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Chapter 1

Semimetrics and seminorms

1.1 Semimetrics and semi-ultrametrics

Let X be a set, and let d(x, y) be a nonnegative real-valued function defined
for x, y ∈ X. As usual, d(·, ·) is said to be a semimetric on X if it satisfies the
following three properties. First,

d(x, x) = 0 for every x ∈ X.(1.1.1)

Second,

d(x, y) = d(y, x) for every x, y ∈ X.(1.1.2)

Third,

d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ X,(1.1.3)

which is the triangle inequality. If we also have that

d(x, y) > 0 for every x, y ∈ X with x 6= y,(1.1.4)

then d(·, ·) is said to be a metric on X. The discrete metric is defined on X by
putting d(x, y) equal to 1 when x 6= y, and equal to 0 when x = y.

Similarly, d(·, ·) is said to be a semi-ultrametric on X if it satisfies (1.1.1),
(1.1.2), and

d(x, z) ≤ max(d(x, y), d(y, z)) for every x, y ∈ X.(1.1.5)

Note that (1.1.5) implies (1.1.3), so that a semi-ultrametric on X is a semimetric
in particular. If a semi-ultrametric d(·, ·) on X satisfies (1.1.4) too, then d(·, ·)
is said to be an ultrametric on X. It is easy to see that the discrete metric on
X is an ultrametric.

If a is a positive real number with a ≤ 1, then it is well known that

(r + t)a ≤ ra + ta(1.1.6)

1



2 CHAPTER 1. SEMIMETRICS AND SEMINORMS

for all nonnegative real numbers r, t. To see this, observe first that

max(r, t) ≤ (ra + ta)1/a(1.1.7)

for every a > 0 and r, t ≥ 0. If a ≤ 1, then it follows that

r + t ≤ max(r, t)1−a (ra + ta) ≤ (ra + ta)(1−a)/a+1 = (ra + ta)1/a(1.1.8)

for every r, t ≥ 0. This implies (1.1.6), as desired.
If d(x, y) is a semimetric on X, then it is easy to see that

d(x, y)a(1.1.9)

is a semimetric on X when 0 < a ≤ 1, using (1.1.6). If d(x, y) is a semi-
ultrametric on X, then (1.1.9) is a semi-ultrametric on X for every a > 0.

Let d(x, y) be a semimetric on X again, and let t be a positive real number.
One can verify that

dt(x, y) = min(d(x, y), t)(1.1.10)

also defines a semimetric on X. If d(x, y) is a semi-ultrametric on X, then
(1.1.10) defines a semi-ultrametric on X too.

If d1(x, y), . . . , dn(x, y) are finitely many semimetrics on X, then one can
check that

d′(x, y) =

n∑
j=1

dj(x, y)(1.1.11)

and

d(x, y) = max
1≤j≤n

dj(x, y)(1.1.12)

are semimetrics on X too. If dj(x, y) is a semi-ultrametric on X for each j =
1, . . . , n, then (1.1.12) is a semi-ultrametric on X as well. Observe that

d(x, y) ≤ d′(x, y) ≤ nd(x, y)(1.1.13)

for every x, y ∈ X.
Let I be a nonempty set, let Xj be a set for each j ∈ I, and consider their

Cartesian product

X =
∏
j∈I

Xj .(1.1.14)

If x ∈ X and l ∈ I, then let xl be the lth coordinate of x in Xl. Suppose that
dl(xl, yl) is a semimetric on Xl for some l ∈ I, and put

d̃l(x, y) = dl(xl, yl)(1.1.15)

for every x, y ∈ X. It is easy to see that this defines a semimetric on X, which
is a semi-ultrametric when dl(xl, yl) is a semi-ultrametric on Xl.
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1.2 Open and closed balls

Let X be a set, and let d(·, ·) be a semimetric on X. The open ball in X centered
at x ∈ X with radius r > 0 with respect to d(·, ·) is defined as usual by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) < r}.(1.2.1)

Similarly, the closed ball in X centered at x with radius r ≥ 0 with respect to
d(·, ·) is defined by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) ≤ r}.(1.2.2)

We may also use the notation BX(x, r) = BX,d(x, r) for (1.2.1), and BX(x, r) =
BX,d(x, r) for (1.2.2).

Suppose for the moment that d(·, ·) is a semi-ultrametric on X. If x,w ∈ X
satisfy d(w, x) < r for some r > 0, then one can check that

B(w, r) = B(x, r).(1.2.3)

Similarly, if d(w, x) ≤ r for some r ≥ 0, then

B(w, r) = B(x, r).(1.2.4)

Suppose now that d(x, y)a is a semimetric on X for some a > 0. Observe
that

Bda(x, ra) = Bd(x, r)(1.2.5)

for every x ∈ X and r > 0, and that

Bda(x, ra) = Bd(x, r)(1.2.6)

for every x ∈ X and r ≥ 0.
Let t > 0 be given, and let dt(·, ·) be defined on X as in (1.1.10). If x ∈ X,

then it is easy to see that

Bdt(x, r) = Bd(x, r) when r ≤ t(1.2.7)

= X when r > t.

Similarly,

Bdt(x, r) = Bd(x, r) when r < t(1.2.8)

= X when r ≥ t.

Let d1, . . . , dn be finitely many semimetrics on X, and remember that their
maximum defines a semimetric d on X as well, as in (1.1.12). It is easy to see
that

Bd(x, r) =

n⋂
j=1

Bdj (x, r)(1.2.9)
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for every x ∈ X and r > 0, and that

Bd(x, r) =

n⋂
j=1

Bdj (x, r)(1.2.10)

for every x ∈ X and r ≥ 0.
Let X1, . . . , Xn be finitely many sets, and let X =

∏n
j=1Xj be their Carte-

sian product. Suppose that dj is a semimetric on Xj for each j = 1, . . . , n, so

that d̃j(x, y) = dj(xj , yj) defines a semimetric on X for every j = 1, . . . , n, as
in (1.1.15). Thus

d(x, y) = max
1≤j≤n

d̃j(x, y) = max
1≤j≤n

dj(xj , yj)(1.2.11)

defines a semimetric on X, which is a metric on X when dj is a metric on Xj

for each j = 1, . . . , n. It is easy to see that

BX,d(x, r) =

n∏
j=1

BXj ,dj
(xj , r)(1.2.12)

for every x ∈ X and r > 0, and that

BX,d(x, r) =

n∏
j=1

BXj ,dj
(x, r)(1.2.13)

for every x ∈ X and r ≥ 0.
Let d(·, ·) be a semimetric on a set X again, and let Y be a subset of X. Note

that the restriction of d(x, y) to x, y ∈ Y defines a semimetric on Y , which is a
metric or semi-ultrametric when d(·, ·) has the same property on X. If x ∈ Y ,
then

BY (x, r) = BX(x, r) ∩ Y(1.2.14)

for every r > 0, and
BY (x, r) = BX(x, r) ∩ Y(1.2.15)

for every r ≥ 0.

1.3 Absolute value functions

Let k be a field. A nonnegative real-valued function | · | on k is said to be an
absolute value function on k if it satisfies the following three conditions. First,

|x| = 0 if and only if x = 0.(1.3.1)

Second,
|x y| = |x| |y| for every x, y ∈ k.(1.3.2)

Third,
|x+ y| ≤ |x|+ |y| for every x, y ∈ k.(1.3.3)
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It is well known that the standard absolute value functions on the real numbers
R and the complex numbers C satisfy these conditions. The trivial absolute
value function may be defined on any field k by putting |x| equal to 1 when
x 6= 0, and to 0 when x = 0.

If | · | is an absolute value function on k, then it is easy to see that |1| = 1,
where more precisely the first 1 is the multiplicative identity element in k, and
the second 1 is the multiplicative identity element in R. Similarly, if x ∈ k
satisfies xn = 1 for some positive integer n, then |x| = 1. One can check that

d(x, y) = |x− y|(1.3.4)

defines a metric on k, using the fact that |−1| = 1 to get that this is symmetric
in x and y.

A nonnegative real-valued function | · | on k is said to be an ultrametric
absolute value function on k if it satisfies (1.3.1), (1.3.2), and

|x+ y| ≤ max(|x|, |y|) for every x, y ∈ k.(1.3.5)

Of course, (1.3.5) implies (1.3.3), so that ultrametric absolute value functions
are absolute value functions in particular. If | · | is an ultrametric absolute value
function on k, the (1.3.4) is an ultrametric on k. It is easy to see that the trivial
absolute value function on k is an ultrametric absolute value function, for which
the associated ultrametric is the discrete metric.

If p is a prime number, then the p-adic absolute value |x|p of a rational
number x is defined as follows. This is equal to 0 when x = 0, and otherwise
x = pj (a/b) for some integers a, b, and j, where a, b 6= 0 and neither a nor b is
an integer multiple of p. In this case, we put

|x|p = p−j ,(1.3.6)

and one can check that this defines an ultrametric absolute value function on
the rational numbers Q.

If k is a field with an absolute value function | · |, and k is not complete with
respect to the associated metric (1.3.4), then one can pass to a completion, by
standard arguments. More precisely,

the completion of k is a field, | · | extends to an absolute value(1.3.7)

function on the completion of k, and k is dense in its completion,

with respect to the associated metric. The completion of k is also unique, up
to a suitable isomorphic equivalence. If p is a prime number, then the field Qp

of p-adic numbers is obtained by completing Q using the p-adic absolute value
function.

If | · | is an absolute value function on a field k, and if 0 < a ≤ 1, then
it is easy to see that |x|a defines an absolute value function on k too, using
(1.1.6). If | · | is an ultrametric absolute value function on k, then | · |a defines
an ultrametric absolute value function on k for every a > 0. A pair | · |1, | · |2 of



6 CHAPTER 1. SEMIMETRICS AND SEMINORMS

absolute value functions on k are said to be equivalent if there is a positive real
number a such that

|x|2 = |x|a1(1.3.8)

for every x ∈ k. One can check that the metrics associated to | · |1 and | · |2
determine the same topology on k in this case. Conversely, it is well known that
| · |1 and | · |2 are equivalent on k when their associated metrics determine the
same topology on k.

If k is a field, x ∈ k, and n is in the set Z+ of positive integers, then let
n · x be the sum of n x’s in k. An absolute value function | · | on k is said to be
archimedean if there are n ∈ Z+ such that |n · 1| is arbitrarily large. Thus | · |
is non-archimedean on k if |n · 1|, n ∈ Z+, is bounded. If | · | is an ultrametric
absolute value function on k, then |n · 1| ≤ 1 for every n ∈ Z+, so that | · | is
non-archimedean on k. Conversely, it is well known that

non-archimedean absolute value functions(1.3.9)

are ultrametric absolute value functions.

If k is a field, | · | is an absolute value function on k, and k0 is a subfield
of k, then the restriction of |x| to x ∈ k0 defines an absolute value function on
k0. If | · | is an ultrametric absolute value function on k0, then its restriction
to k0 is an ultrametric absolute value function on k0. More precisely, | · | is
non-archimedean on k if and only if its restriction to k0 is non-archimedean.

A famous theorem of Ostrowski states that an absolute value function on Q is
either the trivial absolute value function, or equivalent to the standard Euclidean
absolute value function on Q, or equivalent to the p-adic absolute value function
on Q for some prime number p. Let k be a field with an archimedean absolute
value function | · |, and suppose that k is complete with respect to the associated
metric. Another famous theorem of Ostrowski states that k is isomorphic to R
or C, in such a way that | · | corresponds to an absolute value function on R or
C that is equivalent to the standard absolute value function.

Let k be field with an absolute value function | · | again, and observe that

{|x| : x ∈ k \ {0}}(1.3.10)

is a subgroup of the multiplicative group R+ of positive real numbers. If 1 is
not a limit point of (1.3.10) with respect to the standard topology on the real
line, then | · | is said to be discrete on k. In this case, it is not too difficult
to show that (1.3.10) consists of the integer powers of a positive real number,
which is equal to 1 exactly when | · | is trivial on k. One can also show that
discrete absolute value functions are ultrametric absolute value functions.

1.4 Seminorms

Let k be a field with an absolute value function | · |, and let V be a vector space
over k. A nonnegative real-valued function N on V is said to be a seminorm
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on V with respect to | · | on k if

N(t v) = |t|N(v) for every t ∈ k and v ∈ V,(1.4.1)

and
N(v + w) ≤ N(v) +N(w) for every v, w ∈ V.(1.4.2)

If we also have that

N(v) > 0 for every v ∈ V with v 6= 0,(1.4.3)

then N is said to be a norm on V with respect to | · | on V . If N satisfies (1.4.1)
and

N(v + w) ≤ max(N(v), N(w)) for every v, w ∈ V,(1.4.4)

then N is said to be a semi-ultranorm on V with respect to | · | on k. Clearly
(1.4.4) implies (1.4.2), so that a semi-ultranorm on V is a seminorm in particular.
A semi-ultranorm on V that satisfies (1.4.3) is said to be an ultranorm on V .
Note that | · | may be considered as a norm on k, as a one-dimensional vector
space over itself, which is an ultranorm when | · | is an ultrametric absolute value
function on k.

If N is a seminorm on V with respect to | · | on k, then

d(v, w) = dN (v, w) = N(v − w)(1.4.5)

is a semimetric on V , which is a metric when N is a norm. Similarly, (1.4.5)
is a semi-ultrametric on V when N is a semi-ultranorm on V , and (1.4.5) is an
ultrametric on V when N is an ultranorm on V .

Suppose for the moment that | · | is the trivial absolute value function on
k. Consider the nonnegative real-valued function N defined on V by putting
N(v) equal to 1 when v 6= 0, and to 0 when v = 0. It is easy to see that this
defines an ultranorm on V , which may be called the trivial ultranorm on V .
The corresponding ultrametric (1.4.5) is the same as the discrete metric on V .

If N is a semi-ultranorm on V with respect to | · | on k and N(v) > 0 for
some v ∈ V , then it is easy to see that | · | is an ultrametric absolute value
function on V . If N is a seminorm on V with respect to | · | on k and 0 < a ≤ 1,
then one can verify that

N(v)a(1.4.6)

is a seminorm on V with respect to | · |a as an absolute value function on k, using
(1.1.6). Similarly, if | · | is an ultrametric absolute value function on k, and N is
a semi-ultranorm on V with respect to | · | on k, then (1.4.6) is a semi-ultranorm
on V with respect to | · |a as an ultrametric absolute value function on k for
every a > 0.

Let n be a positive integer, and consider the space kn of n-tuples of elements
of k, which is a vector space over k with respect to coordinatewise addition and
scalar multiplication. If v ∈ kn, then put

‖v‖1 =

n∑
j=1

|vj |(1.4.7)
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and
‖v‖∞ = max

1≤j≤n
|vj |.(1.4.8)

One can check that these define norms on kn with respect to | · | on k. If | · |
is an ultrametric absolute value function on k, then (1.4.8) is an ultranorm on
kn. We also have that

‖v‖∞ ≤ ‖v‖1 ≤ n ‖v‖∞(1.4.9)

for every v ∈ kn.

1.5 Formal series

Let k be a field, and let T be an indeterminate. As in [4, 11], we shall normally
use upper-case letters for indeterminates, and lower case letters for elements of
k or related spaces. Let k((T )) be the space of formal series of the form

f(T ) =

∞∑
j=j0

fj T
j ,(1.5.1)

where j0 is in the set Z of integers, and fj ∈ k for every integer j ≥ j0. More
precisely, we can take fj = 0 when j < j0, and define k((T )) to be the space of
k-valued functions on Z that are equal to 0 for all but finitely many j < 0. As
in [4], an element of k((T )) may be expressed as

f(T ) =
∑

j>>−∞
fj T

j(1.5.2)

to indicate that fj = 0 for all but finitely many j < 0.
We may consider k((T )) as a vector space over k with respect to termwise

addition and scalar multiplication, which corresponds to pointwise addition and
scalar multiplication of k-valued functions on Z. The space k[[T ]] of formal
power series in T with coefficients in k may be identified with the linear subspace
of k((T )) consisting of f(T ) as in (1.5.1) with j0 ≥ 0. Similarly, the space k[T ]
of formal polynomials in T with coefficients in k may be identified with the
linear subspace of k[[T ]] consisting of f(T ) as in (1.5.1) with j0 ≥ 0 and fj = 0
for all but finitely many j.

Let f(T ) and

g(T ) =
∑

l>>−∞

gl T
l(1.5.3)

in k((T )) be given, and put

hn =

∞∑
j=−∞

fj gn−j(1.5.4)

for every n ∈ Z. More precisely, one can check that all but finitely many of the
terms in the sum on the right are equal to 0, so that the sum defines an element



1.6. ABSOLUTE VALUES ON K((T )) 9

of k. One can also verify that for all but finitely many n < 0, all of the terms
on the right side of (1.5.4) are equal to 0, so that hn = 0. Thus

h(T ) =
∑

n>>−∞
hn T

n(1.5.5)

defines an element of k((T )), and we put

f(T ) g(T ) = h(T ).(1.5.6)

It is well known and not difficult to check that k((T )) is a commutative associa-
tive algebra over k with respect to this definition of multiplication. Of course,
k[T ] and k[[T ]] are subalgebras of k((T )). If we identify elements of k with
formal polynomials with the given coefficient of T j when j = 0 and all other
coefficients equal to 0, then the multiplicative identity element 1 of k is the
multiplicative identity element in k((T )) as well.

If a(T ) ∈ k[[T ]], then
∑∞

l=0 a(T )
l T l can be defined as an element of k[[T ]]

in a standard way, where a(T )l is interpreted as being equal to 1 when l = 0.
One can check that

(1− a(T )T )

∞∑
l=0

a(T )l T l = 1,(1.5.7)

so that 1− a(T )T is invertible in k[[T ]], with

(1− a(T )T )−1 =

∞∑
l=0

a(T )l T l.(1.5.8)

One can use this to show that k((T )) is a field.
More precisely, if f(T ) ∈ k[[T ]], then f(T ) is invertible in k[[T ]] if and only if

f0 6= 0. This also uses the fact that f(T ) 7→ f0 defines an algebra homomorphism
from k[[T ]] onto k.

1.6 Absolute values on k((T ))

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If f(T ) =

∑
j>>−∞ fj T

j is a nonzero element of k((T )), then there is an
integer j0(f(T )) such that

fj0(f(T )) 6= 0, fj = 0 when j < j0(f(T )).(1.6.1)

We can interpret j0(f(T )) as being +∞ when f(T ) = 0. It is easy to see that

j0(f(T ) g(T )) = j0(f(T )) + j0(g(T )),(1.6.2)

j0(f(T ) + g(T )) ≥ min(j0(f(T )), j0(f(T )))(1.6.3)

for every f(t), g(T ) ∈ k((T )), with suitable interpretations when either f(T ) or
g(T ) is 0.
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Let r be a positive real number with r ≤ 1, and put

|f(T )|r = rj0(f(T ))(1.6.4)

when f(T ) ∈ k((T )) and f(T ) 6= 0, and |0|r = 0. Observe that

|f(T ) g(T )|r = |f(T )|r |g(T )|r,(1.6.5)

|f(T ) + g(T )|r ≤ max(|f(T )|r, |g(T )|r)(1.6.6)

for every f(T ), g(T ) ∈ k((T )), by (1.6.2) and (1.6.3). Thus | · |r is an ultrametric
absolute value function on k((T )), which is the trivial absolute value function
when r = 1. If a is a positive real number, then 0 < ra ≤ 1 and

|f(T )|ar = |f(T )|ra(1.6.7)

for every f(T ) ∈ k((T )).
Suppose from now on in this section that r < 1. If n ∈ Z, then

Tn k[[T ]] = {f(T )Tn : f(T ) ∈ k[[T ]]}(1.6.8)

is the same as the closed ball in k((T )) centered at 0 with radius rn with
respect to the ultrametric associated to | · |r. We can also identify (1.6.8) with
the Cartesian product of a family of copies of k, indexed by integers j ≥ n.
One can check that the topology determined on (1.6.8) by the restriction of the
ultrametric on k((T )) associated to | · |r to (1.6.8) is the same as the product
topology, using the discrete topology on k.

It is not too difficult to show that

k((T )) is complete with respect to(1.6.9)

the ultrametric associated to | · |r.

More precisely, any Cauchy sequence in k((T )) with respect to the ultrametric
associated to | · |r is bounded, which means that there is an n ∈ Z such that the
terms of the Cauchy sequence are contained in (1.6.8). One can verify that for
each integer j ≥ n, the coefficients of T j of the terms of the Cauchy sequence
are eventually constant. The eventual constant values of the coefficients of T j ,
j ≥ n, can be used to define an element of (1.6.8). The given Cauchy sequence
converges to this element of (1.6.8) with respect to the metric associated to | · |r,
by the remark in the preceding paragraph.

Note that | · |r may be considered as a norm on k((T )), as a vector space over
k, with respect to the trivial absolute value function on k. Of course, (1.6.8) is
a linear subspace of k((T )) for every n ∈ Z, as a vector space over k.

1.7 Translation-invariant semimetrics

Let G be a group, and let d(·, ·) be a semimetric on G. We say that d(·, ·) is
invariant under left translations on G if

d(a x, a y) = d(x, y)(1.7.1)
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for every a, x, y ∈ G. Similarly, d(·, ·) is said to be invariant under right trans-
lations on G if

d(x a, y a) = d(x, y)(1.7.2)

for every a, x, y ∈ G. Of course,

d(x−1, y−1)(1.7.3)

is a semimetric on G too. It is easy to see that d(·, ·) is invariant under left
or right translations on G if and only if (1.7.3) is invariant under right or left
translations on G, respectively.

If d(·, ·) is invariant under either left or right translations on G, then one
can check that

d(x, e) = d(x−1, e)(1.7.4)

for every x ∈ G, where e is the identity element in G. If d(·, ·) is invariant under
both left and right translations on G, then one can verify that

d(x, y) = d(x−1, y−1)(1.7.5)

for every x, y ∈ G. If d(·, ·) is invariant under either left or right translations on
G and (1.7.5) holds, then it follows that d(·, ·) is invariant under both left and
right translations on G.

If a, b ∈ G and A,B ⊆ G, then put

aB = {a y : y ∈ B},(1.7.6)

Ab = {x b : x ∈ A},(1.7.7)

AB = {x y : x ∈ A, y ∈ B}(1.7.8)

A−1 = {x−1 : x ∈ A}.(1.7.9)

Equivalently,

AB =
⋃
a∈A

aB =
⋃
b∈B

Ab.(1.7.10)

If A = A−1, then A is said to be symmetric about e in G. If d(·, ·) is invariant
under left or right translations on G, then open and closed balls in G centered
at e with respect to d(·, ·) are symmetric about e, by (1.7.4).

If d(·, ·) is invariant under left translations on G, then

aB(x, r) = B(a x, r)(1.7.11)

for every a, x ∈ G and r > 0, and

aB(x, r) = B(a x, r)(1.7.12)

for every a, x ∈ G and r ≥ 0. We also have that

d(e, x y) ≤ d(e, x) + d(x, x y) = d(e, x) + d(e, y)(1.7.13)
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for every x, y ∈ G in this case. This implies that

B(e, r)B(e, t) ⊆ B(e, r + t)(1.7.14)

for every r, t > 0, and

B(e, r)B(e, t) ⊆ B(e, r + t)(1.7.15)

for every r, t ≥ 0.
Similarly, if d(·, ·) is invariant under right translations on G, then

B(x, r) a = B(x a, r)(1.7.16)

for every a, x ∈ G and r > 0,

B(x, r) a = B(x a, r)(1.7.17)

for every a, x ∈ G and r ≥ 0, and

d(e, x y) ≤ d(e, y) + d(y, x y) = d(e, x) + d(e, y)(1.7.18)

for every x, y ∈ G. This means that (1.7.14) and (1.7.15) hold too, as before.
Suppose now that d(·, ·) is a semi-ultrametric on G. If d(·, ·) is invariant

under left translations on G, then

d(e, x y) ≤ max(d(e, x), d(x, x y)) = max(d(e, x), d(e, y))(1.7.19)

for every x, y ∈ G. Similarly, if d(·, ·) is invariant under right translations on G,
then

d(e, x y) ≤ max(d(e, y), d(y, x y)) = max(d(e, x), d(e, y)).(1.7.20)

In both cases, we get that

open and closed balls in G centered at e(1.7.21)

with respect to d(·, ·) are subgroups of G.

This also uses the fact that these balls are symmetric about e, as before.
If d(·, ·) is a semimetric on G that is invariant under left or right translations

on G, then B(e, 0) is a subgroup of G. This follows from (1.7.15) and the fact
that B(e, 0) is symmetric about e in G.

1.8 Conjugations and subgroups

Let G be a group again, and put

Ca(x) = a x a−1(1.8.1)

for every a, x ∈ G, which defines conjugation by a on G. Let us say that a
semimetric d(·, ·) on G is invariant under conjugations on G if

d(a x a−1, a y a−1) = d(x, y)(1.8.2)
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for every a, x, y ∈ G. This implies that open and closed balls in G centered
at e with respect to d(·, ·) are invariant under conjugations on G. If d(·, ·) is
invariant under left and right translations on G, then d(·, ·) is invariant under
conjugations on G. If d(·, ·) is invariant under left or right translations on G,
and if d(·, ·) is invariant under conjugations on G, then d(·, ·) is invariant under
both left and right translations on G.

If d(·, ·) is a semi-ultrametric on G that is invariant under left or right trans-
lations on G, then open and closed balls in G centered at e with respect to d(·, ·)
are subgroups of G, as in the previous section. If d(·, ·) is invariant under left
and right translations on G, and thus conjugations on G, then it follows that

open and closed balls in G centered at e with(1.8.3)

respect to d(·, ·) are normal subgroups of G.

If d(·, ·) is a semimetric on G and a ∈ G, then

da(x, y) = d(a x a−1, a y a−1)(1.8.4)

is a semimetric on G as well, and a semi-ultrametric on G when d(·, ·) is a semi-
ultrametric on G. If d(·, ·) is invariant under left or right translations on G,
then one can check that (1.8.4) has the same property. Note that

Bda
(x, r) = a−1Bd(a x a

−1, r) a(1.8.5)

for every x ∈ G and r > 0, and

Bda(x, r) = a−1Bd(a x a
−1, r) a(1.8.6)

for every x ∈ G and r ≥ 0.
Let A be a subgroup of G, and for each x, y ∈ G, put

dL(x, y) = dA,L(x, y) = 0 when xA = y A(1.8.7)

= 1 when xA 6= y A

and

dR(x, y) = dA,R(x, y) = 0 when Ax = Ay(1.8.8)

= 1 when Ax 6= Ay.

One can check that these define semi-ultrametrics on G. It is easy to see that
(1.8.7) is invariant under left translations on G, and that (1.8.8) is invariant
under right translations on G. We also have that (1.8.7) is invariant under
right translations on G by elements of A, and that (1.8.8) is invariant under left
translations on G by elements of A.

One can verify that

dA,R(x, y) = dA,L(x
−1, y−1)(1.8.9)
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for every x, y ∈ G. By construction, the open balls in G centered at e with
radius r ≤ 1 with respect to (1.8.7) and (1.8.8) are equal to A, as are the closed
balls in G centered at e with radius r < 1 with respect to (1.8.7) and (1.8.8).

If A is a normal subgroup of G, then (1.8.7) and (1.8.8) are the same. Their
common value may be denoted dA(x, y) in this case, which is a semi-ultrametric
on G that is invariant under both left and right translations.

Let d1, . . . , dn be finitely many semimetrics on G, and remember that their
sum d′ and maximum d define semimetrics on G as well, as in Section 1.1. If
dj is invariant under left translations on G for each j = 1, . . . , n, then d and
d′ are invariant under left translations too. Similarly, if dj is invariant under
right translations on G for every j = 1, . . . , n, then d and d′ are invariant right
translations on G.

Let A1, . . . , An be finitely many subgroups of G, so that

A =

n⋂
j=1

Aj(1.8.10)

is also a subgroup of G. It is easy to see that

max
1≤j≤n

dAj ,L(x, y) = dA,L(x, y)(1.8.11)

max
1≤j≤n

dAj ,R(x, y) = dA,R(x, y)(1.8.12)

for every x, y ∈ G.

1.9 Sequences of semimetrics

Let X be a set, and let d1, d2, d3, . . . be a sequence of semimetrics on X. Also
let a1, a2, a3, . . . be a sequence of positive real numbers, so that

d′j(x, y) = min(dj(x, y), aj)(1.9.1)

defines a semimetric on X for every j ≥ 1, as in Section 1.1. If x ∈ X and r > 0,
then

Bd′
j
(x, r) = Bdj (x, r) when r ≤ aj(1.9.2)

= X when r > aj

for every j ≥ 1, as in Section 1.2. Similarly, if r ≥ 0, then

Bd′
j
(x, r) = Bdj (x, r) when r < aj(1.9.3)

= X when r ≥ aj

for every j ≥ 1. Remember that (1.9.1) is an ultrametric on X when dj is an
ultrametric on X.
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Suppose that the aj ’s are bounded in R, and put

d(x, y) = sup
j≥1

d′j(x, y)(1.9.4)

for every x, y ∈ X. One can check that this defines a semimetric on X too, and
a semi-ultrametric on X when dj is a semi-ultrametric on X for every j ≥ 1.
Observe that

Bd(x, r) =

∞⋂
j=1

Bd′
j
(x, r)(1.9.5)

for every x ∈ X and r ≥ 0. If X is a group and dj is invariant under left
translations for every j, then d′j is invariant under left translations for every
j, and d is invariant under left translations as well. Of course, the analogous
statement for invariance under right translations holds as well.

Let us say that the collection of dj ’s, j ≥ 1, is nondegenerate on X if for
every x, y ∈ X with x 6= y, we have that dj(x, y) > 0 for some j. This implies
that the collection of d′j ’s, j ≥ 1, is also nondegenerate on X. In this case, it is
easy to see that d is a metric on X.

Suppose now that

lim
j→∞

aj = 0,(1.9.6)

which implies in particular that the aj ’s are bounded. One can check that the
supremum on the right side of (1.9.4) is attained for every x, y ∈ X under these
conditions. It follows that

Bd(x, r) =

∞⋂
j=1

Bd′
j
(x, r)(1.9.7)

for every x ∈ X and r > 0. Note that the intersections on the right sides of
(1.9.5) and (1.9.7) can be reduced to finite intersections, because of (1.9.2) and
(1.9.3).

Let G be a group, and let A1, A2, A3, . . . be a sequence of subgroups of G.
If
⋂∞

j=1Aj = {e}, then the sequences of semimetrics dAj ,L and dAj ,R defined in
the previous section for j ≥ 1 are nondegerate.

1.10 Subadditive functions

Let G be a group, and let N be a nonnegative real-valued function on G. Let
us say that N is subadditive on G if

N(x y) ≤ N(x) +N(y)(1.10.1)

for every x, y ∈ G. Similarly, let us say that N is ultra-subadditive on G if

N(x y) ≤ max(N(x), N(y))(1.10.2)
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for every x, y ∈ G. Thus ultra-subadditivity implies subadditivity. If

N(x−1) = N(x)(1.10.3)

for every x ∈ G, then we say that N is symmetric on G. We shall normally be
concerned with subadditive functions that satisfy

N(e) = 0.(1.10.4)

If N(x) > 0 when x 6= e, then we say that N is nondegenerate.
If N is subadditive and symmetric on G and satisfies (1.10.4), then one can

check that
dN,L(x, y) = N(x−1 y) = N(y−1 x)(1.10.5)

is a semimetric on G that is invariant under left translations, and that

dN,R(x, y) = N(x y−1) = N(y x−1)(1.10.6)

is a semimetric on G that is invariant under right translations. These are semi-
ultrametrics when N is ultra-subadditive, and metrics when N is nondegerate.
Conversely, if d(·, ·) is a semimetric on G that is invariant under left or right
translations, then

Nd(x) = d(x, e)(1.10.7)

is subadditive, symmetric, and equal to 0 at e. Moreover, Nd is ultra-subadditive
when d(·, ·) is a semi-ultrametric that is invariant under left or right translations,
and Nd is nondegenerate when d(·, ·) is a metric.

If N is subadditive on G, then

N(x)a(1.10.8)

is subadditive on G for 0 < a ≤ 1, because of (1.1.6). If N is ultra-subadditive
on G, then (1.10.8) is ultra-subadditive for every a > 0. Of course, if N is
symmetric on G, satisfies (1.10.4), or is nondegenerate, then (1.10.8) has the
same property.

If N is subadditive on G, then it is easy to see that

Nt(x) = min(N(x), t)(1.10.9)

is subadditive on G for every t > 0. Similarly, if N is ultra-subadditive, symmet-
ric, satisfies (1.10.4), or is nondegenerate, then (1.10.9) has the same property.
Let k be a field with an absolute value function | · |, and let V be a vector space
over k. If N is a seminorm on V with respect to | · | on k, then N is subadditive
and symmetric on V , as a commutative group with respect to addition. If | · | is
the trivial absolute value function on k, then (1.10.9) is a seminorm on V too.
Otherwise, we have that

Nt(α v) ≤ Nt(v)(1.10.10)

for every v ∈ V and α ∈ k with |α| ≤ 1. In particular,

Nt(α v) = Nt(v)(1.10.11)



1.11. BOUNDED LINEAR MAPPINGS 17

for every v ∈ V and α ∈ k with |α| = 1.
If A is a subgroup of G and x ∈ G, then put

NA(x) = 0 when x ∈ A(1.10.12)

= 1 when x 6∈ A.

It is easy to see that NA is ultra-subadditive and symmetric on G, and of course
NA(e) = 0. In this case, (1.10.5) and (1.10.6) are the same as (1.8.7) and (1.8.8),
respectively.

If N1, . . . , Nl are finitely many subadditive functions on G, then their sum
and maximum are subadditive as well. If Nj is ultra-subadditive for each j =
1, . . . , l, then

N(x) = max
1≤j≤l

Nj(x)(1.10.13)

is ultra-subadditive on G. If Nj is symmetric on G for each j = 1, . . . , n, or
Nj(e) = 0 for each j = 1, . . . , n, then the sum and maximum have the same

property. Let A1, . . . , Al be finitely many subgroups of G, so that A =
⋂l

j=1Aj

is a subgroup of G too. Observe that

NA(x) = max
1≤j≤l

NAj
(x)(1.10.14)

for every x ∈ G.
To say that N is invariant under conjugations on G means that

N(a x a−1) = N(x)(1.10.15)

for every a, x ∈ G. One can check that this is equivalent to the condition that

N(x y) = N(y x)(1.10.16)

for every x, y ∈ G. This is the same as saying that the right sides of (1.10.5)
and (1.10.6) are the same. If A is a subgroup of G, then NA is invariant under
conjugations on G exactly when A is a normal subgroup of G.

1.11 Bounded linear mappings

Let k be a field with an absolute value function | · |, let V , W be vector spaces
over k, and let NV , NW be seminorms on V , W , respectively, with respect to
| · | on k. A linear mapping T from V into W is said to be bounded with respect
to NV , NW if

NW (T (v)) ≤ C NV (v)(1.11.1)

for some C ≥ 0 and every v ∈ V . In this case, the operator seminorm of T is
defined by

‖T‖op = ‖T‖op,V W = inf{C ≥ 0 : (1.11.1) holds}.(1.11.2)

One can check that the space BL(V,W ) of bounded linear mappings from
V into W is a vector space over k with respect to pointwise addition and scalar
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multiplication, and that ‖T‖op defines a seminorm on BL(V,W ) with respect to
|·| on k. Similarly, ‖T‖op is a norm on BL(V,W ) when NW is a norm onW , and
‖T‖op is a semi-ultranorm on BL(V,W ) when NW is a semi-ultranorm on W . If
NW is a norm onW , andW is complete with respect to the metric associated to
NW , then BL(V,W ) is complete with respect to the metric associated to ‖ · ‖op,
by standard arguments.

Let Z be another vector space over k, with a seminorm NZ with respect to
| · | on k. If T1 is a bounded linear mapping from V into W , and T2 is a bounded
linear mapping from W into Z, then their composition T2 ◦ T1 is bounded as a
linear mapping from V into Z, with

‖T2 ◦ T1‖op,V Z ≤ ‖T1‖op,V W ‖T2‖op,WZ .(1.11.3)

Let n be a positive integer, and let us take V = kn for the moment. Let
e1, . . . , en be the standard basis vectors in kn, which means that the jth coor-
dinate of el is 1 when j = l, and 0 when j 6= l. If T is any linear mapping from
kn into W , then

NW (T (v)) ≤
n∑

l=1

|vl|NW (T (el))(1.11.4)

for every v ∈ kn. If we take kn to be equipped with the norm ‖v‖1 in (1.4.7),
then T is bounded, with

‖T‖op = max
1≤l≤n

NW (T (el)).(1.11.5)

More precisely, (1.11.4) implies that T is bounded, with ‖T‖op less than or equal
to the right side, and the opposite inequality can be verified directly. If NW is
a semi-ultranorm on W , then

NW (T (v)) ≤ max
1≤l≤n

(|vl|NW (T (el)))(1.11.6)

for every v ∈ kn. If we take kn to be equipped with the norm ‖v‖∞ in (1.4.8),
then we get that T is bounded again, and that (1.11.5) holds.

Let V be any vector space over k with a seminorm NV with respect to |·| on k
again, and let BL(V ) = BL(V, V ) be the space of bounded linear mappings from
V into itself. This is an associative algebra over k, with respect to composition
of linear mappings. Note that the identity mapping I = IV on V is bounded,
with

‖I‖op = 1(1.11.7)

when NV (v) > 0 for some v ∈ V .
A linear mapping T from V into W is said to be an isometry if

NW (T (v)) = NV (v)(1.11.8)

for every v ∈ V . This implies that T is injective when NV is a norm on V . A
one-to-one linear mapping T from V onto W is an isometry if and only if T and
T−1 are bounded, with

‖T‖op,VW , ‖T−1‖op,WV ≤ 1.(1.11.9)
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If T1 is an isometric linear mapping from V into W , and T2 is an isometric
linear mapping from W into Z, then T2 ◦T1 is an isometric linear mapping from
V into Z. The collection of one-to-one isometric linear mappings from V onto
itself is a subgroup of the group of invertible elements of BL(V ).

1.12 Submultiplicativity

Let A be a ring, and let N be a nonnegative real-valued function on A that
is subadditive and symmetric on A, as a commutative group with respect to
addition. This means that

N(x+ y) ≤ N(x) +N(y)(1.12.1)

and
N(−x) = N(x)(1.12.2)

for every x, y ∈ A, and we ask that N(0) = 0 too. Suppose that

N(x y) ≤ N(x)N(y)(1.12.3)

for every x, y ∈ A, so that N is submultiplicative on A. Let us also suppose
from now on in this section that A has a multiplicative identity element e, and
observe that N(e) ≤ N(e)2, by (1.12.3). It follows that either N(e) = 0, which
implies that N(x) = 0 for every x ∈ A, or N(e) ≥ 1.

If x, y ∈ A are invertible, then

x−1 − y−1 = x−1 (y − x) y−1,(1.12.4)

and hence
N(x−1 − y−1) ≤ N(x−1)N(y−1)N(x− y).(1.12.5)

In particular,

N(y−1) ≤ N(x−1) +N(x−1 − y−1)(1.12.6)

≤ N(x−1) +N(x−1)N(x− y)N(y−1),

so that
(1−N(x−1)N(x− y))N(y−1) ≤ N(x−1).(1.12.7)

If
N(x−1)N(x− y) < 1,(1.12.8)

then we get that

N(y−1) ≤ (1−N(x−1)N(x− y))−1N(x−1).(1.12.9)

This implies that

N(x−1 − y−1) ≤ (1−N(x−1)N(x− y))−1N(x−1)2N(x− y)(1.12.10)
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when (1.12.8) holds, by (1.12.5).

Suppose for the moment that N is ultra-subadditive on A, as a commutative
group with respect to addition, so that

N(u+ v) ≤ max(N(u), N(v))(1.12.11)

for every u, v ∈ A. This implies that

N(y−1) ≤ max(N(x−1), N(x−1 − y−1))(1.12.12)

≤ max(N(x−1), N(x−1)N(x− y)N(y−1)),

because of (1.12.5). It follows that

N(y−1) ≤ N(x−1)(1.12.13)

when (1.12.8) holds. Thus

N(x−1 − y−1) ≤ N(x−1)2N(x− y)(1.12.14)

when (1.12.8) holds, by (1.12.5).

Let us suppose from now on in this section that

N(e) = 1.(1.12.15)

Let G(A) be the group of invertible elements of A, and put

U(A) = UN (A) = {x ∈ G(A) : N(x), N(x−1) ≤ 1}.(1.12.16)

It is easy to see that this is a subgroup of G(A). More precisely, if x ∈ U(A),
then

N(x) = N(x−1) = 1,(1.12.17)

because N(e) ≤ N(x)N(x−1).

If a ∈ U(A), then one can check that

N(a x) = N(x a) = N(x)(1.12.18)

for every x ∈ A. This means that the semimetric

dN (x, y) = N(x− y)(1.12.19)

on A is invariant under left and right multiplication by a on A. It follows
that the restriction of (1.12.19) to x, y ∈ U(A) is invariant under left and right
translations on U(A), as a group with respect to multiplication.
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1.13 Completeness and invertibility

Let A be a ring with a multiplicative identity element e again, and let N be
a nonnegative real-valued function on A that is subadditive and symmetric on
A, as a commutative group with respect to addition, as in the previous section.
Suppose that N(0) = 0 and that N is nondegenerate on A, so that (1.12.19) is
a metric on A, and that N is submultiplicative on A. In this section, we also
ask that A be complete with respect to this metric.

