as in (8.6.4) induces a homomorphism

α′ from H
(
HomA(V,W )

)
into HomA(H(V ),W ),(8.6.7)

as modules over k.
There is a natural homomorphism

from HomA(Z
′(V ),W ) into HomA(V,W ),(8.6.8)

as modules over k. This is defined by composing the natural quotient mapping
from V onto Z ′(V ) = V/dV (V ) with an element of HomA(Z

′(V ),W ) to get an
element of HomA(V,W ). Note that

the homomorphism as in (8.6.8) is injective.(8.6.9)
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We also have that

the homomorphism as in (8.6.8)(8.6.10)

maps HomA(Z
′(V ),W ) onto Z

(
HomA(V,W )

)
.

This leads to a natural homomorphism

η from HomA(Z
′(V ),W ) onto H

(
HomA(V,W )

)
,(8.6.11)

as modules over k. More precisely, η is the composition of the homomorphism
as in (8.6.8), considered as a homomorphism onto Z

(
HomA(V,W )

)
, with the

natural quotient mapping from Z
(
HomA(V,W )

)
onto H

(
HomA(V,W )

)
.

There is a natural homomorphism

ξ from HomA(Z
′(V ),W ) into HomA(H(V ),W ),(8.6.12)

as modules over k, which sends an element of HomA(Z
′(V ),W ) to its restriction

to H(V ), considered as a submodule of Z ′(V ). It is easy to see that

α′ ◦ η = ξ,(8.6.13)

as homomorphisms from HomA(Z
′(V ),W ) into HomA(H(V ),W ). More pre-

cisely, α′ ◦ η is the same as the composition of the homomorphism as in (8.6.8),
considered as a homomorphism onto Z

(
HomA(v,W )

)
, with the homomorphism

as in (8.6.4). This composition is the same as ξ, by construction. Note that α′

is uniquely determined by (8.6.13), because η is surjective.
There is a natural homomorphism

from HomA(V,W ) into HomA(Z(V ),W ),(8.6.14)

as modules over k, which sends an element of HomA(V,W ) to its restriction to
Z(V ). There is also a natural homomorphism

from Z(V ) into Z ′(V ),(8.6.15)

as modules over A, which is the restriction to Z(V ) of the natural quotient
mapping from V onto Z ′(V ). Equivalently, this is the composition of the natural
quotient mapping from Z(V ) onto H(V ) with the natural inclusion mapping
from H(V ) into Z ′(V ).

Using the homomorphism as in (8.6.15), we get a natural homomorphism

from HomA(Z
′(V ),W ) into HomA(Z(V ),W ),(8.6.16)

as modules over k. This homomorphism sends an element of HomA(Z
′(V ),W )

to its composition with the homomorphism as in (8.6.15). This is the same as
the composition of the homomorphism as in (8.6.8) with the homomorphism as
in (8.6.14).



218 CHAPTER 8. MORE ON DIFFERENTIATION, 3

If ϕ ∈ B
(
HomA(V,W )

)
, then ϕ is mapped to 0 by the homomorphism as in

(8.6.14), because of (8.6.6). Using this and the restriction of the homomorphism
as in (8.6.14) to Z

(
HomA(V,W )

)
, we get a natural homomorphism

ζ from H
(
HomA(V,W )

)
into HomA(Z(V ),W ),(8.6.17)

as modules over k. One can check that

ζ ◦ η is the same as the homomorphism as in (8.6.16).(8.6.18)

More precisely, ζ ◦ η is the same as the composition of the homomorphism
as in (8.6.8) with the homomorphism as in (8.6.14), which is the same as the
homomorphism as in (8.6.16).

Using the natural quotient mapping from Z(V ) onto H(V ), we get a natural
homomorphism

τ from HomA(H(V ),W ) into HomA(Z(V ),W ),(8.6.19)

as modules over k. That is to say, τ sends an element of HomA(H(V ),W ) to
its composition with the natural quotient mapping from Z(V ) onto H(V ). In
particular,

τ is injective.(8.6.20)

One can verify that

τ ◦ ξ is the same as the homomorphism as in (8.6.16).(8.6.21)

More precisely, τ ◦ ξ is the same as the composition of the homomorphism as
in (8.6.8) with the homomorphism as in (8.6.14), which is the same as the
homomorphism as in (8.6.16). This implies that

τ ◦ ξ = ζ ◦ η,(8.6.22)

by (8.6.18).
We also have that

τ ◦ α′ = ζ,(8.6.23)

as homomorphisms from H
(
HomA(V,W )

)
into HomA(Z(V ),W ). This can be

seen directly from the definitions. Alternatively, each of (8.6.13) and (8.6.23)
can be obtained from the other using (8.6.22), by composing with η or τ , as
appropriate. Of course, α′ is uniquely determined by (8.6.23), because τ is
injective.

8.7 Another α′ and complexes

We continue with the same notation and hypotheses as in the previous section,
and suppose now that (V, dV ) is a graded module over A that is a complex.
This means that Homgr

A (V,W ) may be defined as a graded module over k as in
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(8.4.4), and as a complex, with differentiation operator d = dHomgr
A

(V,W ) as in

(8.4.9). Similarly,

Homgr
A (B(V ),W ), Homgr

A (Z(V ),W ), Homgr
A (H(V ),W ),(8.7.1)

and Homgr
A (Z ′(V ),W )

may be defined as graded modules over k as in (8.4.4).
The underlying module |V | over A corresponding to V may be considered

as a module with differentiation operator dV , and HomA(|V |,W ) is a module
over k with differentiation operator d = dHomA(|V |,W ) defined as in (8.4.1).
We have also seen that Homgr

A (V,W ) may be considered as a submodule of
HomA(|V |,W ), as a module over k with differentiation, as in Section 8.4.

Of course, B(|V |) and Z(|V |) are the same as B(V ) and Z(V ), respectively,
without the gradings. Thus B(|V |) and Z(|V |) may be considered as the same
as |B(V )| and |Z(V )|, respectively. In particular,

Homgr
A (B(V ),W ) and Homgr

A (Z(V ),W ) may be considered(8.7.2)

as submodules of HomA(B(|V |),W ) and HomA(Z(|V |),W ),

as modules over k, respectively.
Similarly, H(|V |) and Z ′(|V |) are the same as H(V ) and Z ′(V ), without the

gradings. This means that H(|V |) and Z ′(|V |) may be considered as the same
as |H(V )| and |Z ′(V )|, respectively. It follows that

Homgr
A (H(V ),W ) and Homgr

A (Z ′(V ),W ) may be considered(8.7.3)

as submodules of HomA(H(|V |),W ) and HomA(Z
′(|V |),W ),

as modules over k, respectively.
The remarks in the previous section can be applied to |V |, and we would

like to consider analogous statements for Homgr
A (·,W ) instead of HomA(·,W )

here. Note that

Z
(
Homgr

A (V,W )
)
= Z

(
HomA(|V |,W )

)
∩Homgr

A (V,W ),(8.7.4)

because Homgr
A (V,W ) is a submodule of HomA(|V |,W ), as a module over k

with differentiation.
We also have that

B
(
Homgr

A (V,W )
)
= B

(
HomA(|V |,W )

)
∩Homgr

A (V,W ).(8.7.5)

More precisely, the fact that the left side is contained in the right side follows
from Homgr

A (V,W ) being a submodule of HomA(|V |,W ), as a module over k
with differentiation. The opposite inclusion can be verified using the definition
of Homgr

A (V,W ).
Using (8.7.5),

we may consider H
(
Homgr

A (V,W )
)

(8.7.6)

as a submodule of H
(
HomA(|V |,W )

)
,
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as a module over k. Similarly,

we may consider Z ′(Homgr
A (V,W )

)
(8.7.7)

as a submodule of Z ′(HomA(|V |,W )
)
,

as a module over k.
There is a natural homomorphism

from Z
(
HomA(|V |,W )

)
into HomA(H(|V |),W ),(8.7.8)

as modules over k, as in (8.6.4). One can check that the restriction of this
homomorphism to Z

(
Homgr

A (V,W )
)
defines a homomorphism

from Z
(
Homgr

A (V,W )
)
into Homgr

A (H(V ),W ),(8.7.9)

as modules over k, of degree 0.
There is a natural homomorphism

α′ from H
(
HomA(|V |,W )

)
into HomA(H(|V |),W ),(8.7.10)

as modules over k, as in (8.6.7). One can check that

α′ maps H
(
Homgr

A (V,W )
)
into Homgr

A (H(V ),W ),(8.7.11)

and that

the restriction of α′ to H
(
Homgr

A (V,W )
)
has degree 0.(8.7.12)

There is an natural injective homomorphism

from HomA(Z
′(|V |),W ) into HomA(|V |,W ),(8.7.13)

as modules over k, as in (8.6.8). More precisely, this homomorphism maps
HomA(Z

′(|V |),W ) onto Z
(
HomA(|V |,W )

)
, as in (8.6.10). One can check that

this homomorphism

maps Homgr
A (Z ′(V ),W ) onto Z

(
Homgr

A (V,W )
)
,(8.7.14)

and that the restriction of this homomorphism to Homgr
A (Z ′(V ),W ) has degree

0.
There is a natural homomorphism

η from HomA(Z
′(|V |),W ) onto H

(
HomA(|V |,W )

)
,(8.7.15)

as modules over k, as in (8.6.11). One can verify that

η maps Homgr
A (Z ′(V ),W ) onto H

(
Homgr

A (V,W )
)
,(8.7.16)

and that

the restriction of η to Homgr
A (Z ′(V ),W ) has degree 0.(8.7.17)
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The restriction of η to Homgr
A (Z ′(V ),W ) is the same as the composition of the

restriction of the homomorphism as in (8.7.13) to Homgr
A (Z ′(V ),W ), considered

as a homomorphism onto Z
(
Homgr

A (V,W )
)
, with the natural quotient mapping

from Z
(
Homgr

A (V,W )
)
onto H

(
Homgr

A (V,W )
)
.

There is a natural homomorphism

ξ from HomA(Z
′(|V |),W ) into HomA(H(|V |),W ),(8.7.18)

as modules over k, as in (8.6.12). One can check that

ξ maps Homgr
A (Z ′(V ),W ) into Homgr

A (H(V ),W ),(8.7.19)

and that

the restriction of ξ to Homgr
A (Z ′(V ),W ) has degree 0.(8.7.20)

Note that α′ ◦ η = ξ on HomA(Z
′(|V |),W ), as in (8.6.13). In particular,

this holds on Homgr
A (Z ′(V ),W ). The restriction of α′ to H

(
Homgr

A (V,W )
)
is

uniquely determined by this equality of homomorphisms on Homgr
A (Z ′(V ),W ),

because of (8.7.16).
There is a natural homomorphism

from HomA(|V |,W ) into HomA(Z(|V |),W ),(8.7.21)

as modules over k, which sends an element of HomA(|V |,W ) to its restriction to
Z(|V |), as in (8.6.14). The restriction of this homomorphism to Homgr

A (V,W )
defines a natural homomorphism

from Homgr
A (V,W ) into Homgr

A (Z(V ),W ),(8.7.22)

as modules over k. More precisely, this homomorphism has degree 0.
There is a natural homomorphism

from Z(|V |) into Z ′(|V |),(8.7.23)

as modules over A, as in (8.6.15). The restriction of this homomorphism to
Z(V ) defines a homomorphism

from Z(V ) into Z ′(V ),(8.7.24)

as modules over A, of degree 0. This is the same as the restriction to Z(V )
of the natural quotient mapping from V onto Z ′(V ), and the composition of
the natural quotient mapping from Z(V ) onto H(V ) with the natural inclusion
from H(V ) into Z ′(V ).

There is a natural homomorphism

from HomA(Z
′(|V |),W ) into HomA(Z(|V |),W ),(8.7.25)

as modules over k, as in (8.6.16). The restriction of this homomorphism to
Homgr

A (Z ′(V ),W ) defines a homomorphism

from Homgr
A (Z ′(V ),W ) into Homgr

A (Z(V ),W ),(8.7.26)
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as modules over k, of degree 0.
There is a natural homomorphism

ζ from H
(
HomA(|V |,W )

)
into HomA(Z(|V |),W ),(8.7.27)

as modules over k, as in (8.6.17). One can check that

ζ maps H
(
Homgr

A (V,W )
)
into Homgr

A (Z(V ),W ),(8.7.28)

and that

the restriction of ζ to H
(
Homgr

A (V,W )
)
has degree 0.(8.7.29)

Remember that ζ ◦ η is the same as the homomorphism as in (8.7.25).
There is a natural injective homomorphism

τ from HomA(H(|V |),W ) into HomA(Z(|V |),W ),(8.7.30)

as modules over k, as in (8.6.19). One can verify that

τ maps Homgr
A (H(V ),W ) into Homgr

A (Z(V ),W ),(8.7.31)

and that

the restriction of τ to Homgr
A (H(V ),W ) has degree 0.(8.7.32)

We also have that τ ◦ ξ is the same as the homomorphism as in (8.7.25), as
before. This implies that τ ◦ ξ = ζ ◦ η, as in (8.6.22). In particular, this holds
on Homgr

A (Z ′(V ),W ).
Remember that τ ◦ α′ = ζ on H

(
HomA(|V |,W )

)
, as in (8.6.23). In partic-

ular, this holds on H
(
Homgr

A (V,W )
)
.

These homomorphisms and their properties correspond to the commutative
diagram (1) on p64 of [3], and to parts of Proposition 6.1a on p65 of [3], under
slightly different conditions.

We may consider W as a graded module over A with differentiation that is
a complex, with grading as in (8.4.7), and dW = 0, as in Section 8.4. In this
case, B(W ) = {0}, Z(W ) = H(W ) = Z ′(W ) =W , and the remarks in this and
the previous section correspond to those in Sections 6.13 – 6.15.

8.8 Splitting Z ′(V ) and α′

Let k be a commutative ring with a mutliplciative identity element, and let A be
an associative algebra over k with a multiplicative identity element eA. Suppose
that V and W are both left or both right modules over A, and that (V, dV ) is a
module over A with differentiation. Thus HomA(V,W ) is a module over k with
differentiation operator d = dHomA(V,W ) as in (8.4.1).
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Remember that Z ′(V ) = V/dV (V ), and suppose that

Z ′(V ) corresponds to the direct sum(8.8.1)

of H(V ) and another submodule of Z ′(V ),

as a module over A. This means that

there is a homomorphism from Z ′(V ) onto H(V ), as modules(8.8.2)

over A, that is equal to the identity mapping on H(V ).

We can compose the natural quotient mapping from V onto Z ′(V ) with this
homomorphism to get a homomorphism

β from V onto H(V ),(8.8.3)

as modules over A. Of course,

β ◦ dV = 0(8.8.4)

on V , by construction. Note that

the restriction of β to Z(V ) is the same as(8.8.5)

the natural quotient mapping from Z(V ) onto H(V ),

by (8.8.2).
We can use β to get a homomorphism

from HomA(H(V ),W ) into HomA(V,W ),(8.8.6)

as modules over k. This homomorphism sends an element of HomA(H(V ),W )
to its composition with β, to get an element of HomA(V,W ). The composition
of this element of HomA(V,W ) with dV is equal to 0, because of (8.8.4). This
means that we get an element of Z

(
HomA(V,W )

)
, by the definition of d. Thus

we get a homomorphism

from HomA(H(V ),W ) into Z
(
HomA(V,W )

)
(8.8.7)

in this way.
This leads to a homomorphism

from HomA(H(V ),W ) into H
(
HomA(V,W )

)
,(8.8.8)

as modules over k, by composing the previous homomorphism as in (8.8.7) with
the natural quotient mapping

from Z
(
HomA(V,W )

)
onto H

(
Hom(V,W )

)
.(8.8.9)

Let α′ be the homomorphism from H
(
HomA(V,W )

)
into HomA(H(V ),W ) de-

fined in Section 8.6. One can check that

the composition of the homomorphism as in (8.8.8) with α′(8.8.10)

is the identity mapping on HomA(H(V ),W ).
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More precisely, the composition of the homomorphism as in (8.8.8) with α′

is the same as the composition of the homomorphism as in (8.8.7) with the
homomorphism as in (8.6.4), by construction. To get that this is the identity
mapping on HomA(H(V ),W ), one can use (8.8.5).

Using this, we get that

α′(H(
HomA(V,W )

))
= HomA(H(V ),W ).(8.8.11)

We can also use (8.8.10) to get that

H
(
HomA(V,W )

)
corresponds to the direct sum of kerα′(8.8.12)

and another submodule of H
(
HomA(V,W )

)
,

as a module over k.
Let us suppose now that (V, dV ) is a graded module over A with differenti-

ation that is a complex, and that

Z ′(V ) corresponds to the direct sum of H(V )(8.8.13)

and another homogeneous submodule of Z ′(V ),

as a module over A. Equivalently, this means that Z ′(V ) corresponds to the
direct sum of H(V ) and another submodule, as a graded module over A. This
implies that

the homomorphism as in (8.8.2) has degree 0.(8.8.14)

It follows that

the homomorphism β as in (8.8.3) has degree 0.(8.8.15)

We can define Homgr
A (V,W ) as a graded module over k as in (8.4.4), and as a

complex, with differentiation operator d = dHomgr
A

(V,W ) as in (8.4.9). The under-

lying module |V | over A corresponding to V , without a grading, may be consid-
ered as a module with differentiation with respect to dV , so that HomA(|V |,W )
is a module over k with differentiation operator d = dHomA(|V |,W ) defined as
in (8.4.1). Remember that Homgr

A (V,W ) may be considered as a submodule of
HomA(|V |,W ), as a module over k with differentiation, as in Section 8.4.

We can use β to get a homomorphism

from HomA(H(|V |),W ) into HomA(|V |,W ),(8.8.16)

as modules over k, as in (8.8.6). This may be considered as a homomorphism

from HomA(H(|V |),W ) into Z
(
HomA(|V |,W )

)
,(8.8.17)

as modules over k, as in (8.8.7). One can check that

the homomorphism as in (8.8.16)(8.8.18)

maps Homgr
A (H(V ),W ) into Homgr

A (V,W ).
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The restriction of this homomorphism to Homgr
A (H(V ),W ) may be considered

as a homomorphism

from Homgr
A (H(V ),W ) into Z

(
Homgr

A (V,W )
)
,(8.8.19)

as modules over k. Observe that

the homomorphism as in (8.8.19) has degree 0,(8.8.20)

because of (8.8.15).
As before, we can compose the homomorphism as in (8.8.17) with the natural

quotient mapping

from Z
(
HomA(|V |,W )

)
onto H

(
HomA(|V |,W )

)
(8.8.21)

to get a homomorphism

from HomA(H(|V |),W ) into H
(
HomA(|V |,W )

)
,(8.8.22)

as modules over k. Note that this homomorphism maps Homgr
A (H(V ),W ) into

H
(
Homgr

A (V,W )
)
. More precisely, the restriction of this homomorphism to

Homgr
A (H(V ),W ) is the same as the homomorphism

from Homgr
A (H(V ),W ) into H

(
Homgr

A (V,W )
)

(8.8.23)

obtained by composing the homomorphism as in (8.8.19) with the natural quo-
tient mapping

from Z
(
Homgr

A (V,W )
)
onto H

(
Homgr

A (V,W )
)
.(8.8.24)

It is easy to see that

the homomorphism as in (8.8.23) has degree 0,(8.8.25)

because of (8.8.20).
Let α′ be the homomorphism

from H
(
HomA(H(|V |),W )

)
into HomA(H(|V |),W )(8.8.26)

discussed in the previous two sections. Thus

the composition of the homomorphism as in (8.8.22) with α′(8.8.27)

is the identity mapping on HomA(H(|V |),W ),

as in (8.8.10). This implies that

α′(H(
HomA(|V |,W )

))
= HomA(H(|V |),W ))(8.8.28)

and

H
(
HomA(|V |,W )

)
corresponds to the direct sum of kerα′(8.8.29)

and another submodule of H
(
HomA(|V |,W )

)
,
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as a module over k, as in (8.8.11) and (8.8.12).
Remember that α′ maps H

(
Homgr

A (V,W )
)
into Homgr

A (H(V ),W ), and the

restriction of α′ to H
(
Homgr

A (V,W )
)
has degree 0, as in (8.7.11) and (8.7.12).

We also have that

the composition of the homomorphism as in (8.8.23)(8.8.30)

with the restriction of α′ to H
(
Homgr

A (V,W )
)

is the identity mapping on Homgr
A (H(V ),W ),

because of (8.8.27). This implies in particular that

α′(H(
Homgr

A (V,W )
))

= Homgr
A (H(V ),W ).(8.8.31)

Note that

the kernel of the restriction of α′ to H
(
Homgr

A (V,W )
)

(8.8.32)

is a homogeneous submodule of H
(
HomA(V,W )

)
,

as a graded module over k, because the restriction of α′ to H
(
Homgr

A (V,W )
)

has degree 0. Similarly,

the image of Homgr
A (H(V ),W )(8.8.33)

under the homomorphism as in (8.8.23)

is a homogeneous submodule of H
(
Homgr

A (V,W )
)
,

(8.8.34)

because of (8.8.25). Using (8.8.30), we get that

H
(
Homgr

A (V,W )
)
corresponds to the direct sum(8.8.35)

of the homogeneous submodules in (8.8.32) and (8.8.33),

as a graded module over k. This corresponds to Proposition 6.2a on p66 of [3],
under slightly different conditions.

We may also consider W as a complex, with the grading as in (8.4.7), and
dW = 0, as in Section 8.4. Under these conditions, the previous remarks corre-
spond to those in Section 7.3.

8.9 Additional conditions and α′

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V and W be both left or both right modules over A again, and suppose that
(V, dV ) is a module over A with differentiation. This means that HomA(V,W )
is a module over k with differentiation operator d = dHomA(V,W ) as in (8.4.1).
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Remember that

Z
(
HomA(V,W )

)
= {ϕ ∈ HomA(V,W ) : d(ϕ) = ϕ ◦ dV = 0}(8.9.1)

= {ϕ ∈ HomA(V,W ) : B(V ) ⊆ kerϕ},

as in Section 8.6. We have also seen that

B
(
HomA(V,W )

)
= {ϕ ∈ HomA(V,W ) : ϕ = d(ψ) = ψ ◦ dV(8.9.2)

for some ψ ∈ HomA(V,W )}

is contained in
{ϕ ∈ HomA(V,W ) : Z(V ) ⊆ kerϕ}.(8.9.3)

Note that (8.9.3) is contained in (8.9.1). We may be interested in situations in
which

B
(
HomA(V,W )

)
is equal to (8.9.3).(8.9.4)

It is easy to see that (8.9.3) is equal to

{ϕ ∈ HomA(V,W ) : ϕ = ψ0 ◦ dV for some ψ0 ∈ HomA(B(V ),W )}.(8.9.5)

If W is injective as a module over A, then this is the same as (8.9.2), so that
(8.9.4) holds. If

V corresponds to the direct sum of B(V )(8.9.6)

and another submodule of V,

as a module over A, then (8.9.5) is the same as (8.9.2), so that (8.9.4) holds
again.

Let α′ be the homomorphism from H
(
HomA(V,W )

)
into HomA(H(V ),W ),

as modules over k, defined in Section 8.6. By construction, the composition of
the natural quotient mapping

from Z
(
HomA(V,W )

)
onto H

(
HomA(V,W )

)
(8.9.7)

with α′ is the same as the homomorphism

from Z
(
HomA(V,W )

)
into HomA(H(V ),W )(8.9.8)

mentioned in (8.6.4). One can check that the kernel of the homomorphism as
in (8.9.8) is equal to (8.9.3). This means that

kerα′ is the same as the image of (8.9.3)(8.9.9)

under the natural quotient mapping as in (8.9.7).

In particular,
α′ is injective if and only if (8.9.4) holds.(8.9.10)

Remember that ξ is the natural homomorphism from HomA(Z
′(V ),W ) into

HomA(H(V ),W ) that sends an element of HomA(Z
′(V ),W ) to its restriction



228 CHAPTER 8. MORE ON DIFFERENTIATION, 3

to H(V ), considered as a submodule of Z ′(V ), as in Section 8.6. We have seen
that ξ is the same as the composition of the natural homomorphism η from
HomA(Z

′(V ),W ) onto H
(
HomA(V,W )

)
defined in Section 8.6 with α′. This

implies that
α′(H(

HomA(V,W )
))

= ξ
(
HomA(Z

′(V ),W )
)
.(8.9.11)

Thus
α′(H(

HomA(V,W )
))

= HomA(H(V ),W )(8.9.12)

if and only if
ξ
(
HomA(Z

′(V ),W )
)
= HomA(H(V ),W ).(8.9.13)

If W is injective as a module over A, then (8.9.13) holds. This implies that
(8.9.12) holds, as before.

If Z ′(V ) corresponds to the direct sum of H(V ) and another submodule of
Z ′(V ), as a module over A, then it is easy to see that (8.9.13) holds. This
implies that (8.9.12) holds, which could also be obtained as in (8.8.11).

8.10 Additional conditions and complexes

We continue with the same notation and hypotheses as in the previous section,
and suppose in addition that (V, dV ) is a graded module over A that is a complex.
Thus Homgr

A (V,W ) may be defined as a graded module over k as in (8.4.4),
and as a complex, with differentiation operator d = dHomgr

A
(V,W ) as in (8.4.9).

We may define Homgr
A (B(V ),W ), Homgr

A (H(V ),W ), and Homgr
A (Z ′(V ),W ) as

graded modules over k too, as in (8.4.4).
We may consider the underlying module |V | over A corresponding to V as a

module with differentiation operator dV , so that HomA(|V |,W ) is a module over
k with differentiation operator d = dHomA(|V |,W ) defined as in (8.4.1). Remem-
ber that Homgr

A (V,W ) may be considered as a submodule of HomA(|V |,W ), as
a module over k with differentiation, as in Section 8.4.

As in Section 8.7, H(|V |) and Z ′(|V |) are the same as H(V ) and Z ′(V ),
respectively, without the gradings, so that they are the same as |H(V )| and
|Z ′(V )|, respectively. This means that Homgr

A (H(V ),W ) and Homgr
A (Z ′(V ),W )

may be considered as submodules of HomA(H(|V |),W ) and HomA(Z
′(|V |),W ),

respectively, as modules over k.
Remember that

Z
(
Homgr

A (V,W )
)
= Z

(
HomA(|V |,W )

)
∩Homgr

A (V,W )(8.10.1)

and
B
(
Homgr

A (V,W )
)
= B

(
HomA(|V |,W )

)
∩Homgr

A (V,W ),(8.10.2)

as in Section 8.7. The latter implies that H
(
Homgr

A (V,W )
)
may be considered

as a submodule of H
(
HomA(|V |,W )

)
, as a modules over k, as before.

Of course, Z
(
Homgr

A (V,W )
)
consists of the ϕ ∈ Homgr

A (V,W ) such that

d(ϕ)j+1 = ϕj ◦ d−j−1
V = 0(8.10.3)
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for every j ∈ Z. Equivalently, this means that

B(V )−j ⊆ kerϕj(8.10.4)

for every j ∈ Z. Similarly, B
(
Homgr

A (V,W )
)
is the same as the set of ϕ in

Homgr
A (V,W ) for which there is a ψ ∈ Homgr

A (V,W ) such that

ϕj+1 = d(ψ)j+1 = ψj ◦ d−j−1
V(8.10.5)

for every j ∈ Z. This implies that

Z(V )−j−1 ⊆ kerϕj+1(8.10.6)

for every j ∈ Z.
Consider

{ϕ ∈ Homgr
A (V,W ) : Z(V )−j ⊆ kerϕj for every j ∈ Z},(8.10.7)

which is a homogeneous submodule of Z
(
Homgr

A (V,W )
)
, as a module over k.

This is the same as the intersection of (8.9.3) with Homgr
A (V,W ). Note that

B
(
Homgr

A (V,W )
)
is contained in (8.10.7). As in the previous section, we may

be interested in situations in which

B
(
Homgr

A (V,W )
)
is equal to (8.10.7).(8.10.8)

Observe that ϕ ∈ Homgr
A (V,W ) is an element of (8.10.7) if and only if for

each j ∈ Z there is a homomorphism ψ0,j from B(V )−j = d−j−1
V (V −j−1) into

W , as modules over A, such that

ϕj+1 = ψ0,j ◦ d−j−1
V .(8.10.9)

Of course, if ϕj+1 = 0, then one can simply take ψ0,j = 0. It follows that
ϕ ∈ Homgr

A (V,W ) is an element of (8.10.7) if and only if there is a ψ0 in
Homgr

A (B(V ),W ) such that

ϕj+1 = ψj0 ◦ d
−j−1
V(8.10.10)

for every j ∈ Z.
If W is injective as a module over A, then one can take ψ0,j to be a homo-

morphism from V −j into W , as modules over A, in (8.10.9). This permits one
to take ψ0 ∈ Homgr

A (V,W ) in (8.10.10), so that (8.10.8) holds.
Suppose for the moment that

V corresponds to the direct sum of B(V )(8.10.11)

and another homogeneous submodule of V,

as a module over A. This means that V −j corresponds to the direct sum of
B(V )−j and another submodule of V −j , as a module over A, for each j ∈ Z.
In this case, one can take ψ0,j to be a homomorphism from V −j into W , as
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modules over A, in (8.10.9) again. This permits one to take ψ0 ∈ Homgr
A (V,W )

in (8.10.10), so that (8.10.8) holds, as before.
The natural quotient mapping

from Z
(
Homgr

A (V,W )
)
onto H

(
Homgr

A (V,W )
)

(8.10.12)

may be identified with the restriction to (8.10.1) of the natural quotient mapping

from Z
(
HomA(|V |,W )

)
onto H

(
HomA(|V |,W )

)
,(8.10.13)

because of (8.10.2). Let α′ be the homomorphism

from H
(
HomA(|V |,W )

)
into HomA(H(|V |),W )(8.10.14)

defined in Sections 8.6 and 8.7. One can verify that

the kernel of the restriction of α′ to H
(
Homgr

A (V,W )
)

(8.10.15)

is the same as the image of (8.10.7)

under the natural quotient mapping as in (8.10.12).

This is similar to (8.9.9), and can be obtained from it. It follows in particular
that

the restriction of α′ to H
(
Homgr

A (V,W )
)
is injective(8.10.16)

if and only if (8.10.8) holds.

Let ξ be the natural homomorphism

from HomA(Z
′(|V |),W ) into HomA(H(|V |),W )(8.10.17)

that sends an element of HomA(Z
′(|V |),W ) to its restriction to H(|V |), consid-

ered as a submodule of Z ′(|V |), as in Sections 8.6 and 8.7. Note that

α′(H(
HomA(|V |,W )

))
= ξ

(
HomA(Z

′(|V |),W )
)
,(8.10.18)

as in (8.9.11). The restriction of ξ to Homgr
A (V,W ) is a homomorphism into

Homgr
A (H(V ),W ) of degree 0, as in Section 8.7. One can check that

α′(H(
Homgr

A (V,W )
))

= ξ
(
Homgr

A (Z ′(V ),W )
)

(8.10.19)

using the same type of argument as before. More precisely, let η be the nat-
ural homomorphism from HomA(Z

′(|V |),W ) onto H
(
HomA(|V |,W )

)
defined

in Section 8.7. We have seen that α′ ◦ η = ξ on HomA(Z
′(|V |),W ), and that

η maps Homgr
A (Z ′(V ),W ) onto H

(
Homgr

A (V,W )
)
, which implies (8.10.19). It

follows that
α′(H(

Homgr
A (V,W )

))
= Homgr

A (H(V ),W )(8.10.20)

if and only if
ξ
(
Homgr

A (Z ′(V ),W )
)
= Homgr

A (H(V ),W ).(8.10.21)
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One can check that (8.10.21) holds when W is injective as a module over A.
Thus (8.10.20) holds in this case.

Suppose now that Z ′(V ) corresponds to the direct sum of H(V ) and an-
other homogeneous submodule of Z ′(V ), as a module over A. This means that
Z ′(V )−j corresponds to the direct sum of H(V )−j and another submodule of
Z ′(V )−j , as a module over A, for each j ∈ Z. It is easy to see that (8.10.21)
holds under these conditions. This implies that (8.10.20) holds, as before. This
could also be obtained as in (8.8.31).

The properties of α′ discussed in this section are related to Propositions 7.2
and 7.4 on p68, 70 of [3], and some remarks on p70 of [3].

8.11 Easy complexes

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V be a graded left or right module over A, with

V j = {0} when j 6= 0, 1.(8.11.1)

Suppose that dV is a homomorphism from V into itself, as a module over A,
with degree 1, so that

djV = 0 when j 6= 0.(8.11.2)

Under these conditions, dV ◦dV = 0 automatically, so that (V, dV ) is a complex.
The underlying module with differentiation is the same as in Section 5.5.

In this case,

Z(V )j = ker d0V when j = 0(8.11.3)

= V 1 when j = 1

= {0} otherwise.

Similarly,

B(V )j = d0V (V
0) when j = 1(8.11.4)

= {0} otherwise.

Thus

H(V )j = ker d0V when j = 0(8.11.5)

= V 1/d0V (V
0) when j = 1

= {0} otherwise.

We also have that

Z ′(V )j = V 0 when j = 0(8.11.6)

= V 1/d0V (V
0) when j = 1

= {0} otherwise.
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Similarly,

B′(V )j = V 0/ ker d0V when j = 0(8.11.7)

= {0} otherwise.

Using this, the remarks in Section 3.13 may be considered as a particular
case of those in Section 5.12. This corresponds to the remark after Proposition
2.10 on p23 of [1].

Lemmas 3.2 and 3.3 on p40 of [3] deal with many of the same properties as
in Section 3.13, under broader conditions appropriate to the particular parts.
Some of the statements in Section 5.3 could be obtained using this, as on p55
of [3].

8.12 Sums, products, and differentiation

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let {Vα}α∈I be a nonempty family of all left or all right modules over A. Thus
the direct sum

⊕
α∈I Vα and direct product

∏
α∈I Vα may be defined as left or

right modules over A, as appropriate.
Suppose that (Vα, dVα

) is a module with differentiation for each α ∈ I. We
can define differentiation operators on

⊕
α∈I and

∏
α∈I Vα in the obvious way,

using dVα
in each coordinate. It is easy to see that

⊕
α∈I Vα and

∏
α∈I Vα

become modules with differentiation in this way. More precisely,
⊕

α∈I Vα is a
submodule of

∏
α∈I Vα, as a module with differentiation.

Observe that
Z
(⊕
α∈I

Vα

)
=

⊕
α∈I

Z(Vα)(8.12.1)

and
Z
( ∏
α∈I

Vα

)
=

∏
α∈I

Z(Vα)(8.12.2)

under these conditions. Similarly,

B
(⊕
α∈I

Vα

)
=

⊕
α∈I

B(Vα)(8.12.3)

and
B
( ∏
α∈I

Vα

)
=

∏
α∈I

B(Vα).(8.12.4)

We also have that
H
(⊕
α∈I

Vα

)
=

⊕
α∈I

H(Vα)(8.12.5)

and
H
( ∏
α∈I

Vα

)
=

∏
α∈I

H(Vα).(8.12.6)
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Similarly, we get that

Z ′
(⊕
α∈I

Vα

)
=

⊕
α∈I

Z ′(Vα)(8.12.7)

and
Z ′

( ∏
α∈I

Vα

)
=

∏
α∈I

Z ′(Vα),(8.12.8)

as well as
B′

(⊕
α∈I

Vα

)
=

⊕
α∈I

B′(Vα)(8.12.9)

and
B′

( ∏
α∈I

Vα

)
=

∏
α∈I

B′(Vα).(8.12.10)

This corresponds to Proposition 9.3 on p98 of [3].
Suppose now that Vα is a graded module over A for each α ∈ I. In this case,

we can identify
⊕

α∈I Vα with ⊕
j∈Z

(⊕
α∈I

V jα

)
(8.12.11)

in a straightforward way. This makes
⊕

α∈I Vα a graded module too, with(⊕
α∈I

Vα

)j
=

⊕
α∈I

V jα(8.12.12)

for each j ∈ Z.
Put

V j =
∏
α∈I

V jα(8.12.13)

for each j ∈ Z, which is a left or right module over A, as appropriate. Thus

V =
⊕
j∈Z

V j(8.12.14)

is a graded module over A. Of course, (8.12.12) is a submodule of (8.12.13), as
a module over A, for each j ∈ Z. This means that (8.12.11) may be considered
as a homogeneous submodule of (8.12.14).

Note that (8.12.14) may be considered as a submodule of∏
j∈Z

V j ,(8.12.15)

as a module over A. As before, we can identify∏
α∈I

( ∏
j∈Z

V jα

)
(8.12.16)
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with (8.12.15), as modules over A, in a straightforward way. Of course,∏
α∈I

Vα =
∏
α∈I

(⊕
j∈Z

V jα

)
(8.12.17)

may be considered as a submodule of (8.12.16), as a module over A. It is
easy to see that (8.12.14) corresponds to a submodule of (8.12.17), with respect
to the identification between (8.12.15) and (8.12.16) just mentioned. This is
compatible with considering

⊕
α∈I Vα as a submodule of (8.12.16), as a module

over A, by considering Vα as a submodule of
∏
j∈I V

j
α for each α ∈ I.

In the next section, we shall consider the case where (Vα, dVα) is a complex
for each α ∈ I.

8.13 Sums, products, and complexes

Let k be a commutative ring with a multiplicative identity element again, and
let A be an associative algebra over k with a multiplicative identity element eA.
Let (U, dU ) be a graded left or right module over A with differentiation that
this a complex. Put

W =
∏
j∈Z

U j ,(8.13.1)

so that W is a left or right module over A, as appropriate, and U corresponds
to a submodule of W , as a module over A.

If w ∈ W , then define dW (w) ∈ W by saying that for each j ∈ Z, the jth
coordinate of dW (w) is equal to dj−1

U of the (j − 1)th coordinate of w. More

precisely, the (j−1)th coordinate of w is in U j−1, so that dj−1
U sends it into U j .

One can check that this makes (W,dW ) a module over A with differentiation.
We also have that U corresponds to a submodule of W , as a module with
differentiation.

Suppose now that {(Vα, dVα
)}α∈I is a nonempty family of all left or all right

graded modules over A with differentiation that are complexes. If α ∈ I, then
put

Wα =
∏
j∈Z

V jα ,(8.13.2)

which is a left or right module over A. We can define dWα
on Wα as in the

preceding paragraph, so that (W,dWα
) is a module over A with differentiation.

Note that Vα corresponds to a submodule of Wα, as a module with differentia-
tion, as before.

Using this, we can define a differentation operator on∏
α∈I

Wα,(8.13.3)

to get a module over A with differentiation, as in the previous section. Of
course, (8.13.3) is the same as (8.12.16), as a module over A. One can verify
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that (8.12.17) is a submodule of (8.13.3), as a module with differentiation. This
corresponds to defining a differentiation operator on

∏
α∈I Vα, as discussed near

the beginning of the previous section.
Similarly, one can check that the module V defined in (8.12.14) corresponds

to a submodule of (8.13.3), as a module over A with differentiation, using the
identification between (8.12.15) and (8.12.16) mentioned earlier. More precisely,
the restriction of the differentiation operator to (8.12.14) has degree 1 with
respect to the natural grading on V . This makes V a complex, as a graded
module over A with differentiation.

It is easy to see that
⊕

α∈I Vα is a submodule of (8.13.3), as a module
with differentiation. As before, the restriction of the differentiation operator
to

⊕
α∈I Vα has degree 1 with respect to the grading as in (8.12.12), so that⊕

α∈I Vα becomes a complex.
If j ∈ Z, then

Z
(⊕
α∈I

Vα

)j
=

⊕
α∈I

Z(Vα)
j(8.13.4)

and

Z(V )j =
∏
α∈I

Z(Vα)
j .(8.13.5)

Similarly,

B
(⊕
α∈I

Vα

)j
=

⊕
α∈I

B(Vα)
j(8.13.6)

and

B(V )j =
∏
α∈I

B(Vα)
j .(8.13.7)

Using this, we get that

H
(⊕
α∈I

Vα

)j
=

⊕
α∈I

H(Vα)
j(8.13.8)

and

H(V )j =
∏
α∈I

H(Vα)
j .(8.13.9)

We also get that

Z ′
(⊕
α∈I

Vα

)j
=

⊕
α∈I

Z ′(Vα)
j(8.13.10)

and

Z ′(V )j =
∏
α∈I

Z ′(Vα)
j ,(8.13.11)

and similarly

B′
(⊕
α∈I

Vα

)j
=

⊕
α∈I

B′(Vα)
j(8.13.12)
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and

B′(V )j =
∏
α∈I

B′(Vα)
j .(8.13.13)

This corresponds to Proposition 9.3 on p98 of [3] again.

8.14 Direct limits and differentiation

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let (I,�) be a nonempty pre-directed set, let (Vj , dj) be a module over A with
differentiation for each j ∈ I. More precisely, we suppose that either Vj is a left
module over A with differentiation for every j ∈ I, or that Vj is a right module
over A with differentiation for every j ∈ I.

Suppose that for every j, l ∈ I with j � l, we have a homomorphism νj,l
from Vj into Vl, as modules over A with differentiation. As usual, we ask that
νj,j be the identity mapping on Vj for every j ∈ I. If j, l, r ∈ I and j � l � r,
then we also ask that

νl,r ◦ νj,l = νj,r,(8.14.1)

as before. Under these conditions, we get a direct or inductive system of modules
with differentiation over (I,�).

Let lim
−→

Vj be the direct limit of the Vj ’s, as a direct system of modules over

A, as in Section 3.2. This is a left or right module over A, as appropriate. If
l ∈ I, then we also have a homomorphism νl from Vl into lim

−→
Vj , as modules

over A, as before. Remember that

νl = νr ◦ νl,r(8.14.2)

for every l, r ∈ I with l � r.
If j, l ∈ I and j � l, then

dl ◦ νj,l = νj,l ◦ dj ,(8.14.3)

because νj,l is supposed to be a homomorphism from Vj into Vl, as modules with
differentiation. Thus the family of dj ’s, j ∈ I, defines a homomorphism from
the direct systems of Vj ’s, j ∈ I, into itself, as in Section 3.4. This implies that
there is unique homomorphism d = lim

−→
dj from lim

−→
Vj into itself, as a module

over A, such that

d ◦ νl = νl ◦ dl(8.14.4)

for every l ∈ I, as before.
Of course, dj ◦dj = 0 on Vj for each j ∈ I, because (Vj , dj) is a module with

differentiation. This implies that

d ◦ d = 0 on lim
−→

Vj ,(8.14.5)
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as in Section 3.4. This means that lim
−→

Vj is a module with differentiation with

respect to d.
If j, l ∈ I and j � l, then

νj,l(Z(Vj)) ⊆ Z(Vl),(8.14.6)

because of (8.14.3). Let νZj,l be the restriction of νj,l to Z(Vj), considered as a

mapping into Z(Vl). Of course, νZj,j is the identity mapping on Z(Vj) for each
j ∈ I. If j, l, r ∈ I and j � l � r, then

νZl,r ◦ νZj,l = νZj,r,(8.14.7)

by (8.14.1).
Thus the family of modules Z(Vj) and homomorphisms νZj,l forms a direct

system over (I,�), so that the direct limit lim
−→

Z(Vj) can be defined as a module

over A in the usual way. If l ∈ I, then we get a homomorphism νZl from Z(Vl)
into lim

−→
Z(Vj), as modules over A, as in Section 3.2. If r ∈ I and l � r, then

νZl = νZr ◦ νZl,r,(8.14.8)

as before.
The family of obvious inclusion mappings from Z(Vj) into Vj , j ∈ I, defines

a homomorphism from the direct system of Z(Vj)’s into the direct system of
Vj ’s, j ∈ I, as in Section 3.4. This leads to a natural homomorphism

from lim
−→

Z(Vj) into lim
−→

Vj ,(8.14.9)

as modules over A, as before. This homomorphism is characterized by the fact
that for each l ∈ I, the composition of νZl with the homomorphism as in (8.14.9)
is the same as the composition of the natural inclusion mapping from Z(Vl) into
Vl with νl.

If j ∈ I, then the composition of the obvious inclusion mapping from Z(Vj)
into Vj with dj is equal to 0, by construction. It follows that

the composition of the homomorphism as in (8.14.9)(8.14.10)

with d is equal to 0,

as in Section 3.4. This means that

the homomorphism as in (8.14.9)(8.14.11)

maps lim
−→

Z(Vj) into Z
(
lim
−→

Vj
)
.

One can check that

the homomorphism as in (8.14.9) is injective,(8.14.12)
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using the remarks in Section 3.4, or more directly. Similarly, one can verify that

the homomorphism as in (8.14.9)(8.14.13)

maps lim
−→

Z(Vj) onto Z
(
lim
−→

Vj
)
,

using the remarks in Section 3.4. This corresponds to part of Proposition 9.3*
on p100 of [3].

Similarly, if j, l ∈ I and j � l, then

νj,l(B(Vj)) ⊆ B(Vl),(8.14.14)

by (8.14.3). Let νBj,l be the restriction of νj,l to B(Vj), considered as a mapping

into B(Vl). Thus ν
B
j,j is the identity mapping on B(Vj) for each j ∈ I, and

νBl,r ◦ νBj,l = νBj,r(8.14.15)

when j, l, r ∈ I satisfy j � l � r, by (8.14.1). This means that the family of
modules B(Vj) and homomorphisms νBj,l forms a direct system over (I,�), so
that the direct limit lim

−→
B(Vj) can be defined as a module over A. As before,

we get a homomorphism νBl from B(Vl) into lim
−→

B(Vj), as modules over A, for

each l ∈ I, with
νBl = νBr ◦ νBl,r(8.14.16)

when r ∈ I and l � r.
The family of obvious inclusion mappings from B(Vj) into Z(Vj), j ∈ I,

defines a homomorphism from the direct system of B(Vj)’s into the direct system
of Z(Vj)’s, j ∈ I, as in Section 3.4. This leads to a natural homomorphism

from lim
−→

B(Vj) into lim
−→

Z(Vj),(8.14.17)

as modules over A, which is characterized by the property that for each l ∈ I,
the composition of νBl with this homomorphism is the same as the composition
of the natural inclusion mapping from B(Vl) into Z(Vl) with νZl . One could
also use the family of obvious inclusion mappings from B(Vj) into Vj , j ∈ I, to
get a homomorphism from the direct system of B(Vj)’s into the direct system
of Vj ’s, j ∈ I, and thus a homomorphism

from lim
−→

B(Vj) into lim
−→

Vj ,(8.14.18)

as modules over A. This homomorphism is the same as the composition of the
homomorphisms as in (8.14.17) and (8.14.9), as in Section 3.4.

If j ∈ I, then let dBj be dj , considered as a mapping from Vj onto B(Vj). Of
course,

dBl ◦ νBj,l = νBj,l ◦ dBj(8.14.19)

when l ∈ I satisfies j � l, as in (8.14.3). This means that the family of dBj ’s, j ∈
I, defines a homomorphism from the direct system of Vj ’s into the direct system
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of B(Vj)’s, j ∈ I, as in Section 3.4. Thus there is a unique homomorphism
dB = lim

−→
dBj from lim

−→
Vj into lim

−→
B(Vj), as modules over A, such that

dB ◦ νBl = νBl ◦ dBl(8.14.20)

for every l ∈ I. More precisely,

dB
(
lim
−→

Vj
)
= lim

−→
B(Vj),(8.14.21)

because dBj (Vj) = B(Vj) for every j ∈ I, as in Section 3.4.

The composition of dB with the homomorphism as in (8.14.18) is the same
as d, because dj is the same as the composition of dBj with the obvious inclusion
mapping from B(Vj) into Vj for each j ∈ I. It follows that

B
(
lim
−→

Vj
)
is the same as the image of lim

−→
B(Vj)(8.14.22)

under the homomorphism as in (8.14.18).

Note that
the homomorphism as in (8.14.17) is injective,(8.14.23)

as in Section 3.4. Similarly,

the homomorphism as in (8.14.18) is injective,(8.14.24)

which could also be obtained from (8.14.12) and (8.14.23).
If j, l ∈ I and j � l, then νj,l induces a homomorphism

νZ
′

j,l from Z ′(Vj) into Z
′(Vl),(8.14.25)

as modules over A, as in Section 5.2. Clearly νZ
′

j,j is the identity mapping on
Z ′(Vj) = Vj/dj(Vj) for each j ∈ I, and

νZ
′

l,r ◦ νZ
′

j,l = νZ
′

j,r(8.14.26)

for every j, l, r ∈ I with j � l � r, because of (8.14.1). Thus the family of
modules Z ′(Vj) and homomorphisms νZ

′

j,l forms a direct system over (I,�), so
that the direct limit lim

−→
Z ′(Vj) can be defined as a module over A. We also get

a homomorphism νZ
′

l from Z ′(Vl) into lim
−→

Z ′(Vj), as modules over A, for each

l ∈ I, with
νZ

′

l = νZ
′

r ◦ νZ
′

l,r(8.14.27)

when r ∈ I satisfies l � r, as usual.
Let qZ

′

j be the natural quotient mapping from Vj onto Z
′(Vj) for each j ∈ I.

If j, l ∈ I and j � l, then

qZ
′

l ◦ νj,l = νZ
′

j,l ◦ qZ
′

j ,(8.14.28)
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by construction. This means that the family of quotient mappings qZ
′

j , j ∈ I,
defines a homomorphism from the direct system of Vj ’s into the direct system
of Z ′(Vj)’s, j ∈ I, as in Section 3.4. This leads to a natural homomorphism

qZ
′
= lim

−→
qZ

′

j from lim
−→

Vj into lim
−→

Z ′(Vj),(8.14.29)

as modules over A, which is characterized by the property that

qZ
′
◦ νl = νZ

′

l ◦ qZ
′

l(8.14.30)

for every l ∈ I. More precisely,

qZ
′(
lim
−→

Vj
)
= lim

−→
Z ′(Vj),(8.14.31)

because qZ
′

j (Vj) = Z ′(Vj) for every j ∈ I, as in Section 3.4.

Of course, ker qZ
′

j = B(Vj) for each j ∈ I, by construction. This implies that

the kernel of qZ
′
is the same as the image of lim

−→
B(Vj) under the homomorphism

as in (8.14.18), as in Section 3.4. It follows that

ker qZ
′
= B

(
lim
−→

Vj
)
,(8.14.32)

because of (8.14.22). This means that

Z ′( lim
−→

Vj
)
is isomorphic to lim

−→
Z ′(Vj),(8.14.33)

as modules over A, in such a way that qZ
′
corresponds to the natural quotient

mapping from lim
−→

Vj onto Z ′( lim
−→

Vj
)
. This corresponds to another part of

Proposition 9.3* on p100 of [3].
If j, l ∈ I and j � l, then νj,l induces a homomorphism

νHj,l from H(Vj) into H(Vl),(8.14.34)

as modules over A, as in Section 5.2. This is the same as the restriction of νZ
′

j,l

to H(Vj) = Z(Vj)/dj(Vj), considered as a mapping into H(Vl). As before, νHj,j
is the identity mapping on H(Vj) for each j ∈ I, and

νHl,r ◦ νHj,l = νHj,r(8.14.35)

for every j, l, r ∈ I with j � l � r. This means that the family of modules
H(Vj) and homomorphisms νHj,l forms a direct system over (I,�), so that the
direct limit lim

−→
H(Vj) can be defined as a module over A in the usual way. If

l ∈ I, then we get a homomorphism νHl from H(Vl) into lim
−→

H(Vj), as modules

over A, with
νHl = νHr ◦ νHl,r(8.14.36)

for every r ∈ I with l � r, as before.
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Let qHj be the natural quotient mapping from Z(Vj) onto H(Vj) for each

j ∈ I, which is the same as the restriction of qZ
′

j to Z(Vj), considered as a
mapping into H(Vj). If j, l ∈ I and j � l, then

qHl ◦ νZj,l = νHj,l ◦ qHj ,(8.14.37)

as mappings from Z(Vj) into H(Vl). Thus the family of quotient mappings
qHj , j ∈ I, defines a homomorphism from the direct system of Z(Vj)’s into the
direct system of H(Vj)’s, j ∈ I, as in Section 3.4. This leads to a natural
homomorphism

qH = lim
−→

qHj from lim
−→

Z(Vj) into lim
−→

H(Vj),(8.14.38)

as modules over A, which is characterized by the property that

qH ◦ νZl = νHl ◦ qHl(8.14.39)

for every l ∈ I. In fact,

qH
(
lim
−→

Z(Vj)
)
= lim

−→
H(Vj),(8.14.40)

because qHj (Z(Vj)) = H(Vj) for every j ∈ I, as in Section 3.4.
Observe that

ker qH is the same as the image of lim
−→

B(Vj)(8.14.41)

under the homomorphism as in (8.14.17),

because ker qHj = B(Vj) for each j ∈ I, as in Section 3.4. Remember that
the homomorphism as in (8.14.9) defines an isomorphism from lim

−→
Z(Vj) onto

Z
(
lim
−→

Vj
)
, as modules over A, as in (8.14.12) and (8.14.13). We have also seen

that the composition of the homomorphisms as in (8.14.17) and (8.14.9) is the
same as the homomorphism as in (8.14.18). It follows that

the image of ker qH under the homomorphism as in (8.14.9)(8.14.42)

is equal to B
(
lim
−→

Vj
)
,

because of (8.14.22).
Thus qH corresponds to a homomorphism

from Z
(
lim
−→

Vj
)
onto lim

−→
H(Vj),(8.14.43)

as modules over A, with kernel equal to B
(
lim
−→

Vj
)
. This shows that

H
(
lim
−→

Vj
)
is isomorphic to lim

−→
H(Vj),(8.14.44)
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as modules over A, where the natural quotient mapping from Z
(
lim
−→

Vj
)
onto

H
(
lim
−→

Vj
)
corresponds to the homomorphism as in (8.14.43). This corresponds

to part of Proposition 9.3* on p100 of [3] again.
Let us mention the analogous statements for B′(Vj) = Vj/ ker dj , for the

sake of completeness. If j, l ∈ I and j � l, then νj,l induces a homomorphism

νB
′

j,l from B′(Vj) into B
′(Vl),(8.14.45)

as modules over A, as in Section 5.2. This is the identity mapping on B′(Vj)
when j = l, and

νB
′

l,r ◦ νB
′

j,l = νB
′

j,r(8.14.46)

for every j, l, r ∈ I with j � l � r, by (8.14.1). Thus the family of modules
B′(Vj) and homomorphisms νB

′

j,l forms a direct system over (I,�), so that the
direct limit lim

−→
B′(Vj) can be defined as a module over A. If l ∈ I, then we also

get a homomorphism νB
′

l from B′(Vl) into lim
−→

B′(Vj), as modules over A, with

νB
′

l = νB
′

r ◦ νB
′

l,r(8.14.47)

for every r ∈ I with l � r.
Let qB

′

j be the natural quotient mapping from Vj onto B
′(Vj) for each j ∈ I.

If j, l ∈ I and j � l, then

qB
′

l ◦ νj,l = νB
′

j,l ◦ qB
′

j ,(8.14.48)

as mappings from Vj into B
′(Vl). It follows that the family of quotient mappings

qB
′

j defines a homomorphism from the direct system of Vj ’s into the direct system
of B′(Vj)’s, j ∈ I, as in Section 3.4. This leads to a natural homomorphism

qB
′
= lim

−→
qB

′

j from lim
−→

Vj into lim
−→

B′(Vj),(8.14.49)

as modules over A, which is characterized by the property that

qB
′
◦ νl = νB

′

l ◦ qB
′

l(8.14.50)

for every l ∈ I. We also have that

qB
′(
lim
−→

Vj
)
= lim

−→
B′(Vj),(8.14.51)

because qB
′

j (Vj) = B′(Vj) for every j ∈ I, as in Section 3.4.

The kernel of qB
′
is the same as the image of lim

−→
Z(Vj) under the homomor-

phism as in (8.14.9), because ker qB
′

j = Z(Vj) for each j ∈ I, as in Section 3.4.
This means that

ker qB
′
= Z

(
lim
−→

Vj
)
,(8.14.52)

because of (8.14.13). It follows that

B′( lim
−→

Vj
)
is isomorphic to lim

−→
B′(Vj),(8.14.53)

as modules over A, in such a way that qB
′
corresponds to the natural quotient

mapping from lim
−→

Vj onto B
′( lim

−→
Vj

)
.
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8.15 Direct sums and limits

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with a multiplicative identity element eA. Also let
(I,�) be a nonempty pre-directed set, and let B be a nonempty set. Suppose

that V βj is a module over A for each j ∈ I and β ∈ B. More precisely, these
should be all left modules over A, or all right modules over A.

Suppose that for every β ∈ B and j, l ∈ I with j � l we have a homomor-
phism νβj,l from V βj into V βl , as modules over A, with the usual two properties

as in Section 3.2. Namely, νβj,j should be the identity mapping on V βj for every
j ∈ I and β ∈ B, and we should have that

νβl,r ◦ ν
β
j,l = νβj,r(8.15.1)

for every β ∈ B and j, l, r ∈ I with j � l � r. Let

V β = lim
−→

V βj(8.15.2)

be the corresponding direct limit of the V βj ’s, j ∈ I, for each β ∈ B, which is

a module over A. If β ∈ B and l ∈ I, then we get a homomorphism νβl from

V βl into V β , as modules over A, as before. Remember that this homomorphism
satisfies

νβl = νβr ◦ νβl,r(8.15.3)

when r ∈ I and l � r.
If j ∈ I, then put

Vj =
⊕
β∈B

V βj ,(8.15.4)

which is a module over A. If j, l ∈ I and j � l, then let νj,l be the homomorphism

from Vj into Vl, as modules over A, defined using νβj,l on V βj for each β ∈ B.
Thus νj,j is the identity mapping on Vj for each j ∈ I, and νl,r ◦ νj,l = νj,r for

every j, l, r ∈ I with j � l � r, because of the analogous properties of the νβj,l’.
Let

V = lim
−→

Vj(8.15.5)

be the direct limit of the Vj ’s, j ∈ I, which is a module over A. If l ∈ I, then we
get a homomorphism νl from Vl into V , as modules over A, with νl = νr ◦ νl,r
when r ∈ I and l � r, as usual.

If α ∈ B and j ∈ I, then let iαj be the obvious mapping from V αj into Vj ,
which sends vαj ∈ V αj to the element of Vj whose component in V αj is equal to

vαj , and whose component in V βj is equal to 0 when α 6= β. If l ∈ I and j � l,
then it is easy to see that

iαl ◦ ναj,l = νj,l ◦ iαj .(8.15.6)

Thus the family of iαj ’s, j ∈ I, defines a homomorphism from the direct system
of V αj ’s into the direct system of Vj ’s, j ∈ I, as in Section 3.4. This means that
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there is a unique homomorphism iα = lim
−→

iαj from V α into V , as modules over

A, such that
iα ◦ ναl = νl ◦ iαl(8.15.7)

for every l ∈ I, as before.
Similarly, if α ∈ B and j ∈ I, then let παj be the usual coordinate projection

from Vj onto V
α
j . If l ∈ I and j � l, then

παl ◦ νj,l = ναj,l ◦ παj ,(8.15.8)

by construction. This means that the family of παj ’s, j ∈ I, defines a homomor-
phism from the direct system of Vj ’s into the direct system of V αj ’s, j ∈ I, as in
Section 3.4 again. It follows that there is a unique homomorphism πα = lim

−→
παj

from V into V α, as modules over A, such that

πα ◦ νl = ναl ◦ παl(8.15.9)

for every l ∈ I.
Of course,

παj ◦ iαj is the identity mapping on V αj(8.15.10)

for every α ∈ B and j ∈ I. If α, γ ∈ B and α 6= γ, then

πγj ◦ iαj = 0(8.15.11)

for every j ∈ I. This implies that

πα ◦ iα is the identity mapping on V α(8.15.12)

for every α ∈ B, and that
πγ ◦ iα = 0(8.15.13)

for every α, γ ∈ B with α 6= γ, as in Section 3.4.
Every v ∈ V can be expressed as v = νl(vl) for some l ∈ I and vl ∈ Vl, as in

Section 3.2. In this case,

πα(v) = πα(νl(vl)) = ναl (π
α
l (vl))(8.15.14)

for every α ∈ B. In particular,

πα(v) = 0 for all but finitely many α ∈ B,(8.15.15)

because παl (vl) = 0 for all but finitely many α ∈ B.
If ναl (π

α
l (vl)) = 0 for some α ∈ B, then there is an r(α) ∈ I such that

l � r(α) and
ναl,r(α)(π

α
l (vl)) = 0,(8.15.16)

as in Section 3.2. If ναl (π
α
l (vl)) = 0 for every α ∈ B, then it follows that there

is an r ∈ I such that l � r and

ναl,r(π
α
l (vl)) = 0(8.15.17)
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for every α ∈ B, because (I,�) is a pre-directed system, and this holds auto-
matically when παl (vl) = 0. Equivalently, this means that

παr (νl,r(vl)) = 0(8.15.18)

for every α ∈ B, so that νl,r(vl) = 0. This implies that

v = νl(vl) = νr(νl,r(vl)) = 0.(8.15.19)

Using the iα’s, we get a homomorphism

from
⊕
β∈B

V β into V,(8.15.20)

as modules over A. Similarly, we get a homomorphism

from V into
⊕
β∈B

V β ,(8.15.21)

as modules over A, using the πα’s and (8.15.15). The composiiton of these
two homomorphisms is the identity mapping on

⊕
β∈B V

β , because of (8.15.12)
and (8.15.13), as in Section 1.15. We also have that the homomorphism as in
(8.15.21) is injective, by the remarks in the previous two paragraphs. One can
use this to get that the homomorphism as in (8.15.20) is surjective, so that these
two homomorphisms are inverses of each other.

Alternatively, one can check that
⊕

β∈B V
β satisfies conditions that char-

acterize the direct limit of the Vj ’s, j ∈ I, up to isomorphism, as in Section
3.2. More precisely, for each l ∈ I, we can get a homomorphism ν̃l from Vl into⊕

β∈B V
β , as modules over A, using the homomorphisms νβl from V βl into V β

for each β ∈ B. It is easy to see that

ν̃l = ν̃r ◦ νl,r(8.15.22)

for every l, r ∈ I with l � r, using (8.15.3). The ν̃l’s are the analogues of the
νl’s for

⊕
β∈B V

β , as a version of the direct limit of the Vl’s. We would like

to verify that
⊕

β∈B V
β has the same property as the direct limit, in terms of

homomorphisms from the Vl’s into other modules over A that satisfy suitable
compatibility conditions.

Let Z be another left or right module over A, as appropriate, and let ζl be
a homomorphism from Vl into Z, as modules over A, for each l ∈ I. Suppose
that

ζl = ζr ◦ νl,r(8.15.23)

for every l, r ∈ I with l � r. If l ∈ I, then ζl determines a homomorphism ζβl
from V βl into Z, as modules over A, for each β ∈ B. We also have that

ζβl = ζβr ◦ νβl,r(8.15.24)
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for every l, r ∈ I with l � r and every β ∈ B, because of (8.15.23), and the
way that νl,r was defined. This implies that for each β ∈ B, there is a unique
homomorphism ζβ from V β into Z, as modules over A, such that

ζβ ◦ νβl = ζβl(8.15.25)

for every l ∈ I, as in Section 3.2.
Let ζ̃ be the homomorphism from

⊕
β∈B V

β into Z obtained from the ζβ ’s,
β ∈ B, in the obvious way. Observe that

ζ̃ ◦ ν̃l = ζl(8.15.26)

for every l ∈ I, by construction. It is easy to see that ζ̃ is uniquely determined
by this property, because ζβ is uniquely determined by (8.15.25) for each β ∈ B.
This implies that

⊕
β∈B V

β is isomorphic to V , as modules over A, as in Section
3.2. Of course, ν̃l corresponds to νl under this isomorphism, for each l ∈ I.

Let us now take B = Z, so that Vj may be considered as a graded module
over A for each j ∈ I. More precisely, νj,l has degree 0 as a homomorphism
from Vj into Vl for every j, l ∈ I with j � l, by construction. We may consider
V as a graded module over A too, as in the preceding paragraph. If l ∈ I, then
νl has degree 0 as a homomorphism from Vl into V , with respect to this grading
on V . It is easy to see that this grading on V is uniquely determined by this
property.

Suppose that Vj is in fact a graded module over A with differentiation that
is a complex for each j ∈ I, and that the family of Vj ’s is a direct system
of modules with differentiation over (I,�), as in the previous section. This
means that νj,l is a homomorphism from Vj into Vl as modules over A with
differentiation for each j, l ∈ I with j � l, as before. The direct limit V may be
considered as a module over A with differentiation, as in the previous section.
One can check that V is a complex, using the grading defined here. This means
that the differentiation operator d on V has degree 1, which can be verified
using the fact that the differentiation operator dj on Vj has degree 1 for each
j ∈ I, by hypothesis.
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Chapter 9

Some rings and modules

9.1 A reformulation of projectivity

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with a multiplicative identity element eA. Suppose
that a left module V over A has the following property. Let W1 and Z1 be left
modules over A, let ψ1 be a homomorphism from W1 onto Z1, and let ϕZ1 be a
homomorphism from V into Z1, as left modules over A. If W1 is injective as a
left module over A, then there is a homomorphism ϕW1

from V into W1, as left
modules over A, such that

ϕZ1
= ψ1 ◦ ϕW1

.(9.1.1)

This is the same as the definition of projectivity of V , as in Section 2.7, restricted
to the case where W1 is injective.

Proposition 5.1 on p12 of [3] states that this condition implies that V is
projective. To see this, let W and Z be left modules over A, let ψ be a homo-
morphism from W onto Z, and let ϕZ be a homomorphism from V into Z, as
left modules over A. Thus

W0 = kerψ(9.1.2)

is a submodule of W , and we may as well take

Z =W/W0,(9.1.3)

and ψ to be the natural quotient mapping fromW ontoW/W0. We may suppose
too that W is a submodule of an injective left module W1 over A, as mentioned
in Section 2.8. Put

Z1 =W1/W0,(9.1.4)

and let ψ1 be the natural quotient mapping from W1 onto Z1.
Of course, Z may be considered as a submodule of Z1, and so we may take

ϕZ1
= ϕZ ,(9.1.5)

248
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considered as a homomorphism from V into Z1. By hypothesis, there is a
homomorphism ϕW1 from V into W1 that satisfies (9.1.1). Note that

ψ1(ϕW1(V )) = ϕZ1(V ) = ϕZ(V ) ⊆ Z,(9.1.6)

which implies that

ϕW1
(V ) ⊆W.(9.1.7)

Put

ϕW = ϕW1
,(9.1.8)

considered as a mapping from V into W . Clearly ϕZ = ψ ◦ ϕW , because of
(9.1.1), as desired.

There are analogous statements for right modules over A, as usual.

9.2 A reformulation of injectivity

Let k be a commutative ring with a multiplicative identity element again, and
let A be an associative algebra over k with a multiplicative identity element eA.
Suppose that a left moduleW over A has the following property. Let V1 be a left
module over A, let V1,0 be a submodule of V1, and let ϕ1,0 be a homomorphism
from V1,0 intoW , as modules over A. If V1 is projective as a left module over A,
then we ask that there be a homomorphism ϕ1 from V1 into W , as left modules
over A, such that

ϕ1 = ϕ1,0 on V1,0.(9.2.1)

This is the same as the injectivity of W , as in Section 2.8, with the additional
hypotheses that V1 be projective.

Proposition 5.2 on p12 of [3] states that this condition implies that W is
injective. To show this, let V be a left module over A, let V0, be a submodule
of V , and let ϕ0 be a homomorphism from V0 into W , as left modules over A.
Remember that there is a projective left module V1 over A and a homomorphism
ξ from V1 onto V , as left modules over A, as in Section 2.7. More precisely, one
can take V1 to be a free left module over A. Of course,

V1,0 = ξ−1(V0)(9.2.2)

is a submodule of V1.
Let ξ0 be the restriction of ξ to V1,0, and put

ϕ1,0 = ϕ0 ◦ ξ0.(9.2.3)

This is a homomorphism from V1,0 into W , as left modules over A, which can
be extended to a homomorphism ϕ1 from V1 into W , as left modules over A, by
hypothesis. Observe that the kernel of ξ is contained in V1,0, by construction,
so that

ker ξ = ker ξ0 ⊆ kerϕ1,0 ⊆ kerϕ1.(9.2.4)
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This implies that there is a unique homomorphism ϕ from V into W , as left
modules over A, such that

ϕ1 = ϕ ◦ ξ.(9.2.5)

It is easy to see that ϕ = ϕ0 on V0, because of the analogous property of ϕ1.
Of course, there are analogous statements for right modules over A.

9.3 Hereditary rings

Let A be a ring, with a nonzero multiplicative identity element eA. We say that
A is left hereditary if every left ideal in A is projective, as a left module over A,
as on p13 of [3]. The definition of what it means for A to be right hereditary
can be defined analogously, as mentioned on p15 of [3].

If x ∈ A, then

Ax = {a x : a ∈ A}(9.3.1)

is a left ideal in A. Of course,

a 7→ a x(9.3.2)

defines a homomorphism from A onto Ax, as left modules over A. Suppose for
the moment that A has no nontrivial zero divisors, so that the product of any
two nonzero elements of A is nonzero as well. If x 6= 0, then (9.3.2) defines an
isomorphism from A onto Ax, as left modules over A. In particular, this means
that Ax is free as a left ideal over A, and thus projective.

If A has no nontrivial zero divisors, and every left ideal in A is of the form
Ax for some x ∈ A, then it follows that A is left hereditary. This corresponds
to a remark at the bottom of p13 of [3].

Let V be a free left module over A, and let V0 be a submodule of V . If A is
left hereditary, then a theorem of Kaplansky states that

V0 is isomorphic to a direct sum of a family(9.3.3)

of left modules over A, each of which

is isomorphic to a left ideal in A,

as a left module over A. This is Theorem 5.3 on p13 of [3], and we shall return
to this in the next section.

Let V be a projective left module over A, so that V may be considered as
a submodule of a free left module over A, as in Section 2.7. This means that
every submodule of V may be considered as a submodule of a free left module
over A. If A is left hereditary, then Kaplansky’s theorem implies that every
submodule of V is isomorphic to a direct sum of projective left modules over A.
It follows that

every submodule of V is projective as a left module over A(9.3.4)

under these conditions, as in Section 2.7.
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Conversely, suppose that

every submodule of a projective left module over A(9.3.5)

is projective as a left module over A.

Of course, A is free as a left module over itself, and thus projective. It follows
that every left ideal in A is projective as a left module over A, so that A is left
hereditary. This corresponds to the equivalence of parts (a) and (b) of Theorem
5.4 on p14 of [3].

Suppose that (9.3.5) holds, and let us show that

every quotient of an injective left module over A(9.3.6)

is injective as a left module over A.

Let W be an injective left module over A, and let W0 be a submodule of W .
To check that W/W0 is injective, we let V1 be a projective left module over A,
V1,0 be a submodule of V1, and ϕ1,0 be a homomorphism from V1,0 into W/W0,
as left modules over A. Using (9.3.5), we get that V1,0 is projective as a left
module over A too. This implies that there is a homomorphism ϕW from V1,0
into W , as left modules over A, such that

ϕ1,0 is the same as the composition of ϕW with(9.3.7)

the natural quotient mapping from W onto W/W0.

Because W is injective, ϕW can be extended to a homomorphism ϕ from V1
into W , as left modules over A. The composition of ϕ with the natural quotient
mapping from W onto W0 is a homomorphism from V into W/W0, as left
modules over A, that is equal to ϕ1,0 on V1,0. It follows that W/W0 is injective
as a left module over A, as in the previous section.

Conversely, suppose that (9.3.6) holds, and let us show that (9.3.5) holds.
Let V be a projective left module over A, and let V0 be a submodule of V .
To show that V0 is projective, let W1 and Z1 be left modules over A, with
W1 injective, let ψ1 be a homomorphism from W1 onto Z1, and let ϕV0,Z1

be
a homomorphism from V0 into Z1, as left modules over A. It follows that Z1

is injective as a left module over A, because of (9.3.6). Thus ϕV0,Z1 can be
extended to a homomorphism ϕV,Z1 from V into Z1, as left modules over A.
Because V is projective, there is a homomorphism ϕV,W1

from V into W1, as
left modules over A, such that

ϕV,Z1 = ψ1 ◦ ϕV,W1 .(9.3.8)

The restriction of ϕV,W1
to V0 defines a homomorphism ϕV0,W1

from V0 intoW1,
as left modules over A, such that

ϕV0,Z1
= ψ1 ◦ ϕV0,W1

.(9.3.9)

This implies that V0 is projective, as in Section 9.1. This corresponds to the
equivalence of parts (b) and (c) in Theorem 5.4 on p14 of [3].
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9.4 Kaplansky’s theorem

Let A be a ring with a nonzero multiplicative identity element eA again, and
let V be a free left module over A. More precisely, suppose that {xα}α∈B is a
basis for V , as a free left module over A, and that B is well ordered by �. If
β ∈ B, then we let Vβ be the submodule of V generated by xα, with α ∈ B,
α � β, and α 6= β. Similarly, let V β be the submodule of V generated by xα
with α ∈ B and α � β.

Let U be a submodule of V . If β ∈ B and v ∈ U ∩ V β , then v can be
expressed in a unique way as

v = w + a · xβ ,(9.4.1)

where w ∈ Vβ and a ∈ A. Note that v 7→ a defines a homomorphism from
U ∩ V β into A, as left modules over A. Let Iβ be the image of U ∩ V β under
this homomorphism, which is a left ideal in A. The kernel of this homomorphism
is equal to

U ∩ Vβ .(9.4.2)

Suppose that A is left hereditary, so that Iβ is projective as a left module
over A. This implies that U ∩ V β corresponds to the direct sum of U ∩ Vβ and
another submodule Cβ , as left modules over A, as in Section 2.7. More precisely,
Cβ is isomorphic to Iβ , as a left module over A. We would like to show that U
corresponds to the direct sum of the submodules Cβ , β ∈ B, as a left module
over A.

Let β1, . . . , βn be finitely many distinct elements of B, with

β1 � β2 � · · · � βn.(9.4.3)

Suppose that cj ∈ Cβj , 1 ≤ j ≤ n, satisfy

n∑
j=1

cj = 0.(9.4.4)

Note that cj ∈ U ∩ V βj
for each j = 1, . . . , n, so that cj ∈ U ∩ Vβn

when j < n.

Because U ∩V βn corresponds to the direct sum of U ∩Vβn and Cβn , we get that

n−1∑
j=1

cj = cn = 0.(9.4.5)

One can repeat the process to get that cj = 0 for each j = 1, . . . , n.

Let
∑
β∈B Cβ be the submodule of U generated by the Cβ ’s, β ∈ B. We

would like to verify that

U =
∑
β∈B

Cβ .(9.4.6)
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Otherwise, there is an α ∈ B such that

U ∩ V α 6⊆
∑
β∈B

Cβ ,(9.4.7)

and we may as well take α to be the minimal element of B with this property.
One can check that

U ∩ Vα ⊆
∑
β∈B

Cβ ,(9.4.8)

using the minimality of α. This implies that

U ∩ V α = (U ∩ Vα) + Cα ⊆
∑
β∈B

Cβ ,(9.4.9)

which is a contradiction.

9.5 Semi-hereditary rings

Let A be a ring with a nonzero multiplicative identity element eA. We say that
A is left semi-hereditary if every left ideal in A that is finitely generated as a
left module over A is projective, as a left module over A, as on p14 of [3]. The
right-hereditary condition can be defined analogously, as mentioned on p15 of
[3].

Let V be a free left module over A, and let V0 be a finitely-generated sub-
module of V . If A is left semi-hereditary, then

V0 is isomorphic to a direct sum of finitely many left modules(9.5.1)

over A, each of which is isomorphic to a left ideal in A

that is finitely generated as a left module over A.

More precisely, V0 is isomorphic to such a direct sum, as a left module over A.
This is Proposition 6.1 on p14 of [3].

To see this, one can first reduce to the case where V is freely generated
by finitely many elements x1, . . . , xn, as a left module over A. More precisely,
it suffices to choose the xj ’s so that V0 is contained in the submodule of V
generated by them.

The statement holds trivially if n = 0, with suitable interpretations. If
n = 1, then it is easy to see that V0 is isomorphic to a left ideal in A, as a left
module over A. Otherwise, we can use induction, as follows.

LetW be the submodule of V generated by x1, . . . , xn−1, which is interpreted
as being {0} when n = 1. Thus every v ∈ V can be expressed in a unique way
as

v = w + a · xn,(9.5.2)

with w ∈ W and a ∈ A. Of course, v 7→ a defines a homomorphism from V
onto A, as left modules over A. This homomorphism maps V0 onto a left ideal
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I0 in A, and the kernel of the restriction of this homomorphism to V0 is equal
to

V0 ∩W.(9.5.3)

Note that I0 is finitely generated as a left module over A, because V0 is finitely
generated, by hypothesis.

If A is left semi-hereditary, then it follows that I0 is projective, as a left
module over A. This implies that V0 corresponds to the direct sum of V0 ∩W
and another submodule C0, as left modules over A, as in Section 2.7. We also
have that C0 is isomorphic to I0, as a left module over A.

Observe that V0 ∩W is finitely generated as a left module over A, because
there is a homomorphism from V0 onto V0∩W . This permits us to use induction,
to get that V0 ∩W is isomorphic to a direct sum of finitely many left modules
over A, each of which is isomorphic to a left ideal in A that is finitely generated
as a left module over A. It follows that V0 has the same property, as desired.

Proposition 6.2 on p15 of [3] states that A is left semi-hereditary if and only
if

every finitely-generated submodule of a projective left(9.5.4)

module over A is projective as a left module over A.

Indeed, any projective left module over A may be considered as a submodule
of a free left module over A, as in Section 2.7. Thus the “only if” part follows
from (9.5.1), and the fact that direct sums of projective modules are projective.
The “if” part follows from the fact that A is free as a left module over itself,
and thus projective.

9.6 Hereditary rings and differentiation

Let A be a ring with a nonzero multiplicative identity element, and let (V, dV )
be a left or right module over A with differentiation. Suppose that A is left or
right hereditary, as appropriate, and that V is projective as a module over A.
This implies that

B(V ) = dV (V ) is projective as a module over A,(9.6.1)

as in Section 9.3, because B(V ) is a submodule of V . It follows that V corre-
sponds to the direct sum of Z(V ) = ker dV and another submodule of V , as a
module over A, as in Section 2.7.

Note that

B′(V ) = V/Z(V ) = V/ ker dV is projective as a module over A,(9.6.2)

because it is isomorphic to B(V ). Remember that there is a natural homo-
morphism from Z ′(V ) = V/dV (V ) onto B′(V ), because DV (V ) ⊆ ker dV , as in
Section 5.1. One can use this to get that Z ′(V ) corresponds to the direct sum
of H(V ) = Z(V )/B(V ) and another submodule of Z ′(V ), as a module over A,
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as in Section 2.7. Of course, this could also be obtained by expressing V as a
direct sum of Z(V ) and another submodule, as in the preceding paragraph.

Suppose that (V, dV ) is a graded module over A with differentiation that is
a complex. In this case, V is projective as a module over A if and only if V j

is projective as a module over A for every j ∈ Z, as in Section 2.7. It is easy
to see that V corresponds to the direct sum of Z(V ) and another homogeneous
submodule of V , as a module over A, under these conditions. We also have
that Z ′(V ) corresponds to the direct sum of H(V ) and another homogeneous
submodule of Z ′(V ), as a module over A, as before. This is related to part of
the proof of Theorem 3.2 on p113 of [3].

Let (V, dV ) be a left or right module over A with differentiation again, and
suppose now that V is injective as a module over A. This implies that

B(V ) is injective as a module over A,(9.6.3)

as in Section 9.3. It follows that V corresponds to the direct sum of B(V ) and
another submodule of V , as a module over A, as in Section 2.8. We also get
that Z(V ) corresponds to the direct sum of B(V ) and another submodule of
Z(V ), as a module over A.

Suppose that (V, dV ) is a graded module over A with differentiation that is
a complex, and that V j is injective as a module over A for every j ∈ Z. This
implies that

B(V )j is injective as a module over A for every j ∈ Z,(9.6.4)

as before. It follows that V j corresponds to the direct sum of B(V )j and another
submodule of V j , as a module over A, for every j ∈ Z. We also get that Z(V )j

corresponds to the direct sum of B(V )j and another submodule of Z(V )j , as a
module over A, for every j ∈ Z. This is related to Theorem 3.2a on p114 of [3].

9.7 Noetherian conditions

Let A be a ring with a multiplicative identity element eA, and let V be a left or
right module over A. We say that V is Noetherian if

every submodule of V is finitely generated, as a module over A,(9.7.1)

as on p15 of [3]. The Noetherian condition is often defined in terms of the ascend-
ing chain condition for the collection of submodules of V , as a partially-ordered
set with respect to inclusion, which says that any monotonically-increasing se-
quence of submodules of V with respect to inclusion is eventually constant.
Another formulation asks that any nonempty collection of submodules of V
have a maximal element. The equivalence of these conditions can be shown
using standard arguments, as in Propositions 6.1 and 6.2 on p74f of [1].

Let V0 be a submodule of V . If V0 and the corresponding quotient module
V/V0 are finitely generated as modules over A, then one can check that V is
finitely generated as a module over A, as in Exercise 9 on p32 of [1], and the



256 CHAPTER 9. SOME RINGS AND MODULES

first part of Exercise 2 on p16 of [3]. If V is finitely generated as a module
over A, then it is easy to see that V/V0 is finitely generated too. Of course, if
V is Noetherian, then V0 is finitely generated as well, as in the second part of
Exercise 2 on p16 of [3].

One can check that V is Noetherian if and only if

V0 and V/V0 are Noetherian,(9.7.2)

as in part (i) of Proposition 6.3 on p75 of [1]. The argument given there uses
the ascending chain condition, and one could also verify this using the definition
in terms of finitely-generated submodules.

Let V1, . . . , Vn be finitely many Noetherian modules over A, which are all
left modules over A, or all right modules over A. Under these conditions, their
direct sum

n⊕
j=1

Vj is Noetherian as a module over A,(9.7.3)

as in Corollary 6.4 on p76 of [1]. This can be seen using induction on n, and
the statement in the preceding paragraph.

We say that A is left or right Noetherian as a ring if A is Noetherian as a
left or right module over itself, as appropriate, as on p76 of [1], and p15 of [3].
This means that every left or right ideal in A is finitely generated as a module
over A.

In this case, if V is a finitely-generated left or right module over A, as
appropriate, then

V is Noetherian as a module over A,(9.7.4)

as in Proposition 6.5 on p76 of [1], and Proposition 7.1 on p15 of [3]. In the
proof in [1], one expresses V as a quotient of An for some n ≥ 1, and one uses
the results mentioned in the previous two paragraphs. The proof in [3] uses
induction on the number of generators of V , and basically involves analogous
arguments.

An example is given on p16 of [3] of a ring that is left Noetherian and not
right Noetherian, and which is due to J. Dieudonné. Let k be a commutative
ring with a nonzero multiplicative identity element, which one can take to be
Z for the example. The example may be considered as an associative algebra
A over k with a nonzero multiplicative identity element eA, which is generated
by eA and two additional nonzero elements x, y, as an algebra over k. More
precisely, x and y are supposed to satisfy

y x = y y = 0,(9.7.5)

and no other relations.
One might as well take x to be an indeterminate, so that the subalgebra of

A generated by eA and x may be identified with the usual algebra k[x] of formal
polynomials in x with coefficients in k. Every element of A can be expressed in
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a unique way as an element of k[x] plus an element of k[x] times y, so that A
corresponds to the direct sum of k[x] and (k[x]) y, as a module over k. If k is
a Noetherian ring, then k[x] is a Noetherian ring, by Hilbert’s Basis Theorem,
which is Theorem 7.5 on p81 of [1]. In particular, this holds when k = Z, or k
is a field.

If we consider A as a module over k[x] with respect to multiplication by
elements of k[x] on the left, then A is isomorphic to the direct sum of two copies
of k[x]. If k is a Noetherian ring, so that k[x] is a Noetherian ring, then it follows
that A is Noetherian as a module over k[x], as before. In this case, it is easy to
see that A is Noetherian as a left module over itself, because every submodule
of A as a left module over itself is also a submodule of A as a module over k[x]
with respect to multiplication by elements of k[x] on the left. This means that
A is left Noetherian as a ring under these conditions.

Observe that (k[x]) y is a right ideal in A, because of the relations (9.7.5).
Using these relations, we also get that any set of generators for (k[x]) y as a right
module over A generates (k[x]) y as a module over k. In particular, (k[x]) y is
not finitely generated as a right module over A, because (k[x]) y is not finitely
generated as a module over k. This means that A is not Noetherian as a right
module over itself. Equivalently, A is not right Noetherian as a ring.

9.8 A criterion for finite generation

Let A be a ring with multiplicative identity element eA, and let V be a left or
right module over A. Also let V1 and V2 be submodules of V , so that V1 + V2
and V1 ∩ V2 are submodules of V as well. If V1 + V2 and V1 ∩ V2 are finitely
generated as modules over A, then V1 and V2 are finitely generated as modules
over A. This is Exercise 4 on p16 of [3].

This is a bit simpler when

V1 ∩ V2 = {0}.(9.8.1)

In this case, V1 + V2 corresponds to the direct sum of V1 and V2, as modules
over A. In particular, this leads to homomorphisms from V1 + V2 onto V1 and
V2, as modules over A. If w1, . . . , wn are finitely many elements of V1 + V2 that
generate V1 + V2 as a module over A, then their images in V1 and V2 generate
these modules.

Otherwise, consider the quotients

(V1 + V2)/V1(9.8.2)

and
(V1 + V2)/V2,(9.8.3)

which are modules over A. More precisely, these are finitely-generated modules
over A, because V1 + V2 is finitely generated. Let q1, q2 be the natural quotient
mappings from V1 + V2 onto (9.8.2), (9.8.3), respectively. Observe that

q1(V2) = (V1 + V2)/V1,(9.8.4)
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and that the kernel of the restriction of q1 to V2 is V1 ∩ V2. It follows that V2 is
finitely generated as a module over A, because (9.8.2) and V1 ∩ V2 are finitely
generated, as in the previous section. Similarly, one can get that V1 is finitely
generated as a module over A, using the restriction of q2 to V1. This is related
to the diagram in Exercise 1 on p16 of [3].

Alternatively, consider the quotient

(V1 + V2)/(V1 ∩ V2).(9.8.5)

As before, this is a finitely-generated module over A, because V1 + V2 is finitely
generated. Let q1,2 be the natural quotient mapping from V1 + V2 onto (9.8.5).
Of course,

q1,2(V1) + q1,2(V2) = q1,2(V1 + V2) = (V1 + V2)/(V1 ∩ V2).(9.8.6)

Let us check that
q1,2(V1) ∩ q1,2(V2) = {0}.(9.8.7)

If v1 ∈ V1 and v2 ∈ V2 satisfy q1,2(v1) = q1,2(v2), then

v1 − v2 ∈ V1 ∩ V2.(9.8.8)

This implies that v1 ∈ V2 and v2 ∈ V1, so that v1, v2 ∈ V1 ∩ V2, and thus
q1,2(v1) = q1,2(v2) = 0, as desired.

This shows that (9.8.5) corresponds to the direct sum of q1,2(V1) and q1,2(V2),
as a module over A. It follows that q1,2(V1) and q1,2(V ) are finitely generated
as modules over A, because (9.8.5) is finitely generated as a module over A, as
before. One can use this to get that V1 and V2 are finitely generated, because
V1 ∩ V2 is finitely generated, as in the previous section.

9.9 Direct sums and injective modules

Let A be a ring with multiplicative identity element eA, let B be a nonempty
set, and let Vβ be a left module over A for each β ∈ B. If Vβ is an injective
module over A for each β ∈ B, and A is left Noetherian, then⊕

β∈B

Vβ is injective as a left module over A.(9.9.1)

Of course, there is an analogous statement for right modules. Remember that
direct products of injective modules are injective, as in Section 2.8, without
additional conditions on A. Of course, if B has only finitely many elements,
then

⊕
β∈B V

β is the same as the direct product.
To show (9.9.1), let I be a left ideal in A, and let ϕ be a homomorphism

from I into
⊕

β∈B Vβ , as left modules over A. It suffices to find

v ∈
⊕
β∈B

Vβ(9.9.2)
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such that
ϕ(a) = a · v(9.9.3)

for every a ∈ I, as in Section 2.8. Let ϕβ(a) be the component of ϕ(a) in Vβ
for each a ∈ I and β ∈ B. Thus ϕβ defines a homomorphism from I into Vβ ,
as left modules over A, for each β ∈ B. Note that (9.9.3) is the same as saying
that

ϕβ(a) = a · vβ(9.9.4)

for every a ∈ I and β ∈ B, where vβ is the component of v in Vβ .
If A is left Noetherian, then there are finitely many elements x1, . . . , xn of I

such that I is generated by x1, . . . , xn, as a left module over A. Put

Bj = {β ∈ B : ϕβ(xj) 6= 0}(9.9.5)

for each j = 1, . . . , n, which is a finite subset of B, because ϕ(xj) ∈
⊕

β∈B Vβ .
Thus

n⋃
j=1

Bj(9.9.6)

is a finite subset of B too. If a ∈ I, then it is easy to see that

ϕβ(a) = 0 when β ∈ B \
( n⋃
j=1

Bj

)
,(9.9.7)

because I is generated by x1, . . . , xn, as a left module over A. Equivalently,

ϕβ = 0 when β ∈ B \
(⋃n

j=1Bj

)
.

If β ∈
⋃n
j=1Bj , then let vβ be an element of Vβ such that (9.9.4) holds for

every a ∈ I. This uses the injectivity of Vβ as a left module over A, as in Section

2.8. If β ∈ B \
(⋃n

j=1Bj

)
, then we can take vβ = 0. This defines an element

v of
⊕

β∈B Vβ , whose component in Vβ is equal to vβ for every β ∈ B. Under
these conditions, (9.9.3) holds for every a ∈ I, as desired.

Note that if (9.9.1) holds, then Vα is injective as a left module over A for
every α ∈ B. This can be seen using the same argument as for direct products
in Section 2.8.

9.10 Some finitely-generated modules

Let k be a commutative ring with a multiplicative identity element, and let V ,
W be modules over k. If V and W are finitely generated as modules over k,
then V

⊗
kW is finitely generated as a module over k. This is the first part

of Exercise 6 on p32 of [3]. More precisely, suppose that V , W are generated
by subsets EV , EW , respectively, as modules over k. Under these conditions,
V
⊗

kW is generated by {
v ⊗ w : v ∈ EV , w ∈ EW

}
,(9.10.1)
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as a module over k.
Let v1, . . . , vn be finitely many elements of V for some positive integer n, and

let Wn be the usual space of n-tuples of elements of W . Thus Wn is a module
over k, with respect to coordinatewise addition and scalar multiplication. If ϕ
is a homomorphism from V into W , as modules over k, then put

L(ϕ) = (ϕ(v1), . . . , ϕ(vn)),(9.10.2)

which is an element of Wn. This defines a homomorphism from Homk(V,W )
into Wn, as modules over k. If V is freely generated by v1, . . . , vn, as a module
over k, then L is an isomorphism from Homk(V,W ) onto Wn, as modules over
k.

Suppose that W is finitely generated, as a module over k. This implies
that Wn is finitely generated too, as a module over k. Suppose that k is also
Noetherian as a ring. It follows that Wn is Noetherian as a module over k, as
in Section 9.7. In particular, this means that

L
(
Homk(V,W )

)
is finitely generated, as a module over k.(9.10.3)

If V is generated by v1, . . . , vn, as a module over k, then it is easy to see that
L is injective, as a mapping from Homk(V,W ) into Wn. In this case, (9.10.3)
implies that

Homk(V,W ) is finitely generated, as a module over k.(9.10.4)

Thus (9.10.4) holds when V and W are finitely generated as modules over k,
and k is Noetherian. This is the second part of Exercise 6 on p32 of [3]. Of
course, (9.10.4) also holds when V is freely generated by finitely many elements,
and W is finitely generated, as modules over k.

If V is finitely generated as a module over k, then there is a homomorphism
from a module X over k onto V , where X is freely generated by finitely many
elements. If V is projective as a module over k, then X corresponds to the direct
sum of two submodules, one of which is isomorphic to V , as in Section 2.7. This
implies that Homk(X,W ) is isomorphic to the direct sum of the corresponding
spaces of homomorphisms from each of the two submodules just mentioned into
W . In particular, Homk(X,W ) is isomorphic to the direct sum of Homk(V,W )
and another module over k. If W is finitely generated as a module over k, then
Homk(X,W ) is finitely generated as a module over k, as before. In this case, it
follows that Homk(V,W ) is finitely generated as a module over k. This means
that (9.10.4) holds when V and W are finitely generated modules over k, and
V is projective.

9.11 Some remarks about division rings

Let A be a ring, with a nonzero multiplicative identity element eA. In this
section, we suppose that A is a division ring, so that every nonzero element of
A has a multiplicative inverse in A. This implies that A and {0} are the only
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left or right ideals in A. In particular, A is left and right hereditary, and left
and right Noetherian.

Of course, if A is commutative, then A is a field. Sometimes the term “field”
is used for division rings that may not be commutative, but here we mean a
commutative division ring. We may also refer to a division algebra over a field
k, which is a division ring that is an algebra over k as well.

A left or right module over A is sometimes called a left or right vector space
over A, as appropriate. Many of the usual properties of vector spaces over fields
work for left and right vector spaces over division rings too, suitably interpreted.
Let us consider a left module V over A, the corresponding statements for right
modules being analogous.

A collection v1, . . . , vn of finitely many elements of V is said to be linearly
dependent if there are elements a1, . . . , an of A, not all equal to 0, such that

n∑
j=1

aj · vj = 0.(9.11.1)

In this case, it is easy to see that a smaller collection of elements of V will
generate the same submodule of V , as a left module over A.

A subset E of V is said to be linearly independent if there are no nonempty
finite subsets of E that are linearly dependent. This means that the submodule
of V generated by E is freely generated by E.

Let E0 be a linearly independent subset of V . It is well known that there is
a linearly independent subset E of V such that

E0 ⊆ E,(9.11.2)

and E is maximal with respect to inclusion. This can be shown using Zorn’s
lemma, or Hausdorff’s maximality principle. One can use maximality of E to
get that V is generated by E, as a left module over A. This implies that V is
freely generated by E, as a left module over A, as before.

If V is generated by E0 and finitely or countably many other elements of
V , as a left module over A, then one can get a linearly independent set E ⊆ V
such that (9.11.2) holds and V is generated by E more directly. More precisely,
one can go through the list of new elements and drop those that are in the
submodule of V generated by E0 and the previous elements in the list.

In particular, this implies that any left module over A is a free module over
A. If V1 is any submodule of V , as a left module, then one can use this to get
a linearly independent set E1 ⊆ V1 such that V1 is generated by E1, as a left
module over A. This can be extended to a linearly independent set E ⊆ V that
generates V as a left module over A, as before. Let V2 be the submodule of V
generated by E2 = E \ E1. It is easy to see that

V corresponds to the direct sum of V1 and V2,(9.11.3)

as a left module over A, under these conditions.
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Every left module over A is injective as a left module over A too. This
follows easily from the characterization of injectivity in Section 2.8, because A
and {0} are the only left ideals in A. Alternatively, this can be obtained from
the remarks in the preceding paragraph.

9.12 Polynomials and division rings

Let A be a division ring, let T be an indeterminate, and let A[T ] be the corre-
sponding ring of formal polynomials in T with coefficients in A, as in Section
4.3. If f(T ) =

∑n
j=0 fj T

j ∈ A[T ] and fn 6= 0, then the degree deg f(T ) of f(T )
is defined to be n, as usual. If f(T ) = 0, then the degree of f(T ) may be defined
to be −∞. It is easy to see that the degree of the product of two elements of
A[T ] is equal to the sum of their degrees.

Let a(T ) ∈ A[T ] be given, with a(T ) 6= 0. If f(T ) ∈ A[T ], then there are
b(T ), r(T ) ∈ A[T ] such that

f(T ) = b(T ) a(T ) + r(T )(9.12.1)

and deg r(T ) < deg a(T ). This can be seen in essentially the same way as when
A is commutative. Of course, if deg f(T ) < deg a(T ), then one can simply take
b(T ) = 0.

Otherwise, one can find c ∈ A and a nonnegative integer j such that

deg(f(T )− (c T j) a(T )) < deg f(T ).(9.12.2)

One can repeat the process until the degree of the remainder is strictly less
than deg a(T ). The analogous statement with a(T ) multiplied on the right by
an element of A[T ] can be shown in the same way.

Let I be a left ideal in A[T ], and let a(T ) be a nonzero element of I of
minimal degree. Under these conditions,

I = {b(T ) a(T ) : b(T ) ∈ A[T ]}.(9.12.3)

Clearly the right side of (9.12.3) is contained in I, because a(T ) ∈ I. If f(T ) ∈
I, then f(T ) can be expressed as in (9.12.1). In this case, r(T ) ∈ I, because I is
a left ideal in A[T ]. The minimality of the degree of a(T ) implies that r(T ) = 0,
so that f(T ) is in the right side of (9.12.3). Of course, there is an analogous
statement for nonzero right ideals in A[T ].

Note that

b(T ) 7→ b(T ) a(T )(9.12.4)

defines a homomorphism from A[T ] onto I, as left modules over A[T ]. This
homomorphism is injective, because products of nonzero elements of A[T ] are
nonzero, as before. Thus I is isomorphic to A[T ] as a left module over A[T ],
and in particular I is projective as a left module over A[T ]. This implies that
A[T ] is left hereditary as a ring. Similarly, A[T ] is right hereditary as a ring.
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Let A[[T ]] be the ring of formal power series in T with coefficients in A, as
in Section 4.3. If j0 is a nonnegative integer, then it is easy to see that

(A[[T ]])T j0(9.12.5)

is a left and right ideal in A[[T ]]. Conversely, any nonzero left or right ideal I
in A[[T ]] is of this form. To see this, let f(T ) =

∑∞
j=j0

fjT
j be an element of

I with fj0 6= 0 and j0 as small as possible. Thus I is contained in (9.12.5), by
construction. Note that an element of A[[T ]] is invertible when its coefficient of
T 0 is nonzero, because A is a division ring, as in Section 4.5. One can use this
to check that I is equal to (9.12.5).

It is easy to see that the product of two nonzero elements of A[[T ]] is nonzero
as well, by considering the smallest powers of T for which the corresponding
coefficients are not zero. It follows that any nonzero left or right ideal I in A[[T ]]
is isomorphic to A[[T ]], as a left or right module over A[[T ]], as appropriate. In
particular, this means that I is projective as a left or right module over A[[T ]],
as appropriate. This shows that A[[T ]] is left and right hereditary, as a ring.

9.13 An interesting family of rings

Let A1 be a commutative ring with a nonzero multiplicative identity element e.
Also let ε be a ring homomorphism from A1 into itself, with

ε(e) = e.(9.13.1)

Put
A2 = A1 ×A1,(9.13.2)

considered initially as a commutative group with respect to coordinatewise ad-
dition. Of course, this is the same as the direct sum of two copies of A1, as a
commutative group with respect to addition.

Let us define multiplication on A2 by putting

(a, b) (a′, b′) = (a a′, a b′ + ε(a′) b)(9.13.3)

for every a, a′, b, b′ ∈ A1, as in Exercise 5 on p159 of [3]. This defines a mapping
from A2×A2 into A2 that is additive in each of (a, b) and (a′, b′). One can check
that this definition of multiplication on A2 is associative, so that A2 is a ring.
If ε is the identity mapping on A1, then multiplication on A2 is commutative.

It is easy to see that (e, 0) is the multiplicative identity element in A2,
because of (9.13.1). Observe that

a 7→ (a, 0)(9.13.4)

is an injective ring homomorphism from A1 into A2. Thus A1×{0} is a subring
of A2 that is isomorphic to A1.

Suppose for the moment that k is a commutative ring with a nonzero multi-
plicative identity element, and that A1 is the algebra k[x] of formal polynomials
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in an indeterminate x with coefficients in k. Let ε be the mapping from k[x] into
itself that sends a formal polynomial in x to its constant term. In this case, A2

corresponds to the algebra over k in Dieudonné’s example, discussed in Section
9.7, as in Exercise 5 on p159 of [3].

Clearly
(a, b) 7→ a(9.13.5)

defines a ring homomorphism from A2 onto A1. If (a, b) ∈ A2 has a left or right
inverse in A2, then it follows that A is invertible in A1. If b ∈ A1, then

(e, b) (e,−b) = (e,−b) (e, b) = (e, 0).(9.13.6)

This means that (e, b) is invertible in A2, with inverse (e,−b). If (a, b) ∈ A2 and
a is invertible in A1, then it follows that

(a, b) = (a, 0) (e, a−1 b)(9.13.7)

is invertible in A2, as in Exercise 5 on p159 of [3].
Suppose for the moment that A1 is a local ring, and let I1 be the unique

maximal ideal in A1. Thus I1 consists exactly of the noninvertible elements of
A1, as in Section 4.13. Under these conditions,

I2 = {(a, b) ∈ A2 : a ∈ I1}(9.13.8)

is a two-sided ideal in A2, which is the same as the collection of elements of A2

without a left inverse, or without a right inverse. This means that A2 is a local
ring as well, as in Section 4.13. Note that A1/I1 is isomorphic to A2/I2, as in
Exercise 5 on p159 of [3].

It is easy to see that {0}×A1 is a two-sided ideal in A2, which is the same as
the kernel of (9.13.5). We may consider A2 as a module over A1 with respect to
both left and right multiplication, using (9.13.4). Clearly A1×{0} and {0}×A1

are both submodules of A2, as a module over A1 with respect to each of left and
right multiplication. As modules over A1 with respect to left multiplication,
A1 × {0} and {0} ×A1 are both isomorphic to A1.

If A1 is Noetherian as a ring, then A1 × {0} and {0} × A1 are Noetherian
as modules over A1 with respect to multiplication on the left. This implies that
A2 is Noetherian as a module over A1 with respect to multiplication on the left,
because A2 corresponds to the direct sum of A1×{0} and {0}×A1. In this case,
it follows that A2 is left Noetherian, because left ideals in A2 are submodules
of A2 as a module over A1 with respect to multiplication on the left.

Let k be a commutative ring with a nonzero multiplicative identity element
again, and suppose now that A1 is the algebra k[[x]] of formal power series in
an indeterminate x with coefficients in k. Also let ε be the mapping from k[[x]]
to itself that sends a formal power series in x to its constant term, so that A2

may be defined as before. If k is a field, then k[[x]] is a local ring, so that A2 is
a local ring, as mentioned earlier.

If k is Noetherian, then it is well known that k[[x]] is a Noetherian ring too,
as on p81 of [1]. This implies that A2 is left Noetherian, as before.
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It is easy to see that any submodule W of

{0} ×A1 = {0} × k[[x]],(9.13.9)

as a module over k, is a right ideal in A2, because of (9.13.3) and the definition
of ε. Similarly, any set of generators for W , as a right module over A2, also
generates W as a module over k. One can use this to get that A2 is not right
Noetherian, as in Exercise 5 on p159 of [3].

9.14 Graded rings

Let A be a ring, with a multiplicative identity element eA. Suppose that A is
graded as a commutative group with respect to addition, or equivalently as a
module over Z, as in Section 5.9. Suppose also that

Aj = {0} for every j < 0,(9.14.1)

and that

Aj ·Al ⊆ Aj+l(9.14.2)

for every j, l ≥ 0. Under these conditions, A is said to be a graded ring, as on
p146 of [3].

In this case, one can check that the component e0A of eA in A0 is a multi-
plicative identity element of A. This means that e0A = eA, so that eA ∈ A0.
Note that A0 is a subring of A.

If a ∈ A, then let

ε(a) = a0(9.14.3)

be the component of a in A0. This defines a ring homomorphism from A onto
A0. Of course, the kernel of ε corresponds to the direct sum of Aj , with j ≥ 1.

Let k be a commutative ring with a multiplicative identity element, and
suppose that A is an associative algebra over k. If A is graded as a module
over k, with respect to the same grading as before, then A is a graded as an
associative algebra over k, as on p164 of [3].

Let B be a subring of A, and suppose that B is homogeneous as a subgroup
of A, as a graded commutative group with respect to addition, as in Section
5.9. Thus B is a graded commutative group with respect to addition too, using
the grading induced by the one on A. Clearly B is a graded ring with respect
to this grading.

Let A be any ring with multiplicative identity element eA, and let T1, . . . , Tn
be commuting determinates. Thus the corresponding ring A[T1, . . . , Tn] of for-
mal polynomials in T1, . . . , Tn with coefficients in A may be defined as in Section
4.3. An element f(T ) =

∑
α∈(Z+∪{0})n fα t

α of A[T1, . . . , Tn] is said to be ho-
mogeneous of degree j for some nonnegative integer j if

fα = 0 when α1 + · · ·+ αn 6= j.(9.14.4)
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If we take (A[T1, . . . , Tn])
j to be the set of elements of A[T1, . . . , Tn] that are

homogeneous of degree j for each j ≥ 0, and to be {0} when j < 0, then

A[T1, . . . , Tn] is a graded ring,(9.14.5)

as on p146 of [3]. Of course, (A[T1, . . . , Tn])
0 can be identified with A in a

natural way.
Let E be a nonempty set, and let Σ(E) be the free semigroup generated by

E, as in Section 4.10. One can use Σ(E) to get the corresponding semigroup
ring A(Σ(E)), as in Sections 4.9 and 4.10. This is the free ring over A with
generating set E, as on p146, 148 of [3]. By construction, the elements of
A(Σ(E)) correspond to finite sums of elements of A times formal products of
finitely many elements of E. If j is a nonnegative integer, then let (A(Σ(E)))j

be the set of elements of A(Σ(E)) that can be expressed as a finite sum of
elements of A times formal products of elements of E of length j. If we take
(A(Σ(E)))j = {0} when j < 0, then it is easy to see that

A(Σ(E)) is a graded ring,(9.14.6)

as on p146 of [3]. Note that (A(Σ(E)))0 can be identified with A in a natural
way.

Let V be a bimodule over A, so that V is both a left and right module over
A, and the actions of A on V on the left and right commute with each other.
The corresponding tensor ring T (V ) can be defined as in Section 4.11, and

T (V ) is a graded ring,(9.14.7)

with (T (V ))j = T j(V ) for each j ≥ 0, and (T (V ))j = {0} when j < 0. In
particular, (T (V ))0 = T 0(V ) = A, by construction.

Let n be a positive integer, and let x1, . . . , xn be indeterminates. Remember
that the corresponding exterior ring EA(x1, . . . , xn) in x1, . . . , xn with coeffi-
cients in A is defined as in Section 4.15. If 0 ≤ j ≤ n, then let (EV (x1, . . . , xn))

j

be the set of elements of EV (x1, . . . , xn) of the form∑
I⊆{1,...,n}

|I|=j

aI xI ,(9.14.8)

Here xI is as in (4.15.2) for each I ⊆ {1, . . . , n}, |I| is the number of elements
of I, and aI ∈ A. If j < 0 or j > n, then we take (EA(x1, . . . , xn))

j = {0}. It
is easy to see that

EA(x1, . . . , xn) is a graded ring,(9.14.9)

as on p146 of [3]. Note that (EA(x1, . . . , xn))
0 can be identified with A, as

before.
Remember that the ring A[d] of dual numbers associated to A as in Section

5.4 consists of expressions of the form a1 + a2 d, where a1, a2 ∈ A, and d is a
formal symbol that commutes with all elements of A and satisfies d2 = 0. This
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corresponds to taking n = 1 in the preceding paragraph, as on p146 of [3]. In
particular,

A[d] is a graded ring,(9.14.10)

with (A[d])0 = A, (A[d])1 = Ad, and (A[d])j = {0} otherwise.

9.15 Graded modules over graded rings

Let A be a ring, with a multiplicative identity element eA, and suppose that
A is graded, as in the previous section. Also let V be a right module over A.
Suppose that V is graded as a commutative group with respect to addition, or
equivalently as a module over Z, as in Section 5.9. Let us say that this grading
on V is compatible with the grading on A if

V j ·Al ⊆ V j+l(9.15.1)

for every j, l ∈ Z, where of course we may as well take l ≥ 0. Equivalently, this
means that

vj · al ∈ V j+l(9.15.2)

for every vj ∈ V j and al ∈ Al.
Remember that A0 is a subring of A, so that V may be considered as a right

module over A0. If the grading on V is compatible with the grading on A, then
V is a graded module over A0 in the usual sense, as in Section 5.9.

Suppose that V is positive with respect to its grading, so that V j = {0}
when j < 0, as in Section 5.9. If the grading on V is compatible with the
grading on A, then V is said to be graded as a module over A, as a graded ring,
as on p154 of [3]. Of course, there are analogous notions for left modules. Note
that A may be considered as a graded module over itself, as a graded ring.

Let U be a submodule of V , as a module over A. Suppose that U is homo-
geneous as a subgroup of V , as a graded commutative group with respect to
addition, as in Section 5.9. If the grading on V is compatible with the grading
on A, then the grading on U induced by the grading on V is compatible with
the grading on A as well. In particular, if V is graded as a module over A, as a
graded ring, then U is graded as a module over A, as a graded ring, with respect
to the induced grading.

Let B be a subring of A that contains eA, and suppose that B is homogeneous
as a subgroup of A, as a commutative group with respect to addition, so that
B may be considered as a graded ring with respect to the induced grading, as
in the previous section. Of course, V may be considered as a module over B. If
the grading on V is compatible with the grading on A, then the grading on V is
compatible with the grading on B induced by the grading on A. If V is graded
as a module over A, as a graded ring, then V is graded as a module over B, as
a graded ring, with the induced grading.

Let us now take A to be any ring with a multiplicative identity element eA,
and let T1, . . . , Tn be commuting indeterminates, so that the corresponding ring
A[T1, . . . , Tn] of formal polynomials in T1, . . . , Tn with coefficients in A may be
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defined as in Section 4.3. This may be considered as a graded ring, as in the
previous section. Let V be a left or right module over A, and let V [T1, . . . , Tn] be
the space of formal polynomials in T1, . . . , Tn with coefficients in V , as in Section
4.3 again. This may be considered as a left or right module over A[T1, . . . , Tn],
as appropriate, as before.

Let us say that an element f(T ) =
∑
α∈(Z+∪{0})n fα T

α of V [T1, . . . , Tn] is
homogeneous of degree j for some nonnegative integer j if fα = 0 when

α1 + · · ·+ αn 6= j,(9.15.3)

as usual. Let (V [T1, . . . , Tn])
j be the set of elements of V [T1, . . . , Tn] that are

homogeneous of degree j when j ≥ 0, and be equal to {0} when j < 0. Using
this, it is easy to see that

V [T1, . . . , Tn] is a graded module over A[T1, . . . , Tn],(9.15.4)

as a graded ring.

Let x1, . . . , xn be indeterminates, so that the exterior ring EA(x1, . . . , xn)
in x1, . . . , xn with coefficients in A is defined as in Section 4.15. This may
be considered as a graded ring, as in the previous section. Let V be a left
or right module over A again, and let EV (x1, . . . , xn) be as in Section 4.15.
Remember that EV (x1, . . . , xn) may be considered as a left or right module over
EA(x1, . . . , xn), as appropriate.

Let (EV (x1, . . . , xn))j be the set of elements of EV (x1, . . . , xn) of the form∑
I⊆{1,...,n}

|I|=j

vI xI(9.15.5)

when 0 ≤ j ≤ n. As before, xI is as in (4.15.2) for each I ⊆ {1, . . . , n}, |I| is
the number of element of I, and vI ∈ V . If we also take (EV (x1, . . . , n))j = {0}
when j < 0 or j > n, then it is easy to see that

EV (x1, . . . , xn) is a graded module over EA(x1, . . . , xn),(9.15.6)

as a graded ring.

The ring A[d] of dual numbers associated to A as in Section 5.4 may be
considered as a graded ring, as in Section 9.14. Remember that a left or right
module (V, dV ) over A with differentiation corresponds exactly to a left or right
module over A[d], as appropriate. Suppose that V is graded as a module over
A, as in Section 5.9. Observe that this grading is compatible with the grading
on A[d] exactly when dV has degree 1, which means that V is a complex, as in
Section 5.10. If V is positive as a graded module, then it follows that

V is a graded module over A[d], as a graded ring.(9.15.7)



Chapter 10

Left and right complexes

10.1 Left complexes

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with a multiplicative identity element eA. Also let
V be a left or right module over A. As on p75 of [3], and mentioned in Section
7.5, we may consider V as a graded module over A with differentiation that
this a complex, by taking V 0 = V , V j = {0} when j 6= 0, and differentiation
operator dV = 0. In this case, Z(V ), Z ′(V ), and H(V ) are the same as V , and
B(V ), B′(V ) = {0}.

Let (X, dX) be a graded left or right module over A, as appropriate, with
differentiation that is a complex. Suppose thatX is negative as a graded module,
so that

Xj = {0} when j > 0,(10.1.1)

as in Section 5.9. Let ε be a map from X into V , as complexes. This means that
ε is a homomorphism from X into V , as modules over A with differentiation, of
degree 0, as in Section 5.11. The combination of X and ε is called a left complex
over V , and ε is called the augmentation of the left complex, as on p75 of [3].

The condition that ε have degree 0 means that ε(Xj) ⊆ V j for each j ∈ Z,
as in Section 5.9. Remember that the restriction of ε to Xj is denoted εj for
each j, as before. In this case,

εj = 0 when j 6= 0,(10.1.2)

because V j = {0} when j 6= 0. Thus ε is determined by ε0, which is a homo-
morphism from X0 into V 0 = V , as modules over A.

The condition that ε be a homomorphism from X into V , as modules with
differentiation, means that

ε ◦ dX = dV ◦ ε = 0,(10.1.3)

as in Section 5.2. This is the same as saying that

εj ◦ dj−1
X = dj−1

V ◦ εj−1 = 0(10.1.4)

269
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for each j, as in Section 5.11. This holds automatically when j 6= 0 here, so
that we are reduced to the condition that

ε0 ◦ d−1
X = 0,(10.1.5)

as on p75 of [3].
The left complex X is said to be projective if Xj is projective as a module

over A for each j, as on p75 of [3].
Remember that ε induces a homomorphism

from H(X) into H(V )(10.1.6)

of degree 0, as in Sections 5.2 and 5.11. Thus we get an induced homomorphism

from H(X)j into H(V )j(10.1.7)

for each j ∈ Z. The left complex X over V is said to be acyclic if the homo-
morphism as in (10.1.6) is an isomorphism, as on p75 of [3]. Equivalently, this
means that the homomorphism as in (10.1.7) is an isomorphism for each j.

If j 6= 0, then H(V )j = {0}, and the condition that the homomorphism as
in (10.1.7) be an isomorphism means that

H(X)j = {0}.(10.1.8)

This holds automatically when j > 0, because of (10.1.1).
Note that d0X = 0, because X1 = {0}, as in (10.1.1). Thus

Z(X)0 = X0.(10.1.9)

The condition (10.1.5) is the same as saying that

B(X)0 = d−1
X (X−1) ⊆ ker ε0.(10.1.10)

The homomorphism as in (10.1.7) is injective when j = 0 if and only if

d−1
X (X−1) = ker ε0.(10.1.11)

The homomorphism as in (10.1.7) is surjective when j = 0 if and only if

ε0(X0) = V 0 = V.(10.1.12)

It is often convenient to put Xj = X−j , as in Section 5.9. Similarly, we may
put

dj = dX,j = d−jX ,(10.1.13)

which maps X−j = Xj into X
−j+1 = Xj−1. We may also put

εj = ε−j ,(10.1.14)

which maps X−j = Xj into V
−j = Vj . Of course, this means that εj = 0 when

j 6= 0, and ε0 = ε0. Using this notation, the acyclicity of X as a left complex
over V is equivalent to the exactness of the sequence

· · · −→ Xn
dn−→ Xn−1 −→ · · · −→ X1

d1−→ X0
ε0−→ V −→ 0,(10.1.15)

as on p75 of [3].
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10.2 Projective resolutions

Let us continue with the same notation and hypotheses as in the previous sec-
tion. A left complex X over V is said to be a projective resolution of V if it is
projective and acyclic, as on p75 of [3].

