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Abstract

These informal notes deal with some spaces of power series and Laurent
series over fields with absolute value functions.
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Part I

Preliminaries

1 Vector spaces and algebras

Let k be a field, let V be a vector space over k, and let X be a nonempty set.
The space of all V -valued functions on X will be denoted c(X,V ). This is a
vector space over k with respect to pointwise addition and scalar multiplication
of functions.

The support of a V -valued function f on X is defined to be the set

supp f = {x ∈ X : f(x) ̸= 0}.(1.1)

Let c00(X,V ) be the set of V -valued functions f on X whose support has only
finitely many elements. It is easy to see that this is a linear subspace of c(X,V ).
Of course, c00(X,V ) is the same as c(X,V ) when X has only finitely many
elements.

If f ∈ c00(X,V ), then the sum ∑
x∈X

f(x)(1.2)

can be defined as an element of V by reducing to the sum over any nonempty
finite subset of X that contains the support of f . The mapping from f to the
sum (1.2) is linear as a mapping from c00(X,V ) into V .

In particular, we can take V = k, considered as a one-dimensional vector
space over itself. If y ∈ X, then let δy(x) be the k-valued function defined on
X by

δy(x) = 1 when y = x(1.3)

= 0 when y ̸= x,

where 0 and 1 are the additive and multiplicative identity elements in k. Thus
δy ∈ c00(X, k) for every y ∈ X, and the collection of δy with y ∈ X is a basis
for c00(X, k), as a vector space over k.

To say that A is an (associative) algebra over k means that A is a vector
space over k equipped with a binary operation of multiplication which is bilinear
over k and satisfies the associative law. If multiplication on A also satisfies the
commutative law, then A is said to be a commutative algebra over k.
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Let A be an algebra over k, and suppose that A has a multiplicative identity
element e, so that

e a = a e(1.4)

for every a ∈ A. Of course, e is unique when it exists, and A = {0} when e = 0.
If e ̸= 0, then a ∈ A is said to be invertible in A when there is a b ∈ A such
that

a b = b a = e.(1.5)

In this case, b is unique, and is denoted a−1. If a1, a2 are invertible elements of
A, then a1 a2 is invertible in A as well, with inverse a−1

2 a−1
1 .

If X is a nonempty set again, then the space c(X, k) of k-valued functions
on X is a commutative algebra over k, with respect to pointwise multiplication
of functions. Let 1X be the k-valued function on X equal to the multiplicative
identity element 1 in k at every x ∈ X. This is the multiplicative identity
element in c(X, k).

If V and W are vector spaces over k, then the space L(V,W ) of all linear
mappings from V into W is a vector space over k with respect to pointwise
addition and multiplication. The space L(V ) = L(V, V ) of all linear mappings
from V into itself is an algebra over k, with composition of mappings as mul-
tiplication. The identity mapping I = IV on V is the multiplicative identity
element in L(V ).

If A1 and A2 are algebras over k, then an (algebra) homomorphism from A1

into A2 is a linear mapping that preserves multiplication, as usual.

2 Polynomials and power series

Let k be a field, and let T be an indeterminate. As in [2, 5], we normally try
to use upper-case letters like T for indeterminates, and lower-case letters for
elements of k, or an algebra over k. A formal polynomial in T with coefficients
in k can be expressed as

f(T ) =

n∑
j=0

fj T
j ,(2.1)

where n is a nonnegative integer and fj ∈ k for j = 0, 1, . . . , n. Similarly, a
formal power series in T with coefficients in k can be expressed as

f(T ) =

∞∑
j=0

fj T
j ,(2.2)

where fj ∈ k for each nonnegative integer j. Thus a formal polynomial may be
considered as a formal power series for which all but finitely many coefficients
are equal to 0.

The spaces of formal polynomials and power series in T with coefficients
in k are denoted k[T ] and k[[T ]], respectively. Let Z+ be the set of positive
integers, so that Z+∪{0} is the set of nonnegative integers. To be more precise,
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k[[T ]] can be identified with the space c(Z+ ∪ {0}, k) of all k-valued functions
on the set of nonnegative integers, by identifying f(T ) ∈ k[[T ]] with j 7→ fj as
a k-valued function on Z+ ∪ {0}. Using this identification, k[T ] corresponds to
the space c00(Z+∪{0}, k) of k-valued functions on Z+∪{0} with finite support.

We can also consider k[[T ]] as a vector space over k with respect to termwise
addition and scalar multiplication, which corresponds to pointwise addition and
scalar multiplication of k-valued functions on Z+∪{0}. Note that k[T ] is a linear
subspace of k[[T ]], just as c00(Z+∪{0}, k) is a linear subspace of c(Z+∪{0}, k).

Let (2.2) and

g(T ) =

∞∑
l=0

gl T
l(2.3)

be formal power series in T with coefficients in k. Their product

f(T ) g(T ) = h(T ) =

∞∑
n=0

hn T
n(2.4)

is defined as a formal power series in T with coefficients in k by putting

hn =

n∑
j=0

fj gn−j(2.5)

for each nonnegative integer n. Of course, this corresponds exactly to multi-
plying f(T ) and g(T ) formally, and collecting terms with the same power of T .
It is well known and not difficult to check that k[[T ]] is a commutative algebra
over k with respect to this definition of multiplication. It is easy to see that
k[T ] is a subalgebra of k[[T ]], because hn = 0 for all but finitely many n ≥ 0
when fj = 0 for all but finitely many j ≥ 0 and gl = 0 for all but finitely many
l ≥ 0.

We can also identify each element of k with the “constant polynomial” such
that the coefficient of T j is the given element of k when j = 0, and is equal to
0 when j ≥ 1. It is easy to see that k corresponds to a subalgebra of k[T ] in
this way. The constant polynomial corresponding to the multiplicative identity
element 1 in k is the multiplicative identity element in k[[T ]].

If a(T ) ∈ k[[T ]], then
∞∑
l=0

a(T )l T l(2.6)

can be defined as an element of k[[T ]], as follows. If l ∈ Z+, then a(T )l is
defined as an element of k[[T ]] using multiplication on k[[T ]], as before. If l = 0,
then a(T )l is interpreted as being the constant polynomial corresponding to 1,
as usual. Thus

n∑
l=0

a(T )l T l(2.7)

is defined as an element of k[[T ]] for every nonnegative integer n. If j is any
nonnegative integer, then the coefficient of T j in a(T )l T l is equal to 0 when
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l > j. This implies that the coefficient of T j in (2.7) does not depend on n
when n ≥ j. In order to define (2.6) as a formal power series in T , we take the
coefficient of T j in (2.6) to be the same as the coefficient of T j in (2.7) when
n ≥ j.

Observe that

(1− a(T )T )

n∑
l=0

a(T )l T l = 1− a(T )n+1 Tn+1(2.8)

for each nonnegative integer n, by a standard computation. Using this, one can
check that

(1− a(T )T )

∞∑
l=0

a(T )l T l = 1,(2.9)

because the coefficient of T j in the left side of (2.9) is the same as the coefficient
of j in the left side of (2.8) when n ≥ j. This shows that 1 − a(T )T has a
mutliplicative inverse in k[[T ]], namely

(1− a(T )T )−1 =

∞∑
l=0

a(T )l T l.(2.10)

If f(T ) ∈ k[[T ]] is as in (2.2) and f0 ̸= 0, then it is easy to see that f(T )
has a multiplicative inverse in k[[T ]], by reducing to the case where f0 = 1 and
applying the remarks in the preceding paragraph. Conversely, if f(T ) has a
multiplicative inverse in k[[T ]], then f0 ̸= 0. This follows from the fact that

f(T ) 7→ f0(2.11)

is an algebra homomorphism from k[[T ]] onto k.
Let A be an algebra over k, and suppose that A has a multiplicative identity

element e. If a ∈ A and f(T ) ∈ k[T ] is as in (2.1), then f(a) can be defined as
an element of A by

f(a) =

n∑
j=0

fj a
j ,(2.12)

where aj is interpreted as being equal to e when j = 0, as usual. One can verify
that the mapping f(T ) 7→ f(a) defines an algebra homomorphism from k[T ]
into A.

3 Laurent polynomials and series

Let k be a field again, and let T be an indeterminate. A formal Laurent poly-
nomial in T with coefficients in k can be expressed as

f(T ) =

n∑
j=−n

fj T
j ,(3.1)
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where n is a nonnegative integer, and fj ∈ k for each integer j with |j| ≤ n. A
formal Laurent series in T with coefficients in k can be expressed as

f(T ) =

∞∑
j=−∞

fj T
j ,(3.2)

where fj ∈ k for each integer j. Thus a formal Laurent polynomial may be
considered as a formal Laurent series for which all but finitely many coefficients
are equal to 0. Formal polynomials and power series in T may be considered as
formal Laurent polynomials and series, respectively, for which the coefficients
of T j are equal to 0 when j < 0.

The space of formal Laurent series in T with coefficients in k can be iden-
tified with the space c(Z, k) of all k-valued functions on the set Z of integers,
by identifying (3.2) with j 7→ fj as a k-valued function on Z. Similarly, the
space of formal Laurent polynomials in T with coefficients in k can be identified
with the space c00(Z, k) of all k-valued functions on Z with finite support. The
space of formal Laurent series in T with coefficients in k is a vector space over k
with respect to termwise addition and scalar multiplication, which corresponds
to pointwise addition and scalar multiplication of k-valued functions on Z. The
space of formal Laurent polynomials in T with coefficients in k is a linear sub-
space of the space of formal Laurent series in T with coefficients in k, just as
c00(Z, k) is a linear subspace of c(Z, k).

Put
c+(Z, k) = {f ∈ c(Z, k) : supp f ⊆ Z+ ∪ {0}},(3.3)

which is a linear subspace of c(Z, k). We can identify c(Z+ ∪ {0}, k) with (3.3),
by identifying a k-valued function on Z+ ∪ {0} with the element of (3.3) whose
restriction to Z+ ∪ {0} is the given function. This corresponds to identifying
formal power series in T with coefficients in k with formal Laurent series in T
with coefficients in k for which the coefficients of T j are equal to 0 when j < 0,
as before. In particular, k[[T ]] corresponds to a linear subspace of the space of
formal Laurent series in T with coefficients in k.

Similarly, put

c+00(Z, k) = {f ∈ c00(Z, k) : supp f ⊆ Z+ ∪ {0}} = c00(Z, k) ∩ c+(Z, k),(3.4)

which is a linear subspace of c00(Z, k). Using the identification of c(Z+∪{0}, k)
with (3.3) mentioned in the preceding paragraph, we get an identification of
c00(Z+ ∪ {0}, k) with (3.4). This corresponds to identifying formal polynomials
in T with coefficients in k with formal Laurent polynomials in T with coefficients
in k for which the coefficients of T j are equal to 0 when j < 0. Thus k[T ]
corresponds to a linear subspace of the space of formal Laurent polynomials in
T with coefficients in k, which is the intersection of k[[T ]] with the space of
formal Laurent polynomials in T with coefficients in k.

Let f(T ) be a formal Laurent series in T with coefficients in k, as in (3.2).
If fj = 0 for all but finitely many j < 0, then we may express f(T ) as

f(T ) =
∑

j>>−∞
fj T

j ,(3.5)
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as in [2]. The space of formal Laurent series in T with coefficients in k of this type
is denoted k((T )). This is a linear subspace of the space of formal Laurent series
in T with coefficients in k, which corresponds to the linear subspace of c(Z, k)
consisting of k-valued functions on Z that are equal to 0 at all but finitely many
negative integers. Note that k[[T ]] and the space of formal Laurent polynomials
in T with coefficients in k are linear subspaces of k((T )).

Let (3.5) and

g(T ) =
∑

l>>−∞

gl T
l(3.6)

be elements of k((T )). Their product

f(T ) g(T ) = h(T ) =

∞∑
n=−∞

hn T
n(3.7)

is defined as a formal Laurent series in T with coefficients in k by putting

hn =
∞∑

j=−∞
fj gn−j(3.8)

for each n ∈ Z. More precisely, one can check that all but finitely many terms
in the sum on the right side of (3.8) are equal to 0 in this situation, so that
the sum defines an element of k. One can also verify that hn = 0 for all but
finitely many n < 0, so that (3.7) is an element of k((T )) too. Similarly, if f(T )
and g(T ) are formal Laurent polynomials in T , then (3.7) is a formal Laurent
polynomial in T .

As before, one can check that k((T )) is a commutative algebra over k with
respect to this definition of multiplication. The space of formal Laurent poly-
nomials in T with coefficients in k is a subalgebra of k((T )). The product (3.7)
reduces to the one defined in the previous section when f(T ) and g(T ) are for-
mal power series in T , so that k[[T ]] corresponds to a subalgebra of k((T )) as
well. Each element of k can be identified with the “constant” formal Laurent
polynomial for which the coefficient of T j is equal to the given element of k
when j = 0, and is equal to 0 when j ̸= 0. This identifies k with a subalgebra of
k((T )), which corresponds to the subalgebra of k[T ] mentioned in the previous
section.

In particular, the constant formal Laurent series corresponding to the multi-
plicative identity element 1 in k is the multiplicative identity element in k((T )).
It is easy to see that every nonzero element f(T ) of k((T )) has a multiplicative
inverse in k((T )), using the description of multiplicative inverses in k[[T ]] in the
previous section. Thus k((T )) is a field, which contains a copy of k.

Let A be an algebra over k with a multiplicative identity element e, and let
a be an invertible element of A. If f(T ) is a formal Laurent polynomial in T
with coefficients in k, as in (3.1), then

f(a) =

n∑
j=−n

fj a
j(3.9)
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defines an element of A. Of course, this reduces to (2.12) when f(T ) ∈ k[T ].
One can check that the mapping f(T ) 7→ f(a) defines a homomorphism from
the algebra of formal Laurent polynomials in T with coefficients in k into A, as
before.

4 Some inequalities

Let X be a nonempty set, and let f be a nonnegative real-valued function on
X with finite support. Put

∥f∥r =
( ∑

x∈X

f(x)r
)1/r

(4.1)

for every positive real number r, and

∥f∥∞ = max
x∈X

f(x).(4.2)

Observe that
∥f∥∞ ≤ ∥f∥r(4.3)

for every 0 < r < ∞. If 0 < r1 ≤ r2 < ∞, then

∥f∥r2r2 =
∑
x∈X

f(x)r2 ≤ ∥f∥r2−r1
∞

∑
x∈X

f(x)r1 = ∥f∥r2−r1
∞ ∥f∥r1r1 .(4.4)

This implies that

∥f∥r2 ≤ ∥f∥1−(r1/r2)
∞ ∥f∥r1/r2r1 ≤ ∥f∥r1 ,(4.5)

using (4.3) in the second step. If 0 < r < ∞, then it is easy to see that

∥f∥r ≤ (# supp f)1/r ∥f∥∞,(4.6)

where # supp f is the number of elements of the support of f . It follows that

lim
r→∞

∥f∥r = ∥f∥∞,(4.7)

using (4.2) and (4.6).
If a and b are nonnegative real numbers, then

max(a, b) ≤ (ar + br)1/r ≤ 21/r max(a, b).(4.8)

This corresponds to (4.3) and (4.6), where the support of f has at most two
elements. Hence

lim
r→∞

(ar + br)1/r = max(a, b),(4.9)

as in (4.7). Similarly, if 0 < r1 ≤ r2 < ∞, then

(ar2 + br2)1/r2 ≤ (ar1 + br1)1/r1 ,(4.10)
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by (4.5). This implies that

(a+ b)r ≤ ar + br(4.11)

when 0 < r ≤ 1, by taking r1 = r and r2 = 1 in (4.10).
Let f , g be nonnegative real-valued functions on X with finite support. If

0 < r ≤ 1, then

∥f + g∥rr =
∑
x∈X

(f(x) + g(x))r ≤
∑
x∈X

f(x)r +
∑
x∈X

g(x)r = ∥f∥rr + ∥g∥rr.(4.12)

This uses (4.11) in the second step. If 1 ≤ r ≤ ∞, then it is well known that

∥f + g∥r ≤ ∥f∥r + ∥g∥r.(4.13)

This is Minkowski’s inequality for finite sums. Of course, (4.12) and (4.13) are
the same when r = 1, in which case the inequalities are clearly equalities. It is
also easy to verify (4.13) directly when r = ∞.

5 q-Metrics and q-semimetrics

Let X be a set, and let q be a positive real number. A nonnegative real-valued
function d(x, y) defined for x, y ∈ X is said to be a q-semimetric on X if it
satisfies the following three conditions. First,

d(x, x) = 0 for every x ∈ X.(5.1)

Second,
d(x, y) = d(y, x) for every x, y ∈ X.(5.2)

Third,
d(x, z)q ≤ d(x, y)q + d(y, z)q for every x, y, z ∈ X.(5.3)

If we also have that

d(x, y) > 0 for every x, y ∈ X with x ̸= y,(5.4)

then d(x, y) is said to be a q-metric on X. A q-metric or q-semimetric with
q = 1 is also known simply as a metric or semimetric, as appropriate.

A nonnegative real-valued function d(x, y) defined for x, y ∈ X is said to be
a semi-ultrametric on X if it satisfies (5.1), (5.2), and

d(x, z) ≤ max(d(x, y), d(y, z)) for every x, y, z ∈ X.(5.5)

If (5.4) also holds, then d(x, y) is said to be an ultrametric on X.
Observe that (5.3) is equivalent to saying that

d(x, z) ≤ (d(x, y)q + d(y, z)q)1/q for every x, y ∈ X.(5.6)
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The right side of of the inequality in (5.5) is the same as the limit of the right
side of the inequality in (5.6) as q → ∞, as in (4.9). Thus we may consider
ultrametrics and semi-ultrametrics as q-metrics and q-semimetrics with q = ∞,
respectively.

The right side of the inequality in (5.6) decreases monotonically in q, as in
(4.10). This includes the right side of the inequality in (5.5) as the analogue
of the right side of the inequality in (5.6) with q = ∞, by the first inequality
in (4.8). If 0 < q1 ≤ q2 ≤ ∞ and d(x, y) is a q2-semimetric on X, then it
follows that d(x, y) is a q1-semimetric on X as well. Of course, this implies the
analogous statement for q-metrics.

The discrete metric is defined on X by putting d(x, y) equal to 1 when x ̸= y,
and to 0 when x = y, as usual. It is easy to see that the discrete metric is an
ultrametric on X.

Let d(x, y) be a nonnegative real-valued function defined for x, y ∈ X again,
and let a be a positive real number. It is easy to see that d(x, y) is a q-semimetric
on X for some q > 0 if and only if

d(x, y)a(5.7)

is a (q/a)-semimetric on X. Similarly, d(x, y) is a q-metric on X if and only if
(5.7) is a (q/a)-metric on X. This includes the q = ∞ case, with q/a interpreted
as being ∞ too.

Let d(x, y) be a q-semimetric on a set X for some q > 0. The open ball in
X centered at a point x ∈ X and with radius r > 0 is defined as usual by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) < r}.(5.8)

Similarly, the closed ball in X centered at x ∈ X with radius r ≥ 0 is defined
by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) ≤ r}.(5.9)

If a is a positive real number, then

Bda(x, ra) = Bd(x, r)(5.10)

for every x ∈ X and r > 0, and

Bda(x, ra) = Bd(x, r)(5.11)

for every x ∈ X and r ≥ 0.
The topology determined on X by d(·, ·) is defined as usual by saying that

U ⊆ X is an open set if for every x ∈ U there is an r > 0 such that Bd(x, r) ⊆ U .
It is easy to see that an open set with respect to d(·, ·) is the same as an open
set with respect to (5.7) for any a > 0, because of (5.11). In particular, one can
use this to reduce to the case of ordinary semimetrics, by taking a = q when
q < 1. One can check that this collection of open sets defines a topology on X,
for which open balls are open sets, and closed balls are closed sets. If d(·, ·) is a
q-metric on X, then X is Hausdorff with respect to this topology.
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If d(·, ·) is a semi-ultrametric on X, then one can check that open balls are
closed sets, and that closed balls in X of positive radius are open sets.

One can define uniform continuity of mappings with respect to q-semimetrics
and q-metrics in the same way as for ordinary semimetrics and metrics, and with
possibly different q’s for the domain and range. Note that uniform continuity
is preserved when the q-semimetrics or q-metrics on the domain or range are
replaced with positive powers of themselves, as in (5.7).

Similarly, Cauchy sequences and completeness can be defined with respect to
a q-metric, in the same way as for an ordinary metric. These are also preserved
when the q-metric is replaced with a positive power of itself, as in (5.7).

6 q-Absolute value functions

Let k be a field, and let q be a positive real number. A nonnegative real-valued
function | · | defined on k is said to be a q-absolute value function if it satisfies
the following three conditions. First,

|x| = 0 if and only if x = 0.(6.1)

Second,
|x y| = |x| |y| for every x, y ∈ k.(6.2)

Third,
|x+ y|q ≤ |x|q + |y|q for every x, y ∈ k.(6.3)

If these conditions hold with q = 1, then | · | is said to be an absolute value
function on k. The standard absolute value functions on the fields R and C of
real and complex numbers are absolute value functions in this sense.

If a nonnegative real-valued function | · | on a field satisfies (6.1) and (6.2),
then it is easy to see that |1| = 1, where the first 1 is the multiplicative identity
element in k, and the second 1 is the multiplicative identity element in R. This
uses the fact that 12 = 1 in k, so that 0 < |1| = |1|2. Similarly, if x ∈ k satisfies
xn = 1 for some positive integer n, then |x| = 1, because |x|n = |xn| = 1.
In particular, | − 1| = 1, where −1 is the additive inverse of 1 in k, because
(−1)2 = 1.

If | · | is a q-absolute value function on k for some q > 0, then

d(x, y) = |x− y|(6.4)

defines a q-metric on k. This uses the fact that | − 1| = 1 to get that (6.4) is
symmetric in x and y.

A nonnegative real-valued function | · | defined on a field k is said to be an
ultrametric absolute value function on k if it satisfies (6.1), (6.2), and

|x+ y| ≤ max(|x|, |y|) for every x, y ∈ k.(6.5)

In this case, (6.4) defines an ultrametric on k. The trivial absolute value function
is defined on any field k by putting |0| = 0 and |x| = 1 for every x ∈ k with x ̸= 0.
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This is an ultrametric absolute value function on k, for which the corresponding
ultrametric is the discrete metric.

Note that (6.3) is equivalent to asking that

|x+ y| ≤ (|x|q + |y|q)1/q for every x, y ∈ k.(6.6)

The right side of this inequality tends to the right side of the inequality in (6.5)
as q → ∞, as in (4.9). An ultrametric absolute value function on k may also
be considered as a q-absolute value function with q = ∞. If 0 < q1 ≤ q2 ≤ ∞
and | · | is a q2-absolute value function on k, then one can check that | · | is a
q1-absolute value function on k, using (4.8) and (4.10).

If p is a prime number, then the p-adic absolute value |x|p of a rational
number x is defined as follows. Of course, we put |0|p = 0. Otherwise, if x ̸= 0,
then x can be expressed as pj (a/b), where a, b, and j are integers, a, b ̸= 0, and
neither a nor b is an integer multiple of p, and we put

|x|p = p−j .(6.7)

One can check that this defines an ultrametric absolute value function on the
field Q of rational numbers. The corresponding ultrametric

dp(x, y) = |x− y|p(6.8)

is known as the p-adic metric on Q.
Let | · | be a q-absolute value function on a field k for some q > 0. If k

is not already complete with respect to the associated q-metric (6.4), then one
can pass to a completion, using standard arguments. The completion is also a
field with a q-absolute value function, which contains k as a dense subfield. The
completion is unique up to suitable isomorphic equivalence.

If p is a prime number, then the field Qp of p-adic numbers is obtained by
completing Q with respect to the p-adic metric, as in the preceding paragraph.
The natural extensions of the p-adic absolute value and metric toQp are denoted
in the same way as on Q.

Let | · | be a nonnegative real-valued function on a field k again, and let a
be a positive real number. One can check that | · | is a q-absolute value function
on k for some q > 0 if and only if

| · |a(6.9)

is a (q/a)-absolute value function. In this case, the (q/a)-metric associated to
(6.9) is the same as the ath power of the q-metric (6.4) associated to | · |. In
particular, these (q/a) and q-metrics determine the same topology on k, as in
the previous section.

Let | · |1 and | · |2 be q1 and q2-absolute value functions on k, for some
q1, q2 > 0. If there is a positive real number a such that

|x|2 = |x|a1(6.10)
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for every x ∈ k, then | · |1 and | · |2 are said to be equivalent on k. This implies
that the topologies determined on k by the associated q1 and q2-metrics are the
same, as in the preceding paragraph. Conversely, it is well known that | · |1 and
| · |2 are equivalent on k when the topologies determined on k by the associated
q1 and q2-metrics are the same. Note that one can reduce to the case where
q1 = q2 = 1, by replacing | · |1 with | · |q11 when q1 ≤ 1, and similarly for | · |2.

7 q-Norms and q-seminorms

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let V
be a vector space over k. A nonnegative real-valued function N on V is said to
be a q-seminorm on V with respect to | · | on k for some positive real number
q if it satisfies the following two conditions. First,

N(t v) = |t|N(v) for every t ∈ k and v ∈ V.(7.1)

Second,
N(v + w)q ≤ N(v)q +N(w)q for every v, w ∈ V.(7.2)

Note that (7.1) implies that N(0) = 0, by taking t = 0. If N also satisfies

N(v) > 0 for every v ∈ V with v ̸= 0,(7.3)

then N is said to be a q-norm on V with respect to | · | on k. As usual, we may
simply use the terms norm and seminorm when q = 1.

If a nonnegative real-valued function N on V satisfies (7.1) and

N(v + w) ≤ max(N(v), N(w)) for every v, w ∈ V,(7.4)

then N is said to be a semi-ultranorm on V with respect to | · | on k. If N also
satisfies (7.3), then N is said to be an ultranorm on V with respect to | · | on k.

As before, (7.2) is equivalent to saying that

N(v + w) ≤ (N(v)q +N(w)q)1/q for every v, w ∈ V.(7.5)

An ultranorm or semi-ultranorm on V may be considered as a q-norm or q-
seminorm, as appropriate, with q = ∞, because the right side of the inequality
in (7.5) tends to the right side of the inequality in (7.4) as q → ∞, by (4.9). If
0 < q1 ≤ q2 ≤ ∞ and N is a q2-norm or q2-seminorm on V with respect to | · |
on k, then N is a q1-norm or q1-seminorm on V too, as appropriate, by (4.8)
and (4.10).