If a ∈ A, then

(e− a)

n∑
j=0

aj =
( n∑

j=0

aj
)
(e− a) = e− an+1(1.13.1)

for every nonnegative integer n, where aj is interpreted as being e when j = 0.
Note that

N(aj) ≤ N(a)j(1.13.2)

for every j ≥ 1. Suppose that
N(a) < 1,(1.13.3)

so that N(aj) → 0 as j → ∞, and
∑∞

j=0N(aj) converges as an infinite series
of nonnegative real numbers. One can check that the sequence of partial sums∑n

j=0 a
j is a Cauchy sequence in A with respect to the metric associated to

N , using the analogous property of
∑n

j=0N(aj) in the real line. This means
that this sequence converges in A with respect to the metric associated to N ,
because A is complete, by hypothesis. Let

∑∞
j=0 a

j be the limit of the sequence
of partial sums in A, as usual, and observe that

(e− a)

∞∑
j=0

aj =
( ∞∑

j=0

aj
)
(e− a) = e,(1.13.4)

by (1.13.1). This implies that e− a is invertible in A, with

(e− a)−1 =

∞∑
j=0

aj .(1.13.5)

Suppose now that x ∈ A is invertible, and that y ∈ A satisfies (1.12.8). Thus

N(x−1 (x− y)) ≤ N(x−1)N(x− y) < 1,(1.13.6)

and
y = x− (x− y) = x (e− x−1 (x− y)).(1.13.7)

It follows that y is invertible in A, because e−x−1 (x−y) is invertible in A, as in
the preceding paragraph. In particular, the group G(A) of invertible elements
of A is an open set with respect to the metric associated to N .

If C is a nonnegative real number, then one can check that

{x ∈ G(A) : N(x−1) ≤ C}(1.13.8)
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is a closed set in A with respect to the metric associated to N . Indeed, if {xj}∞j=1

is a sequence of elements of this set that converges to x ∈ A with respect to
the metric associated to N , then it is easy to see that {x−1j }∞j=1 is a Cauchy

sequence, using (1.12.5). It follows that {x−1j }∞j=1 converges to an element of A,

because A is complete, by hypothesis. One can verify that the limit of {x−1j }∞j=1

is the multiplicative inverse of x in A.
Suppose that N(e) = 1, and let U(A) be as in (1.12.16). This is a closed set

in A with respect to the metric associated to N , by the remarks in the previous
paragraph. Suppose that N is ultra-subadditive on A as a commutative group
with respect to addition. If x ∈ U(A), y ∈ A, and N(x − y) < 1, then y is
invertible in A, as before. We also have that y ∈ U(A) under these conditions,
by (1.12.11) and (1.12.13).

1.14 Invertible linear mappings

Let k be a field with an absolute value function | · |, let V , W be vector spaces
over k with seminorms NV , NW , respectively, with respect to | · | on k, and let
T be a linear mapping from V into W . We may be interested in situations in
which there is a positive real number c such that

cNV (v) ≤ NW (T (v))(1.14.1)

for every v ∈ V . If T is a one-to-one mapping from V onto W , then (1.14.1) is
the same as saying that T−1 is bounded as a linear mapping from W into V ,
with

‖T−1‖op,WV ≤ 1/c.(1.14.2)

If NV is a norm on V , then (1.14.1) implies that T is injective. Of course, if V
and W are finite-dimensional vector spaces over k of the same dimension, then
injective linear mappings from V into W are automatically surjective.

Suppose that (1.14.1) holds, and let R be a linear mapping from V into W
such that R− T is bounded, with

‖R− T‖op,V W < c.(1.14.3)

Observe that

NW (T (v)) ≤ NW (R(v)) +NW (R(v)− T (v))(1.14.4)

≤ NW (R(v)) + ‖R− T‖op,V W NV (v)

for every v ∈ V . This implies that

(c− ‖R− T‖op,VW )NV (v) ≤ NW (R(v))(1.14.5)

for every v ∈ V . If NW is a semi-ultranorm on W , then

NW (T (v)) ≤ max(NW (R(v)), NW (R(v)− T (v)))(1.14.6)

≤ max(NW (R(v)), ‖R− T‖op,V W NV (v))
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for every v ∈ V . In this case, one can check that

cNV (v) ≤ NW (R(v))(1.14.7)

for every v ∈ V .
Suppose that T is an isometric linear mapping from V into W , so that T is

a bounded linear mapping with ‖T‖op,V W ≤ 1, and (1.14.1) holds with c = 1.
If NW is a semi-ultranorm on W , and if R is a bounded linear mapping from
V into W that satisfies (1.14.3) with c = 1, then (1.14.7) holds with c = 1. We
also have that

‖R‖op ≤ max(‖R− T‖op,V W , ‖T‖op,V W ) ≤ 1,(1.14.8)

because ‖ · ‖op,V W is a semi-ultranorm on BL(V,W ), as in Section 1.11. This
means that R is an isometric linear mapping from V into W too under these
conditions.

Let us now take V = W , NV = NW , and let G(BL(V )) be the group of
invertible elements in the algebra BL(V ) of bounded linear mappings from V
into itself, as in Section 1.12. Put

U(BL(V )) = {T ∈ G(BL(V )) : ‖T‖op, ‖T−1‖op ≤ 1},(1.14.9)

as before. This is the same as the group of one-to-one isometric linear mappings
from V onto itself, as in Section 1.11.

Suppose for the rest of the section that V is finite-dimensional as a vector
space over k, and that NV is a norm on V . If T ∈ G(BL(V )) and R ∈ BL(V )
satisfy

‖R− T‖op < 1/‖T−1‖op,(1.14.10)

then R is injective on V , by the earlier argument. More precisely, R is a one-
to-one linear mapping from V onto itself with bounded inverse, and

‖R−1‖op ≤ ((1/‖T−1‖op)− ‖R− T‖op)−1(1.14.11)

= (1− ‖T−1‖op ‖R− T‖op)−1 ‖T−1‖op.

If NV is a ultranorm on V , then we get that

‖R−1‖op ≤ ‖T−1‖op.(1.14.12)

In particular, if T ∈ U(BL(V )), R ∈ BL(V ), and

‖R− T‖op < 1,(1.14.13)

then R ∈ U(BL(V )) when NV is an ultranorm on V .

1.15 Rings of matrices

Let A be a ring, and let n be a positive integer. The space Mn(A) of n × n
matrices with entries in A is also a ring, with respect to entrywise addition of
matrices, and matrix multiplication.
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Let N be a nonnegative real-valued function on A, and suppose that N is
symmetric and ultra-subadditive on A as a commutative group with respect to
addition, that N is submultiplicative on A, and that N(0) = 0. Let a = (aj,l)
be an element of Mn(A), so that aj,l ∈ A for every j, l = 1, . . . , n, and put

Nn(a) = max
1≤j,l≤n

N(aj,l).(1.15.1)

This defines a nonnegative real-valued function on Mn(A), and one can check
that Nn is symmetric and ultra-subadditive on Mn(A) as a commutative group
with respect to addition, that Nn is submultiplicative onMn(A) with respect to
matrix multiplication, and that Mn(0) = 0. If N is nondegenerate on A, then
Nn is nondegenerate on Mn(A).

Suppose that A has a multiplicative identity element e, and let I = In be
the identity matrix in Mn(A), with diagonal entries equal to e and all other
entries equal to 0. This is the multiplicative identity element in Mn(A). The
group G(Mn(A)) of invertible elements in Mn(A) is also denoted GLn(A).

Observe that
A1 = {x ∈ A : N(x) ≤ 1}(1.15.2)

is a subring of A. Suppose that N(e) = 1, so that e ∈ A1. It is easy to see that
x ∈ A1 is invertible in A1 if and only if x is invertible in A, with N(x−1) ≤ 1.
Thus the subgroup U(A) of the group G(A) of invertible elements of A defined
in (1.12.16) is the same as the group G(A1) of invertible elements of A1.

Of course, the ring Mn(A1) of n × n matrices with entries in A1 may be
considered as a subring of Mn(A). In fact,

Mn(A1) = {a ∈Mn(A) : Nn(a) ≤ 1},(1.15.3)

by the definition of Nn. The subgroup UNn
(Mn(A)) of G(Mn(A)) = GLn(A)

defined as in (1.12.16) is the same as the group G(Mn(A1)) = GLn(A1) of
invertible elements in Mn(A1), as in the preceding paragraph.

Suppose that A is a commutative ring, so that the determinant det a of
a ∈ Mn(A) can be defined as an element of A in the usual way. It is well
known that a is invertible in Mn(A) if and only if det a is invertible in A. If
a ∈Mn(A1) satisfies

Nn(a− I) < 1,(1.15.4)

then one can check that
N(det a− e) < 1.(1.15.5)

Suppose now that A is a field k, and that N is an ultrametric absolute value
function | · | on k. In this case, A1 consists of x ∈ k such that |x| ≤ 1, and the
group of invertible elements of A1 consists of x ∈ k with |x| = 1. In particular,
one can verify that x ∈ k satisfies |x| = 1 when |x− 1| < 1.



Chapter 2

Semimetrics and topologies

2.1 Collections of semimetrics

Let X be a set, and let M be a nonempty collection of semimetrics on X. A
subset U of X is said to be an open set with respect to M if for every x ∈ U
there are finitely many elements d1, . . . , dn of M and positive real numbers
r1, . . . , rn such that

n⋂
j=1

Bdj (x, r) ⊆ U.(2.1.1)

One can check that this defines a topology on X. Of course, if M consists of a
single semimetric, then this is the usual topology determined by that semimetric.

In particular, if U ⊆ X is an open set with respect to any element of M,
then U is an open set with respect to M. It is well known that open balls are
open sets with respect to a semimetric. Using this, it is easy to see that the
open balls in X with respect to elements of M form a sub-base for the topology
determined by M.

If M consists of finitely many semimetrics, then the topology determined
on X by M is the same as the topology determined by the sum or maximum of
the elements of M. If M consists of an infinite sequence of semimetrics, then
one can get a single semimetric that determines the same topology on X as in
Section 1.9.

Let us say that M is nondegenerate on X if for every x, y ∈ X with x 6= y
there is a d ∈ M such that d(x, y) > 0. In this case, one can check that X is
Hausdorff with respect to the topology determined by M.

One can check that closed balls with respect to a semimetric are closed
sets with respect to the topology determined by that semimetric. It is easy
to see that closed balls of positive radius with respect to a semi-ultrametric
are open sets with respect to that semi-ultrametric. One can also verify that
open balls with respect to a semi-ultrametric are closed sets with respect to the
semi-ultrametric.

25
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Let us say that a topological space Y is regular in the strict sense if for every
y ∈ Y and closed set E ⊆ Y with y 6∈ E there are disjoint open sets U, V ⊆ Y
such that y ∈ U and E ⊆ V . Equivalently, this means that for every y ∈ Y and
open set W ⊆ Y with y ∈ W there is an open set U ⊆ Y such that y ∈ U and
the closure U of U in Y is contained in W . If Y is regular in the strict sense and
satisfies the first or zeroth separation condition, then Y is regular in the strong
sense. It is easy to see that this implies that Y is Hausdorff. If the topology on
Y is determined by a nonempty collection of semimetrics, then one can check
that Y is regular in the strict sense.

If Y is a subset of X, then the restriction to Y of a semimetric on X is a
semimetric on Y . Let M be a nonempty collection of semimetrics on X, and
let MY be the collection of the restrictions to Y of the elements of M. One can
check that the topology determined on Y by MY is the same as the topology
induced on Y by the topology determined on X by M.

2.2 Topological groups

Let G be a group that is also equipped with a topology. We say that G is a
topological group if the group operations are continuous. More precisely, this
means that x 7→ x−1 is continuous as a mapping from G into itself, and that
multiplication on G is continuous as a mapping from G × G into G, using the
associated product topology on G × G. If e is the identity element in G, then
the condition that {e} be a closed set is sometimes included in the definition of
a topological group.

If G is a topological group, then it is easy to see that left and right trans-
lations on G are continuous. In fact, they are homeomorphisms from G onto
itself, because the inverse of a left or right translation on G is a left or right
translation too, respectively. If {e} is a closed set, then it follows that G satisfies
the first separation condition. It is well known that G is Hausdorff in this case.
More precisely, topological groups are regular in the strict sense, as in Section
2.4.

If there is a local base for the topology of G at e with only finitely or count-
ably many elements, then a famous theorem states that there is a semimetric
on G that is invariant under left translations and determines the same topology.
Equivalently, there is a semimetric on G that is invariant under right trans-
lations and determines the same topology. If {e} is a closed set, then these
semimetrics are metrics. Otherwise, if G is any topological group, then there is
a nonempty collection of semimetrics on G that determines the same topology
and whose elements are invariant under left translations. Of course, there is
also a nonempty collection of semimetrics that determines the same topology
whose elements are invariant under right translations.

If G is equipped with the topology determined by any nonempty collection of
semimetrics that are invariant under left translations, then left translations on
G are automatically continuous, and one can check that the group operations on
G are continuous at e, as in Section 1.7. In order for G to be a topological group
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with respect to this topology, it would be enough to know that right translations
are continuous as well. In particular, this holds when x 7→ x−1 is continuous with
respect to this topology. If conjugations on G are continuous, then continuity
of right translations is equivalent to continuity of left translations. Of course,
there are analogous statements for collections of semimetrics that are invariant
under right translations.

If G is equipped with the topology determined by a nonempty collection of
semimetrics that are invariant under both left and right translations, then G
is a topological group. In this case, there is a local base for the topology of G
at e consisting of open sets that are invariant under conjugations. Conversely,
if G is a topological group, and if there is a local base for the topology of G
at e that consists of open sets that are invariant under conjugations, then it
is well known that there is a nonempty collection of semimetrics on G that
determines the same topology, and whose elements are invariant under both left
and right translations. If there is a local base for the topology of G at e with
only finitely or countably many elements too, then there is a semimetric on G
that determines the same topology and is invariant under both left and right
translations.

Of course, any group is a topological group with respect to the discrete
topology. It is easy to see that a subgroup of a topological group is a topological
group as well, with respect to the induced topology. One can verify that the
closure of a subgroup of a topological group is a subgroup too.

If I is a nonempty set and Gj is a group for each j ∈ I, then the Cartesian
product G =

∏
j∈I Gj is a group too, where the group operations are defined

coordinatewise. If Gj is a topological group for each j ∈ I, then one can check
that G is a topological group with respect to the product topology. Suppose
that dl is a semimetric on Gl for some l ∈ I, and consider d̃l(x, y) = dl(xl, yl)
on G, as in Section 1.1. If dl is invariant under left or right translations on Gl,
then it is easy to see that d̃l has the same property on G.

2.3 Nice families of subgroups

Let G be a group. If G is a topological group and U is an open subgroup of
G, then U is a closed set, because the complement of U can be expressed as
a union of translates of U . If the topology on G is determined by a collection
of semi-ultrametrics that are invariant under left or right translations, then
there is a local base for the topology of G at the identity element e consisting
of open subgroups of G. If the topology on G is determined by a collection
of semi-ultrametrics that are invariant under both left and right translations,
then there is a local base for the topology of G at e consisting of open normal
subgroups of G.

Conversely, if there is a local base for the topology of G at e consisting
of open subgroups, then one can get collections of semi-ultrametrics that are
invariant under either left or right translations and determine the same topology
on G, using the semimetrics defined in Section 1.8. Similarly, if there is a local
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base for the topology of G at e consisting of open normal subgroups of G, then
one can get a collection of semi-ultrametrics that are invariant under both left
and right translations and determine the same topology. In both cases, if the
local base has only finitely or countably many elements, then one can get a
single semi-ultrametric that determines the same topology, as in Section 1.9.
One could also start with a local sub-base for the topology of G at e consisting
of open subgroups.

If B is any nonempty collection of subgroups of G, then we can define topolo-
gies τL(B), τR(B) on G such that B is a local sub-base at e, and either left or
right translations are continuous, respectively. More precisely, a subset U of G
is an open set with respect to τL(B) if for every x ∈ U there are finitely many
elements A1, . . . , An of B such that

n⋂
j=1

(xAj) ⊆ U.(2.3.1)

Similarly, U is an open set with respect to τR(B) if for every x ∈ U there are
finitely many elements A1, . . . , An of B such that

n⋂
j=1

(Aj x) ⊆ U.(2.3.2)

It is easy to see that these define topologies on G with the properties mentioned
before. In particular, note that

B ⊆ τL(B), τR(B).(2.3.3)

If
τL(B) = τR(B),(2.3.4)

then one can check that G is a topological group with respect to this topology.
This condition is also necessary for G to be a topological group with respect to
τL(B) or τR(B). Let us say that B is nice when (2.3.4) holds. One can verify
that this happens if and only if for every x ∈ G and A ∈ B there are finitely
many elements A1, . . . , An of B such that

n⋂
j=1

Aj ⊆ xAx−1.(2.3.5)

If the elements of B are normal subgroups of G, then B is automatically nice.
Let us say that B is nondegenerate if

⋂
A∈B A = {e}. One can check that G

is Hausdorff with respect to τL(B) and τR(B) in this case.

2.4 Regularity and topological groups

Let G be a topological group, and let A, B be subsets of G. If a, b ∈ G and A,
B are open sets, then Ab and aB are open sets, by continuity of translations.
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If A or B is an open set, then AB is an open set, because it is a union of open
sets. If A is an open set, then A−1 is an open set too.

If W is an open subset of G that contains the identity element e, then there
are open subsets U , V of G such that e ∈ U, V and

U V ⊆W,(2.4.1)

because of continuity of multiplication. More precisely, we can reduce to the
case where U = V , by replacing U , V with their intersection.

Let x ∈ G and E ⊆ G be given, and observe that x is an element of the
closure E of E in G if and only if for every open set U0 ⊆ G with x ∈ U0, we
have that

(U0 x) ∩ E 6= ∅.(2.4.2)

It is easy to see that (2.4.2) holds if and only if

x ∈ U−10 E.(2.4.3)

Thus
E =

⋂
{U E : U ⊆ G is an open set, with e ∈ U},(2.4.4)

and similarly

E =
⋂

{E V : V ⊆ G is an open set, with e ∈ V }.(2.4.5)

In particular, if U , V are as in (2.4.1), then

U, V ⊆W.(2.4.6)

One can use this and continuity of translations to get that G is regular in the
strict sense.

Let K be a compact subset of G, let W be an open subset of G, and suppose
that K ⊆W . If x ∈ K, then x−1W is an open subset of G that contains e, and
there is an open subset U(x) of G such that e ∈ U(x) and

U(x)U(x) ⊆ x−1W,(2.4.7)

as in (2.4.1). The open sets U(x)x, x ∈ K, form an open covering of K, and so
there are finitely many elements x1, . . . , xn of K such that

K ⊆
n⋃

j=1

U(xj)xj ,(2.4.8)

by compactness. Note that

U =

n⋂
j=1

U(xj)(2.4.9)

is an open subset of G that contains e, and that

U K ⊆
n⋃

j=1

U U(xj)xj ⊆
n⋃

j=1

U(xj)U(xj)xj ⊆W.(2.4.10)
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Similarly, there is an open subset V of G such that e ∈ V and

K V ⊆W,(2.4.11)

which could also be obtained from the previous statement and continuity of
x 7→ x−1.

Let A be a subset of G that contains e and is symmetric about e, which can
always be arranged by replacing A with its intersection with A−1. Put A1 = A
and Aj+1 = Aj A for each j ∈ Z+, so that Aj consists of products of j elements
of A. It is easy to see that

Aj Al ⊆ Aj+l(2.4.12)

for every j, l ≥ 1, and that
(Aj)−1 = Aj(2.4.13)

for every j ≥ 1. This implies that

∞⋃
j=1

Aj(2.4.14)

is a subgroup of G. If A is an open subset of G, then (2.4.14) is an open set as
well.

2.5 U-Separated sets

Let G be a topological group, and suppose that U is an open subset of G that
contains the identity element e. A pair A, B of subsets of G is said to be
left-invariant U -separated if

(AU) ∩B = ∅.(2.5.1)

Equivalently, this means that

A ∩ (BU−1) = ∅.(2.5.2)

Similarly, A, B are right-invariant U -separated if

(U A) ∩B = ∅,(2.5.3)

which is the same as saying that

A ∩ (U−1B) = ∅.(2.5.4)

We also have that (2.5.3) holds if and only if

(A−1 U−1) ∩B−1 = ∅,(2.5.5)

which means that A−1, B−1 are left-invariant U−1-separated.
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Let U1 be an open subset of G such that e ∈ U1 and

U1 U
−1
1 ⊆ U.(2.5.6)

If A, B are left-invariant U -separated, then

(AU1 U
−1
1 ) ∩B = ∅.(2.5.7)

Equivalently, this means that

(AU1) ∩ (BU1) = ∅.(2.5.8)

It follows in particular that
A ∩B = ∅,(2.5.9)

by (2.4.5). If A is compact, B is a closed set, and

A ∩B = ∅,(2.5.10)

then there is an open subset U of G such that e ∈ U and A, B are left-invariant
U separated sets, because of (2.4.11).

If A is compact and open, then there is an open subset U of G such that
e ∈ U and

AU ⊆ A.(2.5.11)

This can be obtained from the remarks in the preceding paragraph, or directly
from (2.4.11).

Suppose that A, U are subsets of G such that e ∈ U , U is an open set, and
(2.5.11) holds. We may also suppose that U is symmetric about e, by replacing
it with ints intersection with U−1. It is easy to see that

AU j ⊆ A(2.5.12)

for every j ∈ Z+, where U
j is as in the previous section, using (2.5.11). Put

U0 =

∞⋃
j=1

U j ,(2.5.13)

so that
AU0 ⊆ A,(2.5.14)

by (2.5.12). More precisely,
AU0 = A,(2.5.15)

because e ∈ U , so that A ⊆ AU ⊆ AU0. Remember that U0 is an open
subgroup of G under these conditions, as in the previous section. If e ∈ A, then

U0 ⊆ A,(2.5.16)

by (2.5.14).
In particular, if there is a local base for the topology of G at e consisting

of compact open sets, then there is a local base consisting of open subgroups.
More precisely, these open subgroups are also compact in this case, because they
are closed sets contained in compact sets.
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2.6 Totally bounded sets

Let X be a set with a semimetric d(x, y). As usual, a subset E of X is said to
be totally bounded with respect to d(·, ·) if for every r > 0, E is contained in the
union of finitely many open balls in X of radius r. In particular, this happens
when E is compact with respect to the topology determined on X by d(·, ·).

Now let G be a topological group, and let E be a subset of G. Let us say
that E is left-invariant totally bounded in G if for every open subset U of G that
contains the identity element e, there are finitely many elements a1, . . . , an of
G such that

E ⊆
n⋃

j=1

(aj U).(2.6.1)

Similarly, we say that E is right-invariant totally bounded in G if for every open
subset U of G with e ∈ U there are finitely many elements b1, . . . , bn of G such
that

E ⊆
n⋃

j=1

(U bj).(2.6.2)

Of course, left and right-invariant total boundedness are the same when G is
commutative.

One can check that

E is left-invariant totally bounded in G if and only if(2.6.3)

E−1 is right-invariant totally bounded in G.

If E is compact, then one can verify that E is both left and right-invariant
totally bounded in G.

Suppose for the moment that the topology on G is determined by a semi-
metric d(·, ·). If d(·, ·) is invariant under left translations, then one can verify
that

E is left-invariant totally bounded if and only if(2.6.4)

E is totally bounded with respect to d(·, ·).

Similarly, if d(·, ·) is invariant under right translations, then

E is right-invariant totally bounded if and only if(2.6.5)

E is totally bounded with respect to d(·, ·).

If d(·, ·) is invariant under both left and right translations, then it follows that
left and right-invariant total boundedness are equivalent.

Let ϕ be a homomorphism from G into another topological group. If ϕ is
continuous at e, then one can check that ϕ is continuous at every point, using
continuity of translations. In this case, if E is left or right-invariant totally
bounded, then one can verify that ϕ(E) has the same property.
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If E is symmetric about e, then

left and right-invariant total boundedness of E are equivalent,(2.6.6)

and we may simply refer to the total boundedness of E. If G is totally bounded,
then

every open subgroup of G has finite index in G.(2.6.7)

If there is a local base B for the topology of G at e consisting of open subgroups
of G, then

G is totally bounded if and only if(2.6.8)

every element of B has finite index in G.

If A1, A2 are subgroups of G and A1 has finite index in G, then one can
check that A1 ∩ A2 has finite index in A2. If A2 has finite index in G as well,
then it follows that A1 ∩A2 has finite index in G.

If A is any subgroup of G, then the intersection of all of the conjugates of A
in G is a normal subgroup of G. If A has finite index in G, then one can verify
that there are only finitely many distinct conjugates of A in G. This implies
that the intersection of the conjugates of A in G has finite index in G, as in the
preceding paragraph.

If A is an open subgroup of G, then the conjugates of A in G are open
subgroups. If A also has finite index in G, then it follows that the intersection
of all of the conjugates of A in G is an open subgroup.

If G is totally bounded, and there is a local base for the topology of G at e
consisting of open subgroups, then there is a local base for the topology of G at
e consisting of open normal subgroups.

If A is a closed subgroup of G of finite index, then A is an open set, because
the complement of A is the union of finitely many translates of A.

2.7 Equicontinuous families of conjugations

Let G be a topological group, and note that Ca(x) = a x a−1 is a homeomor-
phism from G into itself for each a ∈ G. If E is a subset of G, then we say
that

C(E) = {Ca : a ∈ E}(2.7.1)

is equicontinuous at the identity element e if for every open subset W of G that
contains e there is an open subset V of G such that e ∈ V and

Ca(V ) ⊆W(2.7.2)

for every a ∈ E. If E has only finitely many elements, then this can be obtained
from the continuity of conjugations on G. If A is a subgroup of G, and there is
a local base for the topology of G at e consisting of open sets that are invariant
under conjugations by elements of A, then C(A) is equicontinuous at e.
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Conversely, if A is a subgroup of G, and C(A) is equicontinuous at e, then
there is a local base for the topology of G at e consisting of open sets that are
invariant under conjugations by elements of A. To see this, let an open subset
W of G that contains e be given, and let V be an open subset of G such that
e ∈ V and (2.7.2) holds for every a ∈ A. This means that

V ⊆ a−1W a(2.7.3)

for every a ∈ A. Note that ⋂
a∈A

(a−1W a)(2.7.4)

is automatically invariant under conjugations by elements of A. This set con-
tains e and is contained in W , by construction. More precisely, V is contained
in (2.7.4), by (2.7.3), which implies that V is contained in the interior of W . Of
course, the interior of W is invariant under conjugations by elements of A too,
as desired. If W is an open subgroup of G, then (2.7.4) is an open subgroup of
G as well, because it contains V .

Suppose now that E is a right-invariant totally bounded subset of G, and
let us verify that C(E) is equicontinuous at e. If W is an open subset of G
that contains e, then there are open subsets U1, U2, U3 of G that contain e and
satisfy

U1 U2 U3 ⊆W.(2.7.5)

This implies that

y U2 y
−1 ⊆W(2.7.6)

for every y ∈ U1 ∩ U−13 . Using the hypothesis that E be right-invariant totally
bounded, we get that there are finitely many elements b1, . . . , bn of G such that

E ⊆
n⋃

j=1

((U1 ∩ U−13 ) bj).(2.7.7)

Observe that

V =

n⋂
j=1

(b−1j U2 bj)(2.7.8)

is an open subset of G that contains e. If x ∈ E, then x = y bj for some
y ∈ U1 ∩ U−13 and 1 ≤ j ≤ n. It follows that

xV x−1 = y bj V b
−1
j y−1 ⊆ y U2 y

−1 ⊆W,(2.7.9)

as desired.
If A is a subgroup of G that is totally bounded, then C(A) is equicontinuous

at e, as in the preceding paragraph. This implies that there is a local base for
the topology of G at e that is invariant under conjugations by elements of A, as
before.
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2.8 Small sets

Let X be a set with a semimetric d(x, y). Let us say that a subset A of X is
r-small with respect to d(·, ·) for some r > 0 if

d(x, y) < r(2.8.1)

for every x, y ∈ A. Equivalently, this means that

A ⊆ Bd(w, r)(2.8.2)

for every w ∈ A. It is easy to see that open balls in X of radius r with respect
to d(·, ·) are 2 r-small, and r-small if d(·, ·) is a semi-ultrametric on X. It follows
that a subset E of X is totally bounded with respect to d(·, ·) if and only if for
every r > 0, E is contained in the union of finitely many r-small sets.

Let d1, . . . , dn be finitely many semimetrics on X, and let d be their maxi-
mum, which is also a semimetric on X. A subset A of X is r-small with respect
to d if and only if A is r-small with respect to dj for each j = 1, . . . , n. If Aj is
an r-small subset of X with respect to dj for each j = 1, . . . , n, then

⋂n
j=1Aj is

r-small with respect to d. Of course, if a subset E of X is totally bounded with
respect to d, then E is totally bounded with respect to dj for every j = 1, . . . , n.
One can check that the converse holds too, using the previous remark about
intersections of r-small sets.

Let G be a topological group, and suppose for the moment that the topology
on G is determined by a nonempty collection M of semimetrics. If the elements
of M are invariant under left translations, then a subset E of G is left-invariant
totally bounded if and only if E is totally bounded with respect to each element
of M. This uses the fact that if E is totally bounded with respect to each
element of M, then E is totally bounded with respect to the maximum of any
finite subset of M, as in the preceding paragraph. Similarly, if the elements
of M are invariant under right translations, then E is right-invariant totally
bounded if and only if E is totally bounded with respect to every element of
M.

Let U be an open subset of G that contains the identity element e. Let us
say that a subset A of G is left-invariant U -small if

A ⊆ aU(2.8.3)

for every a ∈ A, which is the same as saying that a−1A ⊆ U for every a ∈ A.
Similarly, let us say that A is right-invariant U -small if

A ⊆ U a(2.8.4)

for every a ∈ A, which means that Aa−1 ⊆ U for every a ∈ A. Equivalently, A
is left-invariant U -small when

A−1A ⊆ U,(2.8.5)
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and A is right-invariant U -small when

AA−1 ⊆ U.(2.8.6)

Thus A is left-invariant U -small if and only if A−1 is right-invariant U -small.
It is easy to see that A−1A and AA−1 are automatically symmetric about e.
This implies that A is left or right-invariant U -small if and only if A is left or
right-invariant U−1-small, respectively.

If V is an open subset of G that contains e, is symmetric about e, and
satisfies

V V ⊆ U,(2.8.7)

then V is both left and right-invariant U -small. This implies that left translates
of V are left-invariant U -small, and right translates of V are right-invariant U -
small. If a subset E of G is left or right-invariant totally bounded, then E can be
covered by finitely many left or right translates of V , and thus by finitely many
left or right-invariant U -small sets, respectively. Conversely, if E can be covered
by finitely many left or right-invariant U -small sets, then E can be covered by
finitely many left or right translates of U , respectively. This means that E is
left or right-invariant totally bounded if and only if for every open subset U
of G that contains e, E can be covered by finitely many left or right-invariant
U -small sets, respectively.

2.9 Total boundedness and submultiplicativity

Let A be a ring, and let N be a nonnegative real-valued function on A that
is subadditive and symmetric on A, as a commutative group with respect to
addition, and also submultiplicative. Thus N(x− y) defines a semimetric on A,
and one can check that multiplication on A is continuous as a mapping from
A×A into A, with respect to the topology determined on A by N(x− y) and
the associated product topology on A×A. Suppose from now on in this section
that A has a multiplicative identity element e, and let G(A) be the group of
invertible elements in A, as before. One can verify that x 7→ x−1 is continuous
with respect to the topology induced on G(A) by the topology determined on A
by the semimetric associated to N , using some of the remarks in Section 1.12.
It follows that G(A) is a topological group with respect to this topology.

If a ∈ A and B is a subset of A, then put

aB = {a b : b ∈ B}, B a = {b a : b ∈ B}.(2.9.1)

Note that x 7→ a x and x 7→ x a define continuous mappings from A into itself,
with respect to the topology determined by the semimetric associated to N . If
a ∈ G(A), then these mappings are homeomorphisms from A onto itself.

In the following, we let B(x, r) be the open ball in A centered at x ∈ A with
radius r > 0 with respect to the semimetric associated to N . Note that the sets
B(e, r) ∩G(A), r > 0, form a local base at e for the topology induced on G(A)
by the topology determined on A by the semimetric associated to N .
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A subset E of G(A) is left-invariant totally bounded in G(A) if and only if
for every r > 0 there are finitely many elements x1, . . . , xn of G(A) such that

E ⊆
n⋃

j=1

xj B(e, r).(2.9.2)

Similarly, E is right-invariant totally bounded in G(A) if and only if for every
r > 0 there are finitely many elements x1, . . . , xn of G(A) such that

E ⊆
n⋃

j=1

B(e, r)xj .(2.9.3)

Note that it suffices to consider small r here.
Let us suppose for the rest of the section that N(e) > 0, so that N(x) > 0

for every x ∈ G(A). If a ∈ A satisfies N(a) > 0, then

aB(e, r), B(e, r) a ⊆ B(a, r N(a))(2.9.4)

for every r > 0. Note that

B(a, r N(a)) ⊆ B(0, (1 + r)N(a))(2.9.5)

for every r > 0. If E is left or right-invariant totally bounded in G(A), then it
follows that N is bounded on E.

If E is left or right-invariant totally bounded in G(A), then we can take
x1, . . . , xn ∈ G(A) in (2.9.2) or (2.9.3), as appropriate, to be elements of
E. This can be obtained from the characterization of total boundedness in
terms of U -small sets in the previous section. In particular, this means that
N(x1), . . . , N(xn) are bounded, as in the preceding paragraph. Alternatively,
we may ask that E intersects xj B(e, r) or B(e, r)xj , as appropriate, for each
j = 1, . . . , n. This can be used to get an uppoer bound for N(xj) when r < 1.

If E is left or right-invariant totally bounded in G(A), then E is totally
bounded in A, with respect to the semimetric associated to N . This follows
from (2.9.4) and the fact that we can take the xj ’s in (2.9.2) or (2.9.3), as
appropriate, with N(xj) bounded. If we use the second argument mentioned in
the previous paragraph, then we can take r ≤ 1/2 here.

If y ∈ G(A) ∩B(e, r), 0 < r < 1/N(e), then

N(y−1) ≤ (1−N(e) r)−1N(e),(2.9.6)

as in Section 1.12. If E is left or right-invariant totally bounded in G(A), then it
follows that N is bounded on E−1, by taking r = 1/2N(e) in (2.9.2) or (2.9.3),
as appropriate.

If x ∈ G(A), then

x−1B(x, t), B(x, t)x−1 ⊆ B(e, tN(x−1))(2.9.7)
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for every t > 0. This implies that

B(x, t) ⊆ xB(e, tN(x−1)), B(e, tN(x−1))x(2.9.8)

for every t > 0.
If E is totally bounded in A with respect to the semimetric associated to

N , and if N is bounded on E−1, then E is both left and right-invariant totally
bounded in G(A). To see this, let t > 0 be given, so that there are finitely many
elements x1, . . . , xn of A such that

E ⊆
n⋃

j=1

B(xj , t).(2.9.9)

More precisely, we can take x1, . . . , xn ∈ E, using the characterization of total
boundedness in terms of coverings by small sets in the previous section. In
particular, x1, . . . , xn ∈ G(A), so that

E ⊆
n⋃

j=1

xj B(e, tN(x−1j )),

n⋃
j=1

B(e, tN(x−1j ))xj ,(2.9.10)

by (2.9.8). One can use this to get that E is left and right-invariant totally
bounded in G(A), because N(x−11 ), . . . , N(x−1n ) are bounded.

2.10 Local total boundedness conditions

A topological space is said to be locally compact if every point is contained in
an open set that is contained in a compact set. Let us say that a set X with a
semimetric d(·, ·) is locally totally bounded if for every x ∈ X there is an r > 0
such that B(x, r) is totally bounded. If X is locally compact with respect to
the topology determined by d(·, ·), then X is locally totally bounded, because
compact subsets of X are totally bounded.

Now let G be a topological group. If the identity element e is contained in
an open set that is contained in a compact set, then it is easy to see that G
is locally compact, because of continuity of translations. Let us say that G is
locally totally bounded if there is an open subset U of G that contains e and is
either left or right-invariant totally bounded. In this case, U ∩ U−1 is an open
set that contains e and is both left and right-invariant totally bounded. If G is
locally compact, then G is locally totally bounded, because compact subsets of
G are both left and right-invariant totally bounded.

Let k be a field with an absolute value function | · |. We shall refer to a
subset E of k as being totally bounded if E is totally bounded with respect
to the metric associated to | · |, which is the same as saying that E is totally
bounded in k as a commutative topological group with respect to addition and
the topology determined by this metric. Similarly, k is locally totally bounded
as a metric space or a commutative topological group with respect to addition
if and only if B(0, r) is totally bounded for some r > 0.
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Put
t E = {t x : x ∈ E}(2.10.1)

for every t ∈ k. If E is compact, then t E is compact for every t ∈ k, because
multiplication by t is continuous as a mapping from k into itself. If E is totally
bounded, then it is easy to see that t E is totally bounded for every t ∈ k too.
Observe that

tB(0, r) = B(0, |t| r)(2.10.2)

for every r > 0 when t 6= 0, and

tB(0, r) = B(0, |t| r)(2.10.3)

for every r ≥ 0.
Suppose for the moment that | · | is not the trivial absolute value function

on k, so that there is an x ∈ k with x 6= 0 and |x| 6= 1. This implies that there
are y, z ∈ k with 0 < |y| < 1 and |z| > 1, using x and 1/x. Thus

|yj | = |y|j → 0 and |zj | = |z|j → ∞(2.10.4)

as j → ∞. If B(0, r0) is compact for some r0 > 0, then it follows that B(0, r) is
compact for some arbitrarily large values of r, because of (2.10.3). This implies
that all subsets of k that are both closed and bounded are compact. Similarly,
if B(0, r0) is totally bounded for some r0 > 0, then B(0, r) is totally bounded
for some arbitrarily large values of r, which implies that all bounded subsets of
k are totally bounded. Of course, if k is complete with respect to the metric
associated to | · |, then subsets of k that are both closed and totally bounded
are compact.

2.11 Residue fields

Let k be a field with an ultrametric absolute value function | · |. In this case,
B(0, r) is a subgroup of k as a commutative group with respect to addition for
every r > 0, and B(0, r) is a subgroup for every r ≥ 0. In fact, B(0, 1) is a
subring of k, and B(0, r), B(0, r) are ideals in B(0, 1) when r ≤ 1. Thus the
quotients

B(0, 1)/B(0, r)(2.11.1)

and
B(0, 1)/B(0, r)(2.11.2)

are defined as commutative rings when 0 < r ≤ 1. It is easy to see that B(0, 1)
is totally bounded if and only if (2.11.1) has only finitely many elements for
every 0 < r ≤ 1, which happens if and only if (2.11.2) has only finitely many
elements for every 0 < r ≤ 1.

It is well known that the quotient

B(0, 1)/B(0, 1)(2.11.3)
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is a field, which is known as the residue field associated to | · | on k. More
precisely, nonzero elements of (2.11.3) come from x ∈ B(0, 1) with |x| = 1,
which means that 1/x ∈ B(0, 1) too. If | · | is the trivial absolute value function
on k, then the residue field reduces to k.

Put

ρ1 = sup{|x| : x ∈ k, |x| < 1},(2.11.4)

and note that 0 ≤ ρ1 ≤ 1. One can verify that ρ1 = 0 if and only if | · | is the
trivial absolute value function on k, and that ρ1 < 1 if and only if | · | is discrete
on k, in which case the supremum is attained. If 0 < ρ1 < 1, then one can check
that the positive values of | · | on k are the same as the integer powers of ρ1. If
B(0, 1) is totally bounded in k, then one can verify that ρ1 < 1, so that | · | is
discrete on k.

Suppose for the moment that | · | is nontrivial and discrete on k, so that
0 < ρ1 < 1. This means that B(0, 1) = B(0, ρ1), so that the residue field is
the same as (2.11.1), with r = ρ1. If the residue field has only finitely many
elements, then B(0, 1) is the union of finitely many closed balls of radius ρ1. If
j ∈ Z, then it follows that any closed ball in k of radius ρj1 can be expressed as

the union of the same number of closed balls of radius ρj+1
1 . If l ∈ Z+, then it

follows that any closed ball of radius ρj1 can be expressed as the union of finitely

many closed balls of radius ρj+l
1 , so that B(0, 1) is totally bounded.

Let a be a positive real number, so that | · |a also defines an ultrametric
absolute value function on k. Of course, open and closed balls in k of radius r
with respect to the metric associated to | · | are the same as open and closed
balls of radius ra with respect to the metric associated to | · |a. In particular, the
open and closed unit balls in k with respect to these metrics are the same. This
implies that the residue field associated to | · |a is the same as the one associated
to | · |.

2.12 p-Adic integers

Let k be a field with an absolute value function | · |. If x ∈ k and n is a
nonnegative integer, then

(1− x)

n∑
j=0

xj = 1− xn+1,(2.12.1)

so that
n∑

j=0

xj =
1− xn+1

1− x
(2.12.2)

when x 6= 1. This implies that

n∑
j=0

xj → 1

1− x
(2.12.3)
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as n→ ∞ when |x| < 1, with respect to the metric associated to | · |.
Let p be a prime number, and let | · |p be the p-adic absolute value on Qp.

If y ∈ Z and x = p y, then |x|p = |y|p/p < 1, and the remarks in the preceding
paragraph imply that 1/(1−x) can be approximated by integers with respect to
the p-adic metric. Suppose now that w ∈ Q satisfies |w|p ≤ 1, so that w = a/b
for some a, b ∈ Z with b 6= 0 and b not an integer multiple of p. This implies
that there are c, y ∈ Z such that b c = 1− p y, so that

w = a c/b c = a c (1− p y)−1.(2.12.4)

It follows that w can be approximated by integers with respect to the p-adic
metric, as before.

