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Abstract

Here we look at strong and weak operator topologies on spaces of

bounded linear mappings, and convergence of sequences of operators with

respect to these topologies in particular.
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Part I

The strong operator topology

1 Seminorms

Let V be a vector space over the real or complex numbers. A nonnegative
real-valued function N(v) on V is said to be a seminorm on V if

N(t v) = |t|N(v)(1.1)

for every v ∈ V and t ∈ R or C, as appropriate, and

N(v + w) ≤ N(v) + N(w)(1.2)

for every v, w ∈ V . Here |t| denotes the absolute value of a real number t, or
the modulus of a complex number t. If N(v) > 0 when v 6= 0, then N(v) is a
norm on V , and

d(v, w) = N(v − w)(1.3)

defines a metric on V .
Let us say that a collection N of seminorms on V is nice if for each v ∈ V

with v 6= 0 there is an N ∈ N such that N(v) > 0. This implies that V is
Hausdorff with respect to the usual topology determined by N , where the open
balls associated to elements of N are open sets, and the collection of all such
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open balls is a sub-base for the topology. It is well known that V is a topological
vector space with respect to this topology, which basically means that the vector
space operations are continuous. This includes the case where N consists of a
single norm on V .

Similarly, a collection Λ of linear functionals on V is said to be nice if for
each v ∈ V with v 6= 0 there is a λ ∈ Λ such that λ(v) 6= 0. This is equivalent
to saying that the collection N (Λ) of seminorms

Nλ(v) = |λ(v)|(1.4)

on V with λ ∈ Λ is nice. The topology on V determined by N (Λ) as in the
previous paragraph is known as the weak topology on V corresponding to Λ.
This is the same as the weakest topology on V such that each λ ∈ Λ is continuous
on V . It follows that linear combinations of finitely many elements of Λ are also
continuous on V with respect to this topology, and conversely it is well known
that every continuous linear functional on V with respect to this topology can
be expressed as a linear combination of finitely many elements of Λ.

Let V be a topological vector space, and let V ′ be the dual vector space of
continuous linear functionals on V . It is well known that V ′ separates points in
V when the topology on V is defined by a nice collection of seminorms on V , by
the Hahn–Banach theorem. The weak topology on V determined by Λ = V ′ is
known as the weak topology on V . Note that the collection of linear functionals
on V ′ of the form

Lv(λ) = λ(v)(1.5)

with v ∈ V is automatically a nice collection of linear functionals on V ′. The
weak topology on V ′ associated to this collection of linear functionals is known
as the weak∗ topology on V ′.

Let V be a real or complex vector space again, and let N be a nice collection
of seminorms on V . A sequence {vj}

∞
j=1 of elements of V converges to v ∈ V

with respect to the topology on V associated to N if and only if

lim
j→∞

N(vj − v) = 0(1.6)

for every N ∈ N . Similarly, if Λ is a nice collection of linear functionals on V ,
then a sequence {vj}

∞
j=1 of elements of V converges to v ∈ V with respect to

the weak topology on V associated to Λ if and only if

lim
j→∞

λ(vj) = λ(v)(1.7)

for every λ ∈ Λ.
Let N be a nice collection of seminorms on V again. If N has only finitely

many elements, then their maximum is a norm on V that determines the same
topology on V . If N is countably infinite, then one can show that there is
a translation-invariant metric on V that determines the same topology on V .
Conversely, if there is a countable local base for the topology on V determined
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by N at 0, then one can check that there is a subcollection of N with only
finitely or countably many elements that determines the same topology on V .