If N is a q-norm or q-seminorm on V with respect to | · | on k for some q > 0,
then

d(v, w) = dN (v, w) = N(v − w)(7.6)

defines a q-metric or q-semimetric on V , as appropriate. Note that | · | may be
considered as a qk-norm on k with respect to itself, and where k is considered
as a one-dimensional vector space over itself.
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Let a be a positive real number, and remember that | · |a defines a (qk/a)-
absolute value function on k, as in the previous section. One can check that
a nonnegative real-valued function N on V is a q-norm or q-seminorm with
respect to | · | on k if and only if

N(v)a(7.7)

is a (q/a)-norm or (q/a)-seminorm on V with respect to |·|a on k, as appropriate.
Of course,

dNa(v, w) = N(v − w)a = dN (v, w)a(7.8)

for every v, w ∈ V in this situation.
Suppose for the moment that | · | is the trivial absolute value function on

k. In this case, the trivial ultranorm is defined on V by putting N(0) = 0 and
N(v) = 1 for every v ∈ V with v ̸= 0. It is easy to see that this defines an
ultranorm on V , for which the associated ultrametric as in (7.6) is the discrete
metric on V .

Let | · | be any qk-absolute value function on k again, and suppose that N
is a q-seminorm on V with respect to | · | on k for some q > 0. If N(v) > 0 for
some v ∈ V , then one can check that | · | is a q-absolute value function on k.

8 Absolute values on k((T ))

Let k be a field, let T be an indeterminate, and remember that k((T )) denotes
the space of formal Laurent series in T with coefficients in k such that the
coefficient of T j is equal to 0 for all but finitely many j < 0, as in Section 3. If

f(T ) =
∑

j>>−∞
fj T

j(8.1)

is a nonzero element of k((T )), then let j0(f(T )) be the unique integer such
that fj0(f(T )) ̸= 0 and fj = 0 when j < j0(f(T )). Otherwise, let us take
j0(f(T )) = ∞ when f(T ) = 0. If

g(T ) =
∑

j>>−∞
gj T

j(8.2)

is another element of k((T )), then it is easy to see that

j0(f(T ) + g(T )) ≥ min(j0(f(T )), j0(g(T )))(8.3)

and
j0(f(T ) g(T )) = j0(f(T )) + j0(g(T )),(8.4)

with suitable interpretations when any of these terms is ∞.
Let r be a positive real number with r ≤ 1. If f(T ) ∈ k((T )), then put

|f(T )|r = r−j0(f(T ))(8.5)
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when f(T ) ̸= 0, and |0|r = 0. One can check that | · |r defines an ultrametric
absolute value function on the field k((T )), using (8.3) and (8.4). If r = 1, then
| · |r is the same as the trivial absolute value function on k((T )). If a is a positive
real number, then 0 < ra ≤ 1, and

|f(T )|ra = |f(T )|ar(8.6)

for every f(T ) ∈ k((T )).
Let us suppose from now on in this section that r < 1. If l ∈ Z, then

f(T ) ∈ k((T )) satisfies
|f(T )|r ≤ r−l(8.7)

if and only if j0(f(T )) ≥ l, which is the same as saying that

fj = 0 when j < l.(8.8)

Let T l k[[T ]] be the collection of formal Laurent series in T with coefficients in
k that can be expressed as T l times a formal power series in T with coefficients
in k. This is the same as the collection of f(T ) ∈ k((T )) that satisfy (8.7), or
equivalently (8.8).

A subset of k((T )) is bounded with respect to |·|r when there is a finite upper
bound for |f(T )|r for elements f(T ) of the set. This is the same as saying that
the set is contained in T l0 k[[T ]] for some l0 ∈ Z, by the remarks in the preceding
paragraph. A sequence of elements of k((T )) is said to be bounded with respect
to | · |r when the set of terms of the sequence is bounded with respect to | · |r. If a
sequence of elements of k((T )) converges to an element of k((T )) with respect to
the ultrametric associated to | · |r, then that sequence is bounded with respect
to | · |r, by standard arguments. Similarly, Cauchy sequences in k((T )) with
respect to the ultrametric associated to | · |r are bounded with respect to | · |r.

As before, f(T ), g(T ) ∈ k((T )) satisfy

|f(T )− g(T )|r ≤ r−l(8.9)

for some l ∈ Z if and only if

fj = gj when j < l.(8.10)

Given a sequence of elements of k((T )), we get for each j ∈ Z a corresponding
sequence of coefficients of T j in k. Let us say that the sequence is termwise
eventually constant if for each j ∈ Z, the corresponding sequence of coefficients
of T j in k is eventually constant. Similarly, let us say that the sequence converges
termwise to f(T ) ∈ k((T )) if for each j ∈ Z, the terms of the corresponding
sequence of coefficients of T j in k are eventually equal to the coefficient fj or
T j in f(T ).

If a sequence in k((T )) is a Cauchy sequence with respect to the ultrametric
associated to | · |r, then the sequence is termwise eventually constant. If a
sequence in k((T )) converges to f(T ) ∈ k((T )) with respect to the ultrametric
associated to | · |r, then the sequence converges termwise to f(T ). In both cases,
the converse holds when the sequence is bounded with respect to | · |r.
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If a sequence of elements of k((T )) is termwise eventually constant, then the
eventual constant values of the coefficients of T j for each j ∈ Z can be used to
define a formal Laurent series f(T ) in T with coefficients in k. If the sequence
in k((T )) is also bounded with respect to | · |r, then f(T ) ∈ k((T )). It follows
that k((T )) is complete with respect to the ultrametric associated to | · |r.

9 q-Banach spaces and infinite series

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let V
be a vector space over k with a q-norm N with respect to |·| on k for some q > 0.
If V is complete with respect to the q-metric associated to N , then V is said to
be a q-Banach space with respect to N . If q = 1, then we may simply say that
V is a Banach space. If V is not complete, then one can pass to a completion
to get a q-Banach space, using standard arguments. The completion is unique
up to suitable isometric linear equivalence.

As usual, an infinite series
∞∑
j=1

vj(9.1)

with terms in V is said to converge with respect to N if the corresponding
sequence of partial sums

n∑
j=1

vj(9.2)

converges to an element of V with respect to the q-metric associated to N . In
this case, the value of the sum (9.1) is defined to be the limit of the partial sums
(9.2). If (9.1) converges and t ∈ k, then

∑∞
j=1 t vj converges in V too, with

∞∑
j=1

t vj = t

∞∑
j=1

vj ,(9.3)

by standard arguments. Similarly, if
∑∞

j=1 wj is another convergent series with

terms in V , then
∑∞

j=1(vj + wj) converges in V as well, with

∞∑
j=1

(vj + wj) =

∞∑
j=1

vj +

∞∑
j=1

wj .(9.4)

The sequence (9.2) of partial sums is a Cauchy sequence in V with respect
to the q-metric associated to N if and only if for every ϵ > 0 there is a positive
integer L such that

N
( n∑

j=l

vj

)
< ϵ(9.5)

for every n ≥ l ≥ L. In particular, this implies that

lim
j→∞

N(vj) = 0,(9.6)
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by taking l = n in (9.5). Of course, if (9.1) converges in V , then the sequence of
partial sums (9.2) is a Cauchy sequence with respect to the q-metric associated
to N , because convergent sequences are Cauchy sequences.

Suppose for the moment that q < ∞. An infinite series (9.1) with terms in
V is said to converge q-absolutely with respect to N if

∞∑
j=1

N(vj)
q(9.7)

converges as an infinite series of nonnegative real numbers. We may refer to
this as absolute convergence with respect to N when q = 1. Observe that

N
( n∑

j=l

vj

)q

≤
n∑

j=l

N(vj)
q(9.8)

for every n ≥ l ≥ 1, by the q-norm version of the triangle inequality. If (9.1)
converges q-absolutely with respect to N , then one can use (9.8) to verify that
the Cauchy condition (9.5) holds. If V is a q-Banach space with respect to N ,
then it follows that (9.1) converges in V . One can also check that

N
( ∞∑

j=1

vj

)q

≤
∞∑
j=1

N(vj)
q(9.9)

under these conditions, using (9.8).
Suppose now that q = ∞, so that N is an ultranorm on V . Thus

N
( n∑

j=l

vj

)
≤ max

l≤j≤n
N(vj)(9.10)

for every n ≥ l ≥ 1, by the ultranorm version of the triangle inequality. If (9.6)
holds, then it is easy to see that the Cauchy condition (9.5) holds too, using
(9.10). This implies that (9.1) converges in V when V is a Banach space with
respect to N . In this situation, one can verify that

N
( ∞∑

j=1

vj

)
≤ max

j≥1
N(vj),(9.11)

using (9.10). Note that the maximum on the right side of (9.11) is automatically
attained, because of (9.6). This is trivial when vj = 0 for every j ≥ 1, and
otherwise the maximum can be reduced to finitely many terms.

10 Bounded linear mappings

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V , W be vector spaces over k. Also let NV , NW be qV , qW -seminorms on V ,
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W , respectively, for some qV , qW > 0, and with respect to | · | on k. A linear
mapping T from V into W is said to be bounded with respect to NV , NW if
there is a nonnegative real number C such that

NW (T (v)) ≤ C NV (v)(10.1)

for every v ∈ V . This implies that

NW (T (u)− T (v)) = NW (T (u− v)) ≤ C NV (u− v)(10.2)

for every u, v ∈ V , so that T is uniformly continuous with respect to the qV ,
qW -semimetrics associated to NV , NW on V , W , respectively.

Let BL(V,W ) be the space of bounded linear mappings from V into W with
respect to NV , NW . If T ∈ BL(V,W ), then put

∥T∥op = ∥T∥op,VW = inf{C ≥ 0 : (10.1) holds},(10.3)

where more precisely the infimum is taken over all nonnegative real numbers C
for which (10.1) holds. It is easy to see that (10.1) holds with C = ∥T∥op, so
that the infimum is automatically attained. One can check that BL(V,W ) is a
vector space over k with respect to pointwise addition and scalar multiplication,
and that (10.3) is a qW -seminorm on BL(V,W ) with respect to | · | on k.

Let Z be another vector space over k, and let NZ be a qZ-seminorm on Z
with respect to | · | on k, for some qZ > 0. If T1 is a bounded linear mapping
from V into W with respect to NV , NW , and T2 is a bounded linear mapping
from W into Z with respect to NW , NZ , then their composition T2 ◦ T1 is a
bounded linear mapping from V into Z with respect to NV , NZ . More precisely,
if v ∈ V , then

NZ((T2 ◦ T1)(v)) = NZ(T2(T1(v))) ≤ ∥T2∥op,WZ NW (T1(v))

≤ ∥T1∥op,VW ∥T2∥op,WZ NV (v).(10.4)

This implies that T2 ◦ T1 is bounded, with

∥T2 ◦ T1∥op,V Z ≤ ∥T1∥op,VW ∥T2∥op,WZ .(10.5)

Let us suppose from now on in this section that NW is a qW -norm on W .
This implies that (10.3) is a qW -norm on BL(V,W ). If W is also complete with
respect to the qW -metric associated to NW , then one can check that BL(V,W )
is complete with respect to the qW -metric associated to (10.3), using standard
arguments.

Suppose that NV is a qV -norm on V , and let V0 be a linear subspace of
V that is dense in V with respect to the qV -metric associated to NV . Note
that the restriction of NV to V0 defines a qV -norm on V0 with respect to | · |
on k. Let T0 be a bounded linear mapping from V0 into W , with respect to
the restriction of NV to V0, and NW on W . In particular, T0 is uniformly
continuous with respect to the restriction of the qV -metric associated to NV to
V0, and the qW -metric associated to NW on W . If W is complete with respect
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to the qW -metric associated to NW , then there is a unique extension of T0 to a
uniformly continuous mapping from V into W . This follows from a well-known
extension theorem for uniformly continuous mappings between metric spaces,
which is easily extended to q-metric spaces. In this situation, the extension is
a bounded linear mapping from V into W , with the same operator qW -norm as
T0 has on V0.

11 Submultiplicative q-seminorms

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
A be an algebra over k. Also let N be a q-seminorm on A with respect to | · |
on k for some q > 0. If

N(x y) ≤ N(x)N(y)(11.1)

for every x, y ∈ A, then N is said to be submultiplicative on A. Similarly, N is
said to be multiplicative on A if

N(x y) = N(x)N(y)(11.2)

for every x, y ∈ A.
Suppose that A has a multiplicative identity element e. If N is submulti-

plicative on A, then N(x) ≤ N(e)N(x) for every x ∈ A. If N(x) > 0 for some
x ∈ A, then it follows that

N(e) ≥ 1.(11.3)

Similarly, if N is multiplicative on A, then N(x) = N(e)N(x) for every x ∈ A.
If N(x) > 0 for some x ∈ A, then we get that

N(e) = 1.(11.4)

Suppose that N is a submultiplicative q-norm on A with respect to | · | on
k for some q > 0. If A is complete with respect to the q-metric associated to
N , then A is said to be a q-Banach algebra with respect to N . As usual, one
may simply say that A is a Banach algebra when q = 1. If A is not complete,
then one can pass to a completion, by standard arguments, which is unique up
to a suitable isometric isomorphic equivalence. Sometimes the requirement that
A have a multiplicative identity element e with N(e) = 1 is included in the
definition of a q-Banach algebra.

Let V be a vector space over k, and let NV be a qV -seminorm on V with
respect to | · | on k. Consider the space BL(V ) = BL(V, V ) of bounded linear
mappings from V into itself, using NV on the domain and range. This is an alge-
bra over k, with composition of mappings as multiplication. The corresponding
operator qV -seminorm ∥ · ∥op = ∥ · ∥op,V V defined in the previous section is
submultiplicative on BL(V ), as in (10.5). The identity mapping I = IV on V
is bounded with respect to NV , with

∥I∥op = 1(11.5)
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when N(v) > 0 for some v ∈ V , and ∥I∥op = 0 otherwise. Of course, I is
the multiplicative identity element in BL(V ). If NV is a qV -norm on V , and
V is complete with respect to the qV -metric associated to NV , then ∥ · ∥op is
a qV -norm on BL(V ), and BL(V ) is complete with respect to the associated
qV -metric, as in the previous section. This means that BL(V ) is a qV -Banach
algebra with respect to ∥ · ∥op, at least if V ̸= {0}, so that (11.5) holds, if that
is included in the definition of a q-Banach algebra.

12 Multiplication operators

Let k be a field, and let A be an algebra over k. If a ∈ A, then put

Ma(x) = a x(12.1)

for every x ∈ A. Thus Ma is a linear mapping from A into itself, where A is
considered simply as a vector space over k. If b ∈ A too, then

(Ma ◦Mb)(x) = Ma(Mb(x)) = Ma(b x) = a b x = Ma b(x)(12.2)

for every x ∈ A. This means that

Ma ◦Mb = Ma b(12.3)

as linear mappings from A into itself. It is easy to see that

a 7→ Ma(12.4)

is linear as a mapping from A into the algebra L(A) of linear mappings from A
into itself, where A is considered as a vector space over k again. More precisely,
(12.4) is an algebra homomorphism from A into L(A), because of (12.3). If A
has a multiplicative identity element e, then Me is the identity operator on A.
In this case, (12.4) is injective, because

Ma(e) = a e = a(12.5)

for every a ∈ A.
Let | · | be a qk-absolute value function on k for some qk > 0, and let N be

a submultiplicative q-seminorm on A with respect to | · | on k for some q > 0.
Let a ∈ A be given, and observe that

N(Ma(x)) = N(a x) ≤ N(a)N(x)(12.6)

for every x ∈ A. This means that Ma is bounded as a linear mapping from A
into itself, with respect to N on the domain and range, and that

∥Ma∥op ≤ N(a).(12.7)

It follows that (12.4) is bounded as a linear mapping from A into BL(A), with
respect to N on A and the corresponding operator q-seminorm ∥·∥op on BL(A).
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More precisely, the corresponding operator q-seminorm of (12.4) is less than or
equal to 1, by (12.7).

If A has a multiplicative identity element e, then

N(a) = N(Ma(e)) ≤ ∥Ma∥op N(e)(12.8)

for every a ∈ A. If N(e) = 1, then we get that

∥Ma∥op = N(a)(12.9)

for every a ∈ A.

13 Supremum q-seminorms

Let X be a nonempty set, and let k be a field with a qk-absolute value function
| · | for some qk > 0. Also let V be a vector space over k, and let NV be a qV -
seminorm on V with respect to | · | on k for some qV > 0. A V -valued function
f on X is said to be bounded with respect to NV if NV (f(x)) is bounded as a
nonnegative real-valued function on X. Let ℓ∞(X,V ) be the space of V -valued
functions on X that are bounded with respect to NV , and put

∥f∥∞ = ∥f∥ℓ∞(X,V ) = sup
x∈X

NV (f(x))(13.1)

for every such function. One can check that ℓ∞(X,V ) is a linear subspace of
the space c(X,V ) of all V -valued functions on X, and that (13.1) defines a
qV -seminorm on ℓ∞(X,V ) with respect to | · | on k.

Suppose for the moment that NV is a qV -norm on V , which implies that
(13.1) is a qV -norm on ℓ∞(X,V ). If V is complete with respect to the qV -
metric associated to NV , then ℓ∞(X,V ) is complete with respect to the qV
norm associated to (13.1), by standard arguments.

Let A be an algebra over k, and consider the space c(X,A) of all A-valued
functions on X. This is an algebra over k too, with respect to pointwise mul-
tiplication of functions. If A has a multiplicative identity element e, then the
constant function on X equal to e at every point is the multiplicative identity
element in c(X,A).

Let NA be a submultiplicative qA-seminorm on A with respect to | · | on
k for some qA > 0. Using NA, we can define the space ℓ∞(X,A) of A-valued
functions on X that are bounded with respect to NA, as before. It is easy to see
that ℓ∞(X,A) is a subalgebra of c(X,A), and that the corresponding supremum
qA-seminorm ∥f∥∞ is submultiplicative on ℓ∞(X,A).

Now let X be a nonempty topological space, and let V be a vector space over
k with a qV -seminorm NV with respect to | · | on k for some qV > 0 again. The
qV -semimetric on V associated to NV determines a topology on V , as usual.
Let C(X,V ) be the space of V -valued functions on X that are continuous with
respect to this topology on V . This is a linear subspace of the space c(X,V )
of all V -valued functions on X, by standard arguments. Of course, if X is
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equipped with the discrete topology, then every function on X is continuous, so
that C(X,V ) is the same as c(X,V ).

Let E be a nonempty compact subset of X. If f ∈ C(X,V ), then f(E) is a
compact subset of V . This implies that f(E) is bounded with respect to NV ,
so that NV (f(x)) is bounded as a nonnegative real-valued function on E. Put

∥f∥sup,E = sup
x∈E

NV (f(x)).(13.2)

One can check that this defines a qV -seminorm on C(X,V ) with respect to | · |
on k, which is the supremum qV -seminorm associated to E and NV .

Let
Cb(X,V ) = C(X,V ) ∩ ℓ∞(X,V )(13.3)

be the space of V -valued functions on X that are both bounded and continuous
with respect to NV on V . This is a linear subspace of C(X,V ) and ℓ∞(X,V ).
If f ∈ Cb(X,V ), then we may also use ∥f∥sup for the supremum qV -seminorm
(13.1). Note that Cb(X,V ) is a closed set in ℓ∞(X,V ) with respect to the supre-
mum qV -semimetric, which is the qV -semimetric associated to the supremum
qV -seminorm, by standard arguments. If X is compact, then every continu-
ous V -valued function on X is bounded. If NV is a qV -norm on V , and V is
complete with respect to the associated qV -metric, then ℓ∞(X,V ) is complete
with respect to the supremum qV -metric, as before. In this case, it follows that
Cb(X,V ) is complete with respect to the restriction of the supremum qV -metric
to Cb(X,V ).

Let A be an algebra over k with a submultiplicative qA-seminorm NA with
respect to | · | on k for some qA > 0 again. Observe that C(X,A) is a subalgebra
of c(X,A), by standard arguments. If E is a nonempty compact subset of X,
then (13.2) is submultiplicative on C(X,A). Of course, Cb(X,A) is a subalgebra
of both C(X,A) and ℓ∞(X,A).

14 More on absolute value functions

Let k be a field, and let | · | be a qk-absolute value function on k for some qk > 0.
If x ∈ k and n ∈ Z+, then let n · x be the sum of n x’s in k. If there are
positive integers n such that |n · 1| can be arbitrarily large, then | · | is said to
be archimedean on k. Here 1 refers to the multiplicative identity element in k.
Otherwise, | · | is said to be non-archimedean if there is a finite upper bound for
|n · 1|, n ∈ Z+. If | · | is an ultrametric absolute value function on k, then it is
easy to see that

|n · 1| ≤ 1(14.1)

for every n ∈ Z+, so that | · | is non-archimedean on k. Conversely, if | · | is
non-archimedean on k, then it is well known that | · | is an ultrametric absolute
value function on k.

Let | · | be a q-absolute value function on the field Q of rational numbers for
some q > 0. A famous theorem of Ostrowski says that | · | is either equivalent to
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the standard absolute value function on Q, or | · | is the trivial absolute value
function on Q, or | · | is equivalent to the p-adic absolute value function on Q
for some prime number p.

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
suppose that k is complete with respect to the associated qk-metric. If | · | is
archimedean on k, then another famous theorem of Ostrowski says that k is
isomorphic to R or C, in such a way that | · | corresponds to a qk-absolute value
function on R or C that is equivalent to the standard absolute value function.

Let k be a field with a qk-absolute value function | · | for some qk > 0 again.
Thus

{|x| : x ∈ k \ {0}}(14.2)

is a subgroup of the group R+ of positive real numbers with respect to multipli-
cation. If 1 is not a limit point of (14.2) with respect to the standard Euclidean
metric on R, then | · | is said to be discrete on k. In this case, one can show
that (14.2) is the same as the set of integer powers of a positive real number r,
with r = 1 when | · | is the trivial absolute value function on k. Otherwise, if
| · | is not discrete on k, then (14.2) is dense in R+ with respect to the standard
Euclidean metric.

Suppose that | · | is archimedean on k, and let us check that | · | is not
discrete on k. The archimedean property implies that k has characteristic 0,
since otherwise there are only finitely many elements of k of the form n · 1, with
n ∈ Z+. Hence there is a natural embedding of Q into k. Using this embedding,
we get a qk-absolute value function on Q, which is archimedean on Q. The
first theorem of Ostrowski mentioned earlier implies that this qk-absolute value
function on Q is equivalent to the standard absolute value function on Q. In
particular, this qk-absolute value function on Q is not discrete on Q. It follows
that | · | is not discrete on k, as desired. Equivalently, if | · | is discrete on k, then
| · | is non-archimedean on k, which implies that | · | is an ultrametric absolute
value function on k, as before.

Part II

Sums and norms

15 ℓr q-Seminorms

Let X be a nonempty set, and let f be a nonnegative real-valued function on
X. The sum ∑

x∈X

f(x)(15.1)

can be defined as a nonnegative extended real number as the supremum of the
sums ∑

x∈A

f(x)(15.2)

25



over all nonempty finite subsets A of X. If (15.1) is finite, then f is said to be
summable on X. It is easy to see that∑

x∈X

t f(x) = t
∑
x∈X

f(x)(15.3)

for every positive real number t, where t (+∞) is interpreted as +∞, as usual.
Similarly, if g is another nonnegative real-valued function on X, then one can
check that ∑

x∈X

(f(x) + g(x)) =
∑
x∈X

f(x) +
∑
x∈X

g(x).(15.4)

Of course, the right side of this equation is interpreted as being +∞ when either
of the sums is +∞. It is sometimes convenient to permit f to be a nonnegative
extended-real valued function on X in (15.1), where the sum is interpreted as
being +∞ when f(x) = +∞ for any x ∈ X.

If X is the set Z+ of positive integers, then (15.1) can also be obtained
by taking the supremum of the partial sums

∑n
j=1 f(j) over n ∈ Z+. In this

case, the finiteness of the sum (15.1) corresponds to the convergence of the
infinite series

∑∞
j=1 f(j) in R. Similarly, if X is the set Z+∪{0} of nonnegative

integers, then (15.1) can be obtained by taking the supremum of the partial
sums

∑n
j=0 f(j) over n ≥ 0.

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
let V be a vector space over k with a qV -seminorm NV with respect to | · | on k
for some qV > 0. Also let r be a positive real number, and let f be a V -valued
function on a nonempty set X. If NV (f(x))

r is summable as a nonnegative
real-valued function on X, then f is said to be r-summable on X with respect
to NV . In this case, we put

∥f∥r = ∥f∥ℓr(X,V ) =
( ∑

x∈X

NV (f(x))
r
)1/r

,(15.5)

which is defined as a nonnegative real number. Let ℓr(X,V ) be the space of
V -valued functions on X that are r-summable with respect to NV .

If f ∈ ℓr(X,V ) and t ∈ k, then it is easy to see that t f ∈ ℓr(X,V ), with

∥t f∥r = |t| ∥f∥r.(15.6)

If g ∈ ℓr(X,V ) too, then one can check that f + g ∈ ℓr(X,V ). More precisely,
we have that

∥f + g∥rr ≤ ∥f∥rr + ∥g∥rr(15.7)

when r ≤ qV , and
∥f + g∥qVr ≤ ∥f∥qVr + ∥g∥qVr(15.8)

when qV ≤ r. To get (15.7), one can use the fact that NV may be considered
as an r-seminorm on V with respect to | · | on k when r ≤ qk, as in Section 7.
If qV ≤ r, then (15.8) can be obtained from Minkowski’s inequality (4.13), with
exponent r/qV ≥ 1. Although Minkowski’s inequality was previously stated
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for finite sums, it can be extended to arbitrary sums in a standard way. Thus
ℓr(X,V ) is a linear subspace of the space c(X,V ) of all V -valued functions on
X, (15.5) is an r-seminorm on ℓr(X,V ) with respect to | · | on k when r ≤ qV ,
and (15.5) is a qV -seminorm on ℓr(X,V ) with respect to | · | on k when qV ≤ r.

Suppose for the moment that NV is a qV -norm on V with respect to | · | on
k. In this case, (15.5) is an r-norm on ℓr(X,V ) with respect to | · | on k when
r ≤ qV , and (15.5) is a qV -norm on ℓr(X,V ) with respect to |·| on k when qV ≤ r.
Suppose that V is also complete with respect to the qV -metric associated to NV .
Under these conditions, one can show that ℓr(X,V ) is complete with respect to
the r or qV -metric associated to (15.5), as appropriate, for every r > 0, using
standard arguments.

16 Comparing ℓr spaces

Let X be a nonempty set, and let k be a field with a qk-absolute value function
| · | for some qk > 0. Also let V be a vector space over k with a qV -seminorm
NV with respect to | · | on k for some qV > 0. If a V -valued function f on X is
r-summable with respect to NV for some positive real number r, then it is easy
to see that f is bounded with respect to NV , with

∥f∥∞ ≤ ∥f∥r.(16.1)

Note that (16.1) corresponds to (4.3), applied toNV (f(x)) as a nonnegative real-
valued function on X. In Section 4 we considered nonnegative real-valued func-
tions on X with finite support, but the same argument works for r-summable
functions.