Every module V over A has a projective resolution, as in Proposition 1.2 on
p77 of [3]. One can start with a projective module X0 over A and a homomor-
phism ε0 from X0 onto V , as in Section 2.7. Put

Z0 = ker ε0.(10.2.1)

Similarly, let d1 be a homomorphism from a projective module X1 over A
onto Z0. More precisely, we shall consider d1 as a homomorphism from X1 into
X0, as modules over A.

Continuing in this way, suppose that dj is a homomorphism from Xj into
Xj−1 for some j ≥ 1, and put

Zj = ker dj .(10.2.2)

We take dj+1 to be a homomorphism from a projective module Xj+1 over A
onto Zj , considered as a homomorphism into Xj , as before.

To get a left complex X over V , we take Xj = {0} when j > 0, X−j = Xj

when j ≥ 0, ε0 = ε0, and ε
j = 0 when j 6= 0. We also take djX = 0 when j ≥ 0,

and d−jX = dj when j ≥ 1. This is a projective resolution of V , by construction.
Note that we can take Xj to be a free module over A for each j ≥ 0, as in

Section 2.7, and as mentioned on p77 of [3].
If V is projective as a module over A, then we can take X0 = V , and ε0 to

be the identity mapping. In this case, Z0 = {0}, and we can take Xj = {0} and
dj = 0 when j ≥ 1.

If Zj = {0} for any j ≥ 0, then we can take

Xl = {0}, dl = 0 when l > j.(10.2.3)

If Zj is a projective module over A for some j ≥ 0, then we can take Xj+1 = Zj
and dj+1 to be the obvious inclusion mapping from Zj into Xj . This means
that

Zj+1 = {0},(10.2.4)

so that we can take

Xl = {0}, dl = 0 when l > j + 1.(10.2.5)

Suppose for the moment that A is left or right hereditary, as appropriate,
as in Section 9.3. We can start with a projective module X0 over A and a
homomorphism ε0 from X0 onto V as before. In this case, Z0 is projective as
a module over A, because Z0 is a submodule of X0, as in Section 9.3. This
permits us to take X1 = Z1, and d1 to be the obvious inclusion mapping from
X1 into X0, as in the preceding paragraph. This means that

Z1 = ker d1 = {0},(10.2.6)
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so that we can take Xj = {0} and dj = 0 when j ≥ 2, as before.
If V is finitely generated as a module over A, then we can take X0 to be a

finitely-generated free module over A. If A is left or right Noetherian as a ring,
as appropriate, then Z0 is finitely generated as a module over A too. Under these
conditions, we can repeat the process, and take Xj to be a finitely-generated
free module over A for each j ≥ 0. This corresponds to Proposition 1.3 on p78
of [3].

Suppose now that A has no nontrivial zero divisors, so that if a, b ∈ A and
a, b 6= 0, then a b 6= 0. Let x be a nonzero element of A, so that Ax is a left
ideal in A, and a 7→ a x is an isomorphism from A onto Ax, as left modules
over A. This implies that Ax is free as a left module over A. Consider

V = A/Ax,(10.2.7)

which is a left module over A. We can take X0 = A, considered as a free left
module over A, and ε0 to be the natural quotient mapping from A onto V . The
kernel of ε0 is Ax, which is free as a left module over A, and thus projective.
As before, we can take X1 = Ax, d1 to be the obvious inclusion mapping from
Ax into A, and Xj = {0}, dj = 0 when j ≥ 2. Of course, there are analogous
statements for xA and A/xA, as right modules over A.

10.3 Maps over homomorphisms

Let us continue with the same notation and hypotheses as in Section 10.1. In
particular, we let V be a left or right module over A, and we suppose that X
is a left complex over V with augmentation ε. Let Ṽ be another left or right
module over A, as appropriate, and suppose that X̃ is a left complex over Ṽ ,
with augmentation ε̃.

Let ϕ be a homomorphism from V into Ṽ , as modules over A. Suppose that
Φ is a map from X into X̃, as complexes, as in Section 5.11. This means that
Φ is a homomorphism from X into X̃, as modules over A with differentiation,
and that Φ has degree 0. If

ε̃ ◦ Φ = ϕ ◦ ε,(10.3.1)

then Φ is said to be a map over ϕ, as on p76 of [3].
Suppose that

X is a projective left complex over V,(10.3.2)

and that
X̃ is acyclic as a left complex over Ṽ .(10.3.3)

Under these conditions,

there is a map Φ from X into X̃ over ϕ,(10.3.4)

as in Proposition 1.1 on p76 of [3].
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Let
d = dX , d̃ = d

X̃
(10.3.5)

be the differentiation operators on X, X̃, respectively. As in Section 10.1, we put
Xj = X−j , dj = d−j , and εj = ε−j , and similarly for X̃. Thus Xj = X̃j = {0}
when j < 0, by hypothesis. The restriction of Φ to Xj is Φj = Φ−j , which is 0
when j < 0. We want to define Φj recursively for j ≥ 0.

Note that ϕ ◦ ε0 is a homomorphism from X0 into Ṽ , as modules over A.
We also have that

ϵ̃(X̃0) = Ṽ ,(10.3.6)

because X̃ is acyclic as a left complex over Ṽ , as in (10.1.12). This implies that

there is a homomorphism Φ0 from X0 into X̃0, as modules over A, such that

ε̃0 ◦ Φ0 = ϕ ◦ ε0,(10.3.7)

because X0 is projective as a module over A, by hypothesis.
Similarly, Φ0◦d1 defines a homomorphism from X1 into X̃0, as modules over

A. Observe that
ε̃0 ◦ Φ0 ◦ d1 = ϕ ◦ ε0 ◦ d1 = 0,(10.3.8)

using (10.3.7) in the first step, and (10.1.5) in the second step. This means that

(Φ0 ◦ d1)(X1) ⊆ ker ε̃0 = d̃1(X̃1),(10.3.9)

where the second step is as in (10.1.11), because X̃ is acyclic as a left complex

over Ṽ . It follows that there is a homomorphism Φ1 fromX1 into X̃1, as modules
over A, such that

d̃1 ◦ Φ1 = Φ0 ◦ d1,(10.3.10)

because X1 is projective as a module over A.
Suppose now that l ≥ 2 is an integer, and that Φj has been defined as

a homomorphism from Xj into X̃j , as modules over A, for j = 0, . . . , l − 1.
Suppose also that

d̃j ◦ Φj = Φj−1 ◦ dj(10.3.11)

for j = 1, . . . , l− 1. Thus Φl−1 ◦ dl defines a homomorphism from Xl into X̃l−1,
as modules over A, and

d̃l−1 ◦ Φl−1 ◦ dl = Φl−2 ◦ dl−1 ◦ dl = 0.(10.3.12)

This implies that

(Φl−1 ◦ dl)(Xl) ⊆ ker d̃l−1 = d̃l(X̃l),(10.3.13)

where the second step is as in (10.1.8), because X̃ is acyclic as a left complex

over Ṽ . This means that there is a homomorphism Φl from Xl into X̃l, as
modules over A, such that

d̃l ◦ Φl = Φl−1 ◦ dl,(10.3.14)
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because Xl is projective as a module over A.
Continuing in this way, we can define Φj for every j, to get a homomorphism

Φ from X into X̃ of degree 0. More precisely, Φ is a homomorphism from X
into X̃, as modules with differentiation, because (10.3.11) holds when j ≥ 1, by
construction, and this also holds automatically when j ≤ 0. Thus Φ is a map
from X into X̃, as complexes. Note that (10.3.1) follows from (10.3.7), so that
Φ is a map over ϕ, as desired.

10.4 Some related homotopies

We continue with the same notation and hypotheses as in the previous section.
Let ϕ be a homomorphism from V into Ṽ again, as modules over A, and suppose
now that Φ, Ψ are maps from X into X̃ over ϕ. If X is a projective left complex
over V , and X̃ is acyclic as a left complex over V , then

there is a homotopy Σ between Φ and Ψ,(10.4.1)

as maps between complexes, as in Section 5.11. This is another part of Propo-
sition 1.1 on p76 of [3].

In particular, Σ is supposed to be a homomorphism from X into X̃ of degree
−1, so that Σj maps Xj into X̃j−1 for every integer j. As before, we put

Σj = Σ−j ,(10.4.2)

which should map Xj into X̃j+1 for every j. This is automatically equal to 0
when j < 0, and we want to define Σj recursively when j ≥ 0.

Observe that

ε̃0 ◦ (Φ0 −Ψ0) = ε̃ ◦ Φ0 − ε̃ ◦Ψ0 = ϕ ◦ ϵ0 − ϕ ◦ ϵ0 = 0,(10.4.3)

because Φ and Ψ are both maps over ϕ. Thus

(Φ0 −Ψ0)(X0) ⊆ ker ε̃0 = d̃1(X̃1),(10.4.4)

where the second step is as in (10.1.11), because X̃ is acyclic as a left complex

over Ṽ . This implies that there is a homomorphism Σ0 from X0 into X̃1, as
modules over A, such that

d̃1 ◦ Σ0 = Φ0 −Ψ0,(10.4.5)

because X0 is projective as a module over A, by hypothesis.
Let l be a positive integer, and suppose that Σj has been defined as a homo-

morphism from Xj into X̃j+1, as modules over A, for j = 0, . . . , l − 1. Suppose
also that

d̃j+1 ◦ Σj +Σj−1 ◦ dj = Φj −Ψj(10.4.6)

when 0 < j ≤ l − 1. Note that Σl−1 ◦ dl defines a homomorphism from Xl into

X̃l, as modules over A.
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Because Φ and Ψ are homomorphisms from X into X̃, as modules with
differentiation, we have that

d̃l ◦ (Φl −Ψl − Σl−1 ◦ dl) = d̃l ◦ Φl − d̃l ◦Ψl − d̃l ◦ Σl−1 ◦ dl
= Φl−1 ◦ dl −Ψl−1 ◦ dl − d̃l ◦ Σl−1 ◦ dl.(10.4.7)

If l = 1, then the right side is equal to 0, by (10.4.5). If l ≥ 2, then we can take
j = l − 1 in (10.4.6), to get that

d̃l ◦ Σl−1 ◦ dl = Φl−1 ◦ dl −Ψl−1 ◦ dl.(10.4.8)

This implies that the right side of (10.4.7) is equal to 0 when l ≥ 2 as well.
It follows that

(Φl −Ψl − Σl−1 ◦ dl)(Xl) ⊆ ker d̃l = d̃l+1(Xl),(10.4.9)

where the second step is as in (10.1.8), because X̃ is acyclic as a left complex

over Ṽ . Thus there is a homomorphism Σl from Xl into X̃l+1, as modules over
A, such that

d̃l+1 ◦ Σl = Φl −Ψl − Σl−1 ◦ dl,(10.4.10)

because Xl is projective as a module over A. This means that (10.4.6) holds,
with j = l.

We can continue in this way to define Σj for every j, and get a homomor-

phism from X into X̃ that is homogeneous of degree −1. By construction,
(10.4.6) holds when j > 0. If j = 0, then (10.4.6) reduces to (10.4.5), and
(10.4.6) holds automatically when j < 0. This implies that Σ is a homotopy
between Φ and Ψ, as desired.

10.5 Some remarks about compositions

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V , Ṽ , and V̂ be all left or all right modules over A. Suppose that X, X̃, and
X̂ are left complexes over V , Ṽ , and V̂ , respectively, as in Section 10.1. Let ε,
ε̃, and ε̂ be the corresponding augmentations on X, X̃, and X̂, respectively.

Let ϕ be a homomorphism from V into Ṽ , and let ψ be a homomorphism
from Ṽ into V̂ , as modules over A. Suppose that Φ is a map from X into X̃
over ϕ, and that Ψ is a map from X̃ into X̂ over ψ, as in Section 10.3. Note that
Ψ◦Φ is a map from X into X̂, as complexes. Of course, ψ◦ϕ is a homomorphism
from V into V̂ , as modules over A. We also have that

ε̂ ◦Ψ ◦ Φ = ψ ◦ ε̃ ◦ Φ = ψ ◦ ϕ ◦ ε,(10.5.1)

so that Ψ ◦ Φ is a map over ψ ◦ ϕ.
Now let X and Y be projective resolutions of V , as in Section 10.2. There

is a map Φ from X into Y over the identity map on V , as in Section 10.3.



276 CHAPTER 10. LEFT AND RIGHT COMPLEXES

Similarly, there is a map Ψ from Y into X over the identity mapping on V . It
follows that Ψ ◦ Φ is a map from X into itself over the identity mapping on V ,
as in the preceding paragraph. Similarly, Φ ◦Ψ is a map from Y into itself over
the identity mapping on V .

It is easy to see that the identity mapping on X is a map over the identity
mapping on V , as a map from X into itself. It follows that Ψ ◦ Φ is homotopic
to the identity on X, as maps from X into itself as a complex, as in the previous
section. Similarly, Φ ◦Ψ is homotopic to the identity map on Y , as maps from
Y into itself, as a complex. This correspoonds to a remark on p77 of [3], after
Proposition 1.2. One may say that X and Y have the same homotopy type
under these conditions, as in [3].

10.6 Right complexes

Let k be a commutative ring with a multiplicative identity element, let A be an
associative algebra over k with a multiplicative identity element eA, and let V
be a left or right module over A again. As before, we may consider V to be a
complex, with V 0 = V , V j = {0} when j 6= 0, and dV = 0.

Let (X, dX) be a graded left or right module over A, as appropriate, with
differentiation that is a complex, and suppose that X is positive as a graded
module. This means that

Xj = {0} when j < 0,(10.6.1)

as in Section 5.9. Let ε be a map from V into X as complexes, so that ε is a
homomorphism from V into X, as modules over A with differentiation, of degree
0, as in Section 5.11. The combination of X and ε is called a right complex over
V , and ε is called the augmentation of the right complex, as on p78 of [3].

The condition that ε have degree 0 means that ε(V j) ⊆ Xj for every j ∈ Z,
as in Section 5.9. Of course, the restriction εj of ε to V j is equal to 0 when
j 6= 0, so that ε is determined by ε0.

The condition that ε be a homomorphism from V into X, as modules with
differentiation, means that

dX ◦ ε = ε ◦ dV = 0,(10.6.2)

as in Section 5.2. This is the same as saying that

djX ◦ εj = εj+1 ◦ djV = 0(10.6.3)

for each j, as in Section 5.11. This reduces to the condition that

d0X ◦ ε0 = 0,(10.6.4)

because εj = 0 when j 6= 0.
The right complex X is said to be injective if Xj is injective as a module

over A for each j, as on p78 of [3].
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Remember that ε induces a homomorphism

from H(V ) into H(X)(10.6.5)

of degree 0, as in Sections 5.2 and 5.11. This leads to an induced homomorphism

from H(V )j into H(X)j(10.6.6)

for each j ∈ Z. The right complex X over V is said to be acyclic if the homo-
morphism as in (10.6.5) is an isomorphism, as on p78 of [3]. This is the same
as saying that the homomorphism as in (10.6.6) is an isomorphism for every j.

If j 6= 0, then this means that

H(X)j = {0},(10.6.7)

because H(V )j = {0}. This holds automatically when j < 0, by (10.6.1).
Observe that

B(X)0 = {0},(10.6.8)

because X−1 = {0}, as in (10.6.1). The condition (10.6.4) is the same as saying
that

ε0(V 0) ⊆ Z(X)0.(10.6.9)

The homomorphism as in (10.6.6) is injective when j = 0 if and only if

ker ε0 = {0},(10.6.10)

because of (10.6.8). The homomorphism as in (10.6.6) is surjective when j = 0
if and only if

ε0(V 0) = Z(X)0.(10.6.11)

The acyclicity of X as a right complex is equivalent to the exactness of the
sequence

0 −→ V
ε−→ X0 d0X−→ X1 −→ · · · −→ Xn dnX−→ Xn+1 −→ · · · ,(10.6.12)

as on p78 of [3].

10.7 Injective resolutions

We continue with the same notation and hypotheses as in the previous section.
A right complex X over V is said to be an injective resolution of V if it is
injective and acyclic, as on p78 of [3].

Every module V over A has an injective resolution, as in Proposition 1.2a
on p78 of [3]. We can begin here with an injective homomorphism ε from V
into an injective module X0 over A, as in Section 2.8. Put

Y 0 = X0/ε(V ),(10.7.1)
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which is another module over A.
As before, there is an injective homomorphism

from Y 0 into an injective module X1 over A.(10.7.2)

Let d0 be the composition of the natural quotient mapping from X0 onto Y 0

with this injection, so that d0 is a homomorphism from X0 into X1, as modules
over A. Note that

ker d0 = ε(V ),(10.7.3)

by construction.
Suppose that modules Xj , Xj+1 over A have already been chosen for some

j ≥ 0, as well as a homomorphism dj from Xj into Xj+1, as modules over A.
Put

Y j+1 = Xj+1/dj(Xj),(10.7.4)

which is a module over A too. There is an injective homomorphism

from Y j+1 into an injective module Xj+2 over A,(10.7.5)

as usual. Let dj+1 be the composition of the natural quotient mapping from
Xj+1 onto Y j+1 with this injection, so that dj+1 is a homomorphism from Xj+1

into Xj+2, as modules over A. Thus

ker dj+1 = dj(Xj),(10.7.6)

by construction.
Continuing in this way, we get injective modules Xj for each j ≥ 0. We

take Xj = {0} when j < 0, to get a positive graded module X over A. More
precisely, X is a complex, with djX = dj as before when j ≥ 0, and of course

djX = 0 when j < 0. We also take ε0 = ε, and εj = 0 when j 6= 0. It is easy to
see that this makes X a right complex over V , which is an injective resolution
of V .

If V is an injective module over A, then we can take X0 = V , and ε to be
the identity mapping. This means that Y 0 = {0}, and we can take Xj+1 = {0}
and dj = 0 for every j ≥ 0.

Similarly, if Y j = {0} for any j ≥ 0, then we can take

X l+1 = {0}, dl = 0 when l ≥ j.(10.7.7)

If Y j is an injective module over A for some j ≥ 0, then we can take Xj+1 = Y j ,
and use the identity mapping on Y j as the injective homomorphism from Y j

into Xj+1. In this case, dj is the natural quotient mapping from Xj onto Y j ,
so that dj(Xj) = Y j = Xj+1, and

Y j+1 = {0}.(10.7.8)

Thus we can take

X l+1 = {0}, dl = 0 when l ≥ j + 1,(10.7.9)
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as before.
Suppose that A is left or right hereditary, as appropriate, as in Section 9.3.

Let ε be an injective homomorphism from V into an injective module X0 over
A, as before. If Y 0 is as in (10.7.1), then Y 0 is injective as a module over A,
as in Section 9.3. This means that we can take X1 = Y 0, and use the identity
mapping on Y 0 as the injective homomorphism from Y 0 into X1, as in the
preceding paragraph. It follows that d0 is the natural quotient mapping from
X0 onto Y 0, and

Y 1 = {0},(10.7.10)

so that we can take X l+1 = {0} and dl = 0 when l ≥ 1, as before.

10.8 Maps and right complexes

Let us continue with the same notation and hypotheses as in Section 10.6. We
let V be a left or right module over A again, and suppose that X is a right
complex over V with augmentation ε. Let Ṽ be another left or right module
over A, as appropriate, and suppose that X̃ is a right complex over Ṽ , with
augmentation ε̃.

Let ϕ be a homomorphism from V into Ṽ , as modules over A. Suppose
that Φ is a map from X into X̃, as complexes, as in Section 5.11, so that Φ
is a homomorphism from X into X̃, as modules over A with differentiation, of
degree 0. We say that Φ is a map over ϕ if

Φ ◦ ε = ε̃ ◦ ϕ,(10.8.1)

as on p78 of [3].
Suppose that

X is acyclic as a right complex over V,(10.8.2)

and that
X̃ is an injective right complex over Ṽ .(10.8.3)

In this case,
there is a map Φ from X into X̃ over ϕ,(10.8.4)

as in Proposition 1.1a on p78 of [3].
Of course, the restriction Φj of Φ to Xj is 0 when j < 0, because Xj = {0}.

We would like to define Φj recursively when j ≥ 0.
We would like to begin by choosing Φ0 to be a homomorphism from X0 into

X̃0, as modules over A, such that

Φ0 ◦ ε0 = ε̃0 ◦ ϕ.(10.8.5)

Note that ε0 is injective, because X is acyclic as a right complex over V , as in
(10.6.10). Thus (10.8.5) determines Φ0 on ε0(V ) ⊆ X0, as a homomorphism

into X̃1, because ε̃0 ◦ ϕ is a homomorphism from V into X̃0, as modules over
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A. It follows that there is a homomorphism Φ0 from X0 into X̃0 as in (10.8.5),

because X̃0 is injective as a module over A, by hypothesis.

Similarly, we would like to choose Φ1 to be a homomorphism from X1 into
X̃1, as modules over A, such that

Φ1 ◦ d0X = d0
X̃
◦ Φ0.(10.8.6)

Observe that

d0
X̃
◦ Φ0 ◦ ε0 = d0

X̃
◦ ε̃0 ◦ ϕ = 0,(10.8.7)

using (10.8.5) in the first step, and the analogue of (10.6.4) for ε̃0 in the second
step. This implies that the right side of (10.8.6) is equal to 0 on the kernel
of d0X , because of (10.6.11). This means that Φ1 is well-defined on d0X(X0) by

(10.8.6). Thus there is a homomorphism Φ1 from X1 into X̃1 as in (10.8.6),

because X̃1 is injective as a module over A.

Suppose that l ≥ 2 is an integer, and that Φj has been defined as a homo-
morphism from Xj into X̃j , as modules over A, for j = 0, . . . , l − 1. Suppose
also that

Φj ◦ dj−1
X = dj−1

X̃
◦ Φj−1(10.8.8)

for j = 1, . . . , l − 1. We would like to choose Φl to be a homomorphism from
X l into X̃ l, as modules over A, such that

Φl ◦ dl−1
X = dl−1

X̃
◦ Φl−1,(10.8.9)

which is the same as (10.8.8) with j = l. Observe that

dl−1

X̃
◦ Φl−1 ◦ dl−2

X = dl−1

X̃
◦ dl−2

X̃
◦ Φl−2 = 0,(10.8.10)

using (10.8.8) with j = l − 1 in the first step. This implies that

dl−1

X̃
◦ Φl−1 = 0(10.8.11)

on dl−2
X (X l−2), which is the same as ker dl−1

X , because H(X)l−1 = {0}, as in

(10.6.7). Thus Φl is well-defined on dl−1
X (X l−1) by (10.8.9). It follows that there

is a homomorphism Φl from X l into X̃ l that satisfies (10.8.9), because X̃ l is
injective as a module over A.

We can continue in this way to define Φj for every j, to get a homomorphism
from X into X̃ of degree 0. We also have that Φ is a homomorphism from X
into X̃ as modules with differentiation, because (10.8.8) holds when j ≥ 1 by
construction, and automatically when j ≤ 0. This means that Φ is a map from
X into X̃, as complexes. Of course, (10.8.1) follows from (10.8.5), so that Φ is
a map over ϕ.
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10.9 Homotopies and right complexes

Let us continue with the same notation and hypotheses as in the previous sec-
tion, with ϕ a homomorphism from V into Ṽ , as modules over A, in particular.
Suppose that Φ and Ψ are maps from X into X̃ over ϕ, in the sense defined in
the previous section. If X is acyclic as a right complex over V , and X̃ is an
injective right complex over Ṽ , then

there is a homotopy Σ between Φ and Ψ,(10.9.1)

as maps between complexes, as in Section 5.11. This is the second part of
Proposition 1.1a on p78 of [3].

By definition of a homotopy, Σ is supposed to be a homomorphism from X
into X̃ of degree −1, so that Σj maps Xj into X̃j−1 for every j. Of course, Σj

is automatically 0 when j ≤ 0, and we would like to define it recursively when
j > 0.

Note that

(Φ0 −Ψ0) ◦ ε0 = Φ0 ◦ ε0 −Ψ0 ◦ ε0 = ε̃0 ◦ ϕ− ε̃0 ◦ ϕ = 0,(10.9.2)

because Φ and Ψ are maps over ϕ. This means that

ker(Φ0 −Ψ0) ⊇ ε0(X0) = Z(X)0,(10.9.3)

using the acyclicity of X as a right complex over V in the second step, as in
(10.6.11). We would like to choose Σ1 to be a homomorphism from X1 into X̃0,
as modules over A, such that

Σ1 ◦ d0X = Φ0 −Ψ0.(10.9.4)

It follows from (10.9.3) that Σ1 is well defined on d0X(X0) by (10.9.4). Thus

there is a homomorphism Σ1 from X1 into X̃0 that satisfies (10.9.4), because

X̃0 is injective as a module over A.
Let l ≥ 2 be an integer, and suppose now that Σj has been defined as a

homomorphism from Xj into X̃j−1, as modules over A, for j = 1, . . . , l − 1.
Suppose also that

Σj ◦ dj−1
X + dj−2

X̃
◦ Σj−1 = Φj−1 −Ψj−1(10.9.5)

when 2 ≤ j ≤ l − 1. We would like to choose Σl to be a homomorphism from
X l into X̃ l−1, as modules over A, such that

Σl ◦ dl−1
X = −dl−2

X̃
◦ Σl−1 +Φl−1 −Ψl−1,(10.9.6)

which is equivalent to (10.9.5), with j = l.
Observe that

(−dl−2

X̃
◦ Σl−1 +Φl−1 −Ψl−1) ◦ dl−2

X(10.9.7)

= −dl−2

X̃
◦ Σl−1 ◦ dl−2

X +Φl−1 ◦ dl−2
X −Ψl−1 ◦ dl−2

X

= −dl−2

X̃
◦ Σl−1 ◦ dl−2

X + dl−2

X̃
◦ Φl−2 − dl−2

X̃
◦Ψl−2,
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because Φ, Ψ are homomorphisms from X into X̃, as modules over A with
differentiation. If l = 2, then the right side of (10.9.7) is equal to 0, by (10.9.4).
If l ≥ 3, then we can take j = l − 1 in (10.9.5), to get that

dl−2

X̃
◦ Σl−1 ◦ dl−2

X = dl−2

X̃
◦ Φl−2 − dl−2

X̃
◦Ψl−2.(10.9.8)

This implies that the right side of (10.9.7) is equal to 0 in this case too.

It follows that the right side of (10.9.6) is equal to 0 on dl−2
X (X l−2). This

is the same as saying that the right side of (10.9.6) is equal to 0 on ker dl−1
X ,

because H(X)l−1 = {0}, as in (10.6.7). This means that Σl is well-defined on
dl−1
X (X l−1) by (10.9.6). Thus we can get a homomorphism Σl from X l into

X̃ l−1, as modules over A, that satisfies (10.9.6), because X̃ l−1 is injective as a
module over A.

Continuing in this way, we can define Σj for every j, to get a homomorphism
Σ from X into X̃ that is homogeneous of degree −1. We also have that (10.9.5)
holds when j ≥ 2, by construction. If j = 1, then (10.9.5) follows from (10.9.4).
If j ≤ 0, then (10.9.5) holds automatically, so that Σ is a homotopy between Φ
and Ψ, as desired.

10.10 Compositions and right complexes

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V , Ṽ , and V̂ be all left or all right modules over A, and suppose that X, X̃,
and X̂ are right complexes over V , Ṽ , and V̂ , respectively, as in Section 10.6.
These include the augmentations ε, ε̃, and ε̂, as before.

Let ϕ, ψ be homomorphisms from V , Ṽ into Ṽ , V̂ , respectively, as modules
over A, and suppose that Φ, Ψ are maps fom X, X̃ into X̃, X̂, over ϕ, ψ,
respectively, as in Section 10.8. Thus ψ ◦ ϕ is a homomorphism from V into V̂ ,
as modules over A, and Ψ ◦ Φ is a map from X into X̂, as complexes. Observe
that

Ψ ◦ Φ ◦ ε = Ψ ◦ ε̃ ◦ ϕ = ε̂ ◦ ψ ◦ ϕ,(10.10.1)

so that Ψ ◦ Φ is a map over ψ ◦ ϕ.
Suppose now that X, Y are injective resolutions of V , as in Section 10.7.

There are maps Φ, Ψ from X, Y into Y , X, respectively, over the identity map
on V , as in Section 10.8. It follows that Ψ ◦ Φ and Φ ◦ Ψ are maps from X
and Y into themselves, respectively, over the identity mapping on V , as in the
preceding paragraph.

Note that the identity mappings on X, Y are maps over the identity mapping
on V , as maps from X, Y into themselves. Using the remarks in the previous
section, we get that Ψ ◦ Φ and Φ ◦ Ψ are homotopic to the identity mappings
on X and Y , respectively, as maps from X, Y into themselves, as complexes.
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10.11 Tensor products and left complexes

Let k be a commutative ring with a multiplicative identity element, and let
A be an associative algebra over k with a multiplicative identity element eA.
Also let V be a right module over A, let W be a left module over A, and let
V
⊗

AW be a tensor product of V and W , as modules over A. Suppose that
X, Y are left complexes over V , W , as in Section 10.1, with augmentations εX ,
εY , respectively.

Under these conditions, X
⊗

A Y can be defined as a doubly-graded module
over k, with (

X
⊗

A
Y
)j,l

= Xj
⊗

A
Y l(10.11.1)

for every j, l ∈ Z, as in Section 6.1. Of course, this is equal to {0} when j > 0
or l > 0, because X and Y are negative as graded modules, by hypothesis.
One can get a single grading on X

⊗
A Y from the double grading as in Section

5.13, as usual. It is easy to see that X
⊗

A Y is negative with respect to this
single grading, because of the analogous property of the double grading just
mentioned.

More precisely, X
⊗

A Y can be defined as a double complex over k, as in
Section 6.2. The two differentiation operators on X

⊗
A Y , as a double com-

plex, can be combined to get a single differentiation operator, so that X
⊗

A Y
becomes a single complex with respect to the single grading mentioned in the
preceding paragraph, as in Section 5.14. Thus

H
(
X
⊗

A
Y
)
n
= H

(
X
⊗

A
Y
)−n

(10.11.2)

can be defined as a module over k in the usual way for every integer n. This is
equal to {0} when n < 0, because X

⊗
A Y is negative with respect to its single

grading.
Remember that V , W may be considered as complexes, as in Section 10.1.

Using this, one can consider V
⊗

AW as a double complex, which leads to a
single complex, as before. This is the same as the single complex obtained
from V

⊗
AW as a module over k, as in Section 10.1 again. One can use the

augmentations εX , εY to get a map

ε from X
⊗

A
Y into V

⊗
A
W,(10.11.3)

as complexes, as in Sections 5.15, 6.1, and 6.2. This means that

X
⊗

A
Y is a left complex over V

⊗
A
W with respect to ε,(10.11.4)

as in Section 10.1.
Let Ṽ be another right module over A, let W̃ be another left module over

A, and let Ṽ
⊗

A W̃ be a tensor product of Ṽ and W̃ , as modules over A. Also

let X̃, Ỹ be left complexes over Ṽ , Ỹ , respectively, so that X̃
⊗

A Ỹ is a left

complex over Ṽ
⊗

A W̃ , as before. Suppose that ϕ, ψ are homomorphisms from
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V , W into Ṽ , W̃ , respectively, as modules over A, and that Φ, Ψ are maps from
X, Y into X̃, Ỹ over ϕ, ψ, respectively, as in Section 10.3.

Using ϕ and ψ, we get a homomorphism

from V
⊗

A
W into Ṽ

⊗
A
W̃ ,(10.11.5)

as modules over k, as in Section 1.9. Similarly, we get a map

Φ⊗Ψ from X
⊗

A
Y into X̃

⊗
A
Ỹ ,(10.11.6)

as double complexes, as in Section 6.2. One can check that

Φ⊗Ψ is a map over the homomorphism as in (10.11.5),(10.11.7)

as in Section 10.3. Note that Φ ⊗ Ψ is a map from X
⊗

A Y into X̃
⊗

A Ỹ ,
considered as single complexes, as in Section 5.15. Thus Φ⊗Ψ induces a homo-
morphism from (10.11.2) into its analogue for X̃

⊗
A Ỹ for each n, as in Section

5.11.
Let Φ′, Ψ′ be another pair of maps from X, Y into X̃, Ỹ over ϕ, ψ, respec-

tively, which leads to a map

Φ′ ⊗Ψ′ from X
⊗

A
Y into X̃

⊗
A
Ỹ ,(10.11.8)

as double complexes, as before. Suppose that Φ, Ψ are homotopic to Φ′, Ψ′,
respectively, as maps between complexes, as in Section 5.11. This implies that

Φ⊗Ψ is homotopic to Φ′ ⊗Ψ′,(10.11.9)

as maps between double complexes, as in Section 6.2. It follows that Φ ⊗ Ψ
is homotopic to Φ′ ⊗ Ψ′ as maps between single complexes, as in Section 5.15.
This means that Φ⊗Ψ and Φ′ ⊗Ψ′ induce the same mappings on (10.11.2) for
each n, as in Section 5.11.

We may be particularly interested in (10.11.2) when X and Y are projective
resolutions of V and W , respectively. In this case,

(10.11.2) is uniquely determined by V and W(10.11.10)

for each n, up to isomorphism. This follows from the fact that projective reso-
lutions are unique up to homotopy equivalence, as in Section 10.5.

These remarks correspond to some of those on p82-4 of [3] in the left case,
and for tensor products. This is also related to some remarks on p107 of [3].

10.12 Left complexes in one factor

Let us return to the same notation and hypotheses as at the beginning of the
previous section. Remember that X

⊗
AW and V

⊗
A Y can be defined as

graded modules over k, with(
X
⊗

A
W

)j
= Xj

⊗
A
W,

(
V
⊗

A
Y
)j

= V
⊗

A
Y j(10.12.1)
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for every integer j, as in Section 7.5. More precisely, X
⊗
W and V

⊗
A Y are

negative as graded modules, because X and Y are negative, by hypothesis. In
fact, X

⊗
AW and V

⊗
A Y can be defined as complexes over k, because X and

Y are complexes, as in Section 7.5 again.
One can define suitable augmentations on X

⊗
AW and V

⊗
A Y , so that

X
⊗

A
W and V

⊗
A
Y are left complexes over V

⊗
A
W,(10.12.2)

as in Section 10.1. If one considers V as a complex, as in Section 10.1, then
one can consider V

⊗
AW as a complex too, as before. In this case, one can

get an augmentation map from X
⊗

AW into V
⊗

AW using the augmentation
map εX on X and the identity mapping on W . This is a map from X

⊗
AW

into V
⊗

AW , as complexes, as in Section 7.6. The augmentation on V
⊗

A Y is
defined analogously, by consideringW as a complex, and using the augmentation
εY on Y and the identity mapping on V .

Let Ṽ be another right module over A again, and let Ṽ
⊗

AW be a tensor

product of Ṽ and W , as modules over A. Also let X̃ be a left complex over Ṽ ,
so that X̃

⊗
AW is a left complex over Ṽ

⊗
AW , as before. Suppose that ϕ is

a homomorphism from V into Ṽ , as modules over A, and that Φ is a map from
X into X̃ over ϕ, as in Section 10.3. Using ϕ and the identity mapping on W ,
we get a homomorphism

from V
⊗

A
W into Ṽ

⊗
A
W,(10.12.3)

as modules over k. Similarly, we can use Φ and the identity mapping on W to
get a map

from X
⊗

A
W into X̃

⊗
A
W,(10.12.4)

as complexes, as in Section 7.6. One can check that this is a map over the homo-
morphism as in (10.12.3), as in Section 10.3. Of course, this uses augmentations

on X
⊗

AW and X̃
⊗

AW as in the preceding paragraph.

Let Φ′ be another map from X into X̃ over ϕ, which leads to a map from
X

⊗
AW into X̃

⊗
AW , as complexes, as before. Suppose that Φ is homotopic

to Φ′, as maps between complexes, as in Section 5.11. This implies that the
corresponding maps from X

⊗
AW into X̃

⊗
AW are homotopic, as maps be-

tween complexes, as in Section 7.6. Of course, there are analogous statements
when W̃ is another left module over A, Ỹ is a left complex over W̃ , ψ is a ho-
momorphism from W into W̃ , as modules over A, and Ψ is a map from Y into
Ỹ over ψ. In this case, we consider the corresponding mappings from V

⊗
AW

into V
⊗

A W̃ , and from V
⊗

A Y into V
⊗

A Ỹ .
If n is an integer, then

H
(
X
⊗

A
W

)
n
= H

(
X
⊗

A
W

)−n
(10.12.5)

and
H
(
V
⊗

A
Y
)
n
= H

(
V
⊗

A
Y
)−n

(10.12.6)
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can be defined as modules over k in the usual way. These are both equal to {0}
when n < 0, because X

⊗
AW and V

⊗
A Y are negative as graded modules.

We may be particularly interested in (10.12.5) and (10.12.6) when X and Y are
projective resolutions of V and W , respectively. In this case,

(10.12.5) and (10.12.6) are uniquely determined, up to(10.12.7)

isomorphism, by V and W instead of X and Y, respectively,

for each n, because projective resolutions are unique up to homotopy equiva-
lence, as in Section 10.5. These remarks correspond to some of those on p82-4
of [3] in the left case again, where modules are transformed by taking the tensor
product with a fixed module.

IfX and Y are projective resolutions of V andW , respectively, then (10.12.5)
and (10.12.6) can also be described in terms of “satellites”, which are discussed
in Chapter III of [3]. This uses Theorem 6.1 on p90 of [3].

Remember V , W can be used to define complexes in a simple way, as in
Section 10.1. Using these complexes, X

⊗
AW and V

⊗
A Y may be defined

as double complexes, as in Sections 6.1 and 6.2. These double complexes lead
to single complexes in the usual way, as in Sections 5.13 and 5.14. The single
complexes that we get this way are the same as before, using the gradings in
(10.12.1), as in Section 7.5.

The complexes associated to V , W as in the preceding paragraph may be
considered as left complexes over V , W , respectively, where the augmentation
mappings correspond to the identity mappings on these complexes. The aug-
mentation maps εX , εY may be considered as maps from X, Y into the com-
plexes associated to V , W over the identity mappings on V , W , respectively, as
in Section 10.3. We can use these maps and the identity mappings on X and Y
to get maps

from X
⊗

A
Y into X

⊗
A
W(10.12.8)

and

from X
⊗

A
Y into V

⊗
A
Y,(10.12.9)

as double complexes, as in the previous section. These maps induce homomor-
phisms

from (10.11.2) into (10.12.5)(10.12.10)

and

from (10.11.2) into (10.12.6)(10.12.11)

for each n, as in Sections 5.11 and 5.15. This corresponds to the homomorphisms
as in (1a) on p97 of [3], in the case of tensor products.

If X and Y are projective resolutions of V and W , respectively, then it is
well known that

the homomorphisms as in (10.12.10) and (10.12.11)(10.12.12)

are isomorphisms
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for each n. This uses the analogue of Theorem 8.1 on p95 of [3] in the left
case. This also uses Proposition 1.1a on p106 of [3] to get the “left balanced”
condition condition defined on p97 of [3], which was discussed near the end of
Section 2.7. This fact is mentioned on p107 of [3] too, as well as the description
in terms of satellites. Of course, (10.12.12) implies that

(10.12.5) and (10.12.6) are isomorphic to each other(10.12.13)

for each n.

10.13 Homomorphisms and resolutions

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V and W be both left or both right modules over A. Suppose that X is a
left complex over V with augmentation εX , and that Y is a right complex over
W with an augmentation εY , as in Sections 10.1 and 10.6, respectively.

We can define Homgr
A (X,Y ) as a doubly-graded module over k, with(
Homgr

A (X,Y )
)j,l

= HomA(X
−j , Y l)(10.13.1)

for every j, l ∈ Z, as in Section 6.3. This is equal to {0} when j < 0 or l < 0,
because X is negative and Y is positive as graded modules, by hypothesis.
Remember that there is a single grading on Homgr

A (X,Y ) obtained from the
double grading as in Section 5.13. Note that Homgr

A (X,Y ) is positive with
respect to this single grading, because of the analogous property of the double
grading just mentioned.

In fact, Homgr
A (X,Y ) can be defined as a double complex over k, as in Section

6.5. As usual, the two differentiation operators on Homgr
A (X,Y ), as a double

complex, can be combined to get a single differentiation operator, which makes
Homgr

A (X,Y ) a single complex with respect to the single grading mentioned in
the previous paragraph, as in Section 5.14. This means that

H
(
Homgr

A (X,Y )
)n

(10.13.2)

can be defined as a module over k in the usual way for every n ∈ Z. This is
equal to {0} when n < 0, because Homgr

A (X,Y ) is positive with respect to its
single grading.

We may consider V , W as complexes, as in Sections 10.1 and 10.6. We
can use this to consider Homgr

A (V,W ) as a double complex, which leads to a
single complex, as before. This is the same as the single complex obtained
from HomA(V,W ), as a module over k, in the usual way. We can use the
augmentations εX and εY to get a map

ε from Homgr
A (V,W ) into Homgr

A (X,Y ),(10.13.3)
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as complexes, as in Sections 5.15, 6.4, and 6.5. It follows that

Homgr
A (X,Y ) is a right complex over HomA(V,W )(10.13.4)

with respect to ε,

as in Section 10.6.
Let Ṽ , W̃ be additional left or right modules over A, as appropriate. Also

let X̃ be a left complex over Ṽ , and let Ỹ be a right complex over W̃ . Thus
Homgr

A (X̃, Ỹ ) is a right complex over HomA(V,W ), as before. Suppose that ϕ

is a homomorphism from Ṽ into V , and that ψ is a homomorphism from W
into W̃ , as modules over A. Let Φ be a map from X̃ into X over ϕ, and let Ψ
be a map from Y into Ỹ over ψ, as in Sections 10.3 and 10.8, respectively.

Using ϕ and ψ, we get a homomorphism

Hom(ϕ, ψ) from HomA(V,W ) into HomA(Ṽ , W̃ ),(10.13.5)

as modules over k, as in Section 6.3. Similarly, we can use Φ and Ψ to get a
map

Homgr(Φ,Ψ) from Homgr
A (X,Y ) into Homgr

A (X̃, Ỹ ),(10.13.6)

as double complexes, as in Sections 6.4 and 6.5. One can verify that

Homgr(Φ,Ψ) is a map over Hom(ϕ, ψ),(10.13.7)

as in Section 10.8. Remember that Homgr(Φ,Ψ) may also be considered as a

map from Homgr
A (X,Y ) into Homgr

A (X̃, Ỹ ) as single complexes, as in Section
5.15. This means that Homgr(Φ,Ψ) induces a homomorphism from (10.13.2)

into its analogue for Homgr
A (X̃, Ỹ ) for each n, as in Section 5.11.

Let Φ′ be another map from X̃ into X over ϕ, and let Ψ′ be another map
from Y into Ỹ ove ψ. This leads to a map

Homgr(Φ′,Ψ′) from Homgr
A (X,Y ) into Homgr

A (X̃, Ỹ ),(10.13.8)

as double complexes, as before. Suppose that Φ, Ψ are homotopic to Φ′, Ψ′,
respectively, as maps between complexes, as in Section 5.11. This implies that

Homgr(Φ,Ψ) is homotopic to Homgr(Φ′,Ψ′),(10.13.9)

as maps between double complexes, as in Section 6.5, and thus as maps be-
tween single complexes, as in Section 5.15. It follows that Homgr(Φ,Ψ) and
Homgr(Φ′,Ψ′) induce the same mappings on (10.13.2) for each n, as in Section
5.11.

We may be particularly interested in (10.13.2) when X is a projective reso-
lution of V , and Y is an injective resolution of W . Under these conditions,

(10.13.2) is uniquely determined by V and W(10.13.10)

for each n, up to isomorphism. This uses the uniqueness of projective and
injective resolutions up to homotopy equivalence, as in Sections 10.5 and 10.10.

These remarks correspond to some of those on p82f of [3], for spaces of
homomorphisms. This is related to some remarks on p107 of [3] as well.
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10.14 Left complexes and Hom(·,W )

We return to the same notation and hypotheses as at the beginning of the
previous section. Remember that Homgr

A (X,W ) can be defined as a graded
module over k, with (

Homgr
A (X,W )

)j
= HomA(X

−j ,W )(10.14.1)

for every integer j, as in Section 8.4. Note that Homgr
A (X,W ) is positive

as a graded module, because X is negative, by hypothesis. More precisely,
Homgr

A (X,W ) can be defined as a complex over k, because X is a complex, as
in Section 8.4.

One can define an augmentation on Homgr
A (X,W ), so that

Homgr
A (X,W ) is a right complex over HomA(V,W ),(10.14.2)

as in Section 10.6. If V is considered to be a complex, as in Section 10.6, then
Homgr

A (V,W ) may be defined as a complex, as in the preceding paragraph. This
is the same as the complex associated to HomA(V,W ) in the usual way. One
can get an augmentation map from HomA(V,W ) into Homgr

A (X,W ) using the
augmentation map εX on X and the identity mapping on W . This corresponds
to a map from Homgr

A (V,W ) into Homgr
A (X,W ), as complexes, as in Section

8.5.
Let Ṽ be another left or right module over A, as appropriate, and let X̃ be

a left complex over Ṽ . Thus Homgr
A (X̃,W ) can be defined as a right complex

over HomA(Ṽ ,W ), as before. Suppose that ϕ is a homomorphism from Ṽ into

V , as modules over A, and let Φ be a map from X̃ into X over ϕ, as in Section
10.3. Using ϕ and the identity mapping on W , we get a homomorphism

from HomA(V,W ) into HomA(Ṽ ,W ),(10.14.3)

as modules over k, as in Section 6.3. Similarly, we can use Φ and the identity
mapping on W to get a map

from Homgr
A (X,W ) into Homgr

A (X̃,W ),(10.14.4)

as complexes, as in Section 8.5. One can check that this is a map over the
homomorphism as in (10.14.3), as in Section 10.8. This uses augmentations on

Homgr
A (X,W ) and Homgr

A (X̃,W ) as in the previous paragraph.

Let Φ′ be another map from X̃ into X over ϕ, which leads to a map from
Homgr

A (X,W ) into Homgr
A (X̃,W ), as complexes, as before. If Φ is homotopic

to Φ′, as maps between complexes, as in Section 5.11, then the corresponding
maps from Homgr

A (X,W ) into Homgr
A (X̃,W ) are homotopic, as maps between

complexes, as in Section 8.5.
Because Homgr

A (X,W ) is a complex over k,

H
(
Homgr

A (X,W )
)n

(10.14.5)
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can be defined as a module over k for each integer n in the usual way. This is
equal to {0} when n < 0, because Homgr

A (X,W ) is positive as a graded module.
We may be particularly interested in (10.14.5) when X is a projective resolution
of V , in which case

(10.14.5) is uniquely determined by V(10.14.6)

for each n, up to isomorphism, because projective resolutions are unique up to
homotopy equivalence, as in Section 10.5. These remarks correspond to some
of those on p82f of [3] again.

Note that (10.14.5) can also be described in terms of “satellites” under these
conditions, as in Theorem 6.1 on p90 of [3].

If we consider W as a complex in the usual way, as in Section 10.6, then
Homgr

A (X,W ) can be defined as a double complex, as in Sections 6.3 and 6.5.
This double complex leads to a single complex, as in Sections 5.13 and 5.14.
This single complex is the same as before, with the grading as in (10.14.1), as
in Section 8.4.

The complex associated to W as in the previous paragraph may be consid-
ered as a right complex over W , where the augmentation mapping corresponds
to the identity mapping on this complex. The augmentation map εY may be
considered as a map from the complex associated to W into Y over the iden-
tity mapping on W , as in Section 10.8. We can use this map and the identity
mapping on X to get a map

from Homgr
A (X,W ) into Homgr

A (X,Y ),(10.14.7)

as double complexes, as in the previous section. This map induces a homomor-
phism

from (10.14.5) into (10.13.2)(10.14.8)

for each n, as in Sections 5.11 and 5.15. This corresponds to a homomorphism
as in (1) on p94 of [3], in the case of spaces of homomorphisms.

If X is a projective resolution of V , and Y is an injective resolution of W ,
then it is well known that

the homomorphism as in (10.14.8) is an isomorphism(10.14.9)

for each n, as in Theorem 8.1 on p95 of [3]. This is mentioned on p107 of [3] as
well.

10.15 Right complexes and Hom(V, ·)
Let us return to the same notation and hypotheses as at the beginning of Section
10.13. Note that Homgr

A (V, Y ) can be defined as a graded module over k, with(
Homgr

A (V, Y )
)l

= HomA(V, Y
l)(10.15.1)
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for every integer l, as in Section 7.12. This is positive as a graded module,
because Y is positive, by hypothesis. In fact, Homgr

A (V, Y ) can be defined as a
complex over k, because Y is a complex, as in Section 7.12.

One can define an augmentation on Homgr
A (V, Y ), so that

Homgr
A (V, Y ) is a right complex over HomA(V,W ),(10.15.2)

as in Section 10.6. If W is considered as a complex, as in Section 10.6, then
Homgr

A (V,W ) may be defined as a complex, as in the previous paragraph. This
is the same as the complex associated to HomA(V,W ) in the analogous way. An
augmentation map from HomA(V,W ) into Homgr

A (V, Y ) can be obtained from
the identity mapping on V and the augmentation map εY from W into Y . This
corresponds to a map from Homgr

A (V,W ) into HomA(V, Y ), as complexes, as in
Section 7.13.

Let W̃ be another left or right module over A, as appropriate, and let Ỹ
be a right complex over W̃ . This means that Homgr

A (V, Ỹ ) can be defined as a

right complex over HomA(V, W̃ ), as in the previous two paragraphs. Let ψ be

a homomorphism from W into W̃ , as modules over A, and let Ψ be a map from
Y into Ỹ over ψ, as in Section 10.8. We can use ψ and the identity mapping on
V to get a homomorphism

from HomA(V,W ) into HomA(V, W̃ ),(10.15.3)

as modules over k, as in Section 6.3. We can also use Ψ and the identity mapping
on V to get a map

from Homgr
A (V, Y ) into Homgr

A (V, Ỹ ),(10.15.4)

as complexes, as in Section 7.13. One can verify that this is a map over the ho-
momorphism as in (10.15.3), as in Section 10.8. This uses the augmentations on

Homgr
A (V, Y ) and Homgr

A (V, Ỹ ) that are defined as in the preceding paragraph.

Let Ψ′ be another map from Y into Ỹ over ψ, which leads to a map from
Homgr

A (V, Y ) into Homgr
A (V, Ỹ ), as complexes, as before. If Ψ is homotopic

to Ψ′, as maps between complexes, as in Section 5.11, then the corresponding
maps from Homgr

A (V, Y ) into Homgr
A (V, Ỹ ) are homotopic, as maps between

complexes, as in Section 7.13.
We can define

H
(
Homgr

A (V, Y )
)n

(10.15.5)

as a module over k for every integer n in the usual way, because Homgr
A (V, Y )

is a complex over k. This module is {0} when n < 0, because Homgr
A (V, Y ) is

positive, as a graded module. We may be particularly interested in this module
when Y is an injective resolution of W , in which case

(10.15.5) is uniquely determined by W(10.15.6)

for each n, up to isomorphism, because injective resolutions are unique up to
homotopy equivalence, as in Section 10.10. These remarks correspond to some
of those on p82f of [3].
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Under these conditions, (10.15.5) can be described in terms of “satellites”
too, as in Theorem 6.1 on p90 of [3].

We may consider V as a complex in the usual way, as in Section 10.6, so
that Homgr

A (V, Y ) may be defined as a double complex, as in Sections 6.3 and
6.5. Using this double complex, we get a single complex, as in Sections 5.13 and
5.14. This single complex is the same as at the beginning of the section, with
the grading as in (10.15.1), as in Section 7.12.

The complex associated to V as in the preceding paragraph may be consid-
ered as a left complex over V , where the augmentation mapping corresponds
to the identity mapping on this complex. The augmentation map εX may be
considered as a map from X into the complex associated to V over the iden-
tity mapping on V , as in Section 10.3. We can use this map and the identity
mapping on Y to get a map

from Homgr
A (V, Y ) into Homgr

A (X,Y ),(10.15.7)

as double complexes, as in Section 10.13. This map induces a homomorphism

from (10.15.5) into (10.13.2)(10.15.8)

for each n, as in Sections 5.11 and 5.15. This corresponds to a homomorphism
as in (1) on p94 of [3] again, in the case of spaces of homomorphisms.

If X is a projective resolution of V , and Y is an injective resolution of W ,
then

the homomorphism as in (10.15.8) is an isomorphism(10.15.9)

for each n, as in Theorem 8.1 on p95 of [3]. This is also mentioned on p107 of
[3].



Chapter 11

Integral domains

11.1 Torsion and divisible elements

Let k be an integral domain, which is to say a commutative ring with a nonzero
multiplicative identity element such that the product of any two nonzero ele-
ments of k is not zero too. Also let V be a module over k.

An element v of V is said to be a torsion element of V if there is a t ∈ k
such that t 6= 0 and

t · v = 0.(11.1.1)

The collection τ(V ) of torsion elements of V is a submodule of V , as in Exercise
12 on p45 of [1], and as mentioned on p127 of [3].

If

τ(V ) = V,(11.1.2)

then V is said to be a torsion module, as a module over k. It is easy to see that
τ(V ) is a torsion module, as on p127 of [3].

If

τ(V ) = {0},(11.1.3)

then V is said to be torsion-free, as a module over k. One can check that

V/τ(V )(11.1.4)

is torsion-free as a module over k, as in the first part of Exercise 12 on p45 of [1],
and as mentioned on p127 of [3]. Note that submodules of torsion-free modules
are torsion-free as well.

Let I be a nonempty set, and let Vj be a module over k for each j ∈ I. One
can verify that

τ
(⊕
j∈I

Vj

)
=

⊕
j∈I

τ(Vj),(11.1.5)

as mentioned on p127 of [3].

293
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Of course, k is torsion-free as a module over itself, by hypothesis. Thus free
modules over k are torsion-free.

If V is projective as a module over k, then V is isomorphic to a submodule
of a free module over k, as in Section 2.7. This implies that V is torsion-free,
as in Proposition 1.1 on p127 of [3].

An element v of V is said to be divisible if for every t ∈ k with t 6= 0 there
is a w ∈ V such that

v = t · w.(11.1.6)

The collection δ(V ) of divisible elements of V is a submodule of V , as on p127f
of [3].

If
δ(V ) = V,(11.1.7)

then V is said to be divisible, as a module over k. In this case, it is easy to see
that every quotient of V is divisible too, as on p128 of [3].

One can check that
δ(V/δ(V )) = {0},(11.1.8)

as mentioned on p128 of [3]. More precisely, let q be the natural quotient
mapping from V onto V/δ(V ). If v ∈ V and q(v) is divisible in V/δ(V ), then
one can verify that v is divisible in V .

Let I be a nonempty set again, and let Vj be a module over k for each j ∈ I.
One can check that

δ
(∏
j∈I

Vj

)
=

∏
j∈I

δ(Vj),(11.1.9)

as on p128 of [3].

11.2 More on torsion and divisibility

Let k be an integral domain again, and let V be a module over k. If V is injective
as a module over k, then V is divisible as a module over k, as in Proposition 1.2
on p128 of [3]. To see this, let v ∈ V and t0 ∈ k with t0 6= 0 be given, and note
that t0 k = {t0 x : x ∈ k} is an ideal in k. If t ∈ t0 k, then we would like to put

ϕ(t t0) = t · v.(11.2.1)

It is easy to see that this is well defined, because k has no nontrivial zero divisors.
More precisely, ϕ defines a homomorphism from t0 k into V , as modules over

k. Because V is injective, there is a w ∈ V such that

ϕ(t t0) = (t t0) · w(11.2.2)

for every t ∈ k, as in Section 2.8. It follows that

v = t0 · w,(11.2.3)

as desired.
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If V is torsion-free and divisible, then V is injective as a module over k, as
in Proposition 1.3 on p128 of [3]. Indeed, let I be an ideal in k, and let ϕ be a
homomorphism from I into V , as modules over k. It suffices to show that there
is a w ∈ V such that

ϕ(t) = t · w(11.2.4)

for every t ∈ I, as in Section 2.8. Of course, if I = {0}, then we can take w = 0,
and so we may suppose that I 6= {0}.

If t ∈ I and t 6= 0, then there is a unique wt ∈ V such that

ϕ(t) = t · wt,(11.2.5)

because V is torsion-free and divisible. If t1, t2 ∈ I and t1, t2 6= 0, then

(t1 t2) · wt1 = t2 · (t1 · wt1) = t2 · ϕ(t1) = ϕ(t1 t2)(11.2.6)

= t1 · ϕ(t2) = t1 · (t2 · wt2) = (t1 t2) · wt2 .

This implies that wt1 = wt2 , because t1 t2 6= 0 in k, and V is torsion-free. If
we let w be the common value of wt, t ∈ I, t 6= 0, then (11.2.4) holds for every
t ∈ I, as desired.

If t ∈ k, then
v 7→ t · v(11.2.7)

defines a homomorphism from V into itself, as a module over k. The condition
that V be torsion-free says exactly that this mapping is injective when t 6= 0.
Similarly, V is divisible exactly when (11.2.7) maps V onto itself when t 6= 0.

Let W be another module over k, and let V
⊗

kW be a tensor product of
V and W , as modules over k. If t ∈ k, then the action of t on V

⊗
kW is the

unique homomorphism from V
⊗

kW into itself, as a module over k, such that

v ⊗ w 7→ t · (v ⊗ w)(11.2.8)

for every v ∈ V and w ∈ W . This is the same as the homomorphism from
V
⊗

kW into itself, as a module over k, corresponding to (11.2.7) and the
identity mapping on W .

If V is divisible, then (11.2.7) maps V onto itself when t 6= 0, as before. This
implies that the action of t on V

⊗
kW is surjective when t 6= 0, as in Section

1.3. It follows that
V
⊗

k
W is divisible(11.2.9)

as a module over k in this case, as in Corollary 1.5 on p128 of [3]. Similarly,
(11.2.9) holds when W is divisible, as a module over k.

If V is torsion-free and divisible, then (11.2.7) defines an isomorphism from
V onto itself, as a module over k, when t 6= 0. This implies that the action of
t on V

⊗
kW is an isomorphism from V

⊗
kW onto itself, as a module over k,

when t 6= 0, as in Section 1.3. This means that

V
⊗

k
W is torsion-free and divisible(11.2.10)
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as a module over k, as in the last part of Proposition 1.4 on p128 of [3]. This
also works when W is torsion-free and divisible.

If W is torsion-free as a module over k, then it is easy to see that

Homk(V,W ) is torsion-free,(11.2.11)

as a module over k. One can check that this also holds when V is divisible, using
the surjectivity of (11.2.7) when t 6= 0. This is the second part of Corollary 1.5
on p128 of [3].

If V is torsion-free and divisible, then the action of t on Homk(V,W ) is an
isomorphism when t 6= 0, because (11.2.7) is an isomorphism from V onto itself.
This implies that

Homk(V,W ) is torsion-free and divisible,(11.2.12)

as a module over k. Similarly, if W is torsion-free and divisible, then the action
of t on W is an isomorphism from W onto itself, as a module over k, when
t 6= 0. This implies that the action of t on Homk(V,W ) is an isomorphism from
Homk(V,W ) onto itself, as a module over k, when t 6= 0, so that (11.2.12) holds.
This corresponds to the last part of Proposition 1.4 on p128 of [3] again.

If V is a torsion module and W is divisible, then

V
⊗

k
W = {0},(11.2.13)

as in Proposition 1.8 on p129 of [3]. To see this, let v ∈ V and w ∈W be given,
and let us check that

v ⊗ w = 0(11.2.14)

in V
⊗

kW . Because V is a torsion module, there is a t ∈ k such that t 6= 0
and t · v = 0. There is also a u ∈W such that w = t · u, because W is divisible.
It follows that

v ⊗ w = v ⊗ (t · u) = (t · v)⊗ u = 0,(11.2.15)

as desired.
If ϕ is a homomorphism from V into W , as modules over k, then it is easy

to see that
ϕ(τ(V )) ⊆ τ(W ),(11.2.16)

as in the second part of Exercise 12 on p45 of [1]. Similarly,

ϕ(δ(V )) ⊆ δ(W ).(11.2.17)

If V is a torsion module and W is torsion-free, then (11.2.16) implies that

ϕ = 0.(11.2.18)

This means that
Homk(V,W ) = {0}(11.2.19)

under these conditions, as in Proposition 1.8 on p129 of [3].
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11.3 Some easy homomorphisms

Let k be an integral domain, and let V be a module over k. If v1, . . . , vn are
finitely many torsion elements of V , then it is easy to see that there is a t ∈ k
such that t 6= 0 and

t · vj = 0(11.3.1)

for every j = 1, . . . , n. Of course, this implies that t · v = 0 for every v in the
submodule of V generated by v1, . . . , vn. If V is finitely generated and torsion,
as a module over k, then there is a t ∈ k such that t 6= 0 and

t · v = 0 for every v ∈ V.(11.3.2)

This corresponds to part of the proof of Proposition 1.6 on p128 of [3].
If t ∈ k, then

t · V = {t · v : v ∈ V }(11.3.3)

is a submodule of V . Similarly,

tV = {v ∈ V : t · v = 0}(11.3.4)

is a submodule of V . Put
Vt = V/(t · V ),(11.3.5)

which is another module over k.
Note that

x 7→ t x(11.3.6)

defines a homomorphism from k into itself, as a module over itself. This homo-
morphism is injective when t 6= 0, because k is an integral domain.

Remember that V satisfies the requirements of a tensor product of k with V ,
as modules over k, as in Section 1.4. Using (11.3.6) and the identity mapping
on V , we get a homomorphism

from k
⊗

k
V into itself,(11.3.7)

as a module over k, as in Section 1.3. This corresponds to v 7→ t · v, as a
homomorphism from V into itself. Of course, (11.3.4) is the kernel of this
homomorphism on V .

If v ∈ V , then
y 7→ y · v(11.3.8)

defines a homomorphism from k into V , as modules over k. Every homomor-
phism from k into V , as modules over k, corresponds to a unique v ∈ V in this
way. The restriction of (11.3.8) to y ∈ t k defines a homomorphism from t k into
V , as modules over k. This homomorphism is equal to 0 on t k exactly when
v ∈ tV .

Suppose that t 6= 0, and let ϕ be a homomorphism from t k into V , as
modules over k. Thus

ϕ(t x) = x · ϕ(t)(11.3.9)
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for every x ∈ k. Note that ϕ(t) can be any element of V . It is easy to see that
(11.3.8) is equal to ϕ on t k if and only if

ϕ(t) = t · v.(11.3.10)

In particular, ϕ has an extension to a homomorphism from k into V , as modules
over k, exactly when ϕ(t) ∈ t · V .

These remarks correspond to some of those on p129 of [3].

11.4 Fields of fractions

Let k be an integral domain, and let Qk be the corresponding field of fractions,
or quotients. We may identify k with a subring of Qk, as usual. Note that Qk
is torsion-free and divisible, and thus injective, as a module over k. It follows
that the quotient Qk/k is divisible, as a module over k.

If t ∈ k and t 6= 0, then

(1/t) k = {x/t : x ∈ k}(11.4.1)

is a submodule of Qk, as a module over k. We also have that

Qk =
⋃

{(1/t) k : t ∈ k, t 6= 0},(11.4.2)

by the definition of Qk.
Note that

(1/r) k, (1/t) k ⊆ (1/(r t)) k(11.4.3)

when r, t ∈ k and r, t 6= 0. More precisely, if t1, t2 ∈ k and t1, t2 6= 0, then

(1/t1) k ⊆ (1/t2) k(11.4.4)

if and only if 1/t1 ∈ (1/t2) k, which means that

t2 = r t1(11.4.5)

for some r ∈ k.
Put

t1 � t2(11.4.6)

when t1, t2 ∈ k \ {0} satisfy (11.4.5) for some r ∈ k. This defines a pre-order on
k \ {0}, which makes k \ {0} a directed system, because

t1, t2 � t1 t2(11.4.7)

for every t1, t2 ∈ k \ {0}.
One may identify Qk, as a module over k, with the direct limit of the sub-

modules (11.4.1), as in Exercise 12 on p45 of [1], and mentioned on p130 of [3].
More precisely, one may consider these submodules to be indexed by k \ {0}, or
simply ordered by inclusion, as in Section 3.3.
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Let V be a module over k, and let Qk
⊗

k V be a tensor product of Qk and
V , as modules over k. There is a natural homomorphism

ϕ from V into Qk
⊗

k
V,(11.4.8)

as modules over k, with
ϕ(v) = 1⊗ v(11.4.9)

for every v ∈ V . If we identify V with k
⊗

k V , as in Section 1.4, then ϕ
corresponds to the homomorphism from k

⊗
k V into Qk

⊗
k V associated to

the natural inclusion mapping from k into Qk and the identity mapping on V ,
as in Section 1.3. We would like to show that

kerϕ = τ(V ),(11.4.10)

as in the fourth part of Exercise 12 on p45 of [1], and Proposition 2.1 on p130
of [3].

If t ∈ k and t 6= 0, then let ((1/t) k)
⊗

k V be a tensor product of (1/t) k and
V , as modules over k. There is a natural homomorphism

from ((1/t) k)
⊗

k
V into Qk

⊗
k
V,(11.4.11)

as modules over k, associated to the obvious inclusion mapping from (1/t) k into
Qk and the identity mapping on V , as in Section 1.3. There is also a natural
homomorphism

ϕt from V into ((1/t) k)
⊗

k
V,(11.4.12)

as modules over k, with
ϕt(v) = 1⊗ v(11.4.13)

for every v ∈ V . As before, ϕt corresponds to the homomorphism from k
⊗

k V
into ((1/t) k)

⊗
k V associated to the natural inclusion mapping from k into

(1/t) k and the identity mapping on V . Observe that

ϕ is the same as the composition of ϕt(11.4.14)

with the homomorphism as in (11.4.11).

In particular,
kerϕt ⊆ kerϕ.(11.4.15)

In fact,

kerϕ =
⋃

{kerϕt : t ∈ k, t 6= 0}.(11.4.16)

This can be seen by identifying Qk
⊗

k V with the direct limit of ((1/t) k)
⊗

k V ,
as in Section 3.6.

Let t ∈ k \ {0} be given, and note that

(1/t)x 7→ x(11.4.17)
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defines an isomorphism from (1/t) k onto k, as modules over k. This leads to
an isomorphism

ψt from ((1/t) k)
⊗

k
V onto k

⊗
k
V,(11.4.18)

as modules over k, using the identity mapping on V , as in Section 1.3. This
may be considered as an isomorphism from ((1/t) k)

⊗
k V onto V , by identifying

k
⊗

k V with V , as before. It follows that

kerϕt = ker(ψt ◦ ϕt).(11.4.19)

One can check that ψt ◦ ϕt corresponds to

v 7→ t · v,(11.4.20)

as a homomorphism from V into itself. Thus

ker(ψt ◦ ϕt) = {v ∈ V : t · v = 0}.(11.4.21)

This implies (11.4.10), as desired.

11.5 Some injective mappings

Let k be an integral domain, and let Qk be the corresponding field of fractions.
If V is a finitely-generated torsion-free module over k, then there is an injective
homomorphism from V into a free module over k with a finite basis, as in
Proposition 2.4 on p131 of [3]. To see this, let Qk

⊗
k V be a tensor product of

Qk and V , as modules over k, as in the previous section. Thus (11.4.9) defines
an injective homomorphism ϕ from V into Qk

⊗
k V , as modules over k, as

before.
Note that Qk

⊗
k V may be considered as a module over Qk, as in Section

1.10. This means that Qk
⊗

k V may be considered as a vector space over Qk,
because Qk is a field. Let v1, . . . , vn be generators for V , as a module over k.
It is easy to see that Qk

⊗
k V is spanned by ϕ(v1), . . . , ϕ(vn), as a vector space

over Qk. In particular, Qk
⊗

k V has finite dimension, as a vector space over
Qk.

Let e1, . . . , em be a basis for Qk
⊗

k V , as a vector space over Qk. Thus, for
each j = 1, . . . , n, we can express ϕ(vj) as

ϕ(vj) =

m∑
l=1

qj,l el,(11.5.1)

where qj,l ∈ Qk for every l = 1, . . . ,m. It is easy to see that there is a t ∈ k
such that t 6= 0 and

t qj,l ∈ k(11.5.2)

for every j = 1, . . . , n and l = 1, . . . ,m. Of course, (11.5.1) is the same as saying
that

ϕ(vj) =

n∑
l=1

t qj,l (t
−1 el)(11.5.3)
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for every j = 1, . . . , n.
Let W be the submodule of Qk

⊗
k V , as a module over k, generated by

t−1 e1, . . . , t
−1 em.(11.5.4)

Observe that W is freely generated by (11.5.4), because e1, . . . , em is a basis for
Qk

⊗
k V , as a vector space over Qk. We also have that

ϕ(V ) ⊆W,(11.5.5)

because ϕ(vj) ∈W for each j = 1, . . . , n. This means that ϕ may be considered
as a homomorphism from V into W , as modules over k, as desired.

Let U be a projective module over k, and let U0 be a submodule of U that
is also projective, as a module over k. Let V be another module over k, and let
U0

⊗
k V , U

⊗
k V be tensor products of U0, U with V , respectively, as modules

over k. This leads to a homomorphism

from U0

⊗
k
V into U

⊗
k
V,(11.5.6)

as modules over k, using the obvious inclusion mapping from U0 into U , and
the identity mapping on V . If V is torsion-free, then Proposition2.5 on p131 of
[3] states that

the homomorphism as in (11.5.6) is injective.(11.5.7)

To show this, we start with the case where V is finitely generated as a module
over k, so that there is an injective homomorphism from V into a free module
W over k, as before. Let U0

⊗
kW , U

⊗
kW be tensor products of U0, U with

W , respectively, as modules over k. We get homomorphisms

from U0

⊗
k
V into U0

⊗
k
W(11.5.8)

and

from U
⊗

k
V into U

⊗
k
W,(11.5.9)

as modules over k, using the identity mappings on U0, U , respectively, and the
homomorphism from V intoW mentioned before. We also get a homomorphism

from U0

⊗
k
W into U

⊗
k
W,(11.5.10)

as modules over k, using the obvious inclusion mapping from U0 into U , and
the identity mapping on W .

Under these conditions, each of the three homomorphisms mentioned in
the preceding paragraph is injective, by the remarks near the end of Section
2.7. This uses the projectivity of U0, U , and W , and the injectivity of the
inclusion mapping from U0 into U , and the homomorphism from V into W
being considered.



302 CHAPTER 11. INTEGRAL DOMAINS

It is easy to see that the composition of the homomorphism as in (11.5.6)
with the homomorphism as in (11.5.9) is the same as the composition of the
homomorphism as in (11.5.8) with the homomorphism as in (11.5.10). More
precisely, both compositions are the same as the homomorphism

from U0

⊗
k
V into U

⊗
k
W,(11.5.11)

as modules over k, obtained from the obvious inclusion mapping from U0 into U ,
and the homomorphism from V intoW mentioned earlier. One can use this and
the injectivity conditions mentioned in the previous paragraph to get (11.5.7)
in this case.

If V is not necessarily finitely generated as a module over k, then one may
identify it with a direct limit of finitely-generated submodules, as in Section
3.12. We may also identify U0

⊗
k V , U

⊗
k V with direct limits of tensor prod-

ucts of U0, U with these finitely-generated submodules of V , as in Section 3.6.
Of course, these submodules of V are torsion-free too. One can use this to
obtain (11.5.7) from the analogous statement for finitely-generated torsion-free
modules.

11.6 Another injective mapping

Let k be an integral domain, and let Qk be the corresponding field of fractions
again. If Y is any module over k, then there is an injective homomorphism from
Y into a divisible module over k, as in Proposition 2.6 on p132 of [3]. To show
this, one can start with a homomorphism η from a torsion-free module V over k
onto Y . More precisely, one can take V to be a free module over k, as in Section
2.7, for instance.

Let Qk
⊗

k V be a tensor product of Qk and V , as modules over k, and let ϕ
be the homomorphism from V into Qk

⊗
k V with ϕ(v) = 1⊗v for every v ∈ V ,

as in Section 11.4. Thus ϕ is injective, because V is torsion-free, as before. If
V is a free module over k, then Qk

⊗
k V is a direct sum of a family of copies

of Qk, and the injectivity of ϕ can be seen more directly.
Using ϕ, we get a homomorphism

from V/ ker η into
(
Qk

⊗
k
V
)
/ϕ(ker η),(11.6.1)

as modules over k. It is easy to see that this homomorphism is injective, because
ϕ is injective. Of course,

ϕ(ker η) = ker(ϕ ◦ η),(11.6.2)

because ϕ is injective. Note that Qk
⊗

k V is divisible as a module over k,
because Qk is divisible as a module over k, as in Section 11.2. This implies that(

Qk
⊗

k
V
)
/ϕ(ker η) is divisible(11.6.3)

as a module over k, as in Section 11.1.
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Using η, we get an isomorphism

from V/ ker η onto Y,(11.6.4)

as modules over k. Thus the homomorphism as in (11.6.1) leads to an injective
homomorphism

from Y into
(
Qk

⊗
k
V
)
/ϕ(ker η),(11.6.5)

as modules over k, as desired.
Now let k be any commutative ring with a multiplicative identity element,

and let A be an associative algebra over k with a multiplicative identity element
eA. Also let V be a left module over A. It is well known that V is projective as
a module over A if and only if there is a family {vj}j∈I of elements of V and a
family {ϕj}j∈I of homomorphisms from V into A, as left modules over A, with
the following properties: for every v ∈ V ,

ϕj(v) = 0 for all but finitely many j ∈ I,(11.6.6)

and
v =

∑
j∈I

ϕj(v) · vj .(11.6.7)

This is Proposition 3.1 on p132 of [3]. Of course, there is an analogous statement
for right modules over A.

If V is projective, then we can start with a free left module U over A and
a homomorphism ψ from U onto V , as modules over A, as in Section 2.7.
Projectivity of V implies that there is a homomorphism ϕ from V into U , as
modules over A, such that ψ ◦ ϕ is the identity mapping on V . Let {ej}j∈I be
a basis for U as a free left module over A, and put

vj = ψ(ej)(11.6.8)

for each j ∈ I. Every u ∈ U can be expressed in a unique way as

u =
∑
j∈I

uj · ej ,(11.6.9)

where uj ∈ A for every j ∈ I, and uj = 0 for all but finitely many j ∈ I. If
v ∈ V , then we can take u = ψ(v), to get that

v = ϕ(ψ(v)) =
∑
j∈I

(ψ(v))j vj ,(11.6.10)

with (ψ(v))j = 0 for all but finitely many j ∈ I.
More precisely, in this argument, we can start with any family {vj}j∈I of

elements of V such that V is generated by the vj ’s, j ∈ I, as a left module over
A. We can take U to be a free left module over A with a basis {ej}j∈I , using
the same set I. In this case, there is a unique homomorphism ψ from U into V ,
as left modules over A, that satisfies (11.6.8), and which maps U onto V .
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Conversely, suppose that there are families {vj}j∈I of elements of V and
{ϕj}j∈I of homomorphisms from V into A that satisfy (11.6.6) and (11.6.7).
Let U be a free left module over A with basis {ej}j∈I , for some family of
elements indexed by the same set I. Thus there is a unique homomorphism ψ
from U onto V , as left modules over A, as in (11.6.8). Note that

ϕ(v) =
∑
j∈I

ϕj(v) · ej(11.6.11)

defines a homomorphism from V into U , as left modules over A. If v ∈ V , then

ψ(ϕ(v)) =
∑
j∈I

ϕj(v) vj = v,(11.6.12)

by (11.6.7). This implies that ϕ is injective, and that U corresponds to the
direct sum of ϕ(V ) and kerψ, as a left module over A. It follows that V is
projective, as in Section 2.7.

11.7 Fractional and invertible ideals

Let k be an integral domain, and let Qk be the corresponding field of fractions.
A submodule M of Qk, as a module over k, is called a fractional ideal of k if
there is an x ∈ k such that x 6= 0 and

xM ⊆ k,(11.7.1)

as on p96 of [1]. The ordinary ideals in k satisfy this condition with x = 1, and
may be called integral ideals of k.

If (11.7.1) holds for some x ∈ Qk with x 6= 0, then it is easy to see that M is
a fractional ideal of k. More precisely, one can multiply x by a suitable nonzero
element of k, to get another nonzero element of k.

If M is a fractional ideal of k, then we put

(k :M) = {x ∈ Qk : xM ⊆ k},(11.7.2)

as on p96 of [1]. It is easy to see that this is a submodule of Qk, as a module
over k. Note that (k :M) 6= {0}, by the definition of a fractional ideal.

If y ∈M , then
y (k :M) ⊆ k,(11.7.3)

by the definition of (k :M). This implies that (k :M) is a fractional ideal of k
when M 6= {0}.

Let M be a submodule of Qk, as a module over k. If M is finitely generated
as a module over k, then M is a fractional ideal of k, as on p96 of [1]. Indeed,
suppose that M is generated by y1, . . . , yn ∈ Qk as a module over k. It is easy
to see that there are x, z1, . . . , zn ∈ k such that

yj = zj/x(11.7.4)
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for each j = 1, . . . , n. This implies that (11.7.1) holds, as desired.
Of course, if k is Noetherian as a ring, then every integral ideal of k is finitely

generated as a module over k. This implies that every fractional ideal of k is
finitely generated as a module over k, as on p96 of [1].

Let M , N be submodules of Qk, as a module over k. The product M N is
defined to be the subset of Qk consisting of finite sums of products of elements
of M and N . This is a submodule of Qk, as a module over k, as well. Note
that multiplication in this sense is commutative and associative, with k as the
identity element.

We say that M is an invertible ideal of k if there is a submodule N of Qk,
as a module over k, such that

M N = k,(11.7.5)

as on p96 of [1]. In particular, this implies that M,N 6= {0}, so that M , N are
fractional ideals of k. We also get that

N ⊆ (k :M),(11.7.6)

and that k =M N ⊆M (k :M) ⊆ k. In fact, we have that

(k :M) ⊆ (k :M)M N ⊆ kN = N,(11.7.7)

so that
N = (k :M),(11.7.8)

as in [1].
If M is an invertible ideal, then there are finitely many elements x1, . . . , xn

of M and y1, . . . , yn of (k :M) such that

n∑
j=1

xj yj = 1.(11.7.9)

This implies that

x =

n∑
j=1

(x yj)xj(11.7.10)

for every x ∈ M , with x yj ∈ k for each j = 1, . . . , n, because yj ∈ (k : M). It
follows that M is generated by x1, . . . , xn as a module over k, and in particular
that M is finitely generated as a module over k, as on p96 of [1].

Conversely, if M is a fractional ideal of k, and there are x1, . . . , xn ∈ M
and y1, . . . , yn ∈ (k : M) such that (11.7.9) holds, then it is easy to see that
M (k :M) = k, so that M is invertible.

11.8 Inversible ideals

Let k be an integral domain, and let Qk be the corresponding field of fractions.
An ideal I of k is said to be inversible if there are finitely many elements
a1, . . . , an of I and q1, . . . , qn of Qk such that

qj I ⊆ k(11.8.1)
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for every j = 1, . . . , n, and
n∑
j=1

qj aj = 1,(11.8.2)

as on p132 of [3]. This is the same as the characterization of the invertibility of
I as a fractional ideal of k mentioned in the previous section. Although these
conditions are practically the same, it is convenient to use the slightly different
terms to reflect the slightly different situations in which they are used. Note
that I 6= {0} in this case.

Proposition 3.2 on p132 of [3] states that a nonzero ideal I in k is inversible
if and only if it is projective as a module over k. Suppose that I is inversible,
and let a1, . . . , an and q1, . . . , qn be as in the preceding paragraph. Put

ϕj(x) = qj x(11.8.3)

for each j = 1, . . . , n and x ∈ I, which defines a homomorphism from I into k,
as modules over k. If x ∈ I, then

x =

n∑
j=1

qj x aj =

n∑
j=1

ϕj(x) aj ,(11.8.4)

using (11.8.2) in the first step. This implies that I is projective as a module
over k, as in Section 11.6.

Before showing the converse, let us mention a helpful fact. Let I be a nonzero
ideal in k, and let ϕ be a homomorphism from I into k. If x, y ∈ I, then

xϕ(y) = ϕ(x y) = y ϕ(x).(11.8.5)

It follows that there is a q ∈ Qk such that

q = ϕ(x)/x(11.8.6)

for every x ∈ I with x 6= 0. This means that

ϕ(x) = q x(11.8.7)

for every x ∈ I.
Suppose now that I is a nonzero ideal in k that is projective as a module

over k. This implies that there is a nonempty family {aj}j∈L of elements of I
and a family {ϕj}j∈L of homomorphisms from I into k, as modules over k, such
that for every x ∈ I, ϕj(x) = 0 for all but finitely many j ∈ L, and

x =
∑
j∈L

ϕj(x) aj ,(11.8.8)

as in Section 11.6. Using the remarks in the preceding paragraph, we get that
for each j ∈ L, there is a unique qj ∈ Qk such that (11.8.3) holds for every
x ∈ I. Note that qj = 0 for all but finitely many j ∈ L, because (11.8.3) is
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supposed to be equal to 0 for all but finitely many j ∈ L, and we can take x 6= 0.
We may as well replace L with the finite subset of j ∈ L such that qj 6= 0.

It follows from (11.8.8) that

x =
∑
j∈L

x qj aj = x
∑
j∈L

qj aj(11.8.9)

for every x ∈ I. Taking x 6= 0, we obtain that∑
j∈L

qj aj = 1.(11.8.10)

Note that (11.8.1) holds for every j ∈ L, because ϕj(I) ⊆ k.
Proposition 3.3 on p132 of [3] states that inversible ideals in k are finitely

generated as modules over k. This was mentioned already in the previous sec-
tion, for invertible fractional ideals of k. One could also have used this in the
previous argument, to get L to be finite at the beginning.

Let I be an ideal in k, and let V be a module over k. There is a natural
homomorphism

from Homk(k, V ) into Homk(I, V ),(11.8.11)

as modules over k, which sends a homomorphism from k into V , as modules over
k, to its restriction to I. If I is inversible and V is divisible, then Proposition
3.4 on p133 of [3] states that

the homomorphism as in (11.8.11) is surjective.(11.8.12)

Equivalently, let ϕ be a homomorphism from I into V , as modules over k.
We would like to show that there is a v ∈ V such that

ϕ(x) = x · v(11.8.13)

for every x ∈ I.
Because I is inversible, there are a1, . . . , an ∈ I and q1, . . . , qn ∈ Qk satisfy-

ing (11.8.1) and (11.8.2). Let us choose, for each j = 1, . . . , n, an element vj of
V such that

ϕ(aj) = aj · vj .(11.8.14)

More precisely, we can take vj = 0 when aj = 0, and otherwise use the divisi-
bility of V . We may also require that aj 6= 0 for each j, by dropping and aj ’s
equal to 0.

If x ∈ I, then

ϕ(x) = ϕ
( n∑
j=1

qj x aj

)
=

n∑
j=1

(qj x) · ϕ(aj),(11.8.15)

using (11.8.2) in the first step, and the fact that qj x ∈ k for each j = 1, . . . , n
in the second step. This implies that

ϕ(x) =

n∑
j=1

(qj x) · (aj · vj) =
n∑
j=1

(qj x aj) · vj ,(11.8.16)
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using (11.8.14) in the first step. It follows that

ϕ(x) = x ·
( n∑
j=1

(qj aj) · vj
)
,(11.8.17)

because qj aj ∈ k for every j = 1, . . . , n. Thus (11.8.13) holds, with v =∑n
j=1(qj aj) · vj .

11.9 Prüfer rings

Let k be a commutative ring with a multiplicative identity element. As in
Section 9.5, we say that k is semi-hereditary if every ideal in k that is finitely
generated as a module over k is projective as a module over k.

Suppose now that k is an integral domain. In this case, k is semi-hereditary
if and only if every nonzero ideal in k that is finitely generated as a module
over k is inversible, because inversibility is equivalent to projectivity, as in the
previous section. Under these conditions, k is said to be a Prüfer ring, as on
p133 of [3].

Proposition 4.1 on p133 of [3] states that k is a Prüfer ring if and only if

every finitely-generated torsion-free module over k is projective.(11.9.1)

Note that ideals in k are torsion-free as modules over k, because k is an integral
domain. Thus (11.9.1) implies that k is semi-hereditary.

Conversely, let V be a finitely-generated torsion-free module over k. This
implies that there is an injective homomorphism from V into a free module
over k with a finite basis, as in Section 11.5. Thus we may identify V with a
submodule of a free module over k. If k is semi-hereditary, then every finitely-
generated submodule of a free module over k is projective, as in Section 9.5.
This means that V is projective as a module over k, as desired.

Suppose that k is a Prüfer ring, and let V be a torsion-free module over k.
Also let U1, U2, U3 be modules over k, and let θ θ′ be homomorphisms from U1,
U2 into U2, U3, respectively, as modules over k. If V0 is a submodule of V , then
we let U1

⊗
k V0, U2

⊗
k V0, U3

⊗
k V0 be tensor products of U1, U2, U3 with V0,

as modules over k, respectively. This leads to homomorphisms

ΘV0 from U1

⊗
k
V0 into U2

⊗
k
V0(11.9.2)

and
Θ′
V0

from U2

⊗
A
V0 into U3

⊗
k
V0,(11.9.3)

as modules over k, using θ, θ′, respectively, and the identity mapping on V .
Suppose that

U1
θ−→ U2

θ′−→ U3(11.9.4)

is exact, so that θ(U1) = ker θ′.



11.10. DEDEKIND RINGS 309

If V0 is a finitely-generated submodule of V , then V0 is projective as a module
over k, because V0 is torsion-free. In this case,

U1

⊗
A
V0

ΘV0−→ U2

⊗
A
V0

Θ′
V0−→ U3

⊗
A
V0(11.9.5)

is exact, as in Section 2.7. We can use this to get that

U1

⊗
k
V

ΘV−→ U2

⊗
k
V

Θ′
V−→ U3

⊗
k
V(11.9.6)

is exact, as in Corollary 4.3 on p134 of [3].
More precisely, V corresponds to the direct limit of its finitely-generated

submodules, as in Section 3.12. Similarly, for each j = 1, 2, 3, Uj
⊗

k V may
be considered as a direct limit of Uj

⊗
k V0, where V0 is a finitely-generated

submodule of V , as in Section 3.6. We may consider ΘV , Θ
′
V as direct limits

of ΘV0 , Θ
′
V0
, respectively, where V0 is a finitely-generated submodule of V , as

in Section 3.4. This permits us to obtain the exactness of (11.9.6) from the
exactness of (11.9.5), as before. Of course, there are analogous statements for
V
⊗

k Uj instead of Uj
⊗

k V .
Suppose that k is a Prüfer ring again, let V , W be torsion-free modules

over k, and let V
⊗

kW be a tensor product of V and W over k. Under these
conditions,

V
⊗

k
W is torsion-free(11.9.7)

as a module over k, as in Proposition 4.5 on p134 of [3]. To see this, let Qk be
the field of fractions corresponding to k, and let Qk

⊗
k V be a tensor product

of Qk and V , as modules over k. The natural homomorphism from V into
Qk

⊗
k V discussed in Section 11.4 is injective, because V is torsion-free.

Let
(
Qk

⊗
k V

)⊗
kW be a tensor product of Qk

⊗
V and W , as modules

over k. Consider the homomorphism

from V
⊗

k
W into

(
Qk

⊗
k
V
)⊗

k
W,(11.9.8)

as modules over k, obtained from the mapping from V into Qk
⊗

k V mentioned
in the preceding paragraph, and the identity mapping on W . This homomor-
phism is injective, because the mapping from V into Qk

⊗
k V is injective, and

W is torsion-free, by the previous statement about exactness.
Of course, we may identify

(
Qk

⊗
k V

)⊗
kW with Qk

⊗
k

(
V
⊗

kW
)
. Us-

ing this identification, one can check that the homomorphism as in (11.9.8)
corresponds to the natural mapping from V

⊗
kW into Qk

⊗
k

(
V
⊗

kW
)
, as

in Section 11.4. The injectivity of this mapping implies (11.9.7), as before.

11.10 Dedekind rings

Let k be a commutative ring with a multiplicative identity element. We say that
k is hereditary if every ideal in k is projective as a module over k, as in Section
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9.3. Similarly, k is Noetherian as a ring if k is Noetherian as a module over
itself, as in Section 9.7. This means that every ideal in k is finitely generated
as a module over k, as before.

Suppose that k is an integral domain. Observe that

k is hereditary if and only if(11.10.1)

every nonzero ideal in k is inversible,

because inversibility is equivalent to projectivity, as in Section 11.8. In this case,
k is said to be a Dedekind ring , as on p134 of [3].

Equivalently, k is a Dedekind ring if and only if

every nonzero fractional ideal of k is invertible.(11.10.2)

Remember that an ideal in k is inversible if and only if it is invertible as a
fractional ideal, as in Section 11.8. If M is a fractional ideal of k, x ∈ k, x 6= 0,
and xM ⊆ k, then it is easy to see that M is invertible if and only if xM is
invertible.

Dedekind domains are defined another way on p95 of [1]. This formulation
includes the condition that k have dimension one in a standard sense involving
prime ideals that will be discussed in Section 14.8, and which implies that k is
not a field. The definition of a Dedekind domain on p10 of [15] is equivalent to
the one in [1], except that k is only asked to have dimension less than or equal
to one in this sense, so that k may be a field.

If k is not a field, then the equivalence of these definitions of Dedekind rings
and domains is given in Theorem 9.8 on p97 of [1]. The fact that Dedekind
domain satisfy (11.10.2) is also mentioned in Proposition 5 on p11 of [15].

Note that
Dedekind rings are Noetherian,(11.10.3)

because inversible ideals in k are finitely generated as modules over k, as in
Section 11.8. More precisely, Dedekind rings are the same as Prüfer rings that
are Noetherian, as on p134 of [3].

If k is a Dedekind ring and V is a divisible module over k, then Proposition
5.1 on p134 of [3] states that

V is injective as a module over k.(11.10.4)

To see this, it suffices to show that if I is an ideal in k and ϕ is a homomorphism
from I into V , as modules over k, then there is a v ∈ V such that ϕ(x) = x · v
for every x ∈ I, as in Section 2.8. Of course, this holds trivially when I = {0}.
Otherwise, if I 6= {0}, then I is inversible as an ideal in k, by hypothesis. In
this case, the condition was shown in Section 11.8.

Conversely, if k is an integral domain, and every divisible module over k is
injective, then k is a Dedekind ring. This is another part of Proposition 5.1 on
p134 of [3]. Remember that injective modules over k are divisible, as in Section
11.2. We also have that quotients of divisible modules are divisible, as in Section
11.1. Thus our hypothesis implies that quotients of injective modules over k are
injective too. This implies that k is hereditary, as in Section 9.3. This means
that k is a Dedekind ring, as desired.
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11.11 Some injective modules

If k is an integral domain and Y is a module over k, then we have seen that
there is an injective homomorphism from Y into a divisible module W over k,
as in Section 11.6. If k is a Dedekind ring, then W is injective as a module
over k, as in the previous section. This gives another approach to the analogous
result for modules over arbitrary rings, as in Section 2.8. This corresponds to
the remark on p135 of [3].

Let A be a ring with a nonzero multiplicative identity element eA. There
is a natural ring homomorphism ϕ from Z into A with ϕ(1) = eA. Let V be
a left module over A, which may be considered as a module over Z. It is easy
to see that Z is a Dedekind ring. Thus one can use the argument described in
the preceding paragraph to get an injective module W over Z and an injective
homomorphism from V into W , as modules over Z.

Remember that the contravariant ϕ-extension of W is the space

(ϕ)W = HomZ(A,W )(11.11.1)

of homomorphisms from A into W , as modules over Z, as in Section 2.11, which
is a left module over A. Let V (Z) be V considered as a module over Z, so that
(ϕ)Z(V ) may be defined as a left module over A in the same way. There is a
natural injective homomorphism

from V into (ϕ)V (Z),(11.11.2)

as left modules over A, because V is a left module over A, as in Section 2.13.
The injective homomorphism from V into W , as modules over Z, leads to an
injective homomorphism

from (ϕ)V (Z) into (ϕ)W,(11.11.3)

as left modules over A, using composition of homomorphisms. The composition
of these two homomorphisms defines an injective homomorphism

from V into (ϕ)W,(11.11.4)

as left modules over A.
We also have that (ϕ)W is injective as a left module over A, because W is

injective as a module over Z, as in Section 2.11. This is another approach to
getting an injective homomorphism from a left module over A into an injective
left module over A, as in Section 2.8. Of course, there is an analogous argument
for right modules. This corresponds to the remarks after Proposition 6.3 on
p31 of [3]. As mentioned in [3], this proof was communicated to the authors by
B. Echmann, and a similar proof was also found by H. A. Forrester.

11.12 Some divisible modules

Let k be an integral domain, and let Qk be the corresponding field of fractions.
We may consider k and Qk as modules over k, so that the quotient Qk/k is
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a module over k too. In fact, Qk/k is divisible, as mentioned in Section 11.4.
It is easy to see that Qk/k is a torsion module, as a module over k. If k is a
Dedekind ring, then Qk/k is injective as a module over k, as in Section 11.10.

Let Y be a module over k, and let η be a homomorphism from a torsion-free
module V over k onto Y , as in Section 11.6. Also let Qk

⊗
k V be a tensor

product of Qk and V , as modules over k, and let ϕ be the homomorphism from
V into Qk

⊗
k V with ϕ(v) = 1⊗ v for every v ∈ V , as before. Remember that

ϕ is injective, so that ϕ leads to an injective homomorphism from V/ ker η into(
Qk

⊗
k
V
)
/ϕ(ker η),(11.12.1)

as modules over k. We have seen that Qk
⊗

k V is divisible as a module over
k, so that (11.12.1) is divisible too. Of course, V/ ker η is isomorphic to Y , as a
module over k, so that we get an injective homomorphism from Y into (11.12.1),
as modules over k, as before.

Suppose now that Y is a torsion module, as a module over k. If v ∈ V , then
it follows that there is a t ∈ k such that t 6= 0 and

η(t · v) = t · η(v) = 0,(11.12.2)

so that t · v ∈ ker η. In this case,

t · (1⊗ v) = 1⊗ (t · v) = ϕ(t · v) ∈ ϕ(ker η).(11.12.3)

Using this, one can check that

(11.12.1) is a torsion module,(11.12.4)

as a module over k.
Suppose that k is a Dedekind ring as well. Thus (11.12.1) is injective as a

module over k, because it is divisible, as in Section 11.10. This shows that if
Y is a torsion module over k, then there is an injective homomorphism from Y
into an injective torsion module over k.

One can use this to get an injective resolution of Y consisting of torsion
modules, as in Section 10.7. This corresponds to the first part of Exercise 2 on
p139 of [3]. Of course, injective resolutions are simpler for hereditary rings, as
before.



Chapter 12

Commutative rings and
fractions

12.1 Rings of fractions

Let k be a commutative ring with a multiplicative identity element. A subset
S of k is said to be multiplicatively closed in k if

1 ∈ S(12.1.1)

and S is closed under multiplication in the usual sense that

x y ∈ S for every x, y ∈ S.(12.1.2)

Thus S is a commutative semigroup with multiplicative identity element 1,
which is a sub-semigroup of k, as a semigroup with respect to multiplication.

Consider the binary relation ' defined on k × S by putting

(x, r) ' (y, t)(12.1.3)

when
x t v − y r v = 0(12.1.4)

for some v ∈ S. This relation is clearly reflexive and symmetric on k × S. To
show that ' is transitive on k×S, suppose that (12.1.3) and (12.1.4) hold, and
that (y, t) ' (z, u) for some (z, u) ∈ k × S, so that

y uw − z tw = 0(12.1.5)

for some w ∈ S. It follows that

(x t v − y r v)uw = (y uw − z tw) r v = 0,(12.1.6)

so that
xu t v w − z r t v w = 0.(12.1.7)

313



314 CHAPTER 12. COMMUTATIVE RINGS AND FRACTIONS

This means that (x, r) ' (z, u), because t v w ∈ S, as desired.

Thus ' defines an equivalence relation on k × S. The corresponding set of
equivalence classes may be denoted S−1 k, as on p36 of [1]. This construction is
also mentioned in Exercise 9 on p141 of [3], with the additional condition that

0 6∈ S.(12.1.8)

Note that the multiplicative identity element in a ring is normally supposed to
be nonzero in [3], as on p3 of [3], whereas 1 = 0 in k is permitted in [1], as on p1
of [1]. The set of equivalence classes is denoted kS in [3], but we shall normally
use the notation S−1 k here, to avoid confusion with some other notation in [1].

If x ∈ k and r ∈ S, then we let x/r denote the equivalence class of (x, r)
with respect to ', as on p36 of [1]. If y ∈ k and t ∈ S as well, then we would
like to define the sum and product of x/r and y/t in S−1 k by

(x/r) + (y/t) = (x r + y t)/(r t)(12.1.9)

and

(x/r) (y/t) = (x y)/(r t).(12.1.10)

One can check that these determine well-defined operations of addition and
multiplication on S−1 k, which make S−1 k a commutative ring, as in [1, 3].
This is called the ring of fractions of k with respect to S, as on p37 of [1].
Clearly 1/1 is the multiplicative identity element in S−1 k.

We also have that

x 7→ x/1(12.1.11)

is a ring homomorphism from k into S−1 k, as on p37 of [1]. If r ∈ S, then r/1
has multplicative inverse 1/r in S−1 k. If x ∈ k, then it is easy to see that

x/1 = 0(12.1.12)

in S−1 k if and only if

x t = 0(12.1.13)

in k for some t ∈ S.

If 0 ∈ S, then (12.1.4) holds automatically with v = 0, so that S−1 k = {0}.
Conversely, if S−1 k = {0}, then one can check that 0 ∈ S, as in Example 2 on
p38 of [1].

Observe that k is an integral domain exactly when

S = k \ {0}(12.1.14)

is multiplicatively closed in k. In this case, S−1 k is the same as the usual field
Qk of fractions of k, as in the remark on p37 of [1].
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12.2 Modules of fractions

Let k be a commutative ring with a multiplicative identity element, let S be a
multiplicatively closed subset of k, and let V be a module over k. Consider the
binary relation ∼= defined on V × S by putting

(v, r) ∼= (v′, r′)(12.2.1)

when
t r′ v − t r v′ = 0(12.2.2)

for some t ∈ S. One can check that this defines an equivalence relation on V ×S,
as in the previous section. The corresponding set of equivalence classes may be
denoted S−1 V , as on p38 of [1]. If v ∈ V and r ∈ S, then we let v/r denote the
equivalence class of (v, r) with respect to ∼=, as in [1].

One can define addition and scalar multiplication on S−1 V in natural ways,
so that S−1V becomes a module over S−1 k, as in [1]. In Exercise 9 on p141 of
[3], S−1 V is defined initially as a module over k, before S−1 k is defined as a
ring. This module is denoted VS in [3], but we shall not use this notation here,
to avoid confusion with some other notation from [1], as before. In particular,
one can use this to define S−1 k initially as a module over k, by considering k
as a module over itself. One can define multiplication on S−1 k as in (12.1.10)
again to get a commutative ring with a multiplicative identity element, and
define scalar multiplication on S−1 V so that it becomes a module over S−1 k,
as before.

If S−1 V is defined as a module over S−1 k in this way, then S−1 V may also
be considered as a module over k, using the ring homomorphism (12.1.11) from
k into S−1 k. This is the same as defining S−1 V initially as a module over k,
as in [3]. It is easy to see that

v 7→ v/1(12.2.3)

defines a homomorphism from V into S−1 V , as modules over k, as on p142 of
[3]. Note that

v/1 = 0(12.2.4)

in S−1 V if and only if
t v = 0(12.2.5)

for some t ∈ S, as in [3].
Let W be another module over k, and let f be a homomorphism from V

into W , as modules over k. This leads to a homomorphism S−1 f from S−1 V
into S−1W , as modules over S−1 k, with

(S−1 f)(v/r) = f(v)/r(12.2.6)

for every v ∈ V and r ∈ S, as on p38 of [1].
Let Z be a third module over k, and let g be a homomorphism from W into

Z, as modules over k. Thus g ◦f is a homomorphism from V into Z, as modules
over k, and

S−1 (g ◦ f) = (S−1 g) ◦ (S−1 f),(12.2.7)
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as on p38 of [1]. If g ◦ f = 0, then it follows that

(S−1 g) ◦ (S−1 f) = 0.(12.2.8)

Suppose that
f(V ) = ker g,(12.2.9)

and let us check that

(S−1 f)(S−1 V ) = ker(S−1 g).(12.2.10)

This corresponds to Proposition 3.3 on p39 of [3], and the first part of Exercise
10 on p142 of [3]. Of course, (12.2.9) implies that g ◦ f = 0, so that

(S−1 f)(S−1 V ) ⊆ ker(S−1g),(12.2.11)

by (12.2.8). To get the opposite inclusion, let w ∈W and r ∈ S be given, with

g(w)/r = (S−1 g)(w/r) = 0(12.2.12)

in S−1 Z. This implies that there is a t ∈ S such that

g(t w) = t g(w) = 0(12.2.13)

in Z. It follows that there is a v ∈ V such that

f(v) = t w.(12.2.14)

This means that

(S−1 f)(v/(r t)) = f(v)/(r t) = (t w)/(r t) = w/r(12.2.15)

in S−1W , as desired.
In particular, if g is injective, then S−1 g is injective, which can also be seen

a bit more directly. If W is a submodule of Z, then we can apply this to the
obvious inclusion mapping from W into Z. This permits us to consider S−1W
as a submodule of S−1 Z in this case, as on p39 of [1].

Let V1, V2 be submodules of V , so that S−1 V1 and S
−1 V2 may be considered

as submodules of S−1 V , as in the preceding paragraph. It is easy to see that

S−1 (V1 + V2) = (S−1 V1) + (S−1 V2),(12.2.16)

as submodules of S−1 V , as in part (i) of Corollary 3.4 on p39 of [1].
Similarly, let us check that

S−1 (V1 ∩ V2) = (S−1 V1) ∩ (S−1 V2),(12.2.17)

as in part (ii) of Corollary 3.4 on p39 of [1]. The left side is clearly contained
in the right side, and so it suffices to verify the opposite inclusion. Let v1 ∈ V1,
v2 ∈ V2, and r1, r2 ∈ S be given, with

v1/r1 = v2/r2.(12.2.18)
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This means that
t r2 v1 = t r1 v2(12.2.19)

for some t ∈ S. If u denotes the common value in (12.2.19), then u ∈ V1 ∩ V2.
The common value in (12.2.18) is equal to

u/(t r1 r2).(12.2.20)

This is an element of S−1 (V1 ∩ V2), as desired.
Let q1 be the natural quotient mapping from V onto the quotient module

V/V1. This leads to a homomorphism

S−1 q1 from S−1 V onto S−1 (V/V1),(12.2.21)

as modules over S−1 k, as before. We also have that

ker(S−1 q1) = S−1 V1,(12.2.22)

as in (12.2.10). This means that S−1 q1 induces an isomorphism

from (S−1 V )/(S−1 V1) onto S
−1 (V/V1),(12.2.23)

as modules over S−1 k, as in part (iii) of Corollary 3.4 on p39 of [1].

12.3 Fractions and tensor products

Let k be a commutative ring with a multiplicative identity element, let S be
a multiplicatively closed subset of k, and let V be a module over k. Also let
(S−1 k)

⊗
k V be a tensor product of S−1 k and V , as modules over k. An

arbitrary element of this tensor product may be expressed as a finite sum

n∑
j=1

(xj/rj)⊗ vj ,(12.3.1)

where xj ∈ k, rj ∈ S, and vj ∈ V for each j = 1, . . . , n. Put

r =

n∏
j=1

rj(12.3.2)

and
tl =

∏
j ̸=l

rj(12.3.3)

for each l = 1, . . . , n. These are elements of S, with r = rl tl for each l.
Thus (12.3.1) is equal to

n∑
j=1

(tj xj/r)⊗ vj =

n∑
j=1

(1/r)⊗ ((tj xj) · vj)(12.3.4)

= (1/r)⊗
( n∑
j=1

(tj xj) · vj
)
.
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This shows that every element of (S−1 k)
⊗

k V may be expressed as (1/r)⊗ v
for some r ∈ S and v ∈ V . This corresponds to part of the proof of Proposition
3.5 on p39 of [1].

One can check that
(x/r, v) 7→ (x · v)/r(12.3.5)

defines a mapping from (S−1 k) × V into S−1 V that is bilinear over k. This
leads to a unique homomorphism

from (S−1 k)
⊗

k
V into S−1 V,(12.3.6)

as modules over k, with
(x/r)⊗ v 7→ (x · v)/r(12.3.7)

for every x ∈ k, r ∈ S, and v ∈ V . It is easy to see that this homomorphism is
surjective, and we would like to check that it is injective as well.

Let r ∈ S and v ∈ V be given, and suppose that

v/r = 0(12.3.8)

in S−1 V . This implies that t · v = 0 for some t ∈ S. It follows that

(1/r)⊗ v = (t/(r t))⊗ v = (1/(r t))⊗ (t · v) = 0(12.3.9)

in (S−1 k)
⊗

k V . This shows that the kernel of the homomorphism mentioned
in the preceding paragraph is trivial.

Note that (S−1 k)
⊗

k V may be considered as a module over S−1 k, because
S−1 k may be considered as a module over itself, as in Section 1.10. This may
also be considered as an example of extension of scalars, as in Section 2.9. It is
easy to see that the homomorphism as in (12.3.6) is linear over S−1 k. Thus we
get an isomorphism as in (12.3.6), as modules over S−1 k. This corresponds to
Proposition 3.5 on p39 of [1], and to part of Exercise 9 on p141 of [3].

Let W be another module over k, and let V
⊗

kW be a tensor product of
V and W . This is a module over k, so that S−1 (V

⊗
kW ) may be defined as a

module over S−1 k, as before. Let (S−1 V )
⊗

S−1 k(S
−1W ) be a tensor product

of S−1 V and S−1W , as modules over S−1 k. One can check that

((v/r), (w/t)) 7→ (v ⊗ w)/(r t)(12.3.10)

defines a mapping from (S−1 V )× (S−1W ) into S−1 (V
⊗

kW ) that is bilinear
over S−1 k. This leads to a unique homomorphism

from (S−1 V )
⊗

S−1 k
(S−1W ) into S−1 (V

⊗
k
W ),(12.3.11)

as modules over S−1 k, with

(v/r)⊗ (w/t) 7→ (v ⊗ w)/(r t)(12.3.12)

for every v ∈ V , w ∈W , and r, t ∈ k.
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It is easy to see that this homomorphism is surjective. Proposition 3.7 on p40
of [1] states that this homomorphism is an isomorphism. This can be obtained
from the previous result and isomorphisms between double tensor products, as
in Section 1.12.

If Z is a module over S−1 k, then Z may be considered as a module over k,
using the natural ring homomorphism from k into S−1 k. If Z is considered as
a module over k, then S−1 Z may be defined as a module over S−1 k, as before.
Under these conditions, one can check that the natural homomorphism from Z
into S−1 Z, as modules over k, is an isomorphism between modules over S−1 k.
This is another part of Exercise 9 on p141 of [3].

12.4 Fractions and prime ideals

Let k be a commutative ring with a multiplicative identity element, and let I
be a proper ideal in k. Note that I is a prime ideal in k if and only if

S = k \ I(12.4.1)

is multiplicatively closed in k, as in Example 1 on p38 of [1]. Supposing that
this is the case, we may put

kI = S−1 k,(12.4.2)

as in [1].
It is easy to see that

I1 = {x/r : x ∈ I, r ∈ k \ I}(12.4.3)

is an ideal in kI . One can check that 1/1 6∈ I1, so that I1 6= kI . If y/t ∈ kI \I1,
then y ∈ k \ I, and y/t is invertible in kI . This implies that I1 is a maximal
ideal in kI , and in fact kI is a local ring, as in Section 4.13. Equivalently, I1 is
the unique maximal proper ideal in kI , as on p38 of [1].

If V is a module over k, then we may put

VI = S−1 V,(12.4.4)

with S as in (12.4.1), as on p38 of [1]. Of course, if V = {0}, then VI = {0}.
Suppose that V 6= {0}, and let v be a nonzero element of V . Thus

{t ∈ k : t · v = 0}(12.4.5)

is a proper ideal in k. Let I0 be a proper maximal ideal in k that contains
(12.4.5), which can be obtained using Zorn’s lemma or Hausdorff’s maximality
principle.

Of course, maximal ideals are prime ideals, by a standard argument, so that
VI0

may be defined as before. If

v/1 = 0 in VI0
,(12.4.6)
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then
r · v = 0(12.4.7)

for some r ∈ k \ I0. However, this would contradict the fact that (12.4.5) is
contained in I0. This shows that

V = {0}(12.4.8)

when
VI = {0}(12.4.9)

for all maximal proper ideals I in k. This corresponds to Proposition 3.8 on
p40 of [1], and the first part of Exercise 11 on p142 of [3].

Let W be another module over k, and let ϕ be a homomorphism from V
into W , as modules over k. If I is a proper prime ideal in k and S is as in
(12.4.1), then we get an induced homomorphism ϕI = S−1 ϕ from VI into WI ,
as in Section 12.2. If ϕ is surjective, then it is easy to see that ϕI is surjective.
If ϕ is injective, then ϕI is injective too, as before. This corresponds to part of
Proposition 3.9 on p40 of [1].

More precisely,
kerϕI = (kerϕ)I .(12.4.10)

This follows from (12.2.10), with f equal to the obvious inclusion mapping from
ker g into V , and g = ϕ. If (12.4.10) is equal to {0} for all maximal proper
ideals I in k, then it follows that ker g = {0}, as in (12.4.8). Equivalently, if
ϕI is injective for all maximal proper ideals I in k, then ϕ is injective. This is
another part of Proposition 3.9 on p40 of [1].

Similarly, if ϕI is surjective for all maximal proper ideals I in k, then ϕ is
surjective, as in Proposition 3.9 on p40 of [1].

12.5 The nilradical

Let k be a commutative ring with a multiplicative identity element. An element
x if k is said to be nilpotent if

xn = 0(12.5.11)

in k for some positive integer n, as on p2 of [1]. The set N of all nilpotent
elements of k is called the nilradical of k, as on p5 of [1].

Suppose that x, y ∈ N , so that xm = yn = 0 for some positive integers m,
n. Under these conditions, m + n − 1 is a positive integer, and one can check
that

(x+ y)m+n−1 = 0.(12.5.12)

Indeed, the left side can be expanded into a sum of terms of the form

xj yl,(12.5.13)

where j and l are nonnegative integers with j + l = m+ n− 1. It is easy to see
that j ≥ m or l ≥ n, so that (12.5.13) is equal to 0. This implies (12.5.12).
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One can use this to verify that N is an ideal in k. One can also check
that every nilpotent element of the quotient ring k/N is equal to 0. This is
Proposition 1.7 on p5 of [1].

Propostion 1.8 on p5 of [1] states that N is equal to the intersection of all the
prime ideals in k. It is easy to see that every nilpotent element of k is contained
in every prime ideal of k.

Suppose that x ∈ k is not nilpotent, so that for each positive integer n,
xn 6= 0. One can use Zorn’s lemma or Hausdorff’s maximality principle to get
an ideal I in k such that for each positive integer n,

xn 6∈ I,(12.5.14)

and I is maximal with respect to inclusion. We would like to check that I is a
prime ideal in k.

Let y, z ∈ k \ I be given, and let Iy, Iz be the ideals in k generated by I
and y, z, respectively. There are positive integers m, n such that

xm ∈ Iy, xn ∈ Iz,(12.5.15)

by the maximality of I.
Let Iyz be the ideal in k generated by I and y z. One can verify that

xm+n ∈ Iyz,(12.5.16)

using (12.5.15).
This implies that y z 6∈ I, so that I is prime. Another version of this using

a suitable ring of fractions of k is mentioned in Remark 2 on p42 of [1], and this
will be discussed in the next section.

12.6 Using powers to get fractions

Let k be a commutative ring with a multiplicative identity element, and let
x ∈ k be given. Observe that

S = {xn : n ∈ (Z+ ∪ {0})}(12.6.1)

is a multiplicatively closed subset of k. This is Example 3 on p38 of [1]. We
also have that 0 ∈ S if and only if x is nilpotent in k.

Suppose now that x is not nilpotent in k, so that 0 6∈ S. This implies that
S−1 k 6= {0}, as in Section 12.1. It follows that there is a maximal proper ideal
I0 in S−1 k. In particular, I0 is a prime ideal in S−1 k.

Put

I1 = {w ∈ k : w/1 ∈ I0}.(12.6.2)

It is easy to see that this is an ideal in k. Note that 1 6∈ I1, because 1/1 6∈ I0.
One can check that I1 is a prime ideal in k, because I0 is a prime ideal in S−1 k.
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If n is a positive integer, then xn/1 is invertible in S−1 k, because xn ∈ S,
as in Section 12.1. This means that

xn/1 6∈ I0,(12.6.3)

because I0 is a proper ideal in S−1 k. It follows that

xn 6∈ I1.(12.6.4)

This is the argument from Remark 2 on p42 of [1] that was mentioned in the
previous section.

12.7 Extensions and contractions of ideals

Let k1 and k2 be commutative rings with multiplicative identity elements 1k1 ,
1k2 , respectively, and let f be a ring homomorphism from k1 into k2, with
f(1k1) = 1k2 . Also let I1 be an ideal in k1, and note that f(I1) is not necessarily
an ideal in k2. Under these conditions, the extension of I1 with respect to f is
the ideal Ie1 in k2 generated by f(I1). Equivalently, Ie1 consists of finite sums
of products of elements of f(I1) and k2, as on p9 of [1].

If I2 is an ideal in k2, then f
−1(I2) is an ideal in k1. This is the contraction

of I2 with respect to f , which may be denoted Ic2, as on p9 of [1]. If I2 6= k2,
then 1k2 6∈ I2, which implies that 1k1 6∈ Ic2. If I2 is a prime ideal in k2, then it
is easy to see that Ic2 is a prime ideal in k1.

It is easy to see that
I1 ⊆ Iec1 ,(12.7.1)

where Iec1 is the contraction of Ie1 . Similarly,

Ice2 ⊆ I2,(12.7.2)

where Ice2 is the extension of Ic2. This is part (i) of Proposition 1.17 on p10 of
[1]. Part (ii) of this proposition states that

Icec2 = Ic2(12.7.3)

and
Iece1 = Ie1 ,(12.7.4)

where the contraction and extension operations are used again, as indicated.
This follows from the previous part, as in [1].