If V is any topological vector space, then a sequence {vj}
∞
j=1 of elements of

V is said to be a Cauchy sequence in V if for each open set U ⊆ V with 0 ∈ U ,

vj − vl ∈ U(1.8)

for all sufficiently large j, l. Of course, convergent sequences in V are Cauchy
sequences. If the topology on V is determined by a nice collection N of semi-
norms, then {vj}

∞
j=1 is a Cauchy sequence if and only if

lim
j,l→∞

N(vj − vl) = 0(1.9)

for every N ∈ N . If the topology on V is the weak topology associated to a
collection Λ of linear functionals on V , then {vj}∞j=1 is a Cauchy sequence in
V if and only if {λ(vj)}

∞
j=1 is a Cauchy sequence in R or C, as appropriate,

for each λ ∈ Λ. This is equivalent to saying that {λ(vj)}
∞
j=1 converges in R or

C for every λ ∈ Λ, since R and C are complete with respect to their standard
metrics.

If there is a countable local base for the topology of V at 0, then it is well
known that there is a translation-invariant metric on V that determines the
same topology on V . If d(·, ·) is such a metric on V , then it is easy to see that a
sequence {vj}∞j=1 of elements of V is a Cauchy sequence in the sense described
in the previous paragraph if and only if {vj}

∞
j=1 is a Cauchy sequence in the

usual sense with respect to d(·, ·). A vector space V with a norm ‖v‖V is said
to be a Banach space if it is complete with respect to the metric associated to
the norm.

2 Bounded linear mappings

Let V and W be vector spaces, both real or both complex, and equipped with
norms ‖ · ‖V and ‖ · ‖W , respectively. A linear mapping T from V into W is said
to be bounded if there is a nonnegative real number C such that

‖T (v)‖W ≤ C ‖v‖V(2.1)

for every v ∈ V . This implies that

‖T (v) − T (v′)‖W = ‖T (v − v′)‖W ≤ C ‖v − v′‖V(2.2)

for every v, v′ ∈ V , so that T is uniformly continuous with respect to the
metrics on V and W associated to their norms. Conversely, if a linear mapping
T : V → W is continuous at 0, then there is a δ > 0 such that ‖T (v)‖W < 1 for
every v ∈ V with ‖v‖V < 1. This implies that T satisfies (2.1), with C = 1/δ.

Let BL(V,W ) be the space of bounded linear mappings from V into W . It
is easy to see that this is also a vector space over R or C, as appropriate, with
respect to pointwise addition and scalar multiplication. Put

‖T‖op = sup{‖T (v)‖W : v ∈ V, ‖v‖ ≤ 1}(2.3)
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for each T ∈ BL(V,W ), which is the operator norm of T . One can check that
this does indeed define a norm on BL(V,W ). If W is complete with respect to
the metric associated to its norm, then it is well known that BL(V,W ) is also
complete with respect to the operator norm. If W = R or C, as appropriate,
then BL(V,W ) reduces to the dual space V ′ of bounded linear functionals on V ,
and the operator norm is the same as the usual dual norm on V ′. In particular,
V ′ is always complete with respect to the dual norm.

Suppose that V1, V2, and V3 are vector spaces, all real or all complex, and
with norms ‖ ·‖1, ‖ ·‖2, and ‖ ·‖3, respectively. If T1 : V1 → V2 and T2 : V2 → V3

are bounded linear mappings, then the composition T2 ◦ T1 of T1 and T2 is a
bounded linear mapping from V1 into V3, and

‖T2 ◦ T1‖op,13 ≤ ‖T1‖op,12 ‖T2‖op,23.(2.4)

Here the subscripts in the operator norms are used to indicate the vector spaces
and norms being used. If V is a real or complex vector space with a norm, then
it follows that the space BL(V ) = BL(V, V ) of bounded linear mappings from V
into itself is an algebra, with composition of mappings as multiplication. Note
that the operator norm of the identity mapping I = IV on V is equal to 1.

Let V and W be as before, and suppose that E is a dense linear subspace of
V . If T is a bounded linear mapping from E into W , and if W is complete with
respect to its norm, then it is well known that there is a unique extension of
T to a bounded linear mapping from V into W . More precisely, the restriction
of T to E is uniformly continuous, and a well-known theorem for metric spaces
implies that there is a unique extension of T to a uniformly continuous mapping
from V into W . In this case, it is easy to see that the extension is also a bounded
linear mapping from V into W .