Suppose now that 0 < r1 ≤ r2 < ∞, and that f is a V -valued r1-summable
function on X with respect to NV . Under these conditions, we have that∑

x∈X

NV (f(x))
r2 ≤ ∥f∥r2−r1

∞

∑
x∈X

NV (f(x))
r1 = ∥f∥r2−r1

∞ ∥f∥r1r1 ,(16.2)

as in (4.4). This implies that f is r2-summable on X with respect to NV , with

∥f∥r2 ≤ ∥f∥1−(r1/r2)
∞ ∥f∥r1/r2r1 ≤ ∥f∥r1 ,(16.3)

as in (4.5). In particular,

ℓr1(X,V ) ⊆ ℓr2(X,V ).(16.4)

This inclusion also holds when r2 = ∞, as in the preceding paragraph.
A V -valued function f on X is said to vanish at infinity with respect to NV

if for every ϵ > 0 we have that

NV (f(x)) < ϵ(16.5)

for all but finitely many x ∈ X. Let c0(X,V ) be the space of all V -valued
functions on X that vanish at infinity with respect to NV . It is easy to see that
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c0(X,V ) is a linear subspace of the space c(X,V ) of all V -valued functions on
X. More precisely,

c0(X,V ) ⊆ ℓ∞(X,V ).(16.6)

One can also check that
ℓr(X,V ) ⊆ c0(X,V )(16.7)

for every positive real number r.
One can verify that c0(X,V ) is a closed set in ℓ∞(X,V ) with respect to the

corresponding supremum qV -semimetric, using standard arguments. If NV is
a qV -norm on V , and V is complete with respect to the associated qV -metric,
then ℓ∞(X,V ) is complete with respect to the supremum qV -metric, as before.
In this case, we get that c0(X,V ) is complete with respect to the restriction of
the supremum qV -metric to c0(X,V ).

If f is a V -valued function on X such that NV (f(x)) = 0 for all but finitely
many x ∈ X, then f vanishes at infinity on X with respect to NV , and f
is r-summable on X with respect to NV for every r > 0. In particular, this
condition holds when f has finite support in X. If NV is a qV -norm on V , then
this condition implies that f has finite support in X.

It is not difficult to check that c00(X,V ) is dense in c0(X,V ) with respect
to the supremum qV -semimetric. Thus c0(X,V ) is the same as the closure of
c00(X,V ) in ℓ∞(X,V ), with respect to the supremum qV -semimetric.

If r is a positive real number, then one can verify that c00(X,V ) is dense
in ℓr(X,V ), with respect to the r or qV -semimetric associated to ∥ · ∥r, as
appropriate. More precisely, if f is an r-summable V -valued function on X
with respect to NV , then ∥f∥rr can be approximated by the sum of NV (f(x))

r

over suitable nonempty finite subsets of X. One can use these finite subsets
of X to approximate f by V -valued functions on X with finite support with
respect to the r or qV -semimetric associated to ∥ · ∥r, as appropriate.

If f is a V -valued function on X that vanishes at infinity with respect to NV ,
then there are only finitely or countably many x ∈ X such that NV (f(x)) > 0.
More precisely, for each positive integer j, there are only finitely many x ∈ X
such that NV (f(x)) ≥ 1/j, and the previous statement follows by taking the
union of these finite sets. If NV is a qV -norm on V , and f vanishes at infinity
on X with respect to NV , then the support of f has only finitely or countably
many elements.

17 Doubly-infinite series

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let V
be a vector space over k with a qV -norm NV with respect to | · | on k for some
qV > 0. Also let

∞∑
j=−∞

vj(17.1)
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be a doubly-infinite series with terms in V , so that vj ∈ V for every j ∈ Z. Let
us say that (17.1) converges in V with respect to NV if

∞∑
j=0

vj and

∞∑
j=1

v−j(17.2)

converge as ordinary infinite series in V with respect to NV . In this case, the
value of the sum (17.1) is defined by

∞∑
j=−∞

vj =

∞∑
j=0

vj +

∞∑
j=1

v−j .(17.3)

One could look at the convergence of (17.1) in terms of the convergence of the
partial sums

n∑
j=−l

vj(17.4)

as l, n → ∞. If l ≥ 1 and n ≥ 0, then (17.4) can be expressed as

n∑
j=0

vj +

l∑
j=1

v−j .(17.5)

Of course, the convergence of the series in (17.2) is the same as the convergence
of these two sequences of partial sums.

Alternatively, one can consider

∞∑
j=1

(vj + v−j)(17.6)

as an infinite series with terms in V . If this series converges, then one might
interpret (17.1) as being

v0 +

∞∑
j=1

(vj + v−j).(17.7)

Note that
n∑

j=−n

vj = v0 +

n∑
j=1

(vj + v−j)(17.8)

for every positive integer n. If the series in (17.2) converge in V with respect
to NV , then (17.6) converges in V with respect to NV as well. Under these
conditions, (17.3) is equal to (17.7).

Suppose for the moment that k = R with the standard absolute value func-
tion, and that V = R, with NV = |·|. If vj is a nonnegative real number for each
j ∈ Z, then the convergence of each of the infinite series in (17.2) and (17.6) is
equivalent to the boundedness of the corresponding sequences of partial sums.

29



In this situation, the partial sums of (17.6) are bounded if and only if the partial
sums of both series in (17.2) are bounded. Thus (17.6) converges if and only if
both series in (17.2) converge, in which case (17.3) is equal to (17.7), as before.
One can also define ∑

j∈Z

vj(17.9)

as a nonnegative extended real number as in Section 15. This is equivalent to
taking the supremum of the partial sums in (17.4) over l, n ≥ 0, or with l = n,
as in (17.8). This means that (17.9) is finite exactly when the series in (17.2)
or (17.6) converge, with the same value of the sum as in (17.3) and (17.7).

Let k be any field with a qk-absolute value function | · | for some qk > 0
again, let V be a vector space over k with a qV -norm NV with respect to | · |
on k for some qV > 0, and let (17.1) be a doubly-infinite series with terms in
V . Suppose for the moment that qV < ∞. Let us say that (17.1) converges
qV -absolutely with respect to NV if

∞∑
j=−∞

NV (vj)
qV(17.10)

converges as a doubly-infinite series of nonnegative real numbers. This is the
same as saying that the series in (17.2) converge qV -absolutely with respect to
NV . If V is complete with respect to the qV -metric associated to NV , then it
follows that the series in (17.2) converge in V , as in Section 9. This means that
(17.1) converges in V , and it is easy to see that

NV

( ∞∑
j=−∞

vj

)qV
≤

∞∑
j=−∞

NV (vj)
qV .(17.11)

This uses the analogous statements for the series in (17.2), as in (9.9).
Suppose now that qV = ∞, and that V is complete with respect to the

ultrametric associated to NV . If

NV (vj) → 0 as j → ±∞,(17.12)

then the series in (17.2) converge in V , as in Section 9. This means that (17.1)
converges in V , and we have that

NV

( ∞∑
j=−∞

vj

)
≤ max

j∈Z
NV (vj).(17.13)

This follows from the analogous statements for the series in (17.2), as in (9.11).
In particular, (17.12) implies that the maximum on the right side of (17.13) is
attained, as before.
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18 Sums over sets

Let X be a nonempty set, let k be a field, and let V be a vector space over k.
Remember that

f 7→
∑
x∈X

f(x)(18.1)

defines a linear mapping from c00(X,V ) into V , as in Section 1. Let | · | be a
qk-absolute value function on k for some qk > 0, and let NV be a qV -seminorm
on V with respect to | · | on k for some qV > 0. It is easy to see that

NV

( ∑
x∈X

f(x)
)
≤ ∥f∥qV(18.2)

for every f ∈ c00(X,V ), where ∥f∥qV is as in Sections 13 and 15. Note that
the restriction of ∥f∥qV to c00(X,V ) defines a qV -seminorm on c00(X,V ) with
respect to | · | on k. Thus (18.2) says that (18.1) is bounded as a linear mapping
from c00(X,V ) into V , with respect to ∥ · ∥qV on c00(X,V ) and NV on V , with
operator qV -seminorm less than or equal to 1. More precisely, the operator
qV -seminorm is equal to 1 when NV (v) > 0 for some v ∈ V .

Let us suppose from now on in this section that NV is a qV -norm on V ,
and that V is complete with respect to the associated qV -metric. If qV < ∞,
then there is a unique extension of (18.1) to a bounded linear mapping from
ℓqV (X,V ) into V , as in Section 10. This uses the fact that c00(X,V ) is dense
in ℓqV (X,V ) with respect to the qV -metric associated to ∥ · ∥qV when qV < ∞,
as in Section 16. Similarly, if qV = ∞, then there is a unique extension of
(18.1) to a bounded linear mapping from c0(X,V ) into V , with respect to the
supremum ultranorm on c0(X,V ) and NV on V , because c00(X,V ) is dense in
c0(X,V ) with respect to the supremum ultrametric on c0(X,V ). We can use
these extensions to define ∑

x∈X

f(x)(18.3)

as an element of V when f ∈ ℓqV (X,V ) and qV < ∞, and when f ∈ c0(X,V )
and qV = ∞. Observe that (18.2) holds for every f ∈ ℓqV (X,V ) when qV < ∞,
and for every f ∈ c0(X,V ) when qV = ∞, because the operator qV -norm of
the extension is the same as on c00(X,V ). Of course, if X has only finitely
many elements, then every V -valued function on X has finite support, and no
extension is necessary.

If X = Z+, then we can use the infinite series

∞∑
j=1

f(j)(18.4)

to define these extensions. More precisely, this series converges in V when f is
an element of ℓqV (Z+, V ) and qV < ∞, and when f ∈ c0(Z+, V ) and qV = ∞,
as in Section 9. This definition of the sum defines a bounded linear mapping
into V , and (18.4) reduces to the usual finite sum when f has finite support in
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Z+. Similarly, if X = Z+ ∪ {0}, then these extensions can be defined using the
infinite series

∞∑
j=0

f(j).(18.5)

If X = Z, then these extensions can be defined by considering

∞∑
j=−∞

f(j)(18.6)

as a doubly-infinite series with terms in V , as in the previous section.
Let X be any countably-infinite set, and let {xj}∞j=1 be a sequence of el-

ements of X in which every element of X occurs exactly once. Suppose that
f ∈ ℓqV (X,V ) when qV < ∞, and that f ∈ c0(X,V ) when qV = ∞, as before.
In both cases, the infinite series

∞∑
j=1

f(xj)(18.7)

converges in V , as in Section 9 again. This can be used as another way to define
(18.3) in this situation, as in the preceding paragraph. If X is any infinite set,
and X0 is a countably-infinite subset of X, then one can deal with V -valued
functions f on X whose support is contained in X0 in the same way.

19 Iterated sums

Let I and X be nonempty sets, and let Ej be a nonempty subset of X for every
j ∈ I. Suppose that the Ej ’s are pairwise disjoint, so that

Ej ∩ El = ∅(19.1)

for every j, l ∈ I with j ̸= l. If f is a nonnegative real-valued function on X,
then ∑

x∈Ej

f(x)(19.2)

can be defined as a nonnegative extended real number for every j ∈ I. Hence∑
j∈I

( ∑
x∈Ej

f(x)
)

(19.3)

can be defined as an extended real number as well. Put

E =
∪
j∈I

Ej ,(19.4)

so that ∑
x∈E

f(x)(19.5)
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can be defined as an extended real number too. One can check that (19.3) and
(19.5) are the same in this situation. More precisely, one can verify that (19.3)
and (19.5) are each less than or equal to the other.

Let k be a field, and let V be a vector space over k. If f is a V -valued
function on X with finite support, then (19.2) can be defined as an element of
V for every j ∈ I. We also have that (19.2) is equal to 0 for all but finitely
many j ∈ I, so that (19.3) can be defined as an element of V too. Similarly,
(19.5) can be defined as an element of V , and is equal to (19.3).

Let | · | be a qk-absolute value function on k for some qk > 0, and let NV

be a qV -norm on V with respect to | · | on k for some qV > 0. Suppose for the
rest of the section that V is complete with respect to the qV -metric associated
to NV . Suppose for the moment that qV < ∞, and let f ∈ ℓqV (X,V ) be given.
It is easy to see that the restriction of f to Ej is qV -summable with respect to
NV for every j ∈ I, so that (19.2) can be defined as an element of V as in the
previous section. Note that

NV

( ∑
x∈Ej

f(x)
)qV

≤
∑
x∈Ej

NV (f(x))
qV(19.6)

for every j ∈ I, as in (18.2). This implies that∑
j∈I

NV

( ∑
x∈Ej

f(x)
)qV

≤
∑
j∈I

( ∑
x∈Ej

NV (f(x))
qV

)
=

∑
x∈E

NV (f(x))
qV ,(19.7)

using the earlier remarks for nonnegative real-valued functions in the second
step. Thus (19.2) is qV -summable as a V -valued function of j ∈ I with respect
to NV , so that (19.3) can be defined as an element of V as in the previous
section as well. The sum (19.5) can be defined as an element of V as in the
previous section too, because the restriction of f to E is qV -summable with
respect to NV . One can check that (19.3) is equal to (19.5), by approximating
f by V -valued functions on X with finite support.

Suppose now that qV = ∞, and let f ∈ c0(X,V ) be given. Observe that the
restriction of f to Ej vanishes at infinity on Ej with respect to NV for every
j ∈ I, so that (19.2) can be defined as an element of V for every j ∈ I, as in
the previous section. In this situation, we have that

NV

( ∑
x∈Ej

f(x)
)
≤ max

x∈Ej

NV (f(x))(19.8)

for every j ∈ I, as in (18.2). Using this, one can verify that (19.2) vanishes at
infinity as a V -valued function of j ∈ I with respect to NV , so that (19.3) can
be defined as an element of V as in the previous section. The restriction of f
to E vanishes at infinity with respect to NV , so that (19.5) can be defined as
an element of V as in the previous section as well. One can verify that (19.3)
is equal to (19.5), by approximating f by V -valued functions on X with finite
support again. Remember that the norm of (19.3) with respect to NV is less
than or equal to the maximum of the left side of (19.8) over j ∈ I, as in (18.2).
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This is less than or equal to the maximum of the right side of (19.8) over j ∈ I,
which is the same as the maximum of NV (f(x)) over x ∈ E.

20 Cauchy products on Z+ ∪ {0}
Let k be a field, and let A be an algebra over k. Also let

∑∞
j=0 aj and

∑∞
l=0 bl

be infinite series with terms in A, considered formally for the moment. Put

cn =

n∑
j=0

aj bn−j(20.1)

for each nonnegative integer n. The infinite series
∑∞

n=0 cn is called the Cauchy
product of

∑∞
j=0 aj and

∑∞
l=0 bl. It is easy to see that

∞∑
n=0

cn =
( ∞∑

j=0

aj

)( ∞∑
l=0

bl

)
(20.2)

formally. More precisely, consider ∑
(j,l)∈(Z+∪{0})2

aj bl(20.3)

formally, where (Z+ ∪ {0})2 = (Z+ ∪ {0})× (Z+ ∪ {0}). This can be identified
formally with the iterated sums

∞∑
j=0

( ∞∑
l=0

aj bl

)
(20.4)

and
∞∑
l=0

( ∞∑
j=0

aj bl

)
,(20.5)

each of which reduces formally to the product of the sums on the right side of
(20.2). Put

En = {(j, l) ∈ (Z+ ∪ {0})2 : j + l = n}(20.6)

for each nonnegative integer n, and observe that the En’s are pairwise-disjoint
finite subsets of (Z+ ∪ {0})2 such that

∞∪
n=0

En = (Z+ ∪ {0})2.(20.7)

By construction,

cn =
∑

(j,l)∈En

aj bl(20.8)
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for every n ≥ 0, so that the left side of (20.2) is the same as

∞∑
n=0

( ∑
(j,l)∈En

aj bl

)
,(20.9)

which corresponds formally to (20.3) as well.
Suppose for the moment that aj = 0 for all but finitely many j ≥ 0, and

that bl = 0 for all but finitely many l ≥ 0, so that
∑∞

j=0 aj and
∑∞

l=0 bl reduce
to finite sums. In this case, one can check that cn = 0 for all but finitely many
n ≥ 0, so that

∑∞
n=0 cn reduces to a finite sum too. In fact,

aj bl = 0(20.10)

for all but finitely many (j, l) ∈ (Z+ ∪ {0})2, so that (20.3) reduces to a finite
sum as well. The iterated sums (20.4) and (20.5) also reduce to finite sums of
finite sums in this situation. As in the previous section, (20.3) is equal to the
iterated sums (20.4), (20.5), and (20.9), which implies that (20.2) holds.

Suppose for the moment again that k = A = R, and that aj , bl ≥ 0 for all
j, l ≥ 0, so that cn ≥ 0 for all n ≥ 0. The sums

∑∞
j=0 aj ,

∑∞
l=0 bl, and

∑∞
n=0 cn

may be considered as nonnegative extended real numbers, by considering them
as sums over Z+∪{0} as in Section 15, or by interpreting an infinite series with
nonnegative terms as being +∞ when the series does not converge in R in the
usual sense. The product of sums on the right side of (20.2) can be defined as
a nonnegative extended real number in the usual way, except when one of the
factors is equal to 0 and the other is equal to +∞. This can only happen when
aj = 0 for every j ≥ 0 or bl = 0 for every l ≥ 0, in which case cn = 0 for
every n = 0, so that the left side of (20.2) is equal to 0. The sum (20.3) and the
iterated sums (20.4) and (20.5) can also be defined as nonnegative extended real
numbers, and we have that (20.3) is equal to the iterated sums (20.4), (20.5),
and (20.9), as in the previous section. If

∑∞
j=0 aj and

∑∞
l=0 bl are finite, then

the iterated sums (20.4) and (20.5) can be reduced to the product on the right
side of (20.2). This implies that (20.2) holds, and in particular that

∑∞
n=0 cn is

finite. If either of
∑∞

j=0 aj or
∑∞

l=0 bl is +∞, and the other is positive, then the
iterated sums (20.4), (20.5) are +∞. This implies that (20.3) is +∞, so that
(20.9) is +∞, which is the same as saying that

∑∞
n=0 cn = +∞.

Let k be any field again, and let | · | be a qk-absolute value function on k for
some qk > 0. Also let A be an algebra over k with a submultiplicative q-norm
with respect to | · | on k for some q > 0, and suppose for the rest of the section
that A is complete with respect to the q-metric associated to N . Suppose for the
moment that q < ∞, and that

∑∞
j=0 aj and

∑∞
l=0 bl are q-absolutely convergent

infinite series with terms in A, with respect to N . If
∑∞

n=0 cn is their Cauchy
product, as before, then

N(cn)
q ≤

n∑
j=0

N(aj bn−j)
q ≤

n∑
j=0

N(aj)
q N(bn−j)

q(20.11)
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for each n ≥ 0. This uses the q-norm version of the triangle inequality in the
first step, and submultiplicativity of N on A in the second set. The right side of
(20.11) is the nth term of the Cauchy product of

∑∞
j=0 N(aj)

q and
∑∞

l=0 N(bl)
q,

as infinite series of nonnegative real numbers. It follows that

∞∑
n=0

N(cn)
q ≤

∞∑
n=0

( n∑
j=0

N(aj)
q N(bn−j)

q
)

(20.12)

=
( ∞∑

j=0

N(aj)
q
)( ∞∑

l=0

N(bl)
q
)
,

using the remarks in the preceding paragraph in the second step. In particular,
this means that

∑∞
n=0 cn converges q-absolutely with respect to N . Similarly,∑

(j,l)∈(Z+∪{0})2
N(aj bl)

q ≤
∑

(j,l)∈(Z+∪{0})2
N(aj)

q N(bl)
q,(20.13)

because of the submultiplicativity of N on A. The right side of (20.13) is the
same as the iterated sums

∞∑
j=0

( ∞∑
l=0

N(aj)
q N(bl)

q
)

(20.14)

and
∞∑
l=0

( ∞∑
j=0

N(aj)
q N(bl)

q
)
,(20.15)

as before. These iterated sums are equal to the right side of (20.12), so that the
right side of (20.13) is equal to the right side of (20.12). Hence the left side of
(20.13) is finite, which means that f(j, l) = aj bl is q-summable as an A-valued
function on (Z+∪{0})2, with respect to N . The sum (20.3) can be defined as an
element of A as in Section 18, and this sum is equal to the iterated sums (20.4)
and (20.5), as in the previous section. Of course,

∑∞
j=0 aj and

∑∞
l=0 bl converge

in A, as in Section 9. The product of these two sums is the same as each of the
iterated sums (20.4) and (20.5). The sum (20.3) is equal to the iterated sum
(20.9) too, which is the same as

∑∞
n=0 cn. This shows that (20.2) holds in this

situation.
Suppose now that q = ∞, and that

lim
j→∞

N(aj) = lim
l→∞

N(bl) = 0.(20.16)

This implies that
∑∞

j=0 aj and
∑∞

l=0 bl converge in A, as in Section 9. If cn is
as in (20.1), then

N(cn) ≤ max
0≤j≤n

N(aj bn−j) ≤ max
0≤j≤n

(N(aj)N(bn−j))(20.17)
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for every n ≥ 0, using the ultranorm version of the triangle inequality in the
first step, and the submultiplicativity of N on A in the second step. One can
check that

lim
n→∞

N(cn) = 0,(20.18)

using (20.16) and (20.17). We also have that

max
n≥0

N(cn) ≤
(
max
j≥0

N(aj)
)(

max
l≥0

N(bl)
)
,(20.19)

by (20.17). Of course,
N(aj bl) ≤ N(aj)N(bl)(20.20)

for all j, l ≥ 0, because of the submultiplicativity of N on A. One can verify that
f(j, l) = aj bl vanishes at infinity as an A-valued function on (Z+ ∪ {0})2 with
respect to N , using (20.16) and (20.20). More precisely, N(aj)N(bl) vanishes
at infinity as a nonnegative real-valued function on (Z+ ∪ {0})2. This implies
that the sum (20.3) can be defined as an element of A, as in Section 18. This
sum is equal to the iterated sums (20.4) and (20.5), and these iterated sums are
both equal to the product of

∑∞
j=0 aj and

∑∞
l=0 bl. It follows that (20.2) holds

in this situation as well, because (20.3) is also equal to the iterated sum (20.9),
which is the same as

∑∞
n=0 cn.

21 Cauchy products on Z

Let k be a field again, and let A be an algebra over k. Let us now consider
doubly-infinite series

∑∞
j=−∞ aj and

∑∞
l=−∞ bl with terms in A, at least for-

mally at first. Consider

cn =

∞∑
j=−∞

aj bn−j(21.1)

for each n ∈ Z, at least formally. The doubly-infinite series
∑∞

n=−∞ cn is the
formal Cauchy product of

∑∞
j=−∞ aj and

∑∞
l=−∞ bl. As before,

∞∑
n=−∞

cn =
( ∞∑

j=−∞
aj

)( ∞∑
l=−∞

bl

)
(21.2)

formally. To see this, consider ∑
(j,l)∈Z2

aj bl(21.3)

formally, where Z2 = Z×Z. As before, this corresponds formally to the iterated
sums

∞∑
j=−∞

( ∞∑
l=−∞

aj bl

)
(21.4)
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and
∞∑

l=−∞

( ∞∑
j=−∞

aj bl

)
,(21.5)

which reduce formally to the product on the right side of (21.2). In this situation,
we put

En = {(j, l) ∈ Z2 : j + l = n}(21.6)

for every n ∈ Z, which are pairwise-disjoint subsets of Z2 such that

∞∪
n=−∞

En = Z2.(21.7)

Thus (21.1) is formally the same as

cn =
∑

(j,l)∈En

aj bl,(21.8)

so that the left side of (21.2) corresponds formally to

∞∑
n=−∞

( ∑
(j,l)∈En

aj bl

)
.(21.9)

This can be identified formally with (21.3), because of (21.7).
If aj = 0 for all but finitely many j ∈ Z, and bl = 0 for all but finitely many

l ∈ Z, then
∑∞

j=−∞ aj and
∑∞

l=−∞ bl reduce to finite sums in A. Under these
conditions, the right side of (21.1) also reduces to a finite sum, so that cn is
defined as an element of A for every n ∈ Z. It is easy to see that cn = 0 for
all but finitely many n ∈ Z, so that

∑∞
n=−∞ cn reduces to a finite sum in A.

Similarly,
aj bl = 0(21.10)

for all but finitely many (j, l) ∈ Z2, so that (21.3) reduces to a finite sum in
A as well. The iterated sums (21.4) and (21.5) reduce to finite sums of finite
sums, and (21.3) is equal to the iterated sums (21.4), (21.5), and (21.9), so that
(21.2) holds.

Suppose that k = A = R, and that aj , bl ≥ 0 for every j, l ∈ Z. The
sums

∑∞
j=−∞ aj and

∑∞
l=−∞ bl may be considered as nonnegative extended

real numbers, by considering them as sums over Z, as in Section 15, or by
interpreting a doubly-infinite series with nonnegative terms as being +∞ when
the series does not converge in R in the usual sense. Similarly, cn is defined
as a nonnegative extended real number for each n ∈ Z, so that

∑∞
n=−∞ cn is

defined as a nonnegative extended real number. The sum (21.3) and the iterated
sums (21.4) and (21.5) are defined as extended real numbers as well, and (21.3)
is equal to the iterated sums (21.4), (21.5), and (21.9), as in Section 19. If∑∞

j=−∞ aj and
∑∞

l=−∞ bl are finite, then the iterated sums (21.4) and (21.5)
are the same as the product of these two sums. It follows that (21.2) holds,
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and in particular that
∑∞

n=−∞ cn is finite. If either
∑∞

j=−∞ aj or
∑∞

l=−∞ bl is
equal to 0, then either aj = 0 for every j ∈ Z or bl = 0 for every l ∈ Z. In both
cases, cn = 0 for every n ∈ Z, and the sum (21.3) and the iterated sums (21.4),
(21.5), and (21.9) are equal to 0. If

∑∞
j=−∞ aj and

∑∞
l=−∞ bl are both positive,

and at least one of these sums is +∞, then the iterated sums (21.4) and (21.5)
are +∞. This implies that (21.3) is +∞, and hence that (21.9) is +∞, which
means that

∑∞
n=−∞ cn = +∞.