Let C be the collection of all ideals in k1 that are contractions of ideals in
k2, and let E be the collection of all ideals in k2 that are extensions of ideals in
k1. One can check that C is the same as the collection of all ideals I1 in k1 such
that

Iec1 = I1.(12.7.5)

Similarly, one can verify that E is the same as the collection of all ideals I2 in
k2 such that

Ice2 = I2.(12.7.6)
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This is part of part (iii) of Proposition 1.17 in [1].
In fact,

I1 7→ Ie1(12.7.7)

defines a one-to-one mapping from C onto E . Similarly,

I2 7→ Ic2(12.7.8)

is a one-to-one mapping from E onto C, which is the inverse of the previous
mapping. This is the other part of part (iii) of Proposition 1.17 in [1].

12.8 Products and ideal quotients

Let k be a commutative ring with a multiplicative identity element, and let I1,
I2 be ideals in k. The product I1 I2 is the ideal in k generated by products of
elements of I1 and I2, as on p6 of [1]. Equivalently, I1 I2 consists of finite sums
of products of elements of I1 and I2. Of course,

I1 I2 ⊆ I1 ∩ I2.(12.8.1)

Let V be a module over k, and let V1, V2 be submodules of V . Put

(V1 : V2) = {t ∈ k : t · V2 ⊆ V1},(12.8.2)

where t · V2 = {t · v2 : v2 ∈ V2}. It is easy to see that (12.8.2) is an ideal in k,
as on p19 of [1]. Note that this is not the same as in Section 11.7, although the
notation is similar.

If we take V1 = {0} in (12.8.2), then we get the annihilator

Ann(V2) = {t ∈ k : t · V2 = {0}}(12.8.3)

of V2 in k. Observe that

Ann(V1 + V2) = Ann(V1) ∩Ann(V2).(12.8.4)

One can also verify that

(V1 : V2) = Ann((V1 + V2)/V1).(12.8.5)

These two statements correspond to parts (i) and (ii) of Exercise 2.2 on p20 of
[1], respectively.

The product I1 ·V2 of I1 and V2 may be defined as the subset of V2 consisting
of finite sums of elements of the form t1 · v2, where t1 ∈ I1 and v2 ∈ V2. This is
submodule of V2, as on p19 of [1]. Note that

(V1 : V2) · V2 ⊆ V1,(12.8.6)

as in part (ii) of Exercise 1.12 on p8 of [1].
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Of course, I1, I2 may be considered as submodules of k, as a module over
itself. Their ideal quotient is defined to be (I1 : I2), as in (12.8.2), with V = k,
as on p8 of [1]. Clearly

I1 ⊆ (I1 : I2),(12.8.7)

as in part (i) of Exercise 1.12 on p8 of [1]. If x ∈ k, then we put

(I1 : x) = {t ∈ k : t x ∈ I1}.(12.8.8)

This is the same as (I1 : I2), with I2 taken to be the ideal in k generated by x,
as in [1].

12.9 More on extensions and contractions

Let k1, k2 be commutative rings with multiplicative identity elements 1k1 , 1k2 ,
respectively, and let f be a ring homomorphism from k1 into k2 with f(1k1) =

1k2 , as in Section 12.7. Also let I1, Ĩ1 be ideals in k1, and let I2, Ĩ2 be ideals
in k2. We would like to mention some properties of extensions and contractions
with respect to f , as in Exercise 1.18 on p10 of [1].

Note that I1+ Ĩ1 and I2+ Ĩ2 are ideals in k1 and k2, respectively. It is easy
to see that

(I1 + Ĩ1)e = Ie1 + Ĩe1 .(12.9.1)

We also have that
Ic2 + Ĩc2 ⊆ (I2 + Ĩ2)c.(12.9.2)

Of course, I1 ∩ Ĩ1 and I2 ∩ Ĩ2 are ideals in k1 and k2, respectively. One can
check that

(I1 ∩ Ĩ1)e ⊆ Ie1 ∩ Ĩe1 .(12.9.3)

It is easy to see that
(I2 ∩ Ĩ2)c = Ic2 ∩ Ĩc2.(12.9.4)

The products I1 Ĩ1 and I2 Ĩ2 are defined as ideals in k1 and k2, respectively,
as in the previous section. One can verify that

(I1 Ĩ1)e = Ie1 Ĩe1 .(12.9.5)

Clearly
Ic2 Ĩc2 ⊆ (I2 Ĩ2)c.(12.9.6)

The quotient ideals (I1 : Ĩ1) and (I2 : Ĩ2) in k1 and k2, respectively, may

be defined as in the previous section. Similarly, (Ie1 : Ĩe1) is an ideal in k2, and

(Ic2 : Ĩc2) is an ideal in k1. One can check that

(I1 : Ĩ1)e ⊆ (Ie1 : Ĩe1).(12.9.7)

Similarly,
(I2 : Ĩ2)c ⊆ (Ic2 : Ĩc2).(12.9.8)
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12.10 Radicals of ideals

Let k be a commutative ring with a multiplicative identity element, and let I
be an ideal in k. The radical r(I) of I in k is defined by

r(I) = {x ∈ k : xn ∈ I for some n ∈ Z+},(12.10.1)

as on p8 of [1].
Let q be the natural quotient homomorphism from k onto k/I, and let

N (k/I) be the nilradical of k/I, as in Section 12.5. It is easy to see that

r(I) = q−1(N (k/I)),(12.10.2)

as on p8 of [1]. This implies that r(I) is an ideal in k as well, because N (k/I)
is an ideal in k/I, as before. In particular, r({0}) is the same as the nilradical
of k.

Let us mention some basic properties of the radical, as in Exercise 1.13 on
p9 of [1]. Clearly

I ⊆ r(I).(12.10.3)

It is easy to see that
r(r(I)) = r(I).(12.10.4)

Let Ĩ be another ideal in k. One can check that

r(I Ĩ) = r(I ∩ Ĩ).(12.10.5)

We also have that
r(I ∩ Ĩ) = r(I) ∩ r(Ĩ).(12.10.6)

It is easy to see that r(I) = k if and only if I = k. Indeed, if 1 ∈ r(I), then
1 ∈ I. One can verify that

r(I + Ĩ) = r(r(I) + r(Ĩ)).(12.10.7)

If n is a positive integer, then let In be the nth power of I with respect to
multiplication of ideals as in Section 12.8. Equivalently, In consists of all finite
sums of products of n elements of I, as on p6 of [1]. This is interpreted as being
equal to k when n = 0, as in [1].

It is easy to see that
r(In) = r(I)(12.10.8)

for every n ≥ 1. If I is a prime ideal in k, then one can check that

r(I) = I.(12.10.9)

This implies that
r(In) = I(12.10.10)

for each n ≥ 1.
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Proposition 1.14 on p9 of [1] states that r(I) is the same as the intersection
of all of the prime ideals in k that contain I. This can be obtained from the
analogous statement for the nilradical in Section 12.5 and (12.10.2).

Let k1, k2 be commutative rings with multiplicative identity elements 1k1 ,
1k2 , respectively, and let f be a ring homomorphism from k1 into k2 with
f(1k1) = 1k2 . If I1 is an ideal in k1, then one can check that

r(I1)e ⊆ r(Ie1),(12.10.11)

where the radicals are taken in k1 and k2, respectively. If I2 is an ideal in k2,
then

r(I2)c = r(Ic2),(12.10.12)

where the radicals are taken in k2 and k1, respectively. This is another part of
Exercise 1.18 on p10 of [1].

12.11 Ring homomorphisms and fractions

Let k1, k2 be commutative rings with multiplicative identity elements 1k1 , 1k2 ,
respectively, and let ϕ be a ring homomorphism from k1 into k2 with ϕ(1k1) =
1k2 . Also let S1 be a multiplicatively closed subset of k1, and observe that

S2 = ϕ(S1)(12.11.1)

is a multiplicatively closed subset of k2. Thus S
−1
1 k1 and S−1

2 k2 may be defined
as commutative rings with multiplicative identity elements as in Section 12.1.
We also get the corresponding ring homomorphisms

x1 7→ x1/1k1(12.11.2)

and
x2 7→ x2/1k2(12.11.3)

from k1, k2 into S−1
1 k1, S

−1
2 k2, respectively, as before.

We would like to define a mapping Φ from S−1
1 k1 into S−1

2 k2 by putting

Φ(x1/r1) = ϕ(x1)/ϕ(r1)(12.11.4)

for every x1 ∈ k1 and r1 ∈ S1. It is easy to see that this is a well-defined mapping
from S−1

1 k1 into S−1
2 k2, and a ring homomorphism. Note that the composition

of (12.11.2) with Φ is the same as the composition of ϕ with (12.11.3). If

ϕ(k1) = k2,(12.11.5)

then
Φ(S−1

1 k1) = S−1
2 k2.(12.11.6)

Of course, the kernel of ϕ is an ideal in k1, which may be considered as a
submodule of k1, as a module over itself. Thus S−1

1 (kerϕ) may be considered as
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a submodule of S−1
1 k1, as a module over itself, as in Section 12.2. This means

that S−1
1 (kerϕ) may be considered as an ideal in S−1

1 k1.
It is easy to see that (12.11.4) is equal to 0 in S−1

2 k2 if and only if there is
a t1 ∈ S1 such that

ϕ(t1 x1) = ϕ(t1)ϕ(x1) = 0(12.11.7)

in k2. One can use this to get that

kerΦ = S−1
1 (kerϕ).(12.11.8)

Let V be k2, considered as a module over k1, using ϕ. Thus we can define
S−1
1 V as a module over S−1

1 k1, as in Section 12.2. This corresponds to con-
sidering S−1

2 k2 as a module over S−1
1 k1 using Φ, as in Exercise 4 on p44 of

[1].

12.12 More on rings of fractions

Let k1, k be commutative rings with multiplicative identity elements 1k1 , 1k,
respectively, and let g be a ring homomorphism from k1 into k with g(1k1) = 1k.
Also let S1 be a multiplicatively closed subset of k1, and suppose that for each
r1 ∈ S1,

g(r1) has a multiplicative inverse in k.(12.12.1)

Under these conditions, Proposition 3.1 on p37 of [1] states that there is a unique
ring homomorphism h from S−1

1 k1 into k such that

h(x1/1k1) = g(x1)(12.12.2)

for every x1 ∈ k1.
To get uniqueness, observe that for each r1 ∈ S1, we have that

h(1k1/r1) = h(r1/1k1)
−1 = g(r1)

−1.(12.12.3)

This implies that

h(x1/r1) = h(x1/1k1)h(1k1/r1) = g(x1) g(r1)
−1(12.12.4)

for every x1 ∈ k1 and r1 ∈ S1.
To get existence, we would like to define h as in (12.12.4), and we need to

check that h is well-defined on S−1
1 k1. Let x1, x

′
1 ∈ k1 and r1, r

′
1 ∈ S1 be given,

with
x1/r1 = x′1/r

′
1.(12.12.5)

This means that there is a t1 ∈ S1 such that

x1 r
′
1 t1 = x′1 r1 t1,(12.12.6)

as in Section 12.1. Thus

g(x1) g(r
′
1) g(t1) = g(x′1) g(r1) g(t1),(12.12.7)
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so that

g(x1) g(r1)
−1 = g(x′1) g(r

′
1)

−1,(12.12.8)

because g(t1) is invertible in k. This implies that h is well-defined on S−1
1 k1,

and it is easy to see that h is a ring homomorphism.
Suppose now that g satisfies the following two additional conditions. First,

if x1 ∈ k1 and g(x1) = 0, then

x1 t1 = 0(12.12.9)

in k1 for some t1 ∈ S1. Second, every element of k is of the form

g(x1) g(r1)
−1(12.12.10)

for some x1 ∈ k1 and r1 ∈ S1. In this case, Corollary 3.2 on p37 of [1] states that
h is an isomorphism from S−1

1 k1 onto k. Indeed, the first condition implies that
the kernel of h is trivial, and the second condition implies that h is surjective.

Let k2 be another commutative ring with multiplicative identity element 1k2 ,
and let ϕ be a ring homomorphism from k1 into k2 with ϕ(1k1) = 1k2 . Remember
that S2 = ϕ(S1) is a multiplicatively closed subset of k2, as in Section 12.11.
Let us take

k = S−1
2 k2,(12.12.11)

and let g be the ring homomorphism from k1 into k defined by

g(x1) = ϕ(x1)/1k2(12.12.12)

for every x1 ∈ k1. This is the same as the composition of ϕ with the usual
homomorphism x2 7→ x2/1k2 from k2 into S−1

2 k2. This homomorphism satisfies
(12.12.1) by construction, and the corresponding homomorphism h is the same
as the homomorphism Φ discussed in the previous section.

12.13 Extensions, contractions, and fractions

Let k be a commutative ring with a multiplicative identity element, and let S
be a multiplicatively closed subset of k. Put

f(x) = x/1(12.13.1)

for every x ∈ k, which defines a ring homomorphism from k into S−1 k, as in
Section 12.1. If I1 is an ideal in k, then we let Ie1 be its extension in S−1 k with
respect to f , as in Section 12.7. Similarly, if I2 is an ideal in S−1 k, then we let
Ic2 be its contraction in k with respect to f . Let C be the collection of ideals in
k that are contractions of ideals in S−1 k, and let E be the collection of ideals
in S−1 k that are extensions of ideals in k, as before.

If I1 is any ideal in k, then we would like to check that

Ie1 = S−1 I1,(12.13.2)
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as on p41 of [1]. More precisely, I1 may be considered as a submodule of k, as a
module over itself, so that S−1 I1 is defined as a module over S−1 k. This may
be identified with a submodule of S−1 k, as a module over itself, as in Section
12.2. Thus S−1 I1 is an ideal in S−1 k, which contains f(I1), and thus Ie1 . It is
clear that S−1 I1 is contained in Ie1 , so that they are equal to each other.

Let I2 be an ideal in S−1 k, and let us check that Ice2 = I2. This means that
I2 is the extension of an ideal in k, as in part (i) of Proposition 3.11 on p41 of
[1]. It suffices to show that

I2 ⊆ Ice2 ,(12.13.3)

because of (12.7.2). Let x/r be an element of I2, where x ∈ k and r ∈ S, as
usual. Observe that x/1 ∈ I2, so that x ∈ Ic2, and x/r ∈ Ice2 , as desired.

Let I1 be an ideal in k again, and let us verify that

Iec1 =
⋃
r∈S

(I1 : r),(12.13.4)

where (I1 : r) is as in (12.8.8). Of course,

Iec1 = (S−1 I1)c,(12.13.5)

by (12.13.2). Thus x ∈ k is an element of Iec1 if and only if

x/1 = y/t(12.13.6)

in S−1 k for some y ∈ I1 and t ∈ S. Remember that (12.13.6) means that
x t v − y v = 0 for some v ∈ S, as in Section 12.1. One can use this to get
(12.13.4).

This is the first part of part (ii) of Proposition 3.11 on p41 of [1], and the
second part says that

Ie1 = S−1 k if and only if I1 ∩ S 6= ∅.(12.13.7)

More precisely, if I1 ∩ S 6= ∅, then 1/1 ∈ Ie1 . Conversely, if Ie1 = S−1 k, then
Iec1 = k. This means that 1 ∈ Iec1 , which implies that I1 ∩ S 6= ∅, by (12.13.4).

Note that
I1 ∈ C if and only if Iec1 ⊆ I1,(12.13.8)

as in Section 12.7. Let q1 be the natural quotient mapping from k onto k/I1.
Part (iii) of Proposition 3.11 on p41 of [1] says that

I1 ∈ C if and only if q1(S) has no zero-divisors in k/I1.(12.13.9)

Indeed, I1 ∈ C if and only if ⋃
r∈S

(I1 : r) ⊆ I1,(12.13.10)

by (12.13.4) and (12.13.8). This condition says exactly that for every r ∈ S, if
x ∈ k and r x ∈ I1, then x ∈ I1, as desired.
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Consider the mapping
I1 7→ Ie1 = S−1 I1(12.13.11)

from ideals in k to ideals in S−1 k. Part (iv) of Proposition 3.11 on p41 of [1]
states that this defines a one-to-one mapping from the set of prime ideals in k
that are disjoint from S onto the set of proper prime ideals in S−1 k. Of course,
if 0 ∈ S, then there are no ideals in k that are disjoint from S, and there are no
proper ideals in S−1 k = {0}. Thus we may as well suppose that 0 6∈ S.

Remember that (12.13.11) is one-to-one on C, as in Section 12.7. If I1 is a
prime ideal in k, then k/I1 has no nonzero zero-divisors. If I1 is also disjoint
from S, then it follows that I1 ∈ C, by (12.13.9). Thus (12.13.11) is one-to-one
on the set of prime ideals in k that are disjoint from S.

If I2 is any ideal in S−1 k, then we have already seen that Ice2 = I2. If
I2 6= S−1 k, then it follows that

Ic2 ∩ S = ∅.(12.13.12)

If I2 is a prime ideal in S−1 k, then Ic2 is a prime ideal in k, as in Section 12.7.
This shows that every proper prime ideal in S−1 k corresponds to a prime ideal
in k that is disjoint from S as in (12.13.11).

Let I1 be a proper prime ideal in k, and let q1 be the natural quotient
mapping from k onto k/I1, which is an integral domain. Note that q1(S) is a
multiplicatively closed subset of k/I1, as in Section 12.11. Suppose that

I1 ∩ S = ∅,(12.13.13)

so that
0 6∈ q1(S).(12.13.14)

This means that
q1(S)

−1(k/I1) 6= {0},(12.13.15)

as in Section 12.1. In fact, one can check that

q1(S)
−1(k/I1) is an integral domain,(12.13.16)

because k/I1 is an integral domain.
Using q1, we get a ring homomorphism

Q1 from S−1 k onto q1(S)
−1(k/I1),(12.13.17)

with kernel S−1 I1, as in Section 12.11. This leads to a ring isomorphism

from (S−1 k)/(S−1 I1) onto q1(S)−1(k/I1).(12.13.18)

It follows that (S−1 k)/(S−1 I1) is an integral domain, which could also be
verified more directly from the definitions. This implies that

S−1 I1 is a proper prime ideal in k,(12.13.19)
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so that (12.13.11) maps the set of prime ideals in k that are disjoint from S into
the set of proper prime ideals in S−1 k.

Part (v) of Proposition 3.11 on p42 of [1] states that (12.13.11) commutes
with taking finite sums, products, intersections, and radicals of ideals in k. This
was already mentioned in Section 12.9 for finite sums and products, and it fol-
lows from analogous statements in Section 12.2 for finite sums and intersections.
If I1 is an ideal in k, then

S−1(r(I1)) = r(I1)e ⊆ r(Ie1) = r(S−1 I1),(12.13.20)

as in Section 12.10. The opposite inclusion can be verified directly in this case.
If N (k) is the nilradical of k, then Corollary 3.12 on p42 of [1] states that

the nilradical N (S−1 k) of S−1 k is the same as S−1 N (k).(12.13.21)

This follows from the previous statement about radicals, because the nilradical
is the same as the radical of {0}.

Let I0 be a proper prime ideal in k, and let us take S = k \ I0, which is a
multiplicatively closed subset of k, as in Section 12.4. In this case, (12.13.11)
defines a one-to-one mapping from the set of prime ideals in k that are contained
in I0 onto the set of proper prime ideals in S−1 k = kI0

, as before. This is
Corollary 3.13 on p42 of [1].

12.14 More on modules of fractions

Let k be a commutative ring with a multiplicative identity element, and let S
be a multiplicatively closed subset of k. If V is a finitely-generated module over
k, then Proposition 3.14 on p 43 of [1] states that

S−1 Ann(V ) = Ann(S−1 V ).(12.14.1)

Let W and Z be submodules of V , and suppose that they satisfy the cor-
responding analogues of (12.14.1). Let us first check that W + Z has the same
property, as in [1]. Observe that

S−1 Ann(V +W ) = S−1(Ann(W ) ∩Ann(Z))(12.14.2)

= (S−1 Ann(W )) ∩ (S−1 Ann(Z))

= (Ann(S−1W )) ∩ (Ann(S−1 Z)),

where the first step is as in Section 12.8, the second step is as in Section 12.2,
and the third step is by hypothesis. The right side is equal to

Ann((S−1W ) + (S−1 Z)) = Ann(S−1(W + Z)),(12.14.3)

as in Sections 12.8 and 12.2 again.
This permits one to reduce to the case where V is generated by a single

element, as a module over k. If I = Ann(V ), then it follows that V is isomorphic
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to k/I, as a module over k. In this case, S−1 V is isomorphic to (S−1 k)/(S−1 I),
as a module over S−1 k, as in Section 12.2. This implies that

Ann(S−1 V ) = S−1 I = S−1 Ann(V ),(12.14.4)

as desired.
Now let V be any module over k, and let W , Z be submodules of V . If Z is

finitely generated as a module over k, then

S−1 (W : Z) = (S−1W : S−1 Z),(12.14.5)

as in Corollary 3.15 on p43 of [1]. Remember that (W : Z) is an ideal in
k, as in Section 12.8, so that S−1 (W : Z) is an ideal in S−1 k. Similarly,
S−1W and S−1 Z are submodules of S−1 V , as a module over S−1 k, so that
(S−1W : S−1 Z) is an ideal in S−1k. To show (12.14.5), we use the fact that

(W : Z) = Ann((W + Z)/W ),(12.14.6)

as in Section 12.8.
It is easy to see that (W + Z)/W is finitely generated as a module over k,

because Z is finitely generated, by hypothesis. It follows that

S−1 (W : Z) = Ann(S−1 ((W + Z)/W )),(12.14.7)

by (12.14.1). We also have that S−1 ((W + Z)/W ) is isomorphic to

((S−1W ) + (S−1 Z))/(S−1W ),(12.14.8)

as modules over S−1 k, as in Section 12.2. This means that

S−1 (W : Z) = Ann(((S−1W ) + (S−1 Z))/(S−1W )),(12.14.9)

by (12.14.7). The right side of (12.14.9) is the same as the right side of (12.14.5),
as in Section 12.8 again.

12.15 Contractions of prime ideals

Let k1 and k2 be commutative rings with multiplicative identity elements 1k1
and 1k2 , respectively, and let f be a ring homomorphism from k1 into k2, with
f(1k1) = 1k2 . Also let I1 be an ideal in k1, and remember that extensions of
ideals in k1 and contractions of ideals in k2 with respect to f are defined as in
Section 12.7. In particular, if I1 is the contraction of an ideal in k2 with respect
to f , then

I1 = Iec1 ,(12.15.1)

as before.
Suppose now that I1 is a proper prime ideal in k1 that satisfies (12.15.1).

We would like to show that I1 is the contraction of a prime ideal in k2 with
respect to f , as in Proposition 3.16 on p43 of [1]. Remember that

S1 = k1 \ I1(12.15.2)
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is multiplicatively closed in k1, because I1 is a prime ideal, as in Section 12.4.
This implies that

S2 = f(S1) = f(k1 \ I1)(12.15.3)

is multiplicatively closed in k2, as in Section 12.11.
Clearly

Iec1 ∩ S1 = ∅,(12.15.4)

by (12.15.1). Using this, one can check that

Ie1 ∩ S2 = ∅.(12.15.5)

Of course,
x2 7→ x2/1k2(12.15.6)

defines a ring homomorphism from k2 into S−1
2 k2, as in Section 12.1. Let (Ie1)e

be the ideal in S−1
2 k2 which is the extension of Ie1 with respect to (12.15.6).

Observe that
(Ie1)e 6= S−1

2 k2,(12.15.7)

by (12.13.7) and (12.15.5).
Let I3 be a maximal proper ideal in S−1

2 k2 with

(Ie1)e ⊆ I3.(12.15.8)

In particular, I3 is a prime ideal in S−1
2 k2, because it is maximal. Consider

I2 = (I3)c = {x2 ∈ k2 : x2/1k2 ∈ I3},(12.15.9)

which is the contraction of I3 in k2 with respect to (12.15.6). Thus I2 is a prime
ideal in k2, because I3 is a prime ideal in S−1

2 k2, as in Section 12.7. Note that

Ie1 ⊆ I2,(12.15.10)

because of (12.15.8). We also have that

I2 ∩ S2 = ∅,(12.15.11)

because I3 is a proper ideal in S−1
2 k2. This means that Ic2 ⊆ I1, by (12.15.3).

It follows that
Ic2 = I1,(12.15.12)

by (12.15.10).
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Chapter 13

Nakayama’s lemma and
other matters

13.1 The Jacobson radical

Let k be a commutative ring with a multiplicative identity element. The Jacob-
son radical R in k is defined to be the intersection of all of the maximal proper
ideals in k, as on p5 of [1]. Of course, this is an ideal in k. Note that k has a
proper maximal ideal when k 6= {0}. If k = {0}, then we interpret R to be {0}.

If x ∈ R and y ∈ k, then

1− x y has a multiplicative inverse in k,(13.1.1)

as in Proposition 1.9 on p6 of [1]. Otherwise, the ideal generated by 1 − x y
would be a proper subset of k, which is contained in a maximal proper ideal I
in k. We also have that x ∈ I, because R ⊆ I, by construction, so that x y ∈ I.
This means that 1 ∈ I, which is a contradiction, because I is supposed to be a
proper subset of k.

Conversely, suppose that x ∈ k has the property that (13.1.1) holds for
every y ∈ k. We would like to check that x ∈ R, which is the other part of
Proposition 1.9 on p6 of [1]. Let I be a maximal proper ideal in k, and suppose
that x ∈ k \ I. This means that the ideal in k generated by I and x is equal to
k. It follows that there is a w ∈ I and k ∈ k such that

w + x y = 1.(13.1.2)

This implies that w = 1 − x y is not invertible in k, because I 6= k. Of course,
x ∈ k \ R exactly when x ∈ k \ I for some maximal proper ideal I in k.

Remember that N denotes the nilradical of k, consisting of all nilpotent
elements of k, as in Section 12.5. Equivalently, N is equal to the intersection of
all prime ideals in k, as before. This implies that

N ⊆ R,(13.1.3)

335
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because maximal ideals in k are prime ideals.
If z ∈ N , then

1− z has a multiplicative inverse in k,(13.1.4)

by (13.1.1) and (13.1.3). This corresponds to the first part of Exercise 1 on p10
of [1]. Alternatively,

∞∑
j=0

zj(13.1.5)

reduces to a finite sum in k, because z is nilpotent. This sum is the multiplicative
inverse of 1 − z in k, by a standard argument. If x ∈ N and y ∈ k, then
x y ∈ N , so that one can take z = x y. It follows that (13.1.1) holds under these
conditions. This is another way to get (13.1.3), using the earlier characterization
of R.

Let I be an ideal in k. Of course, I ⊆ R exactly when I is contained in
every maximal proper ideal in k.

If I ⊆ R and x ∈ I, then 1 − x has a multiplicative inverse in k, as in
(13.1.1). Conversely, if for every x ∈ I, 1 − x has a multiplicative inverse in
k, then one can check that I ⊆ R, using the characterization of R in terms of
(13.1.1).

13.2 Ideals, modules, and homomorphisms

Let k be a commutative ring with a multiplicative identity element, and let I
be an ideal in k. Also let V be a module over k, and remember that I · V is
the submodule of V consisting of finite sums of elements of the form t · v, where
t ∈ I and v ∈ V , as in Section 12.8.

Suppose that ϕ is a homomorphism from V into itself, as a module over k,
such that

ϕ(V ) ⊆ I · V.(13.2.1)

Suppose that V is finitely generated as a module over k as well. Under these
condition, there are a positive integer n and elements a1, . . . , an of I such that

ϕn + a1 ϕ
n−1 + · · ·+ an−1 ϕ+ an IV = 0,(13.2.2)

where IV is the identity mapping on V . This is Proposition 2.4 on p21 of [1].
Remember that the space Homk(V, V ) of homomorphisms from V into itself,

as a module over k, is an associative algebra over k with respect to composition
of mappings. Let Aϕ be the subalgebra of Homk(V, V ) generated by ϕ and
IV . This is a commutative subalgebra of Homk(V, V ), consisting of finite linear
combinations of IV and powers of ϕ, with coefficients in k.

Let v1, . . . , vn be generators of V , as a module over k. Thus every element
of I · V can be expressed as

n∑
l=1

tl · vl,(13.2.3)
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where t1, . . . , tn ∈ I. In particular, for each j = 1, . . . , n, ϕ(vj), ϕ(vj) can be
expressed as

ϕ(vj) =

n∑
l=1

aj,l · vl,(13.2.4)

where aj,1, . . . , aj,n ∈ I.
Let δj,l be the usual n × n Kronecker delta matrix with entries in k, which

is equal to 1 when j = l and to 0 when j 6= l. Thus

δj,l ϕ− aj,l IV(13.2.5)

defines an n× n matrix with entries in Aϕ. This means that the determinant

ψ = det(δj,l ϕ− aj,l IV )(13.2.6)

of this matrix can be defined as an element of Aϕ in the usual way. In fact, ψ
can be expressed as in the left side of (13.2.2). We would like to show that

ψ = 0.(13.2.7)

Note that

δj,l IV(13.2.8)

is the identity matrix, as an n×nmatrix with entries in Aϕ. It is well known that
the product of the cofactor transpose of (13.2.5) with (13.2.5), as n×n matrices
with entries in Aϕ, is equal to the determinant times the identity matrix, which
is to say

δj,l ψ,(13.2.9)

as in Cramer’s rule. The cofactor transpose of a matrix is sometimes called the
adjoint or classical adjoint of the matrix, which is different from other uses of
the term adjoint for linear mappings.

Let us reexpress (13.2.4) as saying that

n∑
l=1

(δj,l ϕ− aj,l IV )(vl) = 0(13.2.10)

for each j = 1, . . . , n. This implies that

n∑
l=1

δr,l · ψ(vl) = 0(13.2.11)

for every r = 1, . . . , n, by the remarks in the preceding paragraph. This means
that ψ(vr) = 0 for every r = 1, . . . , n. It follows that (13.2.7) holds, because V
is generated by v1, . . . , vn as a module over k, by hypothesis.
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13.3 Nakayama’s lemma

Let k be a commutative ring with a multiplicative identity element, and let V
be a finitely-generated module over k. Also let I be an ideal in k, and suppose
that

I · V = V.(13.3.1)

Under these conditions, there is an x ∈ k such that

x− 1 ∈ I(13.3.2)

and
x · V = 0.(13.3.3)

This is Corollary 2.5 on p21 of [1]. To see this, one can take ϕ to be the identity
mapping on V in (13.2.1). Let a1, . . . , an ∈ I be as in (13.2.2), and put

x = 1 + a1 + · · ·+ an.(13.3.4)

Thus (13.3.2) holds by construction, and (13.3.3) follows from (13.2.2).
Suppose now that we also have that

I ⊆ R,(13.3.5)

whereR is the Jacobson radical of k, as in Section 13.1. In this case, Nakayama’s
lemma states that

V = {0},(13.3.6)

as in Proposition 2.6 on p21 of [1]. Indeed, (13.3.2) and (13.3.5) imply that x
has a multiplicative inverse in k, as in Section 13.1. This means that (13.3.6)
follows from (13.3.3). This is the first proof on p21 of [1].

Alternatively, suppose that V is generated by v1, . . . , vn, as a module over
k, for some positive integer n. One can check that every element of V can be
expressed as a linear combination of v1, . . . , vn, with coefficients in I, because
of (13.3.1). In particular,

vn = a1 · v1 + · · ·+ an · vn(13.3.7)

for some a1, . . . , an ∈ I. Equivalently,

(1− an) · vn = a1 · v1 + · · · an−1 · vn−1.(13.3.8)

Note that an ∈ R, by (13.3.5), so that 1 − an has a multiplicative inverse in
k, as in Section 13.1. Using this and (13.3.8), we get that V is generated by
v1, . . . , vn−1, as a module over k. We can repeat the process as needed to get
that (13.3.6) holds. This corresponds to the second proof on p22 of [1].

Let W be a finitely-generated module over k, and let Z be a submodule of
W . Also let I be an ideal in k again, and suppose that

I ·W + Z =W.(13.3.9)
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If (13.3.5) holds, then
Z =W,(13.3.10)

as in Corollary 2.7 on p22 of [1]. This can be obtained from Nakayama’s lemma,
with

V =W/Z.(13.3.11)

More precisely, this uses the fact that

I · (W/Z) = (I ·W + Z)/Z.(13.3.12)

13.4 A noncommutative version

Let A be a ring with a nonzero multiplicative identity element e, and let I be
a left ideal in A. Suppose that for every x ∈ I,

e+ x has a right inverse in A.(13.4.1)

If A is a commutative ring, then this is the same as saying that I is contained
in the Jacobson radical of A, as in Section 13.1.

Suppose for the moment that A is a local ring, as in Section 4.13. Thus the
collection I0 of a ∈ A such that a does not have a left inverse in A is a left ideal
in A. This implies that I0 is a two-sided ideal in A, and that every element of
A\I0 has a two-sided inverse in A, as before. If a ∈ I0, then e+a 6∈ I0, because
e 6∈ I0, so that e+ a is invertible in A. In particular, I0 satisfies (13.4.1).

Let V be a right module over A, and let V · I be the subset of V consisting
of finite sums of elements of the form v · a, with v ∈ V and a ∈ I. This is a
subgroup of V , as a commutative group with respect to addition. Suppose that

V · I = V.(13.4.2)

If V is finitely generated as a right module over A, then it follows that V = {0}.
This is the same as Nakayama’s lemma when A is commutative. If A is a local
ring, and I = I0 is as before, then this is the first part of Proposition 5.1’ on
p155 of [3]. The formulation using (13.4.1) is part of Exercise 9 on p160 of [3].

The proof in [3] is analogous to the second proof of Nakayama’s lemma in the
previous section. Suppose that V is generated by v1, . . . , vn, as a right module
over A, for some positive integer n. Using this and (13.4.2), one can check that
every element of V can be expressed as

n∑
j=1

vj · aj(13.4.3)

for some a1, . . . , an ∈ I. This also uses the hypothesis that I be a left ideal in
A.

In particular, vn can be expressed as (13.4.3) for some a1, . . . , an ∈ I. This
means that

vn · (e− an) =

n−1∑
j=1

vj · aj .(13.4.4)
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Let b be a right inverse of e− an in A, as in (13.4.1). Observe that

vn = (vn · (e− an)) · b =
n−1∑
j=1

(vj · aj) · b =
n−1∑
j=1

vj · (aj b).(13.4.5)

This implies that V is generated by v1, . . . , vn−1, as a right module over A, and
one can repeat the process to get that V = {0}. Of course, there are analogous
statements for left modules.

13.5 Ideals and fractions

Let k be a commutative ring with a multiplicative identity element, and let V
be a module over k. Also let S be a multiplicatively closed subset of k, so that
S−1 k and S−1 V may be defined as in Sections 12.1 and 12.2. If

r · V = {0}(13.5.1)

for some r ∈ S, then it is easy to see that

S−1 V = {0}.(13.5.2)

If (13.5.2) holds, and if V is finitely generated as a module over k, then one
can check that there is an r ∈ S such that (13.5.1) holds. This corresponds to
Exercise 1 on p43 of [1].

Let I be an ideal in k, so that I · V may be defined as a submodule of V as
in Section 12.8. If I is considered as a submodule of k, as a module over itself,
then S−1 I may be considered as a submodule of S−1 k, as a module over itself,
as in Section 12.2. Equivalently, S−1 I may be considered as an ideal in S−1 k.
Thus (S−1 I) · (S−1 V ) may be defined as a submodule of S−1 V , as a module
over S−1 k, in the usual way. One can check that

S−1 (I · V ) = (S−1 I) · (S−1 V ).(13.5.3)

Let us now take
S = 1 + I = {1 + a : a ∈ I}.(13.5.4)

It is easy to see that this is a multiplicatively closed subset of k, as in Example
4 on p38 of [1]. In this case, every element of S−1 I can be expressed as

a/(1− b),(13.5.5)

where a, b ∈ I. Note that

(1/1)− (a/(1− b)) = ((1− b)/(1− b))− (a/(1− b))(13.5.6)

= (1− a− b)/(1− b).

This is invertible as an element of S−1 k, because 1 − b, 1 − a − b ∈ S. This
implies that S−1 I is contained in the Jacobson radical of S−1 k, as in Section
13.1. This is the first part of Execise 2 on p43 of [1].
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Let V be a module over k again, and suppose that

V = I · V.(13.5.7)

This implies that
S−1 V = (S−1 I) · (S−1 V ),(13.5.8)

by (13.5.3). Suppose that V is finitely generated as a module over k, which
implies that S−1 V is finitely generated as a module over S−1 k. Under these
conditions, we get that (13.5.2) holds, by Nakayama’s lemma, because S−1 I is
contained in the Jacobson radical of S−1 k, as in the preceding paragraph. This
implies that (13.5.1) holds for some r ∈ S, as before.

This is another way to get (13.3.3), as in the second part of Exercise 2 on
p43 of [1]. Of course, one should use the second proof of Nakayama’s lemma in
Section 13.3 here, since the first proof uses (13.3.3).

13.6 Modules over quotient rings

Let k be a commutative ring with a multiplicative identity element, let I be an
ideal in k, and let V be a module over k. Suppose for the moment that

I ⊆ Ann(V ),(13.6.1)

where the annihilator Ann(V ) of V in k is as in Section 12.8. This means that
the action of each element of I on V is equal to 0. It follows that the action of
any t ∈ k on V only depends on the image of t in the quotient ring k/I. This
permits one to consider V as a module over k/I, as on p19 of [1].

Let W be a module over k, and remember that I ·W is a submodule of W ,
as in Section 12.8. Thus the quotient W/(I ·W ) is defined as a module over k.
Of course,

I ⊆ Ann(W/(I ·W )),(13.6.2)

by construction. This means that W/(I ·W ) may be considered as a module
over k/I, as in the preceding paragraph.

Let qW be the natural quotient mapping fromW ontoW/(I ·W ), as modules
over k. Suppose that w1, . . . , wn are finitely many elements of W such that

W/(I ·W ) is generated by qW (w1), . . . , qW (wn),(13.6.3)

as a module over k.

Equivalently, this means that

W/(I ·W ) is generated by qW (w1), . . . , qW (wn),(13.6.4)

as a module over k/I.

Let Z be the submodule of W , as a module over k, generated by w1, . . . , wn.
Thus

qW (Z) =W/(I ·W ).(13.6.5)
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This is the same as saying that

Z + (I ·W ) =W.(13.6.6)

Suppose now that W is also finitely generated, as a module over k. If I is
contained in the Jacobson radical of k, then it follows thatW = Z, as in Section
13.3. This means that

W is generated by w1, . . . , wn, as a module over k.(13.6.7)

In particular, if k is a local ring, and I is the unique maximal proper ideal in k,
then I is the same as the Jacobson radical of k. This corresponds to Proposition
2.8 on p22 of [1].

13.7 Another noncommutative version

Let A be a ring with a nonzero multiplicative identity element eA, and let I be
a proper two-sided ideal in A. Thus the quotient A/I is a ring with a nonzero
multiplicative identity element eA/I .

Let W be a right module over A, and let W · I be as in Section 13.4. It is
easy to see that

W · I is a submodule of W, as a right module over A,(13.7.1)

because I is a right ideal in A.
This means that the quotient W/(W · I) is defined as a right module over

A. The action of any element of I on W/(W · I) on the right is equal to 0, by
construction. Equivalently, the action of a ∈ A on W/(W · I) on the right only
depends on the image of a in A/I, under the natural quotient homomorphism
from A onto A/I. It follows thatW/(W ·I) may be considered as a right module
over A/I as well, with respect to this action.

Let qW be the natural quotient homomorphism from W onto W/(W · I), as
right modules over A. Suppose that w1, . . . , wn are finitely many elements of
W such that

W/(W · I) is generated by qW (w1), . . . , qW (wn),(13.7.2)

as a right module over A.

This is the same as saying that

W/(W · I) is generated by qW (w1), . . . , qW (wn),(13.7.3)

as a right module over A/I.

Let Z be the submodule of W , as a right module over A, generated by
w1, . . . , wn. Note that

qW (Z) =W/(W · I),(13.7.4)



13.8. SOME QUOTIENTS BY IDEALS 343

so that
Z + (W · I) =W.(13.7.5)

Consider the quotient V = W/Z, which is another right module over A.
Thus V · I may be defined in the usual way, and is a submodule of V , as a right
module over A. It is easy to see that

V · I = (W/Z) · I = (W · I + Z)/Z =W/Z = V,(13.7.6)

because of (13.7.5).
Suppose that for every x ∈ I,

eA + x has a right inverse in A.(13.7.7)

In particular, this holds when A is a local ring, and I is the corresponding
two-sided ideal in A, as in Sections 4.13 and 13.4.

Suppose also that W is finitely generated as a right module over A. This
implies that V is finitely generated as a right module over A too. Under these
conditions, we get that V = {0}, because of (13.7.6), as in Section 13.4. This
means that W = Z, so that

W is generated by w1, . . . , wn, as a right module over A.(13.7.8)

This basically corresponds to a simplification of the first part of Proposition
5.2 on p155 of [3]. This also uses the first part of Proposition 5.1’ on p155 of
[3], and the corresponding part of Exercise 9 on p160 of [3], as in Section 13.4.
There are analogous statements for left modules, as usual.

13.8 Some quotients by ideals

Let A be a ring with a nonzero multiplicative identity element eA again, and
let IR be a right ideal in A, so that

W = A/IR(13.8.1)

is a right module over A. Also let I be a left ideal in A, and let IR I be the
subset of A consisting of finite sums of products of elements of IR and I. Note
that

IR I ⊆ IR ∩ I.(13.8.2)

If IR is considered as a right module over A, then IR I is the same as the subset
IR · I of IR defined in Section 13.4. Similarly, if I is considered as a left module
over A, then IR I is the same as the subset IR · I of I defined analogously.

Let
W · I = (A/IR) · I(13.8.3)

be as in Section 13.4 again. This is a subgroup of W , as a commutative group
with respect to addition. Of course, IR+I is a subgroup of A, as a commutative
group with respect to addition. It is easy to see that

W · I = (IR + I)/IR.(13.8.4)
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The quotients
W/(W · I)(13.8.5)

and
A/(IR + I)(13.8.6)

are defined as commutative groups with respect to addition in the usual way.
These quotients are isomorphic to each other in a natural way, because of
(13.8.4), by standard arguments.

Suppose now that I is a proper two-sided ideal in A, so that the quotient
A/I is a ring with a nonzero multiplicative identity element. Observe that
IR + I, IR ∩ I, and IR I are right ideals in A, because I is a right ideal. We
also have that W · I is a submodule of W , as a right module over A, as in the
previous section. Thus the quotients (13.8.5) and (13.8.6) are defined as right
modules over A in this case. These quotients are isomorphic as right modules
over A in a natural way, as before.

In fact, (13.8.5) and (13.8.6) may be considered as right modules over A/I,
as in the previous section. They are isomorphic as right modules over A/I in
a natural way, as usual. Let qW be the natural quotient mapping from W onto
(13.8.5), and let q0 be the natural quotient mapping from A onto W . Put

q1 = qW ◦ q0,(13.8.7)

which corresponds to the natural quotient mapping from A onto (13.8.6).
If x ∈ I, then

q1(eA + x) = q1(eA).(13.8.8)

This implies that (13.8.5) is generated by q1(eA+ x), as a right module over A.
If eA + x has a right inverse in A, then A is generated by eA + x, as a right

module over itself. This implies that W is generated by q0(eA + x), as a right
module over A. Of course, one could consider left modules over A obtained by
taking quotients of A by left ideals as well.

13.9 Some freely-generated modules

Let A be a ring, with a nonzero multiplicative identity element eA. Suppose
that A is a local ring, as in Sections 4.13 and 13.4, with corresponding two-
sided ideal I0. Let W 6= {0} be a finitely-generated right module over A, and
let W · I0 be as in Section 13.4. This is a submodule of W , as a right module
over A, as in Section 13.7. Let qW be the natural quotient homomorphism from
W onto W/(W · I0), as right modules over A.

Remember that W/(W · I0) may be considered as a right module over A/I0
in a natural way, as in Section 13.7. Let w1, . . . , wn be finitely many elements
of W such that

W/(W · I0) is generated by qW (w1), . . . , qW (wn),(13.9.1)

as a right module over A/I0.
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This implies that W is generated by w1, . . . , wn, as a right module over A, as
in Section 13.7.

We may as well ask that qW (w1), . . . , qW (wn) be a minimal set of generators
of W/(W · I0), as a right module over A/I0. This implies that

W/(W · I0) is freely generated by qW (w1), . . . , qW (wn),(13.9.2)

as a right module over A/I0,

because A/I0 is a division ring. This can be verified in basically the same way
as for vector spaces over (commutative) fields.

Let An be the usual space of n-tuples of elements of A, considered as a right
module over A. If a ∈ An, then put

ϕ(a) =

n∑
j=1

wj · aj .(13.9.3)

This defines a homomorphism from An onto W , as right modules over A.
By considering An as a right module over A, An ·I0 is defined as a submodule

of An as in Sections 13.4 and 13.7. This is the same as the set of n-tuples of
elements of I0, but it is better not to use the notation In0 for this set, because
that may also be used for the nth power of I0 in A. Observe that

kerϕ ⊆ An · I0.(13.9.4)

More precisely,
kerϕ ⊆ ker(qW ◦ ϕ) = An · I0,(13.9.5)

using (13.9.2) in the second step.
Suppose now in addition that

W is projective as a right module over A.(13.9.6)

This implies that An corresponds to the direct sum of ker ϕ and another sub-
module of An, as a right module over A, as in Section 2.7. This means that
there is a homomorphism ψ from An onto kerϕ, as right modules over A, that
is equal to the identity mapping on ker ϕ. In particular, it follows that

kerϕ is finitely generated, as a right module over A.(13.9.7)

As usual, (kerϕ) · I0 is defined as a submodule of kerϕ, as a right module
over A, as in Sections 13.7 and 13.7. One can check that

kerϕ = (kerϕ) · I0,(13.9.8)

using (13.9.4) and the remarks in the preceding paragraph. More precisely,

(kerϕ) · I0 = ψ(An) · I0 = ψ(An · I0) = kerϕ,(13.9.9)

using (13.9.4) and the fact that ψ is the identity mapping on ker ϕ in the last
step.
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Under these conditions, we get that

kerϕ = {0},(13.9.10)

as in Section 13.4. This means that

ϕ is an isomorphism from An onto W,(13.9.11)

as right modules over A. This is the same as saying that

W is freely generated by w1, . . . , wn, as a right module over A.(13.9.12)

One could just as well consider left modules over A, as usual.
The remarks in this section basically correspond to parts of Propositions

5.1’ and 5.2 and Theorem 5.3 on p155f of [3], and their proofs. This may be
considered as a simplification of Theorem 6.1’ on p157 of [3]. More precisely,
(13.9.6) was not part of the hypotheses in [3], and was used here to get (13.9.7)
and (13.9.8). In [3], (13.9.7) was obtained by asking A to be right Noetherian
as a ring. Another condition was used to get (13.9.8) in [3], which is implied by
(13.9.6).

The condition used in [3] to get (13.9.8) may be described in terms of “aug-
mented rings”, which are discussed in Chapter 24. Here A may be considered
as an augmented ring, with augmentation ideal I0. The condition used in [3]
may be described as saying that the first homology group of A, with respect to
this augmentation, and with coefficients in W , is equal to {0}. This uses the
definition of the homology groups on p143 of [3].

13.10 Complementary ideals

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with a nonzero multiplicative identity element eA.
Let us say that left ideals I1, I2 in A are complementary in A if A corresponds
to the direct sum of I1 and I2, as a left module over itself. It is easy to see that
this happens if and only if A corresponds to the direct sum of I1 and I2, as a
module over k. Of course, there are analogous notions and statements for right
ideals and two-sided ideals in A. If I1 and I2 are complementary two-sided
ideals in A, then A corresponds to the direct sum of I1 and I2, as an algebra
over k.

If I1, I2 are left ideals in A, then the quotients A/I1, A/I2 may be considered
as left modules over A. If I1 and I2 are complementary left ideals in A, then
A/I1, A/I2 are isomorphic to I2, I1, respectively, as left ideals over A. In this
case, I1 and I2 are projective as left modules over A, so that A/I1 and A/I2
are projective as left modules over A.

Let I1 be a left ideal in A, and suppose that A/I1 is projective as a left mod-
ule over A. This implies that there is a left ideal I2 in A that is complementary
to I1, as in Section 2.7.
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Let θ1 be an idempotent element of A, so that

θ21 = θ1.(13.10.1)

Note that
θ2 = eA − θ1(13.10.2)

is idempotent in A as well. We also have that

θ1 θ2 = θ2 θ1 = 0.(13.10.3)

Put
Ij = {a θj : a ∈ A}(13.10.4)

for j = 1, 2, which are left ideals in A. One can check that I1 and I2 are
complementary left ideals in A under these conditions.

Conversely, suppose that I1 and I2 are complementary left ideals in A. This
implies that there are unique elements θ1, θ2 of I1, I2 such that

θ1 + θ2 = eA.(13.10.5)

If a ∈ A, then a θ1 ∈ I1, a θ2 ∈ I2, and

a = a θ1 + a θ2.(13.10.6)

In fact, a θ1 and a θ2 are uniquely determined by these properties, by hypothesis.
In particular, if a ∈ I1, then

a θ1 = a and a θ2 = 0,(13.10.7)

and similarly for elements of I2. It follows that θ1, θ2 are idempotent elements
of A that satisfy (13.10.3), and that I1, I2 are as in (13.10.4). This corresponds
to a remark on p164 of [14].

13.11 A class of modules

Let A be a ring with a nonzero multiplicative identity element eA, and let I be
a proper two-sided ideal in A. If W is a right module over A, then W · I may
be defined as in Section 13.4, and is a submodule of W , as in Section 13.7. Let
us say that W is proper with respect to I if either W = {0} or

W 6=W · I,(13.11.1)

as on p154 of [3]. Thus Nakayama’s lemma and its analogue for noncommutative
rings give criteria for modules to be proper in this sense. Note that free modules
over A are proper with respect to I, as in [3].

Suppose now that A is a graded ring, as in Section 9.14. Remember that A0 is
a subring of A that contains eA, and that ε(a) = a0 defines a ring homomorphism
from A onto A0. In this case, we take

I = ker ε.(13.11.2)
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This is a proper two-sided ideal in A, which corresponds to the direct sum of
Aj , j ≥ 1, as a subgroup of A, as a commutative group with respect to addition.

Let W be a graded right module over A, as a graded ring, as in Section 9.15.
Under these conditions,

W is proper with respect to I,(13.11.3)

as in Proposition 5.1 on p154 of [3]. To see this, suppose that W 6= {0}, and let
m be the smallest nonnegative integer such that

Wm 6= {0}.(13.11.4)

It is easy to see that W · I is contained in the subgroup of W generated by
W j , j ≥ m = 1, as a commutative group with respect to addition. This implies
(13.11.1), because of (13.11.4).

Of course,
W j ∩ (W · I)(13.11.5)

is a subgroup of W , as a commutative group with respect to addition, for every
j ≥ 0. This subgroup consists of finite sums of elements of the form w · a,
where w ∈ W l and a ∈ Ar for some l ≥ 0 and r ≥ 1 with j = l + r. In
particular, W 0 = {0}. Observe that W · I corresponds to the direct sum of
these subgroups, with j ≥ 1. Thus W · I is homogeneous as a subgroup of W ,
as a graded commutative group with respect to addition, as in Section 5.9.

This defines a grading on W · I, as a commutative group with respect to
addition. This grading on W · I is compatible with the grading on A, as in
Section 9.15. Thus W · I may be considered as a graded module over A, as a
graded ring, as before.

13.12 Quotients and gradings

Let us continue with the same notation and hypotheses as in the previous sec-
tion, so that A is a graded ring, W is a graded right module over A, as a graded
ring, and so on.

Let U be a submodule of W , as a right module over A, that is homogeneous
as a subgroup of W , as a graded commutative group with respect to addition,
as in Section 5.9. The grading on U induced by the grading on W is compatible
with the grading on A, so that

U is graded as a module over A, as a graded ring,(13.12.1)

as in Section 9.15. The quotient W/U is graded as a commutative group with
respect to addition in a natural way, as in Section 5.9 again. Of course, W/U
is also a right module over A, and the grading on W/U is compatible with the
grading on A. This means that

W/U is graded as a module over A, as a graded ring.(13.12.2)
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If we take U = W · I, then we get that W/(W · I) is a graded module over
A, as a graded ring. If a ∈ I, then the action of a on the right on W/(W · I) is
equal to 0, by construction. The action of A on W/(W · I) on the right leads to
an action of A/I onW/(W ·I) on the right, as in Section 13.7. This corresponds
to the action of A0 on W/(W · I) on the right, using ε. Note that W/(W · I) is
a graded right module over A0 in the usual sense, as in Sections 5.9 and 9.15.

If W is any right module over A0, then W may be considered as a right
module over A, using ϵ. In this case, if W is considered as a right module over
A, then

W · I = {0},(13.12.3)

by construction. If W is a graded right module over A0 in the usual sense, then
W may be considered as a graded module over A, as a graded ring, in this way.

Let W be any graded right module over A, as a graded ring, again, and
let U be a submodule of W , as a right module over A, that is homogeneous
as a subgroup of W , as a graded commutative group with respect to addition.
Thus W/U is a graded right module over A, as a graded ring, as before, so
that (W/U) · I is a submodule of W/U , as a graded right module over U , that
is homogeneous as a subgoup of W/U , as a graded commutative group with
respect to addition, as in the previous section. If W/U 6= {0}, then

W/U 6= (W/U) · I,(13.12.4)

as in (13.11.1). Equivalently, this means that if U 6=W , then

U + (W · I) 6=W.(13.12.5)

Let E be a nonempty subset ofW consisting of homogeneous elements ofW ,
as in Section 5.9. Thus each x ∈ E is an element of W j for some nonnegative
integer j. Let UE be the submodule of W , as a right module over A, generated
by E. It is easy to see that UE is homogeneous as a subgroup of W , as a graded
commutative group with respect to addition, under these conditions.

Let qW be the natural quotient mapping from W onto W/(W · I). Note
that W/(W · I) is generated by qW (E), as a right module over A, if and only if
W/(W · I) is generated by qW (E), as a right module over A/I. This is also the
same as saying that

UE + (W · I) =W.(13.12.6)

This implies that
UE =W,(13.12.7)

as before. This corresponds to the first part of Proposition 5.2 on p155 of [3],
in the case of graded modules over graded rings.

13.13 Some graded free modules

Let A be a ring with a nonzero multiplicative identity element eA. Also let E
be a nonempty set, and let FE be the free right module over A generated by E.
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This may be defined precisely as the space c00(E,A) of A-valued functions on
E with finite support, on which A acts by multiplication on the right. Let us
identify each element of E with the A-valued function on E equal to eA at that
element, and to 0 otherwise. Thus FE is freely generated by the elements of E,
as a right module over A.

Suppose now that A is a graded ring, as in Section 9.14. Let λ be a function
on E with values in the set Z+∪{0} of nonnegative integers. If j is a nonnegative
integer, then let (FE)

j be the subset of FE consisting of finite sums of elements
of the form x · a, where x ∈ E, a ∈ Ar for some nonnegative integer r, and

j = λ(x) + r.(13.13.1)

It is easy to see that this defines a grading on FE , as a commutative group
with respect to addition, as in Section 5.9. This grading is compatible with the
grading on A, by construction. Thus

FE may be considered as a graded right module over A,(13.13.2)

as a graded ring,

as in Section 9.15. Of course, one can always take λ(x) = 0 for every x ∈ E,
in which case FE corresponds to a direct sum of copies of A, indexed by E, as
graded right modules over itself.

Let W be a right module over A. Any mapping ϕ from E into W has a
unique extension to a homomorphism Φ from FE into W , as right modules over
A. Suppose now that W is a graded right module over A, as a graded ring, and
that

ϕ(x) ∈Wλ(x)(13.13.3)

for every x ∈ E. This implies that

Φ has degree 0 as a homomorphism from FE into W,(13.13.4)

as graded commutative groups with respect to addition, as in Section 5.9. This
corresponds to a remark on p155 of [3], in the proof of Proposition 5.1.

It follows that

kerΦ and Φ(FE) are homogeneous(13.13.5)

as subgroups of FE and W, respectively,

as graded commutative groups with respect to addition. This means that

kerΦ and Φ(FE) are graded modules over A, as a graded ring,(13.13.6)

with respect to the gradings induced by those on FE and W , respectively, as in
Section 9.15. This corresponds to another remark on p155 of [3].

Suppose that E is a nonempty subset of W consisting of homogeneous ele-
ments, with

x ∈Wλ(x)(13.13.7)

for every x ∈ E. This is the same as (13.13.3), with ϕ equal to the obvious
inclusion mapping from E into W . In this case, Φ(FE) is the same as the
submodule UE of W , as a right module over A, generated by E.
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13.14 Some more freely-generated modules

Let A be a ring with a nonzero multiplicative identity element eA, and suppose
that A is a graded ring, as in Section 9.14. Thus A0 is a subring of A that
contains eA, ε(a) = a0 defines a ring homomorphism from A onto A0, and
I = ker ε is a proper two-sided ideal in A. In this section, we also ask that

A0 be a division ring.(13.14.1)

Let W 6= {0} be a graded right module over A, as a graded ring, as in
Section 9.15. Remember that W · I is as in Section 13.4, and is a submodule
of W , as a right module over A, as in Section 13.7. Let qW be the natural
quotient homomorphism from W onto W/(W · I), as right modules over A. We
have seen that W/(W · I) may be considered as a right module over A/I, which
corresponds to considering W/(W · I) as a right module over A0, using ε, as in
Section 13.12.

Let E be a nonempty subset of W consisting of homogeneous elements.
Suppose that W/(W · I) is generated by qW (E), as a right module over A/I.
This is the same as saying that W/(W · I) is generated by qW (E), as a right
module over A, as before.

One can show that W/(W · I) is freely generated by a subset of qW (E), as
a right module over A/I, because A/I is a division ring. This is analogous to
standard arguments for vector spaces over (commutative) fields.

This implies that there is a nonempty subset Ẽ of E such that

W/(W · I) is freely generated by qW (Ẽ),(13.14.2)

as a right module over A/I,

and
qW is one-to-one on Ẽ.(13.14.3)

It follows that

W is generated by Ẽ, as a right module over A,(13.14.4)

as in Section 13.12.
If x ∈ Ẽ, then let λ(x) be a nonnegative integer such that x ∈ Wλ(x). Let

F
Ẽ

be the free right module over A generated by Ẽ, with the grading defined

using λ, as in the previous section. The obvious inclusion mapping ϕ̃ from Ẽ
into W has a unique extension to a homomorphism Φ̃ from F

Ẽ
into W , as right

modules over A. We also have that

Φ̃ has degree 0 as a homomorphism from F
Ẽ

into W,(13.14.5)

as graded commutative groups with respect to addition, as in the previous
section.

Note that
Φ̃(F

Ẽ
) =W,(13.14.6)
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by (13.14.4). As in the previous section, ker Φ̃ is homogeneous as a subgroup of
F
Ẽ
, as a graded commutative group with respect to addition. This implies that

ker Φ̃ is a graded module over A, as a graded ring,(13.14.7)

with respect to the grading induced by the one on F
Ẽ
, as before.

Of course, F
Ẽ
· I can be defined in the usual way, because F

Ẽ
is a right

module over A. In this case, F
Ẽ
· I consists of finite sums of elements of the

form x · a, where x ∈ Ẽ and a ∈ I. Observe that

ker(qW ◦ Φ̃) = F
Ẽ
· I,(13.14.8)

because of (13.14.2) and (13.14.3). This means that

ker Φ̃ ⊆ F
Ẽ
· I.(13.14.9)

Suppose that

W is projective as a right module over A.(13.14.10)

It follows that F
Ẽ
corresponds to the direct sum of ker Φ̃ and another submodule

of F
Ẽ
, as a right module over A, as in Section 2.7. This implies that there is a

homomorphism Ψ from F
Ẽ

onto ker Φ̃, as right modules over A, that is equal

to the identity mapping on ker Φ̃.
Note that (ker Φ̃) · I may be defined in the usual way, and is a submodule

of ker Φ̃, as a right module over A. Under these conditions, we have that

(ker Φ̃) · I = Ψ(F
Ẽ
) · I = Ψ(F

Ẽ
· I) = ker Φ̃,(13.14.11)

using (13.14.9) and the fact that Ψ is the identity mapping on ker Φ̃ in the last
step.

This implies that
ker Φ̃ = {0},(13.14.12)

because of (13.14.7), as in Section 13.11. It follows that Φ̃ is an isomorphism
from F

Ẽ
onto W , as right modules over A.

This basically corresponds to parts of Propositions 5.1 and 5.2 and Theo-
rem 5.3 on p154ff of [3], and their proofs. This may also be considered as a
simplification of Theorem 6.1 on p156 of [3]. More precisely, in [3], the first ho-
mology group of A, as an augmented ring with augmentation ideal I, and with
coefficients in W , was asked to be {0}, instead of (13.14.10). This condition is
implied by (13.14.10), and was used to get the same conclusion as in (13.14.11).
Of course, there are analogous statements for left moduules.

One might note that some of the arguments used here and in Section 13.12
are similar to arguments in Sections 13.7 and 13.9. In [3], some conditions are
formulated on p154 that include both cases, and Proposition 5.2 and Theorem
5.3 on p155f are stated in terms of these conditions.
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13.15 Some quotients as tensor products

Let A be a ring with a multiplicative identity element eA, and let I be a left
ideal in A. If W is a right module over A, then W · I is defined as in Section
13.4, and is a subgroup of W , as a commutative group with respect to addition.
This means that the quotient

W/(W · I)(13.15.1)

is defined as a commutative group as well. If I is a two-sided ideal in A, then
W · I is a submodule of W , as a right module over A, as in Section 13.7. In this
case, (13.15.1) may be considered as a right module over A too.

Put

Q = A/I,(13.15.2)

which may be considered as a left module over A. If I is a two-sided ideal in A,
then Q may be considered as a ring, and both a left and right module over A.

Let W
⊗

A I and W
⊗

AQ be tensor products of W with I and Q, re-
spectively, which are commutative groups with respect to addition. If I is a
two-sided ideal in A, then W

⊗
A I and W

⊗
AQ may be considered as right

modules over A, as in Section 1.10.
Using the identity mapping on W and the obvious inclusion mapping from

I into A, we get a homomorphism

from W
⊗

A
I into W

⊗
A
A,(13.15.3)

as commutative groups with respect to addition. This may be identified with a
homomorphism

from W
⊗

A
I into W,(13.15.4)

as commutative groups with respect to addition, because of the usual identifi-
cation of W

⊗
AA with W . The image of this homomorphism is equal to W · I.

If I is a two-sided ideal in A, then we get module homomorphisms in (13.15.3)
and (13.15.4).

Similarly, we can use the identity mapping on W and the natural quotient
mapping from A onto Q to get a homomorphism

from W
⊗

A
A onto W

⊗
A
Q,(13.15.5)

as commutative groups with respect to addition. This may be identified with a
homomorphism

from W onto W
⊗

A
Q,(13.15.6)

as commutative groups with respect to addition, by identifying W
⊗

AA with
W again. If I is a two-sided ideal in A, then we get module homomorphisms in
(13.15.5) and (13.15.6), as before.

The image of the homomorphism as in (13.15.3) is equal to the kernel of the
homomorphism as in (13.15.5), as in Section 2.5. Equivalently, the image of the
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homomorphism as in (13.15.4) is equal to the kernel of the homomorphism as
in (13.15.6). This leads to an isomorphism

from W/(W · I) onto W
⊗

A
Q,(13.15.7)

as commutative groups with respect to addition. If I is a two-sided ideal in A,
then this is an isomorphism between right modules over A.

This corresponds to Exercise 2 on p31 of [1] when A is commutative. This
also corresponds to (2) on p144 of [3], and to (1) on p154 of [3]. Of course, there
are analogous statements for left modules over A and right ideals in A.



Chapter 14

Fractions, dimension, and
valuations

14.1 Pairs of multiplicatively closed sets

Let k1, k2 be commutative rings with multiplicative identity elements 1k1 , 1k2 ,
respectively, and let ϕ be a ring homomorphism from k1 into k2 with ϕ(1k1) =
1k2 . Also let S1, S2 be multiplicatively closed subsets of k1, k2, respectively,
and suppose that

ϕ(S1) ⊆ S2.(14.1.1)

Thus S−1
1 k1, S

−1
2 k2 may be defined as in Section 12.1, with the corresponding

ring homomorphisms
x1 7→ x1/1k1(14.1.2)

and
x2 7→ x2/1k2(14.1.3)

from k1, k2 into S−1
1 k1, S

−1
2 k2, respectively. As in Section 12.11,

Φ(x1/r1) = ϕ(x1)/ϕ(r1)(14.1.4)

defines a ring homomorphism from S−1
1 k1 into S−1

2 k2. Note that

S−1
1 (kerϕ) ⊆ kerΦ.(14.1.5)

Alternatively,
x1 7→ ϕ(x1)/1k2(14.1.6)

defines a ring homomorphism from k1 into S−1
2 k2, which is the same as the

composition of ϕ with (14.1.3). This homomorphism sends elements of S1 to
invertible elements of S−1

2 k2, because of (14.1.1). This leads to a unique ring
homomorphism Φ from S−1

1 k1 into S−1
2 k2 such that

Φ(x1/1k1) = ϕ(x1)/1k2(14.1.7)

355
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for every x1 ∈ k1, as in Section 12.12. Of course, this is the same as the
homomorphism Φ mentioned in the preceding paragraph.

Let k be a commutative ring with a multiplicative identity element 1k, and
let S, T be multiplicatively closed subsets of k. This implies that

S T = {r t : r ∈ S, t ∈ T}(14.1.8)

is a multiplicatively closed set in k. Let U be the image of T under the natural
homomorphism from k into S−1 k, which is a multiplicatively closed set in S−1 k.
Exercise 3 on p43 of [1] asks one to show that

(S T )−1 k and U−1 (S−1 k) are isomorphic as rings.(14.1.9)

There is a natural ring homomorphism

from k into U−1 (S−1 k),(14.1.10)

obtained by composing the natural homomorphism from k into S−1 k with the
natural homomorphism from S−1 k into U−1 (S−1 k). It is easy to see that this
homomorphism sends elements of S T to invertible elements of U−1 (S−1 k).
This leads to a natural ring homomorphism

from (S T )−1 k into U−1 (S−1 k),(14.1.11)

as in Section 12.12. More precisely, the natural homomorphism as in (14.1.10)
is equal to the composition of the natural homomorphism from k into (S T )−1 k
with the homomorphism as in (14.1.11).

Note that S ⊆ S T . This leads to a natural ring homomorphism

from S−1 k into (S T )−1 k,(14.1.12)

as discussed at the beginning of the section. More precisely, the composition
of the natural homomorphism from k into S−1 k with the homomorphism as
in (14.1.12) is the same as the natural homomorphism from k into (S T )−1 k.
In particular, the image of U under the homomorphism as in (14.1.12) is the
same as the image of T under the natural homomorphism from k into (S T )−1 k.
Of course, the natural homomorphism from k into (S T )−1 k sends elements of
T to invertible elements of (S T )−1 k. This means that the homomorphism as
in (14.1.12) sends elements of U to invertible elements of (S T )−1 k. Thus the
homomorphism as in (14.1.12) leads to a natural ring homomorphism

from U−1 (S−1 k) into (S T )−1 k,(14.1.13)

as in Section 12.12. One can check that this is the inverse of the homomorphism
as in (14.1.11).
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14.2 Fractions and integral domains

Let k be an integral domain, so that k is a commutative ring with a nonzero
multiplicative identity element and no nonzero zero divisors. Thus

S0 = k \ {0}(14.2.1)

is a multiplicatively closed set in k, so that the corresponding ring of fractions
S−1
0 k may be defined as in Section 12.1. In this case, the natural homomorphism

from k into S−1
0 k is injective, so that k may be identified with a subring of S−1

0 k.
In fact, S−1

0 k is the same as the usual field Qk of fractions associated to k.

Let S be another multiplicatively closed set in k, with 0 6∈ S. Note that
the natural homomorphism from k into S−1 k is injective, so that k may be
identified with a subring of S−1 k, as before. There is also a natural ring ho-
momorphism from S−1 k into Qk, as in the previous section. One can check
that this homomorphism is injective too, so that S−1 k may be identified with a
subring of Qk as well. More precisely, S−1 k corresponds to the set of elements
of Qk of the form x/r, with x ∈ k and r ∈ S.

Of course, S−1 k is an integral domain, and one can define its field of fractions
in the usual way. In fact, the field of fractions of S−1 k is isomorphic to Qk in
a natural way.

We may consider Qk as a module over k, and as a module over S−1 k. If
we consider Qk as a module over k, then S−1Qk may be defined as a module
over S−1 k, as in Section 12.2. One can check that S−1Qk is isomorphic to Qk,
considered as a module over S−1 k, in a natural way.

Let M be a submodule of Qk, as a module over k. Remember that S−1M
may be considered as a submodule of S−1Qk, as in Section 12.2. In this case,
S−1M may be identified with a submodule of Qk, as a module over S−1 k.
Using this identification, S−1M consists of elements of Qk of the form y/r,
with y ∈M and r ∈ S.

Remember that M is called a fractional ideal of k if there is an x ∈ k such
that x 6= 0 and xM ⊆ k, as in Section 11.7, and on p96 of [1]. Similarly, a
submodule N of Qk, as a module over S−1 k, is a fractional ideal of S−1 k if
there are x ∈ k and r ∈ S such that x 6= 0 and

(x/r)N ⊆ S−1 k.(14.2.2)

This implies that

xN ⊆ S−1 k,(14.2.3)

so that we might as well take r = 1.

If (14.2.3) holds for some x ∈ Qk with x 6= 0, then N is a fractional ideal
of S−1 k, as in Section 11.7. More precisely, we can multiply x by a nonzero
element of k to get another nonzero element of k in this case, as before.

IfM is a fractional ideal of k, then it is easy to see that S−1M is a fractional
ideal of S−1 k.
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14.3 Fractions and invertible ideals

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If M , N are submodules of Qk, as a module over k, then M N is defined
to be the set of finite sums of products of elements of M and N , as in Section
11.7. This is a submodule of Qk, as a module over k, as before. Similarly, if M
and N are submodules of Qk, as a module over S−1 k, then M N can be defined
in the same way, and is a submodule of Qk, as a module over S−1 k.

Remember that a submodule M of Qk, as a module over k, is said to be an
invertible ideal of k if there is a submodule N of Qk, as a module over k, such
thatM N = k, as in Section 11.7, and on p96 of [1]. This implies that M , N are
fractional ideals of k, as before. Similarly, a submodule M of Qk, as a module
over S−1 k, is said to be an invertible ideal of S−1 k if there is a submodule N
of Qk, as a module over S−1 k, such that

M N = S−1 k.(14.3.1)

This implies that M and N are fractional ideals of S−1 k, for the same reasons
as before.

If M , N are submodules of Qk, as a module over k, then S−1M , S−1N are
submodules of Qk, as a module over S−1 k, as in the previous section. It is easy
to see that

S−1(M N) = (S−1M) (S−1N).(14.3.2)

If M is an invertible ideal of k, then there is a submodule N of Qk, as a module
over k, such that M N = k, and we get that

(S−1M) (S−1N) = S−1 k.(14.3.3)

This implies that S−1M is an invertible ideal of S−1 k, as in Proposition 9.6 on
p97 of [1].

If M is a submodule of Qk, as a module over k, then put

(k :M)Qk
= {x ∈ Qk : xM ⊆ k}.(14.3.4)

This was denoted (k : M) in Section 11.7, and we include the subscript Qk on
the left here, because similar notation was used in Section 12.8 for something
else. Note that (k : M)Qk

is a submodule of Qk, as a module over k, that is
nonzero exactly when M is a fractional ideal of k, as before. If M 6= {0}, then
(k :M)Qk

is a fractional ideal of k, as before.
Similarly, if M is a submodule of Qk, as a module over S−1 k, then put

(S−1 k :M)Qk
= {x ∈ Qk : xM ⊆ S−1 k}.(14.3.5)

This is a submodule of Qk, as a module over S−1 k, that is nonzero exactly
when M is a fractional ideal of S−1 k. If M 6= {0}, then (S−1 k : M)Qk

is a
fractional ideal of S−1 k.
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Suppose that M is a submodule of Qk, as a module over k, that is an
invertible ideal of k, so that there is a submodule N of Qk, as a module over k,
such that M N = k. Under these conditions,

N = (k :M)Qk
,(14.3.6)

as in Section 11.7. Similarly, let M be a submodule of Qk, as a module over
S−1 k, that is an invertible ideal of S−1 k, so that there is a submodule N of
Qk, as a module over S−1 k, that satisfies (14.3.1). In this case, we have that

N = (S−1 k :M)Qk
,(14.3.7)

for the same reasons as before.
If M1, M2 are submodules of Qk, as a module over k, then it is easy to see

that
(k :M1 +M2)Qk

= (k :M1)Qk
∩ (k :M2)Qk

.(14.3.8)

Similarly, if M1, M2 are submodules of Qk, as a module over −1 k, then

(S−1 k :M1 +M2)Qk
= (S−1 k :M1)Qk

∩ (S−1 k :M2)Qk
.(14.3.9)

14.4 Fractions and (k : M)Qk

We continue with the same notation and hypotheses as in the previous two
sections. Let M be a submodule of Qk, as a module over k, and suppose that
M is finitely generated, as a module over k. We would like to check that

(S−1 k : S−1M)Qk
= S−1(k :M)Qk

.(14.4.1)

This is analogous to Proposition 3.15 on p43 of [1], which was discussed in
Section 12.14.

Let M1, M2 be submodules of Qk, as a module over k, and suppose that
they satisfy the corresponding analogues of (14.4.1). We would like to verify
that M1 +M2 has the same property. Using (14.3.8), we get that

S−1(k :M1 +M2)Qk
= S−1((k :M1)Qk

∩ (k :M2)Qk
).(14.4.2)

This is equal to
(S−1(k :M1)Qk

) ∩ (S−1(k :M2)Qk
),(14.4.3)

as in Section 12.2. This reduces to

(S−1 k : S−1M1)Qk
∩ (S−1 k : S−1M2)Qk

,(14.4.4)

by hypothesis. This is the same as

(S−1 k : (S−1M1) + (S−1M2))Qk
,(14.4.5)

because of (14.3.9). This is equal to

(S−1 k : S−1(M1 +M2))Qk
,(14.4.6)



360 CHAPTER 14. FRACTIONS, DIMENSION, AND VALUATIONS

as in Section 12.2 again.
The remarks in the preceding paragraph permit one to reduce to the case

where M is generated by a single element, as a module over k. In this case,
(14.4.1) can be verified directly.

Alternatively, it is easy to see that

S−1(k :M)Qk
⊆ (S−1 k : S−1M)Qk

(14.4.7)

for any submodule of Qk, as a module over k. Thus it suffices to show that

(S−1 k : S−1M)Qk
⊆ S−1(k :M)Qk

(14.4.8)

when M is finitely generated as a module over k.
Suppose that M is generated by y1, . . . , yn ∈ M , as a module over k, for

some positive integer n. If x ∈ Qk is in the left side of (14.4.8), then

x yj ∈ S−1 k(14.4.9)

for each j = 1, . . . , n. This means that for each j = 1, . . . , n there is an rj ∈ S
such that

rj x yj ∈ k.(14.4.10)

Put r =
∏n
j=1 rj , so that r ∈ S, and

r x yj ∈ k(14.4.11)

for each j = 1, . . . , n. This implies that

r x ∈ (k :M)Qk
,(14.4.12)

so that x ∈ S−1(k :M)Qk
.

14.5 Primary ideals

Let k be a commutative ring with a multiplicative identity element 1k = 1. An
ideal I 6= k in k is said to be primary if for every x, y ∈ k with x y ∈ I, we have
that

x ∈ I or yn ∈ I for some n ∈ Z+,(14.5.1)

as on p50 of [1]. This is the same as saying that k/I 6= {0}, and that

every zero-divisor in k/I is nilpotent,(14.5.2)

as in [1]. Note that proper prime ideals are primary.
Let k2 be another commutative ring with multiplicative identity element 1k2 ,

and let f be a ring homomorphism from k into k2 with f(1k) = 1k2 . Let I2
be an ideal in k2, and remember that f−1(I2) is an ideal in k, which is the
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contraction Ic2 of I2 with respect to f , as in Section 12.7. If I2 6= k2, then
1k2 6∈ I2, which implies that 1k 6∈ f−1(I2), so that f−1(I2) 6= k. If

I2 is a primary ideal in k2,(14.5.3)

then
f−1(I2) is a primary ideal in k,(14.5.4)

as mentioned on p50 of [1]. Although this can be verified directly, it can also be
obtained by observing that f induces a ring isomorphism from k/f−1(I2) onto
a subring of k2/I2, as in [1].

Let I be a primary ideal in k, and remember that r(I) is the radical of I in
k, as in Section 12.10. Let us check that

r(I) is a prime ideal in k,(14.5.5)

as in Proposition 4.1 on p50 of [1]. If x, y ∈ k and x y ∈ r(I), then

xm ym = (x y)m ∈ I(14.5.6)

for some positive integer m. This implies that either xm ∈ I, or that ymn =
(ym)n ∈ I for some positive integer n, because I is primary. This means that
either x or y is an element of r(I), as desired.

Remember that r(I) is the same as the intersection of all of the prime ideals
in k that contain I, as in Section 12.10. It follows that r(I) is the smallest
prime ideal in k that contains I in this case, as in Proposition 4.1 on p50 of [1].
If

I0 = r(I),(14.5.7)

then I is said to be I0-primary, as on p51 of [1].
Let I be a proper ideal in k, and suppose that

r(I) is a maximal proper ideal in k.(14.5.8)

Remember that r(I) 6= k when I 6= k, as in Section 12.10. Under these condi-
tions,

I is a primary ideal in k,(14.5.9)

as in Proposition 4.2 on p51 of [1]. To see this, note that the image of r(I) in
k/I under the natural quotient mapping is the nilradical N (k/I) of k/I, as in
Section 12.10. Of course, the image of r(I) in k/I is also a maximal proper
ideal in k/I, so that

N (k/I) is a maximal proper ideal in k/I.(14.5.10)

Remember that N (k/I) is the same as the intersection of all prime ideals
in k/I, as in Section 12.5. In particular, every prime ideal in k/I contains
N (k/I). It follows that

N (k/I) is the only proper prime ideal in k/I,(14.5.11)
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because it is maximal.
This means that N (k/I) is the only proper maximal ideal in k/I, because

maximal ideals are prime. Thus every element of k/I that is not in N (k/I) has
a multiplicative inverse in k/I. This implies that every zero-divisor in k/I is
an element of N (k/I). It follows that I is a primary ideal in k, as before.

If I0 is a maximal proper ideal in k, then I0 is a prime ideal in k, and

r(In0 ) = I0(14.5.12)

for every positive integer n, as in Section 12.10. This implies that In0 is a
primary ideal in k, which is another part of Proposition 4.2 on p51 of [1].

14.6 More on S−1 k

Let k be a commutative ring with a multiplicative identity element. Also let S
be a multiplicatively closed subset of k, so that S−1 k is the corresponding ring
of fractions, as in Section 12.1.

Suppose that I0 is a prime ideal in k, and that I is an I0-primary ideal in
k. If

S ∩ I0 6= ∅,(14.6.1)

then
S−1 I = S−1 k,(14.6.2)

as in part (i) of Proposition 4.8 on p53 of [1]. Indeed, if r ∈ S ∩ I0, then
rn ∈ S ∩ I for some positive integer n. This means that rn/1 is an element of
S−1 I that is invertible in S−1 k, so that (14.6.2) holds.

Suppose now that
S ∩ I0 = ∅,(14.6.3)

so that S−1 I0 is a proper prime ideal in S−1 k, as in Section 12.13. Part (ii) of
Proposition 4.8 on p53 of [1] states that

S−1 I is (S−1 I0)-primary in S−1 k,(14.6.4)

and that
the contraction of S−1 I is equal to I.(14.6.5)

More precisely, this means the contraction of S−1 I with respect to the natural
homomorphism from k into S−1 k, as in Section 12.7. Remember that S−1 I is
the same as the extension Ie of I with respect to the natural homomorphism
from k into S−1 k, as in Section 12.13.

Thus (14.6.5) is the same as saying that the contraction Iec of Ie is the same
as I. Of course, I ⊆ Iec, and so we only need to check the opposite inclusion.
To do this, we use the characterization of Iec in Section 12.13. Let t ∈ S and
x ∈ k be given, with t x ∈ I. It suffices to show that

x ∈ I.(14.6.6)
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If x 6∈ I, then tn ∈ I for some positive integer n, because I is primary. This
would imply that t ∈ r(I) = I0, which would contradict (14.6.3).

Observe that

r(S−1 I) = S−1 r(I) = S−1 I0,(14.6.7)

where the first step is as in Section 12.13, and the second step follows from
the fact that r(I) = I0, by hypothesis. One can check directly that S−1 I is
primary in S−1 k, to get (14.6.4).

If I2 is a primary ideal in S−1 k, then its contraction Ic2 with respect to
the natural homomorphism from k into S−1 k is a primary ideal in k, as in the
previous section. Remember that there is a natural one-to-one correspondence
between contracted ideals in k and extended ideals in S−1 k, as in Section 12.7.
In this case, all ideals in S−1 k are extended, as in Section 12.13. Using the
previous statements, we get a one-to-one correspondence between the primary
ideals in S−1 k and the primary ideals in k that are disjoint from S. This is the
last part of Proposition 4.8 on p53 of [1].

Remember that k is Noetherian if every ideal in k is finitely generated as
a module over k, as in Section 9.7. This is equivalent to the ascending chain
condition for the collection of ideals in k, as before. This is also equivalent to
asking that any nonempty collection of ideals in k have a maximal element.

If k is Noetherian, then

S−1 k is Noetherian,(14.6.8)

as in Proposition 7.3 on p80 of [1]. Remember that every ideal in S−1 k is the
extension of its contraction with respect to the natural homomorphism x 7→ x/1
from k into S−1 k, as in Section 12.13. There is also a one-to-one correspondence
between contractions of ideals in S−1 k and extensions of ideals in k, as in Section
12.7. One can use this to get the ascending chain condition for ideals in S−1 k,
or the existence of maximal elements in nonempty collections of ideals in S−1 k,
from the corresponding property of k.

Alternatively, every ideal in S−1 k is of the form S−1 I1 for some ideal I1 in
k, as in Section 12.13. More precisely, any ideal in S−1 k is the extension of an
ideal I1 in k with respect to the natural homomorphism from k into S−1 k, and
the extension of I1 is equal to S−1 I1, as before. If k is Noetherian, then I1 is
generated by finitely many elements x1, . . . , xn, as an ideal in k. In this case, it
is easy to see that S−1 I1 is generated by x1/1, . . . , xn/1, as an ideal in S−1 k,
as in [1].

14.7 Powers of radicals

Let k be a commutative ring with a multiplicative identity element, let I be an
ideal in k, and let r(I) be the radical of I in k, as in Section 12.10. Suppose
that I1 is an ideal in k such that

I1 is finitely generated, as an ideal in k(14.7.1)
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and
I1 ⊆ r(I).(14.7.2)

Under these conditions, there is a positive integer m such that

Im1 ⊆ I,(14.7.3)

as in Proposition 7.14 on p83 of [1]. Remember that powers of ideals in k are
defined using products of ideals as in Section 12.8. Of course, one might as well
take I1 = r(I) when r(I) is finitely generated as an ideal in k, which holds
automatically when k is Noetherian.

Let x1, . . . , xl be finitely many elements of I1 that generate I1, as an ideal
in k. Thus, for each j = 1, . . . , l, there is a positive integer nj such that

x
nj

j ∈ I,(14.7.4)

because xj ∈ r(I). If m is any positive integer, then Im1 is generated as an ideal
in k by elements of the form

xr11 xr22 · · ·xrll ,(14.7.5)

where r1, . . . , rl are nonnegative integers such that

l∑
j=1

rj = m.(14.7.6)

If

m =

l∑
j=1

(nj − 1) + 1,(14.7.7)

then (14.7.6) implies that rj ≥ nj for some j. This means that (14.7.5) is an
element of I, as desired.

If I = {0}, then r(I) is the same as the nilradical N of k, as in Section 12.5.
If

N is finitely generated, as an ideal in k,(14.7.8)

then it follows that
Nm = {0}(14.7.9)

for some positive integer m, as before. In particular, this holds when k is
Noetherian, as in Corollary 7.15 on p83 of [1].

Let I0 be an ideal in k. If
r(I) = I0,(14.7.10)

and if I0 is finitely generated as an ideal in k, then

Im0 ⊆ I ⊆ I0(14.7.11)

for some positive integer m, as in Proposition 7.16 on p83 of [1]. In particular,
(14.7.10) implies that (14.7.11) holds for some m ≥ 1 when k is Noetherian.
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Of course, the second inclusion in (14.7.11) follows directly from (14.7.10). The
first inclusion follows from (14.7.3) under these conditions.

If I0 is any ideal in k, and (14.7.11) holds for some m ≥ 1, then we get that

r(I) = r(I0),(14.7.12)

because r(Im0 ) = r(I0), as in Section 12.10. If I0 is a prime ideal in k, then
r(I0) = I0, as before, so that (14.7.10) holds. Of course, if I0 is a maximal
proper ideal in k, then I0 is prime. This corresponds to another part of Propo-
sition 7.16 on p83 of [1].

14.8 Dimension via prime ideals

Let k be a commutative ring with a multiplicative identity element. Suppose
that

I0 ⊆ I1 ⊆ · · · ⊆ In(14.8.1)

is a strictly increasing sequence of proper prime ideals in k for some nonnegative
integer n, so that Ij 6= Ij+1 for each j = 0, 1, . . . , n− 1. Such a sequence is said
to be a chain of prime ideals in k of length n. Note that if k 6= {0}, then k has
a proper maximal ideal, which is prime.

If k 6= {0}, then the dimension of k is defined to be the supremum of
the lengths of chains of prime ideals in k, as on p90 of [1]. This is either a
nonnegative integer, or +∞ if the lengths of the chains of prime ideals in k are
unbounded. The dimension of a field in this sense is equal to 0.

If k 6= {0}, then
k has dimension 0(14.8.2)

if and only if
every proper prime ideal in k is maximal.(14.8.3)

This uses the facts that every proper ideal in k is contained in a proper maximal
ideal, and that proper maximal ideals are prime.

Suppose for the moment that k is an integral domain, so that {0} is a proper
prime ideal in k. If the dimension of k is 0, then {0} is the only proper prime
ideal in k. Remember that every non-invertible element of k is contained in a
proper maximal ideal in k, which is prime. It follows that k is a field in this
case.

Suppose that k 6= {0}, and remember that N denotes the nilradical of k, as
in Section 12.5. If

N is a maximal proper ideal in k,(14.8.4)

then
N is the only proper prime ideal in k.(14.8.5)

This follows from the earlier remarks about (14.5.10), with I = {0}, because N
is the same as the radical of {0} in k. This also corresponds to part of Exercise
10 on p11 of [1]. Of course, this implies that the dimension of k is 0.
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Remember that N is equal to the intersection of all of the prime ideals in
k, as in Section 12.5. More precisely, N is the intersection of all of the proper
prime ideals in k, because k 6= {0}. If

k has only one proper prime ideal,(14.8.6)

then that ideal is equal to N . Of course, k has dimension 0 in this case, and
(14.8.4) holds. This corresponds to another part of Exercise 10 on p11 of [1].

Suppose now that k is a local ring, and let I be the unique maximal proper
ideal in k. If k has dimension 0, then I is the unique proper prime ideal in k.
This implies that

I = N ,(14.8.7)

as in the preceding paragraph. This is related to some remarks on p90 of [1].

14.9 Noetherian local rings

Let k be a commutative ring with a multiplicative identity element, and let I be
an ideal in k. Remember that the nth power In of I is defined for each positive
integer n using multiplication of ideals, as in Section 12.10. Note that

In+1 ⊆ In(14.9.1)

for each n ≥ 1. Of course, we either have that

In 6= In+1 for each n ≥ 1,(14.9.2)

or
In = In+1 for some n ≥ 1,(14.9.3)

as on p90 of [1].
If I is finitely generated as an ideal in k, then it is easy to see that Im is

finitely generated for every m ≥ 1. Of course, this holds when k is Noetherian,
as in Section 9.7.

Suppose that k is a local ring, with unique maximal proper ideal I. Suppose
also that (14.9.3) holds, which may be reexpressed as

I In = In.(14.9.4)

Note that I is the same as the Jacobson radical of k in this case. If In is finitely
generated as an ideal in k, then we get that

In = {0},(14.9.5)

by Nakayama’s lemma, as in Section 13.3. This corresponds to part of Propo-
sition 8.6 on p90 of [1].

In particular, (14.9.5) implies that every element of I is nilpotent, so that
I is contained in the nilradical N of k. This implies that I = N , because the
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opposite inclusion follows from the fact that I is a prime ideal. It follows that I
is the only prime ideal in k, so that k has dimension 0, as in the previous section.
This corresponds to another part of Proposition 8.6 on p90 of [1]. Alternatively,
one can use the fact that any prime ideal in k contains In to get that it contains
I, and thus is equal to I, as in [1].

Suppose for the moment that I is generated, as an ideal in k, by a single
element x of k. This means that In is generated by xn, as an ideal in k, for
every positive integer n. Thus (14.9.5) is the same as saying that

xn = 0.(14.9.6)

If (14.9.4) holds, then

xn = a xn+1(14.9.7)

for some a ∈ k. This means that

(1− a x)xn = 0,(14.9.8)

which implies (14.9.6), because 1− a x is invertible in k under these conditions.
Suppose now for the moment that k is an integral domain. In this case,

(14.9.5) implies that I = {0}. This means that k is a field, which shows more
directly that k has dimension 0.

If x is any element of k, and the ideal in k generated by xn is equal to the
ideal in k generated by xn+1 for some positive integer n, then (14.9.7) holds for
some a ∈ k, as before. If k is an integral domain, then (14.9.8) implies that
either x = 0, or x is invertible in k.

14.10 Local rings of dimension 0

Let k be a commutative ring with a multiplicative identity element, and suppose
that k is a local ring, with unique maximal proper ideal I0. Thus

k0 = k/I0(14.10.1)

is a field. Note that I0/I2
0 may be considered as a vector space over k0, as in

Section 13.6. Let us suppose throughout this section that

I0 is finitely generated as an ideal in k,(14.10.2)

which happens in particular when k is Noetherian. This implies that I0/I2
0 has

finite dimension, as a vector space over k0, as on p91 of [1].
Suppose for the moment that

I0/I2
0 = {0},(14.10.3)

which is to say that

I2
0 = I0.(14.10.4)
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Nakayama’s lemma implies that

I0 = {0},(14.10.5)

as in Section 13.3, because I is the same as the Jacobson radical of k. This
means that k is a field in this case. This corresponds to part of Proposition 8.8
on p91 of [1], and its proof.

Suppose now that
dimk0(I0/I2

0 ) = 1,(14.10.6)

which is to say that the dimension of I0/I2
0 , as a vector space over k0, is equal

to one. Let q0 be the natural quotient mapping from I0 onto I0/I2
0 , and let x

be an element of I0 \ I2
0 , so that q0(x) 6= 0. This means that I0/I2

0 is spanned
by q0(x), as a vector space over k0, by (14.10.6). It follows that

I0 is generated by x, as an ideal in k,(14.10.7)

as in Section 13.6. This corresponds to another part of Proposition 8.8 on p91
of [1].

Let us suppose in addition that

k has dimension 0,(14.10.8)

in the sense of Section 14.8. This implies that I0 is the unique proper prime
ideal in k, and that I0 is the same as the nilradical N in k, as before. It follows
that

Im0 = {0}(14.10.9)

for some positive integer m, as in Section 14.7. Note that for each positive
integer n,

In0 is generated by xn, as an ideal in k,(14.10.10)

by (14.10.7).
Let I be a proper ideal in k, and observe that

I ⊆ I0,(14.10.11)

because I is contained in a maximal proper ideal in k. If I 6= {0}, then there is
a positive integer r such that

I ⊆ Ir0 and I 6⊆ Ir+1
0 .(14.10.12)

Let y be an element of I \ Ir+1
0 . Thus y can be expressed as

y = a xr(14.10.13)

for some a ∈ k, by (14.10.10). We also have that a 6∈ I0, because y 6∈ Ir+1
0 .

This means that a is invertible in k, because I0 is the unique maximal proper
ideal in k. It follows that xr ∈ I, which implies that Ir0 ⊆ I, by (14.10.10).
This shows that

I = Ir0 ,(14.10.14)

as in Proposition 8.8 on p91 of [1], and its proof.
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14.11 One-dimensional integral domains

Let k be a commutative ring with a multiplicative identity element that is
an integral domain, so that 1 6= 0 in k, and k has no nonzero zero-divisors.
Equivalently, this means that {0} is a proper prime ideal in k. Remember that
k has dimension 0, in the sense of Section 14.8, if and only if k is a field. In this
section, we ask that

k have dimension 1,(14.11.1)

in the sense of Section 14.8. This is the same as saying that k is not a field, and
that

every proper prime ideal 6= {0} in k is maximal,(14.11.2)

as on p93 of [1].
Let I1 be a proper ideal in k with I1 6= {0}. It is easy to see that

k/I1 has dimension 0,(14.11.3)

in the sense of Section 14.8. More precisely, proper prime ideals in k/I1 corre-
spond to proper prime ideals in k that contain I1, and are not equal to {0} in
particular. Thus proper prime ideals in k/I1 are maximal, because of (14.11.2).

Suppose now that k is also a local ring, with unique maximal proper ideal
I0. The condition that k not be a field means that

I0 6= {0}.(14.11.4)

Note that
I0 is the only proper prime ideal 6= {0} in k,(14.11.5)

because of (14.11.2). We ask that I0 be finitely generated as an ideal in k, which
happens in particular when k is Noetherian.

Put k0 = k/I0 again, which is a field. Remember that I0/I2
0 may be consid-

ered as a vector space over k0, as in Section 13.6. This vector space has finite
dimension, because I0 is finitely generated.

Let I 6= {0} be a proper ideal in k. Of course, I ⊆ I0, because I is contained
in a maximal proper ideal in k. Remember that the radical of I in k is equal
to the intersection of all of the prime ideals in k that contain I, as in Section
12.10. It follows that

r(I) = I0(14.11.6)

in this case, because of (14.11.5). This implies that I is a primary ideal in k, as
in Section 14.5. We also get that

Im0 ⊆ I ⊆ I0(14.11.7)

for some positive integer m, as in Section 14.7. This corresponds to Remark
(A) on p95 of [1].

Remark (B) on p95 of [1] states that

In0 6= In+1
0(14.11.8)
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for each positive integer n. Otherwise, k would have dimension 0, as in Section
14.9. More precisely, because k is an integral domain, one could simply say that
k would have to be a field otherwise.

Suppose for the moment that

I0 is generated by a single element of k, as an ideal in k.(14.11.9)

This implies that the dimension of I0/I2
0 , as a vector space over k0, is less than

or equal to one. In fact, we get that

dimk0(I0/I2
0 ) = 1,(14.11.10)

because of (14.11.8). This is part of Proposition 9.2 on p94 of [1].

14.12 One-dimensional local domains

Let us continue with the same notation and hypotheses as in the previous sec-
tion. We would like to show that if (14.11.10) holds, then

every ideal I 6= {0} in k is of the form Ir0(14.12.1)

for some nonnegative integer r. This is another part of Proposition 9.2 on p94
of [1]. Remember that Ir0 is interpreted as being equal to k when r = 0.

Let I 6= {0} be a proper ideal in k, so that (14.11.7) holds for some positive
integer m. Observe that k/Im0 is a commutative ring with a multiplicative
identity element that is a local ring, with unique maximal proper ideal I0/Im6 .
Of course,

I0/Im0 is finitely generated as an ideal in k/Im0 ,(14.12.2)

because I0 is finitely generated as an ideal in k, by hypothesis. Clearly

(k/Im0 )/(I0/Im0 )(14.12.3)

is isomorphic to k0 as a field.
We may as well suppose that m ≥ 2, because otherwise I = I0. It is easy

to see that
(I0/Im0 )2 = I2

0/Im0 ,(14.12.4)

where the left side is defined as an ideal in k/Im0 in the usual way. Note that

(I0/Im0 )/(I0/Im0 )2(14.12.5)

may be considered as a vector space over (14.12.3), as before. This is the same
as

(I0/Im0 )/(I2
0/Im0 ),(14.12.6)

because of (14.12.4). This may be identified with I/I2
0 , as a vector space over

k0.
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Thus (14.11.10) implies the analogous condition for (14.12.5). Note that
Im0 6= {0}, because I0 6= {0}, and k is an integral domain. This implies that
k/Im0 has dimension 0, as in (14.11.3). We may as well suppose that I 6= Im0 ,
which means that I/Im0 6= {0}. It follows that

I/Im0 = (I0/Im0 )r(14.12.7)

in k/Im0 for some positive integer r, as in Section 14.10.
We also have r < m in this case, because otherwise the right side of (14.12.7)

would be {0}. Thus the right side of (14.12.7) is equal to Ir0/Im0 . This implies
that I = Ir0 , as desired.

Suppose now that (14.12.1) holds, and let us show that

there is an x ∈ k such that every nonzero ideal in k(14.12.8)

is generated by xl for some nonnegative integer l.

This is another part of Proposition 9.2 on p94 of [1]. Note that (14.12.8) implies
(14.11.9).

If we take n = 1 in (14.11.8), then we get that I0 6= I2
0 . Thus there is an

x ∈ I0 such that x 6∈ I2
0 . In particular, x 6= 0, and (14.12.1) implies that there

is a nonnegative integer r such that Ir0 is generated by x. It is clear in this case
that r = 1. This shows directly that (14.12.1) implies (14.11.9).

If l is a nonnegative integer, then it follows that Il0 is generated by xl. This
and (14.12.1) imply (14.12.8), as desired.

14.13 Valuations

Let k1 be a field. A real-valued function v on k1 \ {0} is said to be a valuation
if it satisfies the following two conditions. First,

v(x y) = v(x) + v(y)(14.13.1)

for every x, y ∈ k1 \ {0}. Of course, this is the same as saying that v is a homo-
morphism from k1 \{0}, as a commutative group with respect to multiplication,
into R, as a commutative group with respect to addition. In particular, this
implies that v(1) = 0. The second condition is that

v(x+ y) ≥ min(v(x), v(y))(14.13.2)

for every x, y ∈ k1 \ {0} such that x+ y 6= 0. It is customary to put

v(0) = +∞,(14.13.3)

so that v is a function on k1 with values in R∪{+∞}. Note that (14.13.1) and
(14.13.2) hold, with suitable interpretations, when x, y, or x+ y is 0.

This definition is mentioned on p24 of [9]. This corresponds to a valuation
of k1 with values in R, as in Exercise 31 on p72 of [1]. This may also be called
a real valuation of k1, as on p26 of [15].
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This is closely related to ultrametric or non-archimedean absolute value func-
tions on fields, as in Definition 2.1.1 on p21f of [9], and Problems 28 and 63 on
p24, 39 of [9], respectively. This is mentioned on p26 of [15] as well. The term
“valuation” is used a bit differently in Definition 1.1 on p12 of [4], which ba-
sically corresponds to a quasimetric version of an absolute value function. A
non-archimedean valuation in the sense of Definition 1.3 on p15 of [4] is the
same as an ultrametric or non-archimedean absolute value function, which cor-
responds to a valuation in the sense used here as before.

Note that we can get a valuation on k1 by putting

v(x) = 0(14.13.4)

for every x ∈ k1 \ {0}, and using (14.13.3), as before. This may be described
as the trivial valuation on k1. This corresponds to the trivial absolute value
function in Example 2 on p22 of [9], or the trivial valuation on p12 of [4].

If v is a valuation on k1 and a is a positive real number, then it is easy to
see that

a v(x)(14.13.5)

defines a valuation on k1 as well. This valuation is said to be equivalent to v on
k1. This corresponds to equivalence of absolute value functions, as in Lemma
3.1.2 on p42 of [9]. This also corresponds to equivalence of valuations in the
sense of [4], as in Definition 1.2 on p13 of [4].

Let v be a valuation on k1, and note that

v(k1 \ {0}) is a subgroup of R,(14.13.6)

as a commutative group with respect to addition. This is called the value group
of v, as in Exercise 31 on p72 of [1], and Problem 29 on p24 of [9]. This
corresponds to the valuation group of a valuation in the sense of [4], as on p42
of [4]. More precisely, the valuation group in this sense is a subgroup of the
multiplicative group of positive real numbers.

If A is any subgroup of R, as a commutative group with respect to addition,
then it is well known and not difficult to show that

0 is not a limit point of A,(14.13.7)

with respect to the standard topology on R, if and only if

A = {0}(14.13.8)

or
A = aZ for some positive real number a.(14.13.9)

Otherwise, if 0 is a limit point of A, then one can check that

A is dense in R,(14.13.10)

with respect to the standard topology.
If A = v(k1 \ {0}) satisfies (14.13.7), then v corresponds to a “discrete

valuation” in the sense defined on p42 of [4]. However, we shall use this term a
bit differently here, as on p94 of [1], and p5, 26 of [15].



14.14. SOME RELATED SUBGROUPS AND IDEALS 373

14.14 Some related subgroups and ideals

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Note that

v(1) = 0.(14.14.1)

If x ∈ k1 and xn = 1 for some positive integer n, then

v(x) = 0,(14.14.2)

because n v(x) = v(xn) = 0. In particular, v(−1) = 0. This implies that

v(−y) = v(y)(14.14.3)

for every y ∈ k1.
If t ∈ R, then it is easy to see that

{x ∈ k1 : v(x) > t}(14.14.4)

and
{x ∈ k1 : v(x) ≥ t}(14.14.5)

are subgroups of k1, as a commutative group with respect to addition. In fact,

{x ∈ k1 : v(x) ≥ 0}(14.14.6)

is a subring of k1. This is called the valuation ring of v, as in Exercise 31 on p72
of [1], and on p94 of [1]. This corresponds to the valuation ring of an ultrametric
absolute value function, as in Definition 2.4.2 on p38 of [9]. This is the same as
the ring of (valuation-)integers with respect to a non-archimedean valuation on
p41 of [4].

If x ∈ k1 \ {0}, then
v(x−1) = −v(x).(14.14.7)

In particular, if v(x) = 0, then

v(x−1) = 0.(14.14.8)

This implies that x is invertible as an element of the valuation ring of v. Con-
versely, if x is an invertible element of the valuation ring of v, then it is easy to
see that v(x) = 0, using (14.14.7).

If t ≥ 0, then (14.14.4) and (14.14.5) are ideals in the valuation ring of v.
One can check that

{x ∈ k1 : v(x) > 0}(14.14.9)

is a maximal proper ideal in the valuation ring (14.14.6). More precisely, if x
is an element of the valuation ring of v that is not in (14.14.9), then v(x) = 0,
so that x is invertible in the valuation ring. This means that the valuation ring
of v is a local ring, with (14.14.9) as its unique maximal proper ideal. This
corresponds to the valuation ideal of an ultrametric absolute value function, as
in Definition 2.4.2 on p38 of [9].
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If v is not the trivial valuation on k1, then there is an x ∈ k1 such that x 6= 0
and v(x) 6= 0. This implies that there are y, z ∈ k1 \ {0} such that

v(y) > 0 and v(z) < 0,(14.14.10)

using x and 1/x. This means that (14.14.9) is not equal to {0}, and in particular
that the valuation ring (14.14.6) is not a field. Of course, if v is the trivial
valuation on k1, then the valuation ring (14.14.6) is equal to k1, and (14.14.9)
is equal to {0}.

Suppose for the moment that A = v(k1 \ {0}) satisfies (14.13.7), and thus
either (14.13.8) or (14.13.9). Of course, (14.13.8) says exactly that v is the trivial
valuation on k1. If (14.13.9) holds, then it is easy to see that every nonzero ideal
in the valuation ring (14.14.6) is of the form (14.14.5), where t is a nonnegative
integer multiple of a. In particular, the valuation ring (14.14.6) is Noetherian
in these two cases. Otherwise, if (14.13.10) holds, then one can check that the
valuation ring (14.14.6) is not Noetherian.

If
v(k1 \ {0}) = Z,(14.14.11)

then v is called a discrete valuation, as on p94 of [1]. This implies that v is not
the trivial valuation on k1, and that A = v(k1 \ {0}) satisfies (14.13.7). If v is a
nontrivial valuation on k1 such that A = v(k1 \ {0}) satisfies (14.13.7), then v
is equivalent to a discrete valuation in this sense.

14.15 Valuations on integral domains

Let k be an integral domain. A real-valued function v on k \ {0} is said to be a
valuation if it satisfies the same two conditions as before, as in Problem 28 on
p24 of [9]. Namely, if x, y ∈ k \ {0}, then we ask that

v(x y) = v(x) + v(y),(14.15.1)

and that
v(x+ y) ≥ min(v(x), v(y))(14.15.2)

when x+ y 6= 0. Observe that v(1) = 0, by taking x = y = 1 in (14.15.1). It is
customary to put v(0) = +∞, as before.

If x ∈ k and xn = 1 for some positive integer n, then v(x) = 0, as in the
previous section. It follows that v(−1) = 0, so that v(−y) = v(y) for every
y ∈ k, as before. We also have that

{x ∈ k : v(x) > t}(14.15.3)

and
{x ∈ k : v(x) ≥ t}(14.15.4)

are subgroups of k, as a commutative group with respect to addition, for every
t ∈ R. Similarly,

{x ∈ k : v(x) ≥ 0}(14.15.5)
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is a subring of k. If t ≥ 0, then (14.15.3) and (14.15.4) are ideals in (14.15.5),
as before.

If x is an invertible element of k, then

v(x−1) = −v(x).(14.15.6)

If we also have that v(x) = 0, then v(x−1) = 0, so that x is an invertible element
of (14.15.5). Conversely, if x is an invertible element of (14.15.5), then x is an
invertible element of k, and v(x) = 0. Suppose for the moment that

v(y) ≥ 0 for every y ∈ k,(14.15.7)

so that (14.15.5) is the same as k. If x is an invertible element of k, then we get
that v(x) = 0.

Let Qk be the field of fractions corresponding to k. One can extend v to
Qk \ {0} in such a way that

v(y/z) = v(y)− v(z)(14.15.8)

for every y, z ∈ k with y, z 6= 0. One can check that this defines a valuation on
Qk, as in Problem 28 on p24 of [9]. More precisely, any pair of nonzero elements
of Qk may be expressed as x/z, y/z for some x, y, z ∈ k \{0}. If x+ y 6= 0, then
it is easy to see that

v((x/z) + (y/z)) ≥ min(v(x/z), v(y/z)),(14.15.9)

using (14.15.2) and (14.15.8).
Suppose for the moment that if y, z ∈ k \ {0} satisfy

v(y) ≥ v(z),(14.15.10)

then there is a w ∈ k such that

y = w z.(14.15.11)

This is the same as saying that if

v(y/z) ≥ 0,(14.15.12)

then
y/z ∈ k.(14.15.13)

This means that the valuation ring of v in Qk is contained in k.
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Discrete valuations and
Dedekind domains

15.1 Discrete valuation rings

Let k be an integral domain, and let Qk be the corresponding field of fractions.
Suppose that v is a discrete valuation on Qk, as in Section 14.14. Suppose also
that k is the valuation ring of v, so that

k = {x ∈ Qk : v(x) ≥ 0}.(15.1.1)

Under these conditions, k is said to be a discrete valuation ring, as on p94 of [1].
An equivalent formulation is given on p5 of [15], and we shall say more about
that in Section 15.4.

Of course,
v(Qk \ {0}) = Z,(15.1.2)

by the definition of a discrete valuation. This implies that

v(k \ {0}) = Z+ ∪ {0}.(15.1.3)

As in Section 14.14, k is a local ring, with

{x ∈ k : v(x) > 0}(15.1.4)

as its unique maximal proper ideal. If l is a nonnegative integer, then

{x ∈ k : v(x) ≥ l}(15.1.5)

is an ideal in k, as before. Note that these ideals are all nonzero in this case,
and that (15.1.5) is equal to (15.1.4) when l = 1. We also have that l is uniquely
determined by (15.1.5), because of (15.1.3).

If x, y ∈ k, x, y 6= 0, and
v(x) = v(y),(15.1.6)

376



15.2. GETTING DISCRETE VALUATION RINGS 377

then v(x y−1) = 0, so that x y−1 is an invertible element of k. This implies that
x and y generate the same ideal in k. The ideal that they generate is the same
as (15.1.5), with l = v(x) = v(y).

Let I be a nonzero ideal in k, and let l be the smallest nonnegative integer
for which there is a y ∈ I such that v(y) = l. One can check that I is equal
to (15.1.5), as on p94 of [1]. It follows that k is Noetherian, as in [1]. More
precisely, I is equal to (15.1.5) for only one nonnegative integer l.

Suppose that x ∈ k satisfies

v(x) = 1.(15.1.7)

This implies that
v(xl) = l(15.1.8)

for every integer l. It follows that (15.1.5) is the same as the ideal in k generated
by xl when l ≥ 0, as before. This corresponds to a remark on p94 of [1].

It follows from the remarks in the previous paragraphs that (15.1.4) is the
only nonzero proper prime ideal in k. In particular, k has dimension one in the
sense of Section 14.8, as on p94 of [1].

If k is a discrete valuation ring, then it is easy to see that the correspond-
ing valuation v is unique. More precisely, one can check that v is uniquely
determined on k, and thus on Qk.

15.2 Getting discrete valuation rings

Let k1 be a field, and let v1 be a valuation on k1. Remember that

{w ∈ k1 : v1(w) ≥ 0}(15.2.1)

is a subring of k1, which is the valuation ring of v1. It is easy to see that k1 may
be identified with the field of fractions of this ring. If v1 is a discrete valuation
on k1, then it follows that

(15.2.1) is a discrete valuation ring.(15.2.2)

This is related to Proposition 1 on p6 of [15], although simpler, with the formu-
lation of the definition of a discrete valuation ring in the previous section.

Let k be an integral domain with Qk as its field of fractions again. Suppose
that

there is an x ∈ k such that every nonzero ideal in k(15.2.3)

is generated by xl for some nonnegative integer l,

as in (14.12.8). Suppose also that k is not a field, so that x 6= 0, and x is not
invertible in k. This implies that the ideal in k generated by xl+1 is a proper
subset of the ideal generated by xl for each l ≥ 0, because k is an integral
domain, as mentioned at the end of Section 14.9.
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If y ∈ k and y 6= 0, then there is a unique nonnegative integer l such that
the ideal in k generated by y is the same as the ideal generated by xl, and we
put

v(y) = l.(15.2.4)

This happens exactly when y is equal to the product of xl and an invertible
element of k, as in the next section. If z is another nonzero element of k, then
one can check that

v(y z) = v(y) + v(z).(15.2.5)

One can also verify that

v(y + z) ≥ min(v(y), v(z))(15.2.6)

when y + z 6= 0. Thus v defines a valuation on k, as in Section 14.15.
We can extend v to a valuation on Qk, as before. Note that every nonzero

element of Qk can be expressed as uxl for some invertible element u of k and
integer l, in which case we have that

v(uxl) = l.(15.2.7)

It follows that v is a discrete valuation on Qk, and that (15.1.1) holds. This
means that k is a discrete valuation ring, as in Proposition 9.2 on p94 of [1].

Remember that some conditions under which (15.2.3) holds were discussed in
Sections 14.11 and 14.12. Thus these are conditions under which k is a discrete
valuation ring, as in [1].

15.3 Some remarks about integral domains

Let k be a commutative ring with a multiplicative identity element. One may
say that x, y ∈ k are associates in k if

x = a y, y = b x(15.3.1)

for some a, b ∈ k, as on p111 of [12]. Of course, if y = xu for some invertible
element u of k, then x = y u−1, and x, y are associates in k.

Equivalently, x, y ∈ k are associates when x is an element of the ideal in k
generated by y, and y is an element of the ideal generated by x. This is the
same as saying that the ideals in k generated by x and y are the same.

Suppose that k is an integral domain. If x, y ∈ k are associates in k, then
it is well known that y = xu for some invertible element u of k, as on p111 of
[12]. More precisely, if a, b ∈ k are as in (15.3.1), then x = a b x, so that

(a b− 1)x = 0.(15.3.2)

If x 6= 0, then it follows that a b = 1, so that a and b are inverses of each other.
Otherwise, if x = 0, then y = 0, and the statement is trivial.
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An element x 6= 0 of k is said to be reducible if it can be expressed as
the product of two non-invertible elements of k. Otherwise, x is said to be
irreducible. Note that irreducible elements of k are sometimes said to be prime,
as on p111 of [12].

If the ideal in k generated by x is prime, then x is irreducible. Indeed, if

x = y z(15.3.3)

for some y, z ∈ k, and the ideal generated by x is prime, then at least one of y
and z is in that ideal. This implies that

y = b x or z = c x(15.3.4)

for some b or c in k. This means that at least one of y and z is an associate of
x in k, because of (15.3.3). It follows that the other one is invertible in k, as
before.

Suppose now that k is a principal ideal domain, so that every ideal in k is
generated by a single element. If x is an irreducible element of k, then it is well
known that the ideal in k generated by x is prime, as on p125 of [12].

It is well known that every nonzero element of k is either invertible or a
product of irreducible elements of k, as in Theorem 24 on p118 of [12]. In the
second case, the factorization is unique up to permutations and using other
associates of the irreducible factors, as in [12].

15.4 Principal ideal domains

Let k be a principal ideal domain. It is well known that

k has dimension less than or equal to one,(15.4.1)

in the sense of Section 14.8. This is the same as saying that every nonzero
proper prime ideal in k is maximal. This corresponds to Example (3) on p5 of
[1], as mentioned on p96 of [1]. This also follows from a remark on p125 of [12].

To see this, let I1 be a nonzero proper prime ideal in k, and let I2 be an
ideal in k that contains I1. By hypothesis, I1 and I2 are generated by nonzero
elements x and y of k, respectively. Because I1 ⊆ I2, we have that x ∈ I2, so
that x = y z for some z ∈ k. This implies that y or z is invertible in k, because
x is irreducible, as in the previous section. This means that I2 is equal to I1 or
k, as desired.

Of course, k is a field if and only if {0} is the only proper ideal in k. Suppose
that k is a local ring that is not a field, so that k has a unique nonzero maximal
proper ideal I0. Of course, I0 is a prime ideal in k, and in fact

I0 is the unique nonzero proper prime ideal in k,(15.4.2)

by the previous remarks. Conversely, if k has a unique proper prime ideal, then
that is the unique maximal proper ideal in k.
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This can be used as another way to define discrete valuation rings, as on p5
of [15]. Note that discrete valuation rings have these properties, as in Section
15.1. This corresponds to Proposition 1 on p6 of [15].

Conversely, suppose that k satisfies the conditions mentioned before, and
that

I0 is generated by x ∈ k, as an ideal in k.(15.4.3)

Note that x 6= 0, because I0 6= {0}, and that x is irreducible, because I0 is
prime. The condition that I0 be the unique nonzero prime ideal in k implies
that every irreducible element of k is an associate of x.

If y ∈ k and y 6= 0, then y is invertible, or y can be expressed as a product
of irreducible elements of k, as in the previous section. This implies that y is an
associate of xl for some nonnegative integer l in this case. It follows that every
nonzero ideal in k is generated by xl for some nonnegative integer l, because k
is a principal ideal domain. This implies that k is a discrete valuation ring, as
in Section 15.2.

Alternatively, if k satisfies the conditions mentioned before, then there is an
x ∈ k such that every nonzero ideal in k is generated by xl for some nonnegative
integer l, as in Sections 14.11 and 14.12. More precisely, this uses the fact that
I0 is generated by a single element of k, as an ideal in k, because k is a principal
ideal domain. This means that k is a discrete valuation ring, as in Section 15.2
again.