Note that

Zp = {x ∈ Qp : |x|p ≤ 1}(2.12.5)

is a subring of Qp, as in the previous section. The elements of Zp are called
p-adic integers. Of course, Z ⊆ Zp, and Zp is a closed set in Qp. Let z ∈ Zp be
given, and let us check that z can be approximated by integers with respect to
the p-adic metric. Remember that Q is dense in Qp, by construction. If w ∈ Q
and |z − w|p ≤ 1, then |w|p ≤ 1, by the ultrametric version of the triangle
inequality. This implies that w can be approximated by integers with respect to
the p-adic metric, as before. It follows that z can be approximated by integers
with respect to the p-adic metric, by first approximating z by w ∈ Q∩Zp. This
means that Zp is the same as the closure of Z in Qp.

If j ∈ Z, then pj Zp ⊆ Qp can be defined as in (2.10.1). This is the same as
the closed ball in Qp centered at 0 with radius p−j . Note that if x ∈ Qp and
x 6= 0, then |x|p is an integer power of p. This can be verified using the fact
that Q is dense in Qp.

If j ∈ Z+, then p
j Zp is an ideal in Zp, as in the previous section, and thus

the quotient

Zp/p
j Zp(2.12.6)

is defined as a commutative ring. The composition of the natural inclusion
of Z in Zp with the quotient mapping from Zp onto (2.12.6) defines a ring
homomorphism from Z into (2.12.6). One can check that this homomorphism
is surjective, because Z is dense in Zp. The kernel of this homomorphism is

Z ∩ (pj Zp) = pj Z.(2.12.7)

This leads to a ring isomorphism from Z/pj Z onto (2.12.6).

2.13 Total boundedness and products

Let G be a topological group, and let U1, . . . , Un be finitely many open subsets
of G that contain the identity element e. Put U =

⋂n
j=1 Uj , which is also an
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open set that contains e. If Aj is a subset of G that is left-invariant Uj-small
for each j = 1, . . . , n, then it is easy to see that

n⋂
j=1

Aj(2.13.1)

is left-invariant U -small. Similarly, if Aj is right-invariant Uj-small for each
j = 1, . . . , n, then (2.13.1) is right-invariant U -small.

Let I be a nonempty set, and let Gj be a topological group for each j ∈ I.
Thus G =

∏
j∈I Gj is a topological group with respect to the product topology,

where the group operations are defined coordinatewise. Let Ej be a subset of Gj

for each j ∈ I, and put E =
∏

j∈I Ej . Suppose that Ej is left-invariant totally
bounded for each j, and let us check that E is left-invariant totally bounded as
well.

If U is an open subset of G that contains the identity element, then we would
like to show that E can be covered by finitely many left-invariant U -small sets.
It suffices to consider open sets U in a local base for the product topology on G
at the identity element.

If l ∈ I, then let πl be the standard coordinate projection from G onto Gl.
Let l1, . . . , ln be finitely many elements of I, and let Ulr be an open subset of
Glr that contains the identity element for each r = 1, . . . , n. Thus π−1lr

(Ulr ) is
an open subset of G that contains the identity element for each r = 1, . . . , n.
Consider

U =

n⋂
r=1

π−1lr
(Ulr ),(2.13.2)

which is also an open subset of the identity element. Note that open subsets of
G of this type form a local base for the product topology at the identity element.

Of course, Elr can be covered by finitely many left-invariant Ulr -small sub-
sets of Glr for each r = 1, . . . , n, because Elr is left-invariant totally bounded,
by hypothesis. If Alr is a left-invariant Ulr -small subset of Glr , then it is easy to
see that π−1lr

(Alr ) is π
−1
lr

(Ulr )-small in G. If this happens for each r = 1, . . . , n,
then it follows that

n⋂
r=1

π−1lr
(Alr )(2.13.3)

is left-invariant U -small in G, as before. One can verify that E can be covered
by finitely many sets of this type, using the analogous coverings of Elr for
each r = 1, . . . , n. This implies that E is left-invariant totally bounded, because
open sets as in (2.13.2) form a local base for the product topology at the identity
element.

Similarly, if Ej is right-invariant totally bounded in Gj for every j ∈ I, then
E is right-invariant totally bounded in G.

If E is any left or right-invariant totally bounded subset of G, then πl(E)
has the same property in Gl for every l ∈ I, because πl is a continuous group
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homomorphism from G onto Gl. Of course,

E ⊆
∏
l∈I

πl(E).(2.13.4)

2.14 Profinite groups

A topological space X is said to be zero dimensional at a point x ∈ X if
there is a local base for the topology of X consisting of open sets that are also
closed. If this holds at every point in X, then X is said to be zero dimensional.
Equivalently, this means that there is a base for the topology of X consisting of
open sets that are closed as well.

As usual, X is said to be totally disconnected if the only connected subsets
of X have at most one element. If X is zero dimensional and Hausdorff, then it
is easy to see that X is totally disconnected. If X is locally compact, Hausdorff,
and totally disconnected, then it is well known that X is zero dimensional. In
this case, it follows that there is a local base for the topology of X at each point
consisting of compact open sets.

Let G be a topological group, and suppose that {e} is a closed set, so that
G is Hausdorff as a topological space. If G is locally compact and totally
disconnected, then there is a local base for the topology of G at e consisting of
compact open sets, as in the preceding paragraph. This implies that there is a
local base for the topology of G at e consisting of compact open subgroups, as
in Section 2.5.

Note that Q is a commutative topological group with respect to addition
and the topology induced by the standard topology on R. It is easy to see that
Q is zero dimensional as a topological space. However, one can check that Q is
the only open subgroup of itself.

A compact topological group G is said to be profinite if {e} is a closed set,
and the open subgroups of G form a local base for the topology at e. Note
that open subgroups of G have finite index, because G is compact. This implies
that open subgroups have only finitely many conjugates, whose intersection is
an open normal subgroup. It follows that the open normal subgroups form a
local base for the topology at e.

Of course, finite groups may be considered as profinite groups, with respect
to the discrete topology. One can check that the Cartesian product of any
nonempty family of profinite groups is profinite, with respect to the product
topology. In particular, the product of a nonempty family of finite groups is
profinite. One can also verify that closed subgroups of profinite groups are
profinite, with respect to the induced topology.

Suppose now that G is a totally bounded topological group, and that the
open subgroups of G form a local base for the topology at e. As before, open
subgroups of G have finite index, and thus only finitely many conjugates. The
intersections of their conjugates are open normal subgroups, so that the open
normal subgroups form a local base for the topology at e.
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Let B be a local sub-base for the topology of G at e consisting of open normal
subgroups. If A ∈ B, then A has finite index in G, as before, so that G/A is
a finite group. Let us consider G/A as a topological group with respect to the
discrete topology. It is easy to see that the quotient mapping qA from G onto
G/A is continuous, because A is an open set.

Put
K =

∏
A∈B

(G/A),(2.14.1)

which is a compact Hausdorff topological group with respect to the product
topology, and where the group operations are defined coordinatewise, as usual.
If A ∈ B, then let πA be the coordinate mapping from K onto G/A, which is
a continuous group homomorphism. There is a natural group homomorphism q
from G into K such that

πA ◦ q = qA(2.14.2)

for every A ∈ B. Note that q is continuous, because (2.14.2) is continuous for
every A ∈ B.

Suppose that {e} is a closed set, so that G is Hausdorff, and⋂
A∈B

A = {e},(2.14.3)

because B is a local sub-base for the topology of G at e. This means that
the kernel of q is trivial, so that q is injective. One can check that q is a
homeomorphism from G onto q(G), with respect to the topology induced on
q(G) by the product topology on K.

The closure q(G) of q(G) in K is a profinite group, as before. Of course, if
G is compact, then q(G) is compact, and thus closed, because K is Hausdorff.

2.15 Invertible matrices

Let A, B be rings with multiplicative identity elements eA, eB, respectively, and
let ϕ be a ring homomorphism from A into B such that

ϕ(eA) = eB.(2.15.1)

Under these conditions, the restriction of ϕ to the group G(A) of invertible
elements of A is a group homomorphism into G(B). Of course, if G(B) has only
finitely many elements, then the kernel of ϕ in G(A) has finite index.

Let n be a positive integer, and let Mn(A), Mn(B) be the rings of n × n
matrices with entries in A, B, respectively, with respect to matrix multiplication.
Using ϕ, we get a mapping ϕn from Mn(A) into Mn(B), defined by evaluating
ϕ at the entries of an element of Mn(A). It is easy to see that ϕn is a ring
homomorphism from Mn(A) into Mn(B), which sends the identity matrix in
Mn(A) to the identity matrix inMn(B). Thus the restriction of ϕn to GLn(A) =
G(Mn(A)) is a group homomorphism into GLn(B). If B has only finitely many



2.15. INVERTIBLE MATRICES 45

elements, then Mn(B) and thus GLn(B) have only finitely many elements, so
that the kernel of ϕn in GLn(A) has finite index.

If A and B are commutative rings, then the determinant can be defined on
Mn(A) and Mn(B) in the usual way. In this case,

detϕn(a) = ϕ(det a)(2.15.2)

for every a ∈Mn(A).
Now let k be a field with an ultrametric absolute value function | · |. Observe

thatMn(k) is an associative algebra over k with respect to matrix multiplication,
and that

N(a) = Nn(a) = max
1≤j,l≤n

|aj,l|(2.15.3)

is an ultranorm on Mn(k), as a vector space over k, with respect to | · | on k.
More precisely, N is submultiplicative on Mn(k), as in Section 1.15, and the
norm of the identity matrix is equal to 1. It is easy to see that the determinant
is continuous as a mapping from Mn(k) into k, with respect to the metrics
associated to | · | and N on k and Mn(k), respectively. In particular,

GLn(k) = {a ∈Mn(k) : det a 6= 0}(2.15.4)

is an open subset of Mn(k).
Remember that the closed unit ball B(0, 1) in k with respect to the metric

associated to | · | is a subring of k, so that Mn(B(0, 1)) is a subring of Mn(k).
Equivalently,

Mn(B(0, 1)) = {a ∈Mn(k) : N(a) ≤ 1},(2.15.5)

and
GLn(B(0, 1)) = {a ∈Mn(B(0, 1)) : | det a| = 1},(2.15.6)

because an element of B(0, 1) is invertible in B(0, 1) exactly when its absolute
value is equal to 1. If 0 < r ≤ 1, then B(0, r) and B(0, r) are ideals in B(0, 1),
so that the corresponding quotients are commutative rings too. Thus

Mn(B(0, 1)/B(0, r))(2.15.7)

and
Mn(B(0, 1)/B(0, r))(2.15.8)

are rings with respect to matrix multiplication. We also get ring homomor-
phisms from Mn(B(0, 1)) onto (2.15.7) and (2.15.8), from the corresponding
quotient homomorphisms on B(0, 1).

The restrictions of these ring homomorphisms to GLn(B(0, 1)) are group
homomorphisms from GLn(B(0, 1)) into

GLn(B(0, 1)/B(0, r))(2.15.9)

and
GLn(B(0, 1)/B(0, r)),(2.15.10)
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respectively. Of course, (2.15.8) and (2.15.10) have only one element when
r = 1. If B(0, 1) is totally bounded in k with respect to the metric associated to
| · |, then the quotients of B(0, 1) by B(0, r) and B(0, r) have only finitely many
elements, as in Section 2.11. This implies that (2.15.7) and (2.15.8) have only
finitely many elements, so that (2.15.9) and (2.15.10) have only finitely many
elements. If B(0, 1) is compact in k, then Mn(B(0, 1)) and GLn(B(0, 1)) are
compact with respect to the metric associated to N .

As usual, (2.15.9) and (2.15.10) consist of elements of (2.15.7) and (2.15.8),
respectively, whose determinant is invertible in the appropriate quotient ring.
If x ∈ B(0, 1) maps to an invertible element of the quotient by B(0, r), then
one can check that |x| = 1. Similarly, if x maps to an invertible element of the
quotient by B(0, r) and r < 1, then |x| = 1. One can use this to check that the
group homomorphisms from GLn(B(0, 1)) into (2.15.9) and (2.15.10) mentioned
in the preceding paragraph are surjective. This also uses (2.15.2) and (2.15.6).

If a ∈Mn(B(0, 1)) satisfies N(a− I) < 1, then

| det a− 1| < 1,(2.15.11)

as in Section 1.15. This implies that | det a| = 1, so that a ∈ GLn(B(0, 1)).
It follows that the kernel of the group homomorphism from GLn(B(0, 1)) onto
(2.15.9) mentioned earlier is equal to

{a ∈Mn(B(0, 1)) : N(a− I) < r}.(2.15.12)

If r < 1, then the kernel of the group homomorphism from GLn(B(0, 1)) onto
(2.15.10) mentioned earlier is

{a ∈Mn(B(0, 1)) : N(a− I) ≤ r}.(2.15.13)

Note that these are open sets with respect to the metric associated to N .



Chapter 3

Some filtrations of groups

3.1 Subgroups and subadditivity

Let G be a group, and let A be a subgroup of G. Also let NA be a nonnegative
real-valued function on A, and let ρ be a positive real number. Consider the
nonnegative real-valued function N defined on G by

N(x) = NA(x) when x ∈ A(3.1.1)

= ρ when x 6∈ A.

If NA is subadditive on A and

NA(x) ≤ 2 ρ(3.1.2)

for every x ∈ A, then one can check that N is subadditive on G. Similarly, if
NA is ultra-subadditive on A and

NA(x) ≤ ρ(3.1.3)

for every x ∈ A, then N is ultra-subadditive on G. Clearly N is symmetric
on G when NA is symmetric on A, and N(e) = 0 when NA(e) = 0. If NA is
nondegenerate on A, then N is nondegenerate on G.

Now let A be a ring with a multiplicative identity element e, and let NA be
a nonnegative real-valued function on A that is subadditive and symmetric on
A as a commutative group with respect to addition. Suppose that NA(0) = 0,
NA(e) = 1, and that NA is submultiplicative on A. Let G(A) be the group of
invertible elements of A, and let U(A) be the subgroup of G(A) consisting of
x ∈ G(A) such that NA(x), NA(x

−1) ≤ 1, as before. Remember that NA(x−y)
defines a semimetric on A that is invariant under left and right multiplication
by elements of U(A), as in Section 1.12. This means that the restriction of
NA(x−y) to x, y ∈ U(A) is invariant under left and right translations on U(A),
as a group with respect to multiplication, as before.

47
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Put
NU(A)(x) = NA(x− e)(3.1.4)

for every x ∈ U(A). It follows that NU(A) is subadditive on U(A), as a group
with respect to multiplication, as in Section 1.7. Of course, it is easy to verify
this directly as well. Similarly, if NA is ultra-subadditive on A, as a commutative
group with respect to addition, then NU(A) is ultra-subadditive on U(A), as a
group with respect to multiplication. One can check that NU(A) is symmetric
on U(A), as a group with respect to multiplication, because NA is symmetric
on A, as a group with respect to addition. By construction,

NU(A)(e) = 0.(3.1.5)

If NA is nondegenerate on A, then NU(A) is nondegenerate on U(A). Note that
NU(A) is invariant under conjugations on U(A), because NA is invariant under
left and right multiplication by elements of U(A). We also have that

NU(A)(x) ≤ 2(3.1.6)

for every x ∈ U(A), and
NU(A)(x) ≤ 1(3.1.7)

for every x ∈ U(A) when NA is ultra-subadditive on A.
Let ρ be a positive real number again, and consider the nonnegative real-

valued function N defined on G(A) by

N(x) = NU(A)(x) when x ∈ U(A)(3.1.8)

= ρ when x 6∈ U(A).

If ρ ≥ 1, then N is subadditive on G(A), as before. Similarly, if NA is ultra-
subadditive on A, and ρ ≥ 1, then N is ultra-subadditive on G(A). Observe
that N is symmetric on G(A), because NU(A) is symmetric on U(A), as in the
preceding paragraph. If NA is nondegenerate on A, then N is nondegenerate
on G(A).

3.2 Basic filtration functions

Let G be a group. Let us say that a function µ on G with values in R ∪ {+∞}
is a basic filtration function on G if it satisfies the following three conditions.
First,

µ(e) = +∞,(3.2.1)

where e is the identity element in G. Second, µ should be symmetric on G, so
that

µ(x−1) = µ(x)(3.2.2)

for every x ∈ G. Third,

µ(x y) ≥ min(µ(x), µ(y))(3.2.3)
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for every x, y ∈ G. This corresponds to conditions (1) and (3) in Definition 2.1
on p7 of [26]. If we also have that

µ(x) < +∞(3.2.4)

for every x ∈ G with x 6= e, then we say that µ is nondegenerate on G.
More precisely, condition (3) on p7 of [26] asks that

µ(x y−1) ≥ min(µ(x), µ(y))(3.2.5)

for every x, y ∈ G. One can get (3.2.2) from (3.2.5), using (3.2.1). Once one
has (3.2.2), (3.2.5) is equivalent to (3.2.3).

Let µ be a basic filtration function on G. If t ∈ R, then

Gt = {x ∈ G : µ(x) ≥ t}(3.2.6)

and
G+

t = {x ∈ G : µ(x) > t}(3.2.7)

are subgroups of G, as on p7 of [26]. More precisely, one can also take t = +∞
in (3.2.6).

As usual, µ is said to be invariant under conjugations on G if

µ(uxu−1) = µ(x)(3.2.8)

for every u, x ∈ G. Equivalently, this means that

µ(x y) = µ(y x)(3.2.9)

for every x, y ∈ G. In this case, (3.2.6) and (3.2.7) are normal subgroups of G.
Let A be a subgroup of G, and let µA be a basic filtration function on A.

Also let τ be a real number, and let µ be the function defined on G with values
in R ∪ {+∞} by

µ(x) = µA(x) when x ∈ A(3.2.10)

= τ when x 6∈ A.

If
µA(x) ≥ τ(3.2.11)

for every x ∈ A, then one can check that µ is a basic filtration function on G.
If µA is nondegenerate on A, then µ is nondegenerate on G.

3.3 Connections with ultra-subadditivity

Let G be a group, and suppose that µ is a basic filtration function on G. Also
let r be a positive real number strictly less than 1, and put

Nr(x) = Nµ,r(x) = rµ(x)(3.3.1)
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for every x ∈ G, which is interpreted as being equal to 0 when µ(x) = +∞. It is
easy to see that this defines a symmetric ultra-subadditive function on G, with

Nr(e) = 0.(3.3.2)

If µ is nondegenerate on G, then Nr is nondegenerate too, in the sense that
Nr(x) > 0 for every x ∈ G with x 6= e.

Conversely, let N be a nonnegative real-valued function on G that is sym-
metric, ultra-subadditive, and satisfies N(e) = 0. If 0 < r < 1, then there is a
unique function µr = µN,r on G with values in R ∪ {+∞} such that

rµr(x) = N(x)(3.3.3)

for every x ∈ G, which means that µr(x) = +∞ when N(x) = 0. One can check
that µr is a basic filtration function on G, which is nondegenerate when N is
nondegenerate.

Let a be a positive real number, and let 0 < r < 1 be given again, so that
0 < ra < 1. If µ is a basic filtration function on G, then aµ is a basic filtration
function too, and

Naµ,r = Nµ,ra = Na
µ,r.(3.3.4)

Similarly, ifN is as in the preceding paragraph, then Na has the same properties,
and

µNa,r = µN,ra = aµN,r.(3.3.5)

Let Nr be as in (3.3.1) for some 0 < r < 1. If t ∈ R, then (3.2.6) and (3.2.7)
are the same as

{x ∈ G : Nr(x) ≤ rt}(3.3.6)

and
{x ∈ G : Nr(x) < rt},(3.3.7)

respectively. If t = +∞, then (3.2.6) corresponds to (3.3.7), with rt interpreted
as being 0. Note that (3.3.7) and (3.3.6) are the same as the open and closed balls
of radius rt, respectively, determined by the left and right-invariant semimetrics
on G associated to Nr as in Section 1.10.

Of course, Nr is invariant under conjugations exactly when µ is invariant
under conjugations. Remember that this happens exactly when the left and
right-invariant semimetrics associated to Nr are the same.

3.4 Regular filtration functions

Let G be a group. If x, y ∈ G, then put

xy = y−1 x y(3.4.1)

and
(x, y) = x−1 y−1 x y,(3.4.2)
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which is the commutator of x and y in G. Thus x 7→ xy is an automorphism of
G, and

(xy)z = xy z(3.4.3)

for every x, y, z ∈ G, as on p6 of [26]. Note that

(x, y)−1 = (y, x)(3.4.4)

for every x, y ∈ G.
Let µ be a basic filtration function on G. Let us say that µ is regular on G

if it satisfies the following two additional conditions. First,

µ(x) > 0(3.4.5)

for every x ∈ G. Second,

µ((x, y)) ≥ µ(x) + µ(y)(3.4.6)

for every x, y ∈ G. These conditions correspond to (2) and (4) in Definition 2.1
on p7 of [26].

If µ is any basic filtration function on G, then

µ((x, y)) ≥ min(µ(x), µ(y))(3.4.7)

for every x, y ∈ G. Consider the condition that

µ((x, y)) ≥ max(µ(x), µ(y))(3.4.8)

for every x, y ∈ G. If µ satisfies (3.4.6), and if µ(x) ≥ 0 for every x ∈ G,
then (3.4.8) holds. Note that (3.4.6) and (3.4.8) hold automatically when G is
commutative, by (3.2.1).

Suppose that µ satisfies (3.4.8), and let x, y ∈ G be given. Thus

µ(x−1 xy) = µ((x, y)) ≥ µ(x).(3.4.9)

This implies that

µ(xy) ≥ min(µ(x), µ(x−1 xy)) = µ(x).(3.4.10)

Similarly,

µ(x) = µ((xy)y
−1

) ≥ µ(xy).(3.4.11)

It follows that µ(xy) = µ(x), which is to say that µ is invariant under conjuga-
tions.

Conversely, if µ is invariant under conjugations, then

µ((x, y)) = µ(x−1 xy) ≥ min(µ(x−1), µ(xy)) = µ(x).(3.4.12)

Similarly,
µ((x, y)) = µ((y, x)) ≥ µ(y).(3.4.13)

Thus (3.4.8) is equivalent to µ being invariant under conjugations.
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3.5 Regularity and ultra-subadditivity

Let G be a group, and let µ be a function defined on G with values in R∪{+∞}.
If 0 < r < 1, then N(x) = rµ(x) defines a nonnegative real-valued function on G,
with N(x) = 0 when µ(x) = +∞. Conversely, if N is a nonnegative real-valued
function on G, then we get a function µ on G with values in R ∪ {+∞} in this
way. Remember that basic filtration functions µ correspond exactly to functions
N that are symmetric, ultra-subadditive, and satisfy N(e) = 0, as in Section
3.3. Under these conditions, µ is regular if and only if

N(x) < 1(3.5.1)

for every x ∈ G, and
N((x, y)) ≤ N(x)N(y)(3.5.2)

for every x, y ∈ G.
If N is symmetric and ultra-subadditive on G, then

N((x, y)) ≤ max(N(x), N(y))(3.5.3)

for every x, y ∈ G, which corresponds to (3.4.7). The analogue of (3.4.8) is that

N((x, y)) ≤ min(N(x), N(y))(3.5.4)

for every x, y ∈ G. In particular, this holds when N satisfies (3.5.2), and
N(x) ≤ 1 for every x ∈ G, as before. If G is commutative and N(e) = 0, then
(3.5.2) and (3.5.4) hold automatically. We also have that (3.5.4) holds if and
only if N is invariant under conjugations, as in the previous section.

Let A be a ring with a multiplicative identity element e, and let NA be a
nonnegative real-valued function on A that is ultra-subadditive and symmetric
on A, as a commutative group with respect to addition. Suppose that NA(0) =
0, NA(e) = 1, and that NA is submultiplicative on A. Let G(A) be the group
of invertible elements in A, and let U(A) be the subgroup of G(A) consisting of
x ∈ G(A) with NA(x), NA(x

−1) ≤ 1, as in Section 1.12. If x ∈ U(A), then put

NU(A)(x) = NA(x− e),(3.5.5)

as in Section 3.1. Remember that NU(A) is ultra-subadditive, symmetric, and
invariant under conjugations on U(A), as a group with respect to multiplication.

Let ρ be a real number with ρ ≥ 1, and let N be the nonnegative real-valued
function defined on G(A) by

N(x) = NU(A)(x) when x ∈ U(A)(3.5.6)

= ρ when x 6∈ U(A),

as before. Remember that N is ultra-subadditive and symmetric on G(A), and
that N(e) = NU(A)(e) = 0. If 0 < r < 1, then there is a unique function µ on
G(A) with values in R ∪ {+∞} such that

rµ(x) = N(x)(3.5.7)
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for every x ∈ G(A), as usual. This defines a basic filtration function on G(A),
as in Section 3.3. If NA is nondegenerate on A as a commutative group with
respect to addition, then NU(A) is nondegenerate on U(A) as a group with
respect to multiplication, which implies that N and µ are nondegenerate on
G(A).

Of course, the restriction of µ to U(A) is a basic filtration function on U(A).
The restriction of µ to U(A) is also invariant under conjugations on U(A),
because NU(A) is invariant under conjugations on U(A). If x, y ∈ U(A), then
(x, y) ∈ U(A), and

NU(A)((x, y)) = NA(x
−1 y−1 x y − e) = NA(x y − y x),(3.5.8)

because NA is invariant under multiplication by elements of U(A), as in Section
1.12. Observe that

(x− e) (y − e)− (y − e) (x− e) = x y − y x(3.5.9)

for every x, y ∈ A. It follows that

NA(x y − y x) ≤ NA(x− e)NA(y − e)(3.5.10)

for every x, y ∈ A, by ultra-subadditivity with respect to addition and submul-
tiplicativity of NA on A. This means that

NU(A)((x, y)) ≤ NU(A)(x)NU(A)(y)(3.5.11)

for every x, y ∈ U(A). This implies the analogous condition (3.4.6) for µ on
U(A), as before.

Consider
U0(A) = {x ∈ G(A) : NA(x− e) < 1}.(3.5.12)

If x ∈ U0(A), then NA(x) ≤ 1 by ultra-subadditivity of NA with respect to
addition on A. We also have that NA(x

−1) ≤ 1, as in Section 1.12. This
implies that U0(A) is contained in U(A), so that

U0(A) = {x ∈ U(A) : NU(A)(x) < 1}.(3.5.13)

This is a subgroup of U(A), because NU(A) is ultra-subadditive and symmetric
on U(A). The restriction of µ to U0(A) is a regular filtration function, because
of (3.5.11). This is related to Theorem 4.1 on p9 of [26].

Remember that
A1 = {x ∈ A : NA(x) ≤ 1}(3.5.14)

is a subring of A, as in Section 1.15. It is easy to see that

A0 = {x ∈ A : NA(x) < 1}(3.5.15)

is a two-sided ideal in A1, so that the quotient A1/A0 is a ring too. Note
that e ∈ A1, and that the image of e in A1/A0 under the natural quotient
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mapping is the multiplicative identity element in A1/A0. Remember that U(A)
is the same as the group G(A1) of invertible elements in A1, as in Section 1.15.
Let G(A1/A0) be the group of invertible elements of A1/A0, as usual. The
restriction of the natural quotient mapping from A1 onto A1/A0 to G(A1) is a
group homomorphism from G(A1) into G(A1/A0). It is easy to see that U0(A)
is the same as the kernel of that group homomorphism.

3.6 Regularity and matrices

Let k be a field with an ultrametric absolute value function |·|, and let 0 < r < 1
be given. Thus there is a function ν on k with values in R ∪ {+∞} such that

rν(x) = |x|(3.6.1)

for every x ∈ k, with ν(0) = +∞. This may be considered as a basic filtration
function on k as a commutative group with respect to addition, and we also
have that

ν(x y) = ν(x) + ν(y)(3.6.2)

for every x, y ∈ k. Remember that the closed unit ball B(0, 1) in k is a subring
of k, and that B(0, t) and B(0, t) are ideals in B(0, 1) when 0 < t ≤ 1.

Let n be a positive integer, and remember that the space Mn(k) of n × n
matrices with entries in k is an associative algebra over k with respect to matrix
multiplication. If a = (aj,l) ∈Mn(k), then put

‖a‖ = max
1≤j,l≤n

|aj,l|,(3.6.3)

which defines a submultiplicative ultranorm on Mn(k) with respect to | · | on k,
as in Section 2.15. Thus

Mn(B(0, 1)) = {a ∈Mn(k) : ‖a‖ ≤ 1},(3.6.4)

which is a subring of Mn(k), and the group GLn(B(0, 1)) of invertible elements
inMn(B(0, 1)) consists of a ∈Mn(B(0, 1)) such that | det a| = 1, as before. If we
take A =Mn(k) and NA to be (3.6.3), then G(A) = GLn(k), and U(A) ⊆ G(A)
is the same as GLn(B(0, 1)). In particular,

‖a− I‖(3.6.5)

is the same as (3.5.5) here, and is ultra-subadditive, symmetric, nondegenerate,
and invariant under conjugations on GLn(B(0, 1)), as a group with respect to
matrix multiplication.

If a ∈Mn(k), then put

νn(a) = min
1≤j,l≤n

ν(aj,l),(3.6.6)
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which defines νn as a function on Mn(k) with values in R ∪ {+∞}. This may
be considered as a basic filtration function on Mn(k), as a commutative group
with respect to addition, and one can check that

νn(a b) ≥ νn(a) + νn(b)(3.6.7)

for every a, b ∈Mn(k). Equivalently,

rνn(a) = ‖a‖(3.6.8)

for every a ∈Mn(k). If a ∈ GLn(B(0, 1)), then put

µ(a) = νn(a− I),(3.6.9)

so that
rµ(a) = ‖a− I‖.(3.6.10)

This defines a nondegerate basic filtration function on GLn(B(0, 1)) that is
invariant under conjugations. If a, b ∈ GLn(B(0, 1)), then

‖(a, b)− I‖ ≤ ‖a− I‖ ‖b− I‖,(3.6.11)

as in (3.5.11). Equivalently, this means that

µ((a, b)) ≥ µ(a) + µ(b)(3.6.12)

for every a, b ∈ GLn(B(0, 1)).
Consider

G = {a ∈Mn(B(0, 1)) : ‖a− I‖ < 1}.(3.6.13)

If a ∈ G, then | det a − 1| < 1, so that | det a| = 1, as in Sections 1.15 and
2.15. This means that G is contained in GLn(B(0, 1)), and in fact it is a normal
subgroup. Remember that the quotient mapping from B(0, 1) onto its quotient
by B(0, 1) leads to a group homomorphism from GLn(B(0, 1)) onto

GLn(B(0, 1)/B(0, 1)),(3.6.14)

as in Section 2.15. The kernel of this homomorphism is G, as before. Equiva-
lently, G consists of a ∈ GLn(B(0, 1)) such that µ(a) > 0. It follows that the
restriction of µ to G is a regular filtration function, as in Theorem 4.1 on p9 of
[26].

3.7 Some remarks about invertibility

Let A be a ring with a multiplicative identity element e. Suppose that x ∈ A
has left and right multiplicative inverses in A, so that there are a, b ∈ A such
that

a x = x b = e.(3.7.1)
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Under these conditions,

a = a (x b) = (a x) b = b,(3.7.2)

so that x is invertible in A.
Suppose now that there are y, z ∈ A such that y x and x z are invertible in

A. This means that
(y x)−1 y x = x z (x z)−1 = e,(3.7.3)

so that x has left and right inverses in A. It follows that x is invertible in A,
with

x−1 = (y x)−1 y = z (x z)−1,(3.7.4)

as in the preceding paragraph.
Let NA be a nonnegative real-valued function on A that is symmetric and

ultra-subadditive on A as a comutative group with respect to addition, submul-
tiplicative on A, and satisfies NA(0) = 0 and NA(e) = 1. Suppose that if a ∈ A
satisfies

NA(a− e) < 1,(3.7.5)

then a is invertible in A. Remember that this happens when NA is nondegener-
ate on A, and A is complete with respect to the metric associated to NA, as in
Section 1.13. This also holds with A =Mn(k) and NA = ‖ · ‖ as in the previous
section.

If a ∈ A satisfies (3.7.5), then

NA(a
−1) ≤ 1,(3.7.6)

as in Section 1.12. Note that NA(a) ≤ 1 in this case.
If there are y, z ∈ A such that

NA(y x− e), NA(x z − e) < 1,(3.7.7)

then y x and x z are invertible in A, by hypothesis. This implies that x is
invertible in A, as before. We also have that

NA((y x)
−1), NA((x z)

−1) ≤ 1,(3.7.8)

as in (3.7.6). It follows that

NA(x
−1) ≤ NA(y), NA(z),(3.7.9)

by (3.7.4).
Let A0 and A1 be the open and closed unit balls in A with respect to NA,

as in (3.5.14) and (3.5.15). Thus A1 is a subring of A, and A0 is a two-sided
ideal in A1, as before, so that A1/A0 is a ring as well. If x ∈ A1 is mapped
to an invertible element of A1/A0, then there are y, z ∈ A1 that satisfy (3.7.7).
This implies that x is invertible in A, as before. More precisely,

x−1 ∈ A1,(3.7.10)

by (3.7.9).
If A = Mn(k) and NA = ‖ · ‖ are as in the previous section, then A1 =

Mn(B(0, 1)) and A0 = Mn(B(0, 1)). In this case, A1/A0 is isomorphic to
Mn(B(0, 1)/B(0, 1)) in a natural way, as associative algebras over k.
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3.8 Some identities

Let G be a group, with identity element e. If x, y ∈ G, then we put xy = y−1 x y
and (x, y) = x−1 y−1 x y, as in Section 3.4. Remember that (xy)z = xy z for
every z ∈ G, and that (x, y)−1 = (y, x). We also have that

x y = y xy = y x (x, y)(3.8.1)

and
xy = x (x, y),(3.8.2)

as in (1) on p6 of [26].
Let us check that

(x, y z) = (x, z) (x, y)z(3.8.3)

and
(x y, z) = (x, z)y (y, z),(3.8.4)

as in (2) and (2’) on p6 of [26], respectively. To get (3.8.3), observe that

x (x, y z) = xy z = (xy)z = (x (x, y))z(3.8.5)

= xz (x, y)z = x (x, z) (x, y)z.

Similarly,

x y (x y, z) = (x y)z = xz yz(3.8.6)

= (x (x, z)) (y (y, z)) = x y (x, z)y (y, z),

which implies (3.8.4). One could also obtain (3.8.4) from (3.8.3).
Now let us verify that

(xy, (y, z)) (yz, (z, x)) (zx, (y, x)) = e,(3.8.7)

as in (3) on p6 of [26], and restated at the top of p7. Observe that

(xy, (y, z)) = y−1 x−1 y (y, z)−1 y−1 x y (y, z)(3.8.8)

= y−1 x−1 y z−1 y−1 z y y−1 x y y−1 z−1 y z

= y−1 x−1 y z−1 y−1 z x z−1 y z.

Put
u = z x z−1 y z, v = x y x−1 z x, w = y z y−1 x y,(3.8.9)

so that
(xy, (y, z)) = w−1 u,(3.8.10)

by (3.8.8). One can check that

(yz, (z, x)) = u−1 v, (zx, (y, x)) = v−1 w,(3.8.11)

by permuting x, y, z cyclically. This implies (3.8.7), as desired.
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If A, B are subsets of G, then we let AB be the set of products a b, with
a ∈ A and b ∈ B, as usual. If A or B is invariant under conjugations, then it is
easy to see that

AB = BA.(3.8.12)

If A and B are subgroups of G, at least one of which is normal, then AB is a
subgroup of G too. If A and B are normal subgroups of G, then AB is a normal
subgroup as well.

If A and B are subgroups of G, then we let (A,B) be the subgroup of G
generated by the commutators (a, b) with a ∈ A and b ∈ B. If A and B are
normal subgroups of G, then it is easy to see that (A,B) is a normal subgroup.
If A, B, and C are normal subgroups of G, then one can verify that

(A, (B,C)) ⊆ (B, (C,A)) (C, (A,B)),(3.8.13)

using (3.8.7). This corresponds to some remarks on p7 of [26].

3.9 Lie algebras

Let k be a commutative ring with a multiplicative identity element, and let A,
B be modules over k. A module homomorphism from A into B is also said to
be linear over k.

Let A be a commutative group, with the group operations expressed addi-
tively. If a ∈ A and n ∈ Z+, then we let n · a be the sum of n a’s in A. If we
put 0 · a = 0 and (−n) · a = −(n · a), then A becomes a module over Z. If B is
another commutative group, then any group homomorphism from A into B is
linear over Z.

Let k be a commutative ring with a multiplicative identity element again,
and let A, B, and C be modules over k. A mapping β from A × B into C is
said to be bilinear over k if β(a, b) is linear over k in each variable.

Let β be a bilinear mapping from A×A into C. If

β(a, b) = β(b, a)(3.9.1)

for every a, b ∈ A, then β is said to be symmetric on A×A. If

β(a, b) = −β(b, a)(3.9.2)

for every a, b ∈ A, then β is said to be antisymmetric on A×A. If

β(a, a) = 0(3.9.3)

for every a ∈ A, then one can check that β is antisymmetric on A × A, by
considering β(a + b, a + b) for each a, b ∈ A. If β is antisymmetric on A × A,
and 1 + 1 has a multiplicative inverse in k, then (3.9.3) holds for every a ∈ A.

A module A over k is said to be an algebra in the strict sense over k if it
is equipped with a mapping from A × A into A that is bilinear over k. If this
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bilinear mapping is symmetric, then A is said to be commutative as an algebra
over k. Similarly, if this bilinear mapping satisfies the associative law, then A
is said to be associative as an algebra over k.

Let A be a module over k, and let [a, b] be a mapping from A × A into A
that is bilinear over k. Suppose that

[a, a] = 0(3.9.4)

for every a ∈ A, and that

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0(3.9.5)

for every a, b, c ∈ A, which is known as the Jacobi identity. Under these con-
ditions, (A, [·, ·]) is said to be a Lie algebra over k, as in Definition 1 on p2 of
[26].

Let A be an associative algebra over k, where multiplication of a, b ∈ A is
expressed as a b, as usual. One can check that A is a Lie algebra with respect
to the commutator bracket [a, b] = a b− b a, as in Example (iii) on p2 of [26].

3.10 The quotients Gt/G
+
t

Let G be a group, and let µ be a regular filtration function on G, as in Section
3.4. If t is a nonnegative real number, then put

Gt = {x ∈ G : µ(x) ≥ t},(3.10.1)

G+
t = {x ∈ G : µ(x) > t},(3.10.2)

as on p7 of [26]. These are subgroups of G, as in Section 3.2. More precisely,
these are normal subgroups, because µ is invariant under conjugations, as in
Section 3.4.

Of course, G+
t ⊆ Gt for every t ≥ 0. Put

grtG = Gt/G
+
t(3.10.3)

for every t ≥ 0, as in Definition 2.2 on p7 of [26]. This is a group for each t ≥ 0,
because G+

t is normal as a subgroup of Gt in particular. Note that G+
0 = G,

by the definition of a regular filtration function, so that (3.10.3) has only one
element when t = 0.

If x, y ∈ G, then it is easy to see that

µ((x, y)) > min(µ(x), µ(y)),(3.10.4)

because µ is a regular filtration function on G. In particular, if x, y ∈ Gt for
some t ≥ 0, then

(x, y) ∈ G+
t .(3.10.5)

This implies that

grtG is commutative for every t ≥ 0,(3.10.6)
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as in the first part of Proposition 2.3 on p7 of [26].
More precisely, if x, y ∈ G, then

µ((x, y)) > max(µ(x), µ(y)),(3.10.7)

because µ is a regular filtration function on G. This implies that

(3.10.5) holds when x ∈ Gt for some t ≥ 0 and y ∈ G.(3.10.8)

If x ∈ Gt and y ∈ G, then xy ∈ Gt, because Gt is a normal subgroup of G, as
before. In fact,

x and xy are mapped to the same element of grtG(3.10.9)

by the natural quotient mapping, because x−1 xy is an element of G+
t , as in

(3.10.8). This is the second part of Proposition 2.3 on p7 of [26].
If r is another nonnegative real number, x ∈ Gr, and y ∈ Gt, then

(x, y) ∈ Gr+t,(3.10.10)

because µ is a regular filtration function on G. Similarly,

(u, y) ∈ G+
r+t(3.10.11)

when u ∈ G+
r , and

(x, v) ∈ G+
r+t(3.10.12)

when v ∈ G+
t . Let cr,t be the mapping from Gr ×Gt into Gr+t defined by

cr,t(x, y) = (x, y).(3.10.13)

This leads to a mapping from Gr × Gt into grr+tG, by composing cr,t with
the natural quotient mapping from Gr+t onto grr+tG. Part of the third part of
Proposition 2.3 on p8 of [26] is that this induces a mapping from (grr G)×(grtG)
into grr+tG.

