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Preface

These informal notes deal with metrics and collections of semimetrics in various
situations, including ultrametrics and collections of semi-ultrametrics. Some of
the topics involve in particular absolute value functions on fields, norms and
seminorms on vector spaces over such fields, and translation-invariant metrics
and semimetrics on groups and semigroups.
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Chapter 1

Metrics and related notions

1.1 Some remarks about Cartesian products

Let I be a nonempty set, and let Xj be a set for each j ∈ I. The Cartesian
product

X =
∏
j∈I

Xj(1.1.1)

can be defined as usual as the set of all functions f from I into
⋃

j∈I Xj such
that f(j) ∈ Xj for every j ∈ I. If n is a positive integer and I = {1, . . . , n}
is the set of positive integers from 1 to n, then the Cartesian product may be
denoted

∏n
j=1 Xj , and its elements identified with n-tuples x = (x1, . . . , xj) with

xj ∈ Ij for each j = 1, . . . , n. If I is the set Z+ of all positive integers, then the
Cartesian product may be denoted

∏∞
j=1 Xj , and its elements identified with

infinite sequences x = {xj}∞j=1 such that xj ∈ Ij for every j ≥ 1. Similar, if I is

the set Z of all integers, then the Cartesian product may be denoted
∏∞

j=−∞ Xj ,
and its elements identified with doubly-infinite sequences x = {xj}∞j=−∞ such
that xj ∈ Xj for every j.

Often one is concerned with situations where Xj is equipped with some ad-
ditional structure for each j ∈ I, and the Cartesian product X may be equipped
with some related structure. If Xj is a group for each j ∈ I, for instance, then
X is group too, where the group operations are defined coordinatewise. If k is
a field and Xj is a vector space over k for every j ∈ I, then X is a vector space
over k as well, with respect to coordinatewise addition and scalar multiplication.

If Xj is a topological space for each j ∈ I, then X is a topological space
with respect to the product topology. If Xj is a metric space for each j ∈ I,
and I has only finitely many elements, then it is easy to define metrics on X
that are compatible with the corresponding product topology. One can also do
this when I is countably infinite, and we shall discuss this further later.

If Xj is a σ-finite measure space for every j ∈ I, and I has only finitely
many elements, then one can define a suitable product measure on X. If Xj is a

2



1.2. METRICS AND SEMIMETRICS 3

probability space for every j ∈ I, then one can define a corresponding product
probability measure on X, even when I has infinitely many elements.

If Xj is a metric space for each j ∈ I, and I is countably infinite, then
one can reduce to the case where I = Z+, to define a compatible metric on
X. Although the choice of the enumeration of I does not affect the product
topology on X, it can be relevant for the resulting geometry on X.

Similarly, if Xj is a probability space for each j ∈ I, then the corresponding
product probability measure on X does not depend on any particular ordering
of the elements of I. However, this can be important in the consideration of
certain filtrations of σ-subalgebras of measurable subsets of X.

Let X0 be a set, and suppose that Xj = X0 for every j ∈ I. In this case,
a one-to-one mapping from I onto itself leads to a one-to-one mapping from X
onto itself, by permuting the coordinates of elements of X. If X0 is equipped
with additional structure, and X is equipped with a corresponding product
structure, then one may be concerned with the behavior of the mappings on X
just mentioned. In particular, if I = Z, then one may be concerned with shift
mappings on X, corresponding to translations on Z.

There is a well-known notion of a uniform structure on a set, which is less
precise than a metric, and which determines a topology on the set. An arbitrary
product of uniform spaces has a natural product uniform structure, and we shall
say more about this later too.

1.2 Metrics and semimetrics

Let X be a set. A nonnegative real-valued function d(x, y) defined for x, y ∈ X
is said to be a semimetric or pseudometric on X if it satisfies the following three
conditions. First,

d(x, x) = 0 for every x ∈ X.(1.2.1)

Second,
d(x, y) = d(y, x) for every x, y ∈ X.(1.2.2)

Third,
d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ X,(1.2.3)

which is known as the triangle inequality. If we also have that

d(x, y) > 0 for every x, y ∈ X with x 6= y,(1.2.4)

then d(·, ·) is said to be a metric on X. The discrete metric on X is defined as
usual by putting d(x, y) equal to 0 when x = y, and to 1 when x 6= y, and it is
easy to see that this defines a metric on X.

Let I be a nonempty set, let Xj be a set for every j ∈ I, and letX =
∏

j∈I Xj

be their Cartesian product. If x ∈ X and l ∈ I, then let xl denote the lth
coordinate of x in Xl. Suppose that dl(·, ·) is a semimetric on Xl, and put

d̂l(x, y) = dl(xl, yl)(1.2.5)
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for every x, y ∈ X. It is easy to see that this defines a semimetric on X.
Let d(·, ·) be a semimetric on a set X. If x ∈ X and r is a positive real

number, then open ball in X centered at x with radius r with respect to d is
defined by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) < r}.(1.2.6)

Similarly, if x ∈ X and r is a nonnegative real number, then the closed ball in
X centered at x with radius r with respect to d is defined by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) ≤ r}.(1.2.7)

We may also use the notation BX(x, r) = BX,d(x, r) and BX(x, r) = BX,d(x, r),
to indicate the role of X.

A subset U of X is said to be an open set with respect to d if for every x ∈ U
there is an r > 0 such that

B(x, r) ⊆ U.(1.2.8)

Of course, this is the same as the definition that one normally uses for metric
spaces. One can check that open balls in X with respect to d are open sets,
and that the collection of open sets defines a topology on X, in the same way
as for metric spaces. One can verify that closed balls in X with respect to d are
closed sets with respect to this topology as well.

If d(·, ·) is a metric on X, then it is easy to see that X is Hausdorff with
respect to the corresponding topology. Conversely, if X satisfies the first or
even zeroth separation condition with respect to the topology determined by
a semimetric d(·, ·), then d(·, ·) is a metric on X. In some situations, it can
be helpful to consider collections of semimetrics on a set, instead of a single
semimetric.

1.3 Ultrametrics and semi-ultrametrics

A semimetric d(·, ·) on a set X is said to be a semi-ultrametric on X if

d(x, z) ≤ max(d(x, y), d(y, z)) for every x, y, z ∈ X.(1.3.1)

Note that (1.3.1) implies the ordinary triangle inequality. Similarly, a metric
d(·, ·) on X is said to be an ultrametric on X if it satisfies (1.3.1). One can
check that the discrete metric on X is an ultrametric.

Let I be a nonempty set, let Xj be a set for every j ∈ I, and letX =
∏

j∈I Xj

be their Cartesian product again. If l ∈ I and dl is a semi-ultrametric on Xl,
then (1.2.5) defines a semi-ultrametric on X.

Suppose that d(·, ·) is a semi-ultrametric on a set X. If r is a positive real
number, then one can verify that

d(x, y) < r(1.3.2)

defines an equivalence relation on X. The corresponding equivalence classes
in X are the same as the open balls in X of radius r with respect to d. In
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particular, the complement of an open ball of radius r in X can be expressed as
the union of open balls of radius r in X. This implies that the complement of
an open ball of radius r in X is an open set in X, with respect to the topology
determined by d, so that open balls in X are closed sets.

Similarly, if r is a nonnegative real number, then

d(x, y) ≤ r(1.3.3)

defines an equivalence relation on X. The equivalence classes in X correspond-
ing to (1.3.3) are the same as the closed balls of radius r in X with respect to
d. In particular, every closed ball of radius r in X contains the closed balls of
radius r centered at each of its elements. If r > 0, then it follows that every
closed ball of radius r in X is an open set, so that closed balls of radius r are
open sets. If r = 0, then (1.3.3) defines an equivalence relation on X for any
semimetric d(·, ·) on X.

Let P be a partition of X, which is to say a collection of pairwise-disjoint
nonempty subsets of X whose union is X. This leads to an equivalence relation
∼P on X, where x ∼P y when x, y ∈ X are elements of the same element of
P. In this case, the elements of P are the same as the equivalence classes in X
with respect to ∼P , by construction. Conversely, any equivalence relation on X
determines a partition of X, consisting of the corresponding equivalence classes
in X.

If x, y ∈ X, then put

dP(x, y) = 0 when x ∼P y(1.3.4)

= 1 when x 6∼P y.

It is easy to see that this defines a semi-ultrametric on X. If 0 < r ≤ 1, then the
open balls in X of radius r with respect to dP(·, ·) are the same as the elements
of P. Similarly, if 0 ≤ r < 1, then the closed balls in X of radius r with respect
to dP(·, ·) are the same as the elements of P.

Let us say that a semimetric d(·, ·) on X is a discrete semimetric if for every
x, y ∈ X, d(x, y) is equal to either 0 or 1. One can check that this implies that
d(·, ·) is a semi-ultrametric on X. In this case, the open balls in X of radius r,
0 < r ≤ 1, with respect to d are the same, and they are also the same as the
closed balls in X of radius r, 0 ≤ r < 1. This defines a partition of X, and d(·, ·)
is the same as the semi-ultrametric on X associated to this partition as in the
preceding paragraph.

1.4 Absolute value functions

Let k be a field. A nonnegative real-valued function | · | on k is said to be an
absolute value function on k if it satisfies the following three conditions. First,
for each x ∈ k,

|x| = 0 if and only if x = 0.(1.4.1)
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Second,

|x y| = |x| |y| for every x, y ∈ k.(1.4.2)

Third,

|x+ y| ≤ |x|+ |y| for every x, y ∈ k.(1.4.3)

It is well known that the standard absolute value functions on the real line R
and the complex plane C are absolute value functions in this sense. The trivial
absolute value function may be defined on any field k by putting |x| equal to
0 when x = 0, and equal to 1 otherwise. It is easy to see that this defines an
absolute value function on k in this sense.

If | · | is any absolute value function on a field k, then one can show that
|1| = 1, where the first 1 = 1k is the multiplicative identity element in k, and
the second 1 = 1R is the multiplicative identity element in R. This uses the
fact that 1 · 1 = 1 in k. Similarly, if x ∈ k satisfies xn = 1 for some positive
integer n, then |x| = 1. In particular, | − 1| = 1, because (−1)2 = 1 in k.

Using this, one can check that

d(x, y) = |x− y|(1.4.4)

defines a metric on k. This is the same as the standard Euclidean metric on
R or C when | · | is the standard absolute value function. If | · | is the trivial
absolute value function on any field k, then (1.4.4) is the same as the discrete
metric on k.

An absolute value function |·| on a field k is said to be an ultrametric absolute
value function on k if

|x+ y| ≤ max(|x|, |y|) for every x, y ∈ k.(1.4.5)

Of course, (1.4.5) implies (1.4.3). It is easy to see that the trivial absolute value
function on k is an ultrametric absolute value function. If | · | is an ultrametric
absolute value function on k, then (1.4.4) is an ultrametric on k.

Let p be a prime number, and let x be a rational number. The p-adic absolute
value |x|p of x is defined as follows. If x = 0, then |x|p = 0. Otherwise, if x 6= 0,
then x can be expressed as pj (a/b), where a, b, j ∈ Z, a, b 6= 0, and neither a
nor b is an integer multiple of p. In this case, we put

|x|p = p−j .(1.4.6)

One can check that this defines an ultrametric absolute value function on the
rational numbers Q. The corresponding ultrametric

dp(x, y) = |x− y|p(1.4.7)

is known as the p-adic metric on Q.
Let k be any field again, and let | · | be an absolute value function on k.

If x ∈ k and n ∈ Z+, then let n · x be the sum of n 1’s in k. If there are
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positive integers n such that |n · 1| can be arbitrarily large, then | · | is said to
be archimedian on k. Otherwise, if there is a positive real number C such that

|n · 1| ≤ C(1.4.8)

for every n ∈ Z+, then | · | is said to be non-archimedean on k.
If | · | is an ultrametric absolute value function on k, then (1.4.8) holds with

C = 1, so that | · | is non-archimedean on k. Conversely, it is well known that
any non-archimedean absolute value function on k is an ultrametric absolute
value function on k. Of course, the standard absolute value functions on R and
C are archimedean.

1.5 Finitely many semimetrics

LetX be a set, and let d1, . . . , dn be finitely many semimetrics onX. If x, y ∈ X,
then put

d(x, y) = max
1≤j≤n

dj(x, y)(1.5.1)

and

d′(x, y) =

n∑
j=1

dj(x, y).(1.5.2)

One can check that these define semimetrics on X too. If d1, . . . , dn are semi-
ultrametrics on X, then (1.5.1) is a semi-ultrametric on X as well.

If x ∈ X and r is a positive real number, then

Bd(x, r) =

n⋂
j=1

Bdj
(x, r).(1.5.3)

Similarly, if r is a nonnegative real number, then

Bd(x, r) =

n⋂
j=1

Bdj (x, r).(1.5.4)

Observe that
d(x, y) ≤ d′(x, y) ≤ nd(x, y)(1.5.5)

for every x, y ∈ X. One can use this to compare open and closed balls in X
with respect to d′ with open and closed balls with respect to d.

One can also verify that

d′′(x, y) =
( n∑

j=1

dj(x, y)
2
)1/2

(1.5.6)

defines a semimetric on X, using the triangle inequality for the standard Eu-
clidean norm on Rn. It is easy to see that

d(x, y) ≤ d′′(x, y) ≤ n1/2 d(x, y)(1.5.7)
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for every x, y ∈ X. As before, one can use this to compare open and closed balls
in X with respect to d′′ with open and closed balls with respect to d.

Now let X1, . . . , Xn be finitely many sets, and put X =
∏n

j=1 Xj . Sup-

pose that dj is a semimetric on Xj for each j = 1, . . . , n, and let d̂j be the
corresponding semimetric on X, as in Section 1.2. If x, y ∈ X, then put

d̂(x, y) = max
1≤j≤n

d̂j(x, y) = max
1≤j≤n

dj(xj , yj),(1.5.8)

d̂′(x, y) =

n∑
j=1

d̂j(x, y) =

n∑
j=1

dj(xj , yj),(1.5.9)

d̂′′(x, y) =
( n∑

j=1

d̂j(x, y)
2
)1/2

=
( n∑

j=1

dj(xj , yj)
2
)1/2

.(1.5.10)

These define semimetrics on X, as before. If dj is a metric on Xj for every
j = 1, . . . , n, then each of these defines a metric on X.

If dj is a semi-ultrametric on Xj for each j = 1, . . . , n, then one can check

that d̂j is a semi-ultrametric on X for every j = 1, . . . , n. This implies that
(1.5.8) is a semi-ultrametric on X, as before.

If x ∈ X, then

B
X,d̂

(x, r) =

n∏
j=1

BXj ,dj (xj , r)(1.5.11)

for every r > 0, and

B
X,d̂

(x, r) =

n∏
j=1

BXj ,dj (x, r)(1.5.12)

for every r ≥ 0. Using (1.5.11), one can verify that the topology determined

on X by d̂ is the same as the product topology, corresponding to the topology
determined on Xj by dj for each j = 1, . . . , n.

Note that

d̂(x, y) ≤ d̂′(x, y) ≤ n d̂(x, y)(1.5.13)

and

d̂(x, y) ≤ d̂′′(x, y) ≤ n1/2 d̂(x, y)(1.5.14)

for every x, y ∈ X, as in (1.5.5) and (1.5.7). In particular, this implies that the

topologies determined on X by d̂′ and d̂′′ are the same as the product topology
too.

1.6 Snowflake semimetrics

If a is a positive real number with a ≤ 1, then it is well known that

(r + t)a ≤ ra + ta(1.6.1)
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for all nonnegative real numbers r, t. To see this, observe first that

max(r, t) ≤ (ra + ta)1/a(1.6.2)

for every r, t ≥ 0. Using this, we get that

r + t ≤ max(r, t)1−a (ra + ta) ≤ (ra + ta)(1−a)/a+1 = (ra + ta)1/a(1.6.3)

for every r, t ≥ 0. This implies (1.6.1), as desired.
Let X be a set, and let d(·, ·) be a semimetric on X. If 0 < a ≤ 1, then it is

easy to see that
d(x, y)a(1.6.4)

is a semimetric on X too, using (1.6.1). If d(·, ·) is a metric on X, then (1.6.4)
is a metric on X as well. Similarly, if d(·, ·) is a semi-ultrametric on X, then
one can check that (1.6.4) is a semi-ultrametric on X for every a > 0. If d(·, ·)
is an ultrametric on X, then (1.6.4) is an ultrametric on X for every a > 0.

Let d(·, ·) be a semimetric on X again, and suppose that (1.6.4) is a semi-
metric on X for some a > 0. If x ∈ X, then it is easy to see that

Bda(x, ra) = Bd(x, r)(1.6.5)

for every r > 0, and that

Bda(x, ra) = Bd(x, r)(1.6.6)

for every r ≥ 0. In particular, d(·, ·) and (1.6.4) determine the same topologies
on X.

Let X1, . . . , Xn be finitely many sets, and let dj(·, ·) be a semimetric on Xj

for each j = 1, . . . , n. Also let a1, . . . , an be positive real numbers, and suppose
that

dj(xj , yj)
aj(1.6.7)

is a semimetric on Xj for every j = 1, . . . , n. Of course, we can get semimet-
rics on X =

∏n
j=1 Xj using d1, . . . , dn as in the previous section. We can get

semimetrics on X using da1
1 , . . . , dan

n in the same way. Note that the topology
determined on X by any of these semimetrics is the same as the product topol-
ogy, corresponding to the topology determined on Xj by dj for each j = 1, . . . , n.
In particular,

d̃(x, y) = max
1≤j≤n

dj(xj , yj)
aj(1.6.8)

defines a semimetric on X under these conditions. If x ∈ X, then

B
X,d̃

(x, r) =

n∏
j=1

B
Xj ,d

aj
j
(x, r) =

n∏
j=1

BXj ,dj (x, r
1/aj )(1.6.9)

for every r > 0, and

B
X,d̃

(x, r) =

n∏
j=1

B
Xj ,d

aj
j
(x, r) =

n∏
j=1

BX,dj (x, r
1/aj )(1.6.10)
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for every r ≥ 0.
Let X be any set again, and let d(·, ·) be a metric on X. Also let a be a

positive real number, and suppose that (1.6.4) is a metric on X. It is easy to
see that a sequence of elements of X is a Cauchy sequence with respect to d(·, ·)
if and only if it is a Cauchy sequence with respect to (1.6.4). It follows that X
is complete as a metric space with respect to d(·, ·) if and only if X is complete
with respect to (1.6.4).

1.7 Snowflakes and absolute values

Let k be a field, and let | · | be an absolute value function on k. If 0 < a ≤ 1,
then one can check that

|x|a(1.7.1)

is an absolute value function on k, using (1.6.1). If | · | is an ultrametric absolute
value function on k, then (1.7.1) is an ultrametric absolute value function on k
for every a > 0. If k = Q, R, or C with the standard Euclidean absolute value
function | · |, then it is easy to see that (1.7.1) is not an absolute value function
on k when a > 1.

Let k be any field again, and let | · |1 and | · |2 be absolute value functions
on k. If there is a positive real number a such that

|x|2 = |x|a1(1.7.2)

for every x ∈ k, then | · |1 and | · |2 are said to be equivalent as absolute value
functions on k. Of course,

|x− y|2 = |x− y|a1(1.7.3)

for every x, y ∈ k in this case. This implies that the topologies determined on
k by the metrics associated to | · |1 and | · |2 are the same, as in the previous
section. Conversely, if the topologies determined on k by the metrics associated
to | · |1 and | · |2, then it is well known that | · |1 and | · |2 are equivalent in the
sense just defined.

A famous theorem of Ostrowski implies that any absolute value function on
Q is either the trivial absolute value function, or that it is equivalent to the
standard Euclidean absolute value function on Q, or that it is equivalent to the
p-adic absolute value function on Q for some prime number p.

Let k be a field with an archimedean absolute value function |·|, and suppose
that k is complete with respect to the metric associated to | · |. Under these
conditions, another famous theorem of Ostrowski implies that k is isomorphic
to R or C, in such a way that | · | corresponds to an absolute value function on
R or C that is equivalent to the standard absolute value function.

Let k be any field with an absolute value function | · | again. If k is not
already complete with respect to the metric associated to | · |, then one can pass
to a completion in a standard way. More precisely, the completion is also a field,
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and | · | extends to an absolute value function on the completion in a natural
way. The completion is unique up to a suitable isomorphic equivalence.

Suppose that |·|a is an absolute value function on k as well for some a > 0. If
k is complete with respect to the metric associated to |·|, then k is complete with
respect to the metric associated to | · |a, as in the previous section. Otherwise,
a completion of k with respect to | · | can also be used as a completion with
respect to | · |, by taking the ath power of the natural extension of | · | to the
completion.

If p is a prime number, then the field Qp of p-adic numbers is obtained by
completing Q with respect to the p-adic absolute value function.

1.8 Lipschitz conditions

Let X, Y be sets with semimetrics dX , dY , respectively. As usual, a mapping
f from X into Y is said to be uniformly continuous if for every ϵ > 0 there is a
δ > 0 such that

dY (f(x), f(w)) < ϵ(1.8.1)

for every x,w ∈ X with dX(x,w) < δ. Of course, uniform continuity implies
ordinary continuity.

Let α be a positive real number, and let C be a nonnegative real number. A
mapping f from X into Y is said to be Lipschitz of order α with constant C if

dY (f(x), f(w)) ≤ C dX(x,w)α(1.8.2)

for every x,w ∈ X. Note that this implies that f is uniformly continuous.
Constant mappings from X into Y are clearly Lipschitz of any order α > 0,
with constant C = 0. If dY is a metric on Y , and a mapping f from X into Y
is Lipschitz of some order α > 0 with constant C = 0, then f is constant on X.

Suppose for the moment that Y is the real line with the standard Euclidean
metric. In this case, (1.8.2) is the same as saying that

|f(x)− f(w)| ≤ C dX(x,w)α(1.8.3)

for every x,w ∈ X, where | · | is the standard absolute value function on R. One
can check that this holds if and only if

f(x) ≤ f(w) + C dX(x,w)α(1.8.4)

for every x,w ∈ X. More precisely, in order to obtain (1.8.3) from (1.8.4), one
can also use the analogue of (1.8.4) with the roles of x and w exchanged.

Let x0 ∈ X and α > 0 be given, and put

fα,x0
(x) = dX(x, x0)

α(1.8.5)

for every x ∈ X. If dX(x,w)α is a semimetric on X, then fα,x0 satisfies (1.8.4)
with C = 1 for every x,w ∈ X. This implies that fα,x0

is Lipschitz of order α
with constant C = 1 as a real-valued function on X, as before.
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Suppose now that f is a real-valued function on the real line, where R is
equipped with the standard Euclidean metric. If f is Lipschitz of order α > 1
with some constant C, then it is well known and not too difficult to show that
f is constant on R.

Let X, Y be arbitrary sets with semimetrics dX , dY again. If a mapping f
from X into Y is Lipschitz of order α = 1 with constant C ≥ 0, then one may
simply say that f is Lipschitz with constant C.

A mapping f from X into Y is an isometry with respect to dX and dY if

dY (f(x), f(w)) = dX(x,w)(1.8.6)

for every x,w ∈ X. Similarly, f is said to be bilipschitz with constant C ≥ 1 if

C−1 dX(x,w) ≤ dY (f(x), f(w)) ≤ C dX(x,w)(1.8.7)

for every x,w ∈ X. This implies that f is injective on X when dX is a metric
on X. Of course, (1.8.6) is the same as (1.8.7) with C = 1. If f is injective,
then (1.8.7) is the same as saying that f is Lipschitz with constant C, and that
the inverse mapping f−1 is Lipschitz with constant C, as a mapping from f(X)
into X, and using the restriction of dY to f(X).

Let X1, . . . , Xn be finitely many sets, and put X =
∏n

j=1 Xj , as usual. If
1 ≤ l ≤ n, then let pl be the natural coordinate projection from X into Xl, so
that pl(x) = xl is the lth coordinate of x ∈ X. Let dj be a semimetric on Xj

for each j = 1, . . . , n, and let d̂j be the corresponding semimetric on X, as in
Section 1.2. Thus

d̂l(x, y) = dl(pl(x), pl(y))(1.8.8)

for every x, y ∈ X and l = 1, . . . , n, so that pl is an isometry from X into Xl

with respect to d̂l and dl. Similarly, for each l = 1, . . . , n, pl is Lipschitz of order
α = 1 with constant C = 1 with respect to any of the semimetrics d̂, d̂′, and d̂′′

defined on X as in Section 1.5, and dl on Xl.

1.9 Norms and seminorms

Let k be a field with an absolute value function | · |, and let V be a vector space
over k. A nonnegative real-valued function N on V is said to be a seminorm or
pseudonorm with respect to | · | on k if it satisfies the following two conditions.
First,

N(t v) = |t|N(v)(1.9.1)

for every v ∈ V and t ∈ k. Second,

N(v + w) ≤ N(v) +N(w)(1.9.2)

for every v, w ∈ V . Note that (1.9.1) implies that N(v) = 0 when v = 0. If we
also have that

N(v) > 0 when v 6= 0,(1.9.3)
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then N is said to be a norm on V . If N is any seminorm on V , then the set of
v ∈ V such that N(v) = 0 is a linear subspace of V .

A nonnegative real-valued function N on V is said to be a semi-ultranorm
if it satisfies (1.9.1) and

N(v + w) ≤ max(N(v), N(w))(1.9.4)

for every v, w ∈ V . Of course, (1.9.4) implies (1.9.2). If N also satisfies (1.9.3),
then N is said to be an ultranorm on V . If N is a semi-ultranorm on V , and
N(v) > 0 for some v ∈ V , then one can check that | · | is an ultrametric absolute
value function on k.

If N is a seminorm on V , then it is easy to see that

dN (v, w) = N(v − w)(1.9.5)

is a semimetric on V . This is a metric on V when N is a norm on V . Similarly,
this is a semi-ultrametric on V when N is a semi-ultranorm on V , and an
ultrametric on V when N is an ultranorm on V .

If | · | is the trivial absolute value function on k, then the trivial ultranorm is
defined on V by putting N(v) equal to 0 when v = 0, and equal to 1 otherwise.
One can verify that this defines an ultranorm on V , for which the corresponding
ultrametric is the discrete metric.

If | · | is any absolute value function on k and 0 < a ≤ 1, then | · |a is an
absolute value function on k too, as in Section 1.7. If N is a seminorm on V
with respect to | · | on k, then one can check that

N(v)a(1.9.6)

is a seminorm on V with respect to | · |a. Similarly, if | · | is an ultrametric
absolute value function on k, then | · |a is an ultrametric absolute value function
on k for every a > 0. If N is a semi-ultranorm on V with respect to | · | on k,
then it is easy to see that (1.9.6) is a semi-ultranorm on V with respect to | · |a
on k. In both cases, we have that

dNa(v, w) = N(v − w)a = dN (v, w)a(1.9.7)

for every v, w ∈ V .

1.10 Some basic examples

Let X be a nonempty set, and let k be a field with an absolute value function
| · |. The space c(X, k) of all k-valued functions on X is a vector space over
k, with respect to pointwise addition and scalar multiplication of functions. If
x ∈ X, then put

Nx(f) = |f(x)|(1.10.1)

for every f ∈ c(X, k). It is easy to see that this defines a seminorm on c(X, k),
with respect to | · | on k. If | · | is an ultrametric absolute value function on k,
then Nx is a semi-ultranorm on c(X, k).
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If f ∈ c(X, k), then the support of f is defined to be the set of x ∈ X such that
f(x) 6= 0. Let c00(X, k) be the set of f ∈ c(X, k) whose support has only finitely
many elements. It is easy to see that c00(X, k) is a linear subspace of c(X, k).
Of course, if X has only finitely many elements, then c00(X, k) = c(X, k).

If f ∈ c00(X, k), then put

‖f‖1 =
∑
x∈X

|f(x)|,(1.10.2)

‖f‖2 =
( ∑

x∈X

|f(x)|2
)1/2

,(1.10.3)

‖f‖∞ = max
x∈X

|f(x)|.(1.10.4)

More precisely, the sums over x ∈ X on the right sides of the first two reduce
to finite sums of nonnegative real numbers, by hypothesis. One can check that
each of these is a norm on c00(X, k), with respect to | · | on k. This uses the
triangle inequality for the standard Euclidean norm on Rn to get the triangle
inequality for ‖ · ‖2, as usual. If | · | is an ultrametric absolute value function on
| · |, then ‖ · ‖∞ is an ultranorm on c00(X, k).

Similarly, let a be a positive real-valued function on X. If f ∈ c00(X, k),
then put

‖f‖1,a =
∑
x∈X

a(x) |f(x)|,(1.10.5)

‖f‖2,a =
( ∑

x∈X

a(x)2 |f(x)|2
)1/2

,(1.10.6)

‖f‖∞,a = max
x∈X

(a(x) |f(x)|).(1.10.7)

One can verify that each of these defines a norm on c00(X, k), with respect to
| · | on k. If | · | is an ultrametric absolute value function on k, then ‖ · ‖∞,a is
an ultranorm on c00(X, k). Of course, if a(x) = 1 for every x ∈ X, then these
three norms are the same as the ones in the preceding paragraph.

Let f ∈ c00(X, k) be given, and observe that

‖f‖∞,a ≤ ‖f‖1,a(1.10.8)

and

‖f‖∞,a ≤ ‖f‖2,a.(1.10.9)

Using (1.10.8), we get that

‖f‖22,a =
∑
x∈X

a(x)2 |f(x)|2 ≤ ‖f‖1,a ‖f‖∞,a ≤ ‖f‖21,a.(1.10.10)

Thus

‖f‖2,a ≤ ‖f‖1,a.(1.10.11)
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Let b be another positive real-valued function on X. Suppose for the moment
that X has only finitely many elements. It is easy to see that

‖f‖1,a ≤
( ∑

x∈X

a(x)/b(x)
)
‖f‖∞,b.(1.10.12)

Similarly,

‖f‖2,a ≤
( ∑

x∈X

a(x)2/b(x)2
)1/2

‖f‖∞,b.(1.10.13)

We also have that

‖f‖1,a ≤
( ∑

x∈X

a(x)2/b(x)2
)1/2

‖f‖2,b,(1.10.14)

by the Cauchy–Schwarz inequality.
Suppose now that X = Z+. If

∑∞
j=1 a(j)/b(j) converges, as an infinite series

of positive real numbers, then

‖f‖1,a ≤
( ∞∑

j=1

a(j)/b(j)
)
‖f‖∞,b.(1.10.15)

Similarly, if
∑∞

j=1 a(j)
2/b(j)2 converges, then

‖f‖2,a ≤
( ∞∑

j=1

a(j)2/b(j)2
)1/2

‖f‖∞,b.(1.10.16)

In this case, we also get that

‖f‖1,a ≤
( ∞∑

j=1

a(j)2/b(j)2
)1/2

‖f‖2,b.(1.10.17)

1.11 Regularity and normality

Let X be a topological space. Remember that X is said to satisfy the first
separation condition if for every pair of distinct elements x, y of X, there is an
open set U ⊆ X such that x ∈ U and y 6∈ U . This is symmetric in x and y, so
that there is also an open set V ⊆ X such that y ∈ V and x 6∈ U . One may
also say that X is a T1 space in this case. It is well known that this holds if and
only if every subset of X with only one element is a closed set.

Similarly, X satisfies the second separation condition if for every pair x, y
of distinct elements of X, there are disjoint open subsets U , V of X such that
x ∈ U and y ∈ V . One may say that X is a T2 space in this case, or that
X is Hausdorff.. Of course, this implies that X satisfies the first separation
condition.
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We say that X satisfies the zeroth separation condition if for every pair x,
y of distinct elements of X, there is an open set in X that contains one of the
two points, and not the other. Equivalently, one may say that X is a T0 space
in this case. The first separation condition clearly implies this one.

Let us say that X is regular in the strict sense if for every x ∈ X and
closed set E ⊆ X with x 6∈ E there are disjoint open subsets U , V of X such
that x ∈ U and E ⊆ V . If X also satisfies the first or even zeroth separation
condition, then X is said to be regular in the strong sense. In this case, one
may say that X satisfies the third separation condition, or equivalently that X
is a T3 space, but sometimes these terms are used for regularity in the strict
sense. Similarly, regularity is sometimes used to mean regularity in the strict
sense, and sometimes it is used to mean regularity in the strong sense.

We say that X is normal in the strict sense if for every pair A, B of disjoint
closed subsets of X, there are disjoint open sets U, V ⊆ X such that A ⊆ U
and B ⊆ V . If X satisfies the first separation condition as well, then X is said
to be normal in the strong sense. If X is normal in the strong sense, then one
may say that X satisfies the fourth separation condition, or equivalently that
X is a T4 space, but these terms are sometimes used for regularity in the strict
sense. Sometimes normality is used to mean normality in the strict sense, and
sometimes it is used to mean normality in the strong sense.

A pair of subsets A, B of X are said to be separated in X if

A ∩B = A ∩B = ∅,(1.11.1)

where A, B are the closures of A, B in X, respectively, as usual. If Y ⊆ X and
A,B ⊆ Y , then it is well known that A, B are separated in X if and only if A,
B are separated in Y , with respect to the induced topology. This is because the
closure of A in Y is the same as the intersection of Y with the closure of A in
X.

We say that X is completely normal in the strict sense if for every pair
A, B of separated subsets of X there are disjoint open sets U, V ⊆ X such
that A ⊆ U and B ⊆ V . If X satisfies the first separation condition too,
then X is said to be completely normal in the strong sense. If X is completely
normal in the strong sense, then one may say that X satisfies the fifth separation
condition, or equivalently that X is a T5 space, but these terms are sometimes
used for complete normality in the strict sense. As before, complete normality is
sometimes used to mean complete normality in the strict sense, and sometimes
it is used to mean complete normality on the strong sense.

If X is regular in the strong sense, then it is easy to see that X is Hausdorff.
Similarly, if X is normal in the strong sense, then X is regular in the strong
sense. If X is completely normal in the strict sense, then X is normal in the
strict sense, because disjoint closed subsets of X are separated in X. If X is
completely normal in the strong sense, then it follows that X is normal in the
strong sense.

Let Y be a subset of X again, equipped with the induced topology. If X
satisfies the zeroth, first, or second separation condition, then it is well known
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that Y has the same property. Similarly, if X is regular in the strict sense,
then Y is regular in the strict sense. If X is regular in the strong sense, then it
follows that Y is regular in the strong sense.

If X is completely normal in the strict sense, then Y is completely normal
in the strict sense. This uses the fact that separated subsets of Y are separated
in X as well. If X is completely normal in the strong sense, then it follows that
Y is completely normal in the strong sense.

It is well known that X is regular in the strict sense if and only if for every
x ∈ X and open set W ⊆ X with x ∈ W , there is an open set U ⊆ X such that
x ∈ U and U ⊆ W . Similarly, X is normal in the strict sense if and only if for
every pair of open subsets U , W of X with U ⊆ W , there is an open set V ⊆ X
such that U ⊆ V and V ⊆ W .

We say that X is completely regular in the strict sense if for every x ∈ X
and closed set E ⊆ X with x 6∈ E there is a continuous real-valued function f
on X such that f(x) > 0 and f(y) = 0 for every y ∈ E. Of course, this uses the
standard topology on R, as the range of f . One may also ask that f(x) = 1,
and that 0 ≤ f(z) ≤ 1 for every z ∈ X.

If X also satisfies the first or even zeroth separation condition, then X s said
to be completely regular in the strong sense. In this case, one may say that X
satisfies separation condition number three-and-a-half, or equivalently that X
is a T3 1

2
space, but these terms are sometimes used for complete regularity in

the strict sense. As usual, complete reguarity is sometimes used to mean com-
plete regularity in the strict sense, and sometimes it is used to mean complete
regularity in the strong sense.

If X is completely regular in the strict sense, then it is easy to see that X is
regular in the strict sense, because the real line is Hausdorff with respect to the
standard topology. If X is completely regular in the strong sense, then it follows
that X is regular in the strong sense. If X is normal in the strong sense, then
it is well known that X is completely regular in the strong sense, by Urysohn’s
lemma.

If X is completely regular in the strict sense and Y ⊆ X, then it is easy to
see that Y is completely regular in the strict sense, with respect to the induced
topology. If X is completely regular in the strong sense, then it follows that Y
is completely regular in the strong sense, with respect to the induced topology.

1.12 Related properties of semimetrics

Let X be a set, and let d(·, ·) be a semimetric on X. If Y ⊆ X, then the
restriction of d(·, ·) to elements of Y defines a semimetric on Y . It is well known
that the topology determined on Y by the restriction of d(·, ·) to Y is the same
as the topology induced on Y by the topology determined on X by d(·, ·). To
see this, let y ∈ Y and r > 0 be given, and let BX(y, r), BY (y, r) be the open
balls in X, Y , respectively, centered at y, with radius r, and with respect to
d(·, ·) or its restriction to Y , as appropriate. Observe that

BY (y, r) = BX(y, r) ∩ Y.(1.12.1)
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Using this, one can check that any open subset of Y with respect to the induced
topology is also an open set with respect to the topology determined by the
restriction of d(·, ·) to Y . One can also use (1.12.1) to get that BY (y, r) is an
open set in Y with respect to the induced topology. Of course, every open set
in Y with respect to the topology determined by the restriction of d(·, ·) to Y
can be expressed as a union of open balls in Y . It follows that every such subset
of Y is an open set with respect to the induced topology on Y , because it is a
union of open sets with respect to the induced topology.

As mentioned in Section 1.2, X is Hausdorff with respect to the topology
determined by d(·, ·) when d(·, ·) is a metric on X, and it is necessary for d(·, ·)
to be a metric on X in order for X to satisfy the first or even zeroth separation
condition with respect to the topology determined by d(·, ·). One can check
that X is regular in the strict sense with respect to the topology determined by
d(·, ·), using the fact that closed balls in X with respect to d(·, ·) are closed sets.
One can also verify that X is completely normal in the strict sense with respect
to the topology determined by d(·, ·), in the same way as for metric spaces.

If x0 ∈ X, then

fx0(x) = d(x, x0)(1.12.2)

is continuous as a real-valued function on X, as in Section 1.8. Using this, it is
easy to see that X is completely regular in the strict sense with respect to the
topology determined by d(·, ·).

A topological space Y is said to be zero dimensional if the collection of
subsets of Y that are both open and closed is a base for the topology of Y . In
this case, Y is regular in the strict sense, and in fact completely regular in the
strict sense. This also implies that any subset of Y is zero dimensional, with
respect to the induced topology. If d(·, ·) is a semi-ultrametric on X, then X is
zero dimensional with respect to the topology determined by d(·, ·).

A topological space Y is said to be totally separated if for every pair of
distinct elements y1, y2 of Y , there is an open set U1 ⊆ Y such that U1 is a
closed set, y1 ∈ U1, and y2 ∈ Y \ U1. Of course, this means that U2 = Y \ U1

is open and closed, y1 ∈ Y \ U2, and y2 ∈ U2. If Y is totally separated, then
Y is Hausdorff, and every subset of Y is totally separated, with respect to the
induced topology. If Y is zero dimensional and satisfies the zeroth separation
condition, then Y is totally separated. If d(·, ·) is an ultrametric on X, then X
is totally separated with respect to the topology determined by d(·, ·).

Let Y be a set, and let τ1, τ2 be topologies on Y , with τ1 ⊆ τ2. If Y satisfies
the zeroth, first, or second separation condition with respect to τ1, then it is
easy to see that Y has the same property with respect to τ2. Similarly, if Y is
totally separated with respect to τ1, then Y is totally separated with respect to
τ2.

Remember that a subset E of a topological space Y is said to be totally
disconnected if E does not contain any connected sets with at least two elements.
If Y is totally separated, then one can check that Y is totally disconnected.
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1.13 Formal series

Let k be a field, and let T be an indeterminate. As in [17, 28], we normally use
upper-case letters for indeterminates, and lower-case letters for elements of k.
Let k((T )) be the space of formal sums of the form

f(T ) =

∞∑
j=j0

fj T
j ,(1.13.1)

where j0 ∈ Z and fj ∈ k for each j ≥ j0. More precisely, we consider fj ∈ k
to be defined for every j ∈ Z, with fj = 0 when j < j0. We may also use the
notation

f(T ) =
∑

j>>−∞
fj T

j(1.13.2)

for an element of k((T )), as in [17].
Equivalently, k((T )) may be considered as the space of k-valued functions

on Z that are equal to zero at all but at most finitely many negative integers.
This is a linear subspace of the space c(Z, k) of all k-valued functions on Z, as
a vector space over k with respect to pointwise addition and scalar multiplica-
tion of functions. Of course, this corresponds to termwise addition and scalar
multiplication of formal sums as in the preceding paragraph.

Let f(T ) be as in (1.13.1), and let g(T ) =
∑

l=l0
gl T

l be another element of
k((T )). If n ∈ Z, then put

hn =

∞∑
j=−∞

fj gn−j =
∑

j+l=n

fj gl,(1.13.3)

where the second sum is taken over all j, l ∈ Z with j + l = n. It is easy to see
that all but finitely many terms in these sums are equal to 0, so that these sums
reduce to finite sums in k. One can also check that hn = 0 when n < j0 + l0, so
that

h(T ) =

∞∑
n=j0+l0

hn T
n(1.13.4)

is an element of k((T )). Put

f(T ) g(T ) = h(T ),(1.13.5)

which is defined to be the product of f(T ) and g(T ) in k((T )).
It is well known not difficult to verify that k((T )) is a commutative asso-

ciative algebra over k with respect to this definition of multiplication. If we
identify elements of k with the corresponding multiple of T 0 in k((T )), then k
corresponds to a subalgebra of k((T )). It is easy to see that the multiplicative
identity element 1 in k corresponds to the multiplicative identity element of
k((T )) in this way.

The algebra k[T ] of formal polynomials in T with coefficients in k may be
identified with the subalgebra of k((T )) consisting of f(T ) as in (1.13.1) with
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j0 = 0 and fj = 0 for all but finitely many j ≥ j0. Similarly, the algebra k[[T ]]
of formal power series in T with coefficients in k may be identified with the
subalgebra of k((T )) consisting of f(T ) as in (1.13.1) with j0 = 0.

If a(T ) ∈ k[[T ]] and n is a nonnegative integer, then

n∑
l=0

a(T )l T l(1.13.6)

defines an element of k[[T ]], where the l = 0 term is interpreted as being equal
to 1, as usual. Note that

(1− a(T )T )

n∑
l=0

a(T )l T l = 1− a(T )n+1 Tn+1,(1.13.7)

by a standard computation.
It is easy to define

∞∑
l=0

a(T )l T l(1.13.8)

as an element of k[[T ]], by taking the coefficient of T j in the sum to be the same
as in (1.13.6) when n ≥ j. One can check that

(1− a(T )T )

∞∑
l=0

a(T )l T l = 1,(1.13.9)

using (1.13.7). This shows that 1 − a(T )T has multiplicative inverse equal to
(1.13.8) in k[[T ]].

Let f(T ) be as in (1.13.1) again, and suppose that fj0 6= 0. In this case,
f(T ) can be expressed as

f(T ) = fj0 T
j0 (1− a(T )T )(1.13.10)

for some a(T ) ∈ k[[T ]]. It follows that f(T ) has a multiplicative inverse in
k((T )), by the remarks in the preceding paragraph. Thus k((T )) is a field.

If f(T ) is as in (1.13.1) and fj0 6= 0, then put

j0(f(T )) = j0.(1.13.11)

This may be interpreted as being +∞ when f(T ) = 0. One can check that

j0(f(T ) g(T )) = j0(f(T )) + j0(g(T ))(1.13.12)

and
j0(f(T ) + g(T )) ≥ min(j0(f(T )), j0(g(T )))(1.13.13)

for every f(T ), g(T ) ∈ k((T )), with suitable interpretations when f(T ) or g(T )
is 0.
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Let r be a positive real number less than or equal to 1. If f(T ) ∈ k((T ))
and f(T ) 6= 0, then put

|f(T )|r = rj0(f(T )),(1.13.14)

and put |f(T )|r = 0 when f(T ) = 0. It is easy to see that | · |r defines an
ultrametric absolute value function on k((T )), using (1.13.12) and (1.13.13). If
r = 1, then this is the trivial absolute value function on k((T )). If a is a positive
real number, then 0 < ra ≤ 1, and

|f(T )|ar = |f(T )|ra(1.13.15)

for every f(T ) ∈ k((T )).

1.14 Bounded sets

Let X be a set, and let d(x, y) be a semimetric on X. One may say that a subset
E of X is bounded with respect to d if E is contained in a ball in X. It may be
helpful to consider the empty set as a bounded subset of X, even when X = ∅.
Equivalently, one may say that E is bounded when the set of nonnegative real
numbers of the form d(x, y), with x, y ∈ E, has an upper bound in R. Of course,
this holds automatically when E = ∅.

If x, y ∈ X, then
B(x, r) ⊆ B(y, d(x, y) + r)(1.14.1)

for every r > 0, and
B(x, r) ⊆ B(y, d(x, y) + r)(1.14.2)

for every r ≥ 0. If E is contained in a ball in X centered at a point y ∈ X, then
this implies that E is contained in a ball centered at any x ∈ X, with a radius
that depends on x. It follows that the union of finitely many bounded subsets
of X is bounded as well.

If E is compact with respect to the topology determined on X by d(·, ·), and
x ∈ X, then E is contained in an open ball in X centered at x with respect to
d(·, ·). This can be seen using the family of open balls B(x, r) with r ∈ Z+ as
an open covering of E in X.

If E is a nonempty bounded subset of X, then the diameter of E with respect
to d(·, ·) is defined as usual by

diamE = diamd E = sup{d(x, y) : x, y ∈ E}.(1.14.3)

This may be interpreted as being 0 when E = ∅, and as being +∞ when E is
not bounded in X.

If E is a bounded subset of X, then one can check that the closure E of E
in X with respect to the topology determined by d(·, ·) is bounded too, with

diamE = diamE.(1.14.4)

If A ⊆ E, then A is bounded as well, with

diamA ≤ diamE.(1.14.5)
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If E ⊆ X is bounded and x ∈ E, then

E ⊆ B(x, diamE).(1.14.6)

If E ⊆ B(y, r) for some y ∈ X and r ≥ 0, then it is easy to see that

diamE ≤ 2 r.(1.14.7)

If d(·, ·) is a semi-ultrametric on X, then we have that

diamE ≤ r(1.14.8)

in this case.
Suppose that d(x, y)a is also a semimetric on X for some a > 0. Observe

that E ⊆ X is bounded with respect to d(·, ·) if and only if E is bounded with
respect to d(·, ·)a, with

diamda E = (diamd E)a.(1.14.9)

Let d1, . . . , dn be finitely many semimetrics on X, and let d be their max-
imum, which is a semimetric on X too, as in Section 1.5. One can check that
E ⊆ X is bounded with respect to d if and only if E is bounded with respect
to dj for each j = 1, . . . , n, with

diamd E = max
1≤j≤n

(diamdj E).(1.14.10)

Let d′ be the sum of d1, . . . , dn, which is another semimetric on X, as in
Section 1.5 again. It is easy to see that E ⊆ X is bounded with respect to d′ if
and only if E is bounded with respect to dj for each j = 1, . . . , n, with

max
1≤j≤n

(diamdj
E) ≤ diamd′ E ≤

n∑
j=1

diamdj
E.(1.14.11)

Remember that the square root of the sum of the squares of d1, . . . , dn defines
a semimetric d′′ on X, as in Section 1.5. One can verify that E ⊆ X is bounded
with respect to d′′ if and only if E if bounded with respect to dj for each
j = 1, . . . , n, with

max
1≤j≤n

(diamdj E) ≤ diamd′′ E ≤
( n∑

j=1

(diamdj E)2
)1/2

.(1.14.12)

Let dX be a semimetric on X, and let Y be a set with a semimetric dY .
Suppose that f is a mapping from X into Y that is Lipschitz of order α > 0
with constant C ≥ 0, as in Section 1.8. If E ⊆ X is bounded with respect to
dX , then f(E) is bounded in Y with respect to dY , with

diamdY
f(E) ≤ C (diamdX

E)α.(1.14.13)

Let X1, . . . , Xn be finitely many sets, and put X =
∏n

j=1 Xj . Also let dj

be a semimetric on Xj for each j = 1, . . . , n, and let d̂j be the corresponding
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semimetric on X, as in Section 1.2. This leads to semimetrics d̂, d̂′, and d̂′′

on X, as in Section 1.5. If Ej ⊆ Xj is bounded with respect to dj for each
j = 1, . . . , n, then E =

∏n
j=1 Ej is bounded with respect to these semimetrics

on X.

More precisely, suppose that Ej 6= ∅ for each j = 1, . . . , n. Under these
conditions,

diam
d̂
E = max

1≤j≤n
(diamdj

Ej).(1.14.14)

Similarly,

max
1≤j≤n

(diamdj
Ej) ≤ diam

d̂′ E ≤
n∑

j=1

diamdj
Ej(1.14.15)

and

max
1≤j≤n

(diamdj Ej) ≤ diam
d̂′′ E ≤

( n∑
j=1

(diamdj Ej)
2
)1/2

.(1.14.16)

1.15 Totally bounded sets

Let X be a set, and let d(x, y) be a semimetric on X again. A subset E of
X is said to be totally bounded in X with respect to d if for every r > 0, E
is contained in the union of finitely many open balls in X of radius r. This is
equivalent to asking that for every r > 0, E can be covered by finitely many
closed balls of radius r in X. Totally bounded sets are automatically bounded,
because the union of finitely many bounded sets is bounded, as in the previous
section. Note that the union of finitely many totally bounded subsets of X is
totally bounded as well.

If E is compact with respect to the topology determined on X by d(·, ·), then
it is easy to see that E is totally bounded with respect to d, by covering E with
open balls of radius r for any r > 0. Of course, subsets of totally bounded sets
are totally bounded too. If E is any totally bounded subset of X, then it is easy
to see that the closure E of E in X with respect to the topology determined
by d(·, ·) is totally bounded, using the characterization of totally bounded sets
in terms of coverings by closed balls. It is well known that subsets of complete
metric spaces that are both closed and totally bounded are compact.

One can check that E ⊆ X is totally bounded if and only if for every r > 0,
E is contained in the union of finitely many sets, each of which has diameter
less than or equal to r. One may as well take these sets to be contained in E,
by taking their intersections with E, if necessary. If E is totally bounded, then
it follows that for each r > 0, E can be covered by finitely many open balls in
X of radius r, centered at points in E.

Let X0 be a subset of X, so that the restriction of d(·, ·) to X0 defines a
semimetric on X0. If E ⊆ X0, then one can check that E is totally bounded as
a subset of X if and only if E is totally bounded as a subset of X0. This can
be seen using the characterization of total boundedness in terms of covering E
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by finitely many subsets of itself of small diameter, or in terms of covering E
by finitely many balls of small radius centered at elements of E.