15.5 Local rings and valuations

Let k be a commutative ring with a nonzero multiplicative identity element, and
suppose that k is a local ring that is not a field. Thus k has a unique maximal
proper ideal I0, with I0 6= {0}. Let us suppose for the rest of the section that

I0 is generated by w0 ∈ k, as an ideal in k.(15.5.1)

Note that w0 6= 0, because I0 6= {0}.
Suppose in addition that

∞⋂
j=1

Ij0 = {0}.(15.5.2)

This holds automatically when k is Noetherian, as in the proof of Proposition 2
on p7 of [15]. This will be discussed further in the next section. More precisely,
(15.5.2) holds when k is Noetherian, without asking that I0 be generated by a
single element, as mentioned in [15].

If k is an integral domain, then

k is a discrete valuation ring,(15.5.3)

as in Exercise 4 on p99 of [1]. This is related to part of the proof of Proposition
2 on p7 of [15]. In [15], one asks that w0 not be nilpotent, instead of asking
that k be an integral domain. Of course, if k is an integral domain, then w0 is
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not nilpotent, because w0 6= 0. Note that discrete valuation rings satisfy all of
these conditions.

Let y ∈ k \ {0} be given. Observe that there is a largest nonnegative integer
l such that

y ∈ Il0,(15.5.4)

because of (15.5.2). Thus
y = awl0(15.5.5)

for some a ∈ k with a 6∈ I0. This means that a is invertible in k.
If k is an integral domain, then we get (15.5.3), as in Section 15.2. If we

only ask that w0 not be nilpotent, then one can use (15.5.5) to get that k is
an integral domain, as in [15]. Note that there is no condition here on the
dimension of k, in the sense of Section 14.8, which is a bit different from the
discussion in Sections 14.11 and 14.12.

15.6 More on the additional condition

Let k be as at the beginning of the prevous section again, and suppose now that
k is Noetherian as well. Consider the set I of x ∈ k such that

xwm0 = 0(15.6.1)

for some nonnegative integer m, and thus all sufficiently large m. It is easy to
see that this is an ideal in k. It follows that I is finitely generated as an ideal
in k, because k is Noetherian. This implies that there is a nonnegative integer
m0 such that

xwm0
0 = 0(15.6.2)

for every x ∈ I, as in the proof of Proposition 2 on p7 of [15].
To show (15.5.2), let y ∈

⋂∞
j=1 I

j
0 be given. Thus, for each positive integer

j, there is an xj ∈ k such that

y = xj w
j
0.(15.6.3)

Observe that
(xj − xj+1 w0)w

j
0 = 0(15.6.4)

for each j, which implies that

xj − xj+1 w0 ∈ I.(15.6.5)

Let I(j) be the ideal in k generated by I and xj for each j. It follows that

I(j) ⊆ I(j + 1)(15.6.6)

for each j, because of (15.6.5). The sequence of I(j)’s is eventually constant,
because k is Noetherian. This means that

xj+1 ∈ I(j)(15.6.7)
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when j is sufficiently large.
If (15.6.7) holds for some j, then

xj+1 − tj xj ∈ I(15.6.8)

for some tj ∈ k, by the definition of I(j). Note that tj xj − tj xj+1 w0 ∈ I, by
(15.6.5). It follows that

xj+1 (1− tj w0) ∈ I.(15.6.9)

We also have that 1 − tj w0 is invertible in k, because tj w0 ∈ I0. This implies
that

xj+1 ∈ I(15.6.10)

for all sufficiently large j. Thus

xj+1 w
m0
0 = 0(15.6.11)

for all sufficiently large j, because of (15.6.2). This means that y = 0, as desired,
because of (15.6.3).

If k is an integral domain, then the previous argument can be simplified, as
mentioned on p7 of [15]. In this case, I = {0}, and xj = xj+1 w0 for each j.
Similarly, I(j) reduces to the ideal in k generated by xj for each j.

15.7 Discrete valuation rings and invertibility

Let k be an integral domain, and let Qk be the corresponding field of fractions.
Remember that a submodule M of Qk, as a module over k, is called a fractional
ideal of k if there is a y ∈ k such that y 6= 0 and yM ⊆ k, as in Section 11.7.
On p8 of [15], a submodule M of Qk, as a module over k, is called a fractional
ideal of Qk with respect to k if M is finitely generated as a module over k. This
implies that M is a fractional ideal of k in the sense used here, and the converse
holds when k is Noetherian, as in Section 11.7.

If there is a submodule N of Qk, as a module over k, such that M N = k,
then M is said to be an invertible ideal of k, as before. In this case, N is
equal to the set (k : M)Qk

of x ∈ Qk such that xM ⊆ k, as in Section 11.7.
Remember that this set was initially denoted (k : M), and that we used the
notation (k :M)Qk

in Section 14.3, because similar notation was used in Section
12.8 for something else.

If M 6= {0}, then (k : M)Qk
is a fractional ideal of k, as in Section 11.7. If

k is Noetherian, then (k :M)Qk
is a fractional ideal of Qk with respect to k, as

before. A nonzero ideal I of k is said to be invertible in the remark on p9 of
[15] when

I (k : I)Qk
= k.(15.7.1)

This is equivalent to the invertibility of I as a fractional ideal of k.
Suppose for the moment that k is a discrete valuation ring, and let us show

that
every nonzero fractional ideal of k is invertible.(15.7.2)
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This corresponds to part of Proposition 9.7 on p97 of [1], and it is also mentioned
in the proof of Proposition 5 on p11 of [15]. Remember that there is an x ∈ k
such that every nonzero ideal in k is generated by xl for some nonnegative
integer l, as in Section 15.1. Let M be a nonzero fractional ideal in k, so that
yM ⊆ k for some y ∈ k with y 6= 0. This means that yM is a nonzero ordinary
or integral ideal in k, which is generated by xl for some l ≥ 0, as before.

Similarly, the ideal in k generated by y is the same as the ideal generated
by xn for some nonnegative integer n. It follows that M is the submodule of
Qk, as a module over k, generated by xl−n. If N is the submodule of Qk, as a
module over k, generated by xn−l, then we get that M N = k, as desired.

15.8 Local domains and fractional ideals

Let k be an integral domain that is not a field, with the corresponding field Qk of
fractions. Suppose that k is also a local ring, with unique maximal proper ideal
I0, that satisfies (15.7.2). We would like to show that k is a discrete valuation
ring, which is the other part of Proposition 9.7 on p97 of [1]. Another approach,
based on some arguments on p8f of [15], will be discussed in the next section.

Remember that invertible ideals of k are finitely generated as modules over
k, as in Section 11.7. It follows that any ideal in k is finitely generated as a
module over k, so that k is Noetherian.

We would like to show that

every nonzero ideal in k is af the form Ir0(15.8.1)

for some nonnegative integer r, as in (14.12.1). Let Σ be the collection of nonzero
ideals in k that cannot be expressed as a nonnegative power of I0, and suppose
for the sake of a contradiction that Σ 6= ∅. This implies that Σ has a maximal
element I1, because k is Noetherian, as in Section 9.7. Of course, I1 6= k, so
that I1 is contained in a maximal proper ideal in k. This means that I1 ⊆ I0,
and we also have that I1 6= I0.

Note that I0 6= {0}, because k is not a field, so that I0 is invertible as a
fractional ideal in k, by hypothesis. This means that there is a submodule N0

of Qk, as a module over k, such that

I0N0 = k.(15.8.2)

In particular,
I1N0 ⊆ k,(15.8.3)

so that I1N0 is an ideal in k. We also have that

I1N0 6= k,(15.8.4)

because I0N0 I1 = I1.
Remember that N0 = (k : I0)Qk

, so that 1 ∈ N0. This implies that

I1 ⊆ I1N0,(15.8.5)
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which could also be obtained from the fact that I1 I0 ⊆ I1. If I1 = I1N0,
then I1 I0 = I1. This would imply that I1 = {0}, by Nakayama’s lemma, as
in Section 13.3. This also uses the fact that k is Noetherian, to get that I1 is
finitely generated as an ideal in k. However, I1 6= {0}, by construction. Thus
we get that I1 6= I1N0.

It follows that I1N0 is not an element of Σ, by the maximality of I1. This
means that I1N0 is a nonnegative power of I0. In fact, I1N0 is a positive power
of I0, because of (15.8.4). This implies that I1 is a nonnegative power of I0,
which is a contradiction.

Thus (15.8.1) holds under these conditions. One can use this to get that
there is an x ∈ k such that every nonzero ideal in k is generated by xl for
some nonnegative integer l, as in (14.12.8). More precisely, k was asked to have
dimension one, in the sense of Section 14.8, in Sections 14.11 and 14.12. This
was not needed for the argument just mentioned, and one could also obtain it
from (15.8.1) here. Indeed, if I is a nonzero proper prime ideal in k and I = Ij0
for some positive integer j, then one can get I = I0, by taking radicals, as in
Section 12.10.

This implies that k is a discrete valuation ring, as in Section 15.2.

15.9 Local domains and invertible ideals

Let k be an integral domain, with the corresponding field of fractions Qk, and
suppose that k is a local ring, with unique maximal proper ideal I0. Also let M
be a nonzero fractional ideal of k that is invertible, so that there is a submodule
N of Qk, as a module over k, such that M N = k. We would like to show that

M is generated by a single element, as a module over k.(15.9.1)

This is mentioned in the remark on p9 of [15].
There are finitely many elements x1, . . . , xl of M and y1, . . . , yl of N such

that
l∑

j=1

xj yj = 1,(15.9.2)

because 1 ∈ M N . Note that xj yj ∈ k for each j = 1, . . . , l, because M N ⊆ k.
It follows that xj0 yj0 is not in I0 for some j0. This means that xj0 yj0 is
invertible in k in this case.

Using this, we get x ∈M and y ∈ N such that x y = 1. If z ∈M , then

z = x (y z),(15.9.3)

and y z ∈ M N = k. This implies that M is generated by x, as a module over
k. This corresponds to the proof of I on p8 of [15], as mentioned in the remark
on p9 of [15].

Suppose now that k is not a field, and that every nonzero fractional ideal of
k is invertible. In particular, this means that I0 is invertible, because I0 6= {0}.
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The previous argument implies that I0 is generated by a single element, as an
ideal in k.

Remember that k is Noetherian under these conditions, as in the previous
section. It follows that k is a discrete valuation ring, as in Sections 15.5 and
15.6. This corresponds to a statement on p8 of [15], shortly before the proof of
the statement I.

Alternatively, if every nonzero ideal in k is invertible, then the previous
argument shows that k is a principal ideal domain. If k is not a field, then it
follows that k is a discrete valuation ring, as in Section 15.4.

If k is a local domain of dimension one, in the sense of Section 14.8, then
one could get that k is a discrete valuation ring from the condition that I0
be generated by a single element, as an ideal in k, as in Sections 14.11 and
14.12. More precisely, in Sections 14.11 and 14.11, one only ever seems to use a
Noetherian condition on k to get that I0 is finitely generated, as an ideal in k.

15.10 A criterion for invertibility

Let k be an integral domain, and let Qk be the corresponding field of fractions.
Remember that a submodule M of Qk, as a module over k, is said to be a
fractional ideal of k if there is an x ∈ k such that x 6= 0 and xM ⊆ k, as in
Section 11.7. If there is another submodule N of Qk, as a module over k, such
that M N = k, then M is said to be invertible, as before. In this case, we have
seen that N is equal to the set (k :M)Qk

of x ∈ Qk such that xM ⊆ k.
Of course,

M (k :M)Qk
⊆ k(15.10.1)

holds automatically, by definition of (k :M)Qk
. This means thatM (k :M)Qk

is
an ideal in k, because it is a submodule of Qk, as a module over k. Invertibility
of M is equivalent to

M (k :M)Qk
= k.(15.10.2)

Let I be a maximal proper ideal in k, which is prime in particular. Thus

SI = k \ I(15.10.3)

is multiplicatively closed in k, as in Section 12.4. The corresponding ring of
fractions S−1

I k, as in Section 12.1, is an integral domain whose field of fractions
may be identified with Qk, as in Section 14.2. The module of fractions S−1

I M
ofM with respect to SI , as in Section 12.2, may be identified with a submodule
of Qk, as a module over S−1

I k, as before. This is a fractional ideal of S−1
I k.

Suppose that

S−1
I M is invertible as a fractional ideal of S−1

I k.(15.10.4)

Remember that (S−1
I k : S−1

I M)Qk
is the set of x ∈ Qk such that

x (S−1
I M) ⊆ S−1

I k,(15.10.5)



386CHAPTER 15. DISCRETE VALUATIONS AND DEDEKIND DOMAINS

as in Section 14.3. This is a submodule of Qk, as a module over S−1
I k, and

(15.10.4) is the same as saying that

(S−1
I M) (S−1

I k : S−1
I M)Qk

= S−1
I k.(15.10.6)

Suppose that

M is finitely generated, as a module over k.(15.10.7)

This implies that (S−1
I k : S−1

I M)Qk
= S−1

I (k : M)Qk
, as in Section 14.4. It

follows that

(S−1
I M) (S−1

I (k :M)Qk
) = S−1

I k,(15.10.8)

by (15.10.6). This means that

S−1
I (M (k :M)Qk

) = S−1
I k,(15.10.9)

as in Section 14.3.
In particular, 1/1 is an element of S−1

I (M (k : M)Qk
). This implies that

there are v ∈ M (k : M)Qk
and r, t ∈ SI such that t v = t r ∈ SI , as in Section

12.2. Note that v ∈ k, by (15.10.1). It follows that v 6∈ I, by the definition of
SI , and because I is an ideal in k. Thus

M (k :M)Qk
6⊆ I.(15.10.10)

If this holds for every maximal proper ideal I in k, then it follows that
(15.10.2) holds, because M (k :M)Qk

is an ideal in k. This corresponds to part
of Proposition 9.6 on p97 of [1].

15.11 Dedekind domains

Let k be a Noetherian integral domain. Remember that if I is a proper prime
ideal in k, then SI = k \ I is multiplicatively closed in k, as in Section 12.4. In
this case,

kI = S−1
I k(15.11.1)

may be defined as in Section 12.1.
Suppose that for every proper prime ideal I 6= {0} in k,

kI is a discrete valuation ring,(15.11.2)

as in Section 15.1. Under these conditions, k is said to be a Dedekind domain,
as in p95 of [1], and p10 of [15]. More precisely, the formulation in [1] also asks
that k not be a field. If we do not include this condition, then this definition is
equivalent to the definition of a Dedekind ring in Section 11.10, as before.

The formulation in [1] also includes the condition that k have dimension one,
in the sense of Section 14.8. Of course, this implies that k not be a field, which
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would have dimension 0. It is easy to see that the definition in the preceding
paragraph implies that

k have dimension less than or equal to one,(15.11.3)

which is also mentioned in [15].
Indeed, let I be a nonzero maximal proper ideal in k. Note that kI has

dimension one, by hypothesis, as in Section 15.1. There is also a one-to-one
correspondence between the prime ideals in k that are contained in I and the
proper prime ideals in kI , as mentioned at the end of Section 12.13. It follows
that I is the only nonzero prime ideal in k contained in I, as desired.

Remember that an integral domain has dimension less than or equal to one
if and only if every proper nonzero prime ideal is maximal, as in Section 14.11.
If (15.11.2) holds for every nonzero maximal proper ideal I in k, then every
nonzero proper prime ideal in k is maximal, as in the preceding paragraph.
This means that (15.11.2) holds for every nonzero proper prime ideal in k.

Suppose now that k is a principal ideal domain. It is easy to see that k is a
hereditary ring, as in Section 9.3, and thus a Dedekind ring, as in Section 11.10.

Let us verify that k is a Dedekind domain, without using the equivalence
with Dedekind rings mentioned earlier. This is Example (1) on p96 of [1], which
is also mentioned on p10 of [15]. Note that k is Noetherian, because every ideal
in k is finitely generated.

Let S be a multiplicatively closed set in k, with 0 6∈ k, and remember that
S−1 k is an integral domain, as in Section 14.2. We have also seen that every
ideal in S−1 k is the extension of an ideal in k, as in Section 12.13. Using
this, one can check that every ideal in S−1 k is generated by a single element,
because of the analogous property of k, by hypothesis. This means that S−1 k
is a principal ideal domain, and in particular that S−1 k has dimension less than
or equal to one, as before.

Let I be a nonzero proper prime ideal in k, and let SI and kI be as before.
Remember that kI is a local ring, as in Section 12.4. Note that kI is not a field
under these conditions. More precisely, S−1

I I is a nonzero proper ideal in kI .
We also have that kI is a principal ideal domain, as in the preceding paragraph.
It follows that kI is a discrete valuation ring, as in Sections 14.11, 14.12, and
15.2, or Section 15.4. Of course, if k is a field, then there are no nonzero proper
ideals in k, and the previous statement holds vacuously.

15.12 Dedekind domains and invertibility

Let k be an integral domain, and let Qk be the corresponding field of fractions.
Suppose that k is a Dedekind domain, and let us show that

every nonzero fractional ideal of k is invertible.(15.12.1)

This corresponds to part of Theorem 9.8 on p97 of [1], and to Proposition 5 on
p11 of [15]. Remember that “fractional ideals” are defined a bit differently in
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[15], as in Section 15.7. However, the difference does not matter here, because
k is Noetherian, by hypothesis.

Let M be a nonzero fractional ideal of k, so that M is a submodule of Qk,
as a module over k, such that xM ⊆ k for some x ∈ k with x 6= 0, as in Section
11.7. Remember that k is supposed to be Noetherian, as in Section 15.11. This
implies that M is finitely generated as a module over k, as in Section 11.7.

Let I be a maximal proper ideal in k. Remember that SI = k \ I is multi-
plicatively closed in k, because I is a prime ideal, as in Section 12.4. The ring
of fractions kI = S−1

I k, as in Section 12.1, is an integral domain whose field of
fractions may be identified with Qk, as in Section 14.2.

The module of fractions
MI = S−1

I M,(15.12.2)

as in Section 12.2, may be identified with a submodule of Qk, as a module over
kI , as before. This is a fractional ideal of kI , as in Section 15.10.

Let us check that

MI is invertible as a fractional ideal of kI .(15.12.3)

Of course, if k is a field, then I = {0}, and there is nothing to do.
If k is not a field, then I 6= {0}, and kI is a discrete valuation ring, as in

Section 15.11. It is easy to see that

MI 6= {0},(15.12.4)

because M 6= {0}, by hypothesis, and k is an integral domain. It follows that
(15.12.3) holds under these conditions, as in Section 15.7.

This implies that M is invertible as a fractional ideal of k, as in Section
15.10. This uses the fact that M is finitely generated as a module over k, as
before.

15.13 Dedekind domains from invertibility

Let k be an integral domain, and let Qk be the corresponding field of fractions,
as usual. In this section, we suppose that every nonzero fractional ideal of k is
invertible, and we would like to show that k is a Dedekind domain. This is the
other part of Theorem 9.8 on p97 of [1].

Remember that invertible ideals of k are finitely generated as modules over
k, as in Section 11.7. This implies that k is Noetherian, as in Section 15.8.

Let I be a nonzero proper prime ideal in k, and remember that SI = k \I is
multiplicatively closed in k, as in Section 12.4. Thus kI = S−1

I k may be defined
as in Section 12.1, and we would like to show that kI is a discrete valuation
ring.

Remember that kI is a local ring, as in Section 12.4. More precisely, the
unique maximal proper ideal in kI is S−1

I I, using the notation mentioned near
the beginning of Section 12.13. We also have that kI is an integral domain, as
mentioned in Section 14.2, and that kI is Noetherian, as in Section 14.6. Note
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that kI is not a field, because S−1
I I is a nonzero proper ideal in kI , as in Section

15.11.
It suffices to show that every nonzero fractional ideal of kI is invertible, as

in Sections 15.8 and 15.9. It is easy to reduce to the case of a nonzero ordinary
(integral) ideal in kI .

Let I2 be a nonzero ideal in kI , and remember that Ice2 = I2, as in Section
12.13. Here Ic2 is the contraction of I2 with respect to the natural homomor-
phism from k into kI , and Ice2 is the extension of Ic2 in kI . In this case, kI may
be identified with a subring of Qk, as in Section 14.2, so that

Ic2 = I2 ∩ k.(15.13.1)

It is easy to see that Ic2 6= {0}, because I2 6= {0}.
It follows that Ic2 is an invertible ideal of k, by hypothesis. This implies that

S−1
I Ic2 is an invertible ideal of kI , as in Section 14.3. Note that

S−1
I Ic2 = Ice2 = I2,(15.13.2)

as in Section 12.13. This means that I2 is an invertible ideal of kI , as desired.

15.14 Primary ideals in Dedekind domains

Let k be a commutative ring with a multiplicative identity element, and let
I1 6= {0} be a primary ideal in k, as in Section 14.5. Remember that r(I1)
is the radical of I1, as in Section 12.10, and note that r(I1) 6= {0}, because
I1 6= {0}. We also have that r(I1) 6= k, because I1 6= k, by the definition of a
primary ideal. In fact, r(I1) is a prime ideal in k, as in Section 14.5. Thus

S = k \ r(I1)(15.14.1)

is a multiplicatively closed set in k, as in Section 12.4.
Let S−1 k be as in Section 12.1, and remember that x 7→ x/1 defines a

ring homomorphism from k into S−1 k. The extensions Ie1 and r(I1)e of I1 and
r(I1), respectively, with respect to this homomorphism are ideals in S−1 k, as in
Section 12.7. These are the same as the ideals S−1 I1 and S−1 r(I1) in S−1 k,
as in Section 12.13. In this case, S−1 k is a local ring, with S−1 r(I1) as its
unique maximal proper ideal, as in Section 12.4.

The contractions of S−1 I1 and S−1 r(I1) in k with respect to the natural
homomorphism from k into S−1 k are equal to I1 and r(I1), respectively, as
in Section 14.6. This uses the fact that I1 and r(I1) are disjoint from S, by
construction.

If k is a Dedekind domain, then S−1 k is a discrete valuation ring, as in
Section 15.11. This implies that

S−1 I1 = (S−1 r(I1))l(15.14.2)

for a unique positive integer l, as in Section 15.1.
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Note that
(S−1 r(I1))l = S−1 r(I1)l,(15.14.3)

as in Sections 12.9 and 12.13, and which can be verified directly anyway. Thus
(15.14.2) is the same as saying that

S−1 I1 = S−1 r(I1)l.(15.14.4)

This holds for a unique positive integer l, as before.
If k is a Dedekind domain, then r(I1) is a maximal proper ideal in k, because

r(I1) is a nonzero proper prime ideal in k. This implies that r(I1)l is a primary
ideal in k, as in Section 14.5. It follows that the contraction of S−1 r(I1)l in k
with respect to the natural homomorphism from k into S−1 k is equal to r(I1)l,
as in Section 14.6 again. Using this, we get that

I1 = r(I1)l.(15.14.5)

This corresponds to part of Theorem 9.3 on p95 of [1].
Of course, (15.14.5) implies (15.14.4). This means that l is uniquely deter-

mined by (15.14.5).

15.15 One-dimensional Noetherian domains

Let k be an integral domain of dimension one in the sense of Section 14.8. Thus
k is not a field, and every nonzero proper prime ideal in k is maximal. If k is
Noetherian, and if every primary ideal in k is a power of a prime ideal, then k
is a Dedekind domain, as in Theorem 9.3 on p95 of [1].

More precisely, if I1 is a primary ideal in k, then the radical r(I1) is a proper
prime ideal in k, as in Section 14.5. The hypothesis mentioned in the preceding
paragraph means that

I1 = r(I1)l(15.15.1)

for some positive integer l.
Let I 6= {0} be a proper prime ideal in k, so that SI = k \ I is multiplica-

tively closed in k, as in Section 12.4. We would like to show that kI = S−1
I k

is a discrete valuation ring, as in Section 15.11. The hypothesis that k have
dimension one implies that I is a maximal proper ideal in k, and it is sufficient
to consider only that case anyway, as before.

Remember that kI is a local ring, with unique maximal proper ideal S−1
I I,

as in Section 12.4. We have seen that kI is an integral domain, because k is an
integral domain, as in Section 14.2. We also have that kI is Noetherian, because
k is Noetherian, as in Section 14.6. Note that S−1

I I 6= {0}, because I 6= 0, and
k is an integral domain.

There is a one-to-one correspondence between the set of prime ideals in k
that are contained in I and the set of proper prime ideals in kI , as mentioned
at the end of Section 12.13. This implies that

kI has dimension one,(15.15.2)
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because k has dimension one. In fact, S−1
I I is the only nonzero proper prime

ideal in kI .
We would like to show that if I2 6= {0} is an ideal in kI , then

I2 = (S−1
I I)l(15.15.3)

for some nonnegative integer l. This will imply that kI is a discrete valuation
ring, as in Sections 14.12 and 15.2. We may as well suppose that I2 6= kI , since
otherwise we could take l = 0 in (15.15.3). This means that

I2 ⊆ S−1
I I,(15.15.4)

because S−1
I I is the unique maximal proper ideal in kI .

Remember that the radical r(I2) of I2 is the same as the intersection of all
of the prime ideals in kI that contain I2, as in Section 12.10. This implies that

r(I2) = S−1
I I,(15.15.5)

because I2 6= {0}, and S−1
I I is the only nonzero proper prime ideal in kI . It

follows that I2 is a primary ideal in kI , because S
−1
I I is a maximal proper ideal

in kI , as in Section 14.5.
Let Ic2 be the contraction of I2 in k, with respect to the natural homomor-

phism x 7→ x/1 from k into kI , as in Section 12.7. Note that Ic2 is a primary
ideal in k, because I2 is a primary ideal in kI , as in Section 14.5. It is easy to
see that Ic2 6= {0}, because I2 6= {0}. We also have that that Ic2 6= k, because
I2 6= kI .

Remember that a prime ideal in k that is disjoint from SI is the contraction
of an ideal in kI , as in Section 12.13. This implies that a prime ideal in k that is
disjoint from SI is equal to the contraction of its extension, as in Section 12.7.
In particular, I is a prime ideal in k that is disjoint from SI , so that

I = Iec = (S−1
I I)c,(15.15.6)

where the second step is as in Section 12.13. It follows that

Ic2 ⊆ (S−1
I I)c = I,(15.15.7)

using (15.15.4) in the first step.
The radical r(Ic2) of Ic2 is the smallest prime ideal in k that contains Ic2,

because Ic2 is a primary ideal in k, as in Section 14.5. Note that

r(Ic2) ⊆ I,(15.15.8)

by (15.15.7), and that r(Ic2) 6= {0}, because Ic2 6= {0}. This means that

r(Ic2) = I,(15.15.9)

because k has dimension one, by hypothesis.
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Thus
Ic2 = Il(15.15.10)

for some positive integer l, as in (15.15.1). Remember that I2 = Ice2 , as in
Section 12.13. Using this, we get that

I2 = (Il)e = (Ie)l = (S−1
I I)l,(15.15.11)

where the second step is as in Section 12.9, and the third step is as in Section
12.13. This shows that (15.15.3) holds, as desired.



Chapter 16

Valuation rings and integral
elements

16.1 Valuation rings

An integral domain k is said to be a valuation ring of its field Qk of fractions
if for every x ∈ Qk with x 6= 0, we have that x ∈ k, or x−1 ∈ k, or both, as on
p65 of [1].

Let k1 be a field, and let k be a subring of k1 that contains the multiplicative
identity element 1 = 1k1 of k1. This implies that k is an integral domain, for
which the corresponding field of fractions may be identified with the subfield of
k1 generated by k. One might say that k is a valuation ring of k1 if for every
x ∈ k1 with x 6= 0, we have that x ∈ k, x−1 ∈ k, or both. This would imply in
particular that k1 is generated as a field by k, so that k1 may be identified with
the field Qk of fractions of k. This means that k would be a valuation ring of
Qk, as in the preceding paragraph.

Let v be a valuation on k1, as in Section 14.13. Remember that

{x ∈ k1 : v(x) ≥ 0}(16.1.1)

is a subring of k1 that contains 1k1 , called the valuation ring of v, as in Section
14.14. If x ∈ k1 and x 6= 0, then x or x−1 is an element of (16.1.1), depending
on whether v(x) ≥ 0 or v(x) ≤ 0. This implies that k1 may be identified with
the field of fractions of (16.1.1), and that (16.1.1) is a valuation ring in its field
of fractions, as in the previous paragraph. This corresponds to a remark on p94
of [1].

Let k be a commutative ring with a multiplicative identity element. If x, y
are elements of k and x y is invertible in k, then it is easy to see that

x and y are invertible in k.(16.1.2)

Put
I0 = {x ∈ k : x is not invertible in k}.(16.1.3)

393
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If x ∈ I0 and y ∈ k, then
x y ∈ I0,(16.1.4)

by (16.1.2).
Now let k be an integral domain, with field of fractions Qk. In this case,

I0 = {x ∈ k : x = 0 or x−1 ∈ Qk \ k}.(16.1.5)

Suppose that k is a valuation ring of Qk. If x, y ∈ k and x, y 6= 0, then

x y−1 ∈ k or x−1 y ∈ k.(16.1.6)

Let x, y ∈ I0 be given, and let us check that

x+ y ∈ I0.(16.1.7)

This follows automatically when x = 0 or y = 0, and so we may suppose that
x, y 6= 0. If x y−1 ∈ k, then

x+ y = (x y−1 + 1) y ∈ I0,(16.1.8)

as in (16.1.4). Similarly, (16.1.7) holds when x−1 y ∈ k.
This shows that I0 is an ideal in k, as in the proof of the first part of

Proposition 5.18 on p65 of [1]. This means that I0 is the unique maximal
proper ideal in k, so that k is a local ring, as in [1].

16.2 Noetherian valuation rings

Let k be an integral domain that is a valuation ring of its field Qk of fractions.
If x, y ∈ k and x, y 6= 0, then either x = t y for some t ∈ k, or y = t′ x for some
t′ ∈ k, by (16.1.6). This implies that the ideals in k that are generated by a
single element are linearly ordered by inclusion.

Let I be an ideal in k generated by finitely many elements x1, . . . , xn. It is
easy to see that

I is generated by xj(16.2.1)

for some j, using the remark in the preceding paragraph.
Suppose now that k is also Noetherian, so that every ideal in k is finitely

generated. This implies that every ideal in k is generated by a single element,
as in the previous paragraph, so that k is a principal ideal domain.

If k is not a field, then k is a discrete valuation ring under these conditions,
as in Exercise 3 on p99 of [1]. Remember that principal ideal domains have
dimension less than or equal to one, in the sense of Section 14.8, as in Section
15.4. This means that k has dimension one, because k is not a field.

Let I0 be the unique maximal proper ideal in k, as in the previous section.
Note that I0 is generated as an ideal in k by a single element, as before. One
can get that k is a discrete valuation ring using the arguments in Sections 14.11,
14.12, and 15.2.
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Alternatively, one could use the characterization of discrete valuation rings
in Section 15.4. One could also use the criterion for a commutative ring to be
a discrete valuation ring discussed in Sections 15.5 and 15.6.

Remember that discrete valuation rings are Noetherian, as in Section 15.1.

16.3 Integral elements of larger rings

Let k1 be a commutative ring with a multiplicative identity element 1 = 1k1 ,
and let k be a subring of k1 that contains 1k1 . An element x of k1 is said to be
integral over k if it satisfies a monic polynomial equation with coefficients in k.
This means that there are a positive integer n and n elements a1, . . . , an of k
such that

xn + a1 x
n−1 + · · ·+ an−1 x+ an = 0,(16.3.1)

as on p59 of [1], and p8 of [15]. Note that every element of k is integral over k
in this sense.

If every element of k1 that is integral over k is an element of k, then k is
said to be integrally closed in k1, as on p60 of [1], and p8 of [15].

Suppose now that k is an integral domain, and let Qk be its field of fractions.
If k is integrally closed in Qk, then k is simply said to be integrally closed, as
on p62 of [1], and p8 of [15].

It is well known that the ring Z of integers is integrally closed in the field
Q of rational numbers, as in Example 5.0 on p59 of [1]. The same argument
can be used to show that any unique factorization domain is integrally closed,
as mentioned on p63 of [1].

Suppose for the moment that k is a valuation ring of Qk, as in Section 16.1.
In this case, k is integrally closed in Qk, as in Proposition 5.18 on p65 of [1].
Indeed, suppose that x ∈ Qk is integral over k, so that x satisfies a monic
polynomial equation with coefficients in k as in (16.3.1). If x 6∈ k, then x 6= 0
and x−1 ∈ k, and we can multiply both sides of (16.3.1) by x1−n to get that

x = −a1 − · · · − an−1 x
2−n − an x

1−n.(16.3.2)

This implies that x ∈ k.
Let k1 be a field, and let v be a valuation on k1, as in Section 14.13. If

x, y ∈ k1 and v(x) ≤ v(y), then

v(x+ y) ≥ v(x),(16.3.3)

by definition of a valuation. We also have that

v(x) ≥ min(v(x+ y), v(−y)) = min(v(x+ y), v(y)).(16.3.4)

If v(x) > v(y), then it follows that

v(x) ≥ v(x+ y).(16.3.5)
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This means that
v(x+ y) = v(x)(16.3.6)

when v(x) > v(y).
Remember that the valuation ring of v,

{x ∈ k1 : v(x) ≥ 0},(16.3.7)

is a valuation ring of k1, as in Section 16.1. Thus (16.3.7) is integrally closed in
k1, as before. Another way to see this is mentioned on p8 of [15]. We can do
this using the remarks in the preceding paragraph, as follows.

Suppose that x ∈ k1 is integral over (16.3.7), so that x satisfies a monic
polynomial equation with coefficients in (16.3.7), as in (16.3.1). If v(x) < 0 and
1 ≤ l ≤ n, then

v(xn) = n v(x) > (n− l) v(x) ≥ v(al x
n−l).(16.3.8)

This implies that

v(xn + a1 x
n−1 + · · ·+ an−1 x+ an) = v(xn),(16.3.9)

as in the preceding paragraph. This contradicts (16.3.1), so that v(x) ≥ 0, as
desired.

16.4 Some properties of integral elements

Let k0 be a commutative ring with a multiplicative identity element, and let V
be a module over k0. Remember that the annihilator Ann(V ) of V in k0 consists
of t ∈ k0 such that t · V = {0}, as in Section 12.8. If

Ann(V ) = {0},(16.4.1)

then V is said to be faithful as a module over k0, as on p20 of [1].
Let k1 be a commutative ring with a multiplicative identity element 1 = 1k1 ,

and let k be a subring of k1 that contains 1k1 . If x ∈ k1, then let k[x] be the
subring of k1 generated by k and x. This is the same as the submodule of k1,
as a module over k, generated by the nonnegative integer powers of x in k1.
Proposition 5.1 on p59f of [1] gives some properties of k[x] that are equivalent
to saying that

x is integral over k.(16.4.2)

If (16.4.2) holds, then it is easy to see that

k[x] is finitely generated as a module over k.(16.4.3)

More precisely, suppose that x satisfies a monic polynomial equation of degree
n with coefficients in k, as in (16.3.1). If r is a nonnegative integer, then we get
that

xn+r = −a1 xn+r−1 − · · · − an−1 x
r+1 − an x

r.(16.4.4)



16.5. SOME COROLLARIES 397

One can use this to check that k[x] is generated by 1, x, . . . , xn−1, as a module
over k, as on p60 of [1].

Clearly (16.4.3) implies that

k[x] is contained in a subring C of k1 such that(16.4.5)

C is finitely generated as a module over k,

by taking C = k[x]. Let us check that (16.4.5) implies that

there is a faithful module V over k[x] that is(16.4.6)

finitely generated as a module over k.

Of course, if (16.4.5) holds, then C is a module over k[x] that is finitely generated
as a module over k. It is easy to see that C is also faithful as a module over
k[x], because 1k1 ∈ C, as on p60 of [1].

We would like to show that (16.4.6) implies (16.4.2), to get that these four
conditions are equivalent, as in [1]. To do this, we use the remarks in Section
13.2, with V considered as a module over k. The ideal I of k mentioned in
Section 13.2 is taken to be k here, so that I · V = V .

If y ∈ k[x] and v ∈ V , then put

ϕy(v) = y · v,(16.4.7)

where the right side is defined as an element of V , because V is a module over
k[x]. Note that ϕy is a homomorphism from V into itself, as a module over k.
Thus

y 7→ ϕy(16.4.8)

defines a mapping from k[x] into the space Homk(V, V ) of homomorphisms from
V into itself, as a module over k. More precisely, (16.4.8) is a homomorphism
from k[x] into Homk(V, V ), as associative algebras over k. This homomorphism
is injective, because V is faithful as a module over k[x], by hypothesis.

If we take ϕ = ϕx, then the remarks in Section 13.2 imply that ϕ satisfies
a monic polynomial equation with coefficients in k. This uses the hypothesis
that V be finitely generated as a module over k. It follows that x satisfies
the analogous polynomial equation, with the same coefficients, because of the
remarks in the preceding paragraph, as on p60 of [1].

16.5 Some corollaries

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let x1, . . . , xn be finitely many elements of k1, and let k[x1, . . . , xn] be the
subring of k1 generated by k and x1, . . . , xn. If

xj is integral over k(16.5.1)

for each j = 1, . . . , n, then Corollary 5.2 on p60 of [1] states that

k[x1, . . . , xn] is finitely generated as a module over k.(16.5.2)
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Note that this reduces to (16.4.3) when n = 1.
Put Ar = k[x1, . . . , xr] for each r = 1, . . . , n. Suppose that n > 1, and

observe that An is the same as the subring An−1[xn] of k1 generated by An−1

and xn. Of course, xn is integral over An−1, because xn is integral over k, by
hypothesis. This implies that An−1[xn] is finitely generated as a module over
An−1, as in (16.4.3).

If we use induction, then we may suppose that An−1 is finitely generated
as a module over k. One can use this to get that An = An−1[xn] is finitely
generated as a module over k, as on p60 of [1].

If x, y ∈ k1 are integral over k, then k[x, y] is finitely generated as a module
over k, as in (16.5.2). This implies that x±y and x y are integral over k, because
(16.4.5) implies (16.4.2). It follows that

C = {x ∈ k1 : x is integral over k}(16.5.3)

is a subring of k1, as in Corollary 5.3 on p60 of [1].
The subring C of k1 is called the integral closure of k in k1, as on p60 of [1].

Note that k is integrally closed in k1 exactly when C = k. If C = k1, then k1 is
said to be integral over k, as in [1]. Of course, C is integral over k.

Let k2 be a commutative ring with a multiplicative identity element 1 = 1k2 ,
and suppose that k1 is a subring of k2 that contains 1k2 . If k1 is integral over k
and k2 is integral over k1, then

k2 is integral over k,(16.5.4)

as in Corollary 5.4 on p60 of [1]. To see this, let x ∈ k2 be given, so that x
satisfies a monic polynomial equation

xn + b1 x
n−1 + · · ·+ bn−1 x+ bn = 0(16.5.5)

with coefficients in k1. These coefficients are integral over k, by hypothesis, so
that

k[b1, . . . , bn] is finitely generated as a module over k,(16.5.6)

as in (16.5.2). Note that

x is integral over k[b1, . . . , bn].(16.5.7)

It follows that

(k[b1, . . . , bn])[x] is finitely generated as a module over k[b1, . . . , bn],(16.5.8)

as in the previous section. This implies that

(k[b1, . . . , bn])[x] is finitely generated as a module over k,(16.5.9)

because of (16.5.6). Using this, we get that x is integral over k, as in the previous
section again.
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Let C be as in (16.5.3), and let C̃ be the integral closure of C in k1. We
would like to check that

C̃ = C,(16.5.10)

as in Corollary 5.5 on p61 of [1]. Of course, C ⊆ C̃ automatically. We also have

that C is integral over k, as before, and similarly that C̃ is integral over C. This
implies that C̃ is integral over k, as in (16.5.4), so that C̃ ⊆ C.

16.6 Getting a discrete valuation

Let k be a Noetherian integral domain. Suppose that k is a local ring, and let
I0 be the unique maximal proper ideal in k. Suppose also that k has dimension
one in the sense of Section 14.8. Equivalently, this means that I0 6= {0}, and
that I0 is the only nonzero proper prime ideal in k, as in Section 14.11.

Suppose in addition that k is integrally closed. We would like to show that

I0 is a principal ideal in k.(16.6.1)

This will imply that k is a discrete valuation ring, using the results discussed in
Sections 14.11, 14.12, and 15.2, or in Sections 15.5 and 15.6. This corresponds
to parts of Proposition 9.2 on p94 of [1], and Proposition 3 on p7 of [15].

Let us begin with the approach in [1]. Let a ∈ I0 be given, with a 6= 0, and
let I(a) be the ideal in k generated by a. Under these conditions, there is a
positive integer m such that

Im0 ⊆ I(a) ⊆ I0,(16.6.2)

as in Section 14.11. We may as well take m to be as small as possible, so that

Im−1
0 6⊆ I(a).(16.6.3)

Remember that I0
0 is interpreted as being equal to k, as in Section 12.10.

Let b be an element of Im−1
0 that is not in I(a). In particular, b 6= 0, so

that a/b is defined as an element of the field Qk of fractions of k. Note that

b/a 6∈ k,(16.6.4)

because b 6∈ I(a). This means that

b/a is not integral over k(16.6.5)

in Qk, because k is integrally closed in Qk, by hypothesis.
Suppose for the sake of a contradiction that

(b/a) I0 ⊆ I0.(16.6.6)

Let k[b/a] be the subring of Qk generated by k and b/a, as in Section 16.4. If
(16.6.6) holds, then we may consider I0 as a module over k[b/a], because I0 is
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an ideal in k. In fact, I0 would be faithful as a module over k[b/a], because
I0 6= {0}, and Qk is a field. We also have that I0 is finitely generated as a
module over k, because k is Noetherian, by hypothesis. Under these conditions,
we would get that b/a is integral over k, as in Section 16.4 again. This is a
contradiction, which means that

(b/a) I0 6⊆ I0.(16.6.7)

Remember that b ∈ Im−1
0 , so that

b I0 ⊆ Im0 ⊆ I(a).(16.6.8)

This implies that
(b/a) I0 ⊆ k.(16.6.9)

More precisely, (b/a) I0 is an ideal in k. It follows that

(b/a) I0 = k,(16.6.10)

because of (16.6.7), and the hypothesis that I0 be the unique maximal proper
ideal in k.

This means that I0 is the same as the ideal in k generated by a/b, as desired.

16.7 Another argument using fractional ideals

Let k be an integral domain that is a local ring, with unique maximal proper
ideal I0. Suppose also that k is not a field, so that I0 6= {0}. We would like to
consider another proof of (16.6.1) when k is Noetherian, of dimension one, and
integrally closed, as on p8f of [15].

Remember that (k : I0)Qk
is the set of x in the field Qk of fractions of k

such that x I0 ⊆ k, as in Section 15.7. This is a fractional ideal of k, because
I0 6= {0}, as before. More precisely, if k is Noetherian, then (k : I0)Qk

is finitely
generated as a module over k, as in Section 11.7. This means that (k : I0)Qk

is
a fractional ideal of Qk with respect to k, as in [15], in this case.

Of course,
I0 (k : I0)Qk

⊆ k,(16.7.1)

by construction. In fact, I0 (k : I0)Qk
is an ideal in k. We also have that

k ⊆ (k : I0)Qk
,(16.7.2)

because I0 is an ideal in l. This implies that

I0 ⊆ I0 (k : I0)Qk
.(16.7.3)

It follows that
I0 (k : I0)Qk

= I0(16.7.4)

or
I0 (k : I0)Qk

= k,(16.7.5)
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because I0 is a maximal proper ideal in k. If (16.7.5) holds, then I0 is invertible
as a fractional ideal of k, or equivalently in the sense mentioned in the remark
on p9 of [15], as in Section 15.7. In this case, (16.6.1) holds, as in Section 15.9.
This corresponds to the statement I on p8 of [15].

If (16.7.4) holds and k is Noetherian and integrally closed, then Statement
II on p8 of [15] says that

(k : I0)Qk
= k.(16.7.6)

Of course, it suffices to show that

(k : I0)Qk
⊆ k,(16.7.7)

because of (16.7.2). To see this, let x ∈ (k : I0)Qk
be given, so that

x I0 ⊆ I0,(16.7.8)

by (16.7.4). This implies that
xl I0 ⊆ I0(16.7.9)

for every positive integer l.
Let Vn be the submodule of Qk, as a module over k, generated by 1, x, . . . , xn

for each positive integer n. Thus

Vn ⊆ Vn+1(16.7.10)

for every n ≥ 1, by construction. We also have that

Vn ⊆ (k : I0)Qk
(16.7.11)

for each n, by (16.7.9) and the definition of (k : I0)Qk
. Note that (k : I0)Qk

is Noetherian as a module over k, because k is Noetherian, and (k : I0)Qk
is

finitely generated as a module over k, as in Section 9.7. This implies that

Vn+1 = Vn(16.7.12)

when n is sufficiently large.
If (16.7.12) holds, then xn+1 ∈ Vn, and x is integral over k. This implies

that x ∈ k, because k is integrally closed in Qk, by hypothesis. This means that
(16.7.7) holds, as desired. Alternatively, we could get that x is integral over k
using (16.7.8) and a criterion for this in Section 16.4, as in Section 16.6. The
approach discussed here, from p9 of [15], seems to be more direct in this case.

If k is Noetherian and has dimension one, then statement III on p8 of [15]
says that (16.7.6) does not hold. This will be discussed in Section 16.9, after a
preliminary result in the next section.

16.8 Powers in the denominator

Let k be an integral domain that is a local ring and not a field again, with
unique maximal proper ideal I0 6= {0}. Also let x ∈ I0 with x 6= 0 be given.
Note that

S = {xn : n ∈ (Z+ ∪ {0})}(16.8.1)
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is a multiplicatively closed set in k, as in Section 12.6. Of course, 0 6∈ S, because
x 6= 0 and k is an integral domain.

The corresponding ring of fractions S−1 k may be identified with a subring
of the field Qk of fractions of k, as in Section 14.2. This subring consists of
elements of Qk of the form y/xn, where y ∈ k, and n is a nonnegative integer.

Suppose that k has dimension one, in the sense of Section 14.8. This means
that I0 is the unique nonzero proper prime ideal in k, as in Section 14.11. Let
us check that

S−1 k = Qk,(16.8.2)

as in the first part of the proof of III on p9 of [15].
If (16.8.2) does not hold, then S−1 k is not a field. This would imply that

there is a nonzero maximal proper ideal I1 in S−1 k. Observe that

x 6∈ I1,(16.8.3)

because x is invertible in S−1 k. It follows that

I0 6⊆ I1 ∩ k.(16.8.4)

Note that I1 is a prime ideal in S−1 k, which implies that I1 ∩ k is a prime
ideal in k. Because I1 6= {0}, there is an element of I1 of the form y/xn, where
y ∈ k, y 6= 0, and n is a nonnegative integer. It follows that y ∈ I1 ∩ k, so that
I1 ∩ k 6= {0}. This contradicts the fact that I0 is the unique nonzero proper
prime ideal in k.

Alternatively, if z ∈ k and z 6= 0, then we would like to show that there is a
y ∈ k such that

y z = xn(16.8.5)

for some nonnegative integer n. This is clear when z is invertible in k, and so we
may suppose that z is not invertible in k, so that the ideal I(z) in k generated
by z is a proper ideal in k. Remember that the radical r(I(z)) of I(z) in k is
equal to the intersection of all of the prime ideals in k that contain I(z), as in
Section 12.10. This means that

r(I(z)) = I0,(16.8.6)

because I(z) is a nonzero proper ideal in k, and I0 is the unique nonzero proper
prime ideal in k. It follows that

x ∈ r(I(z)),(16.8.7)

so that (16.8.5) holds for some y ∈ k and n ≥ 0.
Equivalently,

1/z = y/xn ∈ S−1 k.(16.8.8)

This implies (16.8.2). Note that the previous argument for (16.8.2) implies that
1/z can be expresed as in (16.8.8), so that (16.8.5) holds for some y ∈ k and
n ≥ 0.
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16.9 Using powers in the denominator

Let us return to the same notation and hypotheses as in Section 16.7. Thus k
is an integral domain that is a local ring and not a field, with unique maximal
proper ideal I0 6= {0}, as in the previous section as well. We would like to show
that if k is Noetherian and has dimension one, then

(k : I0)Qk
6= k,(16.9.1)

as in statement III on p8 of [15]. More precisely, the hypothesis that k be
Noetherian is only used here to get that I0 be finitely generated as an ideal in
k. Remember that k is automatically contained in (k : I0)Qk

, so that (16.9.1)
is the same as saying that (k : I0)Qk

is not contained in k.
Let z ∈ k with z 6= 0 be given, and let I(z) be the ideal in k generated by

z. If x ∈ I0, then
xn ∈ I(z)(16.9.2)

for some positive integer n, as in the previous section. Of course, this uses
the hypothesis that k have dimension one. Equivalently, I0 is contained in the
radical r(I(z)) of I(z). If I0 is finitely generated as an ideal in k, then it follows
that

Im0 ⊆ I(z)(16.9.3)

for some positive integer m, as in Section 14.7.
Let us now take z ∈ I0, with z 6= 0. Remember that I0 6= {0}, by hypothesis.

Let m be the smallest positive integer such that (16.9.3) holds. This implies
that

Im−1
0 6⊆ I(z),(16.9.4)

where I0
0 is interpreted as being equal to k, as usual. Note that I(z) ⊆ I0, so

that (16.9.4) holds automatically when m = 1.
Let y be an element of Im−1

0 that is not in I(z). Observe that

y I0 ⊆ Im0 ⊆ I(z),(16.9.5)

by (16.9.3). This means that

(y/z) I0 ⊆ k,(16.9.6)

so that
y/z ∈ (k : I0)Qk

.(16.9.7)

However, y/z 6∈ k, because y 6∈ I(z). This implies (16.9.1), as desired.

16.10 Fractions and integral elements

Let k1 be a commutative ring with a multiplicative identity element 1 = 1k1 , and
let k be a subring of k1 that contains 1k1 . Also let S be a multiplicatively closed
set in k, as in Section 12.1. Note that S may be considered as a multiplicatively
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closed set in k1 as well. Thus S−1 k and S−1 k1 may be defined as in Section
12.1.

The obvious inclusion mapping from k into k1 leads to a ring homomorphism
from S−1 k into S−1 k1 in a natural way, as in Section 12.11. The induced ho-
momorphism from S−1 k into S−1 k1 is injective, because the inclusion mapping
from k into k1 is injective, as before. Equivalently, if x ∈ k and r ∈ S, then
x/r = 0 in S−1 k if and only if this holds in S−1 k1, which can also be verified
directly. Thus we may identify S−1 k with a subring of S−1 k1.

Suppose that x ∈ k1 is integral over k, so that

xn + a1 x
n−1 + · · ·+ an−1 x+ an = 0(16.10.1)

in k1 for some positive integer n and a1, . . . , an ∈ k. If r ∈ S, then we get that

(x/r)n + (a1/r) (x/r)
n−1 + · · ·+ (an−1/r

n−1) (x/r) + (an/r
n) = 0(16.10.2)

in S−1 k. This implies that

x/r ∈ S−1 k1 is integral over S−1 k.(16.10.3)

In particular, if k1 is integral over k, then

S−1 k1 is integral over S−1 k,(16.10.4)

as in the second part of Proposition 5.6 on p61 of [1]. This also corresponds to
part of the remark on p10 of [15].

Conversely, suppose that (16.10.3) holds for some x ∈ k1 and r ∈ S. This
means that

(x/r)n + (a1/r1) (x/r)
n−1 + · · ·+ (an−1/rn−1) (x/r) + (an/rn) = 0(16.10.5)

for some positiove integer n, a1, . . . , an ∈ k, and r1, . . . , rn ∈ S. Put

t = r1 r2 · · · rn ∈ S,(16.10.6)

and observe that
y = x t ∈ k1 is integral over k.(16.10.7)

Thus
x/r = y/(r t),(16.10.8)

with r t ∈ S.
Let C be the integral closure of k in k1, as in Section 16.5, so that C is a

subring of k1 that contains k. We may identify S−1 C with a subring of S−1 k1
that contains S−1 k, as before. Using (16.10.8), we get that

x/r ∈ S−1 C.(16.10.9)

Note that S−1 C is integral over S−1 k, as in (16.10.4). It follows that

S−1 C is the integral closure of S−1 k in S−1 k1.(16.10.10)

This is Proposition 5.12 on p62 of [1]. This corresponds to the remark on p10
of [15] as well.
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16.11 More on fractions, integral elements

Let k be an integral domain, let Qk be the corresponding field of fractions, and
let C be the integral closure of k in Qk. Also let S be a multiplicatively closed
set in k, with 0 6∈ S, so that S−1 k may be identified with a subring of Qk, as
in Section 14.2. Similarly, S−1 C may be identified with a subring of Qk, which
is the integral closure of S−1 k in Qk, as in (16.10.10). Of course, S−1Qk may
be identified with Qk, and Qk may be identified with the field of fractions of
S−1 k.

In particular,

if k is integrally closed, then S−1 k is integrally closed.(16.11.1)

This reduces to the fact that S−1 C = S−1 k when C = k. This corresponds to
part of the proof of Proposition 5.13 on p63 of [1].

Let ϕ be the obvious inclusion mapping from k into C, and let Φ be the obvi-
ous inclusion mapping from S−1 k into S−1 C. These are ring homomorphisms,
and one may consider Φ as corresponding to ϕ as in Section 12.11.

Let W be C, considered as a module over k. We can define S−1W as a
module over S−1 k, as in Section 12.2. We may also consider S−1 C as a module
over S−1 k, because S−1 k is a subring of S−1 C. This corresponds exactly to
S−1W , as a module over S−1 k, as in Section 12.11.

Similarly, let V be k, considered as a module over itself. We can define S−1 V
as a module over S−1 k as in Section 12.2 again. This corresponds exactly to
S−1 k as a module over itself, as before.

Let f be the obvious inclusion mapping from V into W , as modules over k.
This leads to a homomorphism S−1 f from S−1 V into S−1W , as modules over
S−1 k, as in Section 12.2. It is easy to see that S−1 f corresponds exactly to Φ,
with respect to the identifications of S−1 V and S−1W with S−1 k and S−1 C,
respectively, mentioned in the previous two paragraphs.

If I is a proper prime ideal in k, then SI = k \ I is a multiplicatively closed
subset of k that does not contain 0, as in Section 12.4. In particular, this holds
when I is a proper maximal ideal in I.

Suppose that

S−1
I k is integrally closed(16.11.2)

for every maximal proper ideal I in k. This is the same as saying that

S−1
I k = S−1

I C(16.11.3)

for every maximal proper ideal I in k, because S−1
I C corresponds to the integral

closure of S−1
I k in Qk, as before. Equivalently, this means that S−1

I f maps
S−1
I V onto S−1

I W for every maximal proper ideal I in k, by the earlier remarks.

Under these conditions, f maps V onto W , as in Section 12.4. This means
that k = C, so that k is integrally closed. This is part of Proposition 5.13 on
p63 of [1].
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Essentially the same point is addressed in the proof that (i) implies (ii) in
Proposition 4 on p10 of [15]. Suppose that (16.11.2) holds for every maximal
proper ideal I in k again, and let w ∈ C be given. This implies that

w ∈ S−1
I C = S−1

I k(16.11.4)

for every maximal proper ideal I in k.
Observe that

{x ∈ k : xw ∈ k}(16.11.5)

is an ideal in k. If I is a maximal proper ideal in k, then (16.11.4) implies
that there is an element of k \ I in (16.11.5). This means that (16.11.5) is not
contained in I. It follows that (16.11.5) is equal to k, so that w ∈ k.

16.12 Dedekind domains and integral elements

Let k be a Noetherian integral domain. If I is a proper prime ideal in k, then
SI = k \ {0} is a multiplicatively closed set in k that does not contain 0, as
before. Remember that k is a Dedekind domain if for every maximal proper
ideal I 6= {0} in k,

kI = S−1
I k is a discrete valuation ring,(16.12.1)

as in Section 15.11. This implies that k has dimension less than or equal to one,
in the sense of Section 14.8, as before. More precisely, the formulation on p95
of [1] also asks that k not be a field, which would imply that k have dimension
equal to 0.

Note that (16.12.1) implies that

kI is integrally closed,(16.12.2)

as in Section 16.3. Of course, I = {0} is a maximal proper ideal in k if and only
if k is a field, in which case k is obviously integrally closed. If k is a Dedekind
domain, then it follows that k is integrally closed, as in the previous section.
This corresponds to parts of Theorem 9.3 on p95 of [1], and Proposition 4 on
p10 of [15].

Conversely, suppose that k has dimension less than or equal to one, and that
k is integrally closed. Let I 6= {0} be a maximal proper ideal in k, and observe
that (16.12.2) holds, as in (16.11.1). We also have that kI is a Noetherian
integral domain, as in Sections 14.2 and 14.6. Remember that kI is a local ring
too, as in Section 12.4. It is easy to see that the unique maximal proper ideal
in kI is nonzero, because I 6= {0}.

Under these conditions, k is not a field, because I 6= {0}, so that k has
dimension one. Remember that there is a one-to-one correspondence between
the set of prime ideals in k that are contained in I and the set of proper prime
ideals in kI , as mentioned at the end of Section 12.13. It follows that kI has
dimension one as well.



16.13. FIELDS, QUOTIENTS, AND INTEGRAL ELEMENTS 407

Observe that (16.12.2) holds, because k is integrally closed, by hypothesis,
as in (16.11.1). It follows that (16.12.1) holds, as in Section 16.6. This means
that k is a Dedekind domain, as in Section 15.11. This corresponds to other
parts of Theorem 9.3 on p95 of [1], and Proposition 4 on p10 of [15].

16.13 Fields, quotients, and integral elements

Let k1, k2 be commutative rings with multiplicative identity elements 1k1 , 1k2 ,
respectively, and let k be a subring of k1 that contains 1k1 . Also let ϕ be a ring
homomorphism from k1 onto k2, so that ϕ(1k1) = 1k2 , and ϕ(k) is a subring of
k2 that contains 1k2 . If x ∈ k1 is integral over k, then it is easy to see that

ϕ(x) is integral over ϕ(k) in k2.(16.13.1)

If k1 is integral over k, then it follows that

k2 is integral over ϕ(k).(16.13.2)

This corresponds to the first part of Proposition 5.6 on p61 of [1].
Suppose now that k1 is an integral domain, and that k is a subring of k that

contains 1k1 again. If k1 is integral over k, then

k is a field if and only if k1 is a field.(16.13.3)

This is Proposition 5.7 on p61 of [1].
Suppose first that k is a field, and let y ∈ k1 be given, with y 6= 0. Because

y is integral over k, by hypothesis, we have that

yn + a1 y
n−1 + · · ·+ an−1 y + an = 0(16.13.4)

for some positive integer n and a1, . . . , an ∈ k. This implies that

y (yn−1 + a1 y
n−2 + · · ·+ an−1) = −an.(16.13.5)

We may as well take n to be as small as possible, so that

yn−1 + a1 y
n−2 + · · ·+ an−1 6= 0.(16.13.6)

This means that an 6= 0, because k1 is an integral domain, by hypothesis. It
follows that an is invertible in k, and thus in k1, because k is a field. This
implies that y is invertible in k1, with

y−1 = −a−1
n (yn−1 + a1 y

n−2 + · · ·+ an−1),(16.13.7)

as desired.
Conversely, suppose that k1 is a field, and let x ∈ k be given, with x 6= 0.

Under these conditions, x is invertible in k1, and x−1 is integral over k. This
means that

x−m + c1 x
1−m + · · ·+ cm−1 x

−1 + cm = 0(16.13.8)
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for some positive integer m and c1, . . . , cm ∈ k. We can multiply both side by
xm−1, to get that

x−1 = −c1 − · · · − cm−1 x
m−2 − cm x

m−1.(16.13.9)

This implies that x−1 ∈ k, as desired.

16.14 Two corollaries, and another argument

Let k1 be a commutative ring with a multiplicative identity element 1 = 1k1 ,
let k be a subring of k that contains 1k1 , and suppose that k1 is integral over k.
Suppose for the moment that I1 is a proper prime ideal in k1, and note that

I = I1 ∩ k(16.14.1)

is a proper prime ideal in k. Under these conditions,

I1 is a maximal proper ideal in k1 if and only if(16.14.2)

I is a maximal proper ideal in k,

as in Corollary 5.8 on p61 of [1].
To see this, put k2 = k1/I1, and let ϕ be the natural quotient homomorphism

from k1 onto k2. Of course, ϕ(k) may be identified with k/I, and k2 is an integral
domain. We also have that k2 is integral over ϕ(k), because k1 is integral over
k, as in (16.13.2). It follows that k2 is a field if and only if ϕ(k) is a field, as in
(16.13.3). This is equivalent to (16.14.2), as desired.

Suppose now that I1, I ′
1 are proper prime ideals in k1 such that

I1 ⊆ I ′
1.(16.14.3)

If
I1 ∩ k = I ′

1 ∩ k,(16.14.4)

then
I1 = I ′

1.(16.14.5)

This is Corollary 5.9 on p61 of [1], which corresponds to Lemma 2 on p14 of
[15].

Let us begin with the proof in [1]. Let I be as in (16.14.4), which is a proper
prime ideal in k. Thus S = k \ I is a multiplicatively closed set in k, as in
Section 12.4. We may also consider S as a multiplicatively closed set in k1, so
that S−1 k and S−1 k1 may be defined as commutative rings as in Section 12.1.
We may identify S−1 k with a subring of S−1 k1, as in Section 16.10.

Remember that S−1 I may be considered as an ideal in S−1 k, and similarly
S−1 I1, S−1 I ′

1 may be considered as ideals in S−1 k1, as in Section 12.13. We
have seen that S−1 I is the same as the extension of I with respect to the
natural ring homomorphism x 7→ x/1 from k into S−1 k, and similarly S−1 I1,
S−1 I ′

1 are the same as the extensions of I1, I ′
1 with respect to the natural ring
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homomorphism from k1 in S−1 k1, respectively. We also have that S−1 k is a
local ring, with S−1 I as its unique maximal proper ideal, as in Section 12.4.

Of course,
S−1 I1 ⊆ S−1 I ′

1,(16.14.6)

because of (16.14.3). One can check that

(S−1 I1) ∩ (S−1 k) = S−1 I,(16.14.7)

because I = I1 ∩ k, by construction. More precisely, it is easy to see that

S−1 I ⊆ (S−1 I1) ∩ (S−1 k),(16.14.8)

and one can verify that

(S−1 I1) ∩ (S−1 k) ⊆ S−1 I(16.14.9)

too. Similarly,
(S−1 I ′

1) ∩ (S−1 k) = S−1 I.(16.14.10)

Note that I1 and I ′
1 are disjoint from S, because I is as in (16.14.4). This

implies that S−1 I1, S−1 I ′
1 6= S−1 k1, as in Section 12.13. In fact, S−1 I1 and

S−1 I ′
1 are proper prime ideals in S−1 k1, as before.

We also have that S−1 k1 is integral over S−1 k, because k1 is integral over k,
by hypothesis, as in Section 16.10. It follows that S−1 I1, S−1 I ′

1 are maximal
proper ideals in S−1 k1, because S

−1 I is a maximal proper ideal in S−1 k, as
in (16.14.2). This implies that

S−1 I1 = S−1 I ′
1,(16.14.11)

by (16.14.6). We can get (16.14.5) from (16.14.11), because I1 and I ′
1 are prime

ideals in k1 that are disjoint from S, as in Section 12.13.
Alternatively, let ϕ be the natural quotient homomorphism from k1 onto

k2 = k1/I1 again. Thus k2 is an integral domain that it integral over ϕ(k), as
before. Suppose for the sake of a contradiction that (16.14.5) does not hold,
and let x be an element of I ′

1 that is not in I1, so that ϕ(x) 6= 0. Note that
ϕ(x) is integral over ϕ(x), which means that

ϕ(x)n + a1 ϕ(x)
n−1 + · · ·+ an−1 ϕ(x) + an = 0(16.14.12)

for some positive integer n and a1, . . . , an ∈ ϕ(k). If we take n to be as small as
possible, then we get that an 6= 0, because k2 is an integral domain, as in the
previous section.

Of course, ϕ(I ′
1) is an ideal in k2. It is easy to see that an ∈ ϕ(I ′

1), because
of (16.14.12). Thus there are y ∈ k and z ∈ I ′

1 such that

an = ϕ(y) = ϕ(z).(16.14.13)

In particular, ϕ(y − z) = 0, so that y − z ∈ I1. It follows that y ∈ I ′
1, because

of (16.14.3). This means that y ∈ I ′
1 ∩ k, so that y ∈ I1 ∩ k, by (16.14.4). This

implies that ϕ(y) = 0, contradicting the fact that an 6= 0. This corresponds to
the proof of Lemma 2 on p14 of [15].
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16.15 Getting prime ideals in k1

Let k1 be a commutative ring with a multiplicative identity element 1 = 1k1
again, let k be a subring of k that contains 1k1 , and suppose that k1 is integral
over k. If I is a proper prime ideal in k, then there is a proper prime ideal I1
in k1 such that

I1 ∩ k = I.(16.15.1)

This is Theorem 5.10 on p62 of [1].
As in the previous section, S = k \ I is a multiplicatively closed set in k,

which may be considered as a multiplicatively closed set in k1 as well. Thus
S−1 k and S−1 k1 may be defined as commutative rings, and we may identify
S−1k with a subring of S−1 k1, as before. We also have that S−1 k1 is integral
over S−1 k, because k1 is integral over k, as in Section 16.10.

Let α, α1 be the natural ring homomorphisms from k, k1 into S−1 k, S−1 k1,
respectively. The composition of α with the inclusion mapping from S−1 k into
S−1 k1 is equal to the composition of the obvious inclusion mapping from k into
k1 with α1, as on p62 of [1]. This corresponds to some remarks in Sections 12.11
and 16.10.

Let I2 be a maximal proper ideal in S−1 k1. Observe that

I2 ∩ (S−1 k)(16.15.2)

is a maximal proper ideal in S−1 k, as in (16.14.2). Remember that S−1 k is a
local ring, with S−1 I as its unique maximal proper ideal, as in Section 12.4.
Thus

I2 ∩ (S−1 k) = S−1 I.(16.15.3)

We also have that

I1 = α−1
1 (I2)(16.15.4)

is a proper prime ideal in k1 because I2 is a proper prime ideal in S−1 k1, as in
Section 12.13. More precisely,

I1 ∩ S = ∅,(16.15.5)

as before. This means that I1 ∩ k is disjoint from S, so that

I1 ∩ k ⊆ I.(16.15.6)

In fact,

I1 ∩ k = α−1
1 (I2) ∩ k = α−1(I2 ∩ (S−1 k)) = α−1(S−1 I),(16.15.7)

using the earlier remarks about α and α1 in the second step, and (16.15.3) in
the third step. This implies that I ⊆ I1 ∩ k, so that (16.15.1) holds.

Suppose now that

Ik,1 ⊆ Ik,2 ⊆ · · · ⊆ Ik,n(16.15.8)
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is a chain of proper prime ideals in k for some positive integer n,

Ik1,1 ⊆ Ik1,2 ⊆ · · · ⊆ Ik1,m(16.15.9)

is a chain of proper prime ideals in k1 for some positive integer m < n, and

Ik1,j ∩ k = Ik,j(16.15.10)

for each j = 1, . . . ,m. Under these conditions, (16.15.9) can be extended to a
chain

Ik1,1 ⊆ Ik1,2 ⊆ · · · ⊆ Ik1,n(16.15.11)

of proper prime ideals in k1 that satisfies (16.15.10) for each j = 1, . . . , n. This
is Theorem 5.11 on p62 of [1], which is called the “going-up theorem”.

To see this, we can use induction to reduce to the case where m = 1 and
n = 2. Put

k2 = k1/Ik1,1,(16.15.12)

and let ϕ be the natural quotient homomorphism from k1 onto k2. Note that
ϕ(k) is isomorphic to k/Ik,1 as a ring, and that k2 is integral over ϕ(k), because
k1 is integral over k, as in Section 16.13. It is easy to see that ϕ(Ik,2) is a
proper prime ideal in ϕ(k), because Ik,2 is a proper prime ideal in k, and Ik,1
is contained in Ik,2.

It follows that there is a proper prime ideal Ik2,2 in k2 such that

Ik2,2 ∩ ϕ(k) = ϕ(Ik,2),(16.15.13)

as in (16.15.1). Put
Ik1,2 = ϕ−1(Ik2,2),(16.15.14)

which is a proper prime ideal in k1 that contains Ik1,1. We also have that

Ik1,2 ∩ k = ϕ−1(Ik2,2) ∩ k = ϕ−1(Ik2,2 ∩ ϕ(k)) ∩ k(16.15.15)

= ϕ−1(ϕ(Ik,2)) ∩ k = Ik,2,

using the fact that Ik,1 is contained in Ik,2 in the last step.
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Chapter 17

Some properties of ideals

17.1 Sums, products, and intersections

Let k be a commutative ring with a multiplicative identity element, and let I1,
I2, and I3 be ideals in k. Of course,

I1 + I2 = {x1 + x2 : x1 ∈ I1, x2 ∈ I2}(17.1.1)

is an ideal in k as well.
Remember that the product I1 I2 is the ideal in k generated by products of

elements of I1 and I2, as in Section 12.8. It is easy to see that the distributive
law

I1 (I2 + I3) = I1 I2 + I1 I3(17.1.2)

holds, as on p6 of [1].
Note that

I1 ∩ I2 + I1 ∩ I3 ⊆ I1 ∩ (I2 + I3).(17.1.3)

If

I2 ⊆ I1 or I3 ⊆ I1,(17.1.4)

then one can check that

I1 ∩ (I2 + I3) = I1 ∩ I2 + I1 ∩ I3.(17.1.5)

This is the modular law mentioned on p6 of [1]. This corresponds to the modular
identity in a lattice, as in Exercise 10 on p376 of [2], and L5 on p479 of [12].

We also have that

(I1 + I2) (I1 ∩ I2) = I1 (I1 ∩ I2) + I2 (I1 ∩ I2) ⊆ I1 I2,(17.1.6)

as on p6 of [1]. Remember that I1 I2 ⊆ I1 ∩ I2, as in Section 12.8. If

I1 + I2 = k,(17.1.7)

413
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then we get that

I1 ∩ I2 = I1 I2,(17.1.8)

as on p6 of [1].
If (17.1.7) holds, then I1 and I2 are said to be coprime or comaximal as

ideals in k, as on p7 of [1]. Equivalently, this means that there are x1 ∈ I1 and
x2 ∈ I2 such that

x1 + x2 = 1.(17.1.9)

Remember that the radical r(I) of an ideal I in k is defined in Section 12.10,
and that I ⊆ r(I) automatically. If I1 and I2 are coprime in k, then it follows
that their radicals r(I1) and r(I2) are coprime in k as well.

Conversely, if r(I1) and r(I2) are coprime in k, then I1 and I2 are coprime
in k, as in Proposition 1.16 on p9 of [1]. To see this, remember that

r(I1 + I2) = r(r(I1) + r(I2)),(17.1.10)

as in Section 12.10. If r(I1) and r(I2) are coprime in k, then we get that

r(I1 + I2) = k.(17.1.11)

This implies (17.1.7), as in Section 12.10.

17.2 Finitely many ideals

Let k be a commutative ring with a multiplicative identity element, and let
I1, . . . , In be finitely many ideals in k. If

Ij and Il are coprime when j 6= l,(17.2.1)

then
n∏
j=1

Ij =
n⋂
j=1

Ij ,(17.2.2)

as in the first part of Proposition 1.10 on p7 of [1]. Of course, then n = 2 case
corresponds to (17.1.8).

Suppose that n > 2, and that the analogous statement holds for n− 1. Put

I =

n−1∏
j=1

Ij =
n−1⋂
j=1

Ij .(17.2.3)

Because

Ij + In = k(17.2.4)

for each j = 1, . . . , n − 1, by (17.2.1), there are xj ∈ Ij and yj ∈ In for each
j = 1, . . . , n− 1 such that

xj + yj = 1.(17.2.5)
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This implies that

n−1∏
j=1

xj =

n−1∏
j=1

(1− yj) = 1 + an element of In.(17.2.6)

Note that the left side is an element of I.
It follows that

I + In = k,(17.2.7)

as in the previous section. Thus

n∏
j=1

Ij = I In = I ∩ In =

n⋂
j=1

Ij ,(17.2.8)

using the n = 2 case in the second step.
Let qj be the natural homomorphism from k onto the quotient ring k/Ij for

each j = 1, . . . , n. Using these homomorphisms, we get a ring homomorphism
ϕ from k into the Cartesian product

n∏
j=1

(k/Ij).(17.2.9)

The second part of Proposition 1.10 on p7 of [1] says that

ϕ is surjective(17.2.10)

if and only if (17.2.1) holds.
If (17.2.10) holds, then for each j = 1, . . . , n there is an xj ∈ k such that

qj(xj) = 1 in k/Ij , and ql(xj) = 0 in k/Il when j 6= l. This means that
1− xj ∈ Ij , and xl ∈ Il when j 6= l. It follows that

1 ∈ Ij + Il(17.2.11)

when j 6= l, so that (17.2.1) holds.
Conversely, suppose that (17.2.1) holds. If j 6= l, then there are uj,l ∈ Ij

and vj,l ∈ Il such that
uj,l + vj,l = 1,(17.2.12)

because Ij + Il = k. Let xj be the product of vj,l over l = 1, . . . , n with j 6= l.
This is the same as the product of (1 − uj,l) over l = 1, . . . , n with j 6= l. It
follows that

xj = 1 + an element of Ij(17.2.13)

for each j = 1, . . . , n, so that qj(xj) = 1 in k/Ij . We also have that xj ∈ Il
when j 6= l, so that ql(xj) = 0. One can use this to get that (17.2.10) holds, as
desired.

Of course,

kerϕ =

n⋂
j=1

In,(17.2.14)

by construction. Thus ϕ is injective if and only if
⋂n
j=1 Ij = {0}, as in the third

part of Proposition 1.10 on p7 of [1].
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17.3 Finite unions and intersections

Let k be a commutative ring with a multiplicative identity element, and let
I1, . . . , In be finitely many prime ideals in k. If I is an ideal in k such that

I ⊆
n⋃
j=1

Ij ,(17.3.1)

then

I ⊆ Ij(17.3.2)

for some j. This is the first part of Proposition 1.11 on p8 of [1].
Equivalently, suppose that

I 6⊆ Ij(17.3.3)

for each j = 1, . . . , n. Under these conditions, we would like to show that

I 6⊆
n⋃
j=1

Ij .(17.3.4)

Of course, this is clear when n = 1. Suppose now that n > 1, and that the
analogous statement holds for n− 1.

Using the induction hypothesis, we get that for each l = 1, . . . , n there is an
xl ∈ I such that

xl 6∈ Ij(17.3.5)

when j 6= l. If xl 6∈ Il for some l, then (17.3.3) holds, as desired. Otherwise, we
have that

xl ∈ Il(17.3.6)

for each l = 1, . . . , n.
Put

yl = x1 x2 · · · xl−2 xl−1 xl+1 xl+2 · · ·xn,(17.3.7)

for each l = 1, . . . , n, which is to say the product of the xj ’s, 1 ≤ j ≤ n, except
for j = l. Observe that yl ∈ I, and that yl ∈ Ij when j 6= l, because of (17.3.6).
We also have that yl 6∈ Il, because of (17.3.5), and because Il is a prime ideal.

It follows that

y =

n∑
l=1

yl(17.3.8)

is an element of I that is not in Ir for any r = 1, . . . , n. This implies (17.3.4),
as desired.

Now let I1, . . . , In be finitely many ideals in k, and let I be a prime ideal in
k. If

n⋂
j=1

Ij ⊆ I,(17.3.9)
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then
Il ⊆ I(17.3.10)

for some l. In particular, if

I =

n⋂
j=1

Ij ,(17.3.11)

then
I = Il(17.3.12)

for some l. This is the second part of Proposition 1.11 on p8 of [1].
To see this, suppose that Il 6⊆ I for any l. Thus, for each l = 1, . . . , n, there

is an xl ∈ Il such that xl 6∈ I. This implies that

n∏
l=1

xl ∈
n∏
l=1

Il ⊆
n⋂
j=1

Ij ,(17.3.13)

and that
n∏
l=1

xl 6∈ I,(17.3.14)

because I is a prime ideal. It follows that (17.3.9) does not hold.
If (17.3.11) holds, then (17.3.10) implies (17.3.12), because I ⊆ Il automat-

ically.

17.4 Irreducible ideals

Let k be a commutative ring with a multiplicative identity element, and let I
be an ideal in k. Suppose that if I1, I2 are ideals in k such that

I = I1 ∩ I2,(17.4.1)

then
I = I1 or I2.(17.4.2)

Under these conditions, I is said to be irreducible as an ideal in k. Note that
prime ideals in k are irreducible, as in the previous section.

If k is Noetherian, then

every ideal in k may be expressed as the intersection(17.4.3)

of finitely many irreducible ideals in k,

as in Lemma 7.11 on p83 of [1]. Indeed, suppose for the sake of a contradiction
that there are ideals in k that cannot be expressed as the intersection of finitely
many irreducible ideals. Because k is Noetherian, there is an ideal I in k that
cannot be expressed as the intersection of finitely many irreducible ideals in k,
and which is maximal with respect to this property. In particular, I is reducible
in k, in the sense that there are ideals I1 and I2 in k such that (17.4.1) holds,
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and (17.4.2) does not hold. It follows that I is a proper subset of each of I1
and I2.

The maximality of I implies that each of I1 and I2 may be expressed as
the intersection of finitely many irreducible ideals in k. This means that I may
be expressed as the intersection of finitely many irreducible ideals in k, because
of (17.4.1). This contradicts the hypothesis that I cannot be expressed in this
way, as desired.

If I is an irreducible ideal in k, I 6= k, and k is Noetherian, then

I is a primary ideal in k,(17.4.4)

as in Lemma 7.12 on p83 of [1]. Remember that I is a primary ideal in k if and
only if k/I 6= {0}, and every zero-divisor in k/I is nilpotent, as in Section 14.5.
It is easy to see that I is irreducible in k if and only if {0} is irreducible in k/I.

If k is Noetherian, then k/I is Noetherian too, as in Proposition 6.6 on p76
of [1]. More precisely, if k is Noetherian as a commutative ring, then k/I is
Noetherian as a module over k, as in Section 9.7. It is easy to see that this
implies that k/I is Noetherian as a commutative ring, because any ideal in k/I
may be considered as a submodule of k/I, as a module over k.

This permits us to reduce the earlier statement to the case where I = {0},
as in [1]. Thus we would like to show that if {0} is irreducible in k, k 6= {0},
and k is Noetherian, then every zero-divisor in k is nilpotent.

Let x ∈ k be a zero-divisor, so that x y = 0 for some y ∈ k with y 6= 0. If
w ∈ k, then let I(w) be the ideal in k generated by w. Remember that the
annihilator Ann(I(w)) of I(w) in k as defined in Section 12.8, and is an ideal
in k. Note that

Ann(I(w)) = {t ∈ k : t w = 0}(17.4.5)

for each ∈ k. It is easy to see that

Ann(I(xn)) ⊆ Ann(I(xn+1))(17.4.6)

for every n ≥ 1.
If k is Noetherian, then there is a positive integer n0 such that

Ann(I(xn)) = Ann(I(xn0))(17.4.7)

for every n ≥ n0. Let us check that

I(xn0) ∩ I(y) = {0}(17.4.8)

in this case. If z ∈ I(y), then x z = 0, because x y = 0, by hypothesis. Suppose
that z ∈ I(xn0) too, so that z = t xn0 for some t ∈ k. Under these conditions,
we get that

t xn0+1 = x z = 0,(17.4.9)

so that t ∈ Ann(I(xn0+1)). This implies that t ∈ Ann(I(xn0)), by (17.4.7). It
follows that z = t xn0 = 0, so that (17.4.8) holds.
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If {0} is irreducible as an ideal in k, then (17.4.8) implies that

I(xn0) = {0},(17.4.10)

because y 6= 0, by hypothesis. This means that xn0 = 0, so that x is nilpotent,
as desired.

17.5 More on primary ideals

Let k be a commutative ring with a multiplicative identity element. Remember
that an ideal I 6= k in k is said to be primary if for every x, y ∈ k with x y ∈ I,
we have that x ∈ I, or yn ∈ I for some positive integer n, as in Section 14.5.
The radical r(I) of I in k was defined in Section 12.10, and we have seen that
r(I) = k if and only if I = k. If I is a primary ideal in k, then r(I) is a proper
prime ideal in k, as in Section 14.5. In this case, if I0 = r(I), then I is said to
be I0-primary, as before.

Let I0 be a proper prime ideal in k, and let I1, . . . , In be finitely many
I0-primary ideals in k. Under these conditions,

I =

n⋂
j=1

Ij is I0-primary in k,(17.5.1)

as in Lemma 4.3 on p51 of [1]. To see this, observe first that

r(I) =
n⋂
j=1

r(Ij) = I0,(17.5.2)

where the first step is as in Section 12.10.
Suppose that x, y ∈ k, x y ∈ I, and y 6∈ I. This implies that y 6∈ Ij for some

j, while x y ∈ Ij . It follows that xn ∈ Ij for some positive integer n, because
Ij is primary. This means that x ∈ r(Ij) = I0. It follows that xm ∈ I for some
positive integer m, because of (17.5.2).

Let I0 be a proper prime ideal in k again, let I be a I0-primary ideal in k,
and let x ∈ k be given. Remember that

(I : x) = {t ∈ k : t x ∈ I}(17.5.3)

is an ideal in k, as in Section 12.8. Note that

I ⊆ (I : x),(17.5.4)

as before. Some properties of (I : x) are mentioned in Lemma 4.4 on p51 of [1],
as follows.

Of course, if x ∈ I, then
(I : x) = k.(17.5.5)

This means that
r((I : x)) = k.(17.5.6)
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More precisely, this works for any ideal I in k.
If x 6∈ I, then

(I : x) is I0-primary in k.(17.5.7)

Let us first check that
(I : x) ⊆ I0(17.5.8)

in this case. If y ∈ (I : x), so that x y ∈ I, then yn ∈ I for some positive integer
n, because x 6∈ I. This means that y ∈ r(I) = I0, as desired. It follows from
this and (17.5.4) that

r((I : x)) = r(I) = I0,(17.5.9)

because r(I0) = I0, as in Section 12.10.
Suppose that y, z ∈ k and y z ∈ (I : x), and let us show that z ∈ (I : x) or

yn ∈ (I : x) for some positive integer n. The second possibility is the same as
saying that y is an element of (17.5.9). Suppose that y 6∈ I0, and let us verify
that z ∈ (I : x). The hypothesis that y z ∈ (I : x) means that x z y ∈ I. This
implies that x z ∈ I, because I is I0-primary, and y 6∈ I0. Thus z ∈ (I : x). It
follows that (I : x) is a primary ideal in k.

If x 6∈ I0, then
(I : x) = I.(17.5.10)

More precisely, one can check that (I : x) ⊆ I in this case, because I is I0-
primary. Note that (17.5.10) implies (17.5.9).

17.6 Primary decompositions

Let k be a commutative ring with a multiplicative identity element, and let I
be a proper ideal in k. A primary decomposition of I is an expression of I as
the intersection of finitely many primary ideals I1, . . . , In in k,

I =

n⋂
j=1

Ij ,(17.6.1)

as on p51 of [1]. If I has a primary decomposition, then one may say that I is
decomposable, as on p52 of [1].

If k is Noetherian, then every proper ideal in k is decomposable, as in Section
17.4. This corresponds to Theorem 7.13 on p83 of [1]. One might consider I = k
as having a primary decomposition, with n = 0 in (17.6.1).

Let I be a proper ideal in k with a primary decomposition as in (17.6.1).
One can reduce to the case where

r(I1), . . . , r(In) are distinct,(17.6.2)

as mentioned on p52 of [1]. More precisely, if some of the Ij ’s have the same
radical, then their intersection is a primary ideal in k with the same radical, as
in the previous section.
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One can also reduce to the case where for each l = 1, . . . , n,⋂
j ̸=l

Ij 6⊆ Il,(17.6.3)

by simply dropping any of the primary ideals that are not needed to get (17.6.1),
as on p52 of [1]. A primary decomposition (17.6.1) that satisfies (17.6.2) and
(17.6.3) is said to be minimal, irredundant, reduced, or normal, etc., as in [1].

Let I be a proper ideal in k with primary decomposition as in (17.6.1)
again. Also let x ∈ k be given, so that (I : x) may be defined as in (17.5.3),
and similarly for (Ij : x). Observe that

(I : x) =

n⋂
j=1

(Ij : x).(17.6.4)

This implies that

r((I : x)) =

n⋂
j=1

r((Ij : x)),(17.6.5)

as in Section 12.10.
If x ∈ Ij for some j, then (Ij : x) = k, so that r((Ij : x)) = k, as in the

previous section. Similarly, if x ∈ I, then (I : x) = k, and r((I : x)) = k. If
x 6∈ I, then

r((I : x)) =
⋂

{r((Ij : x)) : 1 ≤ j ≤ n, x 6∈ Ij}(17.6.6)

=
⋂

{r(Ij) : 1 ≤ j ≤ n, x 6∈ Ij},

using (17.6.5) in the first step, and (17.5.9) in the second step.
If r((I : x)) is a proper prime ideal in k, then it follows that x 6∈ I, and that

r((I : x)) = r(Il) for some l,(17.6.7)

1 ≤ l ≤ n, as in Section 17.3. Conversely, if 1 ≤ l ≤ n and (17.6.3) holds, then
there is an element xl of (⋂

j ̸=l

Ij
)
\ Il.(17.6.8)

Under these conditions, we get that

r((I : xl)) =

n⋂
j=1

r((Ij : x)) = r(Il),(17.6.9)

by (17.6.6).
If (17.6.1) is a minimal primary decomposition of I, then we get that

r(I1), . . . , r(In)(17.6.10)
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are the same as the proper prime ideals in k of the form r((I : x)) for some
x ∈ k. In particular, the collection of these proper prime ideals in k does not
depend on the minimal primary decomposition (17.6.1) of I. This is Theorem
4.5 on p52 of [1], which is the first uniqueness theorem for minimal primary
decompositions.

If xl is an element of (17.6.8), then

(I : xl) = (Il : xl),(17.6.11)

by (17.6.4), and because (Ij : xl) = k when j 6= l, as before. Note that (17.6.11)
is r(Il)-primary in k, as in (17.5.7). This corresponds to the first remark on p52
of [1].

17.7 More on primary decompositions

Let k be a commutative ring with a multiplicative identity element, let I be a
proper ideal in k, and suppose that (17.6.1) is a minimal primary decomposition
of I in k. The prime ideals r(Ij), 1 ≤ j ≤ n, are said to belong to I or be
associated with I, as on p52 of [1]. Note that

I ⊆ Il ⊆ r(Il)(17.7.1)

for each l = 1, . . . , n.
The prime ideals among those in (17.6.10) that are minimal with respect

to inclusion are called the minimal or isolated prime ideals belonging to I, as
on p52 of [1]. The other prime ideals among those in (17.6.10) are called the
embedded prime ideals belonging to I.

Suppose that I0 is a proper prime ideal in k such that

I ⊆ I0.(17.7.2)

This means that
n⋂
j=1

Ij ⊆ I0,(17.7.3)

so that
n⋂
j=1

r(Ij) = r
( n⋂
j=1

Ij
)
⊆ r(I0) = I0,(17.7.4)

using some basic properties of radicals of ideals, as in Section 12.10. This implies
that

r(Il) ⊆ I0(17.7.5)

for some l, as in Section 17.3. It follows that

I0 contains a minimal prime ideal belonging to I,(17.7.6)

because r(Il) contains a minimal prime ideal belonging to I. This is the first
part of Proposition 4.6 on p52 of [1].
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Consider

the set of all proper prime ideals in k that contain I.(17.7.7)

Using (17.7.6), we get that every minimal element of (17.7.7) is a minimal prime
ideal belonging to I. Conversely, we also get that every minimal prime ideal
belonging to I is a minimal element of (17.7.7). Thus the minimal prime ideals
belonging to I are the same as the proper prime ideals in k that contain I and
are minimal with respect to inclusion. This is the second part of Proposition
4.6 on p52 of [1].

The first part of Proposition 4.7 on p53 of [1] states that

n⋃
l=1

r(Il) = {x ∈ k : (I : x) 6= I}.(17.7.8)

If x ∈ k is not an element of r(Il) for some l, then

(Il : x) = Il,(17.7.9)

as in (17.5.10). If x is not an element of r(Il) for any l, then it follows that

(I : x) =

n⋂
l=1

(Il : x) =
n⋂
l=1

Il = I,(17.7.10)

using (17.6.4) in the first step. This implies that the right side of (17.7.8) is
contained in the left side. To get equality, we shall reduce to the case where
I = {0}, as in [1], after some preliminary remarks in the next section.

17.8 Surjective ring homomorphisms

Let k and k̃ be commutative rings with multiplicative identity elements 1k, 1k̃,

respectively. Also let ϕ be a ring homomorphism from k onto k̃. which implies
that ϕ(1k) = 1

k̃
. If I is any ideal in k, then it is easy to see that ϕ(I) is an ideal

in k̃. This is the same as the extension of I with respect to ϕ, as in Section
12.7. If Ĩ is an ideal in k̃, then ϕ−1(Ĩ) is an ideal in k, which is the contraction

of Ĩ with respect to ϕ, as before.
If I is an ideal in k, then

ϕ−1(ϕ(I)) = I + kerϕ.(17.8.1)

In particular, if

kerϕ ⊆ I,(17.8.2)

then

I = ϕ−1(ϕ(I)).(17.8.3)
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If Ĩ is an ideal in k̃, then

kerϕ ⊆ ϕ−1(Ĩ),(17.8.4)

and

ϕ(ϕ−1(Ĩ)) = Ĩ.(17.8.5)

It follows that

I 7→ ϕ(I)(17.8.6)

defines a one-to-one mapping fom the set of ideals in k that contain kerϕ onto
the set of ideals in k̃, with inverse given by

Ĩ 7→ ϕ−1(Ĩ).(17.8.7)

This corresponds to Proposition 1.1 on p2 of [1], which is also mentioned on p9
of [1].

Note that ϕ−1(Ĩ) is a proper ideal in k when Ĩ is a proper ideal in k̃. If I
is a proper ideal in k that contains kerϕ, then ϕ(I) is a proper ideal in k̃. If Ĩ
is a prime ideal in k̃, then ϕ−1(Ĩ) is a prime ideal in k, as in Section 12.7. If I
is a prime ideal in k that contains kerϕ, then one can check that

ϕ(I) is a prime ideal in k̃,(17.8.8)

using (17.8.3). This corresponds to a remark on p9 of [1].

If Ĩ is a primary ideal in k̃, then ϕ−1(Ĩ) is a primary ideal in k, as in Section
14.5. If I is a primary ideal in k that contains kerϕ, then one can verify that

ϕ(I) is a primary ideal in k̃,(17.8.9)

using (17.8.3) again. This corresponds to part of a remark near the beginning
of the proof of Proposition 4.7 on p53 of [1].

If Ĩ is an ideal in k̃, then

ϕ−1(r(Ĩ)) = r(ϕ−1(Ĩ)),(17.8.10)

as in Section 12.10. Here r(·) is the radical of an ideal in k or k̃, as appropriate.
If I is an ideal in k, then it is easy to see that

ϕ(r(I)) ⊆ r(ϕ(I)),(17.8.11)

as before. If I contains kerϕ, then one can check that

ϕ(r(I)) = r(ϕ(I)),(17.8.12)

using (17.8.3).
Let I be an ideal in k again, and let x ∈ k be given. It is easy to see that

ϕ((I : x)) ⊆ (ϕ(I) : ϕ(x)),(17.8.13)
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where (I : x) and (ϕ(I) : ϕ(x)) are the ideals in k and k̃, respectively, defined
as in Section 17.5. If I contains kerϕ, then one can verify that

ϕ((I : x)) = (ϕ(I) : ϕ(x)),(17.8.14)

using (17.8.3). Note that
kerϕ ⊆ I ⊆ (I : x)(17.8.15)

when I contains kerϕ. In this case, if x ∈ k, then we get that

(I : x) = I if and only if (ϕ(I) : ϕ(x)) = ϕ(I).(17.8.16)

If A1, A2 are subsets of k, then

ϕ(A1 ∩A2) ⊆ ϕ(A1) ∩ ϕ(A2).(17.8.17)

If A1, A2 are subgroups of k, as a commutative group with respect to addition,
with

kerϕ ⊆ Aj(17.8.18)

for j = 1, 2, then one can check that

ϕ(A1 ∩A2) = ϕ(A1) ∩ ϕ(A2).(17.8.19)

Similarly, if A1, . . . , An are finitely many subgroups of k, as a commutative
group with respect to addition, and if (17.8.18) holds for each j = 1, . . . , n, then

ϕ
( n⋂
j=1

Aj

)
=

n⋂
j=1

ϕ(Aj).(17.8.20)

This could also be obtained from the fact that ϕ−1(ϕ(A)) = A when A is a
subgroup of k, as a commutative group with respect to addition, that contains
kerϕ.

Let I be a proper ideal in k, and let I =
⋂n
j=1 Ij be a primary decomposition

of I in k. Suppose that I contains kerϕ, so that

kerϕ ⊆ Ij(17.8.21)

for each j = 1, . . . , n. This implies that ϕ(I) is a proper ideal in k̃, and that

ϕ(I) =
n⋂
j=1

ϕ(Ij),(17.8.22)

as in (17.8.20). This is a primary decomposition of ϕ(I) in k̃, because ϕ(Ij) is
a primary ideal in k̃ for each j = 1, . . . , n, as in (17.8.9). This corresponds to
another part of a remark near the beginning of the proof of Proposition 4.7 on
p53 of [1].

Note that kerϕ is contained in r(Ij) for each j = 1, . . . , n, by (17.8.21).
Suppose now that I =

⋂n
j=1 Ij is a minimal primary decomposition of I. One
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can check that (17.8.22) is a minimal primary decomposition of ϕ(I) under these
conditions.

The analogue of (17.7.8) for ϕ(I) in k̃ is that

n⋃
l=1

r(ϕ(Il)) = {y ∈ k̃ : (ϕ(I) : y) 6= ϕ(I)}.(17.8.23)

One can verify that this holds if and only if (17.7.8) holds.
In particular, we can take ϕ to be the natural quotient homomorphism from

k onto k̃ = k/I. This permits us to reduce (17.7.8) to the case where I = {0},
as in the proof of Proposition 4.7 on p53 of [1]. This case will be discussed in
Section 17.10.

17.9 Some remarks about zero-divisors

Let k be a commutative ring with a multiplicative identity element, and let D
be the set of zero-divisors in k, which is to say the set of x ∈ k such that x y = 0
for some y ∈ k with y 6= 0. If x ∈ k and I is an ideal in k, then (I : x) is the
set of t ∈ k such that t x ∈ I, which is an ideal in k, as before. In particular,

({0} : x) = {t ∈ k : t x = 0},(17.9.1)

so that
x ∈ D if and only if ({0} : x) 6= {0}.(17.9.2)

Alternatively, ({0} : x) is the same as the annihilator of the ideal in k
generated by x, as in Section 12.8. We also have that

D =
⋃
x ̸=0

({0} : x),(17.9.3)

as on p8 of [1]. More precisely, the union on the right is taken over all x ∈ k
with x 6= 0.

If E is any subset of k, then the radical r(E) of E in k may be defined by

r(E) = {x ∈ k : xn ∈ E for some n ∈ Z+},(17.9.4)

as on p9 of [1]. This is the same as in the definition of the radical of an ideal in
k, as in Section 12.10, although this is not necessarily an ideal in k. It is easy
to see that the radical of a union of a family of subsets of k is the same as the
union of the radicals of the sets, as in [1]. Note that

E ⊆ r(E)(17.9.5)

for any E ⊆ k. We also have that

r(r(E)) = r(E)(17.9.6)
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for every E ⊆ k, as before.
If x ∈ k, then x ∈ r(D) if and only if

xn y = 0(17.9.7)

for some positive integer n and y ∈ k with y 6= 0. We can take n as small as
possible, to get that x ∈ D. This means that

r(D) = D,(17.9.8)

as in the proof of Proposition 1.15 on p9 of [1].
Using (17.9.3) and (17.9.8), we get that

D = r
( ⋃
x ̸=0

({0} : x)
)
=

⋃
x ̸=0

r(({0} : x)).(17.9.9)

This is Proposition 1.15 on p9 of [1].

17.10 Primary decompositions of {0}
Let k be a commutative ring with a nonzero multiplicative identity element,
and suppose that

n⋂
j=1

Ij = {0}(17.10.1)

is a minimal primary decomposition of {0} in k, as in Section 17.6. We would
like to show that

n⋃
l=1

r(Il) = {x ∈ K : ({0} : x) 6= {0}},(17.10.2)

which is the same as (17.7.8), with I = {0}. This will imply (17.7.8) for arbitrary
I, as mentioned near the end of Section 17.8.

Let D be the set of zero-divisors in k, as in the previous section. Observe
that (17.10.2) is equivalent to saying that

n⋃
l=1

r(Il) = D,(17.10.3)

because of (17.9.2). This corresponds to the second part of Proposition 4.7 on
p53 of [1].

If x ∈ k and x 6= 0, then

r(({0} : x)) =
⋂

{r(Ij) : 1 ≤ j ≤ n, x 6∈ Ij},(17.10.4)

as in (17.6.6). In particular, this implies that

r(({0} : x)) ⊆ Ij(17.10.5)
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for some j. It follows that

D ⊆
n⋃
l=1

r(Il),(17.10.6)

because of (17.9.9).
We also have that for each l = 1, . . . , n, there is an xl ∈ k such that

r(Il) = r(({0} : xl)),(17.10.7)

as in Section 17.6. More precisely, xl 6= 0, by the previous argument, or because
r(Il) 6= k. This implies that

n⋃
l=1

r(Il) ⊆ D,(17.10.8)

because of (17.9.9). Thus (17.10.3) holds, by (17.10.6) and (17.10.8).
Remember that the nilradical N of k is the same as the intersection of all the

prime ideals in k, as in Section 12.5. Because of (17.10.1), we can use (17.7.6)
with I = {0} to get that N is equal to the intersection of the minimal prime
ideals belonging to {0}. This corresponds to a remark on p53 of [1].

17.11 Zero-divisors and prime ideals

Let k be a commutative ring with a nonzero multiplicative identity element.
Also let Σ be the collection of all ideals I in k such that every element of I is
a zero-divisor in k, as in Exercise 14 on p12 of [1]. One can check that every
element of Σ is contained in a maximal element of Σ, with respect to inclusion, as
in [1], using Zorn’s lemma or Hausdorff’s maximality principle. More precisely,
one can verify that the union of any nonempty chain of elements of Σ, with
respect to inclusion, is an element of Σ.

If I0 is a maximal element of Σ, then I0 is a prime ideal in k, as in [1].
To see this, suppose that x, y ∈ k, x y ∈ I0, and y 6∈ I0, and let us show that
x ∈ I0. Remember that the set (I0 : x) of t ∈ k such that t x ∈ I0 is an ideal in
k that contains I0. We also have that y ∈ (I0 : x), by hypothesis, so that

I0 6= (I0 : x).(17.11.1)

It follows that there is a z ∈ (I0 : x) such that z is not a zero-divisor in k, by
the maximality of I0.

Let I1 be the ideal in k generated by I0 and x, so that every element of I1
is of the form a+ b x for some a ∈ I0 and b ∈ k. If w ∈ I1, then

w z ∈ I0,(17.11.2)

because x z ∈ I0, by construction. This implies that there is a t ∈ k such that
t 6= 0 and

t w z = 0,(17.11.3)
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because every element of I0 is a zero-divisor in k. Note that t z 6= 0, because z
is not a zero-divisor in k. It follows that w is a zero-divisor in k.

Thus I1 ∈ Σ, which means that I1 = I0, because I0 ⊆ I1 by construction,
and I0 is a maximal element of Σ. This implies that x ∈ I0, as desired.

If x ∈ k is a zero-divisor, then every element of the ideal in k generated by x
is a zero-divisor, so that the ideal in k generated by x is an element of Σ. This
implies that the ideal in k generated by x is contained in a maximal element
of Σ, as before. It follows that the set D of zero-divisors in k is equal to the
union of the maximal elements of Σ. In particular, this shows that D can be
expressed as the union of a family of proper prime ideals in k, as in [1].

17.12 Saturated multiplicatively closed sets

Let k be a commutative ring with a nonzero multiplicative identity element
1k = 1. Note that the set of all non-invertible elements of k is the same as
the usion of all of the proper maximal ideals in k. In particular, this may be
considered as the union of a family of proper prime ideals in k.

Let k1 be another commutative ring with a nonzero multiplicative identity
element 1k1 , and let ϕ be a ring homomorphism from k into k1 such that ϕ(1k) =
1k1 . Remember that the inverse image of a proper prime ideal in k1 under ϕ is
a proper prime ideal in k, as in Section 12.7. This implies that

{x ∈ k : ϕ(x) is not invertible in k1}(17.12.1)

can be expressed as the union of a family of proper prime ideals in k. More
precisely, this is the inverse image under ϕ of the union of a family of proper
prime ideals in k1, as in the preceding paragraph.

Let S be a multiplicatively closed subset of k, as in Section 12.1. We say
that S is saturated if for every x, y ∈ k, we have that

x y ∈ S if and only if x, y ∈ S,(17.12.2)

as in Exercise 7 on p44 of [1]. Note that k may be considered as a saturated
multiplicatively closed subset of itself. If S is a saturated multiplicatively closed
subset of k and 0 ∈ S, then S = k.

Observe that the group of invertible elements of k is a saturated multiplica-
tivaly closed subset of k. If S is any saturated multiplicatively closed subset of
k, then one can verify that S contains the group of invertible elements in k.

It is easy to see that the intersection of any nonempty family of multiplica-
tively closed subsets of k is a multiplicatively closed subset of k. Similarly, the
intersection of any nonempty family of saturated multiplicatively closed subsets
of k is a saturated multiplicatively closed subset of k.

If I is a proper prime ideal in k, then k \I is a multiplicatively closed subset
of k, as in Section 12.4. In fact, one can check that k \ I is saturated. It
follows that the complement in k of the union of a nonempty family of proper
prime ideals is a saturated multiplicatively closed set. This is part of part (i) of
Exercise 7 on p44 of [1].
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Suppose that S is a saturated multiplicatively closed subset of k, and con-
sider the corresponding ring of fractions S−1 k, as in Section 12.1. Let x ∈ k
be given, and note that x/1 has a multiplicative inverse in S−1 k if and only if
there are y ∈ k and t ∈ S such that

(x/1) (y/t) = (x y)/t(17.12.3)

is equal to 1/1 in S−1 k. This happens if and only if there is a v ∈ S such that

t v = x y v,(17.12.4)

as before. Under these conditions, we get that t v ∈ S, and thus that x, y ∈ S,
because S is saturated.

This shows that

S = {x ∈ k : x/1 is invertible in S−1 k}(17.12.5)

in this case. This means that k \S is as in (17.12.1), where ϕ is the natural ring
homomorphism from k into k1 = S−1 k. It follows that k \ S can be expressed
as the union of a family of proper prime ideals in k, as before. This is the other
part of part (i) of Exercise 7 on p44 of [1].

Let D be the set of zero-divisors in k, as before. It is easy to see that the
set

S0 = k \D(17.12.6)

of all non-zero-divisors in k is a multiplicatively closed subset of k. In fact, one
can check that S0 is saturated as a multiplicatively closed subset of k, as in
Exercise 9 on p44 of [1]. Using the remarks in the preceding paragraph, we get
another way to see that

D = k \ S0(17.12.7)

can be expressed as the union of a family of proper prime ideals in k, as in the
previous section. This is another part of Exercise 9 on p44 of [1].

Let S be any multiplicatively closed subset of k, so that the ring S−1 k of
fractions of k with respect to S may be defined as in Section 12.1. Remember
that for each x ∈ k, x/1 = 0 in S−1 k if and only if x t = 0 in k for some t ∈ S.
This implies that the natural ring homomorphism from k into S−1 k is injective
if and only if

S ⊆ S0.(17.12.8)

This corresponds to part (i) of Exercise 9 on p44 of [1]. The ring S−1
0 k is called

the total ring of fractions of k, as in [1].

17.13 Saturations of ideals

Let k be a commutative ring with a multiplicative identity element, and let S be
a multiplicatively closed subset of k, so that the ring S−1 k of fractions of k with
respect to S may be defined as in Section 12.1. If I is an ideal in k, then S−1 I
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is an ideal in S−1 k, as in Section 12.13. This is the same as the extension of I
with respect to the natural ring homomorphism from k into S−1 k, as before.

Let

S(I) = (S−1 I)c(17.13.1)

be the contraction of S−1 I with respect to the natural ring homomorphism
from k into S−1 k, as on p53 of [1]. This is the ideal in k obtained by taking
the inverse image of S−1 I under the natural ring homomorphism from k into
S−1 k, as in Section 12.7. This is the saturation of I in k with respect to S, as
in Exercise 12 on p56 of [1].

Equivalently,

S(I) = {x ∈ k : x/1 ∈ S−1 I}.(17.13.2)

Thus x ∈ k is an element of S(I) if and only if

x/1 = y/t(17.13.3)

for some y ∈ I and t ∈ S. This is the same as saying that

x t v = y v(17.13.4)

for some v ∈ S, as in Section 12.1. It follows that

S(I) = {x ∈ k : x r ∈ I for some r ∈ S}.(17.13.5)

If Ĩ is another ideal in k, then part (i) of Exercise 12 on p56 of [1] states
that

S(I) ∩ S(Ĩ) = S(I ∩ Ĩ).(17.13.6)

This can be verified using (17.13.5), and the fact that S is multiplicatively
closed. Alternatively,

(S−1I) ∩ (S−1Ĩ) = S−1 (I ∩ Ĩ),(17.13.7)

as in Section 12.2. One can get (17.13.6) from (17.13.7) and the analogous
property for contractions of intersections, as in Section 12.9.

Part (ii) of Exercise 12 on p56 of [1] states that

S(r(I)) = r(S(I)).(17.13.8)

This can also be obtained using (17.13.5), or from the analogous statements for
contractions and S−1 I, as in Sections 12.10 and 12.13.

Part (iii) of Exercise 12 on p56 of [1] states that

S(I) = k if and only if I ∩ S 6= ∅.(17.13.9)

One can check this using (17.13.5) again, or the fact that S−1 I = S−1 k if and
only if I intersects S, as in Section 12.13.
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Let S1, S2 be multiplicatively closed subsets of k, so that the set S1 S2 of
products of elements of S1 and S2 is also a multiplicatively closed set in k.
Under these conditions, part (iv) of Exercsie 12 on p56 of [1] states that

S1(S2(I)) = (S1 S2)(I).(17.13.10)

This can be verified using the analogue of (17.13.5) in the various relevant
cases. Alternatively, one can use the ring isomorphism between (S1 S2)

−1 k and
an appropriate ring of fractions of S−1

1 k mentioned in Section 14.1.

17.14 Primary decompositions and fractions

Let k be a commutative ring with a multiplicative identity element, let S be a
multiplicatively closed subset of k, and let I be a proper ideal in k. Suppose
that I =

⋂n
j=1 Ij is a minimal primary decomposition of I, as in Section 17.6.

We may reorder the Ij ’s, if necessary, to get a nonnegative integer m ≤ n such
that

r(Ij) ∩ S = ∅ when j ≤ m(17.14.1)

and
r(Ij) ∩ S 6= ∅ when j > m.(17.14.2)

If m ≥ 1, then Proposition 4.9 on p54 of [1] states that

S−1 I =

m⋂
j=1

(S−1 Ij)(17.14.3)

and

S(I) =
m⋂
j=1

Ij ,(17.14.4)

and that these are minimal primary decompositions.
To see this, observe first that

S−1 I =

n⋂
j=1

(S−1 Ij),(17.14.5)

as in Sections 12.2 and 12.13. If j > m, then

S−1 Ij = S−1 k,(17.14.6)

because of (17.14.2), as in Section 14.6. Thus (17.14.5) reduces to (17.14.3)
when m ≥ 1, and otherwise S−1 I = S−1 k.

Remember that r(Ij) is a prime ideal in k for each j, as in Section 14.5. We
also have that r(Ij) 6= k, because Ij 6= k, by hypothesis, as in Section 12.10.
Note that

r(S−1 Ij) = S−1 r(Ij)(17.14.7)
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for each j, as in Section 12.13.

If j ≤ m, then

S−1 Ij is a primary ideal in S−1 k,(17.14.8)

because of (17.14.1), as in Section 14.6. This implies that (17.14.3) is a primary
decomposition of S−1 I in S−1 k when m ≥ 1.

If j ≤ m, then S−1 r(Ij) is a proper prime ideal in S−1 k, because of
(17.14.1), as in Section 12.13. The S−1 r(Ij)’s, j ≤ m, are distinct ideals in
S−1 k too, as in Section 12.13, because the r(Ij)’s are distinct ideals in k, by
the minimality of the primary decomposition of I, as in Section 17.6. This is
the same as saying that the r(S−1 Ij)’s, j ≤ m, are disctinct ideals in S−1 k, by
(17.14.7). This is the first of the two conditions required for minimality of the
primary decomposition (17.14.3).

If j ≤ m, then

S(Ij) = (S−1 Ij)c = Ij ,(17.14.9)

because of (17.14.1), as in Section 14.6. One can use this to get the second
condition required for the minimality of the primary decomposition (17.14.3),
because of the analogous property of the primary decomposition of I.

Note that

S(I) =
n⋂
j=1

S(Ij),(17.14.10)

because of (17.13.6). If j > m, then

S(Ij) = (S−1 Ij)c = (S−1 k)c = k,(17.14.11)

using (17.14.6) in the second step. If m ≥ 1, then we get that

S(I) =
m⋂
j=1

S(Ij) =
m⋂
j=1

Ij ,(17.14.12)

using (17.14.9) in the second step. Of course, this is a primary decomposition
of S(I) in k, and the minimality of this primary decomposition follows from the
minimality of the primary decomposition of I in k. If m = 0, then S(I) = k.

17.15 The second uniqueness theorem

Let k be a commutative ring with a multiplicative identity element, let I be a
proper ideal in k, and suppose that I =

⋂n
j=1 Ij is a minimal primary decompo-

sition of I. Remember that the collection of proper prime ideals r(I1), . . . , r(In)
in k does not depend on the particular minimal primary decomposition of I, as
in Section 17.6. These are the prime ideals in k that are said to belong to I, as
in Section 17.7.
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Let Σ be a collection of the prime ideals in k that belong to I. Suppose that
if P ′ is a prime ideal in k that belongs to I, P ∈ Σ, and P ′ ⊆ P , then

P ′ ∈ Σ.(17.15.1)

Under these conditions, Σ is said to be isolated, as on p54 of [1].
Put

S = k \
( ⋃

P∈Σ

P
)
=

⋂
P∈Σ

(k \ P).(17.15.2)

This is a multiplicatively closed subset of k, because k \ P is a multiplicatively
closed subset of k for every P ∈ Σ, as in Section 12.4.

Let P ′ be a prime ideal in k that belongs to I and satisfies

P ′ 6∈ Σ.(17.15.3)

We would like to check that
P ′ ∩ S 6= ∅,(17.15.4)

as on p54 of [1]. Equivalently, this means that

P ′ 6⊆
⋃
P∈Σ

P.(17.15.5)

Otherwise, if

P ′ ⊆
⋃
P∈Σ

P,(17.15.6)

then
P ′ ⊆ P0(17.15.7)

for some P0 ∈ Σ, as in Section 17.3. However, this would contradict (17.15.3),
because Σ is supposed to isolated.

Suppose that
Σ = {r(Il1), . . . , r(Ilm)}(17.15.8)

for some positive integer m, where l1 < · · · < lm are positive integers less than
or equal to n. In this case, we get that

S(I) = Il1 ∩ · · · ∩ Ilm ,(17.15.9)

as in (17.14.12). Although we have not reordered the Ij ’s here as in the previous
section, they have essentially the same properties with respect to S as before,
because of (17.15.4) and the definition (17.15.2) of S.

In particular, (17.15.9) does not depend on the particular minimal primary
decomposition of I. This is Theorem 4.10 on p54 of [1], which is the second
uniqueness theorem. Of course, (17.15.9) does depend on the choice of Σ.

Suppose that r(Il) is minimal among the prime ideals belonging to I for
some l ≤ n. In this case,

Σ = {r(Il)}(17.15.10)
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is isolated in the sense defined earlier. If Σ = k \ r(Il), as in (17.15.2), then we
get that

S(I) = Il,(17.15.11)

as in (17.15.9). Thus Il does not depend on the particular minimal primary
decomposition of I, as in Corollary 4.11 on p54 of [1]. More precisely, Il is
uniquely determined by r(Il).

The primary components Il corresponding to minimal prime ideals r(Il)
belonging to I may be called isolated primary components, as in [1]. The col-
lection of these isolated primary components does not depend on the particular
minimal primary decomposition of I, as in the preceding paragraph.



Chapter 18

Some properties of ideals, 2

18.1 Intersections of prime ideals

Let k be a commutative ring with a multiplicative identity element. Also let A
be a nonempty set, and let Iα be an ideal in k for each α ∈ A. It is easy to see
that

r
( ⋂
α∈A

Iα
)
⊆

⋂
α∈A

r(Iα).(18.1.1)

If A has only finitely many elements, then

r
( ⋂
α∈A

Iα
)
=

⋂
α∈A

r(Iα).(18.1.2)

This is mentioned in Section 12.10 when A has only two elements, and otherwise
one can use a similar argument, or use the previous statement repeatedly.

If Iα is a prime ideal in k for every α ∈ A, then r(Iα) = Iα for each α, as
before. This implies that⋂

α∈A
r(Iα) =

⋂
α∈A

Iα ⊆ r
( ⋂
α∈A

Iα
)
,(18.1.3)

so that (18.1.2) holds in this case too. More precisely, we get that

r
( ⋂
α∈A

Iα
)
=

⋂
α∈A

r(Iα) =
⋂
α∈A

Iα(18.1.4)

under these conditions.
If I is any ideal in k, then its radical r(I) is the same as the intersection of

all of the prime ideals in k that contain I, as in Section 12.10. In particular, if
r(I) = I, then I can be expressed as the intersection of a family of prime ideals
in k. Conversely, if I can be expressed as the intersection of a family of prime
ideals in k, then r(I) = I, as in (18.1.4). Of course, if I 6= k, then we may as

436
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well consider only proper prime ideals in k. This corresponds to Exercise 9 on
p11 of [1].

Suppose now that I is a proper ideal in k, and that I =
⋂n
j=1 Ij is a primary

decomposition of I, as in Section 17.6. Note that

r(I) =
n⋂
j=1

r(Ij),(18.1.5)

as in (18.1.2). If r(I) = I, then it follows that

I =

n⋂
j=1

r(Ij).(18.1.6)

Remember that r(Ij) is a proper prime ideal in k for each j, because Ij is a
primary ideal, as in Sections 14.5 and 17.5. Suppose that we have a minimal
primary decomposition of I, so that the r(Ij)’s are distinct, as in Section 17.6.