To see this, we use the fact that

(xu, y) = (x, y)u (u, y),(3.10.14)

(x, y v) = (x, v) (x, y)v,(3.10.15)

as in Section 3.8. If u ∈ G+
r , then it follows that (xu, y) and (x, y)u are mapped

to the same element of grr+tG, because of (3.10.11). Note that (x, y) and
(x, y)u are mapped to the same element of grr+tG too, as before. This means
that (xu, y) and (x, y) are mapped to the same element of grr+tG. Similarly,
if v ∈ G+

t , then (x, y v) and (x, y) are mapped to the same element of grr+tG.
This shows that we get a well-defined mapping cr,t from (grr G) × (grtG) into
grr+tG, as in the preceding paragraph. More precisely, the composition of cr,t
with the natural quotient mappings from Gr, Gt onto grr G, grtG, respectively,
is the same as the composition of cr,t with the natural quotient mapping from
Gr+t onto grr+tG.
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Another part of the third part of Proposition 2.3 on p8 of [26] is that cr,t is
bilinear over Z, as a mapping from (grr G)× (grtG) into grr+tG. Let x′ ∈ Gr

and y′ ∈ Gt be given, and observe that

(xx′, y) = (x, y)x
′
(x′, y),(3.10.16)

(x, y′ y) = (x, y) (x, y′)y,(3.10.17)

as in Section 3.8 again. Remember that (x, y) and (x, y)x
′
are mapped to the

same element of grr+tG, and that (x, y′) and (x, y′)y are mapped to the same
element of grr+tG, as before. This implies that (xx′, y) and

(x, y) (x′, y)(3.10.18)

are mapped to the same element of grr+tG, and similarly that (x, y′ y) and

(x, y) (x, y′)(3.10.19)

are mapped to the same element of grr+tG. It follows that cr,t is bilinear over
Z, as desired.

3.11 Regularity and Lie algebras

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let grG be the direct sum of grtG over t ≥ 0, as a direct sum of commu-
tative groups. One may wish to use additive notation for the group structure
on grG, even if we use multiplicative notation for the group structure on G.

If r, t ≥ 0, then we may consider grr G, grtG, and grr+tG as subgroups of
grG. It is easy to see that there is a unique mapping c from (grG)× (grG) into
grG that is bilinear over Z, and which agrees with cr,t on (grr G) × (grr+tG).
The fourth part of Proposition 2.3 on p8 of [26] states that grG is a Lie algebra
over Z with respect to c.

Let ξ ∈ grG be given, so that ξ can be expressed as the sum of finitely
many terms of the form ξt ∈ grtG, t ≥ 0. We would like to check that c(ξ, ξ)
is the identity element in grG. To do this, it suffices to verify that c(ξt, ξt) is
the identity element for each t ≥ 0 in the sum, and that c(ξr, ξt) is the inverse
of c(ξt, ξr) for all r, t ≥ 0 in the sum. This is the same as saying that ct,t(ξt, ξt)
is the identity element in gr2 tG for every t ≥ 0 in the sum, and that cr,t(ξr, ξt)
is the inverse of ct,r(ξt, ξr) in grr+tG for every r, t ≥ 0 in the sum.

Let us choose xt ∈ Gt so that xt is mapped to ξt by the natural quotient
mapping from Gt onto grtG for each t ≥ 0 in the sum. Of course, the com-
mutator (xt, xt) is the identity element in G for each t ≥ 0 in the sum. By
construction, (xt, xt) is mapped to ct,t(ξt, ξt) by the natural quotient mapping
from G2 t onto gr2 tG for every t ≥ 0 in the sum. This means that ct,t(ξt, ξt) is
the same as the identity element in gr2 tG for every t ≥ 0 in the sum.

Similarly, the commutators (xr, xt) and (xt, xr) are mapped to cr,t(ξr, ξt)
and ct,r(ξt, ξr), respectively, by the natural quotient mapping from Gr+t onto
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grr+tG for every r, t ≥ 0 in the sum. Of course, (xr, xt) is the inverse of (xt, xr)
in G for every r, t ≥ 0 in the sum. This implies that cr,t(ξr, ξt) is the inverse of
ct,r(ξt, ξr) in grr+tG for every r, t ≥ 0 in the sum.

Now let ξ, η, ζ ∈ grG be given. To show that the Jacobi identity holds, we
want to check that the combination of

c(ξ, c(η, ζ)),(3.11.1)

c(η, c(ζ, ξ)),(3.11.2)

c(ζ, c(ξ, η))(3.11.3)

is the identity element in grG. Because of the linearity over Z in ξ, η, and ζ
of these expressions, we can reduce to the case where ξ ∈ grt1 G, η ∈ grt2 G,
and ζ ∈ grt3 G for some nonnegative real numbers t1, t2, and t3. Let us now
choose x ∈ Gt1 , y ∈ Gt2 , and z ∈ Gt2 so that they are mapped to ξ, η,
and ζ, respectively, by the natural quotient mappings from Gtj onto grtj G for
j = 1, 2, 3. Put

t = t1 + t2 + t3,(3.11.4)

and note that (3.11.1), (3.11.2), and (3.11.3) are elements of grtG.

Of course,

(x, (y, z)),(3.11.5)

(y, (z, x)),(3.11.6)

(z, (x, y))(3.11.7)

are elements of Gt. Observe that (3.11.5), (3.11.6), and (3.11.7) are mapped to
(3.11.1), (3.11.2), and (3.11.3), respectively, by the natural quotient mapping
from Gt onto grtG. Thus it suffices to show that the product of (3.11.5),
(3.11.6), and (3.11.7) is mapped to the identity element by the natural quotient
mapping from Gt onto grtG.

The product of

(xy, (y, z)),(3.11.8)

(yz, (z, x)),(3.11.9)

(zx, (x, y))(3.11.10)

is the identity element in G, as in Section 3.8. Remember that x, y, and z are
mapped to the same elements of grtj G as xy, yz, and zx, respectively, by the
natural quotient mapping from Gtj onto grtj G for j = 1, 2, 3, as in the previous
section. This implies that (3.11.5), (3.11.6), and (3.11.7) are mapped to the
same elements of grtG as (3.11.8), (3.11.9), and (3.11.10), respectively, by the
natural quotient mapping from Gt onto grtG. It follows that the product of
(3.11.5), (3.11.6), and (3.11.7) is mapped to the identity element by the natural
quotient mapping from Gt onto grtG, as desired.
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3.12 Integral filtration functions

Let G be a group, and let µ be a basic filtration function on G. Let us say that
µ is integral on G if µ takes values in Z ∪ {+∞}. If n ∈ Z, then

Gn = {x ∈ G : µ(x) ≥ n}(3.12.1)

is a subgroup of G, as before. Note that

Gn+1 ⊆ Gn(3.12.2)

for every n ∈ Z, and that
∞⋃

n=−∞
Gn = G.(3.12.3)

If µ is invariant under conjugations on G, then Gn is a normal subgroup of G
for every n ∈ Z, as before.

Conversely, suppose that Gn is a subgroup of G for each n ∈ Z, and that
these subgroups satisfy (3.12.2) and (3.12.3). Put µ(x) equal to the largest
integer n such that x ∈ Gn when there is such an n, and µ(x) = +∞ when
x ∈ Gn for every n ∈ Z+. One can check that this defines a basic filtration
function on G, which corresponds to part of Proposition 3.1 on p8 of [26]. If
Gn is also a normal subgroup of G for every n ∈ Z, then µ is invariant under
conjugations on G.

Similarly, a regular filtration function µ on G is said to be integral if it takes
values in Z+ ∪ {+∞}. In particular,

G1 = G(3.12.4)

in this case, which implies (3.12.3). We also get that

(Gn, Gm) ⊆ Gn+m(3.12.5)

for every n,m ∈ Z+, where the left side is as defined in Section 3.8.
Conversely, suppose that Gn is a subgroup of G for every n ∈ Z+, and that

these subgroups satisfy (3.12.2), (3.12.4), and (3.12.5). Let µ be defined on G
as before, so that µ now takes values in Z+ ∪ {+∞}. One can verify that µ is
a regular filtration function on G, as in Proposition 3.1 on p8 of [26].

As a basic class of examples, let us consider the descending or lower central
series, as on p9 of [26]. Thus we put G1 = G, and define Gn for n ≥ 2 by

Gn+1 = (Gn, G).(3.12.6)

Note that Gn is a normal subgroup of G for every n ≥ 1, and that (3.12.2) holds
by construction. We would like to check that (3.12.5) holds for every n,m ≥ 1.
Of course, (3.12.5) holds when n = 1 or m = 1.

Let m > 1 be given, and suppose by induction that the analogue of (3.12.5)
with m replaced by m− 1 holds for every n ≥ 1. Observe that

(Gn, Gm) = (Gn, (Gm−1, G)) ⊆ (Gm−1, (G,Gn)) (G, (Gn, Gm−1)),(3.12.7)
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where the second step is as in Section 3.8. This implies that

(Gn, Gm) ⊆ (Gm−1, Gn+1) (G,Gn+m−1),(3.12.8)

using the definition of Gn and the induction hypothesis. It follows that

(Gn, Gm) ⊆ Gn+mGn+m,(3.12.9)

for the same reasons. This implies (3.12.5), because Gn+m is a subgroup of G.
Let K1,K2,K3, . . . be a sequence of subgroups of G such that K1 = G,

Kn+1 ⊆ Kn for every n ≥ 1, and

(Kn, G) ⊆ Kn+1(3.12.10)

for every n ≥ 1. Under these conditions,

Gn ⊆ Kn(3.12.11)

for every n ≥ 1, as mentioned on p9 of [26]. Indeed, if this holds for some n ≥ 1,
then

Gn+1 = (Gn, G) ⊆ (Kn, G) ⊆ Kn+1.(3.12.12)

3.13 Rings and quotients

Let A be a ring with a multiplicative identity element e, and let NA be a
nonnegative real-valued function on A that is symmetric and ultra-subadditive
on A, as a commutative group with respect to addition. Suppose also that
NA(0) = 0, NA(e) = 1, and that NA is submultiplicative on A. Let G(A) be
the group of invertible elements of A, as before, and let U(A) be the subgroup
of G(A) consisting of x ∈ G(A) with NA(x), NA(x

−1) ≤ 1, as in Section 1.12.
Remember that

NU(A)(x) = NA(x− e)(3.13.1)

is ultra-subadditive, symmetric, and invariant under conjugations on U(A), as
a group with respect to multiplication, as in Section 3.1.

Let r ∈ (0, 1) be given, and let µ be the function on U(A) with values in
[0,+∞] such that

rµ(x) = NU(A)(x)(3.13.2)

for every x ∈ U(A). This is the same as the restriction to U(A) of the function
defined onG(A) in Section 3.5. Thus µ is a basic filtration function on U(A) that
is invariant under conjugations, as before. If x, y ∈ U(A), then (x, y) ∈ U(A),
and we have seen that

NU(A)((x, y)) = NA(x y − y x) ≤ NU(A)(x)NU(A)(y).(3.13.3)

Let BA(x, t) and BA(x, t) be the open an closed balls in A centered at x ∈ A
with radius t with respect to the semimetric NA(y − z). Suppose from now on
in this section that

BA(e, 1) ⊆ G(A),(3.13.4)
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as in Section 3.7. Under these conditions, BA(e, 1) is the same as the subgroup
U0(A) of U(A) defined in Section 3.5. In particular, the restriction of µ to
BA(e, 1) is a regular filtration function, as before.

Let us take G = BA(e, 1), so that the subgroups Gt, G
+
t can be defined as

in Section 3.10 for t ≥ 0. If t > 0, then

Gt = BA(e, r
t),(3.13.5)

G+
t = BA(e, r

t),(3.13.6)

by the definition of µ. If t = 0, then Gt, G
+
t are the same as G. Remember that

Gt, G
+
t are normal subgroups of G for every t ≥ 0, and we put grtG = Gt/G

+
t .

Thus
grtG = BA(e, r

t)/BA(e, r
t)(3.13.7)

when t > 0.
Remember that open and closed balls in A centered at 0 are subgroups of A

as a commutative group with respect to addition. Let x, y ∈ BA(0, r
t) be given

for some t > 0, so that e+ x, e+ y ∈ BA(e, r
t). Similarly,

(e+ x) (e+ y) = e+ x+ y + x y(3.13.8)

and e+ x+ y are elements of BA(e, r
t), and

NA((e+ x) (e+ y)− (e+ x+ y)) = NA(x y) ≤ NA(x)NA(y) ≤ r2 t.(3.13.9)

This means that

NA((e+ y)−1 (e+ x)−1 (e+ x+ y)− e) ≤ r2 t,(3.13.10)

because NA is invariant under multiplication by elements of U(A) on A. It
follows that

(e+ y)−1 (e+ x)−1 (e+ x+ y) ∈ BA(e, r
2 t) ⊆ BA(e, r

t),(3.13.11)

because t > 0.
Thus (3.13.8) and e+ x+ y are mapped to the same element of grtG. This

shows that we get a group homomorphism from BA(0, r
t), as a commutative

group with respect to addition, into grtG, by sending x ∈ BA(0, r
t) to e + x

in BA(e, r
t), and mapping that into the quotient grtG. This homomorphism is

surjective, because x 7→ e+x maps BA(0, r
t) onto BA(e, r

t). The kernel of this
homomorphism is BA(0, r

t), so that we get a group isomorphism from

BA(0, r
t)/BA(0, r

t),(3.13.12)

as a commutative group with respect to addition, onto grtG.
Now let x ∈ BA(0, r

t1) and y ∈ BA(0, r
t2) be given for some t1, t2 > 0, and

observe that

(e+ x, e+ y) = (e+ x)−1 (e+ y)−1 (e+ x) (e+ y) ∈ BA(e, r
t1+t2),(3.13.13)
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by (3.13.3). Clearly
e+ x y − y x ∈ BA(e, r

t1+t2)(3.13.14)

as well, and we would like to show that (e+x, e+y) and e+x −y x are mapped
to the same element of the quotient grt1+t2 G. Using the invariance of NA under
multiplication by elements of U(A), we get that

NA((e+ x, e+ y)−1 (e+ x y − y x)− e)(3.13.15)

= NA((e+ y, e+ x) (e+ x y − y x)− e)

= NA((e+ y) (e+ x) (e+ x y − y x)− (e+ x) (e+ y)).

It is easy to see that

(e+ y) (e+ x) (e+ x y − y x)− (e+ x) (e+ y)(3.13.16)

= (e+ y + x+ y x) (e+ x y − y x)− (e+ x+ y + x y)

= (y + x+ y x) (x y − y x).

This implies that (3.13.15) is less than or equal to

rt1+t2 max(rt1 , rt2) < rt1+t2 ,(3.13.17)

as desired.
Of course, we may consider [x, y] = x y − y x as a mapping from

BA(0, r
t1)×BA(0, r

t2)(3.13.18)

into BA(0, r
t1+t2) that is bilinear over Z. We can compose this mapping with

the natural quotient mapping from BA(0, r
t1+t2) onto

BA(0, r
t1+t2)/BA(0, r

t1+t2),(3.13.19)

to get a mapping from (3.13.18) into (3.13.19) that is bilinear over Z. It is easy
to see that this leads to a mapping from

(BA(0, r
t1)/BA(0, r

t1))× (BA(0, r
t2)/BA(0, r

t2))(3.13.20)

into (3.13.19) that is bilinear over Z. More precisely, the previous mapping
from (3.13.18) into (3.13.19) is the same as the new mapping from (3.13.20) into
(3.13.19) composed with the appropriate quotient mapping in each variable.

We can also use (e+ x, e+ y) to get a mapping from (3.13.18) into

BA(e, r
t1+t2),(3.13.21)

as before. We can compose this mapping with the natural quotient mapping
from (3.13.21) onto grt1+t2 G, to get a mapping from (3.13.18) into grt1+t2 G.

Remember that we have a group homomorphism from BA(0, r
t1+t2), as a group

with respect to addition, onto grt1+t2 G, defined by adding e to map onto
(3.13.21), and composing with the natural quotient mapping from (3.13.21)
onto grt1+t2 G. The earlier remarks show that the mapping from (3.13.18) into
grt1+t2 G obtained from (e+x, e+y) is the same as the composition of the map-

ping obtained using [x, y] to map (3.13.18) into BA(0, r
t1+t2) with the group

homomorphism from BA(0, r
t1+t2) onto grt1+t2 G just mentioned.
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3.14 Algebras and quotients

Let k be a field with an ultrametric absolute value function | · |, and let A be an
associative algebra over k with a multiplicative identity element e. Thus A is a
vector space over k in particular, and we let NA be a semi-ultranorm on A with
respect to | · | on k that is submultiplicative and satisfies NA(e) = 1. Of course,
A may be considered as a ring, and NA satisfies the conditions mentioned at the
beginning of the previous section. Let us continue with the same notation as
in the previous section, for open and closed balls in A in particular. If (3.13.4)
holds, then we have seen that some multiplicative groups are related to open
and closed balls in A centered at 0, as commutative groups with respect to
addition.

In this section, we can use scalar multiplication on A to relate open and
closed balls in A centered at 0 of different radii. If α ∈ k and E ⊆ A, then put

αE = {αx : x ∈ E}.(3.14.1)

If α 6= 0 and ρ > 0, then

αBA(0, ρ) = BA(0, |α| ρ)(3.14.2)

and
αBA(0, ρ) = BA(0, |α| ρ).(3.14.3)

More precisely, multiplication by α defines a group isomorphism from BA(0, ρ)
onto BA(0, |α| ρ), and from BA(0, ρ) onto BA(0, |α| ρ), as commutative groups
with respect to addition. This leads to a group isomorphism from

BA(0, ρ)/BA(0, ρ)(3.14.4)

onto
BA(0, |α| ρ)/BA(0, |α| ρ).(3.14.5)

If ρ = |β| for some β ∈ k, then multiplication by β defines a group iso-
morphism from BA(0, 1) onto BA(0, ρ), as commutative groups with respect to
addition, which sends BA(0, 1) onto BA(0, ρ). This leads to a group isomor-
phism from

BA(0, 1)/BA(0, 1)(3.14.6)

onto (3.14.4), as commutative groups with respect to addition. Of course, if
there is no x ∈ A such that NA(x) = ρ, then

BA(0, ρ) = BA(0, ρ),(3.14.7)

so that
BA(0, ρ)/BA(0, ρ) = {0}.(3.14.8)

In some cases, the values of NA on A are the same as the values of | · | on k, so
that for every x ∈ A there is an α ∈ k such that NA(x) = |α|. This means that
(3.14.8) holds when there is no β ∈ k such that ρ = |β|.
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If ρ1, ρ2 > 0, then [x, y] = x y − y x defines a mapping from

BA(0, ρ1)×BA(0, ρ2)(3.14.9)

into
BA(0, ρ1 ρ2)(3.14.10)

that is bilinear over k, as before. Similarly, if α1, α2 ∈ k, α1, α2 6= 0, then [x, y]
defines a mapping from

BA(0, |α1| ρ1)×BA(0, |α2| ρ2)(3.14.11)

into
BA(0, |α1| |α2| ρ1 ρ2)(3.14.12)

that is bilinear over Z. Multiplication by αj defines a group isomorphism from
BA(0, ρj) onto BA(0, |αj | ρj), as commutative groups with respect to addition,
for j = 1, 2, and multiplication by α1 α2 defines a group isomorphism from
(3.14.10) onto (3.14.12). The composition of the mapping from (3.14.11) into
(3.14.12) with the mappings from BA(0, ρj) onto BA(0, |αj | ρj) defined by mul-
tiplication by αj for j = 1, 2 in each variable is the same as the composition
of the mapping from (3.14.9) into (3.14.10) with multiplication by α1 α2, as
a mapping from (3.14.10) onto (3.14.12). Of course, this leads to analogous
statements for mappings involving quotients as in (3.14.4).

Let n be a positive integer, and let us now take A to be the algebra Mn(k)
of n × n matrices with entries in k. If NA is the ultranorm on Mn(k) defined
by taking the maximum of the absolute values of the entries of an element of
Mn(k), then NA is submultiplicative, and it takes values in the set of values of
| · | on k. Let B(0, ρ), B(0, ρ) be the open and closed balls in k centered at 0
with radius ρ > 0 with respect to the ultrametric associated to | · |. It is easy
to see that

BA(0, ρ) = Mn(B(0, ρ)),(3.14.13)

BA(0, ρ) = Mn(B(0, ρ)),(3.14.14)

where the right sides are the subsets of Mn(k) consisting of matrices with en-
tries in B(0, ρ), B(0, ρ), respectively. Note that these are subgroups of Mn(k),
as a commutative group with respect to addition. Their quotient (3.14.4) cor-
responds to the space

Mn(B(0, ρ)/B(0, ρ))(3.14.15)

of n × n matrices with entries in the quotient group B(0, ρ)/B(0, ρ), which is
a commutative group with respect to entrywise addition of matrices. This is
related to Exercise 1 on p10 of [26].

3.15 Multiplication and quotients

Let A be a ring with a multiplicative identity element e and a nonnegative
real-valued function NA that is symmetric and ultra-subadditive on A, as a
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commutative group with respect to addition. As before, we also ask that NA
be submultiplicative on A, and that NA(0) = 0, NA(e) = 1. If ρ1, ρ2 > 0 and
xj ∈ BA(0, ρj) for j = 1, 2, then

x1 x2, x2 x1 ∈ BA(0, ρ1 ρ2).(3.15.1)

Thus multiplication on A in either order defines a mapping from

BA(0, ρ1)×BA(0, ρ2)(3.15.2)

into
BA(0, ρ1 ρ2)(3.15.3)

that is bilinear over Z. Similarly, [x1, x2] = x1 x2 − x2 x1 defines a mapping
from (3.15.2) into (3.15.3) that is bilinear over Z, as before.

We can compose these mappings with the natural quotient mapping from
(3.15.3) onto the quotient group

BA(0, ρ1 ρ2)/BA(0, ρ1 ρ2)(3.15.4)

to get mappings from (3.15.2) into (3.15.4) that are bilinear over Z as well. This
leads to mappings from

(BA(0, ρ1)/BA(0, ρ1))× (BA(0, ρ2)/BA(0, ρ2))(3.15.5)

into (3.15.4) that are bilinear over Z. More precisely, the previous mappings
from (3.15.2) into (3.15.4) are the same as the new mappings from (3.15.5) into
(3.15.4) composed with the appropriate quotient mappings in each variable.
Remember that BA(0, 1) is a subring of A, and that BA(0, 1) is a two-sided
ideal in BA(0, 1), so that the quotient

BA(0, 1)/BA(0, 1)(3.15.6)

is a ring. If ρ1 = ρ2 = 1, then the previous bilinear mappings from (3.15.5) into
(3.15.4) can be defined in terms of the ring operations on (3.15.6).

Let k be a field with an ultrametric absolute value function | · | again, and
suppose now thatA is an associative algebra over k with a multiplicative identity
element e. Also let NA be a semi-ultranorm on A with respect to | · | on k that
is submultiplicative and satisfies NA(e) = 1, so that NA satisfies the same
conditions as before on A as a ring. Suppose that ρj = |βj | where βj ∈ k and
βj 6= 0 for j = 1, 2, so that multiplication by βj defines a group isomorphism
from BA(0, 1) onto BA(0, ρj), as commutative groups with respect to addition,
for j = 1, 2. Multiplication by βj also maps BA(0, 1) onto BA(0, ρj) for j = 1, 2,
which induces an isomorphism from (3.15.6) onto

BA(0, ρj)/BA(0, ρj),(3.15.7)

as commutative groups with respect to addition, for j = 1, 2. Similarly, multi-
plication by β1 β2 defines a group isomorphism from BA(0, 1) onto (3.15.3) that
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maps BA(0, 1) onto BA(0, ρ1 ρ2), which induces an isomorphism from (3.15.6)
onto (3.15.4), as commutative groups with respect to addition.

Consider the mapping from

BA(0, 1)×BA(0, 1)(3.15.8)

onto (3.15.2) defined by multiplication by β1 in the first coordinate, and mul-
tiplication by β2 in the second coordinate. The composition of this mapping
with any of the mappings from (3.15.2) into (3.15.3) defined by x1 x2, x2 x1, or
[x1, x2], is the same as the analogous mapping from (3.15.8) into BA(0, 1) com-
posed with the mapping from BA(0, 1) onto (3.15.3) defined by multiplication
by β1 β2. We also get a mapping from

(BA(0, 1)/BA(0, 1))× (BA(0, 1)/BA(0, 1))(3.15.9)

onto (3.15.5) using the group isomorphism from (3.15.6) onto (3.15.7) obtained
from multiplication by βj in the jth coordinate for j = 1, 2. The composition
of this mapping with any of the mappings from (3.15.5) into (3.15.4) associated
to x1 x2, x2 x1, or [x1, x2] is the same as the analogous mapping from (3.15.9)
into (3.15.6) composed with the group isomorphism from (3.15.6) onto (3.15.4)
obtained from multiplication by β1 β2 as in the preceding paragraph. Of course,
the mappings from (3.15.9) into (3.15.6) associated to x1 x2, x2 x1, and [x1, x2]
can be defined in terms of the ring operations on (3.15.6), as before.

Let n be a positive integer, let A be the algebra Mn(k) of n × n matrices
with entries in k, and let NA be the ultranorm on Mn(k) defined by taking the
maximum of the absolute values of the entries of an element of Mn(k), as in the
previous section. Thus

BA(0, 1) = Mn(B(0, 1)),(3.15.10)

BA(0, 1) = Mn(B(0, 1)),(3.15.11)

as before. Their quotient is isomorphic as a ring to the ring

Mn(B(0, 1)/B(0, 1))(3.15.12)

of n×n matrices with entries in the residue field B(0, 1)/B(0, 1). More precisely,
the natural quotient homomorphism from B(0, 1) onto B(0, 1)/B(0, 1) leads to
a ring homomorphism from (3.15.10) onto (3.15.12), as in Section 2.15. The
kernel of this homomorphism is clearly (3.15.11).



Chapter 4

Continuity conditions and
Haar measure

4.1 Uniform continuity and semimetrics

Let X, Y be sets with semimetrics dX , dY , respectively, and let f be a mapping
from X into Y . We say that f is uniformly continuous along a subset A of X if
for every ϵ > 0 there is a δ > 0 such that

dY (f(x), f(w)) < ϵ(4.1.1)

for every x ∈ A and w ∈ X with dX(x,w) < δ. Equivalently, this means that

f(BX(x, δ)) ⊆ BY (f(x), ϵ)(4.1.2)

for every x ∈ A. Of course, this implies that f is continuous at every element of
A, with respect to the topologies determined on X, Y by dX , dY , respectively.
If A = X, then we simply say that f is uniformly continuous on X. If f is
uniformly continuous along a subset A of X, then the restriction of f to A is
uniformly continuous, with respect to the restriction of dX to elements of A.
If A has only finitely many elements, and f is continuous at every point in A,
then it is easy to see that f is uniformly continuous along A.

Suppose that f is continuous at every point in a compact set A ⊆ X, and
let us check that f is uniformly continuous along A. Let ϵ > 0 be given, and for
each a ∈ A, let δ(a) be a positive real number such that

dY (f(a), f(w)) < ϵ/2(4.1.3)

for every w ∈ X with dX(a,w) < δ(a). The collection of open balls

BX(a, δ(a)/2)(4.1.4)

71
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in X with a ∈ A forms an open covering of A, and so there are finitely many
elements a1, . . . , an of A such that

A ⊆
n⋃

j=1

BX(aj , δ(aj)/2),(4.1.5)

by compactness. Put
δ = min

1≤j≤n
(δ(aj)/2),(4.1.6)

and let x ∈ A and w ∈ X be given, with dX(x,w) < δ. Thus dX(aj , x) < δ(aj)/2
for some j ∈ {1, . . . , n}, by (4.1.5). This implies that

dX(aj , w) ≤ dX(aj , x) + dX(x,w) < δ(aj)/2 + δ ≤ δ(aj),(4.1.7)

by the definition of δ. It follows that

dY (f(aj), f(x)), dY (f(aj), f(w)) < ϵ/2,(4.1.8)

as in (4.1.3). This means that

dY (f(x), f(w)) ≤ dY (f(x), f(aj)) + dY (f(aj), f(w)) < ϵ/2 + ϵ/2 = ϵ,(4.1.9)

as desired.
Let f be any mapping from X into Y that is uniformly continuous along a

set A ⊆ X. Also let Z be another set with a semimetric dZ , and let g be a
mapping from Y into Z. If g is uniformly continuous along a set B ⊆ Y , and
f(A) ⊆ B, then it is easy to see that

the composition g ◦ f is uniformly continuous along A(4.1.10)

as a mapping from X into Z.
If f is a uniformly continuous mapping from X into Y , and E ⊆ X is totally

bounded with respect to dX , then one can check that

f(E) is totally bounded with respect to dY in Y.(4.1.11)

More precisely, this also holds when f is uniformly continuous on E, with respect
to the restriction of dX to E. This can be verified using the characterization of
totally bounded sets in terms of small sets, as in Section 2.8.

Let x0 ∈ X be given, and put

f0(x) = dX(x, x0)(4.1.12)

for every x ∈ X. One can check that

|f0(x)− f0(w)| ≤ dX(x,w)(4.1.13)

for every x,w ∈ X, using the triangle inequality. This uses the standard ab-
solute value function on the real line on the left side, and it implies that f0
is uniformly continuous as a real-valued function on X, with respect to the
standard Euclidean metric on R.
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4.2 Uniform continuity and topological groups

Let G be a topological group, let Y be a set with a semimetric dY , and let f be
a mapping from G into Y . We say that f is left-invariant uniformly continuous
along a subset A of G if for every ϵ > 0 there is an open subset U of G such
that U contains the identity element e and

dY (f(a), f(a x)) < ϵ(4.2.1)

for every a ∈ A and x ∈ U . This is the same as saying that

f(aU) ⊆ BY (f(a), ϵ)(4.2.2)

for every a ∈ A. Similarly, f is right-invariant uniformly continuous along A if
for every ϵ > 0 there is an open set U in G such that e ∈ U and

dY (f(a), f(x a)) < ϵ(4.2.3)

for every a ∈ A and x ∈ U . This means that

f(U a) ⊆ BY (f(a), ϵ)(4.2.4)

for every a ∈ A, as before.
If f is left or right-invariant uniformly continuous along A, then f is con-

tinuous at every element of A, with respect to the topology determined on Y
by dY . If f is continuous at every element of A, and if A has only finitely
many elements, then one can check that f is left and right-invariant uniformly
continuous along A. If A is the whole group G, then we simply say that f is left
or right-invariant uniformly continuous on G, as appropriate. It is easy to see
that f is left-invariant uniformly continuous along a subset A of G if and only
if

f̃(x) = f(x−1)(4.2.5)

is right-invariant uniformly continuous along A−1. Of course, if G is commuta-
tive, then left and right-invariant uniform continuity are the same.

If f is continuous at every point in A, and A is compact, then f is left
and right-invariant uniformly continuous along A. Let us check that f is left-
invariant uniformly continuous along A, the argument for right-invariant uni-
form continuity being analogous. One could also reduce to the left-invariant
case, using (4.2.5). Let ϵ > 0 be given, and for each a ∈ A, let U(a) be an open
subset of G such that e ∈ U(a) and

dY (f(a), f(a x)) < ϵ/2(4.2.6)

for every x ∈ U(a). If a ∈ A, then we can use continuity of multiplication on G
at e to get an open subset U1(a) of G such that e ∈ U1(a) and

U1(a)U1(a) ⊆ U(a).(4.2.7)
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Thus A is covered by the open sets aU1(a), a ∈ A. If A is compact, then
there are finitely many elements a1, . . . , an of A such that

A ⊆
n⋃

j=1

aj U1(aj).(4.2.8)

Let us take

U =

n⋂
j=1

U1(aj),(4.2.9)

which is an open set that contains e. If a ∈ A and x ∈ U , then we would like to
verify that (4.2.1) holds.

Using (4.2.8), we get that
a = aj w(4.2.10)

for some j ∈ {1, . . . , n} and w ∈ U1(aj). It follows that

w x ∈ U1(aj)U ⊆ U1(aj)U1(aj) ⊆ U(aj).(4.2.11)

This implies that

dY (f(aj), f(a x)) = dY (f(aj), f(aj w x)) < ϵ/2.(4.2.12)

Similarly,
dY (f(aj), f(a)) = dY (f(aj), f(aj w)) < ϵ/2,(4.2.13)

because U1(aj) ⊆ U(aj). This means that

dY (f(a), f(a x)) ≤ dY (f(a), f(aj)) + dY (f(aj), f(a x))(4.2.14)

< ϵ/2 + ϵ/2 = ϵ,

as desired.

4.3 Some properties of uniform continuity

Let G be a topological group again, let Y be a set with a semimetric dY , and
let f be a mapping from G into Y . If E is a left-invariant totally bounded
subset of G, and f is left-invariant uniformly continuous on G, then it is easy
to see that f(E) is totally bounded in Y with respect to dY . Similarly, if E is
right-invariant totally bounded, and f is right-invariant uniformly continuous,
then f(E) is totally bounded in Y .

Let Z be another set with a semimetric dZ , and let g be a mapping from
Y into Z that is uniformly continuous along B ⊆ Y . Also let A be a subset
of G such that f(A) ⊆ B. If f is left-invariant uniformly continuous along A,
then one can check that g ◦ f is left-invariant uniformly continuous along A as
a mapping into Z. Similarly, if f is right-invariant uniformly continuous along
A, then g ◦ f is right-invariant uniformly continuous along A.
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Suppose for the moment that the topology on G is determined by a semimet-
ric d, and let A be a subset of G again. If d is invariant under left translations,
then one can verify that f is left-invariant uniformly continuous along A if and
only if f is uniformly continuous along A with respect to d. Similarly, if d is in-
variant under right translations, then f is right-invariant uniformly continuous
along A if and only if f is uniformly continuous along A with respect to d.

Suppose now that f is left-invariant uniformly continuous on G, and that
dY is a semi-ultrametric on Y . Let ϵ > 0 be given, and let U be an open subset
of G such that e ∈ U and (4.2.1) holds for every a ∈ G and x ∈ U . We may also
ask that U be symmetric about e, by replacing U with U ∩U−1, if necessary. If
a ∈ G and x1, . . . , xn ∈ U for some positive integer n, then

dY (f(a x1 · · ·xj−1), f(a x1 · · ·xj−1 xj)) < ϵ(4.3.1)

for every j = 1, . . . , n. It follows that

dY (f(a), f(a x1 · · ·xn)) < ϵ,(4.3.2)

because dY is a semi-ultrametric on Y . Equivalently, this means (4.2.1) holds
for every a ∈ G and x ∈ Un, where Un consists of products of n elements of U ,
as in Section 2.4. Under these conditions,

U0 =

∞⋃
n=1

Un(4.3.3)

is an open subgroup of G, as before. Using (4.3.2), we get that (4.2.1) holds for
every a ∈ G and x ∈ U0.

Similarly, if f is right-invariant uniformly continuous on G, then for each
ϵ > 0 there is an open subgroup U0 of G such that (4.2.3) holds for every a ∈ G
and x ∈ U0. This can be shown using the same type of argument as in the
preceding paragraph, or by reducing to the previous case using (4.2.5).

4.4 Haar measures

Let X be a locally compact Hausdorff topological space, and let µ be a nonneg-
ative Borel measure on X. Note that compact subsets of X are closed sets, and
thus Borel sets. If for every Borel set E ⊆ X we have that

µ(E) = inf{µ(U) : U ⊆ X is an open set, and E ⊆ U},(4.4.1)

then µ is said to be outer regular on X. We may also be concerned with the
inner regularity condition

µ(E) = sup{µ(K) : K ⊆ X is compact, and K ⊆ E}.(4.4.2)

In particular, we may be interested in situations where this inner regularity
condition holds for open sets, and for Borel sets E such that µ(E) < +∞.
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Let G be a locally compact topological group such that {e} is a closed set,
which implies that G is Hausdorff, as before. A nonnegative Borel measure HL

on G is said to be a left-invariant Haar measure if it satisfies the following four
conditions. First,

HL(U) > 0(4.4.3)

for every nonempty open subset U of G. Second,

HL(K) < +∞(4.4.4)

for every compact subset K of G. Third, HL is invariant under left translations,
in the sense that

HL(aE) = HL(E)(4.4.5)

for every Borel subset E of G and a ∈ G. Note that translates of Borel subsets of
G are Borel sets too, by continuity of translations. Fourth, HL is outer regular,
and the inner regularity condition (4.4.2) holds when E is an open set, or a
Borel set with HL(E) < +∞.

Similarly, a nonnegative Borel measure HR on G is said to be a right-
invariant Haar measure if it satisfies the first, second, and fourth conditions
in the preceding paragraph, and is invariant under right translations. This
means that

HR(E a) = HR(E)(4.4.6)

for every Borel subset E of G and a ∈ G. One can check that HL is a left-
invariant Haar measure on G if and only if

HR(E) = HL(E
−1)(4.4.7)

is a right-invariant Haar measure on G. Of course, left and right-invariant Haar
measures are the same when G is commutative. The product of a left or right-
invariant Haar measure by a positive real number is a left or right-invariant
Haar measure as well, respectively.

It is well known that left and right-invariant Haar measures on G exist, and
are unique, up to multiplication by a positive real number. If G is any group
equipped with the discrete topology, then counting measure on G is both a
left and right-invariant Haar measure. If G = Rn for some positive integer n,
as a commutative topological group with respect to addition and the standard
topology, then n-dimensional Lebesgue measure is a Haar measure.

4.5 Haar integrals

If X and Y are topological spaces, then we let C(X,Y ) be the space of all
continuous mappings from X into Y . In particular, C(X,R) and C(X,C)
are the spaces of continuous real and complex-valued functions on X, using
the standard topologies on R and C. These are vector spaces over R and
C, respectively, with respect to pointwise addition and scalar multiplication of
functions. The support of a real or complex-valued function f on X is defined as
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usual to be the closure in X of the set of x ∈ X such that f(x) 6= 0. The spaces
of continuous real and complex-valued functions on X with compact support
are denoted Ccom(X,R) and Ccom(X,C), respectively, and are linear subspaces
of C(X,R) and C(X,C), respectively.

Let G be a locally compact topological group such that {e} is a closed set.
A left-invariant Haar integral on G is a linear functional IL on Ccom(G,R) that
satisfies the following properties. First, IL should be nonnegative, in the sense
that

IL(f) ≥ 0(4.5.1)

for every f ∈ Ccom(G,R) such that f(x) ≥ 0 for every x ∈ G. More precisely,
if we also have that f(x) > 0 for some x ∈ G, then we ask that

IL(f) > 0.(4.5.2)

In addition, IL should be invariant under left translations, in the following sense.
If a ∈ G and f ∈ Ccom(G,R), then put

(La(f))(x) = f(a x)(4.5.3)

for every x ∈ G. It is easy to see that

La(f) ∈ Ccom(G,R)(4.5.4)

too, because of continuity of translations, and we ask that

IL(La(f)) = IL(f).(4.5.5)

Similarly, a right-invariant Haar integral on G is a linear functional IR on
Ccom(G,R) that satisfies the same positivity condition as in the preceding para-
graph, and which is invariant under right translations, in the following sense. If
a ∈ G and f ∈ Ccom(G,R), then put

(Ra(f))(x) = f(x a)(4.5.6)

for every x ∈ G, and observe that

Ra(f) ∈ Ccom(G,R).(4.5.7)

In this case, we ask that
IR(Ra(f)) = IR(f).(4.5.8)

Invariance under left and right translations are equivalent when G is commu-
tative. The product of a left or right-invariant Haar integral is a left or right-
invariant Haar integral too, respectively.

It is well known that left and right-invariant Haar integrals on G exist, and
are unique, up to multiplication by a positive real number. If HL is a left-
invariant Haar measure on G, then

IL(f) =

∫
G

f dHL(4.5.9)
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defines a left-invariant Haar integral on G. Conversely, if IL is a left-invariant
Haar integral on G, then there is a unique left-invariant Haar measure HL on
G such that (4.5.9) holds for every f ∈ Ccom(G,R), by the Riesz representation
theorem. Similarly, if HR is a right-invariant Haar measure on G, then

IR(f) =

∫
G

f dHR(4.5.10)

defines a right-invariant Haar integral on G. Conversely, if IR is a right-invariant
Haar integral on G, then there is a unique right-invariant Haar measure HR on
G such that (4.5.10) holds for every f ∈ Ccom(G,R), by the Riesz representation
theorem.

If f ∈ Ccom(G,R), then it is easy to see that f̃(x) = f(x−1) defines an
element of Ccom(G,R) as well. One can check that IL is a left-invariant Haar
integral on G exactly when

IR(f) = IL(f̃)(4.5.11)

is a right-invariant Haar integral on G.

4.6 Left and right translations

Let G be a locally compact topological group such that {e} is a closed set, and
let HL be a left-invariant Haar measure on G. If b ∈ G, then put

HL,b(E) = HL(E b)(4.6.1)

for every Borel subset E of G. One can check that this also defines a left-
invariant Haar measure on G. Thus the uniqueness of left-invariant Haar mea-
sure implies that HL,b can be expressed as a positive real number times HL.

Suppose that A is a Borel subset of G such that

0 < HL(A) < +∞(4.6.2)

and
HL(Ab) = HL(A).(4.6.3)

Under these conditions, the positive real number mentioned in the preceding
paragraph is equal to 1, so that

HL,b = HL.(4.6.4)

Of course, HL(b
−1Ab) = HL(Ab), so that (4.6.3) is equivalent to

HL(b
−1Ab) = HL(A).(4.6.5)

In particular, this holds when

b−1Ab = A.(4.6.6)
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If G is compact, then we get that (4.6.4) holds for every b ∈ G. This means
that HL is invariant under right translations, and thus may be considered as
right-invariant Haar measure on G too. We may refer to this simply as Haar
measure on G, and denote it H. In this case, it is customary to normalize Haar
measure by

H(G) = 1.(4.6.7)

Suppose that G has a Haar measure H that is invariant under left and right
translations, such as when G is commutative or compact. Let us check that

H(E−1) = H(E)(4.6.8)

for every Borel subset E of G. The uniqueness of Haar measure implies that
there is a positive real number c such that

H(E−1) = cH(E)(4.6.9)

for every Borel subset of G, because H(E−1) is also a Haar measure that is
invariant under left and right translations. To show that c = 1, it suffices to
verify that (4.6.8) holds for some Borel set E with H(E) positive and finite.
Of course, (4.6.8) holds automatically when E is symmetric about e. If E has
nonempty interior and E is contained in a compact set, then H(E) is positive
and finite. We can replace E with E∪E−1 if necessary to get E to be symmetric
about e.