3 The strong operator topology

Let V and W be vector spaces again, both real or both complex, and with norms
‖ · ‖V and ‖ · ‖W , respectively. If v ∈ V , then

Nv(T ) = ‖T (v)‖W(3.1)

defines a seminorm on BL(V,W ), and the collection of these seminorms Nv

with v ∈ V is automatically a nice collection of seminorms on BL(V,W ). The
topology on BL(V,W ) determined by this collection of seminorms is known as
the strong operator topology on BL(V,W ). Of course,

‖T (v)‖W ≤ ‖T‖op ‖v‖V(3.2)

for every v ∈ V and T ∈ BL(V,W ), by the definition of the operator norm.
This implies that the strong operator topology on BL(V,W ) is weaker than the
topology determined by the operator norm on BL(V,W ), in the sense that every
open set in BL(V,W ) with respect to the strong operator topology is also an
open set with respect to the topology determined by the metric on BL(V,W )
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corresponding to the operator norm. If W = R or C, as appropriate, then
BL(V,W ) is the same as the dual V ′ of V , and the strong operator topology
reduces to the weak∗ topology on V ′. However, if V = R or C, as appropriate,
then BL(V,W ) can be identified with W , and the strong operator topology
corresponds to the topology on W determined by its norm.

A sequence {Tj}
∞
j=1 of bounded linear mappings from V into W converges

to T ∈ BL(V,W ) with respect to the strong operator topology if and only if
{Tj(v)}∞j=1 converges to T (v) with respect to the norm on W for every v ∈ V .
In particular, this implies that {Tj(v)}∞j=1 is a bounded sequence in W for every
v ∈ V . If V is complete with respect to the metric associated to the norm, then
the Banach–Steinhaus theorem implies that the operator norms of the Tj ’s are
uniformly bounded.

Suppose now that {Tj}
∞
j=1 is a sequence of bounded linear mappings from

V into W with uniformly bounded operator norms, so that ‖Tj‖op ≤ C for
some C ≥ 0 and every j ≥ 1. Suppose also that {Tj(v)}∞j=1 converges in W
with respect to the norm on W for each v ∈ V , and let T (v) be the limit of
{Tj(v)}∞j=1 in W . It is easy to see that T is a linear mapping from V into W ,
and one can also check that T is bounded, with ‖T‖op ≤ C. Thus {Tj}

∞
j=1

converges to T with respect to the strong operator topology on B(V,W ) under
these conditions.

Similarly, {Tj}
∞
j=1 is a Cauchy sequence with respect to the strong operator

topology if and only if {Tj(v)}∞j=1 is a Cauchy sequence in W for every v ∈ V .
This also implies that {Tj(v)}∞j=1 is a bounded sequence in W for every v ∈ V ,
and hence that the operator norms of the Tj ’s are uniformly bounded when
V is complete, by the Banach–Steinhaus theorem. If W is complete, then it
follows that {Tj(v)}∞j=1 converges in W for every v ∈ V . If W is complete and
the operator norms of the Tj ’s are uniformly bounded, then {Tj}

∞
j=1 converges

with respect to the strong operator topology, by the remarks in the previous
paragraph.

4 Shift operators

Let X be a nonempty set, and let ℓp(X) be the space of p-summable real or
complex-valued functions f on X, for 1 ≤ p < ∞. It is well known that this is
a Banach space with respect to the usual ℓp norm

‖f‖p = ‖f‖ℓp(X) =
( ∑

x∈X

|f(x)|p
)1/p

.(4.1)

Similarly, the space ℓ∞(X) of bounded real or complex-valued functions f on
X is a Banach space with respect to the supremum norm

‖f‖∞ = ‖f‖ℓ∞(X) = sup
x∈X

|f(x)|.(4.2)

Let c0(X) be the collection of real or complex-valued functions f on X that
vanish at infinity, in the sense that for each ǫ > 0, |f(x)| > ǫ for only finitely
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many x ∈ X. One can check that c0(X) is a closed linear subspace of ℓ∞(X),
and hence also a Banach space with respect to the supremum norm.