Let Y be another set with a semimetric dY , and let f be a uniformly con-
tinuous mapping from X into Y . If E ⊆ X is totally bounded, then one can
verify that f(E) is totally bounded in Y .

Let d1, . . . , dn be finitely many semimetrics on X, and let d be their maxi-
mum, so that d is a semimetric on X as well, as in Section 1.5. If A1, . . . , An

are subsets of X, then

diamd

( n⋂
j=1

Aj

)
≤ max

1≤j≤n
(diamdj

Aj).(1.15.1)

If E ⊆ X is totally bounded with respect to d, then E is clearly totally
bounded with respect to dj for each j = 1, . . . , n. Conversely, suppose that E
is totally bounded with respect to dj for each j = 1, . . . , n, and let r > 0 be
given. Thus, for each j = 1, . . . , n, E is contained in the union of finitely many
subsets of X, each of which has diameter less than or equal to r with respect
to dj . If one takes the intersection of sets from each of these coverings, then
one gets a subset of X with diameter less than or equal to r with respect to d,
as in (1.15.1). There are only finitely many subsets of X obtained by taking
intersections in this way, and E is contained in the union of these intersections.
This means that E is contained in the union of finitely many subsets of X with
diameter less than or equal to r with respect to d. It follows that E is totally
bounded in X with respect to d under these conditions.

Let n be a positive integer again, and let Xj be a set with a semimetric dj
for each j = 1, . . . , n. Put X =

∏n
j=1 Xj , and let d̂l be the semimetric on X

corresponding to dl on Xl for each l = 1, . . . , n. Remember that the maximum
d̂ of d̂l, 1 ≤ l ≤ n, is a semimetric on X too, as in Section 1.5. If Ej ⊆ Xj is
totally bounded with respect to dj for each j = 1, . . . , n, then

E =

n∏
j=1

Ej(1.15.2)

is totally bounded in X with respect to d̂.

To see this, let r > 0 be given, so that Ej can be covered by finitely many
subsets of Xj with diameter less than or equal to r for each j = 1, . . . , n. If
Aj ⊆ Xj has diameter less than or equal to r with respect to dj for each
j = 1, . . . , n, then

A =

n∏
j=1

Aj(1.15.3)

has diameter less than or equal to r in X with respect to d̂, as in the previous
section. This permits one to cover E by finitely many subsets ofX with diameter
less than or equal to r with respect to d̂.
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Alternatively, let pl be the natural coordinate projection from X into Xl for
each l = 1, . . . , n. It is easy to see that

p−1
l (El)(1.15.4)

is totally bounded in X with respect to d̂l for each l = 1, . . . , n, because El is
totally bounded in X with respect to dl. This implies that E is totally bounded
in X with respect to d̂l for each l = 1, . . . , n, because E ⊆ p−1

l (El). It follows

that E is totally bounded in X with respect to d̂, because d̂ is the maximum of
d̂1, . . . , d̂n, as before.



Chapter 2

Collections of semimetrics

2.1 Collections and topologies

Let X be a set, and let M be a nonempty collection of semimetrics on X. Let
us say that a subset U of X is an open set with respect to M if for every x ∈ U
there are finitely many elements d1, . . . , dn of M and positive real numbers
r1, . . . , rn such that

n⋂
j=1

Bdj
(x, rj) ⊆ U.(2.1.1)

One can check that this defines a topology on X.
If d ∈ M, then open sets in X with respect to d are open sets with respect to

M. In particular, open balls in X with respect to d are open sets with respect
to M. Similarly, closed balls in X with respect to d are closed sets with respect
to M. One can use this to get that X is regular in the strict sense with respect
to the topology determined by M.

Let us say that M is nondegenerate on X if for every x, y ∈ X with x 6= y
there is a d ∈ M such that

d(x, y) > 0.(2.1.2)

One can check that X is Hausdorff with respect to the topology determined
by M in this case. One can also verify that nondegeneracy is necessary for
X to satisfy the first or even zeroth separation conditions with respect to the
topology determined by M.

If d ∈ M and x0 ∈ X, then

fx0,d(x) = d(x, x0)(2.1.3)

is continuous as a real-valued function on X with respect to the topology deter-
mined on X by d, as in Section 1.8. This implies that fx0,d is continuous with
respect to the topology determined on X by M. One can use this to get that X
is completely regular in the strict sense with respect to the topology determined
by M.

26
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If the elements of M are semi-ultrametrics on X, then it is easy to see that
X is zero dimensional with respect to the topology determined by M. If M
is also nondegenerate on X, then X is totally separated with respect to this
topology.

IfM has only finitely many elements, then one can get a single semimetric on
X that determines the same topology, as in Section 1.5. If M is nondegenerate
on X, then one gets a metric on X in this way.

Let Y be a subset of X, and let MY be the collection of semimetrics on
Y obtained by restricting the elements of M to Y . One can check that the
topology determined on Y by MY is the same as the topology induced on Y by
the topology determined on X by M.

It is easy to see that a sequence {xj}∞j=1 of elements of X converges to x ∈ X
with respect to the topology determined by M if and only if {xj}∞j=1 converges
to x with respect to every d ∈ M. More precisely, this works for convergence of
nets in X too.

Let I be a nonempty set, let Xj be a set for each j ∈ I, and consider

X =
∏

j∈I Xj . If l ∈ I and dl is a semimetric on Xl, then let d̂l(x, y) = dl(xl, yl)
be the corresponding semimetric on X, as in Section 1.2. Let Ml be a nonempty
collection of semimetrics on Xl for each l ∈ I, and put

M̂l = {d̂l : dl ∈ Ml}(2.1.4)

for every l ∈ I. Thus

M =
⋃
l∈I

M̂l(2.1.5)

is a nonempty collection of semimetrics on X. If Ml is nondegenerate on Xl

for each l ∈ I, then it is easy to see that M is nondegenerate on X.
Let pl be the natural coordinate mapping from X into Xl for each l ∈ I, so

that pl(x) = xl is the lth coordinate of x ∈ X. If x ∈ X, l ∈ I, and dl ∈ Ml,
then

p−1
l (BXl,dl

(pl(x), r)) = B
X,d̂l

(x, r)(2.1.6)

for every r > 0, and

p−1
l (BXl,dl

(pl(x), r)) = B
X,d̂l

(x, r)(2.1.7)

for every r ≥ 0. Using this, one can check that the topology determined on X by
M is the same as the product topology defined using the topology determined
on Xl by Ml for each l ∈ I.

2.2 Collections and uniform continuity

Let X, Y be sets, let MX be a nonempty collection of semimetrics on X, and
let dY be a semimetric on Y . Let us say that a mapping f from X into Y is
uniformly continuous with respect to MX on X and dY on Y if for every ϵ > 0
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there are finitely many elements d1, . . . , dn of MX and positive real numbers
δ1, . . . , δn such that

dY (f(x), f(w)) < ϵ(2.2.1)

for every x,w ∈ X with

dj(x,w) < δj for each j = 1, . . . , n.(2.2.2)

Of course, this reduces to the usual definition of uniform continuity when MX

has only one element. It is easy to see that uniform continuity in this sense
implies ordinary continuity, with respect to the topology determined on X by
MX , and the topology determined on Y by dY .

If MX has only finitely many elements, then one can combine them to get
a single semimetric on X as in Section 1.5. In this case, uniform continuity
with respect to MX on X is equivalent to uniform continuity with respect to a
combined semimetric on X of this type.

Suppose now that MY is a nonempty collection of semimetrics on Y . It
is easy to see that a mapping from a topological space into Y is continuous
with respect to the topology determined on Y by MY if and only if for every
dY ∈ MY , the mapping is continuous with respect to the topology determined
on Y by dY .

Let us say that a mapping f from X into Y is uniformly continuous with
respect to MX , MY if for every dY ∈ MY , f is uniformly continuous with
respect to MX on X and dY on Y , as before. This implies that f is continuous
in the ordinary sense with respect to the topologies determined on X, Y by
MX , MY , respectively, by the remarks in the previous two paragraphs.

Let Z be another set with a nonempty collection MZ of semimetrics. If a
mapping f from X into Y is uniformly continuous with respect to MX , MY ,
and if a mapping g from Y into Z is uniformly continuous with respect to MY ,
MZ , then one can verify that their composition g ◦ f is uniformly continuous
as a mapping from X into Z with respect to MX , MZ .

Let X0 be a subset of X, and let MX0 be the collection of semimetrics
on X0 obtained by restricting the elements of MX to X0. If f is a mapping
from X into Y , and f is uniformly continuous with respect to MX on X and
a semimetric dY on Y , then the restriction of f to X0 is uniformly continuous
with respect to MX0

on X0 and dY on Y . If f is uniformly continuous with
respect to MX on X and MY on Y , then it follows that the restriction of f to
X0 is uniformly continuous with respect to MX0 on X0 and MY on Y . Note
that the natural inclusion mapping from X0 into X is uniformly continuous,
with respect to MX0

on X0 and MX on X.
It is sometimes helpful to consider uniform continuity along a subset X0 of

X. A mapping f fromX into Y is said to be uniformly continuous along X0 with
respect toMX onX and a semimetric dY of Y if for every ϵ > 0 there are finitely
many elements d1, . . . , dn of MX and positive real numbers δ1, . . . , δn such that
(2.2.1) holds for every x ∈ X0 and w ∈ X that satisfy (2.2.2). Similarly, let us
say that f is uniformly continuous along X0 with respect to MX on X and MY

on Y if for every dY ∈ MY , f is uniformly continuous along X0 with respect
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to MX on X and dY on Y . In both cases, uniform continuity of f along X0

implies that the restriction of f to X0 is uniformly continuous with respect to
MX0

, as in the preceding paragraph. Uniform continuity of f along X0 also
implies that f is continuous at every point on X0, with respect to the topology
determined on X by MX , and the topology determined on Y by dY or MY , as
appropriate.

Suppose that a mapping f from X into Y is continuous at every point in
X0, with respect to the topology determined on X by MX , and the topology
determined on Y by a semimetric dY . If X0 is compact in X, then f is uniformly
continuous along X0. Indeed, let ϵ > 0 be given, and observe that for every
x ∈ X0 there is a finite subset MX(x) of MX and a positive real number δ(x)
such that

dY (f(x), f(w)) < ϵ/2(2.2.3)

for every w ∈ X with

dX(x,w) < δ(x) for each dX ∈ MX(x).(2.2.4)

If x ∈ X0, then put

BX(x) =
⋂

dX∈MX(x)

BX,dX
(x, δ(x)/2),(2.2.5)

which is an open set in X that contains x. If X0 is compact, then there are
finitely many elements x1, . . . , xn of X0 such that

X0 ⊆
n⋃

j=1

BX(xj).(2.2.6)

Put

MX(X0, ϵ) =

n⋃
j=1

MX(xj),(2.2.7)

which is a finite subset of MX , and

δ(X0, ϵ) = min
1≤j≤n

(δ(xj)/2).(2.2.8)

Let x ∈ X0 and w ∈ X be given, with

dX(x,w) < δ(X0, ϵ) for every dX ∈ MX(X0, ϵ).(2.2.9)

Note that x ∈ BX(xj) for some j, 1 ≤ j ≤ n, by (2.2.6). Thus

dX(xj , x) < δ(xj)/2 for every dX ∈ MX(xj),(2.2.10)

so that

dX(xj , w) ≤ dX(xj , x) + dX(x,w) < δ(xj)/2 + δ(X0, ϵ) ≤ δ(xj)(2.2.11)
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for every dX ∈ MX(xj).
It follows that

dY (f(xj), f(x)), dY (f(xj), f(w)) < ϵ/2,(2.2.12)

by the way that δ(xj) was chosen. This implies that

dY (f(x), f(w)) ≤ dY (f(x), f(xj)) + dY (f(xj), f(w))(2.2.13)

< ϵ/2 + ϵ/2 = ϵ,

as desired. If f is continuous at every point in X0 with respect to the topology
determined on X by MX and the topology determined on Y by MY , and if
X0 is compact in X, then we get that f is uniformly continuous along X0, with
respect to MX on X and MY on Y .

2.3 Uniform structures

Let X be a set, and put

∆ = ∆X = {(x, x) : x ∈ X}.(2.3.1)

If A,B ⊆ X ×X, then put

A−1 = {(x, y) : (y, x) ∈ A}(2.3.2)

and

A ◦B = {(x, z) : there is a y ∈ X such that(2.3.3)

(x, y) ∈ A and (y, z) ∈ B}.

If
A−1 = A,(2.3.4)

then A is said to be symmetric in X ×X.
A uniformity or uniform structure onX is a nonempty collection U of subsets

of X ×X that satisfies the following five conditions, as on p176 of [45]. First, if
U ∈ U , then

∆ ⊆ U.(2.3.5)

Second, if U ∈ U , then
U−1 ∈ U .(2.3.6)

Third, if U ∈ U , then there is a V ∈ U such that

V ◦ V ⊆ U.(2.3.7)

Fourth, if U, V ∈ U , then
U ∩ V ∈ U .(2.3.8)
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Fifth, if U ∈ U and U ⊆ W ⊆ X ×X, then

W ∈ U .(2.3.9)

Under these conditions, (X,U) is said to be a uniform space.
A collection B of subsets of X ×X is said to be a base for a uniformity U

on X if U is the same as the collection of subsets W of X ×X for which there
is a U ∈ B such that

U ⊆ W.(2.3.10)

In particular, this means that B ⊆ U .
Let B be a nonempty collection of subsets of X ×X that satisfies the first

three conditions in the definition of a uniformity. If the intersection of any two
elements of B contains another element of B as a subset, then one can check
that B is a base for a uniformity on X. Of course, this holds when B satisfies
the fourth condition in the definition of a uniformity.

Let B0 be a collection of subsets of X ×X, and let B1 be the collection of
subsets of X×X obtained by taking the intersections of finitely many elements
of B0. If B1 is a base for a uniformity U on X, then B0 is said to be a sub-base
for U .

Let B0 be a nonempty collection of subsets of X ×X that satisfies the first
three conditions in the definition of a uniformity. If B1 is as in the preceding
paragraph, then one can verify that B1 satisfies the first four conditions in the
definition of a uniformity. This implies that B1 is a base for a uniformity on X,
as before.

Let d(·, ·) be a semimetric on X, and for each positive real number r, put

Ud,r = {(x, y) ∈ X ×X : d(x, y) < r}.(2.3.11)

Clearly
∆ ⊆ Ud,r(2.3.12)

and
U−1
d,r = Ud,r(2.3.13)

for every r > 0. It is easy to see that

Ud,r ◦ Ud,t ⊆ Ud,r+t(2.3.14)

for every r, t > 0, using the triangle inequality. It follows that

{Ud,r : r > 0}(2.3.15)

satisfies the first four conditions in the definition of a uniformity. This implies
that (2.3.15) is a base for a uniformity on X, as before.

It is well known that a uniformity U on X corresponds to a semimetric on
X in this way if and only there is a base for U with only finitely or countably
many elements, as in the metrization theorem on p186 of [45]. Of course, the
“only if” part can be verified directly.



32 CHAPTER 2. COLLECTIONS OF SEMIMETRICS

Similarly, let M be a nonempty collection of semimetrics on X. It is easy
to see that

{Ud,r : d ∈ M, r > 0}(2.3.16)

satisfies the first three conditions in the definition of a uniformity. It follows
that (2.3.16) is a sub-base for a uniformity on X, as before. It is well known
that every uniformity corresponds to a collection of semimetrics in this way, as
in Theorem 15 on p188 of [45].

2.4 More on uniform structures

Let (X,U) be a uniform space. If U ⊆ X ×X and x ∈ X, then put

U [x] = {y ∈ X : (x, y) ∈ U}.(2.4.1)

A subset W of X is said to be an open set with respect to U if for every x ∈ W
there is a U ∈ U such that

U [x] ⊆ W,(2.4.2)

as on p178 of [45]. One can check that this defines a topology on X. If U
corresponds to a nonempty collection M of semimetrics on X, then the topology
on X associated to U is the same as the topology determined on X by M as in
Section 2.1.

Let A be a subset of X, and consider the interior of A with respect to the
topology determined by U . One can show that this is the same as the set of
x ∈ A for which there is a U ∈ U such that

U [x] ⊆ A,(2.4.3)

as in Theorem 4 on p178 of [45]. In particular, if x ∈ X and V ∈ U , then x is
an element of the interior of V [x] with respect to the topology determined by
U .

If U ⊆ X ×X and A ⊆ X, then put

U [A] = {y ∈ X : (x, y) ∈ U for some x ∈ A} =
⋃
x∈A

U [x].(2.4.4)

One can show that the closure of A with respect to the topology determined by
U can be expressed as

A =
⋂
U∈U

U [A],(2.4.5)

as in the first part of Theorem 7 on p179 of [45]. In particular,

A ⊆ U [A](2.4.6)

for every U ∈ U . Using this, one can check that X is regular in the strict sense,
with respect to the topology determined by U .
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A uniform space (X,U) is said to be separated or Hausdorff if⋂
U∈U

U = ∆.(2.4.7)

It is well known that X is Hausdorff with respect to the topology associated
to U if and only if (X,U) is Hausdorff as a uniform space, as on p180 of [45].
If U corresponds to a nonempty collection M of semimetrics on X, then this
happens exactly when M is nondegenerate on X, as in Section 2.1.

Let UX be a uniformity on X, and let Y be another set with a uniformity
UY . Under these conditions, one can define uniform continuity for mappings
from X into Y with respect to UX , UY as on p180 of [45]. Uniformly contin-
uous mappings in this sense are automatically continuous with respect to the
topologies associated to the uniformities on X, Y .

Suppose that UX , UY are the uniformities associated to nonempty collections
MX , MY of semimetrics on X, Y , respectively. In this case, uniform continuity
of mappings from X to Y with respect to UX , UY is equivalent to uniform
continuity with respect to MX , MY , as defined in Section 2.2.

Let U1, U2 be uniformities on X. Note that

U2 ⊆ U1(2.4.8)

if and only if the identity mapping on X is uniformly continuous as a mapping
from X equipped with U1 into X equipped with U2.

Let M1, M2 be nonempty collections of semimetrics on X, and let U1, U2

be the corresponding uniformities on X. It follows that (2.4.8) holds if and only
if the identity mapping on X is uniformly continuous as a mapping from X
equipped with M1 into X equipped with M2, in the sense of Section 2.2. Thus

U1 = U2(2.4.9)

if and only if the identity mapping on X is uniformly continuous as a mapping
from X equipped with M1 into X equipped with M2, and as a mapping from
X equipped with M2 into X equipped with M1.

Let I be a nonempty set, and let (Xj ,Uj) be a uniform space for each j ∈ I.
A natural product uniformity can be defined on X =

∏
j∈I Xj as on p182 of

[45]. The topology on X associated to the product uniformity is the same as the
product topology obtained from the topology on Xj associated to Uj for each
j ∈ I.

Suppose that for each j ∈ I, Uj is the uniformity associated to a nonempty
collection Mj of semimetrics on Xj . If l ∈ I, then we get a corresponding

collection M̂l of semimetrics on X, as in Section 2.1. Put M =
⋃

l∈I M̂l, which
is a nonempty collection of semimetrics on X. The product uniformity on X is
the same as the uniformity associated to M.

Let (X,U) be a uniform space again, and let Y be a subset of X. One can
check that

UY = {U ∩ (Y × Y ) : U ∈ U}(2.4.10)
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defines a uniformity on Y , as on p182 of [45]. The topology on Y associated to
UY is the same as the topology induced on Y by the topology on X associated to
U . If U is the uniformity associated to a nonempty collection M of semimetrics
on X, then UY is the same as the uniformity associated to the collection MY

of semimetrics on Y obtained by restricting the elements of M to Y .

2.5 Quasimetrics

Let X be a set, and let d(x, y) be a nonnegative real-valued function on X ×X
that satisfies the first two conditions (1.2.1) and (1.2.2) in the definition of a
semimetric. If there is a nonnegative real number C such that

d(x, z) ≤ C (d(x, y) + d(y, z))(2.5.1)

for every x, y, z ∈ M , then d(·, ·) may be called a semi-quasimetric on X. If we
also have that d(x, y) > 0 for every x, y ∈ X with x 6= y, then d(·, ·) is called a
quasimetric on X.

Alternatively, one might ask that

d(x, z) ≤ C ′ max(d(x, y), d(y, z))(2.5.2)

for every x, y, z ∈ X. This condition implies (2.5.1), with C = C ′. Conversely,
(2.5.1) implies (2.5.2), with C ′ = 2C.

Let Ud,r ⊆ X × X be as in (2.3.11) for each r > 0. Of course, (1.2.1) and
(1.2.2) imply that (2.3.12) and (2.3.13) hold for every r > 0, respectively. If
(2.5.1) holds, then we get that

Ud,r ◦ Ud,t ⊆ Ud,C (r+t)(2.5.3)

for every r, t > 0. Similarly, if (2.5.2) holds, then

Ud,r ◦ Ud,t ⊆ Ud,C′ max(r,t)(2.5.4)

for every r, t > 0.
Using either (2.5.3) or (2.5.4), one can check that (2.3.16) is a base for a

uniformity onX when d(·, ·) is a semi-quasimetric onX. If d(·, ·) is a quasimetric
on X, then this uniformity is Hausdorff.

If d(·, ·) is a semi-quasimetric on X and a is a positive real number, then one
can verify that d(x, y)a defines a semi-quasimetric on X too. Note that

Uda,ra = Ud,r(2.5.5)

for every r > 0, so that the uniformities associated to d(·, ·) and d(·, ·)a on X
are the same.

If d(·, ·) is a quasimetric on X, then there is metric ρ(·, ·) on X and positive
real numbers C0, α such that

C−1
0 ρ(x, y) ≤ d(x, y)α ≤ C0 ρ(x, y)(2.5.6)
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for every x, y ∈ X. This corresponds to Proposition 14.5 on p110 of [31], and it
is also mentioned in the proof of Theorem 2 on p261 of [58]. Of course, there is
an analogous statement for semi-quasimetrics.

Let k be a field, and let | · | be a nonnegative real-valued function on k
that satisfies the first two conditions (1.4.1) and (1.4.2) in the definition of an
absolute value function. If there is a positive real number C such that

|x+ y| ≤ C (|x|+ |y|)(2.5.7)

for every x, y ∈ k, then | · | may be called a quasimetric absolute value function
on k. Equivalently, one can ask that there be a positive real number C ′ such
that

|x+ y| ≤ C ′ max(|x|, |y|)(2.5.8)

for every x, y ∈ k, as before.
One can check that (2.5.8) holds if and only if

|1 + z| ≤ C ′(2.5.9)

for every z ∈ k with |z| ≤ 1. This corresponds to the condition (iii) on p12 of
[17].

If | · | is a quasimetric absolute value function on k and a is a positive real
number, then it is easy to see that |x|a defines a quasimetric absolute value
function on k as well. In fact, |x|α is an absolute value function on k for some
α > 0, as in the corollary on p14 of [17].

2.6 Boundedness and total boundedness

Let X be a set with a nonempty collection MX of semimetrics on X. Let us
say that E ⊆ X is bounded with respect to MX if for each dX ∈ MX , E is
bounded with respect to dX . This implies that E is bounded with respect to
the maximum of any nonempty finite set of semimetrics in MX , as in Section
1.14.

If E is compact with respect to the topology determined on X by MX , then
it is easy to see that E is bounded with respect to MX , because of the analogous
statement for boundedness with respect to a single semimetric. Similarly, the
union of finitely many subsets of X that are bounded with respect to MX is
bounded with respect to MX as well. If E ⊆ X is bounded with respect to
MX , then the closure E of E with respect to the topology determined by MX

is bounded with respect to MX too. Of course, every subset of E is bounded
with respect to MX in this case.

Let us say that E ⊆ X is totally bounded with respect to MX if for each
dX ∈ MX , E is totally bounded with respect to dX . This implies that E is
bounded with respect to every dX ∈ MX , so that E is bounded with respect
to MX . If E is totally bounded with respect to MX , then it follows that E is
totally bounded with respect to the maximum of any finite set of semimetrics
in MX , as in Section 1.15.
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If E is compact with respect to the topology determined on X by MX , then
E is totally bounded with respect to MX , because of the analogous statement
for total boundedness with respect to a single semimetric. One can check that
the union of finitely many totally bounded sets is totally bounded, the closure
of a totally bounded set is totally bounded, and that subsets of totally bounded
sets are totally bounded.

Let Y be another set with a nonempty collection of semimetrics MY , and
let f be a mapping from X to Y that is uniformly continuous with respect to
MX , MY , as in Section 2.2. If E ⊆ X is totally bounded with respect to MX ,
then one can check that f(E) is totally bounded in Y with respect to MY . This
uses the fact that E is totally bounded with respect to the maximum of any
nonempty finite set of semimetrics in MX , as before.

Let I be a nonempty set, let Xj be a nonempty set for each j ∈ I, and let
Ej be a nonempty subset of Xj for every j ∈ I. Put X =

∏
j∈I Xj and

E =
∏
j∈I

Ej ,(2.6.1)

so that E ⊆ X. Suppose that dl is a semimetric on Xl for some l ∈ I, and let d̂l
be the corresponding semimetric on X, as in Section 1.2. It is easy to see that
E is bounded in X with respect to d̂l if and only if El is bounded in Xl with
respect to dl, and in fact

diam
d̂l
E = diamdl

El.(2.6.2)

Similarly, one can check that E is totally bounded in X with respect to d̂l if
and only if El is totally bounded in Xl with respect to dl.

Suppose that Ml is a nonempty collection of semimetrics on Xl for each l in
I, and let M̂l be the corresponding collection of semimetrics on X, as in Section
2.1. It is easy to see that E is bounded in X with respect to M =

⋃
l∈I M̂l if

and only if El is bounded in Xl with respect to Ml for every l ∈ I, using the
remarks in the preceding paragraph. Similarly, E is totally bounded in X with
respect to M if and only if El is totally bounded in Xl with respect to Ml for
every l ∈ I.

Let (X,U) be a uniform space. A subset E of X is said to be totally bounded
if for every U ∈ U there is a finite set A ⊆ X such that

E ⊆ U [A],(2.6.3)

as on p198 of [45]. Here U [A] is as in Section 2.4. If U corresponds to a nonempty
collection M of semimetrics on X, then this is equivalent to total boundedness
with respect to M. If E is compact with respect to the topology determined on
X by U , then one can check that E is totally bounded with respect to U .

If U ∈ U , then let us say that B ⊆ X is U -small when

B ×B ⊆ U(2.6.4)



2.7. TRUNCATING SEMIMETRICS 37

One can show that E ⊆ X is totally bounded with respect to U if and only if
for every U ∈ U , E is contained in the union of finitely many U -small subsets
of X, as on p198 of [45]. If Y ⊆ X and E ⊆ Y , then one can check that E is
totally bounded in X with respect to U if and only if E is totally bounded in
Y with respect to the uniformity UY induced on Y by U as in Section 2.4.

2.7 Truncating semimetrics

Let X be a set, let d(x, y) be a semimetric on X, and let t be a positive real
number. Put

dt(x, y) = min(d(x, y), t)(2.7.1)

for every x, y ∈ X. One can check that this defines a semimetric on X, which is
a metric when d(·, ·) is a metric on X. If d(·, ·) is a semi-ultrametric on X, then
one can verify that (2.7.1) is a semi-ultrametric on X, and thus an ultrametric
on X when d(·, ·) is an ultrametric on X.

If x ∈ X and r is a positive real number, then

Bdt
(x, r) = Bd(x, r) when r ≤ t(2.7.2)

= X when r > t.

Similarly, if r is a nonnegative real number, then

Bdt
(x, r) = Bd(x, r) when r < t(2.7.3)

= X when r ≥ t.

In particular, the topology determined on X by dt is the same as the topology
determined by d. One can check that E ⊆ X is totally bounded with respect
to dt if and only if E is totally bounded with respect to d.

Let Ud,r ⊆ X × X be as in (2.3.11) for each r > 0, and similarly for dt.
Observe that

Udt,r = Ud,r when r ≤ t(2.7.4)

= X ×X when r > t.

Using this, one can check that the uniform structures on X corresponding to dt
and d are the same.

Let k be a field with an absolute value function | · |, let V be a vector space
over k, and let N be a seminorm on V with respect to | · | on k. If v ∈ V , then
put

Nt(v) = min(N(v), t).(2.7.5)

Observe that for each a ∈ k with |a| = 1, we have that

Nt(a v) = Nt(v),(2.7.6)

because N(a v) = |a|N(v) = N(v). Similarly, if a ∈ k and |a| ≤ 1, then

Nt(a v) ≤ Nt(v),(2.7.7)
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because N(a v) = |a|N(v) ≤ N(v). Of course, Nt(0) = 0, because N(0) = 0. If
N(v) is a norm on V , then Nt(v) > 0 for every v ∈ V with v 6= 0. If | · | is the
trivial absolute value function on k, then Nt satisfies the homogeneity condition
(1.9.1) of a seminorm on V with respect to | · |.

One can check that

Nt(v + w) ≤ Nt(v) +Nt(w)(2.7.8)

for every v, w ∈ V . Similarly, if N is a semi-ultranorm on V with respect to | · |,
then one can verify that

Nt(v + w) ≤ max(Nt(v), Nt(w))(2.7.9)

for every v, w ∈ V . If | · | is the trivial absolute value function on k, then it
follows that Nt is a seminorm or semi-ultranorm on V , as appropriate. In this
case, if N is a norm or ultranorm on V , then Nt has the same property.

2.8 Sequences of semimetrics

Let X be a set, and let d1, d2, d3, . . . be an infinite sequence of semimetrics on
X. Suppose that

sup
x,y∈X

dj(x, y) → 0 as j → ∞.(2.8.1)

Of course, this can always be arranged using suitable truncations of semimetrics,
as in the previous section.

Put
d(x, y) = max

j≥1
dj(x, y)(2.8.2)

for every x, y ∈ X. More precisely, this is equal to 0 when dj(x, y) = 0 for every
j ≥ 1. Otherwise, if dl(x, y) > 0 for some l ≥ 1, then dj(x, y) < dl(x, y) for all
sufficiently large j, by (2.8.1). This implies that the right side of (2.8.2) reduces
to the maximum of finitely many terms, and is thus attained.

One can check that (2.8.2) defines a semimetric on X. If dj is a semi-
ultrametric on X for each j ≥ 1, then (2.8.2) is a semi-ultrametric on X too. If
the collection of semimetrics dj , j ≥ 1, is nondegenerate on X, then (2.8.2) is a
metric on X.

Observe that

Bd(x, r) =

∞⋂
j=1

Bdj
(x, r)(2.8.3)

for every x ∈ X and r > 0. In fact,

Bd(x, r) =

l⋂
j=1

Bdj (x, r)(2.8.4)

when l is sufficiently large, depending only on r, by (2.8.1). This implies that
open balls in X are open sets with respect to the topology determined on X by
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the collection of dj ’s, j ≥ 1. It follows that open sets in X with respect to the
topology determined by d are open sets with respect to the topology determined
by the collection of dj ’s. It is easy to see that open sets in X with respect to the
topology determined by the collection of dj ’s, j ≥ 1, are open sets with respect
to d, so that the two topologies are the same.

Let Ud,r be as in Section 2.3, and similarly for dj , j ≥ 1. One can check that

Ud,r =

∞⋂
j=1

Udj ,r(2.8.5)

for every r > 0. More precisely,

Ud,r =

l⋂
j=1

Udj ,r(2.8.6)

when l is sufficiently large, by (2.8.1). One can use this to get that the uniformity
on X corresponding to d is the same as the one associated to the collections of
dj ’s, j ≥ 1. Equivalently, the identity mapping on X is uniformly continuous as
a mapping from X equipped with the collection of dj ’s, j ≥ 1, into X equipped
with d, and as a mapping from X equipped with d into X equipped with the
collection of dj ’s, j ≥ 1.

If E ⊆ X is totally bounded with respect to d, then E is clearly totally
bounded with respect to dj for each j ≥ 1. This means that E is totally
bounded with respect to the collection of dj ’s, j ≥ 1, as before. Conversely, if E
is totally bounded with respect to the collection of dj ’s, j ≥ 1, then E is totally
bounded with respect to d. This can be obtained from the previous remarks,
and one can argue more directly, as follows.

Note that
max
1≤j≤l

dj(x, y)(2.8.7)

is a semimetric on X for each l ≥ 1. If E is totally bounded with respect to dj
for each j ≥ 1, then E is totally bounded with respect to (2.8.7) for every l ≥ 1,
as in Section 1.15. Let r > 0 be given, and let l be large enough so that (2.8.4)
holds for every x ∈ X. Because E is totally bounded with respect to (2.8.7), E
can be covered by finitely many open balls of radius r with respect to (2.8.7).
This implies that E can be covered by finitely many open balls with respect to
d, by (2.8.4), and because the right side of (2.8.4) is the same as the open ball
in X centered at x with radius r with respect to (2.8.7).

2.9 Equicontinuity

Let X be a topological space, and let Y be a set with a semimetric dY . A
collection E of mappings from X into Y is said to be equicontinuous at a point
x ∈ X with respect to dX if for every ϵ > 0 there is an open set U ⊆ X such
that x ∈ U and

dY (f(x), f(w)) < ϵ(2.9.1)
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for every w ∈ U . Of course, this implies that every element of E is continuous
at x, with respect to the topology determined on Y by dY . If E has only finitely
many elements, each of which is continuous at x, then it is easy to see that E is
equicontinuous at x.

Let MY be a nonempty collection of semimetrics on Y . Let us say that E is
equicontinuous at x with respect to MY if E is equicontinuous at x with respect
to every dY ∈ MY . If UY is a uniformity on Y , then equicontinuity of E at x
with respect to UY can be defined as on p232 of [45]. If UY is the uniformity
associated to MY , then this is equivalent to equicontinuity with respect to MY .

Let MX be a nonempty collection of semimetrics on X, and let dY be a
semimetric on Y again. Let us say that E is uniformly equicontinuous with
respect to MX on X and dY on Y if for every ϵ > 0 there are finitely many
semimetrics d1, . . . , dn ∈ MX and positive real numbers δ1, . . . , δn such that
(2.9.1) holds for every x,w ∈ X with

dj(x,w) < δj for each j = 1, . . . , n.(2.9.2)

If MY is a nonempty collection of semimetrics on Y , then let us say that E
is uniformly equicontinuous with respect to MX on X and MY on Y if E is
uniformly equicontinuous on X with respect to every dY ∈ MY . This implies
that every element of E is uniformly continuous with respect to MX on X and
MY on Y . If E has only finitely many elements, each of which is uniformly
continuous on X, then E is uniformly equicontinuous on X.

If UX , UY are uniformities on X, Y , respectively, then uniform equicontinu-
ity with respect to UX , UY can be defined as on p239 of [45]. If UX , UY are the
uniformities corresponding to MX , MY , respectively, then uniform equicon-
tinuity with respect to UX , UY is equivalent to uniform equicontinuity with
respect to MX , MY .

Let MX be a nonempty collection of semimetrics on X again, let dY be a
semimetric on Y , and let X0 be a subset of X. Let us say that E is uniformly
equicontinuous along X0 with respect to MX on X and dY on Y if for every
ϵ > 0 there are finitely many semimetrics d1, . . . , dn ∈ MX and δ1, . . . , δn > 0
such that (2.9.1) holds for every x ∈ X0 and w ∈ X that satisfy (2.9.2). If
MY is a nonempty collection of semimetrics on Y , then let us say that E is
uniformly equicontinuous along X0 with respect to MX on X and MY on Y
if E is uniformly equicontinuous along X0 with respect to every dY ∈ Y . This
implies that the elements of E are uniformly continuous along X0 with respect
to MX on X and MY on Y , as usual. If E has only finitely many elements, each
of which is uniformly continuous along X0, then E is uniformly equicontinuous
along X0.

Suppose that E is uniformly equicontinuous along X0. This implies that
the restrictions of the elements of E to X0 are uniformly equicontinuous on X0,
with respect to the collection of semimetrics on X0 obtained by restricting the
elements of MX to X0. This also implies that the elements of E are equicon-
tinuous at every element of X0, with respect to the topology determined on X
by MX .
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Suppose now that X0 is a compact subset of X, and that E is equicontinuous
at every element of X0, with respect to the topology determined on X by MX .
Under these conditions, one can use an argument like the one in Section 2.2 to
get that E is uniformly equicontinuous along X0.

2.10 q-Metrics and q-semimetrics

If q1, q2 are positive real numbers with q1 ≤ q2, then one can check that

(rq2 + tq2)1/q2 ≤ (rq1 + tq1)1/q1(2.10.1)

for all nonnegative real numbers r, t, using (1.6.1). Observe that

max(r, t) ≤ (rq + tq)1/q ≤ 21/q max(r, t)(2.10.2)

for every q > 0 and r, t ≥ 0. This implies that

(rq + tq)1/q → max(r, t) as q → ∞,(2.10.3)

because of the well-known fact that 21/q → 1 as q → ∞.
Let X be a set, let q be a positive real number, and let d(x, y) be a nonnega-

tive real-valued function on X×X that satisfies the first two conditions (1.2.1),
(1.2.2) in the definition of a semimetric. Let us say that d(·, ·) is a q-semimetric
on X if

d(x, z)q ≤ d(x, y)q + d(y, z)q(2.10.4)

for every x, y, z ∈ X. If we also have that d(x, y) > 0 when x 6= y, then d(·, ·)
is a q-metric on X. Thus q-metrics and q-semimetrics are the same as ordinary
metrics and semimetrics, respectively, when q = 1. Note that d(·, ·) is a q-metric
or q-semimetric on X exactly when d(x, y)q is an ordinary metric or semimetric
on X, respectively.

Of course, (2.10.4) is the same as saying that

d(x, z) ≤ (d(x, y)q + d(y, z)q)1/q(2.10.5)

for every x, y, z ∈ X. The right side of (2.10.5) is monotonically decreasing in q,
as in (2.10.1). This means that the property of being a q-metric or q-semimetric
becomes more restrictive as q increases.

If d(·, ·) is a semi-ultrametric on X, then d(·, ·) is a q-semimetric on X
for every q > 0, because of the first inequality in (2.10.2). It is convenient to
consider ultrametrics and semi-ultrametrics as q-metrics and q-semimetrics with
q = ∞, respectively.

Suppose that d(·, ·) is a q-semimetric on X for some q > 0. If a is any
positive real number, then it is easy to see that d(x, y)a is a (q/a)-semimetric
on X.

If d(·, ·) is a q-semimetric on X for some q > 0, then one can check that d(·, ·)
is a semi-quasimetric on X. The result from [58] mentioned in Section 2.5 can be



42 CHAPTER 2. COLLECTIONS OF SEMIMETRICS

reformulated as saying that every quasimetric on X is comparable to a q-metric
on X for some q > 0. There is an analogous statement for semi-quasimetrics,
as before.

Let d(·, ·) be a q-semimetric on X for some q > 0. Of course, one can define
open and closed balls in X with respect to d in the same way as for ordinary
semimetrics, as well as the topology determined on X by d. It is easy to see that
many of the same properties hold as for ordinary semimetrics, and one can also
reduce to that case using d(x, y)q when q < 1. In particular, open and closed
balls with respect to d are open and closed sets, respectively, with respect to
the topology determined by d.

Similarly, let M be a nonempty collection of q-semimetrics on X, where
more precisely each d ∈ M is a qd-semimetric for some qd > 0 that may depend
on d. As before, it is easy to see that many of the same properties of collections
of semimetrics can be extended to collections of q-semimetrics. One can also
often reduce to the previous case, using d(x, y)qd when d ∈ M and qd < 1.

2.11 Finitely many q-semimetrics

Let n be a positive integer, and let a1, . . . , an be nonnegative real numbers. If
r is a positive real number, then

max
1≤j≤n

aj ≤
( n∑

j=1

arj

)1/r

≤ n1/r
(

max
1≤j≤n

aj

)
.(2.11.1)

It follows that ( n∑
j=1

arj

)1/r

→ max
1≤j≤n

aj as r → ∞,(2.11.2)

because n1/r → 1 as r → ∞. If r1, r2 are positive real numbers with r1 ≤ r2,
then

n∑
j=1

ar2j ≤
(

max
1≤j≤n

aj

)r2−r1
n∑

j=1

ar1j(2.11.3)

≤
( n∑

j=1

ar1j

)(r2−r1)/r1+1

=
( n∑

j=1

ar1j

)r2/r1
,

using the first inequality in (2.11.1) with r = r1 in the second step. This implies
that ( n∑

j=1

ar2j

)1/r2
≤

( n∑
j=1

ar1j

)1/r1
,(2.11.4)

which is the same as (2.10.1) when n = 2.
If 1 < r < ∞ and b1, . . . , bn are nonnegative real numbers too, then it is well

known that ( n∑
j=1

(aj + bj)
r
)1/r

≤
( n∑

j=1

arj

)1/r

+
( n∑

j=1

brj

)1/r

.(2.11.5)
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This is Minkowski’s inequality for finite sums. Of course, equality holds trivially
when r = 1. If 0 < r ≤ 1, then

n∑
j=1

(aj + bj)
r ≤

n∑
j=1

arj +

n∑
j=1

brj ,(2.11.6)

by (1.6.1), which could also be obtained from (2.11.4), with n = 2. One can
check directly that

max
1≤j≤n

(aj + bj) ≤
(

max
1≤j≤n

aj

)
+
(

max
1≤j≤n

bj

)
,(2.11.7)

which is the analogue of (2.11.5) for r = ∞.
Let X be a set, and let dj(·, ·) be a qj-semimetric on X for some qj > 0,

j = 1, . . . , n. Put
q0 = min(q1, . . . , qn),(2.11.8)

so that dj(·, ·) may be considered as a q0-semimetric on X for each j = 1, . . . , n.
One can check that

d(x, y) = max
1≤j≤n

dj(x, y)(2.11.9)

defines a q0-semimetric on X as well.
If r is a positive real number, then put

ρr(x, y) =
( n∑

j=1

dj(x, y)
r
)1/r

.(2.11.10)

One may consider (2.11.9) as the analogue of (2.11.10) for r = ∞. If r ≤ q0,
then one can verify that (2.11.10) is an r-semimetric on X. More precisely,
this can be obtained from (2.11.6), using the exponent r/q0 ≤ 1 when q0 < ∞.
Alternatively, this can be obtained from the fact that dj is an r-semimetric on
X when r ≤ q0.

If q0 ≤ r, then one can verify that (2.11.10) is a q0-semimetric on X. This
uses Minkowski’s inequality with exponent r/q0 ≥ 1.

2.12 Uniform convergence and supremum semi-
metrics

Let X, Y be nonempty sets, and let d be a qd-semimetric on Y for some qd > 0.
A sequence {fj}∞j=1 of mappings from X into Y is said to converge uniformly
to a mapping f from X into Y with respect to d if for every ϵ > 0 there is a
positive integer L such that

d(fj(x), f(x)) < ϵ(2.12.1)

for every j ≥ L and x ∈ X. If MY is a nonempty collection of q-semimetrics
on Y , then we say that {fj}∞j=1 converges to f uniformly with respect to MY
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if {fj}∞j=1 converges to f uniformly with respect to every d ∈ M. Of course,
this implies that {fj}∞j=1 converges to f pointwise on X, with respect to the
topology determined on Y by MY .

If U is a uniformity on Y , then one can define uniform convergence of se-
quences or nets of mappings from X into Y with respect to U , as on p226 of [45].
If U is the uniformity associated to a nonempty collection MY of q-semimetrics
on Y , then uniform convergence of a sequence of mappings from X into Y with
respect to U is equivalent to uniform convergence with respect to MY , as in the
preceding paragraph. Of course, one can define uniform convergence of nets of
mappings from X into Y with respect to MY analogously, so that the previous
statement can be extended to nets.

Let d be a qd-semimetric on Y for some qd > 0 again. A mapping f from
X into Y is said to be bounded with respect to d if f(X) is a bounded set in Y
with respect to d. Let B(X,Y ) = Bd(X,Y ) be the space of bounded mappings
from X into Y with respect to d. Of course, if Y is bounded with respect to d,
then B(X,Y ) consists of all mappings from X into Y .

If f, g ∈ Bd(X,Y ), then it is easy to see that d(f(x), g(x)) is bounded as a
real-valued function on X. In this case, let us put

θ(f, g) = θd(f, g) = sup
x∈X

d(f(x), g(x)).(2.12.2)

One can check that this defines a qd-semimetric on Bd(X,Y ), which is the supre-
mum qd-semimetric associated to d. If d is a qd-metric on Y , then (2.12.2) is a
qd-metric on Bd(X,Y ).

One can verify that a sequence {fj}∞j=1 of elements of Bd(X,Y ) converges
to f ∈ Bd(X,Y ) with respect to (2.12.2) if and only if {fj}∞j=1 converges to f
uniformly with respect to d. More precisely, if {fj}∞j=1 is a sequence of elements
of Bd(X,Y ) that converges to a mapping f from X into Y uniformly with
respect to d, then f ∈ Bd(X,Y ) too. There are analogous statements for nets
of elements of Bd(X,Y ), as before.

Let t be a positive real number, and let dt(y, z) be the minimum of d(y, z)
and t for every y, z ∈ Y , as in Section 2.7. This defines a qd-semimetric on Y ,
as before. If f, g ∈ Bd(X,Y ), then it is easy to see that

θdt
(f, g) = min(θd(f, g), t).(2.12.3)

Of course, Y is automatically bounded with respect to dt, so that Bdt
(X,Y )

contains all mappings from X into Y . Note that a sequence or net of mappings
from X into Y converges uniformly with respect to dt if and only if it converges
uniformly with respect to d.

Let MY be a nonempty collection of q-semimetrics on Y again. Let us say
that a mapping f from X into Y is bounded with respect to MY if f is bounded
with respect to every d ∈ MY . Let B(X,Y ) be the collection of mappings from
X into Y that are bounded with respect to M. Thus

{θd : d ∈ MY }(2.12.4)
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is a nonempty collection of q-semimetrics on B(X,Y ).
A sequence or net of elements of B(X,Y ) converges to an element of B(X,Y )

with respect to the topology determined on B(X,Y ) by (2.12.4) if and only if it
converges with respect to θd for every d ∈ MY , as in Section 2.1. This happens
if and only if the sequence or net converges uniformly with respect to every
d ∈ MY , as before, which means that it converges uniformly with respect to
MY .

If U is a uniformity on Y , then one can define the corresponding uniformity
of uniform convergence on any collection of mappings from X into Y , as on
p226 of [45]. Uniform convergence of a sequence or net of mappings from X
into Y is the same as convergence with respect to the topology determined by
the uniformity of uniform convergence. If U is the uniformity on Y associated
to a nonempty collection of q-semimetrics MY on Y , then the uniformity of
uniform convergence on the space B(X,Y ) of bounded mappings associated to
U is the same as the uniformity on B(X,Y ) associated to (2.12.4).

If Y is bounded with respect to every d ∈ MY , then B(X,Y ) is the set of
all mappings from X into Y . One can always reduce to this case, as before.

2.13 Supremum semimetrics and compact sets

Let X be a nonempty topological space, and let Y be a nonempty set. If Y
is equipped with a topology, then we let C(X,Y ) be the space of continuous
mappings from X into Y .

Let d be a qd-semimetric on Y for some qd > 0, and let us take Y to be
equipped with the topology determined by d for the moment. Also let K be
a nonempty compact subset of X. If f ∈ C(X,Y ), then f(K) is a compact
subset of Y , which implies that f(K) is bounded with respect to f . Thus the
restrictions of elements of C(X,Y ) to K are bounded as mappings from K into
Y , with respect to d.

If f, g ∈ C(X,Y ), then put

θK(f, g) = θK,d(f, g) = sup
x∈K

d(f(x), g(x)).(2.13.1)

This defines a qd-semimetric on C(X,Y ), as in the previous section, which is
the supremum qd-semimetric associated to K and d.

Thus

{θK,d : K ⊆ X, K 6= ∅, K compact}(2.13.2)

is a collection of qd-semimetrics on C(X,Y ), which is nonempty because finite
subsets ofX are compact. If d is a qd-metric on Y , then (2.13.2) is nondegenerate
on C(X,Y ).

Let MY be a nonempty collection of semimetrics on Y , and let us now take
Y to be equipped with the topology determined by MY . Consider the collection

{θK,d : K ⊆ X, K 6= ∅, K compact, d ∈ MY }(2.13.3)
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of q-semimetrics on C(X,Y ), which is the same as the union of (2.13.2) over
d ∈ MY . If MY is nondegenerate on Y , then (2.13.3) is nondegenerate on
C(X,Y ).

A sequence {fj}∞j=1 of elements of C(X,Y ) is said to converge to an element f
of C(X,Y ) uniformly on compact sets with respect to MY if for every nonempty
compact subset K of X, the restrictions of the fj ’s to K converge uniformly to
the restriction of f to K with respect to MY . This is equivalent to {fj}∞j=1

converging to f with respect to (2.13.3) on C(X,Y ). Of course, one can consider
nets of elements of C(X,Y ) too.

Suppose that U is a uniformity on Y . Given any collection of subsets of X,
one can define a uniformity on any collection of mappings from X into Y , which
corresponds to uniform convergence on the given subsets of X with respect to
U , as on p228 of [45]. In particular, one can do this for the collection of compact
subsets of X, as on p229 of [45].

Suppose that U is the uniformity on Y associated to a nonempty collection
MY of q-semimetrics on Y . In this case, the uniformity on C(X,Y ) corre-
sponding to uniform convergence on compact subsets of X is the same as the
uniformity associated to the collection (2.13.3) of q-semimetrics on C(X,Y ).

2.14 Uniform convergence and continuity

Let X be a nonempty topological space, and let Y be a nonempty set with a
qd-semimetric for some qd > 0, which determines a topology on Y in particular.
If a sequence or net of continuous mappings from X into Y converges uniformly
to a mapping f from X into Y with respect to d, then it is well known and not
difficult to show that f is continuous as well.

Similarly, let MY be a nonempty collection of q-semimetrics on Y , which
determines a topology on Y . If a sequence or net of continuous mappings from
X into Y converges uniformly to a mapping f from X into Y with respect to
MY , then f is continuous too.

Let U be a uniformity on Y , which determines a topology on Y . If a sequence
or net of continuous mappings from X into Y converges uniformly to a mapping
f from X into Y with respect to U , then f is continuous. Alternatively, the set
C(X,Y ) of continuous mappings from X into Y is a closed set in the space of
all mappings from X into Y , with respect to the topology determined by the
uniformity of uniform convergence.