Of course, we could also have considered the effect of left translations on
a right-invariant Haar measure. There are analogous arguments for left and
right-invariant Haar integrals as well.

4.7 Some remarks about regularity conditions

Let X be a locally compact Hausdorff topological space, let µ be a nonnegative
Borel measure on X, and suppose that

µ(K) < +∞(4.7.1)

for every compact subset K of X. If every Borel subset E of X satisfies the
inner regularity condition (4.4.2), then µ is said to be inner regular on X. We
say that µ is regular on X if µ is both inner and outer regular on X.

A subset E of X is said to be σ-compact if E can be expressed as the union
of a sequence of compact sets. If E is σ-compact, then E is a Borel set, and E
satisfies the inner regularity condition (4.4.2). Indeed, if E is σ-compact, then
it is easy to see that E can be expressed as the union of an increasing sequence
of compact sets, because the union of finitely many compact sets is compact as
well. The measures of these compact sets with respect to µ tends to µ(E) in
this case, by a standard argument.

If E is a Borel subset of X, then a milder inner regularity condition is that

µ(E) = sup{µ(A) : A ⊆ X is a closed set, and A ⊆ E}.(4.7.2)
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If X is compact, then (4.7.2) implies (4.4.2), because closed subsets of X are
compact. If X is σ-compact, then one can check that closed subsets of X are
σ-compact as well. Using this, one can verify that (4.7.2) implies (4.4.2) in
this case too. If µ(X) < +∞, then one can check that (4.7.2) holds for every
Borel subset E of X if and only if µ is outer regular on X, by considering outer
regularity for X \ E.

A subset of X that can be expressed as the union of a sequence of closed
sets is said to be an Fσ set. Note that σ-compact sets are Fσ sets, and that Fσ

sets are Borel sets. More precisely, an Fσ E set can be expressed as the union
of an increasing sequence of closed sets, because finite unions of closed sets are
closed sets. The measures of these closed sets with respect to µ tends to µ(E),
as before, which implies that E satisfies (4.7.2). If X is σ-compact, then Fσ

subsets of X are σ-compact too.
Similarly, a subset of X that can be expressed as the intersection of a se-

quence of open sets is said to be a Gδ set. Any Gδ set is a Borel set, and Gδ

sets in X are the same as the complements of Fσ sets in X. If the topology on
X is determined by a metric d, then it is well known that every closed set in X
is a Gδ set, so that open subsets of X are Fσ sets. More precisely, if A is any
subset of X, then

Uj =
⋃
x∈A

B(x, 1/j)(4.7.3)

is an open subset of X that contains A for every j ≥ 1, and one can check that

A =

∞⋂
j=1

Uj .(4.7.4)

This argument also works for semimetrics, although we are only considering
Hausdorff spaces in this section.

If every open subset of X is σ-compact, then it is well known that µ is
automatically regular on X, as in Theorem 2.18 on p50 of [21]. If X is σ-
compact, and every open subset of X is an Fσ set, then it follows that every
open set in X is σ-compact, as before. In particular, if the topology on X is
determined by a metric, and X is σ-compact, then every open subset of X is
σ-compact.

Suppose for the moment that there is a base for the topology of X with
only finitely or countably many elements. In this case, one can use Lindelöf’s
theorem to get that X is σ-compact, because X is locally compact. It is well
known thatX is also regular as a topological space, because X is locally compact
and Hausdorff. One can use this and Lindelöf’s theorem to get that every open
subset of X is σ-compact. More precisely, if x is an element of an open subset
W of X, then there is an open subset U of X such that x ∈ U , U ⊆W , and U
is compact, because X is locally compact and regular.

It is well known that a separable metric space has a base for its topology with
only finitely or countably many elements, and that compact metric spaces are
separable. Similarly, one can check that σ-compact metric spaces are separable.
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If a topological space has a base for its topology with only finitely or countably
many elements, and the space is regular in the strong sense, then there is a
metric on the space that determines the same topology, by famous theorems of
Urysohn and Tychonoff.

4.8 Products and product measures

LetG1, . . . , Gn be finitely many locally compact topological groups, and suppose
that the set containing only the identity element is a closed set in each Gj .
Observe that

G =

n∏
j=1

Gj(4.8.1)

is a locally compact topological group in which the set containing only the
identity element is a closed set, with respect to the product topology, and where
the group operations are defined coordinatewise. If there is a base for the
topology of Gj with only finitely or countably many elements for each j =
1, . . . , n, then there is a base for the product topology on G with only finitely
or countably many elements, consisting of products of elements of the bases for
the Gj ’s. In this case, one can get left or right-invariant Haar measures on G
from left or right-invariant Haar measures on the Gj ’s, respectively, using the
standard product measure construction. More precisely, open subsets of G are
measurable with respect to the standard product measure construction under
these conditions, so that Borel subsets of G are measurable with respect to the
standard product measure construction as well.

Alternatively, one can get left or right-invariant Haar integrals on G from
left or right-invariant Haar integrals on the Gj ’s, respectively. More precisely,
if f is a continuous real-valued function on G with compact support, then one
can define left or right-invariant Haar integrals of f using left or right-invariant
Haar integrals in each coordinate, respectively.

Suppose now that Gj is a compact topological group for each element j of
a nonempty set I, and that the set containing only the identity element is a
closed set in Gj . This implies that

G =
∏
j∈I

Gj(4.8.2)

is a compact topological group in which the set containing only the identity
element is a closed set, with respect to the product topology, and where the
group operations are defined coordinatewise. If I is countably infinite, and
there is a base for the topology of each Gj with only finitely or countably many
elements, then one can get a base for the topology of G with only finitely or
countably many elements as well. This base consists of products of open subsets
of the Gj ’s, where these open sets are equal to Gj for all but finitely many j,
and the others are elements of the given bases for the Gj ’s. If j ∈ I, then we
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can take Hj to be the Haar measure on Gj that is invariant under left and right
translations and normalized so that

Hj(Gj) = 1.(4.8.3)

One can use these measures to get Haar measure H on G, by a standard product
measure construction. As before, open subsets of G are measurable with respect
to this product measure construction, because they can be expressed as unions
of elements of the base for the topology of G mentioned earlier.

Alternatively, let Ij be the Haar integral on Gj that is invariant under left
and right translations and normalized so that it is equal to 1 for the constant
function on Gj equal to 1. If f is a continuous real-valued function on G, then
one can use these Haar integrals on f in the jth variable for any finite set
of j ∈ I. To define the Haar integral of f , one can pass to a suitable limit.
Note that f is left and right-invariant uniformly continuous on G, because G
is compact. In particular, this implies that f approximately depends on only
finitely many coordinates.

These constructions can be simplified when Gj has only finitely many ele-
ments for each j ∈ I. This will be considered more broadly in the next section.

4.9 Haar measure on profinite groups

Let G be a compact topological group for which {e} is a closed set, and let H
be Haar measure on G normalized so that H(G) = 1, which is invariant under
both left and right translations in this case. If U is an open subgroup of G, then
H(U) is the reciprocal of the index of U in G, which is the number of left or
equivalently right cosets of U in G.

Suppose from now on in this section that G is profinite, so that the open
subgroups of G form a local base for the topology of G at e. More precisely, the
open normal subgroups of G form a local base for the topology of G at e, as in
Section 2.14.

Let A be the collection of all subsets of G that can be expressed as the
union of finitely many translates of open normal subgroups of G. Remember
that open subgroups of G are closed sets, which means that they are compact,
because G is compact. Of course, every open subset W of G can be expressed
as a union of translates of open normal subgroups, because the open normal
subgroups form a local base for the topology of G at e. If W is compact too,
then it follows that W can be expressed as the union of finitely many translates
of open normal subgroups. Thus A is the same as the collection of subsets of G
that are open and closed, because closed subsets of G are compact.

If U1, . . . , Un are finitely many open normal subgroups of G, then

U =

n⋂
j=1

Uj(4.9.1)

is an open normal subgroup of G too. Of course, U has finite index in G, and
thus in Uj for each j = 1, . . . , n. This implies that Uj can be expressed as the
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union of finitely many translates of U for each j = 1, . . . , n. It follows that
every element of A can be expressed as the union of finitely many translates of
a single open normal subgroup of G.

Of course, left and right translates of a normal subgroup are the same. Thus
the elements of A can be expressed as the union of finitely many left translates
of a single open normal subgroup of G. Remember that the left translates of
any subgroup are pairwise disjoint. This implies that the Haar measure of the
union of finitely many distinct left cosets of an open subgroup U is equal to the
number of cosets times H(U). This determines the Haar measure of elements
of A.

Let W be an open subset of G, let K be a compact subset of G, and suppose
that K ⊆ W . If x ∈ K, then there is an open normal subgroup U of G such
that xU ⊆ W . Because K is compact, K is contained in the union of finitely
many such cosets. Equivalently, this means that there is an element of A that
contains K and is contained in W .

This shows that Haar measure is uniquely determined on open subsets of G,
because Haar measure is uniquely determined on A. More precisely, this uses
the inner regularity of Haar measure on open sets. It follows that Haar measure
is uniquely determined on G, by outer regularity.

Note that A is an algebra of subsets of G, which is to say that it contains G
and the empty set as elements, and it is closed under finite unions, intersections,
and complements. This follows from the earlier characterization of A as the
collection of subsets of G that are open and closed. Alternatively, if A,B ∈ A,
then one can check that A and B can be expressed as the union of finitely many
left cosets of a single open normal subgroup of G. This implies that the union,
intersection, and complements of A and B can be expressed as the union of
finitely many left cosets of the same open normal subgroup of G.

One can define Haar measure directly on A as before, with the normalization
H(G) = 1. One can verify directly that Haar measure is finitely additive on
A. This uses the fact that pairs of elements of A can be expressed as finite
unions of left cosets of a single open normal subgroup of G, as in the preceding
paragraph.

Let A1, A2, A3, . . . be an infinite sequence of pairwise-disjoint elements of A
such that

⋃∞
j=1Aj ∈ A. Thus

⋃∞
j=1Aj is compact, which implies that

n⋃
j=1

Aj =

∞⋃
j=1

Aj(4.9.2)

for some positive integer n, because Aj is an open set for each j. This means
that Aj = ∅ when j > n, so that

H
( ∞⋃

j=1

Aj

)
=

∞∑
j=1

H(Aj),(4.9.3)

because H is finitely additive on A.
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Under these conditions, a famous theorem of E. Hopf implies that H can be
extended to a countably-additive measure on a σ-algebra of subsets of G that
contains A in a natural way. More precisely, one can define an outer measure
on G associated to H on A, and use Carathéodory’s notion of measurable sets
with respect to that outer measure. This outer measure is invariant under left
and right translations on G, because of the analogous property of H on A. This
implies that the corresponding σ-algebra of measurable sets is invariant under
left and right translations as well.

Suppose that there is a local base for the topology of G at e with only
finitely or countably many elements. This implies that there is a local base for
the topology of G at e consisting of only finitely or countably many open normal
subgroups. It follows that there are only finitely or countably many cosets of
these open normal subgroups of G, which form a base for the topology of G. In
particular, every open subset of G can be expressed as the union of finitely or
countable many elements of A in this case.

4.10 Haar measure and absolute values

Let k be a field with an absolute value function | · |, and suppose that k is locally
compact with respect to the topology determined by the associated metric. Thus
k may be considered as a commutative locally compact topological group with
respect to addition.

If | · | is the trivial absolute value function on k, then the associated metric
is the discrete metric, and counting measure on k satisfies the requirements of
Haar measure. Let us suppose from now on in this section that | · | is not the
trivial absolute value function on k.

Remember that closed and bounded subsets of k are compact, because k is
locally compact and | · | is nontrivial on k, as in Section 2.10. In particular, this
implies that k is complete with respect to the metric associated to | · |. This uses
the well-known facts that a Cauchy sequence of elements of any metric space
is bounded, and that a Cauchy sequence of elements of a compact subset of a
metric space converges to an element of that subset.

If |·| is archimedean on k, then a famous theorem of Ostrowski implies that k
is isomorphic to R or C, in such a way that | · | corresponds to an absolute value
function on R or C that is equivalent to the standard absolute value function, as
mentioned in Section 1.3. One-dimensional Lebesgue measure on R satisfies the
requirements of Haar measure. As a topological group with respect to addition,
C is the same as R2, on which two-dimensional Lebesgue measure satisfies the
requirements of Haar measure.

Suppose now that | · | is an ultrametric absolute value function on k. Let N
be the number of elements of the residue field B(0, 1)/B(0, 1), which is finite,
because B(0, 1) is compact and thus totally bounded, as in Section 2.11. We
also have that | · | is discrete on k, so that there is a positive real number ρ1 < 1
such that the positive values of | · | are the same as the integer powers of ρ1, as
before. In particular, B(0, 1) = B(0, ρ1) in this case.



4.11. AUTOMORPHISMS OF TOPOLOGICAL GROUPS 85

Remember that B(0, ρj1) is a subgroup of k, as a commutative group with
respect to addition, for every j ∈ Z. It is easy to see that

B(0, ρj1)/B(0, ρj+1
1 )(4.10.1)

is isomorphic to B(0, 1)/B(0, ρ1) for each j, as a commutative group with respect
to addition. Thus (4.10.1) has exactly N elements for every j. It follows that

B(0, ρj1)/B(0, ρj+l
1 )(4.10.2)

has exactly N l elements for every j ∈ Z and l ∈ Z+.
Let H be Haar measure on k, normalized so that

H(B(0, 1)) = 1.(4.10.3)

One can check that
H(B(0, ρj1)) = N−j(4.10.4)

for every j ∈ Z, using the remarks in the preceding paragraph. Of course, this
determines the Haar measure of all closed balls in k, because of invariance under
translations.

4.11 Automorphisms of topological groups

An automorphism of a topological group G is an automorphism α of G as a
group that is also a homeomorphism from G onto itself. It is easy to see that
the automorphisms of G form a group with respect to composition of mappings.
In particular, if a ∈ G, then conjugation by a defines an automorphism of G as
a topological group.

Suppose that G is a locally compact topological group such that {e} is
a closed set, and let HL be a left-invariant Haar measure on G. If α is an
automorphism of G as a topological group, then one can check that HL(α(E))
satisfies the requirements of left-invariant Haar measure on G as well. It follows
that there is a positive real number Λ(α) such that

HL(α(E)) = Λ(α) = HL(E)(4.11.1)

for all Borel subsets E of G, by uniqueness of left-invariant Haar measure. Of
course, there is an analogous statement for right-invariant Haar measure.

If E0 is a Borel subset of G such that

0 < HL(E0) < +∞(4.11.2)

and
HL(α(E0)) = HL(E0),(4.11.3)

then
Λ(α) = 1.(4.11.4)
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Of course, (4.11.3) holds automatically when

α(E0) = E0.(4.11.5)

In particular, (4.11.4) holds for every automorphism α of G as a topological
group when G is compact.

Let a ∈ G be given, and suppose for the moment that

α(x) = a x a−1(4.11.6)

for every x ∈ G. If E is a Borel subset of G, then

HL(α(E)) = HL(aE a
−1) = HL(E a

−1).(4.11.7)

This corresponds to some of the remarks in Section 4.6.
Let k be a field with an absolute value function | · |. In particular, k may

be considered as a commutative topological group with respect to addition. If
a ∈ k and a 6= 0, then

x 7→ a x(4.11.8)

defines an automorphism of k as a commutative topological group with respect
to addition. Suppose that k is locally compact with respect to the topology
determined by the metric associated to | · |. Let H be Haar measure on k, as
a locally compact commutative topological group with respect to addition. If
a ∈ k satisfies |a| = 1, then it is easy to see that H is invariant under (4.11.8).
This uses the fact that open and closed balls in k centered at 0 are invariant
under (4.11.8) when |a| = 1.

4.12 Some related examples

Let k be a field with an ultrametric absolute value function | · |, and suppose
that | · | is not the trivial absolute value function on k, and that k is locally
compact with respect to the metric associated to | · |. Also let n be a positive
integer, and let Mn(k) be the algebra of n × n matrices with entries in k. If
a = (aj,l) ∈ Mn(k), then let ‖a‖ be the maximum of |aj,l| over 1 ≤ j, l ≤ n,
which defines a submultiplicative ultranorm on Mn(k), as before. It is easy to
see that the topology determined on Mn(k) by the ultrametric associated to ‖·‖
is the same as the product topology corresponding to the topology determined
on k by the ultrametric associated to | · |, where Mn(k) is identified with the
Cartesian product of n2 copies of k in the obvious way. In particular, Mn(k)
may be considered as a commutative topological group with respect to addition,
which corresponds to the product of n2 copies of k as a commutative topological
group with respect to addition.

Remember that the closed unit ball B(0, 1) in k with respect to the ultra-
metric associated to | · | is a subring of k, so that Mn(B(0, 1)) is a subring of
Mn(k). Equivalently, Mn(B(0, 1)) is the closed unit ball in Mn(k) with respect
to the ultrametric associated to ‖·‖. Note thatMn(B(0, 1)) is compact and open
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in Mn(k) with respect to the topology determined by this ultrametric, because
B(0, 1) is a compact open subset of k with respect to the topology determined
by the ultrametric associated to | · |. Let Hn be Haar measure on Mn(k), as a
commutative topological group with respect to addition.

If a ∈ GLn(B(0, 1)), then left and right multiplication by a define one-to-one
linear mappings from Mn(k) onto itself that send Mn(B(0, 1)) onto itself. More
precisely, left and right multiplication by a preserve ‖·‖ onMn(k), as in Section
1.12. In particular, left and right multiplication by a define automorphisms of
Mn(k), as a commutative topological group with respect to addition. One can
use this to get that left and right multiplication by a preserve Hn on Mn(k), as
in the previous section.

We may consider Mn(B(0, 1)) as a commutative topological group with re-
spect to addition as well, which is a compact open subgroup of Mn(k). The
restriction of Hn to Mn(B(0, 1)) satisfies the requirements of Haar measure on
Mn(B(0, 1)).

Note that
{x ∈ k : |x| = 1}(4.12.1)

is open and closed in k, with respect to the topology determined by the ultra-
metric associated to | · |. This follows from the fact that B(0, 1) and B(0, 1) are
each open and closed in k.

Remember that GLn(B(0, 1)) consists of a ∈ Mn(B(0, 1)) with | det a| =
1. Observe that GLn(B(0, 1)) is open and closed as a subset of Mn(B(0, 1)),
because (4.12.1) is open and closed in k.

We may consider GLn(B(0, 1)) as a compact topological group with respect
to matrix multiplication, and the topology induced by the one on Mn(B(0, 1)).
The restriction of Hn to GLn(B(0, 1)) is invariant under left and right trans-
lations in GLn(B(0, 1)), as before. It follows that the restriction of Hn to
GLn(B(0, 1)) satisfies the requirements of Haar measure on GLn(B(0, 1)).

Of course, this is all much simpler when n = 1. Clearly (4.12.1) is a subgroup
of k \ {0}, as a group with respect to multiplication. More precisely, (4.12.1)
is a compact topological group, with respect to the topology induced by the
topology determined on k by the ultrametric associated to | · |. This is also an
open set in k, as before. Let H be Haar measure on k, as a locally compact
commutative topological group with respect to addition. The restriction of H to
(4.12.1) satisfies the requirements of Haar measure on (4.12.1), as a topological
group with respect to multiplication. This uses the fact that H is invariant
under multiplication by a ∈ k with |a| = 1, as in the previous section.

4.13 Quotient mappings

Let (X, τX) be a topological space, let Y be a set, and let f be a mapping from
X onto Y . Under these conditions, the corresponding quotient topology on Y
is defined by saying that V ⊆ Y is an open set if and only if f−1(V ) is an
open set in X. It is easy to see that this defines a topology on Y , and that
E ⊆ Y is a closed set if and only if f−1(E) is a closed set in X. Note that f
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is continuous with respect to the quotient topology on Y , and that Y satisfies
the first separation condition with respect to the quotient topology if and only
if for every y ∈ Y , f−1({y}) is a closed set in X.

Suppose now that (Y, τY ) is a topological space. A mapping f from X onto
Y is said to be a quotient mapping as a mapping between topological spaces if
τY is the same as the quotient topology determined by τX and f . This means
that f is continuous, and that V ⊆ Y is an open set when f−1(V ) is an open
set in X. This is the same as saying that f is continuous, and that E ⊆ Y is a
closed set when f−1(E) is a closed set in X.

Let (Z, τZ) be another topological space, and let g be a mapping from Y
into Z. If f is a quotient mapping from X onto Y , then it is easy to see that g
is continuous as a mapping from Y into Z if and only if g ◦ f is continuous as a
mapping from X into Z.

Let f be any mapping from X onto Y , and observe that

f(f−1(V )) = V(4.13.1)

for every V ⊆ Y . Suppose that f is also an open mapping, so that for each
open set U ⊆ X, we have that f(U) is an open set in Y . If V ⊆ Y and f−1(V )
is an open set in X, then (4.13.1) implies that V is an open set in Y . If f is
continuous too, then it follows that f is a quotient mapping from X onto Y .

Similarly, suppose now that f maps closed subsets of X to closed subsets of
Y . If E ⊆ Y and f−1(E) is a closed set in X, then E is a closed set in Y , by
(4.13.1). This implies that f is a quotient mapping from X onto Y when f is
continuous as well.

If f is a continuous mapping from X onto Y , X is compact, and Y is
Hausdorff, then f is a quotient mapping. Indeed, if A ⊆ X is a closed set, then
A is compact, so that f(A) is compact, and thus closed in Y .

Let Y0 be a subset of Y , and put X0 = f−1(Y0). Note that f(X0) = Y0,
because f(X) = Y , by hypothesis. Suppose for the moment that f is a quotient
mapping from X onto Y . If Y0 is an open or closed set in Y , then X0 has the
same property in X, because f is continuous. In both cases, it is easy to see
that the restriction of f to X0 is a quotient mapping from X0 onto Y0, with
respect to the topologies induced on X0 and Y0 by τX and τY , respectively.

Observe that

f(A ∩X0) = f(A) ∩ Y0(4.13.2)

for every A ⊆ X. If f is an open mapping from X onto Y , then it follows that
the restriction of f to X0 is an open mapping from X0 onto Y0, with respect to
the induced topologies on X0 and Y0. Similarly, if f maps closed subsets of X
to closed subsets of Y , then the restriction of f to X0 has the same property as
a mapping from X0 onto Y0, with respect to the induced topologies. Of course,
if f is an open mapping, then the restriction of f to any open subset of X is
an open mapping as well. If f maps closed subsets of X to closed subsets of Y ,
then the restriction of f to any closed set in X has the same property.
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4.14 Quotient mappings and topological groups

Let G be a topological group, and let ϕ be a homomorphism from G onto a
group H. If U ⊆ G, then

ϕ−1(ϕ(U))(4.14.1)

is the same as the union of the translates of U , on the left or on the right, by
elements of the kernel of ϕ. If U is an open set, then it follows that (4.14.1) is
an open set as well. This implies that ϕ is an open mapping with respect to the
corresponding quotient topology on H.

One can check that H is a topological group with respect to the correspond-
ing quotient topology. Note that H satisfies the first separation condition with
respect to the quotient topology exactly when the kernel of ϕ is a closed set. If
B is a local base for the topology of G at the identity element, then it is easy
to see that

{ϕ(U) : U ∈ B}(4.14.2)

is a local base for the quotient topology on H at the identity element.
If the open subgroups of G form a local base for the topology at the identity

element, then it follows that the open subgroups of H form a local base for
the quotient topology at the identity element. Similarly, if the open normal
subgroups of G form a local base for the topology at the identity element, then
the open normal subgroups of H form a local base for the quotient topology at
the identity element.

Suppose now that G is compact, and that H is a topological group with
respect to some topology, where the set containing only the identity element in
H is a closed set. If ϕ is a continuous homomorphism from G onto H, then
ϕ is a quotient mapping, because H is Hausdorff, as in the previous section.
It follows that ϕ is an open mapping under these conditions, as before. If G
is profinite, then we get that H is profinite as well, using the remarks in the
preceding paragraph.

Alternatively, let U be an open subgroup of G. Thus U is a closed set in G,
which implies that U is compact, because G is compact. It follows that ϕ(U) is
compact in H, so that ϕ(U) is closed in H, because H is Hausdorff. Note that
U has finite index in G, because G is compact. This implies that ϕ(U) has finite
index in H, because ϕ maps G onto H. This is another way to get that ϕ(U)
is an open set in H, because ϕ(U) is a closed subgroup of H. If B is a local
base for the topology of G at the identity element consisting of open subgroups,
then it follows that (4.14.2) is a local base for the topology of H at the identity
element.



Chapter 5

Commutative topological
groups

5.1 The unit circle

Let
T = {z ∈ C : |z| = 1}(5.1.1)

be the unit circle in the complex plane C, using the standard absolute value
function on C. This is a subgroup of the group C \ {0} of nonzero complex
numbers, with respect to multiplication. More precisely, T is a compact topo-
logical group, with respect to the topology induced by the standard topology
on C.

Of course, the real line R is a commutative topological group with respect
to addition and the standard topology. Using the complex exponential function,
we get a continuous group homomorphism

x 7→ exp(2π i x)(5.1.2)

from R onto T. In fact, (5.1.2) is a local homeomorphism, and the kernel of
(5.1.2) as a group homomorphism is Z. Thus T may be identified with R/T,
as a topological group. One can also use this to get Haar measure on T from
one-dimensional Lebesgue measure.

We may consider Q as a subgroup of R, so that Q/Z is a subgroup of R/Z.
This corresponds to the subgroup

{z ∈ T : zn = 1 for some n ∈ Z+}(5.1.3)

of T.
Consider

{z ∈ T : Re z > 0},(5.1.4)

where Re z denotes the real part of a complex number z. Note that (5.1.4) is
a relatively open subset of T that contains 1. If z is an element of (5.1.4) and

90
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z 6= 1, then one can check that there is a positive integer n such that zn is not
contained in (5.1.4). This implies that {1} is the only subgroup of T contained
in (5.1.4).

Let A be a group, and let ϕ be a homomorphism from A into T. Suppose
that A0 is a subgroup of A, and that

Reϕ(a0) > 0(5.1.5)

for every a0 ∈ A0. This means that ϕ(A0) is contained in (5.1.4), which implies
that

ϕ(A0) = {1},(5.1.6)

because ϕ(A0) is a subgroup of T. Equivalently,

ϕ(a0) = 1(5.1.7)

for every a0 ∈ A0.
Let A be a topological group, and suppose that the open subgroups of A form

a local base for the topology of A at the identity element. If ϕ is a continuous
homomorphism from A into T, then there is an open subgroup A0 of A such
that ϕ(A0) is contained in (5.1.4). This implies that (5.1.7) holds, as before.

If α ∈ R, then

ψα(x) = αx(5.1.8)

is a continuous group homomorphism from R into itself. One can check that
every continuous group homomorphism from R into itself is of this form for a
unique α ∈ R.

Using the complex exponential function again, we get that

ρα(x) = exp(2 π i α x)(5.1.9)

is a continuous group homomorphism from R into T for every α ∈ R. If ρ is
any continuous mapping from R into T such that

ρ(0) = 1,(5.1.10)

then it is well known that there is a unique continuous mapping ψ from R into
itself such that

ρ(x) = exp(2 π i ψ(x))(5.1.11)

for every x ∈ R, and

ψ(0) = 0.(5.1.12)

If ρ is a continuous group homomorphism from R into T, then it is not too
difficult to show that ψ is a continuous group homomorphism from R into
itself. This means that ρ is of the form (5.1.9) for a unique α ∈ R.

If j ∈ Z, then

χj(z) = zj(5.1.13)
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defines a continuous homomorphism from T into itself. If χ is any continuous
homomorphism from T into itself, then

ρ(x) = χ(exp(2π i x))(5.1.14)

defines a continuous group homomorphism from R into T. This is the same as
(5.1.9) for a unique α ∈ R, as before. One can use this to verify that χ is of the
form (5.1.13) for a unique j ∈ Z.

5.2 Dual groups

Let C be a commutative group, and let X be a nonempty set. The set CX of all
mappings from X into C is a commutative group, where the group operations
are defined pointwise.

If A is a commutative group too, then let Hom(A,C) be the collection of
group homomorphisms from A into C. It is easy to see that this is a subgroup
of CA.

Let A be a commutative topological group, where the set containing only
the identity element is a closed set. Consider the set Â of all continuous group
homomorphisms from A into T. This is a subgroup of Hom(A,T). This group

is called the dual group of A, and may be denoted Â. Of course, if A is equipped
with the discrete topology, then Â consists of all group homomorphisms from A
into T.

Consider A = Z, as a commutative group with respect to addition. If c ∈ C,
then there is a unique group homomorphism ϕc from Z into C such that

ϕc(1) = c.(5.2.1)

Of course, if ϕ is any group homomorphism from Z into C, then ϕ = ϕc, with
c = ϕ(1). This defines an isomorphism between C and Hom(Z, C).

Remember that R is a commutative topological group with respect to addi-
tion and the standard topology, and that every continuous group homomorphism
from R into T can be expressed as ρα in (5.1.9) for a unique α ∈ R. Observe
that

ρα+β = ρα ρβ(5.2.2)

on R for every α, β ∈ R. This means that

α 7→ ρα(5.2.3)

is a group isomorphism from R onto its dual group.
Remember that every element of T̂ can be expressed as χj in (5.1.13) for a

unique j ∈ Z. Clearly
χj+l = χj χl(5.2.4)

on T for every j, l ∈ Z, so that
j 7→ χj(5.2.5)
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defines a group isomorphism from Z onto the dual T̂ of T.
Let A be a commutative group again, where the group operations are ex-

pressed additively. As usual, x ∈ A is said to be a torsion element of A if

n · x = 0(5.2.6)

for some n ∈ Z+. Remember that n ·x is the sum of n x’s in A. In this case, if ϕ
is a homomorphism from A into C, then ϕ(x) satisfies the analogous condition
in C.

If every element of A is a torsion element, then A is said to be a torsion
commutative group. If ϕ is a homomorphism from A into C, then it follows that
ϕ(A) is a torsion subgroup of C. In particular, if ϕ is a homomorphism from A
into T ∼= R/Z, then this implies that ϕ(A) is contained in the subgroup (5.1.3)
of T corresponding to Q/Z.

Suppose now that A is a commutative topological group, where the set con-
taining only the identity element is a closed set, and the open subgroups of A
form a local base for the topology of A at the identity element. Let ϕ ∈ Â be
given, and let A0 be an open subgroup of A such that (5.1.7) holds. If q0 is
the natural quotient mapping from A onto A/A0, then it follows that there is a
homomorphism ϕ0 from A/A0 into T such that

ϕ = ϕ0 ◦ q0.(5.2.7)

Suppose that A is also totally bounded as a topological group, so that A0

has finite index in A. In particular, this means that ϕ(A) is a finite subgroup of
T. This implies that there is a positive integer n such that ϕ(x)n = 1 for every
x ∈ A, so that

ϕn = 1(5.2.8)

in Â. Thus every element of Â is torsion under these conditions. This is related
to Example 4 on p3 of [25].

5.3 Topology on dual groups

Let A be a commutative topological group again, where the set containing only
the identity element is a closed set. One often considers the topology on the
dual group Â that corresponds to uniform convergence on nonempty compact
subsets of A. It is easy to see that Â is Hausdorff with respect to this topology,
and one can check that Â is a commutative topoogical group with respect to
this topology. Here we shall be primarily concerned with the cases where A is
compact, or A is equipped with the discrete topology.

If A is compact, then the topology on Â mentioned in the preceding para-
graph corresponds to uniform convergence on A, and can be defined using the
supremum metric. In fact, this topology reduces to the discrete topology on Â.
More precisely, suppose that ϕ, ψ ∈ Â satisfy

|ϕ(a)− ψ(a)| < 1(5.3.1)
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for every a ∈ A. This implies that ρ = ϕ/ψ satisfies

|ρ(a)− 1| < 1(5.3.2)

for every a ∈ A. In particular, this means that ρ(A) is contained in (5.1.4).

Observe that ρ(A) is a subgroup ofT, because ρ ∈ Â. It follows that ρ(A) = {1},
as before, so that ϕ = ψ on A.

If A is equipped with the discrete topology, then the only compact subsets of
A are finite sets. This means that uniform convergence on compact subsets of A
is the same as pointwise convergence on A. Let TA be the space of all mappings
from A into T, as usual. This is the same as the Cartesian product of copies of T
indexed by A. The topology on TA that corresponds to pointwise convergence
on A is the same as the product topology on this Cartesian product, using the
standard topology on T. Of course, TA is compact with respect to the product
topology, by Tychonoff’s theorem. One can check that Â is a closed set in TA

with respect to the product topology, which implies that Â is compact in TA.
The topology induced on Â by the product topology on TA is the same as the
topology on Â that corresponds to pointwise convergence on A.

Suppose that A = Z, as a commutative group with respect to addition, and
equipped with the discrete topology. If z ∈ T, then

ϕz(j) = zj(5.3.3)

defines a group homomorphism from Z into T. If w ∈ T too, then

ϕz w = ϕz ϕw(5.3.4)

on Z. It is easy to see that every group homomorphism from Z into T is of the
form (5.3.3) for a unique z ∈ T, so that

z 7→ ϕz(5.3.5)

is a group isomorphism from T onto the dual of Z, as in the previous section.
One can check that (5.3.5) is a homeomorphism from T onto the dual of Z with
respect to the topology on the dual of Z corresponding to pointwise convergence
on Z.

Suppose now that A = R, as a commutative topological group with respect
to addition and the standard topology. One can verify that the group isomor-
phism (5.2.3) from R onto its dual group is a homeomorphism, with respect
to the topology on the dual group that corresponds to uniform convergence on
compact subsets of R.

Remember that (5.2.5) is a group isomorphism from Z onto the dual T̂ of T.
This isomorphism is a homeomorphism with respect to the discrete topology on
Z, because the topology on T̂ corresponding to uniform convergence on compact
subsets of T is the discrete topology, as before.

Let A be a commutative topological group, where the group operations are
expressed additively, and where {0} is a closed set in A. Suppose for the moment
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that x ∈ A is torsion, so that n · x = 0 for some positive integer n. If ϕ ∈ Â,
then it follows that

ϕ(x)n = 1.(5.3.6)

Observe that
{ψ ∈ Â : ψ(x) = 1}(5.3.7)

is a subgroup of Â. More precisely, this is an open subgroup of Â under these
conditions, because of (5.3.6). We also get that (5.3.7) has finite index in Â, by
(5.3.6).

Suppose that A is equipped with the discrete topology, and that every ele-
ment of A is torsion. In this case, the open subgroups of the form (5.3.7) form a

local sub-base for the usual topology on Â at the identity element. This means
that Â is profinite under these conditions, because Â is compact, as before. This
is related to Example 4 on p3 of [25].

5.4 Direct products

Let I be a nonempty set, and let Aj be a commutative group for each j ∈ I.
The Cartesian product

A =
∏
j∈I

Aj(5.4.1)

is a commutative group as well, where the group operations are defined coordi-
natewise. This is the direct product of the Aj ’s.

Let C be another commutative group. If l ∈ I and ϕl is a homomorphism
from Al into C, then

ϕ̃l(x) = ϕl(xl)(5.4.2)

defines a homomorphism from A into C. Let l1, . . . , ln be finitely many elements
of I, and for each r = 1, . . . , n, let ϕlr be a homomorphism from Alr into C.

Thus ϕ̃lr can be defined as in (5.4.2) for r = 1, . . . , n, and is a homomorphism

from A into C. Using the group operation on C, one can combine ϕ̃l1 , . . . , ϕ̃ln
to get another homomorphism from A into C.

If l ∈ I, then there is a natural injective homomorphism ιl from Al into A,
which sends xl ∈ Al to the element of A whose lth coordinate is equal to xl,
and whose jth coordinate for j ∈ I with j 6= l is equal to the identity element
in Aj . Let ϕ be any homomorphism from A into C, and put

ϕl = ϕ ◦ ιl(5.4.3)

for each l ∈ I. This defines a homomorphism from Al into C, so that ϕ̃l
defined in (5.4.2) is a homomorphism from A into C. If I has only finitely many

elements, then ϕ is the same as the combination of ϕ̃l over l ∈ I, using the group
operation on C.

Suppose from now on in this section that Aj is a commutative topological
group for each j ∈ I, and that the set containing only the identity element is a
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closed set in Aj for every j ∈ I. This implies that A is a commutative topological
group with respect to the product topology, in which the set containing only
the identity element is a closed set. We shall also take C = T in the previous
remarks. If l ∈ I and ϕl ∈ Âl, then ϕ̃l defined in (5.4.2) is an element of Â. If

l1, . . . , ln are finitely many elements of I, and ϕlr ∈ Âlr for each r = 1, . . . , n,

then ϕ̃lr ∈ Â for every r = 1, . . . , n, so that their product

ϕ̃l1(x) · · · ϕ̃ln(x)(5.4.4)

is an element of Â too.
Conversely, let ϕ ∈ Â be given. If l ∈ I, then the homomorphism ιl from Al

into A mentioned earlier is continuous. This implies that ϕl defined in (5.4.3)

is an element of Âl for every l ∈ I. It follows that ϕ̃l defined in (5.4.2) is an

element of Â for every l ∈ I.
Because ϕ is continuous, there is an open subset U of A such that U contains

the identity element and
Reϕ(x) > 0(5.4.5)

for every x ∈ U . We may as well take U to be of the form

U =
∏
j∈I

Uj ,(5.4.6)

where Uj ⊆ Aj is an open set that contains the identity element for every j ∈ I,
and Uj = Aj for all but finitely many j ∈ I. If j ∈ I, then put

Bj = Aj when Uj = Aj ,(5.4.7)

and take Bj to be the subset of Aj that contains only the identity element
otherwise. Thus

B =
∏
j∈I

Bj(5.4.8)

is a subgroup of A contained in U .
By construction, ϕ(B) is contained in (5.1.4). This implies that

ϕ(B) = {1},(5.4.9)

as before. This means that ϕ(x) depends on xj ∈ Aj for only finitely many

j ∈ I. It follows that ϕ can be expressed as the product of ϕ̃l for finitely many
l ∈ I.

5.5 Direct sums

Let I be a nonempty set again, and let Aj be a commutative group for each
j ∈ I. Thus the direct product A of the Aj ’s can be defined as in the previous
section. The direct sum of the Aj ’s is the subgroup

A⊕ =
⊕
j∈I

Aj(5.5.1)
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of A consisting of x ∈ A such that xj is the identity element in Aj for all but
finitely many j ∈ I. Of course, this is the same as A when I has only finitely
many elements.

Let C be a commutative group, and suppose that for each l ∈ I we have a
homomorphism ϕl from Al into C. If x ∈ A⊕, then ϕl(x) is the identity element
in C for all but finitely many l ∈ I. This permits us to define

ϕ(x) ∈ C,(5.5.2)

by combining ϕl(x), l ∈ I, using the group operation on C. It is easy to see
that this defines a homomorphism from A⊕ into C.

Conversely, let ϕ be any homomorphism from A⊕ into C. If l ∈ I, then let
ιl be the natural inclusion of Al into A

⊕, as in the previous section, and put
ϕl = ϕ ◦ ιl, as before. Thus ϕl is a homomorphism from Al into C for every
l ∈ I, and one can check that for every x ∈ A⊕, ϕ(x) is the same as the element
of C obtained by combining ϕl(xl), l ∈ I.

Let us now consider Aj to be a commutative topological group with respect
to the discrete topology for each j ∈ I. Let us take the direct sum A⊕ to
be equipped with the discrete topology as well. The remarks in the previous
paragraphs show that there is a natural group isomorphism between the dual

Â⊕ of A⊕ and the direct product ∏
j∈I

Âj(5.5.3)

of the duals of the Aj ’s.

As in Section 5.3, we can take Â⊕ to be equipped with the topology that
corresponds to pointwise convergence of homomorphisms on A⊕. One can check
that this is the same as the topology that corresponds to pointwise convergence
on the subset ⋃

l∈I

ιl(Al)(5.5.4)

of A⊕, because A⊕ is generated as a group by (5.5.4). Using this, one can

verify that the isomorphism between Â⊕ and (5.5.3) mentioned in the preceding

paragraph is a homeomorphism. This uses the topology on Âj corresponding to
pointwise convergence on Aj for each j ∈ I, and the associated product topology
on (5.5.3).

Let Aj be any commutative topological group for which the set containing
only the identity element is a closed set for each j ∈ I, and let A be the direct
product of the Aj ’s, equipped with the product topology. The remarks in the
previous section show that there is a natural group isomorphism between the
dual Â of A and the direct sum ⊕

j∈I
Âj(5.5.5)

of the duals of the Aj ’s.
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Suppose for the moment that Aj is compact for each j ∈ I, so that A is

compact too. In this case, we use the discrete topology on Âj for each j ∈ I,

and the discrete topology on Â, as in Section 5.3. Let us take (5.5.5) to be
equipped with the discrete topology too, so that the isomorphism mentioned in
the preceding paragraph is a homeomorphism.

Suppose now that I has only finitely many elements, so that (5.5.3) and

(5.5.5) are the same. Let us take Âj to be equipped with the topology corre-
sponding to uniform convergence on compact subsets of Aj , and similarly for

Â, as before. One can check that this topology on Â corresponds exactly to
the associated product topology on (5.5.3). This uses the fact that products of
compact subsets of the Aj ’s are compact subsets of A, by Tychonoff’s theorem.
This also uses the fact that any compact subset of A is contained in the product
of its projections in the Aj ’s, which are compact subsets of the Aj ’s.