Let

r(Il1), . . . , r(Ilm)(18.1.7)

be the minimal elements with respect to inclusion among the ideals r(Ij), with
l1 < · · · < lm. Observe that

I = r(Il1) ∩ · · · ∩ r(Ilm),(18.1.8)

because of (18.1.6). More precisely, this uses the fact that each of the r(Ij)’s
contains a minimal element. Thus (18.1.8) may be considered as another pri-
mary decomposition of I.

If any of the minimal elements in (18.1.7) contains the intersection of the
others, then it contains one of the other minimal elements, as in Section 17.3.
This is not possible, because of minimality. It follows that (18.1.8) is another
minimal primary decomposition of I, as in Section 17.6.

Remember that the prime ideals corresponding to a minimal primary decom-
position of I do not depend on the particular minimal primary decomposition
of I, by the first uniqueness theorem, which was discussed in Section 17.6. Of
course, the prime ideals (18.1.7) are the same as those associated to the mini-
mal primary decomposition (18.1.8) of I, because the radical of the radical of
an ideal is equal to the radical of the ideal, as in Section 12.10. This means that
the minimal elements (18.1.7) include all of the r(Ij)’s, as in Exercise 2 on p55
of [1].

Remember that the isolated primary components of a minimal primary de-
composition of I do not depend on the particular minimal primary decomposi-
tion of I, as in Section 17.15. This implies that

Ij = r(Ij)(18.1.9)

for each j = 1, . . . , n.



438 CHAPTER 18. SOME PROPERTIES OF IDEALS, 2

18.2 Primary decompositions and (I : x)

Let k be a commutative Noetherian ring with a multiplicative identity element,
and let I be a proper ideal in k. Remember that I has a primary decomposition,
which one may take to be minimal, as in Section 17.6.

If x ∈ k, then (I : x) = {t ∈ k : t x ∈ I} is an ideal in k that contains I,
as in Section 12.8. Under these conditions, the prime ideals in k that belong to
I, as in Section 17.7, are the same as the proper prime ideals in k of the form
(I : x) for some x ∈ k. This is Proposition 7.17 on p83 of [1].

Remember that the first uniquenss theorem, discussed in Section 17.6, is
the analogous statement using the radicals of the ideals (I : x). However, the
Noetherian condition was not needed for that result.

If (I : x) is a proper prime ideal in k for some x ∈ k, then

r((I : x)) = (I : x),(18.2.1)

as in Section 12.10. This implies that (I : x) is one of the prime ideals in k that
belong to I, as in Section 17.6.

Conversely, we would like to show that each of the prime ideals in k that
belong to I is of this form. To do this, the first step is to reduce to the case
where I = {0}, by replacing k with k/I. This also uses the remarks in Section
17.8.

Thus we suppose now that
⋂n
j=1 Ij = {0} is a minimal primary decomposi-

tion of {0} in k. Put

Al =
⋂
j ̸=l

Ij(18.2.2)

for each l = 1, . . . , n, which is an ideal in k. The minimality of the primary
decomposition implies that

Al 6⊆ Il(18.2.3)

for each l, as in Section 17.6. In particular, this means that Al 6= {0} for each
l.

Note that

Al ∩ Il = {0}(18.2.4)

for each l, by construction. Thus

Al \ Il = Al \ (Al ∩ Il) = Al \ {0}(18.2.5)

for each l. If x is an element of (18.2.5) for some l, then

r(({0} : x)) = r(Il).(18.2.6)

as in (17.6.9). In particular, this means that

({0} : x) ⊆ r(Il).(18.2.7)
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Let 1 ≤ l ≤ n be given, and note that r(Il) is finitely-generated as an ideal
in k, because k is Noetherian. It follows that

r(Il)m ⊆ Il(18.2.8)

for some positive integer m, as in Section 14.7. This implies that

Al r(Il)m ⊆ Al ∩ r(Il)m ⊆ Al ∩ Il = {0},(18.2.9)

where the first step is as in Section 12.8.
Let ml be the smallest positive integer such that

Al r(Il)ml = {0}.(18.2.10)

Thus Al r(Il)ml−1 6= {0}. More precisely, if ml = 1, then this reduces to the
fact that Al 6= {0}, as before.

Let x be a nonzero element of Al r(Il)ml−1. Observe that

r(Il) ⊆ ({0} : x),(18.2.11)

by (18.2.10). We also have that (18.2.7) holds, because x is a nonzero element
of Al. It follows that

r(Il) = ({0} : x)(18.2.12)

under these conditions.

18.3 Primary decompositions and products

Let k be an integral domain of dimension one, in the sense of Section 14.8.
Also let I 6= {0} be a proper ideal in k with a minimal primary decomposition
I =

⋂n
j=1 Ij . Note that

{0} 6= I ⊆ Ij ⊆ r(Ij)(18.3.1)

for each j = 1, . . . , n. This implies that

r(Ij) is a maximal proper ideal in k(18.3.2)

for each j, because r(Ij) is a proper prime ideal in k, and k is a one-dimensional
integral domain. Remember that the r(Ij)’s are distinct ideals in k, because of
the minimality of the primary decomposition, as in Section 17.6.

It is easy to see that

the r(Ij)’s are pairwise coprime in k,(18.3.3)

as in Section 17.1, because they are distinct maximal proper ideals in k. This
implies that

the Ij ’s are pairwise coprime in k(18.3.4)
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too, as in Section 17.1 again. It follows that the product of the Ij ’s is the same
as their intersection, as in Section 17.2. This means that

I =

n⋂
j=1

Ij =
n∏
j=1

Ij(18.3.5)

in this case. This corresponds to the existence part of Theorem 9.1 on p93 of
[1].

Suppose now that

I =

n∏
j=1

Ij ,(18.3.6)

where I1, . . . , In are finitely many primary ideals in k with distinct radicals.
Under these conditions, (18.3.1) and thus (18.3.2) hold for each j, as before.
This implies that (18.3.3) and (18.3.4) hold as well, as before. This means that
the product of the Ij ’s is the same as their intersection, as in Section 17.2 again.
Thus (18.3.5) holds under these conditions as well.

Let 1 ≤ l ≤ n be given, and let us check that

Il +
∏
j ̸=l

Ij = k.(18.3.7)

This is the same as (17.2.7) when l = n, and the same argument can be used
otherwise. This implies that

Il +
⋂
j ̸=l

Ij = k,(18.3.8)

because a product of ideals is contained in its intersection. It follows that
⋂
j ̸=l Ij

is not contained in Il, because Il is a primary ideal in k, and thus proper. This
means that

the Ij ’s form a minimal primary decomposition of I,(18.3.9)

as in Section 17.6.

Using this, we get that the collection of the radicals of the Ij ’s is uniquely
determined, as in the first uniqueness theorem in Section 17.6. It is easy to see
that r(Il) is minimal among the r(Ij)’s for each l, because k has dimension one,
by hypothesis. It follows that

the collection of Ij ’s is uniquely determined(18.3.10)

under these conditions, as in Section 17.15. Of course, the Ij ’s can be reordered,
without affecting their product. This corresponds to the uniqueness part of
Theorem 9.1 on p93 of [1].
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18.4 Products and Dedekind domains

Let k be an integral domain of dimension one, in the sense of Section 14.8,
and suppose that k is also Noetherian. Any proper ideal I in k has a minimal
primary decomposition I =

⋂n
j=1 Ij , as in Section 17.6. Suppose that I 6= {0},

so that Ij 6= {0} for each j, and I can be expressed as the product of the Ij ’s,
as in (18.3.5). Remember that the radical r(Ij) of Ij is a proper prime ideal in
k for each j, as in Sections 14.5 and 17.5.

Suppose from now on in this section that k is a Dedekind domain. In this
case, for each j there is a unique positive integer mj such that

Ij = r(Ij)mj ,(18.4.1)

as in Section 15.14. It follows that

I =

n⋂
j=1

Ij =
n∏
j=1

Ij =
n∏
j=1

r(Ij)mj .(18.4.2)

One could also allow I = k here, with n = 0, or mj = 0 for each j. This
corresponds to the existence part of Corollary 9.4 on p95 of [1].

Concerning uniqueness, suppose that I can be expressed as the product of
finitely many proper prime ideals in k. This can be arranged into a product of
positive powers of distinct proper prime ideals in k. Thus I can be expressed
as in (18.3.6), where the Ij ’s are positive powers of distinct proper prime ideals
in k.

Remember that the radical of a positive power of a prime ideal in k is that
prime ideal, as in Section 12.10. Thus the proper prime ideal in k corresponding
to Ij is r(Ij) for each j. This means that Ij may be expressed as in (18.4.1)
for some positive integer mj for each j, so that I can be expressed as

I =

n∏
j=1

Ij =
n∏
j=1

r(Ij)mj ,(18.4.3)

where the r(Ij)’s are distinct proper prime ideals in k.
More precisely, (18.3.1) and (18.3.2) hold for each j in this case, as before.

It follows that Ij is a primary ideal in k for each j, as in Section 14.5. Using
this, we get that the collection of r(Ij)’s is uniquely determined, and in fact the
collection of Ij ’s is uniquely determined, as in the previous section. The mj ’s
are also uniquely determined, as in Section 15.14 again. This corresponds to
the uniqueness part of Corollary 9.4 on p95 of [1].

18.5 Artinian modules

Let k be a commutative ring with a multiplicative identity element, and let V
be a module over k. A sequence V1, V2, V3, . . . of submodules of V is said to be
monotonically decreasing with respect to inclusion if

Vj+1 ⊆ Vj(18.5.1)
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for each j, as usual. If every such sequence is eventually constant, then V is said
to be Artinian as a module over k, as on p74 of [1]. This is equivalent to the
condition that every nonempty collection of submodules of V have a minimal
element, as in Proposition 6.1 on p74 of [1].

A number of basic properties of Artinian modules over k are analogous to
properties of Noetherian modules over k, as mentioned on p75 of [1]. In partic-
ular, if V0 is a submodule of V , then one can check that V is Artinian if and
only if

V0 and V/V0 are Artinian modules over k,(18.5.2)

as in part (ii) of Proposition 6.3 on p75 of [1]. One can use this to get that

the direct sum of finitely many Artinian modules over k(18.5.3)

is Artinian as well,

as in Corollary 6.4 on p76 of [1].

We say that k is Artinian as a commutative ring if it is Artinian as a module
over itself, as on p76 of [1]. In this case, if V is a finitely-generated module over
k, then

V is Artinian as a module over k,(18.5.4)

as in Proposition 6.5 on p76 of [1]. This follows from the statements mentioned
in the preceding paragraph, by expressing V as the quotient of the direct sum
of finitely many copies of k, as a module over itself.

Let I be an ideal in k, and suppose for the moment that t · v = 0 for every
t ∈ I and v ∈ V . This implies that V may be considered as a module over
the quotient ring k/I. In this case, the submodules of V as a module over k
are the same as the submodules of V as a module over k/I. It follows that
V is Noetherian or Artinian as a module over k if and only if V has the same
property as a module over k/I.

If k is Noetherian or Artinian as a ring, then k/I has the same property
as a ring, as in Proposition 6.6 on p76 of [1]. More precisely, k is Noetherian
or Artinian as a module over itself, by hypothesis. This implies that k/I is
Noetherian or Artinian as a module over k, as appropriate, as before. Equiva-
lently, this means that k/I has the same property as a module over itself, and
thus as a ring, as in the preceding paragraph.

Suppose for the moment that k is a field, so that V is a vector space over k.
If V has finite dimension as a vector space over k, then it is easy to see that

V is Noetherian and Artinian as a module over k.(18.5.5)

Otherwise, if V does not have finite dimension as a vector space over k,
then there is an infinite sequence v1, v2, v3, . . . of vectors in V that are linearly
independent. One can use this to get that V is neither Noetherian nor Artinian
as a module over k. This corresponds to part of Proposition 6.10 on p78 of [1].
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18.6 Artinian and Noetherian rings

Let k be a commutative ring with a multiplicative identity element again, and
let I1, . . . , In be finitely many maximal proper ideals in k, which need not be
distinct. Suppose that

n∏
j=1

Ij = {0}.(18.6.1)

Under these conditions, Corollary 6.11 on p78 of [1] says that k is Noetherian
if and only if k is Artinian.

To see this, note that
l∏

j=1

Ij(18.6.2)

is an ideal in k for each l = 1, . . . , n, which may be interpreted as being equal
to k when l = 0. Similarly,

l+1∏
j=1

Ij(18.6.3)

is an ideal in k for each l = 0, 1, . . . , n− 1, which is contained in (18.6.2). These
ideals may be considered as modules over k, so that their quotient

( l∏
j=1

Ij
)
/
( l+1∏
j=1

Ij
)

(18.6.4)

is defined as a module over k. In fact, the quotient may be considered as a
module over k/Il+1, because the action of any element of Il+1 on the quotient
is equal to 0, by construction.

Of course, k/Il+1 is a field, because Il+1 is a maximal proper ideal in k,
by hypothesis. Thus the Netherian and Artinian conditions for (18.6.4), as a
module over k/Il+1, are equivalent to the quotient having finite dimension as a
vector space over k/Il+1, as in the previous section. It follows that the Noethe-
rian and Artinian conditions for (18.6.4), as a module over k, are equivalent as
well.

Suppose that k is Noetherian or Artinian as a ring, and thus as a module
over itself. This implies that (18.6.2) has the same property, as a module over
k, for each l. It follows that the quotient (18.6.4) has the same property, as a
module over k, for each l. This means that (18.6.4) is Noetherian and Artinian,
as a module over k, for each l, as in the previous paragraph.

Observe that (18.6.4) is the same as (18.6.2) when l = n − 1, because of
(18.6.1). If (18.6.4) is Artinian, as a module over k, for each l, then one can check
that k is Artinian. More precisely, one can check that (18.6.2) is Artinian for
each l, using the characterization in (18.5.2). Similarly, if (18.6.4) is Noetherian,
as a module over k, for each l, then k is Noetherian. It follows that k is
Noetherian if and only if k is Artinian in this case, using the remarks in the
preceding paragraph.
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18.7 Commutative Artin rings

Let k be a commutative ring with a multiplicative identity element. If k is
Artinian, as in Section 18.5, then one may also call k an Artin ring, as on p89
of [1]. Remember that every quotient of k is an Artin ring too in this case.

If k is an Artin ring and I is a proper prime ideal in k, then Proposition 8.1
on p89 of [1] states that I is a maximal proper ideal in k. In this case, k1 = k/I
is an integral domain that is an Artin ring as well, and it suffices to show that
k1 is a field. To see this, let x ∈ k1 with x 6= 0 be given, and observe that the
sequence of ideals in k1 generated by the powers of x decreases monotonically.
Thus the sequence is eventually constant, because k1 is an Artin ring. This
implies that xn is an element of the ideal generated by xn+1 for some positive
integer n, so that

xn = xn+1 y(18.7.1)

for some y ∈ k1. This means that

xn (x y − 1) = 0(18.7.2)

in k1, which implies that x y = 1, because k1 is an integral domain, and x 6= 0.
It follows that x is invertible in k1, so that k1 is a field, as desired.

If k is an Artin ring, then Proposition 8.3 on p89 of [1] states that k has only
finitely many maximal proper ideals. Of course, this is trivial when k = {0},
and so we may as well suppose that 1 6= 0 in k. Because k is Artinian, the
collection C of all ideals in k that can be expressed as the intersection of finitely
many maximal proper ideals in k has a minimal element. Suppose that

n⋂
j=1

Ij(18.7.3)

is such a minimal element, where I1, . . . , In are maximal proper ideals in k. If
I is any maximal proper ideal in k, then

I ∩
( n⋂
j=1

Ij
)

(18.7.4)

is another element of C. Note that (18.7.4) is contained in (18.7.3), which implies
that they are equal, because of the minimality of (18.7.3). This means that

n⋂
j=1

Ij ⊆ I.(18.7.5)

It follows that Il ⊆ I for some l, because I is a prime ideal in k, as in Section
17.3. More precisely, I = Il, because Il is a maximal proper ideal in k. Thus
I1, . . . , In are all of the maximal proper ideals in k, as desired.

A similar argument is used in the proof of Proposition 6 on p11 of [15], and
we shall return to this in Section 18.10.
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18.8 Nilpotency of the nilradical

Let k be a commutative ring with a multiplicative identity element. Remember
that N denotes the nilradical of k, as in Section 12.5. If k is an Artin ring, then

Nm = {0}(18.8.1)

for some positive integer m, as in Proposition 8.4 on p89 of [1]. Another cri-
terion for this was discussed in Section 14.7, which includes the case when k is
Noetherian.

Of course, the sequence of powers of N decreases monotonically with respect
to inclusion. If k is Artinian, then it follows that there is an ideal I1 in k such
that

I1 = Nm(18.8.2)

for all sufficiently large m.

Suppose for the sake of a contradiction that I1 6= {0}. Let Σ be the collection

of all ideals Ĩ in k such that

I1 Ĩ 6= {0}.(18.8.3)

If l is a nonnegative integer, then I1 N l = I1, so that N l ∈ Σ. In particular,
Σ 6= ∅. If k is Artinian, then Σ has a minimal element Ĩ0.

Of course, I1 Ĩ0 6= {0}, because Ĩ0 ∈ Σ. Thus there is an x ∈ Ĩ0 whose
product with an element of I1 is not zero. Let I(x) be the ideal in k generated

by x, so that I(x) ∈ Σ. Clearly I(x) ⊆ Ĩ0, because x ∈ Ĩ0. This means that

I(x) = Ĩ0,(18.8.4)

because Ĩ0 is minimal in Σ.

Observe that

(I(x)N ) I1 = I(x) (N I1) = I(x) I1 6= 0,(18.8.5)

so that I(x)N ∈ Σ. We also have that I(x)N ⊆ I(x), which implies that

I(x)N = I(x),(18.8.6)

because I(x) is minimal in Σ. It follows that

x = x y(18.8.7)

for some y ∈ N . This means that

x = x yn(18.8.8)

for every positive integer n. However, yn = 0 for some n, because y ∈ N , so
that x = 0, which is a contradiction.
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18.9 More on commutative Artin Rings

Let k be a commutative ring with a multiplicative identity element. Theorem
8.5 on p90 of [1] states that k is an Artin ring if and only if

k is Noetherian and the dimension of k is equal to 0,(18.9.1)

in the sense of Section 14.8.
Suppose that k is an Artin ring, and note that the dimension of k is zero,

because proper prime ideals in k are maximal, as in Section 18.7. We have also
seen that there are only finitely many maximal proper ideals I1, . . . , In in k,
which are all of the proper prime ideals in k in this case. Remember that the
nilradical N of k is equal to the intersection of all of the prime ideals in k, as
in Section 12.5. This means that

N =

n⋂
j=1

Ij .(18.9.2)

In particular, this implies that

n∏
j=1

Ij ⊆ N .(18.9.3)

Remember thatNm = {0} for some positive integerm, because k is Artinian,
as in (18.8.1). It follows that

n∏
j=1

Imj = {0},(18.9.4)

because of (18.9.3). Under these conditions, the hypothesis that k be Artinian
implies that k is Noetherian, as in Section 18.6.

Suppose now that (18.9.1) holds, and let us show that k is Artinian. Of
course, this is trivial when k = {0}, and so we may suppose that k 6= {0}, so
that {0} is a proper ideal in k. Because k is Noetherian, {0} has a primary
decomposition in k, as in Section 17.6. This means that {0} has a minimal
primary decomposition in k, as before.

Let I ′
1, . . . , I ′

n be the minimal prime ideals in k belonging to {0} with respect
to this minimal promary decomposition of {0} in k, as in Section 17.7. These
are the same as the proper prime ideals in k that are minimal with respect
to inclusion, as before, and in particular this does not depend on the minimal
primary decomposition of {0}. More precisely, normally one would consider the
minimal proper prime ideals in k that contain the given ideal, and of course all
ideals in k contain {0}.

If I0 is any proper prime ideal in k, then

I ′
j ⊆ I0(18.9.5)
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for some j, as in Section 17.7. As before, this was stated previously for proper
prime ideals in k that contain the given ideal, which is {0} in this case. This
implies that

N =

n⋂
j=1

I ′
j .(18.9.6)

In particular,
n∏
j=1

I ′
j ⊆ N ,(18.9.7)

as before.
We also have that Nm = {0} for some positive integer m, because k is

Noetherian, as in Section 14.7. Using this, we get that

n∏
j=1

(I ′
j)
m = {0},(18.9.8)

as before. Note that I ′
1, . . . , I ′

n are maximal proper ideals in k, because they
are proper prime ideals and k has dimension 0, by hypothesis. This means that
the hypothesis that k be Noetherian implies that k is Artinian, as in Section
18.6 again.

18.10 Finite collections of prime ideals

Let k be a commutative ring with a nonzero multiplicative identity element,
and suppose that

⋂n
j=1 Ij = {0} is a minimal primary decomposition of {0} in

k, as in Section 17.6. If I0 is any prime ideal in k, then

r(Il) ⊆ I0(18.10.1)

for some l, as in Section 17.7. Remember that r(Ij) is a proper prime ideal in
k for each j, as in Sections 14.5 and 17.5.

Suppose for the moment that k has dimension zero, in the sense of Section
14.8. If I0 is a proper prime ideal in k, then (18.10.1) implies that

r(Il) = I0.(18.10.2)

In particular, this means that

there are only finitely many proper prime ideals in k(18.10.3)

under these conditions.
If k is Noetherian, then {0} has a minimal primary decomposition in k, as in

Section 17.6. Thus (18.10.3) holds when k is Noetherian and has dimension zero.
Alternatively, k is Noetherian of dimension 0 if and only if k is an Artin ring,
as in the previous section. If k is an Artin ring, then every proper prime ideal
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in k is a maximal proper ideal in k, and there are only finitely many maximal
proper ideals in k, as in Section 18.7.

If k is Noetherian and I is an ideal in k, then

k/I is Noetherian as a ring(18.10.4)

too. More precisely, if k is Noetherian as a ring, then k is Noetherian as a
module over itself, and

k/I is Noetherian as a module over k(18.10.5)

as well, as in Section 9.7. It is easy to see that

a submodule of k/I as a module over k(18.10.6)

is the same as

a submodule of k/I as a module over itself.(18.10.7)

One can use this to get that if k/I is Noetherian as a module over k, then k/I
is Noetherian as a module over itself, and thus as a ring.

Suppose now that k is an integral domain of dimension one, in the sense
of Section 14.8. Let x be a nonzero element of k, and let I(x) be the ideal in
k generated by x. There is a natural one-to-one correspondence between the
proper prime ideals in the quotient ring k/I(x) and the proper prime ideals in
k that contain I(x), as in Section 17.8. Of course, an ideal in k contains I(x)
if and only if it contains x. Using this correspondence, it is easy to see that

k/I(x) has dimension zero,(18.10.8)

because x 6= 0, by hypothesis.
If k is Noetherian, then k/I(x) is Noetherian, as in (18.10.4), and it follows

that
there are only finitely many proper prime ideals in k/I(x),(18.10.9)

as before. This implies that

there are only finitely many proper prime ideals in k(18.10.10)

that contain x,

as in the preceding paragraph.
Proposition 6 on p11 of [15] states that (18.10.10) holds in particular when

k is a Dedekind domain, with a more direct proof in that case. This will be
discussed further in the next section.

18.11 Some arguments for Dedekind domains

Let k be a Dedekind domain, as in Section 15.11, and let Qk be the correspond-
ing field of fractions. Also let x ∈ k with x 6= 0 be given, and let I, I ′ be ideals
in k with

x ∈ I ⊆ I ′.(18.11.1)
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Of course, I, I ′ are integral ideals of k, and fractional ideals of k in particular,
as in Sections 11.7 and 15.7. Note that I, I ′ 6= {0}, because of (18.11.1).

It follows that I, I ′ are invertible as fractional ideals of k, as in Section
15.12. Remember that the inverse I−1 of I is equal to

(k : I) = (k : I)Qk
= {y ∈ Qk : y I ⊆ k},(18.11.2)

as in Section 11.7, and similarly for the inverse (I ′)−1 of I ′. It follows that

k ⊆ (I ′)−1 ⊆ I−1 ⊆ x−1 k,(18.11.3)

because of (18.11.1) and the fact that I ′ ⊆ k. Note that I is the inverse of I−1,
by the definition of the inverse in Section 11.7.

Remember that k is Noetherian as a ring, because it is a Dedekind domain,
by hypothesis, as in Section 15.11. This means that k is Noetherian as a module
over itself, which implies that x−1 k is Notherian as a module over k. The
ascending chain condition for submodules of x−1 k implies the ascending chain
condition for ideals in k that contain x, because of the remarks in the preceding
paragraph. This corresponds to the first part of the proof of Proposition 6 on
p11 of [15]. Equivalently, this means that

k/I(x) is an Artin ring,(18.11.4)

as in Section 18.5, where I(x) is the ideal in k generated by x.
Suppose that I1, I2, I3, . . . is an infinite sequence of proper prime ideals in

k that each contain x. This implies that

n⋂
j=1

Ij(18.11.5)

is an ideal in k that contains x for each positive integer n, which defines a
decreasing sequence of ideals in k, with respect to inclusion. It follows that
there is a positive integer n0 such that

n⋂
j=1

Ij =
n0⋂
j=1

Ij(18.11.6)

when n ≥ n0, as in the previous paragraph. This means that

n0⋂
j=1

Ij ⊆ Il(18.11.7)

for all positive integers l. If l > n0, then we get that

Ij ⊆ Il(18.11.8)

for some j ≤ n0, as in Section 17.3.
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Remember that k has dimension less than or equal to one, because k is a
Dedekind domain, as in Section 15.11. This implies that Ij is a maximal proper
ideal in k for each j, because x 6= 0, by hypothesis. Using this and (18.11.8), we
get that each Il is the same as Ij for some j ≤ n0. This means that there are
only finitely many proper prime ideals in k that contain x, because otherwise
we could consider an infinite sequence of distinct proper prime ideals in k that
contain x. This corresponds to the second part of the proof of Proposition 6 on
p11 of [15].

18.12 Valuations on Dedekind domains

Let k be an integral domain, and let v be a valuation on k, as in Section 14.15.
Remember that

{x ∈ k : v(x) ≥ 0}(18.12.1)

is a subring of k, and that

{x ∈ k : v(x) > 0}(18.12.2)

is an ideal in (18.12.1). Of course, (18.12.2) is a proper subset of (18.12.1),
because v(1) = 0, as before.

It is easy to see that (18.12.2) is in fact a prime ideal in (18.12.1). If k is a
field, then (18.12.2) is a maximal proper ideal in (18.12.1), as in Section 14.14.

Now let k be a Dedekind domain, as in Section 15.11. In particular, k is an
integral domain, and we let Qk be the corresponding field of fractions. If I is
a proper prime ideal in k, then SI = k \ I is multiplicatively closed in k, as in
Section 12.4, so that kI = S−1

I k may be defined as in Section 12.1. Suppose
that I 6= {0}, so that

kI is a discrete valuation ring,(18.12.3)

as in Section 15.1, by definition of a Dedekind domain.
We also have that kI is an integral domain, whose field of fractions may be

identified with Qk, as in Section 14.2. We may identify kI with a subring of
Qk, as before. As in Section 15.1, the condition that kI be a discrete valuation
ring means that there is a discrete valuation vI on Qk, as in Section 14.14, such
that

kI = {y ∈ Qk : vI(y) ≥ 0}.(18.12.4)

Remember that S−1
I I is the unique maximal proper ideal in kI , as in Section

12.4, and using notation mentioned near the beginning of Section 12.13. This
means that

S−1
I I = {y ∈ Qk : vI(y) > 0} = {y ∈ Qk : vI(y) ≥ 1},(18.12.5)

as in Section 15.1.
It is easy to see that

k ∩ (S−1
I I) = I,(18.12.6)
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because I is a prime ideal in k. This corresponds to a broader statement in
Section 12.13. Another related statement was mentioned in Section 14.6. It
follows that

I = {y ∈ k : vI(y) > 0} = {y ∈ k : vI(y) ≥ 1}.(18.12.7)

If x ∈ k, then
vI(x) ≥ 0(18.12.8)

for every proper prime ideal I 6= {0} in k, because of (18.12.4) and the fact that
x ∈ kI . If we also have that x 6= 0, then

x ∈ I(18.12.9)

for only finitely many nonzero proper prime ideals I in k, as in the previous
two sections. This means that

vI(x) > 0(18.12.10)

for only finitely many nonzero proper prime ideals I in k, because of (18.12.7).
If x ∈ Qk and x 6= 0, then one can use the previous statement to get that

vI(x) 6= 0(18.12.11)

for only finitely many nonzero proper prime ideals I in k. This corresponds to
the corollary to Proposition 6 on p11 of [15].

If x is an invertible element of k, then

vI(x) = 0(18.12.12)

for every nonzero proper prime ideal I, because of (18.12.8) and the analogous
statement for 1/x. If x ∈ k, x 6= 0, and x is not invertible in k, then x is
contained in a nonzero maximal proper ideal I in k, and I is a prime ideal in
particular. This implies that (18.12.10) holds, as before.

18.13 Some remarks about ideals

Let k be a commutative ring with a multiplicative identity element, and let I
be a proper prime ideal in k. Thus SI = k \ I is a multiplicatively closed set
in k, as in Section 12.4, so that kI = S−1

I k may be defined as in Section 12.1.
If L is an ideal in k, then L may be considered as a module over k, so that
S−1
I L may be defined as a module over S−1

I k, as in Section 12.2. This may be
identified with a submodule of kI , considered as a module over itself, as before.
This means that S−1

I L is an ideal in kI , which is the same as the extension of
L in kI with respect to the natural ring homomorphism from k into kI , as in
Section 12.13.

Let L′ be another ideal in k with

L ⊆ L′,(18.13.1)
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so that
S−1
I L ⊆ S−1

I L′.(18.13.2)

If
S−1
I L = S−1

I L′(18.13.3)

for every maximal proper ideal I in k, then

L = L′.(18.13.4)

Indeed, the quotient L′/L may be considered as a module over k, so that

S−1
I (L′/L)(18.13.5)

may be defined as a module over kI , as in Section 12.2. This is isomorphic to

(S−1
I L′)/(S−1

I L),(18.13.6)

as modules over kI , as before. The hypothesis (18.13.3) is the same as saying
that (18.13.6) is {0}, so that (18.13.5) is {0} too. If this holds for every maximal
proper ideal I in k, then

L′/L = {0},(18.13.7)

as in Section 12.4. Of course, this is the same as saying that (18.13.4) holds.

18.14 Ideals in Dedekind domains

Let k be a Dedekind domain, as in Section 15.11, and suppose that k is not
a field. This means that the maximal proper ideals in k are the same as the
nonzero prime ideals in k, because k is an integral domain of dimension one. If
I is a nonzero proper prime ideal in k, then we take SI = k \ I and kI = S−1

I k
again, so that kI is a discrete valuation ring, as before. This leads to a discrete
valuation vI on the field Qk of fractions of k, as in Section 18.12.

If L is an ideal in k, then S−1
I L is an ideal in kI , which is the same as

the extension of L with respect to the natural ring homomorphism from k into
kI , as in the previous section. Remember that this homomorphism is injective,
because k is an integral domain, as in Section 14.2. Thus

S−1
I L 6= {0}(18.14.1)

when L 6= {0}. In this case, there is a unique nonnegative integer vI(L) such
that

S−1
I L = {y ∈ kI : vI(y) ≥ vI(L)},(18.14.2)

as in Section 15.1. Equivalently,

S−1
I L = {y ∈ Qk : vI(y) ≥ vI(L)},(18.14.3)

because of (18.12.4).
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Observe that (18.14.2) is the same as saying that

S−1
I L = (S−1

I I)vI(L),(18.14.4)

because of (18.12.5), and where the right side is as in Section 12.10. This
corresponds to the definition of vI(L) on the bottom of p11 of [15]. In fact,
vI(L) is defined more broadly in [15], and we shall return to this in Section
19.3. One can check that

vI(L) = min{vI(y) : y ∈ S−1
I L} = min{vI(y) : y ∈ L}.(18.14.5)

If y ∈ L, then
vI(L) ≤ vI(y).(18.14.6)

If y 6= 0, then

vI(y) = 0(18.14.7)

for all but finitely many nonzero proper prime ideals I in k, as in Section 18.12.
This implies that

vI(L) = 0(18.14.8)

for all but finitely many nonzero proper prime ideals I in k when L 6= {0}, as
mentioned at the bottom of p11 in [15].

One can show that L is uniquely determined by the vI(L)’s, as I runs
through all nonzero proper prime ideals in k. This will be discussed in the next
section.

If x ∈ k, then let I(x) be the ideal in k generated by x. If x 6= 0, then
I(x) 6= {0}, and it is easy to see that

vI(I(x)) = vI(x)(18.14.9)

for every nonzero proper prime ideal I in k. An extension of this is mentioned
on p12 of [15], and this will be discussed in Section 19.4.

Thus I(x) is uniquely determined, as an ideal in k, by the vI(x)’s, as I
runs though all of the nonzero proper prime ideals in k. This means that x is
determined up to multiplication by an invertible element of k by the vI(x)’s.

Let L′ be another ideal in k, and suppose that

L ⊆ L′.(18.14.10)

This implies that

S−1
I L ⊆ S−1

I L′(18.14.11)

for every nonzero proper prime ideals I in k. Using this, it is easy to see that

vI(L′) ≤ vI(L)(18.14.12)

for all such I. The converse to this will also be discussed in the next section.
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18.15 Another ideal in k

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let L be a nonzero ideal in k again, and put

L2 = {y ∈ k : vI(y) ≥ vI(L) for every nonzero proper(18.15.1)

prime ideal I in k}.

One can check that this is an ideal in k, and that

L ⊆ L2.(18.15.2)

We would like to show that
L = L2,(18.15.3)

as mentioned near the top of p12 of [15]. In particular, this implies that

L is uniquely determined by the vI(L)’s,(18.15.4)

where I runs through all nonzero proper prime ideals in k, as mentioned in the
previous section.

In order to get (18.15.3), it suffices to verify that

S−1
I L = S−1

I L2(18.15.5)

for every maximal proper ideal I in k, as in Section 18.13. These are the same as
the nonzero proper prime ideals in k in this case, as mentioned at the beginning
of the previous section. Of course,

S−1
I L ⊆ S−1

I L2(18.15.6)

for all such I, because of (18.15.2). Thus it is enough to check that

S−1
I L2 ⊆ S−1

I L(18.15.7)

for all such I.
This is the same as saying that

vI(L2) ≥ vI(L)(18.15.8)

for all nonzero proper prime ideals I in k, because of (18.14.2) and its analogue
for L2. Equivalently, this means that

min{vI(y) : y ∈ L2} ≥ vI(L)(18.15.9)

for every nonzero proper prime ideals I in k, because of the analogue of (18.14.5)
for L2. This follows directly from the definition of L2.

Let L′ be another nonzero ideal in k, and consider

L′
2 = {y ∈ k : vI(y) ≥ vI(L′) for every nonzero proper(18.15.10)

prime ideal I in k},
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as before. If (18.14.12) holds for every nonzero proper prime ideal I in k, then

L2 ⊆ L′
2.(18.15.11)

This implies that (18.14.10) holds, because of (18.15.3), and its analogue for L′.
There is another way to characterize L in terms of the vI(L)’s, as in Propo-

sition 7 on p12 of [15]. This will be discussed in Section 19.2. In particular, the
remarks in the preceding paragraph follow easily from this other characteriza-
tion.

Let x, y ∈ k be given, with x, y 6= 0, so that the ideals I(x) and I(y) in k
that they generate are nonzero as well. Suppose that

vI(y) ≤ vI(x)(18.15.12)

for all nonzero proper prime ideal I in k, so that

vI(I(y)) ≤ vI(I(y))(18.15.13)

for all such I, as in (18.14.9). This implies that

I(x) ⊆ I(y),(18.15.14)

as before. If
vI(x) = vI(y)(18.15.15)

for every nonzero proper prime ideal I in k, then it follows that

I(x) = I(y).(18.15.16)

Note that x/y ∈ Qk, and that (18.15.12) is the same as saying that

vI(x/y) = vI(x)− vI(y) ≥ 0(18.15.17)

for all nonzero proper prime ideals I in k. Under these conditions, we have that

x/y ∈ k,(18.15.18)

because x ∈ I(y), as in (18.15.14). This implies that

k = {w ∈ Qk : vI(w) ≥ 0 for every nonzero proper(18.15.19)

prime ideal I in k},

because vI(w) ≥ 0 for every such I when w ∈ k, as in (18.12.8).
Similarly, if

vI(x/y) = vI(x)− vI(y) = 0(18.15.20)

for every nonzero proper prime ideal I in k, then

x/y, y/x ∈ k.(18.15.21)

This means that

{w ∈ k : w is invertible in k}(18.15.22)

= {w ∈ Qk : vI(w) = 0 for every nonzero proper

prime ideal I in k},

because vI(w) = 0 for every such I when w ∈ k is invertible in k, as in (18.12.12).
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Ideals and field extensions

19.1 Products of ideals in k

Let us continue as in Sections 18.14 and 18.15, so that k is a Dedekind domain
that is not a field, and for each nonzero proper prime ideal I in k, we take
SI = k \ I and kI = S−1

I k. In this case, kI is discrete valuation ring, which
leads to a discrete valuation vI on the field Qk of fractions of k, as in Section
18.12. If L 6= {0} is an ideal in k, then vI(L) ≥ 0 may be defined as in Section
18.14.

Let L′ 6= {0} be another ideal in k, and consider the product LL′ of L and
L′, which is another ideal in k, as in Section 12.8. Note that

LL′ 6= {0},(19.1.1)

because k is an integral domain. We also have that

S−1
I (LL′) = (S−1

I L) (S−1
I L′)(19.1.2)

for all nonzero proper prime ideals I in k, as ideals in kI , as in Section 12.13.
More precisely, this was obtained from the analogous statement for extensions
of products of ideals, as in Section 12.9.

One can check that

vI(LL′) = vI(L) + vI(L′)(19.1.3)

for all nonzero proper prime ideals I in k, using (19.1.2) and the remarks in
Section 15.1. This is stated more broadly on p12 of [15], and we shall return to
that in Section 19.4.

If I is any nonzero proper prime ideal in k, then

vI(I) = 1,(19.1.4)

as in (18.12.5). Note that
vI(k) = 0.(19.1.5)

456
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Let

I ′ 6= I(19.1.6)

be another nonzero proper prime ideal in k. Remember that I ′ is a maximal
proper ideal in k, because k is an integral domain of dimension one, as in Section
15.11. This means that

I ′ 6⊆ I.(19.1.7)

Thus

S−1
I I ′ = kI ,(19.1.8)

as in Section 12.13. It follows that

vI(I ′) = 0(19.1.9)

under these conditions.
Let I1, . . . , Ir be finitely many distinct nonzero proper prime ideals in k,

and let n1, . . . , nr be nonnegative integers. Remember that Inj

j may be defined
as an ideal in k as in Section 12.10, so that

r∏
j=1

Inj

j = In1
1 · · · Inr

r(19.1.10)

may be defined as an ideal in k as in Section 12.8.
If I is a nonzero proper prime ideal in k, then

vI

( r∏
j=1

Inj

j

)
= nl when I = Il for some l(19.1.11)

= 0 otherwise.

This follows from (19.1.3), (19.1.4), (19.1.5), and (19.1.9).

19.2 More on ideals in k

Let us continue with the same notation and hypotheses as in the previous sec-
tion, and let L be a nonzero ideal in k again. Remember that vI(L) = 0 for all
but finitely many nonzero proper prime ideals I in k, as in Section 18.14. Put

L1 =
∏
I

IvI(L),(19.2.1)

as mentioned at the top of p12 of [15]. Although the product is formally taken
over all nonzero proper prime ideals I in k, this is interpreted as the product
over any finite set of such ideals that includes all of those with

vI(L) > 0.(19.2.2)
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If I ′ is any nonzero proper prime ideal in k, then

vI′(L1) = vI′(L),(19.2.3)

as in (19.1.11). This implies that

L = L1,(19.2.4)

as in Section 18.15.
This corresponds to the existence part of Proposition 7 on p12 of [15], and

the uniqueness part follows from (19.1.11). This is stated more broadly in [15],
and we shall return to this in Section 19.5. Remember that the existence and
uniqueness of this type of expression for L was also discussed in Section 18.4,
using another approach.

Let L′ 6= {0} be another ideal in k, and suppose that

vI(L′) ≤ vI(L)(19.2.5)

for all nonzero proper prime ideals I in k. This implies that

L ⊆ L′,(19.2.6)

as in Sections 18.14 and 18.15. This could also be obtained from the expression
for L as in (19.2.1), and its analogue for L′.

If x ∈ k and x 6= 0, then the ideal I(x) in k generated by x is nonzero too.
Remember that vI(x) = 0 for all but finitely many nonzero proper prime ideals
I in k, as in Section 18.12. Observe that

I(x) =
∏
I

IvI(x),(19.2.7)

as in (19.2.1), because vI(I(x)) = vI(x) for every nonzero proper prime ideal
I in k, as in (18.14.9). This gives another way to look at the statements about
I(x) mentioned in Section 18.15.

19.3 Fractional ideals of k

Let k be a Dedekind domain that is not a field again, and for each nonzero proper
prime ideal I in k, take SI = k \ I and kI = S−1

I k, as before. Remember that
kI is a discrete valuation ring, which leads to a discrete valuation vI on the field
Qk of fractions of k, as in Section 18.12.

As in Section 11.7, a fractional ideal of k is a submodule M of Qk, as a
module over k, such that

xM ⊆ k(19.3.1)

for some x ∈ k with x 6= 0. If I is a nonzero proper prime ideal in k, then one
can defined fractional ideals of kI in the same way. Remember that the field of



19.3. FRACTIONAL IDEALS OF K 459

fractions of kI may be identified with Qk, as in Section 14.2, so that a fractional
ideal of kI may be considered as a submodule of Qk, as a module over kI .

If l is an integer, then

{y ∈ Qk : vI(y) ≥ l}(19.3.2)

is a fractional ideal of kI . One can check that every nonzero fractional ideal
of kI is of this form, as in Section 15.7. Note that l is uniquely determined by
(19.3.2), because vI is a discrete valuation on Qk, as in Sections 14.14 and 15.1.
Remember that (19.3.2) is equal to kI when l = 0, as in Sections 15.1 and 18.12.

Let M be a fractional ideal of k, so that S−1
I M may be defined as a module

over kI , as in Section 12.2. We may consider S−1
I M as a submodule of S−1

I Qk,
as a module over kI , and S

−1
I Qk may be identified with Qk, as a module over

kI , as in Section 14.2. Thus S−1
I M may be considered as a submodule of Qk,

as a module over kI , as before.
It is easy to see that S−1

I M is a fractional ideal of kI , as in Section 14.2.
Suppose that M 6= {0}, which implies that

S−1
I M 6= {0}.(19.3.3)

This implies that there is a unique integer vI(M) such that

S−1
I M = {y ∈ Qk : vI(y) ≥ vI(M)},(19.3.4)

as before. If M is an ordinary ideal in k, then this is the same as the definition
of vI(M) in Section 18.14.

Remember that S−1
I I is the same as (19.3.2), with l = 1, as in Section 18.12.

If l ≥ 0, then
(S−1

I I)l(19.3.5)

may be defined as an ideal in kI , as in Section 12.10, and it is easy to see
that this is the same as (19.3.2). We also have that (19.3.2) is invertible as a
fractional ideal of kI for every integer l, with inverse

{y ∈ Qk : vI(y) ≥ −l},(19.3.6)

as in Section 15.7. Thus in fact (19.3.2) is the same as (19.3.5) for every integer
l, where (19.3.5) is defined in terms of inverses when l < 0. This means that
(19.3.4) is the same as saying that

S−1
I M = (S−1

I I)vI(M),(19.3.7)

which corresponds to the definition of vI(M) on the bottom of p11 of [15].
If x ∈ k, x 6= 0, is as in (19.3.1), then

vI(y) ≥ −vI(x)(19.3.8)

for every y ∈M . One can check that

vI(M) = min{vI(y) : y ∈ S−1
I M} = min{vI(y) : y ∈M},(19.3.9)
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as in Section 18.14. In particular,

vI(M) ≥ −vI(x).(19.3.10)

Of course,
vI(M) ≤ vI(y)(19.3.11)

for every y ∈M .
If w ∈ Qk and w 6= 0, then vI(w) = 0 for all but finitely many nonzero

proper prime ideals I in k, as in Section 18.12. This implies that

vI(M) = 0(19.3.12)

for all but finitely many nonzero proper prime ideals I in k, because of (19.3.10)
and (19.3.11). This is mentioned at the bottom of p11 of [15].

19.4 More on vI(M)

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If w ∈ Qk and w 6= 0, then it is easy to see that

wM is another nonzero fractional ideal of k.(19.4.1)

We also have that
vI(wM) = vI(w) + vI(M).(19.4.2)

In particular,
vI(w k) = vI(w),(19.4.3)

because vI(k) = 0, as in Section 19.1. This is mentioned on p12 of [15].
Let M ′ be another nonzero fractional ideal of k. Remember that there is an

x ∈ k such that x 6= 0 and (19.3.1) holds, and similarly there is an x′ ∈ k such
that x′ 6= 0 and

x′M ′ ⊆ k.(19.4.4)

It follows that xx′ 6= 0, because k is an integral domain, and

xx′M, xx′M ′ ⊆ k,(19.4.5)

because M , M ′ are submodules of Qk, as a module over k.
If

vI(M) = vI(M
′)(19.4.6)

for all nonzero proper prime ideals I in k, then

M =M ′.(19.4.7)

This follows from the analogous statement for nonzero ideals in k, as in Section
18.15, and (19.4.3), (19.4.5). Similarly, if

vI(M
′) ≤ vI(M)(19.4.8)
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for all nonzero proper prime ideals I in k, then

M ⊆M ′,(19.4.9)

as before.
Alternatively, if M is a nonzero fractional ideal of k, then it is easy to see

that

M2 = {y ∈ Qk : vI(y) ≥ vI(M) for every nonzero proper(19.4.10)

prime ideal I in k}

is a submodule of Qk, as a module over k, with

M ⊆M2.(19.4.11)

One can show that
M =M2,(19.4.12)

using the same type of argument as in Section 18.15, as indicated near the top
of p12 of [15]. This uses some remarks in Sections 12.2 and 12.4, as in Section
18.13.

If M , N are submodules of Qk, as a module over k, then their product
M N may be defined as a submodule of Qk, as a module over k, as in Section
11.7. This includes products of ideals in k, as in Section 12.8. If M and N are
fractional ideals of k, then it is easy to see that

M N is a fractional ideal of k(19.4.13)

too. If M,N 6= {0}, then
M N 6= {0}(19.4.14)

as well.
If I is a nonzero proper prime ideal in k again, then

S−1
I (M N) = (S−1

I M) (S−1
I N),(19.4.15)

as in Section 14.3. One can use this to get that

vI(M N) = vI(M) + vI(N)(19.4.16)

for all nonzero fractional ideals M , N of k, as on p12 of [15].
Remember that every nonzero fractional ideal M of k is invertible, because

k is a Dedekind domain, as in Section 15.12. The inverse M−1 satisfies

vI(M
−1) = −vI(M),(19.4.17)

because of (19.4.16).
Let I1, . . . , Ir be finitely many distinct nonzero proper prime ideals in k,

and let n1, . . . , nr be integers. We can define

Inj

j(19.4.18)
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as a nonzero fractional ideal of k, using inverses when nj is negative. Thus

r∏
j=1

Inj

j = In1
1 · · · Inr

r(19.4.19)

may be defined as a nonzero fractional ideal of k as well. If I is a nonzero proper
prime ideal in k, then

vI

( r∏
j=1

Inj

j

)
= nl when I = Il for some l(19.4.20)

= 0 otherwise,

as in Section 19.1.

19.5 More on fractional ideals

Let us continue with the same notation and hypotheses as in the previous two
sections. Let M be a nonzero fractional ideal of k again, and remember that
vI(M) = 0 for all but finitely many nonzero proper prim ideals I in k, as in
(19.3.12). Consider

M1 =
∏
I

IvI(M),(19.5.1)

as mentioned at the top og p12 of [15], which may be interpreted as the product
over any finite set of nonzero proper prime ideals I in k that includes all of
those with

vI(M) 6= 0.(19.5.2)

If I ′ is any nonzero proper prime ideal in k, then

vI′(M1) = vI′(M),(19.5.3)

as in (19.4.20), so that
M =M1,(19.5.4)

as in the previous section. This corresponds to Proposition 7 on p12 of [15], as
in Section 19.2.

If M and N are submodules of Qk, as a module over k, then put

(M : N)Qk
= {y ∈ Qk : y N ⊆M},(19.5.5)

as on p11 of [15]. This is the same as in Section 14.3 when M = k, which
corresponds to (k : N) in the notation of Section 11.7. As in Section 14.3, the
subscript Qk is included because similar notation was used in Section 12.8 for
something else. It is easy to see that (19.5.5) is a submodule of Qk, as a module
over k, with

(M : N)Qk
N ⊆M.(19.5.6)
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If N is an invertible ideal of k, as in Section 11.7, then it follows that

(M : N)Qk
= (M : N)Qk

N N−1 ⊆M N−1.(19.5.7)

In this case, we also have that

M N−1N =M,(19.5.8)

which implies that
M N−1 ⊆ (M : N)Qk

.(19.5.9)

This means that
(M : N)Qk

=M N−1(19.5.10)

under these conditions. This was also mentioned in Section 11.7 when M = k,
and it is implicit in a remark on p12 of [15]. Note that the remarks in this and
the preceding paragraph can be used when k is any integral domain.

If M and N are nonzero fractional ideals of k, then they are invertible,
because k is a Dedekind domain, as in Section 15.12. If I is a nonzero proper
prime ideal in k, then we get that

vI((M : N)Qk
) = vI(M N−1) = vI(M)− vI(N),(19.5.11)

as on p12 of [15]. This uses (19.4.16), (19.4.17) in the second step.
If M , M ′ are nonzero fractional ideals of k with

M ⊆M ′,(19.5.12)

then
S−1
I M ⊆ S−1

I M ′(19.5.13)

for every nonzero proper prime ideal I in k. This implies that

vI(M
′) ≤ vI(M),(19.5.14)

by the definition of vI(M).
If M and N are fractional ideals of k, then there is a y ∈ k such that y 6= 0

and
yM, y N ⊆ k,(19.5.15)

as in (19.4.5). Using this, it is easy to see that

M +N is a fractional ideal of k,(19.5.16)

which is nonzero if M or N is nonzero. Of course,

M, N ⊆M +N,(19.5.17)

so that
vI(M +N) ≤ vI(M), vI(N)(19.5.18)

for every nonzero proper prime ideal I in k, as in (19.5.14), when M,N 6= {0}.
In fact, one can check that

vI(M +N) = min(vI(M), vI(N)),(19.5.19)

as mentioned on p12 of [15].
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19.6 Using some ideals in k

Let k be a Dedekind domain that is not a field, and take SI = k \ I and
kI = S−1

I k for each nonzero proper prime ideal I in k, as before. This leads to
a discrete valuation vI on the field Qk of fractions of k, as in Section 18.12.

Let

I1, . . . , Il(19.6.1)

be finitely many distinct nonzero proper prime ideals in k, and let

x1, . . . , xl ∈ Qk(19.6.2)

and integers n1, . . . , nl be given. Under these conditions, there is an x ∈ Qk
such that

vIj (x− xj) ≥ nj(19.6.3)

for each j = 1, . . . , l, and

vI(x) ≥ 0(19.6.4)

for every nonzero proper prime ideal I in k that is not one of the ideals I1, . . . , Il.
This is the approximation lemma on p12 of [15].

Suppose first that

x1, . . . , xl ∈ k.(19.6.5)

If l = 1, then we can take x1 = x, and so we may as well suppose that l ≥ 2.
It is easy to reduce to the case where all but one of x1, . . . , xl is equal to 0. We
may as well suppose that

xj = 0 for j ≥ 2,(19.6.6)

by rearranging the Ij ’s if necessary. We may as well suppose also that nj ≥ 0
for each j.

Consider

L = In1
1 +

l∏
j=2

Inj

j ,(19.6.7)

which is an ideal in k. We would like to check that

vI(L) = 0(19.6.8)

for every nonzero proper prime ideal I in k. Observe that

vI(L) = min
(
vI(In1

1 ), vI

( l∏
j=2

Inj

j

))
(19.6.9)

= min
(
n1 vI(I1),

l∑
j=2

nj vI(Ij)
)
,

where the first step is as in (19.5.19), and the second step is as in Section 19.1.
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Remember that vI(Ij) ≥ 0 for each j, as in Section 18.14. If I = I1, then
(19.6.8) follows from the fact that

vI1
(Ij) = 0(19.6.10)

when j ≥ 2, because I1 6= Ij , as in Section 19.1. Similarly, if I 6= I1, then
(19.6.8) follows from the fact that

vI(I1) = 0.(19.6.11)

Using (19.6.8), we get that
L = k,(19.6.12)

as in Section 18.15. This means that x1 may be expressed as

x1 = x+ y,(19.6.13)

where y ∈ In1
1 , and x ∈

∏l
j=2 I

nj

j . It is easy to see that x has the desired
properties in this case.

We shall consider arbitrary elements x1, . . . , xl of Qk in the next section. In
fact, we shall see that the problem can be reduced to the one considered in this
section. A corollary of this will also be discussed.

19.7 Reducing to the previous case

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If x1, . . . , xl ∈ Qk, then each xj may be expressed as

xj = wj/r,(19.7.1)

where wj ∈ k, r ∈ k does not depend on j, and r 6= 0. In this case, we would
like to find x ∈ Qk of the form

x = w/r,(19.7.2)

w ∈ k, with the desired properties. These properties may be restated as saying
that

vIj
(w − wj) ≥ nj + vIj

(r)(19.7.3)

for each j = 1, . . . , l, and
vI(w) ≥ vI(r)(19.7.4)

for every nonzero proper prime ideal I in k that is not one of the ideals I1, . . . , Il.
Remember that vI(r) = 0 for all but finitely many nonzero proper prime

ideals I in k, because r 6= 0, as in Section 18.12. Of course, (19.7.4) is the same
as saying that

vI(w) ≥ 0(19.7.5)

when vI(r) = 0, and this condition holds automatically when w ∈ k. This
means that there are only finitely many nonzero proper prime ideals I that
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are not one of the ideals I1, . . . , Il, and for which (19.7.4) is more restrictive
than (19.7.5). These ideals may be added to the collection I1, . . . , Il, to get
conditions like those considered in the first case. This shows that this second
case may be obtained from the first case, using this larger collection of prime
ideals in k.

Suppose now that

k has only finitely many prime ideals.(19.7.6)

Under these conditions, the corollary on p12 of [15] states that

k is a principal ideal domain.(19.7.7)

Remember that principal ideal domains are Dedekind domains, as in Section
15.11.

Remember also that ideals in k may be expressed as products of prime ideals,
as in Section 19.2. In order to show that every ideal in k is principal, it suffices
to show that every nonzero proper prime ideal I ′ in k is principal. Let us take

I1 = I ′,(19.7.8)

and let I2, . . . , Il be a list of all other nonzero proper prime ideals in k, without
any repetitions.

Let x1 be an element of I1 such that

vI1(x1) = 1.(19.7.9)

More precisely, there is an element of kI1
= S−1

I1
k with this property, because

kI1
is a discrete valuation ring. Any element of kI1

with this property is an
element of S−1

I1
I1, as in Section 18.12. Of course, the elements of SI1

= k \ I1
are invertible in kI1 , by construction, so that vI1 = 0 on SI1 . This leads to an
element of I1 as in (19.7.9).

Let us take
xj = 1 for j ≥ 2,(19.7.10)

and
n1 = 2, nj = 1 for j ≥ 2.(19.7.11)

One can use the argument in the previous section to get x ∈ k such that

vI1(x) = 1, vIj (x) = 0 for j ≥ 2.(19.7.12)

This means that

vI1
(x k) = 1, vIj

(x k) = 0 for j ≥ 2.(19.7.13)

These are the same as the values of vIj (I1), as in Section 19.1. This implies
that

I1 = x k,(19.7.14)

as in Section 18.15.
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19.8 A result about linear independence

Let k be a field, and let Σ be a nonempty semigroup, with the semigroup opera-
tion expressed multiplicatively. A homomorphism from Σ into the multiplicative
group k \ {0} may be called a character of Σ, as on p208 of [11].

Theorem 7 on p209 of [11], due to Artin, says that

the characters on Σ of this type are linearly independent(19.8.1)

in the space of all functions on Σ with values in k, as a vector space over k.
This means that if χ1, . . . , χn are finitely many distinct characters on Σ of this
type, and if

a1 χ1 + · · ·+ an χn = 0(19.8.2)

for some a1, . . . , an ∈ k, then a1 = · · · = an = 0. Of course, this is clear when
n = 1.

Suppose for the sake of a contradiction that (19.8.2) holds for some n ≥ 2,
and where a1, . . . , an are not all 0. We may as well suppose also that n is as
small as possible, which implies that

aj 6= 0(19.8.3)

for each j.
Because χ1 6= χ2, there is a z ∈ Σ such that

χ1(z) 6= χ2(z).(19.8.4)

If x ∈ Σ, then
a1 χ1(x z) + · · ·+ an χn(x z) = 0,(19.8.5)

by hypothesis. This means that

a1 χ1(z)χ1 + · · ·+ an χn(z)χn = 0(19.8.6)

on Σ, because χ1, . . . , χn are characters.
It follows that

a2 (χ2(z)χ1(z)
−1 − 1)χ2 + · · ·+ an (χn(z)χ1(z)

−1 − 1)χn = 0(19.8.7)

on Σ, by multiplying the left side of (19.8.6) by χ1(z)
−1, and subtracting the

left side of (19.8.2). The coefficient of χ2 is not zero, because of (19.8.3) and
(19.8.4). Thus we can reduce the size of the relation, so that n is not minimal.

19.9 Algebraic elements and extensions

Let k be a field, and let X be an indeterminate. A formal polynomial in X with
coefficients in k may be expressed as

f(X) =

n∑
j=0

fj X
j(19.9.1)
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for some nonnegative integer n, with fj ∈ k for each j, as in Section 4.3. If

fn 6= 0,(19.9.2)

then the degree of f(X) is equal to n. If

fn = 1,(19.9.3)

then f(X) is a monic polynomial in X of degree n.
Let k1 be a field that contains k as a subfield. Note that k1 may be considered

as a commutative associative algebra over k. If x ∈ k1, then

f(x) =

n∑
j=0

fj x
j(19.9.4)

defines an element of k1, as in Section 4.4. Remember that

f(X) 7→ f(x)(19.9.5)

defines a homomorphism from k[X] into k1, as algebras over k, under these
conditions. If

f(x) = 0,(19.9.6)

then x is said to be a root of f(X) in k1.
Of course, k1 may be considered as a vector space over k in particular. If

k1 has finite dimension as a vector space over k, then k1 may be called a finite
extension of k. The dimension of k1, as a vector space over k, may be denoted

[k1 : k],(19.9.7)

and may be called the degree of k1 over k.
Let k2 be a field that contains k1 as a subfield, so that k2 contains k as a

subfield as well. If k1 is a finite extension of k and k2 is a finite extension of k1,
then it is well known that k2 is a finite extension of k, with

[k2 : k] = [k2 : k1] [k1 : k].(19.9.8)

This corresponds to Corollary 1 on p433 of [2], Proposition 2 on p162 of [11],
and Theorem 3 on p443 of [12].

An element of k1 is said to be algebraic over k if it is the root of a polynomial
whose coefficients are in k and not all equal to 0, as on p421 of [2], p161 of [11],
and p439 of [12]. If

every element of k1 is algebraic over k,(19.9.9)

then k1 is said to be algebraic as an extension of k, as on p161 of [11], and
p456 of [12]. If k1 is a finite extension of k, then it is well known that k1 is
algebraic over k, as in Theorem 8 on p430 of [2], Proposition 1 on p161 of [11],
and mentioned on p443 of [12].
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It is also well known that an algebraic element x of k1 over k is the root of
a unique monic polynomial of minimal degree with coefficients in k, and that
this polynomial is irreducible. This may be called the minimal polynomial of x
over k, as on p423 of [2], and p440 of [12]. This is denoted Irr(x, k,X) on p161
of [11].

If x is any element of k1, then let k(x) be the subfield of k1 generated by k
and x. If x is algebraic over k, then

k(x) is a finite extension of k,(19.9.10)

with degree equal to the degree of the minimal polynomial of x over k. This
corresponds to Theorem 7 on p429 of [2], Proposition 3 on p163 of [11], and a
remark on p443 of [12].

Similarly, if x1, . . . , xn are finitely many elements of k1, then k(x1, . . . , xn)
denotes the subfield of k1 generated by k and x1, . . . , xn. If x1, . . . , xn are
algebraic over k, then

k(x1, . . . , xn) is a finite extension of k,(19.9.11)

as in Proposition 5 on p165 of [11]. This also works when x1 is algebraic over
k and xl is algebraic over k(x1, . . . , xl−1) when l ≥ 2, as in Corollary 4 on p433
of [2].

If E is a finite extension of k, then E is generated by k and finitely many
elements of E, as in Proposition 4 on p164 of [11].

19.10 Distinguished classes and the compositum

Let L be a field, and let k, E, and F be subfields of L, with

k ⊆ E,F.(19.10.1)

As on p163 of [11],
the compositum of E and F(19.10.2)

is defined to be the smallest subfield of L that contains E and F . This may be
denoted E F , as in [11], and of course

k ⊆ E F.(19.10.3)

One may consider E F as an extension of F , which may be called the translation
or lifting of E, as an extension of k, to F , as on p164 of [11].

Similarly, the compositum of any nonempty family of subfields of L may be
defined as the smallest subfield of L that contains all of the subfields in the
family, as on p164 of [11].

Let x1, . . . , xn be finitely many elements of L, and suppose for the moment
that

E = k(x1, . . . , xn)(19.10.4)
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is the subfield of L generated by k and x1, . . . , xn, as in the previous section.
One may say that E is finitely generated over k in this case, as on p164 of [11].
One can check that

E F = F (x1, . . . , xn)(19.10.5)

under these conditions, as in [11]. Equivalently, the compositum of E and
F is the subfield of L generated by F and x1, . . . , xn. Indeed, k(x1, . . . , xn)
consists of quotients of polynomials in x1, . . . , xn with coefficients in k, where
the denominator is nonzero, as in [11], and similarly for F (x1, . . . , xn).

Let C be a class of extensions of fields. We say that

C is distinguished(19.10.6)

if it satisfies the following three properties, as on p165 of [11].
Let k, E, F be fields, with

k ⊆ F ⊆ E.(19.10.7)

The first condition is that

E is in C as an extension of k(19.10.8)

if and only if
F is in C as an extension of k(19.10.9)

and
E is in C as an extension of F.(19.10.10)

Let k, E, F be subfields of a field L that satisfy (19.10.1). If (19.10.8) holds,
then the second condition asks that

E F is in C, as an extension of F.(19.10.11)

Let k, E, F be subfields of a field L that satisfy (19.10.1) again. If (19.10.8)
and (19.10.9) hold, then the third condition asks that

E F is in C, as an extension of k.(19.10.12)

This follows from the previous two conditions, as mentioned in [11].
Some examples of distinguished classes will be discussed in the next section,

and some other examples will be considered later.

19.11 A couple of distinguished classes

Let us check that

the class of finite extensions is distinguished,(19.11.1)

as mentioned on p166 of [11]. Indeed, the first condition for a distinguished class
follows from the remarks in Section 19.9. Concerning the second condition, let
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k, E, F be subfields of a field L with k ⊆ E,F , and suppose that E is a finite
extension of k. This implies that E is generated by k and finitely many elements
of E, so that the compositum E F of E and F is generated by F and the same
finitely many elements of E, as in the previous section. It follows that

E F is a finite extension of F,(19.11.2)

as in Section 19.9, because the elements of E are algebraic over k, and thus over
F .

We also have that

the class of algebraic extensions is distinguished,(19.11.3)

as in [11]. To see this, let k, E, F be fields, with k ⊆ F ⊆ E. If E is algebraic
over k, then it is easy to see that F is algebraic over k, and that E is algebraic
over F .

Conversely, suppose that F is algebraic over k, and that E is algebraic over
F . Let α ∈ E be given, so that

an α
n + an−1 α

n−1 + · · ·+ a1 α+ a0 = 0(19.11.4)

for some a0, a1, . . . , an ∈ F that are not all equal to 0. Consider the subfield

F0 = k(a0, a1, . . . , an)(19.11.5)

of F generated by k and a0, a1, . . . , an. Note that

F0 is a finite extension of k,(19.11.6)

as in Section 19.9, because a0, a1, . . . , an are algebraic over k, by hypothesis. Of
course, α is algebraic over F0, by construction.

Consider the subfield F0(α) of E generated by F0 and α. This is a finite
extension of F0, because α is algebraic over F0. It follows that

F0(α) is a finite extension of k,(19.11.7)

because F0 is a finite extension of k. This implies that α is algebraic over k.
Thus E is algebraic over k, so that the class of algebraic extensions satisfies the
first condition in the definition of a distinguished class.

Concerning the second condition in the definition of a distinguished class,
let k, E, and F be subfields of a field L with k ⊆ E,F , and suppose that E is
algebraic over k. In particular, this means that every element of E is algebraic
over F . It follows that the subfield of E F generated by F and finitely many
elements of E is finite over F , as in Section 19.9. Thus the elements of such a
subfield of E F are algebraic over F . One can use this to get that

E F is algebraic over F.(19.11.8)

More precisely, E F is equal to the union of all of the subfields generated by F
and finitely many elements of E. This is because this union is a subfield of E F ,
and it contains E and F by construction.
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19.12 Some remarks about embeddings

Let k and L be fields, and let σ be an embedding of k into L. This means that
σ is an injective homomorphism from k into L, as on p167 of [11]. Thus σ(k) is
a subfield of L, and σ determines a field isomorphism from k onto σ(k).

Let E be an extension of k. We shall sometimes be interested embeddings τ
of E into L that are extensions of σ, i.e., which are equal to σ on k. One may
say that

τ is an embedding of E into L over σ(19.12.1)

under these conditions, as on p167 of [11].
If k is a subfield of L, then we can take σ to be the identity mapping on k.

In this case, one may say that

τ is an embedding of E into L over k(19.12.2)

when τ is equal to the identity mapping on k, as on p167 of [11].
If σ is an embedding of k into L and t ∈ k, then the notation

tσ = σ(t)(19.12.3)

is sometimes used, as on p167 of [11]. Let X be an indeterminate, and let f(X)
be a formal polynomial in X with coefficients in k, as in (19.9.1). Thus

fσ(X) =

n∑
j=0

σ(fj)X
j(19.12.4)

is a formal polynomial in X with coefficients in σ(k) ⊆ L, as on p115 of [11].
Let τ be an extension of σ to an embedding of E into L, as before. If x ∈ E,

then f(x) is defined as an element of E as in Sections 4.4 and 19.9, and similarly
fσ(τ(x)) may be defined as an element of L. It is easy to see that

τ(f(x)) = fσ(τ(x))(19.12.5)

under these conditions. In particular, if x is a root of f(X) in E, then

τ(x) is a root of fσ(X) in L,(19.12.6)

as on p167 of [11].
Let ρ be an embedding of E into itself over k, so that ρ is an injective

homomorphism of E into itself that is equal to the identity mapping on k. In
particular,

ρ may be considered as a linear mapping from E into itself,(19.12.7)

as a vector space over k, as on p167 of [11]. If E is a finite extension of k, then
it follows that

ρ(E) = E,(19.12.8)
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by a well-known result in linear algebra.
Let E′ be a subfield of E that contains k, and suppose that

ρ(E′) ⊆ E′.(19.12.9)

If E′ is a finite extension of k, then

ρ(E′) = E′,(19.12.10)

as in (19.12.8).
Let f(X) be a formal polynomial in X with coefficients in k. Note that ρ

maps the set of roots of f(X) in E into itself, as before. If E′ is the subfield
of E generated by k and the roots of f(X) in E, then (19.12.9) holds. If the
coefficients of f(X) are not all 0, then there are only finitely many roots of f(X)
in E, each of which is algebraic over k. This implies that E′ is a finite extension
of k, as in (19.9.11), so that (19.12.10) holds under these conditions.

Lemma 1 on p167 of [11] states that (19.12.8) also holds when E is an
algebraic extension of k. This is because every element of E is contained in a
subfield E′ of E that is a finite extension of k that satisfies (19.12.9), as in the
preceding paragraph.

19.13 Algebraically closed fields

Let k be a field again, and let X be an indeterminate. If every formal polynomial
in X with coefficients in k of degree at least one has a root in k, then k is said
to be algebraically closed, as on p169 of [11]. The term algebraically complete is
also used for this, as on p437 of [2].

An algebraically closed field k that contains k as a subfield is said to be an
algebraic closure of k if

k is also algebraic over k.(19.13.1)

Every field k has an algebraic closure, as in the corollary on p170 of [11].
Let L be an algebraically closed field, and let σ be an embedding of k into

L. If E is an algebraic extension of k, then one may be interested in extensions
of σ to embeddings of E into L, as on p170 of [11].

Suppose for the moment that

E = k(x)(19.13.2)

for some x ∈ E, which is to say that E is generated by k and x. Note that
any extension of σ to an embedding τ from E into L is uniquely determined by
τ(x).

Of course, if E is an algebraic extension of k, then x should be algebraic over
k. Let f(X) be the minimal polynomial of x over k, as in Section 19.9. This
leads to a polynomial fσ(X) in X with coefficients in σ(k), as in (19.12.4). If
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τ is an embedding of E into L that is an extension of σ, then τ(x) is a root of
fσ(X) in L, as in (19.12.6).

In fact, every root of fσ(X) in L occurs in this way, as on p171 of [11]. This
implies that

the number of extensions of σ to embeddings of E into L(19.13.3)

is equal to
the number of distinct roots of fσ(X) in L,(19.13.4)

as in Proposition 8 on p171 of [11]. In particular, the number of these extensions
is less than or equal to the degree of fσ(X), which is the same as the degree of
f(X). Of course, this also shows that there is such an extension, because L is
algebraically closed.

If E is any algebraic extension of k, then Theorem 2 on p171 of [11] says
that

there is an extension of σ to an embedding of E into L.(19.13.5)

If E is also algebraically closed, and L is algebraic over σ(k), then any such
extension of σ maps E onto L, as in [11].

If k and k
′
are algebraic closures of k, then there is an isomorphism from k

onto k
′
that is equal to the identity mapping on k, as in the corollary on p172

of [11].
Let k2 be a field that contains k as a subfield, and let k1 be a subfield of k2

that contains k. If k1 is algebraic over k, and k2 is algebraic over k1, then

k2 is algebraic over k,(19.13.6)

as in Corollary 4 on p444 of [12]. This is also part of Proposition 6 on p166 of
[11].

If k1 is algebraic over k, and k1 is an algebraic closure of k1, then

k1 is an algebraic closure of k.(19.13.7)

This follows from the fact that k1 is algebraic over k, as in the preceding para-
graph. This corresponds to a remark at the top of p174 of [11].

19.14 Splitting fields

Let k, k1 be fields, with k a subfield of k1, and let X be an indeterminate. Also
let f(X) be a formal polynomial in X with coefficients in k, as in Section 19.9,
with degree at least one. Suppose that

f(X) can be expressed as a product of linear factors(19.14.1)

as a formal polynomial in X with coefficients in k1,

and that

k1 is generated as a field containing k by the roots of f(X) in k1.(19.14.2)
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Under these conditions, k1 may be called a root field of f(X), as on p452 of
[2], or a splitting field of f(X), as on p173 of [11], and p447 of [12]. It is well
known that f(X) has a splitting field, as in Theorem 1 on p453 of [2], and the
first part of Theorem 4 on p447 of [12].

Suppose that k2 is a field that contains k, and that f(X) can be expressed
as a product of linear factors as a formal polynomial in X with coefficients in
k2. In this case,

the subfield of k2 generated by k and the roots of f(X) in k2(19.14.3)

is a splitting field of f(X).

In particular, one can take k2 to an algebraic closure of k, as mentioned on p174
of [11].

If E and K are splitting fields of f(X), then there is an isomorphism from
E onto K that is the identity mapping on k, as in Theorem 2 on p454 of [2],
the first part of Theorem 3 on p173 of [11], and the second part of Theorem 4
on p447 of [12]. If k is an algebraic closure of k and

K ⊆ k,(19.14.4)

then the second part of Theorem 3 on p173 of [11] says that any embedding of
E into k that is the identity mapping on k maps E onto K.

Let I be a nonempty set, and suppose that fj(X) is a formal polynomial in
X with coefficients in k and degree at least one for each j ∈ I. An extension k1
of k is said to be a splitting field of {fj(X)}j∈I if

fj(X) splits into a product of linear factors(19.14.5)

with coefficients in k1 for each j ∈ I,

and

k1 is generated as a field containing k(19.14.6)

by the set of the roots of all of the fj(X)’s, j ∈ I,

as on p174 of [11]. If I has only finitely many elements, then this is the same as
a splitting field of the product of the fj(X)’s, j ∈ I, as in the remark on p175
of [11].

Let k be an algebraic closure of k. If j ∈ I, then let kj be a splitting field of
fj(X) in k. The subfield of k generated by the subfields kj , j ∈ I, is a splitting
field of {fj(X)}j∈I , as mentioned on p174 of [11]. This is the smallest subfield
of k that contains kj for each j ∈ I, which may be called the compositum of
these subfields, as in Section 19.10.

Suppose that E and K are splitting fields of {fj(X)}j∈I , and let K be an
algebraic closure of K. Under these conditions, the corollary on p174 of [11]
says that if σ is an embedding of E into K that is equal to the identity mapping
on k, then

σ(E) = K.(19.14.7)
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More precisely, for each j ∈ I, fj(X) has a unique splitting field Ej in E,
and a unique splitting field Kj in K. We also have that

σ(Ej) = Kj(19.14.8)

for each j ∈ I, as before. One can use this to get (19.14.7), because E and K
are generated by the Ej ’s and Kj ’s, j ∈ I, as mentioned earlier.

19.15 Galois groups and normal extensions

Let k and K be fields, with k ⊆ K. An automorphism of K as a field is said
to be an automorphism over k if it is equal to the identity mapping on k. Of
course, the collection of automorphisms of K as a field is a group with respect
to composition of mappings. The collection Gal(K/k) of automorphisms of K
over k is a subgroup of this group, which is the Galois group of K over k.

This corresponds to the definition on p460 of [2]. The term Galois group is
used the definition on p461 of [2] in the case where K is the root or splitting
field of a polynomial with coefficients in k. In this case, one may also refer to
this as the Galois group of the polynomial.

Galois groups of field extensions are mentioned on p190 of [11], in connection
with Proposition 12 on p189 of [11], and again on p192 of [11]. The notation
G = G(K/k) for the Galois group is used on p192 of [11]. The Galois group
of a polynomial, as the Galois group of a splitting field of the polynomial, is
mentioned on p199 of [11].

The Galois group of a field extension is defined on p458 of [12], using the
notation Γ = Γ(K/k). The Galois group of a polynomial is defined on p450 of
[12], as the Galois group of a splitting field of the polynomial.

Let k, K be fields, with k ⊆ K. There seem to be a few related ways in
which the normality of K as an extension of k is sometimes defined.

Normality of K over k is defined on p459 of [12] to mean that for each u ∈ K
with u 6∈ k, there is an automorphism θ of K over k such that

θ(u) 6= u.(19.15.1)

Equivalently, this means that

k is exactly the set of points in K that are fixed(19.15.2)

by every element of the Galois group of K over k.

LetX be an indeterminate, and suppose now thatK is an algebraic extension
of k. Let us say that K is normal as an extension of k if

for every irreducible formal polynomial f(X) in X(19.15.3)

with coefficients in k that has a root in K,

we have that

f(X) can be expressed as a product of linear factors(19.15.4)

with coefficients in K.
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This corresponds to the condition NOR 3 in Theorem 4 on p175 of [11]. Nor-
mality is defined in the same way on p468 of [2] when K is a finite extension of
k.

If K is a finite extension of k, then Theorem 12 on p459 of [12] says that
certain conditions on K are equivalent. Condition (ii) in that theorem is that
K be normal over k in the sense of [12], as in (19.15.2). The definition of
normality in the preceding paragraph corresponds to part of condition (iii) in
that theorem. The other part of condition (iii) in that theorem is that K be
separable over k, as in Section 20.4.

Part of Theorem 4 on p175 of [11] is that normality as in the condition NOR
3 is equivalent to the condition NOR 2, which says that

K is the splitting field of a family of polynomials in k[X].(19.15.5)

Theorem 14 on p468 of [2] is the analogous statement for finite extensions, i.e.,
if K is a finite extension of k, then K is normal over k if and only if

K is the root field, or equivalently splitting field,(19.15.6)

of some polynomial with coefficients in k.

Condition (i) in Theorem 12 on p459 of [12] is that K be the splitting field of a
polynomial with coefficients in k that is separable, as in the next section.

Let k be an algebraic closure of k, and suppose that K is a subfield of k. We
can reduce to that case, using an embedding of K into k over k, as in Section
19.13. Theorem 4 on p175 of [11] states that the conditions NOR2 and NOR 3
are equivalent to another condition NOR 1. This condition says that

every embedding σ of K into k over k is an automorphism of K.(19.15.7)

Remember that σ is an embedding of K into k over k when σ is the identity
mapping on k, as in Section 19.12.



Chapter 20

More on field extensions

20.1 Some properties of normal extensions

One can check that field extensions of degree 2 are normal, as mentioned on
p175 of [11]. One can use this to get an example of fields k, E, and F with
k ⊆ F ⊆ E such that F is normal over k, E is normal over F , and E is not
normal over k, as in [11]. This means that the class of normal algebraic field
extensions does not satisfy the “if” part of the first condition in the definition
of a distinguished class, in Section 19.10.

Let k, E, and K be fields, with

k ⊆ E ⊆ K.(20.1.1)

Suppose that K is algebraic over k, which implies that E is algebraic over k,
and that K is algebraic over E. If K is normal over k, then the second part of
Theorem 5 on p176 of [11] states that

K is normal over E.(20.1.2)

This is the second half of the “only if” part of the first condition in the definition
of a distinguished class, for the class of normal algebraic field extensions. Indeed,
if X is an indeterminate, and if K is the splitting field of a family of polynomials
in k[X], then these polynomials may be considered as elements of E[X]. This
means that K may be considered as the splitting field of a family of polynomials
in E[X]. This corresponds to Exercise 5 on p470 of [2] in the case of finite
extensions.

Alternatively, let E be an algebraic closure of E, and remember that E
may be considered as an algebraic closure of k, as mentioned in Section 19.13.
Suppose that K is a subfield of E, and remember that we can reduce to this
case using a suitable embedding, as in Section 19.13. If σ is any embedding of
K into E over E, then σ may be considered as an embedding of K into E over
k. The normality of K over k implies that

σ(K) = K,(20.1.3)

478
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and this implies that K is normal over E, as in the previous section. This
argument is mentioned on p176 of [11].

Let k and L be fields, with k ⊆ L, and suppose that K, F are subfields of
L that contain k. Thus the compositum K F of K and F may be defined as a
subfield of L that contains k, as in Section 19.10. Suppose that K is algebraic
over k, so that

K F is algebraic over F,(20.1.4)

as in Section 19.11. If K is normal over k, then the first part of Theorem 5 on
p176 of [11] says that

K F is normal over F.(20.1.5)

This is the second condition in the definition of a distinguished class, for the
class of normal algebraic field extensions.

As before, if K is the splitting field of a family of polynomials in k[X], then
these polynomials may be considered as elements of F [X], and K F may be
considered as the splitting field of this family of polynomials, as an extension of
F . Alternatively, let F be an algebraic closure of F . There is an embedding of
K F into F over F , because of (20.1.4), as in Section 19.13. Using this, we can
reduce to the case where

K F ⊆ F.(20.1.6)

In particular, this means that K ⊆ F .

One can get an algebraic closure k of k that is a subfield of F by taking the
union of the subfields of F that contain k and are algebraic over k, as in the
proof of the corollary on p170 of [11]. Note that

K ⊆ k,(20.1.7)

because k ⊆ K ⊆ F and K is algebraic over k. Let σ be an embedding of K F
into F over F . Thus σ is equal to the identity mapping on F , and on k in
particular, because k ⊆ F . This implies that

k = σ(k) ⊆ σ(K),(20.1.8)

and that σ(K) is algebraic over k.

It follows that

σ(K) ⊆ k.(20.1.9)

If K is normal over k, then we get that σ(K) = K, as in the previous section.
This implies that

σ(K F ) = σ(K)σ(F ) = K F,(20.1.10)

using the definition of the compositum in the first step. This means that K F is
normal over F , as in the previous section again. This argument is also mentioned
on p176 of [11].
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20.2 More on normal extensions

Let k and L be fields with k ⊆ L, and let K1, K2 be subfields of L that contain
k, so that the compositum K1K2 of K1 and K2 is a subfield of L that contains
k. Suppose that K1 and K2 are algebraic over k, so that

K1K2 is algebraic over k,(20.2.1)

as in Section 19.11. If K1 and K2 are normal over k, then

K1K2 is normal over k,(20.2.2)

as in Theorem 5 on p176 of [11]. This is the third condition in the definition
of a distinguished class, for the class of normal algebraic extensions. One way
to see this is to use the fact that K1 and K2 are the splitting fields of families
of polynomials with coefficients in k, as in Section 19.15, so that K1K2 is the
splitting field of the union of two such families.

Alternatively, let k be an algebraic closure of k. There is an embedding of
K1K2 into k over k, because of (20.2.1), as in Section 19.13. We can use this
to reduce to the case where

K1K2 ⊆ k,(20.2.3)

so that K1,K2 ⊆ k. Let σ be any embedding of K1K2 into k over k. Note that
K1,K2 ⊆ K1K2, and that

σ(K1) = K1, σ(K2) = K2,(20.2.4)

because K1 and K2 are normal over k, as in Section 19.15. This implies that

σ(K1K2) = σ(K1)σ(K2) = K1K2,(20.2.5)

so that (20.2.2) holds, as before. This argument is mentioned on p176 of [11].
Let K1 and K2 be subfields of L that contain k again, so that K1 ∩K2 is a

subfield of L that contains k as well. Clearly

K1 ∩K2 is algebraic over k(20.2.6)

when K1 or K2 is algebraic over k. If K1 and K2 are algebraic and normal over
k, then

K1 ∩K2 is normal over k,(20.2.7)

as in Theorem 5 on p176 of [11]. Indeed, let f(X) be an irreducible formal
polynomial in an indeterminate X with coefficients in k that has a root in
K1 ∩ K2. If K1 and K2 are normal over k, then f(X) can be expressed as
a product of linear factors with coefficients in K1, and as a product of linear
factors with coefficients in K2, as in Section 19.15. One can check that these
two expressions are the same, so that f(X) can be expressed as a product of
linear factors with coefficients in K1 ∩K2. This implies (20.2.7), as before.

Alternatively, if k is an algebraic closure of k again, then we can reduce to
the case where (20.2.3) holds, as before. Let σ be any embedding of K1 ∩K2
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into k over k, and let τ be an extension of σ to an embedding of K1K2 into k,
as in Section 19.13. Observe that

σ(K1 ∩K2) = τ(K1 ∩K2) = τ(K1) ∩ τ(K2).(20.2.8)

If K1 and K2 are normal over k, then τ(K1) = K1 and τ(K2) = K2, as in
Section 19.15, so that

σ(K1 ∩K2) = K1 ∩K2.(20.2.9)

This implies (20.2.7), as on p176 of [11].

20.3 Separable polynomials

Let k be a field, and let X be an indeterminate. Also let f(X) be a formal
polynomial in X with coefficients in k, as in Section 19.9. Suppose that f(X)
has degree n for some positive integer n, so that the coefficient of Xj in f(X)
is equal to 0 when j > n, and is not zero when j = n. We say that f(X) is
separable over k when

f(X) has n distinct roots in some splitting field,(20.3.1)

and thus in every splitting field, as on p465 of [2], p178 of [11], and p448 of
[12]. Of course, f(X) has at most n roots in any extension of k, by a standard
argument.

Equivalently, this means that

f(X) has no multiple roots in the splitting field.(20.3.2)

Otherwise, one may say that f(X) is inseparable. These terms are used a bit
differently on p121 of [4], and we shall say more about that in a moment.

Let f ′(X) be the formal derivative of f(X), as in Section 4.6. It is well
known and not difficult to show that

a root of f(X) is a multiple root(20.3.3)

if and only if it is also a root of f ′(X),

as on p465 of [2], Proposition 1 on p131 of [11], and p454 of [12]. This implies
that f(X) is separable if and only if

f(X) and f ′(X) have no common factors,(20.3.4)

as in Theorem 11 on p466 of [2], and Proposition 8 on p454 of [12].
Equivalently, f(X) is separable if and only if

the greatest common divisor of f(X) and f ′(X) is equal to 1.(20.3.5)

It is well known that the greatest common divisor of f(X) and f ′(X) can be
obtained using the Euclidean algorithm in k[X], as in [2, 12]. More precisely,
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the condition (20.3.5) holds when f(X) and f ′(X) are considered as formal
polynomials in X with coefficients in k if and only if it holds when they are
considered as formal polynomials with coefficients in a larger field, as in [2, 12].

Suppose that f(X) is irreducible as a formal polynomial in X with coeffi-
cients in k. In this case, (20.3.5) holds if and only if

f ′(X) 6= 0,(20.3.6)

as in Corollary 1 on p466 of [2].
If k has characteristic 0, then (20.3.6) holds automatically, so that f(X)

is separable. This corresponds to Corollary 2 on p466 of [2], the first part of
Proposition 9 on 178 of [11], and Proposition 9 on p454 of [12]. Separability
of a formal polynomial f(X) is defined on p121 of [4] to mean (20.3.6), but it
seems to be used only for irreducible polynomials.

Let f(X) and g(X) be formal polynomials in X with coefficients in k, and
suppose that

f(X) g(X) is separable.(20.3.7)

Under these conditions, one can check that

f(X) and g(X) are separable.(20.3.8)

20.4 Separable elements and extensions

Let k1 be a field, and let k be a subfield of k1. An algebraic element x of k1
over k is said to be separable over k if

the minimal polynomial of x over k is separable,(20.4.1)

as on p456 of [12]. This means that

the coefficients of the derivative of the minimal polynomial(20.4.2)

of x are not all 0,

as in the previous section. This holds automatically when k has characteristic
0, as before.

If k1 is an algebraic extension of k, then separability of x ∈ k1 is defined in
an equivalent way on p121 of [4]. Observe that

the derivative of the minimal polynomial of x(20.4.3)

over k is not equal to 0 at x

in this case, because x is not a multiple root of its minimal polynomial over k,
as in [4].

If an element x of an extension of k is a root of a separable polynomial with
coefficients in k, then

x is separable over k,(20.4.4)
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as mentioned on p178 of [11]. In this case, this polynomial can be expressed
as the product of the minimal polynomial of x over k and another polynomial
with coefficients in k, so that the minimal polynomial of x over k is separable,
as in the previous section.

A finite extension k1 of k is said to be separable over k on p465 of [2] if

every x ∈ k1 is the root of a separable polynomial(20.4.5)

with coefficients in k.

This is the same as saying that

every element of k1 is separable over k(20.4.6)

in the previous sense, as in the preceding paragraph. This is how separability
of k1 over k is defined on p121 of [4]. Separability of k1 over k is also defined in
this way on p456 of [12] when k1 is any algebraic extension of k.

Separability of finite extensions is defined another way on p178 of [11], and
we shall say more about that in the next section. Separability of an algebraic
element x of an extension of k is defined in [11] to mean that the subfield k(x)
of the extension generated by k and x is separable over k in this sense. It is
mentioned afterwards that this is equivalent to the separability of the minimal
polynomial of x over k. Theorem 7 on p180 of [11] states that a finite extension
of k is separable if and only if every element of the extension is separable over
k.

Let E be a field that contains k as a subfield, and let F be a subfield of E
that contains k. If x ∈ E is separable over k, then

x is separable over F(20.4.7)

as well, as mentioned on p180 of [11]. Indeed, if x is the root of a separable
polynomial with coefficients in k, then this polynomial may also be considered
as having coefficients in F , and it is separable as a polynomial with coefficients
in F .

Suppose that k1 is a finite extension of k, and that

k1 is generated by k and finitely many elements of k1(20.4.8)

that are separable over k.

Under these conditions, it is remarked on p181 of [11] that an argument in the
proof of Theorem 7 on the previous page shows that k1 is separable.

If k1 is an algebraic extension of k, then separability of k1 is defined on p181
of [11] to mean that

every finitely generated subextension of k1 is separable over k.(20.4.9)

Note that this implies that every element of k1 is separable over k, in the sense
defined on p178 of [11].
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Suppose that k1 is an algebraic extension of k that is generated by a family
of elements {xj}j∈I . If xj is separable over k for each j ∈ I, then Theorem 8
on p181 of [11] states that

k1 is separable over k.(20.4.10)

20.5 Separable extensions and embeddings

Let k be a field, and let E be an algebraic extension of k. Also let L be an
algebraically closed field, and let σ be an embedding of k into L. We would
like to consider extensions of σ to embeddings of E into L, as on p176 of [11].
The existence of such an extension follows from Theorem 2 on p171 of [11], as
mentioned in Section 19.13.

Note that any extension of σ to an embedding of E into L maps E onto a
subfield of L that is algebraic over σ(k). Because of this, we shall suppose that

L is algebraic over σ(k),(20.5.1)

so that
L is an algebraic closure of σ(k),(20.5.2)

as in [11].
Let L′ be another algebraically closed field, and let τ be an embedding of k

into L′. Suppose that

L′ is an algebraic closure of τ(k),(20.5.3)

as before. Under these conditions, there is a field isomorphism λ from L onto
L′ such that

λ = τ ◦ σ−1 on σ(k),(20.5.4)

as in [11]. This uses the second part of Theorem 2 on p171 of [11], which was
also mentioned in Section 19.13.

Let Sσ, Sτ be the sets of all extensions of σ, τ to embeddings of E into L,
L′, respectively, as in [11]. One can use λ to get a one-to-one mapping from Sσ
onto Sτ , as on p177 of [11]. In particular, this means that the cardinalities of
Sσ and Sτ are the same. Thus this cardinality depends only on k and E, and
it is denoted

[E : k]s,(20.5.5)

and called the separable degree of E over k, as in [11].
If F is a subfield of E that contains k, then it is easy to see that F is

algebraic over k, and that E is algebraic over F , because E is algebraic over k.
This means that

[E : F ]s and [F : k]s(20.5.6)

may be defined in the same way as before. Under these conditions, the first part
of Theorem 6 on p177 of [11] says that

[E : k]s = [E : F ]s [F : k]s.(20.5.7)
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More precisely, if σ is an embedding of k into L, then σ has [F : k]s distinct
extensions to embeddings of F into L, and each of these has [E : F ]s distinct
extensions to embeddings of E into L. Of course, any extension of σ to an
embedding of E into L may be considered as an extension to E of an extension
of σ to an embedding of F into L.

If E is a finite extension of k, then the second part of Theorem 6 on p177 of
[11] states that the separable degree of E over k is finite, with

[E : k]s ≤ [E : k].(20.5.8)

This follows from Proposition 8 on p171 of [11] when E is generated by a single
element, as in Section 19.13.

Suppose that E is a finite extension of k, and that F is a subfield of E that
contains k again. The corollary on p178 of [11] states that

[E : k]s = [E : k](20.5.9)

if and only if

[E : F ]s = [E : F ](20.5.10)

and

[F : k]s = [F : k].(20.5.11)

If E is a finite extension of k, then separability of E over k is defined on p178
of [11] to mean that (20.5.9) holds. This is equivalent to the other formulations
of separability of finite extensions discussed in the previous section, as mentioned
earlier.

20.6 Separable extensions are distinguished

Remember that the notion of a distinguished class of field extensions is defined
on p165 of [11], as mentioned in Section 19.10. Theorem 9 on p181 of [11] states
that

the class of separable algebraic extensions is distinguished.(20.6.1)

To see this, let k, E, F be fields with k ⊆ F ⊆ E. Suppose for the moment
that E is a separable algebraic extension of k, which implies that E is algebraic
over F and that F is algebraic over k, as mentioned in Section 19.11. Note that
every element of F is separable over k, so that F is separable over k. We also
have that every element of E is separable over F , as in Section 20.4, so that E
is separable over F .

Conversely, suppose that F is a separable algebraic extension of k, and that
E is a separable algebraic extension of F . This implies that E is an algebraic
extension of k, as in Section 19.11. If E is a finite extension of k, then F is a
finite extension of k and E is a finite extension of F , so that

[F : k]s = [F : k] and [E : F ]s = [E : F ],(20.6.2)
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as in the previous section. One can use this to get (20.5.9) from (20.5.7). This
means that E is a separable extension of k, as before.

Otherwise, let α ∈ E be given. Note that α is separable over F , because E
is separable over F , by hypothesis. This means that α is the root of a separable
polynomial with coefficients in F . Let a0, a1, . . . , an ∈ F be the coefficients of
this polynomial, and consider the subfield

F0 = k(a0, a1, . . . , an)(20.6.3)

of F generated by k and these coefficients. This is a finite extension of k, as in
Section 19.9, because a0, a1, . . . , an are algebraic over k, by hypothesis.

We also have that F0 is separable over k, because a0, a1, . . . , an are separable
over k, by hypothesis. Of course, α is separable over F0, by construction. This
means that the subfield F0(α) of E generated by F0 and α is separable over F0.
It follows that

F0(α) is separable over k,(20.6.4)

because of the earlier argument for finite separable extensions. This implies
that α is separable over k, so that E is separable over k.

This shows that separable extensions satisfy the first condition in the defi-
nition of a distinguished class. To get the second condition, let k, E, and F be
subfields of a field L with k ⊆ E,F , and suppose that E is separable algebraic
over k. Remember that the compositum E F of E and F is algebraic over k, as
in Section 19.11.

Every element of E is separable over k, by hypothesis, and thus over F . This
implies that E F is separable over F , as in Section 20.4.

20.7 Minimal normal extensions

Let k be a field, and let E be a finite extension of k. Also let E be an algebraic
closure of E, and remember that E may be considered as an algebraic closure
of k, as in Section 19.13. Note that E is finitely generated as a field extension
of k, as mentioned in Section 19.9. One can get a finite normal extension of k
in E that contains E using the splitting field of finitely many polynomials over
k whose zeros include a set of generators of E as an extension of k.

If E is also separable over k, then one can use finitely many separable poly-
nomials over k, to get a finite normal extension of k in E that contains E and
is separable too. This uses the fact that an extension of k is separable if it is
generated by elements that are separable over k, as in Section 20.4. This is
related to the first part of Exercise 1 on p461 of [12].

The intersection of all of the normal algebraic extensions of k in E that
contain E is a normal algebraic extension of k, as in Section 20.2. This is the
smallest normal algebraic extension of k in E that contains E, as on p182 of
[11]. This is a finite extension of k, as before.
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Let σ1, . . . , σn be a list of the distinct embeddings of E into E over k, so
that n = [E : k]s, as in Section 20.5. Consider the compositum

K = σ1(E)σ2(E) · · ·σn(E)(20.7.1)

of the subfields σ1(E), σ2(E), . . . , σn(E) of E, as in Section 19.10. This is a
finite extension of k, because the class of finite extensions is distinguished, as in
Section 19.11.

In fact,
K is a normal extension of k,(20.7.2)

as on p182 of [11]. To see this, let τ be any embedding of K into E over k.
Observe that

τ ◦ σ1, τ ◦ σ2, . . . , τ ◦ σn(20.7.3)

are distinct embeddings of E into E over k. It follows that these embeddings
are the same as σ1, σ2, . . . , σn, possibly rearranged, so that

τ(K) = K.(20.7.4)

This implies (20.7.2), as in Section 19.15.
Remember that σ1, . . . , σn may be extended to embeddings of any algebraic

extension of E, as in Section 19.13. One can use this to get that any normal
algebraic extension of k in E that contains E also contains σ1(E), . . . , σn(E).
This means that such an extension contains K. Thus K is the smallest normal
algebraic extension of k in E that contains E, as on p182 of [11].

If E is separable over k, then

K is separable over k,(20.7.5)

as on p182, because separable algebraic extensions form a distinguished class.
This is related to the second part of Exercise 1 on p461 of [12].

20.8 Galois extensions

Let k be a field, and let K be an algebraic extension of k. Remember that
normality of K as an extension of k is defined as in Section 19.15. If K is
normal and separable over k, then K is said to be a Galois extension of k, as
on p192 of [11].

If K is any extension of k, then normality of K over k is defined on p459 of
[12] to mean that

k = {u ∈ K : θ(u) = u for every θ ∈ Gal(K/k)},(20.8.1)

as mentioned in Section 19.15. Here Gal(K/k) is the Galois group of K over k,
as before. If K is a finite extension of k, then condition (iii) in Theorem 12 on
p459 of [12] is the same as saying that K is normal as an extension of k as in
Section 19.15, and separable, so that K is a Galois extension. Condition (ii) in
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the theorem is that K be normal as an extension of k as defined in [12], and
part of the theorem is that these two conditions are equivalent in this case.

Let K be an algebraic extension of k again. If K is a Galois extension of k,
then the first part of Theorem 1 on p192 of [11] states that (20.8.1) holds. The
proof of this will be mentioned in Section 21.5, as well as a related statement
for normal extensions that may not be separable.

The proof in [12] that (20.8.1) implies that K is a Galois extension of k
when K is a finite extension of k seems to work as well when K is an algebraic
extension of k. This is related to Exercise 3 on p461 of [12].

Let K be an algebraic closure of K. This may be considered as an algebraic
closure of k, as mentioned in Section 19.13. Every element of the Galois group of
K over k may be considered as an embedding of K into K over k. As in Section
19.15, normality of K over k in the sense that we are using here is equivalent
to the condition that every embedding of K into K over k correspond to an
element of the Galois group of K over k in this way. This corresponds to a
remark on p192 of [11].

More precisely, let S0 be the set of embeddings of K into K over k, which is
to say the set of embeddings of K into K that are equal to the identity mapping
on k, as in Section 19.12. This corresponds to Sσ in Section 20.5, with E = K,
L = K, and σ equal to the identity mapping on k, considered as an embedding
of k into K. Thus

Gal(K/k) ⊆ S0,(20.8.2)

and normality of K over k is equivalent to

Gal(K/k) = S0,(20.8.3)

as in the preceding paragraph.
Suppose from now on in this section that K is a finite extension of k, and

let #A denote the cardinality of a set A. In this case, we get that Gal(K/k) is
finite, with

#Gal(K/k) ≤ #S0 = [K : k]s ≤ [K : k],(20.8.4)

where the second and third steps are as in Section 20.5. We also get that

#Gal(K/k) = #S0 = [K : k]s(20.8.5)

if and only if (20.8.3) holds, which means that K is normal over k, as before.
Observe that

#Gal(K/k) = [K : k](20.8.6)

if and only if (20.8.5) holds and

[K : k]s = [K : k].(20.8.7)

This means that (20.8.6) holds if and only if K is normal and separable over k,
or equivalently Galois over k, as in Theorem 12 on p459 of [12].

Remember that K is normal over k if and only if k is the root field, or
equivalently splitting field, of a polynomial with coefficients in k, as in Section
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19.15. Another part of Theorem 12 on p459 of [12] states that K is Galois
over k if and only if K is the splitting field of a separable polynomial with
coefficients in k. The fact that the splitting field of a separable polynomial
with coefficients in k is a separable extension of k also follows from a statement
mentioned in Section 20.4. The corollary on p469 of [2] says that K is the root
field of a separable polynomial with coefficients in k when K is normal and
separable. Theorems 12 and 13 on p469 of [2] state that root fields of separable
polynomials with coefficients in k have some of the properties of finite Galois
extensions mentioned earlier.

20.9 Separable extensions and the trace

Let k be a field, and let E be a finite separable extension of k. Also let E be
an algebraic closure of E, which may be considered as an algebraic closure of
k, as in Section 19.13. One could start with an algebraic closure k of k, as on
p210 of [11]. In this case, one could reduce to the case where E is a subfield of
k that contains k, using an embedding of E into k, as in Section 19.13, and as
mentioned on p211 of [11]. Of course, this means that k may be considered as
an algebraic closure of E.

Put
r = [E : k]s = [E : k],(20.9.1)

and let σ1, . . . , σr be the distinct embeddings of E into E over k. If x ∈ E, then
the trace of x from E to k is defined by

TrEk (x) =

r∑
j=1

σj(x),(20.9.2)

as on p210 of [11]. More precisely, the trace is initially defined in a slightly
different way for any finite extension of k in [11], and then it is mentioned that
it is equal to 0 when the extension is not separable.

Although (20.9.2) may be defined initially as an element of E, it is in fact
an element of the smallest normal algebraic extension K of k in E that contains
E, as in Section 20.7. It is easy to see that (20.9.2) is invariant under the Galois
group of K over k, because any element of the Galois group of K over k simply
permutes the terms in the sum on the right side of (20.9.2). This implies that

TrEk (x) ∈ k,(20.9.3)

as in the previous section, because K is Galois over k, as in Section 20.7. This
corresponds to part of the first part of Theorem 8 on p210 of [11].

Clearly TrEk is a homomorphism from E into k, as commutative groups with
respect to addition, as in Theorem 8 on 210 of [11]. In fact, TrEk is a linear
mapping from E into k, as vector spaces over k, as mentioned on p211 of [11].

Let F be a subfield of E that contains k. Note that F is a finite separable
extension of k, and that E is a finite separable extension of F , because separable
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algebraic extensions form a distinguished class, as in Section 20.6. Of course,
E may be considered as an algebraic closure of F as well. Thus TrEF may be
defined as a mapping from E into F , and TrFk may be defined as a mapping
from F into k, as before. It is not too difficult to show that

TrEk = TrFk ◦ TrEF ,(20.9.4)

as in the second part of Theorem 8 on p210 of [11].
Suppose for the moment that

E = k(α)(20.9.5)

for some α ∈ E, so that E is generated by k and α. Let X be an indeterminate,
and let

f(X) = Xn + an−1X
n−1 + · · ·+ a0(20.9.6)

be the minimal polynomial of α over k, as in Section 19.9. Under these condi-
tions, we have that

Tr
k(α)
k (α) = −an−1,(20.9.7)

as in the third part of Theorem 8 on p210 of [11].
Of course, −an−1 is the same as the sum of the roots of f(X), with their

appropriate multiplicaities. In this case, f(X) has no multiple roots, because of
separability, as in Section 20.4. The embeddings of k(α) over k into an algebraic
closure correspond exactly to the roots of f(X), as in Section 19.13. This means

that Tr
k(α)
k (α) is the same as the sum of the roots of f(X), as in (20.9.7).

Let E be any finite separable extension of k again. The first part of Theorem
9 on p211 of [11] states that

TrEk (x) 6= 0(20.9.8)

for some x ∈ E. To see this, we consider E \ {0} as a commutative group with
respect to multiplication, and σ1, . . . , σr as group homomorphisms from E \{0}
into E \ {0}. These homomorphisms are linearly independent as functions on
E \{0} with values in E, as in Section 19.8, because they are distinct on E \{0},
by hypothesis. This implies in particular that their sum is nonzero on E \ {0}.

If x ∈ k, then
TrEk (x) = r · x,(20.9.9)

which is the sum of r x’s in k, as mentioned in the remark on p212 of [11]. This
implies (20.9.8) when x 6= 0 and k has characteristic 0, and when r is not a
multiple of the characteristic of k, if it is positive.

If x ∈ E, then
y 7→ x y(20.9.10)

defines a linear mapping from E into itself, as a vector space over k. The trace of
this linear mapping may be defined as an element of k in the usual way, because
E has finite dimension as a vector space over k, by hypothesis. It is well known
that the trace of this linear mapping is equal to TrEk (x), as in Exercise 4 on
p351 of [11].
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20.10 Traces and integral elements

Let k0 be an integral domain, and let k = Qk0 be its field of fractions. Also let
E be a finite extension of k, and let E be an algebraic closure of E. Suppose
that

x ∈ E is integral over k0,(20.10.1)

so that it satisfies a monic polynomial equation with coefficients in k0, as in
Section 16.3. This polynomial may be expressed as the product of the minimal
polynomial of x over k and another polynomial with coefficients in k. It follows
that the roots of the minimal polynomial of x over k satisfy the same monic
polynomial equation with coefficients in k0 as x does, so that they are integral
over k0 too.

It is well known and easy to see that the coefficients of the minimal polyno-
mial of x over k may be expressed as sums of products of its roots. This implies
that

the coefficients of the minimal polynomial of x over k(20.10.2)

are integral over k0,

as in Section 16.5. This corresponds to part of the corollary on p240 of [11].
Note that all rings in Chapter IX of [11] are supposed to be commutative, as
mentioned at the beginning of that chapter, and that the term entire ring is
used for integral domains on p61 of [11].

Suppose now that E is a finite separable extension of k. Under these condi-
tions,

TrEk (x) is integral over k0(20.10.3)

as well. This corresponds to another part of the corollary on p240 of [11].
This corresponds to remarks in the proofs of Proposition 5.17 on p64 of [1] and
Proposition 8 on p13 of [15] too.

Although (20.10.3) can be obtained from (20.10.2), it can be verified more
directly from the definition (20.9.2) of the trace, as follows. If σ1, . . . , σr are
the distinct embeddings of E into E over k, as in the previous section, then
σj(x) satisfies the same polynomial equations as x for each j. In particular, this
means that

σj(x) is integral over k0(20.10.4)

for each j. It follows that their sum is integral over k0, as in Section 16.5 again.

20.11 Traces and integral closures

Let k0 be an integral domain, and let k = Qk0 be its field of fractions again.
Also let E be a finite separable extension of k, and let E be an algebraic closure
of E. Suppose that

k0 is integrally closed,(20.11.1)
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so that k0 is integrally closed in k, as in Section 16.3. Let

k1 = {x ∈ E : x is integral over k0}(20.11.2)

be the integral closure of k0 in E, as in Section 16.5.
Under these conditions, Proposition 5.17 on p64 of [1] says that there is a

basis v1, . . . , vr for E as a vector space over k such that

k1 ⊆ k0 v1 + · · ·+ k0 vr.(20.11.3)

This is related to Exercise 5 on p252 of [11], and to Proposition 8 on p13 of [15],
and we shall say more about that n a moment.

Of course, every element of E is algebraic over k, as mentioned in Section
19.9. This implies that every x ∈ E satisfies a polynomial equation

an x
n + an−1 x

n−1 + · · ·+ a0 = 0(20.11.4)

with coefficients in k0 and an 6= 0, because k is the field of fractions of k0, by
a standard argument. One can multiply both sides of the equation by an−1

n to
get that an x is integral over k0, so that

an x ∈ k1.(20.11.5)

We can use this to get a basis u1, . . . , ur for E, as a vector space over k, with

u1, . . . , ur ∈ k1,(20.11.6)

as in [1].
Let TrEk be as in Section 20.9, and note that

TrEk (x y)(20.11.7)

defines a symmetric bilinear form on E, as a vector space over k. This bilinear
form is also nondegenerate on E, because TrEk is nonzero on some elements of
E, as before.

One can use this to get a basis v1, . . . , vr of E as a vector space over k such
that

TrEk (uj vl) = 1 when j = l(20.11.8)

= 0 when j 6= l.

as in Corollary 1 on p212 of [11]. More precisely, one can use (20.11.7) to
identify E with its dual space, as a vector space over k, in which case v1, . . . , vr
corresponds to the dual basis associated to u1, . . . , ur.

If x ∈ E, then x can be expressed in a unique way as a linear combination
of v1, . . . , vr with coefficients in k, and in fact

x =

r∑
j=1

TrEk (xuj) vj ,(20.11.9)
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because of (20.11.8). Remember that k1 is a subring of E, as in Section 16.5. If
x ∈ k1, then xuj ∈ k1 for each j, and

TrEk (xuj) ∈ k1(20.11.10)

for each j, as in (20.10.3). This implies (20.11.3).
Suppose now that we also have that

k0 is Noetherian(20.11.11)

as a commutative ring, and thus as a module over itself. The right side of
(20.11.3) may be considered as a module over k0, which is freely generated by
v1, . . . , vr. This module is isomorphic to the direct sum of r copies of k0, and is
thus Noetherian as a module over k0, as in Section 9.7.

Note that k1 may be considered as a module over k0, because k0 is a subring
of k1. It follows that

k1 is finitely generated as a module over k0,(20.11.12)

because of (20.11.3). This corresponds to Exercise 5 on p252 of [11], and to
Proposition 8 on p13 of [15].

20.12 Dedekind domains and integral closures

Let us continue with the same notation and hypotheses as in the previous sec-
tion, including (20.11.11). Observe that

k1 is Noetherian, as a module over k0,(20.12.1)

as in Section 9.7. This implies that

k1 is Noetherian as a commutative ring,(20.12.2)

which is to say that k1 is Noetherian as a module over itself.
Suppose now that k0 is a Dedekind domain, which includes the conditions

that k0 be a Noetherian integral domain, as in Section 15.11. This implies that
k be integrally closed as well, as in Section 16.12.

Of course, k1 is an integral domain too. Note that k1 is integrally closed in
E, as in Section 16.5. It is easy to see that E is the field of fractions of k1, using
(20.11.5). This means that

k1 is integrally closed,(20.12.3)

as in Section 16.3.
Remember that k0 has dimension less than or equal to one, in the sense of

Section 14.8, because k0 is a Dedekind domain, as in Section 15.11. One can
check that

k1 has dimension less than or equal to one,(20.12.4)
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because k1 is integral over k0. This uses the results mentioned in Section 16.14.
It follows that

k1 is a Dedekind domain,(20.12.5)

as in Section 16.12. This corresponds to Proposition 9 on p13 of [15], and it is
related to Theorem 9.5 on p96 of [1]. This also works if one requires Dedekind
domains to not be fields, or equivalently to have dimension equal to one, as
mentioned in Section 15.11. More precisely, if k0 is not a field, then k1 is not a
field, because k0 = k ∩ k1.

20.13 Some remarks about multiple roots

Let k be a field, and let X be an indeterminate. Also let g(X) be a polynomial
in X with coefficients in k, and suppose that

f(X) = (X − α)m g(X)(20.13.1)

for some α ∈ k and m ∈ Z+. If g(α) 6= 0, then m is said to be the multiplicity
of α as a root of f(X), as on p131, 178 of [11]. We say that α is a multiple root
of f(X) when m > 1, and otherwise α is a simple root of f(X) when m = 1, as
in [11].

Suppose that k has positive characteristic p. It is well known and not difficult
to see that the binomial coefficient

(
p
l

)
is a multiple of p when 1 ≤ l ≤ p − 1.

This implies that
(x+ y)p = xp + yp(20.13.2)

for every x, y ∈ k, as on p131 of [11]. Of course, (x y)p = xp yp for all x, y ∈ k,
so that

x 7→ xp(20.13.3)

is a homomorphism from k into itself, as a field. The kernel of this homomor-
phism is trivial, so that (20.13.3) is injective.

If r is a positive integer, then it follows that

x 7→ xp
r

(20.13.4)

is an injective homomorphism from k into itself, as a field, as on p132 of [11].
Let c ∈ k be given, and consider

Xpr − c.(20.13.5)

If this polynomial has a root a ∈ k, so that

ap
r

= c,(20.13.6)

then
Xpr − c = Xpr − ap

r

= (X − a)p
r

,(20.13.7)

as a formal polynomial in X with coefficients in k. This means that a is the
only root of (20.13.5), as on p132 of [11].
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If
(20.13.3) maps k onto itself,(20.13.8)

then k is said to be perfect, as on p190 of [11]. Any field of characteristic 0 is
said to be perfect too, as in [11]. An equivalent formulation is mentioned on
p121 of [4]. Note that (20.13.8) holds when k has only finitely many elements,
because (20.13.3) is injective.

If f(X) is a formal polynomial in X with coefficients in k and f ′(X) = 0,
then f(X) can be expressed as a linear combination of powers of Xp with
coefficients in k, as in Proposition 2 on p131 of [11]. If k is perfect, then it
follows that f(X) can be expressed as the pth power of a formal polynomial in
X with coefficients in k, as mentioned on p121 of [4]. In particular, this implies
that f(X) is reducible when the degree of f(X) is at least one, as in [4]. If k is
perfect and f(X) is ireducible, then it follows that f ′(X) 6= 0, so that f(X) is
separable, as in Section 20.3. This means that algebraic elements of extensions
of k are separable, so that algebraic extensions of k are separable.

20.14 More on separable elements

Let k be a field, let k be an algebraic closure of k, let α be an element of k, and
let f(X) be the minimal polynomial of α over k. If k has characteristic 0, then
all of the roots of f(X) are simple, so that f(X) is separable as a polynomial
over k, as in Section 20.3. If k has positive characteristic p, then there is a
nonnegative integer µ such that

every root of f(X) has multiplicity pµ,(20.14.1)

as in Proposition 9 on p178 of [11]. In this case, we have that

[k(α) : k] = pµ [k(α) : k]s,(20.14.2)

and that
αp

µ

is separable over k(20.14.3)

as in [11].
To see this, let α1, . . . , αr be a list of the distinct roots of f(X) in k, and let

ml be the multiplicity of αl in f(X) for each l = 1, . . . , r. Note that

f(X) =

r∏
l=1

(X − αl)
ml ,(20.14.4)

because f(X) is a monic polynomial by hypothesis, as in Section 19.9.
If 1 ≤ j ≤ r, then there is a unique isomorphism σj from k(α) onto k(αj)

over k such that
σj(α) = αj ,(20.14.5)

as on p179 of [11]. This can be extended to an automorphism of k over k, as in
Section 19.13, and we let σj denote this extension as well.
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If fσj (X) is the formal polynomial associated to f(X) and σj as in Section
19.12, then

fσj (X) = f(X),(20.14.6)

because σj is the identity mapping on k, and f(X) has coefficients in k. One
can use this to get that

f(X) =

r∏
l=1

(X − σj(αl))
ml ,(20.14.7)

as on p179 of [11]. If α has multiplicity m in f(X), then it follows that

mj = m,(20.14.8)

as in [11].
Let f ′(X) be the formal derivative of f(X), as in Section 4.6. Remember

that f(X) has no multiple roots when f ′(X) 6= 0, because f(X) is irreducible, as
in Section 20.3. In particular, this holds when k has characteristic 0, as before.

Suppose that k has positive characteristic p. If

f ′(X) = 0,(20.14.9)

then the coefficient of X l in f(X) is 0 unless l is an integer multiple of p. This
means that

f(X) = g(Xp)(20.14.10)

for some formal monic polynomial g(X) with coefficients in k, as on p179 of [11].
It is easy to see that g(X) is irreducible as a formal polynomial with coefficients
in k, because f(X) is irreducible. If g′(X) 6= 0, then we can stop.

Remember that [k(α) : k] is equal to the degree of f , as mentioned in Section
19.9. Note that

g(αp) = f(α) = 0,(20.14.11)

so that [k(αp) : k] is equal to the degree of g. Of course,

k(αp) ⊆ k(α).(20.14.12)

It follows that
[k(α) : k(αp)] = p,(20.14.13)

as mentioned on p179 of [11], using a standard properties of degrees of extensions
mentioned in Section 19.9.

We can repeat the process as needed to get a nonnegative integer µ and an
irreducible formal monic polynomial h(X) with coefficients in k such that

f(X) = h(Xpµ)(20.14.14)

and
h′(X) 6= 0,(20.14.15)
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as on p179 in [11]. Thus h(X) has no multiple roots, as before. Clearly

h(αp
µ

) = f(α) = 0,(20.14.16)

and [k(αp
µ

) : k] is equal to the degree of h. Note that (20.14.3) follows from
(20.14.16). We also have that

k(αp
µ

) ⊆ k(α),(20.14.17)

and

[k(α) : k(αp
µ

)] = pµ,(20.14.18)

as on p179 of [11].