Let MY be a nonempty collection of q-metrics on Y again, and let B(X,Y )
be the space of mappings from X into Y that are bounded with respect to MY ,
as in Section 2.12. This leads to the corresponding collection of supremum
q-semimetrics on B(X,Y ), as in (2.12.4). Under these conditions, the space

B(X,Y ) ∩ C(X,Y )(2.14.1)

is a closed set in B(X,Y ), with respect to the topology determined by (2.12.4).
Remember that B(X,Y ) contains all mappings from X into Y when Y is
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bounded with respect to every d ∈ MY , and that we can always reduce to
that case.

If Y is equipped with a topology, then a mapping f from X into Y is said
to be continuous on compact sets if for every compact subset K of X, the
restriction of f to K is continuous with respect to the induced topology on K.
Suppose that Y is equipped with a nonempty collection MY of q-semimetrics
or a uniformity U , and thus a topology. If a sequence or net of continuous
mappings from X into Y converges to a mapping f from X into Y uniformly
on compact subsets of X, then f is continuous on compact subsets of X.

Suppose for the moment that X is locally compact, so that every element of
X is contained in an open subset of X that is contained in a compact subset
of X. If Y is equipped with a topology, and a mapping f from X into Y is
continuous on compact subsets of X, then f is continuous on X.

Let X be any topological space again, and let {xj}∞j=1 be a sequence of
elements of X that converges to a point x ∈ X. One can check that

{xj : j ∈ Z+} ∪ {x}(2.14.2)

is a compact subset of X.
Suppose that Y is equipped with a topology, and let x ∈ X be given. A

mapping f from X into Y is said to be sequentially continuous at x if for every
sequence {xj}∞j=1 of elements of X that converges to x, {f(xj)}∞j=1 converges to
f(x) in Y . If f is continuous at x, then f is sequentially continuous at x. If f is
not continuous at x, and if there is a local base for the topology of X at x with
only finitely or countably many elements, then f is not sequentially continuous
at x.

If a mapping f from X into Y is continuous on compact sets, then it follows
that f is sequentially continuous at every point in X. This implies that f is
continuous when X satisfies the first countability condition, which means that
there is a local base for the topology of X at every point with only finitely or
countably many elements.

2.15 Cauchy sequences

Let X be a set, and let d be a qd-semimetric on X for some qd > 0. A sequence
{xj}∞j=1 of elements of X is said to be a Cauchy sequence with respect to d if

d(xj , xl) → 0 as j, l → ∞,(2.15.1)

as usual. It is well known and easy to see that if {xj}∞j=1 converges to an element
of X with respect to d, then {xj}∞j=1 is a Cauchy sequence with respect to d.

Let n be a positive integer, and for each r = 1, . . . , n, let dr be a qr-
semimetric on X for some qr > 0. If we take q0 to be the minimum of q1, . . . , qn,
then the maximum of d1, . . . , dn is a q0-semimetric on X, as in Section 1.5. It
is easy to see that a sequence {xj}∞j=1 of elements of X is a Cauchy sequence
with respect to the maximum of d1, . . . , dn if and only if {xj}∞j=1 is a Cauchy
sequence with respect to dr for each r = 1, . . . , n.
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Let MX be a nonempty collection of q-semimetrics on X. Let us say that
a sequence {xj}∞j=1 of elements of X is a Cauchy sequence with respect to MX

if {xj}∞j=1 is a Cauchy sequence with respect to every d ∈ MX . If {xj}∞j=1

converges to an element of X with respect to the topology determined by MX ,
then it follows that {xj}∞j=1 is a Cauchy sequence with respect to MX .

If U is a uniformity on X, then one can define Cauchy nets in X with respect
to U as on p190 of [45]. If U is the uniformity associated to a nonempty collection
MX of q-semimetrics on X, then a Cauchy sequence in X with respect to U
is the same as a Cauchy sequence with respect to MX . Of course, one can
define Cauchy nets in X with respect to MX analogously, so that the previous
statement can be extended to nets.

Let {xj}∞j=1 be a Cauchy sequence of elements of X with respect to a
nonempty collection MX of q-semimetrics on X. Under these conditions, one
can check that

{xj : j ∈ Z+}(2.15.2)

is totally bounded in X with respect to MX . Similarly, if U is a uniformity on
X, and {xj}∞j=1 is a Cauchy sequence in X with respect to U , then (2.15.2) is
totally bounded in X with respect to U .

Suppose that for each positive integer r, dr is a qr-semimetric on X for some
qr > 0. Suppose for the moment that there is a q0 > 0 such that qr ≥ q0 for
every r ≥ 1, which means that dr may be considered as a q0-semimetric on X
for each r ≥ 1. If the dr’s converge to 0 uniformly on X ×X as r → ∞, then
the maximum of the dr’s is also a q0-semimetric on X, as in Section 2.8. Under
these conditions, one can check that a sequence {xj}∞j=1 of elements of X is a
Cauchy sequence with respect to the maximum of the dr’s if and only if {xj}∞j=1

is a Cauchy sequence with respect to dr for each r ≥ 1.
Of course, one can simply reduce to the case where dr is an ordinary semi-

metric on X for every r ≥ 1, by replacing dr with dr(·, ·)qr when qr ≤ 1.
However, this could affect the condition that the dr’s converge to 0 uniformly
on X ×X as r → ∞. One could deal with this by truncating or rescaling the
dr’s, if necessary.

Let MX be a nonempty collection of q-semimetrics on X again, and let
Y be a set with a nonempty collection MY of q-semimetrics. Suppose that a
mapping f from X into Y is uniformly continuous with respect to MX , MY ,
respectively. If {xj}∞j=1 is a sequence of elements of X that is a Cauchy sequence
with respect to MX , then one can check that {f(xj)}∞j=1 is a Cauchy sequence
in Y with respect to MY .



Chapter 3

Topological groups

3.1 Definitions and basic properties

A topological group is a group G equipped with a topology such that the group
operations are continuous. This means that multiplication in the group is con-
tinuous, as a mapping from G × G into G, using the corresponding product
topology on G×G, and that

x 7→ x−1(3.1.1)

is continuous as a mapping from G into itself. It follows that (3.1.1) is a homeo-
morphism fromG onto itself, because this mapping is its own inverse. Sometimes
the condition that the set containing only the identity element e is a closed set is
included in the definition of a topological group, and sometimes it is considered
as an additional condition.

Of course, any group is a topological group with respect to the discrete topol-
ogy. If k is a field with an absolute value function |·|, then it is easy to see that k
is a topological group with respect to addition and the topology determined by
the metric associated to |·|. One can also check that k\{0} is a topological group
with respect to multiplication, and the topology determined by the restriction
to k \{0} of the metric associated to | · |. A subgroup of a topological group is a
topological group with respect to the induced topology. Cartesian products of
topological groups are topological groups with respect to the product topology,
and where the group operations are defined coordinatewise.

Let G be a topological group. If a ∈ G, then continuity of multiplication on
G implies that the corresponding left and right translation mappings

x 7→ a x(3.1.2)

and
x 7→ x a(3.1.3)

are continuous on G. This means that these mappings are homeomorphisms
on G, because their inverses are given by left and right translations by a−1,

49
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respectively. If E is any subset of G, then we put

aE = {a x : x ∈ E}(3.1.4)

and
E a = {x a : x ∈ E}.(3.1.5)

If E is open, closed, or compact, for instance, then it follows that aE and E a
have the same property.

Similarly, put
E−1 = {x−1 : x ∈ E}.(3.1.6)

If E is open, closed, or compact, then continuity of (3.1.1) implies that E−1 has
the same property. If E−1 = E, then E is said to be symmetric. Note that

(aE)−1 = E−1 a−1, (E a)−1 = a−1 E−1.(3.1.7)

If A, B are subsets of G, then put

AB = {a b : a ∈ A, b ∈ B} =
⋃
a∈A

aB =
⋃
b∈B

Ab.(3.1.8)

If either A or B is an open set, then AB is a union of open sets, by continuity
of translations, and thus an open set. If A and B are compact, then A × B
is compact, by Tychonoff’s theorem. This implies that AB is compact, by
continuity of multiplication. Clearly

(AB)−1 = B−1 A−1(3.1.9)

for any A, B.
If W is an open subset of G that contains e, then there are open subsets U ,

V of G that contain e and satisfy

U V ⊆ W.(3.1.10)

This corresponds exactly to continuity of multiplication at e.
It is well known that topological groups are regular in the strict sense, and

we shall say more about that later. If {e} is a closed set, then G satisfies the
first separation condition, because of continuity of translations. This implies
that G is regular in the strong sense, and Hausdorff in particular.

3.2 Two associated uniformities

Let G be a topological group, with multiplicative identity element e. If U is an
open subset of G that contains e, then put

UL = {(x, y) ∈ G×G : x−1 y ∈ U}(3.2.1)

and
UR = {(x, y) ∈ G×G : x y−1 ∈ U}.(3.2.2)



3.2. TWO ASSOCIATED UNIFORMITIES 51

Equivalently,
(x, y) ∈ UL if and only if y ∈ xU(3.2.3)

and
(x, y) ∈ UR if and only if x ∈ U y.(3.2.4)

Note that (3.2.4) is the same as saying that

(x, y) ∈ UR if and only if y ∈ U−1 x.(3.2.5)

If a ∈ G, then consider the mappings

(x, y) 7→ (a x, a y)(3.2.6)

and
(x, y) 7→ (x a, y a)(3.2.7)

from G×G onto itself. Of course, these correspond to left and right translation
by a in both coordinates, respectively. It is easy to see that (3.2.6) maps (3.2.1)
onto itself, and that (3.2.7) maps (3.2.2) onto itself.

Let U be an open set in G that contains e, so that U−1 is an open set that
contains e too. Observe that

(U−1)L = {(x, y) ∈ G×G : x−1 y ∈ U−1}(3.2.8)

= {(x, y) ∈ G×G : y−1 x ∈ U}

and

(U−1)R = {(x, y) ∈ G×G : x y−1 ∈ U−1}(3.2.9)

= {(x, y) ∈ G×G : y x−1 ∈ U}.

These also correspond to exchanging the x and y coordinates in UL, UR, respec-
tively.

Let V be another open set in G that contains e, so that U ∩ V is an open
set that contains e as well. Clearly

UL ∩ VL = (U ∩ V )L(3.2.10)

and
UR ∩ VR = (U ∩ V )R.(3.2.11)

One can check that
UL ◦ VL = (U V )L(3.2.12)

and
UR ◦ VR = (U V )R,(3.2.13)

where the left sides are as in Section 2.3.
Let BL, BR be the collections of subsets of G×G of the form (3.2.1), (3.2.2),

respectively, where U is an open subset of G that contains e. One can verify that
BL and BR satisfy the first four conditions in the definition of a uniformity in
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Section 2.3, using the prevous remarks. Thus BL, BR are bases for uniformities
UL, UR on G, respectively, as before.

Let U be an open subset of G that contains e again. If x ∈ G, then

UL[x] = xU(3.2.14)

and
UR[x] = U−1 x,(3.2.15)

where the left sides are as in Section 2.4. Similarly, if A is any subset of G, then

UL[A] = AU(3.2.16)

and
UR[A] = U−1 A,(3.2.17)

where the left sides are as in Section 2.4 too.
One can verify that the topology on G is the same as those associated to UL

and UR, as on p210 of [45]. This implies that G is regular in the strict sense,
because the topology associated to any uniformity has this property. Of course,
this can also be seen more directly.

If {e} is a closed set in G, then one can check that G is Hausdorff with
respect to UL and UR, as in Section 2.4. This means that G is Hausdorff as a
topological space, as before.

If G is commutative, then it is easy to see that

(U−1)L = UR(3.2.18)

for every open set U in G that contains e. This implies that BL = BR, so that

UL = UR.(3.2.19)

3.3 Translation-invariant semimetrics

Let G be a group. A semimetric d(·, ·) on G is said to be invariant under left
translations if

d(a x, a y) = d(x, y)(3.3.1)

for every a, x, y ∈ G. Similarly, d(·, ·) is said to be invariant under right trans-
lations if

d(x a, y a) = d(x, y)(3.3.2)

for every a, x, y ∈ G. Of course, one can define translation invariance of q-
semimetrics in the same way. If G is commutative, then invariance under left
and right translations are the same.

Suppose that G is a topological group, and let UL, UR be the uniformities on
G defined in the previous section. It is well known that there is a collection ML

of left-invariant semimetrics on G for which UL is the associated uniformity, as
on p210 of [45]. Similarly, there is a collection MR of right-invariant semimetrics
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on G for which UR is the associated uniformity. In particular, the topology on
G is the same as the topologies determined by ML, MR.

If ML is any nonempty collection of left-invariant semimetrics on G that
determines the same topology on G, then it is easy to see that UL is the same as
the uniformity onG associated toML. Similarly, ifMR is a nonempty collection
of right-invariant semimetrics on G that determines the same topology on G,
then UR is the same as the uniformity on G associated to MR.

Let B0 be a local base for the topology of G at e. One can check that

{UL : U ∈ B0}(3.3.3)

is a base for UL, where UL is as in (3.2.1). Similarly,

{UR : U ∈ B0}(3.3.4)

is a base for UR, where UR is as in (3.2.2).
If B0 has only finitely many elements, then (3.3.3) and (3.3.4) have only

finitely many elements as well. In this case, a famous theorem states that there
are left and right-invariant semimetrics that determine the same topology on G.
This means that the uniformities on G associated to these semimetrics are the
same as UL, UR, respectively.

If d(·, ·) is any semimetric on G, then

d̃(x, y) = d(x−1, y−1)(3.3.5)

defines a semimetric on G as well. It is easy to see that d(·, ·) is invariant under
left translations if and only if (3.3.5) is invariant under right translations.

Let ML be a nonempty collection of left-invariant semimetrics on G, so that

{d̃ : d ∈ ML}(3.3.6)

consists of right-invariant semimetrics. One can check that x 7→ x−1 sends the
topology determined by ML to the topology determined by (3.3.6).

If G is a topological group, then the topology on G is the same as the
one determined by M if and only if it is the same as the one determined by
(3.3.6). Note that the uniformities UL and UR correspond to each other under
the mapping x 7→ x−1.

If a semimetric d(·, ·) on G is invariant under left or right translations, then
it is easy to see that

d(e, x) = d(x−1, e)(3.3.7)

for every x ∈ G. If d(·, ·) is invariant under both left and right translations,
then one can verify that

d(x, y) = d(x−1, y−1)(3.3.8)

for every x, y ∈ G. If d(·, ·) is invariant under left or right translations and
satisfies (3.3.8), then it follows that d(·, ·) is invariant under both left and right
translations.
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3.4 Translations and uniform continuity

Let G1, G2 be topological groups, with identity elements e1, e2, respectively,
and let ϕ be a mapping from G1 into G2. Let us say that ϕ is left-invariant
uniformly continuous if for every open subset U2 of G2 that contains e2 there
is an open subset U1 of G1 that contains e1 such that

ϕ(x1 U1) ⊆ ϕ(x1)U2(3.4.1)

for every x1 ∈ G1. Of course, this implies that ϕ is continuous. More precisely,
this is equivalent to the uniform continuity of ϕ with respect to the uniformities
U1,L, U2,L on G1, G2, respectively, as in Section 3.2.

Similarly, let us say that ϕ is right-invariant uniformly continuous if for
every open subset U2 of G2 that contains e2 there is an open subset U1 of G1

that contains e1 such that

ϕ(U1 x1) ⊆ U2 ϕ(x1)(3.4.2)

for every x1 ∈ G1. This implies that ϕ is continuous, and is equivalent to
the uniform continuity of ϕ with respect to the uniformities U1,R, U2,R on G1,
G2, respectively, as in Section 3.2. Of course, left and right-invariant uniform
continuity are the same when G1 and G2 are commutative. If ϕ is a group
homomorphism from G1 into G2 that is continuous at e1, then it is easy to see
that ϕ is both left and right-invariant uniformly continuous.

If the topologies on G1, G2 are determined by collections M1,L, M2,L of
left-invariant semimetrics, respectively, then left-invariant uniform continuity of
ϕ is equivalent to uniform continuity with respect to M1,L, M2,L. Similarly, if
the topologies on G1, G2 are determined by collections M1,R, M2,R of right-
invariant semimetrics, respectively, then right-invariant uniform continuity of ϕ
is equivalent to uniform continuity with respect to M1,R, M2,R.

Let G be a topological group, let Y be a set, and let ϕ be a mapping from
G into Y . Let us say that ϕ is left-invariant uniformly continuous with respect
to a semimetric dY on Y if for every ϵ > 0 there is an open subset U of G that
contains e such that

dY (ϕ(x), ϕ(w)) < ϵ(3.4.3)

for every x,w ∈ G with w ∈ xU . This implies that ϕ is continuous with respect
to the topology determined on Y by dY . In fact, this is equivalent to the uniform
continuity of ϕ with respect to the uniformity UL on G, as in Section 3.2, and
the uniformity on Y associated to dY .

Similarly, let us say that ϕ is right-invariant uniformly continuous with
respect to dY on Y if for every ϵ > 0 there is an open subset U of G that
contains e such that (3.4.3) holds for every x,w ∈ G with w ∈ U x. This implies
that ϕ is continuous, and is equivalent to the uniform continuity of ϕ with
respect to the uniformity UR on G as in Section 3.2. If G is commutative, then
left and right-invariant uniform continuity with respect to dY are the same.

Let MY be a nonempty collection of semimetrics on Y . Let us say that ϕ is
left or right-invariant uniformly continuous with respect to MY on Y if ϕ is left
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or right-invariant uniformly continuous, as appropriate, with respect to every
dY ∈ MY . This is equivalent to the uniform continuity of ϕ with respect to UL

or UR on G, as appropriate, and the uniformity on Y associated to MY .
If the topology on G is determined by a collection ML of left-invariant

semimetrics, then left-invariant uniform continuity of ϕ is equivalent to uniform
continuity with respect to ML. Similarly, if the topology on G is determined
by a collection MR of right-invariant semimetrics, then right-invariant uniform
continuity of ϕ is equivalent to uniform continuity with respect to MR.

3.5 Translations and equicontinuity

Let X and Y be topological spaces, and let x0 ∈ X and y0 ∈ Y be given. Also
let E be a collection of mappings from X into Y such that

ϕ(x0) = y0(3.5.1)

for every ϕ ∈ E . Let us say that E is equicontinuous at x0 if for every open set
V ⊆ Y with y0 ∈ V there is an open set U ⊆ X such that x0 ∈ U and

ϕ(U) ⊆ V(3.5.2)

for every ϕ ∈ E . Of course, this implies that every element of E is continuous
at x0. If E has only finitely many elements, each of which is continuous at x0,
then it is easy to see that E is equicontinuous at x0.

Let G be a topological group, and let E be a collection of mappings from X
into G. Let us say that E is left-invariant equicontinuous at x0 if for every open
subset V of G that contains e there is an open set U ⊆ X such that x0 ∈ U and

ϕ(U) ⊆ ϕ(x0)V(3.5.3)

for every ϕ ∈ E . Similarly, let us say that E is right-invariant equicontinuous at
x0 if for every open subset V of G that contains e there is an open set U ⊆ X
such that x0 ∈ U and

ϕ(U) ⊆ V ϕ(x0)(3.5.4)

for every ϕ ∈ E . Each of these conditions implies that every element of E
is continuous at x0, and both conditions hold when E has only finitely many
elements, each of which is continuous at x0. If there is a y0 ∈ G such that
(3.5.1) holds for every ϕ ∈ E , then each of these conditions is equivalent to
equicontinuity at x0 as in the preceding paragraph.

Left and right-invariant equicontinuity at x0 are equivalent to equicontinu-
ity with respect to the uniformities UL, UR on G, respectively, as in Section
3.2. If the topology on G is determined by a collection ML of left-invariant
semimetrics, or a collection MR of right-invariant semimetrics, then left or
right-invariant equicontinuity at x0 is equivalent to equicontinuity at x0 with
respect to ML or MR, as appropriate. If G is commutative, then left and
right-invariant invariant equicontinuity at x0 are the same.
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Let G1, G2 be topological groups with identity elements e1, e2, respectively,
and let E be a collection of mappings from G1 into G2. Let us say that E is
left-invariant uniformly equicontinuous if for every open subset U2 of G2 that
contains e2 there is an open subset U1 of G1 that contains e1 such that (3.4.1)
holds for every ϕ ∈ E and x1 ∈ G. Similarly, let us say that E is right-invariant
uniformly equicontinuous if for every open subset U2 of G2 that contains e2 there
is an open subset U1 of G1 that contains e1 such that (3.4.2) holds for every
ϕ ∈ E and x1 ∈ G1. If E is left or right-invariant uniformly equicontinuous, then
every element of E is left or right-invariant uniformly continuous, as appropriate.
The converse holds in both cases when E has only finitely many elements, as
usual.

Left-invariant uniform equicontinuity is equivalent to uniform equicontinu-
ity with respect to the uniformities U1,L, U2,L on G1, G2, respectively, as in
Section 3.2. If the topologies on G1, G2 are determined by collections M1,L,
M2,L of left-invariant semimetrics, then left-invariant uniform equicontinuity is
equivalent to uniform equicontinuity with respect to M1,L, M2,L. Of course,
there are analogous statements for right-invariant uniform equicontinuity. If G1

and G2 are commutative, then left and right-invariant uniform equicontinuity
are the same.

If E is a collection of group homomorphisms from G1 intoG2, then ϕ(e1) = e2
for every ϕ ∈ E . If E is equicontinuous at e1, then E is both left and right-
invariant uniformly equicontinuous.

Let G be a topological group, let Y be a set, and let E be a collection of
mappings from G into Y . Let us say that E is left-invariant uniformly equicon-
tinuous with respect to a semimetric dY on Y if for every ϵ > 0 there is an
open subset U of G that contains e such that (3.4.3) holds for every ϕ ∈ E and
x,w ∈ G with w ∈ xU . Similarly, let us say that E is right-invariant uniformly
equicontinuous with respect to dY if for every ϵ > 0 there is an open subset
U of G that contains e such that (3.4.3) holds for every ϕ ∈ E and x,w ∈ G
with w ∈ U x. In each case, every element of E is left or right-invariant uni-
formly continuous with respect to dY , as appropriate. If E has only finitely
many elements, then the converse holds, as before.

Left and right-invariant uniform equicontinuity with respect to dY are equiv-
alent to uniform equicontinuity with respect to the uniformities UL, UR on G,
respectively, as in Section 3.2, and the uniformity on Y associated to dY . If
G is commutative, then left and right-invariant uniform equicontinuity are the
same.

If MY is a nonempty collection of semimetrics on Y , then we say that E
is left or right-invariant uniformly equicontinuous with respect to MY on Y
when E is left or right-invariant uniformly equicontinuous, as appropriate, with
respect to every dY ∈ MY . This is equivalent to the uniform equicontinuity
of E with respect to UL or UR on G, as appropriate, and the uniformity on
Y associated to MY . If the topology on G is determined by a collection ML

of left-invariant semimetrics, or a collection MR of right-invariant semimetrics,
then left or right-invariant uniform equicontinuity of E is equivalent to uniform
equicontinuity with respect to ML or MR on G, as appropriate.
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3.6 Compatible semimetrics

Let X be a topological space, and let d(·, ·) be a semimetric on X. Let us say
that d(·, ·) is compatible with the topology on X at a point x0 ∈ X if the identity
mapping on X is continuous at x0 as a mapping from X with its given topology
into X with the topology determined by d(·, ·). Equivalently, this means that for
each r > 0, x0 is in the interior of Bd(x0, r) with respect to the given topology
on X. This is the same as saying that

fx0(x) = d(x, x0)(3.6.1)

is continuous at x0, as a real-valued function of x on X.

Let us say that d(·, ·) is compatible with the topology on X if d(·, ·) is com-
patible with the topology on X at every x0 ∈ X, which means that the given
topology on X is at least as strong as the topology determined by d(·, ·). This
is equivalent to the continuity of (3.6.1) as a real-valued function of x on X for
every x0, because (3.6.1) is continuous with respect to d(·, ·), as in Section 1.8.
Alternatively, d(·, ·) is compatible with the topology on X if and only if every
open ball in X with respect to d(·, ·) is an open set with respect to the given
topology on X.

Let us say that d(·, ·) is compatible with a uniformity U on X if the identity
mapping on X is uniformly continuous as a mapping from X equipped with U
into X equipped with d(·, ·). Of course, this implies that d(·, ·) is compatible
with the topology on X associated to U .

Note that (3.6.1) is uniformly continuous as a real-valued function on X with
respect to d(·, ·) for every x0 ∈ X, as in Section 1.8. In fact, the collection of
these functions is uniformly equicontinuous on X with respect to d(·, ·). If d(·, ·)
is compatible with a uniformity U on X, then it follows that the collection of
these functions is uniformly equicontinuous with respect to U on X.

Let G be a topological group, and let d(·, ·) be a semimetric on G. Suppose
that d(·, ·) is compatible with the topology of G at e. If d(·, ·) is invariant under
left translations, then it follows that d(·, ·) is compatible with the topology of
G at every point. More precisely, one can check that d(·, ·) is compatible with
the uniformity UL, as in Section 3.2. Equivalently, this means that the identity
mapping on G is left-invariant uniformly continuous as a mapping from G as a
topological group into G with respect to d(·, ·), as in the previous section.

Similarly, if d(·, ·) is invariant under right translations, then d(·, ·) is com-
patible with the topology of G at every point. In this case, one can verify that
d(·, ·) is compatible with the uniformity UR, as in Section 3.2. This means that
the identity mapping on G is right-invariant uniformly continuous as a mapping
from G as a topological group into G with respect to d(·, ·), as before.

If d(·, ·) is invariant under left translations, then the collection of functions of
the form (3.6.1) with x0 ∈ G is left-invariant uniformly equicontinuous as a col-
lection of real-valued functions on G. Similarly, if d(·, ·) is invariant under right
translations, then this collection is right-invariant uniformly equicontinuous as
a collection of real-valued functions on G.
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3.7 More on translation invariance

Let G be a group, and let d(·, ·) be a semimetric on G. If d(·, ·) is invariant
under left or right translations, then Bd(e, r) is a symmetric set for every r > 0,
by (3.3.7). Similarly, Bd(e, r) is symmetric for every r ≥ 0.

Let x, y ∈ G be given. If d(·, ·) is invariant under left translations on G, then

d(e, x y) ≤ d(e, x) + d(x, x y) = d(e, x) + d(e, y).(3.7.1)

Similarly, if d(·, ·) is invariant under right translations, then

d(e, x y) ≤ d(e, y) + d(y, x y) = d(e, x) + d(e, y).(3.7.2)

In both cases, we get that

Bd(e, r)Bd(e, t) ⊆ Bd(e, r + t)(3.7.3)

for every r, t > 0, and

Bd(e, r)Bd(e, t) ⊆ Bd(e, r + t)(3.7.4)

for every r, t ≥ 0.
Suppose for the moment that d(·, ·) is a semi-ultrametric on G. If d(·, ·) is

invariant under left translations, then

d(e, x y) ≤ max(d(e, x), d(x, x y)) = max(d(e, x), d(e, y))(3.7.5)

for every x, y ∈ G. If d(·, ·) is invariant under right translations, then

d(e, x y) ≤ max(d(e, y), d(y, x y)) = max(d(e, x), d(e, y)).(3.7.6)

It follows that open and closed balls centered at e with respect to d(·, ·) are
subgroups of G in both cases. If d(·, ·) is invariant under both left and right
translations, then one can check that open and closed balls centered at e with
respect to d(·, ·) are normal subgroups of G.

If d(·, ·) is any semimetric on G that is invariant under left or right trans-
lations, then Bd(e, 0) is a subgroup of G. If d(·, ·) is invariant under both left
and right translations, then Bd(e, 0) is a normal subgroup of G.

Let A be a subgroup of G. If x, y ∈ G, then put

dA,L(x, y) = 0 when xA = y A(3.7.7)

= 1 when xA 6= y A.

One can check that this is a semi-ultrametric on G that is invariant under
left translations. More precisely, this is the same as the discrete semimetric
associated to the partition of G into left cosets of A, as in Section 1.3.

Similarly, if we put

dA,R(x, y) = 0 when Ax = Ay(3.7.8)

= 1 when Ax 6= Ay,
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then we get a right-invariant semi-ultrametric on G. This is the same as the
discrete semimetric associated to the partition of G into right cosets of A. If
A is a normal subgroup, then (3.7.7) and (3.7.8) are the same. Thus we get a
semi-ultrametric that is invariant under both left and right translations in this
case.

Suppose now that G is a topological group, and that d(·, ·) is a semimetric on
G that is compatible with the topology of G at e. If d(·, ·) is invariant under left
or right translations, then d(·, ·) is compatible with the topology of G at every
point, as in the previous section. If d(·, ·) is also a semi-ultrametric on G, then it
follows that open balls centered at e with respect to d(·, ·) are open subgroups.
Similarly, closed balls centered at e of positive radius are open subgroups in this
case.

If A is an open subgroup of G, then it is easy to see that A is a closed set
too. More precisely, the complement of A is a union of cosets of A, and thus an
open set. Note that (3.7.7) and (3.7.8) are compatible with the topology of G
in this case.

3.8 Translations and total boundedness

Let G be a topological group, and let E be a subset of G. Let us say that E is
left-invariant totally bounded in G if for every open subset U of G that contains
e there are finitely many elements x1, . . . , xn of G such that

E ⊆
n⋃

j=1

xj U.(3.8.1)

Similarly, let us say that E is right-invariant totally bounded in G if for every
open subset U of G that contains e there are finitely many elements x1, . . . , xn

of G such that

E ⊆
n⋃

j=1

U xj .(3.8.2)

Of course, these two properties are the same when G is commutative. If E is
compact, then it is easy to see that E is both left and right-invariant totally
bounded in G.

If E is left or right-invariant totally bounded, then it is easy to see that every
subset of E has the same property. The union of finitely many left-invariant
totally bounded sets is left-invariant totally bounded, and similarly for right-
invariant total boundedness. If E is left or right-invariant totally bounded,
then one can check that the closure E of E has the same property, because G
is regular in the strict sense as a topological space.

Remember that total boundedness with respect to a uniformity can be de-
fined as in Section 2.6, and that UL, UR are as in Section 3.2. One can verify that
E is left or right-invariant totally bounded if and only if E is totally bounded
with respect to UL or UR, as appropriate. If the topology on G is determined
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by a collection ML of left-invariant semimetrics, or a collection MR of right-
invariant semimetrics, then E is left or right-invariant totally bounded if and
only if E is totally bounded with respect to ML or MR, as appropriate.

Let U be an open subset of G that contains e. Let us say that a subset A of
G is left-invariant U -small if

A−1 A ⊆ U.(3.8.3)

Equivalently, this means that

A×A ⊆ UL,(3.8.4)

so that A is UL-small in the sense of Section 2.6. Similarly, let us say that A is
right-invariant U -small if

AA−1 ⊆ U.(3.8.5)

This is the same as saying that

A×A ⊆ UR,(3.8.6)

so that A is UR-small in the sense of Section 2.6.
Alternatively, A is left-invariant U -small if and only if

A ⊆ xU(3.8.7)

for every x ∈ A, and A is right-invariant U -small if and only if

A ⊆ U y(3.8.8)

for every y ∈ A. Let V be another open subset of G that contains e. If A is
contained in a left translate of V , then

A−1 A ⊆ V −1 V,(3.8.9)

so that A is (V −1 V )-small. If A is contained in a right translate of V , then

AA−1 ⊆ V V −1,(3.8.10)

so that A is (V V −1)-small.
One can check that E is left or right-invariant totally bounded if and only

if for every open subset U of G that contains e, E is contained in the union
of finitely many left or right-invariant U -small sets, as appropriate. If E is
contained in a subgroup of G, then E is left or right-invariant totally bounded
in G if and only if E is left or right-invariant totally bounded in the subgroup,
as appropriate, as a topological group with respect to the induced topology.

Let G1, G2 be topological groups, let ϕ be a mapping from G1 into G2, and
let E1 be a subset of G1. If E1 is left-invariant totally bounded in G1, and ϕ is
left-invariant uniformly continuous, then ϕ(E1) is left-invariant totally bounded
in G2. Similarly, if E1 is right-invariant totally bounded in G1, and ϕ is right-
invariant uniformly continuous, then ϕ(E1) is right-invariant totally bounded in
G2.
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Let G be a topological group again, and let Y be a set with a nonempty
collection MY of semimetrics. Also let ϕ be a mapping from G into Y , and
let E be a subset of G. If E is left-invariant totally bounded and ϕ is left-
invariant uniformly continuous, then ϕ(E) is totally bounded in Y with respect
to MY . Similarly, if E is right-invariant totally bounded and ϕ is right-invariant
uniformly continuous, then ϕ(E) is totally bounded in Y with respect to MY .

3.9 More on small sets

Let G be a topological group, and let E be a subset of G again. One can check
that E is left-invariant totally bounded if and only if E−1 is right-invariant
totally bounded. In particular, left and right-invariant total boundedness are
the same for symmetric sets.

Let A be a subset of G, and let U be an open subset of G that contains e.
Thus U−1 and U ∩ U−1 are open sets that contain e as well. It is easy to see
that A is left or right-invariant U -small if and only if A is left or right-invariant
U−1-small, as appropriate. In this case, A is left or right-invariant (U ∩ U−1)-
small, as appropriate. We also have that A is left-invariant U -small if and only
if A−1 is right-invariant U -small.

Let U1, . . . , Un be finitely many open subsets of G, each of which contains
e. Thus

U =

n⋂
j=1

Uj(3.9.1)

is an open set that contains e too. Suppose that for each j = 1, . . . , n, Aj is a
subset of G that is left-invariant Uj-small. Under these conditions, it is easy to
see that

n⋂
j=1

Aj(3.9.2)

is left-invariant U -small. Similarly, if Aj is right-invariant Uj-small for each
j = 1, . . . , n, then (3.9.2) is right-invariant U -small.

Let E be a subset of G, and suppose that for each j = 1, . . . , n, E can be
covered by finitely many subsets of G that are left-invariant Uj-small. One can
check that E can be covered by finitely many subsets of G that are left-invariant
U -small, using the remarks in the preceding paragraph. More precisely, there are
finitely many sets obtained by taking intersections of sets from the n coverings
of E, and E is covered by these sets. Similarly, if for each j = 1, . . . , n, E can
be covered by finitely many subsets of G that are right-invariant Uj-small, then
E can be covered by finitely many sets that are right-invariant U -small.

Let I be a nonempty set, and let Gj be a topological group for each j ∈ I.
Thus G =

∏
j∈I Gj is a topological group as well, where the group operations

are defined coordinatewise, and with respect to the product topology. If l ∈ I,
then let pl be the usual coordinate projection from G onto Gl. Note that pl
is a continuous group homomorphism from G onto Gl. In particular, pl maps
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left and right-invariant totally bounded subsets of G to left and right-invariant
totally bounded subsets of Gl, respectively.

Suppose that for each j ∈ I, Ej is a left-invariant totally bounded subset of
G, and put

E =
∏
j∈I

Ej .(3.9.3)

Let l ∈ I be given, and let Ul be an open subset of Gl that contains the identity
element el. Thus El can be covered by finitely many subsets of Gl that are
left-invariant Ul-small. Note that p−1

l (Ul) is an open subset of G that contains
the identity element. One can check that E ⊆ p−1

l (El) is contained in the union
of finitely many subsets of G that are left-invariant p−1

l (Ul)-small.
Let l1, . . . , ln be finitely many elements of I, and let Ulr be an open subset of

Glr that contains elr for each r = 1, . . . , n. It follows that for each r = 1, . . . , n,
E can be covered by finitely many subsets of G that are left-invariant p−1

lr
(Ulr )-

small, as in the previous paragraph. Put

U =
n⋂

r=1

p−1
lr

(Ulr ),(3.9.4)

which is an open subset of G that contains the identity element. Under these
conditions, we get that E can be covered by finitely many left-invariant U -small
sets, as before. This implies that E is left-invariant totally bounded in G, and
there is an analogous statement for right-invariant total boundedness.

3.10 Equicontinuity and conjugations

Let G be a group. If a ∈ G, then put

Ca(x) = a x a−1(3.10.1)

for every x ∈ G. Of course, Ca is an inner automorphism of G. Note that

Ca(Cb(x)) = Ca b(x)(3.10.2)

for every a, b, x ∈ G.
Suppose now that G is a topological group. In this case, Ca is continuous

for every a ∈ G, and (Ca)
−1 = Ca−1 is continuous too. If A is a subset of G,

then we may be interested in the equicontinuity of

{Ca : a ∈ A}(3.10.3)

at e, as in Section 3.5. This means that for every open subset V of G that
contains e, there is an open subset U of G that contains e such that

Ca(U) = aU a−1 ⊆ V(3.10.4)

for every a ∈ A.
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Suppose that A is right-invariant totally bounded, and let us check that
(3.10.3) is equicontinuous at e. Let V be an open subset of G that contains e.
The continuity of the group operations at e implies that there is a symmetric
open subset U0 of G that contains e and satisfies

U0 U0 U0 ⊆ V.(3.10.5)

Because A is right-invariant totally bounded, there are finitely many elements
a1, . . . , an of G such that

A ⊆
n⋃

j=1

U0 aj .(3.10.6)

This means that

A−1 ⊆
n⋃

j=1

a−1
j U0,(3.10.7)

because U0 is symmetric.

Observe that aj U a−1
j is an open set that contains e for each j = 1, . . . , n,

so that

U =

n⋂
j=1

a−1
j U0 aj ,(3.10.8)

is an open set that contains e as well. By construction,

aj U a−1
j ⊆ aj (a

−1
j U0 aj) a

−1
j = U0(3.10.9)

for every j = 1, . . . , n. This implies that

U0 (aj U a−1
j )U0 ⊆ U0 U0 U0 ⊆ V(3.10.10)

for every j = 1, . . . , n. Equivalently,

(U0 aj)U (a−1
j U0) ⊆ V(3.10.11)

for every j = 1, . . . , n. If a ∈ A, then a ∈ U0 aj for some j, and it follows that

aU a−1 ⊆ (U0 aj)U (a−1
j U0) ⊆ V,(3.10.12)

as desired.

Of course, if G is commutative, then Ca is the identity mapping for every
a ∈ G, and the equicontinuity of the Ca’s is trivial. If G is any group equipped
with the discrete topology, then one can simply take U = {e} in (3.10.4). Note
that left or right-invariant totally bounded sets have only finitely many elements
in this case.
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3.11 Subgroups and conjugations

Let G be a topological group, and let A be a subgroup of G. Suppose that
(3.10.3) is equicontinuous at e, and let V be an open subset of G that contains
e. Thus there is an open subset U of G that contains e and for which (3.10.4)
holds for every a ∈ A. It follows that

U1 =
⋃
a∈A

aU a−1(3.11.1)

is an open set that contains e and satisfies

U1 ⊆ V.(3.11.2)

We also have that
Ca1(U1) = a1 U1 a

−1
1 = U1(3.11.3)

for every a1 ∈ A, by construction.
Let BA be the collection of open subsets of G that contain e and are invariant

under conjugation by elements of A. If (3.10.3) is equicontinuous at e, then
BA is a local base for the topology of G at e, as in the preceding paragraph.
Conversely, if BA is a local base for the topology of G at e, then it is easy to see
that (3.10.3) is equicontinuous at e.

Let d be a semimetric on G, and suppose that d is invariant under conju-
gations by elements of A. This implies that open and closed balls centered at
e with respect to d are invariant under conjugations by elements of A. If the
topology on G is determined by a collection of semimetrics with this property,
then it follows that BA is a local base for the topology of G at e.

Let d be a semimetric on G again, and suppose for the moment that d is
invariant under left translations. In this case, d is invariant under conjugations
by elements of A if and only if d is invariant under right translations by elements
of A. Similarly, if d is invariant under right translations, then d is invariant under
conjugations by elements of A if and only if d is invariant under left translations
by elements of A.

If d is a semimetric on G, then one can try to get a semimetric that is
invariant under conjugations by elements of A, as follows. Put

dA(x, y) = sup
a∈A

d(Ca(x), Ca(y))(3.11.4)

for every x, y ∈ G. Let us suppose that the supremum on the right is finite for
each x, y. In particular, this holds when d(·, ·) is bounded. Remember that this
can always be arranged, as in Section 2.7.

Note that d(Ca(x), Ca(y)) is a semimetric for every a ∈ A. Using this, one
can check that dA is a semimetric on G. If d is a semi-ultrametric on G, then dA
is a semi-ultrametric on G as well. It is easy to see that dA is invariant under
conjugations by elements of A, by construction. Of course,

d(x, y) ≤ dA(x, y)(3.11.5)
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for every x, y ∈ G.
If d is invariant under left translations, then d(Ca(x), Ca(y)) is invariant un-

der left translations for every a ∈ A. This implies that dA is invariant under
left translations too. It follows that dA is invariant under right translations by
elements of A, because it is invariant under cnjugations by elements of A. Simi-
larly, if d is invariant under right translations, then d(Ca(x), Ca(y)) is invariant
under right translations for every a ∈ A, and dA is invariant under right trans-
lations. This means that dA is invariant under left translations by elements of
A, as before.

Suppose that (3.10.3) is equicontinuous at e. If d is compatible with the
topology of G at e, then one can check that dA is compatible with the topology
of G at e too.

3.12 Subgroups and topologies

Let G be a group, and let A be a subgroup of G. Suppose for the moment that
G is a topological group, and that A is an open set. Of course, this implies that
the left and right cosets of A are open sets too. It follows that a subset U of G
is an open set if and only if the intersection of U with each of the left cosets of
A is an open set, and if and only if the intersection of U with each of the right
cosets of A is an open set.

If x ∈ G, then
U ∩ (xA) = x ((x−1 U) ∩A),(3.12.1)

which is an open set exactly when (x−1 U) ∩A is an open set. Similarly,

U ∩ (Ax) = ((U x−1) ∩A)x,(3.12.2)

which is an open set exactly when (U x−1) ∩A is an open set.
If w ∈ G, then w−1 Aw is an open subgroup of G, and thus

(w−1 Aw) ∩A(3.12.3)

is an open subgroup too. Of course, Cw(x) = w xw−1 maps (3.12.3) onto

(wAw−1) ∩A.(3.12.4)

Suppose now that A is a topological group, which is a subgroup of a group
G. If w ∈ G, then w−1 Aw is a subgroup of G, so that (3.12.3) is a subgroup of
A. Suppose that for every w ∈ G,

(w−1 aw) ∩A is an open subgroup of A,(3.12.5)

and that

the restriction of Cw to (w−1 Aw) ∩A(3.12.6)

is continuous as a mapping into A,
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with respect to the topology induced on (3.12.3) by the topology on A. This
means that

the restriction of Cw to (w−1 Aw) ∩A(3.12.7)

is a homeomorphism onto (wAw−1) ∩A

for every w ∈ G, with respect to the topologies induced by the topology on A,
because the inverse mapping corresponds to w−1 in the same way.

If x ∈ G, then there is a unique topology on xA such that a 7→ x a is a
homeomorphism from A onto xA. If x ∈ A, so that xA = A, then this is
the same as the initial topology on A, by continuity of left translations on A.
Similarly, if y ∈ G and xA = y A, then we get the same topology on this left
coset of A using x or y, because of continuity of left translations on A. Note
that left translation by w ∈ G defines a homeomorphism from xA onto w xA,
with respect to these topologies of xA and w xA.

In the same way, there is a unique topology on Ax such that a 7→ a x is a
homeomorphism from A onto Ax. If x ∈ A, then this is the same as the initial
topology on A, by continuity of right translations on A. If y ∈ G and Ax = Ay,
then we get the same topology on this right coset of A using x or y, because
of continuity of right translations on A. As before, right translation by w ∈ G
defines a homeomorphism from Ax onto Axw, with respect to these topologies
on Ax and Axw.

Let x, y ∈ G be given, and let us check that

(xA) ∩ (Ay) is an open subset of xA and Ay,(3.12.8)

with respect to the topologies defined on xA and Ay earlier. Of course, this is
trivial when (xA) ∩ (Ay) = ∅, and so we may suppose that

(xA) ∩ (Ay) 6= ∅.(3.12.9)

Let w be an element of (xA) ∩ (Ay), so that

xA = wA, Ay = Aw.(3.12.10)

Thus

(xA) ∩ (Ay) = (wA) ∩ (Aw) = w (A ∩ (w−1 Aw))(3.12.11)

and

(xA) ∩ (Ay) = (wA) ∩ (Aw) = ((wAw−1) ∩A)w.(3.12.12)

It follows that (3.12.8) holds, because of (3.12.5).

We also have that

the topologies induced on (xA) ∩ (Ay) by(3.12.13)

the topologies on xA and Ay are the same.
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This is trivial when (xA) ∩ (Ay) = ∅, and so we may suppose that (3.12.9)
holds again. If w ∈ (xA) ∩ (Ay), then (3.12.13) is the same as saying that

the topologies induced on (wA) ∩ (Aw) by(3.12.14)

the topologies on wA and Aw are the same.

One can check that (3.12.14) follows from (3.12.7).
If U is a subset of G, then we would like to say that U is an open set when

U ∩ (xA) is an open set in xA for every x ∈ G.(3.12.15)

We would also like to say that U is an open set when

U ∩ (Ay) is an open set in Ay for every y ∈ G.(3.12.16)

One can verify that (3.12.15) and (3.12.16) are equivalent, using (3.12.8) and
(3.12.13). It is easy to see that this defines a topology on G, for which the left
and right cosets of A are open sets. The topologies induced on the left and right
cosets of A by this topology are the topologies defined earlier on the cosets of
A, by construction.

Left and right translations are continuous on G, because of the continuity
of left and right translations as mappings between left and right cosets of A,
respectively. One can check that G is a topological group with respect to this
topology, using the continuity of the group operations on A.

3.13 Subgroups and semimetrics

Let G be a group, and let A be a subgroup of G. Also let d0(·, ·) be a semimetric
on A, and let r0, r1 be nonnegative real numbers. Suppose that

d0(x, y) ≤ r0(3.13.1)

for every x, y ∈ A, which can always be arranged as in Section 2.7.
Suppose for the moment that d0(·, ·) is invariant under left translations on

A. Let x, y ∈ G be given, and put

dL(x, y) = r1 when xA 6= y A.(3.13.2)

Otherwise, if

xA = y A,(3.13.3)

then

Ax−1 = Ay−1.(3.13.4)

If w is an element of this right coset of A, then w x,w y ∈ A, and we would like
to put

dL(x, y) = d0(w x,w y).(3.13.5)
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This does not depend on the choice of w, because d0 is invariant under left
translations on A.

If

r0 ≤ 2 r1,(3.13.6)

then one can check that dL is a semimetric on G. If d0 is a semi-ultrametric on
A, and

r0 ≤ r1,(3.13.7)

then dL is a semi-ultrametric on G. In both cases, dL is invariant under left
translations on G. If d0 is also invariant under right translations on A, then dL
is invariant under right translations by elements of A too. Note that dL is the
same as d0 on A, and that A is an open subset of G with respect to dL when
r1 > 0.

Suppose now that d0 is invariant under right translations on A. Let x, y ∈ G
be given again, and put

dR(x, y) = r1 when Ax 6= Ay.(3.13.8)

If instead

Ax = Ay,(3.13.9)

then

x−1 A = y−1 A,(3.13.10)

and we let w be an element of this left coset of A. Thus xw, y w ∈ A, and we
would like to put

dR(x, y) = d0(xw, y w).(3.13.11)

It is easy to see that this does not depend on the choice of w, because d0 is
invariant under right translations on A.

If (3.13.6) holds, then one can verify that dR is a semimetric on G, as before.
If d0 is a semi-ultrametric on A and (3.13.7) holds, then dR is a semi-ultrametric
on G. One can check that dR is invariant under right translations on G in both
cases. If d0 is also invariant under left translations on A, then dR is invariant
under left translations by elements of A as well. By construction, dR is the same
as d0 on A, and A is an open set in G with respect to dR when r1 > 0.

3.14 Translations and continuity conditions

Let G be a group, and suppose that G is equipped with a topology. Consider
the condition that

left and right translations are continuous on G.(3.14.1)

Of course, this implies that

conjugations are continuous on G.(3.14.2)
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If either left or right translations are continuous, then it is easy to see that
(3.14.2) implies (3.14.1). More precisely, one check that (3.14.2) holds when
conjugations are continuous at e in this case.

If (3.14.1) holds, and if x 7→ x−1 is continuous at e, then one can verify that
x 7→ x−1 is continuous at every point. Of course, if x 7→ x−1 is continuous at
every point, then continuity of left and right translations are equivalent.

Suppose that (3.14.1) holds again. If multiplication in the group is con-
tinuous as a mapping from G × G into G at (e, e), then one can check that
multiplication is continuous at every point in G×G.

Let ML be a nonempty collection of semimetrics on G that are invariant
under left translations, and suppose that G is equipped with the topology de-
termined by ML. Of course, left translations are continuous on G in this case.
It is easy to see that x 7→ x−1 is continuous at e with respect to this topology,
using (3.3.7). We also have that multiplication on G is continuous as a mapping
from G×G into G at (e, e), by (3.7.3).

Similarly, let MR be a nonempty collection of semimetrics on G that are
invariant under right translations. If G is equipped with the topology deter-
mined by MR, then right translations are continuous. As before, x 7→ x−1 is
continuous at e with respect to this topology, and multiplication is continuous
as a mapping from G×G into G at (e, e).

If M is a nonempty collection of semimetrics on G that are invariant under
both left and right translations, then left and right translations are continuous
with respect to the corresponding topology on G. It follows that the group
operations are continuous on G, by the earlier remarks. Note that the elements
of M are invariant under conjugations. This implies that conjugations are
equicontinuous at e, as in Section 3.11.

Suppose now that G is a topological group, and let B0 be a local base for
the topology of G at e. If U is an open subset of G that contains e, then let
UL, UR ⊆ G×G be as in Section 3.2. One can check that

B0,L = {UL : U ∈ B0}(3.14.3)

and

B0,R = {UR : U ∈ B0}(3.14.4)

are bases for the uniformities UL, UR defined in Section 3.2, respectively.
Let B1 be the collection of open subsets of G that contain e and are invariant

under conjugations. This is a local base for the topology of G at e if and only
if conjugations on G are equicontinuous at e, as in Section 3.11.

Equivalently, B1 consists of the open subsets U of G that contain e and
satisfy

aU = U a(3.14.5)

for every a ∈ G. Observe that U ∈ B1 if and only if U−1 ∈ B1.
If U ∈ B1, then it is easy to see that

(U−1)L = UR.(3.14.6)
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If B1 is a local base for the topology of G at e, then one can use this to get that

UL = UR.(3.14.7)

More precisely, if B1,L, B1,R are as in (3.14.3), (3.14.4), respectively, then

B1,L = B1,R.(3.14.8)

Conversely, suppose that (3.14.7) holds, and let us check that conjugations
are equicontinuous at e. Let V be an open subset of G that contains e, so that
V −1 has the same properties, and thus (V −1)R ∈ UR. Using (3.14.7), we get
that (V −1)R ∈ UL, so that there is an open subset U of G that contains e and
satisfies

UL ⊆ (V −1)R.(3.14.9)

If x ∈ G, then it follows that

xU = UL[x] ⊆ (V −1)R[x] = V x,(3.14.10)

where the two equalities are as in Section 3.2. This is the same as saying that

xU x−1 ⊆ V(3.14.11)

for every x ∈ G, as desired.