5.6 Separating points

Let X be a set, and let E be a collection of functions on X. As usual, we say that
E separates points in X if for every x, y ∈ X with x 6= y there is an f ∈ E such
that f(x) 6= f(y). If X is a group, and E is a collection of homomorphisms from
X into some other groups, then it suffices to check that the identity element in
X can be separated from other elements of X in this way. If A is Z, R, or T,
as a commutative topological group equipped with its usual topology, then one
can check that Â separates points in A.

Let n be a positive integer, and consider A = Z/nZ, as a commutative group
with respect to addition, and equipped with the discrete topology. Group ho-
momorphisms from Z/nZ into T correspond exactly to group homomorphisms
from Z into T that send n to 1. If z ∈ T, then ϕz(j) = zj has this property
exactly when

zn = 1.(5.6.1)

This leads to an isomorphism between the subgroup

{z ∈ T : zn = 1}(5.6.2)

of T and the dual of Z/nZ. In particular, the dual of Z/nZ separates points
in Z/nZ.

Let I be a nonempty set, and let Aj be a commutative topological group
for each j ∈ I, where the set containing only the identity element is a closed
set. Thus A =

∏
j∈I Aj is a commutative topological group with respect to the

product topology, and where the set containing only the identity element is a
closed set, as before. If Âj separates points in Aj for every j ∈ I, then it is easy

to see that Â separates points in A. This uses the elements of Â associated to
elements of Âl, l ∈ I, as in (5.4.2).

Suppose for the moment that A is a commutative group with only finitely
many elements, equipped with the discrete topology. It is well known that A
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is isomorphic to the direct sum of finitely many cyclic groups of finite order.
The dual of a cyclic group of finite order is a cyclic group of the same order,
as before. The dual of A corresponds to the direct sum of the duals of the
cyclic groups whose direct sum is A, as in the previous section. In particular,
Â separates points in A, as in the preceding paragraph.

Let A be a commutative topological group, where the set containing only the
identity element is a closed set. If A0 is a subgroup of A, then A0 is a topological
group with respect to the induced topology. If ϕ ∈ Â, then the restriction of ϕ
to A0 is an element of the dual Â0 of A0. In particular, if Â separates points in
A, then Â0 separates points in A0.

The space C(A) = C(A,C) of all continuous complex-valued functions on
A is a commutative algebra over C with respect to pointwise addition and
multiplication of functions. Suppose that B is a subgroup of the dual Â of A.
Let E(B) be the linear span of B in C(A), as a vector space over C. It is easy
to see that E(B) is a subalgebra of C(A). If ϕ ∈ B, then the complex conjugate
ϕ of ϕ is the same as 1/ϕ, which is an element of B too. This implies that E(B)
is invariant under complex conjugation as well. Of course, E(B) contains the
constant functions on A, because B contains the constant function equal to 1
on A, which is the identity element in Â.

Suppose that A is compact, so that the elements of C(A) are bounded on
A. The topology on C(A) that corresponds to uniform convergence on A is
the same as the topology determined by the supremum metric on C(A), which
is the metric associated to the supremum norm. If B separates points in A,
then E(B) separates points in A. This implies that E(B) is dense in C(A) with
respect to the supremum metric, by the Stone–Weierstrass theorem.

It is well known that Â separates points in A when A is compact. It follows
that E(Â) is dense in C(A) with respect to the supremum metric, as in the
preceding paragraph.

Let us verify that Â separates points in A when A is profinite. If x ∈ A is
not the identity element, then there is an open subset U of A that contains x
and not the identity element, because A satisfies the first separation condition.
We can take U to be an open subgroup of A, because A is profinite. Note that
A/U is a finite commutative group in this case. Let q be the natural quotient
mapping from A onto A/U , so that q(x) is not the identity element in A/U , by
construction. Thus there is a homomorphism ϕ from A/U into T such that

ϕ(q(x)) 6= 1,(5.6.3)

as before. One can check that ϕ ◦ q is continuous as a mapping from A into T,
because U is an open subgroup of A. This means that ϕ ◦ q ∈ Â, so that Â
separates points in A.

5.7 Compact commutative groups

Let A be a compact commutative topological group, where the group operations
are expressed additively, and {0} is a closed set in A. Also let H be a Haar
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measure on A. If a ∈ A and ϕ ∈ Â, then∫
A

ϕ(x) dH(x) =

∫
A

ϕ(x+ a) dH(x) = ϕ(a)

∫
A

ϕ(x) dH(x),(5.7.1)

using translation-invariance of Haar measure in the first step. It follows that∫
A

ϕdH = 0(5.7.2)

unless ϕ(a) = 1 for every a ∈ A.
Let L2(A) be the usual space of square-integrable complex-valued functions

on A with respect to H. If f, g ∈ L2(A), then |f | |g| is integrable on A with
respect to H, and we put

〈f, g〉 = 〈f, g〉L2(A) =

∫
A

f g dH.(5.7.3)

This defines an inner product on L2(A), for which the corresponding norm
is the usual L2 norm. It is well known that the space C(A) = C(A,C) of
continuous complex-valued functions on A is dense in L2(A), which is related
to the regularity properties of Haar measure.

If ϕ, ψ ∈ Â, then ϕψ = ϕ/ψ ∈ Â, and

〈ϕ, ψ〉 = 0(5.7.4)

when ϕ 6= ψ, by (5.7.2). If H is normalized so that

H(A) = 1,(5.7.5)

then it follows that the elements of Â are orthonormal with respect to (5.7.3).

It is well known that Â separates points in A, so that the linear span of Â is
dense in C(A) with respect to the supremum metric, as in the previous section.

This implies that the linear span of Â is dense in L2(A), because C(A) is dense

in L2(A), as in the preceding paragraph. This means that Â is an orthonormal
basis for L2(A).

Let B be a subgroup of Â, and suppose that B separates points in A. This
implies that the linear span of B is dense in C(A) with respect to the supremum
metric, as before, and in particular that the linear span of B is dense in L2(A).

If ϕ ∈ Â is not in B, then ϕ is orthogonal to every element of B, as in (5.7.4).
This would imply that

〈ϕ, ϕ〉 = 0,(5.7.6)

by approximating ϕ by elements of the linear span of B. This is a contradiction,
which means that

B = Â.(5.7.7)

Let A0 be a closed subgroup of A, so that A0 is a compact commutative
topological group too. If ϕ ∈ Â, then the restriction of ϕ to A0 is an element
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of Â0. Let B0 be the set of restrictions to A0 of the elements of Â, which is a
subgroup of Â0. Using the fact that Â separates points in A, we get that B0

separates points in A0. This implies that

B0 = Â0,(5.7.8)

as in (5.7.7).

5.8 An extension argument

Let C be a commutative group, where the group operations are expressed addi-
tively. Suppose that C is divisible, in the sense that for every c ∈ C and positive
integer n there is a c′ ∈ C such that

n · c′ = c.(5.8.1)

Note that Q/Z and T are divisible.
Let A be a commutative group, where the group operations are expressed

additively, and let B be a subgroup of A. Also let ϕ be a homomorphism from
B into C, let x ∈ A be given, and let B1 be the subgroup of A generated by
B and x. Under these conditions, it is well known that ϕ can be extended to a
homomorphism ϕ1 from B1 into C.

To see this, suppose first that n · x ∈ B for some n ∈ Z+, and let n1 be the
smallest positive integer with this property. Let us begin by choosing ϕ1(x) ∈ C
so that

n1 · ϕ1(x) = ϕ(n1 · x).(5.8.2)

Note that every element of B1 can be expressed in a unique way as b + r · x,
where b ∈ B and r ∈ {0, . . . , n1 − 1}. In this case, we put

ϕ1(b+ r · x) = ϕ(b) + r · ϕ1(x).(5.8.3)

One can check that this holds for every r ∈ Z, because of (5.8.2), and hence
that ϕ1 defines a homomorphism from B1 into C.

Suppose now that n · x is not an element of B for any n ∈ Z+, so that every
element of B1 can be expressed in a unique way as b + r · x for some r ∈ Z.
In this case, we can take ϕ1(x) to be any element of C, and define ϕ1 on B1

as in (5.8.3) for every b ∈ B and r ∈ Z. One can verify that this defines a
homomorphism from B1 into C, as desired.

If A is generated by B and only finitely or countably many elements of A,
then one can repeat the process to extend ϕ to a homomorphism from A into
C. Otherwise, one can get such an extension using Zorn’s lemma or Hausdorff’s
maximality principle.

Let a0 be an element of A, and let B0 be the subgroup of A generated by
a0. We can get homomorphisms ϕ0 from B0 into C in the same way as before.
More precisely, if n ·a0 = 0 for some n ∈ Z+, then let n0 be the smallest positive
integer with this property. If we take ϕ0(a0) to be an element of C that satisfies

n0 · ϕ0(a0) = 0,(5.8.4)
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then we can put

ϕ0(r · a0) = r · ϕ(a0)(5.8.5)

when r = 0, . . . , n0 − 1. Otherwise, if n · a0 6= 0 for every n ∈ Z+, then we can
take ϕ0(a0) to be any element of C, and define ϕ0 on B0 as in (5.8.5) for every
r ∈ Z.

If C 6= {0}, then we can take ϕ0(a0) 6= 0 in the second case. In the first case,
if a0 6= 0, then we can choose ϕ0(a0) 6= 0 when C = Q/Z or T. In both cases,
we can extend ϕ0 to a homomorphism from A into C, as before.

5.9 Extensions and open subgroups

Let A be a commutative topological group, and suppose for the moment that
B is an open subgroup of A. Let ϕ be a continuous homomorphism from B
into T, with respect to the induced topology on B. Under these conditions, any
extension of ϕ to a homomorphism from a subgroup of A that contains B into
T is continuous, with respect to the induced topology on the domain.

Let A0 be an open subgroup of A, and suppose that a ∈ A is not an element
of A0. If q0 is the natural quotient homomorphism from A onto A/A0, then
q0(a) 6= 0. It follows that there is a homomorphism ψ0 from A/A0 into T such
that

ψ0(q0(a)) 6= 1,(5.9.1)

as in the previous section. Put

ψ = ψ0 ◦ q0,(5.9.2)

which defines a homomorphism from A into T. Clearly ψ is continuous, because
A0 is an open subgroup of A.

Suppose now that the set containing only the identity element in A is a closed
set, and that the open subgroups of A form a local base for the topology of A
at the identity element. In this case, the argument in the preceding paragraph
implies that Â separates points in A. This was mentioned earlier when A is
profinite.

Let B1 be a subgroup of A, considered as a topological group with respect
to the induced topology, and let ϕ1 ∈ B̂1 be given. We would like to show that
ϕ1 can be extended to an element of Â. Observe first that there is an open
subgroup A1 of A such that

ϕ1(A1 ∩B1) = {1},(5.9.3)

as in Section 5.1. This uses the fact that the intersections of B1 with open
subgroups of A form a local base for the induced topology on B1 at the identity
element.

Put

B2 = A1 +B1(5.9.4)
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which is an open subgroup of A. We would like to extend ϕ1 to a homomorphism
ϕ2 from B2 into T, by putting

ϕ2(a1 + b1) = ϕ1(b1)(5.9.5)

for every a1 ∈ A1 and b1 ∈ B1. It is easy to see that this is well defined, using
(5.9.3). By construction, ϕ2(A1) = {1}, which implies that ϕ2 is continuous on
B2, with respect to the induced topology. We can extend ϕ2 to a homomorphism
from A into T as in the previous section, and it follows that this extension is
continuous as well.

5.10 Dual homomorphisms

Let A and B be commutative topological groups, where the subsets of A, B
containing only the identity element are closed sets, and let h be a continuous
homomorphism from A into B. If ϕ is a continuous homomorphism from B into
T, then

ĥ(ϕ) = ϕ ◦ h(5.10.1)

is a continuous homomorphism from A into T. This defines ĥ as a mapping from
B̂ into Â, and it is easy to see that ĥ is a group homomorphism. This is the
dual homomorphism associated to h. One can check that ĥ is continuous with
respect to the usual topologies on Â, B̂ corresponding to uniform convergence
on compact subsets of A, B, respectively, because h maps compact subsets of
A to compact subsets of B.

Let C be another commutative topological group, where the set containing
only the identity element is a closed set, and let h′ be a continuous homomor-
phism from B into C. Thus the composition h′ ◦ h of h and h′ is a continuous
homomorphism from A into C. If ψ ∈ Ĉ, then̂(h′ ◦ h)(ψ) = ψ ◦ h′ ◦ h = ĥ((̂h′)(ψ)).(5.10.2)

This means that ̂(h′ ◦ h) = ĥ ◦ ĥ′,(5.10.3)

as mappings from Ĉ into Â. If h is a group isomorphism from A onto B that is
also a homeomorphism, then ĥ is a group isomorphism from B̂ onto Â that is a
homeomorphism too, with

(ĥ)−1 = ̂(h−1)(5.10.4)

as mappings from Â onto B̂.
Suppose for the moment that A and B are equipped with the discrete topol-

ogy, and that h is injective. If ψ ∈ Â, then

ϕ0(h(x)) = ψ(x)(5.10.5)

defines a homomorphism from h(A) into T. This can be extended to a group
homomorphism ϕ from B into T, as in Section 5.8. By construction,

ĥ(ϕ) = ϕ ◦ h = ψ.(5.10.6)
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Thus ĥ maps B̂ onto Â under these conditions.
Suppose for the moment now that A and B are compact, and that h is

injective. In this case, h defines a homeomorphism from A onto h(A) with
respect to the topology induced on h(A) by the topology on B, because A is
compact, B is Hausdorff, and thus h(A) is Hausdorff with respect to the induced

topology. If ψ ∈ Â, then (5.10.5) defines ϕ0 as a continuous homomorphism from
h(A) into T, with respect to the induced topology on h(A). It follows that ϕ0
can be extended to a continuous group homomorphism ϕ from B into T, as
in Section 5.7. If B is profinite, then this can be obtained as in the previous
section. Of course, (5.10.6) holds by construction, as before. This shows that ĥ

maps B̂ onto Â under these conditions as well.
If h is any continuous homomorphism from A into B, then the kernel of ĥ

consists of the ϕ ∈ B̂ such that h(A) is contained in the kernel of ϕ. Of course,

if ϕ ∈ B̂, then the kernel of ϕ is a closed set in B, because ϕ is continuous.
This means that the kernel of ĥ consists of the ϕ ∈ B̂ whose kernel contains the
closure h(A) of h(A) in B. If h(A) is a dense subset of B, then ĥ is injective.

If h is any continuous homomorphism from A into B and ϕ ∈ B̂, then the
kernel of ĥ(ϕ) contains the kernel of ĥ in A. Suppose that h maps A onto B,

and that the kernel of ψ ∈ Â contains the kernel of h. This permits one to
define ϕ0 as a homomorphism from B into T as in (5.10.5). Of course, if B is
equipped with the discrete topology, then ϕ0 is automatically continuous.

Suppose that A is compact, and let us verify that ϕ0 is continuous on B. If
E is a closed subset of T, then it suffices to check that ϕ−10 (E) is a closed set
in B. Observe that

ϕ−10 (E) = h(ψ−1(E)),(5.10.7)

by (5.10.5). Because ψ is continuous, ψ−1(E) is a closed set in A. This implies
that ψ−1(E) is compact, because A is compact. It follows that h(ψ−1(E)) is
compact, because h is continuous. This means that h(ψ−1(E)) is a closed set
in B, because B is Hausdorff. The continuity of ϕ0 could also be obtained from
the remarks in Section 4.13.

5.11 Second duals

Let A be a commutative topological group, where the set containing only the
identity element is a closed set. Remember that the dual group Â is a Hausdorff
commutative topological group, with respect to the topology that corresponds
to uniform convergence on compact subsets of A, as in Section 5.3. Thus the

dual
̂̂
A of Â can be defined in the same way as before.

If a ∈ A, then let Ea be the mapping from Â into T defined by

Ea(ϕ) = ϕ(a)(5.11.1)

for every ϕ ∈ Â. This defines a group homomorphism from Â into T. Clearly
Ea is continuous on Â with respect to the topology that corresponds to uniform
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convergence on compact subsets of A, because {a} is a compact subset of A.
This means that

Ea ∈ ̂̂
A(5.11.2)

for every a ∈ A.

If ϕ ∈ Â, then (5.11.1) is a homomorphism from A into T, as a function of
a. This means that

a 7→ Ea(5.11.3)

defines a group homomorphism from A into
̂̂
A. This mapping is continuous

under suitable conditions, with respect to the same type of topology on
̂̂
A as

before. In particular, if A is equipped with the discrete topology, then Â is

compact, and we get the discrete topology on
̂̂
A.

If A is compact, then we get the discrete topology on Â, as in Section 5.3.

This means that the topology on
̂̂
A that corresponds to uniform convergence on

nonempty compact subsets of Â is the same as the topology that corresponds to
pointwise convergence on Â. Of course, if ϕ ∈ Â, then (5.11.1) is continuous as
a function of a ∈ A with values in T. This implies that (5.11.3) is continuous on

A with respect to the topology on
̂̂
A that corresponds to pointwise convergence

on Â.

Note that (5.11.3) is injective as a mapping from A into
̂̂
A exactly when Â

separates points in A. It is easy to see that

{Ea : a ∈ A}(5.11.4)

automatically separates points in Â. If A is equipped with the discrete topology,

then Â is compact, and it follows that (5.11.4) is
̂̂
A, as in Section 5.7. In this case,

Â separates points in A, as in Section 5.8. Thus (5.11.3) is a group isomorphism

from A onto
̂̂
A when A is equipped with the discrete topology.

If A is compact, then (5.11.4) is a compact subset of
̂̂
A, because (5.11.3) is

continuous, as before. Remember that Â separates points in A in this case, so
that (5.11.3) is injective. It follows that (5.11.3) is a homeomorphism from A
onto (5.11.4) under these conditions, with respect to the topology induced on

(5.11.4) by the usual topology on
̂̂
A. This uses the fact that

̂̂
A is Hausdorff with

respect to this topology, so that (5.11.4) is Hausdorff with respect to the induced
topology. More precisely, this also uses the well-known fact that a one-to-one
continuous mapping from a compact topological space onto a Hausdorff space
is a homeomorphism.

It is well known that (5.11.4) is equal to
̂̂
A when A is compact. We can show

this more directly when A is profinite, as in the next section.
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5.12 Another dual

Let A be a commutative topological group again, where the set containing only

the identity element is a closed set. If ϕ ∈ Â and Ψ ∈ ̂̂
A, then put

Eϕ(Ψ) = Ψ(ϕ).(5.12.1)

This defines a continuous group homomorphism from
̂̂
A into T, so that

Eϕ ∈
̂̂̂
A(5.12.2)

for every ϕ ∈ Â. We also have that

ϕ 7→ Eϕ(5.12.3)

is a group homomorphism from Â into
̂̂̂
A, as before.

If A is compact, then Â is equipped with the discrete topology, as in Section

5.3. This implies that (5.12.3) is a group isomorphism from Â onto
̂̂̂
A, as in the

previous section. In particular, every element of
̂̂̂
A is of the form (5.12.1) for

some ϕ ∈ Â in this case.
Suppose that A is profinite, so that Â is torsion, as in Section 5.2. This

implies that
̂̂
A is profinite, as in Section 5.3.

Let E be the subgroup (5.11.4) of
̂̂
A, which we would like to show is

̂̂
A. Note

that E is a closed set in
̂̂
A, because E is compact, as in the previous section,

and
̂̂
A is Hausdorff. Thus it suffices to show that E is dense in

̂̂
A.

Let U be an open subset of
̂̂
A that contains the identity element. We would

like to verify that

E + U =
̂̂
A.(5.12.4)

This will imply that E is dense in
̂̂
A, by the characterization of the closure of

E in Section 2.4.

We may as well take U to be an open subgroup of
̂̂
A, because

̂̂
A is profinite,

as before. This means that E + U is an open subgroup of
̂̂
A too.

We would like to show that the quotient of
̂̂
A by E+U has only one element.

Otherwise, there is a nontrivial homomorphism from the quotient into T, as in
Section 5.8.

The composition of this homomorphism with the natural quotient mapping

from
̂̂
A onto its quotient by E+U is a nontrivial homomorphism from

̂̂
A into T

whose kernel contains E + U . In particular, this homomorphism is continuous,

because E + U is an open subgroup of
̂̂
A.
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Thus this homomorphism from
̂̂
A into T is an element of

̂̂̂
A. This means

that this homomorphism can be expressed as (5.12.1) for some ϕ ∈ Â, as before.

If a ∈ A, then Ea defined as in (5.11.1) is an element of
̂̂
A, and

Eϕ(Ea) = Ea(ϕ) = ϕ(a).(5.12.5)

This is equal to 1 for every a ∈ A, because E is contained in the kernel of
Eϕ. This means that ϕ is the identity element in Â. It follows that Eϕ is the

trivial homomorphism from
̂̂
A into T. This is a contradiction, because this

homomorphism is supposed to be nontrivial on
̂̂
A.

5.13 Torsion-free groups

Let A be a commutative group, where the group operations are expressed ad-
ditively. If n is a positive integer, then

νn(x) = n · x(5.13.1)

is a homomorphism from A into itself. If for every x ∈ A with x 6= 0 and every
n ∈ Z+ we have that n · x 6= 0, then A is said to be torsion free. Equivalently,
this means that νn is injective on A for every n ∈ Z+. Note that A is divisible
exactly when νn maps A onto itself for every n ∈ Z+.

Suppose now that A is a commutative topological group, and that {0} is a
closed set in A. If n ∈ Z+, then νn is continuous as a mapping from A into itself,
by continuity of addition on A. Thus the dual homomorphism ν̂n is defined from
Â into itself as in Section 5.10. More precisely, if ϕ ∈ Â and x ∈ A, then

(ν̂n(ϕ))(x) = ϕ(νn(x)) = ϕ(n · x) = ϕ(x)n.(5.13.2)

Equivalently,
ν̂n(ϕ) = ϕn(5.13.3)

for every ϕ ∈ Â.
If νn(A) is dense in A, then ν̂n is injective on Â, as in Section 5.10. This

means that if ϕ ∈ Â is not the identity element, then ϕn is not the identity
element in Â. In particular, if A is divisible, then Â is torsion free.

Suppose that νn is injective on A for some n ∈ Z+. If A is equipped with

the discrete topology, or A is compact, then ν̂n maps Â onto itself, as in Section
5.10. In particular, if A is torsion free, and A is either equipped with the discrete
topology or A is compact, then Â is divisible.

5.14 Second duals of discrete groups

Let A be a commutative group, with the group operations expressed additively,
and equipped with the discrete topology. Also let Ψ be an element of the dual



108 CHAPTER 5. COMMUTATIVE TOPOLOGICAL GROUPS

̂̂
A of the dual Â of A. Thus Ψ is a continuous homomorphism from Â into T,
with respect to the topology on Â that corresponds to pointwise convergence of
homomorphisms from A into T.

In particular, the set of ϕ ∈ Â such that

ReΨ(ϕ) > 0(5.14.1)

is an open subset of Â that contains the identity element. This implies that
there are finitely many elements x1, . . . , xn of A such that (5.14.1) holds when
ϕ(xj) is sufficiently close to 1 for each j = 1, . . . , n.

Put
B = {ϕ ∈ Â : ϕ(xj) = 1 for each j = 1, . . . , n},(5.14.2)

which is a closed subgroup of Â. If ϕ ∈ B, then (5.14.1) holds, as before. It
follows that

Ψ(B) = {1},(5.14.3)

because Ψ(B) is a subgroup of T, as in Section 5.1.
Let A1 be the subgroup of A generated by x1, . . . , xn. This may be consid-

ered as a commutative topological group with respect to the discrete topology,
which is the same as the topology induced on A1 by the discrete topology on A.
Let ι1 be the natural inclusion mapping from A1 into A, which is a continuous
group homomorphism. The dual homomorphism ι̂1 from Â into Â1 is defined
by

ι̂1(ϕ) = ϕ ◦ ι1(5.14.4)

for every ϕ ∈ Â, as in Section 5.10. Observe that

B = {ϕ ∈ Â : ϕ(x) = 1 for every x ∈ A1},(5.14.5)

which is the same as the kernel of î1.
If ϕ1 ∈ Â1, then there is a ϕ̃1 ∈ Â such that ϕ̃1 = ϕ1 on A1, as in Section

5.8. We would like to put
Ψ1(ϕ1) = Ψ(ϕ̃1).(5.14.6)

This does not depend on the choice of ϕ̃1, because of (5.14.3). It is easy to see

that this defines Ψ1 as a homomorphism from Â1 into T. Equivalently, ι̂1 maps
Â onto Â1, and

Ψ1(ι̂1(ϕ)) = Ψ(ϕ)(5.14.7)

for every ϕ ∈ Â.
In fact, Ψ1 is continuous on Â1, so that

Ψ1 ∈ ̂̂
A1.(5.14.8)

This can be seen as in Section 5.10, using the compactness of Â.
Of course, A1 is finitely generated as a commutative group, by construction.

This implies that A1 is isomorphic to the direct sum of finitely many cyclic
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groups. It follows that the dual of A1 is isomorphic to the direct sum of the
duals of the corresponding cyclic groups. More precisely, this isomorphism is
also a homeomorphism with respect to the appropriate topologies, as in Section
5.5. Similarly, the dual of Â1 is isomorphic to the direct sum of the duals of the
duals of the cyclic groups that make up A1.

In this case, one can check directly that there is an a ∈ A1 such that

Ψ1(ϕ1) = ϕ1(a)(5.14.9)

for every ϕ1 ∈ Â1. This reduces to the analogous statement for cyclic groups.
It follows that

Ψ(ϕ) = ϕ(a)(5.14.10)

for every ϕ ∈ Â. This was mentioned in Section 5.11, using another argument.

5.15 Topological vector spaces

A vector space V over the real numbers is said to be a topological vector space
is V is equipped with a topology for which the vector space operations are
continuous. More precisely, this means that addition on V is continuous as a
mapping from V × V into V , using the associated product topology on V × V .
Similarly, scalar multiplication on V should be continuous as a mapping from
R × V into V , using the product topology on R × V corresponding to the
standard topology on R and the given topology on V . One may also ask that
{0} be a closed set in V , as usual.

Of course, one can consider analogous notions for vector spaces over other
fields. We would like to consider vector spaces over R for the moment, in
connection with duals of commutative topological groups.

If V is a topological vector space over R, then continuity of scalar multipli-
cation implies in particular that for every t ∈ R,

v 7→ t v(5.15.1)

is continuous as a mapping from V into itself. If t 6= 0, then it follows that
(5.15.1) is a homeomorphism on V . In particular, continuity of addition on V
and continuity of (5.15.1) with t = −1 implies that V is a topological group
with respect to addition. If {0} is a closed set in V , then V is Hausdorff, as
before.

Let V ′ be the dual space of continuous linear functionals on V , which is
to say continuous linear mappings from V into R. It is easy to see that V ′ is
a vector space over the real numbers, with respect to pointwise addition and
scalar multiplication of linear functionals. If λ ∈ V ′, then

ϕλ(v) = exp(2 π i λ(v))(5.15.2)

is a continuous mapping from V into T that is a group homomorphism with
respect to addition on V . In fact,

λ 7→ ϕλ(5.15.3)



110 CHAPTER 5. COMMUTATIVE TOPOLOGICAL GROUPS

is a group homomorphism from V ′ into the dual group of continuous group
homomorphisms from V into T, with respect to addition on V ′.

Observe that (5.15.3) is injective on V ′. One can show that every continuous
group homomorphism from V into T is of the form (5.15.2) for some λ ∈ V ′.
This uses the characterization of continuous group homomorphisms from R into
T mentioned in Section 5.1.

A set E ⊆ V with 0 ∈ E is said to be starlike about 0 if for every v ∈ E and
t ∈ R with 0 ≤ t ≤ 1, we have that

t v ∈ E.(5.15.4)

It is well known that the open subsets of V that contain 0 and are starlike about
0 form a local base for the topology of V at 0. One can use this to show that if
(5.15.2) is continuous on V , then λ is continuous on V .

If the convex open subsets of V form a base for the topology of V , then V
is said to be locally convex. It is well known that this implies that V ′ separates
points in V , because of the Hahn–Banach theorem.



Chapter 6

Direct and inverse limits

6.1 Direct systems of commutative groups

Let I be a nonempty set with a partial ordering �. Suppose that (I,�) is a
directed set or directed system, so that for every j, l ∈ I there is an r ∈ I with
j, l � r.

Let Aj be a commutative group for every j ∈ I, where the group operations
are expressed additively. Suppose that for every j, l ∈ I with j � l we have a
homomorphism αj,l from Aj into Al that satisfies the following two properties.
First, αj,j is the identity mapping on Aj for every j ∈ I. Second, if j, l, r ∈ I
satisfy j � l � r, then

αl,r ◦ αj,l = αj,r.(6.1.1)

Under these conditions, the family of commutative groups Aj and homomor-
phisms αj,l is said to form a direct or inductive system over (I,�).

Remember that the direct sum
⊕

j∈I Aj of the Aj ’s is a commutative group,
as in Section 5.5. If l ∈ I, then let ιl be the natural injection from Al into⊕

j∈I Aj , so that for each xl ∈ Al the jth coordinate of ιl(xl) is equal to xl
when j = l, and to 0 when j 6= l, as before. Let B be the subset of

⊕
j∈I Aj

consisting of finite sums of elements of the form

ιl(xl)− ιr(αl,r(xl)),(6.1.2)

where l, r ∈ I, l � r, and xl ∈ Al. Thus B is a subgroup of
⊕

j∈I Aj , and we
put

lim
−→

Aj =
(⊕

j∈I
Aj

)
/B,(6.1.3)

which is a commutative group too. This is the direct or inductive limit of the
direct system of Aj ’s, j ∈ I.

Let q be the natural quotient mapping from
⊕

j∈I Aj onto (6.1.3). If l ∈ I,
then put

βl = q ◦ ιl,(6.1.4)

111
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which is a homomorphism from Al into (6.1.3). If r ∈ I and l � r, then

βl = βr ◦ αl,r,(6.1.5)

by construction. More precisely, the direct limit consists of the group (6.1.3)
together with the homomorphisms βl, as in Exercise 14 on p32f of [1].

One can check that every element of (6.1.3) may be expressed as βl(xl) for
some l ∈ I and xl ∈ Al, using the fact that (I,�) is a directed system. If
βl(xl) = 0, then one can verify that

αl,r(xl) = 0(6.1.6)

for some r ∈ I with l � r. This corresponds to Exercise 15 on p33 of [1].
Let C be another commutative group, and suppose that for each l ∈ I we

have a homomorphism γl from Al into C. If r ∈ I and l � r, then suppose also
that

γl = γr ◦ αl,r.(6.1.7)

Under these conditions, one can check that there is a unique homomorphism γ
from (6.1.3) into C such that

γ ◦ βl = γl(6.1.8)

for every l ∈ I. One can verify that the direct limit is uniquely determined up
to isomorphism by this property as well. This corresponds to Exercise 16 on
p33 of [1].

Let A be a commutative group, and suppose for the moment that Aj is a
subgroup of A for every j ∈ I. If l, r ∈ I and l � r, then suppose that

Al ⊆ Ar.(6.1.9)

It is easy to see that this implies that⋃
j∈I

Aj(6.1.10)

is a subgroup of A, because (I,�) is a directed set. In this case, we can get a
direct system by taking αj,l to be the natural inclusion mapping from Aj into
Al when j, l ∈ I and j � l. One can check that (6.1.10) is isomorphic to the
direct limit, as in Exercise 17 on p33 of [1].

6.2 Direct systems of sets

Let (I,�) be a nonempty directed set again, and let Aj be a set for each j ∈ I.
Suppose that for every j, l ∈ I with j � l we have a mapping αj,l from Aj into
Al. As before, we ask that αj,j be the identity mapping on Aj for every j ∈ I,
and that

αl,r ◦ αj,l = αj,r(6.2.1)
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for every j, l, r ∈ I such that j � l � r. The family of sets Aj and mappings
αj,l may be called a direct or inductive system over (I,�).

Let Ãj be a nonempty set that contains Aj for each j ∈ I. If x, y ∈
∏

j∈I Ãj ,
then put x ∼ y when there is an l ∈ I such that

xj = yj(6.2.2)

for every j ∈ I with l � j. It is easy to see that this defines an equivalence
relation on

∏
j∈I Ãj , because (I,�) is a directed set. Thus the quotient(∏

j∈I
Ãj

)
/ ∼(6.2.3)

may be defined as usual as the set of equivalence classes in
∏

j∈I Ãj associated
to this equivalence relation.

Let l ∈ I and al ∈ Al be given. Observe that there are x ∈
∏

j∈I Ãj such
that

xj = αl,j(al)(6.2.4)

for every j ∈ I with l � j, and that any two such elements of
∏

j∈I Ãj are
equivalent with respect to ∼. This defines a mapping βl from Al into (6.2.3). If
r ∈ I and l � r, then

βl = βr ◦ αl,r,(6.2.5)

by construction.
Put

lim
−→

Aj =
⋃
l∈I

βl(Al),(6.2.6)

which is a subset of (6.2.3). This may be considered as the direct or inductive
limit of the direct system of Aj ’s, j ∈ I. More precisely, the direct limit consists
of this set together with the mappings βl from Al into this set for each l ∈ I.
Note that

βl(Al) ⊆ βr(Ar)(6.2.7)

when l, r ∈ I and l � r, by (6.2.5).
Let l1, l2 ∈ I, a1,l1 ∈ Al1 , and a2,l2 ∈ Al2 be given. If

βl1(a1,l1) = βl2(a2,l2),(6.2.8)

then there is an r ∈ I such that

l1, l2 � r(6.2.9)

and
αl1,r(a1,l1) = αl2,r(a2,l2),(6.2.10)

because (I,�) is a directed set. Conversely, if there is an r ∈ I such that (6.2.9)
and (6.2.10) hold, then

αl1,t(a1,l1) = αl2,t(a2,l2)(6.2.11)



114 CHAPTER 6. DIRECT AND INVERSE LIMITS

for every t ∈ I with r � t, by (6.2.1). This implies that (6.2.8) holds.
Let C be another set, and suppose that for every l ∈ I we have a mapping

γl from Al into C. Suppose also that for every l, r ∈ I with l � r we have that

γl = γr ◦ αl,r.(6.2.12)

It is easy to see that there is a unique mapping γ from (6.2.6) into C such that

γ ◦ βl = γl(6.2.13)

for every l ∈ I, because (I,�) is a directed set. The direct limit is uniquely
determined up to a suitable equivalence by this property.

Suppose for the moment that A is a set, that Aj is a subset of A for every
j ∈ I, and that

Aj ⊆ Al(6.2.14)

for every j, l ∈ I with j � l. If j, l ∈ I and j � l, then let αj,l be the obvious
inclusion mapping from Aj into Al. This clearly satisfies the requirements of
a direct system of sets over (I,�). In this case, one can check that the direct
limit is equivalent to ⋃

j∈I
Aj ,(6.2.15)

where βl corresponds to the natural inclusion mapping from Al into (6.2.15) for
each l ∈ I.

6.3 Direct systems of groups

Let (I,�) be a nonempty directed set, and let Aj be a group for every j ∈ I.
Also let αj,l be a homomorphism from Aj into Al for every j, l ∈ I with j � l.
As usual, we ask that αj,j be the identity mapping on Aj for every j ∈ I, and
that (6.2.1) hold for every j, l, r ∈ I with j � l � r. The family of groups Aj

and homomorphisms αj,l form a direct or inductive system over (I,�).
In particular, Aj is a nonempty set for every j ∈ I, and we may continue as

in the previous section, with Ãj = Aj for each j ∈ I. The direct or inductive
limit of the Aj ’s may be defined as a set as in (6.2.6), with the corresponding
mappings βl from Al into (6.2.6) for every l ∈ I. One can check that there is a
unique group structure on (6.2.6) such that βl is a homomorphism from Al into
(6.2.6) for every l ∈ I. This uses the fact that any two elements of (6.2.6) are
contained in βr(Ar) for some r ∈ I, because of (6.2.7) and the fact that (I,�)
is a directed set.

Let C be another group, and suppose that for every l ∈ I we have a homo-
morphism γl from Al into C. Suppose also that for every l, r ∈ I with l � r we
have that (6.2.12) holds. This implies that there is a unique mapping γ from
(6.2.6) into C such that (6.2.13) holds for every l ∈ I, as before. It is easy to
see that γ is a homomorphism from C into (6.2.6) in this case. As usual, the
direct limit is uniquely determined up to isomorphism by this property.
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This description of the direct limit of a direct system of groups is equivalent
to the one on p132 of [14]. If the Aj ’s are commutative groups, then this is
equivalent to the direct limit defined in Section 6.1.

Let A be a group, and suppose that Aj is a subgroup of A for every j ∈ I.
Suppose also that if j, l ∈ I and j � l, then Aj ⊆ Al. If j, l ∈ I and j � l,
then let αj,l be the natural inclusion mapping from Aj into Al, which is a group
homomorphism. Note that the Aj ’s and αj,l’s satisfy the requirements of a
direct system of groups over (I,�). One can check that

⋃
j∈I Aj is a subgroup

of A, because (I,�) is a directed set, as before. Remember that the direct limit
of the Aj ’s is equivalent to

⋃
j∈I Aj as a set, as in the previous section. One

can verify that the direct limit of the Aj ’s is isomorphic to
⋃

j∈I Aj as a group
in this case too.

6.4 Direct systems of topological spaces

Let (I,�) be a nonempty set, and let Aj be a topological space for every j ∈ I.
Suppose that for every j, l ∈ I with j � l, we have a continuous mapping αj,l

from Aj into Al. We ask that αj,j be the identity mapping on Aj for every
j ∈ I, and that (6.2.1) hold for every j, l, r ∈ I with j � l � r, as before. Thus
we can define the direct limit of the Aj ’s as a set as in Section 6.2. Remember
that for each l ∈ I, we have a mapping βl from Al into the direct limit, as
before.

Let τ0 be a topology on the direct limit of the Aj ’s, j ∈ I. A basic compat-
ibility condition with the topologies on the Aj ’s is that

βl is continuous for every l ∈ I(6.4.1)

with respect to τ0. There is a strongest topology on the direct limit with this
property, by standard arguments. More precisely, a subset W of the direct limit
is an open set with respect to this topology if and only if β−1l (W ) is an open
set in Al for every l ∈ I. Equivalently, a subset E of the direct limit is a closed
set with respect to this topology if and only if β−1l (E) is a closed set in Al for
every l ∈ I.

Let C be another topological space, and suppose that for every l ∈ I we
have a continuous mapping γl from Al into C. Suppose also that for every
l, r ∈ I with l � r we have that γl = γr ◦ αl,r, as in Section 6.2. This implies
that there is a unique mapping γ from the direct limit of the Aj ’s into C such
that γ ◦ βl = γl for every l ∈ I, as before. If the direct limit is equipped with
the strongest topology that satisfies (6.4.1), then γ is continuous. It is easy to
see that this is the only topology on the direct limit such that (6.4.1) and this
property hold.

If l, r ∈ I and l � r, then βl = βr ◦ αl,r, as in Section 6.2. If E is a subset
of the direct limit, then it follows that

β−1l (E) = α−1l,r (β
−1
r (E)).(6.4.2)
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If β−1r (E) is open or closed in Ar, then we get that β−1l (E) has the same property
in Al, because αl,r is continuous.

Suppose now that A is a set, Aj ⊆ A for every j ∈ I, and that Aj ⊆ Al for
every j, l ∈ I with j � l. If j, l ∈ I and j � l, then we ask that αj,l be the
obvious inclusion mapping from Aj into Al. Suppose that

A =
⋃
j∈I

Aj ,(6.4.3)

which is equivalent to the direct limit of the Aj ’s as a set in this case, as in
Section 6.2. Remember that βl corresponds to the obvious inclusion of Al into
A for every l ∈ I, as before.

Let τ1 be a topology on A. The compatibility condition (6.4.1) corresponds
in this case to saying that

for each l ∈ I, the topology on Al is at least as strong as(6.4.4)

the topology induced on Al by τ1.

The strongest topology on A with this property can be defined by saying that
W ⊆ A is an open set if and only if W ∩Al is an open set in Al for every l ∈ I.
Equivalently, this means that E ⊆ A is a closed set if and only if E ∩ Al is a
closed set in Al for every l ∈ I.

If l, r ∈ I and l � r, then

E ∩Al = (E ∩Ar) ∩Al(6.4.5)

for every E ⊆ A. If E ∩ Ar is open or closed in Ar, then E ∩ Al has the same
property in Al, by the continuity of αl,r, as before.

Let l0 ∈ I and E ⊆ Al0 be given. In order to check that E is an open
set in A with respect to the strongest topology that satisfies (6.4.4), it suffices
to verify that for every r ∈ I with l0 � r we have that E is an open set in
Ar. Similarly, in order to check that E is a closed set in A with respect to the
strongest topology that satisfies (6.4.4), it suffices to verify that for every r ∈ I
with l0 � r we have that E is a closed set in Ar.

Suppose for the moment that

if j, l ∈ I and j � l, then the topology on Aj is the same as(6.4.6)

the topology induced by the topology on Ar.

Of course, this implies that the inclusion mapping from Aj into Al is continuous.
Let l0, r ∈ I and E ⊆ Al0 be given, with l0 � r. If Al0 is an open set in Ar and
E is an open set in Al0 , then E is an open set in Ar. Similarly, if Al0 is a closed
set in Ar and E is a closed set in Al0 , then E is a closed set in Ar.

