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Preface

Some topics related to Fourier transforms of complex Borel measures on com-
mutative topological groups are discussed. In particular, this includes integrable
functions with respect to Haar measure on locally compact groups.
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Chapter 1

Topological groups and
vector spaces

1.1 Commutative topological groups

Let A be a commutative group, with the group operations expressed additively,
and suppose that A is also equipped with a topology. If the group operations on
A are continuous, then A is said to be a topological group. More precisely, this
means that addition on A is continuous as a mapping from A × A into itself,
using the corresponding product topology on A×A. Similarly, the mapping that
sends x ∈ A to its additive inverse −x should be continuous. It is customary to
require that {0} be a closed set in A too.

Note that any commutative group A is a topological group with respect to
the discrete topology on A. The real line R is a commutative topological group
with respect to addition and the standard topology on R. The unit circle

T = {z ∈ C : |z| = 1}(1.1)

in the complex plane C is a commutative topological group with respect to mul-
tiplication of complex numbers and the topology induced on T by the standard
topology on C. Here |z| denotes the usual absolute value or modulus of z ∈ C.
If A is a commutative topological group and B is a subgroup of A, then B is a
commutative topological group with respect to the topology induced on B by
the topology on A.

Let A be a commutative topological group. Continuity of addition on A
implies that for each a ∈ A, the translation mapping

x 7→ x+ a(1.2)

is continuous as a mapping from A into itself. The inverse of this mapping is
given by translation by −a, which is also continuous for the same reason, so
that (1.2) is a homeomorphism from A onto itself for each a ∈ A. It follows in
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2 CHAPTER 1. TOPOLOGICAL GROUPS AND VECTOR SPACES

particular that subsets of A with only one element are closed sets, so that A
satisfies the first separation condition. It is well known that A is Hausdorff and
regular as a topological space, as we shall soon see.

If a ∈ A and E ⊆ A, then we put

a+ E = E + a = {a+ x : x ∈ E}(1.3)

and
−E = {−x : x ∈ E},(1.4)

which are the images of E under the translation mapping (1.2) and x 7→ −x,
respectively. We may also use a−E for a+(−E), and E−a for E+(−a). If E
is open, closed, or compact in A, then each of these sets has the same property,
because of the continuity of translations on A and of the mapping x 7→ −x. If
E1, E2 ⊆ A, then we put

E1 + E2 =
∪

x∈E1

(x+ E2) =
∪

y∈E2

(E1 + y) = {x+ y : x ∈ E1, y ∈ E2},(1.5)

which is the image of E1 ×E2 under addition as a mapping from A×A into A.
If either E1 or E2 is an open set in A, then E1+E2 is an open set in A, because
it is a union of translates of open sets. If E1 and E2 are both compact subsets of
A, then E1×E2 is compact in A×A with respect to the corresponding product
topology, by Tychonoff’s theorem. This implies that E1 + E2 is compact in A,
by continuity of addition on A as a mapping from A×A into A. As before, we
may use E1 − E2 instead of E1 + (−E2).

If U is an open subset of A that contains 0, then there are open subsets U1,
U2 of A that contain 0 and satisfy

U1 + U2 ⊆ U.(1.6)

This corresponds exactly to continuity of addition on A as a mapping from
A×A into A at (0, 0). In order to verify that addition on A is continuous as a
mapping from A × A into A at every point in A × A, it suffices to check that
this condition holds, and that translations are continuous on A.

If A is a commutative topological group, E is any subset of A, and U ⊆ A
is an open set that contains 0, then it is easy to see that

E ⊆ E + U,(1.7)

where E denotes the closure of E in A. More precisely, one can check that

E =
∩

{E + U : U ⊆ A is an open set with 0 ∈ U}.(1.8)

If U,U1, U2 are open subsets of A that contain 0 and satisfy (1.6), then we get
that

U1 ⊆ U1 + U2 ⊆ U,(1.9)

using (1.7) in the first step.
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Remember that a topological space X is said to be regular in the strict sense
if for each point x ∈ X and closed set E ⊆ X with x ̸∈ E there are disjoint open
sets U, V ⊆ X such that x ∈ U and E ⊆ V . This is equivalent to asking that for
each point x ∈ X and open set W ⊆ X with x ∈W there is an open set U ⊆ X
such that x ∈ U and U ⊆W . If X is regular in the strict sense and X satisfies
the first separation condition, then one may say that X is regular in the strong
sense, or that X satisfies the third separation condition. This implies that X is
Hausdorff, because subsets of X with only one element are closed sets.

If A is a commutative topological group, then A is regular as a topological
space in the strong sense, and hence A is Hausdorff in particular. More precisely,
the continuity of the group operations on A imply that A is regular in the strict
sense. This uses (1.6) and (1.9) to get that for each open set U ⊆ A with 0 ∈ U
there is an open set U1 ⊆ A such that 0 ∈ U1 and U1 ⊆ U . The analogous
statement at any other point in A can be reduced to this one using continuity
of translations. As before, the additional requirement that {0} be a closed set
in A implies that A satisfies the first separation condition, so that A is regular
in the strong sense.

Let A be a commutative topological group again, let K be a compact subset
of A, let W be an open set in A, and suppose that K ⊆ W . If x ∈ K, then
continuity of addition on A implies that there is an open set U(x) ⊆ A such
that 0 ∈ U(x) and

x+ U(x) + U(x) ⊆W.(1.10)

The sets x + U(x) with x ∈ K form an open covering of K in A, and so the
compactness of K implies that there are finitely many elements x1, . . . , xn of K
such that

K ⊆
n∪

j=1

(xj + U(xj)).(1.11)

Put

U =

n∩
j=1

U(xj),(1.12)

which is an open set in A that contains 0. We also have that

K + U ⊆
n∪

j=1

(xj + U(xj) + U) ⊆
n∪

j=1

(xj + U(xj) + U(xj)) ⊆W.(1.13)

If K ⊆ A is compact and E ⊆ A is a closed set, then it is well known that
K+E is a closed set in A too. To see this, let a ∈ A\ (K+E) be given, so that

a−K ⊆ A \ E.(1.14)

The argument in the preceding paragraph implies that there is an open set
U ⊆ A such that 0 ∈ U and

(a−K) + U ⊆ A \ E,(1.15)
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because a − K is compact and A \ E is an open set in A. Equivalently, this
means that

a+ U ⊆ A \ (K + E).(1.16)

It follows that A \ (K +E) is an open set in A, so that K +E is a closed set in
A, as desired.

1.2 Semimetrics

Let X be a set, and let d(x, y) be a nonnegative real-valued function defined on
X ×X. As usual, d(x, y) is said to be a semimetric on X if

d(x, x) = 0(1.17)

for every x ∈ X,
d(x, y) = d(y, x)(1.18)

for every x, y ∈ X, and

d(x, z) ≤ d(x, y) + d(y, z)(1.19)

for every x, y, z ∈ X. If we also have that

d(x, y) > 0(1.20)

for every x, y ∈ X with x ̸= y, then d(·, ·) is said to be a metric on X.
The discrete metric can be defined on any set X by putting d(x, y) equal to

1 when x ̸= y, and to 0 when x = y. It is easy to see that this defines a metric
on X. The standard Euclidean metrics on R and C are defined by

d(x, y) = |x− y|,(1.21)

where | · | is the standard absolute value function on R or C, as appropriate. In
this case, we have that

d(a x, a y) = |a x− a y| = |a| |x− y|(1.22)

for all real or complex numbers a, x, and y, as appropriate. If d(x, y) is a
semimetric on a set X and Y is a subset of X, then the restriction of d(x, y) to
x, y ∈ Y defines a semimetric on Y , which is a metric on Y when d(x, y) is a
metric on X.

Let d(·, ·) be a semimetric on a set X. The open ball in X centered at a
point x ∈ X with radius r > 0 with respect to d is defined by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) < r}.(1.23)

Similarly, the closed ball in X centered at x ∈ X with radius r ≥ 0 with respect
to d is defined by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) ≤ r}.(1.24)
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A subset U of X is said to be an open set with respect to d if for each x ∈ U
there is an r > 0 such that

B(x, r) ⊆ U.(1.25)

This defines a topology on X, for which open balls are open sets, and closed
balls are closed sets, by standard arguments. In particular, one can use this to
verify that X is regular in the strict sense with respect to this topology. If d is
a metric on X, then X is Hausdorff with respect to this topology.

Of course, the discrete metric on X determines the discrete topology on
X, and the standard Euclidean metrics on R and C determine their standard
topologies. Let d be a semimetric on a set X, let Y be a subset of X, and
let dY be the restriction of d to elements of X, as before. The open ball in Y
centered at a point y ∈ Y with radius r > 0 with respect to dY is the same as
the intersection of Y with the open ball in X centered at y with radius r with
respect to d. Similarly, the closed ball in Y centered at y ∈ Y with radius r ≥ 0
with respect to dY is the same as the intersection of Y with the closed ball in
X centered at y with radius r with respect to d. The topology determined on
Y by dY is the same as the topology induced on Y by the topology determined
on X by d, by a standard argument.

Let A be a commutative group, and let d(x, y) be a semimetric on A. If

d(x+ a, y + a) = d(x, y)(1.26)

for every a, x, y ∈ A, then d is said to be invariant under translations on A.
This implies that translations on A are homeomorphisms with respect to the
topology determined on A by d. If we take a = −x − y in (1.26), then we get
that

d(−x,−y) = d(x, y)(1.27)

for every x, y ∈ X. This implies that x 7→ −x is a homeomorphism from A
onto itself, with respect to the topology determined by d. Using the triangle
inequality (1.19) and translation-invariance (1.26), we obtain that

d(x0 + y0, x+ y) ≤ d(x0 + y0, x+ y0) + d(x+ y0, x+ y)(1.28)

= d(x0, x) + d(y0, y)

for every x0, x, y0, y ∈ A. It follows that

B(x0, r) +B(y0, t) ⊆ B(x0 + y0, r + t)(1.29)

for every x0, y0 ∈ A and r, t > 0 in this situation. This implies that addition is
continuous as a mapping from A×A into A, using the topology determined on
A by d, and the corresponding product topology on A×A. If d is a translation-
invariant metric on A, then A is a topological group with respect to the topology
corresponding to d.

The discrete metric on any commutative group A is obviously invariant under
translations on A. It is easy to see that the standard Euclidean metrics onR and
C are invariant under translations too. These metrics are also invariant under
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multiplication by real or complex numbers with absolute value equal to 1, by
(1.22). This implies that the restriction of the standard Euclidean metric on C
to the unit circle T is invariant under translations in T as a commutative group
with respect to multiplication. If A is a commutative group, B is a subgroup of
A, and d is a semimetric on A that is invariant under translations on A, then
the restriction dB of d to B is invariant under translations on B.

If d is a semimetric on any set X, then there is a local base for the topology
determined on X by d at any point x ∈ X with only finitely or countably many
elements. It suffices to use a sequence of open balls in X centered at x with radii
converging to 0. If A is a commutative topological group, then a local base for
the topology of A at 0 leads to local bases at every point in A, using translations.
If there is a local base for the topology of A at 0 with only finitely or countably
many elements, then it is well known that there is a translation-invariant metric
on A that determines the same topology.

1.3 Collections of semimetrics

Let X be a set, and let M be a nonempty collection of semimetrics on X. Let
us say that a subset U of X is an open set with respect to M if for each x ∈ U
there are finitely many semimetrics d1, . . . , dl ∈ M and positive real numbers
r1, . . . , rl such that

l∩
j=1

Bdj
(x, rj) ⊆ U,(1.30)

where Bdj
(x, rj) is as in (1.23) in the previous section. It is easy to see that

this defines a topology on X. If d ∈ M, then every open set in X with respect
to d is an open set with respect to M, and hence every closed set in X with
respect to d is a closed set with respect to M. In particular, open balls in X
with respect to d are open sets with respect to M, and closed balls in X with
respect to d are closed sets with respect to M. It follows that the collection of
all open balls in X with respect to elements of M is a sub-base for the topology
determined on X by M. One can check that the topology determined on X
by M is regular in the strict sense. If for each x, y ∈ X with x ̸= y there is a
d ∈ M such that d(x, y) > 0, then M is said to be nondegenerate on X. This
implies that X is Hausdorff with respect to the topology determined by M.

Let Y be a subset of X. If d is a semimetric on X, then the restriction dY
of d to elements of Y defines a semimetric on Y , as in the previous section. Let
M be a nonempty collection of semimetrics on X, and let

MY = {dY : d ∈ M}(1.31)

be the collection of semimetrics on Y obtained by restricting the elements of M
to Y . One can check that the topology determined on Y by MY is the same
as the topology induced on Y by the topology determined on X by M, as in
the case of a single semimetric. More precisely, if E ⊆ Y is an open set with
respect to the topology induced on Y by the topology determined on X by M,
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then E = U ∩ Y for some open set U ⊆ X with respect to M, and one can
verify that E is an open set with respect to MY on Y . In the other direction, if
d ∈ M, x ∈ Y , and r > 0, then the open ball in Y centered at x with radius r
with respect to dY is the same as the intersection of Y with the open ball in X
centered at x with radius r with respect to d. This implies that these open balls
in Y are open sets with respect to the topology induced on Y by the topology
determined on X by M. It follows that every open set in Y with respect to
the topology determined by MY is an open set with respect to the topology
induced on Y by the topology determined on X by M, because these open balls
in Y form a sub-base for the topology determined on Y by MY . Of course, if
M is nondegenerate on X, then MY is nondegenerate on Y .

Let A be a commutative group. If M is a nonempty collection of translation-
invariant semimetrics on A, then one can verify that the group operations on
A are continuous with respect to the topology determined on A by M. This is
analogous to the case of a single translation-invariant semimetric, as in the pre-
vious section. If M is also nondegenerate, then A is a commutative topological
group with respect to the topology determined by M. Conversely, if A is any
commutative topological group, then it is well known that there is a nondegen-
erate collection M of translation-invariant semimetrics on A that determines
the same topology on A.

Let X be any set again, and let d1, . . . , dl be finitely many semimetrics on
X. Under these conditions, one can check that

d(x, y) = max
1≤j≤l

dj(x, y)(1.32)

defines a semimetric on X. We also have that

Bd(x, r) =

l∩
j=1

Bdj
(x, r)(1.33)

for every x ∈ X and r > 0, where the corresponding open balls are as defined in
(1.23) in Section 1.2. Using this, one can verify that the topology determined
on X by d as in Section 1.2 is the same as the topology determined on X by the
collection {d1, . . . , dl} as before. Note that d is a metric on X exactly when this
collection of semimetrics is nondegenerate on X. One can also use other com-
binations of d1, . . . , dl, such as their sum, with somewhat different relationships
between the corresponding balls. If d1, . . . , dl are translation-invariant semimet-
rics on a commutative group A, then (1.32) is invariant under translations on
A too, which would work for the sum of the dj ’s as well.

1.4 Sequences of semimetrics

Let d be a semimetric on a set X, and let t be a positive real number. It is easy
to see that

dt(x, y) = min(d(x, y), t)(1.34)
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also defines a semimetric on X. By construction,

Bdt
(x, r) = Bd(x, r)(1.35)

for every x ∈ X when 0 ≤ r ≤ t, where the corresponding open balls are as
defined in (1.23) in Section 1.2. Similarly,

Bdt
(x, r) = X(1.36)

for every x ∈ X when r > t. It follows that the topology determined on X by
dt as in Section 1.2 is the same as the topology determined by d for every t > 0.
Note that dt(x, y) = 0 exactly when d(x, y) = 0. In particular, if d is a metric
on X, then dt is a metric on X.

Now let d1, d2, d3, . . . be an infinite sequence of semimetrics on X, and put

d′j(x, y) = min(dj(x, y), 1/j)(1.37)

for every j ≥ 1 and x, y ∈ X. Thus, for each j ≥ 1, d′j is a semimetric on X
that determines the same topology on X as dj , as in the preceding paragraph.
Put

d′(x, y) = max
j≥1

d′j(x, y)(1.38)

for every x, y ∈ X. More precisely, this is equal to 0 when d′j(x, y) = 0 for every
j. Otherwise, if d′l(x, y) > 0 for some l ≥ 1, then (1.38) reduces to the maximum
of d′j(x, y) over finitely many j, since d′j(x, y) ≤ 1/j for each j, by construction.
As in the case of finitely many semimetrics in the previous section, one can
check that (1.38) defines a semimetric on X. If the collection of semimetrics dj ,
j ≥ 1, is nondegenerate on X, then the collection of semimetrics d′j , j ≥ 1, is
nondegenerate on X too, and d′ is a metric on X.

Because the maximum on the right side of (1.38) is always attained, we have
that

Bd′(x, r) =

∞∩
j=1

Bd′
j
(x, r)(1.39)

for every x ∈ X and r > 0, where these open balls are as defined in (1.23) in
Section 1.2 again. If r > 1, then this reduces to

Bd′(x, r) = X,(1.40)

as in (1.36). If 0 < r ≤ 1, and j(r) is the largest positive integer that is less
than or equal to 1/r, then we get that

Bd′(x, r) =

j(r)∩
j=1

Bdj (x, r)(1.41)

for every x ∈ X, using (1.35) and (1.36). One can use this to verify that the
topology determined on X by d′ is the same as the topology determined on X
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by the collection of semimetrics dj , j ≥ 1. This is the same as the topology
determined on X by the collection of semimetrics d′j , j ≥ 1.

Let A be a commutative group. If d is a translation-invariant semimetric on
A, then (1.34) is invariant under translations on A for every t > 0. Similarly,
if d1, d2, d3, . . . is an infinite sequence of translation-invariant semimetrics on A,
then (1.37) is invariant under translations on A for each j ≥ 1. It follows that
(1.38) is invariant under translations on A as well.

1.5 Seminorms

Let V be a vector space over the real or complex numbers. A nonnegative
real-valued function N on V is said to be a seminorm on V if

N(t v) = |t|N(v)(1.42)

for every v ∈ V and t ∈ R or C, as appropriate, and

N(v + w) ≤ N(v) +N(w)(1.43)

for every v, w ∈ V . In (1.42), |t| is the standard absolute function on R or C,
and we get that N(0) = 0 by taking t = 0. If we also have that

N(v) > 0(1.44)

for every v ∈ V with v ̸= 0, then N is said to be a norm on V . Note that the
standard absolute value functions on R and C may be considered as norms on
R or C as one-dimensional vector spaces over themselves.

If N is a seminorm on a real or complex vector space V , then

d(v, w) = dN (v, w) = N(v − w)(1.45)

defines a translation-invariant semimetric on V as a commutative group with
respect to addition. This uses (1.42) with t = −1 to get that (1.45) is symmetric
in v and w. We also get that

d(t v, t w) = |t| d(v, w)(1.46)

for every v, w ∈ V and t ∈ R or C, as appropriate, in this case, using (1.42)
again. Of course, if N is a norm on V , then (1.45) defines a metric on V .
The standard metrics on R and C correspond to the standard absolute value
functions on R and C in this way.

Let N be a nonempty collection of seminorms on a real or complex vector
space V . Thus

M = M(N ) = {dN : N ∈ N}(1.47)

defines a nonempty collection of translation-invariant semimetrics on V , where
dN corresponds toN ∈ N as in (1.45). This leads to a topology on V determined
by N , as in Section 1.3. Let us say that N is nondegenerate on V if for each
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v ∈ V there is an N ∈ N such that N(v) > 0. This implies that (1.47) is
nondegenerate as a collection of semimetrics on V , as in Section 1.3, so that the
corresponding topology on V is Hausdorff.

If N1, . . . , Nl are finitely many seminorms on V , then it is easy to see that

N(v) = max
1≤j≤l

Nj(v)(1.48)

defines a seminorm on V . Let dj be the semimetric on V corresponding to Nj

as in (1.45) for each j = 1, . . . , l, and let d correspond to (1.48) in the same way.
Thus d is the same as the maximum of d1, . . . , dl, as in (1.32) in Section 1.3. If
{N1, . . . , Nl} is nondegenerate on V , then N is a norm on V . As before, one
can also consider other combinations of finitely many seminorms on V , such as
sums.

1.6 Topological vector spaces

Let V be a vector space over the real or complex numbers, and suppose that V is
also equipped with a topology. In order for V to be a topological vector space,
the vector space operations on V should be continuous. As for commutative
topological groups, continuity of addition on V means that addition defines a
continuous mapping from V × V into V , using the associated product topology
on V × V . Similarly, continuity of scalar multiplication on V means that scalar
multiplication should be continuous as a mapping from R × V or C × V , as
appropriate, into V . This uses the product topology on R × V or C × V
associated to the standard topology on R or C, as appropriate.

In particular, continuity of scalar multiplication implies that

v 7→ t v(1.49)

is continuous as a mapping from V into itself for each t ∈ R orC, as appropriate.
If t ̸= 0, then it follows that (1.49) is a homeomorphism on V , because the
inverse mapping corresponds to multiplication by 1/t. Of course, (1.49) is the
same as v 7→ −v when t = −1. As before, we also ask that {0} be a closed set in
V , so that a topological vector space is a commutative topological group with
respect to addition. Note that the real and complex numbers may be considered
as one-dimensional real and complex topological vector spaces, with respect to
their standard topologies.

Let N be a nonempty collection of seminorms on a real or complex vector
space V , which leads to a topology on V , as in the previous section. One
can check that the vector space operations on V are continuous with respect
to this topology. Continuity of addition on V has already been mentioned for
collections of translation-invariant semimetrics, so that one really only needs to
consider continuity of scalar multiplication. If N is nondegenerate on V , then
it follows that V is a topological vector space with respect to this topology.
In particular, if N is a norm on V , then V is a topological vector space with
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respect to the topology determined by the metric associated to N as in (1.45)
in the previous section.

If N is a seminorm on a real or complex vector space V , then the open ball
in V centered at v ∈ V and with radius r > 0 with respect to N is defined by

BN (v, r) = {w ∈ V : N(v − w) < r}.(1.50)

This is the same as the open ball BdN
(v, r) in V centered at v with radius r

with respect to the semimetric dN on V associated to N as in (1.45) in the
previous section, where BdN

(v, r) is as in (1.23) in Section 1.2. It is easy to see
that (1.50) is a convex subset of V , because N is a seminorm on V .

A topological vector space V is said to be locally convex if there is a local
base for the topology of V at 0 consisting of convex open sets. If the topology
on V is determined by a nondegenerate collection N of seminorms, then V is
locally convex. This uses the fact that open balls in V centered at 0 with respect
to elements of N form a local sub-base for the topology determined on V by N
at 0. Conversely, if V is a locally convex topological vector space over R or C,
then it is well known that there is a nondegenerate collection N of seminorms
on V that determines the same topology on V .

Let V be a real or complex vector space again, and put

t E = {t v : v ∈ E}(1.51)

for each E ⊆ V and t ∈ R or C, as appropriate. Let us say that E is balanced
in V if

t E ⊆ E(1.52)

for every t ∈ R or C, as appropriate, such that |t| ≤ 1. If E is balanced and
nonempty, then 0 ∈ E, since we can take t = 0 in (1.52). Open and closed balls
in V centered at 0 with respect to a seminorm N on V are balanced, because
of the homogeneity property (1.42) of seminorms.

Suppose that V is a topological vector space over R or C, and let W be an
open subset of V that contains 0. Continuity of scalar multiplication on V at
(0, 0) implies that there is a δ > 0 and an open set U ⊆ V such that 0 ∈ U and

t U ⊆W(1.53)

for every t ∈ R or C, as appropriate, with |t| < δ. Put

U1 =
∪

0<|t|<δ

t U,(1.54)

where more precisely the union is taken over all real or complex numbers t, as
appropriate, with 0 < |t| < δ. Thus

U1 ⊆W,(1.55)

by (1.53). Observe that t U is an open set in V when t ̸= 0, since (1.49) is a
homeomorphism from V onto itself. This implies that U1 is an open set in V
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too, because it is a union of open sets. Of course, 0 ∈ U1, because 0 ∈ U , and U1

is balanced in V , by construction. This shows that the balanced open subsets
of V containing 0 form a local base for the topology of V at 0.

Let E be a subset of a real or complex vector space V , and put

Ẽ =
∪
|t|≤1

t E,(1.56)

where more precisely the union is taken over all real or complex numbers t, as
appropriate, with |t| ≤ 1. By construction, Ẽ is a balanced subset of V that
contains E. Alternatively, put

E1 = {|t| ≤ 1} × E,(1.57)

where {|t| ≤ 1} is the set of real or complex numbers t, as appropriate, with

|t| ≤ 1. Thus Ẽ is the same as the image of E1 in V under scalar multiplication
as a mapping defined on R× V or C× V , as appropriate.

Remember that {|t| ≤ 1} is compact with respect to the standard topology
on R or C, as appropriate. If E is a compact subset of a real or complex
topological vector space V , then Ẽ is compact in V too. This uses the fact that
E1 is compact in R×V or C×V , as appropriate, by Tychonoff’s theorem, and
continuity of scalar multiplication on V .

1.7 Continuous functions

Let C(X,Y ) denote the space of continuous mappings from a topological space
X into another topological space Y . If X is a nonempty topological space, then
C(X,R) and C(X,C) are vector spaces overR andC, respectively, with respect
to pointwise addition and scalar multiplication of functions. In fact, C(X,R)
and C(X,C) are commutative algebras with respect to pointwise multiplication
of functions. If f is a continuous real or complex-valued function on X and K
is a nonempty compact subset of X, then put

NK(f) = sup
x∈K

|f(x)|.(1.58)

This defines a seminorm on each of C(X,R) and C(X,C), which are the supre-
mum seminorms associated to K. The collections of these seminorms, cor-
responding to all nonempty compact subsets of X, determine topologies on
C(X,R) and C(X,C), as in Section 1.5. These collections of seminorms are
nondegenerate, because finite subsets of X are compact. Thus C(X,R) and
C(X,C) are topological vector spaces with respect to these topologies. If f , g
are continuous real or complex-valued functions on X, then it is easy to see that

NK(f g) ≤ NK(f)NK(g)(1.59)

for every nonempty compact setK ⊆ X. Using this, one can check that multipli-
cation of functions on X defines continuous mappings from C(X,R)×C(X,R)
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into C(X,R) and from C(X,C)×C(X,C) into C(X,C), where the domains of
these mappings are equipped with the associated product topologies.

As before, C(X,T) denotes the space of continuous mappings from X into
the unit circle T. This is a subset of C(X,C), and C(X,T) is also a commuta-
tive group with respect to pointwise multiplication of functions. More precisely,
C(X,T) is a commutative topological group, with respect to the topology in-
duced by the one defined on C(X,C) in the preceding paragraph. Remember
that

NK(f − g)(1.60)

defines a semimetric on C(X,C) for every nonempty compact set K ⊆ X, as
in Section 1.5. The restriction of (1.60) to f, g ∈ C(X,T) defines a semimetric
on C(X,T), and the collection of these semimetrics determines a topology on
C(X,T), as in Section 1.3. The topology determined on C(X,T) by this col-
lection of semimetrics is the same as the topology induced on C(X,T) by the
topology determined on C(X,C) by the analogous collection of semimetrics,
as before. If f , g are continuous complex-valued functions on X and a is a
continuous mapping from X in T, then

NK(a f − a g) = NK(a (f − g)) = NK(f − g)(1.61)

for every nonempty compact set K ⊆ X. This implies that the restriction
of (1.60) to f, g ∈ C(X,T) is invariant under translations on C(X,T), as a
commutative group with respect to pointwise multiplication of functions.

Let Y be another nonempty topological space, and let h be a continuous
mapping from X into Y . If f is a continuous real or complex-valued function
on Y , then the composition f ◦ h defines a continuous function on X. It is easy
to see that

Th(f) = f ◦ h(1.62)

defines linear mappings from C(Y,R) into C(X,R) and from C(Y,C) into
C(X,C). These mappings are also algebra homomorphisms with respect to
pointwise multiplication of functions. Similarly, (1.62) defines a group homo-
morphism from C(Y,T) into C(X,T), as commutative groups with respect to
pointwise multiplication of functions.

Let K be a nonempty compact subset of X, so that h(K) is a nonempty
compact subset of Y . If f is a continuous real or complex-valued function on
Y , then

NK,X(Th(f)) = sup
x∈K

|f(h(x))| = sup
y∈h(K)

|f(y)| = Nh(K),Y (f),(1.63)

where the additional subscripts X, Y in the supremum seminorms are used to
indicate the topological space on which the functions are defined. It follows that

NK,X(Th(f)− Th(g)) = NK,X(Th(f − g)) = Nh(K),Y (f − g)(1.64)

for all continuous real or complex-valued functions f , g on Y , using the linear-
ity of Th in the first step. Using this, one can check that Th is continuous as
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a mapping from C(Y,R) into C(X,R), and as a mapping from C(Y,C) into
C(X,C), with respect to the topologies defined on these spaces as before. Sim-
ilarly, Th is continuous as a mapping from C(Y,T) into C(X,T), with respect
to the topologies defined on these spaces as before.

1.8 Cartesian products

Let I be a nonempty set, let Xj be a set for each j ∈ I, and let

X =
∏
j∈I

Xj(1.65)

be the corresponding Cartesian product. If x ∈ X and j ∈ I, then we let xj
denote the jth coordinate of x in Xj . If l ∈ I and dl is a semi-metric on Xl,
then it is easy to see that

d̃l(x, y) = dl(xl, yl)(1.66)

defines a semimetric on X. Let Ml be a nonempty collection of semimetrics on
Xl for each l ∈ I, and let

M̃l = {d̃l : dl ∈ Ml}(1.67)

be the collection of semimetrics on X that correspond to elements of Ml as in
(1.66). Thus

M̃ =
∪
l∈I

M̃l(1.68)

is a nonempty collection of semimetrics on X, which leads to a topology on X,
as in Section 1.3. Of course, Ml determines a topology on Xl for each l ∈ I,
as in Section 1.3 again. One can check that the topology determined on X by
(1.68) is the same as the product topology on X associated to the topology on
Xl determined by Ml for each l ∈ I. Note that (1.68) is nondegenerate on X
when Ml is nondegenerate on Xl for each l ∈ I.

If Aj is a commutative group for each j ∈ I, then the Cartesian product

A =
∏
j∈I

Aj(1.69)

is a commutative group as well, where the group operations are defined coor-
dinatewise. Similarly, if Aj is a commutative topological group for each j ∈ I,
then one can check that A is a commutative topological group, with respect to
the associated product topology. Note that a translation-invariant semimetric
dl on Al for some l ∈ I leads to a translation-invariant semimetric d̃l on A as
in (1.66).

Suppose now that Vj , j ∈ I, is either a family of real vector spaces, or a
family of complex vector spaces. As before, the Cartesian product

V =
∏
j∈I

Vj(1.70)
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is a vector space over the real or complex numbers too, as appropriate, where
the vector space operations are defined coordinatewise. If Vj is a topological
vector space for each j ∈ I, then one can verify that V is a topological vector
space too, with respect to the associated product topology. If l ∈ I and Nl is a
seminorm on Vl, then

Ñl(v) = Nl(vl)(1.71)

defines a seminorm on V . Observe that

Ñl(v − w) = Nl(vl − wl)(1.72)

for every v, w ∈ V . Remember that Nl and Ñl determine semimetrics on Vl
and V as in (1.45) in Section 1.5, respectively. The simple identity (1.72) says
exactly that these semimetrics on Vl and V correspond to each other as in (1.66).
Let Nl be a nonempty collection of seminorms on Vl for each l ∈ I, and let

Ñl = {Ñl : Nl ∈ Nl}(1.73)

be the corresponding collection of seminorms on V , as in (1.71). Thus

Ñ =
∪
l∈I

Ñl(1.74)

is a nonempty collection of seminorms on V , which leads to a topology on V , as
in Section 1.5. This is the same as the product topology on V associated to the
topologies on the Vl’s determined by the Nl’s. This can be obtained from the
analogous statement for semimetrics mentioned earlier, since the semimetrics
on V associated to elements of Ñ correspond to the semimetrics on the Vl’s
associated to elements of theNl’s as in (1.66). As before, (1.74) is nondegenerate
on V when Nl is nondegenerate on Vl for each l ∈ I.

1.9 Functions on discrete sets

Let X be any nonempty set, and let c(X,Y ) be the space of all mappings from
X into a set Y . This is the same as the Cartesian product of copies of Y indexed
by X. In particular, c(X,R) and c(X,C) are vector spaces over the real and
complex numbers, respectively, with respect to pointwise addition and scalar
multiplication. More precisely, c(X,R) and c(X,C) are commutative algebras
with respect to pointwise multiplication. Similarly, c(X,T) is a commutative
group with respect to pointwise multiplication.

If x ∈ X, then

Nx(f) = |f(x)|(1.75)

defines a seminorm on each of c(X,R) and c(X,C), for which the corresponding
semimetrics are given by

Nx(f − g) = |f(x)− g(x)|.(1.76)
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The collections of these seminorms (1.75) with x ∈ X are clearly nondegenerate
on c(X,R) and c(X,C), and determine topologies on these spaces, as in Section
1.5. These are the same as the topologies determined on c(X,R) and c(X,C)
by the collections of semimetrics (1.76) with x ∈ X, as in Section 1.3. If we
identify c(X,R) and c(X,C) with Cartesian copies of R and C indexed by X,
respectively, then these topologies correspond exactly to the product topologies
associated to the standard topologies on R and C, as in the previous section.
Note that multiplication of functions on X defines continuous mappings from
c(X,R)× c(X,R) into c(X,R) and from c(X,C)× c(X,C) into c(X,C), using
the topologies on c(X,R) and c(X,C) just mentioned, and the corresponding
product topologies on the domains of these mappings.

If x ∈ X, then (1.76) defines a semimetric on c(X,T), which is invariant
under translations on c(X,T). As in the preceding paragraph, the collection of
these semimetrics is clearly nondegerate on c(X,T), and determines a topology
on c(X,T), as in Section 1.3. This topology corresponds exactly to the product
topology on c(X,T) as a Cartesian product of copies of T, using the topology
induced on T by the standard topology on C, as before. In particular, c(X,T)
is a commutative topological group with respect to this topology. Note that
c(X,T) is compact with respect to this topology, by Tychonoff’s theorem, since
T is compact.

If X is equipped with the discrete topology, and Y is any topological space,
then c(X,Y ) is the same as the space C(X,Y ) of all continuous mappings from
X into Y . Remember that compact subsets of X have only finitely many el-
ements in this case. This implies that the topologies determined on c(X,R)
and c(X,C) by the collections of seminorms (1.75) with x ∈ X are the same
as the topologies defined on C(X,R) and C(X,C) in Section 1.7. Similarly,
the topology determined on c(X,T) by the collection of semimetrics (1.76) with
x ∈ X is the same as the topology on C(X,T) discussed in Section 1.7 in this
situation. Of course, (1.75) corresponds to (1.58) in Section 1.7 with K = {x},
and (1.76) corresponds to (1.60) in the same way.

1.10 Dual spaces

As usual, a linear functional on a real or complex vector space V is a linear
mapping from V into the real or complex numbers, as appropriate, where R
and C are considered as one-dimensional vector spaces over themselves. If V
is a topological vector space, then a linear functional λ on V is said to be
continuous if λ is continuous with respect to the standard topology on R or C,
as appropriate, as the range of λ. The dual space of continuous linear functionals
on V may be denoted V ′. This is also a vector space overR orC, as appropriate,
with respect to pointwise addition and scalar multiplication of functions. If a
linear functional λ on V is continuous at 0, then it is easy to see that λ is
continuous everywhere on V , by continuity of translations.

Let λ be a linear functional on V , and suppose that there is an open set
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U ⊆ V such that 0 ∈ U and
|λ(v)| < 1(1.77)

for every v ∈ U . If t ∈ R or C, as appropriate, and t ̸= 0, then t U is an open
set in V that contains 0, and

|λ(v)| < |t|(1.78)

for every v ∈ t U . This implies that λ is continuous at 0, so that λ is continuous
on V , as before. Conversely, if λ is continuous at 0, then there is an open set
U ⊆ V that contains 0 and satisfies (1.77).

Suppose for the moment that the topology on V is determined by a nonempty
collection N of seminorms on V , and let λ be a linear functional on V again.
If there are finitely many seminorms N1, . . . , Nl in N and a nonnegative real
number C such that

|λ(v)| ≤ C max
1≤j≤l

Nj(v)(1.79)

for every v ∈ V , then it is easy to see that λ is continuous on V . Conversely,
if λ is continuous on V , then there are finitely many elements of N such that
(1.79) holds for some C ≥ 0 and every v ∈ V . More precisely, if λ is continuous
at 0, then there is an open set U ⊆ V that contains 0 and satisfies (1.77), as
before. If the topology on V is determined by N , then there are finitely many
seminorms N1, . . . , Nl in N and positive real numbers r1, . . . , rl such that

l∩
j=1

BNj
(0, rj) ⊆ U,(1.80)

where BNj
(0, rj) is as in (1.50) in Section 1.6. This corresponds to (1.30) in

Section 1.3 in this situation. One can get (1.79) from (1.77) and (1.80) using
standard arguments.

Let I be a nonempty set, and let Vj , j ∈ I, be a family of topological vector
spaces, all real or all complex. Also let V be their Cartesian product, as in (1.70)
in Section 1.8, equipped with the corresponding product topology. If l ∈ I and
λl is a continuous linear functional on Vl, then

λ̃l(v) = λl(vl)(1.81)

defines a continuous linear functional on V . It follows that finite sums of linear
functionals on V of this type are continuous as well. Conversely, let us check
that any continuous linear functional λ on V can be expressed as a finite sum
of linear functionals of the form (1.81). Of course, this is very easy to do when
I has only finitely many elements. If I has infinitely many elements, then we
want to show that continuity of λ implies that λ(v) only depends on finitely
many coordinates vj of v.

As before, continuity of λ at 0 implies that there is an open set U ⊆ V that
contains 0 and satisfies (1.77). In this situation, we can take U to be of the form

U =
∏
j∈I

Uj ,(1.82)
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where Uj ⊆ Vj is an open set that contains 0 for each j ∈ I, and Uj = Vj for all
but finitely many j ∈ I. Put Wj = Vj when Uj = Vj , Wj = {0} otherwise, and

W =
∏
j∈I

Wj ,(1.83)

which is a linear subspace of V . Observe that

W ⊆ t U(1.84)

for every t ∈ R or C, as appropriate, with t ̸= 0. This implies that λ(v) = 0 for
every v ∈ W , because (1.78) holds when t ̸= 0. Equivalently, this means that
λ(v) = 0 when vj = 0 for each of the finitely many j ∈ I such that Uj ̸= Vj .
It follows that λ(v) depends only on vj for the finitely many j ∈ I such that
Uj ̸= Vj , as desired.

If V is any vector space over the complex numbers, then V may be considered
as a vector space over the real numbers too. If λ is a complex linear functional
on V , then the real part of λ defines a linear functional on V as a real vector
space. One can check that every real linear functional on V is the real part of
a unique complex linear functional on V . Similarly, if V is a topological vector
space over the complex numbers, then V is also a topological vector space the
real numbers. As before, continuous real linear functionals on V correspond
exactly to real parts of continuous complex linear functionals on V .

If V is any real or complex topological vector space, then V ′ may be consid-
ered as a linear subspace of the space of all continuous real or complex-valued
functions on V , as appropriate. In particular, if K is a nonempty compact
subset of V , then

NK(λ) = sup
v∈K

|λ(v)|(1.85)

defines a seminorm on V ′, as in (1.58) in Section 1.7. The collection of these
seminorms is nondegenerate on V ′, as before, so that V ′ becomes a topological
vector space with respect to the corresponding topology, as in Section 1.6. Re-
member that every compact subset of V is contained in a balanced compact set,
as in Section 1.6. This implies that we can restrict our attention to supremum
seminorms associated to nonempty balanced compact subsets of V , and get the
same topology on V ′.

Let V , W be topological vector spaces, both real or both complex, and let
T be a linear mapping from V into W . If λ is a continuous linear functional on
W , then

T ′(λ) = λ ◦ T(1.86)

is a continuous linear functional on V . This defines a linear mapping T ′ fromW ′

into V ′, which is the dual linear mapping associated to T . If K is a nonempty
compact subset of V , then T (K) is a nonempty compact subset of W , and

NK,V ′(T ′(λ)) = NK,V ′(λ ◦ T ) = NT (K),W ′(λ)(1.87)

for every λ ∈W ′. The additional subscripts V ′,W ′ in the supremum seminorms
here are used to indicate the spaces on which the seminorms are defined. Of
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course, (1.87) is essentially the same as (1.63) in Section 1.7, with slightly differ-
ent notation. It follows that T ′ is continuous as a mapping fromW ′ into V ′ with
respect to the topologies corresponding to supremum seminorms associated to
nonempty compact sets, as before.

1.11 Dual groups

Let A, B be commutative groups, with the group operations expressed addi-
tively. The collection of all group homomorphisms from A into B is a commu-
tative group as well, with respect to pointwise addition of B-valued functions
on A. If A and B are commutative topological groups, then the collection of all
continuous group homomorphisms from A into B is a commutative group with
respect to pointwise addition too. If a group homomorphism ϕ from A into B
is continuous at 0, then it is easy to see that ϕ is continuous everywhere on A,
by continuity of translations.

The dual group Â associated to a commutative topological group A is defined
to be the group of continuous homomorphisms from A into the unit circle T.
This is a commutative group with respect to pointwise multiplication of func-
tions on A, as before. Of course, if A is equipped with the discrete topology,
then Â consists of all group homomorphisms from A into T.

Let us consider some basic examples, starting with group Z of integers with
respect to addition, equipped with the discrete topology. If z ∈ T, then

ϕz(j) = zj(1.88)

defines a homomorphism from Z into T. If ϕ is any group homomorphism from
Z into T, and if z = ϕ(1), then it is easy to see that ϕ = ϕz on Z. This
shows that the dual of Z as a commutative topological group with respect to
the discrete topology is isomorphic to T in a simple way.

If a ∈ R, then

ϕa(x) = a x(1.89)

defines a continuous homomorphism from R into itself, where R is considered
as a commutative topological group with respect to addition and the standard
topology. If ϕ is any continuous group homomorphism from R into itself, and
if a = ϕ(1), then one can check that

ϕ(x) = a x(1.90)

for every x ∈ R. More precisely, (1.90) is clear when x ∈ Z, and one can verify
(1.90) for rational numbers x using the fact that ϕ is a group homomorphism.
This implies that (1.90) holds for every x ∈ R, by continuity.

The complex exponential function exp z defines a continuous homomorphism
from C as a commutative topological group with respect to addition and the
standard topology into the multiplicative group C \ {0} of nonzero complex



20 CHAPTER 1. TOPOLOGICAL GROUPS AND VECTOR SPACES

numbers, with respect to the topology induced on C \ {0} by the standard
topology on C. If a ∈ R, then

exp(i a x)(1.91)

defines a continuous group homomorphism from R into T, and every continuous
group homomorphism from R into T is of this form. More precisely, if ϕ is any
continuous mapping fromR intoT such that ϕ(0) = 1, then it is well known that
there is a unique continuous mapping ψ from R into itself such that ψ(0) = 0
and

ϕ(x) = exp(i ψ(x))(1.92)

for every x ∈ R. Of course, this implies that

ϕ(x+ t)/ϕ(t) = exp(i ψ(x+ t))/ exp(i ψ(t)) = exp(i (ψ(x+ t)− ψ(t))(1.93)

for every x, t ∈ R. If ϕ is also a group homomorphism from R into T, then the
left side of (1.93) reduces to ϕ(x). Observe that

ψt(x) = ψ(x+ t)− ψ(t)(1.94)

is a continuous mapping from R into itself that satisfies ψt(0) = 0 for every t in
R, by construction. Under these conditions, the uniqueness of the representation
(1.92) implies that ψt(x) = ψ(x) for every x, t ∈ R, which is the same as saying
that ψ is a group homomorphism from R into itself with respect to addition.
Because ψ is continuous, there is an a ∈ R such that ψ(x) = a x for every
x ∈ R, as in the previous paragraph. This shows that ϕ can be expressed as in
(1.91), and it is easy to see that a is uniquely determined by ϕ.

If j ∈ Z, then
ϕj(z) = zj(1.95)

defines a continuous group homomorphism from T into itself, and every contin-
uous group homomorphism from T into itself is of this form. Indeed, if ϕ is any
continuous homomorphism from T into itself, then

ϕ(exp(i x))(1.96)

defines a continuous group homomorphism from R into T. Hence there is an
a ∈ R such that (1.96) is equal to (1.91) for every x ∈ R, as in the preceding
paragraph. One can check that a ∈ Z in this situation, because

exp(2π i t) = 1(1.97)

exactly when t ∈ Z. This implies that ϕ can be expressed as in (1.95), as desired.
Let V be a topological vector space over the real numbers, which may be

considered as a commutative topological group with respect to addition. If λ is
a continuous linear functional on V , then

exp(i λ(v))(1.98)
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defines a continuous group homomorphism from V into T, and every continuous
group homomorphism from V into T is of this form. To see this, let ϕ be any
continuous group homomorphism from V into T, and put

ϕv(t) = ϕ(t v)(1.99)

for every t ∈ R and v ∈ V . This defines a continuous group homomorphism
from R into T for each v ∈ V . It follows that for each v ∈ V there is a unique
λ(v) ∈ R such that

ϕv(t) = exp(i t λ(v))(1.100)

for every t ∈ R, as before. One can check that λ(v) is a linear functional on
V , using uniqueness. The condition that ϕ be continuous at 0 in V means that
there are neighborhoods of 0 in V on which ϕ is close to 1 in T. This implies
that there are neighborhoods of 0 in V on which λ is close to 0 in R modulo
integer multiples of 2π. As in Section 1.6, we can also take these neighborhoods
of 0 in V to be balanced. Using this, one can verify that λ is close to 0 on these
neighborhoods of 0 in V , so that λ is continuous at 0 on V , as desired.

Let I be a nonempty set, let Aj be a commutative topological group for each
j ∈ I, and let A be their Cartesian product, as in (1.69) in Section 1.8. Thus
A is a commutative topological group as well, where the group operations are
defined coordinatewise, and using the corresponding product topology. If l ∈ I
and ϕl ∈ Âl, then

ϕ̃l(a) = ϕl(al)(1.101)

defines an element of Â. It follows that products of finitely many elements of
Â of this form are in Â too. Conversely, let us show that any element ϕ of
Â can be expressed as the product of finitely many elements of Â of the form
(1.101). This is easy to do when I has only finitely many elements. Otherwise,
we would like to use continuity of ϕ to show that ϕ(a) depends on only finitely
many coordinates aj of a.

Observe that
{z ∈ T : Re z > 0}(1.102)

is a relatively open subset of T that contains 1, where Re z denotes the real part
of z ∈ C. If ϕ ∈ Â, then there is an open set U ⊆ A such that 0 ∈ U and ϕ(U)
is contained in (1.102), because ϕ is continuous at 0 on A. We may as well take
U to be of the form

U =
∏
j∈I

Uj ,(1.103)

where Uj ⊆ Aj is an open set for each j ∈ I, 0 ∈ Uj for each j ∈ I, and Uj = Aj

for all but finitely many j ∈ I. Put Bj = Aj when Uj = Aj , Bj = {0} otherwise,
and

B =
∏
j∈I

Bj ,(1.104)

so that B is a subgroup of A and B ⊆ U . Thus ϕ(B) is a subgroup of T which
is contained in ϕ(U), and hence ϕ(B) is contained in (1.102). This implies that

ϕ(B) = {1},(1.105)
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because {1} is the only subgroup of T contained in (1.102). It follows that ϕ(a)
only depends on aj for the finitely many j ∈ I such that Uj ̸= Aj , as desired.

1.12 The dual topology

Let A be a commutative topological group, whose dual group Â may be consid-
ered as a subgroup of the group C(A,T) of all continuous T-valued functions
on A, with respect to pointwise multiplication of functions. If K is a nonempty
compact subset of A, then

sup
x∈K

|ϕ(x)− ψ(x)|(1.106)

defines a semimetric on Â that is invariant under translations, as in (1.60) in

Section 1.7. The collection of these semimetrics is nondegenerate on Â, as
before, and Â is a commutative topological group with respect to the topology
determined by this collection, as in Section 1.3. Equivalently, this topology on
Â is the same as those induced by the analogous topologies on C(A,T) and
C(A,C), as in Section 1.7.

Suppose for the moment that A is equipped with the discrete topology,
so that Â reduces to the group of all group homomorphisms from A into T,
and C(A,T) reduces to the group c(A,T) of all T-valued functions on A, as
in Section 1.9. Thus c(A,T) can be identified with the Cartesian product of
copies of T indexed by A, as before, equipped with the corresponding product
topology. In particular, c(A,T) is compact with respect to this topology, by

Tychonoff’s theorem. It is easy to see that Â is a closed set in c(A,T) with
respect to this topology. More precisely, for each a, b ∈ A,

{ϕ ∈ c(A,T) : ϕ(a+ b) = ϕ(a)ϕ(a)}(1.107)

is a closed set in c(A,T) with respect to this topology, because of continuity of

multiplication on T. This implies that Â is a closed set in c(A,T), because Â is

the same as the intersection of the sets (1.107) over all a, b ∈ A. If follows that Â

is a compact subset of c(A,T), so that Â is compact with respect to the topology
described in the preceding paragraph. If A = Z with the discrete topology, for
instance, then we have seen in the previous section that Â is isomorphic to T
in a simple way, and one can check that this isomorphism is a homeomorphism
with respect to the standard topology on T.

Suppose now that A is compact, so that one can take K = A in (1.106).

In this case, the corresponding topology on Â is the discrete topology. More
precisely, if ϕ ∈ Â is uniformly close to the constant function equal to 1 on A,
then ϕ(A) is a subgroup of T contained in (1.102). This implies that

ϕ(A) = {1},(1.108)

so that the subset of Â consisting of the constant function equal to 1 on A is an
open set in Â. It follows that the topology on Â described earlier is the discrete
topology, using translations in Â.
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Suppose that A = R, as a commutative group with respect to addition, and
equipped with the standard topology. Remember that there is a simple group
isomorphism between Â and R, as in the previous section. In this case, one can
check directly that this isomorphism is a homeomorphism with respect to the
topology on Â described earlier and the standard topology on R.

Let V be a topological vector space over the real numbers, and let A be V
considered as a commutative topological group with respect to addition. As in
the previous section, there is a simple group isomorphism between Â and the
dual space V ′, where V ′ is considered as a commutative group with respect to
addition. One can verify that this isomorphism is a homeomorphism with the
respect to the topology on Â described earlier and the analogous topology on
V ′, discussed in Section 1.10. More precisely, it is easy to see that the mapping
from V ′ into Â is continuous. In order to get the continuity of the mapping
from Â into V ′, we use the fact that every compact subset of V is contained
in a balanced compact set, as in Section 1.6. This permits us to restrict our
attention to supremum semimetrics associated to nonempty balanced compact
subsets K of V in the earlier definition of the topology on Â. If two elements
of Â are uniformly close on a nonempty balanced compact set K ⊆ V , then the
corresponding elements of V ′ are uniformly close on K as well. This implies
that the mapping from Â into V ′ is continuous, as desired.