If 1 ≤ l ≤ r, then

h(αp
µ

l ) = f(αl) = 0.(20.14.19)

It follows that h(X) can be expressed as the product of X − α
pµ
l and a formal

polynomial in X with coefficients in k that is not equal to 0 at αp
µ

l , because
h(X) does not have multiple roots. This means that f(X) can be expressed as
the product of

Xpµ − αp
µ

l = (X − αl)
pµ(20.14.20)

and a formal polynomial that is a linear combination of powers of Xpµ , and
which is not equal to 0 at αl. Thus the multiplicity of αl as a root of f(X) is
equal to pµ, as in (20.14.1).

The degree of f(X) is equal to pµ r, so that the degree of h(X) is equal to
r. Note that

αp
µ

1 , . . . , αp
µ

r(20.14.21)

are distinct roots of h(X), and that these are all of the roots of h(X), because
the degree of h(X) is equal to r, as in [11].

Remember that [k(α) : k]s is the number of embeddings of k(α) into k over
k, as in Section 20.5. This is equal to the number of distinct roots of f(X),
by Proposition 8 on p171 of [11], which was mentioned in Section 19.13. This
implies (20.14.2), because [k(α) : k] is equal to the degree of f(X), as mentioned
in Section 19.9. Note that

[k(αp
µ

) : k]s = [k(αp
µ

) : k],(20.14.22)

which is the degree of h(X), and that

[k(α) : k]s = [k(αp
µ

) : k]s,(20.14.23)

as on p179 of [11].
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20.15 More on algebraic extensions

Let k be a field of positive characteristic p, and let α be an algebraic element of
an extension of k. If there is a nonnegative integer n such that

αp
n

∈ k,(20.15.1)

then α is said to be purely inseparable over k, as on p186 of [11].
Let E be an algebraic extension of k, and consider the following four condi-

tions on E. The first condition is that

[E : k]s = 1,(20.15.2)

where the left side is as in Section 20.5. The second condition is that

every α ∈ E is purely inseparable over k.(20.15.3)

The third condition is that for every α ∈ E, the minimal polynomial of α over
k is of the form

Xpn − a(20.15.4)

for some nonnegative integer n and a ∈ k. The fourth condition is that there
be a family {αj}j∈I of generators of E as an extension of k such that

αj is purely inseparable over k(20.15.5)

for each j ∈ I.
These four conditions are equivalent, as in [11]. To see this, suppose for the

moment that (20.15.2) holds, and let α ∈ E be given. Remember that k(α) is
the subfield of E generated by k and α, and observe that

[k(α) : k]s = 1,(20.15.6)

as in Section 20.5.
Let E be an algebraic closure of E, which may be considered as an algebraic

closure of k, as in Section 19.13. Also let X be an indeterminate, and let f(X)
be the minimal polynomial of α over k. Remember that [k(α) : k]s is the same
as the number of embeddings of k(α) into E over k, as in Section 20.5, and that
this is the same as the number of distinct roots of f(X) in E, as in Section
19.13. Thus (20.15.6) is the same as saying that f(X) has only one root in E,
which is α.

Put
m = [k(α) : k],(20.15.7)

which is the same as the degree of f(X). The remarks in the preceding para-
graph imply that

f(X) = (X − α)m,(20.15.8)

as a formal polynomial in X with coefficients in k(α). Let us express m as

m = pn r,(20.15.9)
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where n is a nonnegative integer, and r is a positive integer that is not a multiple
of p. Observe that

f(X) = (X − α)p
n r = (Xpn − αp

n

)r.(20.15.10)

It follows that

f(X) = Xpn r − r · αp
n

Xpn (r−1) + · · · .(20.15.11)

This implies that
r αp

n

∈ k,(20.15.12)

because the coefficients of f(X) are in k. This means that (20.15.1) holds,
because r is not a multiple of p.

Suppose now that α ∈ E is purely inseparable over k, so that

αp
n0 ∈ k(20.15.13)

for some nonnegative integer n0. Let f(X) be the minimal polynomial of α over
k again, and let m be the degree of f(X). Of course, α is a root of

Xpn0 − αp
n0

= (X − α)p
n0
,(20.15.14)

so that Xpn0 − αp
n0

is equal to the product of f(X) and another monic formal
polynomial in X with coefficients in k. It follows that α is the only root of
f(X).

If m is as in (20.15.9), then we get that (20.15.1) holds, as before. The
irreducibility of f(X) implies that r = 1, and that

f(X) = Xpn − αp
n

.(20.15.15)

This shows that (20.15.3) implies the third condition mentioned earlier. The
third condition clearly implies (20.15.3), which implies the fourth condition.

Suppose that E satisfies the fourth condition mentioned earlier, and let
fj(X) be the minimal polynomial of αj over k for each j ∈ I. If j ∈ I, then
there is a nonnegative integer nj such that

αp
nj

j ∈ k,(20.15.16)

as in (20.15.5). This implies that

Xpnj − αp
nj

j = (X − αj)
pnj

(20.15.17)

is equal to the product of fj(X) and another monic formal polynomial in X with
coefficients in k, as before. In fact, if we take nj to be as small as possible, then
we get that fj(X) is equal to (20.15.17), as before. However, for the moment
we only need the fact that αj is the only root of fj(X) in E.

Any embedding of E into E over k sends αj to a root of fj(X). This means
that such an embedding sends αj to itself for each j, because it is the only root
of fj(X). It follows that such an embedding is equal to the identity mapping
on E. This implies (20.15.2).

If E satisfies these conditions, then E is said to be purely inseparable as an
extension of k, as on p187 of [11].
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Chapter 21

More on field extensions, 2

21.1 Maximal separable subextensions

Let k be a field of positive characteristic p. Proposition 10 on p187 of [11] states
that

the class of purely inseparable extensions of k is distinguished,(21.1.1)

in the sense described in Section 19.10. The first condition in the definition
of a distinguished class can be obtainsd using (20.15.2) and a property of the
separable degree on Section 20.5. The second condition in the definition of a
distinguished class can be obtained from the fourth condition in Section 20.15.

Let E be an algebraic extension of k, and let E0 be the compositum of all of
the subfields F of E that contain k and that are separable over k, as in Section
19.10. Proposition 11 on p187 of [11] states that

E0 is separable over k,(21.1.2)

and that
E is purely inseparable over E0.(21.1.3)

More precisely, (21.1.2) holds because E0 is generated by elements that are
separable over k, as in Section 20.4. In fact, E0 consists of all of the elements
of E that are separable over k, as in [11]. If α ∈ E, then

αp
n

∈ E0(21.1.4)

for some nonnegative integer n, as in (20.14.3), which implies (21.1.3).
If E is both separable and purely inseparable over k, then Corollary 1 on

p188 of [11] states that
E = k.(21.1.5)

Indeed, if α ∈ E, then the minimal polynomial of α over k is of the form
(20.15.4) for some n ≥ 0, as before. However, if E is separable over k, then α
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is separable over k, so that the formal derivative of this polynomial should not
be 0, as in Sections 20.3 and 20.4. This means that n = 0, so that α ∈ k.

If r is a nonnegative integer, then put

Ep
r

= {xp
r

: x ∈ E}.(21.1.6)

This is a subfield of E, because x 7→ xp
r

is a homomorphism from E into itself
as a field, as in Section 20.13.

Consider the condition that

the compositum of Ep and k is equal to E,(21.1.7)

as in Corollary 4 on p188 of [11]. If r is a positive integer, the one can use
(21.1.7) to get that

the compositum of Ep
r

and k is equal to E,(21.1.8)

as mentioned in [11].
Suppose that E is a finite extension of k, and let E0 be the maximal subfield

of E that contains k and is separable over k, as before. Remember that E is
generated by k and finitely many elements α1, . . . , αn, as mentioned in Section
19.9. We also have that for each j = 1, . . . , n there is a nonnegative integer mj

such that
αp

mj

j ∈ E0,(21.1.9)

as in (21.1.4). This implies that there is a nonnegative integer m such that

αp
m

j ∈ E0(21.1.10)

for each j = 1, . . . ,m. It follows that

Ep
m

⊆ E0(21.1.11)

under these conditions, as in [11].
If (21.1.7) holds, then (21.1.8) holds with r = m, and we get that

E = E0.(21.1.12)

This means that E is separable over k, as in Corollary 4 on p188 of [11].
If E is any algebraic extension of k again, then let F be the compositum of

Ep and k, so that F is a subfield of E that contains k. Clearly

E is purely inseparable over F,(21.1.13)

as mentioned in [11].
Suppose that E is separable over k. It is easy to see that

E is separable over F.(21.1.14)

This is part of the fact that the class of separable extensions is distinguished,
as in Section 20.6.
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Combining (21.1.13) and (21.1.14), we get that

E = F,(21.1.15)

as in (21.1.5). This means that (21.1.7) holds, so that (21.1.8) holds, as in
Corollary 4 on p188 of [11].

Suppose that k is perfect, so that kp = k, as in Section 20.13. This implies
that E is separable over k, as before. This means that (21.1.8) holds, as in the
preceding paragraph. This is the same as saying that the compositum of Ep

and kp is equal to E in this case, so that

Ep = E.(21.1.16)

Thus E is perfect too, as in the corollary on p190 of [11].
If k is perfect, then it is easy to see that kp

r

= k for every positive integer r.
In this case, if E is purely inseparable over k, then it follows that E = k. One
can use also this and Proposition 12 on p189 of [11] to get that any algebraic
extension over k is separable, as in the corollary on p190 of [11].

21.2 Some additional corollaries

Let k be a field of positive characteristic p again, and letK be a normal algebraic
extension of k. If K0 is the maximal separable extension of k contained in K,
then Corollary 2 on p188 of [11] says that

K0 is normal over k.(21.2.1)

To see this, let K be an algebraic closure of K, which may be considered as an
algebraic closure of k, as in Section 19.13. Also let σ0 be an embedding of K0

into K over k. There is an extension of σ0 to an embedding σ of K into K over
k, as in Section 19.13.

Because K is normal over k, we have that σ(K) = K, as in Section 19.15.
It is easy to see that

σ(K0) is separable over k,(21.2.2)

because K0 is separable over k. This implies that

σ(K0) ⊆ K0,(21.2.3)

because
σ(K0) ⊆ σ(K) = K,(21.2.4)

and because K0 is the maximal separable extension of k contained in K. Simi-
larly,

σ−1(K0) is separable over k,(21.2.5)

and
σ−1(K0) ⊆ σ−1(K) = K,(21.2.6)
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so that
σ−1(K0) ⊆ K0.(21.2.7)

It follows that
σ0(K0) = σ(K0) = K0,(21.2.8)

so that (21.2.1) holds, as in Section 19.15.
If E is a finite extension of k, then

[E : k]i =
[E : k]

[E : k]s
(21.2.9)

is called the inseparable degree or degree of inseparability of E over k, as on
p180 of [11]. This is a nonnegative integer power of p, as in Corollary 1 on p180
of [11]. This follows from (20.14.2) when E is generated by a single element, as
an extension of k. Otherwise, one can repeat the process, using basic properties
of the ordinary and separable degrees of finite extensions, as in Sections 19.9
and 20.5. This can also be defined for extensions of fields of characteristic 0, in
which case it is equal to 1.

Note that E is separable over k if and only if

[E : k]i = 1,(21.2.10)

as in Corollary 2 on p180 of [11]. This uses the characterization of separability
mentioned in Section 20.5. Similarly, E is purely inseparable over k if and only
if

[E : k]i = [E : k],(21.2.11)

as in (20.15.2).
Let F be a subfield of E that contains k. Corollary 3 on p180 of [11] states

that
[E : k]i = [E : F ]i [F : k]i,(21.2.12)

which follows from the analogous properties of the ordinary and separable de-
grees.

Now let E, F be finite extensions of k such that E is separable over k, and
F is purely inseparable over k. Suppose that E and F are subfields of a larger
field, so that their compositum E F is a subfield of that larger field, as in Section
19.10. Under these conditions, Corollary 3 on p188 of [11] states that

[E F : F ] = [E : k] = [E F : k]s(21.2.13)

and
[E F : E] = [F : k] = [E F : k]i.(21.2.14)

We also have that
E F is separable over F(21.2.15)

and
E F is purely inseparable over E,(21.2.16)
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as mentioned in [11].
Of course,

[E F : k]s = [E F : F ]s [F : k]s(21.2.17)

and
[E F : k]s = [E F : E]s [E : k]s,(21.2.18)

as in Section 20.5. It follows from (21.2.17) that

[E F : k]s = [E F : F ]s = [E F : F ],(21.2.19)

using the hypothesis that F be purely inseparable over k in the first step, and
(21.2.15) in the second step. One can get the second step in (21.2.13) using
(21.2.18), (21.2.16), and the hypothesis that E be separable over k.

Similarly,
[E F : k]i = [E F : F ]i [F : k]i(21.2.20)

and
[E F : k]i = [E F : E]i [E : k]i,(21.2.21)

as in (21.2.12). Using (21.2.21), we get that

[E F : k]i = [E F : E]i = [E F : E],(21.2.22)

because E is separable over k by hypothesis, and because of (21.2.16). The
second step in (21.2.14) can be obtained from (21.2.20), (21.2.15), and the hy-
pothesis that F be purely inseparable over k.

21.3 Some remarks about Gal(K/k)

Let k and K be fields, with k ⊆ K, and remember that Gal(K/k) is the Galois
group of automorphisms of K over k, as in Section 19.15. If L is a subfield of
K that contains k, then

Gal(K/L) is a subgroup of Gal(K/k).(21.3.1)

Consider

K1 = {u ∈ K : θ(u) = u for every θ ∈ Gal(K/k)},(21.3.2)

which is a subfield of K that contains k. Observe that

Gal(K/K1) = Gal(K/k).(21.3.3)

If K1 = k, then K is normal over k in the sense defined on p459 of [12], as
mentioned in Section 19.15. Note that

K1 = {u ∈ K : θ(u) = u for every θ ∈ Gal(K/K1)},(21.3.4)

because of (21.3.3). This means that K is automatically normal over K1 in the
sense of [12].
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Suppose from now on in this section that K is algebraic over k. Let K
be an algebraic closure of K, which may be considered as an algebraic closure
of k, as in Section 19.13. Let L be a subfield of K that contains k again. If
θ ∈ Gal(K/k), then the restriction of θ to L may be considered as an embedding
of L into K. If L is normal over k, then it follows that

θ(L) = L,(21.3.5)

as in Section 19.15.
Suppose that k has positive characteristic p. If L is a subfield of K that

contains k, and if L is separable over k, then

θ(L) is separable over k(21.3.6)

for every θ ∈ Gal(K/k). Let K0 be the maximal separable extension of k
contained in K, as in Section 21.1. It is easy to see that

θ(K0) = K0(21.3.7)

for every θ ∈ Gal(K/k).

21.4 Separability of K over K1

Let k be a field of positive characteristic p, and let K be an algebraic extension
of k. If K1 is as in (21.3.2), then we would like to show that

K is separable over K1.(21.4.1)

This corresponds to part of the conclusion of Proposition 12 on p189 of [11].
Although the proposition is stated with the additional hypothesis that K be
normal over k, this does not appear to be needed for this part of the conclusion.

If K is a finite extension of k, then K is a finite extension of K1. In this
case, one could use Theorem 12 on p459 of [12] to get (21.4.1). More precisely,
condition (ii) in that theorem is that K be normal over K1 in the sense of [12],
which corresponds to (21.3.4). Condition (iii) in that theorem is that (21.4.1)
hold, and that K be normal in the sense used here, as in [2, 11]. Part of the
theorem is that these conditions are equivalent for finite extensions.

In fact, the proof in [12] that condition (ii) implies condition (iii) seems to
work as well when K is an algebraic extension of k, as mentioned in Section
20.8. This is related to Exercise 3 on p461 of [12], as before.

The argument in [11] also begins with the case where K is finite over k, with
a suitable reduction afterwards. Let α ∈ K be given. One would like to find a
maximal collection σ1, . . . , σr of the Galois group Gal(K/k) of K over k such
that

σ1(α), . . . , σr(α)(21.4.2)

are distinct elements of K. If K is a finite extension of k, then

[K : k]s <∞,(21.4.3)
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as in Section 20.5. This means that Gal(K/k) has only finitely many elements,
so that it is easy to find σ1, . . . , σr ∈ Gal(K/k) as before.

However, if σ ∈ Gal(K/k), then σ(α) is a root of the minimal polynomial of
α over k, and of course there are only finitely many roots of this polynomial.
One can use this to get σ1, . . . , σr ∈ Gal(K/k), without asking that Gal(K/k)
have only finitely many elements. Note that α should be one of the elements
of K in the list (21.4.2), because otherwise one could also include the identity
mapping on K. Equivalently, one may as well take the identity mapping on K
to be one of the elements of Gal(K/k) being used.

Let X be an indeterminate, and consider the polynomial

r∏
j=1

(X − σj(α)).(21.4.4)

Note that α is a root of this polynomial, as in the preceding paragraph, and
that the roots of this polynomial are distinct, by construction. Although the
coefficients of this polynomial may be taken initially to be in K, one can check
that they are in K1, because the set of roots of the polynomial is invariant under
Gal(K/k), by construction. This implies that α is separable over K1.

The argument in [12] is somewhat analogous, although it considers any ir-
reducible polynomial with coefficients in K1 and a root in K, and shows that
it should be a multiple of a polynomial of the same type as in the previous
paragraph.

LetK0 be the maximal separable extension of k contained inK, as in Section
21.1, and consider the compositum K0K1 of K0 and K1, which is another
subfield of K that contains k. Remember that K is purely inseparable over K0,
as in Section 21.1, which implies that K is purely inseparable over K0K1. We
also have that K is separable over K0K1, because of (21.4.1). It follows that

K = K0K1,(21.4.5)

as in Section 21.1. This is another part of Proposition 12 on p189 of [11].

21.5 Normality and separability

Let k be a field of positive characteristic p, and let K be a normal algebraic
extension of k, as in Section 19.15. If K1 is as in (21.3.2) again, then

K1 is purely inseparable over k,(21.5.1)

as in Proposition 12 on p189 of [11].
To see this, let α ∈ K1 be given. Let K be an algebraic closure of K, which

may be considered as an algebraic closure of k, as in Section 19.13. Remember
that k(α) is the subfield of K generated by k and α, and let τ be an embedding
of k(α) into K over k. This can be extended to an embedding of K into K over
k, as in Section 19.13, and we let τ denote this extension as well. Note that

τ(K) = K,(21.5.2)
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because K is normal over k, as in Section 19.15.
Thus τ ∈ Gal(K/k), so that

τ(α) = α,(21.5.3)

because α ∈ K1, by hypothesis. This implies that

τ is the identity mapping on k(α).(21.5.4)

This means that
[k(α) : k]s = 1,(21.5.5)

as in Section 20.5. It follows that α is purely inseparable over k, as in Section
20.15. This shows that (21.5.1) holds.

If K is also a separable extension of k, then K1 is separable over k, and
(21.5.1) implies that

K1 = k,(21.5.6)

as in Section 21.1. Alternatively, one can use the argument in the previous
paragraphs, and observe that (21.5.5) is the same as saying that [k(α) : k] = 1
in this case. This implies that α ∈ k, so that (21.5.6) holds. This works as well
for fields of characteristic 0, which corresponds to the first part of Theorem 1
on p192 of [11], as in Section 20.8.

Let K0 be the maximal separable extension of k that is contained in K, as in
Section 21.1. Observe that K0 ∩K1 is separable over k, and purely inseparable
over k, because of (21.5.1). This implies that

K0 ∩K1 = k,(21.5.7)

as in Section 21.1. This is another part of Proposition 12 on p189 of [11].



Chapter 22

Some more rings and
modules

22.1 Some formal series

Let A be a ring with a multiplicative identity element eA, and let T be an
indeterminate. Consider the space A((T )) of formal series of the form

f(T ) =

∞∑
j=j0

fj T
j ,(22.1.1)

where j0 ∈ Z, and fj ∈ A for each j ≥ j0. More precisely, we consider fj to be
defined as an element of A for every integer j, with fj = 0 when j < j0. This
space is discussed on p27 of [4], and on p285 of [12], with A taken to be a field.
A formal series of this type is called an extended formal power series in [12].

The space c(Z, A) of all A-valued functions on Z may be considered as a both
a left and right module over A, with respect to pointwise addition of functions,
and pointwise multiplication of functions by elements of A on the left or the
right, as appropriate. We may define A((T )) as the subset of c(Z, A) whose
elements are equal to 0 at all but finitely many negative integers, and which
may be expressed as in (22.1.1). This is a submodule of c(Z, A), as both a left
and right module over A. An element of A((T )) be also be expressed as

f(T ) =
∑

j>>−∞
fj T

j ,(22.1.2)

to indicate that fj = 0 for all but finitely many j < 0, as on p27 of [4].

Let

g(T ) =
∑

l>>−∞

gl T
l(22.1.3)
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be another element of A((T )). Put

hn =
∑
j+l=n

fj gl,(22.1.4)

where more precisely the sum is taken over all j, l ∈ Z such that j + l = n. It is
easy to see that all but finitely many terms in the sum are equal to 0, because
fj = 0 for all but finitely many j < 0, and gl = 0 for all but finitely many l < 0.
Thus the sum is defined as an element of A for every n ∈ Z, and one can check
that it is equal to 0 for all but finitely many n < 0. It follows that

h(T ) =
∑

n>>−∞
hn T

n(22.1.5)

defines an element of A((T )), and we put

f(T ) g(T ) = h(T ).(22.1.6)

One can check that this definition of multiplication on A((T )) is associative.
If A is a commutative ring, then multiplication on A((T )) is commutative as
well.

Remember that A[[T ]] is the space of formal power series in T with coeffi-
cients in A, as in Section 4.3. This may be identified with the subset of A((T ))
consisting of formal series for which the coefficient of T j is equal to 0 for every
j < 0. We can also identify A with the subset of A((T )) consisting of formal
series for which the coefficient of T j is equal to 0 when j 6= 0, which is compat-
ible with the previous identification of A with a subring of A[[T ]]. Using these
identifications, eA corresponds to the multiplicative identity element of A((T )).
In fact, A((T )) is a ring, which contains A[[T ]] as a subring.

In particular, A((T )) contains A as a subring too. Left and right multiplica-
tion on A((T )) by elements of A correspond exactly to termwise multiplication
by elements of A, as before.

Of course, invertible elements of A[[T ]] are invertible in A((T )). Remember
that an element of A[[T ]] is invertible in A[[T ]] when the coefficient of T j is
invertible in A for j = 0, as in Section 4.5. If f(T ) ∈ A((T )) is as in (22.1.1),
and if fj0 is invertible as an element of A, then it follows that

f(T ) is invertible in A((T )).(22.1.7)

More precisely, f(T )T−j0 is invertible as an element of A[[T ]] in this case, and

f(T )−1 = (f(t)T−j0)−1 T−j0 .(22.1.8)

If A is a division ring, then it follows that

A((T )) is a division ring(22.1.9)

as well.
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22.2 Some local rings

Let A be a division ring, with multiplicative identity element eA 6= 0, and let T
be an indeterminate. Thus the corresponding ring A[[T ]] of formal power series
in T with coefficients in A may be defined as in Section 4.3. Consider

B1 =

{
f(T ) =

∞∑
j=0

fj T
j ∈ A[[T ]] : f1 = 0

}
,(22.2.1)

as in Exercise 10 on p160 of [3]. It is easy to see that

B1 is a subring of A[[T ]].(22.2.2)

Note that eA ∈ B1.
Put

I1 =

{
f(T ) =

∞∑
j=0

fj T
j ∈ B1 : f0 = 0

}
= (A[[T ]])T 2.(22.2.3)

This is a two-sided ideal in A[[T ]] that is contained in B1, and thus a two-sided
ideal in B1 in particular. Of course,

B1 \ I1 =

{
f(T ) =

∞∑
j=0

fj T
j ∈ A[[T ]] : f0 6= 0, f1 = 0

}
.(22.2.4)

Remember that an element of A[[T ]] is invertible in A[[T ]] when the constant
term is invertible in A, as in Section 4.5. In this case, it suffices to ask that the
constant term be nonzero, because A is a division ring, by hypothesis. If

f(T ) ∈ B1 \ I1,(22.2.5)

then it follows that f(T ) is invertible in A[[T ]]. In fact, one can check that

f(T )−1 ∈ B1,(22.2.6)

using the description of the multiplicative inverse in Section 4.5.
Note that the elements of I1 have neither a left or right inverse in A[[T ]], as

in Section 4.14. In particular, this means that they do not have a left or right
inverse in B1. It follows that

B1 is a local ring,(22.2.7)

as in Section 4.13. This corresponds to the first part of Exercise 10 on p160 of
[3].

Remember that
f(T ) 7→ f0(22.2.8)

defines a ring homomorphism from A[[T ]] onto A, as in Section 4.3. Of course,
this homomorphism also maps B1 on A. The kernel of the restriction of this
homomorphism to B1 is equal to I1. This leads to a ring isomorphism from
B1/I1 onto A.
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22.3 Some remarks about a(T )B1

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let a(T ) =

∑∞
m=0 am T

m be a nonzero element of A[[T ]], and let m0 be
the smallest nonnegative integer such that

am0
6= 0.(22.3.1)

Thus
a(T ) = am0

Tm0 (eA − c(T )),(22.3.2)

where c(T ) =
∑∞
r=0 cr T

r ∈ A[[T ]], with

c0 = 0 and c1 = −a−1
m0

am0+1.(22.3.3)

It is easy to see that

(eA − c(T ))−1 − eA − c1 T ∈ (A[[T ]])T 2,(22.3.4)

using the description of (eA − c(T ))−1 in Section 4.5.
Consider

(eA − c(T ))B1 = {(eA − c(T )) f(T ) : f(T ) ∈ B1}(22.3.5)

which is a subset of A[[T ]]. This is contained in{
g(T ) =

∞∑
l=0

gl T
l ∈ A[[T ]] : g1 = −c1 g0

}
.(22.3.6)

If g(T ) is an element of this set, then one can check that

(eA − c(T ))−1 g(T ) ∈ B1,(22.3.7)

using (22.3.4). This implies that (22.3.6) is contained in (22.3.5). Thus (22.3.5)
is the same as (22.3.6).

If follows that

a(T )B1 =

{
h(T ) =

∞∑
n=0

hn T
n ∈ A[[T ]] : hn = 0 when n < m0,

hm0+1 = −c1 hm0

}
.(22.3.8)

Another part of Exercise 10 on p160 of [3] says that I1 is not free as a right
module over B1. Using (22.3.8), we get that I1 is not generated by a single
element, as a right module over B1. Any set of generators of I1, as a right
module over B1, should include at least one element for which the coefficient of
T 2 is not 0. Another generator is needed to get arbitrary coefficients of T 3 of
elements of I1. However, one can verify that I1 cannot be freely generated in
this way, as a right module over B1.
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22.4 Some right modules over B1

We continue with the same notation and hypotheses as in the previous two
sections. Of course, A[[T ]] may be considered as a right module over B1, and
B1 and I1 may be considered as submodules of A[[T ]], as a right module over
B1. If m0 is a nonnegative integer, then

(A[[T ]])Tm0(22.4.1)

may be considered as a submodule of A[[T ]], as a right module over B1, and
(22.3.8) is a submodule of A[[T ]], as a right module over B1. Note that c1 ∈ A
may be arbitrary in (22.3.8).

Let V be a submodule of A[[T ]], as a right module over B1, and suppose
that V 6= {0}. Let m0(V ) be the largest nonnegative integer such that

V ⊆ (A[[T ]])Tm0(V ).(22.4.2)

Equivalently, m0(V ) is the smallest nonnegative integer such that V contains an
element of (A[[T ]])Tm0(V ) for which the coefficient of Tm0(V ) is nonzero. This
implies that V contains a submodule of the form (22.3.8) with m0 = m0(V ) for
some c1 ∈ A. If V is not equal to this module, then one can check that

V = (A[[T ]])Tm0(V ).(22.4.3)

It follows that

A[[T ]] is Noetherian as a right module over B1,(22.4.4)

as in Section 9.7. More precisely, every submodule of A[[T ]], as a right module
over B1, is generated by one or two elements. One could also look at the
Noetherian property in terms of the ascending chain condition. Thus I1 is
Noetherian as a right module over B1, and B1 is right Noetherian as a ring.

Another part of Exercise 10 on p160 of [3] states that

I1 is not projective, as a right module over B1.(22.4.5)

More precisely, if I1 were projective as a right module over B1, then one could
get that I1 is free as a right module over B1, as in Section 13.9. To see this, let
I1 · I1 be the subset of I1 consisting of sums of products of pairs of elements of
I1 = (A[[T ]])T 2, as in Section 13.4. In this case,

I1 · I1 = (A[[T ]])T 4.(22.4.6)

This is a submodule of I1, as a right module over B1, as in Section 13.7.
The quotient

I1/(I1 · I1)(22.4.7)

may be defined in the usual way as a right module over B1. In fact, this may be
considered as a right module over B1/I1, as in Section 13.7. This corresponds
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to considering (22.4.7) as a right module over A here. As a right module over
A, (22.4.7) is freely generated by the images of T 2 and T 3 in the quotient.

Note that I1 is generated by T 2 and T 3, as a right module over B1. If I1
were projective as a right module over B1, then I1 should be freely generated
by T 2 and T 3, as a right module over B1, as in Section 13.9. However, I1 is
not freely generated by T 2 and T 3, as a right module over B1, and so I1 is not
projective as a right module over B1.

Let us consider the Cartesian product B1 × B1 as a right module over B1,
which is the same as the direct sum of two copies of B1, as a right module over
itself. As in Exercise 10 on p160 of [3],

ϕ((b1(T ), b2(T ))) = b1(T )T
2 − b2(T )T

3(22.4.8)

defines a homomorphism from B1 × B1 into I1, as right modules over B1. In
fact,

ϕ(B1 ×B1) = I1.(22.4.9)

We also have that
ψ(b(T )) = (b(T )T, b(T ))(22.4.10)

defines an injective homomorphism from I1 into B1×B1, as right modules over
B1. Note that

ϕ ◦ ψ = 0(22.4.11)

on I1.
One can check that

kerϕ = ψ(I1),(22.4.12)

as mentioned in [3]. One can use this to get a projective resolution of I1 as a
right module over B1, as in Section 10.2.

22.5 Some more local rings

Let A be a division ring again, with multiplicative identity element eA 6= 0,
and let T1, T2 be commuting indeterminates. Consider the corresponding ring
A[[T1, T2]] of formal power series in T1, T2 with coefficients in A, as in Section
4.3. Put

B2 =

{
f(T ) =

∑
α∈(Z+∪{0})2

fα T
α ∈ A[[T1, T2]] :(22.5.1)

fα = 0 when α1 + α2 is odd

}
,

as in Exercise 11 on p160 of [3]. Observe that

B2 is a subring of A[[T1, T2]],(22.5.2)

with eA ∈ B2.
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It is easy to see that

I2 =

{
f(T ) =

∑
α∈(Z+∪{0})2

fα T
α ∈ B2 : f0 = 0

}
(22.5.3)

is a two-sided ideal in B2. Remember that f(T ) 7→ f0 is a ring homomorphism
from A[[T1, T2]] onto A, as in Section 4.3. Equivalently, I2 is the intersection
of the kernel of this homomorphism with B2, which is the same as the kernel
of the restriction of this homomorphism to B2. This homomorphism also maps
B2 onto A, which leads to a ring isomorphism from B2/I2 onto A.

An element of A[[T1, T2]] is invertible in A[[T1, T2]] when its constant term is
invertible in A, as in Section 4.5, which means that the constant term is nonzero
in this case, because A is a division ring. If

f(T ) ∈ B2 \ I2,(22.5.4)

then f(T ) is invertible in A[[T1, T2]], and one can check that

f(T )−1 ∈ B2,(22.5.5)

using the description of f(T )−1 in Section 4.5.
The elements of I2 do not have one-sided inverses in A[[T1, T2]], as in Section

4.14, and in particular they do not have local inverses in B2. This implies that

B2 is a local ring,(22.5.6)

as in Section 4.13. This corresponds to the first part of Exercise 11 on p160 of
[3].

Of course, A[[T1, T2]] may be considered as a right module over B2, and B2,
I2 may be considered as submodules of A[[T1, T2]], as a right module over B2.
Consider

W2 =

{
f(T ) =

∑
α∈(Z+∪{0})2

fα T
α ∈ A[[T1, T2]] :(22.5.7)

fα = 0 when α1 + α2 is even

}
.

It is easy to see that this is also a submodule of A[[T1, T2]], as a right module
over B2, as in Exercise 11 on p160 of [3].

22.6 More on W2

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Observe that

W2 is generated by T1, T2, as a right module over B2.(22.6.1)



516 CHAPTER 22. SOME MORE RINGS AND MODULES

Let W2 · I2 be the subset of W2 consisting of finite sums of products of
elements of W2 and I2, as in Section 13.4. This is a submodule of W2, as a right
module over B2, as in Section 13.7. One can check that

W2 · I2 =

{
f(T ) =

∑
α∈(Z+∪{0})2

fα T
α ∈W2 :(22.6.2)

fα = 0 when α1 + α2 = 1

}
.

The quotient

W2/(W2 · I2)(22.6.3)

may be defined as a right module over B2 in the usual way. This may also be
considered as a right module over B2/I2, as in Section 13.7. This means that
(22.6.3) may be considered as a right module over A here.

One can check that (22.6.3) is freely generated by the images of T1 and T2
in the quotient, as a right module over A, using (22.6.2). If W2 were projective
as a right module over B2, then W2 should be freely generated by T1 and T2, as
a right module over B2, as in Section 13.9. However, it is easy to see that W2

is not freely generated by T1 and T2, as a right module over B2. This implies
that

W2 is not projective, as a right module over B2.(22.6.4)

This is another part of Exercise 11 on p160 of [3].

Let us consider B2×B2 as a right module over B2, which is the same as the
direct sum of two copies of B2, as a right module over itself. Observe that

ϕ((b1(T ), b2(T ))) = b1(T )T2 − b2(T )T1(22.6.5)

defines a homomorphism from B1 × B2 into W2, as right modules over B2, as
in Exercise 11 on p160 of [3]. We also have that

ϕ(B2 ×B2) =W2,(22.6.6)

as in (22.6.1). Clearly

ψ(a(T )) = (a(T )T1, a(T )T2)(22.6.7)

defines an injective homomorphism from W2 into B1×B2, as right modules over
B2. It is easy to see that ϕ ◦ ψ = 0 on W2. In fact, one can verify that

kerϕ = ψ(W2),(22.6.8)

as mentioned in Exercise 11 on p160 of [3]. This can be used to get a projective
resolution of W2 as a right module over B2, as in Section 10.2.
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22.7 Another family of local rings

Let A be a division ring, with multiplicative identity element eA 6= 0, and
let T1, T2 be commuting indeterminates again. Consider the corresponding
rings A[[T1]] and A[[T2]] of formal power series in T1 and T2, respectively, with
coefficients in A, as in Section 4.3. The Cartesian product

(A[[T1]])× (A[[T2]])(22.7.1)

of A[[T1]] and A[[T2]] is also a ring, with respect to coordinatewise addition and
scalar multiplication, which is the same as the direct sum of these two rings.
Note that (eA, eA) is the multiplicative identity element in (22.7.1).

Consider

B3 = {(f(T1), g(T2)) ∈ (A[[T1]])× (A[[T2]]) : f(0) = g(0)},(22.7.2)

as in Exercise 12 on p160 of [3], where f(0), g(0) are the same as the constant
terms in f(T1), g(T2). It is easy to see that

B3 is a subring of (A[[T1]])× (A[[T2]]).(22.7.3)

Put

I3 = {(f(T ), g(T )) ∈ B3 : f(0) = g(0) = 0}.(22.7.4)

One can check that this is a two-sided ideal in B3. In fact, this is a two-sided
ideal in (22.7.1).

Of course, the Cartesian product A × A of A with itself is a ring with re-
spect to coordinatewise addition and multiplication too, and (eA, eA) is the
multiplicative identity element in A×A. Clearly

(f(T1), g(T2)) 7→ (f(0), g(0))(22.7.5)

defines a ring homomorphism from (22.7.1) onto A × A, whose kernel is equal
to I3.

Note that

{(a, a) : A ∈ A}(22.7.6)

is a subring of A×A, and that

a 7→ (a, a)(22.7.7)

is a ring isomorphism from A onto (22.7.6). The restriction of (22.7.5) to B3

corresponds to a ring homomorphism

(f(T1), g(T2)) 7→ f(0) = g(0)(22.7.8)

from B3 onto A in this way. The kernel of this homomorphism is equal to I3 as
well, so that B3/I3 is isomorphic to A as a ring.
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It is easy to see that an element (f(T1), g(T2)) of (22.7.1) has a multiplicative
inverse in (22.7.1) if and only if f(T1) and g(T2) have multiplicative inverses in
A[[T1]] and A[[T2]], respectively, with

(f(T1), g(T2))
−1 = (f(T1)

−1, g(T2)
−1).(22.7.9)

This happens exactly when f(0) and g(0) are invertble in A, as in Section
4.5, which is the same as saying that f(0), g(0) 6= 0 in this case, because A
is a division ring. Under these conditions, the constant terms in f(T1)

−1 and
g(T2)

−1 are the same as the multiplicative inverses of the constant terms in
f(T1), g(T2), respectively. If (f(T1), g(T2)) ∈ B3 and

f(0) = g(0) 6= 0,(22.7.10)

then it follows that
(f(T1), g(T2))

−1 ∈ B3.(22.7.11)

Similarly, an element (f(T1), g(T2)) of (22.7.1) has a one-sided inverse in
(22.7.1) if and only if f(T1) and g(T2) have the same type of one-sided inverses
in A[[T1]] and A[[T2]], respectively. In this case, f(0) and g(0) have the same
type of one-sided inverses in A, as in Section 4.14, so that f(0), g(0) 6= 0. Thus
the elements of I3 do not have one-sided inverses in (22.7.1), and in particular
they do not have one-sided inverses in B3. This means that

B3 is a local ring,(22.7.12)

as in Section 4.13. This corresponds to the first part of Exercise 12 on p160 of
[3].

Observe that
(f(T1), g(T2)) 7→ f(T1)(22.7.13)

and
(f(T1), g(T2)) 7→ g(T2)(22.7.14)

define ring homomorphisms from (22.7.1) onto A[[T1]] and A[[T2]], respectively.
The restrictions of these homomorphisms to B2 map B2 on A[[T1]] and A[[T2]],
respectively, as well.

22.8 Some right modules over B3

Let us continue with the same notation and hypotheses as in the previous sec-
tion. We may consider (22.7.1) as a right module over B3, and B3, I3 are
submodules of (22.7.1), as a right module over B3.

Put
V3 = {(f(T1)T1, 0) : f(T1) ∈ A[[T1]]}(22.8.1)

and
W3 = {(0, g(T2)T2) : g(T2) ∈ A[[T2]]}.(22.8.2)
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It is easy to see that these are submodules of (22.7.1), as a right module over
B3, as on p161 of [3]. In fact, V3 is the same as the kernel of the restriction of
(22.7.14) to B2, and W3 is the same as the kernel of the restriction of (22.7.13)
to B2.

Observe that V3 is generated, as a right module over B3, by any element
(f(T1)T1, 0) with f(0) 6= 0. Any collection of generators of V3, as a right
module over B3, has to contain an element of this type. However, one can check
that V3 is not freely generated as a right module over B3. Similarly, W3 is not
freely generated as a right module over B3. This is another part of Exercise 12
on p160 of [3].

Let V3 · I3 be the subset of V3 consisting of finite sums of propducts of
elements of V3 and I3, as in Section 13.4, and similarly for W3 · I3. These are
submodules of V3 and W3, respectively, as right modules over B3, as in Section
13.7. One can verify that

V3 · I3 = {(f(T1)T 2
1 , 0) : f(T1) ∈ A[[T1]]}(22.8.3)

and
W3 · I3 = {(0, g(T2)T 2

2 ) : g(T2) ∈ A[[T2]]}.(22.8.4)

The quotients
V3/(V3 · I3)(22.8.5)

and
W3/(W3 · I3)(22.8.6)

may be defined as right modules over B3, as usual. These may also be considered
as right modules over B3/I3, as in Section 13.7. This means that (22.8.5) and
(22.8.6) may be considered as right modules over A.

It is easy to see that (22.8.5) is freely generated by the image of (T2, 0) in
the quotient, as a right module over A, because of (22.8.3). Similarly, (22.8.6) is
freely generated by the image of (0, T2) in the quotient, as a right module over
A, because of (22.8.4). If V3 were projective as a right module over B3, then V3
should be freely generated by (T1, 0), as a right module over B3, as in Section
9.10. Similarly, if W3 were projective as a right module over B3, then it should
be freely generated by (0, T2), as a right module over B3. It follows that

V3 and W3 are not projective, as right modules over B3,(22.8.7)

because V3 and W3 are not freely generated in this way, as on p161 of [3].
Observe that

ϕ((f(T1), g(T2))) = (0, g(T2)T2)(22.8.8)

defines a homomorphism from B3 onto W3, as right modules over B3, as on
p161 of [3]. Similarly,

ϕ′((f(T1), g(T2))) = (f(T1)T1, 0)(22.8.9)

defines a homomorphism from B2 onto V3, as right modules over B3.
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One can check that
kerϕ = V3(22.8.10)

and
kerϕ′ =W3,(22.8.11)

as mentioned on p161 of [3]. One can use ϕ and ϕ′ to get projective resolutions
of V3 and W3 are right modules over B3, as in Section 10.2.

22.9 Direct systems of sets

Let (I,�) be a nonempty pre-directed set, and let Ej be a set for each j ∈ I.
Suppose that for every j, l ∈ I with j � l we have a mapping θj,l from Ej into
El. We ask that θj,j be the identity mapping on Ej for each j ∈ I, and that for
every j, l, r ∈ I with j � l � r, we have that

θl,r ◦ θj,l = θj,r.(22.9.1)

In this case, the family of sets Ej and mappings θj,l is said to form a direct or
inductive system over (I,�), as usual. Note that if j, l ∈ I, j � l, and l � j,
then θj,l and θl,j are inverses of each other.

Let Ẽj be a nonempty set that contains Ej for each j ∈ I. If x, y ∈
∏
j∈I Ẽj ,

then put x ∼ y when there is an l ∈ I such that

xj = yj(22.9.2)

for each j ∈ I with l � j. One can check that this defines an equivalence relation
on

∏
j∈I Ẽj . This permits us to define to corresponding quotient set(∏

j∈I
Ẽj

)
/ ∼(22.9.3)

as the set of equivalence classes in
∏
j∈I Aj with respect to ∼.

If l ∈ I and wl ∈ El, then there are elements x of
∏
j∈I Ẽj such that

xj = θl,j(wl)(22.9.4)

for every j ∈ I with l � j. Any two such elements of
∏
j∈I Ẽj are clearly

equivalent with respect to ∼. This defines a mapping θl from El into the quotient
set (22.9.3). If r ∈ I and l � r, then it is easy to see that

θl = θr ◦ θl,r.(22.9.5)

Consider
lim
−→

Ej =
⋃
l∈I

θl(El),(22.9.6)

which is a subset of the quotient set (22.9.3). This is the direct or inductive
limit of the direct system of Ej ’s, j ∈ I. More precisely, the direct limit consists
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of (22.9.6) together with the mappings θl from El into this set for each l ∈ I. If
l, r ∈ I and l � r, then

θl(El) ⊆ θr(Er),(22.9.7)

by (22.9.5).

Let l1, l2 ∈ I, w1,l1 ∈ El1 , and w2,l2 ∈ El2 be given. If

θl1(w1,l1) = θl2(w2,l2),(22.9.8)

then one can check that there is an r ∈ I such that

l1, l2 � r(22.9.9)

and

θl1,r(w1,l1) = θl2,r(w2,l2).(22.9.10)

Conversely, if there is an r ∈ I such that (22.9.9) and (22.9.10) hold, then

θl1,t(w1,l1) = θl2,t(w2,l2)(22.9.11)

for every t ∈ I such that r � t, by (22.9.1). Under these conditions, (22.9.8)
holds, by construction.

Let C be another set, and let γl be a mapping from El into C for each l ∈ I.
Suppose that for every l, r ∈ I with l � r, we have that

γl = γr ◦ θl,r.(22.9.12)

Under these conditions, one can check that there is a unique mapping γ from
(22.9.6) into C such that

γl = γ ◦ θl(22.9.13)

for every l ∈ I. More precisely, the main point is to verify that γ is well defined
in this way. This determines the direct limit uniquely, up to suitable equivalence.

Let Ẽ be a set, and suppose now that Ej is a subset of Ẽ for every j ∈ I. If
j, l ∈ I and j � l, then we ask that

Ej ⊆ El,(22.9.14)

and we let θj,l be the obvious inclusion mapping from Ej into El. These map-
pings satisfy the conditions in the definition of a direct system of sets, and the
direct limit is equivalent to ⋃

j∈I
Ej .(22.9.15)

Of course, this uses the obvious inclusion mapping from El into (22.9.15) for
each l ∈ I.
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22.10 Some limits of free modules

Let us continue with the same notation and hypotheses as at the beginning of
the previous section, and put

E = lim
−→

Ej .(22.10.1)

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with a nonzero multiplicative identity element eA.
If j ∈ I, then let FEj

be the free left or right module over A generated by Ej .
This may be defined precisely as the space c00(Ej , A) of A-valued functions on
Ej with finite support, where each element of Ej is identified with the A-valued
function on Ej equal to eA at that element, and to 0 otherwise. Similarly, let
FE be the free left or right module over A generated by E, which may be defined
precisely as c00(E,A).

If j, l ∈ I and j � l, then there is a unique homomorphism Θj,l from FEj

into FEl
, as modules over A, corresponding to θj,l. This mapping is the identity

mapping on FEj
when j = l, and it is easy to see that

Θl,r ◦Θj,l = Θj,r(22.10.2)

for all j, l, r ∈ I with j � l � r, by (22.9.1). In particular, if j, l ∈ I, j � l,
and l � j, then Θj,l and Θl,j are inverses of each other. Thus the FEj

’s, j ∈ I,
together with the homomorphisms Θj,l, form a direct system of modules over
(I,�).

Similarly, if l ∈ I, then there is a unique homomorphism Θl from FEl
into

FE , as modules over A, corresponding to θl. If r ∈ I and l � r, then

Θl = Θr ◦Θl,r,(22.10.3)

because of (22.9.5).
Let Z be another left or right module over A, as appropriate, and let ζl be a

homomorphism from FEl
into Z, as modules over A, for each l ∈ I. Note that

ζl is determined by its values on on the elements of El, as generators of FEl
, as

a module over A. Suppose that for each l, r ∈ I with l � r, we have that

ζl = ζr ◦Θl,r.(22.10.4)

If l ∈ I, then let γl be the restriction of ζl to El, considered as a subset of
FEl

, as before. It follows from (22.10.4) that (22.9.12) holds for every l, r ∈ I
with l � r. This implies that there is a unique mapping γ from E into Z such
that (22.9.13) holds for every l ∈ I, as in the previous section.

This leads to a unique homomorphism ζ from FE into Z, as modules over
A, that corresponds to γ on E. If l ∈ I, then

ζl = ζ ◦Θl,(22.10.5)

by (22.9.13).
This shows that the direct limit of the FEj

’s, j ∈ I, may be identified with
FE , using the homomorphisms Θl, l ∈ I, as in Section 3.2.
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22.11 More on systems of modules

Let k be a commutative ring with a multiplicative identity element, and let
A be an associative algebra over k with a multiplicative identity element eA.
Also let (I,�) be a nonempty pre-directed set, and let Vj be a left module
over A for every j ∈ I. Suppose that for every j, l ∈ I with j � l we have
a homomorphism νj,l from Vj into Vl, as left modules over A, that satisfies
the conditions mentioned in Section 3.2. This means that νj,j is the identity
mapping on Vj for every j ∈ I, and that if j, l, r ∈ I satisfy j � l � r, then
νl,r ◦ νj,l = νj,r. The direct limit V = lim

−→
Vj of the Vj ’s can be defined as a left

module over A, as before.
Of course,

∏
j∈I Vj may be considered as a left module over A, with respect

to coordinatewise addition and left multiplication by elements of A. Let W be
the set of w ∈

∏
j∈I Vj for which there is an l ∈ I such that

wj = 0(22.11.1)

for each j ∈ I with l � j. It is easy to see that W is a submodule of
∏
j∈I Vj ,

as a left module over A. Thus the quotient(∏
j∈I

Vj

)
/W(22.11.2)

is defined as a left module over A.
If l ∈ I and vl ∈ Vl, then there are elements y of

∏
j∈I Vj such that

yj = νl,j(vl)(22.11.3)

for each j ∈ I with l � j. The difference between any two such elements
of

∏
j∈I Vj is an element of W . This defines a mapping ηl from Vl into the

quotient (22.11.2). It is easy to see that ηl is a homomorphism from Vl into
(22.11.2), as modules over A. If r ∈ I and l � r, then

ηl = ηr ◦ νl,r.(22.11.4)

Remember that the direct limit V is equipped with a homomorphism νl from
Vl into V , as modules over A, for each l ∈ I, as in Section 3.2. It follows from
the remarks in the preceding paragraph that there is a unique homomorphism
η from V into the quotient (22.11.2), as modules over A, such that

ηl = η ◦ νl(22.11.5)

for every l ∈ I, as in Section 3.2. Remember that

V =
⋃
l∈I

νl(Vl),(22.11.6)

as in Section 3.2. This implies that

η(V ) =
⋃
l∈I

η(νl(Vl)) =
⋃
l∈I

ηl(Vl).(22.11.7)
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Suppose that η(v) = 0 for some v ∈ V . As in (22.11.6), v = νl(vl) for some
l ∈ I and vl ∈ Vl. Thus we get that

ηl(vl) = η(νl(vl)) = η(v) = 0.(22.11.8)

This means that if y is an element of
∏
j∈I Vj that satisfies (22.11.3), then

y ∈ W . It follows that there is an r ∈ I such that yj = 0 for each j ∈ I with
r � j, by definition of W . If j ∈ I and l, r � j, then we get that

νl,j(vl) = yj = 0.(22.11.9)

In this case, we obtain that

v = νl(vl) = νj(νl,j(vl)) = 0,(22.11.10)

where the second step is as in Section 3.2. This shows that η is injective, so
that the definition of the direct limit of the Vj ’s as modules in Section 3.2 is
compatible with the definition of the direct limit of the Vj ’s as sets in Section
22.9.

22.12 Projective resolutions of direct limits

Let us continue with the same notation and hypotheses as at the beginning of
the previous section. Under these conditions, Lemma 9.5* on p100 of [3] says
that one can find a projective resolution Xj of Vj for each j ∈ I, such that
the family of Xj ’s, j ∈ I, form a direct system, whose limit X = lim

−→
Xj is a

projective resolution of V . Remember that direct systems of graded modules
and complexes were discussed in Section 8.15. Of course, there are analogous
statements for right modules.

If j ∈ I, then let X0,j be the free left module FVj
over A generated by Vj , as

in Section 22.10. Similarly, let X0 be the free left module FV over A generated
by V . We may consider the Vj ’s, j ∈ I, as a direct system of sets, so that the
X0,j ’s, j ∈ I, form a direct system of left modules over A, as before. In fact, we
may identify V with the direct limit of the Vj ’s, j ∈ I, as sets, as in the previous
section. This permits us to identify X0 with the direct limit of the X0,j ’s, as
modules over A, as in Section 22.10.

If j ∈ I, then there is a natural homomorphism ϕj from X0,j onto Vj ,
as modules over A. This homomorphism sends an element of Vj , considered
as an element of X0,j , to itself in Vj . The family of ϕj ’s, j ∈ I, defines a
homomorphism between the direct systems of X0,j ’s and Vj ’s, as in Section 3.4.
Similarly, there is a homomorphism ϕ from X0 onto V , as modules over A,
which sends an element of V , considered as an element of X0, to itself in V .
This corresponds to the direct limit lim

−→
ϕj of the ϕj ’s, as before.

Let Rj be the kernel of ϕj for each j ∈ I, and let R be the kernel of ϕ. It
is easy to see that the family of Rj ’s, j ∈ I, is a direct system of left modules
over A. More precisely, if j, l ∈ I and j � l, then the homomorphism from X0,j
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into X0,l obtained from νj,l as in Section 22.10 maps Rj into Rl, and satisfies
the conditions in the definition of a direct system of modules. The family of
inclusion mappings from the Rj ’s into theX0,j ’s, j ∈ I, defines a homomorphism
between the direct systems of Rj ’s and X0,j ’s. The direct limit of these inclusion
mappings defines an isomorphism from lim

−→
Rj onto R, as modules over A, as in

Section 3.4.
Thus R can be identified with the direct limit of the Rj ’s, j ∈ I. We can

repeat the process to get the desired projective resolutions, as in Section 10.2.



Chapter 23

Some satellites

23.1 Some basic comparisons

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V , V1, P , and P1 be all left or all right modules over A, let β, β1 be homo-
morsphisms from P , P1 onto V , V1, respectively, and let g be a homomorphism
from V into V1.

Thus g◦β is a homomorphism from P into V1, as modules over A. We would
like to consider some related mappings and their properties, as in the discussion
starting on p33 of [3].

Suppose that P is projective, so that there is a homomorphism f from P
into P1, as modules over A, such that

β1 ◦ f = g ◦ β.(23.1.1)

Note that
f(kerβ) ⊆ kerβ1(23.1.2)

in this case. This means that the restriction of f to kerβ defines a homomor-
phism from ker β into ker β1, as modules over A.

If f̃ is another homomorphism from P into P1, then

β1 ◦ f̃ = g ◦ β(23.1.3)

if and only if
(f − f̃)(P ) ⊆ kerβ1.(23.1.4)

This is the same as saying that f − f̃ may be considered as the composition of
a homomorphism from P into ker β1 with the obvious inclusion mapping from
kerβ1 into P1.

If t ∈ k, then t g is a homomorphism from V into V1 as well, as modules over
A. Of course, t f is a homomorphism from P into P1, whose composition with
β1 is equal to the composition of β with t g.

526
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Let ĝ be another homomorphism from V into V1, as modules over A, so that
ĝ ◦ β is a homomorphism from P into V1. As before, there is a homomorphism
f̂ from P into P1, as modules over A, such that

β1 ◦ f̂ = ĝ ◦ β,(23.1.5)

because P is projective. It follows that

β1 ◦ (f + f̂) = (g + ĝ) ◦ β.(23.1.6)

Let V2 and P2 be left or right modules over A, as appropriate, let β2 be a
homomorphism from P2 onto V2, and let g1 be a homomorphism from V1 into
V2. Note that g1 ◦ β1 is a homomorphism from P1 into V2, as modules over A.
Suppose now that P1 is projective as well, so that there is a homomorphism f1
from P1 into P2, as modules over A, such that

β2 ◦ f1 = g1 ◦ β1.(23.1.7)

Of course, g1 ◦g is a homomorphism from V into V2, and g1 ◦g ◦β is a homo-
morphism from P into V2. Under these conditions, f1 ◦ f is a homomorphism
from P into P2, with

β2 ◦ f1 ◦ f = g1 ◦ β1 ◦ f = g1 ◦ g ◦ β.(23.1.8)

Suppose that V2 = V , P2 = P , β2 = β, and g1 ◦ g is the identity mapping
on V . In this case, f1 ◦ f is a homomorphism from P into itself, with

β ◦ f1 ◦ f = β,(23.1.9)

by (23.1.8). Equivalently, this means that f1 ◦ f minus the identity mapping on
P maps P into the kernel of β.

23.2 Comparisons and tensor products

Let us continue with the same notations and hypotheses as in the previous
section. Put

M = kerβ, M1 = kerβ1,(23.2.1)

which are submodules of P , P1, respectively, as modules over A. Let α, α1 be
the obvious inclusion mappings fromM ,M1 into P , P1, respectively. Remember
that f maps M into M1, as in (23.1.2), and let f ′ be the restriction of f to M ,
considered as a homomorphism from M into M1, as modules over A. Thus

α1 ◦ f ′ = f ◦ α,(23.2.2)

as homomorphisms from M into P1, by construction.
Suppose now that V , V1, P , P1, and so on are right modules over A, and let

W be a left module over A. LetM
⊗

AW , P
⊗

AW ,M1

⊗
AW , and P1

⊗
AW
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be tensor products of M , P , M1, and P1 with W over A, respectively. Consider
the homomorphisms

αW , αW1 from M
⊗

A
W, M1

⊗
A
W into P

⊗
A
W, P1

⊗
A
W,(23.2.3)

respectively, as modules over k, corresponding to α, α1 and the identity mapping
on W , as in Section 1.9. Similarly, we get homomorphisms

f ′W , fW from M
⊗

A
W, P

⊗
A
W into M1

⊗
A
W, P1

⊗
A
W,(23.2.4)

respectively, as modules over k, corresponding to f ′, f and the identity mapping
on W . Note that

αW1 ◦ f ′W = fW ◦ αW ,(23.2.5)

as homomorphisms from M
⊗

AW into P1

⊗
AW , because of (23.2.2), as in (2)

on p34 of [3].
Using (23.2.5), we get that

f ′W (kerαW ) ⊆ kerαW1 .(23.2.6)

Consider the homomorphism

θ1(g) from kerαW into kerαW1 ,(23.2.7)

as modules over k, corresponding to the restriction of f ′W to kerαW , as on p34
of [3].

Let us check that

θ1(g) does not depend on the choice of f(23.2.8)

from the previous section, as in Proposition 1.1 on p34 of [3]. Let f̃ be another
homomorphism from P into P1, as modules over A, such that (23.1.3) holds.

Thus f − f̃ maps P into the kernel of β1, as in (23.1.4). Let h be the homo-

morphism from P into ker β1, as modules over A, that is equal to f − f̃ . This
means that

f − f̃ = α1 ◦ h,(23.2.9)

as homomorphisms from P into P1.
Let f̃ ′ be the restriction of f̃ to M , considered as a homomorphism from M

into M1. Note that

f ′ − f̃ ′ = h ◦ α.(23.2.10)

Let f̃ ′W be the homomorphism from M
⊗

AW into M1

⊗
AW corresponding

to f̃ ′ and the identity mapping on W , and let hW be the homomorphism from
P
⊗

AW into M1

⊗
AW that corresponds to h and the identity mapping on

W . Thus

f ′W − f̃ ′W = hW ◦ αW ,(23.2.11)
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as homomorphisms from M
⊗

AW into M1

⊗
AW , because of (23.2.10). This

implies that
f ′W = f̃ ′W on kerαW ,(23.2.12)

as desired.
If t ∈ k, then t g is a homomorphism from V into V1, and t f is a homomor-

phism from P into P1 that is related to t g in the usual way. It is easy to see
that

θ1(t g) = t θ1(g),(23.2.13)

as homomorphisms from kerαW into kerαW1 .
Let ĝ be another homomorphism from V into V1, as in the previous sec-

tion, and let f̂ be a homomorphism from P into P1 such that (23.1.5) holds.

Under these conditions, g + ĝ is a homomorphism from V into V1, and f + f̂
is a homomorphism from P into P1 that satisfies (23.1.6). This means that
homomorphisms

θ1(ĝ) and θ1(g + ĝ) from kerαW into kerαW1(23.2.14)

may be defined using f̂ and f + f̂ , respectively, as before. It follows that

θ1(g + ĝ) = θ1(g) + θ1(ĝ),(23.2.15)

as in Proposition 1.1 on p34 of [3].
Suppose for the moment that V1 = V , P1 = P , β1 = β, and g is the identity

mapping IV on V . In this case, we can take f to be the identity mapping IP
on P , so that f ′ is the identity mapping IM on M =M1. This means that f ′W
is the identity mapping on M

⊗
AW = M1

⊗
AW . Note that α = α1, so that

αW1 = αW , and thus kerαW1 = kerαW . Under these conditions, we get that

θ1(g) is the identity mapping on kerαW .(23.2.16)

Let V1, P1, β1, and g be as before, and suppose now that P1 is projective as
a module over A. Also let V2, P2, β2, g1, and f1 be as in the previous section.
Put

M2 = kerβ2,(23.2.17)

which is a submodule of P2, and let α2 be the obvious inclusion mapping from
M2 into P2. Let M2

⊗
AW and P2

⊗
AW be tensor products of M2 and P2

with W over A, and consider the homomorphism

αW2 from M2

⊗
A
W into P2

⊗
A
W(23.2.18)

corresponding to α2 and the identity mapping on W . We can define a homo-
morphism

θ1(g1) from kerαW1 into kerαW2 ,(23.2.19)

as modules over k, using f1, as before. Similarly, we can define a homomorphism

θ1(g1 ◦ g) from kerαW into kerαW2 ,(23.2.20)
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as modules over k, using f1 ◦ f , because of (23.1.8). One can check that

θ1(g1 ◦ g) = θ1(g1) ◦ θ1(g),(23.2.21)

using the analogous property for induced mappings between tensor products.
This is another part of Proposition 1.1 on p34 of [3].

Suppose that V2 = V , P2 = P , and β2 = β, so that M2 = M , α2 = α,
αW2 = αW , and thus kerαW2 = kerαW . If g1 ◦ g is the identity mapping on V ,
then

θ1(g1 ◦ g) is the identity mapping on kerαW ,(23.2.22)

as in (23.2.16). Similarly, if g ◦ g1 is the identity mapping on V1, then

θ1(g ◦ g1) is the identity mapping on kerαW1 .(23.2.23)

If g and g1 are inverses of each other, then it follows that

θ1(g) and θ1(g1) are inverses of each other,(23.2.24)

because of (23.2.21).
Of course, there are analogous statements when we start with left modules

over A as in the previous section, and consider their tensor products with a
right module W over A.

23.3 Left satellites of tensor products

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V be a right module over A, let W be a left module over A, and let

T (V ) = V
⊗

A
W(23.3.1)

be a tensor product of V and W over A.
Suppose that P is a projective right module over A, and that β is a homo-

morphism from P onto V , as modules over A. Put M = kerβ, and let α be
the obvious inclusion mapping from M into P , as in the previous section. Let
M

⊗
AW , P

⊗
AW be tensor products of M , P with W again, respectively,

and consider the homomorphism

αW from M
⊗

A
W into P

⊗
A
W,(23.3.2)

as modules over k, corresponding to α and the identity mapping onW , as before.
Put

S1T (V ) = kerαW ,(23.3.3)

which is a submodule of M
⊗

AW , and a module over k in particular. This
corresponds to (5) on p35 of [3].
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Let P1 be another projective right module over A, and let β1 be a homo-
morphism from P1 onto V , as modules over A. Put M1 = kerβ1, and let α1

be the obvious inclusion mapping from M1 into P1, as before. Let M1

⊗
AW ,

P1

⊗
AW be tensor products of M1, P1 with W , respectively, and consider the

homomorphism

αW1 from M1

⊗
A
W into P1

⊗
A
W,(23.3.4)

as modules over k, corresponding to α1 and the identity mapping on W . This
is the same as in the previous section, with V = V1.

If we take g to be the identity mapping on V , then we get a homomorphism
θ1(g) from kerαW into kerαW1 , as modules over k, as in (23.2.8). Of course,
this depends on P , P1 and β, β1.

Let us take V2 = V , P2 = P , and β2 = β, so that we have M2 = M ,
α2 = α, and αW2 = αW , as in the previous section. If we take g1 to be the
identity mapping on V1 = V , then we get a homomorphism θ1(g1) from kerαW1
into kerαW2 = kerαW , as modules over k, as in (23.2.19). This depends on P1,
P2 = P and β1, β2 = β, as before.

Because g1 ◦ g is the identity mapping on V , and g ◦ g1 is the identity
mapping on V1 = V , we get that θ1(g) and θ1(g1) are inverses of each other, as
in (23.2.24). This shows that (23.3.3) is unique up to natural isomorphisms, as
on p35f of [3]. This is called the left satellite of (23.3.1), as on p36 of [3].

If V is projective as a right module over A, the we can take P = V and β
to be the identity mapping on V , so that M = {0}, α = 0, αW = 0, and

S1T (V ) = {0}.(23.3.5)

This corresponds to part of Proposition 1.3 on p37 of [3].
If W is projective as a left module over A, then αW is injective, because α

is injective, as mentioned near the end of Section 2.7. This implies that (23.3.5)
holds in this case too. This corresponds to part of Proposition 1.2 on p36 of [3].

Of course, there are analogous statements when V is a left module over A,
W is a right module over A, and T (V ) = W

⊗
A V is a tensor product of W

and V , as modules over A.

23.4 Comparisons and HomA(·,W )

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. As
in Section 23.1, we let V , V1, P , and P1 be all left or all right modules over A,
we let β, β1 be homomorphisms from P , P1 into V , V1, respectively, and we let
g be a homomorphism from V into V1. We also let M , M1 be the kernels of β,
β1, respectively, and let α, α1 be the obvious inclusion mappings from M , M1

into P , P1, respectively.
Suppose that P is projective again, so that there is a homomorphism f from

P into P1 such that β1 ◦ f = g ◦ β. Remember that

f(M) ⊆M1,(23.4.1)
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and let f ′ be the restriction of f to M , considered as a homomorphism from M
into M1.

Let W be another left or right module over A, depending on whether the
other modules are left or right modules. Consider the homomorphisms

Hom(α, IW ) from HomA(P,W ) into HomA(M,W )(23.4.2)

and
Hom(α1, IW ) from HomA(P1,W ) into HomA(M1,W )(23.4.3)

associated to α, α1 and the identity mapping IW on W as in Section 6.3. Sim-
ilarly, we get homomorphisms

Hom(f ′, IW ) from HomA(M1,W ) into HomA(M,W )(23.4.4)

and
Hom(f, IW ) from HomA(P1,W ) into HomA(P,W ).(23.4.5)

It is easy to see that

Hom(f ′, IW ) ◦Hom(α1, IW ) = Hom(α, IW ) ◦Hom(f, IW ),(23.4.6)

as homomorphisms from HomA(P1,W ) into HomA(M,W ), because α1 ◦ f ′ =
f ◦ α. This corresponds to a remark on p34 of [3].

Remember that the cokernel of Hom(α, IW ) is the quotient of HomA(M,W )
by the image of HomA(P,W ) under Hom(α, IW ), as a module over k. Similarly,
the cokernel of Hom(α1, IW ) is the quotient of HomA(M1,W ) by the image of
HomA(P1,W ) under Hom(α1, IW ). It follows from (23.4.6) that Hom(f ′, IW )
induces a homomorphism

θ1(g) from the cokernel of Hom(α1, IW )(23.4.7)

into the cokernel of Hom(α, IW ),

as modules over k, as on p34 of [3].
We would like to verify that

θ1(g) does not depend on the choice of f,(23.4.8)

as in Proposition 1.1 on p34 of [3]. If f̃ is another homomorphism from P into

P1 with β1 ◦ f̃ = g ◦ β, then f − f̃ maps P into the kernel of β1, as before.
If h is the homomorphism from P into M1 = kerβ1 defined by f − f̃ , then
f − f̃ = α1 ◦ h, as homomorphisms from P into P1. Let f̃

′ be the restriction of
f̃ to M , as a homomorphism into M1, so that f ′ − f̃ ′ = h ◦ α, as before.

Using f̃ ′, we get a homomorphism

Hom(f̃ ′, IW ) from HomA(M1,W ) into HomA(M,W ).(23.4.9)

Observe that

Hom(f ′, IW )−Hom(f̃ ′, IW ) = Hom(f ′ − f̃ ′, IW ) = Hom(h ◦ α, IW )

= Hom(α, IW ) ◦Hom(h, IW ),(23.4.10)
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where Hom(h, IW ) is a homomorphism from HomA(M1,W ) into HomA(P,W ),
as modules over k. In particular,

Hom(f ′ − f̃ ′, IW ) maps HomA(M1,W ) into(23.4.11)

the image of HomA(P,W ) under Hom(α,W ).

This implies that Hom(f ′, IW ) and Hom(f̃ ′, IW ) induce the same homomor-
phisms into the cokernel of Hom(α, IW ), as desired.

If t ∈ k, then t g is a homomorphism from V into V1, and t f is a homomor-
phism from P into P1 that is related to t g in the same way as before. Using
this, we get that

θ1(t g) = t θ1(g).(23.4.12)

Let ĝ be another homomorphism from V into V1, and let f̂ be a homomor-
phism from P into P1 such that β1◦f̂ = ĝ◦β. Thus g+ĝ is a homomorphism from
V into V1, f+f̂ is a homomorphism from P into P1, and β1◦(f+f̂) = (g+ĝ)◦β.
It follows that homomorphisms θ1(ĝ) and θ1(g+ ĝ) may be defined using f̂ and

f + f̂ , respectively, as before. This implies that

θ1(g + ĝ) = θ1(g) + θ1(ĝ),(23.4.13)

as in Proposition 1.1 on p34 of [3].
If V1 = V , P1 = P , β1 = β, and g is the identity mapping IV on V , then

we can take f to be the identity mapping IP on P , so that f ′ is the identity
mapping IM on M =M1. Under these conditions,

Hom(f ′, IW ) = Hom(IM , IW )(23.4.14)

is the identity mapping on HomA(M,W ) = HomA(M1,W ). We also have that
α = α1, so that Hom(α, IW ) = Hom(α1, IW ), and thus their cokernels are the
same. This means that

θ1(g) is the identity mapping on the cokernel of Hom(α, IW )(23.4.15)

in this case.
Let V1, P1, β1, and g be as before, and let V2, P2 be left or right modules over

A, depending on whether the other modules are left or right modules over A.
Also let β2 be a homomorphism from P2 onto V2, and let g1 be a homomorphism
from V1 into V2, as modules over A. Put M2 = kerβ2 again, and let α2 be the
obvious inclusion mapping from M2 into P2. Suppose that P1 is projective as a
module over A, so that there is a homomorphism f1 from P1 into P2, as modules
over A, such that β2 ◦ f1 = g1 ◦ β1, as before.

As usual, we get a homomorphism

Hom(α2, IW ) from HomA(P2,W ) into HomA(M2,W ),(23.4.16)

as modules over k. We can define a homomorphism

θ1(g1) from the cokernel of Hom(α2, IW )(23.4.17)

into the cokernel of Hom(α1, IW ),
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as modules over k, using f1, as before. Similarly, we can define a homomorphism

θ1(g1 ◦ g) from the cokernel of Hom(α2, IW )(23.4.18)

into the cokernel of Hom(α, IW ),

as modules over k, using f1 ◦ f . One can verify that

θ1(g1 ◦ g) = θ1(g) ◦ θ1(g1),(23.4.19)

as in Proposition 1.1 on p34 of [3] again.
Suppose that V2 = V , P2 = P , and β2 = β, so that M2 = M , α2 = α,

Hom(α2, IW ) = Hom(α, IW ), and the cokernels of the latter homomorphisms
are the same. If g1 ◦ g is the identity mapping on V , then

θ1(g1 ◦ g) is the identity mapping on the cokernel of Hom(α, IW ),(23.4.20)

as in (23.4.15). Similarly, if g ◦ g1 is the identity mapping on V1, then

θ1(g ◦ g1) is the identity mapping on the cokernel of Hom(α1, IW ).(23.4.21)

If g and g1 are inverse of each other, then we get that

θ1(g) and θ1(g1) are inverses of each other,(23.4.22)

using (23.4.19).

23.5 The right satellite of HomA(·,W )

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative agebra over k with a multiplicative identity element eA. Also
let V , W be both left or both right modules over A, and put

T (V ) = HomA(V,W ).(23.5.1)

Suppose that P is a projective left or right module over A, as appropriate,
and that β is a homomorphism from P onto V , as modules over A. Put M =
kerβ, and let α be the obvious inclusion mapping from M into P , as before.
Using α, we get a homomorphism Hom(α, IW ) as in (23.4.2). Under these
conditions, we put

S1T (V ) = the cokernel of Hom(α, IW )(23.5.2)

= HomA(M,W )/Hom(α, IW )
(
HomA(P,W )

)
,

which is a module over k. This corresponds to (6a) on p36 of [3].
Let P1 be another projective left or right module over A, as appropriate, and

let β1 be a homomorphism from P1 onto V , as modules over A. This corresponds
to taking V1 = V in the previous section. Put M1 = kerβ1 again, and let α1
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be the obvious inclusion mapping from M1 into P1. We can use α1 to get a
homomorphism Hom(α1, IW ) as in (23.4.3).

If we take g to be the identity mapping on V , then we get a homomorphism
θ1(g) from the cokernel of Hom(α1, IW ) into the cokernel of Hom(α, IW ), as
modules over k, as in (23.4.7). Note that this depends on P , P1, β, and β1.

Let us take V2 = V , P2 = P , and β2 = β, so that M2 = M , α2 = α,
Hom(α2, IW ) = Hom(α, IW ), and the cokernels of the latter homomorphisms are
the same, as in the previous section. We can take g1 to be the identity mapping
on V1 = V , to get a homomorphism θ1(g1) from the cokernel of Hom(α, IW )
into the cokernel of Hom(α1, IW ), as in (23.4.17). Of course, this depends on
P1, P2 = P , β1, and β2 = β, as before.

In particular, g1 ◦ g is the identity mapping on V , and g ◦ g1 is the identity
mapping on V1 = V , so that θ1(g) and θ1(g1) are inverses of each other, as in
(23.4.22). This means that (23.5.2) is unique up to natural isomorphisms, as in
[3]. This is the right satellite of (23.5.1), as on p36 of [3].

If V is projective as a module over A, then we can take P = V and β to be
the identity mapping on V , so that M = {0}, α = 0, Hom(α, IW ) = 0, and

S1T (V ) = {0}.(23.5.3)

This corresponds to another part of Proposition 1.3 on p37 of [3].
If W is injective as a module over A, then Hom(α, IW ) maps HomA(P,W )

onto HomA(M,W ). This means that (23.5.3) holds in this case as well, as
in Proposition 1.2 on p36 of [3]. This also corresponds to the sufficiency of
injectivity in Corollary 2.2a on p111 of [3].

23.6 Necessity of injectivity

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Note that (23.5.3) holds if and only if

Hom(α, IW )
(
HomA(P,W )

)
= HomA(M,W ),(23.6.1)

by (23.5.2). More precisely, we have seen that this does not depend on the
choice of projective module P over A, or homomorphism β from P onto V .

Let P be any projective left or right module over A, as appropriate, and let
M be a submodule of P . Suppose that V is the quotient module

V = P/M,(23.6.2)

and β is the natural quotient mapping from P onto V . If (23.5.3) holds, then
(23.6.1) holds, as in the preceding paragraph.

Supposee that

(23.5.3) holds for every left or right module V over A,(23.6.3)

as appropriate. This implies that (23.6.1) holds for every projective left or right
module P over A, as appropriate, and every submodule M of P , as before.
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Under these conditions, we get that

W is injective, as a module over A,(23.6.4)

as in Section 9.2. This corresponds to the necessity of injectivity in Corollary
2.2a on p111 of [3].

23.7 Some more comparisons

Let k be a commutative ring with a mutliplicative identity element again, and
let A be an associative algebra over k with a multiplicative identity element eA.
Also let W , W1, Q, and Q1 be all left or all right modules over A, let β, β1 be
injective homomorphisms from W , W1 into Q, Q1, respectively, and let g be a
homomorphism from W1 into W .

Note that g ◦β is a homomorphism from W1 into Q, as modules over A. Let
us consider some related mappings and their properties, as mentioned beginning
on p34 of [3].

Suppose that Q is injective, as a module over A. This implies that there is
a homomorphism f from Q1 into Q, as modules over A, such that

f ◦ β1 = β ◦ g.(23.7.1)

In particular,
f(β1(W1)) = β(g(W1)) ⊆ β(W ).(23.7.2)

Put
N = Q/β(W ), N1 = Q1/β1(W1),(23.7.3)

which are modules over A, and let α, α1 be the natural quotient mappings
from Q, Q1 onto N , N1, respectively. It follows from (23.7.2) that f induces a
homomorphism

f ′ from N1 into N,(23.7.4)

as modules over A, such that

f ′ ◦ α1 = α ◦ f.(23.7.5)

If f̃ is another homomorphism from Q1 into Q, then

f̃ ◦ β1 = β ◦ g(23.7.6)

if and only if
β1(W1) ⊆ ker(f − f̃).(23.7.7)

This holds exactly when there is a homomorphism h from N1 into Q such that

f − f̃ = h ◦ α1.(23.7.8)

Let f̃ ′ be the homomorphism from N1 into N , as modules over A, induced
by f̃ , so that

f̃ ′ ◦ α1 = α ◦ f̃ ,(23.7.9)
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as in (23.7.5). Using (23.7.5), (23.7.8), and (23.7.9), we get that

(f ′ − f̃ ′) ◦ α1 = α ◦ (f − f̃) = α ◦ h ◦ α1.(23.7.10)

This implies that
f ′ − f̃ ′ = α ◦ h,(23.7.11)

as homomorphisms from N1 into N , because α1 maps Q1 onto N1.
If t ∈ k, then t g is a homomorphism from W1 into W too, as modules over

k. In this case, t f is a homomorphism from Q1 into Q, and the composition of
β1 with t f is equal to the composition of t g with β.

Let ĝ be another homomorphism from W1 into W , as modules over A, so
that β ◦ ĝ is a homomorphism from W1 in Q. Because Q is injective, there is a
homomorphism f̂ from Q1 into Q, as modules over A, such that

f̂ ◦ β1 = β ◦ ĝ,(23.7.12)

as before. Thus
(f + f̂) ◦ β1 = β ◦ (g + ĝ).(23.7.13)

Let W2 and Q2 be left or right modules over A, as appropriate, let β2 be an
injective homomorphism from W2 into Q2, and let g1 be a homomorphism from
W2 into W1. Thus β1 ◦ g1 is a homomorphism from W2 into Q1, as modules
over A. If Q1 is injective as a module over A, then there is a homomorphism f1
from Q2 into Q1, as modules over A, such that

f1 ◦ β2 = β1 ◦ g1.(23.7.14)

Note that g ◦ g1 is a homomorphism from W2 into W , and that β ◦ g ◦ g1 is a
homomorphism from W2 into Q. Similarly, f ◦ f1 is a homomorphism from Q2

into Q, with
f ◦ f1 ◦ β2 = f ◦ β1 ◦ g1 = β ◦ g ◦ g1.(23.7.15)

Suppose now that W2 = W , Q2 = Q, β2 = β, and g ◦ g1 is the identity
mapping on W . Under these conditions, f ◦ f1 is a homomorphism from Q into
itself, with

f ◦ f1 ◦ β = β,(23.7.16)

as in (23.7.15). This is the same as saying that β(W ) is contained in the kernel
of f ◦ f1 minus the identity mapping on Q.

23.8 Comparisons and HomA(V, ·)
Let us continue with the same notation and hypotheses as in the previous sec-
tion, and let V be a left or right module over A, depending on whether the other
modules are left or right modules. Consider the homomorphisms

Hom(IV , α) from HomA(V,Q) into HomA(V,N)(23.8.1)
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and
Hom(IV , α1) from HomA(V,Q1) into HomA(V,N1)(23.8.2)

associated to the identity mapping IV on V and α, α1 as in Section 6.3. Simi-
larly, we have homomorphisms

Hom(IV , f) from HomA(V,Q1) into HomA(V,Q)(23.8.3)

and
Hom(IV , f

′) from HomA(V,N1) into HomA(V,N).(23.8.4)

Observe that

Hom(IV , f
′) ◦Hom(IV , α1) = Hom(IV , α) ◦Hom(IV , f),(23.8.5)

as homomorphisms from HomA(V,Q1) into HomA(V,N), because of (23.7.5),
as in (2a) on p35 of [3].

Remember that the cokernel of Hom(IV , α1) is the quotient of HomA(V,N1)
by the image of HomA(V,Q1) under Hom(IV , α1), and similarly that the coker-
nel of Hom(IV , α) is the quotient of HomA(V,N) by the image of HomA(V,Q)
under Hom(IV , α). Using (23.8.5), we get that Hom(IV , f

′) induces a homo-
morphism

θ1(g) from the cokernel of Hom(IV , α1)(23.8.6)

into the cokernel of Hom(IV , α),

as modules over k, as on p35 of [3]. We would like to check that

θ1(g) does not depend on the choice of f,(23.8.7)

as in Proposition 1.1a on p35 of [3].

Let f̃ be another homomorphism from Q1 into Q that satisfies (23.7.6), so

that (23.7.7) holds. Remember that f̃ induces a homomorphism f̃ ′ from N1

into N as in (23.7.9). We have seen that there is a homomorphism h from N1

into Q, as modules over A, such that (23.7.11) holds.

We can use f̃ ′ to get a homomorphism

Hom(IV , f̃
′) from HomA(V,N1) into HomA(V,N).(23.8.8)

We also have that

Hom(IV , f
′)−Hom(IV , f̃

′) = Hom(IV , f
′ − f̃ ′) = Hom(IV , α ◦ h)

= Hom(IV , α) ◦Hom(IV , h),(23.8.9)

using (23.7.11) in the second step. This implies that

Hom(IV , f
′ − f̃ ′) maps HomA(V,N1) into(23.8.10)

the image of HomA(V,Q) under Hom(IV , α),
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because Hom(IV , h) maps HomA(V,N1) into HomA(V,Q). Using this, we get

that Hom(IV , f
′) and Hom(IV , f̃

′) induce the same homomorphisms into the
cokernel of Hom(IV , α), as desired.

If t ∈ k, then t g is a homomorphism fromW1 intoW , t f is a homomorphism
from Q1 into Q, and they are related as in (23.7.1). One can verify that

θ1(t g) = t θ1(g).(23.8.11)

Let ĝ be another homomorphism from W1 into W , and let f̂ be a homo-
morphism from Q1 into Q such that (23.7.12) holds. This means that g + ĝ is

a homomorphism from W1 into W , f + f̂ is a homomorphism from Q1 into Q,
and that (23.7.13) holds. Thus θ1(ĝ) and θ1(g+ ĝ) may be defined using f̂ and

f + f̂ , respectively, as before. It follows that

θ1(g + ĝ) = θ1(g) + θ1(ĝ),(23.8.12)

as in Proposition 1.1a pn p35 of [3].
If W1 =W , Q1 = Q, β1 = β, and g is the identity mapping IW on W , then

we can take f to be the identity mapping IQ on Q, so that f ′ is the identity
mapping IN on N . In this case,

Hom(IV , f
′) = Hom(IV , IN )(23.8.13)

is the identity mapping on HomA(V,N1) = HomA(V,N). Note that α1 = α, so
that Hom(IV , α1) = Hom(IV , α), and their cokernels are the same. Thus

θ1(g) is the identity mapping on the cokernel of Hom(IV , α1)(23.8.14)

under these conditions.
Let W1, Q1, β1, and g be as before, and let W2, Q2, β2, and g1 be as in the

previous section. Put
N2 = Q2/β2(W2),(23.8.15)

and let α2 be the natural quotient mapping from Q2 onto N2. Suppose that Q1

is injective as a module over A, so that there is a homomorphism f1 from Q2

into Q1, as modules over A, such that (23.7.14) holds.
Using α2, we get a homomorphism

Hom(IV , α2) from HomA(V,Q2) into HomA(V,N2),(23.8.16)

as modules over k. We can use f1 to define a homomorphism

θ1(g1) from the cokernel of Hom(IV , α2)(23.8.17)

into the cokernel of Hom(IV , α1),

as modules over k, as before. Similarly, we can use f ◦ f1 to define a homomor-
phism

θ1(g ◦ g1) from the cokernel of Hom(IV , α2)(23.8.18)

into the cokernel of Hom(IV , α),
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as modules over k. One can check that

θ1(g ◦ g1) = θ1(g1) ◦ θ1(g),(23.8.19)

as in Proposition 1.1a on p35 of [3].
Suppose now that W2 =W , Q2 = Q, and β2 = β, so that N2 = N , α2 = α,

Hom(IV , α2) = Hom(IV , α), and the cokernels of the latter homomorphisms are
the same. If g ◦ g1 is the identity mapping on W , then

θ1(g ◦ g1) is the identity mapping on the cokernel of Hom(IV , α),(23.8.20)

as in (23.8.14). Simiarly, if g1 ◦ g is the identity mapping on W1, then

θ1(g1 ◦ g) is the identity mapping on the cokernel of Hom(IV , α1).(23.8.21)

If g and g1 are inverses of each other, then it follows that

θ1(g) and θ1(g1) are inverses of each other,(23.8.22)

because of (23.8.19).

23.9 The right satellite of HomA(V, ·)
Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V , W be both left or both right modules over A, and put

T (W ) = HomA(V,W ).(23.9.1)

Suppose that Q is an injective left or right module over A, depending on
whether V , W are left or right modules over A, and let β be an injective homo-
morphism from W into Q, as modules over A. Put N = Q/β(W ), and let α be
the natural quotient mapping from Q onto N , as before. We can use α to get a
homomorphism Hom(IV , α) as in (23.8.1). Put

S1T (W ) = the cokernel of Hom(IV , α)(23.9.2)

= HomA(V,N)/Hom(IV , α)
(
HomA(V,Q)

)
,

which is a module over k. This corresponds to (6) on p35 of [3].
Let Q1 be another injective left or right module over A, as appropriate, and

let β1 be an injective homomorphism from W into Q1. This corresponds to
taking W1 = W in the previous two sections. Put N1 = Q1/β(W ), and let α1

be the natural quotient mapping from Q1 onto N1, as before. Using α1, we get
a homomorphism Hom(IV , α1) as in (23.8.2).

If we take g to be the identity mapping onW1 =W , then we get a homomor-
phism θ1(g) from the cokernel of Hom(IV , α1) into the cokernel of Hom(IV , α),
as modules over k, as in (23.8.6). This depends on Q, Q1, β, and β1.
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Let us take W2 = W , Q2 = Q, and β2 = β, so that N2 = N , α2 = α,
Hom(IV , α2) = Hom(IV , α), and the cokernels of the latter homomorphisms are
the same, as in the previous section. Let us also take g1 to be the identity
mapping on W2 = W , as a mapping into W1 = W , to get a homomorphism
θ1(g1) from the cokernel of Hom(Iv, α) into the cokernel of Hom(IV , α1), as in
(23.8.17). This depends on Q1, Q2 = Q, β1, and β2 = β, as before.

Of course, g◦g1 is the identity mapping onW2 =W , and g1◦g is the identity
mapping on W1 = W . Thus θ1(g) and θ1(g1) are inverses of each other, as in
(23.8.22). This shows that (23.9.2) is unique up to natural isomorphisms, as on
p36 of [3]. This is the right satellite of (23.9.1), as in [3].

If W is injective as a module over A, then we can take Q = W and β to be
the identity mapping on W , so that N = {0}, α = 0, Hom(IV , α) = 0, and

S1T (W ) = {0}.(23.9.3)

This corresponds to part of Proposition 1.3 on p37 of [3].
If V is projective as a module over A, then Hom(IV , α) maps HomA(V,Q)

onto HomA(V,N). It follows that (23.9.3) holds in this case too, as in Propo-
sition 1.2 on p36 of [3]. This corresponds to the sufficiency of projectivity in
Corollary 2.2 on p110 of [3] as well.

23.10 Necessity of projectivity

We continue with the same notation and hypotheses as in the previous section.
Of course, (23.9.3) holds if and only if

Hom(IV , α)
(
HomA(V,Q)

)
= HomA(V,N),(23.10.1)

by (23.9.2). This does not depend on the choice of injective module Q over A
or injective homomorphism β from W into Q, as before.

Suppose now that Q is any injective left or right module over A, as appro-
priate, and that α is a homomorphism from Q onto another module N over A.
Put

W = kerα,(23.10.2)

and let β be the obvious inclusion mapping from W into Q. If (23.9.3) holds,
then it follows that (23.10.1) holds.

Suppose that

(23.9.3) holds for every left or right module W over A,(23.10.3)

as appropriate. In this case, (23.10.1) holds for every injective left or right
module Q over A, as appropriate, and every homomorphism α from Q onto
another module N over A, as in the preceding paragraph.

This implies that

V is projective, as a module over A,(23.10.4)

as in Section 9.1. This corresponds to the necessity of projectivity in Corollary
2.2 on p110 of [3].
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23.11 A type of double satellite

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V , PV be right modules over A, and let W , PW be left modules over A.

Suppose that PV , PW are projective as modules over A, and that

βV , βW are homomorphisms from PV , PW onto V,W,(23.11.1)

respectively, as modules over A. Put

MV = kerβV , MW = kerβW ,(23.11.2)

which are submodules of PV , PW , respectively, as modules over A. Consider
the obvious inclusion mappings

αV , αW from MV ,MW into PV , PW ,(23.11.3)

respectively.

Let MV

⊗
AMW , PV

⊗
AMW , and MV

⊗
A PW be tensor products of the

indicated modules over A. We can use αV and the identity mapping on MW to
get a homomorphism

αV from MV

⊗
A
MW into PV

⊗
A
MW ,(23.11.4)

as modules over k. Similarly, we can use the identity mapping on MV and αW
to get a homomorphism

αW from MV

⊗
A
MW into MV

⊗
A
PW ,(23.11.5)

as modules over k. Using αV and αW , we get a homomorphism

from MV

⊗
A
MW into

(
PV

⊗
A
MW

)⊕(
MV

⊗
A
PW

)
,(23.11.6)

as modules over k. Of course, the kernel of this homomorphism is equal to

(kerαV ) ∩ (kerαW ),(23.11.7)

which is a submodule of MV

⊗
AMW .

This corresponds to taking the left satellite of

T (V,W ) = V
⊗

A
W(23.11.8)

in the first variable, and then in the second variable, as in (6) on p50 of [3]. This
also corresponds to taking the left satellite of (23.11.8) in the second variable,
and then the first variable, as in (7) on p50 of [3].
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23.12 Another type of double satellite

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let V , PV , W , and QW be all left or all right modules over A.

Suppose that PV is projective as a module over A, and that

βV is a homomorphism from PV onto V,(23.12.1)

as modules over A. Similarly, suppose that QW is injective as a module over A,
and that

βW is an injective homomorphism from W into QW ,(23.12.2)

as modules over A. Put

MV = kerβV , NW = QW /βW (W ),(23.12.3)

which are modules over A. Thus we get the obvious inclusion mapping

αV from MV into PV ,(23.12.4)

and the natural quotient mapping

αW from QW onto NW .(23.12.5)

We can use αV and the identity mapping INW
onNW to get a homomorphism

Hom(αV , INW
) from HomA(PV , NW ) into HomA(MV , NW ),(23.12.6)

as modules over k, as in Section 6.3. Similarly, we can use the identity mapping
IMV

on MV and αW to get a homomorphism

Hom(IMV
, αW ) from HomA(MV , QW ) into HomA(MV , NW ),(23.12.7)

as modules over k. Using these two homomorphisms, we get a homomorphism

from HomA(PV , NW )
⊕

HomA(MV , QW ) into HomA(MV , NV ),(23.12.8)

as modules over k. The image of this homomorphism is the same as the sub-
module

Hom(αV , INW
)
(
HomA(PV , NW )

)
(23.12.9)

+Hom(IMV
, αW )

(
HomA(MV , QW )

)
of HomA(MV , NW ) generated by the images of (23.12.6) and (23.12.7). Thus
the cokernel of the homomorphism as in (23.12.8) is the same as the quotient
of HomA(MV , NW ) by the submodule (23.12.9).

This corresponds to taking the right satellite of

T (V,W ) = HomA(V,W )(23.12.10)

in the first variable, and then in the second variable, as in (6a) on p50 of [3],
adjusted for the fact that (23.12.10) is contravariant in the first variable, as in
[3]. This also corresponds to taking the right satellite of (23.12.10) in the second
variable, and then in the first variable, as in (7a) on p50 of [3], suitably adjusted
for this case, as before.
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23.13 Left and right ideals

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let IL, IR be left and right ideals in A, respectively. In particular, IL, IR are
submodules of A, as a module over k, so that their interesection is a submodule
of A as a module over k as well.

Let IR IL be the subset of A consisting of finite sums of products of elements
of IR and IL. This is another submodule of A, as a module over k, with

IR IL ⊆ IL ∩ IR.(23.13.1)

Of course, IL and IR may be considered as left and right modules over A,
respectively. Let IR

⊗
A IL be a tensor product of IR and IL over A. There is

an obvious homomorphism

from IR
⊗

A
IL into A,(23.13.2)

as modules over k. This homomorphism is obtained from the restriction of
multiplication on A to IR × IL, as a mapping into A. The image of the homo-
morphism as in (23.13.2) is the same as IR IL.

The quotients A/IL and A/IR may be defined as left and right modules over
A in the usual way. Let IR

⊗
A(A/IL) be a tensor product of IR and A/IL

over A. There is an obvious homomorphism

from IR
⊗

A
(A/IL) into A/IL,(23.13.3)

as modules over k. This homomorphism is obtained from the restriction of the
action of A on A/IL on the left to IR × (A/IL), as a mapping into A/IL.

There is a natural homomorphism

from IR
⊗

A
A onto IR

⊗
A
(A/IL),(23.13.4)

as modules over k. This homomorphism is obtained from the identity mapping
on IR, and the natural quotient mapping from A onto A/IL. This may be
identified with a homomorphism

from IR onto IR
⊗

A
(A/IL),(23.13.5)

as modules over k, using the usual identification of IR
⊗

AA with IR.
The composition of the homomorphism as in (23.13.5) with the homomor-

phism as in (23.13.3) is a homomorphism

from IR into A/IL,(23.13.6)

as modules over k. This homomorphism is the same as the restriction to IR
of the natural quotient mapping from A onto A/IL. Thus the kernel of this
homomorphism is IL ∩ IR.
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It follows that the kernel of the homomorphism as in (23.13.3) is equal to
the image of IL ∩ IR under the homomorphism as in (23.13.5). This uses the
fact that the homomorphism as in (23.13.5) is surjective.

There is a natural homomorphism

from IR
⊗

A
IL into IR

⊗
A
A,(23.13.7)

as modules over k. This homomorphism is obtained from the identity mapping
on IR, and the obvious inclusion mapping from IL into A. This homomor-
phism maps IR

⊗
A IL onto the kernel of the homomorphism as in (23.13.4), as

discussed in Section 2.5.
The homomorphism as in (23.13.7) corresponds to a homomorphism

from IR
⊗

A
IL into IR,(23.13.8)

as modules over k, because of the usual identification of IR
⊗

AA with IR.
This homomorphism is the same as the one obtained from the restriction of
multiplication on A to IR×IL, as in (23.13.2), considered as a homomorphism
into IR. The image of this homomorphism is the same as IR IL, as before.

This means that the kernel of the homomorphism as in (23.13.5) is equal
to IR IL. It follows that the image of IL ∩ IR under the homomorphism as in
(23.13.5) is isomorphic to the quotient

(IL ∩ IR)/(IR IL),(23.13.9)

as modules over k. This implies that the kernel of the homomorphism as in
(23.13.3) is isomorphic to (23.13.9), as modules over k.

This corresponds to a satellite, as in Section 23.3. This is basically the same
as the first part of Exercise 19 on p126 of [3], considered in terms of satellites.

23.14 More on left, right ideals

Let us continue with the same notation and hypotheses as in the previous sec-
tion. There is a natural homomorphism

from IR
⊗

A
IL into A

⊗
A
IL,(23.14.1)

as modules over k. This homomorphism is obtained from the obvious inclusion
mapping from IR into A, and the identity mapping on IL. This corresponds to
a homomorphism

from IR
⊗

A
IL into IL,(23.14.2)

as modules over k, because of the usual identification of A
⊗

A IL with IL.
Of course, these homormophisms are analogous to those as in (23.13.7) and

(23.13.8). As before, the homomorphism as in (23.14.2) is the same as the one
obtained from the restriction of multiplication on A to IR×IL, as in (23.13.2),
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considered as a homomorphism into IL. This may also be considered as a
homomorphism

from IR
⊗

A
IL onto IR IL,(23.14.3)

as modules over k.
Consider

the kernel of the homomorphism as in (23.14.3),(23.14.4)

which is a submodule of IR
⊗

A IL, as a module over k. This corresponds to a
double satellite, as in Section 23.11. This is basically the same as the second
part of Exercise 19 on p126 of [3], considered in terms of satellites.
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Chapter 24

Augmented rings

24.1 Left augmentations

Let A be a ring with a multiplicative identity element eA. A left augmentation
of A consists of a left module Q over A and a homomorphism ε from A onto Q,
as left modules over A. Equivalently, A is said to be a left augmented ring when
it is equipped with a left augmentation, as on p143 of [3]. In this case, Q is called
the augmentation module, and ε is called the augmentation homomorphism (or
epimorphism), as in [3]. The kernel I = Iε of ε is called the augmentation ideal,
as in [3], and is a left ideal in A.

Under these conditions, if V is a right module over A, then we put

T (V ) = TL(V ) = V
⊗

A
Q,(24.1.1)

which is a commutative group. Suppose for the moment that k is a commutative
ring with a multiplicative identity element, and that A is an associative algebra
over k. This means that modules over A may be considered as modules over k,
and (24.1.1) is defined as a module over k too.

Of course,
(v, b) 7→ v · b(24.1.2)

defines a mapping from V × A into V that is bilinear over Z. If a, b ∈ A and
v ∈ V , then the values of this mapping at (v ·a, b) and (v, a b) are the same. This
mapping can be used to show that V satisfies the requirements of V

⊗
AA, as

a commutative group, and in fact as a right module over A, as in Section 1.10.
We may also restrict (24.1.2) to V × I, to get a mapping into V that is

bilinear over Z. This leads to a homomorphism

from V
⊗

A
I into V,(24.1.3)

as commutative groups. This can be identified with the homomorphism

from V
⊗

A
I into V

⊗
A
A,(24.1.4)

548
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as commutative groups, that corresponds to the identity mapping on V and the
obvious inclusion mapping from I into V , as in Section 1.9.

By hypothesis,
0 −→ I −→ A

ε−→ Q −→ 0(24.1.5)

is an exact sequence of left modules over A, using the obvious inclusion mapping
from I into A. This leads to an exact sequence

V
⊗

A
I −→ V

⊗
A
A −→ V

⊗
A
Q −→ 0,(24.1.6)

as commutative groups, as in Section 2.5. More precisely, this uses the mappings
obtained from those in (24.1.5), and the identity mapping on V .

This leads to an isomorphism between (24.1.1) and

the cokernel of the homomorphism as in (24.1.4),(24.1.7)

which is to say the quotient of V
⊗

AA by the image of V
⊗

A I under the
homomorphism as in (24.1.4). This corresponds to (2) on p144 of [3]. This is
also mentioned in Exercise 2 on p31 of [1], in the case of commutative rings.
This is essentially the same as in Section 13.15 as well.

If W is a left module over A, then put

U(W ) = UL(W ) = HomA(Q,W ),(24.1.8)

which is a commutative group. As before, if A is an algebra over a commutative
ring k with a multiplicative identity element, then modules over A may be
considered as modules over k, and (24.1.8) is defined as a module over k.

Of course, A may be considered as a left module over itself, so that the
space HomA(A,W ) of homomorphisms from A into W , as left modules over A,
is defined as a commutative group. There is a natural isomorphism between
HomA(A,W ) and W , as commutative groups, as in Section 1.7, and in fact as
left modules over A, as in Section 1.8. There is an obvious homomorphism

from HomA(A,W ) into HomA(I,W ),(24.1.9)

which sends a homomorphism from A into W to its restriction to I. This may
be identified with a homomorphism

from W into HomA(I,W ),(24.1.10)

using the natural isomorphism between HomA(A,W ) and W mentioned before.
Homomorphisms from Q into W , as left modules over A, correspond to

homomorphisms from A into W , as left modules over A, whose kernels contain
I. Thus (24.1.8) is isomorphic in a natural way to

the kernel of the homomorphism as in (24.1.9).(24.1.11)

This corresponds to (2a) on p144 of [3].
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24.2 Right augmentations, and related matters

Let A be a ring with a multiplicative identity element eA again. A right aug-
mentation of A consists of a right module Q over A and a homomorphism ε
from A onto Q, as right modules over A. If A is equipped with a right aug-
mentation, then A is said to be a right augmented ring. As before, Q is called
the augmentation module, and ε is called the augmentation homomorphism (or
epimorphism). The kernel I = Iε is called the augmentation ideal, and is a
right ideal in A.

In this case, if V is a left module over A, then we put

T (V ) = TR(V ) = Q
⊗

A
V,(24.2.1)

which is a commutative group. If W is a right module over A, then we put

U(W ) = UR(W ) = HomA(Q,W ),(24.2.2)

which is a commutative group. There are analogues of the statements in the
previous section for right augmentations, as on p145 of [3].

Suppose now that I is a two-sided ideal in A. Thus

Q = A/I(24.2.3)

is a ring, which may be considered as both a left and right module over A. This
means that A may be considered as both a left and right augmented ring, as on
p145 of [3].

If V is a right module over A, then (24.1.1) may be considered as a right
module over A too, as in Section 1.10. Similarly, if V is a left module over A,
then (24.2.1) may considered as a left module over A.

IfW is a left module over A, then (24.1.8) may be considered as a left module
over A, as in Section 1.8. Similarly, if W is a right module over A, then (24.2.2)
may be considered as a right module over A.

Let V be a right module over A again. Consider the subset

V · I(24.2.4)

of V consisting of finite sum of elements of V of the form v · b, where v ∈ V
and b ∈ I. This is a subgroup of V , as a commutative group with respect to
addition, which is the same as the image of V

⊗
A I under the homomorphism

as in (24.1.3). Thus the quotient

V/(V · I)(24.2.5)

can be identified with (24.1.7), which is isomorphic to (24.1.1), as a commutative
group, as before. Note that this works when I is any left ideal in A.

More precisely, (24.2.4) is a submodule of V here, as a right module over A,
because I is also a right ideal in A. This means that the quotient (24.2.5) is a
right module over A as well. Under these conditions, the homomorphisms as in
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(24.1.3) and (24.1.4) are homomorphisms between right modules over A. Simi-
larly, the isomorphism between (24.1.1) and (24.1.7) mentioned in the previous
section is an isomorphism between right modules over A.

Remember that the homomorphism from V
⊗

AA onto V
⊗

AQ in (24.1.6)
is obtained from ε and the identity mapping on V . This is also a homomorphism
between right modules over A in this case. It follows that (24.2.5) is isomorphic
to (24.1.1), as right modules over A. This corresponds to (1) on p154 of [3].

If we take V = Q, considered as a right module over A, then (24.2.4) is equal
to {0}. Of course, this means that (24.2.5) is equal to Q, so that (24.1.1) is
isomorphic to Q, as a right module over A. This corresponds to (8) on p146 of
[3].

24.3 Augmentations and homology

Let A be a ring with a multiplicative identity element eA. Suppose that A is
equipped with a left augmentation, with augmentation module Q, homomor-
phism ε, and ideal I = Iε, as in Section 24.1. If V is a right module over A,
then we put T (V ) = TL(V ) = V

⊗
AQ, as before.

If n is a nonnegative integer, then the nth homology group Tn(V ) of A as a
left augmented ring with coefficients in V is defined as a commutative group on
p143 of [3]. Another characterization of Tn(V ), up to isomorphism, is given in
Theorem 1.1 on p145 of [3]. In particular,

T0(V ) = T (V ).(24.3.1)

If V is projective as a right module over A, then

Tn(V ) = {0} for every n ≥ 1.(24.3.2)

As mentioned on p143 of [3], V may have additional actions that commute
with the action of A on the right, which lead to suitable actions on Tn(V ).
Suppose for instance that k is a commutative ring with a multiplicative identity
element, and that A is an associative algebra over k. This means that modules
over A may be considered as modules over k, and T (V ) is defined as a module
over k. Similarly, Tn(V ) is a module over k for each n ≥ 0, as in [3].

Remember that V satisfies the requirements of V
⊗

AA, as a commutative
group, and in fact as a right module over A, as in Section 1.10. This uses the
mapping (v, b) 7→ v · b from V × A into V . We can use the restriction of this
mapping to V ×I, to get a mapping into V that is bilinear over Z, and satisfies
the usual compatibility condition with respect to the actions of A on V on the
right and on I on the left.

This leads to a homomorphism

from V
⊗

A
I into V,(24.3.3)

as commutative groups, as in Section 24.1. This can be identified with the
homomorphism

from V
⊗

A
I into V

⊗
A
A,(24.3.4)
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as commutative groups, that corresponds to the identity mapping on V and the
obvious inclusion mappng from I into A, as in Section 1.9. It can be shown
that

T1(V ) is isomorphic to the kernel(24.3.5)

of the homomorphism as in (24.3.3),

as a commutative group, as in (3) on p144 of [3].
Suppose that X = X(V ) is a projective resolution of V , as a right module

over A, as in Section 10.2. We may consider X
⊗

AQ as a graded module over
Z, with (

X
⊗

A
Q
)j

= Xj
⊗

A
Q(24.3.6)

for each j ∈ Z, as in Section 7.5. More precisely, X
⊗

AQ may be considered
as a complex over Z, as before. The homology of this complex can be used to
obtain Tn(V ), as on p143 of [3]. Namely,

Tn(V ) = H
(
X
⊗

A
Q
)
n
= H

(
X
⊗

A
Q
)−n

(24.3.7)

for each n ≥ 0.
Alternatively, suppose that X = X(Q) is a projective resolution of Q, as a

left module over A. As before, V
⊗

AX may be considered as a graded module
over Z, with (

V
⊗

A
X
)j

= V
⊗

A
Xj(24.3.8)

for each j ∈ Z. In fact, V
⊗

AX may be considered as a complex over Z, as in
Section 7.5 again. The homology of this complex can be used to obtain Tn(V ),
with

Tn(V ) = H
(
V
⊗

A
X
)
n
= H

(
V
⊗

A
X
)−n

(24.3.9)

for each n ≥ 0, as on p144 of [3].
Remember that A is automatically free as a left module over itself, and

thus projective. This means that the augmentation homomorphism ε may be
considered as a homomorphism from a projective left module over A onto Q.
This can be used as the initial step in the construction of a projective resolution
of Q, as in Section 10.2, and mentioned on p144 of [3].

Now let X = X(V ) be a projective resolution of V , as a right module over A,
and let Y = Y (Q) be a projective resolution of Q, as a left module over A, as in
Section 10.2 again. Under these conditions, X

⊗
A Y can be defined as a double

complex over Z, as in Section 6.2. In particular, X
⊗

A Y is doubly-graded as a
module over Z, as in Section 6.1. One can obtain a single grading on X

⊗
A Y

from the double grading in the usual way, as in Section 5.13. One can also
combine the two differentiation operators on X

⊗
A Y , as a double complex, to

get a single differentiation operator, so that X
⊗

A Y becomes a single complex,
as in Section 5.14.
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The homology of X
⊗

A Y as a single complex can be used to get Tn(V ),
with

Tn(V ) = H
(
X
⊗

A
Y
)
n
= H

(
X
⊗

A
Y
)−n

(24.3.10)

for each n ≥ 0. This uses one of the equivalent definitions of Tn(V ) indicated on
p143 of [3], which is based on a definition on p107 of [3]. The equivalence of the
two definitions of Tn(V ) on p143 of [3], as well as the descriptions in (24.3.7)
and (24.3.9), are mentioned on p107 of [3] too.

The definition on p107 of [3] mentioned in the preceding paragraph is based
on another definition on p84 of [3], which is related to the discussion in Section
10.11. The equivalence with (24.3.7) and (24.3.9) is related to the discussion in
Section 10.12. The other equivalent definition of Tn(V ) on p143 of [3] is based
on “satellites”, which are also mentioned in Section 10.12.

Of course, there are analogous notions and statements for right augmented
rings, as mentioned on p145 of [3].

24.4 Two-sided ideals and homology

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Suppose now that I is a two-sided ideal in A, so that Q = A/I is a ring.
In this case, Tn(V ) may be considered as a right module over A for every n ≥ 0,
because Q is a right module over A, as on p145 of [3].

We may also take V = Q in the previous section, because Q is a right module
over A. Remember that T0(Q) = T (Q) was disccused in Section 24.2.

Of course, if q ∈ Q and a ∈ I, then

q · a = 0(24.4.1)

in Q, by construction. This implies that the homomorphism

from Q
⊗

A
I into Q(24.4.2)

as in (24.3.3), with V = Q, is equal to 0. This means that

T1(Q) is isomorphic to Q
⊗

A
I,(24.4.3)

as in (24.3.5). This corresponds to part of (9) on p146 of [3].
In this case,

0 −→ I −→ A
ε−→ Q −→ 0(24.4.4)

may be considered as an exact sequence of left and right modules over A, using
the obvious inclusion mapping from I into A. This leads to an exact sequence

I
⊗

A
I −→ A

⊗
A
I −→ Q

⊗
A
I −→ 0,(24.4.5)

as in Section 2.5. This uses the mappings obtained from those in (24.4.5), and
the identity mapping on I.
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As usual, I satisfies the requirements of A
⊗

A I, using the map (a, b) 7→ a b
from A × I into I. Thus the mapping in the first step in (24.4.5) corresponds
to the homomorphism

from I
⊗

A
I into I(24.4.6)

with
a⊗ b 7→ a b(24.4.7)

for every a, b ∈ I. The image
I2 = I I(24.4.8)

of the homomorphism as in (24.4.6) consists of finite sums of products of the
form a b, with a, b ∈ I. This is a submodule of I, as both a left and right module
over A.

Using the exactness of (24.4.5), we get an isomorphism

from I/I2 onto Q
⊗

A
I,(24.4.9)

as both left and right modules over A. This corresponds to another part of (9)
on p146 of [3].

It can be shown that

T2(Q) is isomorphic to the kernel(24.4.10)

of the homomorphism as in (24.4.6),

as in (10) on p146 of [3].

24.5 Augmentations and cohomology

Let A be a ring with a multiplicative identity element eA. Suppose that A is
a left augmented ring, with augmentation module Q, homomorphism ε, and
ideal I = Iε, as in Section 24.1. If W is a left module over A, then we put
U(W ) = UL(W ) = HomA(Q,W ), as before.

If n is a nonnegative integer, then the nth cohomology group Un(W ) of A as
a left augmented ring with coefficients in W is defined as a commutative group
on p143 of [3]. Theorem 1.1a on p145 of [3] gives another characterization of
Un(W ), up to isomorphism. In particular,

U0(W ) = U(W ).(24.5.1)

If W is injective as a left module over A, then

Un(W ) = {0} for every n ≥ 1.(24.5.2)

As on p143 of [3], W may have additional actions that commute with the
action of A on the left, and these lead to suitable actions on Un(W ). In par-
ticular, if k is a commutative ring with a multiplicative identity element, and
A is an associative algebra over k, then modules over A may be considered as
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modules over k, and U(W ) is defined as a module over k. In this case, Un(W )
is a module over k for every n ≥ 0, as in [3].

Remember that the space HomA(A,W ) of homomorphisms from A into W ,
as left modules over A, is isomorphic to W in a natural way, as commutative
groups, and as left modules over A, as in Section 24.1. Using this isomorphism,
the obvious homomorphism

from HomA(A,W ) into HomA(I,W ),(24.5.3)

which sends a homomorphism from A into W to its restriction to I, may be
identified with a homomorphism

from W into HomA(I,W ),(24.5.4)

as before. It can be shown that

U1(W ) is isomorphic to the cokernel(24.5.5)

of the homomorphism as in (24.5.3),

as a commutative group, as in (3a) on p144 of [3].
Suppose that Y = Y (W ) is an injective resolution ofW , as a left module over

A, as in Section 10.7. In particular, Y is a complex over A, so that Homgr
A (Q,Y )

may be defined as a complex over Z, as in Section 7.12. Under these conditions,

Un(W ) = H
(
Homgr

A (Q,Y )
)n

(24.5.6)

for each n ≥ 0, as on p143 of [3].
Alternatively, suppose that X = X(Q) is a projective resolution of Q, as a

left module over A, as in Section 10.2. Thus X is a complex over A in particular,
and Homgr

A (X,W ) may be defined as a complex over Z, as in Section 8.4. In
this case,

Un(W ) = H
(
Homgr

A (X,W )
)n

(24.5.7)

for each n ≥ 0, as on p144 of [3].
Now let X = X(Q) be a projective resolution of Q, as a left module over

A, and let Y = Y (W ) be an injective resolution of W as a left module over
A, as in Sections 10.2 and 10.7. Under these conditions, Homgr

A (X,Y ) can be
defined as a double complex over Z, as in Section 6.5. This uses the definition
of Homgr

A (X,Y ) as a doubly-graded module over Z in Section 6.3. As usual, one
can get a single grading on Homgr

A (V,W ) from the double grading as in Section
5.13. The two differentiation operators on Homgr

A (X,Y ), as a double complex,
can be combined to get a single differentiation operator, so that Homgr

A (X,Y )
becomes a single complex, as in Section 5.14.

The homology of Homgr
A (X,Y ) as a single complex can be used to obtain

Un(W ), with
Un(W ) = H

(
Homgr

A (X,Y )
)n

(24.5.8)

for each n ≥ 0. This uses one of the equivalent definitions of Un(W ) mentioned
on p143 of [3], which uses another definition on p107 of [3]. The equivalence of
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the two definitions of Un(W ) on p143 of [3] is mentioned on p107 of [3], as well
as the equivalence with the descriptions in (24.5.6) and (24.5.7).

The definition on p107 of [3] mentioned in the preceding paragraph uses
another definition on p83 of [3], which is related to the discussion in Section
10.13. The equivalence with (24.5.6) and (24.5.7) is related to the discussions
in Sections 10.14 and 10.15. The equivalence with the descriptions in terms of
“satellites” is mentioned in those sections as well.

There are analogous notions and statements for right augmented rings, as
mentioned on p145 of [3].

If I is a two-sided ideal in A, then Q may be considered as a right module
over A too, as in Section 24.2. In this case, Un(W ) may be considered as a left
module over A for every n ≥ 0, as on p145 of [3].

24.6 Dual numbers and augmentations

Let A be a ring with a multiplicative identity element eA, and let A[d] be the
corresponding ring of dual number, as in Section 5.4. Also let ε be the mapping
from A[d] onto A defined by

ε(a1 + a2 d) = a1(24.6.1)

for every a1, a2 ∈ A. This is a ring homomorphism, which is the same as in
Section 9.14, with A[d] considered as a graded ring.

Thus A may be considered as a left and right module over A[d], using ε.
Equivalently, the actions of d on A on the left and right are equal to 0.

We may consider A[d] as a left and right augmented ring, with augmentation
homomorphism ε, and augmentation module A. The augmentation ideal is Ad,
which may be considered as a left and right module over A[d], because it is a
two-sided ideal in A[d].

Observe that
a 7→ a d(24.6.2)

defines an isomorphism
from A onto Ad,(24.6.3)

as left and right modules over A[d]. More precisely, the actions of d on Ad on
the left and on the right are equal to 0.

It is easy to see that
a1 + a2 d 7→ a1 d(24.6.4)

is a homomorphism
from A[d] onto Ad,(24.6.5)

as left and right modules over A[d]. This is the same as the composition of ε
with the isomorphism as in (24.6.2).

Consider the graded left and right module X over A[d] defined by

Xj = {0} when j > 0(24.6.6)

= A[d] when j ≤ 0.
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Let djX be the mapping from Xj into Xj+1 which is given by (24.6.4) when
j < 0, and which is of course equal to 0 when j ≥ 0. Note that

dj+1
X ◦ djX = 0(24.6.7)

for every j, by construction. Let dX be the homomorphism from X into itself
of degree 1 whose jth component is equal to djX for each j. It follows that
(X, dX) is a graded left and right module over A[d] with differentiation that is
a complex, as in Section 5.10.