In this section, we shall be interested in the case where X is the set Z+ of
positive integers, so that the elements of ℓp = ℓp(Z+) can be identified with
sequences of real or complex numbers. In particular, c0 = c0(Z+) consists of
sequences of real or complex numbers that converge to 0. Consider the shift
operator T defined by

T (f)(j) = f(j + 1)(4.3)

for any real or complex-valued function f on Z+. It is easy to see that T defines
a bounded linear operator on ℓp for each p, 1 ≤ p ≤ ∞, with operator norm
equal to 1. Note that T also maps c0 into itself, and that the operator norm of
T on c0 with respect to the ℓ∞ norm is equal to 1 too.

Let n be a positive integer, and let Tn be the n-fold composition of T , so
that T 1 = T and Tn+1 = T ◦ Tn for each n. Equivalently,

Tn(f)(j) = f(j + n)(4.4)

for each real or complex-valued function f on Z+. It is easy to see that Tn

has operator norm equal to 1 on ℓp for each p, 1 ≤ p ≤ ∞, and for every n.
Similarly, the operator norm of Tn on c0 with respect to the ℓ∞ norm is equal
to 1 for every n as well. However, {Tn}∞n=1 converges to 0 with respect to the
strong operator topology on ℓp when 1 ≤ p < ∞, and on c0.

5 Multiplication operators

Let (X,A, µ) be a measure space, and let b be a bounded measurable real
or complex-valued function on X. Consider the corresponding multiplication
operator

Tb(f) = b f,(5.1)

where f is a real or complex-valued measurable function on X. This is a bounded
linear operator on Lp(X) for each p, 1 ≤ p ≤ ∞, with operator norm less than
or equal to the L∞ norm ‖b‖∞ of b. In many cases, the operator norm of Tb

is equal to ‖b‖∞. More precisely, let 1A(x) be the characteristic or indicator
function of a set A ⊆ X, which is equal to 1 when x ∈ A and to 0 otherwise.
In particular, 1X is the constant function equal to 1 on X, and Tb(1X) = b,
which implies that the operator norm of Tb on L∞(X) is equal to ‖b‖∞, because
1X ∈ L∞(X). If A ⊆ X is a measurable set of finite measure, then 1A ∈ Lp(X)
for each p. One can use this to show that the operator norm of Tb on Lp(X) is
equal to ‖b‖∞ when every measurable subset of X of positive measure contains
a measurable set with positive finite measure. This condition holds when X is
σ-finite, for instance. Of course, if f ∈ Lp(X) and p < ∞, then the set of x ∈ X
where f(x) 6= 0 is σ-finite.

Now let {bj}∞j=1 be a sequence of bounded measurable functions on X, and
let b be a bounded measurable function on X. Also let

Tj(f) = Tbj
(f) = bj f(5.2)
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be the corresponding sequence of multiplication operators, and let T = Tb be as
in (5.1). If {bj}

∞
j=1 converges to b with respect to the L∞ norm, then {Tj}

∞
j=1

converges to T with respect to the operator norm on Lp for each p. The converse
also holds in many situations, by the remarks in the previous paragraph. If the
L∞ norms of the bj ’s are uniformly bounded, if {bj}∞j=1 converges pointwise
almost everywhere on X to b, and if p < ∞, then {Tj}

∞
j=1 converges to T with

respect to the strong operator topology on BL(Lp(X)). This is the same as
saying that {bj f}∞j=1 converges to b f with respect to the Lp norm for every
f in Lp(X), which follows from the dominated convergence theorem applied
to |(bj − b) f |p. This also works when {bj}

∞
j=1 converges to b in measure on

every measurable sobset of X with finite measure instead of converging point-
wise almost everywhere on X, by the corresponding version of the dominated
convergence theorem. Conversely, suppose that {Tj}