Let n be a positive integer, and suppose that Aj is a commutative topological
group for each j = 1, . . . , n. Thus

A =

n∏
j=1

Aj(1.109)

is a commutative topological group, where the group operations are defined
coordinatewise, and using the corresponding product topology, as in Section
1.8. If ϕj ∈ Âj for each j = 1, . . . , n, then

ϕ(a) =

n∏
j=1

ϕj(aj)(1.110)

defines an element of Â, and every element of Â can be expressed as in (1.110)
in a unique way. This defines a group isomorphism from

n∏
j=1

Âj(1.111)

onto Â. One can check that this isomorphism is a homeomorphism with respect
to the topologies on Âj and Â described earlier, and the corresponding product
topology on (1.111). More precisely, if Kj is a compact subset of Aj for each
j = 1, . . . , n, then

n∏
j=1

Kj(1.112)
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is a compact subset of A, by Tychonoff’s theorem. If K is any compact subset
of A, then the image of K in Aj under the coordinate projection mapping
from A onto Aj is compact for each j = 1, . . . , n, because these coordinate
projection mappings are continuous. Of course, K is contained in the product
of its coordinate projections in A1, . . . , An. This permits us to restrict our
attention to supremum semimetrics associated to compact subsets of A of the
form (1.112) in the definition of the topology on Â. The supremum semimetric

on Â associated to a compact subset of A of the form (1.112) can be estimated

in terms of the supremum semimetrics on Âj associated to the compact sets
Kj ⊆ Aj for j = 1, . . . , n. Using this, one can verify that the isomorphism from

(1.111) onto Â mentioned earlier is a homeomorphism, as desired.
Let A, B be commutative topological groups, and let h be a continuous

group homomorphism from A into B. If ϕ ∈ B̂, then

ĥ(ϕ) = ϕ ◦ h(1.113)

is in Â. This defines a group homomorphism ĥ from B̂ into Â, which is the dual
homomorphism associated to h. Let K be a nonempty compact subset of A, so
that h(K) is a nonempty compact subset of B. If ϕ, ψ ∈ B̂, then

sup
x∈K

|(ĥ(ϕ))(x)− (ĥ(ψ))(x)| = sup
x∈K

|ϕ(h(x))− ψ(h(x))|(1.114)

= sup
y∈h(K)

|ϕ(y)− ψ(y)|.

This is essentially the same as (1.64) in Section 1.7, with slightly different nota-

tion. It follows from (1.114) that ĥ is continuous with respect to the topologies

on Â, B̂ described earlier.

1.13 Weak topologies

Let V be a vector space over the real or complex numbers. If λ is a linear
functional on V , then

Nλ(v) = |λ(v)|(1.115)

defines a seminorm on V . Let Λ be a nonempty collection of linear functionals
on V , so that

N (Λ) = {Nλ : λ ∈ Λ}(1.116)

is a nonempty collection of seminorms on V . Let us say that Λ is nondegenerate
on V if for every v ∈ V with v ̸= 0 there is a λ ∈ Λ such that λ(v) ̸= 0, which
is equivalent to asking that Λ separate points in V . This implies that (1.116)
is nondegenerate as a collection of seminorms on V , as in Section 1.5. The
topology determined on V by (1.116) as in Section 1.5 is known as the weak
topology on V associated to Λ. This is the same as the weakest topology on V
such that every element of Λ is continuous on V . It follows that finite linear
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combinations of elements of Λ are also continuous on V with respect to this
topology.

Conversely, if µ is a linear functional on V that is continuous with respect to
this topology on V , then µ can be expressed as a linear combination of finitely
many elements of Λ. To see this, remember that the continuity of µ implies that
there are finitely many elements λ1, . . . , λl of Λ and a nonnegative real number
C such that

|µ(v)| ≤ C max
1≤j≤l

Nλj (v)(1.117)

for every v ∈ V , as in (1.79) in Section 1.10. In this situation, this means that

|µ(v)| ≤ C max
1≤j≤l

|λj(v)|(1.118)

for every v ∈ V . In particular, it follows that the intersection

l∩
j=1

{v ∈ V : λj(v) = 0}(1.119)

of the kernels of the λj ’s is contained in the kernel

{v ∈ V : µ(v) = 0}(1.120)

of µ. One can use this and basic linear algebra to get that µ can be expressed
as a linear combination of λ1, . . . , λl, as desired.

If X is a nonempty set and x ∈ X, then

λx(f) = f(x)(1.121)

defines a linear functional on each of c(X,R) and c(X,C). The corresponding
seminorms

Nλx(f) = |λx(f)| = |f(x)|(1.122)

on c(X,R) and c(X,C) are the same as (1.75) in Section 1.9. Of course,

{λx : x ∈ X}(1.123)

is nondegenerate on c(X,R) and c(X,C), essentially by construction. The weak
topologies on c(X,R) and c(X,C) determined by (1.123) are the same as the
topologies discussed in Section 1.9.

Now let V be any real or complex topological vector space, and let V ′ be the
corresponding dual space, as in Section 1.10. The corresponding weak topology
on V is the topology obtained by taking Λ to be V ′ in the earlier discussion. The
given topology on V is always at least as strong as this weak topology, because
the elements of V ′ are continuous on V with respect to the given topology on
V , by hypothesis. It is well known that V ′ separates points in V when V is
locally convex, by the Hahn–Banach theorem.

If v ∈ V , then
Lv(λ) = λ(v)(1.124)
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defines a linear functional on V ′. This leads to a seminorm

Nv,V ′(λ) = |Lv(λ)| = |λ(v)|(1.125)

on V ′ for each v ∈ V , as before. The collection

{Lv : v ∈ V }(1.126)

of these linear functionals on V ′ is automatically nondegenerate, because λ ∈ V ′

is nonzero exactly when there is a v ∈ V such that λ(v) ̸= 0. The topology on
V ′ determined by (1.126) is known as the weak∗ topology. The topology on V ′

discussed in Section 1.10 is always at least as strong as the weak∗ topology,
because subsets of V with only one element are compact.

1.14 Uniform continuity

Let (X, d(x, y)) be a metric space, and let E be a subset of X. Let us say that
a real or complex-valued function f on X is uniformly continuous along E if
for every ϵ > 0 there is a δ > 0 such that for every x ∈ E and y ∈ X with
d(x, y) < δ, we have that

|f(x)− f(y)| < ϵ.(1.127)

If this holds with E = X, then f is said to be uniformly continuous on X. If f
is uniformly continuous along E ⊆ X, then the restriction of f to E is uniformly
continuous on E, where E is considered as a metric space, using the restriction
of d(x, y) to x, y ∈ E. This condition also implies that f is continuous as a
function on X at every point in E. If f is a real or complex-valued function on
X that is continuous at every point in a compact set E ⊆ X, then f is uniformly
continuous along E. This is often considered in the case where E = X, but
essentially the same argument works for compact subsets of X.

Now let A be a commutative topological group, and let E be a subset of A.
A real or complex-valued function f on A is said to be uniformly continuous
along E if for each ϵ > 0 there is an open set U ⊆ A such that 0 ∈ U and for
every x ∈ E and y ∈ A with y − x ∈ U we have that (1.127) holds. If this
condition is satisfies with E = A, then f is said to be uniformly continuous
on A. If f is uniformly continuous along E ⊆ A, then f is continuous as a
function on A at every point in E. If a real or complex-valued function f on A
is continuous at every point in a compact set E ⊆ A, then one can show that
f is uniformly continuous along E, using an argument like the one for metric
spaces. If the topology on A is determined by a translation-invariant metric
d(x, y) on A, then these uniform continuity conditions on A as a commutative
topological group are equivalent to their analogues for A as a metric space with
respect to d(x, y). If A is any commutative topological group, then it is easy to

see that every ϕ ∈ Â is uniformly continuous on A. Similarly, if V is a real or
complex topological vector space, then continuous linear functionals on V are
uniformly continuous on V as a commutative topological group with respect to
addition.
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If A is a metric space or a commutative topological group, then linear com-
binations of real or complex-valued uniformly continuous functions on A are
also uniformly continuous. One can check that products of bounded uniformly
continuous functions on A are uniformly continuous as well. If a real or complex-
valued function f on A can be approximated uniformly by uniformly continuous
functions on A, then f is uniformly continuous on A too, by a standard argu-
ment.

Let X be a nonempty topological space, and let Cb(X,R), Cb(X,C) de-
note the spaces of real or complex-valued functions on X, respectively, that
are bounded and continuous. These are linear subspaces of the corresponding
spaces C(X,R), C(X,C) of all continuous functions on X, and more precisely
they are subalgebras with respect to pointwise multiplication of functions. Of
course, if X is compact, then every continuous real or complex-valued function
on X is bounded. If f is a bounded real or complex-valued function on X, then
the supremum norm of f is defined as usual by

∥f∥sup = sup
x∈X

|f(x)|.(1.128)

This defines a norm on each of Cb(X,R) and Cb(X,C), which also satisfies

∥f g∥sup ≤ ∥f∥sup ∥g∥sup(1.129)

for all bounded real or complex-valued functions f , g on X. If A is a nonempty
metric space or a commutative topological group, then we let

UCb(A,R), UCb(A,C)(1.130)

be the spaces of real or complex-valued functions on A, respectively, that are
bounded and uniformly continuous. These are closed subalgebras of Cb(A,R),
Cb(A,C), respectively, by the remarks in the preceding paragraph.

1.15 Some simple extension arguments

Let A be a commutative group, with the group operations expressed additively.
If a ∈ A and j is a positive integer, then we let j · a be the sum of j a’s in
A. This can be extended to every integer j, by putting 0 · a equal to 0 in A,
and (−j) · a = −(j · a) when j ≥ 1. Of course, this is basically the same as
considering A as a module over Z.

Let B be a subgroup of A, and let ϕ be a group homomorphism from B into
T. Also let a be an element of A not in B, and let B1 be the subgroup of A
generated by a and B. We would like to show that there is an extension of ϕ to
a group homomorphism ϕ1 from B1 into T. Note that every element of B1 can
be expressed as

j · a+ b(1.131)

for some j ∈ Z and b ∈ B. Suppose first that j · a ̸∈ B for every positive integer
j, which implies that this holds when j is a negative integer as well. In this
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case, the expression of an element of B1 as in (1.131) is unique. In order to
extend ϕ to B1, we can put

ϕ1(j · a+ b) = ϕ(b)(1.132)

for every j ∈ Z and b ∈ B. This amounts to taking ϕ1(a) = 1, and one could
also extend ϕ to B1 by taking ϕ1(a) to be any element of T. Otherwise, let j0
be the smallest positive integer such that j0 · a ∈ B, and let α be an element of
T such that

αj0 = ϕ(j0 · a).(1.133)

In this case, one can check that

ϕ1(j · a+ b) = αj ϕ(b)(1.134)

defines a group homomorphism from B1 into T that extends ϕ.

Repeating the process, one can extend ϕ to a homomorphism from any
subgroup of A generated by B and finitely or countably many elements of A
into T. This may include A itself, and otherwise one can extend ϕ to a group
homomorphism from A into T using Zorn’s lemma or the Hausdorff maximality
principle.

Let x ∈ A with x ̸= 0 be given, and let B be the subgroup of A generated
by x. It is easy to see that there is a group homomorphism from B into T such
that ϕ(x) ̸= 1. The previous extension argument implies that ϕ can be extended
to a group homomorphism from A into T with the same property. It follows
that group homomorphisms from A into T separate points in A.

1.16 The dual of C(X)

Let X be a nonempty topological space, and let λ be a continuous linear func-
tional on C(X,R) or C(X,C), with respect to the topology defined in Section
1.7. As in (1.79) in Section 1.10, this means that there is a nonnegative real
number C and finitely many nonempty compact subsets K1, . . . ,Kl of X such
that

|λ(f)| ≤ C max
1≤j≤l

NKj (f)(1.135)

for every continuous real or complex-valued function f on X, as appropriate.
Here NK is the supremum seminorm associated to a nonempty compact subset
K of X, as in (1.58) in Section 1.7. In this situation, we can take K =

∪l
j=1Kl,

to get that

|λ(f)| ≤ C NK(f)(1.136)

for every continuous real or complex-valued function f on X, as appropriate. If
X is compact, then we may as well take K = X, so that NK(f) is the same as
the supremum norm ∥f∥sup of f , as in (1.128) in Section 1.14.
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If a continuous real or complex-valued function f on X satisfies f(x) = 0 for
every x ∈ K, then (1.136) implies that λ(f) = 0. If f1, f2 are continuous real
or complex-valued functions on X that satisfy

f1(x) = f2(x)(1.137)

for every x ∈ K, then it follows that

λ(f1) = λ(f2).(1.138)

Of course, K can also be considered as a topological space, with respect to
the topology induced by the one on X. If f is a continuous real or complex-
valued function on X, then the restriction of f to K defines a continuous real or
complex-valued function on K, as appropriate. Using (1.138), we get that λ de-
termines a linear functional λ0 on the space of real or complex-valued functions
on K that are restrictions to K of continuous real or complex-valued functions
on X, as appropriate. If every continuous real or complex-valued function on
K is the restriction to K of a continuous real or complex-valued function on
X, then λ0 defines a linear functional on C(K,R) or C(K,C), as appropriate.
In this case, λ0 satisfies an estimate like (1.136), and hence is continuous with
respect to the topology determined on C(K,R) or C(K,C) by the supremum
norm. Otherwise, one can use the Hahn–Banach theorem to extend λ0 to a lin-
ear functional on C(K,R) or C(K,C), as appropriate, that satisfies the same
type of estimate.

Let Y be another topological space, and let h be a continuous mapping from
X into Y . If f is a continuous real or complex-valued function on Y , then

Th(f) = f ◦ h(1.139)

is a continuous function on X. As in Section 1.7, (1.139) defines continuous
linear mappings from C(Y,R), C(Y,C) into C(X,R), C(X,C), respectively,
with respect to the topologies defined on these spaces as before. This leads to
corresponding dual linear mappings T ′

h from C(X,R)′, C(X,C)′ into C(Y,R)′,
C(Y,C)′, respectively, as in Section 1.10. More precisely, if λ is a continuous
linear functional on C(X,R) or C(X,C), then T ′

h(λ) is the continuous linear
functional on C(Y,R) or C(Y,C), as appropriate, defined by

(T ′
h(λ))(f) = λ(Th(f)) = λ(f ◦ h)(1.140)

for every continuous real or complex-valued function f on Y , as appropriate. If
λ satisfies (1.136) for some C ≥ 0 and nonempty compact set K ⊆ X, then we
have that

|λ(f ◦ h)| ≤ C sup
x∈K

|f(h(x))| = C sup
y∈h(K)

|f(y)|(1.141)

for every continuous real or complex-valued function f on Y , as appropriate.
Of course, h(K) is a compact subset of Y under these conditions, because h is
continuous.
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Suppose that continuous real-valued functions on X separate points in X.
In particular, this implies that X is Hausdorff, so that compact subsets of X
are closed sets. If x ∈ X, K1 ⊆ X is compact, and x ∈ X \K1, then there is
a continuous mapping from X into [0, 1] that is equal to 0 at x and equal to 1
on K1, by standard arguments. One can also choose this mapping to be equal
to 0 on a neighborhood of x. Similarly, if K0, K1 are disjoint compact subsets
of X, then there is a continuous mapping from X into [0, 1] that is equal to 0
on K0 and to 1 on K1. If K ⊆ X is compact, then every continuous real or
complex-valued function on K extends to a continuous real or complex-valued
function on X, as appropriate. This can be shown using an argument like the
one used to prove Tietze’s extension theorem.

1.17 Bounded sets

Let V be a topological vector space over the real or complex numbers. A subset
E of V is said to be bounded if for every open set U ⊆ V with 0 ∈ U there is a
t0 ∈ R or C, as appropriate, such that

E ⊆ t0 U.(1.142)

If U is balanced in V , then (1.142) implies that

E ⊆ t U(1.143)

for every t ∈ R or C, as appropriate, such that |t| ≥ |t0|.
If U ⊆ V is any open set that contains 0, then we have seen that there is a

balanced open set U1 ⊆ V such that 0 ∈ U1 and U1 ⊆ U , as in Section 1.6. If
E ⊆ V is a bounded set, then E ⊆ t U1 for every t ∈ R or C, as appropriate,
such that |t| is sufficiently large. This implies that (1.143) holds for every t ∈ R
or C, as appropriate, such that |t| is sufficiently large.

In order to verify that a subset E of V is bounded, it suffices to consider
open sets U ⊆ V in a local base for the topology of V at 0. In particular, it
is enough to consider balanced open subsets of V that contain 0. Note that
subsets of bounded sets in V are bounded too. It is easy to see that the union
of finitely many bounded subsets of V is bounded as well.

Let v ∈ V be given, and observe that

r 7→ r v(1.144)

defines a continuous mapping from R or C, as appropriate, into V , because of
continuity of scalar multiplication on V . If U ⊆ V is an open set that contains
0, then it follows that r v ∈ U when |r| is sufficiently small, by continuity of
(1.144) at 0. This implies that {v} is a bounded set in V . Hence finite subsets
of V are bounded in V , because the union of finitely many bounded sets is
bounded.

Remember that V is regular as a topological space, as in Section 1.1. If
U ⊆ V is an open set that contains 0, then it follows that there is an open set
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U0 ⊆ V such that 0 ∈ U0 and U0 ⊆ U . Using this, one can check that the
closure of a bounded subset of V is bounded in V too.

Suppose that E1, E2 ⊆ V are bounded sets, and let U ⊆ V be an open set
with 0 ∈ U . As in Section 1.1, continuity of addition on V at 0 implies that
there are open sets U1, U2 ⊆ V such that 0 ∈ U1, U2 and U1 +U2 ⊆ U . Because
E1 and E2 are bounded in V , we have that E1 ⊆ t U1 and E2 ⊆ t U2 for every
t ∈ R or C, as appropriate, such that |t| is sufficiently large. This implies that

E1 + E2 ⊆ t U1 + t U2 ⊆ t U(1.145)

when |t| is sufficiently large, so that E1 + E2 is bounded in V as well.

If the topology on V is determined by a nonempty collection N of seminorms
on V , then one can check that E ⊆ V is bounded if and only if each element of
N is bounded on V . If V is locally convex and E ⊆ V is a bounded set, then
one can verify that the convex hull of E is bounded in V too.

Let U ⊆ V be an open set that contains 0 again. Observe that

∞∪
j=1

j U = V,(1.146)

because subsets of V with only one element are bounded, as before. If U is
also balanced, then we have that j U ⊆ l U when j ≤ l. If K ⊆ V is compact,
then it follows that K ⊆ j U for some positive integer j. This implies that K is
bounded in V , because balanced open subsets of V that contain 0 form a local
base for the topology of V at 0.

Let E be a subset of V , and put Ẽ =
∪

|t|≤1 t E, as in (1.56) in Section 1.6.
As before, the union is taken over all t ∈ R or C, as appropriate, such that
|t| ≤ 1. If E is bounded in V , then Ẽ is bounded in V too. This uses the fact
that one can restrict one’s attention to balanced open sets U ⊆ V that contain
0 in the definition of a bounded set.

A sequence {vj}∞j=1 of elements of V is said to be bounded if the set of vj ’s
is bounded in V . Let {tj}∞j=1 be a sequence of real or complex numbers, as
appropriate, that converges to 0. If {vj}∞j=1 is a bounded sequence in V , then
it is easy to see that {tj vj}∞j=1 converges to 0 in V .

If a sequence {vj}∞j=1 of elements of V converges to some v ∈ V , then {vj}∞j=1

is bounded in V . This follows from the fact that the set of vj ’s together with
v is compact in V . One can also check this more directly, using the fact that
subsets of V with one element are bounded.

If E ⊆ V is a bounded set, then every sequence of elements of E is bounded
in V . If E is not bounded in V , then there is an open set U ⊆ V such that
0 ∈ U and E is not contained in j U for any positive integer j. Thus, for each
positive integer j, there is a vj ∈ E such that (1/j) vj is not in U . This implies
that {(1/j) vj}∞j=1 does not converge to 0 in V .
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1.18 Bounded linear mappings

Let V , W be topological vector spaces, both real or both complex. A linear
mapping T from V intoW is said to be bounded if for every bounded set E ⊆ V
we have that T (E) is bounded in W . It is easy to see that continuous linear
mappings are bounded, directly from the definitions.

Let X, Y be topological spaces, and let f be a mapping from X into Y .
As usual, f is said to be sequentially continuous at a point x ∈ X if for every
sequence {xj}∞j=1 of elements of X that converges to x, we have that {f(xj)}∞j=1

converges to f(x) in Y . If f is continuous at x, then f is sequentially continuous
at x. If f is sequentially continuous at x, and if there is a local base for the
topology of X at x with only finitely or countably many elements, then it is
well known that f is continuous at x.

Let V , W be as before, and let T be a linear mapping from V into W that
is sequentially continuous at 0. Also let {vj}∞j=1 be a bounded sequence in
V , and let {tj}∞j=1 be a sequence of real or complex numbers, as appropriate,
that converges to 0. Thus {tj vj}∞j=1 converges to 0 in V , as in the previous
section. This implies that tj T (vj) = T (tj vj) → 0 in W as j → ∞, because T
is sequentially continuous at 0. Using this, one can check that T is a bounded
linear mapping from V intoW , as follows. If E ⊆ V has the property that T (E)
is not bounded in W , then there is a sequence {vj}∞j=1 of elements of E such
that {(1/j)T (vj)}∞j=1 does not converge to 0 in W , as in the previous section.
This implies that E is not bounded in V , by the previous remark.

Suppose for the moment that there is a local base for the topology of V at
0 with only finitely or countably many elements. This implies that there is a
sequence U1, U2, U3, . . . of open subsets of V such that 0 ∈ Uj for every j, and
for every open set U ⊆ V with 0 ∈ U we have that Uj ⊆ U for some j. We
may also ask that Uj+1 ⊆ Uj for each j, since otherwise we can replace Uj with∩j

l=1 Ul for each j.
Let T be a linear mapping from V into W that is not continuous at 0. This

means that there is an open set UW ⊆W such that 0 ∈ UW and

T (UV ) ̸⊆ UW(1.147)

for every open set UV ⊆ V with 0 ∈ UV . In particular, if j is a positive integer,
then we can apply this to (1/j)Uj . Thus, for each positive integer j, we can
choose vj ∈ Uj such that (1/j)T (vj) = T ((1/j) vj) ̸∈ UW . It follows that
T (vj) ̸∈ j UW for every j, so that {T (vj)}∞j=1 is not bounded in W .

Note that {vj}∞j=1 converges to 0 in V , because vj ∈ Uj for each j. This
implies that {vj}∞j=1 is a bounded sequence in V , as in the preceding section. If
T is a bounded linear mapping from V intoW , then it follows that {T (vj)}∞j=1 is
a bounded sequence in W , which is a contradiction. This shows the well-known
fact that bounded linear mappings from V into W are continuous when there
is a local base for the topology of V at 0 with only finitely or countable many
elements.

Suppose for the moment again that the topologies on V and W are deter-
mined by norms ∥ · ∥V and ∥ · ∥W , respectively. A linear mapping T from V into
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W is said to be bounded with respect to these norms if there is a nonnegative
real number C such that

∥T (v)∥W ≤ C ∥v∥V(1.148)

for every v ∈ V . It is easy to see that this is equivalent to the boundedness of
T in the earlier sense in this context, because subsets of V and W are bounded
in the sense of the previous section if and only if they are bounded with respect
to ∥ · ∥V and ∥ · ∥W , respectively. In particular, balls in V with respect to ∥ · ∥V
are bounded in the sense of the previous section. One can also check directly
that this notion of boundedness is equivalent to continuity in this situation.

Let V be a topological vector space over the real or complex numbers again,
and let V ′ be the dual space of continuous linear functionals on V , as in Section
1.10. If E is a nonempty bounded subset of V , then put

NE(λ) = sup
v∈E

|λ(v)|(1.149)

for every λ ∈ V ′. More precisely, if λ ∈ V ′, then λ is bounded as a linear
mapping from V into R or C, as appropriate, as mentioned earlier. This im-
plies that λ is bounded on E, so that (1.149) is finite. It is easy to see that
(1.149) defines a seminorm on V ′. The collection of these seminorms on V ′ is
nondegenerate, because subsets of V with only one element are bounded. The
topology determined on V ′ by this collection of seminorms is at least as strong
as the topology described in Section 1.10, because compact subsets of V are
bounded.

Suppose now that the topology on V is determined by a norm ∥ · ∥V . A
linear functional λ on V is said to be bounded with respect to ∥ · ∥V if there is
a nonnegative real number C such that

|λ(v)| ≤ C∥v∥V(1.150)

for every v ∈ V . This is the same as (1.148), with W = R or C, as appropriate,
and where ∥ · ∥W is the corresponding absolute value function. Thus a bounded
linear functional in this sense is the same as a continuous linear functional on
V in this context, which also corresponds to (1.79) in Section 1.10. Put

∥λ∥V ′ = sup{|λ(v)| : v ∈ V, ∥v∥V ≤ 1}(1.151)

for each λ ∈ V ′, which is the same as (1.149), with E equal to the closed unit
ball in V with respect to ∥ · ∥V . This is also the smallest C ≥ 0 such that
(1.150) holds. Note that ∥ · ∥V ′ defines a norm on V ′, which is the dual norm
associated to ∥ · ∥V on V . The topology determined on V ′ by the dual norm
in this situation is the same as the topology determined by the collection of
all seminorms (1.149) associated to nonempty bounded subsets of V , as in the
preceding paragraph.

Let I be a nonempty set, and suppose that either Vj is a topological vector
space over the real numbers for each j ∈ I, or that Vj is a topological vector
space over the complex numbers for each j ∈ I. Thus the Cartesian product



34 CHAPTER 1. TOPOLOGICAL GROUPS AND VECTOR SPACES

V =
∏

j∈I Vj is a topological vector space over the real or complex numbers, as
appropriate, with respect to the associated product topology, as in Section 1.8.
Let pl be the standard coordinate projection from V onto Vl for each l ∈ I. Of
course, pl is a continuous linear mapping from V onto Vl for each l ∈ I. If E
is a bounded subset of V , then it follows that pl(E) is bounded in Vl for each
l ∈ I. Conversely, if E ⊆ V has the property that pl(E) is bounded in Vl for
each l ∈ I, then one can check that E is bounded in V . In particular, if Ej is a
bounded subset of Vj for each j ∈ I, then

∏
j∈I Ej is bounded in V .

1.19 Totally bounded sets

Let A be a commutative topological group. A subset E of A is said to be totally
bounded in A as a commutative topological group if for every open set U ⊆ A
with 0 ∈ U there are finitely many elements a1, . . . , an of A such that

E ⊆
n∪

j=1

(aj + U).(1.152)

Suppose for the moment that d(x, y) is a translation-invariant metric on A that
determines the same topology on A. In this case, it is easy to see that E is
totally bounded as a subset of A as a commutative topological group if and
only if E is totally bounded in A as a metric space with respect to d(x, y).

Let A be any commutative topological group again. If E ⊆ A has only
finitely many elements, then E is obviously totally bounded in A. Note that
the converse holds when A is equipped with the discrete topology. It is easy to
see that the union of finitely many totally bounded subsets of any commutative
topological group A is totally bounded in A too. If E ⊆ A is totally bounded
in A, then every subset of E is totally bounded in A as well.

If E ⊆ A is compact in A, then E is totally bounded in A. More precisely,
if U ⊆ A is an open set that contains 0, then E is covered by the translates of
U by elements of E. If E is compact, then it follows that E can be covered by
finitely many translates of U , as desired.

If E ⊆ A is totally bounded in A, then one can check that the closure E of
E in A is totally bounded in A, using the regularity of A as a topological space,
as in Section 1.1. If E1, E2 ⊆ A are totally bounded in A, then one can verify
that E1 + E2 is totally bounded in A, using continuity of addition on A.

Let V be a topological vector space over the real or complex numbers, so that
V is a commutative topological group with respect to addition in particular. If
E ⊆ V is totally bounded in V as a commutative topological group, then E is
bounded in V as a topological vector space, as in Section 1.17. To see this, let
U0 ⊆ V be an open set that contains 0, and let U ⊆ V be a balanced open set
that contains 0 and satisfies

U + U ⊆ U0.(1.153)

The existence of U uses the continuity of addition on V , and the fact that
balanced open subsets of V that contain 0 form a local base for the topology of
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V at 0, as in Section 1.6. If E is totally bounded in V , then there are finitely
many elements a1, . . . , an of V such that (1.152) holds. If t ∈ R or C satisfies
|t| ≥ 1, then U ⊆ t U , because U is balanced in V . It follows that

E ⊆
n∪

j=1

(aj + t U)(1.154)

when |t| ≥ 1. We also have that aj ∈ t U when |t| is sufficiently large, as in
Section 1.17. Combining this with (1.154), we get that

E ⊆ t U + t U = t (U + U) ⊆ t U0(1.155)

when |t| is sufficiently large, as desired.
Let A be a commutative topological group again, and let U ⊆ A be an open

set that contains 0. Let us say that a set E1 ⊆ U is U -small in A if

E1 − E1 ⊆ U,(1.156)

so that x− y ∈ U for every x, y ∈ E1. This is also the same as saying that

E1 ⊆ y + U(1.157)

for every y ∈ E1. In the other direction, if (1.157) holds for any y ∈ A, then we
have that

E1 − E1 ⊆ (y + U)− (y + U) = U − U.(1.158)

Note that subsets of U -small subsets of A are U -small as well.
If E ⊆ A can be covered by finitely many U -small sets, then E can be

covered by finitely many translates of U , by (1.157). If E has this property for
every open set U ⊆ A with 0 ∈ U , then it follows that E is totally bounded in
A. Conversely, if E ⊆ A is totally bounded, and U0 ⊆ A is an open set that
contains 0, then E can be covered by finitely many U0-small sets in A. To see
this, let U ⊆ A be an open set such that 0 ∈ U and

U − U ⊆ U0,(1.159)

which exists by the continuity of the group operations on A. If E is totally
bounded in A, then E can be covered by finitely many translates of U in A,
each of which is U0-small in A.

Suppose that E ⊆ A is totally bounded, and that U ⊆ A is an open set that
contains 0. Thus E can be covered by finitely many U -small subsets of A, as
in the preceding paragraph. More precisely, E can be expressed as the union of
finitely many U -small sets, by taking the intersection of the previous U -small
subsets of A with E. It follows from this that E can be covered by finitely many
translates of U by elements of E, using (1.157). Thus we may take a1, . . . , an
to be elements of E in (1.152).

Let A, B be commutative topological groups, and let h be a continuous
homomorphism from A into B. If E ⊆ A is totally bounded, then it is easy to
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see that h(E) is totally bounded in B. Suppose now that A is a subgroup of B,
and that A is equipped with the topology that is induced by the one on B. In
this case, E ⊆ A is totally bounded in A if and only if E is totally bounded in
B. The “only if” part follows from the previous statement, and the “if” part
can be derived from the reformulations of total boundedness in the preceding
paragraphs.

Let U1, . . . , Un be finitely many open subsets of A, with 0 ∈ Uj for each
j = 1, . . . , n, and put U =

∩n
j=1 Uj . Note that E0 ⊆ A is U -small in A if and

only if E0 is Uj-small in A for each j = 1, . . . , n. If Ej ⊆ A is Uj-small for each
j = 1, . . . , n, then

∩n
j=1Ej is U -small in A. If E ⊆ A can be covered by finitely

many Uj-small subsets of A for each j = 1, . . . , n, then one can check that E
can be covered by finitely many U -small subsets of A. More precisely, E can
be covered by the intersections of the various Uj-small sets used to cover E for
each j = 1, . . . , n.

Let I be a nonempty set, and let Aj be a commutative topological group
for each j ∈ I. Thus the Cartesian product A =

∏
j∈I Aj is a commutative

topological group with respect to the corresponding product topology, as in
Section 1.8. Let pl be the standard coordinate projection from A onto Al for
each l ∈ I, which is a continuous group homomorphism. If E ⊆ A is totally
bounded, then it follows that pl(E) is totally bounded in Al for each l ∈ I.
Conversely, if E ⊆ A has the property that pl(E) is totally bounded in Al for
each l ∈ I, then one can verify that E is totally bounded in A. This uses the
remarks in the previous paragraph, and the definition of the product topology
on A. In particular, if Ej ⊆ Aj is totally bounded in Aj for each j ∈ I, then∏

j∈I Ej is totally bounded in A.



Chapter 2

Borel measures

2.1 Summable functions

Let X be a nonempty set, and let f be a nonnegative real-valued function on
X. The sum ∑

x∈X

f(x)(2.1)

is defined as a nonnegative extended real number to be the supremum of the
sums ∑

x∈A

f(x)(2.2)

over all nonempty finite subsets A of X. It is sometimes convenient to allow f
to be +∞ at some points in X, in which case the sum (2.1) is automatically
equal to +∞. Observe that ∑

x∈X

t f(x) = t
∑
x∈X

f(x)(2.3)

for every positive real number t, which also works for t = 0 with the convention
that 0 · (+∞) = 0. If g is another nonnegative extended real-valued function on
X, then one can verify that∑

x∈X

(f(x) + g(x)) =
∑
x∈X

f(x) +
∑
x∈X

g(x).(2.4)

If f is a real or complex-valued function on X, then we put

∥f∥1 =
∑
x∈X

|f(x)|,(2.5)

and we say that f is summable on X when this is finite. As in (2.3), we have
that

∥t f∥1 = |t| ∥f∥1(2.6)

37



38 CHAPTER 2. BOREL MEASURES

for every t ∈ R or C, as appropriate, where the right side is interpreted as being
0 when t = 0, even if f is not summable on X. Similarly, if g is another real or
complex-valued function on X, then

∥f + g∥1 ≤ ∥f∥1 + ∥g∥1,(2.7)

using (2.4) and the triangle inequality for the absolute value function on R
or C. The spaces of real and complex-valued summable functions on X are
denoted ℓ1(X,R) and ℓ1(X,C), respectively. These are vector spaces over R
and C, respectively, with respect to pointwise addition and scalar multiplication
of functions, and (2.5) defines a norm on each of these spaces.

The support of a real or complex-valued function f on X is the set supp f of
x ∈ X such that f(x) ̸= 0. Let c00(X,R) and c00(X,C) be the spaces of real and
complex-valued functions on X with finite support, respectively. One can check
that these are dense linear subspaces of ℓ1(X,R) and ℓ1(X,C), respectively,
with respect to the ℓ1 norm (2.5).

A real or complex-valued function f on X is said to vanish at infinity on X
if for each ϵ > 0 we have that

|f(x)| < ϵ(2.8)

for all but finitely many x ∈ X. Let c0(X,R) and c0(X,C) be the spaces of real
and complex-valued functions on X that vanish at infinity, respectively. These
are vector spaces over R and C, respectively, with respect to pointwise addition
and scalar multiplication of functions. If f is summable on X, then it is easy
to see that f vanishes at infinity on X. If f vanishes at infinity on X, then the
support of f has only finitely or countably many elements, as one can see by
applying the definition with ϵ = 1/j for each positive integer j.

If f is a real or complex-valued summable function on X, then (2.1) can be
defined as a real or complex number, as appropriate, by expressing f as a linear
combination of summable nonnegative real-valued functions on X. One can
check that the value of the sum does not depend on the particular expression
of f of this type, using (2.3) and (2.4). Of course, if f has finite support in X,
then the sum can be defined directly. Otherwise, if the support of f is countably
infinite, then the sum can be treated as an absolutely convergent infinite series.
One can also consider the sum as a suitable limit of finite subsums.

Another basic property of the sum is that∣∣∣∣∑
x∈X

f(x)

∣∣∣∣ ≤ ∑
x∈X

|f(x)| = ∥f∥1.(2.9)

If f is real-valued, then (2.9) can be obtained by looking at the positive and
negative parts of f . If one applies this argument directly to the real and imagi-
nary parts of a complex-valued function on X, then one would get an additional
constant factor on the right side of (2.9). If f has finite support in X, then (2.9)
follows from the triangle inequality for the absolute value function on R and
C. One can get (2.9) for complex-valued summable functions on X without an
additional constant factor by approximating the sum (2.1) by finite sums.
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The mapping from a real or complex-valued summable function f on X
to the sum (2.1) is linear in f , and so defines a linear functional on each of
ℓ1(X,R) and ℓ1(X,C). These linear functionals are continuous with respect
to the topologies on these spaces determined by their ℓ1 norms, because of
(2.9). It follows that these linear functionals are uniquely determined by their
restrictions to c00(X,R) and c00(X,C), respectively, since these spaces are dense
in the corresponding ℓ1 spaces.

Let I be a nonempty set, and let Ej be a nonempty subset of X for each
j ∈ I. If f is a nonnegative extended real-valued function on X, then∑

x∈Ej

f(x)(2.10)

can be defined as a nonnegative extended real number for each j ∈ I, and hence∑
j∈I

( ∑
x∈Ej

f(x)
)

(2.11)

can be defined as a nonnegative extended real number too. If the Ej ’s are
pairwise-disjoint in X, and

E =
∪
j∈I

Ej ,(2.12)

then one can check that (2.11) is equal to∑
x∈E

f(x).(2.13)

In particular, if f is summable on E, then all of these sums are finite.
Now let f be a real or complex-valued summable function on X, or simply

on E. Note that the restriction of f to any nonempty subset of E is summable
as well. Thus (2.10) is defined as a real or complex number for each j ∈ I, and
satisfies ∣∣∣∣ ∑

x∈Ej

f(x)

∣∣∣∣ ≤ ∑
x∈Ej

|f(x)|,(2.14)

as in (2.9). This implies that

∑
j∈I

∣∣∣∣ ∑
x∈Ej

f(x)

∣∣∣∣ ≤ ∑
j∈I

( ∑
x∈Ej

|f(x)|
)
=

∑
x∈E

|f(x)|,(2.15)

using the equality between (2.11) and (2.13) for |f(x)| in the second step. The
right side of (2.15) is finite, by hypothesis, so that (2.10) defines a summable
function of j on I. This means that (2.11) is also defined as a real or complex
number under these conditions. One can check that (2.11) is equal to (2.13) in
this situation, by expressing f as a linear combination of nonnegative real-valued
summable functions on X, to reduce to the previous case.
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2.2 r-Summable functions

Let X be a nonempty set again, and let f be a real or complex-valued function
on X. Put

∥f∥r =
( ∑

x∈X

|f(x)|r
)1/r

(2.16)

for every positive real number r, which is interpreted as being +∞ when the
sum is infinite. This is the same as (2.5) in the previous section when r = 1,
and we say that f is r-summable when (2.16) is finite. Also put

∥f∥∞ = sup
x∈X

|f(x)|,(2.17)

which is finite exactly when f is bounded on X. If t ∈ R or C, as appropriate,
then

∥t f∥r = |t| ∥f∥r(2.18)

for every r > 0, where the right side is interpreted as being equal to 0 when
t = 0, even if ∥f∥r is infinite. More precisely, this reduces to (2.3) when r
is finite, and it can be verified directly when r = ∞. If g is another real or
complex-valued function on X and 1 ≤ r ≤ ∞, then

∥f + g∥r ≤ ∥f∥r + ∥g∥r(2.19)

by Minkowski’s inequality for sums.
It is easy to see that

∥f∥∞ ≤ ∥f∥r(2.20)

for every r > 0. If 0 < r1 < r2 <∞, then we have that∑
x∈X

|f(x)|r2 ≤ ∥f∥r2−r1
∞

∑
x∈X

|f(x)|r1 ≤ ∥f∥r2−r1
r1 ∥f∥r1r1 = ∥f∥r2r1 ,(2.21)

which implies that
∥f∥r2 ≤ ∥f∥r1 .(2.22)

In particular, if a, b ≥ 0 and 0 < r < 1, then

(a+ b)r ≤ ar + br.(2.23)

This follows from (2.22) by taking r1 = r, r2 = 1, and f to be a function with
values a, b on a set X with two elements. Using (2.23), we get that

∥f + g∥rr =
∑
x∈X

(f(x) + g(x))r ≤
∑
x∈X

f(x)r +
∑
x∈X

g(x)r = ∥f∥rr + ∥g∥rr(2.24)

for all real or complex-valued functions f and g on X when 0 < r ≤ 1.
Let ℓr(X,R) and ℓr(X,C) be the spaces of real and complex-valued functions

f on X such that ∥f∥r is finite, for each r > 0. These are vector spaces over R
and C, respectively, with respect to pointwise addition and scalar multiplication
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of functions, because of (2.18), (2.19), and (2.24). If r ≥ 1, then ∥f∥r defines a
norm on each of these spaces, by (2.18) and (2.19). If 0 < r < 1, then

∥f − g∥rr(2.25)

defines a translation-invariant metric on each of ℓr(X,R) and ℓr(X,C), by
(2.24). In this case, one can check that ℓr(X,R) and ℓr(X,C) are topolog-
ical vector spaces over R and C, respectively, with respect to the topologies
determined by these metrics.

If 0 < r1 < r2 ≤ ∞, then ℓr1(X,R) and ℓr1(X,C) are contained in ℓr2(X,R)
and ℓr2(X,C), respectively, by (2.20) and (2.22). These inclusions are continu-
ous mappings with respect to the corresponding topologies on these spaces.

If a real or complex-valued function f on X vanishes at infinity, then it is
easy to see that f is bounded on X. One can verify that c0(X,R) and c0(X,C)
are closed linear subspaces of ℓ∞(X,R) and ℓ∞(X,C), respectively, with respect
to the topologies determined by the corresponding ℓ∞ norms. More precisely,
c0(X,R) and c0(X,R) are the same as the closures of c00(X,R) and c00(X,C)
in ℓ∞(X,R) and ℓ∞(X,C), respectively, with respect to the corresponding ℓ∞

norms.

If r <∞ and f is r-summable on X, then f vanishes at infinity on X. This
is basically the same as the r = 1 case, mentioned in the previous section. We
also have that c00(X,R) and c00(X,C) are dense in ℓr(X,R) and ℓr(X,C),
respectively, when r <∞, as in the r = 1 case.

It is well known that ℓr(X,R) and ℓr(X,C) are complete as metric spaces
for every r > 0, by standard arguments. This uses the metric associated to the
ℓr norm when r ≥ 1, and (2.25) when 0 < r < 1.

2.3 Some regularity conditions

By definition, the σ-algebra of in a topological space X is the smallest σ-algebra
that contains all open subsets of X. Equivalently, this is the smallest σ-algebra
that contains all closed subsets of X. A Borel measure on X is a countably-
additive measure defined on the Borel sets in X. We shall restrict our attention
to nonnegative Borel measures in this section, but we shall also consider real and
complex-valued Borel measures later. Nonnegative Borel measures are allowed
to take values in the nonnegative extended real numbers, as usual.

Remember that a subset E of X is said to be an Fσ set if E can be expressed
as the union of countably many closed subsets of X. Similarly, E is said to be a
Gδ set if E can be expressed as the intersection of countably many open subsets
of X. Of course, Fσ sets and Gδ sets are Borel sets.

Let µ be a nonnegative Borel measure on a topological space X, and let
E ⊆ X be a Borel set. A basic outer regularity condition asks that

µ(E) = inf{µ(U) : U ⊆ X is an open set, and E ⊆ U}.(2.26)
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This holds trivially when µ(E) = ∞. Otherwise, if µ(E) < ∞, then (2.26) is
equivalent to asking that

for each ϵ > 0 there is an open set U ⊆ X(2.27)

such that E ⊆ U and µ(U \ E) < ϵ.

Of course, (2.27) holds trivially when E is an open set in X. If E is a Gδ set,
and µ(X) < ∞, then it is easy to see that E satisfies (2.27). More precisely, it
suffices to ask that there be an open set V ⊆ X such that E ⊆ V and µ(V ) <∞,
instead of µ(X) <∞. If E1, E2, E3, . . . is a sequence of Borel subsets of X that
satisfy (2.27), then one can check that

∪∞
j=1Ej satisfies (2.27) too.

Similarly, a basic inner regularity condition asks that

µ(E) = sup{µ(A) : A ⊆ X is a closed set, and A ⊆ E}.(2.28)

If µ(E) = ∞, then (2.28) implies that every Borel set in X that contains E also
satisfies (2.28). If µ(E) <∞, then (2.28) is equivalent to asking that

for each ϵ > 0 there is a closed set A ⊆ X(2.29)

such that A ⊆ E and µ(E \A) < ϵ.

As before, (2.29) holds trivially when E is a closed set in X, and it is easy to
see that (2.28) holds when E is an Fσ set. The union of finitely many Borel sets
satisfying (2.29) also satisfies (2.29). If E1, E2, E3, . . . is a sequence of Borel sets

in X that satisfy (2.29), and if µ
(∪∞

j=1Ej

)
<∞, then

∪∞
j=1Ej satisfies (2.29)

as well. This uses the previous remark to reduce to the case where Ej ⊆ Ej+1

for each j. Otherwise, if µ
(∪∞

j=1Ej

)
= ∞, then an analogous argument implies

that
∪∞

j=1Ej satisfies (2.28).
If B ⊆ X is a Borel set, then it is easy to see that (2.27) holds with E = B

if and only if (2.29) holds with E = X \ B. In this situation, the closed set A
in (2.29) corresponds exactly to the complement of the open set U in (2.28).
Thus the condition B ⊆ U in (2.27) corresponds exactly to A ⊆ X \B in (2.29).
Similarly, U \ B in (2.27) corresponds exactly to (X \ B) \ A in (2.29). Hence
the conditions that these two sets have µ-measure less than ϵ are the same.

Let us suppose for the rest of the section that

every open subset of X is an Fσ set.(2.30)

This is equivalent to asking that

every closed subset of X is a Gδ set.(2.31)

It is well known that these conditions hold when the topology onX is determined
by a metric.

Let µ be a nonnegative Borel measure on X again. If E ⊆ X is an open
set, then (2.30) implies (2.28), as before. It follows that (2.29) holds when E
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is an open set and µ(E) < ∞. If instead E ⊆ X is a closed set, and if we also
have that µ(X) < ∞, then (2.31) implies (2.27). This works as well when E is
contained in any open set V ⊆ X with µ(V ) <∞, as mentioned earlier.

Suppose for the moment that µ(X) < ∞, and consider the collection E of
Borel sets E ⊆ X that satisfy (2.27) and (2.29). If E is either open or closed in
X, then E ∈ E , by some of the earlier remarks, including those in the previous
paragraph. We also have seen that E ∈ E implies that X \ E ∈ E . The earlier
remarks about countable unions imply that E is closed under countable unions,
and hence is a σ-algebra. It follows that E contains all Borel sets E ⊆ X under
these conditions.

If µ is any nonnegative Borel measure on X and B ⊆ X is a Borel set, then

µB(E) = µ(B ∩ E)(2.32)

defines a nonnegative Borel measure on X too. Of course, if µ(B) < ∞, then
µB(X) < ∞, so that the remarks in the previous paragraph can be applied to
µB . More precisely, this means that for every Borel set E ⊆ X, we have that

for each ϵ > 0 there is an open set U ⊆ X(2.33)

such that E ⊆ U and µB(U \ E) < ϵ,

and

for each ϵ > 0 there is a closed set A ⊆ X(2.34)

such that A ⊆ E and µB(E \A) < ϵ.

Note that (2.34) is equivalent to (2.29) when E ⊆ B, and in particular when
E = B. It follows that if µ is any nonnegative Borel measure on X, and E ⊆ X
is a Borel set with µ(E) <∞, then E satisfies (2.29).

Let µ be any nonnegative Borel measure on X again, and let B ⊆ X be
an open set. If µ(B) < ∞, then (2.32) satisfies (2.33), as in the preceding
paragraph. If E ⊆ X is a Borel set with E ⊆ B, and U ⊆ X is an open set
such that E ⊆ U , then U ∩ B is also an open set in X that contains E. Thus
(2.33) implies (2.27) when E ⊆ B. Now let B1, B2, B3, . . . be a sequence of open
subsets of X such that µ(Bj) < ∞ for each j. If E ⊆ X is a Borel set, then
Ej = E ∩Bj satisfies (2.27) for each j, by the previous remark. If we also have
that E ⊆

∪∞
j=1Bj , then it follows that E =

∪∞
j=1Ej satisfies (2.27).

2.4 Locally compact Hausdorff spaces

A topological space X is said to be locally compact if for each point x ∈ X there
are an open set U ⊆ X and a compact set K ⊆ X such that x ∈ U and U ⊆ K.
If X is Hausdorff, then K is closed in X, so that the closure U of U in X is
contained in K as well. This implies that U is compact, which may be used in
the definition of local compactness in this case.

The support supp f of a real or complex-valued function f on a topological
space X is defined to be the closure of the set of x ∈ X such that f(x) ̸= 0.



44 CHAPTER 2. BOREL MEASURES

Let Ccom(X,R) and Ccom(X,C) be the spaces of continuous real and complex-
valued functions on X with compact support, respectively. These are subalge-
bras of the spaces C(X,R) and C(X,C) of all continuous real and complex-
valued functions on X, respectively, with respect to pointwise addition and
scalar multiplication of functions. If X is equipped with the discrete topology,
then this definition of the support of a real or complex-valued function on X re-
duces to the one used in Section 2.1, and Ccom(X,R), Ccom(X,C) are the same
as the spaces c00(X,R), c00(X,C) defined there. If X is compact, then every
real or complex-valued function on X has compact support, so that Ccom(X,R)
and Ccom(X,C) are the same as C(X,R) and C(X,C), respectively.

Let us suppose from now on in this section that X is a locally compact
Hausdorff topological space. If K ⊆ X is compact, U ⊆ X is an open set,
and K ⊆ U , then a well-known version of Urysohn’s lemma implies that there
is a real-valued continuous function f on X with compact support such that
f(x) = 1 for every x ∈ K, supp f ⊆ U , and 0 ≤ f(x) ≤ 1 for every x ∈ X.
In particular, this implies that Ccom(X,R) separates points in X. Note that
X must be Hausdorff in order for continuous real or complex-valued functions
on X to separate points in X, and that X has to be locally compact for such
functions with compact support to separate points.

If f is any continuous real-valued function on X and r ∈ R, then

max(f(x), r)(2.35)

and

min(f(x), r)(2.36)

are continuous on X too. The support of (2.35) is contained in the support of
f when r ≤ 0, and the support of (2.36) is contained in the support of f when
r ≥ 0. If f has compact support in X, then it follows that (2.35) has compact
support in X when r ≥ 0, and that (2.36) has compact support in X when
r ≥ 0.

A linear functional λ on Ccom(X,R) as a vector space over R is said to be
nonnegative if

λ(f) ≥ 0(2.37)

for every f ∈ Ccom(X,R) such that f(x) ≥ 0 for every x ∈ X. Similarly, a linear
functional λ on Ccom(X,C) as a vector space over C is said to be nonnegative
if for every nonnegative real-valued continuous function f on X with compact
support, we have that

λ(f) ∈ R(2.38)

and that (2.37) holds. This implies that (2.38) holds for every f ∈ Ccom(X,R),
because any continuous real-valued function on X with compact support can
be expressed as a difference of continuous nonnegative real-valued functions on
X with compact support. It follows that the restriction of λ to Ccom(X,R)
is a nonnegative linear functional on Ccom(X,R). Any linear functional on
Ccom(X,R) as a real vector space has a unique extension to a linear functional
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on Ccom(X,C) as a complex vector space, and this extension is automatically
nonnegative when λ is nonnegative on Ccom(X,R).