We may consider A as a graded left and right module over A[d] with dif-
ferentiation that is a complex by taking A0 = A, Aj = {0} when j 6= 0, and
differentiation operator dA = 0, as before. Let εX be the homomorphism from
X into A of degree 0 defined by taking ε0X to be the map from X0 = A[d] into

A0 = A given by ε, and with εjX = 0 when j 6= 0. Observe that

ε0X ◦ d−1
X = 0,(24.6.8)

by construction. This implies that εX is a homomorphism from X into A, as
modules with differentiation, as in Section 10.1. More precisely, εX is a map
from X into A, as complexes over A[d].

This makes X a left complex over A, as a left or right module over A[d],
with augmentation εX , as in Section 10.1. Clearly X is projective over A[d],
because A[d] is projective as a left or right module over itself. It is easy to see
that X is acyclic as a left complex over A, using the remarks in Section 10.1.
Thus X is a projective resolution of A, as a left or right module over A[d], as
in Section 10.2. This corresponds to some remarks on p147 of [3].

24.7 Dual numbers and homology

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Also let V be a right module over A[d]. Equivalently, this means that V
is a right module over A with differentiation, where the action of d on V on the
right is the same as the differentiation operator dV , as in Section 5.4.

Let us take Y = V
⊗

A[d]X, which may be considered as a graded right

module over A[d]. More precisely,

Y j = V
⊗

A[d]
Xj = {0} when j > 0(24.7.1)

= V
⊗

A[d]
A[d] when j ≤ 0,

by (24.6.6). We can identify Y j with V when j ≤ 0, as a right module over
A[d], in the usual way.

In fact, Y is a right module over A[d] with differentiation, where the dif-
ferentiation operator dY is obtained from dX and the identity mapping on V
in the usual way, as in Section 7.5. More precisely, Y is a complex, and djY is
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obtained from djX and the identity mapping on V in the usual way for each j.

Of course, djY = 0 when j ≥ 0.
If j < 0, then Y j and Y j+1 can be identified with V , as right modules over

A[d], as before. Using this identification, one can check that djY corresponds

exactly to dV . This uses the fact that d
j
X corresponds to the mapping from A[d]

into itself given by (24.6.4), as in the previous section.
If n ≥ 1, then we get that

Tn(V ) = H(Y )n = H(Y )−n = H(V ),(24.7.2)

as in (24.3.9). Here H(V ) is the usual homology of V as a module with dif-
ferentation, as in Section 5.1.

We also have that

T (V ) = T0(V ) = V
⊗

A[d]
A is isomorphic to Z ′(V ),(24.7.3)

where Z ′(V ) is as in Section 5.1, for V as a module with differentiation. This
can be obtained from the description of T (V ) in Section 24.2, when the aug-
mentation ideal I is a two-sided ideal. Here I = Ad, and it is easy to see
that

V · I = V · (Ad) = V · d = dV (V ).(24.7.4)

One could obtain (24.7.3) from the fact that T0(V ) = H(Y )0, as in Section 24.3,
as well.

These remarks correspond to some of those on p147 of [3].

24.8 Dual numbers and cohomology

Let us continue with the same notation and hypotheses as in Section 24.6 again.
Now let W be a left module over A[d]. Thus W may be considered as a left
module over A with differentiation, where the differentiation operator dW cor-
responds to the action of d on W on the left, as in Section 5.4.

Here we take Y = Homgr
A[d](X,W ), which may be considered initially as a

graded module over Z, as in Section 8.4. In fact, Y is a graded left module over
A[d], because X is a graded left and right module over A[d]. Using (24.6.6), we
get that

Y j = HomA[d](X
−j ,W ) = HomA[d](A[d],W ) when j ≥ 0

= {0} when j < 0.(24.8.1)

We can identify Y j withW when j ≥ 0, as a left module over A[d], as in Section
1.8.

Let ϕ ∈ Y be given, so that ϕj ∈ HomA[d](X
−j ,W ) for each j ∈ Z. Under

these conditions, dY (ϕ) ∈ Y is defined by putting

dY (ϕ)
j+1 = ϕj ◦ d−j−1

X(24.8.2)
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for each j, as in Section 8.4. Remember that Y is a complex with respect to
dY , as before. Equivalently, d

j
Y is defined on Y j by composition with d−j−1

X for

each j. If j < 0, then −j − 1 ≥ 0, so that d−j−1
X = 0, and thus djY = 0.

If j ≥ 0, then Y j and Y j+1 can be identified with W , as left modules
over A[d], as before. In this case, one can check that djY corresponds to dW
with respect to this identification. More precisely, this uses the fact that d−j−1

X

corresponds to (24.6.4) as a mapping from A[d] into itself, by construction.
If n ≥ 1, then we obtain that

Un(W ) = H(Y )n = H(W ),(24.8.3)

as in (24.5.7). This is the usual homology ofW as a module with differentiation,
as in Section 5.1.

We also get that

U(W ) = U0(W ) = HomA[d](A,W ) is isomorphic to Z(W ),(24.8.4)

where Z(W ) is as in Section 5.1. Indeed, HomA[d](A,W ) is isomorphic in a nat-
ural way to the submodule of HomA[d](A[d],W ) consisting of homomorphisms
from A[d] into W , as left modules over A[d], that are equal to 0 on the augmen-
tation ideal Ad in A[d]. If we identify HomA[d](A[d],W ) with W in the usual
way, then this submodule corresponds to Z(W ). One could obtain (24.8.4) from
the fact that U0(W ) = H(Y )0, as in Section 24.5, too.

These remarks correspond to some more of those on p147 of [3].

24.9 Augmentations and homomorphisms

Let A, B be rings with multiplicative identity elements eA, eB , respectively.
Suppose that A, B are both left augmented rings, with augmentation modules
QA, QB , augmentation homomorphisms εA, εB , and augmentation ideals IA,
IB , respectively. Of course, one could consider right augmentations as well.

Suppose that ϕ is a homomorphism from A into B as rings, with ϕ(eA) = eB .
If

ϕ(IA) ⊆ IB ,(24.9.1)

then ϕ is said to be a map or homomorphism of augmented rings, as on p149 of
[3].

In this case, there is a unique mapping ψ from QA into QB such that

ψ ◦ εA = εB ◦ ϕ.(24.9.2)

If a ∈ A and x ∈ QA, then it follows that

ψ(a · x) = ϕ(a) · ψ(x).(24.9.3)

Note that QB may be considered as a left module over A, where the action of
a ∈ A on QB on the left is given by the action of ϕ(a) ∈ B on QB on the left,
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as in Section 2.9. Using this, ψ may be considered as a homomorphism from
QA into QB , as left modules over A, as on p149 of [3].

Similarly, B may be considered as a right module over itself, and thus a right
module over A, using ϕ, as in Section 2.9. Let

(ϕ)QA = B
⊗

A
QA(24.9.4)

be a tensor product of B and QA as modules over A. This may be considered
as a left module over B, which is the covariant ϕ-extension of QA, as in Section
2.9.

Consider the mapping from B ×QA into QB defined by

(b, x) 7→ b · ψ(x)(24.9.5)

for every b ∈ B and x ∈ QA. This mapping is bilinear over Z, and compatible
with the actions of A on B on the right and on QA on the left, by (24.9.3). It
follows that there is a unique homomorphism

g from (24.9.4) into QB ,(24.9.6)

as commutative groups with respect to addition, such that

g(b⊗ x) = b · ψ(x)(24.9.7)

for every b ∈ B and x ∈ QA, as on p149f of [3]. More precisely, g is a homomor-
phism as in (24.9.6), as left modules over B.

Let XA be a projective resolution of QA, as a left module over A, and let
XB be a projective resolution of QB , as a left module over B. Also let

(ϕ)XA = B
⊗

A
XA(24.9.8)

be a tensor product of B and XA, as modules over A, which is the covariant
ϕ-extension of XA. This may be considered as a complex over Z, as in Section
7.5. More precisely, this may be considered as a left module over B, as before,
and in fact as a complex over B. Note that

((ϕ)XA)
j = B

⊗
A
Xj
A =(ϕ) X

j
A(24.9.9)

is the covariant ϕ-extension of Xj
A, as a left module over A, for each integer j.

One can check that

(24.9.8) is a left complex over (24.9.4),(24.9.10)

as left modules over B, in a natural way. The augmentation of (24.9.8) as a left
complex can be obtained from the augmentation of XA, as a left complex over
QA, and the identity mapping on B. Observe that

(24.9.9) is projective as a left module over B(24.9.11)
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for each j, because Xj
A is projective as a left module over A for each j, by

hypothesis, as in Section 2.10. This means that

(24.9.8) is projective as a left complex over (24.9.4),(24.9.12)

as left modules over B, as in Section 10.1. This is mentioned at the top of p150
of [3].

It follows that there is a map

G from (24.9.8) into XB over g,(24.9.13)

as in Section 10.3. This map is unique up to homotopy, as in Section 10.4.
Let V be a right module over B, so that V may be considered as a right

module over A using ϕ, as in Section 2.9. If we consider V as a right module
over A, then a tensor product V

⊗
AXA of V and XA over A may be considered

as a complex over Z, as in Section 7.5. The homology of this complex may be
used to obtain the homology of A as a left augmented ring with coefficients in
V , as in Section 24.3.

Remember that V satisfies the requirements of a tensor product V
⊗

B B.
This permits us to identify V

⊗
AXA with a tensor product of the form(

V
⊗

B
B
)⊗

A
XA.(24.9.14)

There is a natural isomorphism between a tensor product of this form and a
tensor product of the form

V
⊗

B

(
B
⊗

A
XA

)
,(24.9.15)

as in Section 1.12. This was also mentioned in connection with covariant ϕ-
extensions in Section 2.10. More precisely, one can check that this is an isomor-
phism between these tensor products as complexes.

A tensor product V
⊗

B XB of V and XB over B may be considered as a
complex over Z as well, as in Section 7.5 again. The homology of this complex
may be used to obtain the homology of B as a left augmented ring with coeffi-
cients in V , as in Section 24.3. Using G and the identity mapping on V , we get
a map

from (24.9.15) into V
⊗

B
XB ,(24.9.16)

as complexes, as in Section 7.6. Note that this map is uniquely determined up
to homotopy by g. We may consider this as a map

from V
⊗

A
XA into V

⊗
B
XB ,(24.9.17)

as complexes, using the identification and isomorphism mentioned in the pre-
ceding paragraph.

The map as in (24.9.17) leads to a homomorphism

from H
(
V
⊗

A
XA

)
into H

(
V
⊗

B
XB

)
(24.9.18)
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of degree 0, as graded modules over Z, as in Section 5.11. This homomorphism
is uniquely determined by g, because induced maps on homology are preserved
by homotopies. This corresponds to (2) on p150 of [3]. This determines a
homomorphism

from the homology of A into the homology of B,(24.9.19)

as left augmented rings, with coefficients in V,

as in (1) on p149 of [3].
Similarly, let Z be a left module over B, which may be considered as a left

module over A too, as in Section 2.9. Thus Homgr
A (XA, Z) may be defined as a

complex over Z, as in Section 8.4. The homology of this complex can be used
to get the cohomology of A as a left augmented ring with coefficients in Z, as
in Section 24.5.

We also have that Homgr
B (XB , Z) and

Homgr
B ((ϕ)XA, Z) = Homgr

B

(
B
⊗

A
XA

)
(24.9.20)

are defined as complexes over Z, as in Section 8.4. Remember that G is in
particular a map from (24.9.8) into XB as complexes over B, as in Section 10.3.
This implies that G induces a map

from Homgr
B (XB , Z) into (24.9.20),(24.9.21)

as complexes over Z, as in Section 8.5. This map is uniquely determined up to
homotopy by g.

There is a natural isomorphism

between (24.9.20) and Homgr
A (XA, Z),(24.9.22)

as in Section 2.10. More precisely, one can reduce to the previous statements
for ordinary spaces of homomorphisms between modules without gradings, to
deal with graded modules here. One can also check that this is an isomorphism
between complexes over Z. Using this, the map in (24.9.21) may be considered
as a map

from Homgr
B (XB , Z) into Homgr

A (XA, Z),(24.9.23)

as complexes over Z.
This leads to a homomorphism

from H
(
Homgr

B (XB , Z)
)
into H

(
Homgr

A (XA, Z)
)

(24.9.24)

of degree 0, as graded modules over Z, as in Section 5.11 again. This homo-
morphism is uniquely determined by g, and corresponds to (2a) on p150 of [3].
This determines a homomorphism

from the cohomology of B into the cohomology of A,(24.9.25)

as left augmented rings, with coefficients in Z,

as in (1a) on p149 of [3].
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24.10 The Mapping Theorem

Let us continue with the same notation and hypotheses as in the previous sec-
tion. One may be interested in having the homomorphisms as in (24.9.19) and
(24.9.25) be isomorphisms. This is addressed in Theorem 3.1 on p150 of [3],
which is called the Mapping Theorem. Of course, this is equivalent to the ho-
momorphisms as in (24.9.18) and (24.9.24) being isomorphisms.

Suppose for the moment that V = B, considered as a right module over B.
Thus

V
⊗

A
XA = B

⊗
A
XA =(ϕ) XA,(24.10.1)

and XB satisfies the requirements of V
⊗
XB = B

⊗
B XB . Suppose also that

the homomorphism as in (24.9.18) is an isomorphism in this case, so that we
have an isomorphism

from H
(
B
⊗

A
XA

)
onto H(XB)(24.10.2)

of degree 0, as graded modules over Z. This determines an isomorphism

from H
(
B
⊗

A
XA

)
n
onto H(XB)n(24.10.3)

for each n ≥ 0.
Remember that H

(
B
⊗

AXA

)
n
is isomorphic to

the nth homology group of A, as a left augmented ring(24.10.4)

with coefficients in B, as a right module over A using ϕ,

for each n ≥ 0, as in Section 24.3.
The condition that we have an isomorphism as in (24.10.3) when n = 0

means that

the homomorphism g in (24.9.6) is an isomorphism.(24.10.5)

This is the same as (i) on p150 of [3].
Of course,

H(XB)n = {0}(24.10.6)

when n > 0, because XB is acyclic as a left complex over QB , by hypothesis, as
in Section 10.1. Thus the condition that we have an isomorphism as in (24.10.3)
when n > 0 means that

H
(
B
⊗

A
XA

)
n
= {0}(24.10.7)

when n > 0. This is the same as saying that

(24.10.4) is equal to {0}(24.10.8)

when n > 0, as in (ii) on p150 of [3].
Suppose now that (24.10.5) holds, and that (24.10.8) holds for every n > 0.

If XA is any projective resolution of QA, as a left module over A, then (24.10.8)
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implies that (24.10.7) holds for every n > 0. We can use g to consider B
⊗

AXA

as a left complex overQB , instead of B
⊗

AQA, as before. Our hypotheses imply
B
⊗

AXA is acyclic as a left complex over QB , as in Section 10.1. It follows
that

B
⊗

A
XA is a projective resolution of QB ,(24.10.9)

as a left module over B, because of (24.9.11), as in Theorem 3.1 on p150 of [3].
This permits us to take

XB = B
⊗

A
XA(24.10.10)

in this case. Under these conditions, the map G as in (24.9.13) is the identity
mapping on (24.10.10). This implies that the homomorphisms as in (24.9.18)
and (24.9.24) are isomorphisms, so that the homomorphisms as in (24.9.19) and
(24.9.25) are isomorphisms, as in Theorem 3.1 on p150 of [3].

24.11 Some interesting conditions

Let A be a left augmented ring, with multiplicative identity element eA, aug-
mentation module Q, augmentation module Q, augmentation homomorphism
ε, and augmentation ideal I, as in Section 24.1. Also let n be a positive integer,
and let x1, . . . , xn be n commuting elements of A. Suppose that

I is generated by x1, . . . , xn, as a left ideal in A.(24.11.1)

Put I0 = {0}, and for each l = 1, . . . , n, let

Il be the left ideal in A generated by x1, . . . , xl.(24.11.2)

Thus In = I, by (24.11.1). Consider the following condition:

if a ∈ A, 1 ≤ l ≤ n, and a xl ∈ Il−1, then a ∈ Il−1.(24.11.3)

This is the condition (i) in Theorem 4.2 on p150 of [3].
Let us mention a couple of classes of examples where this holds, as on p151

of [3]. Let A0 be a ring with a multiplicative identity element, and let x1, . . . , xn
be commuting indeterminates. The corresponding ring A0[x1, . . . , xn] of formal
polynomials in x1, . . . , xn with coefficients in A0, as in Section 4.3, may be
considered as a left augmented ring, where the augmentation homomorphism
sends an element of A0[x1, . . . , xn] to its constant term in A0. The augmentation
ideal consists of elements of A0[x1, . . . , xn] with constant term equal to 0, and it
is easy to see that this is generated by x1, . . . , xn, as a left ideal in A0[x1, . . . , xn].
One can check that (24.11.3) holds in this case.

Similarly, the ring A0[[x1, . . . , xn]] of formal power series in x1, . . . , xn, as in
Section 4.3, may be considered as a left augmented ring, where the augmenta-
tion homomorphism sends an element of A0[[x1, . . . , xn]] to its constant term.
As before, the augmentation ideal consists of elements of A0[[x1, . . . , xn]] with
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constant term equal to 0, and one can check that this is generated by x1, . . . , xn,
as a left ideal in A0[[x1, . . . , xn]]. One can verify that (24.11.3) holds in this case
too.

Let us return now to the same notation and hypotheses as at the beginning
of the section. Let T1, . . . , Tn be commuting indeterminates, so that the ring
Z[T1, . . . , Tn] of formal polynomials in T1, . . . , Tn with coefficients in Z may be
defined as in Section 4.3 again. As on p151 of [3],

A may be considered as a right module over Z[T1, . . . , Tn],(24.11.4)

where for each a ∈ A and l = 1, . . . , n,

a · Tl = a xl.(24.11.5)

Put J0 = {0}, and for each l = 1, . . . , n, let

Jl be the ideal in Z[T1, . . . , Tn] generated by T1, . . . , Tl.(24.11.6)

Observe that
Il = A · Jl(24.11.7)

for each l = 0, 1, . . . , n, as on p151 of [3].
Similarly, let V be any right module over Z[T1, . . . , Tn]. Note that

V · Jl(24.11.8)

is a submodule of V , as a module over Z[T1, . . . , Tn], for each l = 0, 1, . . . , n. Of
course, if 0 ≤ l1 ≤ l2 ≤ n, then

Jl1 ⊆ Jl2 .(24.11.9)

This implies that
V · Jl1 ⊆ V · Jl2 .(24.11.10)

Consider the following condition:

if v ∈ V, 1 ≤ l ≤ n, and v · Tl ∈ V · Jl−1, then v ∈ V · Jl−1.(24.11.11)

This is the same as the condition (i’) in Proposition 4.3 on p151 of [3]. If
V = A, considered as a right module over Z[T1, . . . , Tn], then this is the same
as (24.11.3).

If 1 ≤ l ≤ n, then the quotient modules V/(V · Jl−1) and (V · Jl)/(V · Jl−1)
are defined as modules over Z[T1, . . . , Tn]. The mapping

v 7→ v · Tl(24.11.12)

from V into V · Jl induces a homomorphism

from V/(V · Jl−1) into (V · Jl)/(V · Jl−1),(24.11.13)

as modules over Z[T1, . . . , Tn]. It is easy to see that this homomorphism is
surjective. The condition (24.11.11) says that this induced homomorphism is
injective, and thus an isomorphism, as mentioned at the top of p152 of [3].
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24.12 A related left complex

Let n be a positive integer, and let T1, . . . , Tn be n commuting indeterminates,
so that the ring

B = Z[T1, . . . , Tn](24.12.1)

of formal polynomials in T1, . . . , Tn with coefficients in Z may be defined as
in Section 4.3, as before. Also let Jl be the ideal in Z[T1, . . . , Tn] defined in
the previous section for each l = 0, 1, . . . , n, and let V be a right module over
Z[T1, . . . , Tn].

Let y1, . . . , yn be another collection of n indeterminates, and let

EB(y1, . . . , yn)(24.12.2)

be the corresponding exterior ring in y1, . . . , yn with coefficients in B, as in
Section 4.15. Similarly, we get a right module

EV (y1, . . . , yn)(24.12.3)

over EB(y1, . . . , yn), as before. More precisely, EB(y1, . . . , yn) may be consid-
ered as a graded ring, as in Section 9.14, and EV (y1, . . . , yn) may be considered
as a graded module over EB(y1, . . . , yn), as a graded ring, as in Section 9.15.
Note that this does not use a grading on B.

Let us take

X = EV (y1, . . . , yn),(24.12.4)

as a right module over EB(y1, . . . , yn), and thus a right module over B in par-
ticular. We may consider X as a graded module over B in the usual sense,
without a grading on B, with

Xj = (EV (y1, . . . , yn))j(24.12.5)

for each j ∈ Z, as on p151 of [3]. Remember that

Xj = X−j(24.12.6)

for each j ∈ Z, as in Section 5.9.
Let 1 ≤ r ≤ n be given, and let us define a homomorphism dr from Xr

into Xr−1, as modules over B, as follows. Let I = {j1, . . . , jr} be a subset of
{1, . . . , n} with r elements, where j1 < j2 < · · · < jr. Thus yI = yj1 ∧ · · · ∧ yjr ,
as in (4.15.2). If v ∈ V , then we put

dr(v yI) =

r∑
l=1

(−1)l+1 (v · Tjl) y(I\{jl}),(24.12.7)

as on p151 of [3]. Of course,

y(I\{jl}) = yj1 ∧ · · · ∧ ŷjl ∧ · · · ∧ yjr ,(24.12.8)



24.13. SOME MORE LEFT COMPLEXES 567

where ŷjl indicates that yjl should be omitted from the right side.
It is easy to see that this defines a homomorphism from Xr into Xr−1, as

modules over B, because B is commutative. If r ≤ 0 or r > n, then we take
dr = 0. One can check that

dr−1 ◦ dr = 0(24.12.9)

for every r ∈ Z, as on p151 of [3].
This makes X a complex, as a module over B, where the restriction of the

differentiation operator d on X to Xr is equal to dr for each r ∈ Z. Note that X
is negative as a graded module over B, because Xj = X−j = {0} when j > 0.

Remember that the quotient module V/(V · Jn) is defined as a module over
B, as in the previous section. We may consider this module as a complex in the
usual way, where the jth submodule is the same module when j = 0 and is {0}
otherwise, and where the differentiation operator is equal to 0.

In fact,

we may consider X as a left complex over V/(V · Jn),(24.12.10)

as on p151 of [3]. To do this, we should choose a map εX from X into V/(V ·Jn),
as complexes, as in Section 10.1. Of course, εX is determined by its restriction
εX,0 to X0 in this case, as before. We can identify X0 with V in an obvious way,
as a module over B. Using this identification, we take εX,0 to be the natural
quotient mapping from V onto V/(V · Jn), as in [3].

It is easy to see that
εX,0 ◦ d1 = 0,(24.12.11)

by construction, as in [3]. This implies that εX is a homomorphism from X into
V/(V · Jn), as modules with differentiation, as in Section 10.1.

If V satisfies the condition (24.11.11), then Proposition 3.4 on p151 of [3]
states that

X is acyclic as a left complex over V/(V · Jn),(24.12.12)

as in Section 10.1. To show this, we shall consider some more left complexes, as
in [3].

24.13 Some more left complexes

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If 1 ≤ l ≤ n, then

EB(y1, . . . , yl)(24.13.1)

can be identified with a subring of EB(y1, . . . , yn) in an obvious way. If l = 0,
then we interpret (24.13.1) as being B. Note that (24.13.1) is homogeneous as
a subgroup of EB(y1, . . . , yn), as a graded commutative group with respect to
addition, and that the grading induced on (24.13.1) by the one on EB(y1, . . . , yn)
is the same as the grading defined on (24.13.1) as in Section 9.14. In particular,
EV (y1, . . . , yn) may be considered as a graded right module over (24.13.1), as a
graded ring, as in Section 9.15.
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Similarly,
EV (y1, . . . , yl)(24.13.2)

may be considered as a submodule of EV (y1, . . . , yn), as a module over (24.13.1),
when 1 ≤ l ≤ n. If l = 0, then we interpret (24.13.2) as being V . As before,
(24.13.2) is homogeneous as a subgroup of EV (y1, . . . , yn), as a graded commu-
tative group with respect to addition, and the grading induced on (24.13.2) by
the one on EV (y1, . . . , yn) is the same as the grading defined on (24.13.2) as in
Section 9.15.

If 1 ≤ l ≤ n, then we take

X(l) = EV (y1, . . . , yl),(24.13.3)

as a right module over (24.13.1), and thus a right module over B in particular,
as on p152 of [3]. This is the same as (24.12.4) when l = n. As before, we may
consider X(l) as a graded module over B in the usual sense, without a grading
on B, with

X
(l)
j = (EV (y1, . . . , yl))j(24.13.4)

for each j ∈ Z. If l = 0, then we interpret (24.13.3) as being V , as in the
preceding paragraph, and we interpret (24.13.4) as being V when j = 0, and
{0} otherwise.

Note that X(l) may be considered as a homogeneous submodule of X for
each l, as in Section 5.9. Similarly, X(l−1) may be considered as a homogeneous
submodule of X(l) when l ≥ 1.

The differentiation operator d defined on X in the previous section maps
X(l) into itself for each l, so that X(l) may be considered as a submodule of X,
as a module with differentiation. It follows that X(l) is a complex with respect

to the restriction of d to X(l) for each l. The restriction of dr to X
(l)
r is equal

to 0 when r > l. In particular, the restriction of d to X(0) is equal to 0.
The quotient module V/(V · Jl) is defined as a module over B for each

l = 0, 1, . . . , n, as in Section 24.11. As usual, we may consider this module as a
complex, where the jth submodule is the same module when j = 0 and is {0}
otherwise, and with differentiation operator equal to 0. If l = 0, then this is the
same as X(0).

We would like to choose a map εX(l) from X(l) into V/(V ·Jl), as complexes,
for each l = 0, 1, . . . , n, as in Section 10.1. As before, εX(l) is determined by

its restriction εX(l),0 to X
(l)
0 in this case, and we can identify X

(l)
0 with V , as

a module over B. We take εX(l),0 to be the natural quotient mapping from V
onto V/(V · Jl), as on p152 of [3].

One can check that

the composition of the restriction of d1 to X
(l)
1(24.13.5)

with εX(l),0 is equal to 0.

This means that εX(l) is a homomorphism from X(l) into V/(V ·Jl), as modules
with differentiation, as in Section 10.1. Thus

we may consider X(l) as a left complex over V/(V · Jl),(24.13.6)
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as on p152 of [3].
Suppose that V satisfies (24.11.11). We would like to show that

X(l) is acyclic as a left complex over V/(V · Jl)(24.13.7)

for each l = 0, 1, . . . , n, as on p152 of [3]. This is the same as (24.12.12) when
l = n, because X = X(n). It is easy to see that (24.13.7) holds when l = 0,
because J0 = {0}, as in Section 24.11, and X(0) = V .

If 0 ≤ l ≤ n, then put

Y
(l)
j = X

(l)
j when j 6= 0(24.13.8)

= V · Jl when j = 0,

as on p152 of [3]. This defines Y (l) as a graded module over B, which is in fact
a homogeneous submodule of X(l), as in Section 5.9. More precisely, Y (l) is a
submodule of X(l), as a module with differentiation, because

d1(X
(l)
1 ) ⊆ V · Jl.(24.13.9)

In particular, Y (l) is a complex, with respect to the restriction of d to Y (l).
One can verify that (24.13.7) holds if and only if

H(Y (l)) = {0},(24.13.10)

as on p152 of [3]. This uses some remarks about acyclicity in Section 10.1, and

the fact that εX(l),0 maps X
(l)
0 onto V/(V · Jl) with kernel equal to V · Jl.

In order to show (24.13.7), we use induction on l, as in [3]. The base case
l = 0 has already been mentioned. Thus we suppose that l ≥ 1, and that the
analogue of (24.13.7) for l − 1 holds. This means that

H(Y (l−1)) = {0},(24.13.11)

as in the preceding paragraph.
Note that Y (l−1) is a homogeneous submodule of Y (l), as a graded module

over B. We also have that Y (l−1) is a submodule of Y (l), as a module with
differentiation. Thus the quotient Y (l)/Y (l−1) can be defined as a complex in a
natural way.

Using the obvious inclusion mapping from Y (l−1) into Y (l), and the natural
quotient mapping from Y (l) onto Y (l)/Y (l−1), we get a sequence of induced
mappings

H(Y (l−1)) −→ H(Y (l)) −→ H(Y (l)/Y (l−1)).(24.13.12)

This sequence is exact, as in some remarks near the beginning of Section 5.3. If
we can show that

H(Y (l)/Y (l−1)) = {0},(24.13.13)

then it will follow that (24.13.10) holds, because of (24.13.11), as on p152 of [3].
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Of course,

(Y (l)/Y (l−1))j = X
(l)
j /X

(l−1)
j when j 6= 0(24.13.14)

= (V · Jl)/(V · Jl−1) when j = 0,

by construction. Multiplication by yl on the right defines a homomorphism

from X
(l−1)
j−1 into X

(l)
j ,(24.13.15)

as modules over B, for each j. We can compose this with the natural quotient

mapping from X
(l)
j onto X

(l)
j /X

(l−1)
j to get a homomorphism

from X
(l−1)
j−1 into X

(l)
j /X

(l−1)
j ,(24.13.16)

as modules over B, for each j. One can check that

the homomorphism as in (24.13.16)(24.13.17)

is an isomorphism when j 6= 0.

Remember that we also have an isomorphism

from V/(V · Jl−1) onto (Y (l)/Y (l−1))0 = (V · Jl)/(V · Jl−1),(24.13.18)

as modules over B. This is the homomorphism as in (24.11.13), which is an
isomorphism because of the hypothesis (24.11.11). This homomorphism was
induced by the homomorphism from V into V · Jl defined by v 7→ v · Tl.

The acyclicity of X(l−1) as a left complex over V/(V · Jl−1) is equivalent to
the exactness of the sequence

0 −→ X
(l−1)
l−1

dl−1−→ X
(l−1)
l−2

dl−2−→ · · · d1−→ X
(l−1)
0

ε
X(l−1),0−→ V/(V · Jl−1) −→ 0,

(24.13.19)

as in Section 10.1. More precisely, this uses the fact that X
(l−1)
j = {0} when

j ≥ l, by construction. The condition (24.13.13) is equivalent to the exactness
of the sequence

0 −→ X
(l)
l /X

(l−1)
l −→ X

(l)
l−1/X

(l−1)
l−1 −→ · · ·(24.13.20)

−→ X
(l)
1 /X

(l−1)
1 −→ (V · Jl)/(V · Jl−1) −→ 0,

where the homomorphisms are given by differentiation on Y (l)/Y (l−1). This
uses the fact that (Y (l)/Y (l−1))j = {0} when j > l or j < 0.

We have just seen that we have isomomorphisms between the modules in
these two sequences. One can verify that these isomorphisms are compatible
with the homomorphisms in these two sequences, as on p152 of [3].

This means that the exactness of (24.13.20) follows from the exactness of
(24.13.19), as on p152 of [3]. Thus (24.13.13) follows from our induction hy-
pothesis. This implies that (24.13.10) holds, as before.
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This is the same as saying that (24.13.7) holds, as before. Thus (24.13.7)
holds for every l = 0, 1, . . . , n, as desired.

Remember that (24.12.12) is the same as (24.13.7) with l = n. This shows
that (24.12.12) holds when V satisfies (24.11.11), as mentioned in the previous
section.

24.14 Some nice projective resolutions

Let us now see how the results mentioned in the previous two sections can
be used to deal with augmented rings as in Section 24.11, as on p152 of [3].
Let A be a left augmented ring again, with multiplicative identity element eA,
augmentation module Q, augmentation homomorphism ε, and augmentation
ideal I. Also let n be a positive integer, let x1, . . . , xn be n commuting elements
of A, and suppose that I is generated by x1, . . . , xn, as a left ideal in A, as
before.

Let T1, . . . , Tn be n commuting indeterminates, and let us consider A as a
right module over the ring Z[T1, . . . , Tn] of formal polynomials in T1, . . . , Tn with
coefficients in Z, as before. Thus a · Tl = a xl for each a ∈ A and l = 1, . . . , n.
Remember that

I = A · Jn,(24.14.1)

where Jn is the ideal in Z[T1, . . . , Tn] generated by T1, . . . , Tn.
Let us take

V = A,(24.14.2)

as a right module over Z[T1, . . . , Tn]. Note that I is a submodule of V , as a
module over Z[T1, . . . , Tn]. This means that

V/I = V/(V · Jn)(24.14.3)

may be considered as a module over Z[T1, . . . , Tn]. However, the action of Tl on
(24.14.3) on the right is equal to 0 for each l = 1, . . . , n, by construction.

Let y1, . . . , yn be another collection of n indeterminates, as in Section 24.12.
Let us take

X = EV (y1, . . . , yn) = EA(y1, . . . , yn),(24.14.4)

as before. More precisely, this may be considered as a right module over B =
Z[T1, . . . , Tn], because V is a right module over B, as in Section 4.15. Similarly,
X may be considered as a left module over A, because A is a left module over
itself.

Put
Xj = (EV (y1, . . . , yn))j = (EA(y1, . . . , yn))j(24.14.5)

for each j ∈ Z, as in Section 24.12. This is a submodule of X, as both a right
module over B, and a left module over A. This defines a grading on X, as a
right module over B, and a left module over A.

We can define a homomorphism dr from Xr into Xr−1, as right modules
over B, for each r ∈ Z, as in Section 24.12. It is easy to see that dr is a
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homomorphism from Xr into Xr−1 as left modules over A as well. This means
that X is a complex, as a right module over B, and as a left module over A.

Remember that X is a left complex over V/(V · Jn), as right modules over
B, with the augmentation map εX defined in Section 24.12. More precisely,
the restriction εX,0 of εX to X0 corresponds exactly to the natural quotient
mapping from V onto V/(V · Jn). Of course,

Q = A/I = V/(V · Jn),(24.14.6)

as commutative groups with respect to addition, and this may be considered as
both a left module over A, and a right module over B. Using this, it is easy to
see that

we may consider X as a left complex over Q,(24.14.7)

as left modules over A.
If I ⊆ {1, . . . , n}, then let yI be as in (4.15.2). If 0 ≤ j ≤ n, then

(EA(y1, . . . , yn))j is freely generated as a left module over A by yI , where I
has exactly j elements. Of course, Xj = {0} when j < 0 or j > n. It follows
that Xj is projective as a left module over A for each j ∈ Z, so that X is
projective as a left complex of modules over A, as in Section 10.1.

Suppose now that (24.11.3) holds, which means that (24.11.11) holds in this
case. This implies that X is acyclic as a left complex over V/(V · Jn), as right
modules over B, as in (24.12.12). Using this, we get that

X is acyclic as a left complex over Q, as left modules over A.(24.14.8)

It follows that

X is a projective resolution of Q, as a left module over A,(24.14.9)

as in Section 10.2. This corresponds to some remarks on p152 of [3], and to part
of Theorem 4.2 on p150 of [3].

24.15 Using these projective resolutions

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let W be a right module over A, and let

W
⊗

A
X =W

⊗
A
EA(y1, . . . , yn)(24.15.1)

be a tensor product of W and X = EA(y1, . . . , yn) over A. This is a graded
module over Z, with(

W
⊗

A
X)j =W

⊗
A
Xj =W

⊗
A
(EA(y1, . . . , yn))j(24.15.2)

for each j ∈ Z. It is easy to see that

W
⊗

A
X = EW (y1, . . . , yn),(24.15.3)
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where EW (y1, . . . , yn) is as in Section 4.15. Similarly,(
W

⊗
A
X
)
j
= (EW (y1, . . . , yn))

j(24.15.4)

for each j, where (EW (y1, . . . , yn))
j is as in Section 9.15.

More precisely, W
⊗

AX may be considered as a complex over Z, as in Sec-
tion 7.5. Remember that the differentiation operator dW

⊗
A
X on W

⊗
AX is

obtained from the differentiation operator d = dX on X and the identity map-
ping on W in the usual way. If r ∈ Z, then the corresponding homomorphism

dW
⊗

A
X,r from

(
W

⊗
A
X
)
r
into

(
W

⊗
A
X
)
r−1

(24.15.5)

is obtained from the homomorphism dr from Xr into Xr−1 and the identity
mapping on W in the same way. In particular, this is equal to 0 when dr = 0,
which happens when r ≤ 0 and when r > n.

If 1 ≤ r ≤ n, then (24.15.5) can be described as follows. Let I = {j1, . . . , jr}
be a subset of {1, . . . , n} with r elements, where j1 < j2 < · · · < jr, so that
yI = yj1 ∧ · · · ∧ yjr , as before. If w ∈W , then

dW
⊗

A
X,r(w yI) =

r∑
l=1

(−1)l+1(w · xjl) y(I\{jl}),(24.15.6)

as in (2) on p152 of [3]. Remember that the homology of this complex may be
used to obtain the homology of A, as a left augmented ring, with coefficients in
W , as in Section 24.3.

This type of complex was first found by J. L. Koszul, in connection with
cohomology theory of Lie groups, as mentioned on p153 of [3].

Similarly, let Z be a left module over A, so that

Homgr
A (X,Z) = Homgr

A (EA(y1, . . . , yn), Z)(24.15.7)

may be defined as a graded module over Z as in Section 8.4. More precisely,(
Homgr

A (X,Z)
)j

= HomA(Xj , Z) = HomA((EA(y1, . . . , yn))j , Z)(24.15.8)

for each j ∈ Z. Of course, this reduces to {0} when j < 0, and when j > n.
If 0 ≤ j ≤ n, then the elements of (24.15.8) may be indentified with Z-valued
functions f(I) defined for subsets I of {1, . . . , n} such that the number |I| of
elements of I is equal to j.

In fact, (24.15.7) may be considered as a complex over Z, as in Section 8.4.
Let

δ = dHomgr
A

(X,Z)(24.15.9)

be the corresponding differentiation operator on (24.15.7), and let δj be its
restriction to (24.15.8) for each j. This is the mapping from (24.15.8) into(

Homgr
A (X,Z)

)j+1
= HomA(Xj+1, Z)(24.15.10)

= HomA((EA(y1, . . . , yn))j+1, Z)
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defined by composing dj+1 with a homomorphism from Xj into Z, as modules
over A, to get a homomorphism from Xj+1 into Z, as modules over A. Note
that δj = 0 when j < 0 or j ≥ n.

Suppose that 0 ≤ j < n, and that f is a Z-valued function on the set of
all subsets of {1, . . . , n} with exactly j elements, which is identified with an
element of (24.15.8), as before. Let δj(f) be the Z-valued function on the set
of all subsets of {1, . . . , n} with exactly j+1 elements that corresponds to δj of
the element of (24.15.8) corresponding to f . If I = {m1, . . . ,mj+1} is a subset
of {1, . . . , n} with j + 1 elements, where m1 < m2 < · · · < mj+1, then

(δj(f))(I) =

j+1∑
l=1

(−1)l+1 (xl · f(I \ {ml})).(24.15.11)

This corresponds to (2a) on p153 of [3]. The homology of this complex may be
used to obtain the cohomology of A, as a left augmented ring, with coefficients
in Z, as in Section 24.5.



Chapter 25

Some helpful facts

25.1 Projectivity and tensor products

Let k be a commutative ring with a multiplicative identity element, and let A,
B be associative algebras over k with multiplicative identity elements eA, eB ,
respectively. Also let V , W be modules over k, and suppose that

V is a right module over A, and W is a left module over A.(25.1.1)

Thus we can let V
⊗

AW be a tensor product of V and W over A, which is a
module over k.

Suppose for the moment that

W is a right module over B,(25.1.2)

where the actions of A and B on W commute with each other. Thus V
⊗

AW
may be considered as a right module over B too, as in Section 1.10. If

V is projective as a right module over A(25.1.3)

and
W is projective as a right module over B,(25.1.4)

then
V
⊗

A
W is projective as a right module over B,(25.1.5)

as in Proposition 5.3 on p28 of [3].
If V is free as a right module over A, then V

⊗
AW corresponds to a direct

sum of copies of W , as a right module over B. This means that V
⊗

AW is
projective as a right module over B, because W is projective.

If V is projective as a right module over A, then there is a free right module
over A that is isomorphic to the direct sum of V and another right module U
over A, as in Section 2.7. This implies that the direct sum of V

⊗
AW and a

tensor product U
⊗

AW of U and W over A is projective as a right module

575
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over B, as in the preceding paragraph. It follows that V
⊗

AW is projective as
a right module over B, as in Section 2.7.

Alternatively, let Y and Z be right modules over B, and let ψ be a homo-
morphism from Y onto Z, as modules over B. Consider the homomorphism

Ψ from HomB(W,Y ) into HomB(W,Z)(25.1.6)

defined by composing a homomorphism from W into Y , as modules over B,
with ψ to get a homomorphism from W into Z, as modules over B. Note that

Ψ maps HomB(W,Y ) onto HomB(W,Z),(25.1.7)

because W is projective as a module over B, by hypothesis. More precisely,
HomB(W,Y ) and HomB(W,Z) may be considered as right modules over A,
because W is a left module over A, and the actions of A and B on W commute,
as in Section 1.8. It is easy to see that Ψ is a homomorphism as in (25.1.6), as
right modules over A.

Using Ψ, we get a homomorphism

Ψ̂ from HomA

(
V,HomB(W,Y )

)
into HomA

(
V,HomB(W,Z)

)
,(25.1.8)

as modules over k. As before, Ψ̂ is defined by composing a homomorphism from
V into HomB(W,Y ), as modules over A, with Ψ to get a homomorphism from
V into HomB(W,Z), as modules over A. We also have that

Ψ̂ maps HomA

(
V,HomB(W,Y )

)
onto HomA

(
V,HomB(W,Z)

)
,(25.1.9)

because V is projective as a right module over A, by hypothesis.
Consider the homomorphism

Ψ̃ from HomB

((
V
⊗

A
W

)
, Y

)
into HomB

((
V
⊗

A
W

)
, Z

)
,(25.1.10)

as modules over k, defined by composing a homomorphism from V
⊗

AW into
Y , as modules over B, with ψ to get a homomorphism from V

⊗
AW into Z,

as modules over B.
There is a natural isomorphism

from HomB

((
V
⊗

A
W

)
, Z

)
onto HomA

(
V,HomB(W,Z)

)
,(25.1.11)

as modules over k, as in Section 1.13. Of course, there is an analogous isomor-
phism with Z replaced by Y . One can check that Ψ̃ corresponds to Ψ̂ with
respect to these isomorphisms. Thus the surjectivity of Ψ̃ follows from the
surjectivity of Ψ̂. This implies (25.1.5).

Suppose now that
V is a left module over B,(25.1.12)

where the actions of A and B on V commute with each other. This means that
V
⊗

AW may be considered as a left module over B as well, as in Section 1.10.
If

V is projective as a left module over B(25.1.13)
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and
W is projective as a left module over A,(25.1.14)

then
V
⊗

A
W is projective as a left module over B,(25.1.15)

as on p28 of [3].
One can start with the case where W is free as a left module over A, and

then reduce to that case using direct sums, as before. Alternatively, if Z is a
left module over B, then there is a natural isomorphism

from HomB

((
V
⊗

A
W

)
, Z

)
onto HomA

(
W,HomB(V, Z)

)
,(25.1.16)

as modules over k, as in Section 1.13 again. This can be used to obtain (25.1.15),
as before.

25.2 Injectivity of HomA(V, Z)

Let k be a commutative ring with a multiplicative identity element, and let A,
B be associative algebras over k with multiplicative identity elements eA, eB ,
respectively. Also let V , Z be modules over k, and suppose that

V and Z are both left or both right modules over A.(25.2.1)

This means that HomA(V, Z) is defined as a module over k.
Suppose too that

Z is a left or right module over B,(25.2.2)

where the actions of A and B on Z commute. This implies that HomA(V, Z)
may be considered as a left or right module over B, as appropriate, as well, as
in Section 1.8. If

V is projective as a module over A,(25.2.3)

and
Z is injective as a module over B,(25.2.4)

then
HomA(V, Z) is injective as a module over B,(25.2.5)

as in Exercise 5 on p32 of [3].
Suppose for the moment that V is free as a module over A, and thus isomor-

phic to a direct sum of copies of A. This implies that HomA(V, Z) is isomorphic
to a direct product of copies of HomA(A,Z), as in Section 1.7. This means that
HomA(V, Z) is isomorphic to a direct product of copies of Z, as modules over
B. It follows that (25.2.5) holds, because Z is injective as a module over B, as
in Section 2.8.

If (25.2.3) holds, then there is a left or right module U over A, as appropriate,
such that the direct sum of U and V is free as a module over A, as in Section
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2.7. In this case, HomA

(
U
⊕
V, Z

)
is injective as a module over B, as in the

preceding paragraph. Of course, HomA

(
U
⊕
V, Z

)
is isomorphic to the direct

sum of HomA(U,Z) and HomA(V, Z), as modules over B. It follows that (25.2.5)
holds, as in Section 2.8 again.

Alternatively, let W be a left or right module over B, as appropriate, and
let W0 be a submodule of W . There is an obvious homomorphism

from HomB

(
W,HomA(V, Z)

)
into HomB

(
W0,HomA(V, Z)

)
,(25.2.6)

as modules over k, which sends a homomorphism from W into HomA(V, Z)
to its restriction to W0. We would like to verify that this homomorphism is
surjective, under the conditions considered here.

Note that HomB(W,Z) is a module over k which may be considered as a
left or right module over A, as appropriate, as in Section 1.8 again. There is a
natural isomorphism

from HomA

(
V,HomB(W,Z)

)
onto HomB

(
W,HomA(V, Z)

)
,(25.2.7)

as modules over k, as in Section 1.14. Similarly, there is a natural isomorphism

from HomA

(
V,HomB(W0, Z)

)
onto HomB

(
W0,HomA(V, Z)

)
,(25.2.8)

as modules over k. Using these isomorphisms, the homomorphism as in (25.2.6)
corresponds to a homomorphism

from HomA

(
V,HomB(W,Z)

)
into HomA

(
V,HomB(W0, Z)

)
,(25.2.9)

as modules over k.
More precisely, there is an obvious homomorphism

from HomB(W,Z) into HomB(W0, Z),(25.2.10)

as modules over k or A, which sends a homomorphism from W into Z to its
restriction to W0. One can check that the homomorphism as in (25.2.9) sends
a homomorphism from V into HomB(W,Z) to its composition with the homo-
morphism as in (25.2.10).

The homomorphism as in (25.2.10) is surjective, because of (25.2.4). This
implies that the homomorphism as in (25.2.9) is surjective, because of (25.2.3).
This means that the homomorphism as in (25.2.6) is surjective, as desired.

25.3 Another injectivity property

Let k be a commutative ring with a multiplicative identity element, and let A,
B be associative algebras over k with multiplicative identity elements eA, eB ,
respectively. Also let V , Z be modules over k, and suppose that

V and Z are both left or both right modules over B,(25.3.1)
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so that HomB(V, Z) is defined as a module over k.
In this section, we ask that

V be a left or right module over A(25.3.2)

too, where the actions of A and B on V commute. This means that HomB(V, Z)
may be considered as a right or left module over A, respectively, as in Section
1.8. If

V is projective as a module over A(25.3.3)

and
Z is injective as a module over B,(25.3.4)

then
HomB(V, Z) is injective as a module over A,(25.3.5)

as in Proposition 1.4 on p107 of [3].
Suppose for the sake of simplicity that V is a right module over A, so that

HomB(V, Z) is a left module over A. Let W be a left module over A, and let
W0 be a submodule of W . There is an obvious homomorphism

from HomA

(
W,HomB(V, Z)

)
into HomA

(
W0,HomB(V, Z)

)
,(25.3.6)

as modules over k, which sends a homomorphism from W into HomB(V, Z),
as modules over A, to its restriction to W0. We would like to check that this
homomorphism is a surjection.

Let V
⊗

AW , V
⊗

AW0 be tensor products of V with W , W0, respectively,
over A. These modules over k may also be considered as left or right modules
over B, as appropriate, as in Section 1.10. There is a natural isomorphism

from HomA

(
W,HomB(V, Z)

)
onto HomB

((
V
⊗

A
W

)
, Z

)
,(25.3.7)

as modules over k, as in Section 1.13. Similarly, there is a natural isomorphism

from HomA

(
W0,HomB(V, Z)

)
onto HomB

((
V
⊗

A
W0

)
, Z

)
,(25.3.8)

as modules over k. Using these isomomorphisms, the homomorphism as in
(25.3.6) corresponds to a homomorphism

from HomB

((
V
⊗

A
W

)
, Z

)
into HomB

((
V
⊗

A
W0

)
, Z

)
,(25.3.9)

as modules over k.
There is a natural homomorphism

from V
⊗

A
W0 into V

⊗
A
W,(25.3.10)

as modules over B, corresponding to the identity mapping on V , and the obvious
inclusion mapping from W0 into W . One can verify that the homomorphism as
in (25.3.9) sends a homomorphism from V

⊗
AW to Z, as modules over B, to its

composition with the homomorphism as in (25.3.10). The homomorphism as in
(25.3.10) is injective, because of (25.3.3), as mentioned near the end of Section
2.7. This implies that the homomorphism as in (25.3.9) is surjective, because
of (25.3.4). It follows that the homomorphism as in (25.3.6) is surjective, as
desired.
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25.4 An associativity isomorphism

Let k be a commutative ring with a multiplicative identity element, and let A,
B, and C be associative algebras over k, with multiplicative identity elements
eA, eB , and eC , respectively. Also let A

⊗
k B and B

⊗
k C be tensor products

of A, B and B, C, respectively, over k. These may be considered as associative
algebras over k with multiplicative identity elements too, as in Section 4.1.

Let V , W , and Z be modules over k. Suppose that

V is a right module over A and B, where the actions(25.4.1)

of A and B on V commute with each other,

and that

W is a left module over A and a right module over C,(25.4.2)

where the actions of A and C on W commute with each other.

Let V
⊗

AW be a tensor product of V and W over A which is a module over
k. Remember that V

⊗
AW may be considered as a right module over each of

B and C, as in Section 1.10. It is easy to see that the actions of B and C on
V
⊗

AW commute with each other.
Similarly, suppose that

Z is a left module over B and C, where the actions(25.4.3)

of B and C on Z commute with each other.

Let W
⊗

C Z be a tensor product of W and Z over C, which is a module over
k. As before, W

⊗
C Z may be considered as a left module over A and B, where

the actions of A and B on W
⊗

C Z commute with each other.
Note that V may be considered as a right module over A

⊗
k B, and Z

may be considered as a left module over B
⊗

k C, as in Section 4.2. Similarly,
V
⊗

AW may be considered as a right module over B
⊗

k C, and W
⊗

C Z may
be considered as a left module over A

⊗
k B. Let(

V
⊗

A
W

)⊗
B
⊗

k
C
Z(25.4.4)

be a tensor product of V
⊗

AW and Z over B
⊗

k C, and let

V
⊗

A
⊗

k
B

(
W

⊗
C
Z
)

(25.4.5)

be a tensor product of V and W
⊗

C Z over A
⊗

k B.
Under these conditions, there is a unique homomorphism from (25.4.4) into

(25.4.5), as modules over k, which sends

(v ⊗A w)⊗B⊗
k
C z(25.4.6)
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to
v ⊗A⊗

k
B (w ⊗C z)(25.4.7)

for every v ∈ V , w ∈ W , and z ∈ Z, as in Proposition 2.1 on p165 of [3]. More
precisely, this homomorphism is an isomorphism, as in [3]. A simpler version of
this was discussed in Section 1.12.

In particular, this homomorphism can be obtained directly using the def-
inition of a tensor product, as before. One can start by fixing z ∈ Z, and
considering the mapping from V ×W into (25.4.5) that sends (v, w) ∈ V ×W to
(25.4.7). This leads to a unique homomorphism from V

⊗
AW into (25.4.5), as

modules over k, that sends v⊗Aw to (25.4.7) for every v ∈ V and w ∈W . This
may be considered as a mapping from

(
V
⊗

AW
)
×Z into (25.4.5), which is bi-

linear over k and has other nice properties. Using this, we get a homomorphism
from (25.4.4) into (25.4.5), as modules over k.

Similarly, there is a unique homomorphism from (25.4.5) into (25.4.4) that
sends (25.4.7) to (25.4.6) for every v ∈ V , w ∈ W , and z ∈ Z. This homo-
morphism is the inverse of the previous one, so that these homomorphisms are
isomorphisms.

25.5 Some more isomorphisms

Let k, A, B, and C be as in the previous section, as well as A
⊗

k B and B
⊗

k C.
Also let V , W , and Z be modules over k again, and suppose that (25.4.1) and
(25.4.2) hold. As before, we let V

⊗
AW be a tensor product of V and W over

A, which is a module over k that may be considered as a right module over
B and C, and where the actions of B and C on V

⊗
AW commute with each

other.
Suppose now that

Z is a right module over B and C, where the actions(25.5.1)

of B and C on Z commute with each other.

Thus HomC(W,Z) is defined as a module over k. This may be considered as a
right module over A and B in this case, as in Section 1.8. It is easy to see that
the actions of A and B on HomC(W,Z) commute with each other.

Remember that V may be considered as a right module over A
⊗

k B, and
that V

⊗
AW may be considered as a right module over B

⊗
k C, as in the

previous section. Similarly, HomC(W,Z) may be considered as a right module
over A

⊗
k B, and Z may be considered as a right module over B

⊗
k C, as in

Section 4.2. Thus
HomA

⊗
k
B

(
V,HomC(W,Z)

)
(25.5.2)

and
HomB

⊗
k
C

((
V
⊗

A
W

)
, Z

)
(25.5.3)

are defined as modules over k.
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Proposition 2.2 on p165 of [3] states that there is a unique homomorphism
from (25.5.2) into (25.5.3), as modules over k, with the following property. If
ϕ is an element of (25.5.2), then this homomorphism sends ϕ to an element of
(25.5.3) with

v ⊗A w 7→ (ϕ(v))(w)(25.5.4)

for every v ∈ V and w ∈W . More precisely, if v ∈ V , then ϕ(v) ∈ HomC(W,Z),
so that (ϕ(v))(w) ∈ Z for each w ∈W .

If ϕ is an element of (25.5.2), then

(v, w) 7→ (ϕ(v))(w)(25.5.5)

defines a mapping from V ×W into Z that is bilinear over k. This leads to a
unique homomorphism from V

⊗
AW into Z, as modules over k, that satisfies

(25.5.4) for every v ∈ V and w ∈ W . One can check that this homomorphism
is an element of (25.5.3). This defines a mapping from (25.5.2) into (25.5.3),
which is easily seen to be linear over k.

Conversely, any element of (25.5.3) can be used to get a mapping from V ×W
into Z that is bilinear over k and has other relevant properties. This can be used
to get an element of (25.5.2). This defines a homomorphism from (25.5.3) into
(25.5.2), as modules over k, which is the inverse of the previous homomorphism
from (25.5.2) into (25.5.3). Thus we get an isomorphism between these modules
over k, as in [3]. A simpler version of this was discussed in Section 1.13.

There is an analogous statement with actions on the left and right exchanged,
and using a tensor product W

⊗
A V , as mentioned on p165 of [3]. The corre-

sponding simplified version was discussed in Section 1.13.

25.6 Another projectivity property

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Suppose that

V is projective as a right module over A
⊗

k
B,(25.6.1)

and that
W is projective as a right module over C.(25.6.2)

Under these conditions,

V
⊗

A
W is projective as a right module over B

⊗
k
C,(25.6.3)

as in Proposition 2.3 on p165 of [3].
To see this, let Y and Z be modules over k that are right modules over

B
⊗

k C. Equivalently, this means that (25.5.1) holds, and similarly

Y is a right module over B and C, where the actions(25.6.4)

of B and C on Y commute with each other.
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Let ψ be a homomorphism from Y onto Z, as right modules over B
⊗

k C.
Consider the homomorphism

Ψ̃ from HomB
⊗

k
C

((
V
⊗

A
W

)
, Y

)
into HomB

⊗
k
C

((
V
⊗

A
W

)
, Z

)
,(25.6.5)

as modules over k, defined by composing a homomorphism from V
⊗

AW into
Y , as right modules over B

⊗
k C, with ψ to get a homomorphism from V

⊗
AW

into Z, as right modules over B
⊗

k C. We would like to show that Ψ̃ is surjec-
tive.

As in the previous section, V and HomC(W,Z) may be considered as right
modules over A

⊗
k B, and (25.5.2) is isomorphic to (25.5.3), as modules over k,

in a natural way. Similarly, HomC(W,Y ) may be considered as a right module
over A

⊗
k B, and

HomA
⊗

k
B

(
V,HomC(W,Y )

)
(25.6.6)

is isomorphic to

HomB
⊗

k
C

((
V
⊗

A
W

)
, Y

)
,(25.6.7)

as modules over k, in a natural way.
Consider the homomorphism

Ψ from HomC(W,Y ) into HomC(W,Z)(25.6.8)

that sends a homomorphism from W into Y , as modules over C, to its compo-
sition with ψ. The composition is a homomorphism from W into Z, as modules
over C, because ψ is a homomorphism from Y onto Z, as modules over C in
particular. Observe that

Ψ maps HomC(W,Y ) onto HomC(W,Z),(25.6.9)

because of (25.6.2). One can check that Ψ is a homomorphism as in (25.6.8), as
right modules over A

⊗
k B. Equivalently, Ψ is a homomorphism as in (25.6.8),

as modules over each of A and B.
This leads to a homomorphism

Ψ̂ from HomA
⊗

k
B

(
V,HomC(W,Y )

)
(25.6.10)

into HomA
⊗

k
B

(
V,HomC(W,Z)

)
,

as modules over k, which sends a homomorphism from V into HomC(W,Y ), as
right modules over A

⊗
k B, to its composition with Ψ. In fact,

Ψ̂ maps HomA
⊗

k
B

(
V,HomC(W,Y )

)
(25.6.11)

onto HomA
⊗

k
B

(
V,HomC(W,Z)

)
,

because of (25.6.1) and (25.6.9).

One can verify that Ψ̃ corresponds to Ψ̂ with respect to the isomorphisms
between (25.5.2) and (25.5.3), and between (25.6.6) and (25.6.7). Thus the

surjectivity of Ψ̃ follows from (25.6.11), as desired.
Of course, a simpler version of this was discussed in Section 25.1.
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25.7 A couple of corollaries

Let k be a commutative ring with a multiplicative identity element, and let A, B,
and C be associative algebras over k, with multiplicative identity elements eA,
eB , and eC , respectively. Also let A

⊗
k B and B

⊗
k C be tensor products of A,

B and B, C over k again, considered as associative algebras with multiplicative
identity elements, as in Section 4.1.

Suppose that V is a module over k that is a right module over A and B,
where the actions of A and B on V commute with each other. Equivalently,
this means that V is a right module over A

⊗
k B, as in Section 4.2. If

V is projective as a right module over A
⊗

k
B(25.7.1)

and

A is projective as a module over k,(25.7.2)

then

V is projective as a right module over B.(25.7.3)

This follows from the remarks in the previous section, with C = k, and W = A,
considered as a left module over A and a right module over C. In this case, B
satisfies the requirements of a tensor product of B and C over k, and V satisfies
the requirements of a tensor product of V and W over A. More precisely, it is
easy to see that multiplication on B is the same as multiplication on B

⊗
k C.

Similarly, the given actions of B and k on V are the same as the actions of B
and C on V

⊗
AW considered previously.

This corresponds to Corollary 2.4 on p166 of [3], which is stated in terms of
the opposite algebra Aop of A. Of course, Aop is the same as A as a module
over k, so that (25.7.2) is the same as for Aop.

Let C be any associative algebra over k with a multiplicative identity element
eC again. Suppose now that V , W are modules over k, with V a right module
over B, and W a right module over C. Let V

⊗
kW be a tensor product of V

and W over k, which may be considered as a right module over B and C, as in
Section 1.10. One can check that the actions of B and C on V

⊗
kW commute

with each other, as before.

If (25.7.3) holds, and

W is projective as a right module over C,(25.7.4)

then

V
⊗

k
W is projective as a right module over B

⊗
k
C.(25.7.5)

This follows from the remarks in the previous section, with A = k. More
precisely, B satisfies the requirements of A

⊗
k B, and multiplication on B is

the same as multiplication on A
⊗

k B. Thus (25.6.1) reduces to (25.7.3). This
corresponds to Corollary 2.5 on p166 of [3].
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25.8 Some alternate approaches

We would like to consider some alternative arguments for the projectivity con-
ditions discussed in the previous two sections, which are analogous to the first
argument in Section 25.1. Let k be a commutative ring with a multiplicative
identity element again, and let A, B, and C be associative algebras over k, with
multiplicative identity elements eA, eB , and eC , respectively. Also let A

⊗
k B

and B
⊗

k C be tensor products of of A, B and B, C, respectively, considered
as associative algebras over k with multiplicative identity elements, as before.

Suppose that
A is projective as a module over k.(25.8.1)

This implies that

A
⊗

k
B is projective as a right module over B,(25.8.2)

as in Section 25.1. Let V be a module over k that is a right module over A and
B, where the actions of A and B on V commute, so that V may be considered
as a right module over A

⊗
k B. If V is free as a right module over A

⊗
k B,

then
V is projective as a right module over B.(25.8.3)

Indeed, V corresponds to the direct sum of copies of A
⊗

k B, and thus a direct
sum of projective right modules over B.

Suppose now that

V is projective as a right module over A
⊗

k
B.(25.8.4)

This implies that there is a free right module over A
⊗

k B that is isomorphic to
the direct sum of V and another right module U over A

⊗
k B, as in Section 2.7.

This means that the direct sum of V and U is projective as a right module over
B, as in the preceding paragraph. It follows that (25.8.3) holds, as in Section
2.7 again.

Let V , W be modules over k, with V a right module over B, and W a right
module over C, and let V

⊗
kW be a tensor product of V and W over k. As

in the previous section, V
⊗

kW may be considered as a right module over B
and C, where the actions of B and C on V

⊗
kW commute, so that V

⊗
kW

may be considered as a right module over B
⊗

k C. If V and W are free as right
modules over B and C, respectively, then V

⊗
kW is free as a right module

over B
⊗

k C.
Suppose that (25.8.4) holds, and that

W is projective as a right module over C.(25.8.5)

Thus there are right modules U , Z over B, C, respectively, such that V
⊕
U

and W
⊕
Z are free as right modules over B and C, respectively, as in Section

2.7. This implies that a tensor product

(V
⊕

U)
⊗

k
(W

⊕
Z)(25.8.6)
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is free as a right module over B
⊗

k C, as in the preceding paragraph. This
tensor product is isomorphic to the direct sum of V

⊗
kW and tensor products

U
⊗

kW , V
⊗

k Z, and U
⊗

k Z, as a module over k, right modules over B and
C, and hence over B

⊗
k C. This means that

V
⊗

k
W is projective as a right module over B

⊗
k
C,(25.8.7)

as in Section 2.7.
Let W be a module over k that is a left module over A and a right module

over C, where the actions of A and C on W commute with each other. Let us
consider A

⊗
k B as a right module over A for the moment, and let(

A
⊗

k
B
)⊗

A
W(25.8.8)

be a tensor product of A
⊗

k B and W over A. This may be considered as a
right module over B and C, where the actions of B and C commute, and thus
as a right module over B

⊗
k C. We would like to check that

(25.8.8) is projective as a right module over B
⊗

k
C.(25.8.9)

Although this may be considered as a particular case of (25.6.3), we would like
to use this to give another argument for (25.6.3).

Remember that A
⊗

k B is isomorphic to B
⊗

k A in a natural way, as in
Section 1.4. Thus (25.8.8) is isomorphic to(

B
⊗

k
A
)⊗

A
W(25.8.10)

in a natural way. This is isomorphic to a tensor product of the form

B
⊗

k

(
A
⊗

A
W

)
(25.8.11)

in a natural way, as in Section 1.12. This reduces to a tensor product of the
form B

⊗
kW , because W satisfies the requirements of A

⊗
AW . This means

that (25.8.9) follows from (25.8.7), which is a bit simpler in this case.
Suppose now that V is a module over k that is a right module over A and

B, where the actions of A and B on V commute, so that V may be considered
as a right module over A

⊗
k B. If

V is projective as a right module over A
⊗

k
B,(25.8.12)

and W is as in the previous two paragraphs, then

V
⊗

A
W is projective as a right module over B

⊗
k
C,(25.8.13)

as in Section 25.6. Alternatively, if V is free as a right module over A
⊗

k B,
then V

⊗
AW corresponds to the direct sum of modules of the form (25.8.8),

and is thus projective as a right module over B
⊗

k C. Otherwise, there is a
free right module over A

⊗
k B that is isomorphic to the direct sum of V and

another right module U over A
⊗

k B, as in Section 2.7. This implies that the
direct sum of V

⊗
AW and a tensor product U

⊗
AW is projective as a right

module over B
⊗

k C, so that (25.8.13) holds, as in Section 2.7 again.
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25.9 Another result about injectivity

Let k be a commutative ring with a multiplicative identity element, and let A,
B, and C be associative algebras over k, with multiplicative identity elements
eA, eB , and eC , respectively. As before, we let A

⊗
k B and B

⊗
k C be ten-

sor products of A, B and B, C over k, respectively, considered as associative
algebras over k with multiplicative identity elements, as in Section 4.1.

Let W and Z be modules over k. Suppose that

W is a left module over A and a right module over C,(25.9.1)

where the actions of A and C on W commute with each other,

and that

Z is a right module over B and C, where the actions(25.9.2)

of B and C on Z commute with each other.

In particular, HomC(W,Z) is defined as a module over k, and may be considered
as a right module over A and B, as in Section 1.8. One can check that the actions
of A and B on HomC(W,Z) commute with each other, as before. Remember
that Z may be considered as a right module over B

⊗
k C, and that HomC(W,Z)

may be considered as a right module over A
⊗

k B, as in Section 4.2.
Suppose that

W is projective as a left module over A,(25.9.3)

and that
Z is injective as a right module over B

⊗
k
C.(25.9.4)

Under these conditions,

HomC(W,Z) is injective as a right module over A
⊗

k
B,(25.9.5)

as in Proposition 2.3a on p166 of [3]. Simpler versions of this were discussed in
Sections 25.2 and 25.3.

Let V be a module over k that is a right module over A
⊗

k B. Thus V may
be considered as a right module over A and B, where the actions of A and B
on V commute with each other. Let V

⊗
AW be a tensor product of V and

W over A, which is a module over k that may be considered as a right module
over B and C. As before, the actions of B and C on V

⊗
AW commute with

each other, so that V
⊗

AW may be considered as a right module over B
⊗

k C.
Remember that there is a natural isomorphism

from HomA
⊗

k
B

(
V,HomC(W,Z)

)
onto HomB

⊗
k
C

((
V
⊗

A
W

)
, Z

)
,(25.9.6)

as modules over k, as in Section 25.5.
Let V0 be a submodule of V as a right module over A

⊗
k B, and thus as a

module over A and B. Also let V0
⊗

AW be a tensor product of V0 and W over
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A, which is another module over k that may be considered as a right module
over B and C. The actions of B and C on V0

⊗
AW commute with each other,

so that V
⊗

AW may be considered as a right module over B
⊗

k C. There is
a natural isomorphism

from HomA
⊗

k
B

(
V0,HomC(W,Z)

)
onto HomB

⊗
k
C

((
V0

⊗
A
W

)
, Z

)
,(25.9.7)

as modules over k, as in Section 25.5 again.
There is a natural homomorphism

from HomA
⊗

k
B

(
V,HomC(W,Z)

)
(25.9.8)

into HomA
⊗

k
B

(
V0,HomC(W,Z)

)
,

as modules over k, that sends a homomorphism from V into HomC(W,Z), as
right modules over A

⊗
k B, to its restriction to V0. We would like to show that

this homomorphism is surjective.
Using the isomorphisms as in (25.9.6) and (25.9.7), the homomorphism as

in (25.9.8) corresponds to a homomorphism

from HomB
⊗

k
C

((
V
⊗

A
W

)
, Z

)
(25.9.9)

into HomB
⊗

k
C

((
V0

⊗
A
W

)
, Z

)
,

as modules over k. It suffices to show that this homomorphism is surjective.
There is a natural homomorphism

from V0
⊗

A
W into V

⊗
A
W,(25.9.10)

as modules over k, corresponding to the obvious inclusion mapping of V0 into V
and the identity mapping on W . It is easy to see that this is a homomorphism
as in (25.9.10), as modules over B and C. This homomorphism is injective,
because of (25.9.3), as discussed near the end of Section 2.7.

One can check that the homomorphism as in (25.9.9) sends a homomorphism
from V

⊗
AW into Z, as right modules over B

⊗
k C, to its composition with the

homomorphism as in (25.9.10). It follows that the homomorphism as in (25.9.9)
is surjective, because of (25.9.4), and the injectivity of the homomorphism as in
(25.9.10).

25.10 Two corollaries about injectivity

Let k, A, B, C, A
⊗

k B, and B
⊗

k C be as in the previous section. Also let Z
be a module over k that is a right module over B and C, where the actions of
B and C commute. Thus Z may be considered as a right module over B

⊗
k C,

as in Section 4.2. If (25.9.4) holds, and

C is projective as a module over k,(25.10.1)
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then
Z is injective as a module over B.(25.10.2)

This follows from the remarks in the previous section, with A = k, and W = C,
considered as a left module over A and a right module over C.

More precisely, this uses the fact that B satisfies the requirements of a ten-
sor product of A and B over k in this case, where multiplication on B is the
same as muldiplication on A

⊗
k B. This also uses the usual identification of

HomC(C,Z) with Z. Note that Z is the same as HomC(C,Z) as modules over k,
and right modules over B, with respect to this identification. This corresponds
to Corollary 2.4a on p166 of [3].

Let A be any associative algebra over k with a multiplicative identity element
eA again, and let W , Z be modules over k, with W a left module over A, and
Z a right module over V . If (25.9.3) and (25.10.2) hold, then

Homk(W,Z) is injective as a right module over A
⊗

k
B,(25.10.3)

as in Corollary 2.5a on p166 of [3]. This follows from the remarks in the previous
section, with C = k. In this case, B satisfies the requirements of a tensor product
of B and C over k, and multiplication on B is the same as multiplication on
B
⊗

k C. This means that (25.9.4) redcues to (25.10.2).

25.11 Augmentations and tensor products

Let k be a commutative ring with a multiplicative identity element, and let A,
C be associative algebras over k, with multiplicative identity elements eA, eC ,
respectively. Suppose that A has a left or right augmentation, with augmenta-
tion module QA and augmentation homomorphism εA. More precisely, we take
QA to be a module over k that is a left or right module over A, as appropriate,
and εA to be a homomorphism from A onto QA, as modules over k, and left or
right modules over A, as appropriate.

Let C
⊗

k A be a tensor product of C and A over k, considered as an asso-
ciative algebra over k, as in Section 4.1. Also let

QC
⊗

k
A = C

⊗
k
QA(25.11.1)

be a tensor product of C and QA over k, which may be considered initially as a
module over k. Using the action of A on QA, we get an action of A on C

⊗
kQA,

so that C
⊗

kQA may be considered as a module over A on the left or right,
as appropriate, as in Section 1.10. Similarly, C

⊗
kQA may be considered as a

module over C on the left and right, using the actions of C on itself on the left
and right. Note that these actions of C and A on C

⊗
kQA commute with each

other.
Using εA and the identity mapping on C, we get a homomorphism

εC
⊗

k
A from C

⊗
k
A onto C

⊗
k
QA,(25.11.2)
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as modules over k. This may be considered as a homomorphism as in (25.11.2),
as left and right modules over C, and left or right modules over A, as appro-
priate. We may consider (25.11.1) as a left or right module over C

⊗
k A, as

appropriate, as in Section 4.2. It is easy to see that (25.11.2) is a homomorphism
between left or right modules over C

⊗
k A, as appropriate, where C

⊗
k A is

considered as a left and right module over itself in the usual way. Thus

(25.11.1) and (25.11.2) define a left or right(25.11.3)

augmentation on C
⊗

k
A, as appropriate,

as on p163 of [3].
Observe that

ϕ(a) = eC ⊗ a(25.11.4)

defines a homomorphism ϕ from A into C
⊗

k A, as algebras over k. Similarly,

ψ(x) = eC ⊗ x(25.11.5)

defines a homomorphism from QA into (25.11.1), as modules over k, and left or
right modules over A, as appropriate. It is easy to see that

εC
⊗

k
A ◦ ϕ = ψ ◦ εA,(25.11.6)

as on p163f of [3]. In particular, this implies that

ϕ(ker εA) ⊆ ker εC
⊗

k
A.(25.11.7)

This means that ϕ is a homomorphism from A into C
⊗

k A as augmented rings,
as in Section 24.9.

Remember that C
⊗

k A may be considered as a left and right module over
A, using ϕ, as in Section 2.9. In this case, the actions of A on C

⊗
k A on the left

and right using ϕ are the same as the usual actions obtained from the actions
of A on itself on the left and right. Similarly, (25.11.1) may be considered as a
left or right module over A, as appropriate, using ϕ and the left or right action
of C

⊗
k A, as appropriate. This action of A is the same as the one defined

directly, as before.
Suppose that QA is a left module over A, and let

(ϕ)QA =
(
C
⊗

k
A
)⊗

A
QA(25.11.8)

be a tensor product of C
⊗

k A and QA, as modules over A. This may be
considered as a left module over C

⊗
k A, which is the covariant ϕ-extension of

QA, as in Section 2.9. There is a natural isomorphism between (25.11.8) and

C
⊗

k

(
A
⊗

A
QA

)
,(25.11.9)

as in Section 1.12. This reduces to (25.11.1), because QA satisfies the require-
ments of A

⊗
AQA. This corresponds to the condition (i) on p164 of [3].
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Similarly, let XA be any left module over A, and let

(ϕ)XA =
(
C
⊗

k
A
)⊗

A
XA(25.11.10)

be a tensor product of C
⊗

k A and XA, as modules over A. This may be
considered as a left module over C

⊗
k A, which is the covariant ϕ-extension of

XA. There is a natural isomorphism between this and

C
⊗

k

(
A
⊗

A
XA

)
,(25.11.11)

as before. This reduces to C
⊗

kXA, because XA satisfies the requirements of
A
⊗

AXA. Of course, there are analogous statements for right augmentations.

25.12 Homomorphisms induced by ϕ

Let us continue with the same notations and hypotheses as in the previous
section, including that QA be a left module over A. Let V be a module over k
that is a right module over C

⊗
k A. Equivalently, this means that V is a right

module over A and C, where the actions of A and C on V commute with each
other. This action of A on V is the same as the one obtained from the action
of C

⊗
k A on V using ϕ, as in Section 2.9. Using ϕ, we get a homomorphism

from the homology of A into the homology of C
⊗

k
A,(25.12.1)

as left augmented rings, with coefficients in V,

as in Section 24.9, and on p164 of [3].
Similarly, let Z be a module over k that is a left module over C

⊗
k A. This

means that Z is a left module over A and C, where the actions of A and C on
Z commute with each other, as usual. The action of A on Z is the same as the
one obtained from the action of C

⊗
k A on Z using ϕ, as before. Using ϕ, we

get a homomorphism

from the cohomology of C
⊗

k
A into the cohomology of A,(25.12.2)

as left augmented rings, with coefficients in Z,

as in Section 24.9 again. This is mentioned on p164 of [3] too.
One may be interested in having the homomorphisms as in (25.12.1) and

(25.12.2) be isomorphisms, as in Proposition 1.1 on p164 of [3]. This holds under
two additional conditions, as in Section 24.10. These conditions are (24.10.5)
and (24.10.8), in the earlier notation, which correspond to (i) and (ii) on p164
of [3]. Note that the augmented ring B in Section 24.10 corresponds to C

⊗
k A

here. The first condition holds automatically here, as in [3], because of the
isomorphism between (25.11.8) and (25.11.1) discussed in the previous section.

If n is a nonnegative integer, then consider

the nth homology group of A, as a left augmented ring(25.12.3)

with coefficients in C
⊗

k
A, as a right module over A,
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as in Section 24.3. The second condition (24.10.8) mentioned in the preceding
paragraph is that

(25.12.3) is equal to {0}(25.12.4)

when n > 0.
Let XA be a projective resolution of QA, as a left module over A, as in

Section 10.2. A tensor product(
C
⊗

k
A
)⊗

A
XA(25.12.5)

of C
⊗

k A, as a right module over A, and XA over A, may be considered as a
complex over k, as in Section 7.5. Remember that (25.12.3) is given by

H
((
C
⊗

k
A
)⊗

A
XA

)
n

(25.12.6)

for each n ≥ 0, as in Section 24.3. Thus (25.12.4) is the same as saying that

(25.12.6) is equal to {0}(25.12.7)

when n > 0.
As in the previous section, (25.12.5) is isomorphic to a tensor product

C
⊗

kXA, as a module over k. We may consider C
⊗

kXA as a complex over
k, as before, and the isomorphism just mentioned is in fact an isomorphism
between complexes. Thus (25.12.6) is isomorphic to

H
(
C
⊗

k
XA

)
n

(25.12.8)

for each n ≥ 0. This means that (25.12.4) and (25.12.7) are the same as saying
that

(25.12.8) is equal to {0}(25.12.9)

when n > 0.
If (25.12.9) holds for every n > 0, then the homomorphisms as in (25.12.1)

and (25.12.2) are isomorphisms, as before. In this case, (25.12.5) is a projective
resolution of (25.11.1), as a left module over C

⊗
k A, as in Section 24.10. This

means that

C
⊗

k
XA is a projective resolution of (25.11.1),(25.12.10)

as a left module over C
⊗

k A. More precisely, this uses the fact that (25.12.5)
is isomorphic to C

⊗
kXA as left modules over A and C, and thus over C

⊗
k A.

This corresponds to another part of Proposition 1.1 on p164 of [3].
Suppose now that

A is projective as a module over k.(25.12.11)

This implies that projective modules over A are projective as modules over k,
as in Section 2.12. Alternatively, a module over A may be identified with its
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tensor product with A, over A. This permits one to get the projectivity over k
from projectivity of tensor products, as in Section 25.1.

If (25.12.11) holds, then it follows that

XA is a projective resolution of QA, as a module over k,(25.12.12)

as mentioned on p164 of [3]. This implies that (25.12.8) does not depend on the
chioce of XA, up to isomorphism, as in Section 10.12. In particular, this means
that the condition (25.12.9) does not depend on the choice of XA.

More precisely, let YA be any projective resolution of QA, as a module over
k. A tensor product C

⊗
k YA of C and YA over k may be considered as a

complex over k, as before, so that

H
(
C
⊗

k
YA

)
n

(25.12.13)

is defined for each n. If (25.12.11) holds, and thus (25.12.12) holds, then

(25.12.8) is isomorphic to (25.12.13)(25.12.14)

for each n, as in Section 10.12. This means that (25.12.9) is the same as saying
that

(25.12.13) is equal to {0}(25.12.15)

when n > 0.
Suppose now that

QA is projective as a module over k.(25.12.16)

This permits us to take (YA)0 = QA, (YA)j = {0} when j 6= 0, as in Section
10.2. This means that(

C
⊗

k
YA

)
0
= C

⊗
k
QA and

(
C
⊗

k
YA

)
j
= {0} when j 6= 0.(25.12.17)

In particular, (25.12.15) holds for every n > 0 under these conditions.

25.13 Some remarks about matrices

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let n be a positive integer, and let An be the space of n-tuples of elements of
A. This may be considered as a module over k with respect to coordinatewise
addition and scalar multiplication, and as a left and right module over A, where
A act coordinatewise on the left and on the right.

Similarly, let Mn(A) be the space of n× n matrices with entries in A. This
may be considered as a module over k, with respect to entrywise addition and
scalar multiplication, and as an associative algebra over k, with respect to ma-
trix multiplication. The multiplicative identity element in Mn(A) is the usual
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identity matrix In, whose entries are equal to eA along the diagonal, and are 0
otherwise.

Remember that the algebra of homomorphisms from An into itself, as a right
module over A, can be identified with Mn(A) in a standard way, as in Section
4.7. We may consider An as a left module over Mn(A), using this action of
Mn(A) on A

n.
It is easy to see that

An is projective, as a left module over Mn(A).(25.13.1)

Indeed, Mn(A) is projective as a left module over itself. One can check that
Mn(A) is isomorphic to the direct sum of n copies of An, as a left module over
Mn(A). This implies (25.13.1), as in Section 2.7.

25.14 Semigroups and tensor products

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Also
let Σ be a semigroup, with the semigroup operation expressed multiplicatively,
and with an identity element eΣ. Thus we get semigroup algebras k(Σ) and
A(Σ) of Σ with coefficients in k and A, respectively, as in Section 4.9.

There is an obvious mapping

from A× k(Σ) into A(Σ),(25.14.1)

defined by multiplying an element of A by an element of k(Σ) to get an element
of A(Σ), using scalar multiplication on A. This mapping is bilinear over k, and
it is easy to see that A(Σ) satisfies the requirements of a tensor product

A
⊗

k
k(Σ)(25.14.2)

of A and k(Σ) over k, as a module over k, with respect to this mapping. One
can check that multiplication on (25.14.2), as in Section 4.1, corresponds to
multiplication in A(Σ). This corresponds to a remark on p188 of [3].

Now let Σ1, Σ2 be semigroups, with the semigroup operations expressed
multiplicative, and with identity elements e1 = eΣ1 , e2 = eΣ2 , respectively. The
product

Σ1 × Σ2(25.14.3)

of Σ1 and Σ2 is a semigroup as well, where the semigroup operation is defined
coordinatewise, and with identity element (e1, e2). Consider the semigroup al-
gebras k(Σ1), k(Σ2), and k(Σ1 × Σ2) of these semigroups, with coefficients in
k.

There is an obvious mapping

from k(Σ1)× k(Σ2) into k(Σ1 × Σ2),(25.14.4)
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which is bilinear over k, and is basically the identity mapping on (25.14.3). One
can check that k(Σ1 × Σ2) satisfies the requirements of a tensor product

k(Σ1)
⊗

k
k(Σ2)(25.14.5)

of k(Σ1) and k(Σ2) over k, as a module over k, with respect to this mapping.
More precisely, one can verify that multiplication on (25.14.5), as in Section 4.1,
corresponds to multiplication in k(Σ1 × Σ2).

Let V be a module over k. Suppose that V is a left module over Σ1 and
Σ2, as in Section 4.8, where the actions of Σ1 and Σ2 commute with each other.
Under these conditions, the actions of Σ1 and Σ2 on V can be combined to get
an action of (25.14.3) on V on the left. Conversely, if V is a left module over
(25.14.3), then V may be considered as a left module over Σ1 and Σ2, where
the actions of Σ1 and Σ2 on V commute with each other. Of course, this uses
the obvious embeddings of Σ1 and Σ2 into (25.14.3). Similarly, if V is a right
module over Σ1 and Σ2, where the actions of Σ1 and Σ2 commute with each
other, then V may be considered as a right module over (25.14.3). Conversely, if
V is a right module over (25.14.3), then V may be considered as a right module
over Σ1 and Σ2, where the actions of Σ1 and Σ2 commute with each other.



Chapter 26

A family of augmentations

26.1 The enveloping algebra

Let k be a commutative ring with a multiplicative identity element, and let
A be an associative algebra over k with a multiplicative identity element eA.
Remember that the corresponding opposite algebra Aop is the same as A as a
module over k, but with multiplication in the opposite order, as in Section 1.11.
If x ∈ A, then we may use xop to indicate that x is being considered as an
element of Aop, as before.

Let
Aen = A

⊗
k
Aop(26.1.1)

be a tensor product of A and Aop, as modules over k. We can define multipli-
cation on Aen, in such a way that

(a1 ⊗ aop2 ) (b1 ⊗ bop2 ) = (a1 b1)⊗ (aop2 bop2 ) = (a1 b1)⊗ ((b2 a2)
op)(26.1.2)

for every a1, b1 ∈ A and aop2 , b
op
2 ∈ Aop, as in Section 4.1. This makes Aen an

associative algebra, with multilicative identity element eA⊗eopA , as before. This
is called the enveloping algebra of A, as on p167 of [3].

Let us say that a module V over k is a two-sided module over A if V is both
a left and right module over A, and the actions of A on V on the left and right
commute with each other. This means that

a1 · (v · a2) = (a1 · v) · a2(26.1.3)

for every a1, a2 ∈ A and v ∈ V . Using the action of A on V on the right, we
may consider V as a left module over Aop, as in Section 1.11. We may also
consider V as a left module over Aen, with

(a1 ⊗ aop2 ) · v = a1 · (v · a2) = (a1 · v) · a2(26.1.4)

for every a1, a2 ∈ A and v ∈ V , as in Section 4.2. This corresponds to a remark
on p167 of [3].

596
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Similarly, we may consider V as a right module over Aop, using the action
of A on V on the left. We may consider V as a right module over Aen too, with

v · (a1 ⊗ aop2 ) = a2 · (v · a1) = (a2 · v) · a1(26.1.5)

for every a1, a2 ∈ A and v ∈ V , as in Section 4.2 again. This corresponds to
another remark on p167f of [3].

In particular, A may be considered as a two-sided module over itself. Thus
we may consider A as a left module over Aen, with

(a1 ⊗ aop2 ) · a = a1 a a2(26.1.6)

for every a1, a2, a ∈ A, as on p168 of [3].
Note that (a1, a

op
2 ) 7→ a1 a2 is bilinear over k, as a map from A × Aop into

A. This implies that there is a unique homomorphism

ρ from Aen into A,(26.1.7)

as modules over k, such that

ρ(a1 ⊗ aop2 ) = a1 a2(26.1.8)

for every a1, a2 ∈ A. Equivalently,

ρ(x) = x · eA(26.1.9)

for every x ∈ Aen, as on p168 of [3].
More precisely, ρ is a homomorphism from Aen into A, as left modules over

Aen. It is easy to see that

ρ(Aen) = A.(26.1.10)

This means that

Aen is a left augmented ring,(26.1.11)

as in Section 24.1, with augmentation module A, as a left module over Aen, and
augmentation homomorphism ρ, as on p168 of [3].

26.2 The augmentation ideal J

Let us continue with the same notation and hypotheses as in the previous sec-
tion, and let

J = ker ρ(26.2.1)

be the augmentation ideal of Aen, as an augmented ring, as on p168 of [3]. This
is a left ideal in Aen, as an associative algebra over k.

If a ∈ A, then

ρ(a⊗ eopA − eA ⊗ aop) = a eA − eA a = 0,(26.2.2)
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so that

a⊗ eopA − eA ⊗ aop ∈ J.(26.2.3)

Because J is a left module over Aen, J may be considered as a two-sided module
over A. Proposition 3.1 on p168 of [3] states that

J is generated by elements as in (26.2.3), with a ∈ A,(26.2.4)

as a left module over A.

To see this, let a1, . . . , an and b1, . . . , bn be elements of A, with

n∑
l=1

al ⊗ bopl ∈ J.(26.2.5)

This means that

0 = ρ
( n∑
l=1

al ⊗ bopl

)
=

n∑
l=1

al bl.(26.2.6)

Using this, we get that

n∑
l=1

al ⊗ bopl =

n∑
l=1

(al ⊗ eopA ) (eA ⊗ bopl )(26.2.7)

=

n∑
l=1

(al ⊗ eopA ) (eA ⊗ bopl − bl ⊗ eopA ).

This shows that
∑n
l=1 al ⊗ bopl is in the submodule of J , as a left module over

A, generated by elements as in (26.2.3), with a ∈ A.

If a ∈ A, then put

j(a) = a⊗ eopA − eA ⊗ aop.(26.2.8)

This defines j as a homomorphism from A into J , as modules over k. If a, b ∈ A,
then

j(a b) = (a b)⊗ eopA − eA ⊗ (a b)op = (a b)⊗ eopA − eA ⊗ bop aop

= (a⊗ eopA ) (b⊗ eopA )− (ea ⊗ bop) (eA ⊗ aop)(26.2.9)

= (a⊗ eopA ) j(b) + (eA ⊗ bop) j(a).

Equivalently, this means that

j(a b) = a · j(b) + j(a) · b,(26.2.10)

when J is considered as a two-sided module over A, as on p168 of [3].
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26.3 Crossed homomorphisms

Let us continue with the same notation and hypotheses as in the previous two
sections, and let V be a module over k that is a two-sided module over A. A
homomorphism f from A into V , as modules over k, is said to be a crossed
homomorphism or derivation if

f(a b) = a · f(b) + f(a) · b(26.3.1)

for every a, b ∈ A, as on p168 of [3]. This implies that

f(eA) = 0,(26.3.2)

as in [3]. Note that the set of all crossed homomorphisms from A into V is a
submodule of the space Homk(A, V ) of all homomorphisms from A into V , as
modules over k.

Let U be another module over k that is a two-sided module over A. A
homomorphism h from U into V , as modules over k, is considered to be a
homomorphism from U into V as two-sided modules over A, if h is a homomor-
phism from U into V , as both left and right modules over A. This is the same
as saying that h is a homomorphism from U into V , as left modules over Aen.
The space of these homomorphisms may be denoted HomAen(U, V ), as usual.

If g is a crossed homomorphism from A into U , and h is a homomorphism
from U into V , as modules over k and two-sided modules over A, then it is easy
to see that

h ◦ g is a crossed homomorphism from A into V.(26.3.3)

Remember that J may be considered as a two-sided module over A, as in
the previous section. The mapping j from A into J defined in (26.2.8) is a
crossed homomorphism, as in (26.2.10). If h is a homomorphism from J into
V , as modules over k and two-sided modules over A, then h ◦ j is a crossed
homomorphism from A into V . This defines a homomorphism

from HomAen(J, V ) into the space(26.3.4)

of crossed homomorphisms from A into V,

as modules over k.

Proposition 3.2 on p168 of [3] states that this homomorphism is an isomor-
phism. The injectivity of this homomorphism can be obtained from (26.2.4).

Let f be a crossed homomorphism from A into V . We would like to find a
homomorphism h from J into V , as modules over k and two-sided modules over
A, such that

f = h ◦ j.(26.3.5)

Observe that

(a, bop) 7→ −a · f(b)(26.3.6)
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defines a mapping from A× Aop into V that is bilinear over k. This leads to a
unique homomorphism

from Aen = A
⊗

k
Aop into V,(26.3.7)

as modules over k, such that

a⊗ bop 7→ −a · f(b)(26.3.8)

for every a, b ∈ A. Let h be the restriction of the homomorphism as in (26.3.7)
to J , which is a homomorphism from J into V , as modules over k. If a ∈ A,
then

h(j(a)) = h(a⊗ eopA − eA ⊗ aop) = −a · f(eA) + eA · f(a) = f(a),(26.3.9)

because of (26.3.2). This definition of h was motivated by (26.2.7), as mentioned
on p168 of [3].

It is easy to see that the homomorphism as in (26.3.7) is a homomorphism

from Aen into V, as left modules over A.(26.3.10)

In particular, h is a homomorphism from J into V , as left modules over A.
We would like to show that h is also a homomorphism from J into V , as

right modules over A. Let x ∈ Aen be given, so that x can be expressed as

x =

n∑
l=1

al ⊗ bopl ,(26.3.11)

where a1, . . . , an and b1, . . . , bn are elements of A. If c ∈ A, then

x · c = (eA ⊗ cop)x = (eA ⊗ cop)

n∑
l=1

al ⊗ bopl

=

n∑
l=1

al ⊗ (cop bopl ) =

n∑
l=1

al ⊗ (bl c)
op.(26.3.12)

Thus

h(x · c) = h((eA ⊗ cop)x) = −
n∑
l=1

al · f(bl c)(26.3.13)

= −
n∑
l=1

al · (bl · f(c))−
n∑
l=1

al · (f(bl) · c)

= −
n∑
l=1

(al bl) · f(c)−
n∑
l=1

(al · f(bl)) · c

= −
( n∑
l=1

al bl

)
· f(c) + h(x) · c.
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If x ∈ J , then

0 = ρ(x) =

n∑
l=1

al bl,(26.3.14)

and we get that
h(x · c) = h(x) · c,(26.3.15)

as desired.

26.4 Principal crossed homomorphisms

Let us continue with the same notation and hypotheses as in the previous three
sections. If v ∈ V , then

x 7→ x · v(26.4.1)

defines a homomorphism from Aen into V , as modules over k, and left modules
over Aen. This is the unique homomorphism from Aen into V , as modules over
k, such that

a⊗ bop 7→ (a⊗ bop) · v = a · (v · b)(26.4.2)

for every a, b ∈ A. Let hv be the restriction of this homomorphism to J , which
is a homomorphism from J into V , as modules over k, and left modules over
Aen. Note that

v 7→ hv(26.4.3)

is linear over k, as a map from V into the space HomAen(J, V ) of homomorphisms
from Aen into V , as left modules over Aen.

As in the previous section,

fv = hv ◦ j(26.4.4)

is a crossed homomorphism from A into V . If a ∈ A, then

fv(a) = hv(j(a)) = hv(a⊗ eopA − eA ⊗ aop)(26.4.5)

= a · (v · eA)− eA · (v · a) = a · v − v · a.

A crossed homomorphism of this form is said to be principal, or an inner deriva-
tion, as on p169 of [3]. Of course,

v 7→ fv(26.4.6)

defines a homomorphism from V into the space of crossed homomorphisms from
A into V , as modules over k. This homomorphism maps V onto the set of
principal crossed homomorphisms from A into V , which is a submodule of the
space of crossed homomorphisms from A into V , as a module over k.

Remember that eA⊗eopA is the multiplicative identity element of Aen. Every
homomorphism from Aen into V , as left modules over Aen, is of the form (26.4.1)
for a unique v ∈ V , which is the image of eA⊗ eopA under the homomorphism. It
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follows that a crossed homomorphism f from A into V is principal exactly when
it can be expressed as h ◦ j, where h is the restriction to J of a homomorphism
from Aen into V , as left modules over Aen.

The space HomAen(Aen, V ) of all homomorphisms from Aen into V , as left
modules over Aen, is isomorphic to V , as modules over k, in a natural way, as
in the preceding paragraph. There is a natural homomorphism

from HomAen(Aen, V ) into HomAen(J, V ),(26.4.7)

as modules over k, which sends a homomorphism from Aen into V , as left
modules over Aen, to its restriction to J . Remember that

h 7→ h ◦ j(26.4.8)

defines an isomorphism from HomAen(J, V ) onto the space of crossed homomor-
phisms from A into V , as modules over k, as in the previous section. Using
this isomorphism, the space of principal crossed homomorphisms from A into
V corresponds to the image of HomAen(Aen, V ) under the homomorphism as in
(26.4.7), as on p169 of [3].

26.5 Homology and cohomology of A

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k, with a multiplicative identity element eA. Using
A, we get the enveloping algebra Aen = A

⊗
k A

op of A, as in Section 26.1. Let
ρ be the homomorphism from Aen onto A, as left modules over Aen, defined in
Section 26.1. This makes Aen a left augmented ring, with augmentation ideal
J = ker ρ, as before.

Let V be a two-sided module over A. Remember that we may consider V as
a left or right module over Aen, as in Section 26.1.

Let us consider V as a right module over Aen for the moment. If n is a
nonnegative integer, then the nth homology group

Hn(A, V )(26.5.1)

of A with coefficients in V may be defined as in Section 24.3, with respect to
Aen as a left augmented ring. More precisely, this is a module over k for each
n.

Let us now consider V as a left module over Aen. If n is a nonnegative
integer, then the nth cohomology group

Hn(A, V )(26.5.2)

of A with coefficients in V may be defined as in Section 24.5, with respect to
Aen as a left augmented ring. This is also a module over k for each n.

This follows the definitions of homology and cohomology of associative al-
gebras on p169 of [3]. If k is a field, then these cohomology groups agree with
those of Hochschild, as in [3].
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If we consider V as a right module over Aen, then

H0(A, V ) = V
⊗

Aen
A,(26.5.3)

where A is considered as a left module over Aen, as in Section 24.3. If V is
considered as a left module over Aen, then

H0(A, V ) = HomAen(A, V ),(26.5.4)

where A is considered as a left module over Aen, as in Section 24.5. These
modules will be discussed further in the next section.

Let X be a projective resolution of A as a left module over Aen, as in Section
10.2. If we consider V as a right module over Aen again, then

V
⊗

Aen
X(26.5.5)

may be considered as a complex over k, as in Sections 7.5 and 24.3. The homol-
ogy of this complex can be used to obtain (26.5.1), as in Section 24.3. Namely,

Hn(A, V ) = H
(
V
⊗

Aen
X
)
n
= H

(
V
⊗

Aen
X
)−n

(26.5.6)

for each n ≥ 0, as on p169 of [3].
Similarly, if we consider V as a left module over Aen, then

Homgr
Aen(X,V )(26.5.7)

may be defined as a complex over k, as in Sections 8.4 and 24.5. The homology
of this complex can be used to obtain (26.5.2), as in Section 24.5. Namely,

Hn(A, V ) = H
(
Homgr

Aen(X,V )
)n

(26.5.8)

for each n ≥ 0, as on p169 of [3].

26.6 Some basic cases

Let us continue with the same notation and hypotheses as in the previous sec-
tion. We would like to consider some basic cases of the homology and cohomol-
ogy groups.

Remember that J is a left ideal in Aen, and thus a left module over Aen

in particular. Let us consider V as a right module over Aen again, and let
V
⊗

Aen J be a tensor product of V and J over Aen. Using the mapping

(v, x) 7→ v · x(26.6.1)

from V × J into V , we get a unique homomorphism

from V
⊗

Aen
J into V,(26.6.2)
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as modules over k, with

v ⊗ x 7→ v · x(26.6.3)

for every v ∈ V and x ∈ J , as usual. Let V ·J be the image of the homomorphism
as in (26.6.2), which is a submodule of V , as a module over k. Equivalently,
V · J consists of finite sums of elements of the form v ·x, with v ∈ V and x ∈ J .

If a ∈ A, then j(a) = a⊗ eopA − eA ⊗ aop ∈ J , and

v · j(a) = v · a− a · v(26.6.4)

is an element of V · J for every v ∈ V . This uses the actions of A on V on the
left and right on the right side. In fact,

every element of V · J can be expressed as a finite sum(26.6.5)

of elements of the form v · a− a · v, with a ∈ A, v ∈ V,

because of (26.2.4). This is mentioned just after (3a) on p170 of [3].
Because V · J is a submodule of V , as a module over k, the quotient

V/(V · J)(26.6.6)

can be defined as a module over k. We also have that (26.5.3) is isomorphic
to (26.6.6), as a module over k, in a natural way, as in Sections 24.1 and 24.2.
This corresponds to (2) and the first part of Proposition 4.1 on p170 of [3].

Remember that homomorphisms from A into V , as left modules over Aen,
correspond to homomorphisms from Aen into V , as left modules over Aen, whose
kernels contain J . If v ∈ V , then x 7→ x ·v is a homomorphism from Aen into V ,
as left modules over Aen, and every such homomorphism is of this form. Thus
(26.5.4) is isomorphic to

{v ∈ V : x · v = 0 for every x ∈ J},(26.6.7)

as modules over k, in a natural way. This corresponds to (2a) on p170 of [3].
It is easy to see that (26.6.7) is equal to

{v ∈ V : j(a) · v = 0 for every a ∈ A},(26.6.8)

using (26.2.4). If a ∈ A and v ∈ V , then

j(a) · v = (a⊗ eopA − eA ⊗ aop) · v = a · v − v · a,(26.6.9)

using the actions of A on V on the left and right on the right side. This means
that (26.6.7) is equal to

{v ∈ V : a · v = v · a for every a ∈ A},(26.6.10)

as in the second part of Proposition 4.1 on p170 of [3]. The elements of (26.6.10)
are said to be invariant elements of V , as in [3].
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Consider the natural homomorphism

from HomAen(Aen, V ) into HomAen(J, V ),(26.6.11)

as modules over k, that sends a homomorphism from Aen into V , as left modules
over Aen, to its restriction to J . We have that

H1(A, V ) is isomorphic to the cokernel(26.6.12)

of the homomorphism as in (26.6.11),

as modules over k. This corresponds to (3a) on p170 of [3], and the analogous
statement for arbitrary augmented rings was mentioned in Section 24.5.

We have seen that h 7→ h ◦ j defines an isomorphism from HomAen(J, V )
onto the space of crossed homomorphisms from A into V , as modules over k, as
in Section 26.3. This isomorphism maps the image of the homomorphism as in
(26.6.11) onto the space of principal crossed homomorphisms from A into V , as
in Section 26.4. It follows that this isomorphism induces an isomorphism from
the cokernel of the homomorphism as in (26.6.11) onto

the quotient of the space of all crossed homomorphisms(26.6.13)

from A into V by the submodule consisting of all

principal crossed homomorphisms from A into V,

as modules over k. This means that

H1(A, V ) is isomorphic to (26.6.13),(26.6.14)

as modules over k, as in Proposition 4.1 on p170 of [3].

26.7 A right augmentation on Aen

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. This
leads to the enveloping algebra Aen of A, as in Section 26.1.

Of course, A may be considered as a two-sided module over itself, and thus
a left or right module over Aen, as before. If we consider A as a right module
over Aen, then we get that

a · (a1 ⊗ aop2 ) = a2 a a1(26.7.1)

for every a, a1, a2 ∈ A, as in Section 26.1.
Observe that (a,a

op
2 ) 7→ a2 a1 is bilinear over k, as a map from A×Aop into

A. This leads to a unique homomorphism

ρ′ from Aen into A,(26.7.2)

as modules over k, such that

ρ′(a1 ⊗ aop2 ) = a2 a1(26.7.3)
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for every a1, a2 ∈ A. Equivalently,

ρ′(x) = eA · x(26.7.4)

for every x ∈ Aen. This defines a homomorphism from Aen into A, as right
modules over Aen. In fact,

ρ′(Aen) = A,(26.7.5)

so that
Aen is a right augmented ring,(26.7.6)

as in Section 24.2, with augmentation module A, as a right module over Aen,
and augmentation homomorphism ρ′.

This augmentation is discussed in Remark 1 on p171 of [3]. It is mentioned
there that one gets the same homology and cohomology groups using this right
augmentation as for the left augmentation discussed earlier. More precisely, the
descriptions of H0(A, V ) and H0(A, V ) are the same for both augmentations,
and the other homology and cohomology groups are satellites of these.

Note that
ρ′ = ρ(26.7.7)

when A is commutative, as on p171 of [3].

26.8 Some modules Sn(A)

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Thus
we get the corresponding enveloping algebra Aen, as in Section 26.1. We would
like to define a left complex S(A) over A as a left module over Aen, as on p174
of [3]. We begin with some modules Sn(A) that will be used to get S(A).

If n ≥ −1 is an integer, then we take Sn(A) to be the tensor product of n+2
copies of A over k. This means that

S−1(A) = A,(26.8.1)

and we can take Sn+1(A) to be a tensor product A
⊗

k Sn(A) of A and Sn(A), as
modules over k, for each n ≥ −1. If n ≥ 1, then the (n+2)-fold tensor products
can be arranged into products of pairs in other ways, up to isomorphism, as in
Section 1.12. In particular, if a0, a1, . . . , an, an+1 ∈ A, then

a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1(26.8.2)

defines an element of Sn(A), which is linear over k in each variable. Note that
every element of Sn(A) can be expressed as a finite sum of elements of this form.

We may consider Sn(A) as a left module over A for each n ≥ −1, using the
action of A on itself on the left on the first factor of A in Sn(A), as in Section
1.10. If a, a0, a1, . . . , an, an+1 ∈ A, then

a · (a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1) = (a a0)⊗ a1 ⊗ · · · ⊗ an ⊗ an+1.(26.8.3)
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Similarly, we may consider Sn(A) as a right module over A, using the action of
A on itself on the right on the last factor of A in Sn(A). If a0, a1, . . . , an, an+1, b
are elements of A, then

(a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1) · b = a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ (an+1 b).(26.8.4)

It is easy to see that the actions of A on Sn(A) on the left and on the
right commute with each other, so that Sn(A) may be considered as a two-sided
module over A. Equivalently, Sn(A) may be considered as a left module over
Aen. If a, b, a0, a1, . . . , an, an+1 ∈ A, then

(a⊗ bop) · (a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1)(26.8.5)

= (a a0)⊗ a1 ⊗ · · · ⊗ an ⊗ (an+1 b),

as on p174 of [3]. Of course, this should be interpreted a bit carefully when
n = −1.

Consider the homomorphism

sn from Sn(A) into Sn+1(A),(26.8.6)

as modules over k, defined by

sn(x) = eA ⊗ x(26.8.7)

for each x ∈ Sn(A). More precisely, this is a homomorphism as in (26.8.6), as
right modules over A, as on p174 of [3].

Of course, (a, x) 7→ a · x defines a mapping from A× Sn(A) into Sn(A) that
is bilinear over k. This leads to a unique homomorphism

tn from Sn+1(A) into Sn(A),(26.8.8)

as modules over k, such that

tn(a⊗ x) = a · x(26.8.9)

for every a ∈ A and x ∈ Sn(A).

Thus

tn(sn(x)) = x(26.8.10)

for every x ∈ Sn(A). In particular, this means that

sn is injective on Sn(A),(26.8.11)

as on p174 of [3]. Note that

Sn+1(A) is generated by sn(Sn(A)), as a left module over A.(26.8.12)
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26.9 Some homomorphisms dn

We continue with the same notation and hypotheses as in the previous section.
If n is a nonnegative integer, then we would like to define a homomorphism

dn from Sn(A) into Sn−1(A),(26.9.1)

as modules over k, and left modules over A, with the following two properties,
as on p174 of [3]. First,

d0(a0 ⊗ a1) = a0 a1(26.9.2)

for every a0, a1 ∈ A. Second,

dn+1(sn(x)) + sn−1(dn(x)) = x(26.9.3)

for every x ∈ Sn(A) and n ≥ 0.
Of course, (a0, a1) 7→ a0 a1 is bilinear over k as a mapping from A×A into A,

so that there is a unique homomorphism d0 from S0(A) into S−1(A), as modules
over k, that satisfies (26.9.2). It is easy to see that d0 is a homomorphism from
S0(A) into S−1(A), as left and right modules over A, as usual.

One can check that such a family of homomorphisms is unique, as on p174 of
[3]. More precisely, the restriction of dn+1 to sn(Sn(A)) is uniquely determined
by dn, because of (26.9.3). We also have that dn+1 is uniquely determined on
Sn+1(A) by its restriction to sn(Sn(A)), because of (26.8.12), and because dn+1

is supposed to be a homomorphism from Sn+1(A) into Sn(A), as left modules
over A.

In fact, we can take

dn(a0 ⊗ · · · ⊗ an+1) =

n∑
l=0

(−1)l a0 ⊗ · · · ⊗ (al al+1)⊗ · · · ⊗ an+1(26.9.4)

for every n ≥ 0 and a0, . . . , an+1 ∈ A, as in (3) on p174 of [3]. More precisely,
the right side is clearly linear over k in each of the ai’s, i = 0, . . . , n + 1, and
one can use this to get a unique homomorphism dn from Sn(A) into Sn−1(A),
as modules over k, that satisfies (26.9.4). Note that (26.9.4) reduces to (26.9.2)
when n = 0. One can verify directly that (26.9.4) satisfies (26.9.3) for every
n ≥ 0.

It is easy to see from (26.9.4) that dn is a homomorphism from Sn(A) into
Sn−1(A), as left modules over A. Similarly, dn is a homomorphism from Sn(A)
into Sn−1(A), as right modules over A, as on p174 of [3]. Thus dn may be
considered as a homomorphism from Sn(A) into Sn−1(A), as left modules over
Aen.

We would like to check that

dn−1 ◦ dn = 0(26.9.5)

for every n ≥ 1, as on p174 of [3]. If n = 1, then this can be verified using
associativity of multiplication on A. Suppose that (26.9.5) holds for some n ≥ 1,
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and let us show that the analogous statement holds for n + 1. Using (26.9.3)
and its analogue for n− 1, we get that

dn ◦ dn+1 ◦ sn = dn − dn ◦ sn−1 ◦ dn = sn−2 ◦ dn−1 ◦ dn = 0.(26.9.6)

This implies that dn ◦ dn+1 = 0, because of (26.8.12), as desired.
Of course, Aen = A

⊗
k A

op is a left module over itself. Let us identify

S0(A) = A
⊗

k
A(26.9.7)

with Aen, as a module over k, in the obvious way. More precisely, we can identify
S0(A) with A

en as a left module over Aen, as on p175 of [3].
Using this identification,

d0 corresponds to the augmentation homomorphism ρ,(26.9.8)

as a homomorphism from Aen into A, as left modules over Aen, as in Section
26.1. This is also mentioned on p175 of [3].

26.10 The standard complex S(A)

We continue with the same notation and hypotheses as in the previous two
sections. We would like to define a left complex S(A) over A, as a left module
over Aen, as mentioned at the beginning of Section 26.8. We take S(A) to be
the direct sum of Sn(A), n ≥ 0, as a module over k and a left module over Aen,
with the grading defined by

S(A)n = S(A)−n = Sn(A) when n ≥ 0(26.10.1)

= {0} when n < 0.

Note that S(A) is negative as a graded module, as in Section 5.9.
Put

dS(A),n = dn when n ≥ 1(26.10.2)

= 0 when n ≤ 0,

which is a homomorphism from S(A)n into S(A)n−1, as left modules over Aen.
Observe that

dS(A),n−1 ◦ dS(A),n = 0(26.10.3)

for every n, using (26.9.5) when n ≥ 2. This defines a differentiation operator
dS(A) on S(A), which makes S(A) into a complex, as in Section 5.10.

In order for S(A) to be a left complex over A, as a left module over Aen,
we need to choose an augmentation ε = εS(A), as in Section 10.1. This is
determined by ε0 = εS(A),0, which is a homomorphism from S(A)0 into A, as
left modules over Aen, as before. Here we take

ε0 = d0,(26.10.4)
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which is a homomorphism from S(A)0 = S0(A) into A = S−1(A), as left modules
over Aen, as on p175 of [3]. Thus

ε0 ◦ dS(A),1 = d0 ◦ d1 = 0,(26.10.5)

by (26.9.5). This shows that S(A) is a left complex over A, with respect to the
augmentation ε.

In fact,

S(A) is acyclic as a left complex over A,(26.10.6)

as on p175 of [3]. This is equivalent to the exactness of the sequence

· · · −→ Sn(A)
dn−→ Sn−1(A) −→ · · ·(26.10.7)

−→ S1(A)
d1−→ S0(A)

d0−→ S−1(A) −→ 0,

as in Section 10.1. Of course, this also uses the way that S(A) and ε are defined
here. Note that d0 maps S0(A) onto S−1(A). The exactness of the rest of this
sequence can be obtained from (26.9.3).

Let S̃n(A) be a tensor product of n copies of A over k when n ≥ 1, and put

S̃0(A) = k. We may consider Sn(A) as a tensor product of the form

Sn(A) = A
⊗

k
S̃n(A)

⊗
k
A(26.10.8)

for each n ≥ 0, as on p175 of [3]. The actions of A on the left and right on
Sn(A) are obtained from the actions of A on the left and right on the first and
last factors of A on the right side of (26.10.8), respectively, as in Section 26.8.

We can identify (26.10.8) with a tensor product of the form

A
⊗

k
A
⊗

k
S̃n(A),(26.10.9)

as a module over k, by interchanging the second and third factors on the right
side of (26.10.8). Using this identification, the actions of A on the left and on
the right on Sn(A) are obtained from the actions of A on the left and on the
right on the first and second factors of A in (26.10.9), respectively.

We can identify (26.10.9), and thus Sn(A), with

Aen
⊗

k
S̃n(A),(26.10.10)

as a module over k, as on p175 of [3]. We may consider (26.10.10) as a left
module over Aen, where the action of Aen on the left on (26.10.10) is obtained
from the action of Aen on the left on itself, as the first factor in (26.10.10).
This corresponds exactly to the actions of Aen on the left on Sn(A) or (26.10.9)
obtained from the actions of A on the left and right mentioned before.

If

A is projective as a module over k,(26.10.11)
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then it follows that

S̃n(A) is projective as a module over k(26.10.12)

for every n ≥ 0, as in Section 25.1. In this case, we get that

(26.10.10) is projective as a left module over Aen,(26.10.13)

as in Section 25.1 again. Using the identifications mentioned in the previous
paragraphs, we obtain that

Sn(A) is projective as a left module over Aen(26.10.14)

for every n ≥ 0, as on p175 of [3].
Combining this with (26.10.6), we get that

S(A) is a projective resolution of A, as a left module over Aen,(26.10.15)

as in Section 10.2. This is called the standard complex of A, as on p175 of [3].

26.11 Using the standard complex

We continue with the same notation and hypotheses as in the previous three
sections. Let V be a two-sided module over A. If we consider V as a right
module over Aen, then a tensor product

V
⊗

Aen
S(A)(26.11.1)

of V and S(A) over Aen may be considered as a complex over k, as in Section
7.5. In particular, this is a graded module over k, with(

V
⊗

Aen
S(A)

)
n
= V

⊗
Aen

S(A)n = V
⊗

Aen
Sn(A) when n ≥ 0

= {0} when n < 0.(26.11.2)

If A is projective as a module over k, then

Hn(A, V ) = H
(
V
⊗

Aen
S(A)

)
n

(26.11.3)

for every n ≥ 0, because of (26.10.15), as in Section 26.5.
Using the identification of Sn(A) with (26.10.10), we get that

V
⊗

Aen
Sn(A)(26.11.4)

may be identified with

V
⊗

Aen

(
Aen

⊗
k
S̃n(A)

)
,(26.11.5)
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as a module over k, for each n ≥ 0. This is isomorphic to(
V
⊗

Aen
Aen

)⊗
k
S̃n(A)(26.11.6)

in a natural way, as modules over n, as in Section 1.12. Of course, V satisfies
the requirements of a tensor product of V with Aen over Aen, so that (26.11.4)
may be identified with

V
⊗

k
S̃n(A),(26.11.7)

as a module over k, for each n ≥ 0. This corresponds to a remark on p175 of
[3].

Let v ∈ V and a1, . . . , an ∈ A be given, for some n ≥ 1. If we consider
(26.11.7) as a tensor product of V and n copies of A over k, then

v ⊗ a1 ⊗ · · · ⊗ an(26.11.8)

may be considered as an element of (26.11.7). Using the identification of
(26.11.4) and (26.11.7), the differentiation operator on (26.11.1) sends (26.11.8)
to

(v · a1)⊗ a2 ⊗ · · · ⊗ an(26.11.9)

+

n−1∑
j=1

(−1)j v ⊗ a1 ⊗ · · · ⊗ (aj aj+1)⊗ · · · ⊗ an

+(−1)n (an · v)⊗ a1 ⊗ · · · ⊗ an−1,

as on 175 of [3].
If we consider V as a left module over Aen, then

Homgr
Aen(S(A), V )(26.11.10)

may be defined as a complex over k, as in Section 8.4. Note that(
Homgr

Aen(S(A), V )
)n

= HomAen(S(A)n, V )

= HomAen(Sn(A), V ) when n ≥ 0(26.11.11)

= {0} when n < 0.