∞
j=1 converges to T with

respect to the strong operator topology on BL(Lp(X)), and let A ⊆ X be a
measurable set with finite measure. Thus 1A ∈ Lp(X), and the convergence of
Tj(1A) = bj 1A to b1A as j → ∞ with respect to the Lp norm implies that bj

converges to b in measure on A. If p = ∞, then one can apply this to A = X,
to get that {Tj}

∞
j=1 converges to T with respect to the strong operator topology

on BL(L∞(X)) if and only if {bj}
∞
j=1 converges to b with respect to the L∞

norm.
Suppose that µ is counting measure on X, with all subsets of X being

measurable, so that Lp(X) is the same as ℓp(X). If Tj = Tbj
converges to

T = Tb with respect to the strong operator topology on ℓp(X) for any p, then
bj converges to b pointwise everywhere on X. This is the same as saying that
{bj}∞j=1 converges to b in measure on finite subsets of X, which are the same
as the measurable sets of finite measure in this case. If b is a bounded real
or complex-valued function on X, then T = Tb also defines a bounded linear
operator on c0(X) with respect to the ℓ∞ norm, with operator norm equal to
the ℓ∞ norm of b. If {bj}

∞
j=1 is a sequence of bounded functions on X that have

uniformly bounded ℓ∞ norms and which converge pointwise to b everywhere on
X, then one can check that Tj = Tbj

converges to T = Tb with respect to the
strong operator topology on BL(c0(X)). Equivalently, this means that {bj f}∞j=1

converges to b f with respect to the ℓ∞ norm for every f ∈ c0(X). Conversely, if
Tbj

converges to Tb with respect to the strong operator topology on BL(c0(X)),
then it is easy to see that {bj}

∞
j=1 converges to b pointwise everywhere on X,

by taking f to be the indicator function on a set with one element.
As a variant of this, let X be a nonempty topological space, and let Cb(X)

be the space of bounded continuous real or complex-valued functions on X. It is
well known that Cb(X) is a Banach space with respect to the supremum norm.
If b ∈ Cb(X), then the corresponding multiplication operator Tb is a bounded
linear operator on Cb(X), with operator norm equal to the supremum norm.
This implies that a sequence {bj}∞j=1 of elements of Cb(X) converges to b with
respect to the supremum norm if and only if the corresponding multiplication
operators Tbj

converge to Tb as j → ∞ with respect to the operator norm on
BL(Cb(X)). As in the p = ∞ case considered earlier, this is also equivalent
to the convergence of Tbj

to Tb as j → ∞ with respect to the strong operator
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topology on BL(Cb(X)), because Tbj
(1X) = bj and 1X ∈ Cb(X). Suppose

now that X is a locally compact Hausdorff space which is not compact, and let
C0(X) be the space of continuous real or complex-valued functions f on X that
vanish at infinity, in the sense that

{x ∈ X : |f(x)| ≥ ǫ}(5.3)

is a compact set in X for each ǫ > 0. It is well known that C0(X) is a closed linear
subspace of Cb(X) with respect to the supremum norm. If b ∈ Cb(X), then the
corresponding multiplication operator Tb defines a bounded linear mapping from
C0(X) into itself, with operator norm equal to the supremum norm of b. This
uses Urysohn’s lemma, to get that continuous functions with compact support
on X separate points in X. Let {bj}∞j=1 be a sequence of elements of Cb(X) with
bounded supremum norms that converges uniformly on compact subsets of X to
a function b on X, which implies that b is also a bounded continuous function on
X, since X is locally compact. One can check that {bj f}∞j=1 converges uniformly
on X to b f as j → ∞ for every f ∈ C0(X), which means that the corresponding
sequence {Tbj

}∞j=1 of multiplication operators converges to Tb with respect to
the strong operator topology on BL(C0(X)). Conversely, if {Tbj

}∞j=1 converges
to Tb with respect to the strong operator topology on BL(C0(X)), then {bj}

∞
j=1

converges to b uniformly on compact subsets of X. This uses Urysohn’s lemma
again, which implies that there are continuous functions on X with compact
support that are equal to 1 on any given compact set in X.