Let µ be a nonnegative Borel measure on X such that

µ(K) <∞(2.39)

for every compact set K ⊆ X. This implies that continuous real and complex-
valued functions on X with compact support are integrable with respect to µ,
because continuous real and complex-valued functions are bounded on compact
sets. It follows that

λ(f) =

∫
X

f dµ(2.40)

defines a nonnegative linear functional on each of Ccom(X,R) and Ccom(X,C).
Now let λ be a nonnegative linear functional on Ccom(X,R) or Ccom(X,C).

A version of the Riesz representation theorem implies that there is a unique
nonnegative Borel measure µ on X that satisfies (2.39), (2.40), and some addi-
tional regularity properties. More precisely, µ should be outer regular, in the
sense that (2.26) holds for every Borel set E ⊆ X. There are also some inner
regularity conditions, of the form

µ(E) = sup{µ(K) : K ⊆ X is compact, and K ⊆ E}.(2.41)

Namely, this should hold when E is an open set in X, and when E is a Borel
set in X with µ(E) < ∞. Note that (2.41) implies (2.28) in the previous
section, because compact subsets of X are closed sets, since X is Hausdorff. If
X is compact, then closed subsets of X are compact too, so that (2.28) implies
(2.41).

2.5 Haar measure

Let A be a commutative topological group, in which the group operations are
expressed additively, and suppose that A is locally compact as a topological
space. In this situation, it suffices to ask that there be an open set in A that
contains 0 and is contained in a compact set, because of translation-invariance.
One may as well ask that the closure of this open set be compact, because A is
Hausdorff, as in Section 1.1. If E ⊆ A is a Borel set, then E + a is a Borel set
for every a ∈ A, because of continuity of translations. Similarly, −E is a Borel
set in A, because x 7→ −x is continuous on A.

Under these conditions, it is well known that there is a Borel measure H on
A, known as Haar measure, that is invariant under translations and has some
additional properties. Invariance under translations means that

H(E + a) = H(E)(2.42)

for every Borel set E ⊆ A. This measure is supposed to be finite on compact
subsets of A, and positive on nonempty open subsets of A. This measure should



46 CHAPTER 2. BOREL MEASURES

also be outer regular, in the sense that (2.26) in Section 2.3 holds with µ = H
for all Borel sets E ⊆ A. Similarly, the inner regularity condition (2.41) in the
previous section should hold with µ = H, when E ⊆ A is an open set, and
when E is a Borel set with H(E) < ∞, as before. Of course, one can multiply
H by a positive real number, and get another Borel measure on A with the
same properties. It is well known that this is the only way to get another Borel
measure on A with the same properties.

If A is any commutative group equipped with the discrete topology, then
counting measure on A satisfies the requirements of Haar measure. If A = R
as a commutative group with respect to addition, and with the standard topol-
ogy, then one-dimensional Lebesgue measure satisfies the requirements of Haar
measure. If A = T, as a commutative group with respect to multiplication,
and with the topology induced by the standard topology on C, then the usual
arc-length measure on T satisfies the requirements of Haar measure. This corre-
sponds to one-dimensional Lebesgue measure on the interval [0, 2π) in R, using
an arc-length parameterization of T.

Let A be any locally compact commutative topological group again. If H is
a Haar measure on A, then

H(−E) = H(E)(2.43)

for every Borel set E ⊆ A. To see this, observe first that H(−E) is a Borel
measure onA that satisfies the same requirements as Haar measure. This implies
that H(−E) is equal to a positive constant multiple of H(E), by the uniqueness
of Haar measure mentioned earlier. In order to show that this constant multiple
is equal to 1, it suffices to check that (2.43) holds for some Borel set E ⊆ A
such that H(E) is positive and finite. Let U be an open set in A that contains
0 and has compact closure, and put

E = U ∩ (−U).(2.44)

Thus E = −E, by construction, so that (2.43) holds automatically. We also
have that H(E) is posiitive and finite, as desired, because E is nonempty, open,
and contained in a compact set.

If f is a real or complex-valued Borel-measurable function on A, then

fa(x) = f(x− a)(2.45)

is Borel measurable on A for every a ∈ A. If f is a nonnegative real-valued
Borel-measurable function on A, then fa is nonnegative for every a ∈ A, and
one can check that ∫

A

fa dH =

∫
A

f dH(2.46)

for every a ∈ A, using invariance of H under translations. Similarly, if f is a
real or complex-valued Borel-measurable function on A that is integrable with
respect to H, then fa is integrable with respect to H for every a ∈ A, and (2.46)
holds for every a ∈ A. If f is a continuous real or complex-valued function on
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A with compact support, then fa is a continuous function on A with compact
support for every a ∈ A. In this case, f is integrable with respect to H, because
continuous functions are bounded on compact sets, and compact subsets of A
have finite measure with respect to H.

A nonnegative linear functional λ on Ccom(A,R) or Ccom(A,C) is said to
be invariant under translations if

λ(fa) = λ(f)(2.47)

for every f ∈ Ccom(A,R) or Ccom(A,C), as appropriate, and a ∈ A. As in
the previous section, every nonnegative linear functional λ on Ccom(A,R) or
Ccom(A,C) can be represented by a unique nonnegative Borel measure µ on A as
in (2.40), where µ also satisfies (2.39) and some additional regularity properties.
If λ is invariant under translations, then it follows that µ is invariant under
translations on A as well, as in (2.42), because µ is uniquely determined by λ.
Let us say that a nonnegative linear functional λ on Ccom(A,R) or Ccom(A,C)
is strictly positive if

λ(f) > 0(2.48)

for every nonnegative real-valued function f on X with compact support such
that f(x) > 0 for some x ∈ A. This implies that the corresponding nonnegative
Borel measure µ on A is strictly positive in the sense that

µ(U) > 0(2.49)

for every nonempty open set U ⊆ A.
A nonnegative linear functional λ on Ccom(A,R) or Ccom(A,C) that is

strictly positive and invariant under translations is called a Haar integral on
A. If H is a Haar measure on A, then

λ(f) =

∫
A

f dH(2.50)

defines a Haar integral on A. Conversely, if λ is a Haar integral on A, then
one can get a Haar measure H on A as in (2.50) using the Riesz representation
theorem, as in the preceding paragraph. Similarly, uniqueness of Haar measure
on A up to positive constant multiples corresponds to the uniqueness of the
Haar integral up to positive constant multiples. If A = R or T, for instance,
then one can use ordinary Riemann integrals as Haar integrals.

2.6 σ-Compactness

A subset E of a topological spaceX is said to be σ-compact if E can be expressed
as the union of countably many compact sets. If E ⊆ X is σ-compact and A ⊆ X
is a closed set, then E ∩ A is σ-compact too, because K ∩ A is compact when
K is compact. Similarly, if E ⊆ X is σ-compact and A ⊆ X is an Fσ set, then
E ∩ A is σ-compact. In particular, if X is σ-compact, then Fσ sets in X are
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σ-compact. If X is Hausdorff, then compact subsets of X are closed sets, and
hence σ-compact subsets of X are Fσ sets.

Remember that E ⊆ X is said to have the Lindelöf propery if every open
covering of E in X can be reduced to a subcovering with only finitely or count-
ably many elements. If E is σ-compact, then E has the Lindelöf property. If
X is locally compact and X has the Lindelöf property, then X is σ-compact.
If there is a base for the topoogy of X with only finitely or countably many
elements, then X has the Lindelöf property, by Lindelöf’s theorem. If X is
a metric space with the Lindelöf property, then X can be covered by finitely
or countably many open balls of any radius r > 0, which implies that X is
separable.

Let us suppose from now on in this section that X is a Hausdorff topological
space. Thus σ-compact subsets of X are Fσ sets, as before, and in particular
they are Borel sets. Let µ be a nonnegative Borel measure on X. If E ⊆ X
is σ-compact, then E satisfies the inner regularity condition (2.41) in Section
2.4 with respect to compact subsets of X. Suppose for the moment that X is
σ-compact, so that Fσ sets in X are σ-compact too. This implies that Fσ sets
in X satisfy (2.41), as before. In this case, the inner regularity condition (2.28)
in Section 2.3 with respect to closed subsets of X implies (2.41), because (2.41)
holds for closed subsets of X.

If X is locally compact, then every compact subset of X is contained in an
open set that is contained in another compact set. If X if locally compact and
σ-compact, then it follows that X can be expressed as the union of countably
many open sets, each of which is contained in a compact set. If µ is a nonnegative
Borel measure on X that is finite on compact sets, then the previous statement
implies that X can be expressed as the union of countably many open sets, each
of which has finite measure with respect to µ.

Let µ be a nonnegative Borel measure on X again, and suppose that there
is a σ-compact set X0 ⊆ X such that

µ(X \X0) = 0.(2.51)

If E ⊆ X is a Borel set such that E ∩ X0 is σ-compact, then E ∩ X0 satisfies
(2.41) in Section 2.4, as before, which implies that E satisfies (2.41) in this
case. This implies that Fσ sets in X satisfy (2.41) in this situation. It follows
that (2.28) in Section 2.3 implies (2.41), because (2.41) holds for closed sets, as
before. If for each ϵ > 0 there is a compact set K ⊆ X such that

µ(X \K) < ϵ,(2.52)

then one can apply this condition to ϵ = 1/j for each positive integer j, to get
that there is a σ-compact set X0 ⊆ X that satisfies (2.51).

2.7 Some nice subgroups

Let A be a commutative topological group. Note that the closure of a subgroup
of A is a subgroup of A too. Let A0 be a subgroup of A, and suppose that U is
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an open set in A such that 0 ∈ U and U ⊆ A0. This implies that

A0 = A0 + U,(2.53)

since each side of the equation is contained in the other, and hence that A0 is
an open subset of A. Using (2.53), we also get that A0 is a closed set in A,
because the closure of A0 is contained in A0 + U , as in (1.7) in Section 1.1.
Alternatively, if A0 is an open subgroup of A, then all of the cosets of A0 in A
are open sets as well, since they are translates of A0. This implies that A0 is a
closed set in A, because the complement of A0 in A can be expressed as a union
of cosets of A0, and hence is an open set.

Let E be a subset of A such that 0 ∈ E and E is symmetric about 0, in the
sense that −E = E. Of course, if E is not already symmetric about 0, then one
can consider E ∩ (−E) or E ∪ (−E) instead. Define Ej ⊆ A recursively for each
positive integer j by putting E1 = E and

Ej+1 = Ej + E(2.54)

for each j. Equivalently, Ej consists of the elements of A that can be expressed
as sums of j elements of E. It is easy to see that

∞∪
j=1

Ej(2.55)

is a subgroup of A, which is the subgroup of A generated by E. If E has
only finitely or countably many elements, then Ej has only finitely or countably
many elements for each j, which implies that (2.55) has only finitely or countably
many elements. If E is compact, then Ej is compact for each j, by continuity
of addition on A, and (2.55) is σ-compact. If 0 is an element of the interior of
E, then (2.55) is an open subgroup of A, as in the preceding paragraph.

If A is locally compact, then there is a compact set E ⊆ A that contains 0
in its interior, and one can also ask that E be symmetric about 0, as before.
Under these conditions, (2.55) is a σ-compact open subgroup of A, as in the
previous paragraph.

Let A be any commutative topological group again, and let A0 be a subgroup
of A. Any subset of A/A0 with only finitely or countably many elements is con-
tained in a subgroup of A/A0 with only finitely or countably many elements, as
before. This implies that any collection of finitely or countably many translates
of A0 in A is contained in a subgroup A1 of A such that A0 ⊆ A1 and A1/A0

has only finitely or countably many elements. If A0 is σ-compact in A, then it
follows that A1 is σ-compact as well.

Suppose from now on in this section that A0 is an open subgroup of A. If
K ⊆ A is compact, then K is contained in the union of finitely many translates
of A0 in A. Similarly, σ-compact subsets of A are contained in the union of
finitely or countably many translates of A0 in A. More precisely, this works for
subsets of A with the Lindelöf property.
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Suppose that A is locally compact again, and let H be a Haar measure on A.
Also let U be an open set in A such that H(U) <∞. Note that U∩(a+A0) is an
open set in A for every a ∈ A, because A0 is an open set in A. If U∩(a+A0) ̸= ∅,
then it follows that

H(U ∩ (a+A0)) > 0.(2.56)

If n is a positive integer, then there are at most finitely many distinct cosets of
A0 in A whose intersection with U has Haar measure greater than or equal to
1/n, because distinct cosets of A0 are pairwise disjoint in A, and H(U) < ∞.
This implies that (2.56) holds for at most finitely or countably many distinct
cosets of A0 in A. This shows that U is contained in the union of finitely or
countably many translates of A0 in A under these conditions.

If E ⊆ A is a Borel set and H(E) < ∞, then there is an open set U ⊆ A
such that E ⊆ U and H(U) < ∞, by the outer regularity of H on A. This
implies that E is contained in the union of finitely or countably many translates
of A0 in A, as in the previous paragraph. The same conclusion holds when E
is σ-finite with respect to H, in the sense that E can be expressed as the union
of finitely or countably many Borel sets with finite measure with respect to H.
If f is a complex-valued Borel measurable function on A that is integrable with
respect to H, then the set of x ∈ A such that f(x) ̸= 0 is a Borel measurable
set which is σ-finite with respect to H.

2.8 Real and complex measures

Let X be a set, and let A be a σ-algebra of measurable subsets of X. A real
or complex measure on (X,A) is a real or complex-valued function µ on A,
as appropriate, that is countably additive. This means that for each sequence
A1, A2, A3, . . . of pairwise-disjoint measurable subsets of X, we have that

∞∑
j=1

µ(Aj) = µ
( ∞∪

j=1

Aj

)
,(2.57)

where the convergence of the series on the left side of the equation is part of
the condition. It follows that this series should converge absolutely, since the
same condition could be applied to any rearrangement of the Aj ’s. Note that
this condition implies in particular that µ(∅) = 0, and that real measures are
also known as signed measures.

Let µ be a real or complex measure on (X,A), and let A be a measurable
subset of X. The corresponding total variation measure |µ| is defined by putting

|µ|(A) = sup

{ ∞∑
j=1

|µ(Ej)| : E1, E2, E3, . . . is a sequence of pairwise-

disjoint measurable sets such that

∞∪
j=1

Ej = A

}
.(2.58)



2.8. REAL AND COMPLEX MEASURES 51

Each of the sums in the supremum is finite, as in the preceding paragraph,
and it is well known that (2.58) is finite. One can check that |µ| is countably
additive, so that |µ| is a finite nonnegative measure on (X,A). This measure
can be characterized as the smallest nonnegative measure on (X,A) such that

|µ(A)| ≤ |µ|(A)(2.59)

for every measurable set A ⊆ X.

If µ is a real measure on (X,A), then

µ+ = (|µ|+ µ)/2, µ− = (|µ| − µ)/2(2.60)

are finite nonnegative measures on (X,A), by (2.59). Observe that

µ = µ+ − µ− and |µ| = µ+ + µ−.(2.61)

This expression for µ is known as the Jordan decomposition of µ. If µ is a
complex measure on (X,A), then the real and imaginary parts of µ are real
measures on (X,A). In particular, µ can be expressed as a linear combination
of finite nonnegative measures on (X,A), using the Jordan decompositions of
the real and imaginary parts of µ.

Let µ be a real or complex measure on (X,A). If f is a bounded real or
complex-valued function on X that is measurable with respect to A, then∫

X

f dµ(2.62)

can be defined as a real or complex number, as appropriate. More precisely,
one can reduce to integrals with respect to nonnegative measures by expressing
µ as a linear combination of finite nonnegative measures on (X,A), as in the
previous paragraph. We also have that∣∣∣∣∫

X

f dµ

∣∣∣∣ ≤ ∫
X

|f | d|µ|(2.63)

for all such functions f . If µ is a real measure on X, then this can be derived
from (2.61) and the analogous fact for integrals with respect to nonnegative
measures. If µ is a complex measure on X, then one can get an inequality like
this with an extra constant on the right side, by applying the previous argument
to the real and imaginary parts of µ. If f is a measurable simple function on
X, then the integral (2.62) can be defined in terms of µ directly, and (2.63) can
be derived from (2.59). The same inequality for arbitrary bounded measurable
functions on X can be obtained by approximation by simple functions. The
integral (2.62) can also be defined for measurable functions f on X that are
integrable with respect to |µ|, with the same estimate (2.63). This uses the fact
that µ can be expressed as a linear combination of nonnegative measures on
(X,A) that are bounded by |µ|.
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Let ν be a nonnegative measure on (X,A). If g is a nonnegative real-valued
function on X that is measurable with respect to A, then

νg(A) =

∫
A

g dν(2.64)

defines a nonnegative measure on (X,A), by the monotone convergence theorem.
If f is another nonnegative real-valued measurable function on X, then∫

X

f dνg =

∫
X

f g dν.(2.65)

This follows directly from the definition of νg when f is a simple function, and
otherwise one can approximate f by simple functions, as usual. In particular,
this implies that f is integrable with respect to νg if and only if f g is integrable
with respect to ν. If f is any real or complex-valued measurable function on
X, then it follows that f is integrable with respect to νg if and only if f g
is integrable with respect to ν. In this case, (2.65) can be derived from the
analogous statement for nonnegative real-valued measurable functions on X, by
expressing f as a linear combination of nonnegative functions that satisfy the
same integrability conditions.

Now let g be a real or complex-valued function on X that is measurable
with respect to A and integrable with respect to ν. One can verify that (2.64)
defines a real or complex measure on (X,A) under these conditions, using the
dominated convergence theorem. Of course, |g| is a nonnegative real-valued
function on X that is measurable with respect to A and integrable with respect
to ν, so that ν|g| can be defined as a finite nonnegative measure on (X,A) in the
same way. It is well known that ν|g| is the same as the total variation measure
|νg| associated to νg. Note that νg can be expressed as a linear combination of
finite nonnegative measures on (X,A) by expressing g as a linear combination
of nonnegative real-valued measurable functions that are integrable with respect
to ν. If f is a bounded real or complex-valued measurable function on X, then
the integral of f with respect to νg can be given as in (2.65). This also works
when f is integrable with respect to ν|g|, which is the same as saying that f g
is integrable with respect to ν.

Let µ be any real or complex measure on (X,A) again. It is well known
that there is a real or complex-valued measurable function h on X such that
|h(x)| = 1 for every x ∈ X and

µ(A) = |µ|h(A) =
∫
A

h d|µ|(2.66)

for every measurable set A ⊆ X. This uses the Radon–Nikodym theorem, and
it is basically the same as the Hahn decomposition in the real case.

2.9 Vanishing at infinity

Let X be a locally compact Hausdorff topological space. A real or complex-
valued function f on X is said to vanish at infinity on X if for each ϵ > 0 there
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is a compact set K ⊆ X such that

|f(x)| < ϵ(2.67)

for every x ∈ X \ K. If X is equipped with the discrete topology, then this
reduces to the condition mentioned in Section 2.1. Let C0(X,R) and C0(X,C)
be the spaces of real and complex-valued continuous functions on X, respec-
tively, that vanish at infinity. These are subalgebras of the algebras Cb(X,R)
and Cb(X,C) of real and complex-valued bounded continuous functions on X,
respectively. One can also check that C0(X,R) and C0(X,C) are closed sets in
Cb(X,R) and Cb(X,C), respectively, with respect to the topologies determined
by the corresponding supremum norms. IfX is equipped with the discrete topol-
ogy, then C0(X,R) and C0(X,C) are the same as c0(X,R) and c0(X,C), re-
spectively, and Cb(X,R) and Cb(X,C) are the same as ℓ∞(X,R) and ℓ∞(X,C),
respectively.

If a real or complex-valued function f on X has compact support, then
f vanishes at infinity on X. In particular, if X is compact, then every real
or complex-valued function on X automatically vanishes at infinity, so that
C0(X,R) and C0(X,C) are the same as C(X,R) and C(X,C), respectively.
Otherwise, C0(X,R) and C0(X,C) are the same as the closures of Ccom(X,R)
and Ccom(X,C) in Cb(X,R) and Cb(X,C), respectively, with respect to the
topologies determined by the corresponding supremum norms. To see this, one
can approximate a continuous real or complex-valued function f on X that van-
ishes at infinity uniformly by continuous functions on X with compact support
using the version of Urysohn’s lemma mentioned in Section 2.4. One can also
approximate f by functions with compact support by composing f with suitable
continuous functions on R or C, as appropriate.

Let µ be a real or complex Borel measure on X, and let |µ| be the corre-
sponding total variation measure on X, as in the previous section. If f is a real
or complex-valued bounded Borel measurable function on X, as appropriate,
then the integral of f with respect to µ on X can be defined in standard ways,
as before. Using (2.63), we get that∣∣∣∣∫

X

f dµ

∣∣∣∣ ≤ |µ|(X) sup
x∈X

|f(x)|.(2.68)

Remember that |µ|(X) <∞, as mentioned in the previous section.
Now let λ be a continuous linear functional on C0(X,R) or C0(X,C), with

respect to the topology determined by the supremum norm. Another version of
the Riesz representation theorem states that there is a unique real or complex
Borel measure µ on X, as appropriate, such that

λ(f) =

∫
X

f dµ(2.69)

for every f ∈ C0(X,R) or C0(X,C), as appropriate, and where µ satisfies
some additional regularity properties. More precisely, the corresponding total
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variation measure |µ| should be outer regular on X, in the sense that

|µ|(E) = inf{|µ|(U) : U ⊆ X is an open set, and E ⊆ U}(2.70)

for every Borel set E ⊆ X. Similarly, |µ| should be inner regular on X, in the
sense that

|µ|(E) = sup{|µ|(K) : K ⊆ X is compact, and K ⊆ E}(2.71)

for every Borel set E ⊆ X. In this situation, |µ|(X) is equal to the dual norm of
λ with respect to the supremum norm on C0(X,R) or C0(X,C), as appropriate,
as in (1.151) in Section 1.18.

Let us suppose from now on in this section that X is equipped with the
discrete topology. Let g be a real or complex-valued summable function on X,
and put

µg(E) =
∑
x∈E

g(x)(2.72)

for every subset E of X. This is interpreted as being equal to 0 when E = ∅,
and otherwise the sum can be defined as in Section 2.1, since the restriction of
g to E is summable on E. This defines a real or complex Borel measure on X,
as appropriate, for which the corresponding total variation measure is given by

|µg|(E) =
∑
x∈E

|g(x)|(2.73)

for every E ⊆ X. The outer regularity condition (2.70) is trivial in this case,
because every subset of X is an open set, and the inner regularity condition
(2.71) follows from the definition of the sum in (2.73) as the supremum of the
corresponding finite subsums.

If f is a bounded real or complex-valued function onX, then f g is summable
on X, and we put

λg(f) =
∑
x∈X

f(x) g(x).(2.74)

Note that f is automatically Borel measurable on X in this situation, and that
(2.74) is the same as the integral of f on X with respect to (2.72). We also have
that

|λg(f)| ≤
∑
x∈X

|f(x)| |g(x)| ≤ ∥f∥∞∥g∥1,(2.75)

where ∥g∥1 is as in (2.5) in Section 2.1, and ∥f∥∞ is as in (2.17) in Section
2.2. Thus λg defines a continuous linear functional on ℓ∞(X,R) or ℓ∞(X,C),
as appropriate, with dual norm less than or equal to ∥g∥1. It is easy to see
that the dual norm is equal to ∥g∥1, by considering a bounded function f with
∥f∥∞ ≤ 1 such that

f(x) g(x) = |g(x)|(2.76)

for every x ∈ X.
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Let us now consider the restriction of λg to c0(X,R) or c0(X,C), as ap-
propriate. The restriction of λg defines a continuous linear functional on that
space, with respect to the supremum norm again. The corresponding dual norm
of λg is still less than or equal to ∥g∥1, because of (2.75). To check that the
dual norm is equal to ∥g∥1 in this situation as well, one can consider real or
complex-valued functions f on X with finite support such that ∥f∥∞ ≤ 1 and
(2.76) holds when f(x) ̸= 0. This implies that

λg(f) =
∑
x∈X

f(x) ̸=0

|g(x)|,(2.77)

which can be used to approximate ∥g∥1.
Let λ be any continuous linear functional on c0(X,R) or c0(X,C), with

respect to the supremum norm. It is well known that there is a real or complex-
valued function g on X, as appropriate, such that g is summable on X, and

λ(f) = λg(f)(2.78)

for every real or complex-valued function f on X, as appropriate, that vanishes
at infinity on X. It is easy to first find a real or complex-valued function g on
X, as appropriate, such that (2.78) holds when f has finite support in X, with
λg(f) defined as in (2.74). Using such functions f as in the previous paragraph,
one can verify that g is summable on X, with ∥g∥1 less than or equal to the dual
norm of λ. To show that (2.78) holds for every real or complex-valued function
f on X that vanishes at infinity, one can approximate f by functions with finite
support on X, and use the continuity of λ and λg.

2.10 Mappings and measurability

Let X and Y be sets, and let f be a mapping from X into Y . Suppose for the
moment that AX and AY are σ-algebras of subsets of X and Y , respectively.
As usual, f is said to be measurable with respect to AX and AY if for every
E ∈ AY , we have that f−1(E) ∈ AX . Let Z be another set, and let AZ be a
σ-algebra of measurable subsets of Z. If f : X → Y is measurable with respect
to AX and AY , and g : Y → Z is measurable with respect to AY and AZ , then
their composition g ◦ f is measurable as a mapping from X into Z with respect
to AX and AZ , by standard arguments.

If AY is any σ-algebra of subsets of Y , then it is easy to see that

{f−1(E) : E ∈ AY }(2.79)

is a σ-algebra of subsets of X. By construction, f is measurable with respect
to (2.79) on X and AY on Y , and any other σ-algebra of subsets of X with this
property contains (2.79).

Similarly, if AX is any σ-algebra of subsets of X, then

{E ⊆ Y : f−1(E) ∈ AX}(2.80)
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is a σ-algebra of subsets of Y . Clearly f is measurable with respect to AX on
X and (2.80) on Y , and any other σ-algebra of subsets of Y with this property
is contained in (2.80).

Let EY be any collection of subsets of Y , and letAY be the smallest σ-algebra
of subsets of Y that contains EY . Also let AX be any σ-algebra of subsets of
X, and suppose that

f−1(E) ∈ AX(2.81)

for every E ∈ EY . This is the same as saying that EY is contained in (2.80). It
follows that AY is contained in (2.80), because (2.80) is a σ-algebra of subsets
of Y , and using the definition of AY . This shows that f is measurable with
respect to AX on X and AY on Y under these conditions.

Put
EX = {f−1(E) : E ∈ EY },(2.82)

and let AX be the smallest σ-algebra of subsets of X that contains EX . Let
us check that AX is the same as (2.79) in this situation. The remarks in the
previous paragraph imply that f is measurable with respect to AX on X and
AY on Y , which means that (2.79) is contained in AX . Of course, (2.82) is
contained in (2.79), because EY ⊆ AY , by construction. This implies that AX

is contained in (2.79), because (2.79) is a σ-algebra.
Suppose for the moment that X and Y are topological spaces, and let AX

and AY be the corresponding σ-algebras of Borel sets in X and Y , respectively.
If f is continuous, then it is well known that f is Borel measurable, which is
to say that f is measurable with respect to AX and AY . This follows from the
criterion (2.81), with EY taken to be the topology on Y .

Let τY be a topology on Y , and observe that

{f−1(V ) : V ∈ τY }(2.83)

defines a topology on X. By construction, f is continuous with respect to (2.83)
on X and τY on Y , and (2.83) is the weakest topology on X with this property.
If BY is a base for τY , then

{f−1(V ) : V ∈ BY }(2.84)

is a base for (2.83). Similarly, if BY is a sub-base for τY , then (2.84) is a sub-base
for (2.83).

Let us take EY = τY , so that EX in (2.82) is the same as (2.83). Thus the
smallest σ-algebra AY of subsets of Y that contains EY is the same as the σ-
algebra of Borel sets in Y with respect to τY , and the smallest σ-algebra AX of
subsets of X that contains EX is the same as the σ-algebra of Borel sets in X
with respect to the topology (2.83). Using the earlier remarks, we get that AX

is the same as (2.79), so that Borel sets in X are the same as inverse images of
Borel sets in Y under f .

Suppose now that X is a subset of Y , and that f : X → Y is the correspond-
ing inclusion mapping, so that f(x) = x for every x ∈ X. If E is any subset of
Y , then

f−1(E) = E ∩X(2.85)
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in this case. Let τY be a topology on Y , and observe that (2.83) is the same
as the topology induced on X by τY . The remarks in the previous paragraph
imply that a subset of X is a Borel set with respect to the induced topology if
and only if it can be expressed as E∩X for some Borel set E in Y . In particular,
if E is a Borel set in Y , and E ⊆ X, then E is a Borel set in X with respect to
the induced topology, because E = E ∩X.

Suppose that X is a Borel set in Y . If E is another Borel set in Y , then
E ∩ X is a Borel set in Y too. This implies that every Borel set in X with
respect to the induced topology is a Borel set in Y in this case, by the remarks
in the preceding paragraph. It follows that the Borel sets in X with respect to
the induced topology are the same as the Borel sets in Y that are also contained
in X, since the other half of this statement always holds, as mentioned in the
previous paragraph.

2.11 Pushing measures forward

Let X, Y be sets, and let AX , AY be σ-algebras of measurable subsets of X
and Y , respectively. Also let h : X → Y be a mapping which is measurable
with respect to AX and AY , in the sense that for every E ∈ AY , we have that
h−1(E) ∈ AX , as in the previous section. If µ is a nonnegative measure on
(X,AX), then it is easy to see that

ν(E) = µ(h−1(E))(2.86)

defines a nonnegative measure on (Y,AY ). If f is a nonnegative measurable
function on Y , then f ◦ h is measurable on X, and∫

X

f ◦ h dµ =

∫
Y

f dν.(2.87)

More precisely, this follows from (2.86) when f is the indicator function on Y
associated to a measurable subset of Y . If f is a nonnegative measurable simple
function on Y , then (2.87) can be obtained from the previous statement by
linearity. To get (2.87) for an arbitrary nonnegative measurable function f on
Y , one can approximate f by simple functions in the usual way. If f is a real or
complex-valued measurable function on Y , then f ◦ h is measurable on X too.
Of course, |f | is nonnegative and measurable on Y , and∫

X

|f ◦ h| dµ =

∫
Y

|f | dν,(2.88)

by (2.87) applied to |f |. If these integrals are finite, so that f is integrable on
Y with respect to ν and f ◦ h is integrable on X with respect to µ, then one
can check that (2.87) holds.

Similarly, if µ is a real or complex measure on (X,AX), then (2.86) defines
a real or complex measure on (Y,AY ), as appropriate. In this case, the total
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variation measure |µ| associated to µ defines a finite nonnegative measure on
(X,AX), so that

σ(E) = |µ|(h−1(E))(2.89)

defines a finite nonnegative measure on (Y,AY ). If E is a measurable subset of
Y , then

|ν(E)| = |µ(h−1(E))| ≤ |µ|(h−1(E)) = σ(E).(2.90)

This implies that
|ν|(E) ≤ σ(E)(2.91)

for every measurable set E ⊆ Y , as in Section 2.8. It follows that∫
Y

f d|ν| ≤
∫
Y

f dσ =

∫
X

f d|µ|(2.92)

for every nonnegative measurable function f on Y , using the analogue of (2.87)
for |µ| and σ in the second step. If f is a bounded real or complex-valued
measurable function on Y , then f ◦ h is bounded and measurable on X, and
(2.87) holds. The integrals in (2.87) can be defined as in Section 2.8, and one
can get (2.87) by reducing to the case of nonnegative measures. This also works
when f is a real or complex-valued measurable function on Y such that f ◦ h
is integrable on X with respect to |µ|, which is the same as saying that f is
integrable on Y with respect to σ, as before.

Suppose now that X and Y are topological spaces, equipped with the corre-
sponding σ-algebras of Borel sets. Let h be a continuous mapping from X into
Y , which implies that h is Borel measurable, as in the previous section. Let
us also ask that X and Y be Hausdorff, so that compact subsets of X and Y
are closed sets. Let µ be a nonnegative Borel measure on X, and let ν be the
corresponding Borel measure on Y , as in (2.86). Let E ⊆ Y be a Borel set, and
let K be a compact subset of X contained in h−1(E). Thus h(K) is a compact
subset of Y that is contained in E. Observe that

ν(h(K)) = µ(h−1(h(K))) ≥ µ(K),(2.93)

since K ⊆ h−1(h(K)). If µ(K) approximates µ(h−1(E)), then it follows that
ν(h(K)) approximates ν(E). This is a basic way to get inner regularity condi-
tions for ν from analogous conditions for µ. Similarly,

h−1(E \ h(K)) = h−1(E) \ h−1(h(K)) ⊆ h−1(E) \K,(2.94)

which implies that

ν(E \ h(K)) = µ(h−1(E \ h(K))) ≤ µ(h−1(E) \K).(2.95)

Suppose that h is also proper, in the sense that h−1(E) is a compact subset
of X for every compact set E ⊆ Y . If µ is finite on compact subsets of X,
then it follows that ν is finite on compact subsets of Y . Let us suppose now
that X and Y are locally compact. If f is a continuous real or complex-valued
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function on Y with compact support, then f ◦ h is a continuous function with
compact support on X. If λ is a nonnegative linear functional on Ccom(X,R)
or Ccom(X,C), then

f 7→ λ(f ◦ h)(2.96)

is a nonnegative linear functional on Ccom(Y,R) or Ccom(Y,C), as appropriate.
Similarly, if f is a continuous real or complex-valued function on X that van-
ishes at infinity, then f ◦ h vanishes at infinity on Y . If λ is a continuous linear
functional on C0(X,R) or C0(X,C) with respect to the supremum norm, then
(2.96) defines a continuous linear functional on C0(Y,R) or C0(Y,C), as appro-
priate, with respect to the corresponding supremum norm. This uses the fact
that the supremum norm of f ◦ h on X is less than or equal to the supremum
norm of f on Y . This gives another way to look at pushing measures forward
in this situation, in connection with the representation theorems mentioned in
Sections 2.4 and 2.9.

2.12 Monotone classes

Let X be a set. A collection M of subsets of X is said to be a monotone class
if it has the following two properties. First, if A1, A2, A3, . . . is a sequence of
elements of M such that Aj ⊆ Aj+1 for every j ≥ 1, then

∪∞
j=1Aj ∈ M.

Second, if B1, B2, B3, . . . is a sequence of elements of M such that Bj+1 ⊆ Bj

for every j ≥ 1, then
∩∞

j=1Bj ∈ M. Clearly σ-algebras are monotone classes.
Let E be an algebra of subsets of X. It is well known that the smallest

σ-algebra of subsets of X that contains E is the same as the smallest monotone
class of subsets of X that contains E . Of course, the former automatically
contains the latter, because σ-algebras are monotone classes.

Let X and Y be sets, and suppose that AX and AY are σ-algebras of subsets
of X and Y , respectively. If A ∈ AX and B ∈ AY , then A × B is said to be
a measurable rectangle in X × Y . Let EX×Y be the collection of subsets of
X × Y that can be expressed as the union of finitely many pairwise-disjoint
measurable rectangles, which are sometimes described as elementary sets in
this situation. It is well known and not too difficult to check that EX×Y is an
algebra of subsets of X × Y . In the usual product measure construction, the
collection AX×Y of measurable subsets of X × Y is defined to be the smallest
σ-algebra that contains all measurable rectangles. This is clearly the same as
the smallest σ-algebra of subsets of X×X that contains E . Equivalently, this is
the smallest monotone class of subsets of X × Y that contains E , by the result
mentioned in the preceding paragraph.

Let X be a set again, and let A be a σ-algebra of measurable subsets of X.
Also let µ and ν be real or complex measures defined on (X,A), and let M0 be
the collection of measurable sets A ∈ A such that

µ(A) = ν(A).(2.97)

It is easy to see that M0 is a monotone class of subsets of X. Suppose that E0 is
an algebra of subsets ofX contained inA such that (2.97) holds for every A ∈ E0,
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so that E ⊆ M0. Let A0 be the smallest σ-algebra of subsets of X that contains
E0, and observe that A0 ⊆ A. Equivalently, A0 is the smallest monotone class
of subsets of X that contains E , as before. It follows that A0 ⊆ M0, which
means that (2.97) holds for every A ∈ A0. Of course, we could reduce to the
case where ν = 0 here, by replacing µ with µ− ν. However, if µ and ν are finite
nonnegative measures on (X,A), then one can use the argument just given,
without using signed measures.

Now let µ be a real or complex measure on (X,A), and let ν be a finite
nonnegative measure on (X,A). As before, it is easy to see that the collection
M1 of measurable sets A ∈ A such that

|µ(A)| ≤ ν(A)(2.98)

is a monotone class of subsets of X. Let E1 be an algebra of subsets of X
such that E1 ⊆ A and (2.98) holds for every A ∈ E1. Consider the smallest σ-
algebra A1 of subsets of X that contains E1, so that A1 ⊆ A automatically. The
result about monotone classes mentioned earlier implies that A1 is the smallest
monotone class of subsets that contains E1. Thus A1 ⊆ M1, because E1 ⊆ M1,
by construction. It follows that (2.98) holds for every A ∈ A1.

2.13 Product spaces

Let X and Y be sets, and let AX and AY be σ-algebras of measurable subsets of
X and Y , respectively. This leads to a σ-algebra AX×Y of measurable subsets
of X × Y in a standard way, as in the previous section. Let µX and µY be
nonnegative measures on (X,AX) and (Y,AY ), respectively, and suppose that
µX and µY are σ-finite on X and Y . Under these conditions, the usual product
measure construction leads to a nonnegative measure µx×µY on (X×Y,AX×Y )
such that

(µX × µY )(A×B) = µX(A)µY (B)(2.99)

for every A ∈ AX and B ∈ AY . As usual, the right side of (2.99) is interpreted
as being equal to 0 when µX(A) = 0 or µY (B) = 0, even if the other is equal
to +∞. Of course, µX × µY is finite on X × Y when µX and µY are finite.
Otherwise, it is easy to see that µX × µY is σ-finite on X × Y , because of the
σ-finiteness of µX and µY .

The product measure µX×µY is uniquely determined as a nonnegative mea-
sure on (X × Y,AX×Y ) by (2.99). More precisely, if EX×Y is the corresponding
algebra of elementary subsets of X×Y , as in the previous section, then µX×µY

is determined on EX×Y by (2.99) and finite additivity. Suppose for the moment
hat µX and µY are finite onX and Y , so that any nonnegative measure onX×Y
that satisfies (2.99) is finite on X × Y . In this case, uniqueness of µX × µY on
AX×Y can be obtained from the remarks in the previous section. Otherwise, if
µX and µY are σ-finite on X and Y , respectively, then one can reduce to the
finite case, by considering products of measurable sets with finite measure.

Now let X and Y be topological spaces, so that X×Y is a topological space
too, with respect to the product topology. Let AX and AY be the corresponding
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σ-algebras of Borel sets in X and Y , respectively. This leads to a σ-algebra
AX×Y of measurable sets in X × Y , as before, which is the smallest σ-algebra
that contains all measurable rectangles in X × Y . Let us compare this with
the σ-algebra of Borel sets in X ×Y , corresponding to the product topology on
X × Y .

Let pX and pY be the obvious coordinate projections from X × Y into X
and Y , respectively, which are continuous mappings with respect to the product
topology onX×Y . As in Section 2.10, pX and pY are Borel measurable, because
they are continuous. If A ⊆ X and B ⊆ Y are Borel sets, then it follows that
p−1
X (A) = A × Y and p−1

Y (B) = X × B are Borel sets in X × Y . This implies
that

A×B = (A× Y ) ∩ (X ×B)(2.100)

is a Borel set in X × Y , so that AX×Y is contained in the σ-algebra of Borel
sets in X × Y . If every open set in X × Y is an element of AX×Y , then every
Borel set in X × Y is an element of AX×Y too.

Let BX and BY be bases for the topologies on X and Y , respectively. This
implies that

BX×Y = {U × V : U ∈ BX , V ∈ BY }(2.101)

is a base for the corresponding product topology on X × Y , by standard argu-
ments. Thus every open set in X × Y can be expressed as a union of elements
of (2.101), and

BX×Y ⊆ AX×Y ,(2.102)

by construction. If BX and BY has only finitely or countably many elements,
then BX×Y has only finitely or countably many elements. This implies that
AX×Y contains all open subsets of X × Y under these conditions.

If X, Y are locally compact Hausdorff topological spaces, then X × Y is a
locally compact Hausdorff topological space as well, with respect to the product
topology. If µX and µY have suitable regularity properties, then a product
measure can be constructed as a nonnegative Borel measure on X × Y with
suitable regularity properties. One can look at this in terms of nonnegative
linear functionals on spaces of continuous functions with compact support, as
in Section 2.4. More precisely, if λX and λY are nonnegative linear functionals
on Ccom(X,R) and Ccom(Y,R), respectively, then one can define a product
nonnegative linear functional on Ccom(X×Y,R), basically by applying λX and
λY to a continuous function f(x, y) on X × Y with compact support in each
variable separately. This leads to a nonnegative Borel measure on X × Y with
suitable regularity properties, as before.

If A, B are locally compact commutative topological groups, then A×B is
a locally compact commutative topological group with respect to the product
topology, and where the group operations are defined coordinatewise. Haar
measure on A × B can be obtained from Haar measures on A and B as in the
preceding paragraph.
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2.14 Infinite products

It is well known that a product probability measure can be defined on any
product of probability spaces. Let X1, X2, X3, . . . be a sequence of topological
spaces, and let X =

∏∞
j=1Xj be their Cartesian product, equipped with the

product topology. Also let Bj be a base for the topology of Xj for each j. If
n is a positive integer, then let B(n) be the collection of subsets of X of the
form U =

∏∞
j=1 Uj , where Uj ∈ Bj when j ≤ n, and Uj = Xj when j > n. The

elements of B(n) are open sets in X for every n, and

B =

∞∪
n=1

B(n)(2.103)

is a base for the product topology onX. If Bj has only finitely or countably many
elements for each j, then B(n) has only finitely or countably many elements,
and hence B has only finitely or countably many elements. If we use Borel sets
in Xj as measurable sets for each j, then the elements of B are measurable
in X with respect to the usual product construction. If B has only finitely
or countably many elements, then it follows that every open set in X with
respect to the product topology is measurable with respect to the usual product
construction. This implies that Borel sets in X with respect to the product
topology are measurable with respect to the usual product construction under
these conditions.

Let I be a nonempty set, and letXj be a compact Hausdorff topological space
for each j ∈ I. Thus X =

∏
j∈I Xj is a compact Hausdorff space with respect

to the product topology, by Tychonoff’s theorem. In this situation, the product
of regular Borel probability measures on the Xj ’s can be defined as a regular
Borel probability measure on X. One can look at this in terms of nonnegative
linear functionals on the corresponding spaces of continuous functions, as in
the previous section. Of course, the condition that the measure of a compact
Hausdorff space be equal to 1 means that the associated linear functional take
the value 1 on the constant function equal to 1 on the space.

If Aj is a compact commutative topological group for each j ∈ I, then
A =

∏
j∈I Aj is a compact commutative topological group with respect to the

product topology, and where the group operations are defined coordinatewise.
If Haar measure on Aj is normalized so that the measure of Aj is 1 for each
j ∈ I, then Haar measure on A can be obtained as in the previous paragraph.

Let X1, X2, X3, . . . be a sequence of locally compact Hausdorff topological
spacesthat are not compact, and let Yj be a one-point compactification of Xj for
each j. A Borel probability measure on Xj with suitable regularity properties
corresponds to a regular Borel probability measure on Yj such that the set con-
sisting of the point at infinity has measure 0. Given such probability measures
for each j, one can get a regular Borel probability measure on Y =

∏∞
j=1 Yj as

before. One can consider X =
∏∞

j=1Xj as a Gδ set in Y , whose complement
has measure 0. Thus we get a Borel probability measure on X under these
conditions.
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Let X1, X2, X3, . . . be a sequence of topological spaces, and let X =
∏∞

j=1Xj

be their product again, equipped with the product topology. Also let µ be a
finite nonnegative Borel measure on X. Let pj : X → Xj be the standard
coordinate projection for each j, and let µj be the Borel measure defined on Xj

by
µj(Ej) = µ(p−1

j (Ej))(2.104)

for every Borel set Ej ⊆ Xj and j ≥ 1. This is the same as the Borel measure
on Xj obtained by pushing µ forward using pj , as in Section 2.11. If µ is given
by a product of probability measures on the Xj ’s, then the µj ’s will be those
probability measures. Let Ej ⊆ Xj be a Borel set for each j, and observe that
p−1
j (Ej) is a Borel set in X for each j, because pj is continuous. This implies

that

E =

∞∏
j=1

Ej =

∞∩
j=1

p−1
j (Ej)(2.105)

is a Borel set in X. If Ej is a compact subset of Xj for each j, then E is compact
in X, by Tychonoff’s theorem. Of course,

X \ E = X \
( ∞∩

j=1

p−1
j (Ej)

)
=

∞∪
j=1

(X \ p−1
j (Ej)) =

∞∪
j=1

p−1
j (Xj \ Ej).(2.106)

It follows that

µ(X \ E) ≤
∞∑
j=1

µ(p−1
j (Xj \ Ej)) =

∞∑
j=1

µj(Xj \ Ej).(2.107)

2.15 Completeness

Let X be a metric space, and let µ be a finite nonnegative Borel measure on
X. If X is separable, then for each r > 0, X can be covered by only finitely
or countably many closed balls of radius r. This implies that for each r > 0
and ϵ > 0 there is a subset E(r, ϵ) of X such that E(r, ϵ) is the union of finitely
many closed balls of radius r, and

µ(X \ E(r, ϵ)) < ϵ.(2.108)

Using this, one can check that for each ϵ > 0 there is a closed set E(ϵ) ⊆ X
such that E(ϵ) is totally bounded in X, and

µ(X \ E(ϵ)) < ϵ.(2.109)

If X is also complete as a metric space, then E is compact in X, which is a
well-known way of getting this type of inner regularity.

Let (Xj , dj) be a metric space for each positive integer j, and let X =∏∞
j=1Xj be the Cartesian product of the Xj ’s. Put

d̃l(x, y) = dl(xl, yl)(2.110)
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for each l ≥ 1 and x, y ∈ X, where xl, yl denote the lth coordinates of x, y in
Xl. This defines a semimetric on X for each l ≥ 1, as in Section 1.8, and the
collection of these semimetrics determines a topology on X as in Section 1.3.
This is the same as the product topology on X associated to the topologies on
the Xj ’s determined by the dj ’s, as before. Put

d̃′l = min(dl(x, y), 1/l)(2.111)

for every l ≥ 1 and x, y ∈ X, and

d(x, y) = max
l≥1

d̃′l(x, y)(2.112)

for every x, y ∈ X. As in Section 1.4, (2.111) defines a semimetric on X that
determines the same topology on X as (2.110) for each l, and (2.112) defines
a metric on X which determines the same topology on X as the collection of
semimetrics (2.110), which is the product topology on X in this case. One can
check that a sequence of elements of X is a Cauchy sequence with respect to
(2.112) if and only if the corresponding sequences of lth coordinates are Cauchy
sequences in Xl for each l. If Xl is complete as a metric space with respect to
dl for each l, then it follows that X is complete as a metric space with respect
to (2.112).

Let A be a commutative topological group. A sequence {xj}∞j=1 of elements
of A is said to be a Cauchy sequence in A if

xj − xl → 0(2.113)

in A as j, l → ∞. More precisely, this means that for each open set U ⊆ A with
0 ∈ U there is a positive integer L such that

xj − xl ∈ U(2.114)

for every j, l ≥ L. Convergent sequences in A are Cauchy sequences, as usual.
If every Cauchy sequence in A converges to an element of A, then A is said to
be sequentially complete. If the topology on A is determined by a translation-
invariant metric d(·, ·), then a Cauchy sequence in A as a commutative topolog-
ical group is the same as a Cauchy sequence in A with respect to d(·, ·). In this
case, A is sequentially complete as a commutative topological group if and only
if A is complete as a metric space with respect to d(·, ·).

Let I be a nonempty set, and let Aj be a commutative topological group
for each j ∈ I. As in Section 1.8, the Cartesian product A =

∏
j∈I Aj is

a commutative topological group with respect to the corresponding product
topology, where the group operations are defined coordinatewise. It is easy to
see that a sequence of elements of A is a Cauchy sequence in A as a commutative
topological group if and only if for each j ∈ I, the corresponding sequence of
jth coordinates of the terms of the given sequence is a Cauchy sequence in Aj

as a commutative topological group. Of course, a sequence of elements of A
converges to some element of A if and only if for each j ∈ I, the corresponding
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sequence of jth coordinates of the terms of the given sequence converges in Aj

to the jth coordinate of the given element of A. It follows that A is sequentially
complete as a commutative topological group if and only if Aj is sequentially
complete as a commutative topological group for each j ∈ I.

2.16 Measures and bounded sets

Let X be a topological space, and let d(x, y) be a semimetric on X. Remember
that d also determines a topology on X, as in Section 1.2. Let us say that d is
compatible with the given topology on X if open sets in X with respect to d are
open with respect to the given topology on X as well. Of course, it suffices to
check that open balls in X with respect to d are open sets with respect to the
given topology on X. More precisely, it is enough to verify that for each x ∈ X
and r > 0, we have that x is an element of the interior of Bd(x, r) with respect
to the given topology on X. Here Bd(x, r) is the open ball in X centered at x
with radius r > 0 with respect to d, as in (1.23) in Section 1.2. This condition
is basically the same as saying that for every x ∈ X, d(x, y) is continous as a
real-valued function of y on X at x with respect to the given topology on X.

Let A be a commutative topological group, and let d(x, y) be a translation-
invariant semimetric on A. In order to check that d is compatible with the
given topology on A, it suffices to verify that d(0, y) is continuous as a real-
valued function of y on A at 0 with respect to the given topology on A.

Let X be any topological space again, and let d(x, y) be a semimetric on
X that is compatible with the given topology on X. Remember that Bd(x, r)
denotes the closed ball in X centered at x ∈ X with radius r ≥ 0 with respect
to d, as in (1.24) in Section 1.2. This is a closed set in X with respect to the
topology determined by d, as mentioned previously, and hence Bd(x, r) is a
closed set in X with respect to the given topology on X, because d is supposed
to be compatible with the given topology on X. Of course, for each x ∈ X, we
have that

∞∪
n=1

Bd(x, n) = X.(2.115)

If µ is a finite nonnegative Borel measure on X, then for every x ∈ X and ϵ > 0,
there is a positive integer n such that

µ(X \Bd(x, n)) < ϵ.(2.116)

Now let d1, d2, d3, . . . be a sequence of semimetrics on X, each of which is
compatible with the given topology on X. If µ is a finite nonnegative Borel
measure on X, j is a positive integer, xj ∈ X, and ϵj > 0, then there is a
positive integer nj such that

µ(X \Bdj
(xj , nj)) < ϵj ,(2.117)
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as in (2.116). If we do this for every positive integer j, then we get that

µ
(
X \

( ∞∩
j=1

Bdj (xj , nj)
))

= µ
( ∞∪

j=1

(X \Bdj (xj , nj))
)

(2.118)

≤
∞∑
j=1

µ(X \Bdj
(xj , nj)) ≤

∞∑
j=1

ϵj .