3.15 Cauchy sequences in topological groups

Let G be a topological group, and let {xj}∞j=1 be a sequence of elements of G.
Let us say that {xj}∞j=1 is a left-invariant Cauchy sequence if for every open
subset U of G that contains e, there is a positive integer L such that

x−1
j xl ∈ U(3.15.1)

for every j, l ≥ L. Equivalently, this means that

xl ∈ xj U(3.15.2)

for every j, l ≥ L. Similarly, {xj}∞j=1 is said to be a right-invariant Cauchy
sequence if for every open subset U of G that contains e there is a positive
integer L such that

xj x
−1
l ∈ U(3.15.3)

for every j, l ≥ L. This is the same as saying that

xj ∈ U xl(3.15.4)

for every j, l ≥ L.
Left and right-invariant Cauchy sequences are the same as Cauchy sequences

with respect to the uniformities UL and UR defined in Section 3.2, respectively.
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If the topology on G is determined by a collection ML of left-invariant semi-
metrics, then {xj}∞j=1 is a left-invariant Cauchy sequence if and only if {xj}∞j=1

is a Cauchy sequence with respect to ML, as in Section 2.15. Similarly, if the
topology on G is determined by a collection MR of right-invariant semimetrics,
then {xj}∞j=1 is a right-invariant Cauchy sequence if and only if {xj}∞j=1 is a
Cauchy sequence with respect to MR. Of course, there are analogous conditions
and statements for nets.

If {xj}∞j=1 converges to an element of G, then one can check that {xj}∞j=1 is
both a left and right-invariant Cauchy sequence. It is easy to see that {xj}∞j=1

is a left-invariant Cauchy sequence if and only if {x−1
j }∞j=1 is a right-invariant

Cauchy sequence. If G is commutative, then left and right-invariant Cauchy
sequences are the same. More precisely, this also works when conjugations are
equicontinuous at e.

If {xj}∞j=1 is a left-invariant Cauchy sequence, then

{xj : j ≥ 1}(3.15.5)

is left-invariant totally bounded. Similarly, if {xj}∞j=1 is a right-invariant Cauchy
sequence, then (3.15.5) is right-invariant totally bounded.

Let Y be a set with a nonempty collection MY of semimetrics, and let ϕ be
a mapping from G into Y . If {xj}∞j=1 is a left-invariant Cauchy sequence, and
ϕ is left-invariant uniformly continuous, then {ϕ(xj)}∞j=1 is a Cauchy sequence
in Y with respect to MY . Similarly, if {xj}∞j=1 is a right-invariant Cauchy
sequence, and ϕ is right-invariant uniformly continuous, then {ϕ(xj)}∞j=1 is a
Cauchy sequence with respect to MY . A left-invariant uniformly continuous
mapping between topological groups sends left-invariant Cauchy sequences to
sequences with the same property, and similarly for right-invariant uniformly
continuous mappings. In particular, continuous group homomorphisms send left
and right-invariant Cauchy sequences to sequences with the same property.



Chapter 4

Absolute values and
matrices

4.1 Some norms on kn

Let k be a field, and let | · | be an absolute value function on k. Also let n be a
positive integer, and let kn be the space of n-tuples of elements of k, as usual.
This is a vector space over k, with respect to coordinatewise addition and scalar
multiplication.

If v = (v1, . . . , vn) ∈ kn, then put

‖v‖1 =

n∑
j=1

|vj |,(4.1.1)

‖v‖2 =
( n∑

j=1

|vj |2
)1/2

,(4.1.2)

‖v‖∞ = max
1≤j≤n

|vj |.(4.1.3)

One can check that these define norms on kn with respect to | · | on k. More
precisely, these norms correspond to some of the examples in Section 1.10, with
X = {1, . . . , n}. If |·| is an ultrametric absolute value function on k, then (4.1.3)
is an ultranorm on kn, as before.

It is easy to see that
‖v‖∞ ≤ ‖v‖1, ‖v‖2(4.1.4)

for every v ∈ kn. We also have that

‖v‖2 ≤ ‖v‖1(4.1.5)

for every v ∈ kn, as in Section 1.10. Observe that

‖v‖1 ≤ n ‖v‖∞(4.1.6)

72
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and
‖v‖2 ≤ n1/2 ‖v‖∞(4.1.7)

for every v ∈ kn. One can use the Cauchy–Schwarz inequality to get that

‖v‖1 ≤ n1/2 ‖v‖2(4.1.8)

for every v ∈ kn, as before.
If v, w ∈ kn, then put

d1(v, w) = ‖v − w‖1,(4.1.9)

d2(v, w) = ‖v − w‖2,(4.1.10)

d∞(v, w) = ‖v − w‖∞,(4.1.11)

which define metrics on kn, as in Section 1.9. Note that (4.1.11) is an ultrametric
on kn when |·| is an ultrametric absolute value function on k. As in the preceding
paragraph, we have that

d∞(v, w) ≤ d2(v, w) ≤ d1(v, w)(4.1.12)

for every v, w ∈ kn. We also get that

d1(v, w) ≤ n1/2 d2(v, w) ≤ nd∞(v, w)(4.1.13)

for every v, w ∈ kn.
In particular, these three metrics determine the same topology on kn. Of

course, kn is the same as the Cartesian product of n copies of k. These three
metrics on kn are the same as those considered in Section 1.5, using the metric
associated to |·| on each copy of k. The topology determined on kn by these met-
rics is the same as the product topology on kn, using the topology determined
on k by the metric associated to | · | on each factor, as before. These metrics
also determine the same uniform structure on kn, and the same collection of
bounded subsets of kn.

4.2 Absolute values and metrics

Let k be a field with an absolute value function | · |, and let d(x, y) = |x − y|
be the corresponding metric on k. We can also define metrics on k2 = k × k
as in the previous section. It is easy to see that addition on k is continuous
as a mapping from k × k into k, with respect to the topology determined on
k by d(·, ·), and the corresponding product topology on k × k. More precisely,
addition on k is uniformly continuous as a mapping from k × k into k, with
respect to d(·, ·) on k, and any of the metrics on k×k considered in the previous
section.

One can check that multiplication on k is continuous as a mapping from
k × k into k as well, using standard arguments. In fact, the restriction of this
mapping to any bounded subset of k × k is uniformly continuous.
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One can also verify that x 7→ 1/x is continuous as a mapping from k \ {0}
into itself, with respect to the topology induced by the topology determined on
k by d(·, ·). If r is a positive real number, then the restriction of this mapping
to the set of x ∈ k with |x| ≥ r is uniformly continuous. It follows that k is
a topological group with respect to addition and the topology determined on k
by d(·, ·), and that k \ {0} is a topological group with respect to multiplication
and the induced topology.

Of course, d(x, y) is invariant under translations on k. Observe that

d(a x, a y) = |a x− a y| = |a| |x− y| = |a| d(x, y)(4.2.1)

for every a, x, y ∈ k.
Clearly

{x ∈ k : |x| = 1}(4.2.2)

is a subgroup of k\{0}, as a group with respect to multiplication. Using (4.2.1),
we get that the restriction of d(·, ·) to (4.2.2) is invariant under translations, as a
group with respect to multiplication. Note that (4.2.2) is a closed set in k, with
respect to the topology determined by d(·, ·). If | · | is an ultrametric absolute
value function on k, then (4.2.2) is an open set in k.

The set R+ of positive real numbers is an open subset of the real line with
respect to the standard topology, and a subgroup of R \ {0}, as a group with
respect to multiplication. The exponential function defines a homeomorphism
from R onto R+, with respect to the standard topology on R and the induced
topology on R+. The exponential function is also a group isomorphism from
R, as a group with respect to addition, onto R+, as a group with respect to
multiplication. The logarithm is the inverse mapping, and

| log x− log y|(4.2.3)

defines a metric on R+ that is invariant under translations, with respect to
multiplication on R+. This corresponds to the standard Euclidean metric on R,
using the isomorphism between R and R+ given by the exponential function,
and the topology determined on R+ by (4.2.3) is the same as the topology
induced by the standard topology on R.

If k = R with the standard absolute value function, then (4.2.2) is the
subgroup {1,−1} of R\{0}, as a group with respect to multiplication. There is
an obvious group isomorphism from {1,−1}×R+ onto R\{0}, which is defined
by

(a, b) 7→ a b(4.2.4)

for a ∈ {1,−1} and b ∈ R+, so that a b ∈ R \ {0}. The topology induced
on {1,−1} by the standard topology on R is the discrete topology, and the
isomorphism from {1,−1}×R+ onto R \ {0} defined by (4.2.4) is a homeomor-
phism with respect to the corresponding product topology. One can use this
and (4.2.3) to get a metric on R \ {0} that is invariant under translations, with
respect to multiplication, and for which the corresponding topology on R \ {0}
is the same as the topology induced by the standard topology on R.
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If k = C with the standard absolute value function, then (4.2.2) is the same
as the unit circle

T = {z ∈ C : |z| = 1}.(4.2.5)

There is an obvious group isomorphism from T×R+ onto C \ {0}, defined by
(4.2.4) again, now with a ∈ T, b ∈ R+, and a b ∈ C \ {0}. This isomorphism
is a homeomorphism, with respect to the topology determined on T by the
standard topology on C, and the corresponding product topology on T ×R+.
One can use this and the previous translation-invariant metrics on T and R+

to get a translation-invariant metric on C \ {0}, as a group with respect to
multiplication. More precisely, one can get a translation-invariant metric on
C \ {0} in this way for which the corresponding topology is the same as the
topology induced by the standard topology on C.

4.3 Absolute values and ultrametrics

Let k be a field with an ultrametric absolute value function | · |. If u, v ∈ k
satisfy

|u− v| < |v|,(4.3.1)

then
|u| = |v|.(4.3.2)

Indeed,
|u| ≤ max(|v|, |u− v|) ≤ |v|(4.3.3)

when |u− v| ≤ |v|. We also have that

|v| ≤ max(|u|, |u− v|),(4.3.4)

which implies that |v| ≤ |u| when (4.3.1) holds.
If x, y ∈ k \ {0}, then put

δ(x, y) = |x|−1 |x− y| = |y|−1 |x− y| when |x| = |y|(4.3.5)

= 1 when |x| 6= |y|.

Of course,
|x− y| ≤ max(|x|, |y|)(4.3.6)

for every x, y ∈ k. This implies that

δ(x, y) ≤ 1(4.3.7)

when |x| = |y|, and thus for all x, y ∈ k \ {0}. If

|x− y| < max(|x|, |y|),(4.3.8)

then |x| = |y|, as in (4.3.2). It follows that

δ(x, y) < 1(4.3.9)
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if and only if (4.3.8) holds.
It is easy to see that (4.3.5) is symmetric in x and y, and is equal to 0 exactly

when x = y. Let x, y, z ∈ k \ {0} be given, and let us verify that

δ(x, z) ≤ max(δ(x, y), δ(y, z)).(4.3.10)

This holds automatically when the right side is equal to one, because of (4.3.7).
Otherwise, if the right side is less than one, then |x| = |y| = |z|, by definition of
δ(·, ·). In this case, (4.3.10) follows from the ultrametric version of the triangle
inequality for | · | on k.

If a, x, y ∈ k \ {0}, then

δ(a x, a y) = δ(x, y),(4.3.11)

by construction. This means that δ(·, ·) is invariant under translations on k\{0},
as a group with respect to multiplication. Note that δ(·, ·) is the same as d(·, ·)
on (4.2.2).

Let d(y, z) = |y − z| be the usual metric on k associated to | · |, and let
Bd(x, r), Bd(x, r) be the open and closed balls in k centered at x ∈ k with
radius r > 0 with respect to d(·, ·). Suppose that x ∈ k \ {0}, and let Bδ(x, r),
Bδ(x, r) be the open and closed balls of radius r > 0 centered at x in k \ {0}
with respect to δ(·, ·). Observe that

Bδ(x, r) = Bd(x, r |x|)(4.3.12)

when 0 < r ≤ 1, and that

Bδ(x, r) = Bd(x, r |x|)(4.3.13)

when 0 < r < 1. In particular, this implies that the topology determined on
k \ {0} by δ(·, ·) is the same as the one induced by the topology determined on
k by d(·, ·).

4.4 Total boundedness in k \ {0}
Let k be a field with an absolute value function | · |, and let d(x, y) = |x− y| be
the corresponding metric on k. If t ∈ k and E ⊆ k, then put

t E = {t x : x ∈ E}.(4.4.1)

Let x ∈ k and r > 0 be given, and let Bd(x, r), Bd(x, r) be the open and closed
balls in k centered at x with radius r with respect to d(·, ·), as in the previous
section. If t ∈ k and t 6= 0, then

tBd(x, r) = Bd(t x, |t| r)(4.4.2)

and
tBd(x, r) = Bd(t x, |t| r).(4.4.3)
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Let x ∈ k \ {0} be given. If y ∈ k and d(x, y) ≤ r < |x|, then it is easy to
see that

|x| − r ≤ |y| ≤ |x|+ r.(4.4.4)

Note that
xBd(e, r) = Bd(x, r |x|)(4.4.5)

and
xBd(e, r) = Bd(x, r |x|)(4.4.6)

for every r > 0, as in (4.4.2), (4.4.3). If 0 < r < 1 and y is an element of (4.4.6),
then

(1− r) |x| ≤ |y| ≤ (1 + r) |x|,(4.4.7)

by (4.4.4).
Remember that k \{0} is a topological group with respect to multiplication,

and the topology induced by the topology determined on k by d(·, ·). Of course,
left and right-invariant total boundedness in k \ {0} are the same, as in Section
3.8. It is easy to see that E ⊆ k \ {0} is totally bounded in k \ {0} as a
topological group with respect to multiplication if and only if for every r > 0
there are finitely many elements x1, . . . , xn of k \ {0} such that

E ⊆
n⋃

j=1

xj Bd(e, r).(4.4.8)

Equivalently, this means that

E ⊆
n⋃

j=1

Bd(xj , r |xj |),(4.4.9)

by (4.4.6). In particular, we can take r = 1/2 to get that

{|x| : x ∈ E}(4.4.10)

has an upper bound in R and a positive lower bound, because of (4.4.7).
In (4.4.8) and (4.4.9), we may as well ask that

(xj Bd(e, r)) ∩ E = Bd(xj , r |xj |) ∩ E 6= ∅,(4.4.11)

because otherwise the set corresponding to xj is not needed to cover E. We
may also restrict our attention to r ≤ 1/2. Under these conditions, the upper
and lower bounds for (4.4.10) mentioned in the preceding paragraph lead to an
upper bound and positive lower bound for |xj |, 1 ≤ j ≤ n, depending only on
E, because of (4.4.7).

Left and right-invariant total boundedness in k, as a topological group with
respect to addition, are the same too, and they are the same as total bounded-
ness with respect to d(·, ·), as in Section 3.8. If E ⊆ k \ {0} is totally bounded
in k \ {0}, as a topological group with respect to multiplication, then one can
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use the upper bound for |xj | mentioned in the previous paragraph to get that
E is totally bounded with respect to d(·, ·).

If E ⊆ k is totally bounded with respect to k, then for every r > 0 there are
finitely many elements x1, . . . , xn of k such that

E ⊆
n⋃

j=1

Bd(xj , r),(4.4.12)

and we may as well ask that Bd(xj , r) ∩ E 6= ∅ for each j = 1, . . . , n, as before.
If E ⊆ k \ {0}, and there is a positive lower bound for (4.4.10), then we can
get a positive lower bound for |xj | when r is sufficiently small, using (4.4.4).
Under these conditions, one can check that E is totally bounded in k \ {0}, as
a topological group with respect to multiplication.

Suppose now that | · | is an ultrametric absolute value function on k, and let
δ(·, ·) be the ultrametric defined on k \ {0} in (4.3.5). Note that E ⊆ k \ {0} is
totally bounded in k \ {0} as a topological group with respect to multiplication
if and only if E is totally bounded with respect to δ(·, ·), as in Section 3.8. In
this case, one can use (4.4.8) or (4.4.9) with r = 1 to get that (4.4.10) has only
finitely many elements.

4.5 Discrete absolute value functions

Let k be a field, and let | · | be an absolute value function on k. Observe that

{|x| : x ∈ k \ {0}}(4.5.1)

is a subgroup of the multiplicative group R+ of positive real numbers. If 1 is
not a limit point of (4.5.1), with respect to the standard topology on R, then
| · | is said to be discrete as an absolute value function on k.

Put
ρ1 = sup{|x| : x ∈ k, |x| < 1},(4.5.2)

so that 0 ≤ ρ1 ≤ 1. It is easy to see that ρ1 = 0 if and only if | · | is the trivial
absolute value function on k. One can also check that ρ1 < 1 if and only if | · |
is discrete on k.

Suppose that | · | is nontrivial and discrete on k, so that 0 < ρ1 < 1. One
can verify that the supremum in (4.5.2) is attained in this case, so that there is
an x1 ∈ k such that

|x1| = ρ1.(4.5.3)

In fact, (4.5.1) consists exactly of the integer powers of ρ1 under these conditions.
If k has positive characteristic, then | · | is non-archimedean on k, and thus

an ultrametric absolute value function. If |·| is archimedean on k, then it follows
that k has characteristic 0, so that there is a natural embedding of Q into k.
This leads to an absolute value function on Q, which is archimedean as well.

Ostrowski’s theorem implies that an archimedean absolute value function on
Q is equivalent to the standard Euclidean absolute value function. In particular,
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this means that an archimedean absolute value function on Q is not discrete.
Combining this with the remarks in the preceding paragraph, we get that any
archimdean absolute value function on k is not discrete. Equivalently, if | · | is
a discrete absolute value function on k, then | · | is non-archimedean on k.

Suppose that | · | is nontrivial and discrete on k again, so that | · | is an ultra-
metric absolute value function on k, as in the previous paragraph. Remember
that

{x ∈ k : |x| = 1}(4.5.4)

is a subgroup of k \ {0}, as a group with respect to multiplication. If x1 ∈ k is
as in (4.5.3), then every element of k \ {0} can be expressed in a unique way as

xxj
1,(4.5.5)

where x ∈ k, |x| = 1, and j ∈ Z. This leads to a group isomorphism between
k \ {0} and the product of (4.5.4) and Z, as a group with respect to addition.

Of course, (4.5.4) is a topological group, with respect to the topology induced
by the topology determined on k by the ultrametric associated to | · |. We also
have that (4.5.4) is an open subset of k, because | · | is an ultrametric absolute
value function on k. We may consider Z as a topological group too, using the
discrete topology. The group isomorphism between k \ {0} and the product of
(4.5.4) and Z mentioned in the previous paragraph is a homeomorphism, with
respect to the topology induced on k \ {0} by the topology determined on k by
the ultrametric associated to | · |, and the product topology on the product of
(4.5.4) and Z.

4.6 Local total boundedness

Let X be a set with a uniformity U . We say that X is locally totally bounded
with respect to U if for every x ∈ X there is an open set U with respect to
the topology determined by U such that x ∈ U and U is totally bounded with
respect to U . If X is locally compact with respect to the topology determined
by U , then X is locally totally bounded with respect to U , because compact
subsets of X are totally bounded.

Let G be a topological group, and note that G is locally compact when there
is an open subset of G that contains e and is contained in a compact set, because
of continuity of translations. Let us say that G is locally totally bounded if there
is an open subset U of G such that e ∈ U and U is either left or right-invariant
totally bounded in G. We may as well ask that U be symmetric, by replacing
it with U ∩ U−1. In this case, left and right-invariant total boundedness of U
are the same.

Let UL, UR be the uniformities on G defined in Section 3.2, and remember
that left and right-invariant total boundedness are equivalent to total bounded-
ness with respect to UL and UR, respectively, as in Section 3.8. If G is locally
totally bounded with respect to UL or UR, then it is easy to see that G is lo-
cally totally bounded as a topological group, as in the preceding paragraph.
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Conversely, suppose that G is locally totally bounded as a topological group,
and let U be a symmetric open subset of G that contains e and is left and
right-invariant totally bounded. Note that aU a−1 has the same properties for
every a ∈ G, because conjugation by a is continuous. One can check that aU b
is left and right-invariant totally bounded for every a, b ∈ G, which implies in
particular that G is locally totally bounded with respect to both UL and UR.

In this case, if a subset E of G is left or right-invariant totally bounded,
then E is contained in the union of finitely many left or right translates of U .
It follows that E is both left and right-invariant totally bounded, because left
and right translates of U are both left and right-invariant totally bounded.

Let k be a field with an absolute value function |·|. Let us refer to a subset E
of k as being totally bounded if E is totally bounded with respect to the metric
associated to | · |, which is the same as saying that E is totally bounded in k
as a topological group with respect to addition and the topology determined by
the metric associated to | · |. In this case, it is easy to see that t E is totally
bounded in k for every t ∈ k.

Let us say that k is locally totally bounded with respect to | · | if k is locally
totally bounded with respect to the metric associated to | · |, which is the same
as saying that k is locally totally bounded as a topological group with respect
to addition. Equivalently, this means that there is a positive real number r such
that the open ball in k centered at 0 with radius r with respect to the metric
associated to | · | is totally bounded. Note that this holds when | · | is the trivial
absolute value function on k.

If | · | is nontrivial on k, then there is an x ∈ k such that x 6= 0 and |x| 6= 1.
This implies that there are y, z ∈ k such that 0 < |y| < 1 and |z| > 1, using x
and 1/x. Of course, it follows that

|yj | = |y|j → 0 and |zj | = |z|j → +∞ as j → ∞.(4.6.1)

If k is locally totally bounded, then one can use this to get that there are open
balls in k centered at 0 of arbitrarily large radius that are totally bounded. This
means that all bounded subsets of k are totally bounded.

Similarly, if k is locally compact, and | · | is nontrivial on k, then closed and
bounded sets in k are compact. One can check that k is complete with respect
to the metric associated to | · | in this case. If | · | is the trivial absolute value
function on k, then k is locally compact and complete.

If k is complete with respect to the metric associated to | · |, then subsets of k
that are both closed and totally bounded are compact. If k is also locally totally
bounded, and | · | is nontrivial on k, then it follows that closed and bounded
subsets of k are compact.

4.7 Some subgroups of k

Let k be a field with an ultrametric absolute value function | · |, and let B(x, r),
B(x, r) be the open and closed balls in k centered at x ∈ k with radius r > 0
with respect to the ultrametric associated to |·. It is easy to see that open and



4.8. P -ADIC INTEGERS 81

closed balls centered at 0 are subgroups of k, as a group with respect to addition,
as in Section 3.7.

In fact, B(0, 1) is a subring of k that contains the multiplicative identity
element, and B(0, r), B(0, r) are ideals in B(0, 1) when 0 < r ≤ 1. One can
check that the quotient ring

B(0, 1)/B(0, 1)(4.7.1)

is a field, which is called the residue field associated to | · | on k. If | · | is the
trivial absolute value function on k, then B(0, 1) = k, B(0, 1) = {0}, and the
residue field reduces to k.

If B(0, 1) is totally bounded, then one can verify that the residue field is
finite. If B(0, 1) is totally bounded, then | · | is discrete on k. More precisely,
this holds when B(0, 1) is contained in the union of finitely many balls of radius
strictly less than one.

Suppose now that the residue field (4.7.1) is finite, and that | · | is nontrivial
and discrete on k. Let ρ1 be as in (4.5.2), so that 0 < ρ1 < 1, and the positive
values of | · | on k are the same as the integer powers of ρ1. In particular,
B(0, 1) = B(0, ρ1), so that B(0, 1) can be expressed as the union of finitely
many pairwise-disjoint closed balls of radius ρ1.

If j is any integer, then one can use translations and dilations to get that
any closed ball in k of radius ρj1 can be expressed as the union of finitely many

closed balls of radius ρj+1
1 . If l is any positive integer, then one can repeat the

process to get that closed balls in k of radius ρj1 can be expressed as the union

of finitely many closed balls of radius ρj+l
1 . This means that closed balls in k

are totally bounded.

4.8 p-Adic integers

Let k be a field, and let x be an element of k. If n is a nonnegative integer, then
it is well known and easy to see that

(1− x)

n∑
j=0

xj = 1− xn+1,(4.8.1)

where xj is interpreted as being equal to 1 when j = 0. If x 6= 1, then it follows
that

n∑
j=0

xj = (1− xn+1) (1− x)−1.(4.8.2)

Let | · | be an absolute value function on k. If |x| < 1, then |xn+1| = |x|n+1

tends to 0 as n → ∞, and thus

n∑
j=0

xj → (1− x)−1 as n → ∞,(4.8.3)
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with respect to the metric on k associated to | · |.
Let p be a prime number, and let | · |p be the p-adic absolute value on

Qp. If x ∈ Q and |x|p ≤ 1, then x can be expressed as a/b, where a, b ∈ Z,
b 6= 0, and b is not a multiple of p. It follows that there is a c ∈ Z such that
b c = 1− p y for some y ∈ Z. The argument in the preceding paragraph implies
that x = a c (1 − p y)−1 can be approximated by integers with respect to the
p-adic metric.

Put
Zp = {x ∈ Qp : |x|p ≤ 1}.(4.8.4)

It is easy to see that Q ∩ Zp is dense in Zp with respect to the p-adic metric,
because Q is dense in Qp, by construction. One can check that Z is dense in Zp,
using the remarks in the previous paragraph. More precisely, Zp is the same as
the closure of Z in Qp.

If j ∈ Z, then pj Zp is the same as the closed ball in Qp centered at 0 with
radius p−j with respect to the p-adic metric. This is a subgroup of Qp, as a
group with respect to addition, as in the previous section. We also have that
Zp is a subring of Qp, and that pj Zp is an ideal in Zp when j ≥ 0, as before.
Thus the quotient Zp/(p

j Zp) is a commutative ring when j ≥ 0.
There is a natural ring homomorphism from Z into Zp/(p

j Zp) for each
j ≥ 0, obtained by composing the obvious inclusion of Z into Zp with the quo-
tient mapping from Zp onto Zp/(p

j Zp). This homomorphism maps Z onto
Zp/(p

j Zp), because Z is dense in Zp, as before. The kernel of this homomor-
phism is Z ∩ (pj Zp), which is the same as pj Z. This leads to a natural ring
isomorphism from Z/(pj Z) onto Zp/(p

j Zp) for every j ≥ 0.
In particular, this implies that Zp is totally bounded. Of course, Zp is

a closed set in Qp, with respect to the p-adic metric. It follows that Zp is
compact, because Qp is complete with respect to the p-adic metric.

4.9 Seminorms on kn

Let k be a field with an absolute value function |·|, and let n be a positive integer.
Also let N be a seminorm on kn, with respect to | · | on k. The standard basis
vectors e1, . . . , en in kn can be defined as usual by taking the jth coordinate of
el to be 1 when j = l, and 0 when j 6= l. If v ∈ kn, then we get that

N(v) = N
( n∑

l=1

vl el

)
≤

n∑
l=1

N(el) |vl|.(4.9.1)

Let ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ be the norms on kn defined in Section 4.1. If
v ∈ kn, then it is easy to see that

N(v) ≤
(

max
1≤l≤n

N(el)
)
‖v‖1(4.9.2)

and

N(v) ≤
( n∑

l=1

N(el)
)
‖v‖∞,(4.9.3)
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using (4.9.1). Similarly,

N(v) ≤
( n∑

l=1

N(el)
2
)1/2

‖v‖2,(4.9.4)

by the Cauchy–Schwarz inequality.
If N is a semi-ultranorm on kn, then

N(v) ≤ max
1≤l≤n

(N(el) |vl|)(4.9.5)

for every v ∈ kn. This implies that

N(v) ≤
(

max
1≤l≤n

N(el)
)
‖v‖∞(4.9.6)

for every v ∈ kn.
Suppose for the moment that there is a positive real number c such that

c ‖v‖∞ ≤ N(v)(4.9.7)

for every v ∈ kn. Of course, this implies that N is a norm on kn. In this case,
it is easy to see that the topology determined on kn by the metric associated to
N is the same as the topology determined by the metric associated to ‖ · ‖∞.
This is the same as the product topology on kn, using the topology determined
on k by the metric associated to | · |, as before.

Note that a sequence of elements of kn corresponds to n sequences of elements
of k, by taking the coordinates of the terms of the sequence in kn. One can
check that a sequence of elements of kn is a Cauchy sequence with respect to
the metric associated to ‖ · ‖∞ if and only if the corresponding n sequences in
k are Cauchy sequences with respect to the metric associated to | · |. If k is
complete with respect to the metric associated to | · |, then it follows that kn is
complete with respect to the metric associated to ‖ · ‖∞.

If (4.9.7) holds, then a Cauchy sequence of elements of kn with respect to
the metric associated to N is also a Cauchy sequence with respect to the metric
associated to ‖ · ‖∞. If k is complete with respect to the metric associated to
| · |, then one can use this to get that kn is complete with respect to the metric
associated to N .

Let (X, d(x, y)) be a metric space, and let E be a subset of X. If E is
complete as a metric space with respect to the restriction of d(·, ·) to E, then it
is well known that E is a closed set inX, with respect to the topology determined
by d(·, ·). To see this, let {xj}∞j=1 be a sequence of elements of E that converges
to an element x of X. Under these conditions, {xj}∞j=1 is a Cauchy sequence in
E, which converges to an element of E, by hypothesis. This implies that x ∈ E,
by the uniqueness of the limit of a convergent sequence in a metric space.

4.10 Norms and completeness

Let k be a field with an absolute value function | · | again, let n be a positive
integer, and let N be a norm on kn with respect to | · | on k. If k is complete
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with respect to the metric associated to | · |, then it is well known that there is
a positive real number c such that (4.9.7) holds for every v ∈ kn.

To show this, we use induction on n. The n = 1 case is clear, because any
norm on k with respect to | · | is a positive constant multiple of | · |.

Suppose that n ≥ 2, and consider

{v ∈ kn : vn = 0},(4.10.1)

which is a linear subspace of kn. This can be identified with kn−1 in an obvious
way, so that the restriction of N to (4.10.1) corresponds to a norm on kn−1.
Using our induction hypothesis, we get that there is a positive real number c0
such that

c0 ‖v‖∞ ≤ N(v)(4.10.2)

for every v ∈ kn with vn = 0.
It follows from this and the completeness of k that (4.10.1) is complete as

a metric space with respect to the metric associated to the restriction of N to
(4.10.1), as in the previous section. This implies that (4.10.1) is a closed set in
kn with respect to the metric associated to N , as before.

Let en be the nth standard basis vector in kn, with jth coordinate equal to
1 when j = n, and to 0 otherwise. Of course, en is not an element of (4.10.1).
It follows that there is a positive real number c1 such that

N(v − en) ≥ c1(4.10.3)

for every v ∈ kn with vn = 0, because (4.10.1) is a closed set in kn with respect
to the metric associated to N .

Equivalently, (4.10.3) says that

N(v) ≥ c1 |vn|(4.10.4)

for every v ∈ kn. More precisely, this is trivial when vn = 0, and otherwise one
can reduce to the case where vn = 1 using the homogeneity of N on kn.

If v is any element of kn, then

c0 ‖v − vn en‖∞ ≤ N(v − vn en),(4.10.5)

by (4.10.2). We also have that

N(v − vn en) ≤ N(v) + |vn|N(en) ≤ (1 + c1 N(en))N(v),(4.10.6)

by (4.10.4). Thus

c0 ‖v − vn en‖∞ ≤ (1 + c1 N(en))N(v).(4.10.7)

Note that ‖v − vn en‖∞ = max1≤j≤n−1 |vj |. One can get (4.9.7) for a suitable
c > 0 using (4.10.4) and (4.10.7).

If k is locally compact and | · | is nontrivial on k, then one can use another
argument, as follows. In this case, closed and bounded subsets of k are compact,
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as in Section 4.6. This implies that closed and bounded subsets of kn are
compact, with respect to the metric associated to ‖·‖∞, by Tychonoff’s theorem.
In particular, the set of v ∈ kn with ‖v‖∞ = 1 is compact.

Note that N is continuous as a real-valued function on kn with respect to
the metric on kn associated to N , as in Section 1.8. This implies that N is
continuous as a real-valued function on kn, with respect to the metric on kn

associated to ‖ · ‖∞, because of (4.9.3). It follows that N attains its minumum
on the set of v ∈ kn with ‖v‖∞ = 1, because this set is compact with respect
to the metric on kn associated to ‖ · ‖∞. Of course, the minimum of N on this
set is positive, because N is a norm on kn, by hypothesis. It is easy to see that
(4.9.7) holds with c equal to this minimum, using homogeneity of the norm.

4.11 Some remarks about matrices

Let n be a positive integer, and let R be a ring. The space Mn(R) of n × n
matrices with entries in R is a ring too, with respect to entrywise addition of
matrices, and matrix multiplication.

Suppose that R has a multiplicative identity element e. The corresponding
identity matrix I = In in Mn(R) is the matrix with diagonal entries equal to e,
and all other entries equal to 0. This is the multiplicative identity element in
Mn(R).

Let GLn(R) be the set of elements of Mn(R) with a multiplicative inverse
in Mn(R). Of course, this is a group with respect to matrix multiplication.

Suppose now that multiplication on R is commutative. If a ∈ Mn(R), then
the determinant det a of a can be defined as an element of R in the usual way.
It is well known that a has a multiplicative inverse in Mn(R) if and only if det a
has a multiplicative inverse in R.

Let k be a field, and note that Mn(k) is a vector space over k, with respect
to entrywise addition and scalar multiplication. In fact, Mn(k) is an associative
algebra over k, with respect to matrix multiplication. In this case, a ∈ Mn(k)
has a multiplicative inverse in Mn(k) if and only if det a 6= 0.

Let | · | be an absolute value function on k, and let us now consider k to be
equipped with the topology determined by the metric associated to | · |. If we
consider Mn(k) to be the Cartesian product of n2 copies of k, then we get a
corresponding product topology on Mn(k). One can check that matrix addition
and multiplication are continuous on Mn(k), as mappings from Mn(k)×Mn(k)
into Mn(k), and using the corresponding product topology on Mn(k)×Mn(k).
One can also verify that the determinant defines a continuous function from
Mn(k) into k.

In particular, GLn(k) is an open subset of Mn(k). One can check that
a 7→ a−1 is continuous on GLn(k), with respect to the topology induced by
the one on Mn(k), using Cramer’s rule. It follows that GLn(k) is a topological
group with respect to this topology.

Suppose now that | · | is an ultrametric absolute value function on k. Thus
the closed unit ball B(0, 1) = Bk(0, 1) in k with respect to the ultrametric
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associated to | · | is both open and closed in k, and a subring of k that contains
the multiplicative identity element, as before. This means that Mn(B(0, 1)) is
both open and closed as a subset of Mn(k), and that Mn(B(0, 1)) is a subring
of Mn(k) that contains the identity matrix I.

Observe that x ∈ B(0, 1) has a multiplicative inverse in B(0, 1) if and only
if |x| = 1. This implies that

GLn(B(0, 1)) = {a ∈ Mn(B(0, 1)) : | det a| = 1}.(4.11.1)

Remember that the set of x ∈ k with |x| = 1 is both open and closed in k,
because | · | is an ultrametric absolute value function on k. This implies that
GLn(B(0, 1)) is both open and closed in Mn(k), because the determinant is
continuous on Mn(k).

4.12 Supremum and Lipschitz seminorms

Let k be a field with an absolute value function |·|, let X be a nonempty set, and
let V be a linear subspace of the space of all k-valued functions on X. Also let
E be a nonempty subset of X, and suppose that the elements of V are bounded
on E with respect to | · | on k. If f ∈ V , then put

‖f‖sup,E = sup
x∈E

|f(x)|.(4.12.1)

One can check that this defines a seminorm on V , as a vector space over k, with
respect to | · | on k. This is called the supremum seminorm on V corresponding
to E.

If E = X, then this defines a norm on V , which may be denoted ‖f‖sup. If |·|
is an ultrametric absolute value function on k, then (4.12.1) is a semi-ultranorm
on V .

Suppose that V is a subalgebra of the algebra of all k-valued functions on
X, with respect to pointwise multiplication of functions. If f, g ∈ V , then we
have that

‖f g‖sup,E ≤ ‖f‖sup,E ‖g‖sup,E .(4.12.2)

Let d(·, ·) be a semimetric on X, and let α be a positive real number. Re-
member that a k-valued function f on X is said to be Lipschitz of order α with
constant C ≥ 0 on X with respect to the metric associated to | · | on k if

|f(x)− f(w)| ≤ C d(x,w)α(4.12.3)

for every x,w ∈ X, as in Section 1.8. It is easy to see that the space Lipα(X, k)
of all k-valued functions on X that are Lipschitz of order α with some constant
C is a linear subspace of the space of all k-valued functions on X.

If f ∈ Lipα(X, k), then we would like to put

‖f‖Lipα(X,k) = sup

{
|f(x)− f(w)|

d(x,w)α
: x,w ∈ X, d(x,w) > 0

}
.(4.12.4)
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Let us interpret this as being equal to 0 when d(x,w) = 0 for every x, w in
X. Note that f(x) = f(w) when d(x,w) = 0, by hypothesis. Equivalently,
‖f‖Lipα(X,k) is the smallest C ≥ 0 such that (4.12.3) holds.

One can check that this defines a seminorm on Lipa(X, k), as a vector space
over k, with respect to | · | on k. More precisely, ‖f‖Lipa(X,k) = 0 exactly when
f is constant on X. If | · | is an ultrametric absolute value function on k, then
this defines a semi-ultranorm on Lipa(X, k).

If f , g are k-valued functions on X, then

|f(x) g(x)− f(w) g(w)|(4.12.5)

≤ |f(x)| |g(x)− g(w)|+ |f(x)− f(w)| |g(w)|

for every x,w ∈ X. If | · | is an ultrametric absolute value function on X, then

|f(x) g(x)− f(w) g(w)|(4.12.6)

≤ max(|f(x)| |g(x)− g(w)|, |f(x)− f(w)| |g(w)|)

for every x,w ∈ X. If f , g are bounded on X, and f, g ∈ Lipα(X, k), then it is
easy to see that f g ∈ Lipα(X, k), with

‖f g‖Lipα(X,k) ≤ ‖f‖sup ‖g‖Lipα(X,k) + ‖f‖Lipα(X,k) ‖g‖sup.(4.12.7)

If | · | is an ultrametric absolute value function on k, then we get that

‖f g‖Lipα(X,k) ≤ max(‖f‖sup ‖g‖Lipα(X,k), ‖f‖Lipα(X,k) ‖g‖sup).(4.12.8)

4.13 Some norms on matrices

Let k be a field with an absolute value function | · |, and let n be a positive
integer. Remember that the space Mn(k) of n × n matrices with entries in
k is an associative algebra over k, with respect to matrix multiplication. If
a = (aj,l) ∈ Mn(k), then put

N1,∞(a) = max
1≤l≤n

( n∑
j=1

|aj,l|
)
,(4.13.1)

N∞,1(a) = max
1≤j≤n

( n∑
l=1

|aj,l|
)
,(4.13.2)

N∞,∞(a) = max
1≤j,l≤n

|aj,l|.(4.13.3)

It is easy to see that these define norms on Mn(k), as a vector space over k, and
with respect to | · | on k. If | · | is an ultrametric absolute value function on k,
then (4.13.3) is an ultranorm on Mn(k).

Let at = (atj,l) ∈ Mn(k) be the transpose of a, so that atj,l = al,j for j, l =
1, . . . , n. Observe that

N1,∞(at) = N∞,1(a)(4.13.4)
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and
N∞,∞(at) = N∞,∞(a).(4.13.5)

It is easy to see that

N∞,∞(a) ≤ N1,∞(a), N∞,1(a)(4.13.6)

and
N1,∞(a), N∞,1(a) ≤ nN∞,∞(a).(4.13.7)

We also have that

N1,∞(I) = N∞,1(I) = N∞,∞(I) = 1,(4.13.8)

where I is the identity matrix in Mn(k), as before. Note that the topologies
determined on Mn(k) by the metrics associated to these norms are the same
as the product topology corresponding to the topology determined on k by the
metric associated to | · |, where Mn(k) is considered as the Cartesian product of
n2 copies of k.

Let b = (bj,l) be another element of Mn(k), and let c = (cj,l) ∈ Mn(k) be
the product of a and b, so that

cj,r =

n∑
l=1

aj,l bl,r(4.13.9)

for j, r = 1, . . . , n. Thus

|cj,r| ≤
n∑

l=1

|aj,l| |bl,r|(4.13.10)

for j, r = 1, . . . , n. Using this, one can check that

N1,∞(c) ≤ N1,∞(a)N1,∞(b).(4.13.11)

Similarly, one can verify that

N∞,1(c) ≤ N∞,1(a)N∞,1(b).(4.13.12)

Let us suppose from now on in thia section that |·| is an ultrametric absolute
value function on k. In this case, we get that

|cj,r| ≤ max
1≤l≤n

(|aj,l| |bl,r|)(4.13.13)

for j, r = 1, . . . , n. This implies that

N∞,∞(c) ≤ N∞,∞(a)N∞,∞(b).(4.13.14)

Let Bk(0, 1) be the closed unit ball in k with respect to the ultrametric associ-
ated to | · |, as before. Thus Mn(Bk(0, 1)) is the same as the closed unit ball in
Mn(k) with respect to the ultrametric associated to N∞,∞.

If a, b ∈ Mn(Bk(0, 1)), then

| det a− det b| ≤ N∞,∞(a− b).(4.13.15)

This can be verified directly, and one can also use the remarks about products
of bounded Lipschitz functions in the previous section.
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4.14 Some subgroups of GLn(k)

Let k be a field with an ultrametric absolute value function | · |, and let n
be a positive integer again. Remember that GLn(k) is the group of invertible
elements in Mn(k), and let N∞,∞ be the ultranorm defined on Mn(k) in the
previous section. Let us use Bk(·, ·), Bk(·, ·) for open and closed balls in k with
respect to the ultrametric associated to | · |, and B(·, ·), B(·, ·) for open and
closed balls in Mn(k) with respect to the ultrametric associated to N∞,∞. Thus

B(0, 1) = Mn(Bk(0, 1)),(4.14.1)

as in the previous section. Remember that (4.14.1) is a subring of Mn(k) that
contains the identity matrix I, and that GLn(Bk(0, 1)) is the group of invertible
elements of this subring.

If a ∈ Mn(Bk(0, 1)) and b ∈ Mn(k), then

N∞,∞(a b), N∞,∞(b a) ≤ N∞,∞(a)N∞,∞(b) ≤ N∞,∞(b),(4.14.2)

by (4.13.14). Similarly, if a ∈ GLn(Bk(0, 1)) and c ∈ Mn(k), then

N∞,∞(a−1 c), N∞,∞(c a−1) ≤ N∞,∞(c).(4.14.3)

This implies that
N∞,∞(b) ≤ N∞,∞(a b), N∞,∞(b a)(4.14.4)

for every b ∈ Mn(k). It follows that

N∞,∞(a b) = N∞,∞(b a) = N∞,∞(b)(4.14.5)

for every a ∈ GLn(Bk(0, 1)) and b ∈ Mn(k). In particular, N∞,∞(a) = 1 when
a ∈ GLn(Bk(0, 1)).

Of course,
dN∞,∞(b, c) = N∞,∞(b− c)(4.14.6)

is the ultrametric on Mk(k) associated to N∞,∞. Using (4.14.5), we get that
this ultrametric is invariant under left and right multiplication by elements of
GLn(Bk(0, 1)). This means that the restriction of (4.14.6) to GLn(Bk(0, 1)) is
invariant under left and right translations in GLn(Bk(0, 1)), as a group with
respect to matrix multiplication. Note that

N∞,∞(a− I) = N∞,∞(a−1 − I)(4.14.7)

when a ∈ GLn(Bk(0, 1)). If a, b ∈ GLn(Bk(0, 1)), then we have that

N∞,∞(a b− I) ≤ max(N∞,∞(a b− b), N∞,∞(b− I))(4.14.8)

= max(N∞,∞(a− I), N∞,∞(b− I)).

More precisely, this works when a ∈ Mn(k) and b ∈ GLn(Bk(0, 1)). The same
conclusion can be obtained analogously when a ∈ GLn(Bk(0, 1)) and b ∈ Mn(k).
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Remember that GLn(Bk(0, 1)) consists of all a ∈ Mn(Bk(0, 1)) such that
| det a| = 1, as in (4.11.1). If a ∈ GLn(Bk(0, 1)), b ∈ Mn(Bk(0, 1)), and

N∞,∞(a− b) < 1,(4.14.9)

then

| det a− det b| < 1,(4.14.10)

by (4.13.15). This implies that

| det b| = 1,(4.14.11)

as in Section 4.3, so that b ∈ GLn(Bk(0, 1)) too.
Observe that

B(I, 1) ⊆ B(I, 1) = B(0, 1).(4.14.12)

In fact,

B(I, 1) ⊆ GLn(Bk(0, 1)),(4.14.13)

by the remarks in the preceding paragraph. More precisely, B(I, 1) is a normal
subgroup of GLn(B(0, 1)), as in Section 3.7. This could also be obtained from
some of the properties of N∞,∞ mentioned earlier. Similarly, B(I, r) and B(I, r)
are normal subgroups of GLn(Bk(0, 1)) when 0 < r < 1.

4.15 Two ultrametrics on GLn(k)

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let a, b ∈ GLn(k) be given, and put

δL(a, b) = N∞,∞(a−1 b− I) when a−1 b ∈ GLn(Bk(0, 1))(4.15.1)

= 1 otherwise.

Of course, a−1 b is an element of GLn(Bk(0, 1)) if and only if b−1 a = (a−1 b)−1

has this property. In this case,

N∞,∞(a−1 b− I) = N∞,∞(b−1 a− I),(4.15.2)

by (4.14.7). This implies that (4.15.1) is symmetric in a, b.
It is easy to see that

δL(a, b) ≤ 1(4.15.3)

when a−1 b ∈ GLn(Bk(0, 1)), and thus for all a, b ∈ GLn(k). If a, b ∈ GLn(k)
and

N∞,∞(a−1 b− I) < 1,(4.15.4)

then a−1 b ∈ GLn(Bk(0, 1)), as in (4.14.13). It follows that a, b ∈ GLn(k) satisfy

δL(a, b) < 1(4.15.5)
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if and only if (4.15.4) holds. Note that δL(a, b) = 0 if and only if a−1 b = I,
which means that a = b.

Let a, b, c ∈ GLn(k) be given, and let us check that

δL(a, c) ≤ max(δL(a, b), δL(b, c)).(4.15.6)

This is trivial when the right side is equal to one, by (4.15.3). If the right side
is less than one, then a−1 b, b−1 c ∈ GLn(Bk(0, 1)), which implies that a−1 c is
an element of GLn(Bk(0, 1)) too. Under these conditions, we have that

N∞,∞(a−1 c− I) = N∞,∞((a−1 b) (b−1 c)− I)

≤ max(N∞,∞(a−1 b− I), N∞,∞(b−1 c− I)),(4.15.7)

as in (4.14.8). This implies (4.15.6), as desired.
It follows that (4.15.1) defines an ultrametric on GLn(k). This ultrametric is

invariant under left translations on GLn(k), as a group with respect to matrix
multiplication, by construction. If a, b ∈ GLn(Bk(0, 1)), then one can check
that

δL(a, b) = N∞,∞(a− b).(4.15.8)

More precisely, this uses the fact that N∞,∞ is invariant under left multiplication
by elements of GLn(Bk(0, 1)), as in the previous section.

Let a, b ∈ GLn(k) be given again, and put

δR(a, b) = N∞,∞(a b−1 − I) when a b−1 ∈ GLn(Bk(0, 1))(4.15.9)

= 1 otherwise.

Observe that
δR(a, b) = δL(a

−1, b−1).(4.15.10)

It follows that (4.15.9) defines an ultrametric on GLn(k). This ultrametric is
clearly invariant under right translations on GLn(k), as a group with respect to
matrix multiplication. One can verify that

δR(a, b) = N∞,∞(a− b)(4.15.11)

for every a, b ∈ GLn(Bk(0, 1)), because N∞,∞ is invariant under right multipli-
cation by elements of GLn(Bk(0, 1)), as before.



Chapter 5

ℓr Spaces and operator
seminorms

5.1 q-Norms and q-seminorms

Let k be a field, and let | · | be a nonnegative real-valued function on k that
satisfies the first two conditions (1.4.1) and (1.4.2) in the definition of an absolute
value function. Let us say that | · | is a q-absolute value function on k for some
positive real number q if

|x+ y|q ≤ |x|q + |y|q(5.1.1)

for every x, y ∈ k. Equivalently, this means that

|x+ y| ≤ (|x|q + |y|q)1/q(5.1.2)

for every x, y ∈ k. The right side decreases monotonically in q, by (2.10.1), so
that this condition becomes more restrictive as q increases. A q-absolute value
function is the same as an ordinary absolute value function when q = 1, and it
is convenient to consider an ultrametric absolute value function as a q-absolute
value function with q = ∞.

If | · | is a q-absolute value function on k, then |x− y| defines a q-metric on
k. In this case, if a is a positive real number, then |x|a is a (q/a)-absolute value
function on k. It is easy to see that a q-absolute value function for any q > 0 is
a quasimetric absolute value function. Conversely, a quasimetric absolute value
function is a q-absolute value function for some q > 0, by the corollary on p14
of [17].

Let | · | be a qk-absolute value function on k for some qk > 0, and let V be a
vector space over k. Also let N be a nonnegative real-valued function on V that
satisfies the homogeneity condition (1.9.1) with respect to | · |, and let qN be a
positive real number. Let us say that N is a qN -seminorm on V with respect
to | · | on k if

N(v + w)qN ≤ N(v)qN +N(w)qN(5.1.3)
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for every v, w ∈ V . If we also have that N(v) > 0 when v 6= 0, then we say
that N is a qN -norm on V with respect to | · | on k. Thus qN -norms and
qN -seminorms are the same as ordinary norms and seminorms when qN = 1.