Let τ be a topology on A, and suppose that

for each j ∈ I, Aj is equipped with the topology induced by τ.(6.4.7)

Note that (6.4.6) holds in this case, and that (6.4.4) holds with τ1 = τ . This
means that τ is contained in the strongest topology on A that satisfies (6.4.4).
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If Al is an open set in A with respect to τ for every l ∈ I, then τ is the same as
the strongest topology on A that satisfies (6.4.4).

If one is working with locally convex topological vector spaces over the real
numbers, then one normally considers topologies on direct limits that are locally
convex as well. This is compatible with looking at continuity of linear mappings
into other locally convex topological vector spaces over R.

6.5 Inverse systems of sets

Let (I,�) be a nonempty directed set, and let Yj be a nonempty set for each
j ∈ I. Suppose that for every j, l ∈ I with j � l, we have a mapping ϕj,l from
Yl into Yj with the following two properties. First, ϕj,j is the identity mapping
on Yj for every j ∈ I. Second, if j, l, r ∈ I and j � l � r, then

ϕj,r = ϕj,l ◦ ϕl,r.(6.5.1)

Under these conditions, the family of sets Yj , j ∈ I, with the associated map-
pings ϕj,l is said to be an inverse or projective system.

Sometimes we may wish to ask also that

ϕj,l(Yl) = Yj(6.5.2)

for every j, l ∈ I with j � l. In this case, we may say that the inverse system is
surjective, as on p103 of [1].

If y is an element of the Cartesian product
∏

j∈I Yj and l ∈ I, then we let
yl be the lth coordinate of y in Yl, as usual. Put

Y =

{
y ∈

∏
j∈I

Yj : ϕl,r(yr) = yl for every l, r ∈ I with l � r

}
.(6.5.3)

This is the inverse or projective limit of the Yj ’s, which may be denoted

lim
←−

Yj .(6.5.4)

If l ∈ I, then let πl be the standard coordinate projection from
∏

j∈I Yj onto
Yl, so that πl(y) = yl for every y ∈

∏
j∈I Yj . Also let ρl be the restriction of πl

to Y , which is a mapping from Y into Yl. If l, r ∈ I and l � r, then

ϕl,r ◦ ρr = ρl,(6.5.5)

by construction. More precisely, the inverse limit consists of the set Y together
with these mappings ρl.

Let X be another set, and suppose that for each j ∈ I we have a mapping
θj from X into Yj . This leads to a mapping θ fom X into

∏
j∈I Yj , with

πl ◦ θ = θl(6.5.6)
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for every l ∈ I. If

ϕl,r ◦ θr = θl for every l, r ∈ I with l � r,(6.5.7)

then
θ(X) ⊆ Y.(6.5.8)

In this case, (6.5.6) is the same as saying that

ρl ◦ θ = θl(6.5.9)

for every l ∈ I, and θ is uniquely determined as a mapping from X into Y by
(6.5.9). The inverse limit is uniquely determined up to suitable equivalence by
this property.

If l, r ∈ I and l � r, then put

El,r =

{
y ∈

∏
j∈I

Yj : ϕl,r(yr) = yl

}
.(6.5.10)

Observe that
Y =

⋂
{El,r : l, r ∈ I, l � r}(6.5.11)

by construction.
Let l1, . . . , ln, r1, . . . , rn be finitely many elements of I, with lm � rm for

m = 1, . . . , n. We would like to check that

n⋂
m=1

Elm,rm 6= ∅.(6.5.12)

Because I is a directed system, there is a u ∈ I such that rm � u for every
m = 1, . . . , n. Remember that Yj 6= ∅ for every j ∈ I, by hypothesis, and let yu
be an element of Yu. Let y be an element of

∏
j∈I Yj such that

yj = ϕj,u(yu)(6.5.13)

for every j ∈ I with j � u. If l, r ∈ I and l � r � u, then

ϕl,r(yr) = ϕl,r(ϕr,u(yu)) = ϕl,u(yu) = yl.(6.5.14)

In particular, this implies that y is an element of the intersection on the left
side of (6.5.12).

Suppose for the moment that the inverse system of Yj ’s, j ∈ I, is surjective,
and let t ∈ I and yt ∈ Yt be given. In the preceding paragraph, we can take
u ∈ I so that t � u as well, and we can take yu ∈ Yu so that

ϕt,u(yu) = yt.(6.5.15)

Using the same argument as before, we get that( n⋂
m=1

Elm,rm

)
∩ π−1t ({yt}) 6= ∅.(6.5.16)
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6.6 Inverse systems of topological spaces

Let us continue with the same notation and hypotheses as in the previous sec-
tion. In this section, we suppose also that

Yj is a topological space for every j ∈ I,(6.6.1)

and that

ϕj,l is continuous as a mapping from Yl into Yj(6.6.2)

for every j, l ∈ I with j � l.

Let us take
∏

j∈I Yj to be equipped with the associated product topology, and
Y to be equipped with the induced topology. In this case,

ρl is continuous as a mapping from Y into Yl for every l ∈ I.(6.6.3)

This should be considered as part of the inverse limit of the Yj ’s as a topological
space.

If Ul is an open subset of Yl for some l ∈ I, then π−1l (Ul) is an open subset
of

∏
j∈I Yj with respect to the product topology, and

ρ−1l (Ul) = π−1l (Ul) ∩ Y(6.6.4)

is a relatively open subset of Y . Of course, open subsets of
∏

j∈I Yj of the form

π−1l (Ul) with l ∈ I and Ul ⊆ Yl an open set form a sub-base for the product
topology. One can check that the subsets of Y of the form (6.6.4) with l ∈ I
and Ul ⊆ Yl an open set form a base for the induced topology on Y , using the
fact that (I,�) is a directed set.

If Yj is Hausdorff for every j ∈ I, then
∏

j∈I Yj is Hausdorff with respect to
the product topology, and Y is Hausdorff with respect to the induced topology.
If l, r ∈ I and l � r, then one can verify that the set El,r defined in (6.5.10) is a
closed set in

∏
j∈I Yj in this case. This implies that Y is a closed set in

∏
j∈I Yj

too, by (6.5.11).
Suppose for the moment that Yj is compact and Hausdorff for every j ∈ I.

This implies that
∏

j∈I Yj is compact with respect to the product topology, by
Tychonoff’s theorem, and that Y is compact in

∏
j∈I Yj , because it is a closed

set with respect to the product topology. We also get that Y 6= ∅ under these
conditions, because Y is the intersection of a nonempty family of nonempty
closed subsets of

∏
j∈I Yj with the finite intersection property, as in the previous

section. If the inverse system of Yj ’s, j ∈ I, is surjective, then we can use (6.5.16)
to get that ρt maps Y onto Yt for every t ∈ I.

Suppose that X is a topological space, and that θj is a continuous mapping
from X into Yj for every j ∈ I. This means that the corresponding mapping
θ from X into

∏
j∈I Yj is continuous, with respect to the product topology on

the range. If (6.5.7) holds, then θ may be considered as a mapping from X into
Y , which is continuous with respect to the induced topology on Y . The inverse
limit is uniquely determined up to homeomorphism by this property.
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If X is compact, then θ(X) is a compact subset of Y . It follows that θ(X) is
a closed set in Y when Yj is Hausdorff for every j ∈ I, so that Y is Hausdorff.

Suppose that θj(X) is dense in Yj for every j ∈ I. If (6.5.7) holds, then one
can check that θ(X) is dense in Y .

6.7 Inverse systems of groups

Let (I,�) be a nonempty directed set, and let Yj be a group for every j ∈ I. If
j, l ∈ I and j � l, then let ϕj,l be a homomorphism from Yl into Yj . As before,
we ask that ϕj,j be the identity mapping on Yj for every j ∈ I, and that

ϕj,r = ϕj,l ◦ ϕl,r(6.7.1)

for every j, l, r ∈ I with j � l � r.
Of course,

∏
j∈I Yj may be considered as a group as well, where the group

operations are defined coordinatewise. It is easy to see that the set Y defined in
(6.5.3) is a subgroup of

∏
j∈I Yj under these conditions. Note that the mapping

ρl from Y into Yl defined in Section 6.5 is a group homomorphism for every
l ∈ I in this case.

Suppose that X is a group, and that θj is a group homomorphism from X
into Yj for every j ∈ I. This implies that the corresponding mapping θ from
X into

∏
j∈I Yj is a group homomorphism too. If (6.5.7) holds, then θ may

be considered as a group homomorphism from X into Y . Remember that θ
satisfies (6.5.9) in this case, and is uniquely determined by it. The inverse limit
is uniquely determined up to isomorphism by this property, as usual.

If Yj is a profinite group for every j ∈ I, then
∏

j∈I Yj is a profinite group
with respect to the corresponding product topology, as in Section 2.14. Note
that Y is a closed set in

∏
j∈I Yj in this case, as in the previous section. It

follows that Y is a profinite group with respect to the induced topology, as
indicated on p3 of [25]. If the inverse system of Yj ’s, j ∈ I, is surjective, then
we also have that ρt maps Y onto Yt for every t ∈ I, as before.

Let G be a group, and let B be a nonempty collection of normal subgroups
of G of finite index. Suppose that for every A1, A2 ∈ B there is an A3 ∈ B such
that

A3 ⊆ A1 ∩A2.(6.7.2)

Let � be the partial order defined on B by saying that for each A,B ∈ B,

A � B if and only if B ⊆ A.(6.7.3)

Observe that (B,�) is a directed system, because of (6.7.2).
If A ∈ B, then let qA be the natural quotient mapping from G onto G/A,

which is a finite group. If A,B ∈ B and A � B, so that B ⊆ A, then there is a
unique homomorphism ΦA,B from G/B onto G/A such that

ΦA,B ◦ qB = qA.(6.7.4)
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Note that ΦA,A is the identity mapping on G/A for every A ∈ B. If A,B,C ∈ B
satisfy A � B � C, which is to say that C ⊆ B ⊆ A, then

ΦA,B ◦ ΦB,C = ΦA,C .(6.7.5)

Thus the inverse limit

lim
←−

G/A(6.7.6)

of the quotients G/A, A ∈ B, can be defined as a group as before.

More precisely, the inverse limit (6.7.6) is a subgroup of∏
A∈B

(G/A),(6.7.7)

where the group operations are defined coordinatewise, as usual. Using the
quotient mappings qA, we get a homomorphism Θ from G into (6.7.7). This
homomorphism maps G into the inverse limit (6.7.6), because of (6.7.4). Note
that the kernel of Θ is ⋂

A∈B
A.(6.7.8)

Let us take G/A to be equipped with the discrete topology for every A ∈ B,
so that (6.7.7) is profinite with respect to the product topology. This implies
that the inverse limit (6.7.6) is a closed subgroup of (6.7.7), and thus a profinite
group with respect to the induced topology, as before. We also have that Θ
maps G onto a dense subset of the inverse limit (6.7.6), because qA is surjective
for every A ∈ B, by construction.

Suppose now that G is a totally bounded topological group, for which the
open normal subgroups form a local base for the topology at the identity ele-
ment. Let B be any local base for the topology at the identity element consisting
of open normal subgroups. If A1, A2 ∈ B, then A1 ∩A2 is an open set that con-
tains the identity element, which implies that there is an A3 ∈ B that satisfies
(6.7.2). Thus the inverse limit (6.7.6) can be defined as before.

If A ∈ B, then the natural quotient mapping qA from G onto G/A is contin-
uous with respect to the discrete topology on G/A, because A is an open set.
This implies that the corresponding mapping Θ from G into (6.7.7) is continuous
with respect to the product topology on the range. Note that (6.7.8) contains
only the identity element when the set containing only the identity element is
a closed set. In this case, one can check that Θ is a homeomorphism from G
onto its image in (6.7.7), with respect to the topology induced by the product
topology, because B is a local base for the topology on G at the identity element.

If G is compact, then Θ maps G onto a compact subset of (6.7.7). This
implies that Θ maps G onto the inverse limit (6.7.6), because Θ maps G onto a
dense subset of (6.7.6). One can define profinite groups to be inverse limits of
finite groups with the discrete topology, as on p3 of [25].
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6.8 Inverse systems along sequences

Let Yj be a nonempty set for every positive integer j, and suppose that ψj is a
mapping from Yj+1 into Yj for each j. If j, l ∈ Z+ and j < l, then put

ϕj,l = ψj ◦ · · · ◦ ψl−1,(6.8.1)

which maps Yl into Yj . This may be interpreted as the identity mapping on Yj
when j = l. If j, l, r ∈ Z+ and j ≤ l ≤ r, then ϕj,r = ϕj,l ◦ϕl,r, by construction.
If ψj maps Yj+1 onto Yj for every j, then ϕj,l maps Yl onto Yj when j ≤ l.

If we take I = Z+ with the standard ordering, then (6.5.3) reduces to

Y =

{
y ∈

∞∏
j=1

Yj : ψj(yj+1) = yj for every j ∈ Z+

}
.(6.8.2)

This may be used as the definition of the inverse or projective limit in this case.
If ψj maps Yj+1 onto Yj for every j, then it is easy to see that for each l ∈ Z+

there is a y ∈ Y such that yl is any element of Yl, by choosing suitable yj ∈ Yj
recursively when j > l.

Let X be another set, and let θj be a mapping from X into Yj for every
j ∈ Z+. This leads to a mapping θ from X into

∏∞
j=1 Yj , as before. If

ψj ◦ θj+1 = θj for every j ≥ 1,(6.8.3)

then θ(X) ⊆ Y .
If l ∈ Z+, then put

El =

{
y ∈

∞∏
j=1

Yj : ψl(yl+1) = yl

}
,(6.8.4)

so that

Y =

∞⋂
l=1

El.(6.8.5)

If Yj is a Hausdorff topological space for every j ≥ 1, and ψj is continuous as a
mapping from Yj+1 onto Yj for every j, then El is a closed set in

∏∞
j=1 Yj with

respect to the product topology for every l ≥ 1. This implies that Y is a closed
set in

∏∞
j=1 Yj too, as before.

Suppose that Yj is a group for every j ≥ 1, and that ψj is a homomorphism
from Yj+1 into Yj for each j. This implies that ϕj,l is a homomorphism from
Yl into Yj when j ≤ l. As in the previous section,

∏∞
j=1 Yj is a group in this

case, where the group operations are defined coordinatewise, and it is easy to
see that Y is a subgroup of

∏∞
j=1 Yj . This corresponds to the definition of the

inverse limit on p103 of [1].
Let G be a group, and let A1, A2, A3, . . . be a sequence of normal subgroups

of G such that
Aj+1 ⊆ Aj(6.8.6)
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for every j. Also let qj be the natural quotient homomorphism from G onto
G/Aj for each j. Observe that for each j there is a unique homomorphism Ψj

from G/Aj+1 onto G/Aj such that

Ψj ◦ qj+1 = qj .(6.8.7)

This permits one to define the inverse limit

lim
←−

G/Aj(6.8.8)

as a subgroup of
∏∞

j=1(G/Aj) as in (6.8.2).
Using the quotient mappings qj , we get a homomorphism Θ from G into∏∞

j=1(G/Aj), as before. More precisely, Θ maps G into the inverse limit (6.8.8),

because of (6.8.7). The kernel of Θ is
⋂∞

j=1Aj , as before.
Let G be a topological group, for which the open normal subgroups form a

local base for the topology at the identity element. Suppose that there is also
a countable local base for the topology at the identity element. This implies
that there is a sequence A1, A2, A3, . . . of open normal subgroups of G such
that the collection B of the Aj ’s is a local base for the topology at the identity
element. We may as well ask that (6.8.6) hold for every j, by replacing Aj with
A1 ∩ · · · ∩ Aj for each j, if necessary. Thus the inverse limit (6.8.8) can be
defined as before.

Let us take G/Aj to be equipped with the discrete topology for each j, and∏∞
j=1(G/Aj) to be equipped with the corresponding product topology, as usual.

If the set containing only the identity element is a closed set in G, then Θ is a
homeomorphism onto its image, as in the previous section. This is related to
Exercise 2 on p6 of [25].

6.9 Inverse systems of subsets

Let (I,�) be a nonempty directed set, and let Yj be a nonempty set for each
j ∈ I. Suppose that for every j, l ∈ I with j ≤ l, we have a mapping ϕj,l
from Yl into Yj , where ϕj,j is the identity mapping on Yj for each j ∈ I, and
ϕj,r = ϕj,l ◦ϕl,r when j, l, r ∈ I and j � l � r. Remember that the inverse limit
of the Yj ’s is defined to be the set Y of y ∈

∏
j∈I Yj such that ϕl,r(yr) = yl for

every l, r ∈ I with l � r, as in Section 6.5.
Let Wj be a nonempty subset of Yj for every j ∈ I, and suppose that

ϕj,l(Wl) ⊆Wj(6.9.1)

for every j, l ∈ I with j � l. Under these conditions, the family of Wj ’s, j ∈ I,
with the restrictions of the mappings ϕj,l to Wl, is an inverse system. The
inverse limit of the Wj ’s is given by

W =

{
w ∈

∏
j∈I

Wj : ϕl,r(wr) = wl for every l, r ∈ I with l � r

}
,(6.9.2)
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as before. Equivalently,

W =
(∏

j∈I
Wj

)
∩ Y.(6.9.3)

Suppose for the moment that Yj is a topological space for every j ∈ I, and
that ϕj,l is continuous as a mapping from Yl onto Yj when j, l ∈ I and j � l.
In this case, we take

∏
j∈I Yj to be equipped with the corresponding product

topology, and Y to be equipped with the induced topology. Let us take Wj to
be equipped with the topology induced by the one on Yj for every j ∈ I, so that

the restriction of ϕj,l to Wl is continuous(6.9.4)

as a mapping from Wl into Wj when j, l ∈ I and j � l. Note that the cor-
responding product topology on

∏
j∈I Wj is the same as the topology induced

on
∏

j∈I Wj by the product topology on
∏

j∈I Yj . It is easy to see that the
topology induced on W by the product topology on

∏
j∈I Wj is the same as the

topology induced by the topology on Y just mentioned.

If Wj is a closed set in Yj for every j ∈ I, then
∏

j∈I Wj is a closed set in∏
j∈I Yj with respect to the product topology. In this case, W is a closed set

in Y with respect to the topology induced by the product topology on
∏

j∈I Yj ,
because of (6.9.3).

Suppose now that Yj is a group for every j ∈ I, and that ϕj,l is a homo-
morphism from Yl onto Yj when j, l ∈ I and j � l. This implies that

∏
j∈I Yj

is a group, where the group operations are defined coordinatewise, and that Y
is a subgroup of

∏
j∈I Yj , as in Section 6.7. If Wj is a subgroup of Yj for every

j ∈ I, then
∏

j∈I Wj is a subgroup of
∏

j∈I Yj , and W is a subgroup of Y .

Suppose that Yj is a finite group equipped with the discrete topology for
every j ∈ I, which means that the homomorphisms ϕj,l are automatically con-
tinuous. Remember that Y is a profinite group in this case, as in Section 6.7. If
l ∈ I, then let πl be the standard coordinate projection from

∏
j∈I Yj onto Yl,

and let ρl be the restriction of πl to Y , as in Section 6.5. Thus ρl is a continuous
group homomorphism from Y into Yl for each l ∈ I, as before. In particular,
the kernel of ρl is an open normal subgroup of Y for every l ∈ I.

One can check that the kernels of the ρl’s form a local base for the topology
of Y at the identity element, using the fact that (I,�) is a directed system.
This is analogous to an earlier remark about (6.6.4).

If l ∈ I, then the restriction of πl to
∏

j∈I Wj is the same as the standard
coordinate projection from

∏
j∈I Wj onto Wl. Similarly, the restriction of ρl to

W is the analogue of ρl for W , which maps W into Wl.

6.10 Direct systems and homomorphisms

Let (I,�) be a nonempty directed set, and suppose that we have a direct system
of groups Aj , j ∈ I, as in Section 6.3. Thus for each j, l ∈ I with j � l we have
a homomorphism αj,l from Aj into Al with the properties mentioned earlier. If
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l ∈ I, then we also get a homomorphism βl into the direct limit of the Aj ’s, as
before.

Let C be another group. If γ is a homomorphism from the direct limit of
the Aj ’s into C, then

γl = γ ◦ βl(6.10.1)

is a homomorphism from Al into C for every l ∈ I. If l, r ∈ I and l � r, then

γr ◦ αl,r = γl,(6.10.2)

because of the analogous property of βl, βr, as in Section 6.2. Conversely, if γl
is a homomorphism from Al into C for each l ∈ I, and if (6.10.2) holds for every
l, r ∈ I with l � r, then there is a unique homomorphism γ from the direct limit
of the Aj ’s into C such that (6.10.1) holds for every l ∈ I, as in Section 6.3.

If B is any group, then let Hom(B,C) be the set of all group homomorphisms
from B into C. This is a commutative group when C is commutative, where the
group operations for mappings from B into C are defined pointwise. Let B1, B2

be groups, and let h1 be a homomorphism from B1 into B2. If ζ ∈ Hom(B2, C),
then

h̃1(ζ) = ζ ◦ h1(6.10.3)

is an element of Hom(B1, C). This defines a mapping from Hom(B2, C) into
Hom(B1, C), which is a group homomorphism when C is commutative. Let B3

be another group, and let h2 be a homomorphism from B2 into B3. Thus h2 ◦h1
is a homomorphism from B1 into B3, and it is easy to see that

˜(h2 ◦ h1) = h̃1 ◦ h̃2.(6.10.4)

If B1 = B2 and h1 is the identity mapping on B1, then h̃1 is the identity mapping
on Hom(B1, C).

If j, l ∈ I and j � l, then we can define α̃j,l as a mapping from Hom(Al, C)
into Hom(Aj , C) as in the preceding paragraph. If j, l, r ∈ I and j � l � r, then

α̃j,r = α̃j,l ◦ α̃l,r,(6.10.5)

by (6.10.4), and because αj,r = αl,r ◦αj,l. Note that α̃j,j is the identity mapping
on Hom(Aj , C) for every j ∈ I, because αj,j is the identity mapping on Aj . This
means that the family of sets

Hom(Aj , C), j ∈ I,(6.10.6)

is an inverse system, with respect to the corresponding family of maps α̃j,l. If
C is commutative, then this may be considered as an inverse system of commu-
tative groups.

Of course, (6.10.2) is the same as saying that

α̃l,r(γr) = γl.(6.10.7)
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This leads to a one-to-one correspondence between homomorphisms from the
direct limit of the Aj ’s into C and elements of the inverse limit of (6.10.6). If C
is commutative, then this is an isomorphism between these commutative groups.

Let us now take Aj to be a commutative group equipped with the discrete
topology for every j ∈ I, and take the direct limit of the Aj ’s to be equipped with
the discrete topology as well. Let us also take C = T, so that Hom(Aj , C) is the

same as the dual Âj of Aj for each j ∈ I, and similarly for the direct limit of the
Aj ’s. Thus we get an isomorphism between the dual of the direct limit of the Aj ’s

and the inverse limit of Âj , j ∈ I, as in the preceding paragraph. Remember

that the topology on Âj defined in Section 5.3 is the same as the topology
that corresponds to pointwise convergence on Aj for each j ∈ I, because Aj is
equipped with the discrete topology. Similarly, the topology on the dual of the
direct limit of the Aj ’s is the same as the topology that corresponds to pointwise
convergence on the direct limit.

Using this topology on Âj for each j ∈ I, we get a topology on the inverse

limit of the Âj ’s, as in Section 6.6. One can check that this corresponds exactly
to the topology on the dual of the direct limit of the Aj ’s mentioned in the
preceding paragraph. This uses the fact that the direct limit of the Aj ’s is the
union of βl(Al) over l ∈ I, as in Sections 6.1, 6.2.

6.11 Inverse systems and homomorphisms

Let (I,�) be a nonempty directed set, and let Yj be a group for every j ∈ I.
If j, l ∈ I and j � l, then let ϕj,l be a group homomorphism from Yl into Yj .
As usual, we ask that ϕj,j be the identity mapping on Yj for every j ∈ I, and
that ϕj,r = ϕj,l ◦ ϕl,r for every j, l, r ∈ I with j � l � r. Thus the inverse limit
of the Yj ’s, j ∈ I, may be defined as the subset Y of

∏
j∈I Yj considered in

Section 6.5. More precisely,
∏

j∈I Yj is a group, where the group operations are
defined coordinatewise, and we have seen that Y is a subgroup of

∏
j∈I Yj . If

l ∈ I, then let πl be the standard coordinate projection from
∏

j∈I Yj onto Yl,
and let ρl be the restriction of πl to Y , as before. Of course, these are group
homomorphisms into Yl.

Let C be another group. If j, l ∈ I and j � l, then we get a mapping ϕ̃j,l
from Hom(Yj , C) into Hom(Yl, C) associated to ϕj,l as in the previous section.

If C is commutative, then ϕ̃j,l is a homomorphism between commutative groups,
as before. If j, l, r ∈ I and j � l � r, then

ϕ̃j,r = ϕ̃l,r ◦ ϕ̃j,l,(6.11.1)

because of (6.10.4). Of course, ϕ̃j,j is the identity mapping on Hom(Yj , C) for
every j ∈ I.

This shows that
Hom(Yj , C), j ∈ I,(6.11.2)

is a direct system, with respect to the corresponding family of maps ϕ̃j,l. If C
is commutative, then this may be considered as a direct system of commutative
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groups. If l ∈ I, then there is a natural mapping βl from Hom(Yl, C) into the
direct limit of (6.11.2), as in Sections 6.1, 6.2. This is a homomorphism between
commutative groups when C is commutatitive, as before.

Similarly, if l ∈ I, then we get a mapping ρ̃l from Hom(Yl, C) into Hom(Y,C)
associated to ρl as in the previous section. If C is commutative, then ρ̃l is a
homomorphism between commutative groups, as usual. If l, r ∈ I and l � r,
then

ρ̃l = ρ̃r ◦ ϕ̃l,r,(6.11.3)

because of (6.10.4) and the fact that ρl = ϕl,r ◦ ρr, as in Section 6.5. This leads
to a unique mapping γ from the direct limit of (6.11.2) into Hom(Y,C) such
that

γ ◦ βl = ρ̃l(6.11.4)

for every l ∈ I, as in Sections 6.1, 6.2. If C is commutative, then γ is a
homomorphism between commutative groups, as before.

If ρ̃l is injective as a mapping from Hom(Yl, C) into Hom(Y,C) for every
l ∈ I, then one can check that γ is injective on the direct limit of (6.11.2). If
ρl maps Y onto Yl for some l ∈ I, then it is easy to see that ρ̃l is injective on
Hom(Yl, C).

6.12 Inverse systems and dual groups

Let (I,�) be a nonempty directed set again, and let Yj be a commutative
topological group for every j ∈ I. If j, l ∈ I and j � l, then let ϕj,l be a
continuous group homomorphism from Yl into Yj . As before, we ask that ϕj,j
be the identity mapping on Yj for every j ∈ I, and that ϕj,r = ϕj,l◦ϕl,r for every
j, l, r ∈ I with j � l � r. Remember that

∏
j∈I Yj is a commutative topological

group with respect to the associated product topology. Thus the inverse limit
Y of the Yj ’s, j ∈ I, is a commutative topological group with respect to the
induced topology.

Let us consider analogues of the remarks in the previous section with C = T
and continuous homomorphisms. If A is a commutative topological group, then
Â denotes the dual group of continuous homomorphisms from A into T, as in
Section 5.2. If j, l ∈ I and j � l, then let ϕ̂j,l be the dual homomorphism from

Ŷj into Ŷl, as in Section 5.10. Note that ϕ̂j,j is the identity mapping on Âj

for every j ∈ I, because ϕj,j is the identity mapping on Aj . If j, l, r ∈ I and
j � l � r, then

ϕ̂j,r = ϕ̂l,r ◦ ϕ̂j,l,(6.12.1)

by the remarks about duals of compositions of continuous homomorphisms in
Section 5.10.

It follows that
Ŷj , j ∈ I,(6.12.2)

is a direct system of commutative groups, with respect to the corresponding
family of homomorphisms ϕ̂j,l. If l ∈ I, then there is a natural homomorphism

βl from Âl into the direct limit of (6.12.2), as in Sections 6.1, 6.2.
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If l ∈ I, then let ρl be the usual mapping from Y into Yl, which is a contin-
uous group homomorphism in this case. This leads to a dual homomorphism ρ̂l
from Ŷl into Ŷ , as before. If l, r ∈ I and l � r, then

ρ̂l = ρ̂r ◦ ϕ̂l,r,(6.12.3)

because ρl = ϕl,r ◦ ρr, and the usual properties of dual homomorphisms. Using

this, we get a unique homomorphism γ from the direct limit of (6.12.2) into Ŷ
such that

γ ◦ βl = ρ̂l(6.12.4)

for every l ∈ I, as in Sections 6.1, 6.2.
Suppose for the moment that for every j ∈ I, the set containing only the

identity element is a closed set in Yj , so that Yj is Hausdorff. Suppose that Yj
is also compact for every j ∈ I, and that ϕj,l maps Yl onto Yj for every j, l ∈ I
with j � l. Under these conditions, ρl maps Y onto Yl for every l ∈ I, as in
Section 6.6. This implies that ρ̂l is injective on Ŷl for every l ∈ I. One can use
this to get that γ is injective on the direct limit of (6.12.2), as before.

6.13 Duals of inverse limits

Let us continue with the same notation and hypotheses as at the beginning of
the previous section. Let η be a continuous homomorphism from Y into T,
which is to say an element of Ŷ . Observe that

Re η > 0(6.13.1)

on an open set U ⊆ Y that contains the identity element.
As in Section 6.6, there is an l0 ∈ I and an open set Ul0 ⊆ Yl0 such that Ul0

contains the identity element and

ρ−1l0
(Ul0) ⊆ U.(6.13.2)

In particular, this means that the kernel of ρl0 is contained in U , so that (6.13.1)
holds on the kernel of ρl0 . It follows that

η ≡ 1 on the kernel of ρl0 ,(6.13.3)

as in Section 5.1.
Suppose for the rest of the section that for each j ∈ I, the set containing

only the identity element is a closed set in Yj , and that Yj is compact. Suppose
also that for every j, l ∈ I with j � l, we have that ϕj,l(Yl) = Yj . This implies
that ρl(Y ) = Yl for every l ∈ I, as in the previous section. Combining this with
(6.13.3), we get that there is a homomorphism ηl0 from Yl0 into T such that

η = ηl0 ◦ ρl0 .(6.13.4)
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Remember that Y is compact under these conditions, as in Section 6.6. One
can use the continuity of ρl0 and η, and the fact that ρl0(Y ) = Yl0 , to get that

ηl0 is continuous on Yl0 , as in Section 5.10. This means that ηl0 ∈ Ŷl0 , and that

η = ρ̂l0(ηl0),(6.13.5)

by (6.13.4). This shows that the mapping γ from the direct limit of (6.12.2)

into Ŷ obtained from the ρ̂l’s, l ∈ I, as in the previous section is surjective, and
thus an isomorphism.

6.14 Subsets of inverse limits

Let (I,�) be a nonempty directed set, and let Yj , j ∈ I, be an inverse system
of nonempty sets over (I,�), as in Section 6.5. Thus Yj is a nonempty set for
every j ∈ I, and for each j, l ∈ I with j � l, we have a mapping ϕj,l from Yl
into Yj . As before, ϕj,j should be the identity mapping on Yj for every j ∈ I,
and ϕj,r = ϕj,l ◦ ϕl,r for every j, l, r ∈ I with j � l � r. Remember that the
inverse limit of the Yj ’s is the set Y of y ∈

∏
j∈I Yj such that ϕl,r(yr) = yj for

every l, r ∈ I with l � r. If l ∈ I, then we let πl be the standard coordinate
projection from

∏
j∈I Yj onto Yl, and we let ρl be the restriction of πl to Y , as

usual.
Let Z be a nonempty subset of Y , and put

Wl = ρl(Z)(6.14.1)

for every l ∈ I, which is a nonempty subset of Yl. If l, r ∈ I and l � r, then

ϕl,r(Wr) =Wl,(6.14.2)

because ϕl,r ◦ρr = ρl, as in Section 6.5. This implies that the family of sets Wl,
l ∈ I, together with the restriction of the mapping ϕl,r to Wr for l, r ∈ I with
l � r, is a surjective inverse system. The inverse limit W of the Wl’s, l ∈ I, is
the same as the intersection of Y with

∏
l∈I Wl, as in Section 6.9. In particular,

Z ⊆W,(6.14.3)

by (6.14.1).
If w ∈ W and r ∈ I, then wr ∈ Wr = ρr(Z), so that there is a z ∈ Z such

that wr = zr. This implies that

wl = zl(6.14.4)

for every l ∈ I with l � r, because w, z ∈ Y . If l1, . . . , ln are finitely many
elements of L, then there is an r ∈ I such that lm � r for every m = 1, . . . , n,
because (I,�) is a directed set. In particular, if w ∈ W then there is a z ∈ Z
such that (6.14.4) holds for l = l1, . . . , ln.

Suppose now that Yj is a topological space for every j ∈ I, and that ϕj,l is
continuous as a mapping from Yl into Yj for every j, l ∈ I with j � l. As before,
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we take Y to be equipped with the topology induced by the product topology
on

∏
j∈I Yj . In this case, the remarks in the preceding paragraph imply that

W ⊆ Z,(6.14.5)

where Z is the closure of Z in Y . If Z is a closed set in Y , then we get that
W = Z.

If Z is compact in Y , then Wl is compact in Yl for every l ∈ I, because ρl
is continuous. Suppose that Yj is Hausdorff for every j ∈ I, so that

∏
j∈I Yj is

Hausdorff with respect to the product topology, and Y is Hausdorff with respect
to the induced topology. This implies that Z is a closed set in Y when Z is
compact.

6.15 Mappings between inverse limits

Let (I,�) be a nonempty directed system, and let Y 1
j and Y 2

j , j ∈ I, be inverse

systems of nonempty sets over (I,�), as in Section 6.5. If i = 1, 2, then Y i
j is

a nonempty set for every j ∈ I, and for each j, l ∈ I with j � l, we have a
mapping ϕij,l from Y i

l into Y i
j . As usual, ϕij,j should be the identity mapping

on Y i
j for every j ∈ I, and

ϕij,r = ϕij,l ◦ ϕil,r(6.15.1)

for every j, l, r ∈ I with j � l � r. The inverse limit of Y i
j , j ∈ I, is the set Y i

of yi ∈
∏

j∈I Y
i
j such that

ϕil,r(y
i
r) = yil(6.15.2)

for every l, r ∈ I with l � r. If l ∈ I, then let πi
l be the standard coordinate

projection from
∏

j∈I Y
i
j onto Y i

l , and let ρil be the restriction of πi
l to Y i, as

before.
Let fj be a mapping from Y 1

j into Y 2
j for each j ∈ I. This leads to a mapping

F from
∏

j∈I Y
1
j into

∏
j∈I Y

2
j , using fj in the jth coordinate for each j ∈ I, so

that

π2
l ◦ F = fl ◦ π1

l(6.15.3)

for every l ∈ I. Equivalently, if y1 ∈
∏

j∈I Y
1
j and

y2j = fj(y
1
j )(6.15.4)

for every j ∈ I, then the corresponding element y2 of
∏

j∈I Y
2
j is equal to F (y1).

If l, r ∈ I and l � r, then suppose that

fl ◦ ϕ1l,r = ϕ2l,r ◦ fr.(6.15.5)

If y1 ∈ Y 1 and y2 = F (y1), then

ϕ2l,r(y
2
r) = ϕ2l,r(fr(y

1
r)) = fl(ϕ

1
l,r(y

1
r)) = fl(y

1
l ) = y2l ,(6.15.6)
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so that y2 ∈ Y 2. Let f be the restriction of F to Y 1, which maps Y 1 into Y 2.
Note that

ρ2l ◦ f = fl ◦ ρ1l(6.15.7)

for every l ∈ I, by (6.15.3).
Suppose for the moment that Y i

j is a topological space for every j ∈ I and

i = 1, 2, and that fj is continuous as a mapping from Y 1
j into Y 2

j for every j ∈ I.

This implies that F is continuous as a mapping from
∏

j∈I Y
1
j into

∏
j∈I Y

2
j ,

with respect to the corresponding product topologies. If (6.15.5) holds for every
l, r ∈ I with l � r, then it follows that f is continuous as a mapping from Y 1

into Y2, with respect to the topology induced on Y i by the product topology on∏
j∈I Y

i
j for i = 1, 2. Of course, one normally asks that ϕij,l be continuous as a

mapping from Y i
l into Y i

j for every j, l ∈ I with j � l and i = 1, 2 in this case,
as before.

Suppose now that Y i
j is a group for every j ∈ I and i = 1, 2, and that fj

is a homomorphism from Y 1
j into Y 2

j for every j ∈ I. This means that F is

a homomorphism from
∏

j∈I Y
1
j into

∏
j∈I Y

2
j , where the group operations are

defined on the products coordinatewise. Suppose that ϕij,l is a homomorphism

from Y i
l into Y i

j for every j, l ∈ I with j � l and i = 1, 2, so that Y i is a

subgroup of
∏

j∈I Y
i
j for i = 1, 2. If (6.15.5) holds for every l, r ∈ I with l � r,

then f is a homomorphism from Y 1 into Y 2.



Chapter 7

Indices and Sylow
subgroups

7.1 Counting functions

Let us call a function c(p) defined for prime numbers p with values in

Z+ ∪ {0,+∞}(7.1.1)

a counting function. In this case, the formal product∏
p

pc(p)(7.1.2)

over all prime numbers p may be considered as a type of extension of a positive
integer, as on p5 of [25]. Of course, this product defines a positive integer when
c(p) < +∞ for every p, and c(p) = 0 for all but finitely many p. Every positive
integer corresponds to a unique counting function with these properties in this
way.

Addition of nonnegative integers can be extended to (7.1.1) in the usual
way, where the sum of +∞ and any element of (7.1.1) is +∞. The sum of
two counting functions can be defined pointwise, and is a counting function as
well. Equivalently, the product of two formal products as in (7.1.2) is the formal
product associated to the sum of the corresponding counting functions, as on
p5 of [25]. A formal product (7.1.2) is considered to be a power of a prime
number p1 if the corresponding counting function c(p) is equal to 0 for every
prime number p 6= p1.

Note that (7.1.1) is well ordered by the standard ordering. This means that
any nonempty collection of counting functions has a pointwise minimum which
is also a counting function. This corresponds to taking the greatest common
divisor of the associated formal products, as on p5 of [25]. In particular, a pair
of formal products as in (7.1.2) are considered to be relatively prime when the
minimum of the corresponding counting functions is equal to 0.

132
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Similarly, every nonempty subset of (7.1.1) has a least upper bound in (7.1.1).
More precisely, the maximum is attained except for infinite subsets of Z+∪{0},
for which the supremum is +∞. Thus any nonempty collection of counting
functions has a pointwise supremum that is a counting function too. This cor-
responds to taking the least common multiple of the associated formal products,
as on p5 of [25].

Let I be a nonempty set, and let cj(p) be a counting function for each j ∈ I.
If I has only finitely many elements, then∑

j∈I
cj(p)(7.1.3)

can be defined as an element of (7.1.1) for every prime number p as before.
Otherwise, the sum can be defined by taking the supremum of the sum of cj(p)
over all nonempty finite subsets of I. The product of the formal products
associated to cj(p), j ∈ I, can be defined as the formal product associated to
(7.1.3).

7.2 Orders of profinite groups

Let G be a profinite group, and let U be an open normal subgroup of G. Thus
G/U is a finite group of order nU ∈ Z+. Let cU be the counting function
associated to nU , so that cU (p) is the number of factors of p in nU for every
prime number p. Put

c(p) = sup
U
cU (p)(7.2.1)

for every prime number p, where the supremum is taken over all open normal
subgroups U of G. This defines a counting function, and the order of G is
considered to be the associated formal product, as on p6 of [25].

Let U , V be open normal subgroups of G such that U ⊆ V . Thus V/U
corresponds to a normal subgroup of G/U , and the quotient of G/U by V/U is
isomorphic to G/V . In particular, nU is equal to nV times the order of V/U .
This implies that

cV (p) ≤ cU (p)(7.2.2)

for every prime number p. It follows that c(p) can be obtained by taking the
supremum of cU (p) over any collection of open normal subgroups U of G that
form a local base for the topology at the identity element.

Suppose for the moment that G has only finitely many elements, and let U0

be the subgroup of G consisting of only the identity element. Thus U0 is an
open normal subgroup of G, and c(p) = cU0

(p) for every prime number p, by
(7.2.2). This means that the usual definition of the order of G agrees with this
one in this case.

The previous definition of c(p) and the order of G works as well for totally
bounded topological groups G for which the open normal subgroups form a
local base for the topology at the identity element. In this case, one could get
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a profinite group from G as in Section 2.14. One can verify that one would get
the same counting function for G as for the associated profinite group, basically
because one would get the same quotients by open normal subgroups.

If U is any open subgroup of G, then U has finite index in G, and one can
take nU ∈ Z+ to be the usual index of U in G. Let V be another open subgroup
of G with U ⊆ V , and let cU , cV be the counting functions associated to nU ,
nV , respectively. It is well known that nU is equal to nV times the index of U
in V , so that (7.2.2) holds for every prime number p in particular.

A finite group is said to be a p-group for some prime number p if the order
of the group is a power of p. Similarly, a profinite group G is said to be a pro-
p-group if its order in the sense defined before is a power of p, as on p6 of [25].
Equivalently, this means that G/U is a p-group for every open normal subgroup
U of G.

Let I be a nonempty set, and let Gj be a profinite group for every j ∈ I.
Remember that the product

∏
j∈I Gj is a profinite group too, with respect to

the product topology. One can check that the counting funtion associated to∏
j∈I Gj is the same as the sum over j ∈ I of the counting function associated

to Gj . Equivalently, the order of
∏

j∈I Gj is the product of the orders of the
Gj ’s, j ∈ I.