Let V be a topological vector space over the real or complex numbers. Let
us say that a seminorm N on V is compatible with the given topology on V if the
semimetric dN on V associated to N as in (1.45) in Section 1.5 is compatible
with the given topology on V , as before. This happens when N is continuous
at 0 with respect to the given topology on V , because dN is invariant under
translations on V , by construction. In this situation, one might typically apply
the remarks in the previous two paragraphs to balls centered at 0 in V with
respect to the semimetrics associated to compatible seminorms on V .

Let U ⊆ V be any open set that contains 0, and remember that

∞∪
n=1

nU = V,(2.119)

as in (1.146) in Section 1.17. If µ is a finite nonnegative Borel measure on V ,
then for every ϵ > 0 there is a positive integer n such that

µ(V \ nU) < ϵ.(2.120)

Similarly, if U1, U2, U3, . . . is a sequence of open subsets of V that contain 0, and
if ϵ1, ϵ2, ϵ3, . . . is a sequence of positive real numbers, then there is a sequence
n1, n2, n3, . . . of positive integers such that

µ(V \ nj Uj) < ϵj(2.121)

for every positive integer j. This implies that

µ
(
V \

∞∩
j=1

(nj Uj)
)

= µ
( ∞∪

j=1

(V \ (nj Uj))
)

(2.122)

≤
∞∑
j=1

µ(V \ (nj Uj)) ≤
∞∑
j=1

ϵj .

Of course, if U is a bounded set in V , then t U is bounded in V for every
t ∈ R or C, as appropriate. Suppose now that U1, U2, U3, . . . is a sequence of
open sets in V that contain 0 and form a local base for the topology of V at 0.
If {tj}∞j=1 is a sequence of real or complex numbers, as appropriate, then it is

easy to see that
∩∞

j=1 tj Uj is bounded in V .
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2.17 Products of complex measures

Let X and Y be sets, and let AX and AY be σ-algebras of measurable sub-
sets of X and Y , respectively. Also let AX×Y be the corresponding σ-algebra
of measurable subsets of X × Y , as in Section 2.12. Suppose that µX and
µY are complex measures on (X,AX) and (Y,AY ), respectively. Under these
conditions, one can get a complex measure µX × µY on (X × Y,AX×Y ) such
that

(µX × µY )(A×B) = µX(A)µY (B)(2.123)

for every A ∈ AX and B ∈ AY . To see this, remember that µX and µY can be
expressed as linear combinations of finite nonnegative measures on (X,AX) and
(Y,AY ), respectively, as in Section 2.8. The products of these finite nonnegative
measures on X and Y can be defined as finite nonnegative measures on X × Y
in the usual way, as mentioned in Section 2.13. Thus µX × µY can be obtained
by combining these products of finite nonnegative measures in a simple way.

If µX and µY are real measures on X and Y , respectively, then they can
be expressed as differences of finite nonnegative measures on these spaces, as in
Section 2.8 again. In this case, one can obtain µX × µY from the products of
these finite nonnegative measures a bit more easily. Note that µX ×µY is a real
measure on X × Y in this situation.

As in Section 2.13, µX × µY is uniquely determined as a complex measure
on (X × Y,AX×Y ) by (2.123). More precisely, let EX×Y be the corresponding
algebra of elementary subsets of X × Y , as in Section 2.12. As before, µX ×µY

is clearly uniquely determined on EX×Y by (2.123) and finite additivity. This
implies that µX × µY is uniquely determined as a complex measure on AX×Y ,
as in Section 2.12. This uses the fact that AX×Y is the same as the smallest
monotone class of subsets of X × Y that contains EX×Y .

Let |µX | and |µY | be the total variation measures on (X,AX) and (Y,AY )
that correspond to µX and µY as in Section 2.8, respectively. Thus |µX | and |µY |
are finite nonnegative measures on (X,AX) and (Y,AY ), respectively, so that
the corresponding product measure |µX |×|µY | is defined as a finite nonnegative
measure on (X × Y,AX×Y ). Observe that

|(µX × µY )(A×B)| = |µX(A)| |µY (B)|(2.124)

≤ |µX |(A) |µY |(B) = (|µX | × |µY |)(A×B)

for every A ∈ AX and B ∈ AY . This uses (2.123) in the first step, and its
analogue for |µX | × |µY | in the third step. The second step uses (2.59) in
Section 2.8, applied to both µX and µY . Using (2.124), one can check that

|(µX × µY )(E)| ≤ (|µX | × |µY |)(E)(2.125)

when E is an element of the algebra EX×Y of elementary subsets of X × Y .
This implies that (2.125) holds for every E ∈ AX×Y , as in Section 2.12, because
AX×Y is the smallest monotone class of subsets of X × Y that contains EX×Y .
It follows that

|µX × µY |(E) ≤ (|µX | × |µY |)(E)(2.126)
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for every E ∈ AX×Y , where |µX ×µY | is the total variation measure associated
to µX × µY as in Section 2.8.

Of course,
(|µX | × |µY |)(X × Y ) = |µX |(X) |µY |(Y ),(2.127)

as in (2.123). Let A1, A2, A3, . . . be a sequence of pairwise-disjoint elements of
AX such that

∪∞
j=1Aj = X, and let B1, B2, B3, . . . be a sequence of pairwise-

disjoint elements of AY such that
∪∞

l=1Bl = Y . Observe that( ∞∑
j=1

|µX(Aj)|
)( ∞∑

l=1

|µY (Bl)|
)

=

∞∑
j=1

∞∑
l=1

|µX(Aj)| |µY (Bl)|

=

∞∑
j=1

∞∑
l=1

|(µX × µY )(Aj ×Bl)|,(2.128)

using (2.123) in the second step. We also have that

∞∑
j=1

∞∑
l=1

|(µX × µY )(Aj ×Bl)| ≤ |µX × µY |(X × Y ),(2.129)

by the definition of the total variation measure |µX × µY |. This uses the fact
that the measurable rectangles Aj ×Bl with j, l ≥ 1 form a countable partition
of X × Y . Thus( ∞∑

j=1

|µX(Aj)|
)( ∞∑

l=1

|µY (Bl)|
)
≤ |µX × µY |(X × Y ),(2.130)

by combining (2.128) and (2.129). This implies that

|µX |(X) |µY |(Y ) ≤ |µX × µY |(X × Y ),(2.131)

by taking the supremum over all such sequences of Aj ’s and Bl’s, and using the
definition of total variation measures. Equivalently, this means that

(|µX | × |µY |)(X × Y ) ≤ |µX × µY |(X × Y ),(2.132)

by (2.127). Using this and (2.126), one can verify that

|µX × µY |(E) = (|µX | × |µY |)(E)(2.133)

for every E ∈ AX×Y . Otherwise, if there is a strict inequality in (2.126) for any
E ∈ AX×Y , then one would get a strict inequality for E = X × Y , which is not
possible, by (2.132).

Alternatively, µX and µY can be expressed as in (2.66) in Section 2.8. Using
this, one can obtain µX × µY from |µX | × |muY | in a similar way. This also
gives another way to look at (2.133). In the real case, one can use Hahn decom-
positions for µX and µY to get a Hahn decomposition for µX × µY in a simple
way. This gives another way to look at the total variation measures again.
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Now let X, Y be locally compact Hausdorff topological spaces, so that X×Y
is a locally compact Hausdorff topological space with respect to the product
topology. As in Section 2.9, real or complex Borel measures on X and Y with
suitable regularity properties correspond to continuous linear functionals on the
spaces of continuous real or complex-valued functions on X and Y that vanish
at infinity, as appropriate. In this situation, a product Borel measure on X ×Y
can be obtained from a corresponding product continuous linear functional on
the space of continuous real or complex-valued functions on X × Y that vanish
at infinity, as appropriate.

2.18 Hilbert spaces

Let V be a vector space over the real or complex numbers. An inner product
on V is a real or complex-valued function ⟨v, w⟩, as appropriate, defined for
v, w ∈ V , with the following three properties. First, for each w ∈ V , ⟨v, w⟩
should be a linear functional on V as a function of v. Second, we should have

⟨w, v⟩ = ⟨v, w⟩(2.134)

for every v, w ∈ V in the real case, and

⟨w, v⟩ = ⟨v, w⟩(2.135)

for every v, w ∈ V in the complex case. Here a denotes the complex-conjugate
of a ∈ C, as usual. In the real case, (2.134) implies that for each v ∈ V , ⟨v, w⟩
defines a linear functional on V as a function of w. Similarly, in the complex
case, (2.135) implies that for each v ∈ V , ⟨v, w⟩ is conjugate-linear as a function
of w on V . Note that ⟨v, v⟩ is a real number for every v ∈ V in the complex
case, because of (2.135). The third condition is that

⟨v, v⟩ > 0(2.136)

for every v ∈ V with v ̸= 0. Of course, ⟨v, w⟩ = 0 when v = 0 or w = 0, by the
linear properties of the inner product.

Let ⟨v, w⟩ be an inner product on V , and put

∥v∥ = ⟨v, v⟩1/2(2.137)

for every v ∈ V , using the nonnegative square root on the right side. It is easy
to see that

∥t v∥ = |t| ∥v∥(2.138)

for every v ∈ V and t ∈ R or C, as appropriate, using the linearity properties
of the inner product mentioned in the preceding paragraph. It is well known
that

|⟨v, w⟩| ≤ ∥v∥ ∥w∥(2.139)
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for every v, w ∈ V , which is the Cauchy–Schwarz inequality. This implies that

∥v + w∥ ≤ ∥v∥+ ∥w∥(2.140)

for every v, w ∈ V , by a standard computation, so that (2.137) defines a norm
on V as a vector space over R or C, as appropriate. If V is complete with
respect to the metric associated to this norm, then V is said to be a Hilbert
space.

Let X be a nonempty set, and let f , g be a real or complex-valued functions
that are 2-summable onX in the sense of Section 2.2, which is the same as saying
that f , g are square-summable on X. If a, b are nonnegative real numbers, then
it is well known that

a b ≤ (1/2) (a2 + b2),(2.141)

because (a− b)2 ≥ 0. This implies that

|f(x)| |g(x)| ≤ (1/2) (|f(x)|2 + |g(x)|2)(2.142)

for every x ∈ X, and it follows that |f(x)| |g(x)| is summable on X. Put

⟨f, g⟩ = ⟨f, g⟩ℓ2(X,R) =
∑
x∈X

f(x) g(x)(2.143)

in the real case, and

⟨f, g⟩ = ⟨f, g⟩ℓ2(X,C) =
∑
x∈X

f(x) g(x)(2.144)

in the complex case, where the sums are defined as in Section 2.1. It is easy to
see that (2.143) and (2.143) define inner products on ℓ2(X,R) and ℓ2(X,C), re-
spectively. The corresponding norms on these spaces are the ℓ2 norms discussed
in Section 2.2. It is well known that these spaces are complete with respect to
the metrics associated to the ℓ2 norms, as before, so that ℓ2(X,R) and ℓ2(X,C)
are Hilbert spaces.

Let (X,A, µ) be a measure space, so that X is a set, A is a σ-algebra of
measurable subsets of X, and µ is a nonnegative measure on (X,A). Let us use
L2(X,R) and L2(X,C) for the corresponding spaces of real and complex-valued
square-integrable functions on X, respectively. If f , g are real or complex-
valued square-integrable functions on X, then it is easy to see that |f(x)| |g(x)|
is integrable on X, using (2.141). As before, we put

⟨f, g⟩ = ⟨f, g⟩L2(X,R) =

∫
X

f(x) g(x) dµ(x)(2.145)

in the real case, and

⟨f, g⟩ = ⟨f, g⟩L2(X,C) =

∫
X

f(x) g(x) dµ(x)(2.146)
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in the complex case. These define inner products on L2(X,R) and L2(X,C),
respectively, for which the corresponding norms are the usual L2 norms,

∥f∥2 =
(∫

X

|f(x)|2 dµ(x)
)1/2

.(2.147)

It is well known that L2(X,R) and L2(X,C) are complete with respect to the
metrics associated to the L2 norms, so that these spaces are Hilbert spaces. Of
course, ℓ2 spaces as in the previous paragraph may be considered as L2 spaces
with respect to counting measure.

2.19 Orthogonal vectors

Let V be a vector space over the real or complex numbers with an inner product
⟨v, w⟩, and let ∥v∥ be the corresponding norm on V . As usual, two vectors
v, w ∈ V are said to be orthogonal when ⟨v, w⟩ = 0. Similarly, a collection of
vectors in V is said to be orthogonal if any two distinct vectors in the collection
are orthogonal. If v1, . . . , vn are finitely many orthogonal vectors in V , then∥∥∥∥ n∑

j=1

vj

∥∥∥∥2 =

n∑
j=1

∥vj∥2,(2.148)

by a standard computation. An orthogonal collection of vectors in V is said to
be orthonormal if every vector in the collection has norm 1.

Suppose that v1, . . . , vn are finitely many orthonormal vectors in V . If
t1, . . . , tn are real or complex numbers, as appropriate, then t1 v1, . . . , tn vn are
orthogonal in V , and hence ∥∥∥∥ n∑

j=1

tj vj

∥∥∥∥2 =

n∑
j=1

|tj |2,(2.149)

as in (2.148). Let v ∈ V be given, and put

w =

n∑
j=1

⟨v, vj⟩ vj .(2.150)

It is easy to see that v − w is orthogonal to vj for each j = 1, . . . , n, by con-
struction. This implies that v − w is orthogonal to every element of the linear
span of v1, . . . , vn in V . In particular, v − w is orthogonal to w, so that

∥v∥2 = ∥v − w∥2 + ∥w∥2 = ∥v − w∥2 +
n∑

j=1

|⟨v, vj⟩|2 ≥
n∑

j=1

|⟨v, vj⟩|2,(2.151)

using (2.149) in the second step. If u is any element of the linear span of
v1, . . . , vn in V , then w − u is an element of the linear span of v1, . . . , vn too.
Hence v − w is orthogonal to w − u, so that

∥v − u∥2 = ∥v − w∥2 + ∥u− w∥2 ≥ ∥v − w∥2,(2.152)
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as in (2.148).
Let I be a nonempty set, and let {vj}j∈I be an orthonormal family of vectors

in V , indexed by I. If v ∈ V and E is a nonempty finite subset of I, then∑
j∈E

|⟨v, vj⟩|2 ≤ ∥v∥2,(2.153)

by (2.151). This implies that∑
j∈I

|⟨v, vj⟩|2 ≤ ∥v∥2,(2.154)

where the sum on the left is defined as in Section 2.1. In particular, ⟨v, vj⟩ is
square-summable as a real or complex-valued function of j on I, as appropriate.

Let v ∈ V be given, let E be a nonempty finite subset of I, and let tj be a
real or complex number, as appropriate, for each j ∈ E. Put

u =
∑
j∈E

tj vj(2.155)

and
w =

∑
j∈E

⟨v, vj⟩ vj .(2.156)

Using (2.152), we get that∥∥∥∥v − ∑
j∈E

⟨v, vj⟩vj
∥∥∥∥ ≤

∥∥∥∥v − ∑
j∈E

tj vj

∥∥∥∥.(2.157)

Similarly, (2.151) implies that

∥v∥2 =

∥∥∥∥v − ∑
j∈E

⟨v, vj⟩vj
∥∥∥∥2 + ∑

j∈E

|⟨v, vj⟩|2.(2.158)

Suppose for the moment that v ∈ V is an element of the closure of the linear
span of the vj ’s, j ∈ I, in V , with respect to the metric associated to the norm.
This means that v can be approximated by finite sums of the form (2.155) with
respect to ∥ ·∥. It follows that v can be approximated by finite sums of the form
(2.156), because of (2.157). Under these conditions, we get that

∥v∥2 =
∑
j∈I

|⟨v, vj⟩|2,(2.159)

using (2.154) and (2.158). If the linear span of the vj ’s, j ∈ I, is dense in V
with respect to the metric associated to the norm, then it follows that (2.159)
holds for every v ∈ V .

If f is a real or complex-valued function on I, as appropriate, with finite
support, then

T (f) =
∑
j∈I

f(j) vj(2.160)



2.19. ORTHOGONAL VECTORS 73

defines an element of V . Let us use c00(I) to denote c00(I,R) or c00(I,C), de-
pending on whether V is real or complex. Thus (2.160) defines a linear mapping
from c00(I) into V . Observe that

∥T (f)∥ = ∥f∥2(2.161)

for every f ∈ c00(I), as in (2.148), where ∥f∥2 is the ℓ2 norm of f on I, as in
Section 2.2. Similarly, if g ∈ c00(I) too, then one can verify that

⟨T (f), T (g)⟩ = ⟨f, g⟩ℓ2(I),(2.162)

where ⟨f, g⟩ℓ2(I) is as in (2.143) or (2.144) in the previous section, as appropriate.
Let us also use ℓ2(I) to denote ℓ2(I,R) or ℓ2(I,C), depending on whether V

is real or complex. Remember that c00(I) is dense in ℓ2(I), as in Section 2.2. If
V is a Hilbert space, then there is a unique extension of T to a bounded linear
mapping from ℓ2(I) into V , by standard arguments. It is easy to see that this
extension also satisfies (2.161) and (2.162) for every f, g ∈ ℓ2(I). This extension
may be used to define the sum on the right side of (2.160) as an element of V
when f ∈ ℓ2(I).

Alternatively, one can first define the sum on the right side of (2.160) as an
element of V when f ∈ ℓ2(I), and use this to extend T to ℓ2(I). Of course,
if I has only finitely many elements, then these sums are already defined. If
I = Z+, then these sums may be treated as infinite series. One can show
that the corresponding sequences of partial sums are Cauchy sequences in V
under these conditions, which converge in V when V is complete. If f is square
summable on any infinite set I, then f vanishes at infinity on I, as in Section
2.2. This implies that the support of f in I has only finitely or countably many
elements, as in Section 2.1. This permits one to define the sum on the right side
of (2.160) using finite sums or infinite series.

Of course, T maps c00(I) onto the linear span of the vj ’s, j ∈ I, in V . If V
is a Hilbert space, then the extension of T to ℓ2(I) maps ℓ2(I) onto the closure
of the linear span of the vj ’s, j ∈ I, in V . In particular, if v ∈ V is an element
of the closure of the linear span of the vj ’s, j ∈ I, in V , then

v =
∑
j∈I

⟨v, vj⟩ vj ,(2.163)

where the sum on the right can be defined as in the previous paragraphs. In this
case, one can make sense of the sum on the right as a limit of finite subsums
that converges to v more directly, as before. If V is a Hilbert space, and if
the linear span of the vj ’s, j ∈ I, is dense in V , then {vj}j∈I is said to be an
orthonormal basis in V .



Chapter 3

The Fourier transform

3.1 Complex Borel measures

Let A be a commutative topological group. The Fourier transform of a complex
Borel measure µ on A is the complex-valued function µ̂ defined on the dual group
Â by

µ̂(ϕ) =

∫
A

ϕ(x) dµ(x)(3.1)

for every ϕ ∈ Â, where ϕ(x) is the complex-conjugate of ϕ(x). Observe that

|µ̂(ϕ)| ≤
∫
A

|ϕ| d|µ| = |µ|(A)(3.2)

for every ϕ ∈ Â, where |µ| is the total variation measure associated to µ on A.

Similarly, if ϕ, ψ ∈ Â, then

|µ̂(ϕ)− µ̂(ψ)| =
∣∣∣∣∫

A

(ϕ− ψ) dµ

∣∣∣∣ ≤ ∫
A

|ϕ− ψ| d|µ|.(3.3)

Note that the right side of (3.3) is invariant under translations on Â, which

corresponds to multiplying ϕ and ψ by some other element of Â.
If there is a nonempty compact set K ⊆ A such that |µ|(A \K) = 0, then

(3.3) implies that

|µ̂(ϕ)− µ̂(ψ)| ≤
∫
K

|ϕ− ψ| d|µ| ≤ |µ|(A) sup
x∈K

|ϕ(x)− ψ(x)|(3.4)

for every ϕ, ψ ∈ Â. Suppose instead that for each ϵ > 0 there is a nonempty
compact set K(ϵ) ⊆ A such that

|µ|(A \K(ϵ)) < ϵ.(3.5)

74
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In this case, we can use (3.3) to get that

|µ̂(ϕ)− µ̂(ψ)| ≤
∫
K(ϵ)

|ϕ− ψ| d|µ|+
∫
A\K(ϵ)

|ϕ− ψ| d|µ|(3.6)

< |µ|(A) sup
x∈K(ϵ)

|ϕ(x)− ψ(x)|+ 2 ϵ

for every ϕ, ψ ∈ Â. As before, the right sides of (3.4) and (3.6) are invariant un-

der translations on Â. Using this, one can check that µ̂ is uniformly continuous
on Â as a commutative topological group with respect to the topology defined
in Section 1.12 under these conditions, as in Section 1.14.

Let a be an element of A, and put

µa(E) = µ(E − a)(3.7)

for every Borel set E ⊆ A. It is easy to see that this defines a complex Borel
measure on A. The total variation measure |µa| associated to µ can be obtained
by translating |µ| in the same way. If g is a bounded complex-valued Borel
measurable function on A, then∫

A

g(x) dµa(x) =

∫
A

g(x+ a) dµ(x).(3.8)

To see this, suppose first that g(x) is the indicator function 1E(x) on X asso-
ciated to a Borel set E ⊆ A, which is equal to 1 when x ∈ E and to 0 when
x ∈ A\E. In this case, g(x+a) is the same as the indicator function associated
to E − a, so that (3.8) follows from (3.7). This implies that (3.8) holds when
g is a Borel measurable simple function on A, and the same result for bounded
Borel measurable functions on A can be obtained by approximation by simple
functions. If ϕ ∈ Â, then we get that

µ̂a(ϕ) =

∫
A

ϕ(x) dµa(x) =

∫
A

ϕ(x+ a) dµ(x)(3.9)

= ϕ(a)

∫
A

ϕ(x) dµ(x) = ϕ(a) µ̂(ϕ).

This uses (3.8) in the second step, and the fact that ϕ is a group homomorphism
from A into T in the third step.

Similarly, let ν be the complex Borel measure on A defined by

ν(E) = µ(−E)(3.10)

for every Borel set E ⊆ A. The total variation measure |ν| associated to ν is
given by

|ν|(E) = |µ|(−E)(3.11)

for every Borel set E ⊆ A. If g is a bounded complex-valued Borel measurable
function on A, then ∫

A

g(x) dν(x) =

∫
A

g(−x) dµ(x).(3.12)
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More precisely, this reduces to (3.10) when g is the indicator function of a Borel
set E ⊆ A, in which case g(−x) is the indicator function associated to −E. If g
is a Borel measurable simple function on A, then (3.12) reduces to the case of
indicator functions by linearity. It follows that (3.12) holds when g is a bounded
complex-valued Borel measurable function on A, by approximation by simple
functions. This implies that

ν̂(ϕ) =

∫
ϕ(x) dν(x) =

∫
A

ϕ(−x) dµ(x) =
∫
A

ϕ(x) dµ(x) = µ̂(ϕ)(3.13)

for every ϕ ∈ Â. This uses the fact that ϕ is a group homomorphism from A
into T in the third step, to get that ϕ(−x) = ϕ(x)−1 = ϕ(x) for every x ∈ A.

Let δa be the Dirac measure on A associated to any a ∈ A, so that δa(E)
is equal to 1 when a ∈ E and to 0 when a ̸∈ E. This may be considered as a
Borel measure on A for each a ∈ A, and we have that

δ̂a(ϕ) = ϕ(a)(3.14)

for every a ∈ A and ϕ ∈ Â.

3.2 Integrable functions

Let A be a locally compact commutative topological group, and let H be a Haar
measure on A, as in Section 2.5. If f is a complex-valued Borel measurable
function on A that is integrable with respect to H, then the Fourier transform
of f is the function f̂ defined on Â by

f̂(ϕ) =

∫
A

f(x)ϕ(x) dH(x)(3.15)

for every ϕ ∈ Â. Remember that

σf (E) =

∫
E

f(x) dH(x)(3.16)

defines a complex Borel measure on A under these conditions, for which the
corresponding total variation measure is given by

|σf |(E) = σ|f |(E) =

∫
E

|f(x)| dH(x),(3.17)

as in Section 2.8. Thus (3.15) is the same as (3.1) applied to σf , and (3.2)
corresponds to

|f̂(ϕ)| ≤
∫
A

|f(x)| dH(x)(3.18)

for every ϕ ∈ Â in this situation.
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One can check that (3.17) is regular as a finite nonnegative Borel measure
on A, using the regularity conditions for H mentioned in Section 2.5. More
precisely, one can begin with the case where f is an integrable simple function
on A, and deal with arbitrary integrable functions by approximation by simple
functions. In particular, (3.17) satisfies (3.5). It follows that f̂ is uniformly con-

tinuous on Â as a commutative topological group with respect to the topology
defined in Section 1.12, as in the previous section.

Let a ∈ A be given, and put

fa(x) = f(x− a),(3.19)

as in Section 2.5. Remember that the integrability of f on A with respect to
H implies that fa is integrable on A with respect to H too, so that the Fourier
transform of fa can be defined as in (3.15). If ϕ ∈ Â, then we have that

f̂a(ϕ) =

∫
A

f(x− a)ϕ(x) dH(x) =

∫
A

f(x)ϕ(x+ a) dH(x)

= ϕ(a)

∫
A

f(x)ϕ(x) dH(x) = ϕ(a) f̂(ϕ).(3.20)

This uses translation-invariance of Haar measure in the second step, and the
fact that ϕ is a group homomorphism from A into T in the third step. This can
also be derived from (3.9), applied to (3.16). More precisely, if µfa is the Borel
measure on A that corresponds to fa as in (3.16), then one can check that µfa

is the same as the measure obtained by translating σf by a, as in (3.7). This
uses the invariance of Haar measure under translations.

Observe that
g(x) = f(−x)(3.21)

is also integrable on A with respect to H, because of (2.43) in Section 2.5. Thus
the Fourier transform of g can be defined as in (3.15), and we have that

ĝ(ϕ) =

∫
A

f(−x)ϕ(x) dH(x) =

∫
A

f(−x)ϕ(x) dH(x)(3.22)

for every ϕ ∈ Â. It follows that

ĝ(ϕ) =

∫
A

f(x)ϕ(−x) dH(x)(3.23)

for every ϕ ∈ Â, because H is invariant under x 7→ −x, as in (2.43) in Section
2.5 again. Hence

ĝ(ϕ) =

∫
A

f(x)ϕ(x) dH(x) = f̂(ϕ)(3.24)

for every ϕ ∈ Â, because ϕ(−x) = ϕ(x) for every x ∈ A, as before. This can
also be obtained from (3.13), applied to (3.16). In this case, the measure that
corresponds to (3.16) as in (3.10) is the same as the measure that corresponds
to g as in (3.16). This uses the invariance of H under x 7→ −x, as in (2.43) in
Section 2.5.
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3.3 Compact groups

Let A be a compact commutative topological group, and let H be Haar measure
on A, normalized so that H(A) = 1. If ϕ ∈ Â, then∫

A

ϕ(x) dH(x) =

∫
A

ϕ(x+ a) dH(x) = ϕ(a)

∫
A

ϕ(x) dH(x)(3.25)

for every a ∈ A, using translation-invariance of Haar measure in the first step.
If ϕ(a) ̸= 1 for some a ∈ A, then it follows that∫

A

ϕdH = 0.(3.26)

Let L2(A) be the usual space of complex-valued Borel measurable functions
on A that are square-integrable with respect to H. If f, g ∈ L2(A), then we put

⟨f, g⟩ =
∫
A

f(x) g(x) dH(x),(3.27)

which is the usual integral inner product on L2(A). Let ϕ, ψ ∈ Â be given, so

that ϕ(x)ψ(x) also defines an element of Â, which is equal to 1 for every x ∈ A
exactly when ϕ = ψ. If ϕ ̸= ψ on A, then it follows that

⟨ϕ, ψ⟩ = 0,(3.28)

by (3.26) applied to ϕ(x)ψ(x). The normalization H(A) = 1 implies that

⟨ϕ, ϕ⟩ = 1,(3.29)

so that the elements of Â are orthonormal in L2(A) with respect to (3.27).
Let f ∈ L2(A) be given, and remember that f is integrable on A with respect

to H, because H(A) is finite. Thus the Fourier transform f̂ can be defined as
in (3.15) in the previous section, and it can be reexpressed in terms of (3.27) as

f̂(ϕ) = ⟨f, ϕ⟩(3.30)

for each ϕ ∈ Â. Using (3.30) and the orthonormality of the elements of Â in
L2(A), we get that ∑

ϕ∈Â

|f̂(ϕ)|2 ≤
∫
A

|f |2 dH,(3.31)

as in (2.154) in Section 2.19. In particular, f̂ is square-summable on Â when
f ∈ L2(A).

It follows that f̂ vanishes at infinity on Â for every f ∈ L2(A), as in Section

2.2. In fact, f̂ vanishes at infinity on Â for every integrable function f on
A with respect to H. This can be derived from the previous statement by
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approximating f by elements of L2(A) with respect to the L1 norm, and using
(3.18) in the previous section.

Let E be the linear span of Â in the space C(A) = C(A,C) of all complex-
valued continuous functions on A. It is easy to see that E is a subalgebra of C(A)

with respect to pointwise multiplication of functions, because Â is closed under
multiplication of functions. Similarly, E is preserved by complex-conjugation,
because ϕ = 1/ϕ ∈ Â for every ϕ ∈ Â. Of course, the constant function on A

equal to 1 at every point is an element of Â, and hence of E . It is well known that
Â separates points in A when A is compact, so that E separates points in A too.
Thus the theorem of Lebesgue, Stone, and Weierstrass implies that E is dense
in C(A) with respect to the supremum metric. It is also well known that C(A)
is dense in L2(A), because of the regularity properties of Haar measure on A.
It follows that E is dense in L2(A), by combining the previous two statements.

This means that Â is an orthonormal basis for L2(A), as in Section 2.19. If
f ∈ L2(A), then we get that∑

ϕ∈Â

|f̂(ϕ)|2 =

∫
A

|f |2 dH,(3.32)

as in (2.159). We also have that

f =
∑
ϕ∈Â

f̂(ϕ)ϕ,(3.33)

as in (2.163), where the sum on the right converges in L2(A) in a suitable sense.
Let µ be a regular complex Borel measure on A, and suppose that

µ̂(ϕ) = 0(3.34)

for every ϕ ∈ Â. This implies that∫
A

g dµ = 0(3.35)

for every g ∈ Â, and hence for every g ∈ E , by linearity. It follows that (3.35)
holds for every g ∈ C(A), because E is dense in C(A) with respect to the
supremum metric, as before. This means that µ = 0 on A, because of regularity.
Equivalently, one can look at this in terms of continuous linear functionals on
C(A), as in Section 2.9.

Now let f be a complex-valued Borel measurable function on A that is
integrable with respect to H, and suppose that

f̂(ϕ) = 0(3.36)

for every ϕ ∈ Â. If σf is the complex Borel measure on A corresponding to f as
in (3.16) in the previous section, then (3.36) is the same as saying that (3.34)
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holds with µ = σf . Remember that σf is regular, as mentioned in the previous
section. It follows that σf = 0 on A, as in the preceding paragraph. This implies
that f = 0 almost everywhere on A with respect to H. Alternatively, one can
use (3.36) to get that ∫

A

f g dH = 0(3.37)

for every g ∈ Â, as in (3.35). This implies that (3.37) holds for every g ∈ E ,
as before, and hence for every g ∈ C(A). One can use this and standard
approximation arguments to get that f = 0 almost everywhere with respect to
H. Of course, these approximation arguments use the regularity properties of
H on A.

Let B be a subgroup of Â, and let EB be the linear span of B in C(A). This
is a subalgebra of C(A) that is invariant under complex-conjugation, as before.
The constant function on A equal to 1 at every point is an element of B, since it
is the identity element in Â as a group with respect to pointwise multiplication
of functions on A. This implies that EB contains the constant functions on A.
If B separates points in A, then EB separates points in A too. Under these
conditions, EB is dense in C(A) with respect to the supremum metric, by the

theorem of Lebesgue, Stone, and Weierstrass again. If ϕ ∈ Â \ B, then ϕ is
orthogonal to every element of B, as in (3.28). This implies that

⟨ϕ, g⟩ = 0(3.38)

for every g ∈ EB , by linearity. It follows that (3.38) holds for every continu-
ous complex-valued function g on A, because EB is dense in C(A), as before.
However, this does not work when g = ϕ. This shows that

B = Â(3.39)

when B is a subgroup of Â that separates points in A, and A is compact.

3.4 Discrete groups

Let A be a commutative group, equipped with the discrete topology. Thus
counting measure on A satisfies the requirements of Haar measure, so that
integrability of complex-valued functions on A is the same as summability, as
in Section 2.1. If f is a summable complex-valued function on A, then the
expression (3.15) in Section 3.2 for the Fourier transform of f reduces to

f̂(ϕ) =
∑
x∈A

f(x)ϕ(x)(3.40)

for each ϕ ∈ Â. The sum on the right is the sum of a summable function on A,
because ϕ is bounded on A, and

|f̂(ϕ)| ≤
∑
x∈A

|f(x)|(3.41)
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for each ϕ ∈ Â, as in (3.18) in Section 3.2. More precisely, (3.41) follows from
(3.40) using (2.9) in Section 2.1 in this situation.

The summability of f on A implies that for each ϵ > 0 there is a finite set
E(ϵ) ⊆ A such that ∑

x∈A

|f(x)| <
∑

x∈E(ϵ)

|f(x)|+ ϵ,(3.42)

because the sum on the left is defined to be the supremum of the corresponding
finite subsums, as in Section 2.1. Equivalently, this means that∑

x∈A\E(ϵ)

|f(x)| < ϵ.(3.43)

If E ⊆ A is a finite set that contains E(ϵ), then we get that∣∣∣∣f̂(ϕ)− ∑
x∈E

f(x)ϕ(x)

∣∣∣∣ =

∣∣∣∣ ∑
x∈A\E

f(x)ϕ(x)

∣∣∣∣(3.44)

≤
∑

x∈A\E

|f(x)| ≤
∑

x∈A\E(ϵ)

|f(x)| < ϵ

for every ϕ ∈ Â. This shows that the sum in (3.40) can be approximated by the
finite subsums ∑

x∈E

f(x)ϕ(x)(3.45)

uniformly over ϕ ∈ Â.
Let x ∈ A be given, and put

Ψx(ϕ) = ϕ(x)(3.46)

for each ϕ ∈ Â, which may be considered as a complex-valued function of ϕ on
Â. It is easy to see that Ψx is continuous with respect to the dual topology on Â
discussed in Section 1.12, because {x} is a compact subset of A. More precisely,

Ψx is also a group homomorphism from Â into T, and hence an element of the

dual
̂̂
A of Â. In particular, Ψx is uniformly continuous on Â as a commutative

topological group.
Observe that

Ψ−x(ϕ) = ϕ(−x) = 1/ϕ(x) = ϕ(x)(3.47)

for every x ∈ A and ϕ ∈ Â. If f is a complex-valued summable function on A,
then (3.40) may be reexpressed as

f̂(ϕ) =
∑
x∈A

f(x)Ψ−x(ϕ)(3.48)

for every ϕ ∈ Â, and the finite subsums (3.45) are the same as∑
x∈E

f(x)Ψ−x(ϕ).(3.49)
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Thus (3.44) implies that f̂ can be approximated by finite sums of the form (3.49)

uniformly on Â. It follows that f̂ is uniformly continuous on Â as a commutative
topological group, as in Section 1.14, because (3.46) is uniformly continuous on

Â for each x ∈ A, as in the preceding paragraph. The uniform continuity of f̂
on Â can also be obtained as in Section 3.1, where (3.5) corresponds to (3.43)
in this situation.

Similarly, we have that

Ψx+y(ϕ) = ϕ(x+ y) = ϕ(x)ϕ(y) = Ψx(ϕ)Ψy(ϕ)(3.50)

for every x, y ∈ A and ϕ ∈ Â, so that

x 7→ Ψx(3.51)

defines a group homomorphism from A into
̂̂
A. In particular, it follows that

{Ψx : x ∈ A}(3.52)

is a subgroup of
̂̂
A. Remember that Â is compact with respect to the dual

topology when A is equipped with the discrete topology, as in Section 1.12.
It is easy to see that (3.52) automatically separates points in Â. Under these
conditions, the remarks at the end of the previous section imply that (3.52) is

equal to
̂̂
A. We also have that Â separates points in A when A is equipped with

the discrete topology, as in Section 1.15. This implies that (3.51) is injective in
this situation.

LetH
Â
be Haar measure on Â, normalized so thatH

Â
(Â) = 1. The elements

of
̂̂
A are orthonormal in L2(Â) with respect to the usual integral inner product

corresponding to H
Â
, as in the previous section. If x, y ∈ A and x ̸= y, then

Ψx ̸= Ψy as elements of
̂̂
A, by the injectivity of (3.51). Hence Ψx is orthogonal

to Ψy in L2(Â) when x ̸= y. If f is a complex-valued summable function on A,
then one can use this to get that

f(y) =

∫
Â

f̂(ϕ)Ψ−y(ϕ) dHÂ
(ϕ)(3.53)

for every y ∈ A. This also uses the fact that f̂(ϕ) can be approximated uniformly
by the finite sums (3.49), as in (3.44), in order to interchange the order of
integration and summation. Equivalently, this means that

f(y) =

∫
Â

f̂(ϕ)Ψy(ϕ) dHÂ
(ϕ)(3.54)

for every y ∈ A, by (3.47).
Remember that summable functions onA are square-summable, as in Section

2.2. In this situation, we have that∫
Â

|f̂(ϕ)|2 dH
Â
(ϕ) =

∑
x∈A

|f(x)|2,(3.55)
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because of the orthonormality of the Ψx’s in L
2(Â). This permits us to extend

the Fourier transform to an isometric linear mapping from ℓ2(A,C) into L2(Â),
by standard arguments. More precisely, this mapping is surjective, because the
Ψx’s with x ∈ A form an orthonormal basis for L2(Â). This follows from the

fact that (3.52) separates points in Â, as in the previous section.

3.5 Convolution of measures

Let A be a commutative topological group, and let µ, ν be complex Borel
measures on A. Suppose that a product measure µ × ν can be defined as a
complex Borel measure on A × A in a reasonable way, as in Sections 2.13 and
2.17. Let α be the mapping from A×A into A that corresponds to addition, so
that

α(x, y) = x+ y(3.56)

for every x, y ∈ A. Thus α is continuous with respect to the corresponding
product topology on A×A, by definition of a topological group, which implies
that α is Borel measurable, as in Section 2.10. The convolution µ ∗ ν of µ and
ν is defined as a complex Borel measure on A by putting

(µ ∗ ν)(E) = (µ× ν)(α−1(E))(3.57)

for every Borel set E ⊆ A. This is the same as the complex Borel on A obtained
by pushing µ× ν forward from A× A to A using α, as in Section 2.11. If µ, ν
are nonnegative real-valued Borel measures on A, then µ× ν is real-valued and
nonnegative on A × A, and hence (3.57) is real-valued and nonnegative on A.
Note that α−1(A) = A×A, so that

(µ ∗ ν)(A) = (µ× ν)(α−1(A)) = (µ× ν)(A×A) = µ(A) ν(A).(3.58)

Let |µ| and |ν| be the total variation measures that correspond to µ and ν
as in Section 2.8. Suppose that a product measure |µ| × |ν| can be defined as
a nonnegative Borel measure on A×A in a reasonable way, as in Section 2.13.
Remember that µ, ν can be expressed in terms of |µ|, |ν| as in (2.66) in Section
2.8. Using this, µ×ν can be obtained from |µ|× |ν| by an analogous expression,
as mentioned in Section 2.17. If E ⊆ A is a Borel set, then

|(µ ∗ ν)(E)| = |(µ× ν)(α−1(E))| ≤ (|µ| × |ν|)(α−1(E)) = (|µ| ∗ |ν|)(E),(3.59)

where |µ|∗ |ν| is the convolution of |µ| and |ν| on A. This uses (2.125) in Section
2.17 in the second step. If µ× ν is expressed in terms of |µ| × |ν| as in (2.66) in
Section 2.8, then this step can be derived from that. It follows that

|µ ∗ ν|(E) ≤ (|µ| ∗ |ν|)(E)(3.60)

for every Borel set E ⊆ A, where |µ ∗ ν| is the total variation measure corre-
sponding to µ ∗ ν on A. In particular,

|µ ∗ ν|(A) ≤ (|µ| ∗ |ν|)(A) = |µ|(A) |ν|(A),(3.61)
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using (3.58) in the second step.
It is easy to see that convolution of complex Borel measures is commutative,

in the sense that
µ ∗ ν = ν ∗ µ(3.62)

as complex Borel measures on A. This uses commutativity of addition on A,
and “commutativity” in a natural sense of appropriate product measure con-
structions, up to suitable isomorphisms. Similarly, convolution of complex Borel
measures is associative, because of associativity of addition on A, and natural
“associativity” properties of appropriate product measure constructions, up to
suitable isomorphisms.

If f is a bounded complex-valued Borel measurable function on A, then∫
A

f d(µ ∗ ν) =
∫
A×A

f ◦ αd(µ× ν),(3.63)

as in Section 2.11. If ϕ ∈ Â, then we get that

̂(µ ∗ ν)(ϕ) =
∫
A

ϕd(µ ∗ ν) =

∫
A×A

ϕ ◦ αd(µ× ν)(3.64)

=

∫
A

∫
A

ϕ(x+ y) dµ(x) dν(y)

=

∫
A

∫
A

ϕ(x)ϕ(y) dµ(x) dν(y)

= µ̂(ϕ) ν̂(ϕ),

using the appropriate version of Fubini’s theorem.
Let K1, K2 be compact subsets of A, so that K1 ×K2 is a compact subset

of A×A, by Tychonoff’s theorem. Observe that

(A×A) \ (K1 ×K2) ⊆ ((A \K1)×A) ∪ (A× (A \K2)),(3.65)

which implies that

(|µ| × |ν|)((A×A) \ (K1 ×K2))(3.66)

≤ (|µ| × |ν|)((A \K1)×A) + (|µ| × |ν|)(A× (A \K2))

= |µ|(A \K1) |ν|(A) + |µ|(A) |ν|(A \K2).

Put
K3 = α(K1 ×K2) = K1 +K2,(3.67)

which is a compact subset of A, because α is continuous. By construction,

K1 ×K2 ⊆ α−1(K3),(3.68)

and hence

α−1(A \K3) = α−1(A) \ α−1(K3) ⊆ (A×A) \ (K1 ×K2).(3.69)
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It follows that

|µ ∗ ν|(A \K3) ≤ (|µ| ∗ |ν|)(A \K3) = (|µ| × |ν|)(α−1(A \K3))

≤ (|µ| × |ν|)((A×A) \ (K1 ×K2)).(3.70)

Let E ⊆ A be a Borel set, and suppose that K ⊆ A × A is a compact set
with K ⊆ α−1(E). Thus K0 = α(K) is a compact subset of A, because α is
continuous, and K ⊆ α−1(K0). This implies that

α−1(E \K0) = α−1(E) \ α−1(K0) ⊆ α−1(E) \K,(3.71)

so that

|µ ∗ ν|(E \K0) ≤ (|µ| ∗ |ν|)(E \K0) = (|µ| × |ν|)(α−1(E \K0))(3.72)

≤ (|µ| × |ν|)(α−1(E) \K).

3.6 Measures and continuous functions

Let A be a commutative topological group. If ν is a nonnegative Borel measure
on A, and f is a nonnegative real-valued Borel measurable function on A, then
the convolution f ∗ ν of f and ν can be defined as a nonnegative extended
real-valued function on A by

(f ∗ ν)(x) =
∫
A

f(x− y) dν(y)(3.73)

for every x ∈ A. In particular, if ν is a complex Borel measure on A, and f is a
complex-valued Borel measurable function on A, then the convolution |f | ∗ |ν|
of |f | and the total variation measure |ν| corresponding to ν can be defined as
a nonnegative extended real-valued function on A by

(|f | ∗ |ν|)(x) =
∫
A

|f(x− y)| d|ν|(y)(3.74)

for every x ∈ A. In this case, if (3.74) is finite, then (3.73) can be defined as a
complex number, and

|(f ∗ ν)(x)| ≤ (|f | ∗ |ν|)(x).(3.75)

If f is bounded on A, then

(|f | ∗ |ν|)(x) ≤
(
sup
w∈A

|f(w)|
)
|ν|(A)(3.76)

for every x ∈ A, so that (3.73) is defined and bounded on A.
Let ν be a complex Borel measure on A again, and let f be a complex-valued

Borel measurable function on A such that (3.74) is finite for every x ∈ A. Thus
(3.73) is defined as a complex number for every x ∈ X, and

(f ∗ ν)(x+ a)− (f ∗ ν)(x) =
∫
A

(f(x+ a− y)− f(x− y)) dν(y)(3.77)
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for every a, x ∈ A. This implies that

|(f ∗ ν)(x+ a)− (f ∗ ν)(x)| ≤
∫
A

|f(x+ a− y)− f(x− y)| d|ν|(y)

≤
(
sup
w∈A

|f(w + a)− f(w)|
)
|ν|(A)(3.78)

for every a, x ∈ A. If f is uniformly continuous on A, then it follows that f ∗ ν
is uniformly continuous on A as well. If ϕ ∈ Â, then

(ϕ ∗ ν)(x) =
∫
A

ϕ(x− y) dν(y) =

∫
A

ϕ(x)ϕ(y) dν(y) = ϕ(x) ν̂(ϕ)(3.79)

for every x ∈ A.
Suppose for the moment that there is a compact set K ⊆ A such that

|ν|(A \K) = 0. If f is a complex-valued Borel measurable function on A, then
we get that

(|f | ∗ |ν|)(x) =
∫
K

|f(x− y)| d|ν|(y) ≤
(
sup
y∈K

|f(x− y)|
)
|ν|(A)(3.80)

for every x ∈ A, where the supremum on the right side is interpreted as being
equal to 0 when K = ∅. If f is bounded on compact subsets of A, then the
right side of (3.80) is finite for every x ∈ A. In fact, the right side of (3.80)
is bounded on compact subsets of A in this case. This implies that (3.73) is
defined for every x ∈ A, and that (3.73) is bounded on compact subsets of A.

In particular, if f is continuous on A, then f is bounded on compact subsets
of A. Observe that

|(f ∗ ν)(x+ a)− (f ∗ ν)(x)| ≤
∫
K

|f(x+ a− y)− f(x− y)| d|ν|(y)

≤
(
sup
y∈K

|f(x+ a− y)− f(x− y)|
)
|ν|(A)(3.81)

for every a, x ∈ A. Remember that continuous functions on A are uniformly
continuous along compact subsets of A, as in Section 1.14. If f is continuous on
A and x ∈ A, then it follows that the right side of (3.81) tends to 0 as a→ 0 in
A. This implies that f ∗ ν is continuous at x, by (3.81).

Suppose now that for each ϵ > 0 there is a compact set K(ϵ) ⊆ A such that

|ν|(A \K(ϵ)) < ϵ.(3.82)

If f is a bounded complex-valued Borel measurable function on A, then

|(f ∗ ν)(x+ a)− (f ∗ ν)(x)|(3.83)

≤
∫
K(ϵ)

|f(x+ a− y)− f(x− y)| d|ν|(y)

+

∫
A\K(ϵ)

|f(x+ a− y)− f(x− y)| d|ν|(y)

≤
(

sup
y∈K(ϵ)

|f(x+ a− y)− f(x− y)|
)
|ν|(A) + 2

(
sup
w∈A

|f(w)|
)
ϵ
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for every a, x ∈ A and ϵ > 0. Suppose that f is also continuous on A, so that
f is uniformly continuous along compact subsets of A, as before. This implies
that for each x ∈ A and ϵ > 0, the first term on the right side of (3.83) tends
to 0 as a→ 0 in A. It follows that f ∗ ν is continuous at every x ∈ A when f is
bounded and continuous on A, using (3.83).

Alternatively, if f is bounded and continuous on A, and ν is any complex
Borel measure on A, then one can check that f ∗ ν is sequentially continuous
on A, using the dominated convergence theorem. This implies that f ∗ ν is
continuous on A when there is a local base for the topology of A at 0 with only
finitely or countably many elements.

Remember that the support of a complex-valued function f on A is defined
to be the closure in A of the set where f ̸= 0. If x ∈ A and

|ν|(x− supp f) = 0,(3.84)

then one can check that (|f | ∗ |ν|)(x) = 0, so that (f ∗ν)(x) is defined and equal
to 0. If K ⊆ A is compact, then K + supp f is a closed set in A, as in Section
1.1, because supp f is a closed set in A, by definition. If |ν|(A \K) = 0, then
(3.84) holds whenever

x− supp f ⊆ A \K,(3.85)

which is the same as saying that x ∈ A \ (K + supp f). Under these conditions,
we get that

supp(f ∗ ν) ⊆ K + supp f,(3.86)

at least if f ∗ ν is defined everywhere on A, so that its support is defined in the
usual way.

Suppose for the moment that A is locally compact. If K ⊆ A is compact,
|ν|(A \K) = 0, and f has compact support in A, then (3.86) implies that f ∗ ν
has compact support in A as well. Suppose instead that for each ϵ > 0 there is
a compact set K(ϵ) ⊆ A that satisfies (3.82). If f is a bounded complex-valued
Borel measurable function on A, then

|(f ∗ ν)(x)| ≤
∫
K(ϵ)

|f(x− y)| d|ν|(y) +
∫
A\K(ϵ)

|f(x− y)| d|ν|(y)

≤
(

sup
y∈K(ϵ)

|f(x− y)|
)
|ν|(A) +

(
sup
w∈A

|f(w)|
)
ϵ(3.87)

for every x ∈ A and ϵ > 0. If f also vanishes at infinity on A, then one can use
(3.87) to show that f ∗ ν vanishes at infinity on A too.

Let f be a bounded continuous complex-valued function on A, and let µ be
a complex Borel measure on A. Thus f ∗ µ is defined and bounded on A, as
before. Suppose that f ∗µ is continuous on A, as in various situations mentioned
earlier. Let ν be another complex Borel measure on A, so that

((f ∗ µ) ∗ ν)(x) =

∫
A

(f ∗ µ)(x− z) dν(z)(3.88)

=

∫
A

(∫
A

f(x− w − z) dµ(w)
)
dν(z)
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for every x ∈ A. Suppose also that µ× ν can be defined in a reasonable way on
A × A, so that µ ∗ ν can be defined on A as in the previous section. It follows
that f ∗ (µ ∗ ν) can be defined on A in the usual way, with

(f ∗ (µ ∗ ν))(x) =

∫
A

f(x− y) d(µ ∗ ν)(y)(3.89)

=

∫
A×A

f(x− w − z) d(µ× ν)(w, z)

for each x ∈ A, where the second step is as in (3.63) in the previous section.
Using the appropriate version of Fubini’s theorem, we get that the right sides
of (3.88) and (3.89) are the same.

Suppose now that there are compact setsK1,K2 ⊆ A such that |µ|(A\K1) =
|ν|(A \K2) = 0. This implies that

(|µ| × |ν|)((A×A) \ (K1 ×K2)) = 0,(3.90)

by (3.66) in the previous section. In this case, K3 = K1 +K2 is compact, and
(|µ| ∗ |ν|)(A \ K3) = 0, by (3.70). Under these conditions, the remarks in the
preceding paragraph can be applied to continuous functions f on A, without
asking that f be bounded on A. In particular, the relevant convolutions will be
continuous on A, as before.