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
A be an algebra over k with a submultiplicative q-norm N with respect to | · |
on k for some q > 0. Suppose for the rest of the section that A is complete with
respect to the q-metric associated to N . Suppose for the moment that q < ∞,
and that

∞∑
j=−∞

N(aj)
q,

∞∑
l=−∞

N(bl)
q < ∞.(21.11)

This implies that
∑∞

j=−∞ aj and
∑∞

l=−∞ bl can be defined as elements of A, as
q-absolutely convergent doubly-infinite series, as in Section 17, or as sums over
Z, as in Section 18. Observe that

∞∑
j=−∞

N(aj bn−j)
q ≤

∞∑
j=−∞

N(aj)
q N(bn−j)

q < ∞(21.12)

for every n ∈ Z. This uses the fact that the terms in the sums in (21.11) are
bounded, because the sums are finite. Thus cn can be defined as an element of
A as in (21.1) for each n ∈ Z, with

N(cn)
q ≤

∞∑
j=−∞

N(aj bn−j)
q.(21.13)

Of course, ∑
(j,l)∈Z2

N(aj bl)
q ≤

∑
(j,l)∈Z2

N(aj)
q N(bl)

q,(21.14)

by the submultiplicativity of N on A. The right side of (21.14) is equal to the
iterated sums

∞∑
j=−∞

( ∞∑
l=−∞

N(aj)
q N(bl)

q
)

(21.15)

and
∞∑

l=−∞

( ∞∑
j=−∞

N(aj)
q N(bl)

q
)
,(21.16)

as in the preceding paragraph. These iterated sums reduce to the product( ∞∑
j=−∞

N(aj)
q
)( ∞∑

l=−∞

N(bl)
q
)
,(21.17)
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which is finite, by (21.11). The right side of (21.14) is also equal to the iterated
sum

∞∑
n=−∞

( ∑
(j,l)∈En

N(aj)
q N(bl)

q
)
=

∞∑
n=−∞

( ∞∑
j=−∞

N(aj)
q N(bn−j)

q
)
,(21.18)

as before. The finiteness of the right side of (21.14) implies that f(j, l) = aj bl
is q-summable as an A-valued function on Z2 with respect to N , so that (21.3)
can be defined as an element of A, as in Section 18. The iterated sums (21.4)
and (21.5) can also be defined as elements of A, and are equal to (21.3), as in
Section 19. Of course, these iterated sums reduce to the product on the right
side of (21.2). Similarly, the iterated sum (21.9) can be defined as an element
of A, and is equal to (21.3). This includes the fact that

∞∑
n=−∞

N(cn)
q < ∞,(21.19)

which follows from the finiteness of (21.18). Thus
∑∞

n=−∞ cn can be defined as
an element of A, and satisfies (21.2).

Suppose now that q = ∞, and that

lim
j→±∞

N(aj) = lim
l→±∞

N(bl) = 0.(21.20)

This implies that
∑∞

j=−∞ aj and
∑∞

l=−∞ bl can be defined as elements of A,
as convergent doubly-infinite series, as in Section 17, or as sums over Z, as in
Section 18. Remember that

N(aj bl) ≤ N(aj)N(bl)(21.21)

for every j, l ∈ Z, by the submultiplicativity of N on A. It is easy to see that

lim
j→±∞

N(aj bn−j) = 0(21.22)

for each n ∈ Z, because of (21.20), which implies in particular that N(aj) and
N(bl) are bounded. Hence cn can be defined as an element of A as in (21.1) for
each n ∈ Z, and satisfies

N(cn) ≤ max
j∈Z

N(aj bn−j).(21.23)

One can check that N(aj)N(bl) vanishes at infinity as a nonnegative real-valued
function on Z2, using (21.20). This means that f(j, l) = aj bl vanishes at infinity
as an A-valued function on Z2 with respect to N , by (21.21). Thus the sum
(21.3) can be defined as an element of A, as in Section 18. This sum is equal to
the iterated sums (21.4) and (21.5), as in Section 19, and these iterated sums
reduce to the product of

∑∞
j=−∞ aj and

∑∞
l=−∞ bl. The iterated sum (21.9)
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can also be defined as an element of A, and is equal to (21.3), as in Section 19.
This includes the fact that

lim
n→±∞

N(cn) = 0,(21.24)

which can be obtained from the vanishing at infinity of f(j, l) = aj bl on Z2.
This means that

∑∞
n=−∞ cn can be defined as an element of A, and satisfies

(21.2).

22 Hilbert spaces

Let V and W be vector spaces over the complex numbers. Thus V and W may
also be considered as vector spaces over the real numbers. A mapping T from V
into W may be called complex-linear to indicate that T is a linear mapping from
V into W as vector spaces over C. Similarly, T may be called real-linear when
T is linear as a mapping from V into W as vector spaces over R. A real-linear
mapping T from V into W is complex-linear when

T (i v) = i T (v)(22.1)

for every v ∈ V . A real-linear mapping T from V into W is said to be conjugate-
linear if

T (a v) = aT (v)(22.2)

for every a ∈ C and v ∈ V , where a is the complex-conjugate of a. This holds
when

T (i v) = −i T (v)(22.3)

for every v ∈ V , because T is real-linear.
Let V be a vector space over the real or complex numbers. An inner product

on V is a real or complex-valued function ⟨v, w⟩, as appropriate, defined for
v, w ∈ V , that satisfies the following properties. First, for each w ∈ V , ⟨v, w⟩
should be real-linear as a function of v into R, or complex-linear as a function
of v into C, as appropriate. Second, ⟨v, w⟩ should be symmetric in the real case,
so that

⟨v, w⟩ = ⟨w, v⟩(22.4)

for every v, w ∈ V . Combining this with the first property, we get that ⟨v, w⟩
is linear in w for each v ∈ V . In the complex case, ⟨v, w⟩ should be Hermitian-
symmetric, which means that

⟨w, v⟩ = ⟨v, w⟩(22.5)

for every v, w ∈ V . It follows that ⟨v, w⟩ is conjugate-linear in w for every
v ∈ V . Note that

⟨v, v⟩ ∈ R(22.6)
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for every v ∈ V in the complex case, by (22.5). The third condition in both
cases is that

⟨v, v⟩ > 0(22.7)

for every v ∈ V with v ̸= 0. Of course, ⟨v, w⟩ = 0 when v = 0 or w = 0, by the
first two conditions.

Let ⟨v, w⟩ be an inner product on V , and put

∥v∥ = ⟨v, v⟩1/2(22.8)

for every v ∈ V , using the nonnegative square root on the right side. It is well
known that

|⟨v, w⟩| ≤ ∥v∥ ∥w∥(22.9)

for every v, w ∈ V , which is the Cauchy–Schwarz inequality. Using this, one can
show that

∥v + w∥ ≤ ∥v∥+ ∥w∥(22.10)

for every v, w ∈ V . This implies that (22.8) defines a norm on V with respect
to the standard absolute value function on R or C, as appropriate, because of
the other properties of the inner product. If V is complete with respect to the
metric associated to this norm, then V is said to be a Hilbert space.

Let X be a nonempty set, and let f , g be real or complex-valued functions
on X that are square-summable, which is to say that |f |2 and |g|2 are summable
on X. Remember that

a b ≤ (1/2) (a2 + b2)(22.11)

for all nonnegative real numbers a and b, because (a − b)2 ≥ 0. This implies
that ∑

x∈X

|f(x)| |g(x)| ≤ (1/2)
∑
x∈X

|f(x)|2 + (1/2)
∑
x∈X

|g(x)|2,(22.12)

so that |f | |g| is summable on X. Put

⟨f, g⟩ = ⟨f, g⟩ℓ2(X,R) =
∑
x∈X

f(x) g(x)(22.13)

in the real case, and

⟨f, g⟩ = ⟨f, g⟩ℓ2(X,C) =
∑
x∈X

f(x) g(x)(22.14)

in the complex case. It is easy to see that these define inner products on ℓ2(X,R)
and ℓ2(X,C), respectively. In both cases we have that

⟨f, f⟩ =
∑
x∈X

|f(x)|2,(22.15)

so that the norms corresponding to (22.13) and (22.14) are the same as the
usual ℓ2 norms. Thus ℓ2(X,R) and ℓ2(X,C) are Hilbert spaces, because they
are complete with respect to the corresponding ℓ2 metrics.
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23 Hilbert space adjoints

Let (V, ⟨·, ·⟩V ) and (W, ⟨·, ·⟩W ) be Hilbert spaces, both real or both complex,
and let ∥ · ∥V and ∥ · ∥W be the corresponding norms on V and W , respectively.
If T is a bounded linear mapping from V into W , then it is well known that
there is a unique bounded linear mapping T ∗ from W into V such that

⟨T (v), w⟩W = ⟨v, T ∗(w)⟩V(23.1)

for every v ∈ V and w ∈ W . This defines a mapping T 7→ T ∗ from BL(V,W )
into BL(W,V ), which is real-linear in the real case, and conjugate-linear in the
complex case. One can check that

(T ∗)∗ = T(23.2)

for every T ∈ BL(V,W ), directly from this characterization of the adjoint. If
V = W with the same inner product, and I is the identity operator on V , then
I is a bounded linear mapping from V into itself, and I∗ = I.

If T ∈ BL(V,W ), then

|⟨v, T ∗(w)⟩V | = |⟨T (v), w⟩W | ≤ ∥T∥op,VW ∥v∥V ∥w∥W(23.3)

for every v ∈ V and w ∈ W , using the Cauchy–Schwarz inequality and the
definition of the operator norm ∥T∥op,VW in the second step. This implies that

∥T ∗(w)∥V ≤ ∥T∥op,VW ∥w∥W(23.4)

for every w ∈ W , by taking v = T ∗(w)/∥T ∗(w)∥V when T ∗(w) ̸= 0. It follows
that

∥T ∗∥op,WV ≤ ∥T∥op,VW .(23.5)

The opposite inequality can be obtained similarly, or by applying this inequality
to T ∗ in place of T , and using (23.2). It follows that

∥T ∗∥op,WV = ∥T∥op,VW .(23.6)

Let (Z, ⟨·, ·⟩Z) be another Hilbert space, which is real or complex depending
on whether V , W are real or complex. Also let T1 be a bounded linear mapping
from V into W , and let T2 be a bounded linear mapping from W into Z, so that
their composition T2 ◦T1 is a bounded linear mapping from V into Z. Note that
the adjoints T ∗

1 and T ∗
2 of T1 and T2 map W into V and Z into W , respectively.

If v ∈ V and z ∈ Z, then

⟨(T2 ◦ T1)(v), z⟩Z = ⟨T2(T1(v)), z⟩Z = ⟨T1(v), T
∗
2 (z)⟩W(23.7)

= ⟨v, T ∗
1 (T

∗
2 (z))⟩V .

This implies that
(T2 ◦ T1)

∗ = T ∗
1 ◦ T ∗

2 .(23.8)
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Let T be a bounded linear mapping from V into W again, so that T ∗ is
a bounded linear mapping from W into V . Thus T ∗ ◦ T is a bounded linear
mapping from V into itself, with

∥T ∗ ◦ T∥op,V V ≤ ∥T∥op,VW ∥T ∗∥op,WV = ∥T∥2op,VW ,(23.9)

using (23.6) in the second step. If v ∈ V , then

⟨(T ∗ ◦ T )(v), v⟩V = ⟨T ∗(T (v)), v⟩V = ⟨T (v), T (v)⟩W = ∥T (v)∥2W .(23.10)

This implies that
∥T (v)∥2W ≤ ∥T ∗ ◦ T∥op,V V ∥v∥2V ,(23.11)

using the Cauchy–Schwarz inequality. It follows that

∥T∥2op,VW ≤ ∥T ∗ ◦ T∥op,V V ,(23.12)

and hence
∥T ∗ ◦ T∥op,V V = ∥T∥2op,VW ,(23.13)

because of (23.9).

24 Isometric linear mappings

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let V ,
W be vector spaces over k. Also let NV , NW be qV , qW -seminorms on V , W
with respect to | · | on k, respectively, for some qV , qW > 0. A linear mapping
T from V into W is said to be an isometry if

NW (T (v)) = NV (v)(24.1)

for every v ∈ V . This implies that T is bounded with respect to NV and
NW , with the corresponding operator qW -seminorm ∥T∥op,VW equal to 1 when
NV (v) > 0 for some v ∈ V . If NV is a qV -norm on V , then (24.1) implies that
T is injective.

Let Z be another vector space over k, with a qZ-seminorm NZ with respect
to | · | on k for some qZ > 0. If T1 is a isometric linear mapping from V into W ,
and T2 is an isometric linear mapping from W into Z, then their composition
T2 ◦ T1 is an isometric linear mapping from V into Z.

Let T be a one-to-one linear mapping from V onto W . If T−1 is a bounded
linear mapping from W into V , then

NV (T
−1(w)) ≤ ∥T−1∥op,WV NW (w)(24.2)

for every w ∈ W . This is the same as saying that

NV (v) ≤ ∥T−1∥op,WV NW (T (v))(24.3)
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for every v ∈ V , by taking w = T (v). If T and T−1 are both bounded linear
mappings, with

∥T∥op,VW , ∥T−1∥op,WV ≤ 1,(24.4)

then it is easy to see that T is an isometric linear mapping. Of course, if T is
an isometric linear mapping, then T−1 is an isometric linear mapping from W
onto V .

Let k = R or C with the standard absolute value function, and suppose that
(V, ⟨·, ·⟩V ) and (W, ⟨·, ·⟩W ) are inner product spaces over k. If a linear mapping
T from V into W is an isometry with respect to the corresponding norms ∥ · ∥V
and ∥ · ∥W , respectively, then one can check that

⟨T (v), T (v′)⟩W = ⟨v, v′⟩V(24.5)

for every v, v′ ∈ V , using polarization identities. Conversely, (24.5) implies that
T is an isometry, by taking v = v′. Suppose now that V and W are Hilbert
spaces, and let T be a bounded linear mapping from V into W . Observe that

⟨(T ∗ ◦ T )(v), v′⟩V = ⟨T ∗(T (v)), v′⟩V = ⟨T (v), T (v′)⟩W(24.6)

for every v, v′ ∈ V , where T ∗ is the adjoint of T , as in the previous section.
Thus T is an isometry if and only if

⟨(T ∗ ◦ T )(v), v′⟩V = ⟨v, v′⟩V(24.7)

for every v, v′ ∈ V . It follows that T is an isometry if and only if

T ∗ ◦ T = IV ,(24.8)

where I is the identity mapping on V .
A one-to-one linear mapping T from V onto W is said to be unitary if (24.5)

holds for every v, v′ ∈ V , which is equivalent to asking that T be an isometry,
as before. In this case, T ∗ is a one-to-one linear mapping from W onto V , and

T ∗ = T−1,(24.9)

by (24.8).

25 C∗ Algebras

Let A be an algebra over the complex numbers. A conjugate-linear mapping

x 7→ x∗(25.1)

from A into itself is said to be an involution on A if

(x y)∗ = y∗ x∗(25.2)

and
(x∗)∗ = x(25.3)
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for every x, y ∈ A. Let us suppose from now on in this section that A has a
nonzero multiplicative identity element e. It is easy to see that

e∗ = e,(25.4)

using (25.2).
Let ∥ · ∥ be a submultiplicative norm on A with respect to the standard

absolute value function on C, and suppose that A is complete with respect to
the metric associated to ∥ · ∥. If we also have that

∥x∗ x∥ = ∥x∥2(25.5)

for every x ∈ A, then A is said to be a C∗ algebra. Using (25.5) and submulti-
plicativity, we get that

∥x∥2 ≤ ∥x∗∥ ∥x∥(25.6)

for every x ∈ A, and hence
∥x∥ ≤ ∥x∗∥.(25.7)

Applying this to x∗ instead of x, we get that ∥x∗∥ ≤ ∥x∥, so that

∥x∗∥ = ∥x∥(25.8)

for every x ∈ A. Note that
∥e∥ = 1,(25.9)

by (25.4) and (25.5).
Let X be a nonempty topological space, and consider the space Cb(X,C) of

bounded continuous complex-valued functions on X, using the standard abso-
lute value function on C. This is a commutative algebra over C with respect
to pointwise addition and multiplication of functions, and the constant func-
tion equal to 1 on X is the multiplicative identity element in Cb(X,C). The
supremum norm ∥f∥sup on Cb(X,C) associated to the standard absolute value
function on C is a submultiplicative norm on Cb(X,C), and Cb(X,C) is com-
plete with respect to the corresponding supremum metric. If f ∈ Cb(X,C),
then the complex-conjugate f of f is an element of Cb(X,C) too, and f 7→ f
defines an involution on Cb(X,C). It is easy to see that

∥f f∥sup = ∥|f |2∥sup = ∥f∥2sup(25.10)

for every f ∈ Cb(X,C), so that Cb(X,C) is a C∗ algebra with respect to the
supremum norm.

Let (V, ⟨·, ·⟩) be a complex Hilbert space, let ∥ · ∥ be the norm on V cor-
responding to the inner product, and consider the algebra BL(V ) of bounded
linear mappings from V into itself with respect to ∥ · ∥. The identity operator I
on V is the multiplicative identity element in BL(V ), and let us suppose that
V ̸= {0}, so that I ̸= 0. The mapping from T ∈ BL(V ) to its adjoint T ∗ de-
fines an involution on V , as in Section 23. The operator norm ∥T∥op on BL(V )
corresponding to ∥ · ∥ is submultiplicative on BL(V ), and BL(V ) is complete
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with respect to the associated metric, because V is complete with respect to the
metric associated to ∥ · ∥, by hypothesis. Remember that ∥T∥op satisfies (25.5),
as in (23.13), so that BL(V ) is a C∗ algebra with respect to the operator norm.

A famous theorem implies that every commutative C∗ algebra can be realized
as the algebra C(X,C) of continuous complex-valued functions on a nonempty
compact Hausdorff topological spaceX, using the supremum norm and complex-
conjugation as the involution, as before.

26 Some weighted conditions

Let X be a nonempty set, and let w be a positive real-valued function on X.
Also let k be a field with a qk-absolute value function | · | for some qk > 0, and
let V be a vector space over k with a qV -seminorm NV with respect to | · | on
k for some qV > 0. A V -valued function f on X is said to be bounded with
respect to w on X and NV on V if NV (f(x))w(x) is bounded as a nonnegative
real-valued function on X. In this case, we put

∥f∥∞,w = ∥f∥ℓ∞w (X,V ) = sup
x∈X

(NV (f(x))w(x)).(26.1)

One can check that the space ℓ∞w (X,V ) of these functions is a linear subspace
of the space c(X,V ) of all V -valued functions on X, and that (26.1) defines a
qV -seminorm on ℓ∞w (X,V ) with respect to | · | on k. If NV is a qV -norm on V ,
then (26.1) is a qV -norm on ℓ∞w (X,V ). If V is also complete with respect to
the qV -metric associated to NV , then ℓ∞w (X,V ) is complete with respect to the
qV -metric associated to (26.1), by standard arguments.

Let r be a positive real number. A V -valued function f on X is said to
be r-summable with respect to w on X and NV on V if NV (f(x))

r w(x)r is
summable as a nonnegative real-valued function on X. Let ℓrw(X,V ) be the
space of these functions, and put

∥f∥r,w = ∥f∥ℓrw(X,V ) =
( ∑

x∈X

NV (f(x))
r w(x)r

)1/r

(26.2)

for every f ∈ ℓrw(X,V ). One can verify that ℓrw(X,V ) is a linear subspace of
c(X,V ), and that (26.2) is an r-seminorm on ℓrw(X,V ) with respect to | · | on k
when r ≤ qV , and a qV -seminorm on ℓrw(X,V ) when qV ≤ r, as in Section 15.
If NV is a qV -norm on V , then (26.2) is an r-norm on ℓrw(X,V ) when r ≤ qV ,
and a qV -norm on ℓrw(X,V ) when r ≥ qV . If V is also complete with respect to
the qV -metric associated to NV , then ℓrw(X,V ) is complete with respect to the
r or qV -metric associated to (26.2), as appropriate. If 0 < r1 ≤ r2 ≤ ∞, then

ℓr1w (X,V ) ⊆ ℓr2w (X,V ),(26.3)

and
∥f∥r2,w ≤ ∥f∥r1,w(26.4)
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for every f ∈ ℓr1w (X,V ). This is basically the same as in Section 16. More
precisely, if f is a V -valued function on X, then one can reduce to the earlier
statements applied to NV (f(x))w(x) as a nonnegative real-valued function on
X.

Similarly, a V -valued function f on X is said to vanish at infinity with
respect to w on X and NV on V if NV (f(x))w(x) vanishes at infinity as a
nonnegative real-valued function onX. It is easy to see that the space c0,w(X,V )
of these functions is a linear subspace of c(X,V ). Observe that

c0,w(X,V ) ⊆ ℓ∞w (X,V ),(26.5)

and that
ℓrw(X,V ) ⊆ c0,w(X,V )(26.6)

when 0 < r < ∞, as before. One can check that c0,w(X,V ) is a closed set in
ℓ∞w (X,V ) with respect to the qV -semimetric associated to (26.1).

Remember that c00(X,V ) is the space of V -valued functions on X with finite
support. Clearly

c00(X,V ) ⊆ ℓrw(X,V )(26.7)

for every r > 0, and thus

c00(X,V ) ⊆ c0,w(X,V )(26.8)

in particular. As before, one can verify that c00(X,V ) is dense in c0,w(X,V ) with
respect to the qV -semimetric associated to (26.1). If 0 < r < ∞, then c00(X,V )
is dense in ℓrw(X,V ) with respect to the r or qV -semimetric associated to (26.2),
as appropriate.

Let us now take k = R or C, with the standard absolute value function, and
V = k. Let f , g be real or complex-valued functions on X that are 2-summable
or equivalently square-summable with respect to w, so that |f |2 w2 and |g|2 w2

are summable as nonnegative real-valued functions on X. This implies that
|f | |g|w2 is also summable as a nonnegative real-valued function on X, as in
Section 22. As before,

⟨f, g⟩ = ⟨f, g⟩ℓ2w(X,R) =
∑
x∈X

f(x) g(x)w(x)2(26.9)

and
⟨f, g⟩ = ⟨f, g⟩ℓ2w(X,C) =

∑
x∈X

f(x) g(x)w(x)2(26.10)

define inner products on ℓ2w(X,R) and ℓ2(X,C), respectively. In both cases,

⟨f, f⟩ =
∑
x∈X

|f(x)|2 w(x)2 = ∥f∥22,w,(26.11)

so that ∥f∥2,w is the norm associated to the inner product.
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27 Lebesgue spaces

Let (X,A, µ) be a measure space, so that X is a set, A is a σ-algebra of measur-
able subsets of X, and µ is a nonnegative countably-additive measure defined
on elements of A. If f is a nonnegative real-valued function on X that is mea-
surable with respect to A, then the Lebesgue integral

∫
X
f dµ can be defined

as a nonnegative extended real number in the usual way. Remember that the
Lebesgue spaces Lq(X,R) and Lq(X,C) are defined for 0 < q ≤ ∞, and consist
of (equivalence classes of) real and complex-valued functions f on X that are
measurable with respect to A (and equal almost everywhere with respect to µ).
If q < ∞, then |f(x)|q is integrable on X with respect to µ, so that

∥f∥q =
(∫

X

|f |q dµ
)1/q

(27.1)

is defined as a nonnegative real number. If q = ∞, then f is essentially bounded
on X with respect to µ, and ∥f∥∞ is defined to be the essential supremum of |f |
on X with respect to µ. It is well known that ∥f∥q defines a norm on Lq(X,R)
and Lq(X,C) with respect to the standard absolute value functions on R and
C, respectively, when 1 ≤ q ≤ ∞. If 0 < q ≤ 1, then it is easy to see that
(27.1) defines a q-norm on Lq(X,R) and Lq(X,C). It is also well known that
Lq(X,R) and Lq(X,C) are complete with respect to the metric or q-metric
associated to ∥f∥q, as appropriate, for every q > 0.

Suppose that 0 < q1, q2, q3 ≤ ∞ satisfy

1/q3 = 1/q1 + 1/q2,(27.2)

where 1/∞ is interpreted as being equal to 0, as usual. If f ∈ Lq1(X,R) or
Lq1(X,C) and g ∈ Lq2(X,R) or Lq2(X,C), then Hölder’s inequality implies
that f g ∈ Lq3(X,R) or Lq3(X,C), as appropriate, with

∥f g∥q3 ≤ ∥f∥q1 ∥g∥q2 .(27.3)

This is often stated with q3 = 1, and it is easy to reduce to this case. Let us
now take q1 = q2 = 2, so that q3 = 1, and (27.3) is an integral version of the
Cauchy–Schwarz inequality. It is easy to see that

⟨f, g⟩ = ⟨f, g⟩L2(X,R) =

∫
X

f g dµ(27.4)

defines an inner product on L2(X,R), and that

⟨f, g⟩ = ⟨f, g⟩L2(X,C) =

∫
X

f g dµ(27.5)

defines an inner product on L2(X,C). In both cases, the norm associated to
the inner product is the L2 norm. Thus L2(X,R) and L2(X,C) are Hilbert
spaces over the real and complex numbers, respectively, with respect to these
inner products.
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Let X be a nonempty set, and let w0, w1 be positive real-valued functions
on X. If t is a positive real number with t < 1, then put

wt(x) = w0(x)
1−t w1(x)

t(27.6)

for every x ∈ X. This defines another positive real-valued function on X, which
reduces to w0, w1 when t = 0, 1, respectively. Let k be a field with a qk-absolute
value function | · | for some qk > 0, let V be a vector space over k, and let NV

be a qV -seminorm on V with respect to | · | on k for some qV > 0. Suppose that
f is a V -valued function on X that is bounded with respect to NV on V and
both w0 and w1 on X, as in the previous section. If x ∈ X and 0 < t < 1, then

NV (f(x))wt(x) = (NV (f(x))w0(x))
1−t (NV (f(x))w1(x))

t(27.7)

≤ ∥f∥1−t
∞,w0

∥f∥t∞,w1
,

where ∥f∥∞,w is as in (26.1). This implies that f is bounded with respect to
wt on X and NV on V , with

∥f∥∞,wt
≤ ∥f∥1−t

∞,w0
∥f∥t∞,w1

.(27.8)

If we also have that f vanishes at infinity with respect to NV on V and either
w0 or w1 on X, then one can check that f vanishes at infinity with respect to
NV on V and wt on X when 0 < t < 1, using the first step in (27.7).

Let r be a positive real number, and suppose now that f is a V -valued
function on X that is r-summable with respect to NV on V and both w0 and
w1 on X, as in the previous section. If 0 < t < 1, then f is r-summable with
respect to wt on X and NV on V , with

∥f∥r,wt
≤ ∥f∥1−t

r,w0
∥f∥tr,w1

,(27.9)

and where ∥f∥r,w is as in (26.2). To see this, put q1 = r/(1− t), q2 = r/t, and
q3 = r, which automatically satisfy (27.2). The r-summability of f with respect
to w0 on X implies that (NV (f(x))w0(x))

1−t is q1-summable on X in the usual
sense, with

∥f∥1−t
r,w0

=
( ∑

x∈X

(NV (f(x))w0(x))
(1−t) q1

)1/q1
.(27.10)

Similarly, the r-summability of f with respect to w1 on X is the same as saying
that (NV (f(x))w1(x))

t is q2-summable on X in the usual sense, with

∥f∥tr,w1
=

( ∑
x∈X

(NV (f(x))w1(x))
t q2

)1/q2
.(27.11)

The r-summability of f with respect to wt is the same as the q3-summability of
NV (f(x))wt(x) on X in the usual sense, with

∥f∥r,wt
=

( ∑
x∈X

(NV (f(x))wt(x))
q3
)1/q3

.(27.12)
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Using the first step in (27.7) and Hölder’s inequality for sums, we get that the
first two summability conditions just mentioned imply the third one, and that
(27.12) is less than or equal to the product of (27.10) and (27.11). This means
that f is r-summable on X with respect to wt, and that (27.9) holds, as desired.