7.3 Indices of subgroups

Let G be a profinite group, and let H be a subgroup of G. If U is an open normal
subgroup of G, then let qU be the natural quotient mapping from G onto G/U .
Thus qU (H) is a subgroup of G/U , which is isomorphic to H/(H ∩ U). Put

nU,H = [G/U : qU (H)],(7.3.1)

where the right side is the usual index of qU (H) in G/U . This is a positive

integer, and we let cU,H = cU,H
G be the counting function associated to nU,H .

Put
cH(p) = cHG (p) = sup

U
cU,H(p)(7.3.2)

for every prime number p, where the supremum is taken over all open normal
subgroups U of G. This is a counting function, and the index of H in G as a
profinite group is defined to be the associated formal product,

(G : H) =
∏
p

pc
H(p),(7.3.3)

as on p5 of [25]. If H is the subgroup of G consisting of only the identity
element, then (7.3.3) is the same as the order of G as defined in the previous
section, as on p6 of [25].

We use parentheses to express this version of the index, rather than the
usual index [G : H], which may be considered as a cardinal number. As in the
previous section, one could also consider totally bounded topological groups G
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for which the open normal subgroups form a local base for the topology at the
identity element.

If H is any subgroup of G, then the closure H of H in G is a subgroup of G
as well, and it is easy to see that

qU (H) = qU (H)(7.3.4)

for every open normal subgroup U of G. This implies that

(G : H) = (G : H).(7.3.5)

One may wish to restrict one’s attention to closed subgroups of G, as in [25].
If U is a normal subgroup of G, then

W = U H = H U(7.3.6)

is a subgroup of G, as in Section 3.8. Suppose that U is an open normal subgroup
of G, so that W is an open subgroup of G. Equivalently,

W = q−1U (qU (H)),(7.3.7)

and qU (W ) = qU (H) in particular. Of course, U ⊆ W , so that qU (W ) = W/U ,
and

nU,H = [G/U :W/U ].(7.3.8)

It follows that
nU,H = [G :W ].(7.3.9)

Let U ′ be another open normal subgroup of G with

U ⊆ U ′,(7.3.10)

and put
W ′ = U ′H = H U ′(7.3.11)

as before. Thus W ⊆W ′, so that

[G :W ] = [G :W ′] · [W ′ :W ].(7.3.12)

In particular, this means that

cU
′,H(p) ≤ cU,H(p)(7.3.13)

for every prime number p. This implies that cH(p) can be obtained by taking
the supremum of cU,H(p) over any collection of open normal subgroups U of G
that form a local base for the topology at the identity element.

Let V be an open subgroup of G with H ⊆ V . Because the open normal
subgroups of G form a local base for the topology at the identity element, there
is an open normal subgroup U of G such that

U ⊆ V.(7.3.14)
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Let W be as in (7.3.6), so that
W ⊆ V.(7.3.15)

Also let nV , nW ∈ Z+ be the indices of V , W in G, respectively, and let cV , cW
be their associated counting functions, as in the previous section. Observe that

cV (p) ≤ cW (p) = cU,H(p)(7.3.16)

for every prime number p, using (7.2.2) in the first step, and (7.3.9) in the second
step.

Alternatively,
cH(p) = sup

H⊆V
cV (p)(7.3.17)

for every prime number p, where the supremum is taken over all open subgroups
V of G with H ⊆ V . This corresponds to the second characterization of the
index on p5 of [25]. More precisely, the fact that the supremum is less than or
equal to cH(p) follows from (7.3.16) and the previous definition (7.3.2) of cH(p).
To get equality, one can use the fact that if U is an open normal subgroup of
G, then W defined in (7.3.6) is an open subgroup of G that contains H.

If H is an open subgroup of G, then the definition (7.3.3) of the index of H
in G is equivalent to the usual definition of the index. This follows by taking
V = H in (7.3.17), and using (7.2.2). This corresponds to part of part (iii) of
Proposition 2 on p5 of [25].

7.4 Indices of sub-subgroups

Let G be a profinite group, and let H, K be subgroups of G, with

K ⊆ H.(7.4.1)

We would like to check that

(G : K) = (G : H) · (H : K),(7.4.2)

where the indices are as defined in the previous section. This corresponds to
part (i) of Proposition 2 on p5 of [25].

More precisely, one can take G to be a totally bounded topological group
for which the open normal subgroups form a local base for the topology at the
identity element, as before. This implies that H has the analogous properties
with respect to the induced topology, so that (H : K) can be defined as before
too. If one takes G to be profinite, then one can take H, K to be closed
subgroups, so that they are profinite with respect to the induced topology.

Let cHG , cKG be the counting functions used to define the indices of H, K in
G, as in (7.3.2). Similarly, let cKH be the counting function used to define the
index of K in H. Thus (7.4.2) is the same as saying that

cKG (p) = cHG (p) + cKH (p)(7.4.3)
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for every prime number p.
Let U be an open normal subgroup of G, and let qG,U be the natural quotient

mapping from G onto G/U . Observe that

qG,U (K) ⊆ qG,U (H),(7.4.4)

so that

[G/U : qG,U (K)] = [G/U : qG,U (H)] · [qG,U (H) : qG,U (K)].(7.4.5)

Put

UH = U ∩H,(7.4.6)

which is a normal subgroup of H that is relatively open in H. Let qH,UH
be the

natural quotient mapping from H onto H/UH , which is isomorphic to qG,U (H).
Using this isomorphism, qH,UH

(K) corresponds to qG,U (K), so that

[H/UH : qH,UH
(K)] = [qG,U (H) : qG,U (K)].(7.4.7)

Combining this with (7.4.5), we get that

[G/U : qG,U (K)] = [G/U : qG,U (H)] · [H/UH : qH,UH
(K)].(7.4.8)

Let cU,K
G be the counting function associated to the left side of (7.4.8), and

let cU,H
G , cUH ,K

H be the counting functions associated to the two indices on the
right side of (7.4.8), respectively, as in the previous section. Thus

cU,K
G (p) = cU,H

G (p) + cUH ,K
H (p)(7.4.9)

for all prime numbers p. It follows that

cU,K
G (p) ≤ cHG (p) + cKH (p)(7.4.10)

for all prime numbers p, by the definition of cHG (p), cKH (p). This implies that

cKG (p) ≤ cHG (p) + cKH (p)(7.4.11)

for every prime number p.
Similarly, (7.4.9) implies that

cU,H
G (p) + cUH ,K

H (p) ≤ cKG (p)(7.4.12)

for every prime number p, by the definition of cKG . In order to get (7.4.3), one
can use the fact that the relatively open normal subgroups of H of the form
(7.4.6), where U is an open normal subgroup of G, form a local base for the
induced topology on H at the identity element. One can also use the fact that
cU,H
G (p) and cUH ,K

H (p) can only get larger as U gets smaller, as in (7.3.13).
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7.5 Finiteness of the index

Let G be a profinite group again, and let H be a subgroup of G. Note that

(G : H) = 1,(7.5.1)

where the index is defined as in Section 7.3, if and only if cH(p) = 0 for every
prime number p, where cH(p) is as in (7.3.2). Clearly this happens if and only if
cU,H(p) = 0 for every open normal subgroup U of G, where cU,H is the counting
function associated to the usual index (7.3.1) of qU (H) in G/U . Here qU is the
natural quotient mapping from G onto G/U , as before.

Thus (7.5.1) holds if and only if

[G/U : qU (H)] = 1(7.5.2)

for every open normal subgroup U of G. This is the same as saying that

qU (H) = G/U(7.5.3)

for every open normal subgroup U in G. One can check that this happens if
and only if H is dense in G. Of course, if H is a closed subgroup of G, then this
means that H is the whole group. This also works when G is a totally bounded
topological group, for which the open normal subgroups form a local base for
the topology at the identity element.

Suppose now that the index (G : H) of H in G defined in Section 7.3
corresponds to a positive integer. This means that

cH(p) < +∞(7.5.4)

for every prime number p, and that

cH(p) = 0(7.5.5)

for all but finitely many prime numbers p.
If V is an open subgroup of G, then let nV ∈ Z+ be the usual index of V in

G, and let cV be the counting function associated to nV , as in Section 7.2. If
H ⊆ V , then

cV (p) = 0(7.5.6)

for every prime number p for which (7.5.5) holds, by the characterization (7.3.17)
of cH(p). If p is any prime number, then there is an open subgroup Vp of G
such that

H ⊆ Vp(7.5.7)

and
cVp(p) = cH(p),(7.5.8)

because of (7.3.17) and (7.5.4).
Using this, we can find an open subgroup V of G such that H ⊆ V and

cV (p) = cH(p)(7.5.9)
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for every prime number p. More precisely, we can take V to be the intersection
of open subgroups Vp as in the preceding paragraph, over the finitely many
prime numbers p such that cH(p) > 0. This also uses the fact that cV (p) can
only get larger when V gets smaller, as in (7.2.2).

Remember that (V : H) can be defined as in Section 7.3 too, and let cHV be
the corresponding counting function. In fact,

cHV (p) = 0(7.5.10)

for every prime number p, because of (7.4.3) and (7.5.9). Equivalently, this
means that

(V : H) = 1.(7.5.11)

It follows that H is dense in V , as before. This is the same as saying that
the closure H of H in G is equal to V . If H is a closed subgroup of G, then we
get that H = V , so that H is an open subgroup of G under these conditions.
This corresponds to part of part (iii) of Proposition 2 on p5 of [25]. This works
as well when G is a totally bounded topological group, and the open normal
subgroups of G form a local base for the topology at the identity element.

7.6 Chains of subgroups

Let G be a profinite group, and if H is a subgroup of G, then let cH be the
counting function used to define the index of H, as in (7.3.2). Also let C be a
nonempty collection of subgroups of G, and put

HC =
⋂
H∈C

H,(7.6.1)

which is a subgroup of G as well. If H ∈ C, then HC ⊆ H, and thus

cH(p) ≤ cHC (p)(7.6.2)

for every prime number p, by (7.4.3).
Suppose from now on in this section that the elements of C are closed sub-

groups of G, so that HC is a closed subgroup too. Suppose in addition that C is
linearly ordered by inclusion, which means that for any two elements of C, one
is contained in the other.

Let V be an open subgroup of G such that

HC ⊆ V.(7.6.3)

Observe that V , together with the complements of the elements of C, form
an open covering of G. Because G is compact, there is an open subcovering
consisting of V together with the complements of finitely many elements of C.
It follows that there is an H0 ∈ C such that

H0 ⊆ V,(7.6.4)



140 CHAPTER 7. INDICES AND SYLOW SUBGROUPS

because C is linearly ordered by inclusion.
Let cV be the counting function associated to the index of V in G, as in

Section 7.2. Observe that

cV (p) ≤ cH0(p)(7.6.5)

for all prime numbers p, by (7.3.17) and (7.6.4). This implies that

cV (p) ≤ sup
H∈C

cH(p)(7.6.6)

for all prime numbers p. It follows that

cHC (p) ≤ sup
H∈C

cH(p)(7.6.7)

for all prime numbers p, by (7.3.17). Combining this with (7.6.2), we obtain
that

cHC (p) = sup
H∈C

cH(p)(7.6.8)

for all prime numbers p, as in part (ii) of Proposition 2 on p5 of [25].

7.7 Orders of subgroups

Let G be a profinite group, and let A be a subgroup of G. More precisely, it
suffices to ask for the moment that G be a totally bounded topological group
for which the open normal subgroups form a local base for the topology at the
identity element. One can check that A is totally bounded as a topological
group with respect to the induced topology, using the characterization of total
boundedness in terms of small sets mentioned in Section 2.8. If B is a local
base for the topology of G at the identity element consisting of open normal
subgroups of G, then

BA = {A ∩ U : U ∈ B}(7.7.1)

is a local base for the induced topology on A that consists of relatively open
normal subgroups of A.

If V is a normal subgroup of A that is an open set with respect to the induced
topology on A, then A/V has only finitely many elements, and we let cA,V be
the counting function associated to the number nA,V of elements of A/V . The
counting function used to define the order of A is given by

cA(p) = sup
V
cA,V (p)(7.7.2)

for every prime number p, where the supremum is taken over all relatively open
normal subgroups V of A, as in Section 7.2. In fact, it suffices to take the
supremum over any collection of relatively open normal subgroups V of A that
form a local base for the induced topology on A at the identity element, as
before.
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If U is an open normal subgroup of G, then A∩U is a relatively open normal
subgroup of A. Observe that

cA(p) = sup
U
cA,A∩U (p)(7.7.3)

for every prime number p, where the supremum is taken over all open normal
subgroups U of G. This uses the fact that the collection of relatively open
normal subgroups of A of the form A∩U , where U is an open normal subgroup
of G, form a local base for the induced topology on A at the identity element,
because the open normal subgroups of G form a local base for the topology of G
at the identity element. One could also take the supremum over any collection
B of open normal subgroups U of G that form a local base for the topology at
the identity element, because the corresponding collection (7.7.1) would form a
local base for the induced topology on A at the identity element.

Let U be an open normal subgroup of G, and let qU be the natural quotient
mapping from G onto G/U . The kernel of the restriction of qU to A is A ∩ U ,
so that qU (A) is isomorphic to A/(A ∩ U). Thus nA,A∩U is the same as the
number of elements of qU (A). It is easy to see that

qU (A) = qU (A),(7.7.4)

where A is the closure of A in G. This implies that

nA,A∩U = nA,A∩U ,(7.7.5)

so that
cA,A∩U = cA,A∩U ,(7.7.6)

and thus
cA = cA.(7.7.7)

Suppose that A is profinite, which happens in particular when G is profinite
and A is a closed subgroup of G. It follows from (7.7.3) that A is a pro-p-group
for some prime number p if and only if

cA,A∩U (p
′) = 0(7.7.8)

for every open normal subgroup U of G and prime number p′ 6= p. Equivalently,
this means that A/(A ∩ U) is a p-group for every open normal subgroup U of
G. Of course, this is the same as saying that qU (A) is a p-group for every open
normal subgroup U of G. More precisely, it suffices to consider any collection
of open normal subgroups U of G that form a local base for the topology at the
identity element.

7.8 Sylow p-subgroups

Let p be a prime number, and let G be a finite group. Remember that a subgroup
A of G is said to be a Sylow p-subgroup if A is a p-subgroup of G, which is to say
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that it is a p-group, and the index [G : A] is not a multiple of p. Equivalently,
this means that the order of A is a power of p, and the largest power of p of
which the order of G is a multiple. The first Sylow theorem states that G has
a Sylow p-subgroup.

Suppose that ϕ is a homomorphism from G onto another group H. If A is a
p-subgroup of G, then it is easy to see that ϕ(A) is a p-subgroup of H. If A is
a Sylow p-subgroup of G, then ϕ(A) is a Sylow p-subgroup of H. Indeed, put

A1 = ϕ−1(ϕ(A)),(7.8.1)

which is a subgroup of G that contains A. Note that

[G : A] = [G : A1] · [A1 : A](7.8.2)

and
[G : A1] = [H : ϕ(A)].(7.8.3)

Using (7.8.2), we get that [G : A1] is not a multiple of p. This means that
[H : ϕ(A)] is not a multiple of p, as desired.

Let B be a Sylow p-subgroup of H, and let us check that B corresponds to
a Sylow p-subgroup of G in this way. Put

B1 = ϕ−1(B),(7.8.4)

which is a subgroup of G, and let B0 be a Sylow p-subgroup of B1. Observe
that

[G : B0] = [G : B1] · [B1 : B0](7.8.5)

and
[G : B1] = [H : B].(7.8.6)

It follows that the index of B0 in G is not a multiple of p, so that B0 is a Sylow
p-subgroup of G.

We would like to verify that

ϕ(B0) = B.(7.8.7)

Of course,
ϕ(B0) ⊆ ϕ(B1) = B,(7.8.8)

by construction. We also have that ϕ(B0) is a Sylow p-subgroup of H, because
B0 is a Sylow p-subgroup of G, as before. This implies that ϕ(B0) has the same
number of elements as B, so that (7.8.7) holds.

Suppose now that G is a profinite group, and that A is a closed subgroup
of G, so that A is profinite with respect to the induced topology. If A is a
pro-p-group, as in Section 7.2, and if the index (G : A) of A in G as a profinite
group is not a multiple of p, then A is said to be a Sylow p-subgroup of G as a
profinite group, as on p6 of [25]. If cA is the counting function used to define
(G : A) as in Section 7.3, then the second condition means that cA(p) = 0.
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If U is an open normal subgroup of G, then let qU be the natural quotient
mapping from G onto G/U , as before. Remember that cA is defined to be the
supremum over all open normal subgroups U of G of the counting functions cU,A

associated to the index of qU (A) in G/U , as in Section 7.3. Thus cA(p) = 0 if
and only if

cU,A(p) = 0(7.8.9)

for every open normal subgroup U of G. As usual, it suffices to consider any
collection of open normal subgroups U of G that form a local base for the
topology at the identity element.

The first part of Proposition 3 on p7 of [25] states that G has a Sylow
p-subgroup. This will be discussed further in the next section.

7.9 Sylow subgroups and inverse systems

Let G be a profinite group, and let B be a local base for the topology of G at
the identity element consisting of open normal subgroups. If U, V ∈ B, then
put U � V when V ⊆ U , as in Section 6.7. Thus (B,�) is a directed system,
as before.

If U ∈ B, then let qU be the natural quotient mapping from G onto the finite
group G/U . If V ∈ B satisfies U � V , so that V ⊆ U , then there is a unique
homomorphism ΦU,V from G/V onto G/U such that

ΦU,V ◦ qV = qU ,(7.9.1)

as in Section 6.7. If W ∈ B and V �W , so that W ⊆ V , then we get that

ΦU,V ◦ ΦV,W = ΦU,W ,(7.9.2)

as before. In fact, G corresponds to the inverse limit of the quotients G/U ,
U ∈ B, under these conditions. Here we take G/U to be equipped with the
discrete topology for every U ∈ B.

If U ∈ B, then let P (U) be the collection of Sylow p-subgroups of G/U ,
which is a nonempty finite set. If V ∈ B, U � V , and A ∈ P (V ), then

ΦU,V (A) ∈ P (U),(7.9.3)

as in the previous section. This defines a mapping Φ̃U,V from P (V ) into P (U),
and in fact this mapping is surjective, as mentioned earlier. If W ∈ B and
V �W , then it is easy to see that

Φ̃U,V ◦ Φ̃V,W = Φ̃U,W ,(7.9.4)

because of (7.9.2).

Thus the family of sets P (U), U ∈ B, with the associated mappings Φ̃U,V ,
is a surjective inverse system. The corresponding inverse limit

lim
←−

P (U)(7.9.5)
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can be defined as in Section 6.5. Note that (7.9.5) is nonempty, as in Section
6.6. More precisely, this can be seen by taking P (U) equipped with the discrete
topology for every U ∈ B, so that P (U) is compact and Hausdorff. This can be
obtained more directly when there is a countable local base for the topology of
G at the identity element, so that one can take B to consist of a nested sequence
of open normal subgroups of G, as in Section 6.8.

Let us take an element of (7.9.5), which assigns to each U ∈ B an element
AU of P (U). If U, V ∈ B and U � V , then

Φ̃U,V (AV ) = AU ,(7.9.6)

by definition of (7.9.5). Equivalently, this means that ΦU,V maps AV onto AU .
It follows that the family of subgroups AU of G/U , U ∈ B, is a surjective

inverse system with respect to the restrictions of the mappings ΦU,V to AV .
The inverse limit

lim
←−

AU(7.9.7)

is a closed subgroup of

lim
←−

G/U,(7.9.8)

as in Section 6.9. Note that AU is a p-group for every U ∈ B, because AU is an
element of P (U). This implies that (7.9.7) is a pro-p-group.

Remember that (7.9.8) is contained in the Cartesian product
∏

U∈B(G/U),
by construction. If V ∈ B, then let πV be the standard coordinate projection
from

∏
U∈B(G/U) onto G/V , and let ρV be the restriction of πV to (7.9.8).

Remember that ρV maps (7.9.8) onto G/V under these conditions, as in Section
6.6. Similarly, ρV maps (7.9.7) onto AV .

The index of (7.9.7) in (7.9.8) as a profinite group, as in Section 7.3, can
be obtained from the index of AV in G/V , V ∈ B, as before. In particular,
the index of (7.9.7) in (7.9.8) is not a multiple of p, because AV ∈ P (V ) for
every V ∈ B. This means that (7.9.7) is a Sylow p-subgroup of (7.9.8), as a
profinite group. Thus (7.9.7) corresponds to a Sylow p-subgroup of G, because
G is isomorphic to (7.9.8) as a profinite group, as in Section 6.7.

7.10 Conjugates of Sylow subgroups

Let p be a prime number, and let G be a finite group again. Part of the second
Sylow theorem is that the Sylow p-subgroups of G are conjugate in G.

Now let G be a profinite group, and let A, A′ be closed subgroups of G that
are Sylow p-subgroups, as in Section 7.8. The second part of Proposition 3 on
p7 of [25] states that A and A′ are conjugate in G.

To see this, let B be a local base for the topology of G at the identity element
consisting of open normal subgroups. If U, V ∈ B and V ⊆ U , then put U � V ,
as before, so that (B,�) is a directed system. Let qU be the natural quotient
mapping from G onto G/U for every U ∈ B, and if V ∈ B satisfies U � V ,
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then let ΦU,V be the unique homomorphism from G/V onto G/U that satisfies
(7.9.1).

Remember that A, A′ are pro-p-groups, whose indices in G are not multiples
of p. If U ∈ B, then qU (A), qU (A′) are isomorphic to A/(A ∩ U), A′/(A′ ∩ U),
respectively. This implies that qU (A), qU (A

′) are p-groups for every U ∈ B,
because A, A′ are pro-p-groups.

Similarly, the second condition means that the indices of qU (A), qU (A
′) in

G/U are not multiplies of p for any U ∈ B. It follows that qU (A), qU (A
′)

are Sylow p-subgroups of G/U for each U ∈ B. Thus qU (A) and qU (A
′) are

conjugate in G/U for every U ∈ B, by the second Sylow theorem.
If U ∈ B, then let Q(U) be the set of elements of G/U that can be used

to conjugate qU (A) onto qU (A
′). Suppose that U, V ∈ B satisfy U � V , and

observe that

ΦU,V (qV (A)) = qU (A), ΦU,V (qV (A
′)) = qU (A

′),(7.10.1)

by (7.9.1). This implies that

ΦU,V (Q(V )) ⊆ Q(U).(7.10.2)

It follows that the family of sets Q(U), U ∈ B, is an inverse system, with respect
to the restriction of ΦU,V to Q(V ) for every U, V ∈ B with U � V .

Of course, Q(U) has only finitely many elements for each U ∈ B, because
G/U has only finitely many elements. We also have that Q(U) 6= ∅ for every
U ∈ B, by the second Sylow theorem, as before. Let us take Q(U) to be
equipped with the discrete topology for every U ∈ B, so that Q(U) is compact
and Hausdorff. This implies that the inverse limit

lim
←−

Q(U)(7.10.3)

of the family of Q(U)’s, U ∈ B, is nonempty, as in Section 6.6.
Remember that the family of quotients G/U , U ∈ B, is an inverse system

with respect to the mappings ΦU,V . Similarly, the families of subgroups qU (A),
qU (A

′) of G/U , U ∈ B, are inverse systems with respect to the restrictions of
ΦU,V to qV (A), qV (A

′), because of (7.10.1). Their inverse limits

lim
←−

qU (A)(7.10.4)

and
lim
←−

qU (A
′)(7.10.5)

are subgroups of the inverse limit of G/U , U ∈ B, as in Section 6.9. Of course,
(7.10.3) is a subset of the inverse limit of G/U , U ∈ B, too. One can check that
(7.10.4) and (7.10.5) are conjugate in the inverse limit of G/U , U ∈ B, using
the elements of (7.10.3).

Remember that G is isomorphic to the inverse limit of G/U , U ∈ B, as a
profinite group, as in Section 6.7. Similarly, this isomorphism maps A, A′ onto
(7.10.4), (7.10.5), respectively. This implies that A and A′ are conjugate in G,
as desired.
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7.11 Subgroups of Sylow subgroups

Let p be a prime number, and let G be a finite group. If a subgroup A of G is
a p-group, then the third Sylow theorem states that A is contained in a Sylow
p-subgroup of G.

Let ϕ be a homomorphism from G onto another group H. Also let A be a
subgroup of G that is a p-group, and let C be a Sylow p-subgroup of G with

A ⊆ C.(7.11.1)

Note that ϕ(A) is a p-group, and remember that ϕ(C) is a Sylow p-subgroup of
H, as in Section 7.8. Of course,

ϕ(A) ⊆ ϕ(C).(7.11.2)

Suppose that B is a Sylow p-subgroup of H such that

ϕ(A) ⊆ B.(7.11.3)

Thus B1 = ϕ−1(B) is a subgroup of G that contains A. The third Sylow theorem
implies that there is a Sylow p-subgroup B0 of B1 such that

A ⊆ B0.(7.11.4)

We also have that ϕ(B0) = B under these conditions, as in Section 7.8.
Suppose now that G is a profinite group, and let A be a closed subgroup of

G. Thus A is a profinite group with respect to the induced topology, and we
suppose also that A is a pro-p-group. Part (a) of Proposition 4 of [25] states
that A is contained in a Sylow p-subgroup of G.

Let B be a local base for the topology of G at the identity element, which is
a directed system with respect to the partial order � defined by putting U � V
when U, V ∈ B and V ⊆ U , as before. If U ∈ B, then let qU be the natural
quotient mapping from G onto G/U , and let ΦU,V be the unique homomorphism
from G/V onto G/U that satisfies (7.9.1) when V ∈ B and U � V .

If U ∈ B, then qU (A) is isomorphic to A/(A ∩ U). Note that qU (A) is a
p-group, because A is a pro-p-group. Let PA(U) be the collection of Sylow
p-subgroups of G/U that contain qU (A). The third Sylow theorem implies that
PA(U) 6= ∅.

If U, V ∈ B, U � V , and C ∈ PA(V ), then

ΦU,V (C) ∈ PA(U),(7.11.5)

by the remarks at the beginning of the section. This defines a mapping Φ̃A
U,V

from PA(V ) into PA(U), which maps PA(V ) onto PA(U), as before. If W ∈ B
and V �W , then

Φ̃A
U,V ◦ Φ̃A

V,W = Φ̃A
U,W ,(7.11.6)

by (7.9.2).
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This shows that the family of sets PA(U), U ∈ B, is a surjective inverse

system with respect to the mappings Φ̃A
U,V . Thus the inverse limit

lim
←−

PA(U)(7.11.7)

can be defined as in Section 6.5. We also have that (7.11.7) is nonempty, as in
Section 7.9.

Let us consider an element of (7.11.7), which assigns to each U ∈ B an
element CU of PA(U). If U, V ∈ B and U � V , then

Φ̃A
U,V (CV ) = CU ,(7.11.8)

by definition of the inverse limit. This is the same as saying that ΦU,V maps

CV onto CU , by definition of Φ̃A
U,V .

This means that the family of subgroups CU of G/U , U ∈ B, is a surjective
inverse system with respect to the restrictions of the mappings ΦU,V to CV .
The inverse limit

lim
←−

CU(7.11.9)

is a closed subgroup of
lim
←−

G/U,(7.11.10)

as in Section 7.9. More precisely, (7.11.9) is a Sylow p-subgroup of (7.11.10), as
a profinite group, as before.

Remember that (7.11.10) is isomorphic to G as a profinite group, so that
(7.11.9) corresponds to a Sylow p-subgroup of G, as before. One can check that
this Sylow p-subgroup of G contains A, because CU ∈ PA(U) for every U ∈ B.

7.12 Sylow subgroups and homomorphisms

Let G be a profinite group, and let H be a topological group, where the set
containing only the identity element in H is a closed set. Also let B be a local
base for the topology of G at the identity element consisting of open normal
subgroups, and let ϕ be a continuous homomorphism from G onto H. If U ∈ B,
then ϕ(U) is an open set inH, as in Section 4.14. This implies that the collection
of ϕ(U), U ∈ B, is a local base for the topology of H at the identity element, as
before. In particular, H is profinite too under these conditions.

If U ∈ B, then U is a normal subgroup of G, and we let qG,U be the natural
quotient mapping from G onto G/U . Similarly, ϕ(U) is a normal subgroup of
H, and we let qH,ϕ(U) be the natural quotient mapping from H onto H/ϕ(U).
Observe that there is a unique homomorphism ϕU from G/U onto H/ϕ(U) such
that

ϕU ◦ qG,U = qH,ϕ(U) ◦ ϕ,(7.12.1)

because U is contained in the kernel of the right side.
Let A be a closed subgroup of G, so that A is compact. This implies that

ϕ(A) is compact, and thus closed in H. Let p be a prime number, and suppose
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for the moment that A is a pro-p-group. If U ∈ B, then it follows that qG,U (A)
is a p-group, as in Section 7.7. This implies that ϕU (qG,U (A)) is a p-group. This
means that qH,ϕ(U)(ϕ(A)) is a p-group, by (7.12.1). It follows that ϕ(A) is a
pro-p-group, as before.

Suppose now that the index (G : A) of A in G as a profinite group is not a
multiple of p. If U ∈ B, then we get that the index of qG,U (A) in G/U is not a
multiple of p. This implies that the index of ϕU (qG,U (A)) in H/ϕ(U) is not a
multiple of p. Equivalently, this means that the index of qH,U (ϕ(A)) in H/ϕ(U)
is not a multiple of p, by (7.12.1). It follows that the index (H : ϕ(A)) of ϕ(A)
in H as a profinite group is not a multiple of p under these conditions.

If A is a Sylow p-subgroup of G, as a profinite group, then we obtain that
ϕ(A) is a Sylow p-subgroup of H. This corresponds to part (b) of Proposition
4 on p7 of [25].



Chapter 8

8.1 Inverse systems and injections

Let (I,�) be a nonempty directed set, and let Yj be a nonempty set for every
j ∈ I, as in Section 6.5. Suppose that for every j, l ∈ I with j � l, we have a
mapping ϕj,l from Yl into Yj such that ϕj,j is the identity mapping on Yj for
every j ∈ I, and ϕj,r = ϕj,l ◦ ϕl,r when j, l, r ∈ I satisfy j � l � r, as before.
Remember that the inverse limit of the Yj ’s is defined to be the set Y consisting
of y ∈

∏
j∈I Yj such that ϕl,r(yr) = yl for every l, r ∈ I with l � r.

If l ∈ I, then we let πl be the standard coordinate projection from
∏

j∈I Yj
onto Yl, and we let ρl be the restriction of πl to Y , as before. Thus ρl is
a mapping from Y into Yl, and ϕl,r ◦ ρr = ρl when l, r ∈ I and l � r, by
construction.

Suppose that

ϕj,l is injective as a mapping from Yl into Yj(8.1.1)

for every j, l ∈ I with j � l. Let l ∈ I be given, and let us check that

ρl is injective as a mapping from Y into Yl.(8.1.2)

Equivalently, this means that y ∈ Y is uniquely determined by yl.
If r ∈ I and l � r, then yr is uniquely determined by yl = ϕl,r(yr), because

ϕl,r is injective. If j ∈ I and j � r, then yj = ϕj,r(yr) is uniquely determined
by yr, by the definition of Y . This means that yj is uniquely determined by yl
when j, l � r. Of course, for every j ∈ I there is an r ∈ I such that j, l � r,
because (I,�) is a directed set.

If Yj is a topological space for every j ∈ I, and ϕj,l is continuous as a
mapping from Yl into Yj for every j, l ∈ I with j � l, then we take Y to be
equipped with the topology induced by the corresponding product topology on∏

j∈I Yj , as in Section 6.6. In this case, ρl is continuous as a mapping from Y
into Yl for every l ∈ I, by construction. Suppose that for every j, l ∈ I with
j � l, we have that

ϕj,l is a homeomorphism from Yl onto its image in Yj ,(8.1.3)
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with respect to the induced topology. Under these conditions, one can check
that

ρl is a homeomorphism from Y onto its image in Yl,(8.1.4)

with respect to the induced topology, for every l ∈ I.
Let Z be a set, and suppose now that

Yj ⊆ Z(8.1.5)

for every j ∈ I. If j, l ∈ I and j � l, then suppose that

Yl ⊆ Yj ,(8.1.6)

and let us take ϕj,l to be the natural inclusion mapping from Yl into Yj . This
satisfies the requirments of an inverse system, so that Y and ρl, l ∈ I, can be
defined as before.

Put
X =

⋂
j∈I

Yj ,(8.1.7)

and for each l ∈ I, let θl be the natural inclusion mapping from X into Yl. This
leads to a mapping θ from X into

∏
j∈I Yj , with πl ◦ θ = θl for every l ∈ I, as

in Section 6.5. If l, r ∈ I and l � r, then ϕl,r ◦ θr = θl holds automatically, so
that θ(X) ⊆ Y , as before. In fact, it is easy to see that

θ(X) = Y.(8.1.8)

Note that ρl ◦ θ = θl for every l ∈ I, by construction, as before.
If Z is a topological space, then we may take

Yj to be equipped with the induced topology(8.1.9)

for each j ∈ I. If j, l ∈ I and j � l, then it follows that ϕj,l is a homeomorphism
from Yl onto its image in Yj , with respect to the induced topology. Let us take
X to be equipped with the topology induced by Z, so that θl is a homeomor-
phism from X onto its image in Yl for every l ∈ I. One can check that θ is a
homeomorphism from X onto Y .

Suppose that Z is a Hausdorff topological space, and that Yj is a compact
subset of Z for every j ∈ I. This implies that Yj is a closed set in Z for every
j ∈ I, so that X is a closed set in Z, and in fact X is compact. One can verify
that X 6= ∅, because Yj 6= ∅ for every j ∈ I, by hypothesis. More precisely, one
can consider X as the intersection of a compact set with a nonempty family of
closed sets with the finite intersection property with respect to that closed set.

Let A be a nonempty set, and let Zα be a subset of Z for every α ∈ A. If
α1, . . . , αn are finitely many elements of A, then suppose that

Zα1 ∩ · · · ∩ Zαn(8.1.10)

is nonempty. Of course, the collection of nonempty finite subsets of A is a
directed set, with respect to inclusion. Using this directed set, the corresponding
family of sets of the form (8.1.10) satisfies the conditions mentioned earlier. The
intersection of the sets of the form (8.1.10) is the same as

⋂
α∈A Zα.
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8.2 Semimetrics and partitions

Let X be a set, and let d(x, y) be a semimetric on X. It is easy to see that

d(x, y) = 0(8.2.1)

defines an equivalence relation on X. The corresponding equivalence classes in
X are the same as the closed balls in X of radius 0 with respect to d(·, ·).

Suppose now that d(·, ·) is a semi-ultrametric on X. If r is a positive real
number, then

d(x, y) < r(8.2.2)

defines an equivalence relation on X. The corresponding equivalence classes in
X are the open balls in X of radius r with respect to d(·, ·). Similarly, if r is a
nonnegative real number, then

d(x, y) ≤ r(8.2.3)

defines an equivalence relation on X. The equivalence classes in X correspond-
ing to (8.2.3) are the closed balls in X of radius r with respect to d(·, ·).

Of course, if r = 0, then (8.2.3) is equivalent to (8.2.1). Let us say that a
semimetric d(·, ·) is a discrete semimetric on X if for every x, y ∈ X,

d(x, y) = 0 or 1.(8.2.4)

The discrete metric on X is a discrete semimetric in this sense, and it is the only
metric on X that is a discrete semimetric. It is easy to see that any discrete
semimetric on X is a semi-ultrametric on X.

Let P be a partition of X, which is to say a collection of nonempty pairwise-
disjoint subsets of X whose union is equal to X. This determines an equivalence
relation ∼P on X, where

x ∼P y(8.2.5)

if and only if x and y are elements of the same subset of X in P. In this case,
the elements of P are the same as the equivalence classes in X associated to
∼P . Conversely, every equivalence relation on X leads to a partition of X into
equivalence classes, which determines the same equivalence relation on X in this
way.

If P is a partition of X and x, y ∈ X, then put

dP(x, y) = 0 when x ∼P y(8.2.6)

= 1 otherwise.

One can check that this defines a semi-ultrametric on X, which is the discrete
semimetric on X associated to P. Note that ∼P is the same as the equivalence
relation associated to dP(·, ·) as in (8.2.2) when 0 < r ≤ 1, and as the equivalence
relation associated to dP(·, ·) as in (8.2.3) when 0 ≤ r < 1. Conversely, if d(·, ·)
is any discrete semimetric on X, then d(·, ·) is the same as dP(·, ·) for some



152 CHAPTER 8.

partition P of X. More precisely, one can take P to be the partition of X into
equivalence classes using the equivalence relation (8.2.2) when 0 < r ≤ 1, or the
equivalence relation (8.2.3) when 0 ≤ r < 1.

Note that a collection P of nonempty subsets of X is a partition of X exactly
when every element of X is contained in a unique element of P. If P1, P2 are
partitions of X, then we say that P2 is a refinement of P1 if

every element of P2 is a subset of an element of P1.(8.2.7)

In terms of the corresponding equivalence relations ∼P1 , ∼P2 , this means that
for every x, y ∈ X,

x ∼P2 y implies x ∼P1 y.(8.2.8)

Equivalently, if dP1
(·, ·), dP2

(·, ·) are as in (8.2.6), then P2 is a refinement of P1

if and only if
dP1(x, y) ≤ dP2(x, y)(8.2.9)

for every x, y ∈ X.
Let P1, . . . ,Pn be finitely many partitions of X, and let P be the collection

of nonempty subsets of X of the form

A1 ∩ · · · ∩ An,(8.2.10)

where Aj ∈ Pj for each j = 1, . . . , n. It is easy to see that P is a partition of
X, which is a refinement of each of P1, . . . ,Pn. If ∼P1 , . . . ,∼Pn and ∼P are the
equivalence relations corresponding to P1, . . . ,Pn and P as before, respectively,
then for each x, y ∈ X, we have that

x ∼P y if and only if x ∼Pj
y for every j = 1, . . . , n.(8.2.11)

If dPj (·, ·), 1 ≤ j ≤ n, and dP(·, ·) are as in (8.2.6), then

dP(x, y) = max(dP1
(x, y), . . . , dPn

(x, y))(8.2.12)

for every x, y ∈ X.

8.3 Inverse systems and semimetrics

Let I be a nonempty set, let Xj be a set for each j ∈ I, and let X =
∏

j∈I Xj

be their Cartesian product. Suppose that for each j ∈ I, we have a nonempty
collection Mj of semimetrics on Xj . If l ∈ I and dl ∈ Ml, then let d̃l be the

semimetric defined on X by d̃l(x, y) = dl(xl, yl) for every x, y ∈ X, as in Section
1.1. Put

M̃l = {d̃l : dl ∈ Ml}(8.3.1)

for every l ∈ I, and

M̃ =
⋃
l∈I

M̃l.(8.3.2)
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If l ∈ I, dl ∈ Ml, x ∈ X, and r is a positive real number, then it is easy to
see that

B
X,d̃l

(x, r) = π−1l (BXl,dl
(xl, r)),(8.3.3)

where πl is the natural coordinate projection from X into Xl. Using this, one
can check that

the topology determined on X by M̃(8.3.4)

is the same as the product topology,

where Xj is equipped with the topology determined by Mj for every j ∈ I.
Note that

M̃ is nondegenerate on X when Mj(8.3.5)

is nondegenerate on Xj for each j ∈ I,

where nondegeneracy is as defined in Section 2.1.
Now let (I,�) be a nonempty directed set, and let Yj be a nonempty set for

every j ∈ I, as in Section 6.5. Suppose as before that for every j, l ∈ I with j � l
we have a mapping ϕj,l from Yl into Yj such that ϕj,j is the identity mapping
on Yj for every j ∈ I, and ϕj,r = ϕj,l ◦ ϕl,r when j, l, r ∈ I and j � l � r.
The inverse limit of the Yj ’s is defined as usual to be the set Y of y ∈

∏
j∈I Yj

such that ϕl,r(yr) = yl for every l, r ∈ I with l � r. Let πl be the standard
coordinate projection from

∏
j∈I Yj onto Yl for every l ∈ I, and let ρl be the

restriction of πl to Y , as before.
Suppose that for each j ∈ I we have a nonempty collection Mj of semimet-

rics on Yj , and let us take Yj to be equipped with the topology determined by
Mj , as in Section 2.1. When considering Y as the inverse limit of the Yj ’s as
topological spaces, remember that one asks that ϕj,l be continuous as a map-
ping from Yl into Yj for every j, l ∈ I with j � l, as in Section 6.6. If l ∈ I

and dl ∈ Ml, then let d̃l be the semimetric on
∏

j∈I Yj corresponding to dl as

before. Also let M̃l be as in (8.3.1) again, and let M̃ be as in (8.3.2). Thus the

topology determined on
∏

j∈I Yj by M̃ is the corresponding product topology,
as before.

Let M̃Y be the collection of the restrictions of the elements of M̃ to Y . The
topology determined on Y by M̃Y is the same as the topology induced on Y by
the topology determined on

∏
j∈I Yj by M̃, as in Section 2.1. In this case, this

is
the topology induced on Y by the product topology on

∏
j∈I

Yj ,(8.3.6)

which is the topology on Y considered in Section 6.6. If l ∈ I, dl ∈ Ml, y ∈ Y ,
and r > 0, then

B
Y,d̃l

(y, r) = π−1l (BYl,dl
(yl, r)) ∩ Y,(8.3.7)

where more precisely the left side is the open ball in Y centered at y with radius
r with respect to the restriction of d̃l to Y . This means that

B
Y,d̃l

(y, r) = ρ−1l (BYl,dl
(yl, r)).(8.3.8)
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