3.7 Convolution of integrable functions

Let A be a locally compact commutative topological group, and let H be a
Haar measure on A. Also let f be a nonnegative real-valued Borel measurable
function on A, and let ν be a finite nonnegative Borel measure on A. Thus
f ∗ ν can be defined as a nonnegative extended real-valued function on A, as
in (3.73) in the previous section. Under suitable conditions, Fubini’s theorem
implies that ∫

A

(f ∗ ν)(x) dH(x) =

∫
A

∫
A

f(x− y) dν(y) dH(x)(3.91)

=

∫
A

∫
A

f(x− y) dH(x) dν(y)

=

∫
A

∫
A

f(x) dH(x) dν(y)

= ν(A)

∫
A

f(x) dH(x),

using also the translation-invariance of Haar measure in the third step. In
particular, this is finite when f is integrable on A with respect to H.

Now let f be a complex-valued Borel measurable function on A that is
integrable with respect to H, and let ν be a complex Borel measure on A.
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Applying (3.91) to |f | and |ν|, we get that∫
A

(|f | ∗ |ν|)(x) dH(x) = |ν|(A)
∫
A

|f(x)| dH(x),(3.92)

so that (|f | ∗ |ν|)(x) < ∞ for almost every x ∈ A with respect to H. This
permits us to define (f ∗ ν)(x) for almost every x ∈ A with respect to H, as in
the previous section. We also get that∫

A

|(f ∗ ν)(x)| dH(x) ≤ |ν|(A)
∫
A

|f(x)| dH(x),(3.93)

using (3.75) and (3.92), so that f ∗ ν is integrable on A with respect to H.
Remember that

σf (E) =

∫
E

f(x) dH(x)(3.94)

defines a complex Borel measure on A, as in Section 2.8, for which the cor-
responding total variation measure is given by |σf | = σ|f |. As mentioned in
Section 3.2, σ|f | is a regular Borel measure on A, because of the regularity
properties of Haar measure on A. Under suitable conditions, σf × ν can be
defined as a complex Borel measure on A × A, as in Section 2.13. This means
that σf ∗ ν can be defined as a complex Borel measure on A, as in Section 3.5.
If h is a bounded complex-valued Borel measurable function on A, then∫

A

h d(σf ∗ ν) =

∫
A

∫
A

h(x+ y) dσf (x) dν(y)(3.95)

=

∫
A

∫
A

h(x+ y) f(x) dH(x) dν(y)

=

∫
A

∫
A

h(x) f(x− y) dH(x) dν(y),

using (3.63) in Section 3.5 in the first step, and translation-invariance of Haar
measure in the second step. It follows that∫

A

h d(σf ∗ ν) =

∫
A

∫
A

h(x) f(x− y) dν(y) dH(x)(3.96)

=

∫
A

h(x) (f ∗ ν)(x) dH(x),

by interchanging the order of integration in the first step, and using the definition
of f ∗ ν in the second step. Thus

σf ∗ ν = σf∗ν(3.97)

as complex Borel measures on A, where σf∗ν is defined as in (3.94).
If f , g are nonnegative Borel measurable functions on A, then their convo-

lution is defined as a nonnegative extended real-valued function on A by

(f ∗ g)(x) =
∫
A

f(x− y) g(y) dH(y)(3.98)
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for each x ∈ A. If f , g are complex-valued Borel measurable functions on A,
and if ∫

A

|f(x− y)| |g(y)| dH(y) <∞,(3.99)

then (3.98) is defined as a complex number. Suppose that g is integrable with
respect to H, so that σg can be defined as a complex Borel measure on A as in
(3.94), with total variation measure |σg| = σ|g|, as before. In this case, (3.99)
corresponds exactly to the finiteness (3.74) in the previous section with ν = σg,
and (3.98) corresponds exactly to (3.73).

3.8 Continuous homomorphisms

Let A and B be commutative topological groups, and let h be a continuous
homomorphism from A into B. If µ is a complex Borel measure on A, then

ν(E) = µ(h−1(E))(3.100)

defines a complex Borel measure on B, as in Section 2.11. Let ϕ ∈ B̂ be given,
so that ĥ(ϕ) = ϕ ◦ h is in Â, as in (1.113) in Section 1.12. Using the definition
(3.1) of the Fourier transform of a measure in Section 3.1, we get that

ν̂(ϕ) =

∫
B

ϕdν =

∫
A

ϕ ◦ h dµ = µ̂(ĥ(ϕ)).(3.101)

This also uses (2.87) in Section 2.11 in the second step.
As a basic class of examples, suppose that A is a subgroup of B, equipped

with the induced topology. In this case, we can take h : A → B to be the
obvious inclusion mapping, so that h(x) = x for every x ∈ X. If E is a Borel
set in B, then

h−1(E) = A ∩ E(3.102)

is a Borel set in A with respect to the induced topology, because h is continuous
with respect to the induced topology on A. If µ is a complex Borel measure on
A, then (3.100) is the same as defining ν as a complex Borel measure on B by
putting

ν(E) = µ(A ∩ E)(3.103)

for every Borel set E in B. Of course, ĥ(ϕ) is the same as the restriction of

ϕ ∈ B̂ to A in this situation.
Now let A be any commutative topological group, let I be a nonempty set,

and let B be TI , the Cartesian product of copies of T indexed by I. As in Sec-
tion 1.8, TI is a commutative topological group with respect to coordinatewise
multiplication and the product topology. This is the same as the group c(I,T)
of T-valued functions on I with respect to pointwise multiplication of functions,
as in Section 1.9. A continuous homomorphism h from A into B corresponds
exactly to a family of continuous homomorphisms hj from A into T for each
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j ∈ I. Equivalently, hj ∈ Â for every j ∈ I. If j1, . . . , jn are finitely many
elements of I, and l1, . . . , ln are the same number of integers, then

ϕ(z) = zl1j1 · · · z
ln
jn

(3.104)

defines an element of B̂, where zj ∈ T denotes the jth component of z ∈ B = TI

for each j ∈ I. Conversely, every element of B̂ is of this form, by the discussions
of the dual of T and duals of Cartesian products in Section 1.11. If ϕ ∈ B̂ is as
in (3.104), then

ĥ(ϕ) = ϕ ◦ h = hl1j1 · · ·h
ln
jn
.(3.105)

Let V be a topological vector space over the real numbers, so that V is a
commutative topological group with respect to addition in particular. Also let
h be a continuous linear mapping from V into Rn for some positive integer
n, where Rn is equipped with its standard topology. Thus h is a continuous
group homomorphism from V into Rn as commutative topological groups with
respect to addition. Note that the jth coordinate hj of h is a continuous linear
functional on V for each j = 1, . . . , n. Conversely, if h1, . . . , hn are continuous
linear functionals on V , then they can be combined to get a continuous linear
mapping from V into Rn.

3.9 Some additional properties

Let A be a locally compact commutative topological group, and let H be a Haar
measure on A. Suppose for the moment that K ⊆ A is compact, U ⊆ A is an
open set, 0 ∈ U , and U is compact. Under these conditions, K + U is an open
set in A and K + U is a compact subset of A, as in Section 1.1. In particular,
H(K + U) <∞.

If f is a continuous real or complex-valued function on A, then f is uniformly
continuous along compact subsets of A, as in Section 1.14. In particular, if
f also has compact support in A, then one can use this to show that f is
uniformly continuous on A. Similarly, if f is a continuous real or complex-valued
continuous function onA that vanishes at infinity, then f is uniformly continuous
on A. This can be derived from the fact that f is uniformly continuous along
compact subsets of A, or by approximating f by continuous functions on A with
compact support uniformly on A.

Now let f be a real or complex-valued Borel measurable function on A that
is integrable with respect to Haar measure. Under these conditions, it is well
known that

lim
a→0

∫
A

|f(x)− f(x− a)| dH(x) = 0,(3.106)

where more precisely the limit is taken as a ∈ A tends to 0 with respect to the
given topology on A. To see this, suppose first that f is a continuous function
on A with compact support. In this case, (3.106) can be obtained from uniform
continuity. This also uses the fact that we can restrict our attention to integrals
over fixed compact subsets of A, by the earlier remarks. If f is an integrable
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function on A, then it is well known that f can be approximated by continuous
functions on A with compact support with respect to the L1 norm associated to
H, because of the regularity properties ofH on A. This permits us to get (3.106)
from the analogous statement for continuous functions with compact support.
Note that translation-invariance of Haar measure is used here, to ensure that
translations of f are approximated by translations of approximations to f .

Let f be a complex-valued integrable function on A with respect to H, and
put fa(x) = f(x− a) for every a, x ∈ A, as before. Remember that

f̂a(ϕ) = ϕ(a) f̂(ϕ)(3.107)

for every a ∈ A and ϕ ∈ Â, as in (3.20) in Section 3.2. Thus

|1− ϕ(a)| |f̂(ϕ)| = |1− ϕ(a)| |f̂(ϕ)| = |f̂(ϕ)− f̂a(ϕ)|(3.108)

for every a ∈ A and ϕ ∈ Â. It follows that

|1− ϕ(a)| |f̂(ϕ)| ≤
∫
A

|f − fa| dH(3.109)

for every a ∈ A and ϕ ∈ Â, using (3.18) in Section 3.2, and the linearity of the

Fourier transform. It is well known that Â is locally compact with respect to
the dual topology defined in Section 1.12 when A is locally compact. In this
case, it is also well known that f̂ vanishes at infinity on Â when f is integrable
on A with respect to H. We shall return to these matters in Section 4.4.

3.10 Some related continuity conditions

Let V be a topological vector space over the real numbers, so that V is also a
commutative topological group with respect to addition. If λ is a continuous
linear functional on V , then

ϕλ(v) = exp(i λ(v))(3.110)

defines a continuous group homomorphism from V as a commutative topological
group with respect to addition into T, as in Section 1.11. We have also seen
that every continuous group homomorphism from V into T is of this form. If
µ is a complex Borel measure on V , then the Fourier transform of µ can be
expressed as

µ̂(ϕλ) =

∫
V

exp(−i λ(v)) dµ(v)(3.111)

for every λ ∈ V ′. One may simply consider µ̂ as a complex-valued function on
V ′, which is sometimes expressed as µ̂(λ) for each λ ∈ V ′.

It is well known that

| exp(i t1)− exp(i t2)| ≤ |t1 − t2|(3.112)
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for every t1, t2 ∈ R. This can be derived from the fact that the derivative of
exp(i t) is equal to i exp(i t), which has modulus equal to 1 for every t ∈ R. If
λ1, λ2 ∈ V ′, then it follows that

|ϕλ1
(v)− ϕλ2

(v)| = | exp(i λ1(v))− exp(i λ2(v))| ≤ |λ1(v)− λ2(v)|(3.113)

for every v ∈ V .
Suppose for the moment that E ⊆ V is a nonempty Borel set which is also

bounded, in the sense of Section 1.17, and that

|µ|(V \ E) = 0.(3.114)

One can simply take E to be a closed set in V , since the closure of a bounded
subset of V is bounded as well, as in Section 1.17. If λ1, λ2 ∈ V ′, then

|µ̂(ϕλ1)− µ̂(ϕλ2)| ≤ |µ|(V ) sup
v∈E

|ϕλ1(v)− ϕλ2(v)|,(3.115)

as in (3.4) in Section 3.1. Combining this with (3.113), we get that

|µ̂(ϕλ1)− µ̂(ϕλ2)| ≤ |µ|(V ) sup
v∈E

|λ1(v)− λ2(v)|(3.116)

for every λ1, λ2 ∈ V ′. It follows that µ̂(ϕλ) is uniformly continuous as a function
of λ ∈ V ′ with respect to the topology defined on V ′ by the collection of supre-
mum seminorms associated to nonempty bounded subsets of V , as in Section
1.18.

Similarly, let ϵ > 0 be given, and suppose that E(ϵ) ⊆ V is a nonempty
bounded Borel set such that

|µ|(V \ E(ϵ)) < ϵ.(3.117)

As before, one can simply take E(ϵ) to be a closed set in V , by replacing it with
its closure in V . If λ1, λ2 ∈ V ′, then

|µ̂(ϕλ1)− µ̂(ϕλ2)| ≤ |µ|(V ) sup
v∈E(ϵ)

|ϕλ1(v)− ϕλ2(v)|+ 2 ϵ,(3.118)

as in (3.6) in Section 3.1. This implies that

|µ̂(ϕλ1)− µ̂(ϕλ2)| ≤ |µ|(V ) sup
v∈E(ϵ)

|λ1(v)− λ2(v)|+ 2 ϵ(3.119)

for every λ1, λ2 ∈ V ′, using (3.113), as before. If we can do this for every ϵ > 0,
then we get that µ̂(ϕλ) is uniformly continuous as a function of λ ∈ V ′ with
respect to the topology defined on V ′ by the collection of supremum seminorms
associated to nonempty bounded subsets of V again.

Of course, one might prefer to have compact sets E, E(ϵ) in V , as in Section
3.1.
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3.11 Some additional continuity conditions

Let A be a commutative topological group, and let µ be a complex Borel measure
on A. Suppose that {ϕj}∞j=1 is a sequence of elements of Â that converges

pointwise to another element ϕ of Â everywhere on A. Under these conditions,
we have that

lim
j→∞

µ̂(ϕj) = µ̂(ϕ),(3.120)

by the dominated convergence theorem. More precisely, the dominated conver-
gence theorem implies that

lim
j→∞

∫
A

|ϕj − ϕ| d|µ| = 0,(3.121)

and (3.120) follows from this, as in (3.3) in Section 3.1. In particular, (3.120)
implies that µ̂ is sequentially continuous with respect to the topology defined
on Â in Section 1.12.

Let V be a topological vector space over the real or complex numbers, and
let N be a seminorm on V that is compatible with the given topology on V ,
as in Section 2.16. Let us say that a linear functional λ on V is bounded with
respect to N if there is a nonnegative real number C such that

|λ(v)| ≤ C N(v)(3.122)

for every v ∈ V . This implies that λ is continuous at 0 on V , and hence every-
where on V , because N is supposed to be compatible with the given topology
on V . Let V ′

N be the collection of linear functionals on V that are bounded
with respect to N , which one can check is a linear subspace of the dual space
V ′. Put

∥λ∥V ′
N
= sup{|λ(v)| : v ∈ V, N(v) ≤ 1}(3.123)

for every λ ∈ V ′
N , which is the same as the smallest C ≥ 0 such that (3.122)

holds. It is easy to see that this defines a norm on V ′
N . If N is a norm on V ,

and the given topology on V is the same as the one determined by N , then
V ′
N = V ′, and (3.123) is the same as the dual norm (1.151) in Section 1.18.
Let N be any compatible seminorm on V again, and let E be a nonempty

bounded subset of V , as in Section 1.17. It is easy to see that N is bounded on
E under these conditions. If λ ∈ V ′

N , then

sup
v∈E

|λ(v)| ≤ sup
v∈E

(∥λ∥V ′
N
N(v)) = ∥λ∥V ′

N
sup
v∈E

N(v).(3.124)

This implies that the topology on V ′
N determined by ∥λ∥V ′

N
is at least as strong

as the topology induced on V ′
N by the topology determined on V ′ by the collec-

tion of supremum seminorms associated to nonempty bounded subsets of V , as
in Section 1.18.

Suppose now that V is a topological vector space over the real numbers,
and let N be a compatible seminorm on V again. If v ∈ V and r ≥ 0, then
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let BN (v, r) be the closed ball in V centered at v with radius r with respect to
the semimetric dN associated to N as in (1.45) in Section 1.5. Remember that
closed balls were defined in (1.24) in Section 1.2, so that BN (0, r) consists of
w ∈ V such that N(w) ≤ r. Let µ be a complex Borel measure on V , and let
λ1, λ2 ∈ V ′

N be given. If ϕλ is as in (3.110) in the previous section, then we have
that

|µ̂(ϕλ1
)− µ̂(ϕλ2

)| ≤
∫
V

|ϕλ1
− ϕλ2

| d|µ|,(3.125)

as in (3.3) in Section 3.1. If r is any nonnegative real number, then we can split
the integral over V into integrals over BN (0, r) and V \BN (0, r), to get that

|µ̂(ϕλ1
)− µ̂(ϕλ2

)| ≤ |µ|(BN (0, r)) sup{|ϕλ1
(v)− ϕλ2

(v)| : v ∈ V, N(v) ≤ r}
+2 |µ|(V \BN (0, r)).(3.126)

We also have that

|ϕλ1
(v)− ϕλ2(v)| ≤ |λ1(v)− λ2(v)| ≤ ∥λ1 − λ2∥V ′

N
N(v)(3.127)

for every v ∈ V , using (3.113) in the previous section in the first step, and the
definition of ∥λ∥V ′

N
in the second step. Combining this with (3.126), we get that

|µ̂(ϕλ1
)− µ̂(ϕλ2

)| ≤ |µ|(BN (0, r)) r ∥λ1 − λ2∥V ′
N
+ 2 |µ|(V \B(0, r))(3.128)

for every r ≥ 0. Of course,

lim
r→∞

|µ|(V \B(0, r)) = 0,(3.129)

by standard arguments. Using (3.128) and (3.129), we get that µ̂(ϕλ) is uni-
formly continuous as a function of λ ∈ V ′

N with respect to ∥λ∥V ′
N
.

Let λ1, . . . , λn be finitely many continuous linear functionals on V , and put

N(v) = max
1≤j≤n

|λj(v)|(3.130)

for each v ∈ V . It is easy to see that this defines a seminorm on V , and that
N is compatible with the given topology on V , because the λj ’s are continuous.
By construction, λj is bounded on V with respect to N for each j, and linear
combinations of the λj ’s are bounded on V with respect toN as well. Conversely,
if λ is any linear functional on V that is bounded with respect to N , then λ
can be expressed as a linear combination of the λj ’s. This uses the fact that
the kernel of λ contains the intersection of the kernels of the λj ’s, as in Section
1.13. If t ∈ Rn, then put

λt(v) =

n∑
j=1

tj λj(v)(3.131)

for each v ∈ V , so that λt is a linear functional on V that is bounded with
respect to N . Let µ be a complex Borel measure on V , and let ϕλ be as in
(3.110) again. The remarks in the previous paragraph imply that µ̂(ϕλt) is
uniformly continuous as a function of t with respect to the standard metric on
Rn.



Chapter 4

Equicontinuity and related
topics

4.1 Equicontinuity

Let X be a topological space. A collection E of complex-valued functions on X
is said to be equicontinuous at a point x ∈ X if for every ϵ > 0 there is an open
set U(x, ϵ) ⊆ X such that x ∈ U(x, ϵ) and for every f ∈ E and y ∈ U(x, ϵ) we
have that

|f(x)− f(y)| < ϵ.(4.1)

Of course, this implies that every f ∈ E is continuous at x. If E has only finitely
many elements, and if every element of E is continuous at x, then it is easy to
see that E is equicontinuous at x.

Let V be a topological vector space over the real or complex numbers, and
let E be a collection of linear functionals on V . If E is equicontinuous at 0, then
E is equicontinuous at every point in V , by linearity. Suppose that there is an
open set U1 ⊆ V such that 0 ∈ U1 and

|λ(v)| < 1(4.2)

for every λ ∈ E and v ∈ U1. If ϵ is any positive real number, then it follows that

|λ(v)| < ϵ(4.3)

for every λ ∈ E and v ∈ ϵ U1, so that E is equicontinuous at 0 on V . Conversely,
the existence of U1 is obviously necessary for E to be equicontinuous at 0 on V .

Now let A be a commutative topological group, and let E be a collection of
group homomorphisms from A into T. If E is equicontinuous at 0, then one
can check that E is equicontinuous at every point in A, as before. Suppose that
there is an open set U0 ⊆ A such that 0 ∈ U0 and

Reϕ(y) ≥ 0(4.4)

96
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for every ϕ ∈ E and y ∈ U0. Using continuity of addition on A, one can get a
sequence U1, U2, U3, . . . of open subsets of A such that 0 ∈ Uj and

Uj + Uj ⊆ Uj−1(4.5)

for each j ≥ 1. In particular, this implies that Uj ⊆ Uj−1 for every j ≥ 1. Let
n · a be the sum of n a’s in A for each a ∈ A and positive integer n, as before.
If y ∈ Uj for some positive integer j, then

2 · y ∈ Uj−1,(4.6)

by (4.5). If l is a nonnegative integer less than or equal to j, then it follows that

2l · y ∈ Uj−l ⊆ U0.(4.7)

Combining this with (4.4), we get that

Reϕ(y)2
l

= Reϕ(2l · y) ≥ 0(4.8)

for every y ∈ Uj and l = 0, . . . , j. This condition implies that ϕ(y) is in a
small neighborhood of 1 in T, where this neighborhood of 1 in T can be made
arbitrarily small by taking j large enough. Thus (4.4) implies that E is equicon-
tinuous at 0 on A. Conversely, If E is a collection of group homomorphisms
from A into T that is equicontinuous at 0, then it is easy to see that there is an
open set U0 ⊆ A such that 0 ∈ U0 and (4.4) holds for every ϕ ∈ A and y ∈ U0.

Let V be a topological vector space over the real numbers, so that V is a
commutative topological group with respect to addition in particular. If λ is a
linear functional on V , then

ϕλ(v) = exp(i λ(v))(4.9)

defines a group homomorphism from V as a group with respect to addition into
T. If λ is continuous on V , then ϕλ is continuous on V as well, and we have
seen in Section 1.11 that every continuous group homomorphism from V into
T is of this form. Let E be a collection of linear functionals on V , and let

E1 = {ϕλ : λ ∈ E}(4.10)

be the corresponding collection of group homomorphisms from V into T. If E
is equicontinuous at 0 on V , then it is easy to see that E1 is equicontinuous at
0 on V , using the continuity of the exponential function. Conversely, if E1 is
equicontinuous at 0 on V , then E is equicontinuous at 0 on V . More precisely,
the equicontinuity of E1 on V means that there are neighborhoods U of 0 in V
such that each ϕλ ∈ E1 is close to 1 on U . This implies that each λ ∈ E is close
to 0 modulo 2π on U . We can also take U to be balanced in V , as in Section
1.6. This permits us to conclude that each λ ∈ E is small on U , as desired, and
as in Section 1.11.
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4.2 Equicontinuity and compactness

Let X be a nonempty topological space, and let E be a collection of complex-
valued functions on X. Suppose that E is equicontinuous at every point in X,
so that for each x ∈ X and ϵ > 0 there is an open set U(x, ϵ) ⊆ X such that
x ∈ U(x, ϵ) and (4.1) holds for every f ∈ E and y ∈ U(x, ϵ). In particular, this
implies that every f ∈ E is continuous on X, so that E may be considered as a
subset of the space C(X,C) of all continuous complex-valued functions on X.
We may also consider E as a subset of the space c(X,C) of all complex-valued
functions on X. As usual, we take C(X,C) and c(X,C) to be equipped with
the topologies defined in Sections 1.7 and 1.9, respectively.

Suppose that g is a complex-valued function on X which is in the closure
of E in c(X,C). This basically means that g can be approximated by elements
of E on finite subsets of X. Using the equicontinuity condition described in the
previous paragraph, we get that

|g(x)− g(y)| ≤ ϵ(4.11)

when y ∈ U(x, ϵ) for some x ∈ X and ϵ > 0. This implies that g is continu-
ous on X, so that the closure of E in c(X,C) is contained in C(X,C) under
these conditions. More precisely, this shows that the closure of E in c(X,C) is
equicontinuous at every point in X as well.

Let g be an element of the closure of E in c(X,C) again, and let K be a
nonempty compact subset of X. Using an argument of the usual Arzelà–Ascoli
type, one can verify that g can be approximated by elements of E uniformly
on K. More precisely, this can be obtained from approximations of g by ele-
ments of E on suitable finite subsets of K, using the compactness of K and the
equicontinuity conditions. This means that g is in the closure of E in C(X,C),
so that the closure of E in c(X,C) is contained in the closure of E in C(X,C).
The opposite inclusion holds automatically, because this topology on C(X,C)
is at least as strong as the topology induced on C(X,C) by the one on c(X,C).
Thus the closures of E in c(X,C) and in C(X,C) are the same under these
conditions. If E is a closed set in C(X,C), then it follows that E is a closed
set in c(X,C). The converse is trivial, as before, because of the way that the
topologies are defined.

Similarly, one can check that the topology induced on E by the topology on
C(X,C) is the same as the topology induced on E by the topology on c(X,C).
The topology induced on E by the topology on C(X,C) is automatically at least
as strong as the topology induced on E by the topology on c(X,C), and so it
suffices to show the opposite inclusion. Let f0 ∈ E and a nonempty compact
set K ⊆ X be given. The same type of argument as in the previous paragraph
implies that f ∈ E is uniformly close to f0 on K when f is close enough to f0
on a suitable finite subset of K. This means that relative neighborhoods of f0
in E with respect to the topology on C(X,C) contain relative neighborhoods of
f0 in E with respect to the topology on c(X,C), as desired.
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Suppose now that E is also bounded pointwise on X, so that

Ex = {f(x) : f ∈ E}(4.12)

is a bounded set in C for every x ∈ X. Equivalently, this means that there is a
nonnegative real-valued function A on X such that

|f(x)| ≤ a(x)(4.13)

for every f ∈ E and x ∈ X. Observe that

{f ∈ c(X,C) : |f(x)| ≤ a(x)}(4.14)

is a compact subset of c(X,C), by Tychonoff’s theorem, since (4.14) may be
considered as a product of closed disks in C. If E is a closed set in c(X,C),
then it follows that E is compact in c(X,C), because E is contained in (4.14)
by construction.

Of course, if E is compact in c(X,C), then E is compact as a subset of itself,
with respect to the topology induced on E by the one on c(X,C). This is the
same as the topology induced on E by the topology on C(X,C) in this situation,
as before. It follows that E is compact as a subset of C(X,C) when E is compact
as a subset of c(X,C) under these conditions. The converse is trivial, because
the topology induced on E by the one on C(X,C) is at least as strong as the
topology induced on E by the one on c(X,C).

If E is a closed set in C(X,C), then we have seen that E is a closed set in
c(X,C). Thus E is compact in C(X,C) when E is closed in C(X,C) and E is
bounded pointwise on X, by the remarks in the previous paragraphs.

4.3 Some related arguments

Let X be a nonempty topological space, and let E be a nonempty subset of X.
Remember that c(X,C) denotes the space of all complex-valued functions on
X, and similarly c(E,C) denotes the space of complex-valued functions on E.
There is a natural mapping from C(X,C) into c(E,C), which sends a complex-
valued function f on X to its restriction on E. This mapping is linear, and more
precisely an algebra homomorphism with respect to pointwise multiplication of
functions. This mapping is also continuous with respect to the topologies defined
on c(X,C) and c(E,C) in Section 1.9.

Let E be a collection of complex-valued functions on X, and suppose that
E is equicontinuous at every point in X. Suppose also that E is dense in X,
which implies that the restriction mapping from c(X,C) into c(E,C) mentioned
in the previous paragraph is injective on E . Consider the topology on E that
corresponds to the topology induced on the image of E in c(E,C) by the usual
topology on c(E,C). Under these conditions, one can check that this is the same
as the topology induced on E by the usual topology on c(X,C). Of course, the
topology induced on E by the usual topology on c(X,C) is automatically at
least as strong as the topology on E that corresponds to c(E,C). To get the
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opposite inclusion, let x ∈ X and f, g ∈ E be given, and let y be an element of
E. If y is sufficiently close to x in X, and if f(y) is sufficiently close to g(y) in
C, then one can get f(x) to be as close to g(x) in C as one wants, because E is
equicontinuous at x.

Let {fj}∞j=1 be a sequence of elements of E that converges pointwise on E.
This implies that {fj(y)}∞j=1 is a Cauchy sequence in C for every y ∈ E. If
x ∈ X, then one can verify that {fj(x)}∞j=1 is a Cauchy sequence in C too,
using the equicontinuity of E at x, and by approximating x by y ∈ E. Thus
{fj}∞j=1 converges pointwise to a complex-valued function f on X, because C is
complete. As in Section 4.2, f is continuous on X in this situation, and {fj}∞j=1

converges to f with respect to the topology defined on C(X,C) in Section 1.7.
Remember that Ex is the subset of C defined in (4.12) in Section 4.2 for each

x ∈ E. Suppose that E is bounded pointwise on E, so that Ey is a bounded
subset of C for each y ∈ E. If x ∈ X, then it is easy to see that Ex is bounded
in C too, using the equicontinuity of E at x, and by approximating x by y ∈ E.
Thus E is bounded pointwise on X under these conditions.

Let {fj}∞j=1 be a sequence of complex-valued functions on X. If {fj(x)}∞j=1

is a bounded sequence of complex numbers for some x ∈ X, then there is a
subsequence {fjl(x)}∞l=1 of {fj(x)}∞j=1 that converges in C, because closed and
bounded subsets of C are sequentially compact. If {fj(y)}∞j=1 is a bounded
sequence of complex numbers for every y ∈ E, and if E has only finitely or
countably many elements, then it is well known that there is a subsequence
{fjl}∞l=1 of {fj}∞j=1 that converges pointwise on E. This is easy to do when
E has only finitely many elements, using the previous statement for individual
points in E repeatedly. If E is countably infinite, then the desired subsequence
can be obtained from a diagonalization argument.

Suppose that E is bounded pointwise on E, and let {fj}∞j=1 be a sequence
of elements of E . If E has only finitely or countably many elements, then there
is a subsequence {fjl}∞l=1 of {fj}∞j=1 that converges pointwise on E, as in the
preceding paragraph. It follows that {fjl}∞l=1 converges to a continuous function
f on X with respect to the usual topology on C(X,C), as before. If E is also a
closed set in C(X,C), then f ∈ E . This implies that E is sequentially compact
when E is pointwise bounded on E and a closed set in C(X,C) and E , and E
has only finitely or countably many elements.

If E has only finitely or countably many elements, then the usual topology
on c(E,C) discussed in Section 1.9 is determined by a collection of finitely
or countably many seminorms on c(E,C). This implies that this topology on
c(E,C) is determined by a translation-invariant metric, as in Section 1.4.

Let A be a commutative topological group, and let E be an equicontinuous
collection of group homomorphisms from A into T. Also let E0 be a subset of A
such that the subgroup E of A generated by E0 is dense in A. In this case, one
can get the same topology on E using E0 instead of E. If E0 has only finitely
or countably many elements, then E has the same property, as in Section 2.7.

Similarly, let V be a topological vector space over the real or complex num-
bers, and let E be an equicontinuous collection of linear functionals on V . Also
let E1 be a subset of V whose linear span E is dense in V . As before, one can
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get the same topology on E using E1 instead of E. As a variant of this, let
E2 be the linear span of E1 with rational coefficients in the real case. In the
complex case, let E2 be the linear span of E1 whose coefficients are complex
numbers with rational real and imaginary parts. In both cases, it is easy to
see that E2 is dense in E, and hence in V . If E1 has only finitely or countably
many elements, then one can check that E2 has only finitely or countably many
elements as well.

4.4 Subsets of Â

Let A be a commutative topological group, and let Â be the corresponding dual
group, with the topology described in Section 1.12. This is the same as the
topology induced on Â by the topologies defined on C(A,C) and C(A,T) in

Section 1.7. It is easy to see that Â is a closed set in C(A,C) and C(A,T),
with respect to these topologies. More precisely, the collection of all group
homomorphisms from A intoT is a closed set in c(A,C) and c(A,T) with respect
to the topologies defined in Section 1.9. This implies the previous statement,
because the topologies on C(A,C) and C(A,T) defined in Section 1.7 are at
least as strong as the topologies induced on them by the topologies defined on
c(A,C) and c(A,T) in Section 1.9.

Let U0 ⊆ A be an open set with 0 ∈ U0, and let E0 be the collection of all
group homomorphisms ϕ from A into T such that

Reϕ(y) ≥ 0(4.15)

for every y ∈ U0. Thus E0 is equicontinuous at 0 in A, and hence at every
point in A, as in Section 4.1. In particular, the elements of E0 are continuous
on A, so that E0 ⊆ Â. It is easy to see that E0 is a closed set in c(A,C) and
c(A,T) with respect to the topologies defined in Section 1.9. Remember that
c(A,T) is compact with respect to this topology, by Tychonoff’s theorem, as in
Section 1.9. It follows that E0 is a compact subset of c(A,T) with respect to
this topology, because closed subsets of compact sets are compact. In fact, E0 is
compact in C(A,C), as in the Section 4.2. This implies that E0 is compact as a

subset of Â with respect to the topology induced by the usual one on C(A,C).

Let 1A be the indicator function associated to A on A, which is the constant
function on A equal to 1 at every point in A. Of course, this is the identity
element in the dual group Â. Also let K be a nonempty compact subset of A,
and consider {

ϕ ∈ Â : sup
x∈K

|ϕ(x)− 1| < 1

}
.(4.16)

This is the same as the open unit ball in Â centered at 1A with respect to
the supremum semimetric associated to K as in (1.106) in Section 1.12. In

particular, (4.16) is an open set in Â with respect to the topology defined in
Section 1.12.
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Suppose now that U0 ⊆ A is an open set, K ⊆ A is compact, 0 ∈ U0, and
U0 ⊆ K. Note that there exist subsets U0 and K of A with these properties
exactly when A is locally compact. Under these conditions, (4.16) is contained
in the collection E0 of all group homomorphisms ϕ from A into T that satisfy
(4.15) for every y ∈ U0. This uses the simple fact that Re z > 0 when z is a

complex number such that |z−1| < 1. It follows that Â is locally compact with
respect to the topology described in Section 1.12 when A is locally compact,
because E0 is compact in Â, as before.

Suppose that A is locally compact, and let H be a Haar measure on A. Also
let f be a complex-valued Borel measurable function on A that is integrable
with respect to H, and let ϵ > 0 be given. Under these conditions, there is an
open set U0 ⊆ A such that 0 ∈ U0 and∫

A

|f(x)− f(x− a)| dH(x) < ϵ(4.17)

for every a ∈ A, as in (3.106) in Section 3.9. Let E0 be the collection of group
homomorphisms ϕ from A into T that satisfy (4.15) for every y ∈ U0, as before.

If ϕ ∈ Â \ E0, then there is an a ∈ U0 such that Reϕ(a) < 0, which implies that

|ϕ(a)− 1| > 1.(4.18)

Combining (4.17) and (4.18) with (3.109) in Section 3.9, we get that

|f̂(ϕ)| < ϵ(4.19)

for every ϕ ∈ Â \ E0. This implies that f̂ vanishes at infinity on Â, because E0
is compact in Â, as before.

4.5 Boundedness and total boundedness

Let X be a nonempty set, and let c(X,C) be as in Section 1.9. Thus c(X,C) is
a complex topological vector space with respect to the topology defined there.
Note that a subset E of c(X,C) is a bounded subset of c(X,C) as a topological
vector space, as in Section 1.17, if and only if E is bounded pointwise on X.
This is easy to see directly from the definitions, and it can also be derived from
the characterization of bounded subsets of topological vector spaces V for which
the topology on V is defined by a collection of seminorms on V mentioned in
Section 1.17. This can be obtained from the remarks about bounded subsets of
Cartesian products of topological vector spaces in Section 1.18 as well.

If E is bounded pointwise on X, then E is totally bounded as a subset
of c(X,C) as a commutative topological group with respect to addition, as
in Section 1.19. As before, this can be verified directly from the definitions,
or using the remarks about totally bounded subsets of Cartesian products of
commutative topological groups in Section 1.19. The main point is that bounded
subsets of C are totally bounded, and similarly for Cn for each positive integer
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n. Conversely, if E is totally bounded in c(X,C) as a commutative topological
group with respect to addition, then E is bounded pointwise on X. This can
be seen directly, or using the fact that totally bounded subsets of a topological
vector space are bounded, as in Section 1.19.

In particular, c(X,T) is totally bounded as a subset of c(X,C), considered
as a commutative group with respect to addition. Remember that c(X,T) is
also a commutative topological group with respect to pointwise multiplication of
functions and the usual topology, as in Section 1.9. One can check that c(X,T)
is totally bounded as a subset of itself, considered as a commutative topological
group. This can be verified directly from the definitions, or using the remarks
about Cartesian products in Section 1.19. Of course, this uses the fact that T
is totally bounded.

Suppose now that X is equipped with a topology, and let C(X,C) be as in
Section 1.7, so that C(X,C) is a complex topological vector space with respect to
the usual topology. Observe that E ⊆ C(X,C) is bounded in the sense of Section
1.17 if and only if the elements of E are uniformly bounded on every nonempty
compact subset of X. This follows from the characterization of bounded subsets
of a topological space V when the topology on V is determined by a collection
of seminorms mentioned in Section 1.17, since the usual topology on C(X,C) is
determined by the collection of supremum seminorms associated to nonempty
compact subsets of X.

Suppose for the moment that E is equicontinuous at every point in X, and
that E is bounded pointwise on X. In this case, it is easy to see that for each
x ∈ X there is an open set U ⊆ X such that x ∈ U and the elements of E are
uniformly bounded on U . This implies that the elements of E are uniformly
bounded on compact subsets of X. Under these conditions, one can also check
that E is totally bounded in C(X,C) as a commutative topological group with
respect to addition, using standard arguments of the Arzelà–Ascoli type. The
main point is to use equicontinuity to reduce uniform approximations of elements
of E on a nonempty compact set K ⊆ X to approximations on suitable finite
subsets of K, as in Section 4.2.

Similarly, suppose that for each compact set K ⊆ X and x ∈ K, the re-
strictions of the elements of E to K are equicontinuous at x, with respect to
the topology induced on K by the one on X. If E is bounded pointwise on X,
then the elements of E are uniformly bounded on compact subsets of X. In this
case, E is totally bounded in C(X,C) as a commutative topological group with
respect to addition as well. These statements can be verified in basically the
same way as in the preceding paragraph. One can also reduce to the previous
situation, by restricting the elements of E to a compact set K.

Conversely, let E be a totally bounded subset of C(X,C) as a commutative
topological group with respect to addition. If K ⊆ X is compact, then the
restrictions of the elements of E to K are equicontinuous at every point in K,
with respect to the topology induced on K by the one on X. Indeed, total
boundedness of E in C(X,C) implies that the restrictions of elements of E to
K can be approximated uniformly on K by finitely many continuous functions
on K. Using this, the equicontinuity of the restrictions of the elements of E to
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a point x ∈ K can be obtained from the continuity of these approximations.
Remember that C(X,T) is a commutative topological group with respect

to pointwise multiplication of functions and the usual topology, as in Section
1.7. If E is any subset of C(X,T), then one can check that E is totally bounded
as a subset of C(X,T) as a commutative topological group with respect to
multiplication if and only if E is totally bounded as a subset of C(X,C) as a
commutative topological group with respect to addition. Of course, the usual
topology on C(X,T) is the same as the topology induced by the usual topology
on C(X,C). The identity element in C(X,T) is the constant function 1X on
X equal to 1 at every point, so that relatively open subsets of C(X,T) that
contain 1X as an element are used in the definition of totally bounded subsets
of C(X,T). One also considers translations of these relatively open sets with
respect to multiplication in C(X,T), instead of translations in C(X,C) with
respect to addition of open sets that contain 0.

4.6 Equicontinuity along convergent sequences

Let X be a topological space, and let E be a collection of complex-valued func-
tions on X. Also let {xj}∞j=1 be a sequence of elements of X that converges to
a point x ∈ X. Let us say that E is equicontinuous along {xj}∞j=1, x if for every
ϵ > 0 there is a positive integer L such that

|f(xj)− f(x)| < ϵ(4.20)

for every f ∈ E and j ≥ L. In particular, this implies that

lim
j→∞

f(xj) = f(x)(4.21)

for every f ∈ E . If E has only finitely many elements, each of which satisfies
(4.21), then E is equicontinuous along {xj}∞j=1, x.

Let us say that E is equicontinuous along convergent sequences at x ∈ X if
for every sequence {xj}∞j=1 of elements of X that converges to x, E is equicon-
tinuous along {xj}∞j=1, x. This implies that every element of E is sequentially
continuous at x. If E has only finitely many elements, each of which is sequen-
tially continuous at x, then E is equicontinuous along convergent sequences at x.
If E is any collection of complex-valued functions on X that is equicontinuous
at x, then it is easy to see that E is equicontinuous along convergent sequences
at x.

Suppose that there is a local base for the topology of X at a point x with
only finitely or countably many elements. This implies that there is a sequence
U1, U2, U3, . . . of open subsets of X such that x ∈ Uj for every j, and for every
open set U ⊆ X with x ∈ U , we have that Uj ⊆ U for some j. As usual, we

may also ask that Uj+1 ⊆ Uj for each j, by replacing Uj with
∩j

l=1 Ul for each
j. Let E be a collection of complex-valued functions on X, and suppose that E
is not equicontinuous at x. This means that there is an ϵ > 0 such that for each
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open set U ⊆ X with x ∈ U , there is a point y ∈ U and an f ∈ E with

|f(x)− f(y)| ≥ ϵ.(4.22)

It follows that for each positive integer j, we can choose xj ∈ Uj and fj ∈ E so
that

|fj(xj)− fj(x)| ≥ ϵ.(4.23)

By construction, {xj}∞j=1 converges to x in X. However, E is not equicontin-
uous along {xj}∞j=1, x. This shows that E is equicontinuous at x when E is
equicontinuous along convergent sequences at x and there is a local base for the
topology of X at x with only finitely or countably many elements.

Let {xj}∞j=1 be a sequence of elements of X that converges to a point x ∈ X.
If K is the subset of X consisting of the xj ’s for each positive integer j and x,
then it is easy to see that K is compact in X. Let E be a collection of complex-
valued functions on X again. If the restrictions of the elements of E to K are
equicontinuous at x with respect to the topology induced on K by the one on
X, then it is easy to see that E is equicontinuous along {xj}∞j=1, x. Suppose now
that for every compact set K ⊆ X and point x ∈ K we have that the restrictions
of the elements of E to K are equicontinuous at x, with respect to the topology
induced on K by the one on X. This implies that E is equicontinuous along
convergent sequences at every point in X, by the previous remark. If for every
x ∈ X there is a local base for the topology of X at x with only finitely or
countably many elements, then it follows that E is equicontinuous at every point
in X, as in the preceding paragraph. Of course, if X is locally compact, and if
the restrictions of elements of E to every compact set K ⊆ X are equicontinuous
at every point in K, then E is equicontinuous at every point x ∈ X.

4.7 Strong σ-compactness

Let X be a topological space again. Let us say that X is strongly σ-compact if
there is a family {Kj}j∈I of finitely or countably many compact subsets of X
such that every compact subset of X is contained in the union of finitely many
Kj ’s. In particular, this implies that

∪
j∈I Kj = X, because subsets of X with

only one element are compact. It follows that X is σ-compact, and that X is
compact when I has only finitely many elements. Of course, we may as well take
I to be the set Z+ of positive integers. We may also ask that Kj ⊆ Kj+1 for

every j ∈ Z+, since otherwise we can replace Kj with
∪j

l=1Kl for each j ∈ Z+.
Under these conditions, we get that every compact subset of X is contained in
Kj for some j ∈ Z+.

Suppose for the moment that X is locally compact. In this case, it is easy
to see that every compact subset of X is contained in the interior of another
compact subset of X. Suppose that X is σ-compact, so that there is a sequence
K1,K2,K3, . . . of compact subsets of X such that X =

∪∞
j=1Kj . We may also

ask that Kj ⊆ Kj+1 for each j, as usual. More precisely, we can use the previous
remark to modify the Kj ’s to get that Kj is contained in the interior of Kj+1 for
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each j. This implies that the interiors of the Kj ’s form an increasing sequence
of open subsets of X whose union is equal to X. If K is any compact subset
of X, then it follows that K is contained in the interior of Kj for some j. This
shows that X is strongly σ-compact when X is locally compact and σ-compact.

Consider the set Q of rational numbers, equipped with the topology induced
by the standard topology on R. Of course, Q is σ-compact, because Q is
countable. If K is any compact subset of Q, a, b ∈ Q, and a < b, then there is
an x ∈ Q such that a < x < b and x ̸∈ K. Let K1,K2,K3, . . . be any sequence
of compact subsets of Q. If j is any positive integer, then we can choose xj ∈ Q

such that 0 ≤ xj < 1/j and xj ̸∈
∪j

l=1Kj , by the previous remark. Let E be
the subset of Q consisting of the xj ’s, j ∈ Z+, together with 0. Note that E is
a compact subset of Q. It follows that Q is not strongly σ-compact.

Let A be a commutative topological group, and suppose that there is a local
base for the topology of A at 0 with only finitely or countably many elements.
This implies that there is a sequence U1, U2, U3, . . . of open subsets of A such
that 0 ∈ Uj for every j, and for every open set U ⊆ A with 0 ∈ U we have
that Uj ⊆ U for some j. If j ∈ Z+, then let Ej be the collection of group
homomorphisms ϕ from A into T such that

Reϕ(x) ≥ 0(4.24)

for every x ∈ Uj . As in Section 4.4, Ej is a compact subset of Â for each j, with

respect to the topology defined on Â in Section 1.12.

Now let E be any compact subset of Â with respect to this topology. This
implies that E is totally bounded in Â as a commutative topological group, as
in Section 1.19. It follows that E is totally bounded in C(X,T) as a commuta-
tive topological group, with respect to the topology defined in Section 1.7 and
pointwise multiplication of functions. Equivalently, this means that E is totally
bounded in C(X,C) as a commutative topological group with respect to the
topology defined in Section 1.7 and pointwise addition of functions, as in Sec-
tion 4.5. If K is a compact subset of A and x ∈ K, then the restrictions of the
elements of E to K are equicontinuous on K at x with respect to the topology
induced on K by the one on A, as in Section 4.5 again. This implies that E is
equicontinuous at every point x ∈ K, as in the previous section, because there
is a local base for the topology of A at 0 with only finitely or countably many
elements, and hence at every point x ∈ A. Of course, it suffices to consider
x = 0 here, since the elements of E are group homomorphisms from A into T.
Using the equicontinuity of E at 0, we get that there is an open set U ⊆ A such
that 0 ∈ U and (4.24) holds for every ϕ ∈ E and x ∈ U . Because the Uj ’s form
a local base for the topology of A at 0, there is a positive integer j0 such that
Uj0 ⊆ U . It follows that

E ⊆ Ej0 ,(4.25)

so that Â is strongly σ-compact under these conditions.
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4.8 Subsets of V ′

Let V be a topological vector space over the real or complex numbers, and let V ′

be the corresponding dual space of continuous linear functionals on V , as usual.
It is easy to see that the collection of all linear functionals on V is a closed set
in c(V,R) or c(V,C), as appropriate, with respect to the topology discussed in
Section 1.9. Of course, V ′ is the same as the intersection of the collection of all
linear functionals on V with C(V,R) or C(V,C), as appropriate. In particular,
V ′ is a closed set in C(V,R) or C(V,C), as appropriate, with respect to the
topology defined in Section 1.7. Note that the topology induced on V ′ by the
topology just mentioned on c(V,R) or c(V,C), as appropriate, is the same as
the weak∗ topology on V ′, which was defined in Section 1.13.

Let U be an open set in V with 0 ∈ U , and let E be the collection of linear
functionals λ on V such that

|λ(v)| ≤ 1(4.26)

for every v ∈ U . This implies that

|λ(v)| ≤ |t|(4.27)

for every v ∈ t U and t ∈ R or C, as appropriate. It follows that E is equicon-
tinuous at 0 on V , and hence at every point in V , as in Section 4.1. Observe
that E is a closed set in c(V,R) or c(V,C), as appropriate, with respect to the
topology defined in Section 1.9. This uses the fact that the collection of all
linear functionals on V is a closed set with respect to this topology, as in the
previous paragraph, and the way that E is defined. If v is any element of V ,
then r v ∈ U when r ∈ R or C, as appropriate, is sufficiently small, because
of the continuity of r 7→ r v at r = 0. This implies that v ∈ t U when |t| is
sufficiently large, and hence that E is bounded pointwise on V , by (4.27). It
follows that E is compact in c(V,R) or c(V,C), as appropriate, by Tychonoff’s
theorem, as in Section 4.2. Of course, each element of E is continuous on V , by
equicontinuity, so that E ⊆ V ′. Thus E is compact with respect to the weak∗

topology on V ′, which is the famous theorem of Banach and Alaoglu.
Suppose for the moment that the topology on V is determined by a nonde-

generate collection N of seminorms, as in Section 1.5. Let N1, . . . , Nl be finitely
many elements of N , and let C be a nonnegative real number. It is easy to see
that the collection of linear functionals λ on V such that

|λ(v)| ≤ C max
1≤j≤l

Nj(v)(4.28)

for every v ∈ V is equicontinuous at 0 on V , and hence at every element of V .
Conversely, if E is any collection of linear functionals on V that is equicontinuous
at 0, then there are finitely many seminorms N1, . . . , Nl ∈ N and a C ≥ 0
such that (4.28) holds for every λ ∈ E and v ∈ V . This is analogous to the
characterization of continuous linear functionals on V in this situation in Section
1.10. Suppose now that the topology on V is determined by a single norm
∥v∥V , and let ∥λ∥V ′ be the corresponding dual norm on V ′, as in (1.151) in
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Section 1.18. In this case, a subset E of V ′ is equicontinuous at 0 if and only
if the elements of E have uniformly bounded dual norms. The Banach–Alaoglu
theorem implies that closed balls in V ′ with respect to ∥λ∥V ′ are compact subsets
of V ′ with respect to the weak∗ topology.

Let V be any topological vector space over R or C again, and let E be
a collection of continuous linear functionals on V . Note that E is bounded
pointwise on V if and only if E is bounded as a subset of V ′ with respect to
the weak∗ topology on V ′, as in Section 1.17. If E is equicontinuous at 0 and
E ⊆ V is a bounded set, then one can check that the elements of E are uniformly
bounded on E. In particular, this implies that E is bounded pointwise on V ,
because subsets of V with only one element are bounded, as in Section 1.17.

Now let E be a collection of continuous linear functionals on V that is
bounded pointwise on a subset of second category in V , in the sense of Baire
category. In this case, the theorem of Banach and Steinhaus implies that E is
equicontinuous at 0 on V . Remember that complete metric spaces are of second
category as subsets of themselves, by the Baire category theorem.

Suppose for the rest of the section that there is a local base for the topology
of V at 0 with only finitely or countably many elements. This means that there
is a sequence U1, U2, U3, . . . of open subsets of V such that 0 ∈ Uj for every j,
and that every open set U ⊆ V with 0 ∈ U contains Uj for some j. If j ∈ Z+,
then let Ej be the collection of linear functionals λ on V that satisfy (4.26) for
every v ∈ Uj . As before, Ej is equicontinuous at 0 on V for each j, and Ej is a
compact subset of V ′ with respect to the weak∗ topology. In particular, V ′ is
σ-compact with respect to the weak∗ topology, because

∪∞
j=1 Ej = V .