Part III

Power series

28 Some spaces of power series

Let k be a field, and let T be an indeterminate. The space of formal power
series

f(T ) =

∞∑
j=0

fj T
j(28.1)

with coefficients in k is denoted k[[T ]], as in Section 2. This can be identified
with the space c(Z+ ∪ {0}, k) of all k-valued functions on the set Z+ ∪ {0} of
nonnegative integers, as before. Similarly, the space k[[T ]] of formal polynomials
in T with coefficients in k corresponds to the space c00(Z+ ∪{0}, k) of k-valued
functions on Z+ ∪ {0} with finite support.

Let | · | be a qk-absolute value function on k for some qk > 0, and let r be a
positive real number. Put

wr(j) = rj(28.2)

for every nonnegative integer j, which defines a positive real-valued function on
Z+ ∪ {0}. If q is a positive real number, then put

kqr [[T ]] =

{
f(T ) ∈ k[[T ]] :

∞∑
j=0

|fj |q rq j < ∞
}
,(28.3)

and put

∥f(T )∥q,r = ∥f(T )∥kq
r [[T ]] =

( ∞∑
j=0

|fj |q rq j
)1/q

(28.4)

for every f(T ) ∈ kqr [[T ]]. Equivalently, (28.3) can be identified with the space
ℓqwr

(Z+ ∪ {0}, k) of k-valued functions on Z+ ∪ {0} that are q-summable with
respect to wr on Z+ ∪ {0} and | · | on k, as a linear subspace of c(Z+ ∪ {0}, k),
as in Section 26. Similarly, (28.4) corresponds to ∥ · ∥ℓqwr (Z+∪{0},k) applied to
j 7→ fj as a k-valued function on Z+ ∪ {0}. Thus (28.4) defines a q-norm on
(28.3) with respect to | · | on k when q ≤ qk, and a qk-norm on (28.3) when
q ≥ qk, as before. Note that

k[T ] ⊆ kqr [[T ]],(28.5)
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and that k[T ] is dense in kqr [[T ]] with respect to the q or qk-metric associated
to (28.4).

Put

k∞r [[T ]] = {f(T ) ∈ k[[T ]] : |fj | rj is bounded on Z+ ∪ {0}},(28.6)

and
∥f(T )∥∞,r = ∥f(T )∥k∞

r [[T ]] = sup
j≥0

(|fj | rj)(28.7)

for every f(T ) ∈ k∞r [[T ]]. As before, (28.6) can be identified with the space
ℓ∞wr

(Z+∪{0}, k) of k-valued functions on Z+∪{0} that are bounded with respect
to wr on Z+ ∪ {0} and | · | on k, and (28.7) corresponds to ∥ · ∥ℓ∞wr

(Z+∪{0},k)
applied to j 7→ fj as a k-valued function on Z+ ∪ {0}. In particular, (28.6) is a
linear subspace of k[[T ]], and (28.7) is a qk-norm on (28.6) with respect to | · |
on k. If 0 < q ≤ q̃ ≤ ∞, then

kqr [[T ]] ⊆ kq̃r [[T ]],(28.8)

and
∥f(T )∥

q̃,r
≤ ∥f(T )∥q,r(28.9)

for every f(T ) ∈ kqr [[T ]], as in (26.3) and (26.4).
Put

k0,r[[T ]] =
{
f(T ) ∈ k[[T ]] : lim

j→∞
|fj | rj = 0

}
,(28.10)

which can be identified with the space c0,wr (Z+ ∪ {0}, k) of k-valued functions
on Z+∪{0} that vanish at infinity with respect to wr on Z+∪{0} and | · | on k.
Thus (28.10) is a closed linear subspace of (28.6) with respect to the qk-metric
associated to (28.7). We also have that

k[T ] ⊆ k0,r[[T ]],(28.11)

and that k[T ] is dense in k0,r[[T ]] with respect to the qk-metric associated to
(28.7). If 0 < q < ∞, then

kqr [[T ]] ⊆ k0,r[[T ]],(28.12)

as in (26.6).
Suppose for the moment that | · | is the trivial absolute value function on k.

In this case,
kqr [[T ]] = k[[T ]](28.13)

when 0 < q < ∞ and 0 < r < 1, and when q = ∞ and 0 < r ≤ 1. Otherwise,

kqr [[T ]] = k[T ](28.14)

when 0 < q < ∞ and r ≥ 1, and when q = ∞ and r > 1. Similarly,

k0,r[[T ]] = k[[T ]](28.15)

when 0 < r < 1, and
k0,r[[T ]] = k[T ](28.16)

when r ≥ 1.
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29 Submultiplicativity

Let k be a field, and let T be an indeterminate. Also let f(T ) =
∑∞

j=0 fj T
j and

g(T ) =
∑∞

l=0 gl T
l be formal power series in T with coefficients in k. Remember

that their product f(T ) g(T ) = h(T ) =
∑∞

n=0 hn T
n is defined by

hn =

n∑
j=0

fj gn−j(29.1)

for every n ≥ 0, as in Section 2.
Let | · | be a qk-absolute value function on k for some qk > 0, and let

0 < q ≤ qk be given. Thus | · | may be considered as a q-absolute value function
on k as well. If q < ∞, then

|hn|q ≤
n∑

j=0

|fj |q |gn−j |q(29.2)

for every n ≥ 0. If q = ∞, then

|hn| ≤ max
0≤j≤n

(|fj | |gn−j |)(29.3)

for every n ≥ 0.
Let r be a positive real number. If q < ∞, then

|hn|q rq n ≤
n∑

j=0

|fj |q |gn−j |q rq n =

n∑
j=0

(|fj |q rq j) (|gn−j |q rq (n−j))(29.4)

for every n ≥ 0, using (29.2) in the first step. If q = ∞, then

|hn| rn ≤ max
0≤j≤n

(|fj | |gn−j |) rn = max
0≤j≤n

((|fj | rj) (|gn−j | rn−j))(29.5)

for every n ≥ 0, using (29.3) in the first step.
Suppose that f(T ), g(T ) ∈ kqr [[T ]]. If q < ∞, then

∞∑
n=0

|hn|q rq n ≤
∞∑

n=0

n∑
j=0

(|fj |q rq j) (|gn−j |q rq (n−j)),(29.6)

by (29.4). The right side is equal to( ∞∑
j=0

|fj |q rq j
)( ∞∑

l=0

|gl|q rq l
)
.(29.7)

More precisely, the right side of (29.4) corresponds to the nth term of the Cauchy
product of these two series, as in Section 20. It follows that f(T ) g(T ) = h(T )
is an element of kqr [[T ]] too, with

∥f(T ) g(T )∥q,r ≤ ∥f(T )∥q,r ∥g(T )∥q,r.(29.8)
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If q = ∞, then we get that

|hn| rn ≤ ∥f(T )∥∞,r ∥g(T )∥∞,r(29.9)

for every n ≥ 0, using (29.5). This implies that f(T ) g(T ) = h(T ) ∈ k∞r [[T ]],
and satisfies (29.8). If f(T ), g(T ) ∈ k0,r[[T ]], then one can check that

lim
n→∞

|hn| rn = 0,(29.10)

using (29.5) again. This means that f(T ) g(T ) = h(T ) ∈ k0,r[[T ]] in this sit-
uation. Thus kqr [[T ]] is a subalgebra of k[[T ]] when q ≤ qk, and k0,r[[T ]] is a
subalgebra of k[[T ]] when qk = ∞.

30 Radius of convergence

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let T
be an indeterminate. Suppose that f(T ) =

∑∞
j=0 fj T

j ∈ kqr [[T ]] for some q > 0
and 0 < r < ∞. If 0 < r1 ≤ r, then it is easy to see that f(T ) ∈ kqr1 [[T ]], with

∥f(T )∥q,r1 ≤ ∥f(T )∥q,r.(30.1)

Suppose that f(T ) ∈ k∞r [[T ]] and 0 < r1 < r, and observe that

|fj | rj1 = |fj | rj (r1/r)j ≤ ∥f(T )∥∞,r (r1/r)
j(30.2)

for every j ≥ 0. This implies that

lim
j→∞

|fj | rj1 = 0,(30.3)

so that f(T ) ∈ k0,r1 [[T ]]. If 0 < q < ∞, then we get that

∞∑
j=0

|fj |q rq j
1 ≤ ∥f(T )∥q∞,r

∞∑
j=0

(r1/r)
q j(30.4)

= ∥f(T )∥q∞,r (1− (r1/r)
q)−1.

It follows that f(T ) ∈ kqr1 [[T ]], with

∥f(T )∥q,r1 ≤ ∥f(T )∥∞,r (1− (r1/r)
q)−1/q.(30.5)

The radius of convergence of f(T ) ∈ k[[T ]] may be defined as a nonnegative
extended real number as the supremum of the nonnegative real numbers r such
that

|fj | rj is bounded on Z+ ∪ {0}.(30.6)

Of course, (30.6) holds trivially when r = 0, so that the set of r ≥ 0 with this
property is nonempty. Equivalently, the radius of convergence of f(T ) is the
supremum of the set of r ≥ 0 such that

lim
j→∞

|fj | rj = 0.(30.7)
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If q is any positive real number, then the radius of convergence of f(T ) can also
be characterized as the supremum of the set of r ≥ 0 such that

∞∑
j=0

|fj |q rq j < ∞.(30.8)

Indeed, (30.8) implies (30.7), and (30.7) implies (30.6). If (30.6) holds for some
r > 0, then the analogues of (30.7) and (30.8) hold with r replaced by any
r1 ∈ [0, r), as in the preceding paragraph. Hence the suprema of these sets are
the same. If r ≥ 0 is strictly less than the radius of convergence of f(T ), then
f(T ) satisfies each of these conditions.

If t ∈ k and t ̸= 0, then it is easy to see that the radius of convergence
of t f(T ) is equal to the radius of convergence of f(T ). If g(T ) ∈ k[[T ]] too,
then the radius of convergence of f(T ) + g(T ) is greater than or equal to the
minimum of the radii of convergence of f(T ) and g(T ). Similarly, the radius of
convergence of f(T ) g(T ) is greater than or equal to the minimum of the radii
of convergence of f(T ) and g(T ). This follows from (29.8), where 0 < q ≤ qk,
as before.

If 0 < r ≤ ∞, then we let kr[[T ]] be the space of f(T ) ∈ k[[T ]] whose radius
of convergence is greater than or equal to r. This is a subalgebra of k[[T ]], by
the remarks in the preceding paragraph.

31 A multiplicativity condition

Let k be a field with an ultrametric absolute value function | · |, and let T be
an indeterminate. Suppose that f(T ) =

∑∞
j=0 fj T

j and g(T ) =
∑∞

l=0 gl T
l

are elements of k0,r[[T ]] for some positive real number r. This implies that
f(T ) g(T ) ∈ k0,r[[T ]], with

∥f(T ) g(T )∥∞,r ≤ ∥f(T )∥∞,r ∥g(T )∥∞,r,(31.1)

as in Section 29. In fact, it is well known that

∥f(T ) g(T )∥∞,r = ∥f(T )∥∞,r ∥g(T )∥∞,r(31.2)

under these conditions. To see this, it suffices to verify that

∥f(T )∥∞,r ∥g(T )∥∞,r ≤ ∥f(T ) g(T )∥∞,r.(31.3)

Of course, this is trivial when f(T ) = 0 or g(T ) = 0. Thus we may suppose
that f(T ) ̸= 0 and g(T ) ̸= 0.

By hypothesis, |fj | rj → 0 as j → ∞, and |gl| rl → 0 as l → ∞. These
conditions imply that the suprema in the definitions of ∥f(T )∥∞,r and ∥g(T )∥∞,r

are attained. Let j0 and l0 be the smallest nonnegative integers such that

|fj0 | rj0 = ∥f(T )∥∞,r(31.4)
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and
|gl0 | rl0 = ∥g(T )∥∞,r.(31.5)

In particular,
∥f(T )∥∞,r ∥g(T )∥∞,r = |fj0 | |gl0 | rj0+l0 .(31.6)

Remember that f(T ) g(T ) = h(T ) =
∑∞

n=0 hn T
n, where hn =

∑n
j=0 fj gn−j for

each n ≥ 0. Note that

|hj0+l0 | rj0+l0 ≤ ∥h(T )∥∞,r = ∥f(T ) g(T )∥∞,r.(31.7)

To get (31.3), it is enough to check that

|fj0 | |gl0 | rj0+l0 ≤ |hj0+l0 | rj0+l0 .(31.8)

Clearly
|fj | rj ≤ ∥f(T )∥∞,r = |fj0 | rj0(31.9)

for every j ≥ 0, with a strict inequality when j < j0, by the minimality of j0.
Similarly,

|gl| rl ≤ ∥g(T )∥∞,r = |gl0 | rl0(31.10)

for every l ≥ 0, with a strict inequality when l < l0, by the minimality of l0. It
follows that

|fj | |gl| rj+l ≤ |fj0 | |gl0 | rj0+l0(31.11)

for every j, l ≥ 0, with a strict inequality when either j < j0 or l < l0. If
j + l = j0 + l0, then we get that

|fj | |gl| ≤ |fj0 | |gl0 |,(31.12)

with a strict inequality when either j < j0 or l < l0.
We would like to use these inequalities to obtain that

|hj0+l0 − fj0 gl0 | < |fj0 | |gl0 |.(31.13)

Remember that hj0+l0 is equal to the sum of fj gl over j, l ≥ 0 with j+l = j0+l0.
This condition on j + l implies that j ̸= j0 if and only if l ̸= l0, in which case
either j < j0 or l < l0. This means that hj0+l0 − fj0 gl0 can be expressed as
the sum of finitely many terms, each of which corresponds to a strict inequality
in (31.12). Thus (31.13) follows from the ultrametric version of the triangle
inequality.

Of course,
|fj0 | |gl0 | ≤ max(|hj0+l0 |, |hj0+l0 − fj0 gl0 |),(31.14)

by the ultrametric version of the triangle inequality. This implies that

|fj0 | |gl0 | ≤ |hj0+l0 |,(31.15)

because of (31.13). Hence (31.8) holds, as desired. We also have that |hj0+l0 |
is less than or equal to |fj0 | |gl0 |, by (31.13) and the ultrametric version of the
triangle inequality. Thus we have equality in (31.15), even if this is not needed
here.

56



32 Some continuity properties

Let k be a field with a qk-absolute value function | · | for some qk > 0, let T
be an indeterminate, and let f(T ) =

∑∞
j=0 fj T

j be a formal power series in T
with coefficients in k. Thus

sup
j≥0

(|fj | rj)(32.1)

is defined as a nonnegative extended real number for every positive real number
r. If 0 < r1 ≤ r, then

sup
j≥0

(|fj | rj1)(32.2)

is automatically less than or equal to (32.1). In fact, (32.2) tends to (32.1) as
r1 → r−, which is to say as r1 ∈ (0, r) approaches r, with suitable interpreta-
tions for extended real numbers. This can be obtained from the continuity of
rj on R for each j ≥ 0.

Similarly, if q is a positive real number, then

∞∑
j=0

|fj |q rj(32.3)

can be defined as a nonnegative extended real number for every positive real
number r. As before,

∞∑
j=0

|fj |q rj1(32.4)

is automatically less than or equal to (32.3) when 0 < r1 ≤ r. One can check
that (32.4) tends to (32.3) as r1 → r−, with suitable interpretations for extended
real numbers. This uses the continuity of the partial sums

n∑
j=0

|fj |q rj(32.5)

in r for each nonnegative integer n. Of course, (32.3) is the same as the supre-
mum of (32.5) over all nonnegative integers n.

Suppose now that | · | is an ultrametric absolute value function on k, and
that f(T ), g(T ) are elements of k∞r [[T ]] for some positive real number r. Thus
f(T ) g(T ) ∈ k∞r [[T ]], with

∥f(T ) g(T )∥∞,r ≤ ∥f(T )∥∞,r ∥g(T )∥∞,r,(32.6)

as in Section 29. If 0 < r1 < r, then f(T ), g(T ) ∈ k0,r1 [[T ]], as in Section 30,
and

∥f(T ) g(T )∥∞,r1 = ∥f(T )∥∞,r1 ∥g(T )∥∞,r1 ,(32.7)

as in the previous section. It follows that

∥f(T ) g(T )∥∞,r = ∥f(T )∥∞,r ∥g(T )∥∞,r,(32.8)

by taking r1 → r− in (32.7).
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33 Functions on Banach algebras

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let A
be an algebra over k with a submultiplicative q-norm N with respect to | · | on
k for some q > 0. Suppose that A has a multiplicative identity element e with
N(e) = 1, and that A is complete with respect to the q-metric associated to N .
Let T be an indeterminate, and let r be a positive real number. Suppose for
the moment that q < ∞, and that f(T ) =

∑∞
j=0 fj T

j is an element of kqr [[T ]].
If a ∈ A satisfies

N(a) ≤ r,(33.1)

then we would like to put

f(a) =

∞∑
j=0

fj a
j ,(33.2)

where aj is interpreted as being equal to e when j = 0. Of course,

N(aj) ≤ N(a)j ≤ rj(33.3)

for each j ≥ 0, so that

∞∑
j=0

N(fj a
j)q =

∞∑
j=0

|fj |q N(aj)q ≤
∞∑
j=0

|fj |q rq j = ∥f(T )∥qq,r,(33.4)

where ∥f(T )∥q,r is as in (28.4). In particular, this means that the series on the
right side of (33.2) converges q-absolutely with respect to N . It follows that
this series converges in A, because A is complete with respect to the q-metric
associated to N , as in Section 9. We also get that

N(f(a)) ≤
( ∞∑

j=0

N(fj a
j)q

)1/q

≤ ∥f(T )∥q,r,(33.5)

using (9.9) in the first step.
Suppose now that q = ∞, and that f(T ) ∈ k0,r[[T ]]. If a ∈ A satisfies (33.1),

then
N(fj a

j) = |fj |N(aj) ≤ |fj | rj(33.6)

for each j ≥ 0, so that
lim
j→∞

N(fj a
j) = 0.(33.7)

This implies that the series on the right side of (33.2) converges in A, because
A is complete with respect to the ultrametric associated to N , as in Section 9
again. In this situation, we have that

N(f(a)) ≤ max
j≥0

N(fj a
j) ≤ max

j≥0
(|fj | rj) = ∥f(T )∥∞,r,(33.8)

using (9.11) in the first step.
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We may as well ask that q ≤ qk, as in Section 7. Hence kqr [[T ]] is a subalgebra
of k[[T ]], and k0,r[[T ]] is a subalgebra of k[[T ]] when q = ∞, as in Section 29. If
q < ∞, then

f(T ) 7→ f(a)(33.9)

defines a homomorphism from kqr [[T ]] into A, as algebras over k. More precisely,
this mapping is clearly linear, and products of elements of kqr [[T ]] correspond
to Cauchy products of series in A. Similarly, if q = ∞, then (33.9) defines an
algebra homomorphism from k0,r[[T ]] into A.

Let f(T ) be an element of kqr [[T ]] when q < ∞, or an element of k0,r[[T ]]
when q = ∞. In both cases, (33.2) defines a mapping from the closed ball

{a ∈ A : N(a) ≤ r}(33.10)

in A centered at 0 with radius r into A. Observe that the partial sums of (33.2)
converge uniformly on (33.10), by estimating the errors as before. It is easy to
see that the partial sums are uniformly continuous on (33.10), with respect to
the q-metric on A associated to N , and its restriction to (33.10). This implies
that (33.2) is uniformly continuous on (33.10) too, by standard arguments.

Suppose now that 0 < r ≤ ∞, and that f(T ) is an element of the space
kr[[T ]] defined in Section 30. If 0 < r1 < r, then f(T ) is an element of kqr1 [[T ]]
and k0,r1 [[T ]], as before. If a ∈ A satisfies N(a) < r, then we can use this to
define f(a) as an element of A, as in (33.2). This defines f(a) as a mapping
from

{a ∈ A : N(a) < r}(33.11)

into A. It is easy to see that this mapping is continuous, because its restriction
to any closed ball in A centered at 0 with radius r1 < r is continuous, as in the
preceding paragraph.

34 Holomorphic functions

In this section, we take k to be the fieldC of complex numbers, with the standard
absolute value function. If U is a nonempty open subset of the complex plane,
then let H(U) be the space of holomorphic functions on U . This is a subalgebra
of the algebra C(U,C) of all continuous complex-valued functions on U . If
0 < r ≤ ∞, then put

Ur = {z ∈ C : |z| < r}.(34.1)

Let T be an indeterminate, and let f(T ) =
∑∞

j=0 fj T
j be an element of the

space Cr[[T ]] of formal power series in T with complex coefficients and radius
of convergence greater than or equal to r, as in Section 30. If z ∈ Ur, then put

f(z) =

∞∑
j=0

fj z
j ,(34.2)

where the series on the right converges absolutely, as in the previous section. It
is well known that this defines a holomorphic function on Ur, and that every
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holomorphic function on Ur can be represented by a unique power series in this
way.

If U is a nonempty open subset of C again, then let H∞(U) be the space
of bounded holomorphic functions on U . This is a subalgebra of the algebra
Cb(U,C) of all bounded continuous complex-valued functions on U . Note that
H∞(U) contains all constant complex functions on U . It is well known that
H∞(U) is a closed set in Cb(U,C), with respect to the supremum metric.

Let r be a positive real number, and let

Ur = {z ∈ C : |z| ≤ r}(34.3)

be the closed disk in C centered at 0 with radius r, which is the same as the
closure in C of the open disk Ur centered at 0 with radius r. Let A(Ur) be the
space of continuous complex-valued functions on Ur that are holomorphic on
Ur. This is a subalgebra of the algebra C(Ur,C) of continuous complex-valued
functions on Ur. It is well known that A(Ur) is a closed set in C(Ur,C) with
respect to the supremum metric, as in the previous paragraph.

Let f(T ) be an element of the space C1
r[[T ]] defined in Section 28, so that

∥f(T )∥1,r =

∞∑
j=0

|fj | rj(34.4)

is finite. If z ∈ Ur, then the series on the right side of (34.2) converges abso-
lutely, and (34.2) defines a continuous complex-valued function on Ur, as in the
previous section. We also have that (34.2) is holomorphic on Ur, as before, so
that (34.2) defines an element of A(Ur). Note that

|f(z)| ≤ ∥f(T )∥1,r(34.5)

for every z ∈ Ur.
Now let f(z) by any continuous complex-valued function on Ur. If t ∈ C and

|t| ≤ 1, then f(t z) defines a continuous complex-valued function on Ur. It is well
known that Ur is compact with respect to the standard Euclidean metric on C,
and hence that f(z) is uniformly continuous on Ur with respect to the standard
Euclidean metric on C and its restriction to Ur. This implies that f(t z) tends
to f(z) uniformly as a function of z on Ur, as t ∈ U1 tends to 1. Of course,
f(t z) is holomorphic as a function of z on Ur/|t|. If |t| < 1, then r/|t| > r, and it
follows that f(t z) can be represented by an absolutely convergent power series
in z on Ur. In particular, one can use this to approximate f(z) by polynomials
in z uniformly on Ur. More precisely, one can first approximate f(z) uniformly
on Ur by f(t z), by taking t ∈ U1 sufficiently close to 1. One can approximate
f(t z) uniformly as a function of z ∈ Ur by polynomials when |t| < 1, using the
absolute convergence of its power series expansion in z on Ur.

35 Rescaling power series

Let k be a field, and let T be an indeterminate. If t ∈ k and f(T ) =
∑∞

j=0 fj T
j

is a formal power series in T with coefficients in k, then define Rt(f(T )) ∈ k[[T ]]
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by

Rt(f(T )) =

∞∑
j=0

fj t
j T j .(35.1)

This may also be denoted (Rt(f))(T ), or simply Rt(f). One can check that Rt

defines a homomorphism from k[[T ]] into itself, as an algebra over k. Of course,
R1 is the identity mapping on k[[T ]], and R0 reduces to the mapping from f(T )
to f0. If u is another element of k, then it is easy to see that

Rt ◦Ru = Rt u.(35.2)

If t ̸= 0, then Rt is a one-to-one mapping from k[[T ]] onto itself, with R−1
t =

R1/t. Note that Rt maps k[T ] into itself, and onto itself when t ̸= 0.
Let | · | be a qk-absolute value function on k for some qk > 0, and let r be

a positive real number. Also let t ∈ k \ {0}, f(T ) ∈ k[[T ]], and 0 < q ≤ ∞ be
given. It is easy to see that Rt(f(T )) is in the space kqr [[T ]] defined in Section
28 if and only if f(T ) ∈ kqr |t|[[T ]]. In this case, we have that

∥Rt(f(T ))∥q,r = ∥f(T )∥q,r |t|.(35.3)

Similarly, Rt(f(T )) is an element of the space k0,r[[T ]] defined earlier if and only
if f(T ) ∈ k0,r |t|[[T ]]. If 0 < r ≤ ∞, then Rt(f(T )) is in the space kr[[T ]] defined
in Section 30 if and only if f(T ) ∈ kr |t|[[T ]]. This follows from the previous
statements, applied to radii less than r.

Let A be an algebra over k with a submultiplicative q-norm N with respect
to | · | on k for some 0 < q ≤ qk. Suppose that A has a multiplicative identity
element e, and that A is complete with respect to the q-metric associated to
N . Let t ∈ k \ {0} and a positive real number r be given, and let a be an
element of A with N(a) ≤ r. Suppose for the moment that q < ∞, and that
f(T ) ∈ kqr |t|[[T ]], so that Rt(f(T )) ∈ kqr [[T ]]. Note that

N(t a) = |t|N(a) ≤ r |t|,(35.4)

so that f(t a) can be defined as an element of A as in Section 33. Similarly,
(Rt(f))(a) can be defined as an element of A, and in fact

(Rt(f))(a) =

∞∑
j=0

fj t
j aj =

∞∑
j=0

fj (t a)
j = f(t a).(35.5)

If q = ∞ and f(T ) ∈ k0,r |t|[[T ]], then Rt(f(T )) ∈ k0,r[[T ]], f(t a) and (Rt(f))(a)
can be defined as elements in A, and they are equal, as in (35.5).