As before, (5.1.3) is the same as asking that

N(v + w) ≤ (N(v)qN +N(w)qN )1/qN(5.1.4)

for every v, w ∈ V . The right side is monotonically decreasing in qn, by (2.10.1),
so that this condition becomes more restrictive as qN increases. We may consider
an ultranorm or semi-ultranorm as a qN -norm or qN -seminorm with qN = ∞,
respectively. If N is a qN -norm or qN -seminorm on V , then dN (v, w) = N(v−w)
is a qN -metric or qN -semimetric on V , as appropriate. If N is a qN -seminorm
on V and N(v) > 0 for some v ∈ V , then one can check that | · | is a qN -absolute
value function on V .

Let a be a positive real number, so that | · |a is a (qk/a)-absolute value
function on k. If N is a qN -norm or qN -seminorm on V with respect to | · |,
then it is easy to see that N(v)a is a (qN/a)-norm or (qN/a)-seminorm on V ,
as appropriate, with respect to | · |a on k.

Let N be a nonempty collection of q-seminorms on V . More precisely, every
N ∈ N should be a qN -seminorm on V with respect to | · | on k, for some qN > 0
that may depend on N . Thus

M = M(N ) = {dN : N ∈ N}(5.1.5)

is a collection of q-semimetrics on V , which can be used to define a topology or
uniform structure on V , as in Section 2.10.

Let us say that N is nondegenerate on V if for every v ∈ V with v 6= 0 there
is an N ∈ N such that N(v) > 0. This means that (5.1.5) is nondegenerate as
a collection of q-semimetrics on V .

5.2 Examples of q-seminorms

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
let V be a vector space over k. Also let l be a positive integer, and for each
j = 1, . . . , l, let Nj be a qNj -seminorm on V with respect to | · | on k for some
qNj > 0. If we put

q0 = min(qN1
, . . . , qNl

),(5.2.1)

then Nj may be considered as a q0-seminorm on V for each j = 1, . . . , l. Under
these conditions, one can verify that

max
1≤j≤l

Nj(v)(5.2.2)

is a q0-seminorm on V with respect to | · | on k too.
Let r be a positive real number, and consider( l∑

j=1

Nj(v)
r
)1/r

,(5.2.3)
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which is a nonnegative real-valued function on V . Of course, (5.2.2) is the
analogue of this for r = ∞. If r ≤ q0, then one can check that (5.2.3) is an
r-seminorm on V with respect to | · | on k. As in Section 2.11, one can do this
using (2.11.6) with the exponent r/q0 ≤ 1 when q0 < ∞, or using the fact that
Nj is an r-seminorm on V for each j = 1, . . . , l when r ≤ q0. If q0 ≤ r, then
one can check that (5.2.3) is a q0-seminorm on V , using Minkowski’s inequality
with exponent r/q0 ≥ 1.

Let X be a nonempty set, and remember that c00(X, k) is the space of k-
valued functions on X with finite support, as in Section 1.10. Also let a be
a positive real-valued function on X, and let r be a positive real number. If
f ∈ c00(X, k), then put

‖f‖r,a =
( ∑

x∈X

(a(x) |f(x)|)r
)1/r

.(5.2.4)

Note that this is the same as in Section 1.10 when r = 1, 2. The analogue of
this for r = ∞ is

‖f‖∞,a = max
x∈X

(a(x) |f(x)|),(5.2.5)

as usual.
One can verify that (5.2.5) is a qk-norm on c00(X, k) with respect to | · | on

k. If r ≤ qk, then (5.2.4) is an r-norm on c00(X, k) with respect to | · | on k.
As before, this can be obtained using (2.11.6) with the exponent r/qk ≤ 1 when
qk < ∞, or from the fact that | · | is an r-absolute value function on k when
r ≤ qk. If qk ≤ r, then (5.2.4) is a qk-norm on c00(X, k) with respect to | · | on
k. This can be seen using Minkowski’s inequality, with exponent r/qk ≥ 1.

If 0 < r1 ≤ r2 ≤ ∞, then

‖f‖r2,a ≤ ‖f‖r1,a(5.2.6)

for every f ∈ c00(X, k), as in (2.11.1) and (2.11.4). If a(x) = 1 for every x ∈ X,
then we may use ‖f‖r to denote ‖f‖r,a, as in Section 1.10. In particular, ‖f‖∞
is the same as the supremum norm ‖f‖sup on c00(X, k), as in Section 4.12.

Let b be another positive real-valued function on X, and suppose for the
moment that X has only finitely many elements. Observe that

‖f‖r,a ≤
( ∑

x∈X

(a(x)/b(x))r
)1/r

‖f‖∞,b(5.2.7)

for every f ∈ c00(X, k).
Suppose that 0 < r1 < r2 < ∞, and that 0 < r3 < ∞ satisfies

1/r1 = 1/r2 + 1/r3.(5.2.8)

This means that r1/r2 + r1/r3 = 1, so that one can use Hölder’s inequality to
get that

‖f‖r1r1,a =
∑
x∈X

(a(x)/b(x))r1 (b(x) |f(x)|)r1(5.2.9)
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≤
( ∑

x∈X

(a(x)/b(x))r3
)r1/r3

‖f‖r1r2,b

for every f ∈ c00(X, k). It follows that

‖f‖r1,a ≤
( ∑

x∈X

(a(x)/b(x))r3
)1/r3

‖f‖r2,b(5.2.10)

for every f ∈ c00(X, k).
Similarly, suppose now that X = Z+. If

∑∞
j=1(a(j)/b(j))

r converges, as an
infinite series of positive real numbers, then

‖f‖r,a ≤
( ∞∑

j=1

(a(j)/b(j))r
)1/r

‖f‖∞,b(5.2.11)

for every f ∈ c00(Z+, k). Suppose that 0 < r1 < r2 < ∞ and 0 < r3 < ∞ satisfy
(5.2.8) again. If

∑∞
j=1(a(j)/b(j))

r3 converges as an infinite series of positive real
numbers, then one can use Hölder’s inequality to get that

‖f‖r1,a ≤
( ∞∑

j=1

(a(j)/b(j))r3
)1/r3

‖f‖r2,b(5.2.12)

for every f ∈ c00(Z+, k), as before.

5.3 ℓ∞ Spaces

Let X be a nonempty set, let k be a field, and let | · | be a qk-absolute value
function on k for some qk > 0. Consider the space of ℓ∞(X, k) of all k-valued
functions on X that are bounded with respect to | · | on k. This is the same as
B(X, k), as in Section 2.12, where k is equipped with the qk-metric associated
to | · |. It is easy to see that ℓ∞(X, k) is a linear subspace of the space c(X, k)
of all k-valued functions on X.

If f ∈ ℓ∞(X, k), then put

‖f‖∞ = ‖f‖ℓ∞(X,k) = sup
x∈X

|f(x)|.(5.3.1)

This is the same as the supremum norm ‖f‖sup on ℓ∞(X, k), as in Section 4.12.
More precisely, one can check that (5.3.1) is a qk-norm on ℓ∞(X, k), with respect
to | · | on k. The qk-metric on ℓ∞(X, k) associated to (5.3.1) is the same as the
supremum qk-metric corresponding to the qk-metric on k associated to | · |, as
in Section 2.12.

Similarly, let a be a positive real-valued function on X, and let ℓ∞a (X, k) be
the space of k-valued functions f on X such that

a(x) |f(x)| is bounded on X.(5.3.2)
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This is a linear subspace of c(X, k), as before. If f ∈ ℓ∞a (X, k), then put

‖f‖∞,a = ‖f‖ℓ∞a (X,k) = sup
x∈X

(a(x) |f(x)|).(5.3.3)

One can check that this defines a qk-norm on ℓ∞a (X, k) with respect to | · | on k,
as before. Of course, ℓ∞a (X, k) and ‖f‖∞,a are the same as ℓ∞(X, k) and ‖f‖∞
when a(x) = 1 for every x ∈ X.

Let Y be a nonempty set, and let d(·, ·) be a qd-metric on Y for some qd > 0.
Remember that one can define the notion of Cauchy sequences in Y with respect
to d(·, ·) in the usual way, as in Section 2.15. As usual, we say that Y is complete
with respect to d(·, ·) if every Cauchy sequence in Y converges to an element of
Y .

Let B(X,Y ) be the space of bounded mappings from X into Y with respect
to d(·, ·), and let θ(·, ·) be the corresponding supremum qd-metric on B(X,Y ), as
in Section 2.12. If Y is complete with respect to d(·, ·), then B(X,Y ) is complete
with respect to θ(·, ·), by standard arguments. More precisely, let {fj}∞j=1 be a
sequence of bounded mappings from X into Y that is a Cauchy sequence with
respect to θ(·, ·). If x ∈ X, then it is easy to see that {fj(x)}∞j=1 is a Cauchy
sequence in Y with respect to d(·, ·). This implies that {fj(x)}∞j=1 converges to
an element f(x) of Y , because Y is complete.

Thus {fj}∞j=1 converges pointwise to a mapping f from X into Y . Using this
and the Cauchy condition for {fj}∞j=1 with respect to θ(·, ·), one can verify that
{fj}∞j=1 converges to f uniformly on X. One can use this and the boundedness
of the fj ’s to get that f is bounded on X too. This means that f ∈ B(X,Y ),
and that {fj}∞j=1 converges to f with respect to θ(·, ·), as desired.

Suppose now that k is complete, with respect to the qk-metric associated to
| · |. This implies that ℓ∞(X, k) is complete with respect to the corresponding
supremum qk-metric, as in the previous paragraphs. An analogous argument
shows that ℓ∞a (X, k) is complete with respect to the qk-metric associated to
(5.3.3), as follows.

Let {fj}∞j=1 be a Cauchy sequence in ℓ∞a (X, k), with respect to the qk-
metric associated to (5.3.3). If x ∈ X, then it is easy to see that {fj(x)}∞j=1

is a Cauchy sequence in k with respect to the qk-metric associated to | · |, as
before. This implies that {fj(x)}∞j=1 converges to an element f(x) of k, because
k is complete, by hypothesis. This means that {fj}∞j=1 converges pointwise to
a k-valued function f on X.

One can use the Cauchy condition for {fj}∞j=1 with respect to the qk-metric
associated to (5.3.3) to get that

a(x) |fj(x)− f(x)| → 0 as j → ∞(5.3.4)

uniformly on X. One can use this to get that f ∈ ℓ∞a (X, k), because fj is an
element of ℓ∞a (X, k) for each j. This uniform convergence condition also implies
that {fj}∞j=1 converges to f with respect to the qk-metric associated to (5.3.3),
as desired.
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5.4 Vanishing at infinity

Let X be a nonempty set, and let k be a field with a qk-absolute value function
| · | for some qk > 0. A k-valued function f on X is said to vanish at infinity
with respect to | · | on k if for every ϵ > 0, there are only finitely many x ∈ X
such that

|f(x)| ≥ ϵ.(5.4.1)

Of course, this holds automatically when X has only finitely many elements. If
X = Z+, then f vanishes at infinity if and only if |f(j)| → 0 as j → ∞.

Let c0(X, k) be the space of k-valued functions on X that vanish at infinity
with respect to | · | on k. If f ∈ c0(X, k), then it is easy to see that f is bounded
on X with respect to | · | on k, so that

c0(X, k) ⊆ ℓ∞(X, k).(5.4.2)

More precisely, c0(X, k) is a linear subspace of ℓ∞(X, k). One can check that
c0(X, k) is a closed set in ℓ∞(X, k), with respect to the supremum qk-metric. If
k is complete with respect to the qk-metric associated to | · |, then it follows that
c0(X, k) is complete with respect to the supremum qk-metric, because ℓ∞(X, k)
is complete, as in the previous section.

Remember that the support of a k-valued function f on X is defined to be
the set of x ∈ X such that f(x) 6= 0, and that c00(X, k) is the space of k-valued
functions on X with finite support. Clearly

c00(X, k) ⊆ c0(X, k),(5.4.3)

and one can check that c0(X, k) is the same as the closure of c00(X, k) in
ℓ∞(X, k), with respect to the supremum qk-metric. If f ∈ c0(X, k), then one
can verify that the support of f has only finitely or countably many elements.

Let a be a positive real-valued function on X, and let c0,a(X, k) be the space
of k-valued functions f on X such that

a(x) |f(x)| vanishes at infinity,(5.4.4)

as a real-valued function on X. As before,

c0,a(X, k) ⊆ ℓ∞a (X, k),(5.4.5)

and in fact c0,a(X, k) is a linear subspace of ℓ∞a (X, k). One can check that
c0,a(X, k) is a closed set in ℓ∞a (X, k), with respect to the qk-metric associated
to ‖ · ‖∞,a. If k is complete with respect to the qk-metric associated to | · |, then
it follows that c0,a(X, k) is complete with respect to the qk-metric associated to
‖ · ‖∞,a.

Of course,
c00(X, k) ⊆ c0,a(X, k),(5.4.6)

and one can verify that c0,a(X, k) is the same as the closure of c00(X, k) in
ℓ∞a (X, k), with respect to the qk-metric associated to ‖ · ‖∞,a. If f ∈ ca,0(X, k),
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then the support of f has only finitely or countably many elements, because the
support of a |f | has only finitrly or countably many elements, as before.

Let b be another positive real-valued function on X, and suppose that

a(x)/b(x) is bounded on X.(5.4.7)

It is easy to see that

ℓ∞b (X, k) ⊆ ℓ∞a (X, k)(5.4.8)

and

c0,b(X, k) ⊆ c0,a(X, k).(5.4.9)

If f ∈ ℓ∞b (X, k), then we have that

‖f‖∞,a ≤
(
sup
x∈X

(a(x)/b(x))
)
‖f‖∞,b.(5.4.10)

Suppose now that

a(x)/b(x) vanishes at infinity on X,(5.4.11)

as a real-valued function on X. Observe that

ℓ∞b (X, k) ⊆ c0,a(X, k).(5.4.12)

5.5 Nonnegative sums

Let X be a nonempty set, and let f be a nonnegative real-valued function on
X. If E is a nonempty subset of X, then∑

x∈E

f(x)(5.5.1)

can be defined as a nonnegative extended real number, by taking the supremum
of ∑

x∈A

f(x)(5.5.2)

over all nonempty finite subsets A of E.
It is easy to see that ∑

x∈E

t f(x) = t
∑
x∈E

f(x)(5.5.3)

for every positive real number t. If g is another nonnegative real-valued function
on X, then one can verify that∑

x∈E

(f(x) + g(x)) =
∑
x∈E

f(x) +
∑
x∈E

g(x).(5.5.4)
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If E1, E2 are disjoint nonempty subsets of X, then it follows that∑
x∈E1∪E2

f(x) =
∑
x∈E1

f(x) +
∑
x∈E2

f(x).(5.5.5)

Let us say that f is summable on E if (5.5.1) is finite. If E = Z+, then the
summability of f on E is equivalent to the convergence of

∞∑
j=1

f(j),(5.5.6)

as an infinite series of nonnegative real numbers. In this case, (5.5.1) and (5.5.6)
are the same.

Suppose that f is summable on E ⊆ X. If E0 is a nonempty subset of E,
then f is summable on E0 too. If t is a nonnegative real number, then t f is
summable on E, and satisfies (5.5.3). If g is also summable on E, then f + g is
summable on E, by (5.5.4).

If f is summable on E, then for each ϵ > 0 there is a nonempty finite subset
A(ϵ) of E such that ∑

x∈E

f(x) <
∑

x∈A(ϵ)

f(x) + ϵ.(5.5.7)

This implies that ∑
x∈E\A(ϵ)

f(x) < ϵ,(5.5.8)

by (5.5.5). It follows in particular that f vanishes at infinity on E.
Let r be a positive real number, and let us say that f is r-summable on

E if f(x)r is summable on E. In this case, t f is r-summable on E for every
nonnegative real number t. If g is r-summable on E as well, then one can check
that f + g is r-summable on E.

If 0 < r ≤ 1, then

(f(x) + g(x))r ≤ f(x)r + g(x)r(5.5.9)

for every x ∈ X, as in (1.6.1). This implies that∑
x∈E

(f(x) + g(x))r ≤
∑
x∈E

f(x)r +
∑
x∈E

g(x)r.(5.5.10)

Suppose now that 1 ≤ r < ∞, and that f and g are r-summable on E.
Under these conditions, Minkowski’s inequality for sums implies that f + g is
r-summable on E, with( ∑

x∈E

(f(x) + g(x))r
)1/r

≤
( ∑

x∈E

f(x)r
)1/r

+
( ∑

x∈E

g(x)r
)1/r

.(5.5.11)

If f is r-summable on E for any r > 0, then f(x)r vanishes at infinity on E,
and thus f vanishes at infinity on E. If r0 is another positive real number with
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r0 ≥ r, then it is easy to see that f is r0-summable on E, because f is bounded
on E. More precisely,( ∑

x∈E

f(x)r0
)1/r0

≤
( ∑

x∈E

f(x)r
)1/r

,(5.5.12)

as in (2.11.4).

5.6 ℓr Spaces

Let X be a nonempty set, let r be a positive real number, and let a be a positive
real-valued function on X. Also let k be a field, and let | · | be a qk-absolute
value function on k for some qk > 0. Consider the space ℓra(X, k) of k-valued
functions f on X such that

a(x) |f(x)| is r-summable on X.(5.6.1)

If f ∈ ℓra(X, k), then put

‖f‖r,a = ‖f‖ℓra(X,k) =
( ∑

x∈X

(a(x) |f(x)|)r
)1/r

.(5.6.2)

If a(x) = 1 for every x ∈ X, then we may use the notation ℓr(X, k) and ‖f‖r =
‖f‖ℓr(X,k) for ℓ

r
a(X, k) and ‖f‖r,a, respectively, as usual.

One can check that ℓra(X, k) is a linear subspace of c(X, k). Clearly

c00(X, k) ⊆ ℓra(X, k),(5.6.3)

and (5.6.2) is the same as in Section 5.2 when f ∈ c00(X, k). As before, (5.6.2)
is an r-norm on ℓra(X, k) with respect to | · | on k when r ≤ qk. If qk ≤ r, then
(5.6.2) is a qk-norm on ℓra(X, k) with respect to | · | on k. In both cases, one
can verify that c00(X, k) is dense in ℓra(X, k) with respect to the qk or r-metric
associated to (5.6.2), as appropriate.

If 0 < r1 ≤ r2 ≤ ∞, then

ℓr1a (X, k) ⊆ ℓr2a (X, k),(5.6.4)

and

‖f‖r2,a ≤ ‖f‖r1,a(5.6.5)

for every f ∈ ℓr1a (X, k). If r1 < ∞, then

ℓr1a (X, k) ⊆ c0,a(X, k).(5.6.6)

If k is complete with respect to the qk-metric associated to |·|, then ℓra(X, k) is
complete with respect to the qk or r-metric associated to (5.6.2), as appropriate.
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Indeed, suppose that {fj}∞j=1 is a Cauchy sequence in ℓra(X, k) with respect to
the qk or r-metric associated to (5.6.2), so that

‖fj − fl‖r,a → 0 as j, l → ∞.(5.6.7)

Using this, it is easy to see that {fj(x)}∞j=1 is a Cauchy sequence in k for every
x ∈ X, with respect to the qk-metric associated to | · |. This implies that {fj}∞j=1

converges pointwise to a k-valued function f onX, because k is complete. Under
these conditions, one can check that f ∈ ℓra(X, k), and that

‖fj − f‖r,a → 0 as j → ∞,(5.6.8)

as desired.

Let b be another positive real-valued function on X. If

a(x)/b(x) is r-summable on X,(5.6.9)

then it is easy to see that

ℓ∞b (X, k) ⊆ ℓra(X, k).(5.6.10)

More precisely, if f ∈ ℓ∞b (X, k), then

‖f‖r,a ≤
( ∑

x∈X

(a(x)/b(x))r
)1/r

‖f‖∞,b.(5.6.11)

If a(x)/b(x) is bounded on X, then

ℓrb(X, k) ⊆ ℓra(X, k).(5.6.12)

In this case,

‖f‖r,a ≤
(
sup
x∈X

(a(x)/b(x))
)
‖f‖r,b(5.6.13)

for every f ∈ ℓ∞b (X, k).

Suppose that r1, r2, r3 are positive real numbers with 1/r1 = 1/r2 + 1/r3.
If a(x)/b(x) is r3-summable on X, then

ℓr2b (X, k) ⊆ ℓr1a (X, k).(5.6.14)

Indeed, if f ∈ ℓr2b (X, k), then

‖f‖r1,a ≤
( ∑

x∈X

(a(x)/b(x))r3
)1/r3

‖f‖r2,b,(5.6.15)

by Hölder’s inequality, as in Section 5.2.
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5.7 Operator q-seminorms

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V , W be vector spaces over k. Also let NV , NW be qV , qW -seminorms on V ,
W for some qV , qW > 0, respectively, and with respect to | · | on k. A linear
mapping T from V into W is said to be bounded with respect to NV , NW if
there is a nonnegative real number C such that

NW (T (v)) ≤ C NV (v)(5.7.1)

for every v ∈ V . This implies that

NW (T (u)− T (v)) = NW (T (u− v)) ≤ C NV (u− v)(5.7.2)

for every u, v ∈ V .

Thus (5.7.1) implies that T is Lipschitz of order 1 with constant C with
respect to the qV , qW -semimetrics associated to NV , NW , respectively. In
particular, this means that T is uniformly continuous with respect to these
semimetrics. If | · | is not the trivial absolute value function on k, and if T is
continuous at 0 with respect to these semimetrics on V , W , then one can check
that T is bounded. More precisely, it sufficies to ask that NW (T (v)) be bounded
as a real-valued function on a ball in V centered at 0 with positive radius with
respect to the qV -semimetric associated to NV in this case.

Let L(V,W ) be the space of all linear mappings from V into W . Of course,
this is a vector space over k, with respect to pointwise addition and scalar
multiplication. Similarly, let BL(V,W ) be the space of linear mappings from V
into W that are bounded with respect to NV , NW . One can check that this is
a linear subspace of L(V,W ).

If T ∈ BL(V,W ), then we would like to put

‖T‖op = ‖T‖op,V W = sup

{
NW (T (v))

NV (v)
: v ∈ V, NV (v) > 0

}
.(5.7.3)

Let us interpret this as being equal to 0 when NV (v) = 0 for every v ∈ V .
Note that NW (T (v)) = 0 for every v ∈ V such that NV (v) = 0, because T is
bounded. Equivalently, ‖T‖op is the smallest C ≥ 0 such that (5.7.1) holds for
every v ∈ V .

One can check that ‖·‖op defines a qW -seminorm on BL(V,W ), with respect
to | · | on k. If NW is a qW -norm on W , then ‖ · ‖op is a qW -norm on BL(V,W ).

Let Z be another vector space over k, and let NZ be a qZ-seminorm on Z
for some qZ > 0, with respect to | · | on k. Suppose that T1 is a bounded linear
mapping from V into W , and that T2 is a bounded linear mapping from W into
Z. If v ∈ V , then

NZ((T2 ◦ T1)(v)) = NZ(T2(T1(v))) ≤ ‖T2‖op,WZ NW (T1(v))

≤ ‖T1‖op,VW ‖T2‖op,WZ NV (v).(5.7.4)
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This means that T2 ◦ T1 is bounded as a linear mapping from V into Z, with

‖T2 ◦ T1‖op,V Z ≤ ‖T1‖op,V W ‖T2‖op,WZ .(5.7.5)

Suppose now that NW is a qW -norm on W , and that W is complete with
respect to the associated qW -metric. Under these conditions,

BL(V,W ) is complete with respect to(5.7.6)

the qW -metric associated to ‖ · ‖op.

Indeed, let {Tj}∞j=1 be a Cauchy sequence in BL(V,W ) with respect to this
qW -metric. This means that for each ϵ > 0 there is a positive integer L(ϵ) such
that

‖Tj − Tl‖op < ϵ(5.7.7)

for every j, l ≥ L(ϵ). If v ∈ V , then it follows that

NW (Tj(v)− Tl(v)) = NW ((Tj − Tl)(v))(5.7.8)

≤ ‖Tj − Tl‖op NV (v) ≤ ϵNV (v)

for every j, l ≥ L(ϵ).
This implies that {Tj(v)}∞j=1 is a Cauchy sequence in W , with respect to

the qW -metric associated to NW . It follows that this sequence converges to a
unique element T (v) of W , because W is complete, by hypothesis. One can
check that T is linear as a mapping from V into W . We also get that

NW (T (v)− Tl(v)) ≤ ϵNV (v)(5.7.9)

for every l ≥ L(ϵ) and v ∈ V , by (5.7.8). Using this, one can verify that T is a
bounded linear mapping from V into W , with

‖T − Tl‖op ≤ ϵ(5.7.10)

for every l ≥ L(ϵ).
Let us continue to ask that NW be a qW -norm onW , and thatW be complete

with respect to the associated qW -metric. Let V0 be a linear subspace of V , and
suppose that V0 is dense in V , with respect to the qV -semimetric associated to
NV . Also let T0 be a linear mapping from V0 into W , and suppose that T0 is
bounded, with respect to the restriction of NV to V0. Under these conditions,

there is a unique extension of T0 to a(5.7.11)

bounded linear mapping T from V into W ,

by standard arguments. More precisely, uniqueness follows easily from the con-
tinuity of bounded linear mappings.

To get the existence of such an extension, let v ∈ V be given, and let
{vj}∞j=1 be a sequence of elements of V0 that converges to v, with respect to the
qV -semimetric associated to NV . In particular, {vj}∞j=1 is a Cauchy sequence
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with respect to the qV -semimetric associated to NV . One can use this to check
that

{T0(vj)}∞j=1 is a Cauchy sequence in W,(5.7.12)

with respect to the qW -metric associated to NW , because T0 is bounded on V0.
It follows that

{T0(vj)}∞j=1 converges in W,(5.7.13)

because W is complete. We would like to use the limit of this sequence to define
T (v) as an element of W .

One can verify that the limit of {T0(vj)}∞j=1 does not depend on the partic-
ular sequence {vj}∞j=1 of elements of V0 that converges to v, using the bound-
edness of T0 on V0. Thus we can define T as a mapping from V into W in this
way, and it is easy to see that T is linear, because T0 is linear on V0. One can
also get the boundedness of T on V from the boundedness of T0 on V0. More
precisely, one can verify that

‖T‖op,V W = ‖T0‖op,V0W .(5.7.14)

5.8 Bounded vector-valued functions

Let X be a nonempty set, let k be a field, and let V be a vector space over k.
The space c(X,V ) of all V -valued functions on X is a vector space over k too,
with respect to pointwise addition and scalar multiplication of functions. As
before, the support of f ∈ c(X,V ) is defined to be the set of x ∈ X such that
f(x) 6= 0. The space c00(X,V ) of f ∈ c(X,V ) whose support has only finitely
many elements is a linear subspace of c(X,V ).

Let | · | be a qk-absolute value function on k for some qk > 0, and let N be
a qN -seminorm on V for some qN > 0, with respect to | · | on k. Consider the
space ℓ∞(X,V ) of all V -valued functions f on X that are bounded with respect
to N on V , so that N(f(x)) is bounded as a nonnegative real-valued function
on X. This is the same as B(X,V ), as in Section 2.12, where V is equipped
with the qN -semimetric associated to N . It is easy to see that ℓ∞(X,V ) is a
linear subspace of c(X,V ).

Similarly, let a be a positive real-valued function on X, and let ℓ∞a (X,V ) be
the space of V -valued functions f on X such that

a(x)N(f(x)) is bounded on X.(5.8.1)

One can check that this is a linear subspace of c(X,V ), and that

‖f‖∞,a = ‖f‖ℓ∞a (X,V ) = sup
x∈X

(a(x)N(f(x)))(5.8.2)

defines a qN -seminorm on ℓ∞a (X,V ), with respect to | · | on k. If a(x) = 1
for every x ∈ X, then ℓ∞a (X,V ) is the same as ℓ∞(X,V ), and ‖f‖∞,a may
be denoted ‖f‖∞ = ‖f‖ℓ∞(X,V ). In this case, the qN -semimetric on ℓ∞(X, k)
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associated to ‖ · ‖∞,a is the same as the supremum semimetric corresponding to
the qN -semimetric on V associated to N , as in Section 2.12.

If N is a qN -norm on V , then (5.8.2) defines a qN -norm on ℓ∞a (X, k). If V
is also complete with respect to the qN -metric associated to N , then one can
check that ℓ∞a (X,V ) is complete with respect to the qN -metric associated to
(5.8.2), as in Section 5.3. More precisely, if a(x) = 1 for every x ∈ X, then this
follows from the analogous statement for B(X,Y ) mentioned earlier. Note that
f ∈ c(X, k) has finite support in X when N(f(x)) has finite support in X and
N is a qN -norm on V .

Let us say that f ∈ c(X,V ) vanishes at infinity on X with respect to N if

a(x)N(f(x)) vanishes at infinity(5.8.3)

as a real-valued function on X. Let c0,a(X,V ) be the set of these functions, and
note that

c00(X,V ) ⊆ c0,a(X,V ) ⊆ ℓ∞a (X,V ).(5.8.4)

One can check that c0,a(X,V ) is a closed linear subspace of ℓ∞a (X,V ), with
respect to the qN -semimetric associated to (5.8.2), and in fact that it is the
closure of c00(X,V ) in ℓ∞a (X,V ). If a(x) = 1 for every x ∈ X, then c0,a(X,V )
may be denoted c0(X,V ). If f ∈ c0,a(X,V ) and N is a qN -norm on V , then the
support of f in X has only finitely or countably many elements.

5.9 r-Summable vector-valued functions

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let r be a positive real number, and let ℓra(X,V ) be the space of V -valued
functions f on X such that

a(x)N(f(x)) is r-summable on X.(5.9.1)

In this case, we put

‖f‖r,a = ‖f‖ℓra(X,V ) =
( ∑

x∈X

(a(x)N(f(x)))r
)1/r

.(5.9.2)

As usual, we may use the notation ℓr(X,V ) and ‖f‖r = ‖f‖ℓr(X,V ) when a(x) =
1 for every x ∈ X.

One can check that ℓra(X,V ) is a linear subspace of c(X, k), with

c00(X,V ) ⊆ ℓr(X,V ) ⊆ c0,a(X,V ).(5.9.3)

One can also verify that (5.9.2) is an r-seminorm on ℓra(X,V ) with respect to
| · | on k when r ≤ qN , and that it is a qN -seminorm when qN ≤ r, as in Section
5.2. It is easy to see that c00(X,V ) is dense in ℓra(X,V ) with respect to the qN
or r-semimetric associated to (5.9.2), as appropriate. If 0 < r1 ≤ r2 ≤ ∞, then

ℓr1a (X,V ) ⊆ ℓr2a (X,V ),(5.9.4)
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with
‖f‖r2,a ≤ ‖f‖r1,a(5.9.5)

for every f ∈ ℓr1a (X,V ), as before.
Suppose for the moment that N is a qN -norm on V , so that (5.9.2) is a

qN or r-norm on ℓra(X,V ), as appropriate. If V is complete with respect to
the qN -metric associated to N , then one can check that ℓra(X,V ) is complete
with respect to the qN or r-metric associated to (5.9.2), as in Section 5.6. If
f ∈ ℓra(X,V ), then the support of f in X has only finitely or countably many
elements.

Let b be another positive real-valued function on X. If a(x)/b(x) is bounded
on X, then

ℓrb(X,V ) ⊆ ℓra(X,V )(5.9.6)

for 0 < r ≤ ∞. If f ∈ ℓrb(X,V ), then

‖f‖r,a ≤
(
sup
x∈X

(a(x)/b(x))
)
‖f‖r,b,(5.9.7)

as before. Similarly,
c0,b(X,V ) ⊆ c0,a(X,V )(5.9.8)

in this case. If a(x)/b(x) vanishes at infinity on X, then

ℓ∞b (X,V ) ⊆ c0,a(X,V ).(5.9.9)

Let r1, r2, r3 > 0 be given, with 1/r1 = 1/r2 + 1/r3 and r3 < ∞. If

a(x)/b(x) is r3-summable on X,(5.9.10)

then
ℓr2b (X,V ) ⊆ ℓr1a (X,V ),(5.9.11)

as in Section 5.6. More precisely, if f ∈ ℓr2b (X,V ), then

‖f‖r1,a ≤
( ∑

x∈X

(a(x)/b(x))r3
)1/r3

‖f‖r2,b,(5.9.12)

as in Section 5.6.

5.10 Some bounded linear mappings

Let X be a nonempty set, let k be a field, and let V be a vector space over k.
If f ∈ c00(X,V ), then ∑

x∈X

f(x)(5.10.1)

reduces to a finite sum in V , and thus defines an element of V . This defines a
linear mapping from c00(X,V ) into V .
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If x ∈ X, then let δx be the k-valued function on X with δx(y) = 1 when
x = y, and δx(y) = 0 when x 6= y. It is easy to see that δx, x ∈ X, form a basis
for c00(X, k), as a vector space over k. More precisely, if f ∈ c00(X, k), then

f =
∑
x∈X

f(x) δx,(5.10.2)

where the right side reduces to a finite sum in c00(X, k), as before.
If T is a linear mapping from c00(X, k) into V , then

T (f) =
∑
x∈X

f(x)T (δx)(5.10.3)

for every f ∈ c00(X, k), by (5.10.2). Note that any V -valued function on X
corresponds to T (δx) for a unique such linear mapping T .

Let | · | be a qk-absolute value function on k for some qk > 0, and let N
be a qN -seminorm on V with respect to | · | on k for some qN > 0. Also let
a be a positive real-valued function on X, and let 0 < r ≤ ∞ be given. Thus
‖ · ‖r,a = ‖ · ‖ℓra(X,k) can be defined on ℓra(X, k) as in Sections 5.3 and 5.6. Note
that

‖δx‖ℓra(X,k) = a(x)(5.10.4)

for every x ∈ X, by construction.
Let T be a linear mapping from c00(X, k) into V , and suppose for the moment

that T is bounded with respect to the restriction of ‖ · ‖ℓra(X,k) to c00(X, k), and
using N on V . This implies that

N(T (δx)) ≤ ‖T‖op ‖δx‖ℓra(X,k) = ‖T‖op a(x)(5.10.5)

for every x ∈ X, where ‖T‖op is the corresponding operator qN -seminorm of T .
Equivalently,

N(T (δx))/a(x) ≤ ‖T‖op(5.10.6)

for every x ∈ X.
Let T be any linear mapping from c00(X, k) into V , and let f ∈ c00(X, k)

be given. If qN < ∞, then we can use (5.10.3) to get that

N(T (f))qN ≤
∑
x∈X

|f(x)|qN N(T (δx))
qN(5.10.7)

=
∑
x∈X

(a(x) |f(x))qN (N(T (δx))/a(x))
qN .

Similarly, if qN = ∞, then we get that

N(T (f)) ≤ max
x∈X

(|f(x)|N(T (δx)))(5.10.8)

= max
x∈X

((a(x) |f(x)|) (N(T (δx))/a(x))).

Suppose that
N(T (δx))/a(x) is bounded on X,(5.10.9)
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so that T (δx) is an element of ℓ∞1/a(X,V ), as a V -valued function on X. If

f ∈ c00(X, k), then

N(T (f)) ≤
(
sup
x∈X

(N(T (δx))/a(x))
)
‖f‖ℓqNa (X,k)(5.10.10)

by (5.10.7) or (5.10.8), as appropriate. This means that T is bounded with
respect to the restriction of ‖ · ‖qN ,a = ‖ · ‖ℓqNa (X,k) to c00(X, k), and using N on

V . More precisely, the corresponding operator qN -seminorm ‖T‖op of T satisfies

‖T‖op ≤ sup
x∈X

(N(T (δx))/a(x)).(5.10.11)

In fact,
‖T‖op = sup

x∈X
(N(T (δx))/a(x))(5.10.12)

under these conditions, because of (5.10.6), with r = qN .
Suppose now that N is a qN -norm on V , and that V is complete with respect

to the associated qN -metric. Let 0 < r ≤ ∞ be given again, and let T be a
bounded linear mapping from c00(X, k) into V , with respect to the restriction of
‖·‖r,a = ‖·‖ℓra(X,k) to c00(X, k), and usingN on V . If r < ∞, then T has a unique
extension to a bounded linear mapping from ℓra(X, k) into V , as in Section 5.7.
Similarly, if r = ∞, then T has a unique extension to a bounded linear mapping
from c0,a(X, k) into V , using the restriction of ‖·‖∞,a = ‖·‖ℓ∞a (X,k) to c0,a(X, k).
This uses the density of c00(X, k) in ℓra(X, k) when r < ∞, and in c0,a(X, k)
when r = ∞, as in Sections 5.4 and 5.6.

5.11 Vector-valued Lipschitz mappings

Let X be a nonempty set, and let d(·, ·) be a qd-semimetric on X for some
qd > 0. Also let k be a field with a qk-absolute value function | · | for some
qk > 0, and let V be a vector space over k with a qN -seminorm N with respect
to | · | on k for some qN > 0. As in Section 1.8, a V -valued function f on X
is said to be Lipschitz of order α > 0 with constant C ≥ 0 with respect to the
qN -semimetric on V associated to N if

N(f(x)− f(w)) ≤ C d(x,w)α(5.11.1)

for every x,w ∈ X. One can check that the space Lipα(X,V ) of all functions f
that satisfy this condition for some C ≥ 0 is a vector space over k, with respect
to pointwise addition and scalar multiplication of functions.

If f ∈ Lipα(X,V ), then we would like to put

‖f‖Lipα(X,V ) = sup

{
N(f(x)− f(w))

d(x,w)α
: x,w ∈ X, d(x,w) > 0

}
,(5.11.2)

as in Section 4.12. We interpret this as being equal to 0 when d(x,w) = 0
for every x,w ∈ X, as before. Of course, if x,w ∈ X and d(x,w) = 0, then
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N(f(x)− f(w)) = 0, by hypothesis. Alternatively, ‖f‖Lipα(X,V ) is the smallest
C ≥ 0 such that (5.11.1) holds.

One can check that this defines a qN -seminorm on Lipα(X,V ), with respect
to | · | on k. Note that ‖f‖Lipα(X,V ) = 0 when f is constant on X. If N is a
qN -norm on V , and ‖f‖Lipα(X,V ) = 0, then f is constant on X.

Let a be a k-valued function on X, and let f be a V -valued function on X,
so that a f is a V -valued function on X too. If qN < ∞, then

N(a(x) f(x)− a(w) f(w))qN

≤ |a(x)|qN N(f(x)− f(w))qN + |a(x)− a(w)|qN N(f(w))qN(5.11.3)

for every x,w ∈ X. Similarly, if qN = ∞, then

N(a(x) f(x)− a(w) f(w))(5.11.4)

≤ max(|a(x)|N(f(x)− f(w)), |a(x)− a(w)|N(f(w)))

for every x,w ∈ X. If a and f are each both bounded and Lipschitz of order α
on X, then it follows that a f ∈ Lipα(X,V ), with

‖a f‖qNLipα(X,V ) ≤ ‖a‖qNℓ∞(X,k) ‖f‖
qN
Lipα(X,V ) + ‖a‖qNLipα(X,k) ‖f‖

qN
ℓ∞(X,V )(5.11.5)

when qN < ∞, and

‖a f‖Lipα(X,V )(5.11.6)

≤ max(‖a‖ℓ∞(X,k) ‖f‖Lipα(X,V ), ‖a‖Lipα(X,k) ‖f‖ℓ∞(X,V ))

when qN = ∞.
If α = 1, then we may simply say that the elements of Lipα(X,V ) are

Lipschitz on X, as in Section 1.8. We may also use the notation Lip(X,V ) and
‖f‖Lip(X,V ) in this case.

Suppose for the moment that X is a vector space over k too, and that d(·, ·)
is the qd-semimetric associated to a qd-seminorm on X with respect to | · | on
k. Remember that a bounded linear mapping T from X into V is Lipschitz
with respect to the associated q-semimetrics, as in Section 5.7. In this case, the
corresponding operator qN -seminorm ‖T‖op is the same as ‖T‖Lip(X,V ).

Let Y be a set with a qY -semimetric dY for some qY > 0, and let Z be a
set with a qZ-semimetric dZ for some qZ > 0. Suppose that a mapping f from
X into Y is Lipschitz of order α > 0 with constant C1 ≥ 0 with respect to d
and dY , and that a mapping g from Y into Z is Lipschitz of order β > 0 with
constant C2 ≥ 0 with respect to dY and dZ . If x,w ∈ X, then

dZ((g ◦ f)(x), (g ◦ f)(w)) ≤ C2 dY (f(x), f(w))
β(5.11.7)

≤ Cβ
1 C2 d(x,w)

αβ .

This means that g ◦ f is Lipschitz of order αβ, as a mapping from X into Z,
with constant Cβ

1 C2, and with respect to d and dZ .
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5.12 Bilipschitz conditions and isometries

Let us continue with the same notation and hypotheses as at the beginning of
the previous section. Suppose that f is a V -valued function on X such that

N(f(x)− f(w)) ≥ c d(x,w)(5.12.1)

for some c > 0 and every x,w ∈ X. This implies that f is injective when d(·, ·)
is a qd-metric on X, as in Section 1.8. If f is injective on X, then (5.12.1) is the
same as saying that f−1 is Lipschitz of order 1 with constant 1/c as a mapping
from f(X) onto X, with respect to the restriction to f(X) of the qN -semimetric
on V associated to N , as before.

Let g be another mapping from X into V , and suppose that f−g is Lipschitz
of order one on X. If qN < ∞, then

cqN d(x,w)qN ≤ N(f(x)− f(w))qN

≤ N((f(x)− g(x))− (f(w)− g(w)))qN +N(g(x)− g(w))qN(5.12.2)

≤ ‖f − g‖qNLip(X,V ) d(x,w)
qN +N(g(x)− g(w))qN

for every x,w ∈ X. This means that

(cqN − ‖f − g‖qNLip(X,V )) d(x,w)
qN ≤ N(g(x)− g(w))qN(5.12.3)

for every x,w ∈ X. Of course, this is interesting only when

‖f − g‖Lip(X,V ) < c.(5.12.4)

In this case, we get that

(cqN − ‖f − g‖qNLip(X,V ))
1/qN d(x,w) ≤ N(g(x)− g(w))(5.12.5)

for every x,w ∈ X.
If qN = ∞, then

c d(x,w) ≤ max(N((f(x)− g(x))− (f(w)− g(w))), N(g(x)− g(w)))

≤ max(‖f − g‖Lip(X,V ) d(x,w), N(g(x)− g(w)))(5.12.6)

for every x,w ∈ X. If (5.12.4) holds, then we get that

c d(x,w) ≤ N(g(x)− g(w))(5.12.7)

for every x,w ∈ X. More precisely, this holds automatically when d(x,w) = 0,
and otherwise it can be obtained from (5.12.6).

Remember that f is bilipschitz as a mapping from X into V , with respect
to the qN -semimetric on V associated to N , if f is Lipschitz, and (5.12.1) holds
for some c > 0, as in Section 1.8. If (5.12.4) holds, then it follows that g is
bilipschitz as well.
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Similarly, f is an isometry as a mapping from X into V if

N(f(x)− f(w)) = d(x,w)(5.12.8)

for every x,w ∈ X. Of course, this is the same as saying that f is Lipschitz, with
‖f‖Lip(X,V ) ≤ 1, and that (5.12.1) holds with c = 1. In this case, if qN = ∞,
and

‖f − g‖Lip(X,V ) < 1,(5.12.9)

then (5.12.7) holds with c = 1, and ‖g‖Lip(X,V ) ≤ 1, because ‖ · ‖Lip(X,V ) is a
semi-ultranorm on Lip(X,V ). This means that g is an isometry as a mapping
from X into V , as before.

Let Y be a set with a qY -semimetric dY for some qY > 0 again, and let Z
be a set with a qZ-semimetric dZ for some qZ > 0. If f is a bilipschitz mapping
from X into Y , and g is a bilipschitz mapping from Y into Z, then it is easy to
see that g ◦ f is bilipschitz as a mapping from X into Z. Similarly, if f and g
are isometries, then g ◦ f is an isometry from X into Z.

Suppose now that f is a one-to-one mapping from X onto Y . If f is bilips-
chitz, then f−1 is bilipschitz as a mapping from Y onto X. In particular, if f is
an isometry, then f−1 is an isometry as a mapping from Y onto X. Of course,
f has to be injective when it is bilipschitz and d(·, ·) is a qd-metric on X.

5.13 Some conditions on linear mappings

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let V ,
W be vector spaces over k. Also let NV , NW be qV , qW -seminorms on V , W
for some qV , qW > 0, respectively, and with respect to | · | on k. Suppose that
T is a linear mapping from V into W such that

NW (T (v)) ≥ cNV (v)(5.13.1)

for some c > 0 and every v ∈ V . If T is injective on V , then this is the same
as saying that T−1 is bounded as a linear mapping from T (V ) onto V , with
respect to the restriction of NW to T (V ), and with operator qV -seminorm less
than or equal to 1/c. Of course, (5.13.1) implies that T is injective on V when
NV is a qV -norm on V .

Note that

cNV (u− v) ≤ NW (T (u− v)) = NW (T (u)− T (v))(5.13.2)

for every u, v ∈ V in this case. Although the remarks in the previous section
could be used here, analogous statements for linear mappings can be obtained
a bit more directly, as follows.

Let R be another linear mapping from V into W , and suppose that R − T
is bounded as a linear mapping from V into W . If qW < ∞, then

cqW NV (v)
qW ≤ NW (T (v))qW(5.13.3)

≤ NW (R(v)− T (V ))qW +NW (R(v))qW

≤ ‖R− T‖qWop,V W NV (v)
qW +NW (R(v))qW



112 CHAPTER 5. ℓR SPACES AND OPERATOR SEMINORMS

for every v ∈ V . Thus

(cqW − ‖R− T‖qWop,V W )NV (v)
qW ≤ NW (R(v))qW(5.13.4)

for every v ∈ V , which is interesting only when

‖R− T‖op,V W < c.(5.13.5)

Under these conditions, we obtain that

(cqW − ‖R− T‖qWop,V W )1/qW NV (v) ≤ NW (R(v))(5.13.6)

for every v ∈ V .
If qW = ∞, then

cNV (v) ≤ max(NW (R(v)− T (v)), NW (R(v)))(5.13.7)

≤ max(‖R− T‖op,V W NV (v), NW (R(v)))

for every v ∈ V . If (5.13.5) holds, then we get that

cNV (v) ≤ NW (R(v))(5.13.8)

for every v ∈ V . As before, this holds automatically when NV (v) = 0, and it
follows from (5.13.7) when NV (v) > 0.

We say that T is an isometric linear mapping from V into W with respect
to NV , NW if

NW (T (v)) = NV (v)(5.13.9)

for every v ∈ V . This implies that

NW (T (u)− T (v)) = NW (T (u− v)) = NV (u− v)(5.13.10)

for every u, v ∈ V , so that T is an isometry from V into W with respect to
the qV , qW -semimetrics associated to NV , NW , respectively. Equivalently, T is
an isometric linear mapping if and only if T is a bounded linear mapping, with
‖T‖op,V W ≤ 1, and (5.13.1) holds with c = 1. If we also have that qN = ∞, and

‖R− T‖op,V W < 1,(5.13.11)

then R is an isometric linear mapping too. This is because (5.13.8) holds with
c = 1, as before, and ‖R‖op,VW ≤ 1, since ‖ · ‖op,V W is a semi-ultranorm on
BL(V,W ).

A one-to-one bounded linear mapping T from V onto W is said to be invert-
ible as a bounded linear mapping if T−1 is bounded as a linear mapping from
W onto V . This means that (5.13.1) holds for some c > 0, as before.

Let Z be another vector space over k, with a qZ-seminorm NZ with respect
to | · | on k for some qZ > 0. Suppose that T is a linear mapping from V into
W that satisfies (5.13.1) for some c > 0 again, and that T0 is a linear mapping
from W into Z such that

c0 NW (w) ≤ NZ(T0(w))(5.13.12)
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for some c0 > 0 and every w ∈ W . Under these conditions,

NZ((T0 ◦ T )(v)) ≥ c0 NW (T (v)) ≥ c c0 NV (v)(5.13.13)

for every v ∈ V . Similarly, if T is an isometric linear mapping from V into W ,
and T0 is an isometric linear mapping from W into Z, then T0◦T is an isometric
linear mapping from V into Z.

5.14 Dense linear subspaces

Let k be a field with a qk-absolute value function | · | for some qk > 0, let W
be a vector space over k, and let NW be a qW -seminorm on W with respect to
| · | on k for some qW > 0. Also let W0 be a linear subspace of W , and let c
be a positive real number with c < 1. Suppose that for each w ∈ W there is a
w0 ∈ W0 such that

NW (w − w0) ≤ cNW (w).(5.14.1)

We would like to check thatW0 is dense inW , with respect to the qW -semimetric
associated to NW .

Let w ∈ W be given, and suppose that w1, . . . , wl ∈ W0 have been chosen
for some l ∈ Z+, in such a way that

NW

(
w −

l∑
j=1

wj

)
≤ cl NW (w).(5.14.2)

Of course, we can do this when l = 1, by hypothesis. Applying our hypothesis
to w −

∑l
j=1 wj , we get wl+1 ∈ W0 such that

NW

(
w −

l+1∑
j=1

wj

)
≤ cNW

(
w −

l∑
j=1

wj

)
≤ cl+1 NW (w).(5.14.3)

Thus we can do this for every l ≥ 1, which implies that W0 is dense in W ,
because c < 1.

Let W1 be a linear subspace of W that is dense in W , with respect to the
qW -semimetric associated to NW , and let c1 be a positive real number with
c1 < 1. Suppose that for every w ∈ W1 there is a w0 ∈ W0 such that

NW (w − w0) ≤ c1 NW (w).(5.14.4)

Let c0 be a real number with

c1 < c0 < 1.(5.14.5)

If w ∈ W , then we would like to find a w0 ∈ W0 such that

NW (w − w0) ≤ c0 NW (w).(5.14.6)
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If NW (w) = 0, then we can simply take w0 = 0.
Otherwise, if NW (w) > 0, then we can first choose w1 ∈ W1 such that

NW (w−w1) is as small as we like. In particular, this means that NW (w1) is as
close to NW (w) as we like. By hypothesis, there is a w0 ∈ W0 such that

NW (w1 − w0) ≤ c1 NW (w1).(5.14.7)

One can use this to get (5.14.6), because of (5.14.5). It follows that W0 is dense
in W with respect to the qW -semimetric associated to NW , as before.

Suppose now that NW is a qW -norm on W , and let W0 be a subset of W .
If W0 is complete with respect to the restriction of the qW -metric associated to
NW to W0, then W0 is a closed set in W , as in Section 4.9. If W0 is dense in
W as well, then it follows that W0 = W .

5.15 Surjectivity of linear mappings

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V , W be vector spaces over k again. Also let NV , NW be qV , qW -seminorms on
V , W for some qV , qW > 0, respectively, and with respect to | · | on k. Suppose
that T is a linear mapping from V into W such that

cNV (v) ≤ NW (T (v))(5.15.1)

for some c > 0 and every v ∈ V . Let R be a linear mapping from V into W
such that R − T is bounded as a linear mapping from V into W , with respect
to NV and NW , respectively.