As in Section 1.2, it is well known that there is a translation-invariant metric
d(·, ·) on V that determines the same topology on V , because there is a local
base for the topology of V at 0 with only finitely or countably many elements.
Suppose now that V is also complete as a metric space with respect to d(·, ·).
This is the same as asking that V be sequentially complete as a commutative
topological group with respect to addition, as in Section 2.15. If E ⊆ V ′ is point-
wise bounded on V , then E is equicontinuous on V , by the Banach–Steinhaus
theorem. This implies that there is an open set U ⊆ V such that 0 ∈ U and
every λ ∈ E satisfies (4.26) for every v ∈ U . We also have that Uj0 ⊆ U for some
j0 ∈ Z+, because the Uj ’s form a local base for the topology of V at 0, and
hence E ⊆ Ej0 . If E ⊆ V ′ is compact with respect to the weak∗ topology, then
E is a bounded set in V with respect to the weak∗ topology, as in Section 1.17.
This means that E is bounded pointwise on V , as before. It follows that V ′ is
strongly σ-compact with respect to the weak∗ topology under these conditions.

4.9 The dual of ℓ1(X)

Let X be a nonempty set, and remember that ℓ1(X,R) and ℓ1(X,C) denote
the spaces of real and complex-valued summable functions on X, respectively,
as in Section 2.1. Also let g be a bounded real or complex-valued function on
X. If f is a real or complex-valued summable function on X, as appropriate,
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then f g is summable on X as well, and we put

λg(f) =
∑
x∈X

f(x) g(x).(4.29)

Observe that
|λg(f)| ≤

∑
x∈X

|f(x)| |g(x)| ≤ ∥f∥1 ∥g∥∞,(4.30)

where ∥f∥1 is as in (2.5) in Section 2.1, and ∥g∥∞ is as in (2.17) in Section
2.2. This implies that λg defines a continuous linear functional on ℓ1(X,R) or
ℓ1(X,C), as appropriate, with dual norm less than or equal to ∥g∥∞. If y ∈ X
and fy(x) is the function on X equal to 1 when x = y and to 0 when x ̸= y,
then ∥fy∥1 = 1 and

λg(fy) = g(y).(4.31)

Using this, one can check that the dual norm of λg on ℓ1(X,R) or ℓ1(X,C), as
appropriate, is equal to ∥g∥∞.

It is well known that every continuous linear functional λ on ℓ1(X,R) or
ℓ1(X,C) is of the form λg for some bounded real or complex-valued function g
on X, as appropriate. More precisely, put

g(y) = λ(fy)(4.32)

for every y ∈ X, where fy is as in the preceding paragraph. It is easy to see
that |g(y)| is less than or equal to the dual norm of λ for every y ∈ X, so that
g is bounded on X. Thus λg may be defined as a bounded linear functional on
ℓ1(X,R) or ℓ1(X,C), as in the preceding paragraph. By construction,

λ(f) = λg(f)(4.33)

when f has finite support in X, because such functions f can be expressed as
linear combinations of the fy’s. This implies that (2.78) holds for every real or
complex-valued summable function f on X, as appropriate, by approximating
f by functions with finite support in X with respect to the ℓ1 norm. This also
uses the fact that both λ and λg are continuous on ℓ1(X,R) or ℓ1(X,C), as
appropriate.

Thus the duals of ℓ1(X,R) and ℓ1(X,C) can be identified with the spaces
ℓ∞(X,R) and ℓ∞(X,C) of bounded real and complex-valued functions on X,
respectively. In particular, this permits us to define the corresponding weak∗

topologies on ℓ∞(X,R) and ℓ∞(X,C). More precisely, if f is a real or complex-
valued summable function on X, then

Nf (g) = |λg(f)|(4.34)

defines a seminorm on ℓ∞(X,R) or ℓ∞(X,C), as appropriate. The weak∗

topologies on ℓ∞(X,R) and ℓ∞(X,C) as the duals of ℓ1(X,R) and ℓ1(X,C),
respectively, are the same as the topologies determined on these spaces by the
corresponding collections of seminorms of the form (4.34), as in Section 1.5.
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If y ∈ X and fy is as before, then

Nfy (g) = |λg(fy)| = |g(y)|(4.35)

for every bounded real or complex-valued function g on X, using (4.31) in the
second step. Thus the weak∗ topologies on ℓ∞(X,R) and ℓ∞(X,C) as the duals
of ℓ1(X,R) and ℓ1(X,C), respectively, are at least as strong as the topologies
determined on ℓ∞(X,R) and ℓ∞(X,C) by the corresponding collections of semi-
norms of the form (4.35) with y ∈ X. Of course, ℓ∞(X,R) and ℓ∞(X,C) are
linear subspaces of the spaces c(X,R) and c(X,C) of all real and complex-
valued functions on X, respectively. The topologies determined on ℓ∞(X,R)
and ℓ∞(X,C) by the corresponding collections of seminorms (4.35) with y ∈ X
are the same as the topologies induced on these spaces by the topologies defined
on c(X,R) and c(X,C), respectively, in Section 1.9.

Let r be a nonnegative real number, and consider the closed balls

{g ∈ ℓ∞(X,R) : ∥g∥∞ ≤ r}(4.36)

and
{g ∈ ℓ∞(X,C) : ∥g∥∞ ≤ r}(4.37)

centered at 0 with radius r in ℓ∞(X,R) and ℓ∞(X,C), respectively, and with
respect to the ℓ∞ norm. Note that (4.36) and (4.37) correspond to closed balls
centered at 0 with radius r in the duals of ℓ1(X,R) and ℓ1(X,C), respectively,
and that these closed balls in the dual spaces are equicontinuous at 0. One can
check that the topologies induced on (4.36) and (4.37) by the weak∗ topologies
on ℓ∞(X,R) and ℓ∞(X,C) are the same as the topologies induced on (4.36)
and (4.37) by the topologies determined on ℓ∞(X,R) and ℓ∞(X,C) by the
corresponding collections of seminorms of the form (4.35) with y ∈ X. More
precisely, one can first verify that the topologies induced on (4.36) and (4.37)
by the weak∗ topologies on ℓ∞(X,R) and ℓ∞(X,C), respectively, are the same
as the topologies induced on (4.36) and (4.37) by the topologies determined
on ℓ∞(X,R) and ℓ∞(X,C), respectively, by the collections of seminorms of
the form (4.34), where f has finite support in X. This uses the fact that
arbitrary summable functions f on X can be approximated by functions with
finite support in X with respect to the ℓ1 norm. This also uses the fact that

|λg(f)− λg(f
′)| = |λg(f − f ′)| ≤ ∥f − f ′∥1 ∥g∥∞(4.38)

for all summable real or complex-valued functions f , f ′ on X and bounded real
or complex-valued functions g on X, as appropriate, to deal with the approx-
imations of f just mentioned on (4.36) and (4.37). It is easy to see that the
topologies determined on ℓ∞(X,R) and ℓ∞(X,C) by seminorms of the form
(4.34) where f has finite support in X are the same as the topologies deter-
mined on these spaces by seminorms of the form (4.35) with y ∈ X, so that the
induced topologies on (4.36) and (4.37) are the same as well.

Equivalently, (4.36) is the same as

{g ∈ c(X,R) : |g(x)| ≤ r for every x ∈ X},(4.39)
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and (4.37) is the same as

{g ∈ c(X,C) : |g(x)| ≤ r for every x ∈ X}.(4.40)

These are compact subsets of c(X,R) and c(X,C), respectively, with respect to
the topologies defined in Section 1.9, by Tychonoff’s theorem. This implies that
(4.36) and (4.37) are compact with respect to the weak∗ topologies on ℓ∞(X,R)
and ℓ∞(X,C), respectively, by the remarks in the preceding paragraph. This
corresponds to the Banach–Alaoglu theorem in this situation.

Of course, if X has only finitely many elements, then one gets the same
topologies on ℓ∞(X,R) and ℓ∞(X,C) using the corresponding ℓ∞ norms, the
collection of seminorms of the form (4.34), or the collection of seminorms of the
form (4.35). If X is countably infinite, then the topologies defined on c(X,R)
and c(X,C) as in Section 1.9 can be described by translation-invariant met-
rics, as in Section 1.4. This implies that the topologies induced on (4.36) and
(4.37) by the weak∗ topologies on ℓ∞(X,R) and ℓ∞(X,C), respectively, can be
described by the restrictions of the metrics just mentioned to these sets.



Chapter 5

Countability and
compatibility conditions

5.1 Small sets

Let X be a set, and let d(x, y) be a semimetric on X. The diameter of a
nonempty subset E of X is defined as a nonnegative extended real number by

diamE = sup{d(x, y) : x, y ∈ E},(5.1)

which may be interpreted as being 0 when E = ∅. Let us say that E is ϵ-small
for some ϵ > 0 if

d(x, y) < ϵ(5.2)

for every x, y ∈ E. If E is ϵ-small, then diamE ≤ ϵ. If diamE < ϵ, then E
is ϵ-small. If E is ϵ-small and x ∈ E, then E ⊆ Bd(x, ϵ), where Bd(x, ϵ) is the
open ball in X centered at x with radius ϵ, as in (1.23) in Section 1.2. Observe
that Bd(x, ϵ) is (2 ϵ)-small for every x ∈ X, by the triangle inequality.

Suppose for the moment that A is a commutative group, and that d(x, y) is
a translation-invariant semimetric on A. In this case, E ⊆ A is ϵ-small for some
ϵ > 0 with respect to d(·, ·) if and only if E is U -small with U = Bd(0, ϵ) in the
sense of Section 1.19.

Let X be any set with a semimetric d(x, y) again. As usual, a subset E of
X is said to be totally bounded with respect to d if for each ϵ > 0, E can be
covered by finitely many open balls of radius ϵ with respect to d. Equivalently,
this means that for each ϵ > 0, E can be covered by finitely many ϵ-small sets
with respect to d, by the earlier remarks. One can also take these ϵ-small sets to
be subsets of E, by replacing them with their intersections with E, if necessary.
Thus E is totally bounded with respect to d if and only if for each ϵ > 0, E can
be expressed as the union of finitely many ϵ-small sets.

Suppose that for each ϵ > 0 there is a set A(ϵ) ⊆ X with only finitely or
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countably many elements such that

X =
∪

x∈A(ϵ)

Bd(x, ϵ).(5.3)

Using (5.3), one can check that

A =

∞∪
j=1

A(1/j)(5.4)

is a dense set in X with respect to the topology determined by d. This implies
that X is separable with respect to the topology determined by d, because A
has only finitely or countably many elements. Conversely, if X is separable
with respect to d, then we can take A(ϵ) to be any dense subset of X with only
finitely or countably many elements, for each ϵ > 0. If for each ϵ > 0, X can
be covered by finitely or countably many ϵ-small sets with respect to d, then X
satisfies the criterion for separability just mentioned.

Let d1, . . . , dl be finitely many semimetrics on X, and remember that

d(x, y) = max
1≤j≤l

dj(x, y)(5.5)

defines a semimetric on X as well, as in Section 1.3. Observe that E0 ⊆ X is
ϵ-small with respect to d for some ϵ > 0 if and only if E0 is ϵ-small with respect
to dj for each j = 1, . . . , l. If Ej ⊆ X is ϵ-small with respect to dj for each

j = 1, . . . , l, then
∩l

j=1Ej is ϵ-small with respect to d.
If E ⊆ X can be covered by finitely many ϵ-small sets with respect to dj

for some ϵ > 0 and each j = 1, . . . , l, then E can be covered by finitely many
ϵ-small sets with respect to d. More precisely, one can cover E by intersections
of the ϵ-small sets with respect each dj that are given, by hypothesis. If E is
totally bounded with respect to dj for each j = 1, . . . , l, then it follows that E
is totally bounded with respect to d. The converse is trivial, because dj ≤ d for
each j = 1, . . . , l.

Similarly, if E ⊆ X can be covered by finitely or countably many ϵ-small sets
with respect to dj for some ϵ > 0 and each j = 1, . . . , n, then E can be covered
by finitely or countably many ϵ-small sets with respect to d. If X is separable
with respect to dj for each j = 1, . . . , n, then it follows that X is separable with
respect to d. The converse is trivial, as in the preceding paragraph.

Let M be a nonempty collection of semimetrics on X, which determines
a topology on X, as in Section 1.3. One can check that a subset E of X is
dense in X with respect to the topology determined by M if and only if for
every collection d1, . . . , dl of finitely many elements of M, E is dense in X with
respect to the topology determined on X by d1, . . . , dl. Equivalently, this means
that for every collection d1, . . . , dl of finitely many elements of M, E is dense
in X with respect to the topology determined by (5.5).

Suppose that for each d ∈ M, X is separable with respect to the topology
determined by d. If d1, . . . , dl are finitely many elements of M, then X is
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separable with respect to the topology determined by d1, . . . , dl, as before. If
d1, d2, d3, . . . is an infinite sequence of elements of M, then one can check that X
is separable with respect to the topology determined by d1, d2, d3, . . ., by taking
the union of dense subsets of X with respect to d1, . . . , dl with only finitely
or countably many elements for each positive integer l. This shows that X is
separable with respect to the topology determined by M when M has only
finitely or countably many elements. One can also look at this in terms of the
discussion in Section 1.4, as follows.

Let d be any semimetric on X again, and put

dt(x, y) = min(d(x, y), t)(5.6)

for every x, y ∈ X and t > 0, as in Section 1.4. Remember that dt is also a
semimetric on X for every t > 0, and that dt determines the same topology on
X as d. By construction, every set E ⊆ X is ϵ-small with respect to dt when
t < ϵ. If ϵ ≤ t, then E is ϵ-small with respect to dt if and only if E is ϵ-small
with respect to d. It follows that for any t > 0, E ⊆ X is totally bounded with
respect to dt if and only if E is totally bounded with respect to d.

Let d1, d2, d3, . . . be a sequence of semimetrics on X, and put

d′j(x, y) = min(dj(x, y), 1/j)(5.7)

for every x, y ∈ X and j ≥ 1, as in Section 1.4 again. Thus d′j is a semimetric
on X that determines the same topology on X as dj for each j, as before.
Remember that

d′(x, y) = max
j≥1

d′j(x, y)(5.8)

defines a semimetric on X, where the maximum on the right side of (5.8) is
always attained. We have also seen that the topology determined on X by (5.8)
is the same as the topology determined by the collection of dj ’s, j ≥ 1.

A subset E of X is ϵ-small with respect to (5.8) for some ϵ > 0 if and only
if E is ϵ-small with respect to d′j for every j ≥ 1, because the maximum on
the right side of (5.8) is attained. As before, E is automatically ϵ-small with
respect to d′j when 1/j < ϵ. If ϵ ≤ 1/j, then E is ϵ-small with respect to d′j if
and only if E is ϵ-small with respect to dj . Thus E is ϵ-small with respect to
(5.8) if and only if E is ϵ-small with respect to dj for every j ≤ 1/ϵ. This holds
automatically when ϵ > 1, and otherwise if 0 < ϵ ≤ 1, then this holds if and
only if E is ϵ-small with respect to (5.5), with l = l(ϵ) taken to be the largest
positive integer less than or equal to 1/ϵ.

If E ⊆ X is totally bounded with respect to dj for each j ≥ 1, then E is
totally bounded with respect to (5.5) for every l ≥ 1, as before. This implies
that E is totally bounded with respect to (5.8), by the remarks in the preceding
paragraph. Conversely, if E is totally bounded with respect to (5.8), then E is
totally bounded with respect to dj for every j ≥ 1.

Similarly, if X is separable with respect to dj for every j ≥ 1, then we have
seen that X is separable with respect to (5.5) for every l ≥ 1. In this case, one
can check that X is separable with respect to (5.8) as well. Conversely, if X is
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separable with respect to (5.8), then it is easy to see that X is separable with
respect to dj for each j ≥ 1.

5.2 Countable bases

Let X be a topological space, and let B be a base for the topology of X. If
U ∈ B and U ̸= ∅, then let xU be an element U , and let

E = {xU : U ∈ B, U ̸= ∅}(5.9)

be the set of points in X that have been chosen in this way. It is easy to see
that E is dense in X, because B is a base for the topology of X. If B has only
finitely or countably many elements, then E has only finitely or countably many
elements, so that X is separable.

Let d(x, y) be a semimetric on X, and let E be a dense subset of X with
respect to the topology determined by d. Under these conditions, it is well
known and not difficult to check that

B(d,E) = {Bd(x, 1/n) : x ∈ E, n ∈ Z+}(5.10)

is a base for the topology determined on X by d. If E has only finitely or
countably many elements, then it is easy to see that (5.10) has only finitely or
countably many elements too.

It is well known that the set of finite subsets of Z+ is countably infinite.
More precisely, every finite subset of Z+ is contained in {1, . . . , n} for some
positive integer n, so that the set of finite subsets of Z+ can be expressed as a
countable union of finite sets. This implies that the set of finite subsets of Z+

has only finitely or countably many elements. The set of finite subsets of Z+ is
obviously infinite, and hence it is countably infinite. It follows that the set of
finite subsets of any countably infinite set is countably infinite.

Now let M be a nonempty collection of semimetrics on X, and let X be
equipped with the topology determined by M as in Section 1.3. Also let E be a
dense subset of X with respect to this topology, and let B(E) be the collection
of subsets of X of the form

l∩
j=1

Bdj
(x, 1/n),(5.11)

where d1, . . . , dl are finitely many elements of M, x ∈ E, and n ∈ Z+. One
can check that B(E) is a base for the topology determined on X by M, using
standard arguments. If M and E both have only finitely or countably many
elements, then one can verify that B(E) has only finitely or countably many
elements as well. This uses the fact that the set of finite subsets of M has only
finitely or countably many elements, as in the previous paragraph.

Of course, if M consists of a single semimetric d, then B(E) is the same as
(5.10). If M has only finitely or countably many elements, then one can reduce
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to the case where M consists of a single semimetric on X, as in Section 1.4.
Note that for any nonempty collection M of semimetrics on X,∪

d∈M

B(d,E)(5.12)

is a sub-base for the topology determined on X by M.
Let X be a topological space, and let B be a sub-base for the topology of X.

This means that

B̃ =

{ n∩
j=1

Uj : U1, . . . , Ul are finitely many elements of B
}

(5.13)

is a base for the topology of X. If B has only finitely or countably many
elements, then the set of finite subsets of B has only finitely or countably many
elements, as before. This implies that B̃ has only finitely or countably many
elements.

Let I be a nonempty set, and let τj be a topology on X for each j ∈ I. This
leads to a topology τ on X generated by the τj ’s, j ∈ I, in the sense that∪

j∈I

τj(5.14)

is a sub-base for τ . If Bj is a sub-base for τj for each j ∈ I, then∪
j∈I

Bj(5.15)

is a sub-base for τ . If I has only finitely or countably many elements, and Bj

has only finitely or countably many elements, then (5.15) has only finitely or
countably many elements. In this case, there is a base for τ with only finitely
or countably many elements, as in the previous paragraph.

5.3 Sequences of topologies

Let X be a set, and let τ1, τ2, τ3, . . . be an infinite sequence of topologies on X
such that

τn ⊆ τn+1(5.16)

for every n ∈ Z+. Of course, any collection of subsets of X is a sub-base for a
topology on X. Let τ be the topology on X for which

∞∪
n=1

τn(5.17)

is a sub-base. Note that (5.17) is closed under finite intersections and unions,
because of (5.16) and the definition of a topology. This implies that (5.17) is a
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base for τ in this situation. Similarly, if Bn is a base for τn for each n ∈ Z+,
then one can check that

∞∪
n=1

Bn(5.18)

is a base for τ . If E ⊆ X is dense in X with respect to τn for each n ∈ Z+,
then one can verify that E is dense in X with respect to τ as well. If En ⊆ X
is dense in X with respect to τn for each n ∈ Z+, then it follows that

∪∞
n=1En

is dense in X with respect to τ . If X is separable with respect to τn for each
n ∈ Z+, then it is easy to see that X is separable with respect to τ , using the
previous statement.

Let Intτn E denote the interior of E ⊆ X with respect to τn for each n ∈ Z+,
and let Intτ E denote the interior of E with respect to τ . Observe that

IntτnE ⊆ Intτn+1E(5.19)

for each n, because of (5.16), and that

IntτE =

∞∪
n=1

IntτnE,(5.20)

by the definition of τ . Similarly, let Eτn denote the closure of E in X with
respect to τn for each n ∈ Z+, and let Eτ be the closure of E in X with respect
to τ . Using (5.16) and the definition of τ again, one can check that

Eτn ⊇ Eτn+1(5.21)

for each n ∈ Z+, and

Eτ =

∞∩
n=1

Eτn .(5.22)

Of course, (5.19) and (5.20) correspond to (5.21) and (5.22) in standard ways,
by taking complements in E.

Let A(τn) be the σ-algebra of Borel sets in X with respect to τn for each
n ∈ Z+, and let A(τ) be the σ-algebra of Borel sets in X with respect to τ .
Thus

A(τn) ⊆ A(τn+1)(5.23)

for every n ∈ Z+, by (5.16), and

A(τn) ⊆ A(τ)(5.24)

for each n ∈ Z+, because τn ⊆ τ , by construction. It is easy to see that

∞∪
n=1

A(τn)(5.25)

is an algebra of subsets of X, because A(τn) is a σ-algebra of subsets of X for
each n, and hence an algebra of subsets of X for every n, and using (5.23). We
also have that (5.25) is contained in A(τ), because of (5.24).
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Let A be any σ-algebra of subsets of X that contains (5.25), and let us check
that

τ ⊆ A.(5.26)

Every element of τ can be expressed as the union of a sequence of elements of
the τn’s, as in (5.20). Each of these elements of the τn’s is contained in (5.25),
by construction, and hence is contained in A. This implies that every element
of τ is contained in A, because A is a σ-algebra. Thus (5.26) holds. It follows
that

A(τ) ⊆ A,(5.27)

which means that A(τ) is the smallest σ-algebra of subsets of X that contains
(5.25). This is basically the same as saying that A(τ) is the smallest σ-algebra
of subsets of X that contains (5.17), which can be shown in the same way.

5.4 Comparing topologies

Let X be a set, let τ1, τ2 be topologies on X, and let A(τ1), A(τ2) be the
corresponding σ-algebras of Borel sets in X, respectively. If

τ1 ⊆ τ2,(5.28)

then

A(τ1) ⊆ A(τ2).(5.29)

If

τ2 ⊆ A(τ1),(5.30)

then

A(τ2) ⊆ A(τ1).(5.31)

Thus (5.28) and (5.30) imply that

A(τ1) = A(τ2).(5.32)

We shall see some examples of this later.
Suppose for the moment that B2 is a base for τ2, and that

B2 ⊆ A(τ1).(5.33)

If B2 has only finitely or countably many elements, then it follows that (5.30)
holds. More precisely, this works when every element of τ2 can be expressed as
the union of finitely or countably many elements of B2.

Suppose now that B2 is a sub-base for τ2, and let B̃2 be the collection of
finite intersections of elements of B2, as in (5.13) in Section 5.2. Thus B̃2 is a
base for τ2, as before. Clearly (5.33) implies that

B̃2 ⊆ A(τ1).(5.34)
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If B2 has only finitely or countably many elements, then we have seen that B̃2

has only finitely or countably many elements as well. In this case, (5.34) implies
(5.30), as in the previous paragraph.

Consider the condition

every element of τ2 is an Fσ set with respect to τ1.(5.35)

This condition implies (5.30), because Fσ sets with respect to τ1 are elements
of A(τ1). If we have both (5.28) and (5.35), then it follows that

every element of τ1 is an Fσ set with respect to τ1.(5.36)

Similarly, (5.28) and (5.35) imply that

every element of τ2 is an Fσ set with respect to τ2.(5.37)

This is because (5.28) implies that closed sets with respect to τ1 are closed sets
with respect to τ2, so that Fσ sets with respect to τ1 are Fσ sets with respect
to τ2.

Note that (5.36) and (5.37) correspond exactly to (2.30) in Section 2.3, for
the topologies τ1 and τ2, respectively. Of course, if (5.32) holds, then a Borel
measure on X with respect to τ1 is the same as a Borel measure on X with
respect to τ2. If (5.28) holds as well, then the regularity conditions discussed
in Section 2.3 for τ1 would imply the analogous conditions for τ2. Suppose
that (5.28) holds, and that X is Hausdorff with respect to τ1 and hence τ2, so
that compact sets with respect to τ1 and τ2 are closed sets, and Borel sets in
particular. In this case, inner regularity conditions using compact sets for τ2
would imply analogous conditions for τ1, since compact sets with respect to τ2
are compact with respect to τ1 when (5.28) holds.

Let B2 be a base for τ2 again, and suppose that

every element of B2 is an Fσ set with respect to τ1.(5.38)

If B2 has only finitely or countably many elements, then this implies (5.35).

Now let B2 be a sub-base for τ2, and let B̃2 be the collection of finite inter-
sections of elements of B2, as before. If (5.38) holds, then

every element of B̃2 is an Fσ set with respect to τ1,(5.39)

because finite intersections of Fσ sets are Fσ sets too. If B2 has only finitely or
countably many elements, then B̃2 has only finitely or countably many elements,
and (5.39) implies (5.35), because B̃2 is a base for τ2.

Let Eτ1 , Eτ2 be the closures of E ⊆ X with respect to τ1, τ2, respectively.
If (5.28) holds, then

Eτ2 ⊆ Eτ1(5.40)

for every E ⊆ X. Consider the condition

for each x ∈ X and W ∈ τ2 there is a U ∈ τ2(5.41)

such that x ∈ U and Uτ1 ⊆W.
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This would be the same as regularity of X with respect to τ2 in the strict sense
if we used the closure of U with respect to τ2 instead of τ1. If (5.28) holds, then
this condition implies that X is regular in the strict sense with respect to τ2,
because of (5.40).

If there is a base for τ2 with only finitely or countably many elements, and if
(5.41) holds, then (5.35) holds. To see this, let W ∈ τ2 be given. Using (5.41),
we get that W can be expressed as a union of open sets U with respect to τ2
whose closures with respect to τ1 are contained in W . If there is a base for τ2
with only finitely or countably many elements, then Lindelöf’s theorem implies
that W can be expressed as the union of finitely or countably many such U ’s.
It follows that W is an Fσ set with respect to τ1, as desired.

5.5 Upper and lower semicontinuity

There is a standard topology on the set of extended real numbers, which is
defined as follows. Let U be a set of extended real numbers, and let x be an
element of U . If x ∈ R, then we say that x is an element of the interior of U
if there are a, b ∈ R such that a < x < b and (a, b) ⊆ U . If x = +∞, then
we say that x is an element of the interior of U if there is an a ∈ R such that
(a,+∞] ⊆ U . If x = −∞, then we say that x is an element of the interior of U
if there is a b ∈ R such that [−∞, b) ⊆ U . If every element of U is an element
of the interior of U , then U is an open set. It is easy to see that this defines a
topology on the set of extended real numbers. Note that R is an open set with
respect to this topology, and that the corresponding induced topology on R is
the standard topology.

Let X be a topological space, and let f be a function on X with values in
the set of extended real numbers. We say that f is upper semincontinuous on
X if for every b ∈ R we have that

{x ∈ X : f(x) < b}(5.42)

is an open set in X. Similarly, f is said to be lower semincontinuous on X if
for every a ∈ R,

{x ∈ X : f(x) > a}(5.43)

is an open set in X. Observe that f is both upper and lower semicontinuous on
X if and only if f is continuous on X, using the standard topology on the set
of extended real numbers. If f is either upper or lower semicontinuous on X,
then f is Borel measurable on X.

If x0 is any element of X, then pointwise versions of upper and lower semi-
continuity of f at x0 can be defined as follows. We say that f is upper semicon-
tinuous at x0 if for every b ∈ R with f(x0) < b there is an open set U ⊆ X such
that x0 ∈ U and f(x) < b for every x ∈ U . This is vacuous when f(x0) = ∞,
and if f(x0) ∈ R, then we can take b to be of the form f(x0) + ϵ, with ϵ > 0.
Similarly, f is lower semicontinuous at x0 if for every a ∈ R with f(x0) > a
there is an open set U ⊆ X such that x0 ∈ U and f(x) > a for every x ∈ U .
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As before, this is vacuous when f(x0) = −∞, and if f(x0) ∈ R, then we can
take a to be of the form f(x0) − ϵ, with ϵ > 0. One can check that f is upper
semicontinuous on X if and only if f is upper semicontinuous at every point in
X, and that f is lower semicontinuous on X if and only if f is lower semicontin-
uous at every point in X. As before, f is both upper and lower semicontinuous
at a point x0 ∈ X if and only if f is continuous at x0.

It is well known and not too difficult to check that the supremum of any
nonempty collection of lower semicontinuous extended real-valued functions on
X is lower semicontinuous on X as well. Similarly, the infimum of any nonempty
collection of upper semicontinuous extended real-valued functions on X is upper
semicontinuous.

Let d(x, y) be a semimetric on X. As in Section 2.16, d(·, ·) is compatible
with the given topology on X if and only if for each x ∈ X, d(x, y) is continuous
as a real-valued function of y onX at x. In this situation, d(x, y) is automatically
lower semicontinuous as a real-valued function of y on X at x, because d(·, ·) is
nonnegative, and d(x, x) = 0. Thus d(·, ·) is compatible with the topology on X
if and only if for each x ∈ X, d(x, y) is upper semicontinuous as a real-valued
function of y on X at x. If A is a commutative topological group, and d(·, ·)
is a translation-invariant semimetric on A, then d(·, ·) is compatible with the
topology on A exactly when d(0, y) is upper semicontinuous as a real-valued
function of y on A at 0.

Let X be an arbitrary topological space again, and let f be an extended
real-valued function on X. Observe that f is upper semicontinuous on X if and
only if for every b ∈ R,

{x ∈ X : f(x) ≥ b}(5.44)

is a closed set in X. Similarly, f is lower semicontinuous on X if and only if for
every a ∈ R,

{x ∈ X : f(x) ≤ a}(5.45)

is a closed set in X. These statements follow from the earlier definitions by
taking complements, as usual.

5.6 Semicompatible semimetrics and seminorms

Let X be a set with a topology τ1, and let d(x, y) be a semimetric on X. Let
us say that d(·, ·) is semicompatible with τ1 if for every x ∈ X, d(x, y) is lower
semicontinuous as a real-valued function of y on X with respect to τ1. This is
the same as saying that closed balls in X with respect to d(·, ·) are closed sets
with respect to τ1, because of the characterization (5.45) of lower semicontinuity.
If d(·, ·) is compatible with τ1, then d(·, ·) is semicompatible with τ1, because
open sets in X with respect to the topology determined by d(·, ·) are open
with respect to τ1, and hence closed sets in X with respect to the topology
determined by d(·, ·) are closed sets with respect to τ1. Note that the remarks
in Section 2.16 about finite Borel measures and compatible semimetrics work
for semicompatible semimetrics as well.
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Let A be a commutative group with a topology τ1 that makes A a commuta-
tive topological group, and let d(x, y) be a translation-invariant semimetric on
A. In this case, d(·, ·) is semicompatible with τ1 when d(0, y) is lower semicon-
tinuous as a function of y on A with respect to τ1. This is the same as saying
that closed balls in A centered at 0 with respect to d(·, ·) are closed sets with
respect to τ1.

Let V be a vector space over the real or complex numbers with a topology
τ1 that makes V a topological vector space, and let N be a seminorm on V .
Let us say that N is semicompatible with τ1 if N is lower semicontinuous with
respect to τ1. Equivalently, this means that the semimetric dN on V associated
to N as in (1.45) in Section 1.5 is semicompatible with τ1. If N is compatible
with τ1, then N is semicompatible with τ1, as before.

Let X be a nonempty set, and consider the spaces c(X,R) and c(X,C) of
real and complex-valued functions on X with the topologies defined in Section
1.9. Remember that ∥f∥r is defined for real and complex-valued functions f on
X and r > 0 as in (2.16) and (2.17) in Section 2.2. It is easy to see that

f 7→ ∥f∥r(5.46)

is lower semicontinuous on each of c(X,R) and c(X,C) for every r > 0. More
precisely, if r = ∞, then (5.46) is the supremum of a collection of continuous
functions on each of these spaces, basically by construction. Similarly, if r is a
positive real number and E is a nonempty finite subset of X, then

f 7→
( ∑

x∈E

|f(x)|r
)1/r

(5.47)

is continuous on each of c(X,R) and c(X,C). This implies that (5.46) is lower
semicontinuous on each of these spaces, by taking the supremum over E. In
this case, we also have that

f 7→ ∥f∥rr(5.48)

is lower semicontinuous on each of c(X,R) and c(X,C), for essentially the same
reasons.

Let r > 0 be given, and let τ1 denote the topology induced on ℓr(X,R) or
ℓr(X,C) by the topology defined on c(X,R) or c(X,C), respectively, in Section
1.9. If r ≥ 1, then ∥f∥r defines a norm on each of ℓr(X,R) and ℓr(X,C),
and this norm is semicompatible with τ1, because of the lower semicontinuity
of (5.46). If 0 < r ≤ 1, then ∥f − g∥rr defines a translation-invariant metric on
each of ℓr(X,R) and ℓr(X,C), as in (2.25) in Section 2.2. This metric is semi-
compatible with τ1 on each of these spaces, because of the lower semicontinuity
of (5.48).

Let V be a topological vector space over the real or complex numbers again,
and let N be a seminorm on V that is compatible with the given topology on
V . Also let E(N) be the collection of linear functionals λ on V such that

|λ(v)| ≤ N(v)(5.49)
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for every v ∈ V . Because N is supposed to be compatible with the given
topology on V , the elements of E(N) are continuous on V , and in fact they are
equicontinuous at 0. It is well known that for every v ∈ V there is a λ ∈ E(N)
such that

λ(v) = N(v),(5.50)

by the Hahn–Banach theorem. This implies that

N(v) = sup{|λ(v)| : λ ∈ E(N)}(5.51)

for every v ∈ V , where the supremum is actually attained. Of course, every
λ ∈ V ′ is continuous with respect to the weak topology on V , by definition of
the weak topology, as in Section 1.13. Thus |λ(v)| defines a continuous function
on V with respect to the weak topology as well. It follows from (5.51) that N
is lower semicontinuous with respect to the weak topology on V , which means
that N is semicompatible with the weak topology on V .

Similarly, for every v ∈ V ,

λ 7→ |λ(v)|(5.52)

defines a continuous function on V ′ with respect to the weak∗ topology on V ′,
which was defined in Section 1.13 too. Let E be a nonempty bounded subset of
V , as in Section 1.17, and let NE(λ) be the corresponding supremum seminorm
on V ′, as in (1.149) in Section 1.18. Observe that NE is lower semicontinuous
with respect to the weak∗ topology on V ′, because it is the supremum of a
nonempty collection of continuous functions on V ′ with respect to the weak∗

topology, by construction. Thus NE is semicompatible with the weak∗ topology
on V ′.

5.7 Comparing topologies again

Let X be a set, and let τ1 be a topology on X. Also let M2 be a nonempty
collection of semimetrics on X, and let τ2 be the topology determined on X by
M2, as in Section 1.3. Suppose that the elements of M2 are semicompatible
with τ1, as in the previous section, so that closed balls in X with respect to
elements of M2 are closed sets with respect to τ1. Using this, one can check
that X satisfies the regularity condition (5.41) in Section 5.4 with respect to τ1
and τ2. This is very similar to showing that X is regular in the strict sense with
respect to τ2 in this case.

If x ∈ X, r > 0, and d ∈ M2, then the open ball Bd(x, r) in X centered at
x with radius r with respect to d is defined as in (1.23) in Section 1.2, and is
an open set in X with respect to τ2. Let E be a subset of X, and consider the
collection B2(E) of subsets of X of the form

l∩
j=1

Bdj (x, 1/n),(5.53)
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where x ∈ E, d1, . . . , dl are finitely many elements ofM2, and n ∈ Z+. Thus the
elements of B2(E) are open subsets of X with respect to τ2. Suppose that M2

has only finitely or countably many elements, E is dense in X with respect to
τ2, and E has only finitely or countably many elements. Under these conditions,
B2(E) is a base for τ2, as mentioned in Section 5.2, and B2(E) has only finitely or
countably many elements as well. If the elements of M2 are also semicompatible
with τ1, then it is easy to see that the sets (5.53) are Fσ sets with respect to τ1.
It follows that (5.38) in Section 5.4 holds in this situation with B2 = B2(E), so
that (5.35) holds too.

Let V be a topological vector space over the real or complex numbers, and
suppose that the topology on V is determined by a nonempty collection N of
finitely or countably many seminorms on V . Each element of N is semicompat-
ible with the corresponding weak topology on V , as in the previous section. Let
τ2 be the initial topology on V , and let τ1 be the corresponding weak topology.
Of course, τ2 is the same as the topology determined on V by the collection M
of semimetrics on V associated to elements of N . Note that the elements of
M are semicompatible with τ1, because of the corresponding property of N . If
V is separable with respect to τ2, then the remarks in the previous paragraph
imply that (5.35) in Section 5.4 holds with X = V . If V is a locally convex
topological vector space with a countable base for its topology at 0, then it is
well known that there is a collection of finitely or countably many seminorms
on V that determines the same topology on V .

Now let X be a countably-infinite set, let r be a positive real number, and
let V be ℓr(X,R) or ℓr(X,C). If r ≥ 1, then ∥f∥r defines a norm on V , and
we take τ2 to be the corresponding topology on V . If 0 < r ≤ 1, then ∥f − g∥rr
defines a metric on V , and we take τ2 to be the corresponding topology on V .
Let τ1 denote the topology induced on V by the topology defined on c(X,R)
or c(X,C), as appropriate, in Section 1.9. As in the previous section, ∥f∥r
is semicompatible with τ1 when r ≥ 1, and ∥f − g∥r is semicompatible with
τ1 when 0 < r ≤ 1. It is well known and not too difficult to show that V is
separable with respect to τ2 under these conditions. This uses the fact that
functions with finite support in X are dense in these spaces. Thus (5.35) in
Section 5.4 holds in this situation, as before. There are analogous statements
for V = c0(X,R) or c0(X,C), with τ2 taken to be the topology corresponding
to ∥f∥∞.

5.8 Some refinements

Let V be a topological vector space over the real or complex numbers, and let
N be a seminorm on V that is compatible with the given topology on V . Also
let E(N) be the collection of linear functionals on V that satisfy (5.49) for every
v ∈ V , as in Section 5.6. If Λ(N) is a nonempty subset of E(N), then

sup{|λ(v)| : λ ∈ Λ(N)} ≤ N(v)(5.54)
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for every v ∈ V , by definition of E(N). We shall be interested in situations
where

sup{|λ(v)| : λ ∈ Λ(N)} = N(v)(5.55)

for every v ∈ V . Remember that this holds when Λ(N) = E(N), as in (5.51) in
Section 5.6.

Note that the linear functional on V that is identically equal to 0 is auto-
matically an element of E(N). Thus we can always take Λ(N) to be nonempty,
by including this linear functional. If Λ(N) ⊆ Λ1(N) ⊆ E(N) and (5.55) holds
for every v ∈ V , then it is easy to see that (5.55) also holds with Λ(N) replaced
by Λ1(N).

Let E be a subset of V , let E be the closure of E in V with respect to
the given topology on V , and let EN be the closure of E in V with respect
to the topology determined on V by the semimetric associated to N . The
hypothesis that N be compatible with the given topology on V means that the
given topology on V is at least as strong as the topology determined by N , so
that

E ⊆ EN .(5.56)

If (5.55) holds for every v ∈ E, then one can check that (5.55) also holds for
every v ∈ EN . This implies that (5.55) holds for every v ∈ E, by (5.56). In
particular, if E is dense in V , then it follows that (5.55) holds for every v ∈ V .

As in Section 5.6, the Hahn–Banach theorem implies that for each v ∈ V
there is a λ ∈ E(N) such that λ(v) = N(v). If E ⊆ V has only finitely or
countably many elements, then it follows that there is a subset Λ(N) of E(N)
such that Λ(N) has only finitely or countably many elements and (5.55) holds
for every v ∈ E. If V is separable, then we can also choose E to be dense in V .
This implies that (5.55) holds for every v ∈ V , as in the previous paragraph.
Thus, if V is separable, then there is a nonempty subset Λ(N) of E(N) such
that Λ(N) has only finitely or countably many elements and (5.55) holds for
every v ∈ V .

Remember that the elements of E(N) are continuous with respect to the
given topology on V , so that E(N) ⊆ V ′. Let Λ(N) be a nonempty subset of
E(N) that satisfies (5.55) for every v ∈ V . Also let τ1 be any topology on V
such that every element of Λ(N) is continuous on V with respect to τ1. Using
(5.55), we get that N is lower semicontinuous on V with respect to τ1, as in
Section 5.5. If V is a topological vector space with respect to τ1, then it follows
that N is semicompatible with τ1 as a seminorm on V .

Let N be a nonempty collection of finitely or countably many seminorms on
V , each of which is compatible with the given topology on V . If V is separable,
then for each N ∈ N , there is a nonempty subset Λ(N) of E(N) such that Λ(N)
has only finitely or countably many elements and (5.55) holds for every v ∈ V ,
as before. Put

Λ =
∪

N∈N
Λ(N),(5.57)

which is a subset of V ′ with only finitely or countably many elements. By
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construction,
Λ(N) ⊆ Λ ∩ E(N)(5.58)

for every N ∈ N . If N is nondegenerate on V , then it is easy to see that Λ is
nondegenerate on V as well.

Let τ2 be the given topology on V , and suppose now that this is the same
as the topology determined on V by N as in Section 1.5. Thus each N ∈ N is
automatically compatible with τ2. Let us continue to suppose that N has only
finitely or countably many elements, and that V is separable with respect to
τ2. Let Λ be as in the preceding paragraph, and let τ1 be the weak topology
on V associated to Λ as in Section 1.13. Note that N is nondegenerate on V
under these conditions, so that Λ is nondegenerate on V too. Every N ∈ N is
semicompatible with τ1 on V , because of (5.55), as before. It follows that (5.35)
in Section 5.4 holds in this situation with X = V , as in the previous section.

5.9 Inner products

Let V be a vector space over the real or complex numbers, let ⟨v, w⟩ be an inner
product on V , and let ∥v∥ be the corresponding norm on V , as in Section 2.18.
If w ∈ V , then

λw(v) = ⟨v, w⟩(5.59)

defines a bounded linear functional on V , by the Cauchy–Schwarz inequality
(2.139). More precisely, the Cauchy–Schwarz inequality implies that the dual
norm of λw on V with respect to ∥ · ∥ is less than or equal to ∥w∥. It is easy to
see that the dual norm of λw on V is actually equal to ∥w∥, using the fact that

λw(w) = ⟨w,w⟩ = ∥w∥2.(5.60)

If V is a Hilbert space, then it is well known that every bounded linear functional
on V is of the form (5.59) for some w ∈ V .

If v ∈ V , then

∥v∥ = sup{|⟨v, w⟩| : w ∈ V, ∥w∥ ≤ 1}.(5.61)

Indeed, the right side of (5.61) is less than or equal to ∥v∥, by the Cauchy–
Schwarz inequality. To get the opposite inequality, one can take w = v/∥v∥
when v ̸= 0, and of course (5.61) is trivial when v = 0. Equivalently,

∥v∥ = sup{|λw(v)| : w ∈ V, ∥w∥ ≤ 1}(5.62)

for every v ∈ V , using the notation in (5.59). This implies (5.51) in Section 5.6
in this context.

Let τ2 be the topology determined on V by the metric associated to the
norm. Also let τ1 be the corresponding weak topology on V , as in Section 1.13,
at least for the moment. As in Section 5.6, (5.62) implies that ∥ · ∥ is lower
semicontinuous with respect to τ1, so that ∥ · ∥ is semicompatible with τ1 as a
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norm on V . This situation is simpler than before, because we get (5.62) directly
from the inner product. If V is separable with respect to τ2, then it follows that
(5.35) in Section 5.4 holds with X = V , as in Section 5.7.

Let E be a subset of V whose closure in V with respect to the metric asso-
ciated to the norm is the closed unit ball in V . Under these conditions,

∥v∥ = sup{|⟨v, w⟩| : w ∈ E}(5.63)

for every v ∈ V . More precisely, the right side of (5.63) is automatically less
than or equal to the right side of (5.61), because E is contained in the closed
unit ball in V . To get the opposite inequality, one can approximate w ∈ V with
∥w∥ ≤ 1 by elements of E with respect to the metric associated to the norm,
by hypothesis. As before, (5.63) is the same as saying that

∥v∥ = sup{|λw(v)| : w ∈ E}(5.64)

for every v ∈ V .
Let Λ(E) be the collection of linear functionals on V of the form λw with

w ∈ E. Note that Λ(E) is nondegenerate on V under these conditions. Let τ2
be the topology on V determined by the norm again, and now let τ1 be the weak
topology on V associated to Λ(E) as in Section 1.13. The usual weak topology
on V , using all continuous linear functionals on V , is at least as strong as the
weak topology corresponding to Λ(E), because Λ(E) ⊆ V ′. Using (5.64), we
get that ∥ · ∥ is lower semicontinuous on V with respect to τ1, as in Section 5.5.
If V is separable with respect to τ2, then it follows that (5.35) in Section 5.4
holds with X = V , as in Section 5.7 again. Separability of V also means that
we can take E to have only finitely or countably many elements.

Let I be a nonempty set, and let {vj}j∈I be an orthonormal family of vectors
in V indexed by I. Suppose that the linear span of the vj ’s, j ∈ I, is dense in
V with respect to the metric associated to the norm. This implies that

∥v∥ =
(∑

j∈I

|⟨v, vj⟩|2
)1/2

(5.65)

for every v ∈ V , as in (2.159) in Section 2.19. Let ΛI be the collection of linear
functionals on V of the form λvj , j ∈ I, which is nondegenerate on V under
these conditions. Let τ2 be the topology determined on V by the norm again,
and let τ1 be the weak topology on V associated to ΛI as in Section 1.13. As
before, the usual weak topology on V , using all continuous linear functionals on
V , is at least as strong as the weak topology associated to ΛI , because ΛI ⊆ V ′.
It follows from (5.65) that ∥ · ∥ is lower semicontinuous on V with respect to τ1,
as in Section 5.6.

If V is separable with respect to the metric associated to the norm, then
(5.35) in Section 5.4 holds with X = V , as in Section 5.7. In this case, it is well
known that I can have only finitely or countably many elements, by standard
arguments. This uses the fact that

∥vj − vl∥2 = ∥vj∥2 + ∥vl∥2 = 2(5.66)
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for every j, l ∈ I with j ̸= l, because of orthonormality.
Of course, if V has finite dimension, then there is an orthonormal basis for

V with only finitely many elements, by the Gram–Schmidt process. Similarly,
suppose that there is a sequence of vectors in V whose linear span in V is
dense in V with respect to the metric associated to the norm. The existence of
such a sequence is equivalent to the separability of V with respect to the metric
associated to the norm. In this case, the Gram–Schmidt process leads to a finite
or infinite sequence of orthonormal vectors in V whose linear span is dense in
V with respect to the metric associated to the norm.

If V is a Hilbert space, then there is a well-known argument for getting
the existence of an orthonormal basis in V , using the axiom of choice. More
precisely, one can use Zorn’s lemma or Hausdorff’s maximality principle to get
a maximal collection of orthonormal vectors in V . Using maximality, one can
show that the linear span of this orthonormal collection is dense in V .

5.10 Supremum seminorms

Let X be a nonempty set, and put

λx(f) = f(x)(5.67)

for every x ∈ X and real or complex-valued function f on X. This defines a
continuous linear functional on each of the spaces c(X,R) and c(X,C) of real
and complex-valued functions on X, with respect to the topologies defined on
these spaces in Section 1.9. These topologies on c(X,R) and c(X,C) are the
same as the weak topologies on these spaces associated to the collections of
linear functionals of the form λx with x ∈ X, as mentioned in Section 1.13. If
E is a nonempty subset of X, then put

NE(f) = sup
x∈E

|f(x)| = sup
x∈E

|λx(f)|(5.68)

for every real or complex-valued function f onX, where the supremum is defined
as a nonnegative extended real number. Note that NE is lower semicontinuous
on each of c(X,R) and c(X,C), with respect to the topologies defined in Section
1.9.

Now let X be a nonempty topological space. Of course, the restriction of
λx to each of the spaces C(X,R) and C(X,C) of continuous real and complex-
valued functions on X defines a continuous linear functional with respect to the
topology defined in Section 1.7 for every x ∈ X. If E is a nonempty subset
of X, then NE is lower semicontinuous with respect to the topologies induced
on C(X,R) and C(X,C) by the topologies defined on c(X,R) and c(X,C) in
Section 1.9, respectively, as before. In particular, NE is lower semicontinuous
with respect to the usual weak topologies on C(X,R) and C(X,C), determined
by the collections of all continuous linear functionals on these spaces. If E is
contained in a compact subset of X, and f is a continuous real or complex-
valued function on X, then f is bounded on E, so that (5.68) is finite. If E is
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compact, then NE is the same as the supremum seminorm associated to E on
C(X,R) and C(X,C), as in (1.58) in Section 1.7. Observe that (5.68) implies
(5.51) in Section 5.6 in this situation. If E is any nonempty subset of X, then
it is easy to see that

NE(f) = NE(f)(5.69)

for every continuous real or complex-valued function f on X, where E is the
closure of E in X.

Remember that Cb(X,R) and Cb(X,C) denote the spaces of bounded con-
tinuous real and complex-valued functions on X, respectively. If E is any
nonempty subset of X, then NE defines a seminorm on each of these spaces,
which is the same as the supremum norm ∥f∥sup when E = X. As before,
these seminorms are lower semicontinuous with respect to the topologies in-
duced on Cb(X,R) and Cb(X,C) by the topologies defined on c(X,R) and
c(X,C), respectively, in Section 1.9. This implies that these seminorms are
lower semicontinuous with respect to the usual weak topologies on Cb(X,R)
and Cb(X,C), because λx is continuous with respect to the supremum norm on
these spaces for every x ∈ X. In this situation as well, (5.68) implies (5.51) in
Section 5.6.

Let E be a dense subset of X, so that

NX(f) = NE(f)(5.70)

for every continuous real or complex-valued function f on X, as in (5.69). Note
that

{λx : x ∈ E}(5.71)

is a nondegenerate collection of linear functionals on each of C(X,R) and
C(X,C). Using (5.70), we get that NX is lower semicontinuous with respect to
the weak topologies on C(X,R) and C(X,C) associated to (5.71) as in Section
1.13. In particular, the supremum norm is lower semicontinuous with respect to
the weak topologies on Cb(X,R) and Cb(X,C) associated to (5.71), considered
now as a collection of linear functionals on each of these spaces. Of course, if
X is separable, then we can take E to have only finitely or countably many
elements.

5.11 Some separability conditions

Let X be a nonempty compact metric space. Remember that continuous real
and complex-valued functions on X are bounded and uniformly continuous. In
this case, one can verify that the spaces C(X,R) and C(X,C) of continuous real
and complex-valued functions on X are separable with respect to the supremum
metric. More precisely, it suffices to cover C(X,R) and C(X,C) by countably
many sets of arbitrarily small diameter with respect to the supremum metric,
as in Section 5.1. Let δ > 0 be given, so that X can be covered by finitely many
open balls of radius δ, by compactness. If a given real or complex-valued function
f on X does not vary too much on these balls, then f will be determined to



130CHAPTER 5. COUNTABILITY AND COMPATIBILITY CONDITIONS

within a uniformly small amount on X by its values on the finite set of centers
of these balls of radius δ. Because R and C are separable with respect to
their standard metrics, one can use this to cover sets of functions like these by
countably many sets of small diameter with respect to the supremum metric.
Every continuous real or complex-valued function on X satisfies conditions like
this for some δ > 0, by uniform continuity. If one takes δ = 1/l for each positive
integer l, then one can cover C(X,R) and C(X,C) by countably many sets of
small diameter with respect to the supremum metric, as desired.