Suppose now that 0 < r ≤ ∞ and f(T ) ∈ kr |t|[[T ]], so that Rt(f(T )) is an
element of kr[[T ]]. If a ∈ A satisfies N(a) < r, then N(t a) < r |t|, f(t a) and
(Rt(f))(a) can be defined as elements of A, and they are equal, as in (35.5)
again.
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36 Hardy spaces

Let r be a positive real number, and let f be a holomorphic function on the
open disk Ur in the complex plane centered at 0 with radius r. If q and r1 are
positive real numbers, with r1 < r, then put

Mq(f, r1) =
( 1

2π r1

∫
|z|=r1

|f(z)|q |dz|
)1/q

.(36.1)

More precisely, the integral is taken over the set of z ∈ C with |z| = r1, with
respect to arclength. Similarly, put

M∞(f, r1) = sup{|f(z)| : z ∈ C, |z| = r1}.(36.2)

Equivalently,

Mq(f, r1) =
( 1

2π

∫
|z|=1

|f(r1 z)|q |dz|
)1/q

(36.3)

when 0 < q < ∞, and

M∞(f, r1) = sup{|f(r1 z)| : z ∈ C, |z| = 1}.(36.4)

In particular, Mq(f, r1) can be defined for r1 = 0, using (36.3) when q = ∞. It
is well known that Mq(f, r1) is monotonically increasing in r1 for each q > 0,
which follows from the maximum principle when q = ∞. Note that Mq(f, r1) is
monotonically increasing in q as well, by the inequalities of Hölder or Jensen.

The Hardy space Hq(Ur) is defined for 0 < q ≤ ∞ as the space of holomor-
phic functions f on Ur such that Mq(f, r1) is bounded for 0 ≤ r1 < r, in which
case we put

∥f∥Hq(Ur) = sup
0≤r1<r

Mq(f, r1).(36.5)

One can check that Hq(Ur) is a linear subspace of the space H(Ur) of all holo-
morphic functions on Ur. If q ≥ 1, then (36.5) defines a norm on Hq(Ur), with
respect to the standard absolute value function on C. If 0 < q ≤ 1, then (36.5)
defines a q-norm on Hq(Ur). It is easy to see that f is bounded on Ur if and
only if M∞(f, r1) is bounded for 0 ≤ r1 < ∞, so that this definition of H∞(Ur)
is the same as the space of bounded holomorphic functions on Ur, as in Section
34. If 0 < q1 ≤ q2 ≤ ∞, then

Hq2(Ur) ⊆ Hq1(Ur),(36.6)

with
∥f∥Hq1 (Ur) ≤ ∥f∥Hq2 (Ur)(36.7)

for every f ∈ Hq2(Ur). This follows from the monotonicity of Mq(f, r1) in q.
Let T be an indeterminate, and let f(T ) =

∑∞
j=0 fj T

j be a formal power
series in T with complex coefficients. Suppose that f(T ) has radius of conver-
gence greater than or equal to r, so that f(z) =

∑∞
j=0 fj z

j defines a holomorphic
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function on Ur. If 0 ≤ r1 < r, then

M2(f, r1) =
( ∞∑

j=0

|fj |2 r2 j
1

)1/2

,(36.8)

by a standard computation. If f ∈ H2(Ur), then it follows that f(T ) is an
element of the space C2

r[[T ]] defined in Section 28, using the standard absolute
value function on C, with

∥f∥H2(Ur) = ∥f(T )∥C2
r[[T ]],(36.9)

where the right side is as in (28.4). Conversely, if f(T ) ∈ C2
r[[T ]], then f(T )

has radius of convergence greater than or equal to r, and the corresponding
holomorphic function f on Ur is an element of H2(Ur).

Suppose that f(T ) is an element of the space Cr[[T ]] defined in Section 30
again, so that f(z) defines a holomorphic function on Ur, as before. If j is a
nonnegative integer and 0 < r1 < r, then

fj r
j
j =

1

2π

∫
|z|=1

f(r1 z) z
−j |dz|,(36.10)

by a standard computation. This implies that

|fj | rj1 ≤ 1

2π

∫
|z|=1

|f(z)| |dz| = M1(f, r1)(36.11)

for each j ≥ 0. If f ∈ H1(Ur), then it follows that

|fj | rj ≤ ∥f∥H1(Ur)(36.12)

for every j ≥ 0. This means that f(T ) ∈ C∞
r [[T ]], with

∥f(T )∥C∞
r [[T ]] ≤ ∥f∥H1(Ur),(36.13)

where the left side is as in (28.7). In fact, it is well known that

lim
j→∞

|fj | rj = 0(36.14)

in this case, so that f(T ) ∈ C0,r[[T ]]. This is typically stated with r = 1, and
one can reduce to that situation by rescaling.

37 Geometric series

Let k be a field, and let T be an indeterminate. The usual geometric series

a(T ) =

∞∑
j=0

T j(37.1)
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may be considered as a formal power series in T with coefficients in k, where
the coefficient of T j is the multiplicative identity element 1 in k for each j ≥ 0.
Remember that (37.1) is the multiplicative inverse of 1−T in k[[T ]], as in Section
2.

Let | · | be a qk-absolute value function on k for some qk > 0, and let q, r be
positive real numbers. If r < 1, then (37.1) is an element of the space kqr [[T ]]
defined in Section 28, with

∥a(T )∥q,r =
( ∞∑

j=0

rq j
)1/q

= (1− rq)−1/q.(37.2)

In particular, (37.1) is in the space k0,r[[T ]] defined in Section 28 when r < 1.
If 0 < r ≤ 1, then (37.1) is in the space k∞r [[T ]] defined in Section 28, with

∥a(T )∥∞,r = 1.(37.3)

Otherwise, (37.1) is not in kqr [[T ]] for any q < ∞, nor in k0,r[[T ]], when r ≥ 1,
and (37.1) is not in k∞r [[T ]] when r > 1.

Let A be an algebra over k, and let N be a submultiplicative q-norm N on
A with respect to | · | on k for some q > 0. Suppose that A has a multiplicative
identity element e with N(e) = 1, and that A is complete with respect to the
q-metric associated to N . Note that

N(xj) ≤ N(x)j(37.4)

for every x ∈ A and nonnegative integer j, where xj is interpreted as being
equal to e when j = 0. In particular, if N(x) < 1, then it follows that

N(xj) → 0 as j → ∞.(37.5)

Let us check that
∞∑
j=0

xj(37.6)

converges in A when N(x) < 1. If q < ∞, then

∞∑
j=0

N(xj)q ≤
∞∑
j=0

N(x)q j = (1−N(x)q)−1,(37.7)

so that (37.6) converges q-absolutely with respect to N . If q = ∞, then the
convergence of (37.6) follows from (37.5), as in Section 9.

If x is any element of A and n is a nonnegative integer, then

(e− x)

n∑
j=0

xj =
( n∑

j=0

xj
)
(e− x) = e− xn+1,(37.8)
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by a standard computation. Suppose that N(x) < 1, so that

(e− x)

∞∑
j=0

xj =
( ∞∑

j=0

xj
)
(x− e) = e(37.9)

by (37.5). Thus (37.6) is the multiplicative inverse of e−x in A. If q < ∞, then
it follows that

N((e− x)−1) = N
( ∞∑

j=0

xj
)
≤

( ∞∑
j=0

N(xj)q
)1/q

≤ (1−N(x)q)−1/q,(37.10)

using (9.9) in the second step. If q = ∞, then

N((e− x)−1) = N
( ∞∑

j=0

xj
)
≤ max

j≥0
N(xj) ≤ 1,(37.11)

using (9.11) in the second step.

38 Boundary values

Let r be a positive real number, let Ur be the open disk in the complex plane
centered at 0 with radius r again, and let f be a holomorphic function on Ur.
If t ∈ C and t ̸= 0, then

ft(z) = f(t z)(38.1)

defines a holomorphic function on Ur/|t|. Let 0 < q ≤ ∞ and 0 ≤ r1 < r be
given, and observe that

Mq(ft, r1/|t|) = Mq(f, r1),(38.2)

where Mq(·, ·) is as in Section 36. In particular, if f is an element of the Hardy
space Hq(Ur) defined earlier, then ft ∈ Hq(Ur/|t|), and

∥ft∥Hq(Ur/|t|) = ∥f∥Hq(Ur).(38.3)

If |t| ≤ 1, then Ur ⊆ Ur/|t|, and so the restriction of ft to Ur defines a
holomorphic function on Ur. If f ∈ Hq(Ur), then the restriction of ft to Ur is
an element of Hq(Ur) too, with

∥ft∥Hq(Ur) ≤ ∥f∥Hq(Ur).(38.4)

Let us now restrict our attention to positive real numbers t less than 1. Let

∂Ur = {z ∈ C : |z| = r}(38.5)

be the boundary of Ur in C, which is the same as the circle centered at 0 with
radius r. This may be considered as a measure space, using arclength measure
normalized by dividing by 2π r. If f ∈ Hq(Ur), then it is well known that

lim
t→1−

f(t z)(38.6)
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exists for almost every z ∈ ∂Ur. Let f(z) denote these radial boundary values
of f for almost every z ∈ ∂Ur. It is well known that this defines f as an element
of Lq(∂Ur) = Lq(∂Ur,C), with

∥f∥Hq(Ur) = ∥f∥Lq(∂Ur).(38.7)

If q < ∞, then it is also well known that f(t z) converges to f(z) in Lq(∂U) as
t → 1−.

It is well known that Hq(Ur) is complete for every q > 0, with respect to
the metric or q-metric associated to (36.5), as appropriate. This implies that
the radial boundary values of elements of Hq(Ur) form a closed linear subspace
of Lq(∂Ur).

Suppose that 0 < q1, q2, q3 ≤ ∞ satisfy 1/q3 = 1/q1+1/q2. Let f ∈ Hq1(Ur),
g ∈ Hq2(Ur) be given, and note that their product f g is holomorphic on Ur as
well. If 0 ≤ r1 < r, then

Mq3(f g, r1) ≤ Mq1(f, r1)Mq2(g, r1),(38.8)

by Hölder’s inequality. It follows that f g ∈ Hq3(Ur), with

∥f g∥Hq3 (Ur) ≤ ∥f∥Hq1 (Ur) ∥g∥Hq2 (Ur).(38.9)

Of course, the radial boundary values of f g on ∂Ur are equal to the product of
the radial boundary values of f and g, when they exist.

39 Some remarks about invertibility

Let k be a field, and let A be an algebra over k with a multiplicative identity
element e. The collection of elements of A with a multiplicative inverse in A is a
group with respect to multiplication, that we shall denote G(A). Let | · | be a qk-
absolute value function on k for some qk > 0, and let N be a submultiplicative
q-seminorm on A with respect to | · | on k for some q > 0. If a, b ∈ G(A), then

a−1 − b−1 = a−1 (b− a) b−1,(39.1)

and hence
N(a−1 − b−1) ≤ N(a−1)N(b−1)N(a− b).(39.2)

Suppose for the moment that q < ∞, so that

N(b−1)q ≤ N(a−1)q +N(a−1 − b−1)q(39.3)

≤ N(a−1)q +N(a−1)q N(b−1)q N(a− b)q.

Thus
(1−N(a−1)q N(a− b)q)N(b−1)q ≤ N(a−1)q.(39.4)

If
N(a−1)N(a− b) < 1,(39.5)
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then it follows that

N(b−1)q ≤ (1−N(a−1)q N(a− b)q)−1 N(a−1)q.(39.6)

Equivalently, this means that

N(b−1) ≤ (1−N(a−1)q N(a− b)q)−1/q N(a−1)(39.7)

when (39.5) holds. Combining this with (39.2), we obtain that

N(a−1 − b−1) ≤ (1−N(a−1)q N(a− b)q)−1/q N(a−1)2 N(a− b)(39.8)

when (39.5) holds.
If q = ∞, then

N(b−1) ≤ max(N(a−1), N(a−1 − b−1))(39.9)

≤ max(N(a−1), N(a−1)N(b−1)N(a− b)).

One can use this to get that

N(b−1) ≤ N(a−1)(39.10)

when (39.5) holds. This implies that

N(a−1 − b−1) ≤ N(a−1)2 N(a− b)(39.11)

when (39.5) holds, because of (39.2).
Suppose now that N is a submultiplicative q-norm on A, and that A is

complete with respect to the q-metric associated to N . If x ∈ A and N(x) < 1,
then e−x is invertible in A, as in Section 37. Let a ∈ G(A) and b ∈ A be given,
and observe that

b = a− (a− b) = a (e− a−1 (a− b)).(39.12)

If (39.5) holds, then e − a−1 (a − b) is invertible in A, as before. This implies
that b ∈ G(A) when (39.5) holds, by (39.12).

Let {aj}∞j=1 be a sequence of invertible elements of A that converges to an
element a of A with respect to the q-metric associated to N . Suppose also that
{a−1

j }∞j=1 is bounded with respect to N , so that N(a−1
j ) ≤ C for some C ≥ 0

and every j ≥ 1. It follows that

N(a−1
j − a−1

l ) ≤ C2 N(aj − al)(39.13)

for every j, l ≥ 1, as in (39.2). This implies that {a−1
j }∞j=1 is a Cauchy sequence

in A with respect to the q-metric associated to N , because {aj}∞j=1 is a Cauchy

sequence, since it converges. Thus {a−1
j }∞j=1 converges in A, by completeness,

and the limit of this sequence is the multiplicative inverse of a.
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Part IV

Laurent series

40 Some spaces of Laurent series

Let k be a field, and let T be an indeterminate. Let us now use LS(k) = LS(k, T )
to denote the space of formal Laurent series

f(T ) =

∞∑
j=−∞

fj T
j(40.1)

in T with coefficients in k. As in Section 3, LS(k) can be defined precisely as
the space c(Z, k) of all k-valued functions on the set Z of integers. In particular,
LS(k) is a vector space over k with respect to termwise addition and scalar mul-
tiplication, which corresponds to pointwise addition and scalar multiplication
of functions on Z.

Let LP (k) = LP (k, T ) be the space of formal Laurent polynomials in T with
coefficients in k. This is a linear subspace of LS(k), as before, which corresponds
to the space c00(Z, k) of k-valued functions on Z with finite support. Remember
that k((T )) is the linear subspace of LS(k) consisting of formal Laurent series
in T with coefficients in k such that the coefficient of T j is equal to 0 for all
but finitely many j < 0. This is a field with respect to formal multiplication of
these series, as before. Of course, LP (k) is a subalgebra of k((T )), as an algebra
over k.

Let PS(k) = PS(k, T ) be the space of formal Laurent series in T with
coefficients in k such that the coefficient of T j is equal to 0 when j < 0. This is
a linear subspace of LS(k), whose elements can be identified with formal power
series in T with coefficients in k. Similarly, let P (k) = P (k, T ) be the space of
formal Laurent polynomials in T with coefficients in k such that the coefficient
of T j is 0 when j < 0, which is the linear subspace of LP (k) corresponding to
formal polynomials in T with coefficients in k. Equivalently,

P (k) = LP (k) ∩ PS(k).(40.2)

Note that P (k), PS(k) are subalgebras of LP (k), k((T )), respectively, as alge-
bras over k.

Let | · | be a qk-absolute value function on k for some qk > 0, and let r be a
positive real number. Put

wr(j) = rj(40.3)

for every integer j, which defines a positive real-valued function on Z. Let q be
a positive real number, and put

LSq
r (k) = LSq

r (k, T ) =

{
f(T ) ∈ LS(k) :

∞∑
j=−∞

|fj |q rq j < ∞
}
.(40.4)
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This sum may be considered as a sum over Z, as in Section 15, or as a doubly-
infinite series of nonnegative real numbers, as in Section 17. If f(T ) ∈ LSq

r (k),
then we put

∥f(T )∥q,r = ∥f(T )∥LSq
r (k) =

( ∞∑
j=−∞

|fj |q rq j
)1/q

.(40.5)

Note that (40.4) corresponds to the space ℓqwr
(Z, k) of k-valued functions on

Z that are q-summable with respect to wr on Z and | · | on k, as in Section 26.
Similarly, (40.5) corresponds to ∥ · ∥ℓqwr (Z,k) in Section 26, applied to j 7→ fj as
a k-valued function on Z. In particular, (40.5) defines a q-norm on (40.4) with
respect to | · | on k when q ≤ qk, and a qk-norm on (40.4) when q ≥ qk. As
before, LSq

r (k) is a linear subspace of LS(k),

LP (k) ⊆ LSq
r (k),(40.6)

and LP (k) is dense in LSq
r (k) with respect to the q or qk-metric associated to

(40.5). Put
PSq

r (k) = PSq
r (k, T ) = LSq

r (k) ∩ PS(k),(40.7)

which corresponds to kqr [[T ]] in Section 28.
Put

LS∞
r (k) = LS∞

r (k, T ) = {f(T ) ∈ LS(k) : |fj | rj is bounded on Z},(40.8)

and
∥f(T )∥∞,r = ∥f(T )∥LS∞

r (k) = sup
j∈Z

(|fj | rj)(40.9)

for each f(T ) ∈ LS∞
r (k). Thus (40.8) corresponds to the space ℓ∞wr

(Z, k) of
k-valued functions on Z that are bounded with respect to wr on Z and | · | on k,
and (40.9) corresponds to ∥·∥ℓ∞wr

(Z,k) applied to j 7→ fj as a k-valued function on

Z. As before, (40.8) is a linear subspace of LS(k), and (40.9) defines a qk-norm
on (40.8) with respect to | · | on k. If 0 < q ≤ q̃ ≤ ∞, then

LSq
r (k) ⊆ LS q̃

r (k),(40.10)

and
∥f(T )∥

q̃,r
≤ ∥f(T )∥q,r(40.11)

for every f(T ) ∈ LSq
r (k), as in Section 26. Put

PS∞
r (k) = PS∞

r (k, T ) = LS∞
r (k) ∩ PS(k),(40.12)

which corresponds to k∞r [[T ]] in Section 28.
Put

LS0,r(k) = LS0,r(k, T ) =
{
f(T ) ∈ LS(k) : lim

j→±∞
|fj | rj = 0

}
,(40.13)

69



which corresponds to the space c0,wr (Z, k) of k-valued functions on Z that vanish
at infinity with respect to wr on Z and | · | on k. This is a closed linear subspace
of (40.8) with respect to the qk-metric associated to (40.9). As before,

LP (k) ⊆ LS0,r(k),(40.14)

and LP (k) is dense in LS0,r(k) with respect to the qk-metric associated to
(40.9). We also have that

LSq
r (k) ⊆ LS0,r(k)(40.15)

when 0 < q < ∞, as in Section 26. Put

PS0,r(k) = PS0,r(k, T ) = LS0,r(k) ∩ PS(k),(40.16)

which corresponds to k0,r[[T ]] in Section 28.
If | · | is the trivial absolute value function on k, then LS∞

1 (k) = LS(k),
LSq

1(k) = LP (k) when 0 < q < ∞, and LS0,1(k) = LP (k). If 0 < r < 1, then
LSq

r (k) = k((T )) for every q > 0, and LS0,r(k) = k((T )) as well.

41 Multiplying Laurent series

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let T
be an indeterminate. Suppose that k is complete with respect to the qk-metric
associated to | · |. Let a positive real number r and 0 < q ≤ qk be given, so that
| · | may be considered as a q-absolute value function on k too. Suppose for the
moment that q < ∞, and that f(T ) =

∑∞
j=−∞ fj T

j , g(T ) =
∑∞

l=−∞ gl T
l are

elements of the space LSq
r (k) defined in (40.4). We would like to define

f(T ) g(T ) = h(T ) =

∞∑
n=−∞

hn T
n(41.1)

as a formal Laurent series in T with coefficients in k, with

hn =

∞∑
j=−∞

fj gn−j(41.2)

for every n ∈ Z.
Observe that

rq n
∞∑

j=−∞
|fj gn−j |q =

∞∑
j=−∞

(|fj |q rq j) (|gn−j |q rq (n−j))(41.3)

for every n ∈ Z. The right side corresponds to the nth term of the Cauchy
product of

∑∞
j=−∞ |fj |q rq j and

∑∞
l=−∞ |gl|q rq l, as in Section 21. It follows

that
∞∑

n=−∞

(
rq n

∞∑
j=−∞

|fj gn−j |q
)

≤
( ∞∑

j=−∞
|fj |q rq j

)( ∞∑
l=−∞

|gl|q rq l
)

= ∥f(T )∥qq,r ∥g(T )∥qq,r,(41.4)
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as before. In particular, (41.3) is finite for each n ∈ Z. This permits us to
define (41.2) as an element of k for every n ∈ Z, as a q-absolutely convergent
doubly-infinite series, as in Section 17, or as a sum over Z, as in Section 18. We
also get that

|hn|q rq n ≤ rq n
∞∑

j=−∞
|fj gn−j |q(41.5)

for every n ∈ Z, so that

∞∑
n=−∞

|hn|q rq n ≤ ∥f(T )∥qq,r ∥g(T )∥qq,r,(41.6)

by (41.4). This implies that h(T ) ∈ LSq
r (k) too, with

∥h(T )∥q,r ≤ ∥f(T )∥q,r ∥g(T )∥q,r.(41.7)

Suppose now that q = ∞, so that qk = ∞ in particular. In this case, we ask
that f(T ) and g(T ) be elements of the space LS0,r(k) defined in the previous
section. Of course,

|fj gn−j | = r−n (|fj | rj) (|gn−j | rn−j)(41.8)

for every j, n ∈ Z. It is easy to see that

lim
j→±∞

|fj gn−j | = 0(41.9)

for every n ∈ Z, using (41.8) and the hypothesis that f(T ), g(T ) ∈ LS0,r(k).
Thus we can define (41.2) as an element of k for every n ∈ Z, as a convergent
doubly-infinite series, as in Section 17, or as a sum over Z, as in Section 18.
Note that

|hn| rn ≤ rn max
j∈Z

|fj gn−j | = max
j∈Z

((|fj | rj) (|gn−j | rn−j))(41.10)

for every n ∈ Z. One can use this to verify that

lim
n→±∞

|hn| rn = 0,(41.11)

because of the analogous conditions for f(T ) and g(T ). This means that h(T )
is an element of LS0,r(k), and we can also use (41.10) to get that

∥h(T )∥∞,r ≤ ∥f(T )∥∞,r ∥g(T )∥∞,r.(41.12)

One can check that LSq
r (k) is a commutative algebra over k with respect

to this definition of multiplication when 0 < q ≤ qk and q < ∞, and similarly
that LS0,r(k) is a commutative algebra over k when qk = ∞. Of course, this
definition of (41.1) reduces to the one in Section 3 when f(T ), g(T ) ∈ LP (k).
Thus LP (k) is a subalgebra of LSq

r (k) when 0 < q ≤ qk and q < ∞, and a
subalgebra of LS0,r(k) when qk = ∞. Remember that k can be indentified with
a subalgebra of LP (k), as in Section 3. The multiplicative identity element 1 in
k corresponds to the multiplicative identity element in LSq

r (k) when 0 < q ≤ qk
and q < ∞, and to the multiplicative identity element in LS0,r(k) when qk = ∞.
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42 Another multiplicativity condition

Let k be a field with an ultrametric absolute value function | · |, and suppose
that k is complete with respect to the ultrametric associated to | · |. Also
let T be an indeterminate, and let r be a positive real number. If f(T ) =∑∞

j=−∞ fj T
j , g(T ) =

∑∞
l=−∞ gl T

l ∈ LS0,r(k), then

∥f(T ) g(T )∥∞,r = ∥f(T )∥∞,r ∥g(T )∥∞,r.(42.1)

It suffices to show that

∥f(T )∥∞,r ∥g(T )∥∞,r ≤ ∥f(T ) g(T )∥∞,r,(42.2)

because of (41.12). We may as well suppose that f(T ), g(T ) ̸= 0.
As in Section 31, we would like to choose j0, l0 ∈ Z such that

|fj0 |rj0 = ∥f(T )∥∞,r(42.3)

and
|gl0 | rl0 = ∥g(T )∥∞,r.(42.4)

This would imply that

|fj | rj ≤ ∥f(T )∥∞,r = |fj0 | rj0(42.5)

and
|gl| rl ≤ ∥g(T )∥∞,r = |gl0 | rl0(42.6)

for every j, l ∈ Z. Remember that |fj | rj → 0 as j → ±∞, and |gl| rl → ∞ as
l → ±∞, by hypothesis. Hence the suprema in the definitions of ∥f(T )∥∞,r and
∥g(T )∥∞,r are attained. This means that there are j0, l0 ∈ Z such that (42.3)
and (42.4) hold. In fact, there are only finitely many such j0 and l0, because
f(T ), g(T ) ̸= 0. Thus we can choose j0 and l0 to be the first integers such that
(42.3) and (42.4) hold, so that the inequalities in (42.5) and (42.6) are strict
when j < j0 and l < l0, respectively.

Using (42.3) and (42.4), we get that

∥f(T )∥∞,r ∥g(T )∥∞,r = |fj0 | |gl0 | rj0+l0 .(42.7)

As in the previous section, f(T ) g(T ) = h(T ) =
∑∞

n=−∞ hn T
n, where hn ∈ k is

as in (41.2). In particular,

|hj0+l0 | rj0+l0 ≤ ∥h(T )∥∞,r = ∥f(T ) g(T )∥∞,r.(42.8)

Thus we would like to check that

|fj0 | |gl0 |rj0+l0 ≤ |hj0+l0 | rj0+l0(42.9)

to get (42.2). Of course, this is the same as saying that

|fj0 | |gl0 | ≤ |hj0+l0 |.(42.10)
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Note that
|fj0 | |gl0 | ≤ max(|hj0+l0 |, |hj0+l0 − fj0 gl0 |),(42.11)

by the ultrametric version of the triangle inequality. In order to get (42.10), it
is enough to verify that

|hj0+l0 − fj0 gl0 | < |fj0 | |gl0 |.(42.12)

Using (42.5) and (42.6), we get that

|fj | |gl| rj+l ≤ |fj0 | |gl0 | rj0+l0(42.13)

for every j, l ∈ Z. If j + l = j0 + l0, then it follows that

|fj | |gl| ≤ |fj0 | |gl0 |.(42.14)

This inequality is strict when either j < j0 or l < l0, because of the corre-
sponding strict inequalities in (42.5) and (42.6), mentioned earlier. Observe
that hj0+l0 is basically the sum of fj gl with j, l ∈ Z and j + l = j0 + l0, as
in (41.2). Thus hj0+l0 − fj0 gl0 reduces to the sum of fj gl over j, l ∈ Z with
j+ l = j0+ l0 and either j < j0 or l < l0. Each of these terms has absolute value
strictly less than |fj0 | |gl0 |, because of the strict inequality in (42.14) in these
cases. This implies (42.12), because of the ultrametric version of the triangle
inequality, and the convergence of the sum in this situation.