If v ∈ V , then

NW (T (v)−R(v)) = NW ((R− T )(v)) ≤ ‖R− T‖op,V W NV (v)

≤ c−1 ‖R− T‖op,V W NW (T (v)).(5.15.2)

Suppose that
‖R− T‖op,V W < c,(5.15.3)

so that c−1 ‖R − T‖op,V W < 1. If T (V ) is dense in W , with respect to the
qW -semimetric associated to NW , then it follows that R(V ) is dense in W as
well, as in the previous section.

Suppose from now on in this section that NV , NW are qV , qW -norms on V ,
W , respectively. In particular, (5.15.1) implies that T is injective. Remember
that R satisfies an analogous condition, because of (5.15.3), as in Section 5.13.
Thus R is injective too.

Suppose for the moment that V and W are finite-dimensional as vector
spaces over k, with the same dimension. In this case, the injectivity of T implies
that T maps V onto W . Similarly, the injectivity of R implies that it maps V
onto W .

Suppose now that T is also bounded, as a linear mapping from V into W .
If V is complete with respect to the qV -metric associated to NV , then one can
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check that T (V ) is complete with respect to the restriction of the qW -metric
associated to NW to T (V ). This implies that T (V ) is a closed set in W with
respect to the qW -metric associated to NW , as in Section 4.9. If T (V ) is dense
in W , then it follows that

T (V ) = W,(5.15.4)

as mentioned in the previous section.
Under these conditions, R is bounded as a linear mapping from V into W ,

because R − T is bounded, by hypothesis. If V is complete, then R(V ) is a
closed set in W , as in the preceding paragraph. This uses (5.15.3) to get that
R satisfies the same type of property as T , as before. We also have that R(V )
is dense in W , because of (5.15.3) and (5.15.4), as before. This means that

R(V ) = W,(5.15.5)

as in the previous paragraph.
This shows that the set of invertible bounded linear mappings from V onto

W is an open set in BL(V,W ) with respect to the qW -metric associated to the
operator qW -norm when V is complete. Note that W is complete with respect to
the qW -metric associated to NW when V is complete and there is an invertible
bounded linear mapping from V ontoW . Similarly, the set of invertible bounded
linear mappings from V ontoW is an open subset of BL(V,W ) when V has finite
dimension. More precisely, if there is an invertible linear mapping from V onto
W , then W has the same dimension as V .



Chapter 6

Subadditivity and
sub-invariance

6.1 Subadditivity on semigroups

Let Σ be a semigroup. If A ⊆ Σ and x ∈ Σ, then put xA = {x a : a ∈ A} and
Ax = {a x : a ∈ A}, as usual. If B ⊆ Σ too, then let AB be the set of products
a b, with a ∈ A and b ∈ B.

Let N be a nonnegative real-valued function on Σ, and let q be a positive
real number. Let us say that N is q-subadditive on Σ if

N(x y)q ≤ N(x)q +N(y)q(6.1.1)

for every x, y ∈ Σ. If this holds with q = 1, then we may simply say that N is
subadditive on Σ.

As usual, (6.1.1) is the same as saying that

N(x y) ≤ (N(x)q +N(y)q)1/q(6.1.2)

for every x, y ∈ Σ. The right side of (6.1.2) decreases monotonically in q, as
in (2.10.1). This implies that q-subadditivity becomes more restrictive as q
increases.

Similarly, let us say that N is ultrasubadditive on Σ if

N(x y) ≤ max(N(x), N(y))(6.1.3)

for every x, y ∈ Σ. This implies that N is q-subadditive on Σ when 0 < q < ∞.
We shall consider ultrasubadditivity to be the same as q-subadditivity with
q = +∞, as before.

Suppose that Σ has an identity element e. If

N(e) = 0,(6.1.4)

116
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then we say that N is normalized on Σ. If

N(x) > 0(6.1.5)

for every x ∈ Σ with x 6= e, then we say that N is nondegenerate on Σ. If Σ is
a group, and if

N(x−1) = N(x)(6.1.6)

for every x ∈ Σ, then we say that N is symmetric on Σ.
Let a be a positive real number. If N is q-subadditive on Σ for some q > 0,

then
N(x)a(6.1.7)

is (q/a)-subadditive on Σ. If Σ has an identity element e and N is normalized
or nondegenerate on Σ, then (6.1.7) has the same property. If Σ is a group, and
N is symmetric on Σ, then (6.1.7) is symmetric on Σ as well.

If Σ is a commutative semigroup, then we may use additive notation for the
semigroup operation. In this case, q-subadditivity of a nonnegative real-valued
function N on Σ means that

N(x+ y)q ≤ N(x)q +N(y)q(6.1.8)

for every x, y ∈ Σ when q < ∞, and that

N(x+ y) ≤ max(N(x), N(y))(6.1.9)

for every x, y ∈ Σ when q = ∞. If Σ has an identity element, then it may
be denoted 0 under these conditions. If Σ is a commutative group, then a
nonnegative real-valued function N on Σ is symmetric when

N(−x) = N(x)(6.1.10)

for every x ∈ Σ.

6.2 Some examples and additional properties

Let k be a field, and let | · | be a qk-absolute value function on k for some qk > 0.
Observe that | · | is qk-subadditive, normalized, nondegenerate, and symmetric
on k, as a commutative group with respect to addition.

In particular, the standard absolute value function is subadditive on the real
line, as a commutative group with respect to addition. One can check that

max(x, 0), max(−x, 0)(6.2.1)

are subadditive on R as well.
The sets R+ and R+ ∪ {0} of positive and nonnegative real numbers, re-

spectively, are sub-semigroups of R, as a commutative group with respect to
addition. If 0 < a ≤ 1, then

xa is subadditive on R+ ∪ {0},(6.2.2)
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as in Section 1.6. If t is a positive real number, then one can verify that

min(x, t)(6.2.3)

is subadditive on R+ ∪ {0}.
Let Σ be a semigroup, and let N be a nonnegative real-valued function on

Σ. Put
BN (r) = {x ∈ Σ : N(x) < r}(6.2.4)

for every positive real number r, and

BN (r) = {x ∈ Σ : N(x) ≤ r}(6.2.5)

for every nonnegative real number r. IfN is q-subadditive on Σ for some positive
real number q, then

BN (r1)BN (r2) ⊆ BN ((rq1 + rq2)
1/q)(6.2.6)

for every r1, r2 > 0, and

BN (r1)BN (r2) ⊆ BN ((rq1 + rq2)
1/q)(6.2.7)

for every r1, r2 ≥ 0.
Similarly, if N is ultrasubadditive on Σ, then

BN (r1)BN (r2) ⊆ BN (max(r1, r2))(6.2.8)

for every r1, r2 > 0, and

BN (r1)BN (r2) ⊆ BN (max(r1, r2))(6.2.9)

for every r1, r2 ≥ 0. This means that BN (r) is a sub-semigroup of Σ for every
r > 0, and that BN (r) is a sub-semigroup of Σ for every r ≥ 0. Note that
BN (0) is a sub-semigroup of Σ when N is q-subadditive on Σ for any q > 0.
If Σ has an identity element e, and N is normalized on Σ, then e ∈ BN (r) for
every r > 0, and e ∈ BN (r) for every r ≥ 0.

Suppose for the moment that Σ is a group, and that N is symmetric on Σ.
In this case, BN (r) is symmetric in Σ for every r > 0, and BN (r) is symmetric
for every r ≥ 0. If N is ultrasubadditive and normalized on Σ, then BN (r)
is a subgroup of Σ for every r > 0, and BN (r) is a subgroup of Σ for every
r ≥ 0. If N is normalized and q-subadditive on Σ for any q > 0, then BN (0) is
a subgroup of Σ.

Let a be a positive real number, so that Na is another nonnegative real-
valued function on Σ. Note that

BNa(ra) = BN (r)(6.2.10)

for every r > 0, and that
BNa(ra) = BN (r)(6.2.11)

for every r ≥ 0.
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6.3 Subadditivity and compositions

Let Σ1, Σ2 be semigroups, and let ϕ be a semigroup homomorphism from Σ1

into Σ2. If a nonnegative real-valued function N2 on Σ2 is q2-subadditive for
some q2 > 0, then

N2 ◦ ϕ is q2-subadditive on Σ1.(6.3.1)

Suppose that Σ1, Σ2 have identity elements e1, e2, respectively, and that

ϕ(e1) = e2.(6.3.2)

Note that this holds automatically when ϕ(Σ1) = Σ2. If N2 is normalized on
Σ2, then N2 ◦ϕ is normalized on Σ1. If N2 is nondegenerate on Σ2, and x1 ∈ Σ1

satisfies ϕ(x1) = e2 only when x1 = e1, then N2 ◦ ϕ is nondegenerate on Σ1. If
Σ1, Σ2 are groups, and N2 is symmetric on Σ2, then N2 ◦ϕ is symmetric on Σ1.

Let Σ be a semigroup, and let N be a nonnegative real-valued function on
Σ. Also let α be a monotonically increasing nonnegative real-valued function
on R+ ∪ {0}. If N is ultrasubadditive on Σ, then

α ◦N is ultrasubadditive on Σ.(6.3.3)

If N is subadditive on Σ, and α is subadditive on R+ ∪ {0}, then it is easy to
see that

α ◦N is subadditive on Σ.(6.3.4)

If Σ is a group, and N is symmetric on Σ, then α◦N is symmetric on Σ as well.
Suppose that Σ has an identity element. If N is normalized on Σ, and

α(0) = 0, then α ◦ N is normalized on Σ. If N is nondegenerate on Σ, and
α(r) > 0 when r > 0, then α ◦N is nondegenerate on Σ.

Let q be a positive real number, and put

αq(x) = α(x1/q)q(6.3.5)

for every x ≥ 0. It is easy to see that αq is monotonically increasing as a nonneg-
ative real-valued function on R+ ∪ {0}, because α is monotonically increasing,
by hypothesis. If αq is aubadditive on R+ ∪ {0}, and N is q-subadditive on Σ,
then one can check that

α ◦N is q-subadditive on Σ.(6.3.6)

More precisely, this is the same as saying that

(α(N(u)))q = αq(N(u)q)(6.3.7)

is subadditive on Σ. This can be obtained from the subadditivity of αq and Nq,
as before.

Let t be a positive real number, and put

α(x) = min(x, t)(6.3.8)
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for every x ≥ 0. This is a monotonically increasing nonnegative real-valued
function on R+ ∪ {0}, with

αq(x) = min(x, tq)(6.3.9)

for every x ≥ 0. Thus αq is subadditive on R+∪{0}, as in the previous section.
If N is q-subadditive on Σ, then it follows that

Nt(u) = min(N(u), t)(6.3.10)

is q-subadditive on Σ as well.

6.4 Sub-invariance under translations

Let Σ be a semigroup, and let d(·, ·) be a q-semimetric on Σ for some q > 0. Let
us say that d(·, ·) is sub-invariant under left translations on Σ if

d(a x, a y) ≤ d(x, y)(6.4.1)

for every a, y, x ∈ Σ. Similarly, let us say that d(·, ·) is sub-invariant under right
translations if

d(x a, y a) ≤ d(x, y)(6.4.2)

for every a, x, y ∈ Σ.
If Σ is a group, then sub-invariance under left or right translations implies

invariance under left or right translations, as appropriate. More precisely, sup-
pose that Σ has an identity element, and that a ∈ Σ has an inverse a−1 ∈ Σ. In
this case, sub-invariance under left or right translations by a and a−1 implies
invariance under left or right translations by a, as appropriate.

Let Σ be a semigroup with an identity element e, and let d(·, ·) be a q-
semimetric on Σ for some q > 0 again. Thus

Nd(x) = d(e, x)(6.4.3)

is a normalized nonnegative real-valued function on Σ, which is nondegenerate
when d(·, ·) is a q-metric on Σ. If d(·, ·) is sub-invariant under left or right
translations on Σ, then one can check that Nd is q-subadditive on G, as in
Section 3.7.

If Σ is a group, and d(·, ·) is sub-invariant under left or right translations,
then d(·, ·) is invariant under left or right translations, as appropriate. In this
case, Nd is symmetric on Σ, as in Section 3.3.

Suppose now that Σ is a group, and that N is a nonnegative real-valued func-
tion on Σ that is qN -subadditive for some qN > 0, normalized, and symmetric.
Under these conditions, one can check that

dN,L(x, y) = N(x−1 y) = N(y−1 x)(6.4.4)

and
dN,R(x, y) = N(x y−1) = N(y x−1)(6.4.5)
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define qN -semimetrics on Σ. More precisely, (6.4.4) is invariant under left trans-
lations on Σ, and (6.4.5) is invariant under right translations. If N is also
nondegenerate on Σ, then these are qN -metrics on Σ. Note that

dN,R(x, y) = dN,L(x
−1, y−1)(6.4.6)

for every x, y ∈ Σ, and that

N(x) = dN,L(e, x) = dN,R(e, x)(6.4.7)

for every x ∈ Σ.
Let q0 be a positive real number with q0 ≤ qN , so that N is q0-subadditive

on Σ, as in Section 6.1. Similarly, dN,L and dN,R may be considered as q0-
semimetrics on Σ, so that dN,L(·, ·)q0 and dN,R(·, ·)q0 are semimetrics on Σ. It
follows that N(x)q0 is Lipschitz of order q0 with constant C = 1 on Σ with
respect to dN,L and dN,R, as in Section 1.8. In particular, this implies that N
is continuous with respect to dN,L and dN,R.

Suppose for the moment that Σ is a topological group. If N is continuous at
e as a real-valued function on Σ, then dN,L and dN,R are compatible with the
topology on Σ, as in Section 3.6. In this case, N is continuous on Σ, as before.
More precisely, Nq0 is both left and right-invariant uniformly continuous on Σ.

Let t be a positive real number, and let Nt be as in (6.3.10). Also let dNt,L

and dNt,R be the qN -semimetrics corresponding to Nt as before. Observe that

dNt,L(x, y) = min(dN,L(x, y), t)(6.4.8)

and
dNt,R(x, y) = min(dN,R(x, y), t)(6.4.9)

for every x, y ∈ Σ. Thus dNt,L and dNt,R have the properties mentioned in
Section 2.7, in relation to dN,L and dN,R, respectively.

Let d(·, ·) be a q-semimetric on Σ for some q > 0, and let Nd be as in
(6.4.3). If d(·, ·) is invariant under left translations on Σ, then it is easy to see
that d(·, ·) is the same as the left-invariant q-semimetric associated to Nd as in
(6.4.4). Similarly, if d(·, ·) is invariant under right translations, then d(·, ·) is the
same as the right-invariant q-semimetric associated to Nd as in (6.4.6).

6.5 Combining subadditive functions

Let Σ be a semigroup, and let l be a positive integer. Also let Nj be a non-
negative real-valued function on Σ for each j = 1, . . . , l, and suppose that Nj is
qj-subadditive on Σ for some qj > 0. Put

q0 = min(q1, . . . , ql),(6.5.1)

so that Nj is q0-subadditive on Σ for each j = 1, . . . , l. One can check that

N(x) = max
1≤j≤l

Nj(x)(6.5.2)
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is q0-subadditive on Σ as well under these conditions. Note that

BN (r) =

l⋂
j=1

BNj
(r)(6.5.3)

for every r > 0, and

BN (r) =

l⋂
j=1

BNj (r)(6.5.4)

for every r ≥ 0, using the notation in (6.2.4) and (6.2.5), respectively.
Let r be a positive real number, and consider

( l∑
j=1

Nj(x)
r
)1/r

,(6.5.5)

which is a nonnegative real-valued function of x ∈ Σ. If r ≤ q0, then (6.5.5)
is r-subadditive on Σ. One can check this using (2.11.6) with the exponent
r/q0 ≤ 1 when q0 < ∞, or using the fact that Nj is r-subadditive on Σ for
each j = 1, . . . , l when r ≤ q0, as in Sections 2.11 and 5.2. If q0 ≤ r, then one
can verify that (6.5.5) is q0-subadditive on Σ, using Minkowski’s inequality with
exponent r/q0 ≥ 1, as before.

Suppose for the moment that Σ has an identity element e. IfNj is normalized
for each j = 1, . . . , l, then (6.5.2) and (6.5.5) are normalized. It is easy to see
that (6.5.2) and (6.5.5) are nondegenerate exactly when for every x ∈ Σ with
x 6= e we have that Nj(x) > 0 for some j. If Σ is a group, and Nj is symmetric
on Σ for every j = 1, . . . , l, then (6.5.2) and (6.5.5) are symmetric on Σ as well.

Now let N1, N2, N3, . . . be an infinite sequence of nonnegative real-valued
functions on Σ, and suppose that for each j ≥ 1, Nj is qj-subadditive on Σ for
some qj > 0. Let us also ask that there be a q0 > 0 such that

q0 ≤ qj(6.5.6)

for every j ≥ 1. This can always be arranged with q0 = 1, for instance, by
replacing Nj with N

qj
j when qj < 1. It follows that Nj is q0-subadditive on Σ

for every j ≥ 1.
Let us suppose too that

sup
x∈Σ

Nj(x) → 0 as j → ∞.(6.5.7)

This can be arranged by replacing Nj by the minimum of Nj and a positive real
number that tends to 0 as j → ∞, as in Section 6.3. If x ∈ Σ, then we put

N(x) = max
j≥1

Nj(x).(6.5.8)

More precisely, it is easy to see that the maximum is attained under these
conditions. One can check that N is q0-subadditive on Σ.
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Suppose that Σ is a group, and that Nj is normalized and symmetric on Σ
for every j ≥ 1, so that N is normalized and symmetric too. Observe that N is
nondegenerate on Σ exactly when for every x ∈ Σ with x 6= 0 there is a j ∈ Z+

such that Nj(x) > 0.
Let dNj ,L, dNj ,R be as in the previous section for each j ≥ 1, and similarly

for dN,L, dN,R. Thus

dN,L(x, y) = max
j≥1

dNj ,L(x, y)(6.5.9)

and
dN,R(x, y) = max

j≥1
dNj ,R(x, y)(6.5.10)

for every x, y ∈ Σ. The topologies determined on Σ by dN,L and dN,R are the
same as the topologies determined by the collections of dNj ,L and dNj ,R, j ≥ 1,
respectively, as in Section 2.8.

6.6 Subadditivity and sub-semigroups

Let Σ be a semigroup, and let A be a sub-semigroup of Σ. If x ∈ Σ, then put

NA(x) = 0 when x ∈ A(6.6.1)

= 1 when x 6∈ A.

One can check that NA is ultrasubadditive on Σ. If Σ has an identity element
e, and e ∈ A, then NA is normalized on Σ.

Suppose now that Σ is a group, and that A is a subgroup of Σ. Thus NA

is normalized and symmetric on Σ. This leads to semi-ultrametrics dNA,L and
dNA,R on Σ, as in Section 6.4.

We also have left and right-invariant semi-ultrametrics dA,L and dA,R on Σ
corresponding to A as in Section 3.7. It is easy to see that

dNA,L = dA,L, dNA,R = dA,R.(6.6.2)

Alternatively,
NA(x) = dA,L(e, x) = dA,R(e, x)(6.6.3)

for every x ∈ Σ.
Let Σ be a semigroup again, and let A be a sub-semigroup of Σ. Also let N0

be a nonnegative real-valued function on A, and let r0, r1 be nonnegative real
numbers. Suppose that

N0(x) ≤ r0(6.6.4)

for every x ∈ A, which can always be arranged by taking the minimum of N0

and r0. If x ∈ Σ, then put

N(x) = N0(x) when x ∈ A(6.6.5)

= r1 when x 6∈ A.
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Suppose that N0 is q-subadditive on A for some q > 0. If

r0 ≤ r1,(6.6.6)

then one can check that N is q-subadditive on Σ. More precisely, suppose that
q < ∞, and that

r0 ≤ 21/q r1.(6.6.7)

Suppose also that if x, y ∈ Σ have the property that x y ∈ A, and if at least
one of x and y is an element of A, then x and y are both in A. Under these
conditions, one can verify that N is q-subadditive on G.

Suppose that Σ has an identity element e. Note that the condition on A
mentioned in the preceding paragraph holds when e ∈ A, and A is a group.
If e ∈ A and N0 is normalized on A, then N is normalized on Σ. If N0 is
nondegenerate on A and r1 > 0, then N is nondegenerate on Σ. If Σ is a group,
A is a subgroup of Σ, and N0 is symmetric on A, then N is symmetric on Σ.

Suppose that Σ is a group, A is a subgroup of G, and that N0 is normalized,
symmetric, and q-subadditive on A for some q > 0. Suppose also that (6.6.6)
or (6.6.7) holds, as appropriate, so that N is normalized, symmetric, and q-
subadditive on Σ, as before. Using N0, we get q-semimetrics dN0,L and dN0,R

on A, as in Section 6.4. Similarly, we have q-semimetrics dN,L and dN,R on Σ
associated to N , as before. One can check that dN,L, dN,R correspond to dN0,L,
dN0,R as in Section 3.13, respectively.

6.7 Balanced functions

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V be a vector space over k. Suppose for the moment that N is a qN -seminorm
on V with respect to | · | on k for some qN > 0. This implies that N is qN -
subadditive, normalized, and symmetric on V , as a commutative group with
respect to addition. If N is a qN -norm on V , then N is nondegenerate on V .

Let us say that a nonnegative real-valued function N on V is balanced with
respect to | · | on k if

N(t v) ≤ N(v)(6.7.1)

for every v ∈ V and t ∈ k with |t| ≤ 1. This implies that

N(t v) = N(v)(6.7.2)

for every v ∈ V and t ∈ k with |t| = 1. In particular, this means that N is
symmetric on V . If N satisfies the homogeneity condition in the definition of a
seminorm, then N is balanced on V .

Suppose that N is balanced on V . If α is a monotonically increasing non-
negative real-valued function on R+ ∪ {0}, then it is easy to see that α ◦N is
balanced on V . Thus

Nτ (v) = min(N(v), τ)(6.7.3)

is balanced on V for every positive real number τ .
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Suppose for the moment that | · | is the trivial absolute value function on
k. In this case, N satisfies the homogeneity condition in the definition of a
seminorm if and only if N is balanced and normalized on V .

Let | · | be any qk-absolute value function on V again, and suppose that N
is balanced on V with respect to | · | on k. If a is a positive real number, then
N(x)a is balanced on V with respect to | · | on k as well.

Remember that | · |a is a (qk/a)-absolute value function on k, as in Section
5.1. Observe that N is balanced on V with respect to | · | if and only if N is
balanced with respect to | · |a.

Let l be a positive integer, and suppose that Nj is a balanced nonnegative
real-valued function on V for each j = 1, . . . , l. Under these conditions, the
maximum of N1, . . . , Nl is balanced on V as well. If r is a positive real number,
then (6.5.5) is balanced on V too.

Similarly, let N1, N2, N3, . . . be an infinite sequence of nonnegative real-
valued balanced functions on V . If the Nj ’s are bounded pointwise on V , then
their supremum is balanced on V .

6.8 Subadditivity and conjugations

Let Σ be a semigroup with an identity element e, and let A be a sub-semigroup
of Σ such that e ∈ A, and every element of A has an inverse in A, so that A is
a group. Under these conditions, a nonnegative real-valued function N on Σ is
invariant under conjugations by elements of A when

N(a x a−1) = N(x)(6.8.1)

for every a ∈ A and x ∈ Σ. Equivalently, this means that

N(a x) = N(x a)(6.8.2)

for every a ∈ A and x ∈ Σ. If N is invariant under conjugations by elements of
A, then BN (r) is invariant under conjugations by elements of A for every r > 0,
and BN (r) is invariant under conjugations by elements of A for every r ≥ 0,
where BN (r), BN (r) are as in Section 6.1.

Let d(·, ·) be a q-semimetric on Σ for some q > 0. Of course, d(·, ·) is invariant
under conjugations by elements of A when

d(a x a−1, a y a−1) = d(x, y)(6.8.3)

for every a ∈ A and x, y ∈ Σ. This is equivalent to asking that

d(a x, a y) = d(x a, y a)(6.8.4)

for every a ∈ A and x, y ∈ Σ. In this case, d(e, x) is invariant under conjugations
by elements of A, as a function of x ∈ Σ.

Suppose for the moment that Σ is a group, and that N is normalized, sym-
metric, and qN -subadditive on Σ for some qN > 0. Let dN,L, dN,R be the
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corresponding qN -semimetrics on Σ, as in Section 6.4. It is easy to see that the
invariance of N , dN,L, and dN,R under conjugations by elements of A are all
equivalent. Note that dN,L is invariant under conjugations by elements of A if
and only if dN,L is invariant under right translations by elements of A, because
dN,L is invariant under left translations, as in Section 3.11. Similarly, dN,R is
invariant under conjugations by elements of A if and only if dN,R is invariant
under left translations by elements of A.

If N is invariant under conjugations by arbitrary elements of Σ, then we
may simply say that N is invariant under conjugations on Σ. One can check
that this happens if and only if dN,L = dN,R. In this case, one may denote
this qN -semimetric as dN . If qN = ∞, then it follows that BN (r) is a normal
subgroup of Σ for every r > 0, and that BN (r) is a normal subgroup of Σ for
every r ≥ 0.

IfN is any nonnegative real-valued function on Σ, then one can get a function
that is invariant under conjugations by elements of A by putting

NA(x) = sup
a∈A

N(a x a−1)(6.8.5)

for every x ∈ Σ. More precisely, let us suppose that the supremum on the right
is finite for every x ∈ Σ, which holds in particular when N is bounded on Σ.
Of course, this can always be arranged by taking the minimum of N and some
positive real number.

Suppose that N is normalized and qN -subadditive on Σ for some qN > 0
again, so that N(a x a−1) has these properties as a function of x ∈ Σ for every
a ∈ A. One can use this to check that NA has the same properties on Σ. Suppose
now that Σ is a group, and that N is also symmetric on Σ. This implies that
N(a x a−1) is symmetric as a function of x ∈ Σ for every a ∈ A, so that NA is
symmetric on Σ as well.

Let dN,L, dN,R be as in Section 6.4 again, and let dNA,L, dNA,R be the
analogous qN -semimetrics on Σ corresponding toNA. One can verify that dNA,L,
dNA,R can be obtained from dN,L, dN,R, respectively, by taking the appropriate
supremum over conjugations by elements of A, as in Section 3.11.

Suppose that Σ is equipped with a topology, and that conjugations by ele-
ments of A are equicontinuous at e as mappings on Σ, as in Section 3.5. If N is
continuous at e, as a real-valued function on Σ, then it is easy to see that NA

is continuous at e as well.

6.9 Subadditivity and boundedness

Let Σ be a semigroup, and let N be a nonnegative real-valued function on Σ
that is q-subadditive for some q > 0. Let us say that a subset E of Σ is bounded
with respect to N if N is bounded on E. If A, B are subsets of Σ that are
bounded with respect to N , then AB is bounded with respect to N too.

Equivalently, E is bounded with respect to N if there is a nonnegative real
number r such that

E ⊆ BN (r),(6.9.1)
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where the right side is as in Section 6.1. If E is also nonempty, then put

ρN (E) = sup
x∈E

N(x),(6.9.2)

which may be interpreted as being 0 when E = ∅. This is the same as the
smallest r ≥ 0 such that (6.9.1) holds. If A, B are bounded subsets of Σ with
respect to N , then

ρN (AB)q ≤ ρN (A)q + ρN (B)q(6.9.3)

when q < ∞, and

ρN (AB) ≤ max(ρN (A), ρN (B))(6.9.4)

when q = ∞.
Let X be a nonempty set, and let us say that a mapping f from X into Σ

is bounded with respect to N if f(X) is a bounded set with respect to N . Let
B(X,Σ) = BN (X,Σ) be the space of mappings from X into Σ that are bounded
with respect to N . Note that this is a semigroup with respect to pointwise
multiplication of functions on X.

If f ∈ B(X,Σ), then put

Nsup(f) = Nsup,X(f) = sup
x∈X

N(f(x)).(6.9.5)

Equivalently,

Nsup(f) = ρN (f(X)).(6.9.6)

One can check that this is q-subadditive on B(X,Σ).
Suppose that Σ has an identity element e, so that the constant function on X

equal to e at every point is the identity element in B(X,Σ). If N is normalized
on Σ, then (6.9.5) is normalized on B(X,Σ). Similarly, if N is nondegenerate
on Σ, then (6.9.5) is nondegenerate on B(X,Σ).

Suppose now that Σ is a group, and that N is normalized and symmetric on
Σ. If a subset E of Σ is bounded with respect to N , then E−1 is bounded with
respect to N too. More precisely,

ρN (E−1) = ρN (E).(6.9.7)

Let dN,L and dN,R be the q-semimetrics on Σ associated to N as in Section
6.4. If E is bounded with respect to N , then it is easy to see that E is bounded
with respect to both dN,L and dN,R. Conversely, if E is bounded with respect
to either dN,L or dN,R, then E is bounded with respect to N .

Similarly, if f ∈ B(X,Σ), then f(x)−1 is bounded on X with respect to N
too, with

Nsup(f(·)−1) = Nsup(f).(6.9.8)

This implies that B(X,Σ) is a group, with respect to pointwise multiplication
of functions. Note that the boundedness of a mapping f from X into Σ with
respect to N is equivalent to boundedness of f with respect to dN,L, dN,R.
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Let dNsup,L and dNsup,R be the q-semimetrics on B(X,Σ) associated to (6.9.5)
as in Section 6.4. One can check that these are the same as the supremum q-
semimetrics on B(X,Σ) associated to dN,L and dN,R, respectively, as in Section
2.12.

If N is invariant under conjugations on Σ, then (6.9.5) is invariant under
conjugations on B(X,Σ). In this case, dN,L = dN,R, as in the previous section,
and similarly dNsup,L = dNsup,R.

6.10 Some examples of sub-invariance

Let X be a nonempty set, let d be a q-semimetric on X for some q > 0, and
suppose that X is bounded with respect to d. The space M(X) of all mappings
from X into itself is a semigroup with respect to composition, with the identity
mapping on X as the identity element. Let θ be the corresponding supremum
q-semimetric on M(X), as in Section 2.12. It is easy to see that

θ(f ◦ h, g ◦ h) ≤ θ(f, g)(6.10.1)

for every f, g, h ∈ M(X), so that θ is sub-invariant under right translations on
M(X). Note that

θ(f ◦ h, g ◦ h) = θ(f, g)(6.10.2)

when h(X) = X.
Let C(X) = C(X,X) be the space of continuous mappings from X into itself,

with respect to d. This is a sub-semigroup of M(X) that contains the identity
mapping. One can check that (6.10.2) holds when f, g ∈ C(X), h ∈ M(X), and
h(X) is dense in X with respect to d.

If h is an isometry from X into itself with respect to d, then

θ(h ◦ f, h ◦ g) = θ(f, g)(6.10.3)

for every f, g ∈ M(X). If h is Lipschitz of order one with constant C = 1 with
respect to d, then

θ(h ◦ f, θ ◦ g) ≤ θ(f, g)(6.10.4)

for every f, g ∈ M(X). If h is a uniformly continuous mapping from X into
itself with respect to d, then one can verify that

f 7→ h ◦ f(6.10.5)

is uniformly continuous as a mapping from M(X) into itself, with respect to θ.
Let f0, f, g0, g ∈ M(X) be given. If q < ∞, then

θ(g ◦ f, g0 ◦ f0)q ≤ θ(g ◦ f, g0 ◦ f)q + θ(g0 ◦ f, g0 ◦ f0)q(6.10.6)

≤ θ(g, g0)
q + θ(g0 ◦ f, g0 ◦ f0)q.

Similarly, if q = ∞, then

θ(g ◦ f, g0 ◦ f0) ≤ max(θ(g ◦ f, g0 ◦ f), θ(g0 ◦ f, g0 ◦ f0))(6.10.7)

≤ max(θ(g, g0), θ(g0 ◦ f, g0 ◦ f0)).
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If g0 is Lipschitz of order one with constant C = 1, then

θ(g ◦ f, g0 ◦ f0)q ≤ θ(g, g0)
q + θ(f, f0)

q(6.10.8)

when q < ∞, and

θ(g ◦ f, g0 ◦ f0) ≤ max(θ(g, g0), θ(f, f0))(6.10.9)

when q = ∞.
If g0 is uniformly continuous on X, then one can check that

(f, g) 7→ g ◦ f(6.10.10)

is continuous at (f0, g0), as a mapping from M(X)×M(X) into M(X). This
uses the topology determined on M(X) by θ, and the corresponding product
topology on M(X)×M(X). Note that the collection of uniformly continuous
mappings from X into itself is a sub-semigroup of C(X) that contains the iden-
tity mapping. The collection of Lipschitz mappings of order one with constant
C = 1 from X into itself is a sub-semigroup of the semigroup of uniformly con-
tinuous mappings. The collection of isometric mappings from X into itself is a
sub-semigroup of this semigroup.

6.11 Mappings into topological groups

Let X be a topological space, and let Σ be a semigroup. Suppose that Σ is
equipped with a topology, and that the semigroup operation on Σ is continuous
as a mapping from Σ×Σ into Σ, using the corresponding product topology on
Σ × Σ. It is easy to see that the space C(X,Σ) of continuous mappings from
X into Σ is a semigroup, with respect to pointwise multiplication of functions.
If Σ has an identity element e, then the constant function on X equal to e at
every point is the identity element in C(X,Σ).

Suppose from now on in this section that Σ is a topological group. If f
is a continuous mapping from X into Σ, then f(x)−1 is continuous on X too.
This means that C(X,Σ) is a group, with respect to pointwise multiplication of
functions.

Let d(·, ·) be a qd-semimetric on X for some qd > 0. Let us say that a
mapping f from X into Σ is left-invariant uniformly continuous with respect to
d(·, ·) if for every open subset U of Σ that contains e there is a δ > 0 such that

f(w) ∈ f(x)U(6.11.1)

for every x,w ∈ X with d(x,w) < δ. Similarly, let us say that f is right-
invariant uniformly continuous with respect to d(·, ·) on X if for every open
subset U of Σ that contains e there is a δ > 0 such that

f(w) ∈ U f(x)(6.11.2)
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for every x,w ∈ X with d(x,w) < δ. Each of these conditions implies that f is
continuous with respect to the topology determined on X by d(·, ·).

Let UL, UR be the uniformities defined on Σ as in Section 3.2. It is easy to
see that left and right-invariant uniform continuity of mappings from X into Σ,
as in the preceding paragraph, are equivalent to uniform continuity with respect
to the uniformity on X associated to d(·, ·) and UL, UR, respectively. Of course,
one can also consider left and right-invariant uniform continuity conditions with
respect to a collection of q-semimetrics on X, or a uniformity on X.

Let f be a mapping from X into Σ again. Observe that

f is right-invariant uniformly continuous on X if and only if(6.11.3)

f(x)−1 is left-invariant uniformly continuous on X.

Suppose now that conjugations on Σ are equicontinuous at e. This is equiv-
alent to the condition that UL = UR, as in Section 3.14. It follows that left and
right-invariant uniform continuity of mappings from X into Σ are the same in
this case. Of course, this can also be verified directly, in terms of (6.11.1) and
(6.11.2). This is a bit simpler if one uses the fact that the collection B1 of open
subsets of Σ that contain e and are invariant under conjugations is a local base
for the topology of Σ at e, as in Section 3.11.

Thus, under these conditions, we may simply say that a mapping f from
X into Σ is uniformly continuous with respect to d(·, ·) on X when f is left
or equivalently right-invariant uniformly continuous. If f and g are uniformly
continuous mappings from X into Σ, then one can check that

f(x) g(x) is uniformly continuous on X.(6.11.4)

This is a bit simpler using the fact that B1 is a local base for the topology of Σ
at e, as before. This implies that the uniformly continuous mappings from X
into Σ form a subgroup of C(X,Σ).

6.12 Left and right sub-invariance

Let Σ be a semigroup, and let d(·, ·) be a qd-semimetric on Σ for some qd > 0.
Suppose that d(·, ·) is sub-invariant under both left and right translations on Σ,
and let u, v, y, z ∈ Σ be given. If qd < ∞, then

d(u v, y z)qd ≤ d(u v, y v)qd + d(y v, y z)qd ≤ d(u, y)qd + d(v, z)qd .(6.12.1)

Similarly, if qd = ∞, then

d(u v, y z) ≤ max(d(u v, y v), d(y v, y z)) ≤ max(d(u, y), d(v, z)).(6.12.2)

In both cases, it follows in particular that the semigroup operation on Σ is
continuous as a mapping from Σ × Σ into Σ, with respect to the topology
determined on Σ by d(·, ·), and the corresponding product topology on Σ × Σ.
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Note that Σ × Σ may be considered as a semigroup, where the semigroup
operation is defined coordinatewise. The remarks in the preceding paragraph
imply that d(·, ·) is qd-subadditive on Σ×Σ. Conversely, if d(·, ·) is q-subadditive
on Σ× Σ for any q > 0, then it is easy to see that d(·, ·) is sub-invariant under
left and right translations on Σ.

Let X be a nonempty set, and let dX(·, ·) be a qX -semimetric on X for some
qX > 0. The space C(X,Σ) of continuous mappings from X into Σ is a semi-
group with respect to pointwise multiplication of functions, as in the previous
section. One can check that the collection of uniformly continuous mappings
from X into Σ is a sub-semigroup of C(X,Σ), using the qd-subadditivity of
d(·, ·) on Σ× Σ.

Let Lipα(X,Σ) be the space of mappings from X into Σ that are Lipschitz
of order α > 0 with some constant C ≥ 0 with respect to dN on Σ. If α = 1,
then this space may be denoted Lip(X,Σ), and we may simply say that its
elements are Lipschitz on X, as before. One can verify that Lipα(X,Σ) is a
sub-semigroup of C(X,Σ) as well, using the qd-subadditivity of d(·, ·) on Σ×Σ.

If f ∈ Lipα(X,Σ), then we would like to put

‖f‖Lipα(X,Σ) = sup

{
d(f(x), f(w))

dX(x,w)α
: x,w ∈ X, dX(x,w) > 0

}
,(6.12.3)

as in Sections 4.12 and 5.11. This should be interpreted as being equal to 0
when dX(x,w) = 0 for every x,w ∈ X, as before. If x,w ∈ X and dX(x,w) = 0,
then d(f(x), f(w)) = 0, by hypothesis. It is easy to see that (6.12.3) is the
smallest C ≥ 0 such that f is Lipschitz of order α with constant C on X. If
α = 1, then (6.12.3) may be denoted ‖f‖Lip(X,Σ).

One can check that (6.12.3) is qd-subadditive on Lipα(X,Σ), using the qd-
subadditivity of d(·, ·) on Σ×Σ again. Of course, (6.12.3) is equal to 0 when f
is constant on X. If d(·, ·) is a qd-metric on Σ and (6.12.3) is equal to 0, then
f is constant on X. If Σ has an identity element e, then the constant function
on X equal to e at every point is the identity element in C(X,Σ), and thus in
Lipα(X,Σ). In particular, (6.12.3) is normalized on Lipα(X,Σ) in this case.

Suppose now that Σ is a group, so that d(·, ·) is invariant under left and
right translations, as in Section 6.4. This implies that d(·, ·) is invariant under
x 7→ x−1, as in Section 3.3. Remember that Σ is a topological group with respect
to the topology determined by d(·, ·) under these conditions, as in Section 3.14.
Thus C(X,Σ) is a group with respect to pointwise multiplication of functions,
as in the previous section. The collection of uniformly continuous mappings
from X into Σ is a subgroup of C(X,Σ), as before.

Similarly, Lipα(X,Σ) is a subgroup of C(X,Σ) in this case. More precisely,
if f ∈ Lipα(X,Σ), then

‖f(·)−1‖Lipα(X,Σ) = ‖f‖Lipα(X,Σ),(6.12.4)

so that (6.12.3) is symmetric on Lipα(X,Σ).
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6.13 Bilipschitz mappings into groups

Let us continue with the same notation and hypotheses as in the previous sec-
tion. In particular, we suppose that Σ is a group, so that d(·, ·) is invariant
under left and right translations on Σ.

Let f and g be mappings from X into Σ, and let x,w ∈ X be given. If
qd < ∞, then

d(f(x), f(w))qd ≤ d(f(x) g(x)−1, f(w) g(w)−1)qd + d(g(x), g(w))qd ,(6.13.1)

as in (6.12.1). Similarly,

d(f(x), f(w))qd ≤ d(g(x)−1 f(x), g(w)−1 f(w))qd + d(g(x), g(w))qd .(6.13.2)

If qd = ∞, then

d(f(x), f(w)) ≤ max(d(f(x) g(x)−1, f(w) g(w)−1), d(g(x), g(w))),(6.13.3)

as in (6.12.2). We also have that

d(f(x), f(w)) ≤ max(d(g(x)−1 f(x), g(w)−1 f(w)), d(g(x), g(w))).(6.13.4)

Suppose that
d(f(x), f(w)) ≥ c dX(x,w)(6.13.5)

for some c > 0 and all x,w ∈ X. This implies that f is injective on X when
dX(·, ·) is a qX -metric on X, as usual. If f is injective on X, then (6.13.5) is the
same as saying that f−1 is Lipschitz of order 1 with constant 1/c as a mapping
from f(X) onto X, with respect to the restriction of d(·, ·) to f(X), as in Section
1.8.

If f(x) g(x)−1 is Lipschitz of order one on X, and qd < ∞, then we get that

cqd dX(x,w)qd ≤ ‖f(·) g(·)−1‖qdLip(X,Σ) dX(x,w)qd + d(g(x), g(w))qd(6.13.6)

for every x,w ∈ X. Equivalently,

(cqd − ‖f(·) g(·)−1‖qdLip(X,Σ)) dX(x,w)qd ≤ d(g(x), g(w))qd(6.13.7)

for every x,w ∈ X. This is interesting only when

‖f(·) g(·)−1‖Lip(X,Σ) < c,(6.13.8)

in which case we obtain that

(cqd − ‖f(·) g(·)−1‖qdLip(X,Σ))
1/qd dX(x,w) ≤ d(g(x), g(w))(6.13.9)

for every x,w ∈ X.
If qd = ∞, then we obtain that

c dX(x,w) ≤ max(‖f(·) g(·)−1‖Lip(X,Σ) dX(x,w), d(g(x), g(w)))(6.13.10)
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for every x,w ∈ X. If (6.13.8) holds, then we obtain that

c dX(x,w) ≤ d(g(x), g(w))(6.13.11)

for every x,w ∈ X. Of course, this holds automatically when dX(x,w) = 0.
Suppose now that g(x)−1 f(x) is Lipschitz of order one on X, with

‖g(·)−1 f(·)‖Lip(X,Σ) < c.(6.13.12)

If qd < ∞, then

(cqd − ‖g(·)−1 f(·)‖qdLip(X,Σ))
1/qd dX(x,w) ≤ d(g(x), g(w))(6.13.13)

for every x,w ∈ X, as before. If qd = ∞, then (6.13.11) holds for every x,w ∈ X,
by the same type of argument as before.

If f is Lipschitz of order one on X, and either f(x) g(x)−1 or g(x)−1 f(x)
is Lipschitz of order one, then g is Lipschitz of order one on X as well, as in
the previous section. If (6.13.8) or (6.13.12) holds too, then it follows that g is
bilipschitz on X.

Suppose now that qd = ∞, and that f is an isometry from X into Σ, so that
f is Lipschitz of order one with constant C = 1, and (6.13.5) holds with c = 1.
If f(x) g(x)−1 is Lipschitz of order one, and (6.13.8) holds with c = 1, then we
get that g is Lipschitz of order one with constant C = 1, and that (6.13.11)
holds with c = 1, so that g is an isometry from X into Σ as well. Similarly, if
g(x)−1 f(x) is Lipschitz of order one, and (6.13.12) holds with c = 1, then g is
an isometry from X into Σ.

6.14 Lipschitz homomorphisms

Let Σ1, Σ2 be groups, and letN1, N2 be nonnegative real-valued functions on Σ1,
Σ2 that are normalized, symmetric, and q1, q2-subadditive for some q1, q2 > 0,
respectively. This leads to semimetrics dN1,L, dN1,R and dN2,L, dN2,R on Σ1 and
Σ2, respectively, as in Section 6.4. Remember that dNj ,L and dNj ,R correspond
to each other under the mapping x 7→ x−1 on Σj , j = 1, 2. If e1, e2 are the
identity elements in Σ1, Σ2, respectively, then

dNj ,L(ej , x) = dNj ,R(ej , x) = Nj(x)(6.14.1)

for every x ∈ Σj , j = 1, 2, as before.
Let ϕ be a homomorphism from Σ1 into Σ2. If x,w ∈ Σ1, then

dN2,L(ϕ(x), ϕ(w)) = N2(ϕ(x)
−1 ϕ(w)) = N2(ϕ(x

−1 w)).(6.14.2)

Similarly,

dN2,R(ϕ(x), ϕ(w)) = N2(ϕ(x)ϕ(w)
−1) = N2(ϕ(xw

−1)).(6.14.3)
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Let us say that ϕ is continuous at e1 with respect to N1, N2 if for every
ϵ > 0 there is a δ > 0 such that

N2(ϕ(x)) < ϵ(6.14.4)

for every x ∈ Σ1 with N1(x) < δ. This is equivalent to the continuity of ϕ at e1
with respect to dN1,L or dN1,R on Σ1, and dN2,L or dN2,R on Σ2. In this case,
it is easy to see that ϕ is uniformly continuous with respect to dN1,L on Σ1 and
dN2,L on Σ2, using (6.14.2). Similarly, ϕ is uniformly continuous with respect
to dN1,R on Σ1 and dN2,R on Σ2, because of (6.14.3).

Let us say that ϕ is Lipschitz of order α > 0 with constant C ≥ 0 at e1 with
respect to N1 on Σ1 and N2 on Σ2 if

N2(ϕ(x)) ≤ C N1(x)
α(6.14.5)

for every x ∈ Σ1. Of course, this implies that ϕ is continuous at e with respect
to N1, N2. If N2 is nondegenerate on Σ2, then this condition holds with C = 0
only when ϕ(x) = e2 for every x ∈ Σ1. If this condition holds for some C ≥ 0,
then ϕ is Lipschitz of order α with constant C with respect to dN1,L on Σ1

and dN2,L on Σ2, because of (6.14.2). Similarly, this condition implies that ϕ is
Lipschitz of order α with constant C with respect to dN1,R on Σ1 and dN2,R on
Σ2, because of (6.14.3).

Suppose that

N2(ϕ(x)) ≥ cN1(x)(6.14.6)

for some c > 0 and every x ∈ Σ1. This implies that the kernel of ϕ is trivial
when N1 is nondegenerate on Σ1. If ϕ is injective on Σ1, then (6.14.6) is the
same as saying that ϕ−1 is Lipschitz of order one with constant 1/c at e2 as a
homomorphism from ϕ(Σ1) onto Σ1, with respect toN1 on Σ1 and the restriction
of N2 to ϕ(Σ1). One can use (6.14.2) and (6.14.6) to get that

dN2,L(ϕ(x), ϕ(w)) ≥ c dN1,L(x,w)(6.14.7)

for every x,w ∈ Σ1. Similarly, one can use (6.14.3) and (6.14.6) to get that

dN2,R(ϕ(x), ϕ(w)) ≥ c dN1,R(x,w)(6.14.8)

for every x,w ∈ Σ1.

Let us say that ϕ is an isometric homomorphism with respect to N1 on Σ1

and N2 on Σ2 if

N2(ϕ(x)) = N1(x)(6.14.9)

for every x ∈ Σ1. This implies that ϕ is an isometry with respect to dN1,L on
Σ1 and dN2,L on Σ2, because of (6.14.2). Similarly, this implies that ϕ is an
isometry with respect to dN1,R on Σ1 and dN2,R on Σ2, because of (6.14.3).

Of course, if Σ2 is a commutative group, then dN2,L = dN2,R, which defines
a q2-semimetric dN2

on Σ2 that is invariant under left and right translations.
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6.15 Dense subgroups

Let Σ be a group, and let N be a nonnegative real-valued function on Σ that
is normalized, symmetric, and q-subadditive for some q > 0. This leads to q-
semimetrics dN,L and dN,R on Σ, as in Section 6.4. If E is a symmetric subset
of Σ, then it is easy to see that E is dense in Σ with respect to dN,L if and only
if E is dense in Σ with respect to dN,R. This uses the fact that dN,L and dN,R

correspond to each other under the mapping x 7→ x−1 on Σ, as before.

Let Σ0 be a subgroup of Σ, and let c be a positive real number with c < 1.
Suppose that for each w ∈ Σ there is a w0 ∈ Σ0 such that

dN,R(w,w0) = N(ww−1
0 ) ≤ cN(w).(6.15.1)

We would like to check that Σ0 is dense in Σ with respect to dN,R, as in Section
5.14. Let w ∈ Σ be given, and suppose that w1, . . . , wr ∈ Σ0 have been chosen
for some positive integer r, with

N(ww−1
1 · · ·w−1

r ) ≤ cr N(w).(6.15.2)

Under these conditions, there is a wr+1 ∈ Σ0 such that

N(ww−1
1 · · ·w−1

r w−1
r+1) ≤ cN(ww−1

1 · · ·w−1
r ) ≤ cr+1 N(w),(6.15.3)

by hypothesis. Thus we can continue the process, and get an infinite sequence
w1, w2, w3, . . . of elements of Σ0 such that

dN,R(w,wr · · ·w1) ≤ cr N(w)(6.15.4)

for every r ≥ 1. This implies that Σ0 is dense in Σ with respect to dN,R, because
wr · · ·w1 ∈ Σ0.

Similarly, suppose that for every w ∈ Σ there is a w0 ∈ Σ0 such that

dN,L(w,w0) = N(w−1
0 w) ≤ cN(w).(6.15.5)

One can use the same type of argument as in the preceding paragraph to get
that Σ0 is dense in Σ with respect to dN,L. In fact, this condition is equivalent
to the previous one, with w, w0 replaced with w−1, w−1

0 , respectively.

Let Σ1 be a subgroup of Σ that is dense with respect to dN,R, or equivalently
dN,L, and let c1 be a positive real number with c1 < 1. Suppose that for every
w ∈ Σ1 there is a w0 ∈ Σ0 such that

dN,R(w,w0) = N(ww−1
0 ) ≤ c1 N(w).(6.15.6)

Let c0 be a real number with c1 < c0 < 1. If w ∈ Σ, then we would like to find
a w0 ∈ Σ0 such that

dN,R(w,w0) = N(ww−1
0 ) ≤ c0 N(w),(6.15.7)
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as in Section 5.14. Of course, if N(w) = 0, then we can take w0 to be the
identity element e. Otherwise, if N(w) > 0, then we can first choose w1 ∈ Σ1

such that
dN,R(w,w1) = N(ww−1

1 )(6.15.8)

is as small as we like. This implies in particular that N(w1) is as close as we
like to N(w). Because w1 ∈ Σ1, there is a w0 ∈ Σ0 such that

dN,R(w1, w0) = N(w1 w
−1
0 ) ≤ c1 N(w1).(6.15.9)

One can use this to get (6.15.7) when (6.15.8) is small enough. This means that
Σ0 is dense in Σ1 with respect to dN,R, as before.