Now let X be a nonempty compact Hausdorff topological space. If there is a
base B for the topology ofX with only finitely or countably many elements, then
C(X,R) and C(X,C) are separable with respect to the supremum metric. In
this situation, Urysohn’s metrization theorem implies that there is a metric onX
that determines the same topology, so that one can reduce to the remarks in the
previous paragraph. One can also give a more direct argument that is analogous
to the earlier one, as follows. As before, we would like to cover C(X,R) and
C(X,C) by countably many sets of arbirarily small diameter with respect to
the supremum metric. Let U1, . . . , Un be finitely many nonempty elements of
B that covers X, and let xj be an element of Uj for each j = 1, . . . , n. If f
is a real or complex-valued function that does not vary too much on Uj for
each j = 1, . . . , n, then f will be approximately determined uniformly on X
by its values on x1, . . . , xn, and one can deal with these functions as before.
If f is any continuous real or complex-valued function on X, then there are
finite coverings of X by elements of B on which f does not vary too much, by
continuity, compactness, and the definition of a base for the topology of X. If
B has only finitely or countably many elements, then there are only finitely or
countably many coverings of X by finitely many elements of B. One can use this
to cover C(X,R) and C(X,C) by finitely or countably many sets with small
diameter with respect to the supremum norm, as desired.

Of course, if X is a compact metric space, then it is well known that X is
separable, and hence has a base for its topology with only finitely or countably
many elements. Thus the conditions in the previous two paragraphs are equiv-
alent. Suppose that X satisfies either of these equivalent conditions, and let E
be a dense subset of X, so that (5.71) is a nondegenerate collection of linear
functionals on each of C(X,R) and C(X,C). Let us take V = C(X,R) or
C(X,C), and τ2 to be the topology determined on V by the supremum norm.
Also let τ1 be the weak topology on V associated to (5.71) as in Section 1.13.
Remember that the supremum norm on V is semicompatible with τ1, as in the
preceding section. Using the separability of V with respect to τ2, as in the
previous paragraphs, we get that (5.35) in Section 5.4 holds, as in Section 5.7.
Note that we can take E to have only finitely or countably many elements in this
situation, because X is separable, so that (5.71) has only finitely or countably
many elements.

Let X be a nonempty compact Hausdorff topological space again, so that
continuous real and complex-valued functions on X are bounded. If C(X,R) is
separable with respect to the supremum metric, then it is well known that there
is a base for the topology of X with only finitely or countably many elements.
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To see this, let E be a countable dense subset of C(X,R), and put

Uf = {x ∈ X : f(x) < 1/2}(5.72)

for every f ∈ E . Thus Uf is an open set in X for every f ∈ E , so that

B(E) = {Uf : f ∈ E}(5.73)

is a collection of open subsets of X with only finitely or countably many ele-
ments. We would like to verify that (5.73) is a base for the topology of X. Let
p ∈ X and an open set U ⊆ X be given, with p ∈ U . By Urysohn’s lemma,
there is a continuous real-valued function fp,U on X such that fp,U (p) = 0 and
fp,U (x) = 1 when x ∈ X \ U . Because E is dense in C(X,R), there is an f ∈ E
such that

|f(x)− fp,U (x)| < 1/2(5.74)

for every x ∈ X. This implies that f(p) < 1/2 and f(x) > 1/2 for every
x ∈ X \ U , because of the corresponding properties of fp,U . It follows that
p ∈ Uf and U ⊆ Uf , so that (5.73) is a base for the topology of X, as desired.

5.12 Countable products

Let Y1, Y2, Y3, . . . be a sequence of topological spaces, and let Y =
∏∞

j=1 Yj
be their Cartesian product. Also let Pn be the natural mapping from Y into∏n

j=1 Yj for each positive integer n, which simply keeps the first n coordinates
of every element of Y . Of course, Y can be identified with( n∏

j=1

Yj

)
×
( ∞∏

j=n+1

Yj

)
(5.75)

in an obvious way for each n ∈ Z+, and Pn corresponds to the projection of
(5.75) onto the first factor. If En ⊆

∏n
j=1 Yj , then P

−1
n (En) corresponds to

En ×
( ∞∏

j=n+1

Yj

)
(5.76)

in (5.75). Put

τY,n =

{
P−1
n (Un) : Un ⊆

n∏
j=1

Yj is an open set

}
(5.77)

for each n ∈ Z+, where more precisely Un should be an open set in
∏n

j=1 Yj with
respect to the product topology associated to the given topologies on Y1, . . . , Yn.
This defines a topology on Y for each n ∈ Z+, which is the weakest topology
on Y with respect to which Pn is continuous, using the product topology on∏n

j=1 Yj . Equivalently, τY,n consists of subsets of Y that correspond to subsets
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of (5.75) of the form (5.76), where En is an open set in
∏n

j=1 Yj with respect to
the product topology.

Let Pn+1,n be the natural projection from
∏n+1

j=1 Yj into
∏n

j=1 Yj for each
n ∈ Z+, which keeps the first n coordinates of each element of the domain.
This mapping is clearly continuous with respect to the corresponding product
topologies. As before, we can identify

∏n+1
j=1 Yj with

( n∏
j=1

Yj

)
× Yn+1(5.78)

for each n ∈ Z+, so that Pn+1,n corresponds to the projection onto the first
factor in (5.78). If En ⊆

∏n
j=1 Yj , then P

−1
n+1,n(En) corresponds to En × Yn+1

in (5.78). If Un ⊆
∏n

j=1 Yj is an open set with respect to the product topology,

then P−1
n+1,n(Un) is an open set in

∏n+1
j=1 Yj with respect to its product topology,

because Pn+1,n is continuous.
As usual, we can identify Y with( n∏

j=1

Yj

)
× Yn+1 ×

( ∞∏
j=n+2

Yj

)
(5.79)

for each n ∈ Z+. Using this identification, Pn corresponds to the projection
of (5.79) onto the first factor, and Pn+1 corresponds to the projection of (5.79)
onto the product of the first two factors. By construction,

Pn = Pn+1,n ◦ Pn+1(5.80)

for each n ∈ Z+ as mappings on Y , which can also be seen in terms of (5.79).
Observe that

P−1
n (En) = (Pn+1,n ◦ Pn+1)

−1(En) = P−1
n+1(P

−1
n+1,n(En))(5.81)

for every En ⊆
∏n

j=1 Yj , by (5.80). This corresponds to

En × Yn+1 ×
( ∞∏

j=n+2

Yj

)
(5.82)

as a subset of (5.79).
Using (5.81), we get that

τY,n ⊆ τY,n+1(5.83)

for every n ∈ Z+. One can also look at this in terms of the identification of
Y with (5.79), and the other identifications mentioned earlier. Let τY be the
product topology on Y , associated to the given topologies on the Yj ’s. Note
that

τY,n ⊆ τY(5.84)
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for every n ∈ Z+, which is basically the same as saying that Pn is continuous
with respect to τY on Y . In fact, one can check that

∞∪
n=1

τY,n(5.85)

is a base for τY , using the definition of the product topology.

Let A(τY,n) be the σ-algebra of Borel sets in Y with respect to τY,n for each
n ∈ Z+. Equivalently,

A(τY,n) =

{
P−1
n (En) : En ⊆

n∏
j=1

Yj is a Borel set

}
(5.86)

for each n ∈ Z+, where more precisely En should be a Borel set in
∏n

j=1 Yj
with respect to the associated product topology. The equivalence of these two
descriptions of A(τY,n) follows from remarks in Section 2.10. Using (5.83) and
the first description of A(τY,n), we get that

A(τY,n) ⊆ A(τY,n+1)(5.87)

for every n ∈ Z+. This can also be obtained from the second description (5.86)
of A(τY,n), using the mapping Pn+1,n mentioned earlier.

Let A(τY ) be the σ-algebra of Borel sets in Y with respect to τY . Note that

A(τY,n) ⊆ A(τY )(5.88)

for every n ∈ Z+, because of (5.84) and the first description of A(τY,n) in the
preceding paragraph. As before, this can also be obtained from (5.87) and the
fact that Pn is continuous, and hence Borel measurable. It is easy to see that

∞∪
n=1

A(τY,n)(5.89)

is an algebra of subsets of Y , using (5.88) and the fact that A(τY,n) is a σ-
algebra of subsets of Y for each n. As in Section 5.3, A(τY ) is the same as the
smallest σ-algebra of subsets of Y that contains (5.85), or that contains (5.89).

5.13 Collections of mappings

Let I be a nonempty set, and let Yj be a set for each j ∈ I. Also let X be a
set, and let fj be a mapping from X into Yj for each j ∈ I. Suppose that τYj

is
a topology on Yj for each j ∈ I, so that

{f−1
j (Vj) : Vj ∈ τYj

}(5.90)
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is the weakest topology on X with respect to which fj is continuous, as in
Section 2.10. Consider the topology τX on X generated by the topologies (5.90)
with j ∈ I, so that ∪

j∈I

{f−1
j (Vj) : Vj ∈ τYj

}(5.91)

is a sub-base for τX . By construction, fj is continuous with respect to τX for
each j ∈ I, and τX is the weakest topology on X with this property.

Put Y =
∏

j∈I Yj , and let τY be the product topology on Y corresponding
to τYj on Yj for each j. Also let f be the mapping from X into Y whose jth
coordinate is equal to fj for each j. It is easy to see that f is continuous with
respect to τX and τY , and that τX is the weakest topology on X with this
property. Equivalently,

τX = {f−1(V ) : V ∈ τY }.(5.92)

as in (2.83). It follows that the σ-algebra of Borel sets in X with respect to τX
is the same as

{f−1(E) : E ⊆ Y is a Borel set},(5.93)

as in Section 2.10, and using the Borel sets in Y with respect to τY in (5.93).
Let us now take I = Z+, as in the previous section. If n ∈ Z+, then we let

Fn be the mapping from X into
∏n

j=1 Yj whose jth coordinate is equal to fj
for each j = 1, . . . , n. Equivalently,

Fn = Pn ◦ f,(5.94)

where Pn is the natural mapping from Y into
∏n

j=1 Yj , as before. Note that Fn

is continuous with respect to τX on X and the product topology on
∏n

j=1 Yj
corresponding to τYj

on Yj . This is basically the same as saying that fj is
continuous with respect to τX for j = 1, . . . , n, which holds by construction.

Put

τX,n =

{
F−1
n (Un) : Un ⊆

n∏
j=1

Yj is an open set

}
,(5.95)

for each n ∈ Z+, where more precisely Un should be an open set in
∏n

j=1 Yj with
respect to the product topology associated to the given topologies on Y1, . . . , Yn.
This defines a topology on X for each n ∈ Z+, which is the weakest topology
on X with respect to which Fn is continuous, using the product topology on∏n

j=1 Yj . Equivalently,

τX,n = {f−1(Vn) : Vn ∈ τY,n}(5.96)

for each n ∈ Z+, where τY,n is as in (5.77), because of (5.94). Observe that

τX,n ⊆ τX(5.97)

for each n ∈ Z+, because Fn is continuous with respect to τX , as in the preceding
paragraph. This could also be obtained from (5.96), using (5.84) and (5.92).
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Let Pn+1,n be the natural projection from
∏n+1

j=1 Yj into
∏n

j=1 Yj for each
n ∈ Z+ again, so that

Pn+1,n ◦ Fn+1 = Fn(5.98)

for every n. One can check that

τX,n ⊆ τX,n+1(5.99)

for each n ∈ Z+, using (5.81), (5.95), and (5.98). This can also be obtained
from (5.83) and (5.96).

Of course,
∞∪

n=1

τX,n(5.100)

is contained in τX , by (5.97), and one can verify that (5.100) is a base for τX .
More precisely, (5.91) is contained in (5.100), which implies that (5.100) is a
sub-base for τX . To get that (5.100) is a base for τX , one can use the fact that
(5.100) is closed under finite intersections. Alternatively, (5.100) is the same as{

f−1(V ) : V ∈
∞∪

n=1

τY,n

}
,(5.101)

because of (5.96). This is a base for τX , because of (5.92) and the fact that
(5.85) is a base for τY .

Let A(τX,n) be the σ-algebra of Borel sets in X with respect to τX,n for each
n ∈ Z+. Equivalently,

A(τX,n) =

{
F−1
n (En) : En ⊆

n∏
j=1

Yj is a Borel set

}
,(5.102)

as in Section 2.10, and using the product topology on
∏n

j=1 Yj . Similarly,

A(τX,n) = {f−1(An) : An ∈ A(τY,n)},(5.103)

where A(τY,n) is the σ-algebra of Borel sets in Y with respect to τY,n, as in the
previous section. This uses (5.96) and the remarks in Section 2.10 again. Note
that

A(τX,n) ⊆ A(τX,n+1)(5.104)

for each n ∈ Z+, by (5.99).
Let A(τX) be the σ-algebra of Borel sets in X with respect to τX . This is

the same as
A(τX) = {f−1(A) : A ∈ A(τY )},(5.105)

where A(τY ) is the σ-algebra of Borel sets in Y with respect to τY , as in the
previous section. This uses (5.92) and the remarks in Section 2.10, as usual.
We also have that

A(τX,n) ⊆ A(τX)(5.106)
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for each n ∈ Z+, because of (5.97). This corresponds to (5.88) as well, using
(5.103) and (5.105).

Observe that
∞∪

n=1

A(τX,n)(5.107)

is an algebra of subsets of X, because of (5.104) and the fact that A(τX,n) is a
σ-algebra of subsets of X for each n. This is the same as{

f−1(A) : A ∈
∞∪

n=1

A(τY,n)

}
,(5.108)

because of (5.103). Of course, (5.107) is contained in A(τX), because of (5.106).
As in Section 5.3, A(τ) is the same as the smallest σ-algebra of subsets of X
that contains (5.100), or equivalently that contains (5.107). This corresponds
to the analogous statement for A(τY ) mentioned in the previous section, using
the remarks in Section 2.10 again.

5.14 Some more comparisons of topologies

Let X be a topological space, and let X1, X2, X3, . . . be a sequence of Borel sets
in X, so that

∪∞
j=1Xj is a Borel set in X as well. If E ⊆ X is a Borel set,

then E ∩Xj is a Borel set for each j. In the other direction, if E ⊆ X has the
property that E ∩Xj is a Borel set for each j, then

E ∩
( ∞∪

j=1

Xj

)
=

∞∪
j=1

(E ∩Xj)(5.109)

is a Borel set in X too. In particular, if E ⊆
∪∞

j=1Xj , then it follows that E is
a Borel set in X. Remember that a subset of Xj is a Borel set in X if and only
if it is Borel set in Xj with respect to the induced topology, as in Section 2.10.

Let X0 be a subset of X. If E ⊆ X is an Fσ set in X, then E ∩ X0 is an
Fσ set in X0, with respect to the induced topology. If X0 is a closed set in X,
then every closed subset of X0 with respect to the induced topology is a closed
set in X. In this case, every subset of X0 that is an Fσ set with respect to the
induced topology is an Fσ set in X as well. Similarly, if X0 is an Fσ set in X,
then every subset of X0 that is an Fσ set with respect to the induced topology
is an Fσ set in X too.

Let X1, X2, X3, . . . be a sequence of Fσ sets in X. If E ⊆ X is an Fσ set,
then E ∩Xj is an Fσ in X for each j. If E is any subset of X with the property
that E ∩ Xj is an Fσ set in X for each j, then (5.109) is an Fσ set in X. It
follows that E is an Fσ set in X when E ⊆

∪∞
j=1Xj , as before.

Suppose for the moment that

every open subset of X is an Fσ set.(5.110)
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If X0 is any subset of X, then it is easy to see that X0 satisfies the analogous
condition with respect to the induced topology. More precisely, if E ⊆ X0 is
relatively open, then there is an open set U ⊆ X such that E = U ∩ X0. By
hypothesis, U is an Fσ set in X, so that E can be expressed as the union of
countably many relatively closed sets in X0. If X0 is an Fσ set in X, then it
follows that E is an Fσ set in X, as mentioned earlier.

Let X be any topological space again, and let X1, X2, X3, . . . be a sequence
of closed or Fσ subsets of X such that

X =

∞∪
j=1

Xj .(5.111)

Consider the following condition, for each j ∈ Z+:

every relatively open subset of Xj is an Fσ set in X.(5.112)

If (5.110) holds, then (5.112) holds for every j ∈ Z+, as in the previous para-
graph. Conversely, if (5.112) holds for every j ∈ Z+, then (5.110) holds. Indeed,
if U ⊆ X is an open set, then U ∩Xj is a relatively open set in Xj for each j.
This implies that U ∩Xj is an Fσ set in X for each j, by hypothesis. It follows
that U is an Fσ set in X, as desired, because

U =

∞∪
j=1

(U ∩Xj),(5.113)

by (5.111). Note that (5.112) is equivalent to asking that

every relatively open subset of Xj is an Fσ set(5.114)

with respect to the induced topology on Xj ,

because Xj is supposed to be an Fσ set in X.
Let X be a set, and let us suppose for the rest of the section that τ1, τ2 are

topologies on X such that
τ1 ⊆ τ2,(5.115)

so that that Borel sets in X with respect to τ1 are Borel sets with respect to
τ2. Let X0 be a subset of X that is a Borel set with respect to τ1, and hence
with respect to τ2. Under these conditions, a subset E of X0 is a Borel set with
respect to the topology induced on X0 by τ1 if and only if E is a Borel set in
X with respect to τ1, and similarly for τ2, as in Section 2.10. If

the topologies induced on X0 by τ1 and τ2 are the same,(5.116)

then we get the same σ-algebras of Borel subsets of X0 with respect to these
induced topologies. In this case, it follows that E ⊆ X0 is a Borel set in X with
respect to τ1 if and only if E is a Borel set in X with respect to τ2.

Suppose now that X0 ⊆ X is an Fσ set with respect to τ1, and hence with
respect to τ2. Remember that a subset E of X0 is an Fσ set with respect to the
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topology induced on X0 by τ1 if and only if E is an Fσ set in X with respect
to τ1, and similarly for τ2. If (5.116) holds, then the collections of Fσ sets in
X0 with respect to these induced topologies are the same. This implies that
E ⊆ X0 is an Fσ set in X with respect to τ1 if and only if E is an Fσ set in X
with respect to τ2 in this situation.

Suppose for the moment that X is Hausdorff with respect to τ1, and hence
with respect to τ2. If X0 ⊆ X is compact with respect to τ2, then X0 is compact
with respect to τ1 as well. This implies that X0 is a closed set in X with respect
to τ1 and τ2, and in particular that X0 is a Borel set in X with respect to τ1 and
τ2. It is well known that (5.116) holds in this case. More precisely, if E ⊆ X0 is
a closed set with respect to τ2, then E is compact with respect to τ2, because
X0 is compact with respect to τ2. This implies that E is compact with respect
to τ1, because of (5.115). It follows that E is a closed set with respect to τ1,
because τ1 is supposed to be Hausdorff. This shows that the topology induced
on X0 by τ1 is at least as strong as the topology induced on X0 by τ2 in this
situation, so that (5.116) holds, using (5.115) again.

Let X1, X2, X3, . . . be a sequence of subsets of X, and suppose that for each
j ∈ Z+,

the topologies induced on Xj by τ1 and τ2 are the same.(5.117)

Suppose also that for each j ∈ Z+,

Xj is a Borel set in X with respect to τ1,(5.118)

and hence with respect to τ2. In particular, this means that
∪∞

j=1Xj is a Borel
set in X with respect to τ1, and hence with respect to τ2. Let E be a subset of∪∞

j=1Xj that is a Borel set in X with respect to τ2, so that E ∩Xj is a Borel
set in X with respect to τ2 for each j ∈ Z+. Using (5.117), we get that E ∩Xj

is a Borel set in X with respect to τ1 for every j ∈ Z+, as before. It follows that

E =

∞∪
j=1

(E ∩Xj)(5.119)

is also a Borel set in X with respect to τ1 in this situation. Suppose now that
for each j ∈ Z+,

Xj is an Fσ set in X with respect to τ1,(5.120)

and hence with respect to τ2. If E is a subset of
∪∞

j=1Xj that is an Fσ set with
respect to τ2, then E∩Xj is an Fσ set in X with respect to τ2 for every j ∈ Z+.
This implies that E ∩Xj is an Fσ set in X with respect to τ1 for each j ∈ Z+,
using (5.117) again. Thus E is an Fσ set in X with respect to τ1 too, because
of (5.119).

Let us continue to ask that X1, X2, X3, . . . satisfy (5.117) and (5.120) for
each j ∈ Z+, and suppose now that they also satisfy (5.111). This implies that

Fσ sets in X with respect to τ1 and τ2 are the same,(5.121)
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because of (5.115) and the remarks in the preceding paragraph. In addition, we
ask that

every element of τ1 is an Fσ set with respect to τ1,(5.122)

which is to say that (5.110) holds with respect to τ1. This is equivalent to asking
that for each j ∈ Z+,

every relatively open set in Xj with respect to τ1(5.123)

is an Fσ set in X with respect to τ1,

which is the same as (5.112) with respect to τ1. Thus the equivalence of (5.122)
and (5.123) is the same as the equivalence of (5.110) and (5.112) discussed
earlier, using τ1 as the topology on X. Of course, (5.123) is the same as

every relatively open set in Xj with respect to τ2(5.124)

is an Fσ set in X with respect to τ1

in this situation, because of (5.117). Using this, we get that

every element of τ2 is an Fσ set with respect to τ1,(5.125)

in essentially the same way that (5.110) was obtained from (5.112) earlier.



Chapter 6

Direct sums

6.1 The strong product topology

Let I be nonempty set, and let Xj be a topological space for each j ∈ I. A
subset W of the Cartesian product X =

∏
j∈I Xj is said to be an open set with

respect to the strong product topology if for every x ∈ W there are open sets
Uj ⊆ Xj for each j ∈ I such that x ∈

∏
j∈I Uj and

∏
j∈I Uj ⊆ W . It is easy

to see that this defines a topology on X. Equivalently, if Uj ⊆ Xj is an open
set for every j ∈ I, then U =

∏
j∈I Uj is an open set in X with respect to the

strong product topology, and the collection of these open sets forms a base for
the strong product topology. Of course, the strong product topology on X is
always at least as strong as the ordinary product topology on X. If I has only
finitely many elements, then the ordinary and strong product topologies on X
are the same. If I is any nonempty set and Xj is equipped with the discrete
topology for every j ∈ I, then the strong product topology on X is the same as
the discrete topology.

Let Xj be any topological space for each j ∈ I again. If Xj satisfies the
first separation condition for each j ∈ I, then it is easy to see that X satisfies
the first separation condition with respect to the product topology. This implies
that X satisfies the first separation condition with respect to the strong product
topology, since the strong product topology is at least as strong as the product
topology. Similarly, if Xj is Hausdorff for each j ∈ I, then X is Hausdorff with
respect to the product topology. This implies that X is Hausdorff with respect
to the strong product topology.

If Ej ⊆ Xj is a closed set in X for every j ∈ I, then E =
∏

j∈I Ej is a closed
set in X with respect to the product topology. This implies that E is a closed
set with respect to the strong product topology on X as well. Let Aj be any
subset of Xj for each j ∈ I, and let Aj be the closure of Aj in Xj . One can check
that every element of

∏
j∈I Aj is an element of the closure of A =

∏
j∈I Aj in

X with respect to the strong product topology, and hence with respect to the
product topology on X. It follows that

∏
j∈I Aj is the same as the closure of A

140
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in X with respect to both the product and strong product topologies.
Suppose for the moment that Xj is regular as a topological space in the

strict sense for every j ∈ I. Let W ⊆ X be an open set with respect to the
product or strong product topology, and let x be an element of W . Thus there
are open sets Vj ⊆ Xj for each j ∈ I such that x ∈

∏
j∈I Vj ,

∏
j∈I Vj ⊆W , and,

in the case of the ordinary product topology, Vj = Xj for all but finitely many
j ∈ I. As in Section 1.8, let us use xj to denote the jth coordinate of x in Xj

for each j ∈ I. Because Xj is regular in the strict sense for each j ∈ I, there is
an open set Uj ⊆ Xj for each j ∈ I such that xj ∈ Uj and Uj ⊆ Vj , where Uj

is the closure of Uj in Xj again. If Vj = Xj , then we can simply take Uj = Xj

too. Thus x ∈
∏

j∈I Uj , and
∏

j∈I Uj is an open set in X with respect to the
product or strong product topology, as appropriate. In both cases, the closure
of

∏
j∈I Uj in X is equal to

∏
j∈I Uj , which is contained in

∏
j∈I Vj , and hence

W , by construction. This shows that X is also regular in the strict sense with
respect to the product and strong product topologies under these conditions.

6.2 Sums of commutative groups

Let I be a nonempty set again, and let Aj be a commutative group for each
j ∈ I, with the group operations expressed additively. As in Section 1.8, the
Cartesian product

∏
j∈I Aj is a commutative group as well, where the group

operations are defined coordinatewise. This is known as the direct product of
the Aj ’s, j ∈ I. Put∑

j∈I

Aj =

{
a ∈

∏
j∈I

Aj : aj = 0 for all but finitely many j ∈ I

}
,(6.1)

where aj denotes the jth coordinate of a ∈
∏

j∈I Aj in Aj for each j ∈ I, as
usual. This is a subgroup of

∏
j∈I Aj , which is known as the direct sum of

the Aj ’s, j ∈ I. Of course, the direct sum and product of the Aj ’s are the
same when I has only finitely many elements. More precisely, this holds when
Aj = {0} for all but finitely many j ∈ I.

Suppose now that Aj is a commutative topological group for each j ∈ I.
One can check that

∏
j∈I Aj is a commutative topological group with respect to

the corresponding strong product topology on
∏

j∈I Aj . It follows that
∑

j∈I Aj

is a commutative topological group with respect to the topology induced by the
strong product topology on

∏
j∈I Aj . If Aj = {0} for all but finitely many

j ∈ I, then the strong product topology on
∏

j∈I Aj is the same as the ordinary
product topology.

Let I1 be a subset of I, and put

W (I1) =

{
a ∈

∏
j∈I

Aj : aj ̸= 0 for every j ∈ I1

}
.(6.2)

Equivalently,

W (I1) =
∏
j∈I

Uj(I1),(6.3)
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where Uj(I1) = Aj \ {0} when j ∈ I1 and Uj(I1) = Aj when j ∈ I \ I1.
This implies that W (I1) is an open set in

∏
j∈I Aj with respect to the strong

product topology for every I1 ⊆ I, since Aj and Aj \ {0} are open subsets of
Aj for every j ∈ I. The complement of

∑
j∈I Aj in

∏
j∈I Aj is the same as

the union of W (I1) over all infinite subsets I1 of I. Thus the complement of∑
j∈I Aj in

∏
j∈I Aj is an open set with respect to the strong product topology,

which means that
∑

j∈I Aj is a closed set in
∏

j∈I Aj with respect to the strong
product topology. By contrast,

∑
j∈I Aj is dense in

∏
j∈I Aj with respect to

the ordinary product topology. Note that W (I1) is an open set in
∏

j∈I Aj

with respect to the ordinary product topology when I1 has only finitely many
elements.

Let I1 be a subset of I again, and put

A(I1) =

{
a ∈

∏
j∈I

Aj : aj = 0 for every j ∈ I \ I1
}
.(6.4)

This is a subgroup of
∏

j∈I Aj , and a closed set with respect to the product
topology. If I1 = ∅, then A(I1) = {0}, and otherwise there is a natural one-to-
one correspondence between A(I1) and

∏
j∈I1

Aj , which is a group isomorphism.
If I1 ̸= ∅, then this isomorphism is also a homeomorphism with respect to
the topology induced on A(I1) by the product topology on

∏
j∈I Aj and the

product topology on
∏

j∈I1
Aj . Similarly, if I1 ̸= ∅, then this isomorphism is a

homeomorphism with respect to the topology induced on A(I1) by the strong
product topology on

∏
j∈I Aj and the strong product topology on

∏
j∈I1

Aj . If
I1 has only finitely many elements, then A(I1) is contained in

∑
j∈I Aj , and the

topologies induced on A(I1) by the product and strong product topologies on∏
j∈I Aj are the same. By construction,

∑
j∈I Aj is the same as the union of

A(I1) over all finite subsets I1 of I.

6.3 Sums of vector spaces

Let I be a nonempty set, and suppose that either Vj is a vector space over the
real numbers for every j ∈ I, or a vector space over the complex numbers for
every j ∈ I. Under these conditions,

∏
j∈I Vj is a vector space over the real or

complex numbers, as appropriate, where the vector space operations are defined
coordinatewise, as in Section 1.8. This may be described as the direct product
of the Vj ’s, j ∈ I. Put

∑
j∈I

Vj =

{
v ∈

∏
j∈I

Vj : vj = 0 for all but finitely many j ∈ I

}
,(6.5)

as in the previous section. This is a linear subspace of
∏

j∈I Vj , which may be
described as the direct sum of the Vj ’s, j ∈ I. These definitions correspond
to those in the preceding section by considering vector spaces as commutative
groups with respect to addition. As before, the direct sum and product are the
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same when I has only finitely many elements, or when Vj = {0} for all but
finitely many j ∈ I.

Suppose that Vj is a topological vector space for each j ∈ I. In particular,
this means that Vj is a commutative topological group with respect to addition
for each j ∈ I. Thus

∏
j∈I Vj is a commutative topological group with respect

to the corresponding strong product topology, as in the preceding section.
If Uj is a balanced open subset of Vj that contains 0 for each j ∈ I, then

U =
∏
j∈I

Uj(6.6)

is a balanced open set in
∏

j∈I Vj with respect to the strong product topology.
Remember that balanced open subsets of Vj that contain 0 form a local base
for the topology of Vj at 0 for every j ∈ I, as in Section 1.6. This implies that
subsets of V as in (6.6) form a local base for the topology of

∏
j∈I Vj at 0. In

particular, this shows that balanced open sets in V that contain 0 form a local
base for the topology of V at 0.

As usual, scalar multiplication on
∏

j∈I Vj corresponds to a mapping from

R×
(∏

j∈I

Vj

)
or C×

(∏
j∈I

Vj

)
(6.7)

into
∏

j∈I Vj , as appropriate. Using the standard topology on R or C, and
the strong product topology on

∏
j∈I Vj , we get an associated product topology

on the appropriate product in (6.7). The remarks in the previous paragraph
imply that scalar multiplication on

∏
j∈I Vj is continuous as a mapping from the

appropriate product in (6.7) into
∏

j∈I Vj at (0, 0), using the product topology
on the appropriate product in (6.7) just mentioned. In particular, for each t ∈ R
or C, as appropriate, v 7→ t v defines a continuous mapping from

∏
j∈I Vj into

itself, with respect to the strong product topology on
∏

j∈I Vj .
Let v ∈

∏
j∈I Vj be given, and consider

t 7→ t v(6.8)

as a mapping from R or C, as appropriate, into
∏

j∈I Vj . If vj ̸= 0 for in-
finitely many j ∈ I, then (6.8) is not continuous at t = 0 with respect to the
standard topology on R or C, as appropriate, and the strong product topology
on

∏
j∈I Vj . This implies that

∏
j∈I Vj is not a topological vector space with

respect to the strong product topology when Vj ̸= {0} for infinitely many j ∈ I.
One can check that

∑
j∈I Vj is a topological vector space over R or C, as

appropriate, with respect to the topology induced on
∑

j∈I Vj by the strong
product topology on

∏
j∈I Vj . We have already seen that

∑
j∈I Vj is a commu-

tative topological group with respect to addition with respect to this topology.
One can get a local base for this topology on

∑
j∈I Vj at 0 consisting of bal-

anced open sets, using the intersections of the sets (6.6) mentioned earlier with∑
j∈I Vj . If v ∈

∑
j∈I Vj , then (6.8) is continuous as a mapping from R or C,

as appropriate, into
∑

j∈I Vj with respect to this topology. This can be used to
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show that scalar multiplication on
∑

j∈I Vj is continuous with respect to this
topology, as desired.

LetX be a nonempty set, and remember that the spaces c(X,R) and c(X,C)
of real and complex-valued functions on X, respectively, correspond to Carte-
sian products of copies of R and C indexed by X, as in Section 1.9. Similarly,
the spaces c00(X,R) and c00(X,C) of real and complex-valued functions on X,
respectively, with finite support correspond to direct sums of copies of R and C
indexed by X. Of course, R and C may be considered as one-dimensional topo-
logical vector spaces over themselves, with respect to their standard topologies.
Thus c00(X,R) and c00(X,C) may be considered as topological vector spaces
over R and C, respectively, using the topologies induced by the correspond-
ing strong product topologies on the Cartesian products, as in the previous
paragraph.

6.4 Associated Borel sets

Let I be a nonempty set, and let Aj be a commutative topological group for
each j ∈ I. Because the strong product topology on

∏
j∈I Aj is at least as

strong as the ordinary product topology, the σ-algebra of Borel sets in
∏

j∈I Aj

with respect to the strong product topology contains the σ-algebra of Borel sets
with respect to the ordinary product topology. Of course, if I has only finitely
many elements, then the strong product topology on

∏
j∈I Aj is the same as the

ordinary product topology, so the corresponding σ-algebras of Borel sets are the
same as well. This also happens when Aj = {0} for all but finitely many j ∈ I.

Remember that
∑

j∈I Aj is a closed set in
∏

j∈I Aj with respect to the strong
product topology, as in Section 6.2. In particular, this implies that

∑
j∈I Aj is

a Borel set in
∏

j∈I Aj with respect to the strong product topology. It follows
that the Borel sets in

∑
j∈I Aj with respect to the topology induced by the

strong product topology on
∏

j∈I Aj are the same as Borel sets in
∏

j∈I Aj with
respect to the strong product topology that are also contained in

∑
j∈I Aj , as

in Section 2.10.
A subset of

∑
j∈I Aj is a Borel set with respect to the topology induced

by the product topology on
∏

j∈I Aj if and only if it can be expressed as the
intersection of

∑
j∈I Aj with a Borel set in

∏
j∈I Aj with respect to the product

topology, as in Section 2.10. These sets are automatically Borel sets with respect
to the strong product topology on

∏
j∈I Aj , by the previous remarks.

Let I1 be a subset of I, and let A(I1) be the subgroup of
∏

j∈I Aj defined
in (6.4). Remember that A(I1) is a closed set in

∏
j∈I Aj with respect to the

product topology, and hence with respect to the strong product topology. In
particular, A(I1) is a Borel set in

∏
j∈I Aj with respect to the product and

strong product topologies. As in Section 2.10, a subset of A(I1) is a Borel
set with respect to the topology induced on A(I1) by the product topology on∏

j∈I Aj if and only if it is a Borel set in
∏

j∈I Aj with respect to the product
topology. Similarly, a subset of A(I1) is a Borel set with respect to the topology
induced on A(I1) by the strong product topology on

∏
j∈I Aj if and only if it is
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a Borel set in
∏

j∈I Aj with respect to the strong product topology.
If I1 has only finitely many elements, then the topologies induced on A(I1) by

the product and strong product topologies on
∏

j∈I Aj are the same, as before.
Hence the Borel sets in A(I1) with respect to these induced topologies are the
same as well. This implies that a subset of A(I1) is a Borel set with respect to
the product topology on

∏
j∈I Aj if and only if it is a Borel set with respect

to the strong product topology on
∏

j∈I Aj , by the remarks in the preceding
paragraph.

Let us now take I = Z+ for the rest of the section. Of course, if I is any
countably-infinite set, then one can reduce to this case. Let A1, A2, A3, . . . be an
infinite sequence of commutative topological groups, where the group operations
are expressed additively. In this case, the Cartesian product

∏∞
j=1Aj may be

considered as the set of infinite sequences a = {aj}∞j=1 with aj ∈ Aj for each j.
Similarly, the direct sum may be considered as

∞∑
j=1

Aj =

{
a ∈

∞∏
j=1

Aj : aj = 0 for all but finitely many j ≥ 1

}
.(6.9)

Let n be a positive integer, and put

A(n) =

{
a ∈

∞∏
j=1

Aj : aj = 0 for each j > n

}
.(6.10)

This corresponds to A(I1) in (6.4), with I1 = {1, . . . , n}. Observe that A(n) is
a subgroup of

∑∞
j=1Aj for each n,

A(n) ⊆ A(n+ 1)(6.11)

for each n, and
∞∑
j=1

Aj =

∞∪
n=1

A(n).(6.12)

As before, A(n) is a closed set in
∏∞

j=1Aj with respect to the product topology
for each n, and the topologies induced on A(n) by the product and strong prod-
uct topologies on

∏∞
j=1Aj are the same for each n. There is an obvious group

isomorphism between A(n) and
∏n

j=1Aj for each n, which is a homeomorphism
with respect to the topology induced on A(n) by either of the product or strong
product topologies on

∏∞
j=1Aj and the product topology on

∏n
j=1Aj .

It follows that
∑∞

j=1Aj is an Fσ set in
∏∞

j=1Aj with respect to the product

topology, because of (6.12) and the fact that A(n) is a closed set in
∏∞

j=1Aj

with respect to the product topology for each n. In particular,
∑∞

j=1Aj is a

Borel set in
∏∞

j=1Aj with respect to the product topology. This implies that

the Borel sets in
∑∞

j=1Aj with respect to the topology induced by the product

topology on
∏∞

j=1Aj are the same as the Borel sets in
∏∞

j=1Aj with respect to

the product topology that are contained in
∑∞

j=1Aj , as in Section 2.10.
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If n is any positive integer, then a subset of A(n) is a Borel set in
∏

j∈I Aj

with respect to the strong product topology if and only if it is a Borel set in∏
j∈I Aj with respect to the product topology. This follows from the analogous

statement for A(I1) when I1 is finite mentioned earlier.
If E ⊆

∑∞
j=1Aj is a Borel set with respect to the strong product topology

on
∏∞

j=1Aj , then E ∩ A(n) is a Borel set with respect to the strong product

topology on
∏∞

j=1Aj for each n, because A(n) is a Borel set in
∏∞

j=1Aj with
respect to the strong product topology for each n. This implies that E ∩ A(n)
is a Borel set with respect to the product topology on

∏∞
j=1Aj for each n, as

in the preceding paragraph. Thus

E =

∞∪
n=1

(E ∩A(n))(6.13)

is a Borel set in
∏∞

j=1Aj with respect to the product topology. This shows that

Borel sets in
∑∞

j=1Aj with respect to the product and strong product topologies

on
∏∞

j=1Aj are the same.

6.5 Homomorphisms on sums

Let I be a nonempty set, and let Aj be a commutative group for each j ∈ I, with
the group operations expressed additively. Also let B be another commutative
group, with the group operations expressed additively. Suppose that ϕj is a
group homomorphism from Aj into B for every j ∈ I. Let a ∈

∑
j∈I Aj be

given, so that aj ∈ Aj is equal to 0 for all but finitely many j ∈ I. This implies
that ϕj(aj) = 0 in B for all but finitely many j ∈ I, so that

ϕ(a) =
∑
j∈I

ϕj(aj)(6.14)

defines an element of B. This defines a group homomorphism ϕ from
∑

j∈I Aj

into B. If ϕj ≡ 0 on Aj for all but finitely many j ∈ I, then (6.14) defines a
group homomorphism from

∏
j∈I Aj into B.

Let l ∈ I and xl ∈ Al be given, and let x̂ be the element of
∑

j∈I Aj such
that x̂j = 0 when j ̸= l and x̂l = xl. If ϕ is expressed on

∑
j∈I Aj as in (6.14),

then
ϕl(xl) = ϕ(x̂).(6.15)

Thus the ϕj ’s are uniquely determined by ϕ. If ϕ is any group homomorphism
from

∑
j∈I Aj into B, (6.15) defines a group homomorphism from Al into B for

each l. Using these homomorphisms, ϕ can be expressed as in (6.14) for every
a ∈

∑
j∈I Aj .

Suppose now that Aj is a commutative topological group for each j ∈ I,
and that B is a commutative topological group as well. If ϕ is a continuous
homomorphism from

∑
j∈I Aj into B, with respect to the topology induced

on
∑

j∈I Aj by the strong product topology on
∏

j∈I Aj , then (6.15) defines a
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continuous homomorphism from Al into B for each l ∈ I. In the other direction,
if ϕj is a continuous homomorphism from Aj into B for each j ∈ I, and if
ϕj ≡ 0 on Aj for all but finitely many j ∈ I, then (6.14) defines a continuous
homomorphism from

∏
j∈I Aj into B, with respect to the product topology on∏

j∈I Aj .
Let W be any open set in B that contains 0. Using continuity of addition

on B at 0, one can get an open set W1 ⊆ B such that 0 ∈W1 and

W1 +W1 ⊆W.(6.16)

Repeating the process, one can get open setsWj ⊆ B for j ≥ 2 such that 0 ∈Wj

and
Wj +Wj ⊆Wj−1(6.17)

for each j. Using induction, one can verify that

W1 +W2 + · · ·+Wn−1 +Wn +Wn ⊆W(6.18)

for every n ≥ 1. This implies that

W1 +W2 + · · ·+Wn−1 +Wn ⊆W(6.19)

for every n ≥ 1, because 0 ∈Wn, by construction.
Let us now take I = Z+, although one could deal with any countable set I

in a similar way. Let A1, A2, A3, . . . be a sequence of commutative topological
groups, as before, and let ϕj be a continuous homomorphism from Aj into B
for each j. If a ∈

∑∞
j=1Aj , then aj = 0 in Aj for all but finitely many j, and

ϕ(a) =

∞∑
j=1

ϕj(aj)(6.20)

defines an element of B, as in (6.14). This defines a group homomorphism from∑∞
j=1Aj into B, as before, and we would like to show that ϕ is continuous with

respect to the topology induced on
∑∞

j=1Aj by the strong product topology on∏∞
j=1Aj . Of course, it suffices to check that ϕ is continuous at 0, because ϕ is

a group homomorphism.
Let W be an open subset of B that contains 0, and let W1,W2,W3, . . . be

as before. If j is any positive integer, then there is an open set Uj ⊆ Aj such
that 0 ∈ Uj and

ϕj(Uj) ⊆Wj ,(6.21)

because ϕj is continuous. Observe that

U =
( ∞∑

j=1

Aj

)
∩
( ∞∏

j=1

Uj

)
(6.22)

is an open set in
∑∞

j=1Aj with respect to the topology induced by the strong

product topology on
∏∞

j=1Aj . Of course, (6.22) contains 0, because 0 ∈ Uj for
each j, by construction. Let us verify that

ϕ(U) ⊆W.(6.23)
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Let a ∈ U be given, so that aj ∈ Uj for each j, and aj = 0 for all but finitely
many j. Hence there is an n ∈ Z+ such that aj = 0 when j > n. It follows that

ϕ(a) = ϕ1(a1) + · · ·+ ϕn(an) ∈W1 + · · ·+Wn ⊆W,(6.24)

using (6.20) in the first step, (6.21) in the second step, and (6.19) in the third
step. Thus we get (6.23), which implies that ϕ is continuous at 0 with respect to
the topology induced on

∑∞
j=1Aj by the strong product topology on

∏∞
j=1Aj ,

as desired.
Let us now take B = T, for which the group operations are normally ex-

pressed multiplicatively. Let A1, A2, A3, . . . be a sequence of commutative topo-
logical groups again, and let ϕj be a continuous homomorphism from Aj into

T for each j. Equivalently, ϕj is an element of the dual group Âj associated to
Aj for each j. If a ∈

∑∞
j=1Aj , then aj = 0 in Aj for all but finitely many j, so

that ϕj(aj) = 1 in T for all but finitely many j. Thus

ϕ(a) =

∞∏
j=1

ϕj(aj)(6.25)

defines an element of T, which corresponds to (6.20) in this situation. This
defines a group homomorphism from

∑∞
j=1Aj into T, and ϕ is also continuous

with respect to the topology induced on
∑∞

j=1Aj by the strong product topology

on
∏∞

j=1Aj , by the previous remarks. This means that ϕ defines an element

of the dual of
∑∞

j=1Aj , as a commutative topological group with respect to

the topology induced by the strong product topology on
∏∞

j=1Aj . Conversely,

if ϕ is any continuous homomorphism from
∑∞

j=1Aj into T, with respect to

the topology induced on
∑∞

j=1Aj by the strong product topology on
∏∞

j=1Aj ,

then ϕ can be expressed as in (6.25) for some ϕj ∈ Âj , j ∈ Z+, as before. We
have also seen that the ϕj ’s are uniquely determined by ϕ, as in (6.15). This
shows that the dual of

∑∞
j=1Aj as a commutative topological group with the

topology induced by the strong product topology on
∏∞

j=1Aj is isomorphic as

a commutative group to the direct product
∏∞

j=1 Âj of the corresponding dual
groups in a natural way.

6.6 Subsets of sums

Let I be a nonempty set, let Aj be a commutative group for each j ∈ I, and let
E be a subset of the direct sum

∑
j∈I Aj . Put

IE = {j ∈ I : there is an a ∈ E such that aj ̸= 0},(6.26)

so that aj = 0 for every a ∈ E and j ∈ I \ IE . This means that

E ⊆ A(IE),(6.27)
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where A(IE) is as in (6.4) in Section 6.2. Suppose that Aj is a commutative
topological group for each j ∈ I, so that

∑
j∈I Aj is a commutative topological

group with respect to the topology induced by the strong product topology on∏
j∈I Aj . If E is totally bounded in

∑
j∈I Aj with respect to this topology,

as in Section 1.19, then we would like to check that IE has only finitely many
elements.

Let j ∈ IE be given, so that there is an element a(j) of E such that aj(j) ̸= 0
in Aj . Let Uj be an open subset of Aj such that 0 ∈ Uj and aj(j) ̸∈ Uj , such
as Uj = Aj \ {aj(j)}. Put Uj = Aj when j ∈ I \ IE , and

U =
(∑

j∈I

Aj

)
∩
(∏

j∈I

Uj

)
.(6.28)

Thus U is an open set in
∑

j∈I Aj with respect to the topology induced by the
strong product topology on

∏
j∈I Aj , because Uj is an open set in Aj for each

j ∈ I. We also have that 0 ∈ U , because 0 ∈ Uj for each j ∈ I.
Suppose that E is totally bounded with respect to the topology induced on∑

j∈I Aj by the strong product topology on
∏

j∈I Aj , as before. By definition,
this means that there are finitely many elements x(1), . . . , x(n) of

∑
j∈I Aj such

that

E ⊆
n∪

l=1

(x(l) + U).(6.29)

Of course, for each l = 1, . . . , n, xj(l) = 0 in Aj for all but finitely many j ∈ I,
by definition of the direct sum. This implies that

I0 = {j ∈ I : xj(l) ̸= 0 for some l = 1, . . . , n},(6.30)

is a finite subset of I. If we can verify that

IE ⊆ I0,(6.31)

then it follows that IE has only finitely many elements, as desired.
Let j ∈ IE be given, and let a(j) be the corresponding element of E men-

tioned earlier. Because of (6.29), there is an l ∈ {1, . . . , n} such that

a(j) ∈ x(l) + U.(6.32)

This implies that
aj(j) ∈ xj(l) + Uj ,(6.33)

by passing to the jth coordinate in Aj . If j ̸∈ I0, then xj(l) = 0, so that (6.33)
implies that aj(j) ∈ Uj . This contradicts the way that Uj was chosen when
j ∈ IE , so that j ∈ I0, as desired.

If I1 is any nonempty subset of I and A(I1) is as in (6.4) in Section 6.2, then
there is a natural one-to-one correspondence between A(I1) and

∏
j∈I1

Aj , as
before. This leads to a natural one-to-one correspondence between

A(I1) ∩
(∑

j∈I

Aj

)
(6.34)
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and
∑

j∈I1
Aj . More precisely, this correspondence is a group isomorphism, and

a homeomorphism with respect to the topologies induced by the corresponding
strong product topologies on

∏
j∈I Aj and

∏
j∈I1

Aj . If E is a subset of (6.34),
then we can identify E with a subset of

∑
j∈I1

Aj in this way. It follows that E is
totally bounded in (6.34) if and only if the corresponding subset of

∑
j∈I1

Aj is
totally bounded, using the topologies induced by the strong product topologies
on

∏
j∈I Aj and

∏
j∈I1

Aj again.

Suppose that I1 has only finitely many elements, so that A(I1) is contained
in

∑
j∈I Aj ,

∑
j∈I1

Aj is the same as
∏

j∈I1
Aj , and the product and strong

product topologies on
∏

j∈I1
Aj are the same. This permits us to reduce to

the characterization of totally bounded subsets of
∏

j∈I1
Aj with respect to the

product topology mentioned in Section 1.19. Combining this with the earlier
discussion, we get that a subset E of

∑
j∈I Aj is totally bounded with respect

to the topology induced by the strong product topology on
∏

j∈I Aj if and only
if IE is finite and the projection of E into Aj under the standard coordinate
projection is totally bounded in Aj for each j ∈ I. Of course, this condition on
the projections holds trivially when j ∈ I \ IE , in which case the projection of
E into Aj is contained in {0}.

Remember that compact subsets of commutative topological groups are au-
tomatically totally bounded, as in Section 1.19. If E ⊆

∑
j∈I Aj is compact with

respect to the topology induced by the strong product topology on
∏

j∈I Aj ,
then it follows that IE has only finitely many elements, as before. If I1 ⊆ I is
nonempty and finite, then the topologies induced on A(I1) by the product and
strong product topologies on

∏
j∈I Aj are the same, as usual. Thus compact

subsets of A(I1) with respect to the topology induced by the strong product
topology on

∏
j∈I Aj correspond to compact subsets of

∏
j∈I1

Aj with respect
to the product topology.

6.7 Bounded subsets

Let I be a nonempty set, and suppose that either Vj is a topological vector
space over the real numbers for each j ∈ I, or that Vj is a topological vector
spave over the complex numbers for each j ∈ I. Thus

∑
j∈I Vj is a topological

vector space over the real or complex numbers, as appropriate, with respect to
the topology induced by the corresponding strong product topology on

∏
j∈I Vj ,

as in Section 6.3. Let E be a subset of
∑

j∈I Vj , and put

IE = {j ∈ I : there is a v ∈ E such that vj ̸= 0},(6.35)

as in the previous section. If E is bounded in
∑

j∈I Vj , as in Section 1.17,
and with respect to the topology induced by the strong product topology on∏

j∈I Vj , then we would like to show that IE has only finitely many elements.
This includes the case of totally bounded subsets of

∑
j∈I Vj as a commutative

topological group with respect to addition and the same topology, as in Section
1.19.
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Suppose for the sake of a contradiction that IE has infinitely many elements,
and let {jl}∞l=1 be an infinite sequence of distinct elements of IE . Let l ∈ Z+ be
given, and let v(l) be an element of E such that vjl(l) ̸= 0 in Vjl . Let Ujl ⊆ Vjl
be an open set such that 0 ∈ Ujl and

vjl(l) ̸∈ l Ujl .(6.36)

We can also take Ujl to be balanced in Vjl , so that

vjl(l) ̸∈ t Ujl(6.37)

for every t ∈ R or C, as appropriate, such that |t| ≤ l. If j ∈ I and j ̸= jl for
every l ∈ Z+, then we take Uj = Vj .