6 Dense sets

Let V and W be vector spaces, both real or both complex, and with norms
‖v‖V and ‖w‖W , respectively. As usual, the linear span of a set A ⊆ V is the
set of vectors in V that can be expressed as a linear combination of finitely
many elements of A, which is the smallest linear subspace of V containing A.
If the linear span of A ⊆ V is equal to V , then the collection of seminorms
Nv(T ) = ‖T (v)‖W on BL(V,W ) with v ∈ A is sufficient to determine the
strong operator topology on BL(V,W ).

Suppose that A ⊆ V has the property that the linear span of A in V is
dense in V with respect to the norm. If T is a bounded linear mapping from
V into W such that T (v) = 0 for every v ∈ A, then T (v) = 0 for every v in
the linear span of A, and hence T ≡ 0 on V . Thus the collection of seminorms
Nv(T ) = ‖T (v)‖W on BL(V,W ) with v ∈ A is a nice collection of seminorms
on BL(V,W ), and the topology determined by this collection of seminorms
is contained in the strong operator topology on BL(V,W ). In this case, if
E ⊆ BL(V,W ) is bounded with respect to the operator norm, then one can check
that the topology induced on E by the strong operator topology on BL(V,W ) is
the same as the topology induced on E by the topology determined on BL(V,W )
by the seminorms Nv(T ) = ‖T (v)‖W with v ∈ A.

Let {Tj}∞j=1 be a sequence of elements of BL(V,W ), and let T be an element
of BL(V,W ). It is easy to see that the set of v ∈ V such that {Tj(v)}∞j=1
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converges to T (v) in W is a linear subspace of V . If the operator norms of the
Tj ’s are uniformly bounded, then one can also check that this is a closed linear
subspace of V . In particular, if {Tj(v)}∞j=1 converges to T (v) for each v ∈ A
for some set A ⊆ V whose linear span is dense in V , and if the operator norms
of the Tj ’s are uniformly bounded, then {Tj(v)}∞j=1 converges to T (v) in W for
every v ∈ V . This can also be considered as a consequence of the remarks in
the previous paragraph.

Similarly, if {Tj}∞j=1 is any sequence of elements of BL(V,W ), then the set
of v ∈ V such that {Tj(v)}∞j=1 is a Cauchy sequence in W is a linear subspace of
V . If the operator norms of the Tj ’s are uniformly bounded, then one can check
that this linear subspace is a closed set in V too. In particular, if {Tj(v)}∞j=1

is a Cauchy sequence for all v ∈ A for some set A ⊆ V whose linear span is
dense in V , and if the operator norms of the Tj ’s are uniformly bounded, then
{Tj(v)}∞j=1 is a Cauchy sequence in W for every v ∈ V . If W is complete, then it
follows that {Tj(v)}∞j=1 converges in W for every v ∈ V under these conditions.

7 Shift operators, 2

Let T be the shift operator defined by

T (f)(j) = f(j + 1)(7.1)

for any real or complex-valued function f on the set Z of integers. This defines
a one-to-one linear mapping from ℓp(Z) onto itself for each p, which is also an
isometry, in the sense that

‖T (f)‖p = ‖f‖p(7.2)

for every f ∈ ℓp(Z). Note that T maps c0(Z) onto itself as well. The n-fold
composition Tn of T is given by

Tn(f)(j) = f(j + n)(7.3)

for each function f on Z and every positive integer n. This makes sense for
every integer n as well, where T 0 is the identity mapping, T−1 is the inverse of
T , and so on.

Of course, Tn is also an isometry on ℓp(Z) for each n and p. If f ∈ c0(Z),
then Tn(f)(j) → 0 as |n| → ∞ for each j ∈ Z. In particular, this holds for each
f ∈ ℓp(Z) when p < ∞. It follows that {Tn}∞n=1 does not converge with respect
to the strong operator topology on BL(ℓp(Z)) for any p.