If A is projective as a module over k, then

Hn(A, V ) = H
(
Homgr

Aen(S(A), V )
)n

(26.11.12)

for every n ≥ 0, because of (26.10.15), as in Section 26.5.
Using the identification of Sn(A) with (26.10.10) again, we get that

HomAen(Sn(A), V )(26.11.13)

may be identified with

HomAen

(
Aen

⊗
k
S̃n(A), V

)
(26.11.14)
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as a module over k, for each n ≥ 0. This may be identified with

Homk

(
S̃n(A),HomAen(Aen, V )

)
,(26.11.15)

as in Section 1.13. Of course, HomAen(Aen, V ) may be identified with V , as
usual. This means that (26.11.15) may be identified with

Homk(S̃n(A), V ).(26.11.16)

Thus (26.11.13) may be identified with (26.11.16), as on p175 of [3].
The elements of (26.11.16) are called n-dimensional cochains, as on p175 of

[3]. They can be identified with functions on the Cartesian product An of n
copies of A with values in V that are linear over k in each variable when n ≥ 1,
as in [3]. If n = 0, then (26.11.16) can be identified with V .

Remember that (26.11.10) has a differentiation operator, obtained from the
one on S(A). Let f be a function on An with values in V that is linear over
k in each variable for some n ≥ 1, or an element of V when n = 0. Thus f
corresponds to an element of (26.11.13), and we let δ(f) be the “coboundary” of
f , which is the function on An+1 with values in V that is linear over k in each
variable, and which corresponds to the differentiation operator on (26.11.10)
acting on f . If a1, . . . , an+1 ∈ A, then

(δ(f))(a1, . . . , an+1) = a1 · f(a2, . . . , an+1)

+

n∑
j=1

(−1)j f(a1, . . . , aj aj+1, . . . , an+1)(26.11.17)

+(−1)n+1 f(a1, . . . , an) · an+1,

as on p175 of [3]. This corresponds to the classical definition of Hochschild, as
in [3].

26.12 Some modules Nn(A)

Let us continue with the same notation and hypotheses as in the previous four
sections. Of course, t 7→ t eA defines a natural homomorphism from k into A.
Let A′ be the cokernel of this homomorphism, as a module over k. Thus A′ is
given by the quotient

A′ = A/{t eA : t ∈ k},(26.12.1)

as a module over k.
Let Ñn(A) be a tensor product of n copies of A′ over k when n ≥ 1, and put

Ñ0(A) = k. If n is a nonnegative integer, then we take

Nn(A) = Aen
⊗

k
Ñn(A),(26.12.2)

as a module over k, as on p176 of [3]. This may be considered as a left module
over Aen, where the action of Aen on the left is obtained from the action of Aen

on the left on itself, in the first factor on the right side of (26.12.2).



614 CHAPTER 26. A FAMILY OF AUGMENTATIONS

Let q be the natural quotient mapping from A onto A′. This leads to a
natural homomorphism

qn from S̃n(A) onto Ñn(A),(26.12.3)

as modules over k, for each n ≥ 0, which is the identity mapping on k when
n = 0.

Remember that Sn(A) can be identified with (26.10.10) for each n ≥ 0, as a
module over k, and as a left module over Aen. Using the identity mapping on
Aen and qn, we get a homomorphism

from Sn(A) onto Nn(A),(26.12.4)

as modules over k, and as left modules over Aen, for every n ≥ 0, as on p176 of
[3]. Note that N0(A) is the same as S0(A) with this identification, and that the
homomorphism as in (26.12.4) is the identity mapping when n = 0.

As in Section 26.10, we can identify Nn(A) with a tensor product of the form

A
⊗

k
A
⊗

k
Ñn(A),(26.12.5)

as a module over k, for each n ≥ 0. This may be considered as a two-sided
module over A, where the actions of A on the left and right are obtained from
the actions of A on the left and right on the first and second factors of A in
(26.12.5), respectively. Using this, (26.12.5) may be considered as a left module
over Aen, which corresponds exactly to Nn(A) as a left module over Aen.

Similarly, we can identify (26.12.5) with a tensor product of the form

A
⊗

k
Ñn(A)

⊗
k
A,(26.12.6)

as a module over k, by interchanging the second and third factors in (26.12.5).
Of course, the actions of A on the left and right on (26.12.5) mentioned in the
preceding paragraph correspond to those obtained from the actions of A on the
left and right on the first and last factors of A in (26.12.6).

We may consider a tensor product

A′
⊗

k
Ñn(A)

⊗
k
A(26.12.7)

as a right module over A, using the action of A obtained from the action of A
on the right on the last factor of A. There is a natural homomorphism

from (26.12.6) onto (26.12.7),(26.12.8)

as modules over k, corresponding to q in the first factor, and the identity map-
pings on Ñn(A) and A in the other two factors. More precisely, this is a homo-
morphism between right modules over A.

We may identify (26.12.7) with a tensor product

Ñn+1(A)
⊗

k
A,(26.12.9)
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as modules over k, in an obvious way. As usual, this tensor product may be
considered as a right module over A, using the action of A obtained from the
action of A on the right on the second factor of A. This corresponds to the
action of A on the right on (26.12.6) mentioned before.

We may identify Nn+1(A) with a tensor product

A
⊗

k
Ñn+1(A)

⊗
k
A,(26.12.10)

as modules over k, in the same way that Nn(A) is identified with (26.12.6). As
usual, this may be considered as a two-sided module over A, where the actions
of A on the left and right are obtained from the actions of A on the left and
right on the first and last factors of A, respectively. Thus (26.12.10) may be
considered as a left module over Aen, which corresponds exactly to Nn+1(A) as
a left module over Aen.

26.13 Analogues of sn, dn

We continue with the same notation and hypotheses as in the previous sections.
Let us identify (26.12.10) with a tensor product of A and (26.12.9) over k. Using
this identification, we get a homomorphism

from (26.12.9) into (26.12.10),(26.13.1)

which sends an element x of (26.12.9) to eA ⊗ x, as an element of (26.12.10).
This is a homomorphism as in (26.13.1), as modules over k, and right modules
over A.

We can compose the homomorphisms as in (26.12.8) and (26.13.1) to get
a homomorphism from (26.12.6) into (26.12.10), as modules over k, and right
modules over A. This uses the identification of (26.12.7) with (26.12.9) men-
tioned earlier. This homomorphism may be considered as a homomorphism

from Nn(A) into Nn+1(A),(26.13.2)

as modules over k, and right modules over A, using identifications mentioned
before.

The homomorphism as in (26.13.2) is analogous to the homomorphism sn
from Sn(A) into Sn+1(A) defined in Section 26.8, as on p176 of [3]. More
precisely, this homomorphism corresponds exactly to sn with respect to the
homomorphism as in (26.12.4), and the analogous homomorphism from Sn+1(A)
onto Nn+1(A).

Suppose that a0, a1, . . . , an+1 ∈ A for some n ≥ 1, so that

dn(a0 ⊗ · · · ⊗ an+1) ∈ Sn−1(A)(26.13.3)

can be expressed as in (26.9.4). Consider

the image of dn(a0 ⊗ · · · ⊗ an+1) in Nn−1(A),(26.13.4)
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under the homomorphism from Sn−1(A) onto Nn−1(A) as in (26.12.4). If

ar = tr eA for some r = 1, . . . , n and tr ∈ k,(26.13.5)

then one can check that

(26.13.4) is equal to 0.(26.13.6)

More precisely, the terms on the right side of (26.9.4) corresponding to l 6= r−1, r
are mapped to 0 in Nn−1(A), because q(ar) = 0, by hypothesis. One can verify
that the terms corresponding to l = r − 1, r on the right side of (26.9.4) cancel
in this case.

This shows that (26.13.4) depends only on a0, q(a1), . . . , q(an), an+1. Thus
we get a mapping

from A×A′ × · · · × A′ ×A into Nn−1(A),(26.13.7)

with n factors of A′ in the domain, that is linear over k in each variable. This
leads to a homomorphism

from (26.12.6) into Nn−1(A),(26.13.8)

as modules over k, in the usual way. This may be considered as a homomorphism

from Nn(A) into Nn−1(A),(26.13.9)

using the identification of Nn(A) with (26.12.6) mentioned earlier. It is easy
to see that this is a homomorphism between left and right modules over A, or
equivalently left modules over Aen.

This homomorphism is the analogue of dn in Section 26.9 for Nn(A), as
on p176 of [3]. One can check that this homomorphism corresponds exactly
to dn with respect to the homomorphism as in (26.12.4), and the analgous
homomorphism from Sn−1(A) onto Nn−1(A). We can include n = 0 here by
taking

N−1(A) = S−1(A) = A,(26.13.10)

and using d0 for the homomorphism as in (26.13.9).

Observe that the analogue of (26.9.5) holds on Nn(A) for every n ≥ 1, for the
homomorphisms as in (26.13.9) in place of the dn’s. Similarly, the analogue of
(26.9.3) holds on Nn(A) for every n ≥ 0, for the homomorphisms as in (26.13.2)
and (26.13.9) in place of the sn’s and dn’s, as on p176 of [3].

26.14 The normalized standard complex N(A)

Let us continue with the same notation and hypotheses as in the last few sec-
tions. Let N(A) be the direct sum of Nn(A) over n ≥ 0, as a module over k and
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a left module over Aen, as on p176 of [3]. This is a graded module over Aen,
with grading defined by

N(A)n = N(A)−n = Nn(A) when n ≥ 0(26.14.1)

= {0} when n < 0.

Put

dN(A),n = the homomorphism as in (26.13.9) when n ≥ 1

= 0 when n ≤ 0.(26.14.2)

This is a homomorphism from N(A)n into N(A)n−1, as left modules over Aen.
Note that

dN(A),n−1 ◦ dN(A),n = 0(26.14.3)

for every n, as mentioned near the end of the previous section. This defines
a differentiation operator dN(A) on N(A), which makes N(A) into a negative
complex, as in Sections 5.9 and 5.10.

We can make N(A) a left complex over A, as a left module over Aen, by
choosing a suitable augmentation εN(A), as in Section 10.1. This is determined
by εN(A),0, which is a homomorphism

from N(A)0 = N0(A) = S0(A) into A,(26.14.4)

as left modules over Aen. As in Section 26.10, we take

εN(A),0 = d0.(26.14.5)

One can check that
εN(A),0 ◦ dN(A),1 = 0,(26.14.6)

as in (26.10.5). This implies that N(A) is a left complex over A, with respect
to the augmentation εN(A), as on p176 of [3].

More precisely,

N(A) is acyclic as a left complex over A,(26.14.7)

as on p176 of [3]. This is analogous to the corresponding statement (26.10.6)
for S(A).

Suppose now that

A′ is projective as a module over k.(26.14.8)

This implies that

Ñ(A) is projective as a module over k(26.14.9)

for every n ≥ 0, as in Section 25.1. Using this, we get that

Nn(A) is projective as a left module over Aen(26.14.10)

for every n ≥ 0, as in Section 25.1 again. It follows that

N(A) is a projective resolution of A, as a left module over Aen,(26.14.11)

because of (26.14.7). This is called the normalized standard complex of A, as on
p176 of [3].
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26.15 Some notation

We continue with the same notation and hypotheses as in the previous sections.
Let n be a nonnegative integer. In this section, we shall use the identification
of Nn(A) with a tensor product of the form (26.12.6), which is more compatible
with the initial definition of Sn(A) in Section 26.8. More precisely, this is anal-
ogous to the identification of Sn(A) with a tensor product of the form (26.10.8).
Using these identifications, the homomorphism from Sn(A) ontoNn(A), as mod-
ules over k, as in (26.12.4), is obtained using the identity mapping on A in the
first and last factors in the tensor products, and the homomorphism qn from
S̃n(A) onto Ñn(A) as in (26.12.3) in the middle factors.

It is a bit simpler to consider Sn(A) as a tensor product of n + 2 copies of
A over k, as in Section 26.8. Similarly, Nn(A) may be considered as a tensor
product of n+2 modules over k, where the first module is A, the next n modules
are copies of A′ as in (26.12.1), and the last module is another copy of A. Using
these identifications, the homomorphism from Sn(A) onto Nn(A), as modules
over k, as in (26.12.4), is obtained using the identity mapping on the first and
last copies of A, and the natural quotient mapping q′ from A onto A′ on the n
copies of A in the middle.

If a0, a1, . . . , an, an+1 ∈ A, then

a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1(26.15.1)

defines an element of Sn(A), as in Section 26.8. Similarly,

a0 ⊗ q(a1)⊗ · · · ⊗ q(an)⊗ an+1(26.15.2)

defines an element of Nn(A), using the identification mentioned in the preced-
ing paragraph. Of course, the homomorphism from Sn(A) onto Nn(A) as in
(26.12.4) sends (26.15.1) to (26.15.2), with these identifications.

As on p176 of [3], one may use the notation

a0 [a1, . . . , an] an+1(26.15.3)

for (26.15.2). If a0 = eA, then this may be expressed as

[a1, . . . , an] an+1.(26.15.4)

Similarly, if an+1 = eA, then (26.15.3) may be expressed as

a0 [a1, . . . , an].(26.15.5)

If a0 = an+1 = eA, then (26.15.3) may be expressed as

[a1, . . . , an].(26.15.6)

If n = 0, then (26.15.3) becomes

a0 [ ] a1,(26.15.7)
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which is the same as a0 ⊗ a1 as an element of S0(A) = N0(A).
Suppose now that n ≥ 1, and let dN(A),n be as in the previous section. Using

the notation in the preceding paragraph, we have that

dN(A),n(a0 [a1, . . . , an] an+1) = (a0 a1) [a2, . . . , an] an+1

+

n−1∑
l=1

(−1)l a0 [a1, . . . , al al+1, . . . , an] an+1(26.15.8)

+(−1)n a0 [a1, . . . , an−1] (an an+1).

This is mentioned on p176 of [3], with a0 = an+1 = eA. Note that dN(A),n is
determined by its values in that case, because dN(A),n is a homomorphism as in
(26.13.9), as left and right modules over A.

Of course, if n = 1, then the sum in the middle of the right side of (26.15.8)
should be interpreted as being equal to 0. In this case, (26.15.8) reduces to

dN(A),1(a0 [a1] a2) = (a0 a1) [ ] a2 − a0 [ ] (a1 a2).(26.15.9)

This is mentioned on p176 of [3] too, with a0 = a2 = eA, as before.
It may be convenient to sometimes use the notation (26.15.3) for (26.15.1),

as an element of Sn(A), as mentioned on p176 of [3]. It should always be clear
from the particular discussion which interpretation is intended.



Chapter 27

A family of augmentations,
2

27.1 Homomorphisms between algebras

Let k, k1 be commutative rings with multiplicative identity elements 1k, 1k1 ,
respectively. Also let A, B be associative algebras over k, k1, with multiplicative
identity elements eA, eB , respectively. Suppose that ψ is a ring homomorphism
from k into k1, with ψ(1k) = 1k1 .

Let ϕ be a ring homomorphism from A into B, with ϕ(eA) = eB . Suppose
that

ϕ(t a) = ψ(t)ϕ(a)(27.1.1)

for every a ∈ A and t ∈ k. If k = k1 and ψ is the identity mapping on k,
then this means that ϕ is a homomorphism from A into B, as algebras over k.
Alternatively, one may consider B as an algebra over k, using ψ.

Remember that Aop, Bop are the opposite algebras corresponding to A, B,
respectively, and let

Aen = A
⊗

k
Aop, Ben = B

⊗
k1
Bop(27.1.2)

be enveloping algebras of A, B, as algebras over k, k1, respectively, as in Section
26.1. Note that Ben may be considered as an algebra over k, using ψ.

Of course, ϕ may be considered as a ring homomorphism from Aop into Bop.
Consider the mapping

(a1, a
op
2 ) 7→ ϕ(a1)⊗k1 ϕ(a2)op(27.1.3)

from A × Aop into Ben. It is easy to see that this mapping is bilinear over k,
when Ben is considered as a module over k using ψ. Thus we get a unique
homomorphism

ϕen from Aen into Ben,(27.1.4)

620
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as modules over k, such that

ϕen(a1 ⊗k aop2 ) = ϕ(a1)⊗k1 ϕ(a2)op(27.1.5)

for every a1, a2 ∈ A. One can check that ϕen is a ring homomorphism.
Let ρA, ρB be the homomorphisms from Aen, Ben onto A, B, as left modules

over Aen, Ben, respectively, as in Section 26.1. One can verify that

ρB ◦ ϕen = ϕ ◦ ρA,(27.1.6)

as on p171 of [3]. In particular,

ϕen(ker ρA) ⊆ ρB .(27.1.7)

This shows that ϕen is a homomorphism from Aen into Ben, as left augmented
rings with respect to the augmentations defined by ρA and ρB , respectively, as
in Section 24.9.

Let V be a module over k1 that is a two-sided module over B, as an algebra
over k1. Thus V may be considered as a module over k using ψ, and as a
two-sided module over A using ϕ, as in Section 2.9. Alternatively, V may be
considered as a left or right module over Ben, as an algebra over k1, and thus
as a left or right module over Aen, as an algebra over k, using ϕen.

Using ϕen, we get induced homomorphisms

from Hn(A, V ) into Hn(B, V )(27.1.8)

and
from Hn(B, V ) into Hn(A, V )(27.1.9)

for each n ≥ 0, as in Section 24.9. These homomorphisms correspond to those
in (1), (2) on p171 of [3].

27.2 The case where B = k1
⊗
k A

Let us continue with the same notation and hypotheses as in the previous sec-
tion, with the following additions. In this section, we consider k1 to be an
algebra over k, with ψ(t) = t ·1k1 for every t ∈ k. We also take B to be a tensor
product

B = k1
⊗

k
A(27.2.1)

of k1 and A over k, which may be considered as an algebra over k and k1. Thus

ϕ(a) = 1k1 ⊗ a(27.2.2)

defines a homomorphism from A into B, as algebras over k, where ϕ(eA) =
1k1 ⊗ eA is the multiplicative identity element in B.

Consider
Ben =

(
k1
⊗

k
A
)⊗

k1

(
k1
⊗

k
A
)op

.(27.2.3)
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As a module over k, (k1
⊗

kA)
op is the same as k1

⊗
kA

op, and in fact they are
the same as algebras over k and k1. Thus B

en can be expressed as

Ben =
(
k1
⊗

k
A
)⊗

k1

(
k1
⊗

k
Aop

)
.(27.2.4)

This is isomorphic in a natural way to a tensor product of the form((
k1
⊗

k
A
)⊗

k1
k1
)⊗

k
Aop,(27.2.5)

as in Section 1.12. This reduces to(
k1
⊗

k
A
)⊗

k
Aop,(27.2.6)

because any module over k1 satisfies the requirements of its tensor product with
k1, over k1. It follows that Ben can be identified with a tensor product of the
form

k1
⊗

k
Aen,(27.2.7)

up to a natural isomorphism, as in Section 1.12 again. This corresponds to some
remarks near the top of p172 of [3].

Of course, k1
⊗

k A may be considered as a two-sided module over k1 and
A, because k1 and A are two-sided modules over themselves. This corresponds
to considering B as a two-sided module over itself, and thus as a left or right
module over Ben. Alternatively, we may consider k!

⊗
k A as a left or right

module over k1 and Aen, where the actions of k1 and Aen commute with each
other. This means that k1

⊗
k Amay be considered as a left or right module over

(27.2.7). This is equivalent to considering k1
⊗

k A as a left or right module over
Ben, respectively, with respect to the identification between Ben and (27.2.7)
mentioned in the preceding paragraph.

Remember that Aen, Ben may be considered as left augmented rings, with
augmentation modules A, B and augmentation homomorphisms ρA, ρB , as in
Section 26.1. Alternatively, using the identification of Ben with (27.2.7), we can
get a left augmentation with augmentation module k1

⊗
k A, and augmentation

homomorphism obtained from the identity mapping on k1 and ρA, as in Section
25.11. These are equivalent descriptions of the same augmentation, because of
the remarks in the preceding paragraph.

Similarly,
x 7→ 1k1 ⊗ x(27.2.8)

defines a homomorphism from Aen into (27.2.7), as algebras over k. This corre-
sponds to the homomorphism ϕen from Aen into Ben mentioned in the previous
section, with respect to the identification between Ben and (27.2.7), because ϕ
is defined here as in (27.2.2).

This means that we are in the same type of situation as in Section 25.11,
with A, QA, and εA taken to be Aen, A, and ρA, respectively, and with C = k1,
as mentioned on p172 of [3]. The homomorphism considered in Section 25.11 is
given by (27.2.8), which corresponds to ϕen, as in the preceding paragraph.
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Let V be a module over k1 that is a two-sided module over B, as an algebra
over k1, as in the previous section. Thus V may be considered as a module over
k, because k1 is an algebra over k, and as a two-sided module over A, as an
algebra over k. Let us emphasize that the actions of k1 on B on the right and
on the left, coming from the actions of B on V on the right and on the left, are
supposed to be the same, and the same as the action of k1 on B as a module
over k1, as on p172 of [3].

We may consider V as a left or right module over Ben, as an algebra over k1,
and as a left or right module over Aen, as an algebra over k, as in the previous
section. We may also consider V as a left or right module over (27.2.7), as an
algebra over k1. This is equivalent to considering V as a left or right module over
Ben, with respect to the identification of Ben with (27.2.7) mentioned earlier.

Under these conditions, we get induced homomorphisms as in (27.1.8) and
(27.1.9) for each n ≥ 0, using ϕen. These are the same as the homomorphisms
from the homology of Aen into the homology of Ben, as left augmented rings,
with coefficients in V , and from the cohomology of Ben into the cohomology of
Aen with coefficients in V , as in Section 24.9.

Using the identification of Ben with (27.2.7), we may identify these homo-
morphisms with the homomorphisms from the homology of Aen into the ho-
mology of (27.2.7), as left augmented rings, with coefficients in V , and from
the cohomology of (27.2.7) into the cohomology of Aen with coefficients in V ,
corresponding to the homomorphism from Aen into (27.2.7) defined by (27.2.8).
These homomorphisms were discussed in Section 25.12.

Suppose now that

A is projective as a module over k.(27.2.9)

This corresponds to the condition that QA be projective as a module over k near
the end of Section 25.12. This also implies that Aen is projective as a module
over k, as in Section 25.1. In this case, it follows that the homomorphisms
mentioned in the preceding paragraph are isomorphisms, as in Section 25.12.

This means that

the homomorphisms as in (27.1.8) and (27.1.9) are isomorphisms(27.2.10)

when (27.2.9) holds. If X is a projective resolution of A, as a left module over
Aen, then we get that

k1
⊗

k
X is a projective resolution of B,(27.2.11)

as a left module over Ben,

when (27.2.9) holds, as in Section 25.12 again. This corresponds to Proposition
5.1 on p172 of [3].

27.3 Projectivity of A over Aen

Let k be a commutative ring with a multiplicative identity element, and let
A be an associative algebra over k, with a multiplicative identity element eA.
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Remember that Aop is the opposite algebra of A, and let Aen = A
⊗

k A
op be a

tensor product of A and Aop, as in Section 26.1.
Of course, Amay be considered as a two-sided module over itself, and thus as

a left module over Aen, as before. One may wish to know more about conditions
under which

A is projective as a left module over Aen,(27.3.1)

as on p179 of [3].
Let ρ be the homomorphism from Aen onto A, as modules over k, and left

modules over Aen, defined in Section 26.1. If (27.3.1) holds, then

there is a homomorphism f from A into Aen,(27.3.2)

as left modules over Aen, such that ρ ◦ f = IA,

where IA is the identity mapping on A.
Conversely, suppose that (27.3.2) holds, so that

Aen corresponds to the direct sum of f(A) and ker ρ,(27.3.3)

as a left module over Aen.

This implies that (27.3.1) holds, because Aen is projective as a module over
itself, and f is injective, as in Section 2.7.

Let A
⊗

k A be a tensor product of A with itself, as a module over k. Of
course, this is the same as Aen, as a module over k, but it is convenient to refer
to it a bit differently. We may consider A

⊗
k A as a two-sided module over A,

where the action of A on the left is obtained from the action of A on the left
on the first factor of A, and the action of A on the right is obtained from the
action of A on the right on the second factor of A. This corresponds to Aen as
a left module over itself.

Using multiplication on A, we get a unique homomorphism ρ̃ from A
⊗

k A
into A, as modules over k, such that

ρ̃(a1 ⊗ a2) = a1 a2(27.3.4)

for every a1, a2 ∈ A. More precisely, ρ̃ is a homomorphism from A
⊗

k A onto
A, as left and right modules over A. This corresponds to the homomorphism ρ
from Aen onto A, as left modules over Aen, from Section 26.1.

Thus (27.3.2) is the same as saying that

there is a homomorphism f̃ from A into A
⊗

k
A,(27.3.5)

as left and right modules over A, such that ρ̃ ◦ f̃ = IA.

This is equivalent to (27.3.1), as before.
Remember that an element x of A

⊗
K A, as a two-sided module over A, is

said to be invariant if

a · x = x · a(27.3.6)
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for every a ∈ A, as in Section 26.6. Proposition 7.7 on p179 of [3] states that
(27.3.1) holds if and only if

there is an invariant element x of A
⊗

k
A such that ρ̃(x) = eA.(27.3.7)

If (27.3.1) holds, then (27.3.5) holds, and one can take

x = f̃(eA).(27.3.8)

Conversely, suppose that (27.3.7) holds, and put

f̃(a) = a · x = x · a(27.3.9)

for every a ∈ A. This defines a homomorphism from A into A
⊗

k A, as modules
over k, and in fact as left and right modules over A. If a ∈ A, then

ρ̃(f̃(a)) = ρ̃(a · x) = a ρ̃(x) = a eA = a.(27.3.10)

This means that (27.3.5) holds, so that (27.3.1) holds.

27.4 Some examples with matrices

Let k be a commutative ring with a multiplicative identity element 1k, and let
n be a positive integer. The space Mn(k) of n × n matrices with entries in k
is an associative algebra over k with respect to matrix multiplication, and with
the usual identity matrix In as the multiplicative identity element.

If 1 ≤ j, l ≤ n, then let aj,l be the element of Mn(k) whose (j, l) entry is
equal to 1k, and whose other entries are equal to 0. Thus

n∑
j=1

aj,j = In.(27.4.1)

Of course, Mn(k) is freely generated by aj,l, 1 ≤ j, l ≤ n, as a module over k. If
1 ≤ j, l,m, r ≤ n, then

aj,l am,r = aj,r when l = m(27.4.2)

= 0 when l 6= m.

Let us take
A =Mn(k)(27.4.3)

in the previous section. We would like to verify that (27.3.7) holds, as in Propo-
sition 7.8 on p179 of [3]. To do this, we take

x =

n∑
j=1

aj,1 ⊗ a1,j .(27.4.4)
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Let us first check that x is invariant as an element of A
⊗

k A.
If 1 ≤ m, r ≤ n, then

am,r · x =

n∑
j=1

(am,r aj,1)⊗ a1,j = am,1 ⊗ a1,r.(27.4.5)

Similarly,

x · am,r =
n∑
j=1

aj,1 ⊗ (a1,j am,r) = am,1 ⊗ a1,r.(27.4.6)

It follows that x is invariant in A
⊗

k A, because Mn(k) is generated by the
am,r’s, 1 ≤ m, r ≤ n, as a module over k.

Observe that

ρ̃(x) =

n∑
j=1

aj,1 a1,j =

n∑
j=1

aj,j = In.(27.4.7)

Thus (27.3.7) holds, as desired.

27.5 Some remarks about polynomial algebras

Let k be a commutative ring with a multiplicative identity element, let n be
a positive integer, and let T1, . . . , Tn be n commuting indeterminates. Thus
the space k[T1, . . . , Tn] of formal polynomials in T1, . . . , Tn with coefficients in
k may be defined as in Section 4.3, and is a commutative associative algebra
over k. Remember that k may be identified with the subalgebra of k[T1, . . . , Tn]
consisting of formal polynomials for which the coefficient of Tα is 0 when α 6= 0.
The multiplicative identity element 1k in k corresponds to the multiplicative
identity element of k[T1, . . . , Tn] in this way.

Let ε0 be the mapping from k[T1, . . . , Tn] that sends a formal polynomial
f(T ) to its constant term f0. This is a homomorphism from k[T1, . . . , Tn] onto
k, as algebras over k, with ε0(1k) = 1k.

Let ε be any homomorphism from k[T1, . . . , Tn] into k, as algebras over k,
such that

ε(1k) = 1k.(27.5.1)

Note that ε is uniquely determined by its vales at T1, . . . , Tn, which may be
arbitrary elements of k.

It is easy to see that there is a unique homomorphism ϕ from k[T1, . . . , Tn]
into itself, as an algebra over k, such that ϕ(1k) = 1k and

ϕ(Tj) = Tj − ε(Tj)(27.5.2)

for each j = 1, . . . , n. More precisely, ϕ is an automorphism of k[T1, . . . , Tn],
whose inverse is the analogous homomorphism that sends Tj to Tj + ε(Tj) for
each j = 1, . . . , n.

By construction,
ε(ϕ(Tj)) = ε(Tj)− ε(Tj) = 0(27.5.3)
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for j = 1, . . . , n. This implies that

ε ◦ ϕ = ε0(27.5.4)

on k[T1, . . . , Tn]. This corresponds to some remarks on p180 of [3].

27.6 More on polynomial algebras

Let k be a commutative ring with a multiplicative identity element, let n be
a positive integer, and let X1, . . . , Xn and Y1, . . . , Yn be commuting indetermi-
nates. Consider

A = k[X1, . . . , Xn],(27.6.1)

which is a commutative associative algebra over k, as before. Of course, A is
isomorphic to k[Y1, . . . , Yn] in an obvious way.

Because A is commutative, Aop = A, and we may take

Aen = A
⊗

k
Aop = A

⊗
k
A(27.6.2)

to be a tensor product of A with itself over k, as in Section 26.1. This is
isomorphic to a tensor product

(k[X1, . . . , Xn])
⊗

k
(k[Y1, . . . , Yn])(27.6.3)

of k[X1, . . . , Xn] and k[Y1, . . . , Yn] over k, using the isomorphism mentioned in
the preceding paragraph.

Consider the algebra

k[X1, . . . , Xn, Y1, . . . , Yn](27.6.4)

of formal polynomials in X1, . . . , Xn, Y1, . . . , Yn with coefficients in k. There is
an obvious mapping

from (k[X1, . . . , Xn])× (k[Y1, . . . , Yn]) into (27.6.4)(27.6.5)

defined by multiplication, and which is bilinear over k. Using this mapping,
(27.6.4) satisfies the requirements of a tensor product as in (27.6.3). More
precisely, multiplication in (27.6.4) corresponds to multiplication in (27.6.3), as
a tensor product of associative algebras, as in Section 4.1.

Let ρ be the mapping from Aen onto A defined in Section 26.1. This is
an algebra homomorphism in this case, because A is commutative. If Aen is
identified with (27.6.4) as before, then ρ corresponds to the mapping

η from (27.6.4) into k[X1, . . . , Xn](27.6.6)

in which Yj is replaced with Xj for each j = 1, . . . , n, as on p180 of [3].
The space

A[Y1, . . . , Yn] = (k[X1, . . . , Xn])[Y1, . . . , Yn](27.6.7)
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of formal polynomials in Y1, . . . , Yn with coefficients in (27.6.1) may be defined
as in Section 4.3. This is a commutative associative algebra over A, as well as
over k. This can be identified with (27.6.4), as an algebra over k, in a reasonable
way. With this identification, η corresponds to the homomorphism

from (27.6.7) into (27.6.1)(27.6.8)

in which an element of (27.6.7) is evaluated at (X1, . . . , Xn), as an element of
An.

We also have a homomorphism

η0 from (27.6.7) into (27.6.1)(27.6.9)

which sends an element of (27.6.7) to its constant term. Observe that there is
an automorphism

Φ on (27.6.7),(27.6.10)

as an algebra over A, such that

η ◦ Φ = η0,(27.6.11)

as in the previous section. Here η is considered as a homomorphism as in
(27.6.8).

This tells us a lot about Aen as a left augmented ring with respect to ρ, as
on p180 of [3].

27.7 Some remarks about free algebras

Let k be a commutative ring with a multiplicative identity element, and let

E = {x1, . . . , xm}(27.7.1)

be a finite set with m distinct elements x1, . . . , xm for some positive integer m.
Using E, we can get the free semigroup Σ(E) generated by E, as in Section 4.10.
This leads to the corresponding semigroup algebra k(Σ(E)), as in Sections 4.9
and 4.10, which is an associative algebra over k. This is the same as the free
algebra

Fk(x1, . . . , xm)(27.7.2)

over k generated by x1, . . . , xm, as on p146, 148 of [3].
Let V be a module over k that is a two-sided module over (27.7.2). Suppose

that ϕ is a crossed homomorphism from (27.7.2) into V , as in Section 26.3. It
is easy to see that

ϕ is uniquely determined by its values at x1, . . . , xm.(27.7.3)

One can check that

the values of ϕ at x1, . . . , xm may be arbitrary elements of V.(27.7.4)
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This corresponds to the first part of Exercise 2 on p181 of [3].

Let A be (27.7.2), and let Aen be a corresponding enveloping algebra, as in
Section 26.1. Also let ρ be the homomorphism from Aen onto A, as left modules
over Aen, defined previously, and put J = ker ρ, as in Section 26.2. We may
consider J as a two-sided module over A, because it is a left ideal in Aen, and
thus a left module over Aen. Remember that j(a) = a⊗ eopA − eA ⊗ aop defines
a crossed homomorphism from A into J , as a two-sided module over A. Here
eA is the multiplicative identity element in A, which corresponds to the identity
element in Σ(E).

If h is a homomorphism from J into V , as two-sided modules over A, then
h◦j is a crossed homomorphism from A into V , as in Section 26.3. We have also
seen that h is uniquely determined by h◦ j, because J is generated by j(A) as a
left module over A, as in Section 26.2. It follows that h is uniquely determined
by its values at the elements

j(xl) = xl ⊗ eopA − eA ⊗ xl(27.7.5)

of J , with l = 1, . . . ,m, because of (27.7.3).

Remember that every crossed homomorphism from A into V can be ex-
pressed as h◦ j for some homomorphism h from J into V , as two-sided modules
over A, as in Section 26.3. This and (27.7.4) imply that the values of such a
homomorphism h at the elements (27.7.5) of J may be arbitrary elements of V .

The second part of Exercise 2 on p181 of [3] states that J is freely generated,
as a left module over Aen, by the elements of the form (27.7.5). To see that J
is generated by these elements, as a left module over Aen, one can consider the
quotient of J by the submodule, as a left module over Aen, generated by these
elements. The corresponding quotient mapping is equal to 0 at these elements,
by construction, and is thus equal to 0, because it is uniquely determined by
its values at these elements, as before. Alternatively, one can check that j(A)
is contained in this submodule, because j is a crossed homomorphism from A
into J .

Of course, Aen is a left module over itself, and one can use this to consider
Aen as a two-sided module over A. The values of a homomorphism h from J
into Aen, as two-sided modules over A, or equivalently as left modules over Aen,
at the elements (27.7.5) of J may be arbitrary elements of Aen, as before. In
particular, for each r = 1, . . . ,m, there is such a homomorphism hr that is equal
to eA ⊗ eopA at (27.7.5) when l = r, and equal to 0 otherwise. This implies that
J is freely generated by these elements, as a left module over Aen.

27.8 More on semigroup algebras

Let k be a ring with a multiplicative identity element, and let Σ be a semigroup,
with the semigroup operation expressed multiplicatively, and with an identity
element eΣ. Also let k(Σ) be the corresponding semigroup algebra of Σ with
coefficients in k, as in Section 4.9, and let V be a module over k.
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Remember that an action of Σ on V on the left or right with suitable prop-
erties makes V into a left or right module over Σ, as in Section 4.8. This
corresponds to V being a left or right module over k(Σ), as appropriate, as in
Section 4.9.

Let us say that V is a two-sided module over Σ if V is both a left and right
module over Σ, and that the actions of Σ on V on the left and on the right
commute with each other. This corresponds exactly to V being a two-sided
module over k(Σ).

Let Σop be the opposite semigroup of Σ, as in Section 4.8. Also let A be
an asociative algebra over k with a multiplicative identity element eA, and let
Aop be the corresponding opposite algebra. It is easy to seee that the opposite
algebra

(A(Σ))op(27.8.1)

of A(Σ) can be identified with the semigroup algebra

Aop(Σop)(27.8.2)

of Σop with coefficients in Aop. In particular, the opposite algebra (k(Σ))op of
k(Σ) can be identified with the semigroup algebra

k(Σop)(27.8.3)

of Σop with coefficients in k, because k is commutative.
If V is a two-sided module over Σ, then V may be considered as a left module

over Σ and Σop, where the actions of Σ and Σop on V commute with each other.
These actions can be combined to get an action of the product semigroup

Σ× Σop(27.8.4)

on V on the left, as in Section 25.14. Similarly, V may be considered as a
right module over Σ and Σop, where these actions on V commute with each
other. These actions can be combined, to get an action of (27.8.4) on V on
the right. Conversely, if V is a left or right module over (27.8.4), then we get
commuting actions of Σ and Σop on the left or right, as appropriate, and V may
be considered as a two-sided module over Σ.

Remember that an enveloping algebra k(Σ)en of k(Σ) is obtained from a
tensor product of k(Σ) and k(Σ)op over k, as in Section 26.1. This may be
identified with a tensor product of k(Σ) and k(Σop), as before. The semigroup
algebra

k(Σ× Σop)(27.8.5)

of (27.8.4) with coefficients in k satisfies the requirements of such a tensor prod-
uct, as in Section 25.14.

Let V be a two-sided module over Σ, and thus over k(Σ). Let us say that
v ∈ V is invariant as an element of V , as a two-sided module over Σ, if

x · v = v · x(27.8.6)
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for every x ∈ Σ. This is equivalent to the condition that v be invariant as an
element of V , as a two-sided module over k(Σ), as in Section 26.6.

Note that a homomorphism f from k(Σ) into any module V over k, as
modules over k, is uniquely determined by its restriction to Σ, and that any
V -valued function on Σ occurs in this way. If V is a two-sided module over Σ,
and thus k(Σ), then f is a crossed homomorphism, as in Section 26.3, if and
only if

f(x y) = x · f(y) + f(x) · y(27.8.7)

for every x, y ∈ Σ.
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Chapter 28

Supplemented algebras

28.1 Basic notions

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element eA. Of
course, k may be considered as an algebra over itself.

Suppose that ε is a homomorphism from A into k, as algebras over k, with
ε(eA) = 1. Under these conditions, A together with ε is called a supplemented
algebra, as on p182 of [3].

Note that

ε(t eA) = t ε(eA) = t(28.1.1)

for every t ∈ k. In particular, ε(A) = k, so that A may be considered as a left
and right augmented ring, with augmentation homomorphism ε, as in Sections
24.1 and 24.2.

Using (28.1.1), we get that t 7→ t eA is a one-to-one mapping from k into
A. Let I be the kernel of ε, which is a two-sided ideal in A. Observe that A
corresponds to the direct sum of

{t eA : t ∈ k}(28.1.2)

and I, as a module over k, as on p182 of [3].

The augmentation module of A as a left or right augmented ring is k, con-
sidered as a left or right module over A, as appropriate, using ε. If V is any
module over k, then V may be considered as a left module εV over A, with

a · v = ε(a) v(28.1.3)

for every a ∈ A and v ∈ V , as on p183 of [3]. Similarly, V may be considered
as a right module Vε over A, with

v · a = ε(a) v(28.1.4)

633
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for every a ∈ A and v ∈ V . In both cases, we say that the corresponding actions
or operators of A on V are trivial, as on p183 of [3]. Thus the actions of A on
k mentioned earlier are trivial in this sense.

If V is already a right module over A, then εV is a two-sided module over
A, as in Section 26.1. Similarly, if V is already a left module over A, then Vε
is a two-sided module over A. More precisely, the actions of A on V should be
linear over k in both cases, and thus commute with the trivial actions of A on
V . It follows that εV or Vε may be considered as a module over an enveloping
algebra Aen of A, as appropriate, as in Section 26.1. This corresponds to some
remarks on p183 of [3].

One can use this to reinterpret previous definitions for two-sided modules in
the case of one-sided modules, as on p183 of [3]. Some instances of this will be
discussed in the next sections.

28.2 Some related modules

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let W be a module over k that is a left module over A, so that Wε is a
two-sided module over A. Let us say that w ∈ W is invariant if w is invariant
as an element of Wε, as a two-sided module over A, as in Section 26.6. This
means that for every a ∈ A,

a · w = w · a = ε(a)w,(28.2.1)

as before.
Let WA be the collection of invariant elements of W . It is easy to see that

this is a submodule of W , as a module over k, and in fact as a module over A,
as on p183 of [3]. More precisely, A acts trivially on WA, in the sense described
in the previous section, by construction. This is the largest submodule of W on
which A acts trivially.

Observe that
I = {a− ε(a) eA : a ∈ A}.(28.2.2)

One can use this to check that

WA = {w ∈W : a · w = 0 for every a ∈ I},(28.2.3)

as on p183 of [3].
Let

HomA(k,W )(28.2.4)

be the space of homomorphisms from k into W , as modules over k, and left
modules over A. These homomorphisms correspond to homomorphisms from A
intoW , as modules over k, and left modules over A, that are equal to 0 on I. Of
course, homomorphisms from A into W , as left modules over A, correspond to
elements of W in a natural way. It follows that (28.2.4) corresponds to WA in a
natural way, because of (28.2.3), as on p183 of [3]. This could also be considered
as a version of a remark in Section 24.1, as in [3].
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Let H0(A,Wε) be as in Section 26.5. This is isomorphic to WA, as a module
over k, as in Section 26.6. This corresponds to (1) on p183 of [3].

Now let V be a module over k that is a right module over A. Consider the
subset V · I of V consisting of finite sums of elements of the form v · a, where
v ∈ V and a ∈ I. This is a submodule of V , as a module over k, and in fact as
a module over A. The quotient

VA = V/(V · I)(28.2.5)

is a module over k, and a right module over A.
More precisely, A acts trivially on VA, in the sense described in the previous

section, by construction. In fact, V · I is the smallest submodule of V , as a
module over A, such that A acts trivially on the quotient, as on p183 of [3]. Let

V
⊗

A
k(28.2.6)

be a tensor product of V and k over A, where k is considered as a left module
over A, as in the previous section. Note that (28.2.6) is isomorphic to VA as a
module over k, as in Sections 24.1 and 24.2.

Remember that εV is a two-sided module over A, as in the previous section.
Thus V may be considered as a right module over an enveloping algebra Aen of
A, as in Section 26.1. Let J be the augmentation ideal of Aen, as an augmented
ring, as in Section 26.2. One can check that

V · I = (εV ) · J,(28.2.7)

as on p183 of [3]. This uses (28.2.2), and the description of J in Section 26.2.
Let H0(A, εV ) be as in Section 26.5. This is isomorphic to

(εV )/((εV ) · J),(28.2.8)

as a module over k, as in Section 26.6. Note that (28.2.8) is isomorphic to
(28.2.5), as a module over k, because of (28.2.7). This corresponds to (2) on
p183 of [3].

28.3 Crossed homomorphisms into Wε

We continue with the same notation and hypotheses as in the previous two
sections. Let W be a module over k that is a left module over A again, so
that Wε is a two-sided module over A. A homomorphism f from A into Wε, as
modules over k, is a crossed homomorphism if

f(a b) = a · f(b) + f(a) · b = a · f(b) + ε(b) f(a)(28.3.1)

for every a, b ∈ A, as in Section 26.3. We may now consider this as a crossed
homomorphism from A into W , as on p183 of [3].
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Let U be another module over k that is a left module over U , so that Uε is a
two-sided module over A. If g is a homomorphism from U into W , as modules
over k and left modules over A, then g is a homomorphism from Uε into Wε,
as two-sided modules over A. If f0 is a crossed homomorphism from A into U ,
then

g ◦ f0 is a crossed homomorphism from A into W,(28.3.2)

as in Section 26.3.
If a ∈ A, then put

p(a) = a− ε(a) eA,(28.3.3)

which is an element of I. Note that p(a) = a when a ∈ I. If a, b ∈ I, then

p(a b) = a b− ε(a b) eA = a b− ε(a) ε(b) eA = a p(b) + ε(b) p(a).(28.3.4)

Of course, I may be considered as a two-sided module over A, because I is
a two-sided ideal in A. Let IL be I, considered as a module over k, and a left
module over A. Thus (IL)ε is a two-sided module over A, although the action
of A on the right is not normally the usual one.

It follows from (28.3.4) that

p is a crossed homomorphism from A into IL.(28.3.5)

Let g be a homomorphism from IL into W , as left modules over A. Observe
that

g ◦ p is a crossed homomorphism from A into W,(28.3.6)

by (28.3.2).
If f is a crossed homomorphism from A into W , then f(eA) = 0, as in

Section 26.3. This implies that

f(p(a)) = f(a)− ε(a) f(eA) = f(a)(28.3.7)

for every a ∈ A. In particular,

f is uniquely determined by its restriction to I.(28.3.8)

If f is a crossed homomorphism from A into W , then

the restriction of f to I defines a homomorphism from IL into W,(28.3.9)

as modules over k, and left modules over A. Combining this with (28.3.7), we
get that f can be expressed as

f = g ◦ p,(28.3.10)

where g is a homomorphism from IL intoW , as modules over k, and left modules
over A. This representation is unique, because it implies that

g(a) = g(p(a)) = f(a)(28.3.11)
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for every a ∈ I. This corresponds to a remark on p183 of [3].
If w ∈ W , then a 7→ a · w defines a homomorphism from A into W , as

modules over k, and left modules over A. This implies that

a 7→ p(a) · w = a · w − ε(a)w(28.3.12)

defines a crossed homomorphism from A into W . A crossed homomorphism
of this form is said to be principal, as in Section 26.4. This is the same as a
principal crossed homomorphism from A into Wε, as a two-sided module over
A.

Remember that a homomorphism from A into W , as left modules over A, is
of the form a 7→ a ·w for a unique w ∈W . Thus a crossed homomorphism from
A into W is principal exactly when it can be expressed as in (28.3.10), where g
is a homomorphism from A into W , as left modules over A. This corresponds
to another remark on p183 of [3].

The set of all crossed homomorphisms from A into W is a submodule of the
space Homk(A,W ) of all homomorphisms from A into W , as modules over k,
as in Section 26.3. We have an isomorphism from

HomA(IL,W )(28.3.13)

onto the space of crossed homomorphisms from A into W , as modules over k,
defined by composition with p, as before. Similarly, there is an isomorphism
from

HomAen(J,Wε)(28.3.14)

onto the space of crossed homomorphisms from A into Wε, as modules over
k, as in Section 26.3. It follows that (28.3.13) and (28.3.14) are isomorphic as
modules over k, as on p184 of [3].

The map from w ∈W to (28.3.12) is clearly linear over k. In particular, the
set of all principal crossed homomorphisms from A into W is a submodule of
the space of all crossed homomorphisms from A into W , as a module over k.

Consider the obvious homomorphism

from HomA(A,W ) into HomA(IL,W ),(28.3.15)

which sends a homomorphism from A into W , as left modules over A, to its
restriction to I. The image of this homomorphism corresponds to the space of
all principal crossed homomorphisms from A into W , under the isomorphism
from (28.3.13) onto the space of all crossed homomorphisms from A into W
mentioned earlier.

This leads to an isomorphism from the cokernel of the homomorphism as in
(28.3.15) onto

the quotient of the space of all crossed homomorphisms(28.3.16)

from A into W by the submodule consisting of all

principal crossed homomorphisms from A into W,
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as a module over k. Note that the cokernel of the homomorphism as in (28.3.15)
is also isomorphic to

the first cohomology group of A as a left augmented ring(28.3.17)

with coefficients in W,

as in Section 24.5. Thus (28.3.16) is isomorphic to (28.3.17), as modules over
k, as mentioned on p184 of [3].

Let H1(A,Wε) be as in Section 26.5. This is isomorphic to (28.3.16), as
modules over k, as in Section 26.6. It follows that (28.3.17) is isomorphic to
H1(A,Wϵ), as modules over k, as in (3) on p184 of [3].

28.4 Modules with trivial operators

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k, with multiplicative identity element eA. Suppose
that A is a supplemented algebra over k, with corresponding homomorphism ε
from A onto k, as in Section 28.1. Let I be the kernel of ε, as before.

Let V be a module over k that is a right module over A with trivial operators,
so that v ·a = ε(a) v for every a ∈ A and v ∈ V , as in Section 28.1. Let V

⊗
A k

be a tensor product of V and k over A, where k is considered as a left module
over A using ε, as before. This is isomorphic to VA = V/(V · I), as a module
over k, as in Section 28.2. In this case,

V · I = {0},(28.4.1)

by hypothesis. This means that V
⊗

A k is isomorphic to V , as a module over k.
This is the same as saying that the 0th homology group of A as a left augmented
ring with coefficients in V is isomorphic to V . This corresponds to a remark on
p184 of [3].

Similarly, let W be a module over k that is a left module over A with trivial
operators, so that the submodule WA of invariant elements of W is equal to W .
This implies that the space HomA(k,W ) of homomorphisms from k into W , as
modules over k, and left modules over A, is isomorphic to W in a natural way,
as a module over k, as in Section 28.2. This means that the 0th cohomology
group of A as a left augmented ring with coefficients in W is isomorphic to W ,
as in Section 24.5. This corresponds to another remark on p184 of [3].

In this case, a homomorphism f from A into W , as modules over k, is a
crossed homomorphism if

f(a b) = ε(a) f(b) + ε(b) f(a)(28.4.2)

for every a, b ∈ A. The only principal crossed homomorphism is equal to 0 on
A. Thus the quotient (28.3.16) is the same as the space of all crossed homomor-
phisms from A into W , as on p184 of [3].
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Let V be a module over k that is a right module over A with trivial operators
again, and let

V
⊗

A
I(28.4.3)

be a tensor product of V and I over A, where I is considered as a left module
over A. There is a natural homomorphism from (28.4.3) into V , as modules over
k, that comes from the mapping (v, b) 7→ v · b from V × I into V , as in Section
24.3. This homomorphism is equal to 0 here, because V is a right module over
A with trivial operators. This means that the one-dimensional homology of A
as a left augmented ring with coefficients in V is isomorphic to (28.4.3), as in
Section 24.3.

Remember that V satisfies the requirements of a tensor product V
⊗

k k of
V and k over k, as a module over k. One can check that this is compatible with
the action of A on the right on V

⊗
k k that is obtained from the action of A

on k using ε. Thus (28.4.3) may be identified with a tensor product of the form(
V
⊗

k
k
)⊗

A
I.(28.4.4)

There is a natural isomorphism between (28.4.4) and a tensor product of the
form

V
⊗

k

(
k
⊗

A
I
)
,(28.4.5)

where k is considered as a right module over A, as in Section 1.12. Remember
that I2 = I I consists of finite sums of products of the form a b, with a, b ∈ I.
This is a submodule of I, as a left and right module over A, and we have seen
that there is an isomorphism

from I/I2 onto k
⊗

A
I,(28.4.6)

as left and right modules over A, as in Section 24.4. Thus we get that (28.4.3)
is isomorphic to

V
⊗

k
(I/I2),(28.4.7)

as on p184 of [3].

28.5 Homomorphisms and supplemented alge-
bras

Let k, k1 be commutative rings with multiplicative identity elements 1k, 1k1 ,
respectively, and let A, B be associative algebras over k, k1, with multiplicative
identity elements eA, eB , respectively. Suppose that ψ is a ring homomorphism
from k into k1, with ψ(1k) = 1k1 , and that ϕ is a ring homomorphism from A
into B, with ϕ(eA) = eB , and

ϕ(t a) = ψ(t)ϕ(a)(28.5.1)
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for every a ∈ A and t ∈ k.
Suppose that A, B are in fact supplemented algebras, with corresponding

homomorphisms εA, εB from A, B onto k, k1, respectively, as in Section 28.1.
If

εB ◦ ϕ = ψ ◦ εA,(28.5.2)

then the pair ϕ, ψ is considered as a map or homomorphism between supple-
mented algebras, as on p184 of [3]. Of course, this implies that

ϕ(ker εA) ⊆ ker εB .(28.5.3)

This means that we get a homomorphism from A into B as left or right aug-
mented rings, with respect to the augmentations defined by εA, εB , as in Section
24.9. This corresponds to a remark on p184 of [3].

If V is a right module over B, then V may be considered as a right module
over A, using ϕ. In this case, we can use ϕ to get a homomorphism from the
homology of A into the homology of B, as left augmented rings, with coefficients
in V , as in Section 24.3. Similarly, if Z is a left module over B, then Z may
be considered as a left module over A, using ϕ. This leads to a homomorphism
from the cohomology of B into the cohomology of A, as left augmented rings,
with coefficients in Z, as before. This corresponds to another remark on p184
of [3].

In particular, we may be interested in the case where k = k1 and ψ is the
identity mapping on k, as on p184 of [3].

28.6 Homomorphisms from tensor products

Let k be a commutative ring with a multiplicative identity element, and let A,
C be associative algebras over k with multiplicative identity elements eA, eC ,
respectively. Suppose that A is a supplemented algebra, with corresponding
homomorphism εA from A onto k, as in Section 28.1.

Let C
⊗

k A be a tensor product of C and A over k, which may be considered
as an associative algebra over k, as in Section 4.1. Remember that C satisifes
the requirements of a tensor product of C and k over k, as a module over k.
One can check that this is also compatible with multiplication on C and on
C
⊗

k k, as a tensor product of associative algebras over k. Using this, the
identity mapping on C, and εA, we get a homomorphism

εC
⊗

k
A from C

⊗
k
A onto C,(28.6.1)

as algebras over k. Alternatively,

εA eC(28.6.2)

may be considered as a homomorphism from A into the center of C, as algebras
over k. One can use the identity mapping on C and (28.6.2) to get a unique
homomorphism as in (28.6.1), as algebras over k, such that

εC
⊗

k
A(c⊗ a) = εA(a) c(28.6.3)
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for every a ∈ A and c ∈ C, as in Section 4.1. Remember that eC ⊗ eA is the
multiplicative identity element in C

⊗
k A, and observe that

εC
⊗

k
A(eC ⊗ eA) = eC ,(28.6.4)

because εA(eA) = 1.
We may consider C

⊗
k A as a left or right augmented ring, with augmenta-

tion homomorphism εC
⊗

k
A and augmentation module C, as in Section 25.11.

This is mentioned at the bottom of p184 of [3].
As before,

ϕ(a) = eC ⊗ a(28.6.5)

defines a homomorphism from A into C
⊗

k A, as algebras over k. Of course,

ψ(t) = t eC(28.6.6)

defines a homomorphism from k into C, as algebras over k. If a ∈ A, then

εC
⊗

k
A(ϕ(a)) = εC

⊗
k
A(eC ⊗ a) = εA(a) eC = ψ(εA(a)).(28.6.7)

In particular, ϕ maps the kernel of εA into the kernel of εC
⊗

k
A. This implies

that ϕ is a homomorphism from A into C
⊗

k A as augmented rings, as in Section
24.9.

Let V be a module over k that is a right module over C
⊗

k A. This means
that V is a right module over A and C, where the actions of A and C commute
with each other. We can use ϕ to get a homomorphism

from the homology of A into the homology of C
⊗

k
A,(28.6.8)

as left augmented rings, with coefficients in V,

as in Section 25.12. This corresponds to (5) on p185 of [3].
Similarly, let Z be a module over k that is a left module over C

⊗
k A, which

means that Z is a left module over A and C, where the actions of A and C on
Z commute with each other. We can use ϕ to get a homomorphism

from the cohomology of C
⊗

k
A into the cohomology of A,(28.6.9)

as left augmented rings, with coefficients in Z,

as in Section 25.12 again. This corresponds to (5a) on p185 of [3].
Suppose now that

A is projective as a module over k.(28.6.10)

Note that the augmentation module εA(A) = k of A is automatically projective
as a module over k in this case. This implies that

the homomorphisms as in (28.6.8) and (28.6.9) are isomorphisms,(28.6.11)
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as in Section 25.12. If X is a projective resolution of k, as a left module over A
using εA, then we also get that

C
⊗

k
X is a projective resolution of C,(28.6.12)

as a left module over C
⊗

k
A,

as before. This corresponds to Proposition 1.1 on p185 of [3].
If C is a commutative algebra over k, then C

⊗
k A may be considered as a

commutative algebra over C. In this case,

C
⊗

k
A may be considered as a supplemented algebra,(28.6.13)

as an algebra over C, using the homomorphism εC
⊗

k
A, as on p185 of [3].

28.7 Connection with Aen

Let k be a commutative ring with a multilpicative identity element, and let A be
an associative algebra over k, with a multiplicative identity element eA. Suppose
that A is a supplemented algebra over k, with corresponding homomorphism ε
from A onto k, as in Section 28.1.

Remember that Aop is the opposite algebra of A, and let Aen = A
⊗

k A
op

be a tensor product of A and Aop over k, considered as an algebra over k, as in
Section 26.1. Also let ρ be the homomorphism from Aen onto A, as left modules
over Aen, defined in Section 26.1.

Observe that
(a1, a

op
2 ) 7→ ε(a2) a1(28.7.1)

defines a mapping from A× Aop into A that is bilinear over k. This leads to a
unique homomorphism

ϕ from Aen into A,(28.7.2)

as modules over k, such that

ϕ(a1 ⊗ aop2 ) = ε(a2) a1(28.7.3)

for every a1, a2 ∈ A. It is easy to see that this defines a homomorphism as in
(28.7.2), as algebras over k.

If a1, a2 ∈ A, then

ε(ϕ(a1 ⊗ aop2 )) = ε(ε(a2) a1) = ε(a1) ε(a2)(28.7.4)

= ε(a1 a2) = ε(ρ(a1 ⊗ aop2 )).

This implies that
ε ◦ ϕ = ε ◦ ρ,(28.7.5)

as mappings from Aen into k. It follows that

ϕ(ker ρ) ⊆ ker ε.(28.7.6)
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This means that ϕ is a homomorphism as in (28.7.2), as augmented rings with
respect to the augmentations defined by ρ and ε, as in Section 24.9. This
corresponds to some remarks on p185 of [3].

Let V be a module over k that is a right module over A. We may consider
V as a right module over Aen, using ϕ, as in Section 2.9. The action of Aen

on V on the right corresponds to commuting actions of A and Aop on V on the
right, as in Section 4.2. It is easy to see that the action of A on V on the right
obtained from this action of Aen on V on the right is the same as the action of
A on V as a right module over A. The action of Aop on V on the right obtained
from this action of Aen on V on the right is the same as the trivial action on V
defined using ε, as in Section 28.1.

This action of Aop on V on the right corresponds exactly to an action of A
on V on the left, as usual. This action of A on V on the left is the same as the
trivial action defined using ε, as before. This makes V into a two-sided module
over A, corresponding to V as a right module over Aen, as in Section 26.1. This
is the same as εV as a two-sided module over A, as in Section 28.1, with the
trivial action of A on V on the left, and the action of A on V as a right module
over A. Thus we may use εV to refer to V as a right module over Aen in this
way.

If n is a nonnegative integer, then we can use ϕ to get a homomorphism

from Hn(A,ε V ) into the nth homology group of A,(28.7.7)

as a left augmented ring, with coefficients in V,

where Hn(A,ε V ) is as in Section 26.5. This follows from the discussion in
Section 24.9, because Hn(A,ε V ) is the same as the nth homology group of Aen,
as a left augmented ring, with coefficients in εV , as a right module over Aen.
This corresponds to some more remarks on p185 of [3].

Similarly, let Z be a module over k that is a left module over A. We may
consider Z as a left module over Aen, using ϕ, as in Section 2.9 again. The
action of Aen on Z on the left corresponds to commuting actions of A and Aop

on Z on the left, as before. The action of A on Z on the left obtained from
the action of Aen on Z on the left is the same as the action of A on Z as a left
module over A. The action of Aop on Z on the left obtained from the action
of Aen on Z on the left is the same as the trivial action on Z defined using ε,
because of the way that ϕ is defined.

This action of Aop on Z on the left corresponds to an action of A on Z on
the right. This action of A on Z on the right is the same as the trivial action
of A on V defined using ε. This makes Z into a two-sided module over A,
which corresponds to Z as a left module over Aen. This is the same as Zε as a
two-sided module over A, as in Section 28.1. We may use Zε to refer to Z as a
left module over Aen in this way, as before.

We can use ϕ to get a homomorphism

from the nth cohomology group of A, as a left augmented ring,(28.7.8)

with coefficients in Z, into Hn(A,Zε),
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for each n ≥ 0, where Hn(A,Zε) is as in Section 26.5. This follows from the
discussion in Section 24.9 again, as on p185 of [3].

If
A is projective as a module over k,(28.7.9)

then Theorem 2.1 on p185 of [3] states that

the homomorphisms as in (28.7.7) and (28.7.8) are isomorphisms.(28.7.10)

We shall discuss this further in the next two sections.

28.8 A helpful isomorphism

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Also let εA be as in Section 28.1, where A is considered as a module over
k, and a right module over itself. Thus εA is a two-sided module over A, where
the left action of A on εA is the trivial action. Of course, we may consider εA
as a left or right module over Aen, as in Section 26.1.

Suppose that W is another module over k that is a two-sided module over
A, so that W may be considered as a left or right module over Aen as well. Let

εA
⊗

Aen
W(28.8.1)

be a tensor product of εA, as a right module over Aen, and W , as a left module
over Aen, over Aen. Remember that k may be considered as a left or right
module over A, using ε, as in Section 28.1. Let

W
⊗

A
k(28.8.2)

be a tensor product of W , as a right module over A, and k, as a left module
over A, over A.

Consider the mapping from εA×W into W
⊗

A k defined by

(a,w) 7→ (a ·A w)⊗A 1k,(28.8.3)

where 1k is the multiplicative identity element in k. More precisely, if a ∈ εA
and w ∈ W , then a ·A w ∈ W is defined using the action of a as an element of
A on W on the left. The mapping defined by (28.8.3) is clearly bilinear over k.
If x ∈ Aen, then we would like to check that

((a ·Aen x) ·A w)⊗A 1k = (a ·A (x ·Aen w))⊗A 1k,(28.8.4)

where a ·Aen x is defined using the action of Aen on A on the right, and x ·Aen w
is defined using the action of Aen on W on the left.

It suffices to verify (28.8.4) when x ∈ Aen is of the form x1 ⊗k xop2 , where
x1, x2 ∈ A. In this case, (28.8.4) is the same as saying that

((x2 ·A (a ·A x1)) ·A w)⊗A 1k = (a ·A ((x1 ·A w) · x2))⊗A 1k,(28.8.5)



28.8. A HELPFUL ISOMORPHISM 645

using the various actions of A on εA and W on the left and right. The left side
is equal to

(ε(x2) (a x1) ·A w)⊗A 1k = ((a x1) ·A w)⊗A ε(x1)(28.8.6)

= ((a x1) ·A w)⊗A (x1 ·A 1k),

because the actions of A on εA and k on the left are trivial. This is equal to

(((a x1) ·A w) ·A x1)⊗A 1k,(28.8.7)

because of the way that W
⊗

A k is defined. It is easy to see that this is equal
to the right side of (28.8.5), as desired.

It follows that there is a unique homomorphism

τ from εA
⊗

Aen
W into W

⊗
A
k,(28.8.8)

as modules over k, such that

τ(a⊗Aen w) = (a ·A w)⊗A 1k(28.8.9)

for every a ∈ εA and w ∈W . Lemma 2.2 on p186 of [3] states that

τ is an isomorphism.(28.8.10)

To show this, we shall find an inverse mapping σ.
Consider the mapping from W × k into εA

⊗
Aen W defined by

(w, t) 7→ (t eA)⊗Aen w.(28.8.11)

Note that this mapping is bilinear over k. We would like to check that

(t eA)⊗Aen (w ·A a) = ((a ·A t) eA)⊗Aen w(28.8.12)

for every a ∈ A, w ∈W , and t ∈ k.
Of course, eA ⊗k aop ∈ Aen, and

w ·A a = (eA ⊗k aop) ·Aen w.(28.8.13)

Using this, we get that the left side of (28.8.12) is equal to

(t eA)⊗Aen ((eA ⊗k aop) · w) = ((t eA) · (eA ⊗k aop))⊗Aen w,(28.8.14)

because of the way that εA
⊗

Aen W is defined. This is equal to

(t ε(a) eA)⊗Aen w,(28.8.15)

because the action of A on εA on the left is trivial. This is the same as the right
side of (28.8.12), as desired.
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Thus there is a unique homomorphism

σ from W
⊗

A
k into εA

⊗
Aen

W,(28.8.16)

as modules over k, such that

σ(w ⊗A t) = (t eA)⊗Aen w(28.8.17)

for every w ∈W and t ∈ k. If a ∈ εA and w ∈W , then

σ(τ(a⊗Aen w)) = σ((a ·A w)⊗A 1k) = eA ⊗Aen (a ·A w).(28.8.18)

Observe that a⊗ eopA ∈ Aen, and that

a ·A w = (a⊗k eopA ) ·Aen w.(28.8.19)

It follows that (28.8.18) is equal to

eA ⊗Aen ((a⊗k eopA ) ·Aen w) = (eA ·Aen (a⊗ eopA ))⊗Aen w(28.8.20)

= a⊗Aen w.

This implies that σ ◦ τ is the identity mapping on εA
⊗

Aen W .
Similarly, if w ∈W and t ∈ k, then

τ(σ(w ⊗A t)) = τ((t eA)⊗Aen w)(28.8.21)

= ((t eA) ·A w)⊗A 1k = w ⊗A t.

This means that τ ◦ σ is the identity mapping on W
⊗

A k. Thus σ and τ are
inverses of each other, as on p186 of [3].

28.9 Some verifications

We continue with the same notation and hypotheses as in the previous two
sections. In other to show (28.7.10), we want to use the Mapping Theorem, as
in Section 24.10. In this discussion, Aen plays the role of A in Sections 24.9
and 24.10, and A plays the role of B before. Similarly, A plays the role of QA
before, as a left module over Aen, and k plays the role of QB , as a left module
over A.

The homomorphism ϕ from Aen into A in Section 28.7 plays the same role
as the homomorphism ϕ from A into B in Section 24.3. The mapping ψ from
QA into QB before corresponds to ε here.

In Sections 24.9 and 24.10, B was sometimes considered as a right module
over A, using the homomorphism ϕ, as in Section 2.9. This corresponds to
considering A as a right module over Aen using ϕ here. It is easy to see that
this is the same as εA, considered as a right module over Aen, as in the previous
section. Of course, this is not normally the same as considering A as a right
module over Aen in the usual way.
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Thus the analogue of B
⊗

AQA in Section 24.9 is a tensor product

εA
⊗

Aen
A,(28.9.1)

where A is considered as a left module over Aen in the usual way. If we take
W = A in the previous section, then we get an isomorphism τ from (28.9.1)
onto A

⊗
A k, which can be identified with k as a left module over A in the usual

way. This corresponds to the first condition that we need from Section 24.10,
as on p186 of [3].

To deal with the second condition that we need from Section 24.10, we let
X be a projective resolution of A, as a left module over Aen. This corresponds
to XA in Section 24.9. Also let

εA
⊗

Aen
X(28.9.2)

be a tensor product of εA and X over Aen, which corresponds to B
⊗

AXA in
Section 24.9. This may be considered as a complex over k, as in Section 7.5.
The second condition that we need from Section 24.10 is that

H
(
εA

⊗
Aen

X
)
n
= {0}(28.9.3)

for every n > 0.
Of course, we may consider X as a two-sided module over A, because it is a

left module over Aen. Let
X
⊗

A
k(28.9.4)

be a tensor product of X, as a right module over A, and k, as a left module over
A, over A. This may be considered as a complex over k too, as in Section 7.5.

If we take W = X in the previous section, then we get an isomorphism τ
from (28.9.2) onto (28.9.4), as modules over k. It is easy to see that τ is of
degree 0, and in fact an isomorphism from (28.9.2) onto (28.9.4), as complexes
over k. This induces an isomorphism between the homology groups of these
complexes, so that (28.9.3) is equivalent to

H
(
X
⊗

A
k
)
n
= {0}(28.9.5)

for every n > 0, as on p186 of [3].
Note thatXj is projective as a left module over Aen for each j, by hypothesis.

If
A is projective as a module over k,(28.9.6)

then it follows that Xj is projective as a left module over Aop for each j, as in
Section 25.7, because Aen = A

⊗
k A

op. Equivalently, this means that

Xj is projective as a right module over A(28.9.7)

for each j, as on p186 of [3].
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By hypothesis, X is an acyclic left complex over A, as a left module over
Aen. It is easy to see that X may be considered as an acyclic left complex over
A, as a left module over Aop, and thus as a right module over A. It follows from
this and (28.9.7) that X may be considered as a projective resolution of A, as
a right module over itself.

Of course, A is projective as a right module over itself, and so we can get
another projective resolution Y of A, as a right module over itself, by taking
Y 0 = A and Y j = {0} when j 6= 0. Under these conditions, the homology groups
of X

⊗
A k are isomorphic to those of Y

⊗
A k, as in Section 10.12. Clearly

H
(
Y
⊗

A
k
)
n
= {0}(28.9.8)

for every n > 0. This implies that the second condition that we need from
Section 24.10 holds when (28.9.6) holds, as on p186 of [3].

Thus (28.7.10) holds when (28.9.6) holds, as in Section 24.10.

28.10 Some related projective resolutions

Let us continue with the same notation and hypotheses as in the previous three
sections. Let Ã be A, considered as a module over k in the usual way, as well
as a left module over A and a right module over Aen, as follows. The action of
A on itself on the left is taken to be the usual one, using multiplication in the
algebra. The action of Aen on the right is obtained using the homomorphism ϕ
from Aen onto A defined in Section 28.7, as in Section 2.9. This corresponds to

εA as a right module over Aen, as in the previous section.
One can check that these actions of A on Ã on the left, and of Aen on Ã

on the right, commute with each other. Of course, the usual actions of A on
itself on the left and right commute with each other, by associativity. The
commutativity of the two actions on Ã just mentioned basically involves the
commutativity of the usual left action of A on itself with the trivial action of A
on itself defined using ε as well. The latter can be verified using the linearity
over k of multiplication on A.

Let X be a projective resolution of A, as a left module over Aen in the usual
way, as in the previous section. A tensor product

Ã
⊗

Aen
X(28.10.1)

of Ã, as a right module over Aen, and X, as a left module over Aen, over Aen,
is the same as (28.9.2), as a module over k. We may consider (28.10.1) as a left

module over A, using the action of A on Ã on the left, because that commutes
with the action of Aen on Ã on the right, as in the preceding paragraph. This
is not normally the same as the analogous action of A on (28.9.2) on the left.

Remember that X may be considered as a two-sided module over A, and
that X

⊗
A k is a tensor product of X, as a right module over A, and k, as a

left module over A, over A, as in (28.9.4). We may consider X
⊗

A k as a left
module over A, using the left action of A on X.
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As in the previous section, we can take W = X in Section 28.8, to get an
isomorphism τ from (28.10.1) onto X

⊗
A k, as modules over k. One can check

that τ is an isomorphism from (28.10.1) onto X
⊗

A k, as left modules over A.
More precisely, (28.10.1) and X

⊗
A k may be considered as complexes over

k, as in the previous section, and in fact as complexes over A. We also have
that τ is an isomorphism from (28.10.1) onto X

⊗
A k as complexes over k, as

before, and thus as complexes over A.
Let us suppose from now on in this section that A is projective as a module

over k, as in (28.9.6). This means that the second as well as the first of the
usual conditions from Section 24.10 are satisfied, as in the previous section. It
follows that

(28.10.1) is a projective resolution of k, as a left module over A,(28.10.2)

as in Section 24.10. One can use this and the fact that τ is an isomorphism
from (28.10.1) onto X

⊗
A k, as complexes over A, to get that

X
⊗

A
k is a projective resolution of k, as a left module over A.(28.10.3)

This corresponds to the second part of Theorem 2.1 on p185 of [3].
One can also get (28.10.3) a bit more directly, using the same type of argu-

ments. Remember that k satisfies the requirements of A
⊗

A k, as a module over
k, and as a left module over A, as in Section 1.10. This implies that X

⊗
A k is

a left complex over k, as a left module over A, because X is a left complex over
A, as a left module over Aen, and thus as a left module over A.

If (28.9.6) holds, then one can check that X
⊗

A k is acyclic as a left complex
over k, as a left module over A. This uses (28.9.5) and the acyclicity of X, as a
left complex over A, as a left module over Aen, and thus over A.

Remember that Xj is projective as a left module over Aen for each j, by
hypothesis. We may consider Xj as a two-sided module over A for each j, or
equivalently a right module over Aen. One can check that Xj is projective as a
right module over Aen for each j as well.

It follows that (
X
⊗

A
k
)j

= Xj
⊗

A
k(28.10.4)

is projective as a right module over Aop
⊗

k k = Aop for each j, as in Sections
25.6 and 25.8, because k is projective as a module over itself. Equivalently, this
means that (28.10.4) is projective as a left module over A.

28.11 Standard complexes and resolutions

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with a multiplicative identity element eA. Suppose
that A is a supplemented algebra over k, with corresponding homomorphism ε
from A onto k, as in Sections 28.1 and 28.7. Let Aen = A

⊗
k A

op be a tensor
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product of A and the opposite algebra Aop over k, considered as an algebra over
k, as in Section 26.1.

Remember that A corresponds to the direct sum of

{t eA : t ∈ k}(28.11.1)

and the kernel I of ε, as a module over k, as in Section 28.1. Put

A′ = A/{t eA : t ∈ k},(28.11.2)

considered as a module over k, as in Section 26.12. It follows that

A′ is isomorphic to I,(28.11.3)

as a module over k.
Suppose for the rest of the section that

A is projective as a module over k.(28.11.4)

This implies that I is projective as a module over k, as in Section 2.7. Equiva-
lently, this means that

A′ is projective as a module over k,(28.11.5)

by (28.11.3). This corresponds to a remark on p186 of [3].
If X is a projective resolution of A, as a left module over Aen, then a tensor

product X
⊗

A k of X, as a right module over A, and k, as a left module
over A, over A, is a projective resolution of k, as a left module over A, as
in the previous section. Remember that the standard complex S(A) of A is
a projective resolution of A, as a left module over Aen, as in Section 26.10,
because of (28.11.4). Similarly, the normalized standard complex N(A) of A
is a projective resolution of A, as a left module over Aen, as in Section 26.14,
because of (28.11.5). Let

S(A, ε) = S(A)
⊗

A
k(28.11.6)

and
N(A, ε) = N(A)

⊗
A
k(28.11.7)

be tensor products of S(A), N(A), as right modules over A, and k, as a left
module over A, over A, respectively, as on p186 of [3]. Of course, we would like
to say more about how these tensor products behave, as in [3].

In particular, S(A) is a graded left module over Aen, with S(A)n = Sn(A)
when n ≥ 0, and S(A)n = {0} when n ≤ 0, as in Section 26.10, where Sn(A) is

as in Section 26.8. Let S̃n(A) be a tensor product of n copies of A over k when

n ≥ 1, and put S̃0(A) = k, as in Section 26.10. We may consider Sn(A) as a
tensor product of the form

Sn(A) = A
⊗

k
S̃n(A)

⊗
k
A(28.11.8)
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for each n ≥ 0, where the actions of A on the left and right on Sn(A) are
obtained from the actions of A on the left and on the right on the first and last
factors of A on the right side of (28.11.8), as before.

More precisely, S(A, ε) is a graded left module over A, with

S(A, ε)n = S(A)n
⊗

A
k = Sn(A)

⊗
A
k when n ≥ 0(28.11.9)

= {0} when n < 0,

as in Section 7.5. If n ≥ 0, then S(A, ε)n is isomorphic to

A
⊗

k
S̃n(A)

⊗
k

(
A
⊗

A
k
)

(28.11.10)

in a natural way, as in Section 1.12. Thus we may take S(A, ε)n to be a tensor
product of the form

S(A, ε)n = A
⊗

k
S̃n(A)(28.11.11)

when n ≥ 0, because k satisfies the requirements of A
⊗

A k, and similarly for
tensor products with k, over k. Note that the action of A on the left on S(A, ε)n
corresponds to the action of A on the left on the first factor of A on the right
side of (28.11.11).

Similarly, N(A) is a graded left module over Aen, with N(A)n = Nn(A)
when n ≥ 0, and N(A)n = {0} when n ≤ 0, as in Section 26.14. As before, we

let Ñn(A) be a tensor product of n copies of A′ over k when n ≥ 1, and we take

Ñ0(A) = k. We can identify Nn(A) with a tensor product of the form

Nn(A) = A
⊗

k
Ñn(A)

⊗
k
A,(28.11.12)

where the actions of A on the left and on the right on Nn(A) are obtained from
the actions of A on the left and on the right on the first and last factors of A
on the right side of (28.11.12), as in Section 26.12.

We also have that N(A, ε) is a graded left module over A, with

N(A, ε)n = N(A)n
⊗

A
k = Nn(A)

⊗
A
k when n ≥ 0

= {0} when n < 0,(28.11.13)

as in Section 7.5. If n ≥ 0, then we can take N(A, ε) to be a tensor product of
the form

N(A, ε)n = A
⊗

k
Ñn(A),(28.11.14)

as before. With this identification, the action of A on the left on N(A, ε)n
corresponds to the action of A on the left on the first factor of A on the right
side of (28.11.14). This corresponds to the description of N(A, ε) on p186 of [3].
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28.12 Differentiation on these resolutions

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Remember that the differentiation operators dS(A) and dN(A) on S(A) and
N(A) were defined in Sections 26.10 and 26.14, respectively. This leads to dif-
ferentiation operators dS(A,ε) and dN(A,ε) on S(A, ε) and N(A, ε), respectively,
as in Section 7.5.

More precisely, for each n ∈ Z, dS(A,ε),n is the homomorphism

from S(A, ε)n into S(A, ε)n−1,(28.12.1)

as left modules over A, that corresponds to dS(A),n and the identity mapping
on k. Similarly, dN(A,ε),n is the homomorphism

from N(A, ε)n into N(A, ε)n−1,(28.12.2)

as left modules over A, that corresponds to dN(A),n and the identity mapping
on k. Note that these homomorphisms are equal to 0 when n ≤ 0. To describe
these differentiation operators more precisely when n ≥ 1, we shall use some
notation analogous to that of Section 26.15.

If n ≥ 0, then it will be helpful to consider S(A, ε)n as a tensor product of
n+ 1 copies of A over k. Similarly, it will be helpful to consider N(A, ε)n as a
tensor product of n + 1 modules over k, where the first module is A, and the
next n modules are copies of A′. Thus, if a0, a1, . . . , an ∈ A, then

a0 ⊗ a1 ⊗ · · · ⊗ an(28.12.3)

defines an element of S(A, ε)n. We also get that

a0 ⊗ q(a1)⊗ · · · ⊗ q(an)(28.12.4)

defines an element of N(A, ε)n, where q is the natural quotient mapping from
A onto A′, as in Section 26.12.

We may use the notation

a0 [a1, . . . , an](28.12.5)

for (28.12.4) as on p186f of [3]. If a0 = eA, then this may be expressed as

[a1, . . . , an].(28.12.6)

If n = 0, then (28.12.5) becomes
a0 [ ],(28.12.7)

which is the same as a0 as an element of S(A, ε)0 = N(A, ε)0 = A. We may
sometimes multiply expressions like these on the right by elements of k as well.

If n ≥ 1, then

dN(A,ε),n(a0 [a1, . . . , an]) = (a0 a1) [a2, . . . , an]

+

n−1∑
l=1

(−1)l a0 [a1, . . . , al al+1, . . . , an](28.12.8)

+(−1)n a0 [a1, . . . , an−1] ε(an).
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This is mentioned on p186 of [3], with a0 = eA. Of course, one can reduce to
that case, because dN(A,ε),n is a homomorphism as in (28.12.2), as left module
over A. If n = 1, then the sum in the middle of the right side of (28.12.8) should
be interpreted as being 0, and we get that

dN(A,ε),1(a0 [a1]) = (a0 a1) [ ]− a0 [ ]ε(a1) = a0 a1 − a0 ε(a1).(28.12.9)

This is also mentioned on p186 of [3], with a0 = eA.
If we are working with S(A, ϵ)n, then we may use the notation (28.12.5)

for (28.12.3), as in Section 26.15. In this case, we get the same expressions for
dS(A,ε),n as in the preceding paragraph, as mentioned on p187 of [3].

One could also consider k as a right module over A, and A as a right aug-
mented ring, as mentioned on p187 of [3]. If A is projective as a module over k,
then tensor products

S(ε,A) = k
⊗

A
S(A)(28.12.10)

and
N(ε,A) = k

⊗
A
N(A)(28.12.11)

are projective resolutions of k as a right module over A, as in [3].

28.13 Some related complexes

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with a multiplicative identity element eA. Suppose
that A is a supplemented algebra over k, with corresponding homomorphism ε
from A onto k, as in Section 28.1.

Let X be a projective resolution of k, as a left module over A. Consider a
tensor product

X = k
⊗

A
X(28.13.1)

of k, as a right module over A, and X, over A, as in the statement of Proposition
2.3 on p187 of [3]. Note that X may be considered as a complex over k, as in
Section 7.5.

Let V be a module over k, which leads to a right module Vε over A with
trivial action of A on the right, as in Section 28.1. Alternatively, a tensor
product

V
⊗

k
k(28.13.2)

of V and k over k may be considered as a right module over A, using the action
of A on k on the right defined by ε. Of course, V satisifes the requirements of
a tensor product as in (28.13.2), as a module over k, in the usual way. If V is
considered as a tensor product (28.13.2), as a module over k, in this way, then
it is easy to see that Vε is the same as (28.13.2), considered as a right module
over A, using the action of A on k on the right.

Consider a tensor product

Vε
⊗

A
X(28.13.3)
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of Vε and X over A. This corresponds to a tensor product of the form(
V
⊗

k
k
)⊗

A
X,(28.13.4)

where k is considered as a right module over A, as in the preceding paragraph.
This is isomorphic to a tensor product of the form

V
⊗

k
(k
⊗

A
X
)
= V

⊗
k
X,(28.13.5)

in a natural way, as in Section 1.12. More precisely, these tensor products may
be considered as complexes over k, as in Section 7.5, and they are isomorphic
as complexes.

It follows that
H
(
Vε

⊗
A
X
)
n

(28.13.6)

is isomorphic to

H
(
V
⊗

k
X
)
n

(28.13.7)

for each n. Note that (28.13.6) corresponds to the nth homology of A, as a left
augmented ring, with coefficients in Vε for every n ≥ 0, as in Section 24.3. This
corresponds to the first part of Proposition 2.3 on p187 of [3].

Similarly, let W be a module over k, so that εW is a left module over A with
trivial action of A on the left, as in Section 28.1. Alternatively, the space

Homk(k,W )(28.13.8)

of homomorphisms from k into W , as modules over k, may be considered as a
left module over A, using the action of A on k on the right, as in Section 1.8.
If we identify (28.13.8) with W , as modules over k, in the usual way, then one
can check that εW corresponds to (28.13.8), considered as a left module over A
in this way.

Remember that
Homgr

A (X, εW )(28.13.9)

may be defined as a complex over k as in Section 8.4. We may consider

Homgr
k (X,W ) = Homgr

k

(
k
⊗

A
X,W

)
(28.13.10)

as a complex over k as well. This is isomorphic to

Homgr
A

(
X,Homk(k,W )

)
(28.13.11)

in a natural way, where (28.13.8) is considered as a left module over A, as
in the preceding paragraph. This uses isomorphisms as in Section 1.13 for
modules without gradings. Of course, we can identify (28.13.11) with (28.13.9),
by identifying (28.13.8) with εW , as left modules over A, as in the preceding
paragraph.

More precisely, (28.13.11) may be considered as a complex over k, which can
be identified with (28.13.9), as a complex over k. We also have that (28.13.10)
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and (28.13.11) are isomorphic as complexes, so that (28.13.9) and (28.13.10) are
isomorphic as complexes. This means that

H
(
Homgr

A (X, εW )
)n

(28.13.12)

is isomorphic to
H
(
Homgr

k (X,W )
)n

(28.13.13)

for each n. Remember that (28.13.12) corresponds to the nth cohomology of A,
as a left augmented ring, with coefficients in εW for every n ≥ 0, as in Section
24.5. This corresponds to the second part of Proposition 2.3 on p187 of [3].

28.14 Standard complexes and X

Let us continue with the same notation and hypotheses as in the previous sec-
tion, and suppose now that

A is projective as a module over k.(28.14.1)

Remember that the complexes S(A, ε) and N(A, ε) defined in Section 28.11 are
proejective resolutions of k, as a left module over A, under these conditions.
Thus we can take X to be either of these two complexes in the previous section.
The corresponding complexes X as in (28.13.1) are

S(ε,A, ε) = k
⊗

A
S(A, ε)(28.14.2)

and
N(ε,A, ε) = k

⊗
A
N(A, ε),(28.14.3)

as on p187 of [3].
The grading on S(ε,A, ε) is given by

S(ε,A, ε)n = k
⊗

A
S(A, ε)n(28.14.4)

for each n, as in Section 7.5. This is {0} when n < 0, and it can be identified
with a tensor product of the form

k
⊗

A

(
A
⊗

k
S̃n(A)

)
(28.14.5)

when n ≥ 0, using the description of S(A, ε)n in Section 28.11. It follows that
we can take

S(ε,A, ε)n = S̃n(A)(28.14.6)

when n ≥ 0, with suitable identifications. This uses an isomorphism as in
Section 1.12, and the fact that k satisfies the requirements of k

⊗
AA, as a

module over k.
Similarly,

N(ε,A, ε)n = k
⊗

A
N(A, ε)n(28.14.7)
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for each n, which is equal to {0} when n < 0. If n ≥ 0, then we can take

N(ε,A, ε)n = Ñn(A),(28.14.8)

with suitable identifications, as on p187 of [3]. This uses the description of
N(A, ε)n in Section 28.11, and the same type of isomorphisms as in the preceding
paragraph.

Using the differentiation operators

dS(A,ε) and dN(A,ε)(28.14.9)

on S(A, ε) and N(A, ε), respectively, as in Section 28.12, we get differentiation
operators

dS(ε,A,ε) and dN(ε,A,ε)(28.14.10)

on S(ε,A, ε) and N(ε,A, ε), respectively, as in Section 7.5. More precisely, for
each n ∈ Z, we get homomorphisms

dS(ε,A,ε),n from S(ε,A, ε)n into S(ε,A, ε)n−1(28.14.11)

and
dN(ε,A,ε),n from N(ε,A, ε)n into N(ε,A, ε)n−1,(28.14.12)

as modules over k. These homomorphisms are obtained from the identity map-
ping on k and the corresponding homomorphisms

dS(A,ε),n and dN(A,ε),n,(28.14.13)

respectively, in the usual way. Of course, (28.14.11) and (28.14.12) are equal
to 0 when n ≤ 0. We can describe these homomorphisms more precisely when
n ≥ 1 using the same type of notation as in Sections 26.15 and 28.12.

Remember that S̃n(A), Ñn(A) are tensor products of n copies of A, A′,
respectively, when n ≥ 1, and that they are equal to k when n = 0, as in
Section 28.11. If a1, . . . , an ∈ A for some n ≥ 1, then

a1 ⊗ · · · ⊗ an(28.14.14)

defines an element of S̃n(A), and

q(a1)⊗ · · · ⊗ q(an)(28.14.15)

defines an element of Ñn(A), where q is the natural quotient mapping from A
onto A′, as in Section 26.12. We may use the notation

[a1, . . . , an](28.14.16)

for (28.14.15), as in Sections 26.15 and 28.12. If we are working with S̃n(A),
then we may use (28.14.16) for (28.14.14), as before. In both cases, [ ] may be
interpreted as being the multiplicative identity element in k, as on p176 of [3].
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If n ≥ 1, then

dN(ε,A,ε),n([a1, . . . , an]) = ε(a1) [a2, . . . , an]

+

n−1∑
l=1

(−1)l [a1, . . . , al al+1, . . . , an](28.14.17)

+(−1)n[a1, . . . , an−1] ε(an),

as on p187 of [3]. If n = 1, then the sum in the middle of the right side should
be interpreted as being 0, and we get that

dN(ε,A,ε),1([a1]) = ε(a1) [ ]− [ ] ε(a1) = 0,(28.14.18)

as in [3].
If we are working with S(ε,A, ε)n, then we may use the notation (28.14.16)

for (28.14.14), and we get the same expressions for dS(ε,A,ε),n as in the preceding
paragraph.



Chapter 29

Semigroups and
augmentations

29.1 Semigroup rings and augmentations

Let A be a ring with a multiplicative identity element eA, and let Σ be a
semigroup, with the semigroup operation expressed multiplicatively, and with
an identity element eΣ. Remember that the corresponding semigroup ring A(Σ)
may be defined as in Section 4.9. The element of A(Σ) corresponding to eΣ is
the multiplicative identity element of A(Σ), which may be expressed as eA eΣ,
to be precise.

Let ε be a ring homomorphism from A(Σ) onto A, so that

ε(eΣ) = eA.(29.1.1)

Using ε, A may be considered as a left and right module over A(Σ), as in
Section 2.9. Thus A(Σ) may be considered as a left and right augmented ring
with respect to ε, as in Sections 24.1 and 24.2.

Put
µ(x) = ε(x)(29.1.2)

for every x ∈ Σ, where x is considered as an element of A(Σ) on the right side,
which could be expressed as eA x, to be more precise. Thus µ defines a mapping
from Σ into A, with

µ(x y) = µ(x)µ(y)(29.1.3)

for every x, y ∈ Σ. Of course,

µ(eΣ) = eA,(29.1.4)

by (29.1.1).
Let us say that ε is a multiplicative augmentation of A(Σ) if

ε(a eΣ) = a(29.1.5)

658
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for every a ∈ A, as on p148 of [3]. We shall normally be concerned only with
multiplicative augmentations of A(Σ), as in [3]. In this case,

ε(a x) = ε(a eΣ x) = ε(a eΣ) ε(x) = a ε(x)(29.1.6)

for every a ∈ A and x ∈ Σ. This implies that

ε is uniquely determined on A(Σ) by µ,(29.1.7)

as on p148 of [3].
Let

Z(A) = {a ∈ A : a b = b a for every b ∈ A}(29.1.8)

be the center of A as a ring, which is a subring of A that contains eA. If ε is a
multiplicative augmentation of A(Σ), then

µ(x) ∈ Z(A) for every x ∈ Σ,(29.1.9)

as on p148 of [3]. This follows from the fact that elements of A and Σ commute
with each other in A(Σ), by construction.

Conversely, suppose that µ is a mapping from Σ into A that satisfies (29.1.3),
(29.1.4), and (29.1.9). Consider the mapping ε from A(Σ) into A defined by

ε
( n∑
j=1

aj xj

)
=

n∑
j=1

aj µ(xj)(29.1.10)

for every a1, . . . , an ∈ A and x1, . . . , xn ∈ Σ. It is easy to see that ε defines a
ring homomorphism from A(Σ) onto A that is a multiplicative augmentation of
A(Σ) under these conditions, as on p148 of [3].

The semigroup Σ together with a mapping µ from Σ into A that satisfies
(29.1.3), (29.1.4), and (29.1.9) may be called an augmented semigroup (with
multiplicative identity element), as on p188 of [3].

29.2 Semigroup algebras and augmentations

Let k be a commutative ring with a multiplicative identity element 1k, and let Σ
be a semigroup, with semigroup operation expressed multiplicatively, and with
an identity element eΣ. The corresponding semigroup ring k(Σ), as in Section
4.9, may be considered as an algebra over k.

Suppose that εk is a ring homomorphism from k(Σ) onto k, so that εk(eΣ) =
1k. We can define a mapping µk from Σ into k by (29.1.2), which satisfies
(29.1.3) and

µk(eΣ) = 1k,(29.2.1)

as before.
The condition that εk be a multiplicative augmentation of k(Σ) is equivalent

to asking that εk be a homomorphism from k(Σ) onto k, as algebras over k. If µk
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is any mapping from Σ into k that satisfies (29.1.3) and (29.2.1), then (29.1.10)
defines a homomorphism from k(Σ) onto k, as algebras over k, as before.

Let A be an associative algebra over k, with multiplicative identity element
eA, and let A(Σ) be the corresponding semigroup algebra of Σ over A, as in
Section 4.9. Suppose that µk is a mapping from Σ into k that satisfies (29.1.3)
and (29.2.1), and put

µA(x) = µk(x) eA(29.2.2)

for every x ∈ Σ. This defines a mapping from Σ into A that satisfies (29.1.3),
(29.1.4), and (29.1.9). It follows that (29.1.10) defines a ring homomorphism
εA from A(Σ) onto A that is a multiplicative augmentation of A(Σ), as before.
Note that εA is also a homomorphism from A(Σ) into A, as algebras over k.

Any ring with a multiplicative identity element may be considered as an
associative algebra over its center. Using this, a multiplicative augmentation
of the corresponding group ring may be considered to be as in the preceding
paragraph, as on p188 of [3].

Of course, k(Σ) is freely generated by elements of Σ, as a module over k. It
is easy to see that A(Σ) corresponds to a tensor product

A
⊗

k
k(Σ)(29.2.3)

of A and k(Σ) over k, as an algebra over k, as in Section 4.1. This was mentioned
in Section 25.14, and corresponds to a remark on p188 of [3].

Let εk be a homomorphism from k(Σ) onto k, as algebras over k, and let
µk be the corresponding mapping from Σ into k, as in (29.1.2). This leads to a
mapping µA from Σ into A as in (29.2.2), and a ring homomorphism εA from
A(Σ) onto A that is a multiplicative augmentation of A(Σ), as in (29.1.10).
Remember that A satisfies the requirements of A

⊗
k k, as a module over k.

One can check that multiplication on A is compatible with multiplication on
A
⊗

k k, as a tesor product of algebras over k, as in Section 4.1. Using this
identification, one can verify that εA corresponds to the homomorphism from
(29.2.3) into A

⊗
k k obtained from the identity mapping on A and εk, as on

p188 of [3].
Alternatively,

εk eA(29.2.4)

defines a homomorphism from k(Σ) into the center of A, as algebras over k.
It is easy to see that εA corresponds to the homomorphism from (29.2.3) into
A obtained from the identity mapping on A and (29.2.4) as in Section 4.1. Of
course, this is basically the same as the description in the preceding paragraph.

This means that we are in the same type of situation as in Section 28.6, with
k(Σ), A in the roles of A, C before. Similarly, C

⊗
k A in the earlier discussion

corresponds to (29.2.3) here, which we identify with A(Σ). The homomorphism
ϕ from A into C

⊗
k A before now corresponds to the homomorphism

ϕ from k(Σ) into A(Σ),(29.2.5)

as algebras over k, that sends an element of k(Σ) to its product with eA.



29.3. SEMIGROUPS AND HOMOMORPHISMS 661

Of course,
ψ(t) = t eA(29.2.6)

defines a homomorphism from k into A, as algebras over k, which corresponds
to the analogous homomorphism from k into C in Section 28.6. Note that the
homomorphisms εA, εC

⊗
k
A before correspond to εk, εA, respectively, here. It

is easy to see that
εA ◦ ϕ = ψ ◦ εk,(29.2.7)

as before. In particular,
ϕ(ker εk) ⊆ ker εA,(29.2.8)

so that ϕ is a homomorphism from k(Σ) into A(Σ), as augmented rings, as in
Section 24.9.

Let V be a module over k that is a right module over A(Σ). We may consider
V as a right module over k(Σ), using the identification of A(Σ) with (29.2.3),
or equivalently using ϕ. We can use ϕ to get a homomorphism

from the homology of k(Σ) into the homology of A(Σ),(29.2.9)

as left augmented rings, with coefficients in V,

as in Section 28.6.
Similarly, let Z be a module over k that is a left module over A(Σ), and

which may be considered as a left module over k(Σ), as before. We can use ϕ
to get a homomorphism

from the cohomology of A(Σ) into the cohomology of k(Σ),(29.2.10)

as left augmented rings, with coefficients in Z,

as in Section 28.6 again.
Note that k(Σ) is projective as a module over k, because it is free as a module

over k. It follows that

the homomorphisms as in (29.2.9) and (29.2.10) are isomorphisms,(29.2.11)

as in Section 28.6. This corresponds to (1) and (1a) on p188 of [3].
Observe that k(Σ) is a supplemented algebra over k with respect to εk, as

on p188 of [3].

29.3 Semigroups and homomorphisms

Let Σ, Σ′ be semigroups, with the semigroup operations expressed multiplica-
tively, and with identity elements eΣ, eΣ′ , respectively. Also let ϕ be a homo-
morphism from Σ′ into Σ, as semigroups, with

ϕ(eΣ′) = eΣ.(29.3.1)

Let k be a commutative ring with a multiplicative identity element, and
let k(Σ), k(Σ′) be the semigroup algebras of Σ, Σ′ with coefficients in k, as in
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Section 4.9. If we identify Σ, Σ′ with subsets of k(Σ), k(Σ′) in the obvious way,
then ϕ can be extended to a homomorphism

from k(Σ′) into k(Σ),(29.3.2)

as modules over k, and in fact as algebras over k.
Suppose that µ = µΣ, µ

′ = µΣ′ are augmentations of Σ, Σ′, respectively, as
semigroups, with values in k, as in Section 29.1. If

µ′ = µ ◦ ϕ(29.3.3)

on Σ′, then ϕ is said to be a map or homomorphism of augmented semigroups,
as on p189 of [3].

Let ε = εΣ, ε
′ = εΣ′ be the homomorphisms from k(Σ), k(Σ′) onto k, as

algebras over k, corresponding to µ, µ′, respectively, as in (29.1.10). Suppose
that (29.3.3) holds, which implies that

ε′ = ε ◦ ϕ(29.3.4)

on k(Σ′). This means that ϕ defines a homomorphism from k(Σ′) into k(Σ),
as supplemented algebras with respect to ε′, ε, respectively, as in Section 28.5.
This corresponds to a remark on p189 of [3].

Let V be a module over k that is a right module over k(Σ). This means that
V may be considered as a right module over k(Σ′), using ϕ, as in Section 2.9.
We can use ϕ to get a homomorphism

from the homology of k(Σ′) into the homology of k(Σ),(29.3.5)

as left augmented rings, with coefficients in V,

as in Section 28.5.
Similarly, let Z be a module over k that is a left module over k(Σ), so that

Z may be considered as a left module over k(Σ′), using ϕ. We can use ϕ to get
a homomorphism

from the cohomology of k(Σ), into the cohomology of k(Σ′),(29.3.6)

as left augmented rings, with coefficients in Z,

as in Section 28.5 again. These homomorphisms are mentioned on p189 of [3].
One may be interested in conditions under which these homomorphisms are

isomorphisms, as in Section 24.10. We have seen that the combination of two
conditions is sufficient for this, and we would like to restate these conditions for
this case. These conditions are necessary to get an isomorphism as in (29.3.5)
when V = k(Σ), considered as a right module over itself, as before.

Note that the augmentation modules of k(Σ), k(Σ′) are equal to k, considered
as left modules over k(Σ), k(Σ′) using ε, ε′, respectively. The augmentation
module of k(Σ) may be considered as a left module over k(Σ′), using ϕ, as in
Section 24.9. This is the same as considering k as a left module over k(Σ′) using
ε′, because of (29.3.4).
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Similarly, k(Σ) may be considered as a right module over itself, and thus a
right module over k(Σ′), using ϕ, as in Section 24.9. Let

k(Σ)
⊗

k(Σ′)
k(29.3.7)

be a tensor product of k(Σ), as a right module over k(Σ′), and k, as a left
module over k(Σ′), over k(Σ′).

The mapping ψ from the augmentation module of k(Σ′) into the augmen-
tation module of k(Σ), as in Section 24.9, corresponds to the identity mapping
on k here, because of (29.3.4). There is an obvious mapping

from k(Σ)× k into k,(29.3.8)

corresponding to the action of k(Σ) on k on the left using ε. This mapping is
bilinear over k, and satisfies the appropriate compatibility condition with the
actions of k(Σ′) on k(Σ) on the right, and on k on the left, to get a homomor-
phism

from (29.3.7) into k,(29.3.9)

as modules over k. More precisely, this compatibility condition uses (29.3.4).
This homomorphism corresponds to the one called g in Section 24.9.

The first of the two conditions that we need from Section 24.10 is that

the homomorphism as in (29.3.9) is an isomorphism.(29.3.10)

This corresponds to condition (i) in Proposition 3.1 on p189 of [3].
Remember that

the nth homology group of k(Σ′), as a left augmented ring(29.3.11)

with coefficients in k(Σ), as a right module over k(Σ′) using ϕ

is as in Section 24.3 for each n ≥ 0. The second condition that we need from
Section 24.10 is that

(29.3.11) is equal to {0}(29.3.12)

when n > 0. This corresponds to condition (ii) in Proposition 3.1 on p189 of
[3].

Suppose that (29.3.10) holds, and that (29.3.12) holds for every n > 0. This
implies that the homomorphisms as in (29.3.5) and (29.3.6) are isomorphisms,
as in Section 24.10. This is part of Proposition 3.1 on p189 of [3].

Let X be a projective resolution of k, as a left module over k(Σ′). Also let

k(Σ)
⊗

k(Σ′)
X(29.3.13)

be a tensor product of k(Σ), as a right module over k(Σ′), and X, as a left
module over k(Σ′), over k(Σ′). This may be considered as a complex over k,
as in Section 7.5. Remember that (29.3.11) is isomorphic to the nth homology
group of (29.3.13) for each n ≥ 0, as in Section 24.3.
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More precisely, (29.3.13) may be considered as a left module over k(Σ), and
a complex over k(Σ). In fact,

(29.3.13) is a projective resolution of k, as a left module over k(Σ)(29.3.14)

under these conditions, as in Section 24.10. This is another part of Proposition
3.1 on p189 of [3].

29.4 Some related surjectivity conditions

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Observe that

the homomorphism as in (29.3.9) is a surjection.(29.4.1)

This can be seen by considering eΣ as an element of k(Σ), and using the fact
that ε(eΣ) = µ(eΣ) is the multiplicative identity element in k.

Consider a tensor product

k(Σ′)
⊗

k(Σ′)
k(29.4.2)

of k(Σ′), as a right module over itself, and k, as a left module over k(Σ′) using
ε′, as in the previous section, over k(Σ′). Of course, this is isomorphic to k, as
a modul over itself, in the usual way, and we shall use this in a moment.

Remember that k(Σ) may be considered as a right module over k(Σ′), as in
the previous section. Using this, it is easy to see that ϕ is a homomorphism
from k(Σ′) into k(Σ), as right modules over k(Σ′). This was also mentioned in
Section 2.9, for homomorphisms between arbitrary associative algebras.

Using ϕ and the identity mapping on k, we get a homomorphism

from (29.4.2) into (29.3.7),(29.4.3)

as modules over k. The composition of this homomorphism with the one as in
(29.3.9) is a homomorphism

from (29.4.2) into k,(29.4.4)

as modules over k. This homomorphism is the same as the one that can be
obtained from the mapping from k(Σ′) × k into k corresponding to the action
of k(Σ′) on k on the left using ε′. More precisely, this uses the analogous
description of the homomorphism as in (29.3.9), and (29.3.4).

It follows that

the homomorphism as in (29.4.4) is an isomorphism,(29.4.5)

because k satisfies the requirements of a tensor product as in (29.4.2). In par-
ticular, this implies (29.4.1).
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Suppose now that
ϕ(Σ′) = Σ.(29.4.6)

This implies that
ϕ(k(Σ′)) = k(Σ).(29.4.7)

This means that

the homomorphism as in (29.4.3) is a surjection.(29.4.8)

One can check that (29.3.10) holds in this case, because of (29.4.5). This
corresponds to a remark after the statement of Proposition 3.1 on p189 of [3].

29.5 Some augmentations and homomorphisms

Let k be a commutative ring with a multiplicative identity element 1k, and let Σ
be a semigroup, with semigroup operation expressed multiplicatively, and with
an identity element eΣ. Also let k(Σ) be the corresponding semigroup algebra,
with coefficients in k, as in Section 4.9.

If we take
µk(x) = 1k for every x ∈ Σ,(29.5.1)

then µk satisfies (29.1.3) and (29.2.1), and thus defines a k-valued augmentation
of Σ. This is called the unit augmentation of Σ, as on p188 of [3].

Suppose for the moment that if x, y ∈ Σ and

x y = eΣ,(29.5.2)

then
x = y = eΣ.(29.5.3)

Let µk be the k-valued function on Σ defined by

µk(x) = 1k when x = eΣ(29.5.4)

= 0 when x 6= eΣ.

It is easy to see that this satisfies (29.1.3) and (29.2.1), and thus defines an
augmentation of Σ. This is called the zero augmentation of Σ, as on p188 of [3].

Let Σ be any semigroup with an identity element again, and let θ be any
k-valued augmentation of Σ. There is a unique homomorphism Θ from k(Σ)
into itself, as a module over k, such that

Θ(x) = θ(x)x(29.5.5)

for every x ∈ Σ. It is easy to see that Θ is a homomorphism from k(Σ) into
itself, as an algebra over k, under these conditions.

Let ε be the augmentation of k(Σ) that corresponds to the unit augmentation
of Σ, and let εθ be the augmentation of k(Σ) that corresponds to θ as in Section
29.1. Observe that

ε ◦Θ = εθ(29.5.6)
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on k(Σ). This corresponds to a remark on p189 of [3].
If θ(x) has a multiplicative inverse in k for each x ∈ Σ, then 1/θ defines an

augmentation on Σ too. In this case, Θ is an automorphism of k(Σ).
Note that this condition holds when Σ is a group. Because of this, one often

restricts one’s attention to the unit augmentation on Σ when Σ is a group, as
in [3].

Let Σ be any semigroup with identity element again. It is easy to see that
the kernel of ε is freely generated by elements of the form

x− eΣ,(29.5.7)

with x ∈ Σ and x 6= eΣ, as a module over k, as on p189 of [3].

29.6 More on the unit augmentation

Let k be a commutative ring with a multiplicative identity element, and let Σ be
a semigroup, with the semigroup operation expressed multiplicatively, and with
an identity element eΣ. Also let k(Σ) be the corresponding semigroup algebra
again, with coefficients in k, as in Section 4.9. In this section, we take k(Σ) to be
equipped with the augmentation ε that corresponds to the unit augmentation
of Σ.

Let V be a module over k. Remember that an action of Σ on V on the left
or right makes V into a left or right module over Σ, as appropriate, and under
suitable conditions, as in Section 4.8. This corresponds exactly to V being a
left or right module over k(Σ), as appropriate, as in Section 4.9.

We may always consider V as a left or right module over Σ, where the action
of each element of Σ is the identity mapping. In this case, we may say that V is
trivial as a left or right module over Σ, as appropriate, or that the corresponding
action of Σ on V is trivial. This corresponds exactly to trivial actions of k(Σ)
on V with respect to ε, as in Section 28.1.

LetW be a module over k that is a left module over Σ, and thus a left module
over k(Σ). We may considerW as a right module over Σ, using the trivial action
of Σ on W . This makes W into a two-sided module over Σ, because the trivial
action of Σ on W commutes with any other action on W . This corresponds to
Wε as a two-sided module over k(Σ), as in Section 28.1.

Let us say that w ∈W is invariant if w is invariant as an element of W , as
a two-sided module over Σ, as in Section 27.8. This means that

x · w = w(29.6.1)

for every x ∈ Σ, as before. This is the same as saying that w is invariant in W
in the sense of Section 28.2.

A homomorphism f from k(Σ) into W , as modules over k, is uniquely de-
termined by its restriction to Σ, and any W -valued function on Σ can occur in
this way. It is easy to see that f is a crossed homomorphism, as in Section 28.3,
if and only if

f(x y) = x · f(y) + f(x)(29.6.2)
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for every x, y ∈ Σ.
If W is trivial as both a left and right module over Σ, then (29.6.2) reduces

to
f(x y) = f(x) + f(y)(29.6.3)

for every x, y ∈ Σ.

29.7 Free semigroups and augmentations

Let E be a nonempty set, and let Σ(E) be the free semigroup generated by
E, as in Section 4.10. Also let k be a commutative ring with a multiplicative
identity element, and let k(Σ(E)) be the corresponding semigroup algebra with
coefficients in k, as in Section 4.9.

Let µ be a k-valued augmentation of Σ(E), and let ε be the corresponding
augmentation of k(Σ(E)), as in Section 29.1. Note that µ is uniquely determined
by its values on E, which may be arbitrary elements of k.
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homomorphisms, 559
augmented semigroups, 659

homomorphisms, 662
automorphisms of fields

over a subfield, 476

bases for free modules, 4
belonging to an ideal, 422

embedded prime ideals, 422
isolated prime ideals, 422

minimal prime ideals, 422
bi-gradings, 135
bihomogeneous elements, 135
bihomogeneous submodules, 136
bimodules, 15

c(X,Z), 4
c00(X,Z), 4
center of a ring, 659
chains of prime ideals, 365
characters, 467
cochains, 613
cohomology of algebras, 602
cohomology of augmented rings, 554
coimage, 112
cokernel, 83, 112
comaximal ideals, 414
compatible gradings, 267
complementary ideals, 346
complexes, 130

maps between them, 131, 150
compositum of subfields, 469
contractions of ideals, 322
contravariant ϕ-extensions, 47
coprime ideals, 414
covariant ϕ-extensions, 44
crossed homomorphisms, 599, 635

principal, 601, 637

decomposable ideals, 420
Dedekind domains, 310, 386
Dedekind rings, 310
degree of inseparability, 504
degrees of field extensions, 468
degrees of polynomials, 468, 481
δ(V ), 294
derivations, 599
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inner, 601
dimension of a commutative ring, 365
direct products, 2
direct families of homomorphisms, 27
direct limits, 60

of sets, 520
direct sums, 2
direct systems, 60, 236

homomorphisms between, 62
of sets, 520

discrete valuations, 374
discrete valuation rings, 376
distinguished extensions of fields, 470
divisible elements, 294
divisible modules, 294
division algebras, 261
division rings, 260
double complexes, 137

maps between them, 139, 153
double gradings, 135

negative, 135
positive, 135

dual numbers, 119

EA(x1, . . . , xn), 108
EV (x1, . . . , xn), 109
embeddings of fields, 472

over a subfield, 472
over other embeddings, 472

entire rings, 491
enveloping algebra, 596
equivalent valuations, 372
extended formal power series, 509
extension of scalars, 44
extensions of ideals, 322
exterior rings, 108

Fk(x1, . . . , xm), 628
faithful modules, 396
finite field extensions, 468
finitely generated fields, 470
first uniqueness theorem, 422
formal polynomials, 92, 467
formal power series, 92
fractional ideals, 304, 382
free algebras, 628

free modules, 4, 12
free rings, 103, 266
free semigroups, 103

Gal(K/k), 476
Galois extensions, 487
Galois groups, 476
going-up theorem, 411
graded associative algebras, 265
graded modules, 128

negative, 128
over graded rings, 267
positive, 128

graded rings, 265
Grassmann rings, 108

hereditary rings, 250, 309
Hom(ϕ, ψ), 145
Homgr(ϕ, ψ), 147
Homgr

A (V,W ), 145
homogeneous components, 128
homogeneous elements, 128
homogeneous formal polynomials, 265,

268
homogeneous submodules, 128
homology module, 113
homology of associative algebras, 602
homology of augemented rings, 551
homomorphisms, 114

augmentation, 548, 550
bidegree, 136
components, 129, 136
degree, 129
of augmented rings, 559
of augmented semigroups, 662
of supplemented algebras, 640

homotopies, 115, 131, 139, 151, 153

ideal quotients, 324
idempotent elements, 347
inductive limits, 60

of sets, 520
inductive systems, 60, 236

of sets, 520
injective modules, 41
injective resolutions, 277



INDEX 671

injective right complexes, 276
inseparable degree, 504
inseparable polynomials, 481
integral closures of subrings, 398
integral domains, 293
integral elements of larger rings, 395
integral ideals, 304
integrality over a subring, 398
integrally closed integral domains, 395
integrally closed subrings, 395
invariant elements, 604, 630, 634, 666
inversible ideals, 305
invertible ideals, 305, 382
involutions, 21
irreducible elements of an integral do-

main, 379
irreducible ideals, 417
isolated primary components, 435
isolated sets of ideals, 434

Jacobson radical, 335

(k :M), 304
kI , 319

left augmentations, 548
left augmented rings, 548
left complexes, 269
left exactness, 30, 33
left modules, 10
left vector spaces, 261
lengths of chains, 365
liftings of field extensions, 469
linear dependence, 261
linear independence, 261
linear mappings, 11
local rings, 106

M(V,W ), 146
Mr(V,W ), 146
maps between complexes, 131, 150

double complexes, 139, 153
maps of augmente semigroups, 662
maps of augmented rings, 559
maps of supplemented algebras, 640
maps over homomorphisms, 272, 279

minimal polynomials, 469
modular law, 413
module homomorphisms, 11
module isomorphisms, 12
modules

over associative algebras, 10, 11
over semigroups, 100
with differentiation, 112

monic polynomials, 468
multi-indices, 92
multiple roots, 494
multiplicative augmentations, 658
multiplicatively closed sets, 313

saturated, 429
multiplicities of roots, 494

Nakayama’s lemma, 338
nilpotent elements, 320
nilradical, 320
Noetherian modules, 255
Noetherian rings, 256, 310
normal field extensions, 476
normal field extensions, 476
normalized standard complex, 617

opposite algebra
automorphisms, 20
homomorphisms, 20
isomorphisms, 20

opposite algebras, 20
opposite semigroup

homomorphisms, 100
opposite semigroups, 100

partial orderings, 59
partial derivatives, 97
perfect fields, 495
ϕ-injective modules, 51
ϕ-projective modules, 49
pre-directed sets, 59
pre-directed system, 59
pre-orderings, 59
primary decompositions, 420

minimal, 421
primary ideals, 360
principal ideal domains, 379
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products of ideals, 323
products of ideals and modules, 323
projective left complexes, 270
projective modules, 38
projective resolutions, 271
proper modules, 347
Prüfer rings, 308
purely inseparable elements, 498
purely inseparable extensions, 499

Q, 395
Qk, 298
quotient modules, 11

with differentiation, 116

r(E), 426
r(I), 325
radicals of ideals, 325
radicals of sets, 426
reducible elements of integral domains,

379
restriction of scalars, 44
right augmentations, 550
right augmented rings, 550
right complexes, 276
right exactness, 36
right modules, 11
right vector spaces, 261
rings of fractions, 314
root fields, 475
roots of polynomials, 468

S−1 f , 315
S−1 k, 314
S−1 V , 315
satellites, 531, 535, 541
saturations of ideals, 431
second uniqueness theorem, 434
semi-hereditary rings, 253, 308
semigroup algebras, 101
semigroup representations, 100
semisimple modules, 57
separable degree, 484
separable elements, 482
separable field extensions, 483, 485
separable polynomials, 481

simple modules, 57
simple roots, 494
splitting fields, 475
standard complexes, 611
submodules, 10

with differentiation, 116
supplemented algebras, 633

homomorphisms, 640
supports of functions, 4

τ(V ), 293
tensor products, 6, 16
torsion elements, 293
torsion modules, 293
torsion-free modules, 293
total differentiation operators, 138
total ring of fractions, 430
traces on field extensions, 489
translations of field extensions, 469
trivial modules, 666
trivial operators, 634
trivial valuation, 372
two-sided modules, 596, 630

homomorphisms, 599

unit augmentation, 665

V [[T1, . . . , Tn]], 92
V [T1, . . . , Tn], 92
VI , 319
valuation ring of a valuation, 373
valuation rings, 393
valuations, 371

on integral domains, 374
value group of a valuation, 372
vanishing to some order, 95

Z, 128
Z(A), 659
Z+, 92
zero augmentation, 665