43 Some subsets of algebras

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let A
be an algebra over k with a submultiplicative q-seminorm N with respect to | · |
on k, for some q > 0. Suppose that A has a multiplicative identity element e
with N(e) = 1, and let G(A) be the group of invertible elements of A, as before.
Let r be a positive real number, and consider the set

C(r) = CA(r) = {a ∈ G(A) : N(a) ≤ r, N(a−1) ≤ 1/r}.(43.1)

Note that e ∈ C(1), and that C(1) is a subgroup of G(A). If t ∈ k \ {0}, then
a ∈ C(r) if and only if t a ∈ C(r |t|).

If a ∈ C(r), then
N(aj) ≤ rj(43.2)

for every j ∈ Z. Of course,

1 ≤ N(aj)N(a−j)(43.3)

for every a ∈ G(A) and j ∈ Z. It follows that

N(aj) = rj(43.4)

for every a ∈ C(r) and j ∈ Z.
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Suppose that N is a q-norm on A, and that A is complete with respect to
the q-metric associated to N . One can check that C(r) is a closed set in A with
respect to the q-metric associated to N , using the remarks in Section 39. If
q = ∞, then C(r) is an open set in A with respect to the q-metric associated to
N .

If 0 < q ≤ qk and q < ∞, then LSq
r (k) is a commutative algebra over k,

as in the previous section, and ∥ · ∥q,r is a submultiplicative q-norm on LSq
r (k).

Similarly, if qk = ∞, then LS0,r(k) is a commutative algebra over k, and ∥·∥∞,r

is a multiplicative ultranorm on LS0,∞(k). If j ∈ Z, then T j may be considered
as a formal Laurent polynomial in T with coefficient equal to the multiplicative
identity element 1 in k, and ∥T j∥q,r = rj for every q > 0. Note that LSq

r (k)
is complete with respect to the q or qk-metric associated to ∥ · ∥q,r when k
is complete with respect to the qk-metric associated to | · |, as in Section 26.
This implies that LS0,r(k) is complete with respect to the qk-metric associated
to ∥ · ∥∞,r, because LS0,r(k) is a closed set in LS∞

r (k) with respect to this
qk-metric, as before.

Let V be a vector space over k, and let NV be a qV -seminorm on V with
respect to |·| on k for some qV > 0. Remember that the space BL(V ) of bounded
linear mappings from V into itself with respect to NV is an algebra over k with
respect to composition of mappings, and that the corresponding operator qV -
seminorm ∥ · ∥op is submultiplicative on BL(V ). Suppose that NV (v) > 0 for
some v ∈ V , which implies that the identity mapping on V satisfies ∥I∥op = 1.
If A is a one-to-one linear mapping from V onto itself that satisfies

NV (A(v)) = r NV (v)(43.5)

for every v ∈ V , then
NV (A

j(v)) = rj NV (v)(43.6)

for every v ∈ V and j ∈ Z. This implies that Aj is a bounded linear mapping
from V into itself for every j ∈ Z, with

∥Aj∥op = rj .(43.7)

Conversely, if A is a bounded linear mapping from V into itself with a bounded
inverse, and if ∥A∥op ≤ r, ∥A−1∥op ≤ 1/r, then one can check that (43.5) holds.
If NV is a qV -norm on V , then ∥ · ∥op is a qV -norm on BL(V ), and BL(V ) is
complete with respect to the qV -metric associated to ∥ · ∥op when V is complete
with respect to the qV -metric associated to NV .

44 Functions on these subsets

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
A be an algebra over k with a submultiplicative q-norm N with respect to | · |
on k for some q > 0. Suppose that A has a multiplicative identity element e
with N(e) = 1, and that A is complete with respect to the q-metric associated
to N . Let T be an indeterminate, let r be a positive real number, and let a

74



be an element of the set C(r) defined in (43.1). Suppose for the moment that
q < ∞, and that f(T ) =

∑∞
j=−∞ fj T

j is an element of LSq
r (k). We would like

to define f(a) as an element of A by

f(a) =

∞∑
j=−∞

fj a
j ,(44.1)

where aj = e when j = 0, as usual. Note that

∞∑
j=−∞

N(fj a
j)q =

∞∑
j=−∞

|fj |q N(aj)q =

∞∑
j=−∞

|fj |q rq j = ∥f(T )∥qq,r.(44.2)

Thus (44.1) can be defined as an element of A, as a q-absolutely convergent
doubly-infinite series as in Section 17, or as a sum over Z, as in Section 18. We
also have that

N(f(a)) ≤
( ∞∑

j=−∞
N(fj a

j)q
)1/q

= ∥f(T )∥q,r.(44.3)

Suppose now that q = ∞, and that f(T ) ∈ LS0,r(k). If a ∈ C(r), then

N(fj a
j) = |fj |N(aj) = |fj | rj → 0 as j → ±∞.(44.4)

This permits us to define (44.1) as an element of A, as a convergent doubly-
infinite series, as in Section 17, or as a sum over Z, as in Section 18. In this
case, we get that

N(f(a)) ≤ max
j∈Z

N(fj a
j) = max

j∈Z
(|fj | rj) = ∥f(T )∥∞,r.(44.5)

Let f(T ) be an element of LSq
r (k) when q < ∞, or an element of LS0,r(k)

when q = ∞. If a ∈ C(r), then
n∑

j=−n

fj a
j(44.6)

converges to f(a) as n → ∞, with respect to the q-metric on A associated to
N . It is easy to see that the convergence is uniform on C(r) in both cases, using
the same type of estimates as before.

If j ∈ Z, then a 7→ aj is uniformly continuous as a mapping from C(r) into
A, with respect to the q-metric associated to N on A and its restriction to C(r).
This is clear when j = 0, 1, and the case where j = −1 follows from (39.2). One
can reduce to these cases when |j| ≥ 2, because products of bounded uniformly
continuous functions are uniformly continuous as well. It follows that (44.6)
is uniformly continuous on C(r) for every n ≥ 0. This implies that f(a) is
uniformly continuous on C(r) under the conditions in the preceding paragraph,
because of uniform convergence.
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As in Section 7, we may as well suppose that q ≤ qk. Let us also ask that k
be complete with respect to the qk-metric associated to | · |. Let f(T ), g(T ) be
elements of LSq

r (k) when q < ∞, or elements of LS0,r(k) when q = ∞. Thus
f(T ) g(T ) = h(T ) is defined as an element of the same space, as in Section 41.
If a ∈ C(r), then f(a), g(a), and h(a) are defined as elements of A, as before.
Observe that

h(a) = f(a) g(a),(44.7)

because h(a) is defined by the sum over Z corresponding to the Cauchy product
of the sums over Z that define f(a) and g(a), as in Section 21. It follows
that f(T ) 7→ f(a) defines an algebra homomorphism from LSq

r (k) into A when
q < ∞, and from LS0,r(k) into A when q = ∞.

45 Rescaling Laurent series

Let k be a field, let T be an indeterminate, and let t ∈ k \ {0} be given. If
f(T ) =

∑∞
j=−∞ fj T

j is a formal Laurent series in T with coefficients in k, then
put

Rt(f(T )) =

∞∑
j=−∞

fj t
j T j .(45.1)

This defines Rt(f(T )) as an element of LS(k), and it may also be denoted
(Rt(f))(T ) or simply Rt(f). Note that Rt defines a one-to-one linear mapping
from LS(k) onto itself, which is the identity mapping on LS(k) when t = 1. It
is easy to see that

Rt ◦Ru = Rt u(45.2)

for every t, u ∈ k \ {0}. Of course, (45.1) reduces to the analogous definition
for formal power series in Section 35 when f(T ) ∈ PS(k). Note that Rt maps
LP (k) onto itself for each t ∈ k \ {0}, and that Rt is a homomorphism from
LP (k) into itself, as an algebra over k.

Let | · | be a qk-absolute value function on k for some qk > 0, let r be a
positive real number, and let t ∈ k \ {0}, f(T ) ∈ LS(k), and 0 < q ≤ ∞ be
given. Observe that Rt(f(T )) ∈ LSq

r (k) if and only if f(T ) ∈ LSq
r |t|(k), in

which case
∥Rt(f(T ))∥q,r = ∥f(T )∥q,r |t|.(45.3)

Similarly, Rt(f(T )) ∈ LS0,r(k) if and only if f(T ) ∈ LS0,r |t|(k).
Let A be an algebra over k with a multiplicative identity element e and a

submultiplicative q-norm N with respect to | · | on k for some 0 < q ≤ qk.
Suppose that N(e) = 1, and that A is complete with respect to the q-metric
associated to N . Let t ∈ k \ {0} and a positive real number r be given, and let
a be an element of the subset C(r) of A defined in (43.1). Thus t a ∈ C(r |t|),
as before. Suppose for the moment that q < ∞ and f(T ) ∈ LSq

r |t|(k), so

that Rt(f(T )) ∈ LSq
r (k). Under these conditions, f(t a) and (Rt(f))(a) can be
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defined as elements of A, as in the previous section, with

(Rt(f))(a) =

∞∑
j=−∞

fj t
j aj =

∞∑
j=−∞

fj (t a)
j = f(t a).(45.4)

If q = ∞ and f(T ) ∈ LS0,r |t|(k), then Rt(f(T )) ∈ LS0,r(k), f(t a) and
(Rt(f))(a) can be defined as elements of A again, and satisfy (45.4).

Suppose that k is complete with respect to the qk-metric associated to | · |. If
0 < q ≤ qk and q < ∞, then LSq

r (k) is a commutative algebra over k for every
positive real number r, as in Section 41. One can check that for every t ∈ k\{0}
and 0 < r < ∞, Rt is a homomorphism from LSq

r |t|(k) into LSq
r (k), as algebras

over k. Similarly, if qk = ∞, then LS0,r(k) is a commutative algebra over k for
every 0 < r < ∞. One can verify that for every t ∈ k \ {0} and 0 < r < ∞, Rt

is a homomorphism from LS0,r |t|(k) into LS0,r(k), as algebras over k.

46 Fourier series

Let r be a positive real number, and let

C(r) = {z ∈ C : |z| = r}(46.1)

be the circle in the complex plane centered at 0 with radius r, with respect to the
standard absolute value function on C. This may be considered as a measure
space, using arclength measure divided by 2π, r, as before. Let Lq(C(r)) =
Lq(C(r),C) be the corresponding Lq space of complex-valued functions on C(r)
for each q > 0. If f ∈ L1(C(r)) and j ∈ Z, then the jth Fourier coefficient of f
is defined by

f̂(j) =
1

2π r

∫
C(r)

f(w)w−j |dw|,(46.2)

where |dw| refers to arclength measure on C(r). The corresponding Fourier
series is defined formally by

∞∑
j=−∞

f̂(j) zj .(46.3)

If T is an indeterminate, then

∞∑
j=−∞

f̂(j)T j(46.4)

may be considered as a formal Laurent series in T with complex coefficients.
Note that f 7→ f̂ is linear as a mapping from L1(C(r)) into the space c(Z,C)
of complex-valued functions on Z. One can also consider the mapping from f
to (46.4) as a linear mapping from L1(C(r)) into LS(C).

Observe that

|f̂(j)| ≤ 1

2π r

∫
C(r)

|f(w)| |w|−j |dw| = r−j ∥f∥L1(C(r))(46.5)
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for every j ∈ Z. Equivalently,

|f̂(j)| rj ≤ ∥f∥L1(C(r))(46.6)

for every j ∈ Z. Put wr(j) = rj for every j ∈ Z, which defines a positive real-

valued function on Z. Thus f̂ is an element of the space ℓ∞wr
(Z,C) of complex-

valued functions on Z that are bounded with respect to wr, as in Section 26,
with

∥f̂∥ℓ∞wr
(Z,C) ≤ ∥f∥L1(C(r)).(46.7)

It is well known that
lim

j→±∞
|f̂(j)| rj = 0,(46.8)

by the Riemann–Lebesgue lemma. This means that f̂ vanishes at infinity on Z
with respect to wr. This is the same as saying that (46.4) is an element of the
space LS0,r(C) defined in Section 40.

If f ∈ L2(C(r)), then it is well known that

∞∑
j=−∞

|f̂(j)|2 r2 j =
1

2π r

∫
C(r)

|f(w)|2 |dw| = ∥f∥2L2(C(r)),(46.9)

by Parseval’s theorem. This means that f̂ is in the space ℓ2wr
(Z,C) defined in

Section 26, with
∥f̂∥ℓ2wr

(Z,C) = ∥f∥L2(C(r)).(46.10)

In particular, (46.4) is in the space LS2
r (C) defined in Section 40.

Suppose that f(T ) =
∑∞

j=−∞ fj T
j is an element of the space LS1

r (C) de-

fined in Section 40, so that
∑∞

j=−∞ |fj | rj is finite. In this case,

f(w) =

∞∑
j=−∞

fj w
j(46.11)

defines a continuous complex-valued function on C(r), as in Section 44. It is
well known that

f̂(l) = fl(46.12)

for every l ∈ Z in this situation. If f(T ) ∈ LS2
r (C), then one can define an

element of L2(C(r)) as in (46.11), with convergence with respect to the L2

norm. This element of L2(C(r)) also satisfies (46.12), and (46.10) is the same
as ∥f(T )∥LS2

r(C).

47 Pairs of radii

Let k be a field with a qk-absolute value function | · | for some qk > 0, let T
be an indeterminate, and let r1, r2 be positive real numbers with r1 ≤ r2. If
0 < q ≤ ∞, then put

LSq
r1,r2(k) = LSq

r1,r2(k, T ) = LSq
r1(k) ∩ LSq

r2(k),(47.1)
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where LSq
r (k) is as in Section 40. Let wr1,r2 be the positive real-valued function

defined on Z by

wr1,r2(j) = max(rj1, r
j
2) = rj1 when j ≤ 0(47.2)

= rj2 when j ≥ 0.

If f(T ) =
∑∞

j=−∞ fj T
j is an element of (47.1), then put

∥f(T )∥q,r1,r2 = ∥f(T )∥LSq
r1,r2

(k) =
( ∞∑

j=−∞
|fj |q wr1,r2(j)

q
)1/q

(47.3)

when q < ∞, and

∥f(T )∥∞,r1,r2 = ∥f(T )∥LS∞
r1,r2

(k) = sup
j∈Z

(|fj |wr1,r2(j))(47.4)

when q = ∞. Note that (47.1) corresponds to the space ℓqwr1,r2
(Z, k) defined in

Section 26. Similarly, (47.3) and (47.4) correspond to ∥ · ∥ℓqwr1,r2
(Z,k) applied to

j 7→ fj as a k-valued function on Z. In particular, this is a q-norm with respect
to | · | on k when q ≤ qk, and a qk-norm when qk ≤ q.

If f(T ) is an element of (47.1), then it is easy to see that

max(∥f(T )∥q,r1 , ∥f(T )∥q,r2) ≤ ∥f(T )∥q,r1,r2 ,(47.5)

where ∥f(T )∥q,r is as in Section 40. In fact,

∥f(T )∥∞,r1,r2 = max(∥f(T )∥∞,r1 , ∥f(T )∥∞,r2)(47.6)

when q = ∞. If q < ∞, then we also have that

∥f(T )∥q,r1,r2 ≤ (∥f(T )∥qq,r1 + ∥f(T )∥qq,r2)
1/q.(47.7)

In this case, LP (k) is dense in (47.1) with respect to the q or qk-metric associated
to (47.3), as appropriate.

Put
LS0,r1,r2(k) = LS0,r1,r2(k, T ) = LS0,r1(k) ∩ LS0,r2(k),(47.8)

where LS0,r(k) is as in Section 40. Equivalently, f(T ) ∈ LS(k) is an element of
(47.8) if and only if

lim
j→−∞

|fj | rj1 = lim
j→+∞

|fj | rj2 = 0.(47.9)

Thus (47.8) corresponds to the space c0,wr1,r2
(Z, k) of k-valued functions on Z

that vanish at infinity with respect to wr1,r2 on Z and | · | on k, as in Section 26.
As before, (47.8) is a closed linear subspace of LS∞

r1,r2(k) with respect to the
qk-metric associated to (47.4). Note that LP (k) is dense in (47.8) with respect
to the qk-metric associated to (47.4).
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Let t ∈ k\{0} be given, and let Rt be the rescaling operator defined on LS(k)
in Section 45. Also let f(T ) ∈ LS(k) and 0 < q ≤ ∞ be given. Observe that
Rt(f(T )) ∈ LSq

r1,r2(k) if and only if f(T ) ∈ LSq
r1 |t|,r2 |t|(k), by the analogous

statement for LSq
r (k) mentioned earlier. In this case, one can check that

∥Rt(f(T ))∥q,r1,22 = ∥f(T )∥q,r1 |t|,r2 |t|.(47.10)

Similarly, Rt(f(T )) ∈ LS0,r1,r2(k) if and only if f(T ) ∈ LS0,r1 |t|,r2 |t|(k).

48 Products with two radii

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
suppose that k is complete with respect to the qk-metric associated to | · |. Also
let T be an indeterminate, let r1, r2 be positive real numbers with r1 ≤ r2, and
let 0 < q ≤ qk be given. Suppose for the moment that q < ∞, and let f(T ) =∑∞

j=−∞ fj T
j and g(T ) =

∑∞
l=−∞ gl T

l be elements of the space LSq
r1,r2(k)

defined in (47.1). Under these conditions, f(T ) g(T ) = h(T ) =
∑∞

n=−∞ hn T
n

can be defined as an element of LSq
r1,r2(k) as well, as in Section 41. More

precisely, if f(T ), g(T ) ∈ LSq
r (k) for some r > 0, then we saw that

∞∑
j=−∞

|fj gn−j |q < ∞(48.1)

for every n ∈ Z. This was used to define

hn =

∞∑
j=−∞

fj gn−j(48.2)

as an element of k for every n ∈ Z. If f(T ), g(T ) ∈ LSq
r1,r2(k), then this criterion

for (48.1) holds for r = r1, r2, but of course (48.2) does not depend on which
criterion for (48.1) was used.

The remarks in Section 41 imply that h(T ) ∈ LSq
r (k) for r = r1, r2, so that

h(T ) ∈ LSq
r1,r2(k). We would like to check that

∥h(T )∥q,r1,r2 ≤ ∥f(T )∥q,r1,r2 ∥g(T )∥q,r1,r2 .(48.3)

Remember that

|hn|q ≤
∞∑

j=−∞
|fj |q |gn−j |q(48.4)

for every n ∈ Z. This uses the fact that | · | may be considered as a q-absolute
value function on k, because q ≤ qk.

Let wr1,r2 be defined on Z as in (47.2), and observe that

wr1,r2(j + l) = max(rj1 r
l
1, r

j
2 r

l
2) ≤ wr1,r2(j)wr1,r2(l)(48.5)
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for every j, l ∈ Z. This implies that

|hn|q wr1,r2(n)
q ≤

∞∑
j=−∞

(|fj |q wr1,r2(j)
q) (|gn−j |q wr1,r2(n− j)q)(48.6)

for every n ∈ Z, because of (48.4). The right side of (48.6) is the same as
the nth term of the Cauchy product of the series

∑∞
j=−∞ |fj |q wr1,r2(j)

q and∑∞
l=−∞ |gl|q wr1,r2(l)

q, as in Section 21. It follows that

∥h(T )∥qq,r1,r2 =

∞∑
n=−∞

|hn|q wr1,r2(n)
q

≤
( ∞∑

j=−∞
|fj |q wr1,r2(j)

q
)( ∞∑

l=−∞

|gl|q wr1,r2(l)
q
)

(48.7)

= ∥f(T )∥qq,r1,r2 ∥g(T )∥
q
q,r1,r2 ,

as desired.
Suppose now that qk = ∞. If f(T ), g(T ) ∈ LS0,r(k) for some r > 0, then

we saw previously that
lim

j→±∞
|fj gn−j | = 0(48.8)

for every n ∈ Z, which was used to define (48.2) as an element of k for every
n. If f(T ), g(T ) are elements of the space LS0,r1,r2(k) defined in (47.8), then
this criterion holds for r = r1, r2, but (48.2) does not depend on which criterion
for (48.8) was used. In this case, we get that h(T ) ∈ LS0,r(k) for r = r1, r2, as
before, so that h(T ) ∈ LS0,r1,r2(k). We also have that

∥h(T )∥∞,r1,r2 ≤ ∥f(T )∥∞,r1,r2 ∥g(T )∥∞,r1,r2 ,(48.9)

using (41.12) with r = r1, r2, and (47.6).

49 Related sets and functions

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let A
be an algebra over k with a submultiplicative q-seminorm N with respect to | · |
on k for some q > 0. Suppose that A has a multiplicative identity element e with
N(e) = 1, and remember that G(A) denotes the group of invertible elements in
A. Let r1, r2 be positive real numbers with r1 ≤ r2, and put

C[r1, r2] = CA[r1, r2] = {a ∈ G(A) : N(a) ≤ r2, N(a−1) ≤ 1/r1}.(49.1)

This reduces to the set C(r) defined in (43.1) when r1 = r2 = r. If t ∈ k \ {0},
then a ∈ C[r1, r2] if and only if t a ∈ C[r1 |t|, r2 |t|].

Suppose from now on in this section that N is a q-norm on A, and that A
is complete with respect to the q-metric associated to N . As before, one can
check that C[r1, r2] is a closed set in A with respect to the q-metric associated
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to N , using the remarks in Section 39. Similarly, if q = ∞, then C[r1, r2] is an
open set in A with respect to the q-metric associated to N .

Let T be an indeterminate, and let a be an element of (49.1). Suppose for
the moment that q < ∞, and let f(T ) =

∑∞
j=−∞ fj T

j be an element of the
space LSq

r1,r2(k) defined in (47.1). As before, we would like to define f(a) as an
element of A by

f(a) =

∞∑
j=−∞

fj a
j .(49.2)

Let wr1,r2 be defined on Z as in (47.2) again, and observe that

N(aj) ≤ wr1,r2(j)(49.3)

for every j ∈ Z. This implies that

∞∑
j=−∞

N(fj a
j)q ≤

∞∑
j=−∞

|fj |q wr1,r2(j)
q = ∥f(T )∥qq,r1,r2 ,(49.4)

where ∥f(T )∥q,r1,r2 is as in (47.3). It follows that (49.2) can be defined as an
element of A, as a q-absolutely convergent doubly-infinite series, as in Section
17, or as a sum over Z, as in Section 18. As usual, we also get that

N(f(a)) ≤
( ∞∑

j=−∞
N(fj a

j)q
)1/q

= ∥f(T )∥q,r1,r2 .(49.5)

If f(T ) ∈ LS0,r1,r2(k), then

N(fj a
j) = |fj |N(aj) → 0 as j → ±∞,(49.6)

because of (49.3). If q = ∞, then we can use this to define (49.2) as an element
of A, as a convergent doubly-infinite series, as in Section 17, or as a sum over
Z, as in Section 18. In this situation, we obtain that

N(f(a)) ≤ max
j∈Z

N(fj a
j) ≤ max

j∈Z
(|fj |wr1,r2(j)) = ∥f(T )∥∞,r1,r2 .(49.7)

Suppose that q < ∞ and f(T ) ∈ LSq
r1,r2(T ), or that q = ∞ and f(T ) is an

element of LS0,r1,r2(k), as in the previous two paragraphs. In both cases,

n∑
j=−n

fj a
j(49.8)

tends to f(a) as n → ∞ with respect to the q-metric on A associated to N . One
can check that the convergence is uniform on C[r1, r2], using the same type of
estimates as before. If j ∈ Z, then a 7→ aj is uniformly continuous as a mapping
from C[r1, r2] into A, with respect to the q-metric on A associated to N and
its restriction to C[r1, r2], for the same reasons as in Section 44. It follows that

82



f(a) defines a uniformly continuous mapping from C[r1, r2] into A under these
conditions, because of uniform convergence.

Let t ∈ k \ {0} be given, so that t a ∈ C[r1 |t|, r2 |t|], as before. Suppose
that either q < ∞ and f(T ) ∈ LSq

r1 |t|,r2 |t|(k), or that q = ∞ and f(T ) is

an element of LS0,r1 |t|,r2 |t|(k). This implies that Rt(f(T )) ∈ LSq
r1,r2(k) when

q < ∞, and that Rt(f(T )) ∈ LS0,r1,r2(k) when q = ∞. In both cases, f(t a)
and (Rt(f))(a) can be defined as elements of A, as before. We also have that
f(t a) = (Rt(f))(a), as in (45.4).

Suppose now that k is complete with respect to the qk-metric associated to
| · |. We may as well take q ≤ qk, as in Section 7. Let f(T ), g(T ) be elements
of LSq

r1,r2(k) when q < ∞, or elements of LS0,r1,r2(k) when q = ∞, so that
f(T ) g(T ) = h(T ) is defined as an element of the same space, as in the previous
section. Thus f(a), g(a), and h(a) are defined as elements of A, as before, and
in fact h(a) = f(a) g(a), as in (44.7). This implies that a 7→ f(a) is an algebra
homomorphism from LSq

r1,r2(k) into A when q < ∞, and from LS0,r1,r2(k) into
A when q = ∞.

50 Radii of convergence

Let k be a field with a qk-absolute value function | · | for some qk > 0, let T be
an indeterminate, and let r0, r1 be positive real numbers with r0 ≤ r1. Suppose
that f(T ) is an element of the space LSq

r0,r1(k) defined in Section 47 for some
q > 0. If r0 ≤ r ≤ r1, then it is easy to see that f(T ) is in the space LSq

r (k)
defined in Section 40, with

∥f(T )∥q,r ≤ ∥f(T )∥q,r0,r1 .(50.1)

Let t ∈ [0, 1] be given, and put rt = r1−t
0 rt1, so that r0 ≤ rt ≤ r1. One can

check that
∥f(T )∥q,rt ≤ ∥f(T )∥1−t

q,r0 ∥f(T )∥
t
q,r1 ,(50.2)

using (27.8) when q = ∞, and (27.9) when q < ∞.
Let r1, r2 be positive real numbers with r1 < r2, and suppose that f(T ) is

an element of the space LS∞
r1,r2(k). If r1 < r < r2, then one can verify that

f(T ) ∈ LSq
r (k) for every q > 0, using the same type of arguments as in Section

30. In particular, f(T ) ∈ LS0,r(k).
Suppose that 0 ≤ r1 < r2 ≤ ∞, and put

LS(r1,r2)(k) = LS(r1,r2)(k, T )

= {f(T ) ∈ LS(k) : f(T ) ∈ LS∞
r (k) for every r1 < r < r2}.(50.3)

If f(T ) is an element of (50.3) and r1 < r < r2, then we have that f(T ) ∈ LSq
r (k)

for every q > 0, and in particular that f(T ) ∈ LS0,r(k), by the remarks in the
preceding paragraph. Note that (50.3) is a linear subspace of LS(k).