Similarly, suppose that for every w ∈ Σ1 there is a w0 ∈ Σ0 such that

dN,L(w,w0) = N(w−1
0 w) ≤ c1 N(w).(6.15.10)

If w ∈ Σ, then we can use the same type of argument to find a w0 ∈ Σ0 such
that

dN,L(w,w0) = N(w−1
0 w) = c0 N(w).(6.15.11)

Alternatively, one can reduce to the previous version, using the mapping x 7→
x−1 on Σ.



Chapter 7

Bilinear mappings and
submultiplicativity

7.1 Bounded linear mappings

Let V , W be commutative groups, where the group operations are expressed
additively. It will sometimes be convenient to refer to a group homomorphism
from V into W as being linear. The space of linear mappings from V into W
may be denoted L(V,W ). This is a commutative group with respect to pointwise
addition of mappings.

If V and W are vector spaces over a field k, then a linear mapping from V
into W as vector spaces over k may be described as being linear over k. The
space of linear mappings from V into W as vector spaces over k may be denoted
Lk(V,W ), to indicate the role of k.

Let V and W be commutative groups again, and let NV , NW be nonneg-
ative real-valued functions on V , W , respectively. Suppose that NV , NW are
normalized, symmetric, and qV , qW -subadditive on V , W for some qV , qW > 0,
respectively. Let us say that a linear mapping T from V into W is bounded with
respect to NV , NW if there is a nonnegative real number C such that

NW (T (v)) ≤ C NV (v)(7.1.1)

for every v ∈ V . If u, v ∈ V , then it follows that

NW (T (u)− T (v)) = NW (T (u− v)) ≤ C NV (u− v),(7.1.2)

so that T is Lipschitz of order 1 with constant C with respect to the qV , qW -
semimetrics on V , W associated to NV , NW , respectively. Conversely, this
Lipschitz condition clearly implies that T is bounded in the sense of (7.1.1).

Let BL(V,W ) be the space of bounded linear mappings from V into W with
respect to NV , NW , in the sense of (7.1.1). One can check that this is a subgroup

137



138 CHAPTER 7. BILINEAR MAPPINGS AND SUBMULTIPLICATIVITY

of L(V,W ). If T ∈ BL(V,W ), then we would like to put

‖T‖op = ‖T‖op,V W = sup

{
NW (T (v))

NV (v)
: v ∈ V, NV (v) > 0

}
,(7.1.3)

as before. This may be interpreted as being equal to 0 when NV (v) = 0 for
every v ∈ V , as usual. Of course, if v ∈ V and NV (v) = 0, then NW (T (v)) = 0,
as in (7.1.1).

Equivalently, ‖T‖op is the smallest C ≥ 0 such that (7.1.1) holds for every
v ∈ V . One can check that ‖ ·‖op is normalized, symmetric, and qW -subadditive
on BL(V,W ). If NW is nondegenerate on W , then ‖ · ‖op is nondegenerate on
BL(V,W ). Note that ‖T‖op is also the same as the smallest C ≥ 0 such that
(7.1.2) holds for every u, v ∈ V . This corresponds to ‖T‖Lip(V,W ) in Section
6.12 as well, using the qV , qW -semimetrics on V , W associated to NV , NW ,
respectively.

Let Z be another commutative group, and let NZ be a nonnegative real-
valued function on Z that is normalized, symmetric, and qZ-subadditive for
some qZ > 0. Suppose that T1 is a bounded linear mapping from V into W ,
and that T2 is a bounded linear mapping fromW into Z. Under these conditions,
it is easy to see that T2 ◦ T1 is a bounded linear mapping from V into Z, with

‖T2 ◦ T1‖op,V Z ≤ ‖T1‖op,V W ‖T2‖op,WZ .(7.1.4)

This was mentioned in Section 5.7 for linear mappings between vector spaces
with q-seminorms. One could also look at this in terms of compositions of
Lipschitz mappings, as in Section 5.11.

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
suppose that V , W are vector spaces over k. If NV , NW are qV , qW -seminorms
on V , W , respectively, then NV , NW are normalized, symmetric, and qV , qW -
subadditive, on V , W , respectively, as commutative groups with respect to
addition, as in Section 6.7. If T is a linear mapping from V into W as vector
spaces over k, then the boundedness of T with respect to NV , NW considered
here is the same as in Section 5.7. Similarly, (7.1.3) is the same as before. The
space of bounded linear mappings from V into W as vector spaces over k may
be denoted BLk(V,W ), to indicate the role of k.

7.2 Bounded bilinear mappings

Let V , W , and Z be commutative groups, where the group operations are
expressed additively. A mapping b from V ×W into Z is said to be bilinear if
it is linear in each variable separately. This means that

b1,w(v) = b(v, w)(7.2.1)

is a linear mapping from V into Z for each w ∈ W , and that

b2,v(w) = b(v, w)(7.2.2)
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is a linear mapping from W into Z for every v ∈ V . In this case,

w 7→ b1,w(7.2.3)

is a linear mapping from W into L(V, Z), and

v 7→ b2,v(7.2.4)

is a linear mapping from V into L(W,Z). Conversely, a linear mapping from W
into L(V, Z), or from V into L(W,Z), leads to a bilinear mapping from V ×W
into Z in this way.

Suppose for the moment that V , W , and Z are vector spaces over a field k.
A mapping b from V ×W into Z is considered to be bilinear with V , W , and Z
considered as vector spaces over k if it is linear in each variable separately, as a
mapping between vector spaces over k. This means that (7.2.1) and (7.2.2) are
linear over k, and we may say that b is bilinear over k. Under these conditions,
(7.2.3) is linear over k as a mapping from W into Lk(V, Z), and (7.2.4) is linear
over k as a mapping from V into Lk(W,Z). Conversely, a mapping from W into
Lk(V, Z) that is linear over k, or a mapping from V into Lk(W,Z) that is linear
over k, leads to a mapping from V ×W into Z that is bilinear over k, as before.

Let V , W , and Z be commutative groups again, and let NV , NW , and NZ

be nonnegative real-valued functions on V , W , and Z, respectively. Suppose
that NV , NW , and NZ are normalized, symmetric, and qV , qW , qZ-subadditive
on V , W , Z for some qV , qW , qZ > 0, respectively. A bilinear mapping b from
V ×W into Z is said to be bounded with respect to NV , NW , and NZ if there
is a nonnegative real number C such that

NZ(b(v, w)) ≤ C NV (v)NW (w)(7.2.5)

for every v ∈ V and w ∈ W . Note that this implies that b is continuous at
(0, 0) in V × W , with respect to the qZ-semimetric on Z associated to NZ ,
and a suitable product q-semimetric on V × W , obtained from the qV , qW -
semimetrics on V , W associated to NV , NW , respectively. One can check that
b is continuous on all of V ×W with respect to these q-semimetrics under these
conditions, using standard arguments.

If w ∈ W , then (7.2.5) implies that (7.2.1) is a bounded linear mapping from
V into Z, with

‖b1,w‖op,V Z ≤ C NW (w).(7.2.6)

Similarly, if v ∈ V , then (7.2.5) implies that (7.2.2) is a bounded linear mapping
from W into Z, with

‖b2,v‖op,WZ ≤ C NV (v).(7.2.7)

In particular, this means that (7.2.3) maps W into BL(V, Z), and that (7.2.4)
maps V into BL(W,Z). More precisely, these are bounded linear mappings, with
respect to ‖·‖op,V Z , ‖·‖op,WZ on BL(V, Z), BL(W,Z), respectively. Conversely,
a bounded linear mapping from W into BL(V, Z), or from V into BL(W,Z),
leads to a bounded bilinear mapping from V × W into Z in the same way as
before.
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Let k be a field with a qk-absolute value function | · | for some qk > 0, and
suppose that V , W , and Z are vector spaces over k again. Let NV , NW , and NZ

be qV , qW , and qZ-seminorms on V , W , and Z with respect to | · | on k for some
qV , qW , qZ > 0, respectively, and let b be a mapping from V ×W into Z that is
bilinear over k. If | · | is not the trivial absolute value function on k, and if b is
continuous at (0, 0) with respect to the q-semimetrics obtained from NV , NW ,
and NZ as before, then one can verify that b is bounded with respect to NV ,
NW , and NZ . More precisely, it suffices to ask that NZ(b(v, w)) be bounded
on the product of balls in V , W of positive radius centered at 0 with respect
to NV , NW , respectively. This is analogous to the corresponding statement for
linear mappings mentioned in Section 5.7.

7.3 Continuity properties and completeness

Let V , W , and Z be commutative groups, where the group operations are
expressed additively, and let b be a bilinear mapping from V × W into Z. If
v1, v2 ∈ V and w1, w2 ∈ W , then

b(v1, w1)− b(v2, w2) = b(v1 − v2, w1) + b(v2, w1 − w2).(7.3.1)

Let NV , NW , and NZ be nonnegative real-valued functions on V , W , Z
that are normalized, symmetric, and qV , qW , and qZ-subadditive for some
qV , qW , qZ > 0, respectively. If b is bounded with respect to NV , NW , and NZ ,
then one can use (7.3.1) to check that b is Lipschitz of order one on bounded sub-
sets of V ×W , with respect to the qZ-semimetric on Z associated to NZ , and a
suitable product q-semimetric on V ×W obtained from the qV , qW -semimetrics
on V , W associated to NV , NW , respectively. In particular, this implies that b
is continuous on V ×W , as in the previous section.

Suppose now that NZ is nondegenerate on Z, and that Z is complete with
respect to the associated qZ-metric. In this case, ‖ · ‖op,V Z is nondegenerate on
BL(V, Z), as in Section 7.1. One can verify that

BL(V, Z) is complete with respect to(7.3.2)

the qZ-metric associated to ‖ · ‖op,V Z ,

as in Section 5.7.
Let V0 be a subgroup of V , and suppose that V0 is dense in V , with respect

to the qV -semimetric associated to NV . Also let T0 be a linear mapping from
V0 into Z that is bounded, with respect to the restriction of NV to V0. Under
these conditions,

there is a unique extension of T0 to a(7.3.3)

bounded linear mapping T from V into Z,

as in Section 5.7 again. More precisely,

‖T‖op,V Z = ‖T0‖op,V0Z ,(7.3.4)



7.3. CONTINUITY PROPERTIES AND COMPLETENESS 141

as before.
Similarly, let W0 be a subgroup of W that is dense in W with respect to the

qW -semimetric associated to NW . Suppose that b0 is a bilinear mapping from
V0 ×W0 into Z that is bounded with respect to the restrictions of NV , NW to
V0, W0, respectively. Under these conditions,

there is a unique extension of b0 to a bounded(7.3.5)

bilinear mapping b from V ×W into Z.

The uniqueness of the extension can be obtained from the continuity of a
bounded bilinear mapping on V ×W .

To get the existence of such an extension, one can use Cauchy sequences, as
in Section 5.7. More precisely, if v ∈ V and w ∈ W , then there are sequences
{vj}∞j=1 and {wj}∞j=1 of elements of V0, W0 that converge to v, w with respect
to the qV , qW -semimetrics associated to NV , NW , respectively. In particular,
{vj}∞j=1 and {wj}∞j=1 may be considered as Cauchy sequences in V0, W0 with
respect to the qV , qW -semimetrics associated to NV , NW , respectively. One can
use this to check that

{b0(vj , wj)}∞j=1 is a Cauchy sequence in Z,(7.3.6)

with respect to the qZ-metric associated to NZ . This also uses the boundedness
of b0 on V0 × W0, and the fact that Cauchy sequences with respect to a q-
semimetric are bounded.

It follows that
{b0(vj , wj)}∞j=1 converges in Z,(7.3.7)

because Z is complete, by hypothesis. We would like to use the limit of this
sequence to define b(v, w) as an element of Z, as before. One can verify that this
does not depend on the particular choices of sequences {vj}∞j=1 and {wj}∞j=1,
using the boundedness of b0 on V0×W0 again. It is easy to see that this extension
is a bounded bilinear mapping on V×W , because of the corresponding properties
of b0 on V0 ×W0.

Alternatively, if w ∈ W0, then b0(v, w) may be considered as a bounded
linear mapping from V0 into Z, as a function of v. This has a unique extension
to a bounded linear mapping from V into Z, as before. One can use this to
get a unique extension of b0 to a bounded bilinear mapping from V ×W0 into
Z. Similarly, this has a unique extension to a bounded bilinear mapping from
V ×W into Z.

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
suppose that V , W , Z are vector spaces over k. Suppose also that NV , NW

are qV , qW -seminorms on V , W , respectively, and that NZ is a qZ-norm on Z,
with respect to | · | on k. Let V0, W0 be dense linear subspaces of V , W , with
respect to the qV , qW -semimetrics associated to NV , NW , respectively. If b0
is a bounded bilinear mapping from V0 × W0 into Z, and Z is complete with
respect to the qZ-metric associated to NZ , then b0 has a unique extension to a
bounded bilinear mapping b from V ×W into Z. More precisely, b0 is asked to
be bilinear over k, and one can use this to get that b is bilinear over k too.



142 CHAPTER 7. BILINEAR MAPPINGS AND SUBMULTIPLICATIVITY

7.4 Related conditions on linear mappings

Let V , W be commutative groups, where the group operations are expressed
additively, and let NV , NW be nonnegative real-valued functions on V , W
that are normalized, symmetric, and qV , qW -subadditive for some qV , qW > 0,
respectively. Suppose that T is a linear mapping from V into W such that

NW (T (v)) ≥ cNV (v)(7.4.1)

for some c > 0 and all v ∈ V . This type of condition was considered in Section
5.13 for linear mappings between vector spaces, and in Section 6.14 for homo-
morphisms between groups that need not be commutative. If T is injective on
V , then (7.4.1) is the same as saying that T−1 is bounded as a linear mapping
from T (V ) onto V , with respect to the restriction of NW to T (V ), and with
constant 1/c, as before. If NV is nondegenerate on V , then (7.4.1) implies that
the kernel of T is trivial.

Of course, (7.4.1) implies that

cNV (u− v) ≤ NW (T (u− v)) = NW (T (u)− T (v))(7.4.2)

for every u, v ∈ V , as in Sections 5.13 and 6.14. Let us say that T is an isometric
linear mapping from V into W with respect to NV , NW if

NW (T (v)) = NV (v)(7.4.3)

for every v ∈ V . This means that

NW (T (u)− T (v)) = NW (T (u− v)) = NV (u− v)(7.4.4)

for every u, v ∈ V , so that T is an isometry from V into W with respect to the
qV , qW -semimetrics associated to NV , NW , respectively, as before. Note that
this holds exactly when T is a bounded linear mapping from V into W , with
‖T‖op,V W ≤ 1, and (7.4.1) holds with c = 1, as in Section 5.13.

Suppose that (7.4.1) holds for some c > 0 again. Let R be a linear mapping
from V into W such that R− T is bounded, with

‖R− T‖op,VW < c.(7.4.5)

If qW < ∞, then

(cqW − ‖R− T‖qWop,V W )1/qW NV (v) ≤ NW (R(v))(7.4.6)

for every v ∈ V , as in Section 5.13. If qW = ∞, then

cNV (v) ≤ NW (R(v))(7.4.7)

for every v ∈ V , as before. This corresponds to some of the remarks in Section
6.13 as well.
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Suppose that T is an isometric linear mapping from V into W , and that
qW = ∞. Let R be a linear mapping from V into W again, where R − T is
bounded, with

‖R− T‖op,V W < 1.(7.4.8)

Under these conditions, R is an isometric linear mapping from V into W too,
as in Sections 5.13 and 6.13.

Let qW > 0 be arbitrary again. A one-to-one bounded linear mapping from
V onto W is said to be invertible as a bounded linear mapping if the inverse is
bounded as a linear mapping from W onto V , as in Section 5.13.

Suppose that (7.4.1) holds for some c > 0, and let R be a linear mapping
from V into W such that R − T is bounded and satisfies (7.4.5), as before. If
v ∈ V , then

NW (T (v)−R(v)) ≤ c−1 ‖R− T‖op,VW NW (T (v)),(7.4.9)

as in Section 5.15. If T (V ) is dense in W , with respect to the qW -semimetric
associated to NW , then R(V ) is dense in W too, as in Section 6.15. This is
essentially the same as for linear mappings between vector spaces, as in Sections
5.14 and 5.15.

Suppose from now on in this section that NV , NW are nondegenerate. In
particular, this means that T is injective, because of (7.4.1). We have seen that
R satisfies an analogous condition, by (7.4.5), so that R is injective as well.

Suppose that T is also bounded as a linear mapping from V into W , and that
V is complete with respect to the qV -metric associated to NV . This implies that
T (V ) is complete with respect to the restriction of the qW -metric associated to
NW to T (V ), so that T (V ) is a closed set in W , as in Section 5.15. If T (V ) is
dense in W , then it follows that T (V ) = W , as before.

Similarly, R is bounded as a linear mapping from V into W , because R− T
is bounded. Under these conditions, we get that R(V ) = W , as in the preceding
paragraph. This shows that the set of invertible bounded linear mappings from
V onto W is an open set in BL(V,W ) with respect to the qW -metric associated
to ‖ · ‖op,VW when V is complete, as in Section 5.15.

7.5 Submultiplicative subadditive functions

Let R be a ring, and let N be a nonnegative real-valued function on R. Suppose
thatN is normalized, symmetric, and q-subadditive for some q > 0, as a function
on R as a commutative group with respect to addition. If

N(x y) ≤ N(x)N(y)(7.5.1)

for every x, y ∈ R, then N is said to be submultiplicative on R. Similarly, if

N(x y) = N(x)N(y)(7.5.2)

for every x, y ∈ R, then N is said to be multiplicative on R.
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If a is a positive real number, then Na is (q/a)-subadditive on R, as in
Section 6.1. If N is submultiplicative or multiplicative on R, then Na has the
same property.

If N is submultiplicative on R, then multiplication on R is continuous as a
mapping from R ×R into R, with respect to the q-semimetric on R associated
to N , and a suitable product q-semimetric on R × R, as in Section 7.2. This
means that multiplication on R is continuous with respect to the corresponding
product topology on R×R.

Suppose that R has a multiplicative identity element e. If N is submulti-
plicative on R, then N(e) ≤ N(e)2. If N(e) = 0, then it is easy to see that
N(x) = 0 for every x ∈ R. Otherwise, if N(e) > 0, then we get that N(e) ≥ 1.
If N is multiplicative on R, then we have that N(e) = 1.

Let V be a commutative group, with the group operations expressed ad-
ditively. Consider the space L(V ) = L(V, V ) of linear mappings from V into
itself, as in Section 7.1. This is a ring with respect to composition of linear
mappings. Of course, the identity mapping I = IV on V is the mutliplicative
identity element in L(V ).

Let NV be a nonnegative real-valued function on V that is normalized, sym-
metric, and qV -subadditive for some qV > 0. The space BL(V ) = BL(V, V ) of
bounded linear mappings from V into itself with respect to NV is a subring of
L(V ), and ‖ · ‖op is submultiplicative on BL(V ), as in Section 7.1. Note that
the identity operator on V is bounded with respect to NV . If NV (v) > 0 for
some v ∈ V , then ‖I‖op = 1.

Let k be a field, and let A be an associative algebra over k. This means that
A is a vector space over k equipped with a binary operation that is associative
and bilinear over k. In particular, A may be considered as a ring. Let |·| be a qk-
absolute value function on k for some qk > 0. In this case, we may be interested
in q-seminorms on A with respect to | · | on k that are submultiplicative or
multiplicative.

Let X be a nonempty set, and remember that ℓ∞(X, k) is the space of k-
valued functions onX that are bounded with respect to |·| on k, as in Section 5.3.
This is a commutative algebra over k with respect to pointwise multiplication of
functions, and it is easy to see that the corresponding supremum qk-norm ‖ ·‖∞
is submultiplicative. The k-valued function on X equal to 1 at every point is
the multiplicative identity element in ℓ∞(X, k), and has supremum norm equal
to one.

Let V be a vector space over k. The space Lk(V ) = Lk(V, V ) of linear
mappings from V into itself, as a vector over k, is an associative algebra over
k with respect to composition of linear mappings. Suppose that NV is a qV -
seminorm on V with respect to | · | on k for some qV > 0. The space BLk(V ) =
BLk(V, V ), of mappings from V into itself that are linear over k and bounded as
linear mappings with respect to NV is a subalgebra of Lk(V ). The corresponding
operator qV -seminorm ‖ · ‖op is submultiplicative on BL(V ), as before.
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7.6 Multiplication operators

Let A be a ring. If a ∈ A, then the corresponding left and right multiplication
operators are defined by

Ma(x) = ML
a (x) = a x(7.6.1)

and

MR
a (x) = x a(7.6.2)

for every x ∈ A. These define linear mappings from A into itself, as a com-
mutative group with respect to addition. Note that a 7→ Ma and a 7→ MR

a are
linear as mappings from A into the space L(A) of linear mappings from A into
itself, as a commutative group with respect to addition. If A is an algebra over
a field k, then Ma and MR

a are linear over k as mappings from A into itself, and
a 7→ Ma, a 7→ MR

a are linear over k as mappings from A into Lk(A).
Suppose for the moment that A has a multiplicative identity element e. Note

that Me, M
R
e are the same as the identity operator on A. If a ∈ A, then

Ma(e) = MR
a (e) = a.(7.6.3)

In particular, this means that a 7→ Ma, a 7→ MR
a are injective on A.

If a, b, x ∈ A, then

Ma(Mb(x)) = Ma(b x) = a b x = Ma b(x)(7.6.4)

and

MR
a (MR

b (x)) = MR
a (x b) = x b a = MR

ba(x).(7.6.5)

Thus

Ma ◦Mb = Ma b(7.6.6)

and

MR
a ◦MR

b = MR
ba.(7.6.7)

Of course, (7.6.6) implies that a 7→ Ma is a ring homomorphism from A into
L(A).

Let N be a nonnegative real-valued function on A that is normalized, sym-
metric, and q-subadditive for some q > 0, as a function on A as a commutative
group with respect to addition. Suppose that

N(x y) ≤ C N(x)N(y)(7.6.8)

for some C ≥ 0 and every x, y ∈ A. If a ∈ A, then

N(Ma(x)) ≤ C N(a)N(x)(7.6.9)

and

N(MR
a (x)) ≤ C N(a)N(x)(7.6.10)
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for every x ∈ A. This means that Ma, M
R
a are bounded with respect to N as

linear mappings from A into itself, with

‖Ma‖op, ‖MR
a ‖op ≤ C N(a).(7.6.11)

If A has a multiplicative identity element e, then

N(a) ≤ ‖Ma‖op N(e), ‖MR
a ‖op N(e),(7.6.12)

by (7.6.3).
Thus a 7→ Ma, a 7→ MR

a may be considered now as linear mappings from A
into BL(A). More precisely, these are bounded linear mappings with respect to
‖ ·‖op on BL(A), by (7.6.11). Suppose that N is submultiplicative on A, so that
we can take C = 1. If A has a multiplicative identity element e with N(e) = 1,
then we get that

‖Ma‖op = ‖MR
a ‖op = N(a)(7.6.13)

for every a ∈ A.

7.7 Matrices and submultiplicativity

Let A be a ring, let n be a positive integer, and let Mn(A) be the ring of n× n
matrices with entries in A. Also let N be a nonnegative real-valued function on
A that is normalized, symmetric, and qN -subadditive on A for some qN > 0, as
a function on A as a commutative group with respect to addition. We would
like to consider subadditivity properties of related functions on Mn(A). If N is
submultiplicative on A, then we would like to consider submultiplicativity on
Mn(A) as well.

If 1 ≤ j, l ≤ n, then
N(aj,l)(7.7.1)

defines a nonnegative real-valued function of a ∈ Mn(A). This function is
normalized, symmetric, and qN -subadditive on Mn(A), as a commutative group
with respect to addition.

Let r be a positive real number. If 1 ≤ l ≤ n, then( n∑
j=1

N(aj,l)
r
)1/r

(7.7.2)

is normalized and symmetric on Mn(A), as a commutative group with respect
to addition. Similarly, if 1 ≤ j ≤ n, then( n∑

l=1

N(aj,l)
r
)1/r

(7.7.3)

is normalized and symmetric on Mn(A) too. If r ≤ qN , then (7.7.2) and (7.7.3)
are r-subadditive on Mn(A), as in Section 6.5. If qN ≤ r, then (7.7.2) and
(7.7.3) are qN -subadditive on Mn(A), as before.
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If a = (aj,l) ∈ Mn(A), then put

Nr,∞(a) = max
1≤l≤n

( n∑
j=1

N(aj,l)
r
)1/r

,(7.7.4)

N∞,r(a) = max
1≤j≤n

( n∑
l=1

N(aj,l)
r
)1/r

,(7.7.5)

N∞,∞(a) = max
1≤j,l≤n

N(aj,l).(7.7.6)

These are nonnegative real-valued functions on Mn(A) that are normalized and
symmetric, as functions on Mn(A) as a commutative group with respect to
addition. Note that N∞,∞ is qN -subadditive on Mn(A), as in Section 6.5. If
r ≤ qN , then Nr,∞ and N∞,r are r-subadditive on Mn(A). If r ≥ qN , then
Nr,∞ and N∞,r are qN -subadditive on Mn(A).

It is easy to see that

N∞,∞(a) ≤ Nr,∞(a), N∞,r(a) ≤ n1/r N∞,∞(a)(7.7.7)

for every a ∈ Mn(A). We also have that (7.7.2) and (7.7.3) are monotonically
decreasing in r, as in Section 2.11. This implies that (7.7.4) and (7.7.5) are
monotonically decreasing in r as well. If N is nondegenerate on A, then Nr,∞,
N∞,r, N∞,∞ are nondegenerate on Mn(A).

Observe that

Nr,∞(at) = N∞,r(a), N∞,∞(at) = N∞,∞(a)(7.7.8)

for every a ∈ Mn(A), where at is the transpose of a. If A has a multiplicative
identity element e, then the corresponding identity matrix I = In in Mn(A) can
be defined as in Section 4.11. In this case, we have that

Nr,∞(I) = N∞,r(I) = N∞,∞(I) = N(e).(7.7.9)

Suppose that r ≤ qN , so that N is r-subadditive on A, as in Section 6.1.
Let a, b ∈ Mn(A) be given, and put c = a b, so that

cj,m =

n∑
l=1

aj,l bl,m(7.7.10)

for j,m = 1, . . . , n. If N is submultiplicative on A, then it follows that

N(cj,m)r ≤
n∑

l=1

N(aj,l)
r N(bl,m)r(7.7.11)

for j,m = 1, . . . , n. One can use this to check that

Nr,∞(c) ≤ Nr,∞(a)Nr,∞(b)(7.7.12)
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and
N∞,r(c) ≤ N∞,r(a)N∞,r(b).(7.7.13)

This shows that Nr,∞ and N∞,r are submultiplicative on Mn(A) when r ≤ qN .
If qN = ∞, and N is submultiplicative on A, then

N(cj,m) ≤ max
1≤l≤n

(N(aj,l)N(bl,m))(7.7.14)

for j,m = 1, . . . , n. This implies that

N∞,∞(c) ≤ N∞,∞(a)N∞,∞(b),(7.7.15)

so that N∞,∞ is submultiplicative on Mn(A).
Let k be a field, and suppose now that A is an associative algebra over

k. Note that Mn(A) is an associative algebra over k as well, where scalar
multiplication is defined entrywise. Let | · | be a qk-absolute value function on k
for some qk > 0, and suppose that N is a qN -seminorm on A for some qN > 0
with respect to | · | on k. This means that (7.7.1) is a qN -seminorm on Mn(A)
for every 1 ≤ j, l ≤ n. It follows that N∞,∞ is a qN -seminorm on Mn(A).

If r ≤ qN , then (7.7.2) and (7.7.3) are r-seminorms on Mn(A). This implies
that Nr,∞ and N∞,r are r-seminorms on Mn(A), as before. If r ≥ qN , then
(7.7.2) and (7.7.3) are qN -seminorms on Mn(A). This implies that Nr,∞ and
N∞,r are qN -seminorms on Mn(A).

7.8 Continuity of inverses

Let A be a ring with a multiplicative identity element e, and let N be a nonnega-
tive real-valued function on A that is normalized, symmetric, and q-subadditive
for some q > 0, as a function on A as a commutative group with respect to
addition. Suppose that N is also submultiplicative on A, and that N(e) > 0. If
x is an invertible element of A, then

N(e) ≤ N(x)N(x−1),(7.8.1)

so that N(x), N(x−1) > 0 in particular. If y is another invertible element of A,
then

x−1 − y−1 = x−1 (y − x) y−1.(7.8.2)

This implies that

N(x−1 − y−1) ≤ N(x−1)N(y−1)N(x− y).(7.8.3)

If q < ∞, then it follows that

N(y−1)q ≤ N(x−1)q +N(x−1)q N(y−1)q N(x− y)q.(7.8.4)

This implies that

(1−N(x−1)q N(x− y)q)N(y−1)q ≤ N(x−1)q.(7.8.5)
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Suppose that
N(x−1)N(x− y) < 1.(7.8.6)

Under these conditions, we get that

N(y−1) ≤ (1−N(x−1)q N(x− y)q)−1/q N(x−1).(7.8.7)

Combining this with (7.8.3), we obtain that

N(x−1 − y−1) ≤ (1−N(x−1)q N(x− y)q)−1/q N(x−1)2 N(x− y).(7.8.8)

If q = ∞, then we can use (7.8.3) to get that

N(y−1) ≤ max(N(x−1), N(x−1)N(y−1)N(x− y)).(7.8.9)

If (7.8.6) holds, then it follows that

N(y−1) ≤ N(x−1).(7.8.10)

In this case, we obtain that

N(x−1 − y−1) ≤ N(x−1)2 N(x− y),(7.8.11)

by (7.8.3).
Let G(A) be the group of invertible elements of A. The remarks in the

previous paragraphs show that x 7→ x−1 is continuous on G(A), with respect
to the restriction to G(A) of the q-semimetric on A associated to N . Note
that multiplication on A is continuous as a mapping from A×A into A, with
respect to the q-semimetric on A associated to N and the corresponding product
topology on A×A, as in Sections 7.2 and 7.3. This implies that multiplication
on G(A) is continuous as a mapping from G(A)×G(A) into G(A), with respect
to the induced topology on G(A), and the corresponding product topology on
G(A) × G(A). Thus G(A) is a topological group with respect to the induced
topology.

Suppose for the moment that N(e) = 1, and consider

U(A) = {u ∈ G(A) : N(u), N(u−1) ≤ 1}.(7.8.12)

This is a subgroup of G(A), and a closed set in G(A) with respect to the induced
topology. If u ∈ U(A) and x ∈ A, then one can check that

N(ux) = N(xu) = N(x).(7.8.13)

Note that N(u) = N(u−1) = 1 when u ∈ U(A), because of (7.8.1).
Suppose now that N is nondegenerate on A, and that A is complete with

respect to the q-metric associated to A. Let {xj}∞j=1 be a sequence of invertible
elements of A that converges to an element x of A, with respect to the q-metric
associated to N . In particular, this implies that {xj}∞j=1 is a Cauchy sequence.

If {x−1
j }∞j=1 is bounded with respect to N , then it is easy to see that {x−1

j }∞j=1 is

a Cauchy sequence in A too, using (7.8.3). This implies that {x−1
j }∞j=1 converges

in A, and one can check that the limit is the multiplicative inverse of x in A.
If N(e) = 1, then one can use the remarks in the preceding paragraph to get

that U(A) is a closed set in A, with respect to the q-metric associated to N ,
under the same conditions on N and A.
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7.9 Infinite series and invertibility

Let A be a commutative group, where the group operations are expressed addi-
tively, and let N be a nonnegative real-valued function on A that is normalized,
symmetric, nondegenerate, and q-subadditive for some q > 0. An infinite series∑∞

j=1 aj with terms in A is said to converge if the corresponding sequence of

partial sums
∑n

j=1 aj converges in A, with respect to the q-metric associated to
N . In this case, the value of the sum is defined to be the limit of the sequence
of partial sums, as usual.

One can check that the sequence of partial sums is a Cauchy sequence with
respect to the q-metric associated to N if and only if for each ϵ > 0 there is a
positive integer L such that

N
( n∑

j=l

aj

)
< ϵ(7.9.1)

for every n ≥ l ≥ L. This implies that

lim
l→∞

N(al) = 0,(7.9.2)

by taking l = n in (7.9.1).
Suppose for the moment that q < ∞, so that

N
( n∑

j=l

aj

)q

≤
n∑

j=l

N(aj)
q(7.9.3)

for every n ≥ l ≥ 1. Let us say that
∑∞

j=1 aj converges q-absolutely if

∞∑
j=1

N(aj)
q(7.9.4)

converges as an infinite series of nonnegative real numbers. One can check that
this implies that the sequence of partial sums of

∑∞
j=1 aj is a Cauchy sequence

with respect to q-metric associated to N in this case. If A is complete with
respect to the q-metric associated to N , then it follows that

∑∞
j=1 aj converges

in A. Under these conditions, we also have that

N
( ∞∑

j=1

aj

)q

≤
∞∑
j=1

N(aj)
q.(7.9.5)

Suppose now that q = ∞, so that

N
( n∑

j=l

aj

)
≤ max

l≤j≤n
N(aj)(7.9.6)

for every n ≥ l ≥ 1. If (7.9.2) holds, then it follows that the partial sums of∑∞
j=1 aj form a Cauchy sequence with respect to the ultrametric associated to
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N . If A is complete with respect to this ultrametric, then
∑∞

j=1 aj converges in
A. In this case, we get that

N
( ∞∑

j=1

aj

)
≤ max

j≥1
N(aj).(7.9.7)

More precisely, one can verify that the maximum on the right side is attained,
because of (7.9.2).

Now let A be a ring with a multiplicative identity element e. If x ∈ A and
n is a nonnegative integer, then

(e− x)

n∑
j=0

xj =
( n∑

j=0

xj
)
(e− x) = e− xn+1,(7.9.8)

where xj is interpreted as being equal to e when j = 0.

Let N be a nonnegative real-valued function on A that is normalized, sym-
metric, nondegenerate, and q-subadditive for some q > 0, as a function on A as
a commutative group with respect to addition. Suppose that N is also submul-
tiplicative on A, and that A is complete with respect to the q-metric associated
to N . Note that

N(xj) ≤ N(x)j(7.9.9)

for every positive integer j. If N(x) < 1, then N(xj) → 0 as j → ∞, and∑∞
j=0 N(xj)q converges when q < ∞. This implies that

∑∞
j=0 x

j converges in
A, as before. In this case, we get that

(e− x)

∞∑
j=0

xj =
( ∞∑

j=0

xj
)
(e− x) = e,(7.9.10)

by taking the limit as n → ∞ in (7.9.8). This means that e− x is invertible in
A, with

(e− x)−1 =

∞∑
j=0

xj .(7.9.11)

Let y be an invertible element of A, and suppose that z ∈ A satisfies

N(y−1)N(y − z) < 1.(7.9.12)

Observe that

z = y − (y − z) = y (e− y−1 (y − z)),(7.9.13)

and that e−y−1 (y−z) is invertible in A, because of (7.9.12). Thus z is invertible
in A too. This shows that the group G(A) of invertible elements of A is an open
subset of A under these conditions.
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7.10 Some subgroups of U(A)

Let A be a ring with a multiplicative identity element e, and let N be a non-
negative real-valued function on A that is normalized, symmetric, and ultra-
subadditive, as a function on A as a commutative group with respect to addi-
tion. Suppose that N is also submultiplicative on A, and that N(e) = 1. Let
B(x, r) = BN (x, r) and B(x, r) = BN (x, r) be the usual open and closed balls
in A with respect to the semi-ultrametric associated to N . Note that B(0, 1)
is a subring of A that contains e under these conditions. The subgroup U(A)
of the group G(A) of invertible elements of A defined in (7.8.12) is the same as
the group G(B(0, 1)) of invertible elements of B(0, 1) in this case.

If x ∈ U(A), y ∈ G(A), and N(x− y) < 1, then

y ∈ U(A).(7.10.1)

Indeed, N(y) ≤ 1 because N(x) ≤ 1 and N is ultrasubadditive on A. We also
have that

N(y−1) ≤ N(x−1) ≤ 1,(7.10.2)

as in (7.8.10). If N is nondegenerate on A, and A is complete with respect to
the associated ultrametric, then y ∈ G(A) when y ∈ A satisfies N(x − y) < 1
for some x ∈ U(A), as in the previous section. In particular, U(A) is an open
subset of A in this case.

We can take x = e in the preceding paragraph, to get that

B(e, 1) ∩G(A) ⊆ U(A).(7.10.3)

If N is nondegenerate on A, and A is complete with respect to the associated
ultrametric, then B(e, 1) ⊆ G(A), as in the previous section, so that

B(e, 1) ⊆ U(A).(7.10.4)

The semi-ultrametric dN (x, y) = N(x− y) on A associated to N is invariant
under left and right multiplication by elements of U(A), by (7.8.13). In partic-
ular, the restriction of dN (x, y) to x, y ∈ U(A) is invariant under left and right
translations on U(A), as a group with respect to multiplication. This implies
that open and closed balls in U(A) centered at e with respect to the restriction
of dN to U(A) are normal subgroups of U(A), as in Section 3.7. This means
that

B(e, r) ∩ U(A)(7.10.5)

is a normal subgroup of U(A) for every r > 0, and that

B(e, r) ∩ U(A)(7.10.6)

is a normal subgroup of U(A) for every r ≥ 0.
Of course,

U(A) ⊆ B(0, 1) = B(e, 1),(7.10.7)
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by construction. Thus (7.10.5) is equal to U(A) when r > 1, and (7.10.6) is
equal to U(A) when r ≥ 1. Using (7.10.3), we get that

B(e, r) ∩ U(A) = B(e, r) ∩G(A)(7.10.8)

when 0 < r ≤ 1, and

B(e, r) ∩ U(A) = B(e, r) ∩G(A)(7.10.9)

when 0 ≤ r < 1. If N is nondegenerate on A, and A is complete with respect
to dN , then (7.10.4) implies that

B(e, r) ∩ U(A) = B(e, r)(7.10.10)

when 0 < r ≤ 1, and
B(e, r) ∩ U(A) = B(e, r)(7.10.11)

when 0 ≤ r < 1.

7.11 Two semi-ultrametrics on G(A)

Let us continue with the same notation and hypotheses as at the beginning of
the previous section. Note that

N(u−1 − e) = N(u− e)(7.11.1)

for every u ∈ U(A), because N is invariant under left or right multiplication by
elements of U(A), as in Section 7.8. We also have that

N(u) ≤ 1(7.11.2)

for every u ∈ U(A), as in (7.10.7).
If x, y ∈ G(A), then put

δL(x, y) = N(x−1 y − e) when x−1 y ∈ U(A)(7.11.3)

= 1 otherwise.

It is easy to see that this is symmetric in x and y, using (7.11.1). Of course,

δL(x, y) ≤ 1(7.11.4)

for every x, y ∈ G(A), by (7.11.2). If x, y ∈ G(A) and

N(x−1 y − e) < 1,(7.11.5)

then x−1 y ∈ U(A), by (7.10.3). Thus x, y ∈ G(A) satisfy

δL(x, y) < 1(7.11.6)

if and only if (7.11.5) holds.



154 CHAPTER 7. BILINEAR MAPPINGS AND SUBMULTIPLICATIVITY

Clearly
δL(x, x) = N(0) = 0(7.11.7)

for every x ∈ G(A). If N is nondegenerate on A, then δL(x, y) = 0 only when
x = y. If x, y ∈ U(A), then

δL(x, y) = N(x− y),(7.11.8)

because N is invariant under left multiplication by elements of U(A). Observe
that (7.11.3) is invariant under left translations on G(A), as a group with respect
to multiplication, by construction.

If x, y, z ∈ G(A), then we would like to verify that

δL(x, z) ≤ max(δL(x, y), δL(y, z)).(7.11.9)

If the right side is equal to one, then this follows from (7.11.4). If the right side
is less than one, then x−1 y, y−1 z ∈ U(A), so that x−1 z ∈ U(A) too. In this
case, (7.11.9) follows from (7.11.8) and the ultrasubadditivity of N on A. This
shows that (7.11.3) defines a semi-ultrametric on G(A).

Similarly, if x, y ∈ G(A), then put

δR(x, y) = N(x y−1 − e) when x y−1 ∈ U(A)(7.11.10)

= 1 otherwise.

It is easy to see that
δR(x, y) = δL(x

−1, y−1)(7.11.11)

for every x, y ∈ G(A). In particular, (7.11.10) defines a semi-ultrametric on
G(A), which is an ultrametric when N is nondegenerate on A, as before. This
semi-ultrametric is invariant under right translations on G(A), as a group with
respect to multiplication. If x, y ∈ U(A), then

δR(x, y) = N(x− y),(7.11.12)

because N is invariant under right multiplication by elements of U(A).

7.12 Total boundedness in G(A)

Let A be a ring with a multiplicative identity element e, and let N be a nonnega-
tive real-valued function on A that is normalized, symmetric, and q-subadditive
for some q > 0, as a function on A as a commutative group with respect to
addition. Suppose also that N is submultiplicative on A, and that N(e) > 0.
Remember that the group G(A) of invertible elements of A is a topological
group, with respect to the topology induced by the topology determined on A
by the q-semimetric associated toN , as in Section 7.8. Of course, this is the same
as the topology determined on G(A) by the restriction of dN (x, y) = N(x− y)
to x, y ∈ G(A).
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Let B(x, r) and B(x, r) be the usual open and closed balls in A with respect
to the q-semimetric associated to N , as before. If x, y ∈ A, then it is easy to
see that

xB(y, r) ⊆ B(x y,N(x) r), B(y, r)x ⊆ B(y x,N(x) r)(7.12.1)

for every r > 0 when N(x) > 0. If N(x) = 0, then xA,Ax ⊆ B(0, 0). Similarly,

xB(y, r) ⊆ B(x y,N(x) r), B(y, r)x ⊆ B(y x,N(x) r)(7.12.2)

for every r ≥ 0.
Suppose that E ⊆ G(A) is left or right-invariant totally bounded in G(A),

as a topological group with respect to multiplication, as in Section 3.8. Thus,
for each r > 0, E can be covered by finitely many left or right translates of
B(e, r) ∩ G(A) in G(A), as approriate. This implies that E is bounded with
respect to N , by the remarks in the preceding paragraph.

More precisely, E can be covered by finitely many left or right translates of
B(e, r) ∩ G(A) in G(A) by elements of E, as appropriate. This follows from
the fact that E can be covered by finitely many left or right-invariant U -small
sets, with U = B(e, r) ∩ G(A), as in Section 3.8. One can use this and the
boundedness of N on E to get that E is totally bounded with respect to dN in
A. This also uses (7.12.1), with y = e. Equivalently, this means that E is totally
bounded in A as a commutative topological group with respect to addition, and
the topology determined by dN .

If r < 1/N(e), then N(x−1) is bounded on B(e, r)∩G(A), as in Section 7.8.
One can use this to get that N(x−1) is bounded on E too.

Let x ∈ G(A) be given, and note that N(x−1) > 0. If y ∈ A, then

B(y, r) ⊆ xB(x−1 y,N(x−1) r), B(y x−1, N(x−1) r)x(7.12.3)

for every r > 0, by (7.12.1). Similarly,

B(y, r) ⊆ xB(x−1 y,N(x−1) r), B(y x−1, N(x−1) r)x(7.12.4)

for every r ≥ 0, by (7.12.2).
Suppose now that E ⊆ G(A) is totally bounded as a subset of A with

respect to dN , or equivalently as a subset of A as a commutative topological
group with respect to addition. If N(x−1) is bounded on E, then E is left and
right-invariant totally bounded in G(A) as well, as a topological group with
respect to multiplication. Indeed, the total boundedness of E in A implies that
E can be covered by finitely many balls of arbitrarily small radius, and we may
take these balls to be centered at elements of E, as in Section 1.15. One can
use this to cover E by finitely many left or right translates in G(A) of balls
centered at e with arbitrarily small radius, because N(x−1) is bounded on E.
More precisely, this uses (7.12.3) too, with y = x.

Let {xj}∞j=1 be a sequence of elements of G(A). If {xj}∞j=1 is a left or
right-invariant Cauchy sequence in G(A), as a topological group with respect
to multiplication, then the set of xj ’s, j ≥ 1, is left or right-invariant totally
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bounded in G(A), as in Section 3.15. This implies that N(xj) and N(x−1
j ),

j ≥ 1, are bounded, as before. Under these conditions, one can check that
{xj}∞j=1 is a Cauchy sequence in A, with respect to dN . Equivalently, {xj}∞j=1

is a Cauchy sequence in A, as a commutative topological group with respect to
addition.

Conversely, suppose that N(x−1
j ), j ≥ 1, is bounded, and that {xj}∞j=1 is

a Cauchy sequence with respect to dN , or equivalently as a sequence in A, as
a commutative topological group with respect to addition. Under these condi-
tions, one can verify that {xj}∞j=1 is a left and right-invariant Cauchy sequence
in G(A), as a topological group with respect to multiplication.



Chapter 8

Some additional topics

8.1 Doubling conditions for semimetrics

Let X be a set, and let d(x, y) be a q-semimetric on X for some q > 0, or simply
a semi-quasimetric. Let us say that X is doubling with respect to d(·, ·) if there
is a positive real number C such that for each x ∈ X and r > 0,

Bd(x, r) can be covered by at most C closed balls in X(8.1.1)

with respect to d(·, ·) of radius r/2.

This implies that for each x ∈ X, r > 0, and positive integer j,

Bd(x, r) can be covered by at most Cj closed balls in X(8.1.2)

with respect to d(·, ·) of radius 2−j r.

This type of doubling condition is often formulated in terms of open balls
instead of closed balls. It is easy to see that the two formulations are equivalent,
although perhaps with a different constant.

It is sometimes be more convenient to use another formulation of the dou-
bling condition, in terms of diameters of sets. This formulation asks that there
be a positive real number C0 such that if E is a bounded subset of X with
respect to d(·, ·), then

E can be covered by at most C0 bounded subsets of X,(8.1.3)

each of which has diameter less than or equal to

one-half the diameter of E.

Of course, this implies that for each j ≥ 1,

E can be covered by at most Cj
0 bounded subsets of X,(8.1.4)

each of which has diameter less than or equal to 2−j diamdE.
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As before, one can check that this formulation is equivalent to the previous
ones, perhaps with a different constant. This uses the fact that the diameter
of a ball in X can be estimated in terms of its radius. Note that this depends
on q when d(·, ·) is a q-semimetric, and otherwise on the constant in the semi-
quasimetric condition.

LetX0 be a subset of X, equipped with the restriction of d(x, y) to x, y ∈ X0.
If X is doubling with respect to d(·, ·), then

X0 is doubling with respect to the restriction of d(·, ·) to X0.(8.1.5)

If one uses the formulation of the doubling condition in terms of diameters, then
one can use the same doubling constant for X0 as for X.

Let d1(·, ·) be a q1-semimetric on X for some q1 > 0, or a semi-quasimetric
on X. Suppose that d(·, ·) and d1(·, ·) are each bounded by a constant multiple
of the other. Under these conditions, one can check that

X is doubling with respect to d(·, ·)(8.1.6)

if and only if

X is doubling with respect to d1(·, ·).(8.1.7)

More precisely, the doubling constants for d(·, ·) and d1(·, ·) can be estimated in
terms of each other.

Let a be a positive real number. Remember that if d(·, ·) is a q-semimetric
on X, then d(·, ·)a is a (q/a)-semimetric on X. Similarly, if d(·, ·) is a semi-
quasimetric on X, then d(·, ·)a is a semi-quasimetric on X too, with a suitable
constant. One can verify that (8.1.6) holds if and only if

X is doubling with respect to d(·, ·)a.(8.1.8)

In this case, the doubling constants for d(·, ·) and d(·, ·)a can be estimated in
terms of each other, as usual.

8.2 Doubling conditions and Cartesian products

Let X be a set, and let n be a positive integer. Suppose that for each j =
1, . . . , n, dj(·, ·) is a qj-semimetric on X for some qj > 0, or a semi-quasimetric
on X. Put

d(x, y) = max
1≤j≤n

dj(x, y)(8.2.1)

for each x, y ∈ X. This is a q-semimetric on X with q = min(q1, . . . , qn), as
in Section 2.11, or a semi-quasimetric on X, with a suitable semi-quasimetric
constant, as appropriate.

Suppose that X is doubling with respect to dj for each j = 1, . . . , n. More
precisely, suppose that X is doubling with respect to dj with constant Cj > 0
for each j = 1, . . . , n, using the formulation of the doubling condition in terms
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of diameters of bounded sets. Let us check that X is doubling with respect to
d, with constant

C1 C2 · · ·Cn,(8.2.2)

again usng the formulation of the doubling condition in terms of diameters of
bounded sets.

Let E be a bounded subset of X with respect to d. This implies that E is
bounded with respect to dj for each j = 1, . . . , n, with

diamdjE ≤ diamdE.(8.2.3)

It follows that for each j = 1, . . . , n, there is a family Fj of bounded subsets of
X with respect to dj such that

#Fj ≤ Cj ,(8.2.4)

where #Fj is the number of sets in Fj ,

diamdj
Aj ≤ (diamdj

E)/2(8.2.5)

for each Aj ∈ Fj , and

E ⊆
⋃

Aj∈Fj

Aj .(8.2.6)

Consider the family F of subsets of X of the form

n⋂
l=1

Al,(8.2.7)

with
Al ∈ Fl(8.2.8)

for each l = 1, . . . , n. It is easy to see that

#F ≤ (8.2.2),(8.2.9)

using (8.2.4). Each set (8.2.7) in F satisfies

diamdj

( n⋂
l=1

Al

)
≤ diamdj

Aj ≤ (diamdj
E)/2(8.2.10)

for each j = 1, . . . , n. It follows that each set (8.2.7) in F is bounded with
respect to d, with

diamd

( n⋂
l=1

Al

)
≤ (diamdE)/2.(8.2.11)

Note that

E ⊆
n⋂

j=1

( ⋃
Aj∈Fj

Aj

)
,(8.2.12)
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by (8.2.6). This implies that

E ⊆
⋃

A1∈F1

· · ·
⋃

An∈Fn

( n⋂
j=1

Aj

)
.(8.2.13)

Now let X1, . . . , Xn be n sets, and let X =
∏n

j=1 Xj be their Cartesian
product. Suppose that for each j = 1, . . . , n, dXj

(xj , yj) is a qj-semimetric on
Xj for some qj > 0, or a semi-quasimetric on Xj . Put

dj(x, y) = dXj
(xj , yj)(8.2.14)

for each j = 1, . . . , n and x, y ∈ X, as in Section 1.2, but with different notation.
This is a qj-semimetric or semi-quasimetric on X, as appropriate.