Put
U =

(∑
j∈I

Vj

)
∩
(∏

j∈I

Uj

)
,(6.38)

where Uj ⊆ Vj is as in the previous paragraph for every j ∈ I. Thus U is an
open set in

∑
j∈I Vj with respect to the topology induced by the strong product

topology on
∏

j∈I Vj , because Uj is an open set in Vj for every j ∈ I. We also
have that 0 ∈ U , because 0 ∈ Uj for every j ∈ I, by construction. If we choose
Ujl to be balanced in Vjl for every l ∈ Z+, then Uj is balanced in Vj for every
j ∈ I, and hence U is balanced in

∑
j∈I Vj . Using (6.36), we get that

v(l) ̸∈ l U(6.39)

for each l ∈ Z+. If we take Ujl to be balanced in Vjl , then we have that

v(l) ̸∈ t U(6.40)

for every t ∈ R or C, as appropriate, such that |t| ≤ l. This implies that E
is not bounded in

∑
j∈I Vj with respect to the topology induced by the strong

product topology on
∏

j∈I Vj , as desired, because v(l) ∈ E for every l ∈ Z+, by
construction.

If I1 ⊆ I, then

V (I1) =

{
v ∈

∏
j∈I

Vj : vj = 0 for every j ∈ I \ I1
}

(6.41)

is a linear subspace of
∏

j∈I Vj , which corresponds to (6.4) in Section 6.2. If
I1 has only finitely many elements, then V (I1) is contained in

∑
j∈I Vj . As in

(6.27), we have that
E ⊆ V (IE)(6.42)

automatically, for any subset E of
∏

j∈I Vj . Of course, if E ⊆
∑

j∈I Vj is
bounded with respect to the topology induced by the strong product topology
on

∏
j∈I Vj , then E is bounded with respect to the topology induced by the

product topology on
∏

j∈I Vj . This implies that for each j ∈ I, the standard
coordinate projection onto Vj maps E to a bounded set. Conversely, suppose
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that E ⊆
∑

j∈I Vj has the property that IE has only finitely many elements,
and that for each j ∈ I, the standard coordinate projection onto Vj maps E
to a bounded set. Under these conditions, one can check that E is bounded in∑

j∈I Vj with respect to the topology induced by the strong product topology on∏
j∈I Vj . More precisely, the condition that IE be finite basically permits one to

reduce to finite products, for which the product and strong product topologies
are the same.

6.8 Semimetrics on products

Let I be a nonempty set, let Xj be a set for each j ∈ I, and let X =
∏

j∈I Xj

be the corresponding Cartesian product. Also let dj(xj , yj) be a semimetric on
Xj for each j ∈ I, and let aj be a positive real number for each j ∈ I. Put

d(x, y) = sup
j∈I

(aj dj(xj , yj))(6.43)

for every x, y ∈ X, where the supremum is defined as a nonnegative extended
real number. As usual, xj and yj are the jth components of x and y in Xj ,
respectively, for each j ∈ I. It is easy to see that (6.43) satisfies the requirements
of a semimetric on X, with suitable interpretations for nonnegative extended
real numbers. Otherwise, one can consider

d′(x, y) = min(d(x, y), t)(6.44)

for any positive real number t, as in Section 1.4. This is finite by construction,
and defines a semimetric on X.

Let BXj (xj , rj) be the closed ball in Xj centered at xj ∈ Xj with radius

rj ≥ 0 with respect to dj , as in (1.24) in Section 1.2. Similarly, let BX(x, r)
be the closed ball in X centered at x ∈ X with radius r ≥ 0 with respect to d
in (6.43), which can be defined in the usual way, even if d may not be quite a
semimetric in the normal sense. Observe that

BX(x, r) =
∏
j∈I

BXj
(xj , r/aj)(6.45)

for every x ∈ X and r ≥ 0. Suppose for the moment that Xj is equipped with
a topology for each j ∈ I, and that dj is semicompatible with this topology for
every j ∈ I, as in Section 5.6. This means that closed balls in Xj with respect
to dj are closed sets for each j ∈ I. It follows that (6.45) is a closed set in X
with respect to the corresponding product topology for every x ∈ X and r ≥ 0.
Thus d is semicompatible with the product topology on X in the same sense
under these conditions.

Let BXj (xj , rj) be the open ball in Xj centered at xj ∈ Xj with radius
rj > 0 with respect to dj , as in (1.23) in Section 1.2. As before, the open ball
BX(x, r) in X centered at x ∈ X with radius r > 0 with respect to d can be
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defined in the same way, even if d may not be quite a semimetric on X. One
can check that

BX(x, r) =
∪

0<t<1

(∏
j∈I

BXj
(xj , t r/aj)

)
(6.46)

for every x ∈ X and r > 0, where more precisely the union is taken over all t ∈ R
such that 0 < t < 1. Suppose for the moment again that Xj is equipped with
a topology for each j ∈ I, and now that dj is compatible with this topology
for every j ∈ I, as in Section 2.16. This implies that open balls in Xj with
respect to dj are open sets for each j ∈ I. In this case, (6.46) is an open set in
X with respect to the corresponding strong product topology for every x ∈ X
and r > 0. This basically means that d is compatible with the strong product
topology on X in the same sense, even if d may not be quite a semimetric on
X.

Let Mj be a nonempty collection of semimetrics on Xj for each j ∈ I. Thus
Mj determines a topology on Xj for each j ∈ I, as in Section 1.3. If Bj is an
open ball in Xj with respect to an element of Mj for each j ∈ I, then∏

j∈I

Bj(6.47)

is an open set in X with respect to the corresponding strong product topology.
Let us also ask that open balls in Xj with respect to elements of Mj form a base
for this topology for each j ∈ I, instead of only a sub-base. This can be arranged
by including in Mj the maximum of any finite collection of its elements. Under
these conditions, the collection of subsets of X of the form (6.47) as before is a
base for the strong product topology on X. Similarly, if dj ∈ Mj , xj ∈ Xj , and
aj > 0 are given for each j ∈ I, then (6.46) is an open set in X with respect to
the strong product topology for every r > 0. The collection of subsets of X of
this form is a base for the strong product topology on X too in this situation.

6.9 Semimetrics on sums

Let I be a nonempty set, and let Aj be a commutative group for each j ∈ I.
If dj is a semimetric on Aj and aj is a positive real number for each j ∈ I,
then we can defined d on

∏
j∈I Aj as in (6.43). Note that d is invariant under

translations on
∏

j∈I Aj when dj is invariant under translations on Aj for each
j ∈ I. If x, y are elements of

∑
j∈I Aj , then xj = yj = 0 in Aj for all but

finitely many j ∈ I, so that dj(xj , yj) = 0 for all but finitely many j ∈ I, and
(6.43) reduces to

d(x, y) = max
j∈I

(aj dj(xj , yj)).(6.48)

In particular, (6.48) is finite, and defines a semimetric on
∑

j∈I Aj .

Let BAj
(xj , rj) be the open ball in Aj centered at xj ∈ Aj with radius rj > 0

with respect to dj for each j ∈ I, and let B(x, r) be the open ball in
∑

j∈I Aj
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centered at x ∈
∑

j∈I Aj with radius r > 0 with respect to (6.48). Observe that

B(x, r) =
(∑

j∈I

Aj

)
∩
(∏

j∈I

BAj
(xj , r/aj)

)
(6.49)

for every x ∈
∑

j∈I Aj and r > 0. Equivalently, B(x, r) is the same as the
intersection of

∑
j∈I Aj with the open ball in

∏
j∈I Aj centered at x with radius

r with respect to (6.43). Thus (6.49) is a simpler version of (6.46) in this
situation. Suppose for the moment that Aj is equipped with a topology for
each j ∈ I, and that dj is compatible with this topology for every j ∈ I.
This means that open balls in Aj with respect to dj are open sets for each
j ∈ I, so that (6.49) is an open set in

∑
j∈I Aj with respect to the topology

induced by the corresponding strong product topology on
∏

j∈I Aj . Hence (6.48)
is compatible with the topology induced on

∑
j∈I Aj by the strong product

topology on
∏

j∈I Aj under these conditions.

Let Mj be a nonempty collection of semimetrics on Aj for each j ∈ I, which
leads to a topology on Aj in the usual way. If dj ∈ Mj , xj ∈ Aj , and aj > 0 are
given for each j ∈ I, then (6.49) is an open set in

∑
j∈I Aj with respect to the

topology induced by the corresponding strong product topology on
∏

j∈I Aj for
each r > 0. As before, let us also ask that for each j ∈ I, the collection of open
balls in Aj associated to elements of Mj form a base for this topology on Aj .
In this case, the collection of subsets of

∑
j∈I Aj corresponding to dj ∈ Mj for

each j ∈ I is a base for the topology induced on
∑

j∈I Aj by the strong product
topology on

∏
j∈I Aj . This uses the analogous statements for the strong product

topology on
∏

j∈I Aj mentioned in the previous section. If the elements of Mj

are invariant under translations on Aj , then it suffices to ask that the open balls
in Aj centered at 0 with respect to elements of Mj form a local base for this
topology on Aj at 0. If this holds for every j ∈ I, then one can simply say that
the collection of subsets of

∑
j∈I Aj for the form (6.49) with x = 0 and dj ∈ Mj

for each j ∈ I is a local base for the topology induced on
∑

j∈I Aj by the strong
product topology on

∏
j∈I Aj at 0.

Let M be the collection of semimetrics on
∑

j∈I Aj of the form (6.48) with
dj ∈ Mj and aj > 0 for every j ∈ I. It follows from the remarks in the preceding
paragraph that the topology determined on

∑
j∈I Aj by M is the same as the

topology induced on
∑

j∈I Aj by the strong product topology on
∏

j∈I Aj .

6.10 Seminorms on sums

Let I be a nonempty set, and suppose that either Vj is a vector space over
the real numbers for each j ∈ I, or that Vj is a vector space over the com-
plex numbers for each j ∈ I. Thus

∏
j∈I Vj is a vector space over the real or

complex numbers, as appropriate, with respect to coordinatewise addition and
scalar multiplication, and

∑
j∈I Vj is a linear subspace of

∏
j∈I Vj . Let Nj be

a seminorm on Vj for each j ∈ I, and let aj be a positive real number for each
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j ∈ I. Put
N(v) = sup

j∈I
(aj Nj(vj))(6.50)

for every v ∈
∏

j∈I Vj , where the supremum is defined as a nonnegative extended
real number. As usual, vj denotes the jth coordinate of v in Vj for each j ∈ I.
It is easy to see that N satisfies many of the properties of a seminorm on∏

j∈I Vj , as in Section 1.5. More precisely, N(0) = 0, and N satisfies the triangle
inequality (1.43), with suitable interpretations for nonnegative extended real
numbers. Similarly, N satisfies the homogeneity property (1.42) when t ̸= 0,
with suitable interpretations for nonnegative extended real numbers.

If v ∈
∑

j∈I Aj , then vj = 0 for all but finitely many j ∈ I, so thatNj(vj) = 0
for all but finitely many j ∈ I. In this case, (6.50) is finite, and it reduces to

N(v) = max
j∈I

(aj Nj(vj)).(6.51)

This defines a seminorm on
∑

j∈I Vj , with no additional qualifications.
As usual,

dj(vj − wj) = Nj(vj − wj)(6.52)

defines a translation-invariant semimetric on Vj for each j ∈ I. Similarly, put

d(v − w) = N(v − w)(6.53)

for every v, w ∈
∏

j∈I Vj , where N is as in (6.50). This corresponds to the
dj ’s as in (6.43) in Section 6.8. If v, w ∈

∑
j∈I Vj , then v − w ∈

∑
j∈I Vj , and

N(v − w) can be given as in (6.51). In this case, (6.53) corresponds to the dj ’s
as in (6.48).

Let Nj be a nonempty collection of seminorms on Vj for each j ∈ I, which
leads to a topology on Vj in the usual way. As before, we ask that for each
j ∈ I, the collection of open balls in Vj associated to elements of Nj form a base
for this topology on Vj . This is the same as saying that the open balls in Vj
associated to elements of Nj centered at 0 form a local base for this topology
on Vj at 0, by invariance under translations. This can be arranged by including
maxima of finite collections of elements of Nj in Nj for each j ∈ I. Let N be the
collection of seminorms on

∑
j∈I Vj of the form (6.51) with Nj ∈ Nj and aj > 0

for every j ∈ I. One can check that the topology determined on
∑

j∈I Vj by N
is the same as the topology induced on

∑
j∈I Vj by the strong product topology

on
∏

j∈I Vj , using the topology determined on Vj by Nj for each j ∈ I. This
follows from the analogous statement for collections of semimetrics mentioned
in the previous section, using the correspondence between these seminorms and
semimetrics, as in the preceding paragraph.

6.11 Sums of seminorms

Let I be a nonempty set, and suppose again that either Vj is a vector space over
the real numbers for every j ∈ I, or that Vj is a complex vector space for every
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j ∈ I. Also let Nj be a seminorm on Vj for each j ∈ I, and let aj be a positive
real number for each j ∈ I. Put

Ñ(v) =
∑
j∈I

aj Nj(vj)(6.54)

for every v ∈
∏

j∈I Vj , where the sum is defined as a nonnegative extended
real number as in Section 2.1. As in the previous section, this satisfies many
of the same properties as a seminorm on

∏
j∈I Vj . Namely, Ñ(0) = 0, and

Ñ satisfies the triangle inequality, with suitable interpretations for nonnegative
extended real numbers. The usual homogeneity condition also holds for nonzero
scalars, with suitable interpretations for nonnegative extended real numbers. If
v ∈

∑
j∈I Vj , then the right side of (6.54) reduces to a finite sum, and in

particular the sum is finite. The restriction of Ñ to
∑

j∈I Vj defines a seminorm
on

∑
j∈I Vj in the usual sense.

If N is as in (6.50), then

N(v) ≤ Ñ(v)(6.55)

for every v ∈
∏

j∈I Vj . Suppose for the moment that I has only finitely or
countably many elements. Let bj be a positive real number for each j ∈ I, and
suppose that ∑

j∈I

1/bj <∞.(6.56)

This condition holds automatically when I is finite, and it corresponds to the
convergence of an infinite series when I is countably infinite. Observe that

Ñ(v) =
∑
j∈I

(1/bj) (aj bj Nj(vj)) ≤
(∑

j∈I

1/bj

)
sup
j∈I

(aj bj Nj(vj))(6.57)

for every v ∈
∏

j∈I Vj .
Let Nj be a nonempty collection of seminorms on Vj for each j ∈ I. As in

the previous section, let N be the collection of seminorms on
∑

j∈I Vj of the

form (6.51), where Nj ∈ Nj and aj > 0 for each j ∈ I. Similarly, let Ñ be
the collection of seminorms on

∑
j∈I Vj of the form (6.54), where Nj ∈ Nj and

aj > 0 for every j ∈ I. The topology determined on
∑

j∈I Vj by Ñ is always at
least as strong as the topology determined on

∑
j∈I Vj by N , because of (6.55).

If I has only finitely or countably many elements, then these two topologies on∑
j∈I Vj are the same, because of (6.57).
Let Vj be equipped with the topology determined by Nj for each j ∈ I.

Suppose that for each j ∈ I, the open balls in Vj centered at 0 with respect to
elements of Nj form a local base for this topology on Vj at 0, as in the previous
section. Let λj be a continuous linear functional on Vj for each j ∈ I. Under
these conditions, for each j ∈ I there is an Nj ∈ Nj and a positive real number
aj such that

|λj(vj)| ≤ aj Nj(vj)(6.58)
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for every vj ∈ Vj . This corresponds to (1.79) in Section 1.10 with l = 1, which
can be obtained in the same way as before, using the additional hypothesis on
Nj . Put

λ(v) =
∑
j∈I

λj(vj)(6.59)

for every v ∈
∑

j∈I Vj , where the sum on the right reduces to a finite sum in R
or C, as appropriate. This defines a linear functional on

∑
j∈I Vj , as in Section

6.5. Using (6.58) and (6.59), we get that

|λ(v)| ≤
∑
j∈I

|λj(vj)| ≤
∑
j∈I

aj Nj(vj)(6.60)

for every v ∈
∑

j∈I Vj . Of course, the right side is the same as (6.54), with

these aj ’s and Nj ’s. Thus the right side is an element of Ñ . This implies that

λ is continuous with respect to the topology determined on
∑

j∈I Vj by Ñ , as
in Section 1.10 again. If I has only finitely or countably many elements, then
we can choose positive real numbers bj for each j ∈ I so that (6.56) holds. In
this case, we can combine (6.57) and (6.60) to get that

|λ(v)| ≤
(∑

j∈I

1/bj

)
max
j∈I

(aj bj Nj(vj))(6.61)

for every v ∈
∑

j∈I Vj . Note that we can replace the supremum on the right side
of (6.57) with the maximum here because v ∈

∑
j∈I Vj . As before, the second

factor on the right side is an element of N . This shows more directly that λ is
continuous with respect to the topology determined on

∑
j∈I Vj by N when I

has only finitely or countably many elements.

6.12 Supremum semimetrics and seminorms

Let X be a set. If E is a nonempty subset of X, then put

NE(f) = sup
x∈E

|f(x)|(6.62)

for every complex-valued function f on X, where the supremum is defined as
a nonnegative extended real number. Let B be a nonempty set, let Eβ be a
nonempty subset of X for each β ∈ B, and put

E =
∪
β∈B

Eβ .(6.63)

Under these conditions, we have that

NE(f) = sup
β∈B

NEβ
(f)(6.64)
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for every complex-valued function f on X. Thus

NE(f − g) = sup
β∈B

NEβ
(f − g)(6.65)

for all complex-valued functions f , g on X.
Let A be a commutative group, with the group operations expressed addi-

tively. Also let a1, . . . , al be finitely many elements of A, and put

a = a1 + · · ·+ al.(6.66)

Suppose that ϕ, ψ are homomorphisms from A into T, so that

ϕ(a) =

l∏
j=1

ϕ(aj), ψ(a) =

l∏
j=1

ψ(aj).(6.67)

Observe that

ϕ(a)− ψ(a) =

l∑
j=1

ϕ(a1) · · ·ϕ(aj−1) (ϕ(aj)− ψ(aj))ψ(aj+1) · · ·ψ(al),(6.68)

and hence

|ϕ(a)− ψ(a)| ≤
l∑

j=1

|ϕ(aj)− ψ(aj)|.(6.69)

Let E1, . . . , El be finitely many nonempty subsets of A, and put

E = E1 + · · ·+ El.(6.70)

Using (6.69), we get that

NE(ϕ− ψ) ≤
l∑

j=1

NEj (ϕ− ψ),(6.71)

where NEj
, NE are as in (6.62). If 0 ∈ Ej for each j = 1, . . . , l, then Ej ⊆ E

for each j, and
max
1≤j≤l

NEj
(f) ≤ NE(f)(6.72)

for every complex-valued function f on A.
Let V be a vector space over the real or complex numbers. Also let E be a

nonempty subset of V , let NE be as in (6.62), and let λ be a linear functional
on V . If t ∈ R or C, as appropriate, and t ̸= 0, then

Nt E(λ) = sup
v∈E

|λ(t v)| = sup
v∈E

(|t| |λ(v)|) = |t|NE(λ).(6.73)

This works when t = 0 and NE(λ) <∞ too. Put

Ẽ =
∪
|t|≤1

t E,(6.74)
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as in (1.56) in Section 1.6. Thus Ẽ is a balanced set in V that contains E. It is
easy to see that

N
Ẽ
(λ) = NE(λ),(6.75)

as in (6.73).

Let E1, . . . , El be finitely many nonempty subsets of V , and let E be as
in (6.70). If v ∈ E, then there are vj ∈ Ej for each j = 1, . . . , l such that

v =
∑l

j=1 vj . If λ is a linear functional on V , then we have that

|λ(v)| =
∣∣∣∣ l∑
j=1

λ(vj)

∣∣∣∣ ≤ l∑
j=1

|λ(vj)|,(6.76)

and thus

NE(λ) ≤
l∑

j=1

NEj
(λ).(6.77)

Suppose now that E1, . . . , El are balanced subsets of V , and let vj ∈ Ej be
given for each j = 1, . . . , l. Also let λ be a linear functional on V , and choose
t1, . . . , tl ∈ R or C, as appropriate, so that |tj | = 1 and

tj λ(vj) = |λ(vj)|(6.78)

for each j = 1, . . . , l. If we put w =
∑l

j=1 tj vj , then we get that

λ(w) =

l∑
j=1

tj λ(vj) =

l∑
j=1

|λ(vj)|.(6.79)

Note that tj vj ∈ Ej for each j, because Ej is balanced, so that w ∈ E. This
implies that

l∑
j=1

|λ(vj)| ≤ NE(λ).(6.80)

Taking the supremum over vj ∈ Ej , we get that

l∑
j=1

NEj
(λ) ≤ NE(λ).(6.81)

It follows that

NE(λ) =

l∑
j=1

NEj (λ)(6.82)

under these conditions, by combining (6.77) and (6.81).
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6.13 Countable sums

Let A1, A2, A3, . . . be an infinite sequence of commutative topological groups,
with the group operations expressed additively. Thus the direct sum

∑∞
j=1Aj

is also a commutative topological group, with respect to the topology induced
by the strong product topology on

∏∞
j=1Aj . Let A(n) be as in (6.10) in Section

6.4 for each positive integer n, so that
∑∞

j=1Aj is equal to
∪∞

n=1A(n), as in

(6.12). Remember that A(n) is a closed set in
∏∞

j=1Aj with respect to the
product topology for each n, and that there is a natural isomorphism between
A(n) and

∏n
j=1Aj . The topologies induced on A(n) by the product and strong

product topologies on
∏∞

j=1Aj are the same for each n, and correspond to the

product topology on
∏n

j=1Aj .
Suppose for the moment that for each j ∈ Z+, the topology on Aj is deter-

mined by a metric. This implies that for each n ∈ Z+, the product topology
on

∏n
j=1Aj is determined by a metric. It follows that the topology induced on

A(n) by the product and strong product topologies on
∏∞

j=1Aj is determined
by a metric for each n ∈ Z+. Hence relatively open sets in A(n) are Fσ sets with
respect to this topology for each n ∈ Z+. More precisely, relatively open sets
in A(n) are Fσ sets with respect to the product topology on

∏∞
j=1Aj , because

A(n) is a closed set with respect to the product topology on
∏∞

j=1Aj . Let U

be an open set in
∑∞

j=1Aj with respect to the topology induced by the strong

product topology on
∏∞

j=1Aj . Thus U ∩ A(n) is a relatively open set in A(n)

with respect to the topology induced by the strong product topology on
∏∞

j=1Aj

for each n ∈ Z+. This implies that U ∩ A(n) is an Fσ set with respect to the
product topology on

∏∞
j=1Aj for each n ∈ Z+, as before. It follows that U is

an Fσ set with respect to the product topology on
∏∞

j=1Aj . In particular, this

shows that
∑∞

j=1Aj satisfies (2.30) in Section 2.3 with respect to the topology

induced by the strong product topology on
∏∞

j=1Aj under these conditions.

Similarly, if Aj is σ-compact for each j, then it is easy to see that
∏n

j=1Aj

is σ-compact with respect to the corresponding product topology for each n.
This implies that A(n) is σ-compact with respect to the product topology on∏∞

j=1Aj for each n. It follows that
∑∞

j=1Aj is σ-compact with respect to the

product topology on
∏∞

j=1Aj in this case.
Conditions like these can be helpful in dealing with suitable Borel measures

on
∑∞

j=1Aj . One can also look at properties of Borel measures on
∑∞

j=1Aj in
terms of their behavior on A(n) for each n ∈ Z+.



Chapter 7

Some additional topics

7.1 Topological dimension 0

Let X be a topological space, and let x be an element of X. We say that X has
topological dimension 0 at x if for every open set W ⊆ X with x ∈ W there is
an open set U ⊆ X such that x ∈ U , U ⊆ W , and U is also a closed set in X.
Equivalently, this means that

{U ⊆ X : x ∈ U, U is both open and closed in X}(7.1)

is a local base for the topology ofX at x. In order to check thatX has topological
dimension 0 at x, it suffices to show that there is a local base for the topology of
X at x consisting of subsets of X that are both open and closed. More precisely,
it is enough to show that there is a sub-base for the local topology of X at x
consisting of subsets of X that are both open and closed.

If X has topological dimension 0 at every x ∈ X, then X is said to have
topological dimension 0 as a topological space. Sometimes X is required to be
nonempty as well. Equivalently, X has topological dimension 0 when

{U ⊆ X : U is both open and closed in X}(7.2)

is a base for the topology of X. If there is a base for the topology of X consisting
of subsets of X that are both open and closed, then (7.2) is a base for the
topology of X. Similarly, if there is a sub-base for the topology of X consisting
of subsets of X that are both open and closed, then (7.2) is a base for the
topology of X.

Note that X has topological dimension 0 at a point x ∈ X if and only if
for every closed set E ⊆ X with x ̸∈ E there is an open set U ⊆ X such that
x ∈ U , E ∩ U = ∅, and U is a closed set in X. Here E corresponds to the
complement of W in the previous formulation. Alternatively, one can say that
there are disjoint open sets U, V ⊆ X such that x ∈ U , E ⊆ V , and U ∩V = X.
This is the same as asking that there be an open set V ⊆ X such that E ⊆ V ,
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x ̸∈ V , and V is closed in X. Thus X has topological dimension 0 when any of
these reformulations holds for every x ∈ X.

We say that X is totally separated if for every x, y ∈ X with x ̸= y there
is an open set U ⊆ X such that x ∈ U , y ̸∈ U , and U is also a closed set
in X. This is the same as saying that there are disjoint open sets U, V ⊆ X
such that x ∈ U , y ∈ V , and U ∪ V = X, which is more clearly symmetric in
x and y. Note that totally separated spaces are Hausdorff in particular. If X
has topological dimension 0, then X is obviously regular as a topological space
in the strict sense. If X has topological dimension 0 and X satisfies the first
separation condition, then it is easy to see that X is totally separated.

If X has topological dimension 0 at x, Y ⊆ X, and x ∈ Y , then Y has
topological dimension 0 at x as well, with respect to the induced topology. This
uses the fact that if U ⊆ X is both open and closed, then U∩Y is both relatively
open and relatively closed in Y . If X has topological dimension 0 and Y ⊆ X,
then Y has topological dimension 0 with respect to the induced topology, at
least if Y ̸= ∅ when that is included in the definition. If X is totally separated
and Y ⊆ X, then Y is totally separated with respect to the induced topology.

Remember that X is said to be totally disconnected if X does not contain
any connected subsets with at least two elements. If X is totally separated, and
X has at least two elements, then X is not connected. If X is totally separated,
Y ⊆ X, and Y has at least two elements, then Y is not connected, because Y
is totally separated with respect to the induced topology. It follows that totally
separated spaces are totally disconnected. If X is locally compact, Hausdorff,
and totally disconnected, then is it well known that X has topological dimension
0.

Suppose that X is totally separated, x ∈ X, K ⊆ X is compact, and x ̸∈ K.
If y ∈ K, then x ̸= y, and so there is an open set V (y) ⊆ X such that y ∈ V (y),
x ̸∈ V (y), and V (y) is a closed set in X. Using compactness, one can cover K
by finitely many V (y)’s, to get an open set V ⊆ X such that K ⊆ V , x ̸∈ V , and
V is a closed set in X. If X is compact, then one can use this to get that X has
topological dimension 0, because closed subsets of X are compact. Similarly, if
X is locally compact, then one can show that X has topological dimension 0.

Let A be a commutative topological group. If A has topological dimension 0
at 0, then A has topological dimension 0, because translations on A are home-
omorphisms. Similarly, in order to check that A is totally separated, it suffices
to verify that for each y ∈ A with y ̸= 0, there is an open set U ⊆ A such that
0 ∈ U , y ̸∈ U , and U is a closed set in A.

7.2 Semi-ultrametrics

Let X be a set. A semimetric d(x, y) on X is said to be a semi-ultrametric on
X if

d(x, z) ≤ max(d(x, y), d(y, z))(7.3)

for every x, y, z ∈ X. Note that (7.3) implies the ordinary triangle inequality
for semimetrics. Similarly, a metric d(x, y) on X is said to be an ultrametric if
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it satisfies (7.3). It is easy to see that the discrete metric on X is an ultrametric
on X.

Let d(x, y) be a semi-ultrametric on X, and let r be a nonnegative real
number. If x, y ∈ X satisfy d(x, y) ≤ r, then it is easy to see that

Bd(x, r) ⊆ Bd(y, r),(7.4)

where these closed balls are defined as in (1.24) in Section 1.2. This implies that

Bd(x, r) = Bd(y, r)(7.5)

under these conditions, by interchanging the roles of x and y. In particular, it
follows that closed balls in X with respect to d of positive radius are open sets
with respect to the usual topology determined by d. This implies that X has
topological dimension 0 with respect to this topology.

Similarly, if x, y ∈ X satisfy d(x, y) < r, then

Bd(x, r) ⊆ Bd(y, r),(7.6)

where these open balls are defined as in (1.23) in Section 1.2. Hence

Bd(x, r) = Bd(y, r),(7.7)

by interchanging the roles of x and y again. One can use this to show that
open balls in X with respect to d are closed sets with respect to the topology
determined by d, by verifying that open balls contain all of their limit points.
Alternatively, one can check that complements of open balls in X with respect
to d are open sets. It follows that X has topological dimension 0 with respect
to this topology, as before.

Now let M be a nonempty collection of semi-ultrametrics on X. Consider
the topology determined on X by M, as in Section 1.3. It is easy to see that
X has topological dimension 0 with respect to this topology, using the remarks
in the previous paragraphs.

If M has only finitely or countably many elements, then the arguments in
Sections 1.3 and 1.4 lead to a single semi-ultrametric on X that determines
the same topology on X. More precisely, if d1, . . . , dl are finitely many semi-
ultrametrics on X, then one can check that their maximum is a semi-ultrametric
on X as well. If d is any semi-ultrametric on X and t is a positive real number,
then the minimum of d and t defines a semi-ultrametric on X too. Similarly,
if d1, d2, d3, . . . is an infinite sequence of semi-ultrametrics on X, then (1.38) in
Section 1.4 defines a semi-ultrametric on X.

Let A be a commutative group, with the group operations expressed addi-
tively, and let d(x, y) be a semi-ultrametric on A that is invariant under trans-
lations on A. Observe that

d(x0 + y0, x+ y) ≤ max(d(x0 + y0, x+ y0), d(x+ y0, x+ y))(7.8)

= max(d(x0, x), d(y0, y))
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for every x0, x, y0, y ∈ A under these conditions. Hence

Bd(x0, r) +Bd(y0, r) ⊆ Bd(x0 + y0, r)(7.9)

for every x0, y0 ∈ A and r > 0, and

Bd(x0, r) +Bd(y0, r) ⊆ Bd(x0 + y0, r)(7.10)

for every r > 0. Remember that d(x, y) is invariant under x 7→ −x on A, as in
(1.27) in Section 1.2. It follows that Bd(0, r) is a subgroup of A for every r > 0,
and that Bd(0, r) is a subgroup of A for every r ≥ 0.

Let B be a subgroup of A, and let A/B be the corresponding quotient group.
Also let q be the associated quotient homomorphism from A onto A/B, and let
dA/B be the discrete metric on A/B. Observe that

dA/B(q(x), q(y))(7.11)

defines a translation-invariant semi-ultrametric on A. The open ball in A with
respect to (7.11) centered at 0 with radius r > 0 is equal to B when r ≤ 1, and
is equal to A when r > 1. Similarly, the closed ball in A with respect to (7.11)
centered at 0 with radius r ≥ 0 is equal to B when r < 1, and to A when r > 1.

7.3 Uniformly separated sets

Let A be a commutative topological group, in which the group operations are
expressed additively. Let us say that E1, E2 ⊆ A are uniformly separated in A
if there is an open set U ⊆ A such that 0 ∈ U and

(E1 + U) ∩ E2 = ∅.(7.12)

In this case, we may also say that E1 and E2 are U -separated in A. Note that
(7.12) holds if and only if

E1 ∩ (E2 − U) = ∅.(7.13)

This implies that the property of being uniformly separated in A is symmetric
in E1 and E2.

A subset B of A is said to be symmetric about 0 in A if

−B = B.(7.14)

If U ⊆ A is an open set that contains 0, then U ∩ (−U) is an open set that
contains 0, is symmetric about 0, and is contained in U . Thus we may restrict
our attention here to open sets U ⊆ A that contain 0 and are symmetric about
0 in the preceding paragraph. In this case, (7.12) is equivalent to (7.13), so that
(7.12) is symmetric in E1 and E2.

Let d(x, y) be a translation-invariant semimetric on A, and let ϵ be a positive
real number. Let us say that E1, E2 ⊆ A are ϵ-separated with respect to d if

d(x, y) ≥ ϵ(7.15)
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for every x ∈ E1 and y ∈ E2. It is easy to see that this happens if and only if
(7.12) holds with U = Bd(0, ϵ). Note that Bd(0, ϵ) is symmetric about 0 in A,
by (1.27) in Section 1.2. If d is compatible with the given topology on A, as in
Section 2.16, then it follows that E1 and E2 are uniformly separated in A.

Suppose for the moment that the topology on A is determined by a nonde-
generate collection M of translation-invariant semimetrics on A. Every element
of M is compatible with the topology on A, so that the remarks in the previous
paragraph can be applied. Similarly, if d1, . . . , dl are finitely many elements of
M, then their maximum d is a translation-invariant semimetric on A that is
compatible with the topology on A. If E1, E2 ⊆ A are ϵ-separated with respect
to d for some ϵ > 0, then it follows that E1 and E2 are uniformly separated in
A, as before.

Conversely, suppose that E1, E2 ⊆ A are uniformly separated in A. Thus
there is an open set U ⊆ A such that 0 ∈ U and (7.12) holds. Because the
topology on A is determined by M, there are finitely many elements d1, . . . , dl
of M and a positive real number ϵ such that

l∩
j=1

Bdj
(0, ϵ) ⊆ U,(7.16)

as in (1.30) in Section 1.3. Let d be the maximum of d1, . . . , dl again, so that

Bd(0, ϵ) ⊆ U,(7.17)

by (7.16) and (1.33) in Section 1.3. This implies that (7.15) holds for every
x ∈ E1 and y ∈ E2, as before, so that E1 and E2 are ϵ-separated with respect
to d.

Suppose that E1, E2 ⊆ A are uniformly separated in A, so that there is an
open set U ⊆ A that contains 0 and satisfies (7.12). Using the continuity of the
group operations at 0 on A, we get that there is an open set U0 ⊆ A such that
0 ∈ U0 and

U0 + U0 − U0 ⊆ U.(7.18)

Combining this with (7.12), we obtain that

(E1 + U0 + U0 − U0) ∩ E2 = ∅.(7.19)

Equivalently, this means that

(E1 + U0 + U0) ⊆ (E2 + U0) = ∅.(7.20)

Remember that the closures E1, E2 of E1, E2 in A are contained in E1 + U0,
E2 + U0, respectively, as in (1.7) in Section 1.1. Thus (7.20) implies that

(E1 + U0) ∩ E2 = ∅.(7.21)

In particular, this means that E1, E2 are uniformly separated in A.
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Suppose that K ⊆ A is compact, E ⊆ A is a closed set, and K ∩ E = ∅.
Thus W = A \ E is an open set that contains K. As in (1.13) in Section 1.1,
there is an open set U ⊆ A such that 0 ∈ U and K + U ⊆W . It follows that

(K + U) ∩ E = ∅,(7.22)

so that K and E are uniformly separated in A.
Suppose that E ⊆ A is uniformly separated from A \ E in A. This means

that there is an open set U ⊆ A such that 0 ∈ U and

(E + U) ∩ (A \ E) = ∅,(7.23)

so that

E + U ⊆ E.(7.24)

It follows that

E = E + U(7.25)

in this situation, because E ⊆ E + U when 0 ∈ U . In particular, this implies
that E is both open and closed in A. If K ⊆ A is compact and open, then K is
uniformly separated from its complement in A, as in the preceding paragraph.

Suppose that E ⊆ A is uniformly separated from its complement in A again,
and let U be as in the previous paragraph. As before, we may also take U to be
symmetric about 0 in A. Put U1 = U , and define Uj recursively for j ∈ Z+ by

Uj+1 = Uj + U.(7.26)

Using (7.24), we get that

E + Uj ⊆ E(7.27)

for each j ∈ Z+. If we put

B =

∞∪
j=1

Uj ,(7.28)

then we obtain that

E +B ⊆ E,(7.29)

by (7.27). More precisely,

E = E +B,(7.30)

because 0 ∈ B. We also have that B is an open subgroup of A under these
conditions, as in Section 2.7.

Of course, if B is any subgroup of A, then

B +B = B.(7.31)

If B is an open subgroup of A, then it follows that B is uniformly separated
from its complement in A.
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7.4 Compact and open subgroups

Let A be a commutative topological group, where the group operations are
expressed additively, and let B be an open subgroup of A. In this case, B is a
closed set in A too, as in Section 2.7. Let A/B be the corresponding quotient
group, and let q be the associated quotient homomorphism from A onto A/B,
whose kernel is equal to B. Of course, A/B is a commutative topological group
with respect to the discrete topology. It is easy to see that q is continuous with
respect to the discrete topology on A/B, because B is an open set in A.

Remember that Â denotes the dual group associated to A as in Section
1.11, which consists of all continuous group homomorphisms from A into T.
Of course, every homomorphism from A/B into any commutative topological
group is continuous, because A/B is equipped with the discrete topology. Thus

the dual group ̂(A/B) associated to A/B consists of all group homomorphisms
from A/B into T. The quotient homomorphism q leads to a dual homomor-

phism q̂ from ̂(A/B) into Â, as in Section 1.12. More precisely, if ψ is a group
homomorphism from A/B into T, then

q̂(ψ) = ψ ◦ q,(7.32)

as in (1.113).
If ψ is any group homomorphism from A/B into T, then ψ ◦ q is a group

homomorphism from A into T whose kernel contains B. Conversely, if ϕ is a
group homomorphism from A into T whose kernel contains B, then ϕ can be
expressed as ψ ◦ q for some group homomorphism ψ from A/B into T. Note
that the condition that the kernel of ϕ contain B implies that ϕ is continuous
on A, because B is an open subgroup of A. It is easy to see that q̂ is injective,
because q is surjective, by construction.

Remember that q̂ is continuous with respect to the usual dual topologies on

Â and ̂(A/B), as in Section 1.12. In this case, ̂(A/B) is compact with respect
to its dual topology, because A/B is equipped with the discrete topology. Thus

q̂ maps ̂(A/B) onto a compact subgroup of Â, with respect to the dual topology

on Â.
Let C be a subgroup of A, and let ϕ be a group homomorphism from A into

T such that

Reϕ(x) > 0(7.33)

for every x ∈ C. Equivalently, this means that ϕ(C) is contained in

{z ∈ T : Re z > 0}.(7.34)

However, {1} is the only subgroup of T contained in (7.34), as mentioned in
Section 1.11. It follows that ϕ(x) = 1 for every x ∈ C under these conditions,
because ϕ(C) is a subgroup of T. Note that (7.33) holds when

|ϕ(x)− 1| < 1(7.35)
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for every x ∈ C.
In particular, if

sup
x∈C

|ϕ(x)− 1| < 1,(7.36)

then (7.35) and hence (7.33) hold for every x ∈ C. If C is any nonempty
compact subset of A, then{

ϕ ∈ Â : sup
x∈C

|ϕ(x)− 1| < 1

}
(7.37)

is an open set in Â with respect to the dual topology defined in Section 1.12. If
C is a subgroup of A, then (7.37) is the same as

{ϕ ∈ Â : ϕ(x) = 1 for every x ∈ C},(7.38)

by the earlier remarks. Of course, (7.38) is automatically a subgroup of Â.
Let C be a subgroup of A again, equipped with the topology induced by

the topology on A, and let h be the inclusion mapping from C into A, so that
h(x) = x for every x ∈ C. Thus C may be considered as a commutative
topological group as well, and h is a continuous group homomorphism from C
into A. This leads to a dual homomorphism ĥ from Â into Ĉ, as before. If
ϕ ∈ Â, then

ĥ(ϕ) = ϕ ◦ h(7.39)

is the same as the restriction of ϕ to C. Note that the kernel of ĥ is equal to
(7.38).

If C is a compact subgroup of A, then (7.38) is an open subgroup of Â with
respect to the dual topology, as before. Alternatively, we have seen that the dual
topology on Ĉ is the same as the discrete topology when C is compact. We also
have that ĥ is continuous with respect to the corresponding dual topologies on
Â and Ĉ, as in Section 1.12. It follows that the trivial subgroup of Ĉ is an open
subgroup when C is compact, so that the kernel of ĥ is an open subgroup of Â,
by continuity.

7.5 Strongly 0-dimensional groups

Let A be a commutative topological group, with the group operations expressed
additively. Let us say that A is strongly 0-dimensional if the collection of open
subgroups of A forms a local base for the topology of A at 0. This implies that
A has topological dimension 0 at 0, because open subgroups of A are closed sets
in A. In this case, it follows that A has topological dimension 0 at every point,
as in Section 7.1. Of course, if A is equipped with the discrete topology, then
A is strongly 0-dimensional.

The rational numbers Q form a commutative topological group with respect
to addition and the topology induced by the standard topology on R. It is
easy to see that Q has topological dimension 0 with respect to this topology.
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However, one can check that Q is not strongly 0-dimensional. More precisely,
if U is an open subgroup of Q, then one can verify that U = Q.

Let A be any commutative topological group again. In order to check that
A is strongly 0-dimensional, it suffices to show that there is a local base for the
topology of A at 0 consisting of open subgroups of A. In fact, it is enough to
show that there is a local sub-base for the topology of A at 0 consisting of open
subgroups of A. Of course, the intersection of any family of subgroups of A is
a subgroup of A too. The intersection of finitely many open subgroups of A is
an open subgroup of A.

Let A be a commutative group, and let M be a nondegenerate collection of
translation-invariant semimetrics on A. Thus A is a commutative topological
group with respect to the topology determined by M, as in Section 1.3. If the
elements of M are semi-ultrametrics on A, then A is strongly 0-dimensional
with respect to this topology, because of the remarks in Section 7.2.

Conversely, let A be a commutative topological group that is strongly 0-
dimensional, and let B0 be a local sub-base for the topology of A at 0 consisting
of open subgroups of A. In particular, one can simply take B0 to be the collection
of all open subgroup of A. Let M0 be the collection of semi-ultrametrics of the
form (7.11) in Section 7.2 corresponding to elements of B0. Remember that
these semi-ultrametrics on A are invariant under translations. It is easy to see
that M0 determines the same topology on A under these conditions.

Let A be any commutative topological group, and suppose that V ⊆ A is
an open set that contains 0 and has the property that V is uniformly separated
from its complement in A, as in Section 7.3. This implies that there is an open
subgroup B of A such that

V +B ⊆ V,(7.40)

as in (7.29). It follows that

B ⊆ V,(7.41)

because 0 ∈ V , by hypothesis.
Suppose that for every open set W ⊆ A with 0 ∈ W there is an open set

V ⊆ A such that 0 ∈ V and V is uniformly separated from its complement
in A. This implies that every open set W ⊆ A with 0 ∈ W contains an open
subgroup B of A, as in the preceding paragraph. This means that A is strongly
0-dimensional. Conversely, if A is strongly 0-dimensional, then A has the prop-
erty just mentioned. This uses the fact that open subgroups of A are uniformly
separated from their complements in A, as in Section 7.3.

Let A be any commutative topological group again, and let K be a compact
open subset of A. This implies that K is uniformly separated from its comple-
ment in A, as in Section 7.3. Hence there is an open subgroup B of A such
that

K +B ⊆ K,(7.42)

as in (7.29). If 0 ∈ K, then we get that

B ⊆ K.(7.43)
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If A is locally compact, and if A has topological dimension 0, then A is
strongly 0-dimensional. To see this, let W ⊆ A be an open set that contains 0.
We may also suppose that W is contained in a compact subset of A, because
A is locally compact. If A has topological dimension 0, then there is an open
set V ⊆ A such that 0 ∈ V , V ⊆ W , and V is a closed set in A. It follows
that V is compact, because V is a closed set that is contained in a compact set.
This implies that V is uniformly separated from its complement in A, as before.
Hence there is an open subgroup B in A that is contained in V , as in (7.41). In
particular, B ⊆W , as desired.

7.6 Equicontinuity and open subgroups

Let A be a commutative topological group, with the group operations expressed
additively. Suppose that B is an open subgroup of A, and let EB be the collection
of group homomorphisms ϕ from A into T such that

ϕ(x) = 1(7.44)

for every x ∈ B. It is easy to see that EB is equicontinuous at 0 on A, as in
Section 4.1. Of course, it follows that every subcollection of EB is equicontinuous
at 0 as well. Note that EB is a subgroup of Â too.

Suppose for the moment that A is strongly 0-dimensional. Let E be a collec-
tion of group homomorphisms from A into T that is equicontinuous at 0. Thus
there is an open set U ⊆ A such that 0 ∈ U and

Reϕ(x) > 0(7.45)

for every ϕ ∈ E and x ∈ U . Because A is strongly 0-dimensional, there is an
open subgroup B of A such that B ⊆ U . Thus (7.45) holds for every ϕ ∈ E and
x ∈ B. This implies that (7.44) holds for every ϕ ∈ E and x ∈ B, because B is
a subgroup of A, as in Section 7.4. This shows that

E ⊆ EB(7.46)

under these conditions.
Let A be any commutative topological group again, and let E be a collection

of group homomorphisms from A into T that is equicontinuous at 0. As before,
there is an open set U ⊆ A that contains 0 and for which (7.45) holds for every
ϕ ∈ E and x ∈ U . Suppose that E also has the property that

ϕn ∈ E(7.47)

for every ϕ ∈ E and n ∈ Z+. In particular, this holds when E is a subgroup

of Â, with respect to pointwise multiplication of T-valued functions on A, as
usual. Combining this with (7.45), we get that

Reϕ(x)n > 0(7.48)
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for every ϕ ∈ E , n ∈ Z+, and x ∈ U . This implies that (7.44) holds for every
ϕ ∈ E and x ∈ U . More precisely, it suffices to ask that (7.47) and hence (7.48)
hold for positive integers n that are integer powers of 2.

Put

B =
∩
ϕ∈E

ϕ−1({1}) = {x ∈ A : ϕ(x) = 1 for every ϕ ∈ E},(7.49)

which is a subgroup of A. Under the conditions described in the previous para-
graph, we have that

U ⊆ B.(7.50)

This implies that B is an open subgroup of A, as in Section 2.7. Of course,
(7.46) holds automatically in this situation, by the definition of B.

7.7 Collections of subgroups

Let A be any commutative group, with the group operations expressed addi-
tively, and let B0 be a nonempty collection of subgroups of A. Let us say that
U ⊆ A is an open set with respect to B0 if for every x ∈ U there are finitely
many elements B1, . . . , Bl of B0 such that

x+

l∩
j=1

Bj ⊆ U.(7.51)

It is easy to see that this defines a topology on A. Of course, if B is any subgroup
of A, then

x+B = B(7.52)

for every x ∈ B. This implies that the elements of B0 are open sets in A with
respect to this topology. Similarly, if a ∈ A and B ∈ B0, then a+B is an open
set in A with respect to this topology. By construction,

{a+B : a ∈ A, B ∈ B0}(7.53)

is a sub-base for this topology on A. In particular, B0 is a local sub-base for
this topology on A at 0.

Translations on A are obviously homeomorphisms with respect to this topol-
ogy determined by B0. If x ∈ A and B is any subgroup of A, then

−(x+B) = −x−B = −x+B.(7.54)

This implies that x 7→ −x is continuous on A with respect to the topology
determined on A by B0. Similarly, if x, y ∈ A and B is a subgroup of A, then

(x+B) + (y +B) = x+ y +B +B = x+ y +B.(7.55)
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This implies that addition on A is continuous as a mapping from A×A into A,
with respect to the topology determined on A by B0, and the associated product
topology on A×A.

Let us say that B0 is nondegenerate if∩
B∈B0

B = {0}.(7.56)

This implies that {0} is a closed set in A with respect to the topology determined
by B0. In this case, it follows that A is a commutative topological group with
respect to this topology. Of course, A is strongly 0-dimensional with respect
to this topology, because the elements of B0 are open subgroups of A. If A is
any commutative topological group that is strongly 0-dimensional, and if B0 is
a local base for the topology of A at 0 consisting of open subgroups of A, then
the given topology on A is the same as the one determined by B0 as before.

Let A be any commutative group again. If B is a subgroup of A, then let dB
be the translation-invariant semi-ultrametric on A associated to B as in (7.11)
in Section 7.2. Let B0 be a nonempty collection of subgroups of A, and put

M0 = {dB : B ∈ B0},(7.57)

which is a nonempty collection of translation-invariant semi-ultrametrics on A.
One can check that the topology determined on A by M0 as in Section 1.3 is
the same as the topology determined on A by B0. If B0 is nonndegenerate, then
M0 is nondegenerate as a collection of semimetrics on A.

7.8 Strongly totally separated groups

Let A be a commutative topological group, with the group operations expressed
additively, as usual. Let us say that A is strongly totally separated if for every
x, y ∈ A with x ̸= y there is an open set V ⊆ A such that x ∈ V , y ̸∈ V , and
V is uniformly separated from its complement in A. In particular, this implies
that V is a closed set in A, as in Section 7.3. If A is strongly totally separated,
then it follows that A is totally separated, as in Section 7.1. In order to check
that A is strongly totally separated, one can use translations on A to reduce to
the case where x = 0 in the previous definition.

Suppose that A is strongly totally separated, and let y ∈ A with y ̸= 0 be
given. By hypothesis, there is an open set V ⊆ A such that 0 ∈ V , y ̸∈ V , and
V is uniformly separated from its complement in A. This implies that there is
an open subgroup B of A such that B ⊆ V , as in Sections 7.3 and 7.5. It follows
that y ̸∈ B, because B ⊆ V and y ̸∈ V . This shows that∩

{B : B is an open subgroup of A} = {0}(7.58)

when A is strongly totally separated. Conversely, if a commutative topological
group A satisfies (7.58), then A is strongly totally separated. This uses the fact
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that an open subgroup B of A is uniformly separated from its complement in
A, as in Section 7.3.

Remember that a commutative topological group A satisfies the first sepa-
ration condition as a topological space. If A is strongly 0-dimensional, then it
follows that A is strongly totally separated. The group of rational numbers Q
is not strongly totally separated with respect to the topology induced by the
standard topology on R, because Q is the only open subgroup of itself.

Let A be a commutative topological group, and let τ be the given topology
on A. Also let B0 be the collection of all open subgroups of A. Note that
A ∈ B0, so that B0 ̸= ∅. Let τ0 be the topology on A associated to B0 as in the
previous section. Thus

τ0 ⊆ τ,(7.59)

because the elements of B0 are open subgroups of A with respect to τ , by
hypothesis. The condition that A be strongly totally separated with respect to
τ corresponds exactly to the nondegeneracy of B0, as in (7.58).
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