Let t ∈ k \ {0} be given, so that the rescaling operator Rt can be defined
on LS(k) as in Section 45. If f(T ) ∈ LS(k), then Rt(f(T )) ∈ LS(r1,r2)(k) if
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and only if f(T ) ∈ LS(r1 |t|,r2 |t|). This follows from the analogous statement for
LSq

r (k).
Let A be an algebra over k with a submultiplicative q-seminorm N with

respect to | · | on k for some q > 0, and a multiplicative identity element e with
N(e) = 1. Put

C(r1, r2) = CA(r1, r2) = {a ∈ G(A) : N(a) < r2, N(a−1) < 1/r1},(50.4)

where G(A) is the group of invertible elements of A, as before. If t ∈ k \ {0},
then a ∈ C(r1, r2) if and only if t a ∈ C(r1 |t|, r2 |t|). Suppose from now on in
this section that N is a q-norm on A, and that A is complete with respect to
the q-metric associated to N . One can use the remarks in Section 39 to check
that C(r1, r2) is an open set in A with respect to the q-metric associated to N ,
and a closed set when q = ∞.

If a ∈ C(r1, r2) and f(T ) ∈ LS(r1,r2)(k), then f(a) can be defined as an
element of A, as in the previous section. The resulting mapping from C(r1, r2)
into A is continuous with respect to the q-metric on A associated to N and its
restriction to C(r1, r2), because of the analogous continuity property mentioned
in the previous section.

Suppose that k is complete with respect to the qk-metric associated to |·|, and
let f(T ), g(T ) ∈ LS(r1,r2)(k) be given. If qk < ∞, then f(T ), g(T ) ∈ LSqk

r (k)
for every r1 < r < r2, so that f(T ) g(T ) = h(T ) can be defined as an element
of LSqk

r (k) as in Section 41. Similarly, if qk = ∞, then f(T ), g(T ) ∈ LS0,r(k)
for every r1 < r < r2, so that f(T ) g(T ) = h(T ) can be defined as an element of
LS0,r(k), as before. As in Section 48, these definitions of h(T ) do not depend
on r. Thus h(T ) is an element of LS(r1,r2)(k) in both cases.

51 The complex case

Let us take k to be the field C of complex numbers with the standard absolute
value function, and let 0 ≤ r1 < r2 ≤ ∞ be given again. Thus

C(r1, r2) = {z ∈ C : r1 < |z| < r2}(51.1)

is an open set in C, which corresponds to (50.4), with A = C. Let T be an
indeterminate, and let f(T ) =

∑∞
j=−∞ fj T

j be a formal Laurent series in T
with complex coefficients. If f(T ) is an element of the space LS(r1,r2)(C) defined
in the previous section and z ∈ C(r1, r2), then

f(z) =

∞∑
j=−∞

fj z
j(51.2)

can be defined as a complex number, as an absolutely convergent doubly-infinite
series. It is well known that this defines a holomorphic function on C(r1, r2), and
that every holomorphic function on C(r1, r2) corresponds to a unique Laurent
series in this way.
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Let r1, r2 be positive real numbers with r1 ≤ r2. Note that

C[r1, r2] = {z ∈ C : r1 ≤ |z| ≤ r2}(51.3)

is a closed set in C, which corresponds to (49.1), with A = C. Let f(T ) be
an element of the space LS1

r1,r2(C) defined in Section 47. If z ∈ C[r1, r2], then
f(z) can be defined as a complex number as in (51.2), where the sum is an
absolutely convergent doubly-infinite series. This defines a continuous complex-
valued function on C[r1, r2], as in Section 49. If r1 < r2, then the restriction
of f(z) to C(r1, r2) is holomorphic, as in the preceding paragraph. Of course,
C(r1, r2) is the interior of C[r1, r2] in this case.

Let f(z) be a holomorphic function on C(r1, r2) for some 0 ≤ r1 < r2 ≤ ∞.
If r1 < r < r2, then put

M∞(f, r) = sup{|f(z)| : z ∈ C, |z| = r}.(51.4)

Let r1 < ρ0 ≤ ρ1 < r2 and t ∈ [0, 1] be given, and put

ρt = ρ1−t
0 ρt1,(51.5)

so that ρ0 ≤ ρt ≤ ρ1. The maximum principle implies that

M∞(f, ρt) ≤ max(M∞(f, ρ0),M∞(f, ρ1)).(51.6)

In fact, it is well known that

M∞(f, ρt) ≤ M∞(f, ρ0)
1−t M∞(f, ρ1)

t,(51.7)

by Hadamard’s three-circles theorem.
Let q be a positive real number, and put

Mq(f, r) =
( 1

2π r

∫
|z|=r

|f(z)|q |dz|
)1/q

(51.8)

for r1 < r < r2, where the integral is taken over the set of z ∈ C with |z| = r,
with respect to arclength. If r1 < ρ0 ≤ ρ1 < r2, t ∈ [0, 1], and ρt is as in (51.5),
then it is well known that

Mq(f, ρt) ≤ Mq(f, ρ0)
1−t Mq(f, ρ1)

t.(51.9)

If f is given by the Laurent expansion (51.2), then

M2(f, r) =
( ∞∑

j=−∞
|fj |2 r2 j

)1/2

,(51.10)

by a standard argument. This is the same as ∥f(T )∥2,r in (40.5), where T is
an indeterminate, and f(T ) is the formal Laurent series in T corresponding to
(51.2), as before. Thus (51.9) corresponds to (50.2) when q = 2.
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Part V

Some additional topics

52 Cesaro means

Let V be a vector space over the real or complex numbers, and let N be a
norm on V , with respect to the standard absolute value function on R or C, as
appropriate. Also let {sn}∞n=0 be a sequence of elements of V , and put

σn =
1

n+ 1

n∑
l=0

sl(52.1)

for each nonnegative integer n. If {σn}∞n=0 converges to an element s of V with
respect to the metric associated to N , then s is said to be the Cesaro limit of
the sequence {sn}∞n=0. It is well known that if {sn}∞n=0 converges to s ∈ V with
respect to the metric associated to N , then {σn}∞n=0 converges to s as well.

Suppose that {σn}∞n=0 converges to s ∈ V with respect to the metric associ-
ated to N . If a ∈ R or C, as appropriate, then

a σn =
1

n+ 1

n∑
l=0

a sl(52.2)

for each n ≥ 0. Hence the Cesaro limit of {a sn}∞n=0 is equal to a s. Let {tn}∞n=0

be another sequence of elements of V , and let

τn =
1

n+ 1

n∑
l=0

tl(52.3)

be the corresponding sequence of Cesaro means. Thus

σn + τn =
1

n+ 1

n∑
l=0

(sl + tl)(52.4)

for each n ≥ 0. If {τn}∞n=0 also converges to t ∈ V with respect to the metric
associated to N , then {σn + τn}∞n=0 converges to s + v. This implies that the
Cesaro limit of {sn+ tn}∞n=0 is equal to the sum of the Cesaro limits of {sn}∞n=0

and {tn}∞n=0, when they exist.
Let

∑∞
j=0 vj be an infinite series with terms in V , and let

sn =

n∑
j=0

vj(52.5)

be the corresponding partial sums, for each nonnegative integer n. If the se-
quence of Cesaro means (52.1) converges to s ∈ V with respect to the metric
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associated to N , then
∑∞

j=0 vj is said to be Cesaro summable, with Cesaro sum

equal to s. If
∑∞

j=0 vj converges in the usual sense with respect to N , then∑∞
j=0 vj is Cesaro summable with the same sum, by the analogous property for

convergent sequences. In this situation,

σn =
1

n+ 1

n∑
l=0

l∑
j=0

vj =
1

n+ 1

n∑
j=0

n∑
l=j

vj =

n∑
j=0

(n− j + 1

n+ 1

)
vj(52.6)

for every n ≥ 0.
Now let

∞∑
j=−∞

vj(52.7)

be a doubly-infinite series of elements of V . As in Section 17, we say that (52.7)
converges in V with respect to N if

∞∑
j=0

vj and

∞∑
j=1

v−j(52.8)

converge as ordinary infinite series with terms in V with respect to N , in which
case the value of the sum (52.7) is defined by

∞∑
j=−∞

vj =

∞∑
j=0

vj +

∞∑
j=1

v−j .(52.9)

If
∞∑
j=1

(vj + v−j)(52.10)

converges as an infinite series with terms in V , then one can use

v0 +

∞∑
j=1

(vj + v−j)(52.11)

to define the sum (52.7). If the series in (52.8) converge, then
∑∞

j=1 vj converges,
and hence (52.10) converges. Of course, (52.9) and (52.11) are the same in this
situation.

Put

sn =

n∑
j=−n

vj(52.12)

for each nonnegative integer n. Thus s0 = v0, and

sn = v0 +

n∑
j=1

(vj + v−j)(52.13)
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for every positive integer n. It follows that {sn}∞n=0 converges as a sequence of
elements in V with respect to the metric associated to N if and only if (52.10)
converges, with

lim
n→∞

sn = v0 +

∞∑
j=1

(vj + v−j).(52.14)

If the corresponding sequence of Cesaro means (52.1) converges to s ∈ V with
respect to the metric associated to N , then we may say that (52.7) is Cesaro
summable, with Cesaro sum equal to s. Observe that the Cesaro means can be
expressed as

σn =
1

n+ 1

n∑
l=0

l∑
j=−l

vj =
1

n+ 1

n∑
j=−n

n∑
l=|j|

vj(52.15)

=

n∑
j=−n

(n− |j|+ 1

n+ 1

)
vj

for every n ≥ 0.

53 Abel sums

Let V be a vector space over the real or complex numbers again, and let N be
a norm on V with respect to the standard absolute value function on R or C,
as appropriate. In this section, we suppose that V is complete with respect to
the metric associated to N . Let

∑∞
j=0 vj be an infinite series with terms in V .

Suppose that for each nonnegative real number r with r < 1, we have that

∞∑
j=0

N(vj) r
j(53.1)

converges as an infinite series of nonnegative real numbers. This means that

∞∑
j=0

vj r
j(53.2)

converges absolutely with respect to N , and hence that this series converges in
V , by completeness. If the one-sided limit

lim
r→1−

∞∑
j=0

vj r
j(53.3)

exists in V , with respect to the metric associated to N , then
∑∞

j=0 vj is said
to be Abel summable in V with respect to N . In this case, the Abel sum of∑∞

j=0 vj is defined to be (53.3). If
∑∞

j=0 vj converges in the ordinary sense,

then it is well known that
∑∞

j=0 vj is Abel summable, with Abel sum equal to
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the ordinary sum. Note that (53.1) converges when 0 ≤ r < 1 and N(vj) is
bounded.

Suppose that
∑∞

j=0 vj is Abel summable in V , which includes the conver-
gence of (53.1) when 0 ≤ r < 1. If a is a real or complex number, as appropriate,
then

∞∑
j=0

a vj r
j = a

∞∑
j=0

vj r
j(53.4)

for every 0 ≤ r < 1. It follows that

lim
r→1−

∞∑
j=0

a vj r
j = a

(
lim

r→1−

∞∑
j=0

vj r
j
)
,(53.5)

so that
∑∞

j=0 a vj is Abel summable too, with Abel sum equal to a times the

Abel sum of
∑∞

j=0 vj . Let
∑∞

j=0 wj be another infinite series with terms in
V that is Abel summable with respect to N . In particular, this means that∑∞

j=0 N(wj) r
j converges when 0 ≤ r < 1. Thus

∑∞
j=0 N(vj +wj) r

j converges
when 0 ≤ r < 1, because of the triangle inequality for N and the comparison
test. Of course,

∞∑
j=0

(vj + wj) r
j =

∞∑
j=0

vj r
j +

∞∑
j=0

wj r
j(53.6)

for every 0 ≤ r < 1, so that

lim
r→1−

∞∑
j=0

(vj + wj) r
j = lim

r→1−

∞∑
j=0

vj r
j + lim

r→1−

∞∑
j=0

wj r
j .(53.7)

This implies that
∑∞

j=0(vj+wj) is Abel summable in V with respect to N , with

Abel sum equal to the sum of the Abel sums of
∑∞

j=0 vj and
∑∞

j=0 wj .

Let
∑∞

j=−∞ vj be a doubly-infinite series with terms in V . Suppose that

∞∑
j=−∞

N(vj) r
|j|(53.8)

converges as a doubly-infinite series of nonnegative real numbers for every non-
negative real number r < 1. Equivalently, this means that

∞∑
j=0

N(vj) r
j and

∞∑
j=1

N(v−j) r
j(53.9)

converge as infinite series of nonnegative real numbers when 0 ≤ r < 1, so that∑∞
j=0 vj r

j and
∑∞

j=1 v−j r
j converge in V with respect to N . As in the previous

section, we put
∞∑

j=−∞
vj r

|j| =

∞∑
j=0

vj r
j +

∞∑
j=1

v−j r
j(53.10)
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for every 0 ≤ r < 1. Let us say that
∑∞

j=−∞ vj is Abel summable in V with
respect to N if the one-sided limit

lim
r→1−

∞∑
j=−∞

vj r
|j|(53.11)

exists in V , with respect to the metric associated to N . As before, the Abel
sum of

∑∞
j=−∞ vj is defined to be (53.11) in this case. Note that

∑∞
j=0 vj is

Abel summable when
∑∞

j=0 vj and
∑∞

j=1 v−j are Abel summable as ordinary
infinite series.

Put w0 = v0 and
wj = vj + v−j(53.12)

for every positive integer j. If the series in (53.9) converge, then

∞∑
j=0

N(wj) r
j(53.13)

converges as an infinite series of nonnegative real numbers when 0 ≤ r < 1, by
the triangle inequality for N and the comparison test. Under these conditions,
the Abel sums

∞∑
j=0

wj r
j(53.14)

converge in V for each 0 ≤ r < 1, and are equal to (53.10). If
∑∞

j=−∞ vj is
Abel summable in V with respect to N , as in the preceding paragraph, then it
follows that

∑∞
j=0 wj is Abel summable in V as an ordinary infinite series, and

that the corresponding Abel sums are the same.

54 Abel sums and Cauchy products

Let A be an algebra over the real or complex numbers, and let N be a submul-
tiplicative norm on A, with respect to the standard absolute value function on
R or C, as appropriate. Also let

∑∞
j=0 aj and

∑∞
l=0 bl be infinite series with

terms in A, and put

cn =

n∑
j=0

aj bn−j(54.1)

for each nonnegative integer n. Thus
∑∞

n=0 cn is the Cauchy product of the
series

∑∞
j=0 aj and

∑∞
l=0 bl, as in Section 20. We would like to look at the

Abel summability of
∑∞

n=0 cn in terms of the Abel summability of
∑∞

j=0 aj and∑∞
l=0 bl. Remember that

N(cn) ≤
n∑

j=0

N(aj)N(bn−j)(54.2)
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for every nonnegative integer n, by the triangle inequality and submultiplica-
tivity of N .

Let r be a nonnegative real number with r < 1, and suppose that

∞∑
j=0

N(aj) r
j and

∞∑
l=0

N(bl) r
l(54.3)

converge as infinite series of nonnegative real numbers. Observe that

N(cn) r
n ≤

n∑
j=0

N(aj)N(bn−j) r
n =

n∑
j=0

(N(aj) r
j) (N(bn−j) r

n−j)(54.4)

for every nonnegative integer n. The right side of (54.4) is the same as the nth
term of the Cauchy product of the series in (54.3). It follows that the sum over
n ≥ 0 of the right side of (54.4) converges, and is equal to the product of the
sums in (54.3), as in Section 20. This implies that

∞∑
n=0

N(cn) r
n(54.5)

converges, with sum less than or equal to the product of the sums in (54.3).
Thus

∞∑
j=0

aj r
j ,

∞∑
l=0

bl r
l, and

∞∑
n=0

cn r
n(54.6)

converge absolutely with respect to N . Suppose that A is complete with respect
to the metric associated to N , so that these series converge in A with respect
to N . We also get that

∞∑
n=0

cn r
n =

( ∞∑
j=0

aj r
j
)( ∞∑

l=0

bl r
l
)
,(54.7)

as in Section 20.
Suppose that the series in (54.3) converge for every 0 ≤ r < 1. This implies

that (54.5) converges for every 0 ≤ r < 1, as before. Hence the series in (54.6)
converge in A for every 0 ≤ r < 1, and satisfy (54.7).

Suppose that
∑∞

j=0 aj and
∑∞

l=0 bl are Abel summable in A with respect to
N , so that the one-sided limits

lim
r→1−

∞∑
j=0

aj r
j and lim

r→1−

∞∑
l=0

bl r
l(54.8)

exist in A with respect to the metric associated to N . This implies that

lim
r→1−

∞∑
n=0

cn r
n(54.9)

is equal to the product of the limits in (54.8), because of (54.7). This means
that

∑∞
n=0 cn is Abel summable as well, with Abel sum equal to the product of

the Abel sums of
∑∞

j=0 aj and
∑∞

l=0 bl.
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55 Summing Fourier series

Let r be a positive real number, and let C(r) be the circle in the complex plane
centered at 0 with radius r with respect to the standard absolute value function
on C, as in Section 46. If f ∈ L1(C(r)), then the jth Fourier coefficient f̂(j) of
f is defined for every j ∈ Z as in (46.2). Thus the Fourier series

∞∑
j=−∞

f̂(j) zj(55.1)

is a doubly-infinite series of complex numbers for every z ∈ C(r). Put

sn(f, z) =

n∑
j=−n

f̂(j) zj(55.2)

for every nonnegative integer n and z ∈ C(r), and let

σn(f, z) =
1

n+ 1

n∑
l=0

sl(f, z) =

n∑
j=−n

(n− |j|+ 1

n+ 1

)
f̂(j) zj(55.3)

be the corresponding Cesaro means, as in Section 52. It is well known that
(55.3) converges to f(z) as n → ∞ for almost every z ∈ C(r) with respect to
arclength measure. If 1 ≤ q < ∞ and f ∈ Lq(C(r)), then (55.3) converges to
f as n → ∞ with respect to the Lq norm. If f is a continuous complex-valued
function on C(r), then (55.3) converges to f uniformly on C(r) as n → ∞.

Let f ∈ L1(C(r)) be given again, and put

Ar1(f, z) =

∞∑
j=−∞

f̂(j) r
|j|
1 zj(55.4)

for every nonnegative real number r1 with r1 < 1 and z ∈ C(r). This is the
Abel sum associated to the Fourier series (55.1) and r1. Remember that

|f̂(j) zj | = |f̂(j)| rj ≤ ∥f∥L1(C(r))(55.5)

for every j ∈ Z and z ∈ C(r), so that

∞∑
j=−∞

|f̂(j)| r|j|1 rj ≤ ∥f∥L1(C(r))

∞∑
j=−∞

r
|j|
1 < ∞(55.6)

when 0 ≤ r1 < 1. Thus the doubly-infinite series in (55.4) converges absolutely
for every z ∈ C(r) and 0 ≤ r1 < 1. As before, it is well known that (55.4)
converges to f(z) as r1 → 1− for almost every z ∈ C(r) with respect to arclength
measure. If 1 ≤ q < ∞ and f ∈ Lq(C(r)), then (55.4) converges to f as r1 → 1−
with respect to the Lq norm. If f is a continuous complex-valued function on
C(r), then (55.4) converges to f uniformly on C(r) as r1 → 1−.
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Suppose that f ∈ L1(C(r)) again, and let 0 ≤ r1 < 1 be given. Consider the
partial sum

n∑
j=−n

f̂(j) r
|j|
1 zj(55.7)

for each nonnegative integer n and z ∈ C(r). Note that (55.7) converges to
(55.4) uniformly on C(r) as n → ∞, by a standard argument.

Suppose now that f is a continuous complex-valued function on C(r). It is
well known that f(z) can be approximated uniformly on C(r) by finite linear
combinations of the zj ’s. This can be obtained from the famous theorem of
Lebesgue, Stone, and Weierstrass. This also follows from the uniform conver-
gence of the Cesaro means (55.3) to f as n → ∞. Similarly, this can be obtained
from the uniform convergence of the Abel sums (55.4) to f as r1 → 1−, using
the uniform convergence of the partial sums (55.7) for each 0 ≤ r1 < 1, as in
the preceding paragraph.

56 Continuous functions and unitary operators

Let (V, ⟨v, w⟩) be a complex Hilbert space, and let ∥v∥ be the norm associated
to the inner product. Remember that the space BL(V ) of bounded linear map-
pings from V into itself is an algebra over the complex numbers with respect to
composition of mappings, and that the corresponding operator norm ∥ · ∥op is a
submultiplicative norm on BL(V ). Of course, BL(V ) is complete with respect to
the metric associated to the operator norm, because V is complete with respect
to the metric associated to ∥ · ∥.

Let T be an indeterminate, and let

f(T ) =

n∑
j=−n

aj T
j(56.1)

be a formal Laurent polynomial in T with complex coefficients. If z ∈ C and
z ̸= 0, then

f(z) =

n∑
j=−n

aj z
j(56.2)

is defined as a complex number. Similarly, if A is an invertible element of BL(V ),
then

f(A) =

n∑
j=−n

aj A
j(56.3)

defines an element of BL(V ). Let A be a unitary operator from V onto itself.
It is well known that

∥f(A)∥op ≤ sup
z∈C(1)

|f(z)|,(56.4)

where C(1) is the unit circle in the complex plane, as before.
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Remember that continuous functions on C(1) corresponding to Laurent poly-
nomials as in (56.2) are dense in the space of all continuous complex-valued
functions on C(1) with respect to the supremum metric, as in the previous
section. It follows that there is a unique extension of

f 7→ f(A)(56.5)

to a bounded linear mapping from the space of continuous complex-valued func-
tions on C(1) equipped with the supremum norm into BL(V ), as in Section 10.
More precisely, this extension satisfies (56.4) for all continuous complex-valued
functions f on C(1). Of course, the space of continuous complex-valued func-
tions on C(1) is a commutative algebra with respect to pointwise multiplication
of functions. The extension of (56.5) to continuous complex-valued functions
f on C(1) is an algebra homomorphism, because of the analogous property for
Laurent polynomials.

If f is a continuous complex-valued function on C(1), then the complex-
conjugate f is continuous on C(1) too. Similarly, if B is a bounded linear
mapping from V into itself, then the Hilbert space adjoint B∗ of B is a bounded
linear mapping as well, as in Section 23. The hypothesis that A be a unitary
operator on V is the same as saying that A is invertible, with inverse equal to
A∗. In fact, we have that

f(A) = f(A)∗(56.6)

for every continuous complex-valued function f on C(1). To see this, suppose
first that f(z) = zj on C(1) for some j ∈ Z. In this case,

f(z) = zj = z−j(56.7)

on C(1), so that
f(A) = A−j = (Aj)∗ = f(A)∗.(56.8)

It follows that (56.6) holds when f is a linear combination of zj ’s on C(1). If f
is any continuous complex-valued function on C(1), then one can get (56.6) by
approximating f uniformly by linear combinations of zj ’s, as before.

57 Analytic type

Let r be a positive real number, and let C(r) be the circle in the complex
plane centered at 0 with radius r with respect to the standard absolute value
function on C, as before. Also let f ∈ L1(C(r)) be given, so that the jth Fourier

coefficient f̂(j) can be defined for every j ∈ Z as in (46.2). If

f̂(j) = 0(57.1)

for every j < 0, then f is said to be of analytic type. This means that the
corresponding Fourier series reduces to

∞∑
j=0

f̂(j) zj .(57.2)
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If T is an indeterminate, then

∞∑
j=0

f̂(j)T j(57.3)

may be considered as a formal power series in T with complex coefficients.
Remember that

|f̂(j)| rj ≤ ∥f∥L1(C(r))(57.4)

for each j. If z ∈ C satisfies |z| < r, then (57.2) converges absolutely. This
defines a holomorphic function on the open disk Ur in C centered at 0 with
radius r, as in Section 34.

Let z ∈ C(r) and 0 ≤ r1 < 1 be given, so that the corresponding Abel sum
Ar1(f, z) of the Fourier series of f can be defined as in (55.4). If f is of analytic
type, then this reduces to

Ar1(f, z) =

∞∑
j=0

f̂(j) rj1 z
j .(57.5)

Suppose now that f is a continuous complex-valued function on C(r) of
analytic type. If z ∈ Ur, then let f(z) be the value of the sum in (57.2). This
defines f as a complex-valued function on the closed disk Ur in C centered at 0
with radius r. One can check that f is continuous on Ur under these conditions.
This uses the fact that (57.5) converges to f uniformly on C(r) as r1 → 1−, as
in Section 55.

Conversely, if f is a continuous complex-valued function on Ur that is holo-
morphic on Ur, then the restriction of f to C(r) is of analytic type. Indeed, if
0 < ρ < r, then ∫

C(ρ)

f(z) zj dz = 0(57.6)

for every nonnegative integer j, by Cauchy’s theorem. Equivalently, this means
that ∫

C(ρ)

f(z) zj+1 |dz| = 0(57.7)

for every nonnegative integer j. If 0 < r1 < 1, then we can apply this to ρ = r1 r,
to get that ∫

C(r)

f(r1 z) z
j+1 |dz| = 0(57.8)

for every nonnegative integer j. Note that f is uniformly continuous on Ur,
because f is continuous on Ur, and Ur is compact. This implies that f(r1 z)
tends to f(z) uniformly on Ur as r1 → 1−. It follows that∫

C(r)

f(z) zj+1 |dz| = 0(57.9)

for every nonnegative integer j, by taking the limit as r1 → 1− in (57.8).
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58 Hilbert space contractions

Let (V, ⟨v, w⟩) be a complex Hilbert space with norm ∥v∥ associated to the inner
product, and let ∥·∥op be the corresponding operator norm on the algebra BL(V )
of bounded linear mappings from V into itself. Also let T be an indeterminate,
and let

f(T ) =

n∑
j=0

fj T
j(58.1)

be a formal polynomial in T with complex coefficients. If z ∈ C, then

f(z) =

n∑
j=0

fj z
j(58.2)

is defined as a complex number, as usual. Similarly, if A is a bounded linear
mapping from V into itself, then

f(A) =

n∑
j=0

fj A
j(58.3)

is defined as an element of BL(V ).
Suppose that A is a contraction on V , in the sense that

∥A∥op ≤ 1.(58.4)

Let U1 be the closed unit disk in C, as before. A famous theorem of von
Neumann and Heinz states that

∥f(A)∥op ≤ sup
z∈U1

|f(z)|.(58.5)

Let A(U1) be the space of continuous complex-valued functions on U1 that
are holomorphic on the open unit disk U1, as in Section 34. Remember that
elements of A(U1) can be approximated uniformly on U1 by polynomials in z.
Hence there is a unique extension of

f 7→ f(A)(58.6)

to a bounded linear mapping from A(U1) into BL(V ), as in Section 10. Of
course, this uses the supremum norm on A(U1), and this extension satisfies
(58.5) for every f ∈ A(U1).

If f, g ∈ A(U1), then their product f g is an element of A(U1) too. One can
check that

(f g)(A) = f(A) g(A),(58.7)

so that (58.6) is an algebra homomorphism. More precisely, this can be verified
directly when f and g are polynomials in z, and otherwise one can reduce to
that case by approximation.
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