Suppose that
Xj is doubling with respect to dXj(8.2.15)

for each j = 1, . . . , n. One can check that this implies that X satisfies the
analogous condition with respect to dj for each j = 1, . . . , n. It follows that X
is doubling with respect to (8.2.1), as before.

8.3 Some examples and related properties

Let X be a set, and let d(·, ·) be a q-semimetric on X for some q > 0, or a
semi-quasimetric on X. If X is doubling with respect to d(·, ·), then

every bounded set E in X with respect to d(·, ·)(8.3.1)

is totally bounded with respect to d(·, ·).

In particular, this implies that E has a subset with only finitely or countably
many elements that is dense in E. It follows that

X is separable with respect to d(·, ·),(8.3.2)

because X can be expressed as the union of a sequence of bounded sets.
It is easy to see that the real line is doubling with respect to the standard

Euclidean metric. Similarly, the complex plane is doubling with respect to the
standard metric.

Let k be a field with an ultrametric absolute value function | · |, and let d(·, ·)
be the corresponding ultrametric on k. If k is doubling with respect to d(·, ·),
then

the closed unit ball in k is totally bounded,(8.3.3)

as before. This implies that

the residue field associated to | · | is finite,(8.3.4)

and that
| · | is discrete on k,(8.3.5)
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as in Section 4.7.
Conversely, suppose that (8.3.4) and (8.3.5) hold. If | · | is the trivial absolute

value function on k, then k is the same as the residue field. This means that k
has only finitely many elements, because of (8.3.4), so that k is doubling with
respect to d(·, ·).

Otherwise, suppose that | · | is not the trivial absolute value function on k.
This implies that there is a positive real number ρ1 such that ρ1 < 1 and the
positive values of | · | on k are the same as the integer powers of ρ1, because of
(8.3.5), as in Section 4.5. Let N be the number of elements of the residue field
associated to | · |. Under these conditions,

the closed unit ball in k is the union of(8.3.6)

N pairwise-disjoint open balls of radius 1.

This means that

the closed unit ball in k is the union of(8.3.7)

N pairwise-disjoint closed balls of radius ρ1

in this case. If j is any integer, then one can use translations and dilations to
get that

any closed ball in k of radius ρj1 is the union of(8.3.8)

N pairwise-disjoint closed balls of radius ρj+1
1 ,

as in Section 4.7. It is easy to see that this implies that k is doubling with
respect to d(·, ·).

8.4 Product spaces and discrete semimetrics

Let I be a nonempty set, let Yj be a nonempty set for each j ∈ I, and consider
the corresponding Cartesian product∏

j∈I

Yj .(8.4.1)

Let us take Yj to be equipped with the discrete topology for each j ∈ I, and
consider the corresponding product topology on (8.4.1). If I has only finitely
many elements, then this is the same as the discrete topology on (8.4.1).

Let dj = dYj be the discrete metric on Yj for each j ∈ I, as in Section 1.2.

If l ∈ I, then let d̂l be the semimetric on (8.4.1) corresponding to dl as before,

so that the distance between two elements of (8.4.1) with respect to d̂l is the
same as the distance between their lth coordinates with respect to dl. This is
a semi-ultrametric on (8.4.1), because dl is an ultrametric on Yl, as in Section

1.3. More precisely, d̂l is a discrete semimetric on (8.4.1), as before.
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Thus
M = {d̂l : l ∈ I}(8.4.2)

is a nonempty collection of discrete semimetrics on (8.4.1). This collection of
semimetrics determines a topology on (8.4.1), as in Section 2.1. This topology
is the same as the product topology mentioned earlier, because the topology
determined on Yj by the discrete metric is the discrete topology, as before.
Note that M is nondegenerate on (8.4.1).

Using M, we get a uniform structure on (8.4.1), as in Section 2.3. This
is the same as the product uniformity on (8.4.1) corresponding to the uniform
structure on Yj associated to the discrete metric for each j, as in Section 2.4.
Remember that the topology associated to the product uniformity is the same
as the corresponding product topology.

8.5 Some spaces of mappings

If X and Y are nonempty sets, then the space of mappings from X into Y is
sometimes denoted Y X . We shall also use the notation

c(X,Y ),(8.5.1)

extending notation used previously in Sections 1.10 and 5.8. This is the same
as (8.4.1), with Yj = Y for each j ∈ I, and I = X.

Let dY be the discrete metric on Y , and if x ∈ X and f1, f2 ∈ c(X,Y ), then
put

dx(f1, f2) = dx,c(X,Y )(f1, f2) = dY (f1(x), f2(x)).(8.5.2)

This corresponds to d̂l on (8.4.1), with l = x, and is a discrete semimetric on
c(X,Y ) in particular. The collection

M = Mc(X,Y ) = {dx,c(X,Y ) : x ∈ X}(8.5.3)

of these semimetrics determines a topology on c(X,Y ), and in fact a uniform
structure on c(X,Y ), as before.

Let Z be another nonempty set, and consider the corresponding spaces
c(X,Z), c(Y, Z) of mappings from X, Y into Z, respectively. Also let dZ be the
discrete metric on Z, and if y ∈ Y and g1, g2 ∈ c(Y, Z), then put

dy,c(Y,Z)(g1, g2) = dZ(g1(x), g2(x)).(8.5.4)

Similarly, if x ∈ X and h1, h2 ∈ c(X,Z), then put

dx,c(X,Z)(h1, h2) = dZ(h1(x), h2(x)).(8.5.5)

The collections
Mc(Y,Z) = {dy,c(Y,Z) : y ∈ Y }(8.5.6)

and
Mc(X,Z) = {dx,c(X,Z) : x ∈ X}(8.5.7)
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of these semimetrics define topologies and indeed uniform structures on c(Y, Z)
and c(X,Z), respectively, as usual.

If x ∈ X, g ∈ c(Y, Z), and f1, f2 ∈ c(X,Y ), then

dx,c(X,Z)(g ◦ f1, g ◦ f2) = dZ(g(f1(x)), g(f2(x)))

≤ dZ(f1(x), f2(x)) = dx,c(X,Y )(f1, f2).(8.5.8)

This implies that the collection of mappings from c(X,Y ) into c(X,Z) of the
form

f 7→ g ◦ f(8.5.9)

is uniformly equicontinuous with respect to Mc(X,Y ) and Mc(X,Z), as in Section
2.9.

Similarly, if f ∈ c(X,Y ) and g1, g2 ∈ c(Y, Z), then

dx,c(X,Z)(g1 ◦ f, g2 ◦ f) = dZ(g1(f(x)), g2(f(x)))(8.5.10)

= df(x),c(Y,Z)(g1, g2).

This implies that
g 7→ g ◦ f(8.5.11)

is uniformly continuous as a mapping from c(Y, Z) into c(X,Z) with respect to
Mc(Y,Z) and Mc(X,Z), as in Section 2.2.

If x ∈ X, f1, f2 ∈ c(X,Y ), and g1, g2 ∈ c(Y, Z), then

dx,c(X,Z)(g1 ◦ f1, g2 ◦ f2) = dZ(g1(f1(x)), g2(f2(x)))

≤ max(dZ(g1(f1(x)), g2(f1(x))), dZ(g2(f1(x)), g2(f2(x))))(8.5.12)

≤ max(df1(x),c(Y,Z)(g1, g2), dZ(f1(x), f2(x)))

= max(df1(x),c(Y,Z)(g1, g2), dx,c(X,Y )(f1, f2)).

One can use this to get that

(f, g) 7→ g ◦ f(8.5.13)

is continuous as a mapping from

c(X,Y )× c(Y, Z)(8.5.14)

into c(X,Z). This uses the topologies determined on c(X,Y ), c(Y, Z), and
c(X,Z) determined by Mc(X,Y ), Mc(Y,Z), and Mc(X,Z), respectively, and the
corresponding product topology on (8.5.14).

Of course, the space
c(X,X)(8.5.15)

of mappings from X into itself is a semigroup with respect to composition of
mappings. If x ∈ X, then (8.5.8) implies that dx,c(X,X) is sub-invariant under
left translations on c(X,X), as in Section 6.4.
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Chapter 9

Vector spaces and linear
mappings

9.1 Vector spaces over division rings

Let A be a ring with a multiplicative identity element e = eA. The center of A
is defined to be the set

{a ∈ A : a x = x a for every x ∈ A}(9.1.1)

of elements of A that commute with all elements of A. This is a subring of A
that contains e. If a is an element of the center of A and a has a multiplicative
inverse in A, then it is easy to see that a−1 is an element of the center of A too.

If A is an associative algebra over a field k, then the center of A is a subal-
gebra of A. In this case,

{t e : t ∈ k}(9.1.2)

is a subalgebra of A contained in the center of A that may be identified with k
when e 6= 0.

If e 6= 0 and every nonzero element of A has a multiplicative inverse in A,
then A is said to be a division ring. Thus a field is the same as a commutative
division ring. Sometimes a division ring is considered to be a not-necessarily-
commutative field, and a field in the sense used here is called a commutative
field.

If A is an associative algebra over a field k and A is a division ring, then A
is said to be an associative division algebra over k. If A is any division ring,
then the center of A is a field. In this case, A may be considered as a division
algebra over any subfield of its center.

If A is any ring, then the opposite ring Aop is defined to be the same as A
as a set, and in fact as a commutative group with respect to addition. If x ∈ A,
then we use xop to refer to x as an element of Aop, and multiplication in Aop is
defined by

xop yop = (y x)op,(9.1.3)

165
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as on p185 of [61]. It is easy to see that Aop is also a ring with multiplicative
identity element eop. If A is a division ring, then Aop is a division ring too. If A
is an associative algebra over a field k, then Aop is an associative algebra over
k as well.

If A is a division ring, then a left or right module over A may be called a
left or right vector space over A, as appropriate. If A is commutative, then the
left and right modules over A are the same as vector spaces over A as a field.
If A is an associative algebra over a field k, then a left or right module over
A may be considered as a vector space over k in particular. Thus if A is an
associative division algebra over k, then a left or right vector space over A may
be considered as a vector space over k.

Many standard results about vector spaces over fields also work for left and
right vector spaces over division rings, with suitable formulations, as mentioned
on on p438 of [54], and p193 of [61]. The notion of a vector space in [42] is defined
directly for vector spaces over division rings. Note that a left or right vector
space over A is the same as a right or left vector space over Aop, respectively,
as for modules over arbitrary rings. Some basic facts about vector spaces over
division rings will be reviewed in the next section.

Let A be a division ring, and let X be a nonempty set. If W is a left or right
vector space over A, then the space

c(X,W )(9.1.4)

of all W -valued functions on X is a left or right vector space over A too, as
appropriate, with respect to pointwise addition and scalar multiplication. In
particular,

c(X,A)(9.1.5)

may be considered as both a left and right vector space over A, because A may
be considered as a left and right vector space over itself. If A is an associative
division algebra over a field k, then W and c(X,W ) may also be considered as
vector spaces over k, as before.

9.2 Linear independence and bases

Let A be a division ring with a multiplicative identity element e = eA, and let
V be a left vector space over A. A subset W of V that is closed under addition
and scalar multiplication is said to be a linear subspace of V . This is the same
as saying that W is a submodule of V , as a module over A. Of course, this
implies that W may be considered as a left vector space over A as well.

Let m be a positive integer, and let v1, . . . , vm be m elements of V . We
say that v1, . . . , vm are linearly independent over A if for every m elements
a1, . . . , am of A with

m∑
l=1

al vl = 0,(9.2.1)
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we have that
a1 = · · · = am = 0,(9.2.2)

as on p11 of [42]. Otherwise, v1, . . . , vm are said to be linearly dependent, as on
p10 of [42]. An arbitrary subset E of V is said to be linearly independent over
A if every nonempty finite subset of E is linearly independent in this sense, as
on p239 of [42].

If E is any subset of V , then the linear span of E in V is the subset of V
consisting of elements of the form

m∑
l=1

al vl,(9.2.3)

where m is a positive integer, v1, . . . , vm ∈ E, and a1, . . . , am ∈ A. This is the
smallest linear subspace of V that contains E. This is interpreted as being {0}
when E = ∅.

If E is linearly independent and the linear span of E is equal to V , then E
is said to be a basis for V , as a left vector space over A, as on p239 of [42]. This
means that every element of V can be expressed in a unique way as a linear
combination of elements of E. Of course, there are analogous notions for right
vector spaces over A.

Let X be a nonempty set, and let W be a left or right vector space over A.
If f is a W -valued function on X, then the support of f is the set of x ∈ X such
that f(x) 6= 0, as usual. It is easy to see that the space

c00(X,W )(9.2.4)

of W -valued functions on X with finite support is a linear subspace of the space
c(X,W ) of all W -valued functions on X, as a left or right vector space over A,
as appropriate. In particular, c00(X,A) is a linear subspace of c(X,A) as both
a left and right vector space over A.

If y ∈ X, then let δy be the A-valued function on X defined by δy(y) = e
and δy(x) = 0 when x 6= y. Observe that

δy, y ∈ X, form a basis for c00(X,A),(9.2.5)

as both a left and right vector space over A.
Let V be a left or right vector space over A. If there is a basis for V with

only finitely many elements, then V is said to be finite dimensional, as on p5
of [42]. If V is the linear span of a finite set, then V is finite-dimensional, as in
Exercise 3 on p15 of [42].

Suppose for the moment that V has a basis consisting of n vectors for some
positive integer n. This implies that

any n+ 1 vectors in V are linearly dependent,(9.2.6)

as in Theorem 2 on p12 of [42]. We also have that any basis for V consists of
exactly n vectors, as in Theorem 3 on p14 of [42]. One may call n the dimension
or dimensionality of V over A, as on p14 of [42].
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In this case, for any collection of r linearly independent vectors in V , we can
n − r vectors from a basis for V to get a basis for V , as in Theorem 4 on p14
of [42]. In particular, this means that any collection of n linearly independent
vectors in V is a basis for V .

If W is a linear subspace of V , then W is finite dimensional, with dimension
less than or equal to n, as mentioned on p22 of [42]. If the dimension of W is
equal to n, then

W = V,(9.2.7)

as in [42].
If E1 is a subset of any left or right vector space V over A whose linear span

is equal to V , then
E1 contains a basis for V,(9.2.8)

as on p239 of [42]. This is mentioned on p15 of [42] when V is finite dimensional.
If E2 is a linearly independent subset of V , then

E2 is contained in a basis for V,(9.2.9)

as on p239 of [42]. This follows from Theorem 4 on p14 of [42] when V is finite
dimensional, as before. Similarly, if the linear span of E1 is equal to V , E2 is a
linearly independent subset of V , and E2 ⊆ E1, then there is a basis E for V
such that

E2 ⊆ E ⊆ E1.(9.2.10)

It is well known that any two bases for V have the same cardinality, as
on p240 of [42]. The cardinality of any basis for V is called the dimension or
dimensionality of V as a vector space over A, as on p241 of [42].

9.3 Linear mappings between vector spaces

Let A be a division ring with multiplicative identity element e = eA again. If V
and W are both left or both right vector spaces over A, the one can define the
notion of a linear mapping from V into W in the usual way. This is the same as
a module homomorphism from V into W , and we may say that such a mapping
is linear over A, to be more precise.

Let
LA(V,W )(9.3.1)

be the space of all such linear mappings. Of course, V and W may be considered
as commutative groups with respect to addition, and every linear mapping from
V into W over A is a homomorphism from V into W as commutative groups.
Observe that LA(V,W ) is a subgroup of the group of all group homomorphisms
from V into W , as a commutative group with respect to addition.

Similarly, if A is a division algebra over a field k, then a mapping from V
into W that is linear over A is linear over k in particular. In this case, LA(V,W )
is a linear subspace of the space Lk(V,W ) of mappings from V into W that are
linear over k, as a vector space over k.
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If V , W , and Z are all left or all right vector spaces over A, then the
composition of mappings from V into W and from W into Z that are linear
over A is a mapping from V into Z that is linear over A. Let

LA(V ) = LA(V, V )(9.3.2)

be the space of mappings from V into itself that are linear over A. This is
a subring of the ring of homomorphisms from V into itself, as a commutative
group with respect to addition. If A is a division algebra over a field k, then
LA(V ) is a subalgebra of the algebra Lk(V ) of all linear mappings from V into
itself, as a vector space over k.

If V is a left vector space over A, then the conjugate space of V is the space

V ∗ = LA(V,A)(9.3.3)

of linear mappings from V into A, as a left vector space over itself, as on p52
of [42]. One can check that this is a linear subspace of the space c(V,A) of all
A-valued functions on V , as a right vector space over A. Similarly, if V is a
right vector space over A, then the conjugate space of V is the space of linear
mappings from V into A, as a right vector space over itself. This is a linear
subspace of c(V,A), as a left vector space over A.

If a ∈ A, then

La(x) = a x(9.3.4)

is a linear mapping from A into itself, as a right vector space over itself. It is
easy to see that every such linear mapping is of this form for a unique a ∈ A.
Note that

La(e) = a,(9.3.5)

and that Le is the identity mapping on A. If b ∈ A as well, then

La(Lb(x)) = (a (b x)) = (a b)x = La b(x)(9.3.6)

for every x ∈ A, so that

La ◦ Lb = La b.(9.3.7)

This implies that

a 7→ La(9.3.8)

is an isomorphism from A onto the ring of linear mappings from A into itself,
as a right vector space over itself.

Similarly, if a ∈ A, then

Ra(x) = x a(9.3.9)

is a linear mapping from A into itself, as a left vector space over A. One can
check that every such linear mapping is of this form for a unique a ∈ A, as
before. Of course,

Ra(e) = a,(9.3.10)
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and Re is the identity mapping on A, as before. If b is another element of A,
then

Ra(Rb(x)) = (x b) a = x (b a) = Rb a(x)(9.3.11)

for every x ∈ A, so that
Ra ◦Rb = Rb a.(9.3.12)

This means that
a 7→ Ra(9.3.13)

is an isomorphism from the opposite ring Aop associated to A onto the ring of
linear mappings from A into itself, as a left vector space over itself.

9.4 The finite topology on LA(V,W )

Let A be a division ring, and let W be a left or right vector space over A. Also let
NW be the nonnegative real-valued function defined on W by putting NW (w) =
1 when w ∈ W and w 6= 0, and NW (0) = 0. This is an ultrasubadditive function
on W , as a commutative group with respect to addition, that is normalized,
nondegenerate, and symmetric, as in Section 6.1. Of course,

dW (w1, w2) = dNW
(w1, w2) = NW (w1 − w2)(9.4.1)

is the same as the discrete metric on W .
Let X be a nonempty set, and remember that the space c(X,W ) of all W -

valued functions on X is a left or right vector space over A too, as appropriate.
If x ∈ X and f ∈ c(X,W ), then put

Nx(f) = Nx,c(X,W )(f) = NW (f(x)).(9.4.2)

This defines an ultrasubadditive function on c(X,W ), as a commutative group
with respect to addition, that is normalized and symmetric. Using this, we get
the discrete semimetric

dx(f1, f2) = dx,c(X,W )(f1, f2) = NW (f1(x)− f2(x))(9.4.3)

on c(X,W ) that is invariant under translations, as in Section 6.4. This is the
same as in (8.5.2), with Y = W .

Put
Mc(X,W ) = {dx,c(X,W ) : x ∈ X},(9.4.4)

as in (8.5.3). Remember that the topology determined on c(X,W ) by (9.4.4)
is the same as the product topology on c(X,W ), considered as the Cartesian
product of the family of copies of W indexed by X, and using the discrete
topology on W , as in Sections 8.4 and 8.5. Note that c(X,W ) is a topological
group with respect to addition and this topology.

Let V be another vector space over A, where V and W are either both
left or both right vector spaces over A. Note that the space LA(V,W ) of all
linear mappings from V into W , as vector spaces over A, is a subgroup of the
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group c(V,W ) of all W -valued functions on V with respect to addition. Let us
take c(V,W ), considered as the Cartesian product of the family of copies of W
indexed by V , to be equipped with the product topology corresponding to the
discrete topology on W , as before.

The topology induced on LA(V,W ) by this topology on c(V,W ) is called
the finite topology, as on p249 of [42]. Observe that LA(V,W ) is a topological
group with respect to addition and this topology, as in [42], because c(V,W ) is
a topological group, as before.

The product topology on c(V,W ) corresponding to the discrete topology on
W may also be described as the topology of pointwise convergence on c(V,W )
associated to the discrete topology on W . The induced topology on LA(V,W )
may be described as the topology of pointwise convergence on LA(V,W ) associ-
ated to the discrete topology on W . It is easy to see that LA(V,W ) is a closed
set in c(V,W ) with respect to this topology.

The finite topology is analogous to a topology that is used in analysis, and
some of the discussion here may reflect this analogy. In particular, one can take
W = A, and consider the finite topology on the conjugate space of V , as on
p254 of [42], and we shall say more about that in Section 10.5.

9.5 More on the finite topology

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If n is a positive integer, v1, . . . , vn ∈ V , and w1, . . . , wn ∈ W , then

{T ∈ LA(V,W ) : T (vj) = wj for each j = 1, . . . , n}(9.5.1)

is an open set in LA(V,W ) with respect to the finite topology. The collection
of these open sets is a base for the finite topology on LA(V,W ), as in [42].
Note that (9.5.1) is a closed set with respect to the finite topology as well, as
mentioned in Exercise 2 on p250 of [42].

If (9.5.1) is nonempty, then one can show that it can be expressed in a similar
way using a finite set of vectors in V that are linearly independent over A, as
on p249 of [42]. This implies that the collection of subsets of LA(V,W ) of the
form (9.5.1), where

the vj ’s are linearly independent in V as a vector space over A,(9.5.2)

is also a base for the finite topology on LA(V,W ).
If V has finite dimension as a vector space over A, then the finite topology

on LA(V,W ) is the same as the discrete topology. Otherwise, if V has infinite
dimension as a vector space over A, then the finite topology on LA(V,W ) is not
the same as the discrete topology, as mentioned on p249 of [42].

Of course, we can take V = W , to define the finite topology on the space
LA(V ) of linear mappings from V into itself, as a vector space over A. Let us
take

LA(V )× LA(V )(9.5.3)
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to be equipped with the product topology associated to the finite topology on
LA(V ). One can check that composition of mappings is continuous as a mapping
from (9.5.3) into LA(V ). This is related to a remark in Section 8.5. This means
that LA(V ) is a topological ring with respect to the finite topology, as in [42].

One can check that a subset E of LA(V,W ) is dense in LA(V,W ) with respect
to the finite topology if and only if for every finite set v1, . . . , vn of vectors in
V that are linearly independent over A and vectors w1, . . . , wn ∈ W there is a
T ∈ E such that

T (vj) = wj(9.5.4)

for each j = 1, . . . , n, as on p251 of [42].

9.6 Some basic linear mappings

Let A be a division ring with multiplicative identity element e = eA 6= 0, let X
be a nonempty set, and let W be a left or right vector space over A. If f is a
W -valued function on X with finite support, then

∑
x∈X f(x) may be defined

as an element of W by reducing to a finite sum, as in Section 5.10. This defines
a linear mapping from c00(X,W ) into W , as left or right vector spaces over A,
as appropriate.

If y ∈ X, then let δy be the A-valued function defined on X as in Section
9.2. Remember that δy, y ∈ X, form a basis for c00(X,A), as both a left and
right vector space over A.

Suppose that b ∈ c(X,W ) and f ∈ c00(X,A). If W is a left vector space
over A, then f b defines an element of c00(X,W ), so that

TL
b (f) =

∑
x∈X

f(x) b(x)(9.6.1)

is an element of W . This defines a linear mapping from c00(X,A) into W , as
left vector spaces over A, with

TL
b (δy) = b(y)(9.6.2)

for every y ∈ X.
If T is any linear mapping from c00(X,A) into W , as left vector spaces over

A, then
bT (y) = T (δy)(9.6.3)

defines a W -valued function on X. It is easy to see that

T = TL
bT(9.6.4)

on c00(X,A).
Similarly, if W is a right vector space over A, then b f defines an element of

c00(X,W ), so that

TR
b (f) =

∑
x∈X

b(x) f(x)(9.6.5)
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is an element of W . This defines a linear mapping from c00(X,A) into W , as
right vector spaces over A, with

TR
b (δy) = b(y)(9.6.6)

for every y ∈ X. If T is any linear mapping from c00(X,A) into W , as right
vector spaces over A, then (9.6.3) defines a W -valued function on X. We also
have that

T = TR
bT(9.6.7)

on c00(X,A), as before.
If W is a left vector space over A, then

b 7→ TL
b(9.6.8)

is a one-to-one mapping from c(X,W ) onto the space LA(c00(X,A),W ) of linear
mappings from c00(X,A) into W , as left vector spaces over A. Similarly, if W
is a right vector space over A, then

b 7→ TR
b(9.6.9)

is a one-to-one mapping from c(X,W ) onto the space LA(c00(X,A),W ) of linear
mappings from c00(X,A) into W , as right vector spaces over A. In both cases,
we get an isomorphism from c(X,W ) onto LA(c00(X,A),W ), as commutative
groups with respect to addition.

As before, c(X,W ) may be considered as the Cartesian product of copies
of W indexed by X, and we may take c(X,W ) to be equipped with the prod-
uct topology corresponding to the discrete topology on W . One can check
that (9.6.8) or (9.6.9), as appropriate, is a homeomorphism from c(X,W ) onto
LA(c00(X,A),W ), equipped with the finite topology. More precisely, it is easy
to see that open sets in c(X,W ) correspond to open sets in LA(c00(X,A),W ),
using (9.6.2) or (9.6.6), as appropriate. To get the converse, one can use the
fact that the δy’s, y ∈ X, form a basis for c00(X,A), as a left or right vector
space over A.

9.7 More on conjugate spaces

Let A be a division ring with multiplicative identity element e = eA 6= 0, and
let V be a left vector space over A. Remember that the conjugate space V ∗

of linear mappings from V into A, as a left vector space over itself, is a right
vector space over A, as in Section 9.3. If n is a positive integer, then

λ1, . . . , λn ∈ V ∗(9.7.1)

are said to be complementary to

v1, . . . , vn ∈ V(9.7.2)
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if

λj(vl) = e when j = l(9.7.3)

= 0 when j 6= l,

as on p251 of [42]. In this case,

v1, . . . , vn are linearly independent in V over A,(9.7.4)

and
λ1, . . . , λn are linearly independent in V ∗ over A.(9.7.5)

Of course, there is an analogous notion for right vector spaces over A.
Let Z be a linear subspace of V ∗, as a right vector space over A. Suppose

that for every v ∈ V with v 6= 0, there is a λ ∈ Z such that

λ(v) 6= 0.(9.7.6)

Under these conditions, one may say that

Z is a total subspace of V ∗,(9.7.7)

as on p251 of [42]. This is equivalent to saying that Z separates points in V .
We may use the same terminology for linear subspaces of conjugate spaces of
right vector spaces over A.

Let v1, . . . , vn be finitely many linearly independent vectors in V over A. If
Z is a total linear subspace of V ∗, then the lemma on p252 of [42] states that

there are λ1, . . . , λn ∈ Z that are complementary to v1, . . . , vn.(9.7.8)

To see this, we can use induction. Note that the n = 1 case can be verified
directly. Suppose that n ≥ 2 and that the analogous statement holds for n− 1,
so that there are λ1, . . . , λn−1 ∈ Z such that (9.7.3) holds for 1 ≤ j, l ≤ n− 1.

If λ ∈ Z, then put

µλ(v) = λ(v)−
n−1∑
j=1

λj(v)λ(vj)(9.7.9)

for each v ∈ V . Observe that µλ ∈ V ∗, and that

µλ(vl) = λ(vl)−
n−1∑
j=1

λj(vl)λ(vj) = λ(vl)− λ(vl) = 0(9.7.10)

for each l = 1, . . . , n−1. Suppose for the sake of a contradiction that µλ(vn) = 0
for every λ ∈ Z. This means that

0 = µλ(vn) = λ(vn)−
n−1∑
j=1

λj(vn)λ(vj) = λ
(
vn −

n−1∑
j=1

λj(vn) vj

)
(9.7.11)
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for every λ ∈ Z. This would imply that

vn −
n−1∑
j=1

λj(vn) vj = 0,(9.7.12)

because Z is supposed to separate points in V .
However, this would contradict the linear independence of v1, . . . , vn in V .

Thus
µλ(vn) 6= 0(9.7.13)

for some λ ∈ Z. Put
λn(v) = µλ(v)µλ(vn)

−1(9.7.14)

for each v ∈ V , and note that λn ∈ Z. It is easy to see that λ1, . . . , λn are
complementary to v1, . . . , vn, using (9.7.10) and the induction hypothesis. There
is an analogous statement for right vector spaces over A, as usual.

9.8 More on subspaces of V ∗

Let A be a division ring, and let V be a left vector space over A again. If Z is
a linear subspace of V ∗ as a right vector space over A and

Z is dense in V ∗ with respect to the finite topology,(9.8.1)

then
Z separates points in V.(9.8.2)

The converse follows from the statement in the previous section about comple-
mentary subsets of Z, as in Theorem 3 on p252 of [42]. This means that

Z = V ∗(9.8.3)

when V has finite dimension and Z is a linear subspace of V ∗ that separates
points, as mentioned on p253 of [42]. There are analogous statements for right
vector spaces over A, as before.

Let X be a nonempty set, and let δy be the A-valued function on X defined
for each y ∈ X as in Section 9.2. If b ∈ c(X,A) and f ∈ c00(X,A), then
f b ∈ c00(X,A), so that

λL
b (f) =

∑
x∈X

f(x) b(x)(9.8.4)

is an element of A. This defines a linear mapping from c00(X,A) into A, as left
vector spaces over A, with

λL
b (δy) = b(y)(9.8.5)

for every y ∈ X, as before. If c00(X,A)∗,L is the conjugate space of c00(X,A)
as a left vector space over A, then

b 7→ λL
b(9.8.6)
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is an isomorphism from c(X,A) onto c00(X,A)∗,L, as right vector spaces over
A. We also have that

{λL
b : b ∈ c00(X,A)}(9.8.7)

separates points in c00(X,A), as mentioned on p251 of [42], using different
notation.

Similarly, if b ∈ c(X,A) and f ∈ c00(X,A), then b f ∈ c00(X,A), and

λR
b (f) =

∑
x∈X

b(x) f(x)(9.8.8)

is an element of A. This defines a linear mapping from c00(X,A) into A, as
right vector spaces over A, with

λR
b (δy) = b(y)(9.8.9)

for every y ∈ X. Let c00(X,A)∗,R be the conjugate space of c00(X,A), as a
right vector space over A. Observe that

b 7→ λR
b(9.8.10)

is an isomorphism from c(X,A) onto c00(X,A)∗,R, as left vector spaces over A.
One can check that

{λR
b : b ∈ c00(X,A)}(9.8.11)

separates points in c00(X,A), as before.



Chapter 10

More on vector spaces and
linear mappings

10.1 Bilinear forms

Let A be a division ring with multiplicative identity element e = eA 6= 0, let
V be a left vector space over A, and let W be a right vector space over A. A
mapping b from V × W into A is said to be a bilinear form on V × W if it
satisfies the following two conditions, as on p137 of [42]. The first condition is
that

b1,w(v) = b(v, w)(10.1.1)

be a linear mapping from V into A, as left vector spaces over A, for each w ∈ W .
The second condition is that

b2,v(w) = b(v, w)(10.1.2)

be a linear mapping from W into A, as right vector spaces over A, for each
v ∈ V .

Using these two conditions, we get that

w 7→ b1,w(10.1.3)

is a linear mapping from W into the conjugate space V ∗ of V , as right vector
spaces over A. Similarly,

v 7→ b2,v(10.1.4)

is a linear mapping from V into the conjugate space W ∗ of W , as left vector
spaces over A. Conversely, a linear mapping from W into V ∗, as right vector
spaces over A, determines a unique bilinear form on V ×W in this way. Similarly,
a linear mapping from V into W ∗, as left vector spaces over A, determines a
unique biliinear form on V ×W .

177
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We say that b is nondegenerate as a bilinear form on V × W if it satisfies
the following two conditions. The first condition is that for every v ∈ V with
v 6= 0 there is a w ∈ W such that

b(v, w) 6= 0.(10.1.5)

The second condition is that for every w ∈ W with w 6= 0 there is a v ∈ V such
that (10.1.5) holds. This is equivalent to the formulations of nondegeneracy of
bilinear forms on p141, 253 of [42]. Note that the first condition is the same as
saying that (10.1.4) is injective on V , and the second condition is the same as
saying that (10.1.3) is injective on W .

Of course,
{b1,w : w ∈ W}(10.1.6)

is a linear subspace of V ∗, as a right vector space over A, and

{b2,v : v ∈ V }(10.1.7)

is a linear subspace of W ∗, as a left vector space over A. The first part of
the definition of nondegeracy of b is the same as saying that (10.1.6) separates
points in V , and the second part of the definition of nondegeneracy is the same
as saying that (10.1.7) separates points in W . If b is nondegenerate on V ×W ,
then one may say that V and W are dual relative to b, as on p141, 253 of [42].

10.2 More on bilinear forms

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If Z is a linear subspace of V ∗, as a right vector space over A, then

bZ(v, λ) = λ(v)(10.2.1)

defines a bilinear form on V × Z. The corresponding mapping from Z into V ∗

is the obvious inclusion mapping in this case. Observe that

bZ is nondegenerate on V × Z(10.2.2)

if and only if Z separates points in V . There are analogous statements for linear
subspaces of W ∗, as a left vector space over A.

If v ∈ V , then
Lv(λ) = LZ,v(λ) = λ(v)(10.2.3)

defines a linear mapping from Z into A, as right vector spaces over A. We also
have that

v 7→ Lv = LZ,v(10.2.4)

is a linear mapping from V into the conjugate space Z∗ of Z, as left vector
spaces over A. This mapping is injective exactly when Z separates points in V .
Note that

{LZ,v : v ∈ V }(10.2.5)
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is a linear subspace of Z∗, as a left vector space over A, that separates points
in Z. This is related to some remarks on p253 of [42].

Let X and Y be nonempty sets, and remember that the spaces c00(X,A),
c00(Y,A) of A-valued functions on X, Y , respectively, with finite support are
each both left and right vector spaces over A. If x ∈ X and y ∈ Y , then let
δX,x and δY,y be the A-valued functions on X and Y equal to e at x and y,
respectively, and to 0 elsewhere, as before. Let β(x, y) be an A-valued function
on X×Y , and let f(x) ∈ c00(X,A) and g(y) ∈ c00(Y,A) be given. Observe that

f(x)β(x, y) g(y)(10.2.6)

is an A-valued function on X × Y with finite support. Thus

bβ(f, g) =
∑

(x,y)∈X×Y

f(x)β(x, y) g(y)(10.2.7)

defines an element of A, as in Section 9.6. It is easy to see that this defines a
bilinear form on

c00(X,A)× c00(Y,A),(10.2.8)

where c00(X,A) is considered as a left vector space over A, and c00(Y,A) is
considered as a right vector space over A. This basically corresponds to a
remark on p139 of [42] about getting bilinear forms from matrices with entries
in A when X and Y have only finitely many elements.

If x ∈ X and y ∈ Y , then

bβ(δX,x, δY,y) = β(x, y).(10.2.9)

If b is any bilinear form on (10.2.8), then

βb(x, y) = b(δX,x, δY,y)(10.2.10)

defines an A-valued function on X×Y . This basically corresponds to the matrix
associated to a bilinear form on a product of finite-dimensional vector spaces
over A relative to particular bases of these vector spaces, as on p138 of [42].
One can check that b is the same as the bilinear form associated to (10.2.10) as
in (10.2.7). Thus

β 7→ bβ(10.2.11)

is a one-to-one mapping from the space c(X × Y,A) of all A-valued functions
on X × Y onto the space of bilinear forms on (10.2.8).

More precisely, the space of bilinear forms on (10.2.8) is a subgroup of the
space of A-valued functions on (10.2.8), as a commutative group with respect
to addition. The mapping (10.2.11) is an isomorphism from c(X × Y,A) onto
the space of bilinear forms on (10.2.8), as commutative groups with respect to
addition.
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10.3 Some finite bases

Let A be a division ring with a multiplicative identity element e = eA 6= 0,
and let W be a left vector space over A. Also let λ1, . . . , λn be finitely many
elements of the conjugate space W ∗ of W , and suppose that

λ1, . . . , λn are linearly independent in W ∗,(10.3.1)

as a right vector space over A. Suppose also that

n⋂
l=1

kerλl = {0},(10.3.2)

and let Λ be the linear subspace of W ∗ spanned by λ1, . . . , λn, as a right vector
space over A. Equivalently, (10.3.2) says that Λ separates points in W .

If w ∈ W , then

LΛ,w(λ) = λ(w)(10.3.3)

defines a linear mapping from Λ into A, as right vector spaces over A, as in
Section 10.2. Note that

w 7→ LΛ,w(10.3.4)

is an injective linear mapping from W into the conjugate space Λ∗ of Λ, as left
vector spaces over A, because Λ separates points in W , as before. We also have
that

{LΛ,w : w ∈ W}(10.3.5)

is a linear subspace of Λ∗, as a left vector space over A, that separates points
in Λ, as before.

Under these conditions, there are n elements of (10.3.5) that are comple-
mentary to λ1, . . . , λn, as in Section 9.7. This means that there are n elements
w1, . . . , wn of W such that LΛ,w1 , . . . , LΛ,wn are complementary to λ1, . . . , λn,
so that

λl(wj) = LΛ,wj
(λl) = e when j = l(10.3.6)

= 0 when j 6= l,

as before. Of course, this is the same as saying that λ1, . . . , λn are complemen-
tary to w1, . . . , wn. This implies that

w1, . . . , wn are linearly independent in W,(10.3.7)

as before.
If w ∈ W , then

λl

( n∑
j=1

λj(w)wj

)
=

n∑
j=1

λj(w)λl(wj) = λl(w)(10.3.8)
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for each l = 1, . . . , n, by (10.3.6). This implies that

n∑
j=1

λj(w)wj = w,(10.3.9)

because of (10.3.2). Thus

w1, . . . , wn is a basis for W,(10.3.10)

as a left vector space over A. We also get that

λ1, . . . , λn is a basis for Λ = W ∗,(10.3.11)

as a right vector space over A. There are analogous statements when W is a
right vector space over A, as usual.

10.4 Finitely many elements of V ∗

Let A be a division ring with a multiplicative identity element e = eA 6= 0, let
V be a left vector space over A, and let µ1, . . . , µn be finitely many linearly
independent elements of the conjugate space V ∗ of V , as a right vector space
over A. Consider the linear subspace

n⋂
l=1

kerµl(10.4.1)

of V , and let

W = V/
( n⋂

l=1

kerµl

)
(10.4.2)

be the corresponding quotient of V . This is another left vector space over A,
and we let q be the corresponding quotient mapping from V onto W . Of course,
for each l = 1, . . . , n, there is a unique linear mapping λl from W into A, as left
vector spaces over A, such that

µl = λl ◦ q.(10.4.3)

Note that λ1, . . . , λn are linearly independent as elements of W ∗.
Clearly

kerµl = µ−1
l ({0}) = q−1(λ−1

l ({0})) = q−1(kerλl)(10.4.4)

for each l. This implies that

q−1
( n⋂

l=1

kerλl

)
=

n⋂
l=1

q−1(kerλl) =

n⋂
l=1

kerµl.(10.4.5)
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It follows that
n⋂

l=1

kerλl = q
( n⋂

l=1

kerµl

)
= {0}.(10.4.6)

This means that λ1, . . . , λn is a basis for W ∗, as a right vector space over A,
and there is a basis w1, . . . , wn of W , as a left vector space over A, that is
complementary to λ1, . . . , λn, as in the previous section.

Let v1, . . . , vn be elements of V such that

q(vl) = wl(10.4.7)

for each l. Under these conditions,

v1, . . . , vn are linearly independent in V,(10.4.8)

as a left vector space over A, and

µl(vj) = λl(q(vj)) = λl(wj) = e when j = l(10.4.9)

= 0 when j 6= l,

as in (10.3.6).
Let µ be a linear mapping from V into A, as left vector spaces over A, such

that
n⋂

l=1

kerµl ⊆ kerµ.(10.4.10)

This leads to a linear mapping λ from W into A, as left vector spaces over A,
such that

µ = λ ◦ q.(10.4.11)

We also have that λ may be expressed as a linear combination of λ1, . . . , λn

in W ∗, as a right vector space over A, as before. This means that µ may be
expressed as a linear combination of µ1, . . . , µn in V ∗, as a right vector space
over A. There is an analogous statement when V is a right vector space over A,
as before.

If µ1, . . . , µn are not necessarily linearly independent in V ∗, then one can
reduce to that case, by dropping µl’s that can be expressed as linear combina-
tions of the others in V ∗. This will not affect the interesection of their kernels.
One can use this to get the same conclusion as in the previous paragraph in this
case.

10.5 Some weak topologies

Let A be a division ring, let V be a left vector space over A, and let Z be a
linear subspace of the conjugate space V ∗ of V , as a right vector space over A.
Also let NA be the nonnegative real-valued function defined on A by putting
NA(a) = 1 when a ∈ A and a 6= 0 and NA(0) = 0. If λ ∈ Z, then put

NV,λ(v) = NA(λ(v))(10.5.1)
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for every v ∈ V . This is an ultrasubadditive function on V , as a commutative
group with respect to addition, that is normalized and symmetric, as in Section
6.1. Thus

dV,λ(v1, v2) = dNV,λ
(v1, v2) = NV,λ(v1 − v2) = NA(λ(v1)− λ(v2))(10.5.2)

is a translation-invariant semi-ultrametric on V , as in Section 6.4.

More precisely, (10.5.2) is a discrete semimetric on V for each λ ∈ Z. The
collection

MV,Z = {dV,λ : λ ∈ Z}(10.5.3)

of these discrete semimetrics determines a topology on V , as in Section 2.1. This
is the same as the weakest topology on V such that each λ ∈ Z is continuous
when A is equipped with the discrete topology. This may be described as the
weak topology on V associated to Z and the discrete topology on A. Note that
(10.5.3) is nondegenerate as a collection of semimetrics on V exactly when Z
separates points in Z.

Similarly, if v ∈ V , then put

NZ,v(λ) = NA(λ(v))(10.5.4)

for every λ ∈ Z. This is an ultrasubaddive function on Z, as a commutative
group with respect to addition, that is normalized and symmetric, so that

dZ,v(λ1, λ2) = dNZ,λ
(λ1, λ2) = NZ,v(λ1 − λ2) = NA(λ1(v)− λ2(v))(10.5.5)

is a translation-invariant semi-ultrametric on Z. More precisely, this is a discrete
semimetric on Z for each v ∈ V , and

MZ,V = {dZ,v : v ∈ V }(10.5.6)

is a nondegenerate collection of semimetrics on Z. The topology determined on
Z by (10.5.6) is the same as the topology induced on Z by the finite topology
on V ∗. This may be described as the weak∗ topology on Z, as a linear subspace
of V ∗, associated to the discrete topology on A.

If v ∈ V , then LZ,v(λ) = λ(v) defines a linear mapping from Z into A, as
right vector spaces over A, as in Section 10.2. We also have that v 7→ LZ,v is a
linear mapping from V into the conjugate space Z∗ of Z, as left vector spaces
over A, and that

{LZ,v : v ∈ V }(10.5.7)

is a linear subspace of Z∗, as a left vector space over A, that separates points
in Z. The weak∗ topology on Z, as a linear subspace of V ∗, is the same as the
weak topology on Z associated to (10.5.7). More precisely, there are analogues
of the statements in this section for right vector spaces over A in place of left
vector spaces. In particular, the weak topology on Z, as a right vector space
over A, associated to (10.5.7) may be defined in the same way as before.
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10.6 More on these weak topologies

Let us continue with the same notation and hypotheses as in the previous sec-
tion. The weak∗ topology on (10.5.7), as a linear subspace of Z∗, as a left
vector space over A, may be defined in the same way as before. Suppose for the
moment that Z separates points in V , so that

v 7→ LZ,v is injective,(10.6.1)

as in Section 10.2. In this case, one can check that the weak topology on
V associated to Z corresponds to the weak∗ topology on (10.5.7) as a linear
subspace of Z∗ using the mapping v 7→ LZ,v. This is related to a remark on
p254 of [42].

If n is a positive integer, λ1, . . . , λn ∈ Z, and a1, . . . , an ∈ A, then

{v ∈ V : λj(v) = aj for each j = 1, . . . , n}(10.6.2)

is an open set in V with respect to the weak topology associated to Z and the
discrete topology on A. One can check that the collection of these open sets is
a base for this weak topology on V associated to Z. If (10.6.2) is nonempty,
then it can be expressed in a similar way using finitely many elements of Z
that are linearly independent in Z, as a right vector space over A. This means
that the collection of subsets of V of the form (10.6.2) with λ1, . . . , λn linearly
independent in Z over A as a base for this weak topology on V as well. Of
course, this is analogous to a statement about the finite topology in Section 9.5.

Let µ be a linear mapping from V into A, as left vector spaces over A.
Suppose that µ is continuous at 0, with respect to the weak topology on V
associated to Z, and the discrete topology on A. This implies that there are
finitely many elements λ1, . . . , λn of Z such that

n⋂
l=1

kerλl ⊆ kerµ,(10.6.3)

because the kernel of µ contains an open set in V with respect to the weak
topology associated to Z that contains 0. It follows that µ may be expressed as
a linear combination of λ1, . . . , λn in V ∗, as a right vector space over A, as in
Section 10.4. This means that

µ ∈ Z.(10.6.4)

As usual, there are analogues of the statements in this section for right vector
spaces over A in place of left vector spaces. Remember that the weak∗ topology
on Z is the same as the weak topology associated to (10.5.7). Suppose that
a linear mapping from Z into A, as right vector spaces over A, is continuous
at 0 with respect to the weak∗ topology on Z and the discrete topology on A.
In this case, the linear mapping is an element of (10.5.7), as in the preceding
paragraph.
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10.7 Closures of linear subspaces

Let A be a division ring, let V be a left vector space over A, and let Z be a
linear subspaces of the conjugate space V ∗ of V , as a right vector space over
A, as in the previous two sections. Also let W be a linear subspace of V , and
suppose that u ∈ V is not in the closure of W with respect to the weak topology
on V associated to Z and the discrete topology on A. This means that there
is a positive integer n, λ1, . . . , λn ∈ Z, and a1, . . . , an ∈ A such that (10.6.2)
contains u and does not contain any element of W . Of course, the condition
that (10.6.2) contain u is the same as saying that

aj = λj(u)(10.7.1)

for each j = 1, . . . , n.
Let An be the space of n-tuples of elements of A. This may be considered

as both a left and right vector space over A, using coordinatewise addition and
scalar multiplication. Using λ1, . . . , λn, we get a linear mapping T from V into
An, as left vector spaces over A, defined by

T (v) = (λ1(v), . . . , λn(v)).(10.7.2)

Note that T (W ) is a linear subspace of An, as a left vector space over A. By
hypothesis,

T (u) 6∈ T (W ).(10.7.3)

One can use this to get a linear mapping µ from An into A, as left vector
spaces over A, such that

µ(T (w)) = 0(10.7.4)

for every w ∈ W , and
µ(T (u)) 6= 0.(10.7.5)

The conjugate space (An)∗ of An, as a left vector space over A, may be consid-
ered as a right vector space over A, as usual. It is easy to see that µ is a linear
combination of the coordinate functions on An, as elements of (An)∗, as a right
vector space over A. This implies that

λ = µ ◦ T(10.7.6)

is a linear combination of λ1, . . . , λn in V ∗, as a right vector space over A. It
follows that

λ ∈ Z.(10.7.7)

10.8 Conjugate spaces and linear subspaces

Let A be a division ring, let V be a left vector space over A, and let Z be a
linear subspace of the conjugate space V ∗ of V again, as a right vector space
over A. If W is a subset of V , then put

W⊥Z = {λ ∈ Z : λ(w) = 0 for every w ∈ W}.(10.8.1)
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Note that
W⊥Z is a linear subspace of Z,(10.8.2)

as a right vector space over A. It is easy to see that

W⊥Z is a closed set in Z, with respect to the weak∗ topology on Z,(10.8.3)

as a linear subspace of V ∗. We also have that W⊥Z is the same as for the linear
subspace of V spanned by W , and thus one normally takes W to be a linear
subspace of V , as a left vector space over A.

Similarly, if Y is a subset of Z, then put

⊥V Y = {v ∈ V : λ(v) = 0 for every λ ∈ Y }.(10.8.4)

Clearly
⊥V Y is a linear subspace of V,(10.8.5)

as a left vector space over A. One can check that

⊥V Y is a closed set in V, with respect to(10.8.6)

the weak topology associated to Z.

As before, ⊥V Y is the same as for the linear subspace of Z spanned by Y , so
that one normally takes Y to be a linear subspace of Z, as a right vector space
over A. These subspaces (10.8.1) and (10.8.4) are basically the same as on p254
of [42].

If W1 ⊆ W2 ⊆ V , then
W⊥Z

2 ⊆ W⊥Z
1 .(10.8.7)

Similarly, if Y1 ⊆ Y2 ⊆ Z, then

⊥V Y2 ⊆ ⊥V Y1.(10.8.8)

This corresponds to (i) on p254 of [42].
If W ⊆ V , then it is easy to see that

W ⊆ ⊥V (W⊥Z ).(10.8.9)

Similarly, if Y ⊆ Z, then
Y ⊆ (⊥V Y )⊥Z(10.8.10)

This corresponds to (ii) on p254 of [42].
We also have that

(⊥V (W⊥Z ))⊥Z = W⊥Z(10.8.11)

and
⊥V ((⊥V Y )⊥Z ) = ⊥V Y,(10.8.12)

as in (iii) on p254 of [42]. Indeed,

W⊥Z ⊆ (⊥V (W⊥Z ))⊥Z ,(10.8.13)

as in (10.8.10). We can use (10.8.9) to get that

(⊥V (W⊥Z ))⊥Z ⊆ W⊥Z ,(10.8.14)

as in (10.8.7). Essentially the same argument may be used to obtain (10.8.12),
as in [42].
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