Alternatively, consider the average

An =
1

n + 1

n∑

l=0

T l(7.4)

of T l for l = 0, 1, . . . , n for each positive integer n, as a linear mapping on the
vector space of real or complex-valued functions on Z. It is easy to see that this
defines a bounded linear mapping on ℓp(Z) for each nonnegative integer n and
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p ≥ 1, with operator norm less than or equal to 1, by the triangle inequality.
More precisely, one can check that the operator norm of An on ℓp(Z) is equal
to 1 for each n ≥ 0 and p ≥ 1, and that the operator norm of An on c0(Z) is
equal to 1 with respect to the ℓ∞ norm. Of course, An maps constant functions
on Z to themselves for each n, which implies that the operator norm of An on
ℓ∞(Z) is equal to 1 for each n. To deal with the other cases, one can consider
functions on Z that are constant on large intervals, and 0 elsewhere.

If f is a function on Z which is equal to 1 at one point and equal to 0
elsewhere, then one can check that An(f) converges to 0 as n → ∞ with respect
to the ℓp norm for each p > 1, while the ℓ1 norm of An(f) is equal to 1 for each
n. This implies that {An}∞n=1 converges to 0 as n → ∞ with respect to the
strong operator topology on BL(ℓp(Z)) when 1 < p < ∞, and also with respect
to the strong operator topology on BL(c0(Z)), by the remarks in the previous
section. This also uses the fact that the linear span of these functions f on Z is
dense in ℓp(Z) when p < ∞, and in c0(Z) with respect to the ℓ∞ norm.

8 Other operators

Let V be a real or complex vector space with a norm ‖v‖, and let T be a bounded
linear operator on V , with ‖T‖op ≤ 1. Put

An =
1

n + 1

n∑

l=0

T l(8.1)

for each nonnegative integer n, where T l is the lth power of T with respect
to composition, which is interpreted as being the identity mapping on V when
l = 0. Thus

‖T l‖op ≤ ‖T‖l
op ≤ 1(8.2)

for each l, which implies that

‖An‖op ≤
1

n + 1

n∑

l=0

‖T l‖op ≤ 1(8.3)

for each n, by the triangle inequality. If ‖T l‖op → 0 as l → ∞, then it follows
that ‖An‖op → 0 as n → ∞, by an elementary argument.

Observe that

(I − T )
n∑

l=0

T l =
( n∑

l=0

T l
)

(I − T ) = I − Tn+1(8.4)

for each n, by a standard computation. If I − T is an invertible linear mapping
on V , which is to say that I − T is a one-to-one mapping from V onto itself
whose inverse is also a bounded linear mapping on V , then we get that

n∑

l=0

T l = (I − Tn+1) (I − T )−1(8.5)
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for each n. This implies that
∥∥∥∥

n∑

l=0

T l

∥∥∥∥
op

≤ ‖I − Tn+1‖op ‖(I − T )−1‖op ≤ 2 ‖(I − T )−1‖op(8.6)

for each n, and hence that

‖An‖ ≤
2

n + 1
‖(I − T )−1‖op(8.7)

for each n. Thus ‖An‖op → 0 as n → ∞ in this case as well.
Similarly, if v = u − T (u) for some u ∈ V , then

An(v) =
1

n + 1
(u − Tn+1(u))(8.8)

for each n, by (8.4). This implies that ‖An(v)‖ → 0 as n → ∞ for every v in
the image of V under I − V . The same conclusion holds for all v in the closure
of the image of V under I − V , because of (8.3). Note that

‖An(v)‖ ≤
1

n + 1

n∑

l=0

‖T l(v)‖(8.9)

for every v ∈ V and n ≥ 0, by the triangle inequality. If T l(v) → 0 as l → ∞
for some v ∈ V , then it follows that An(v) → 0 as n → ∞, by an elementary
argument, as before.

Using (8.4) again, we get that

An(v) − T (An(v)) =
1

n + 1
(v − Tn+1(v))(8.10)

for every v ∈ V and n ≥ 0. This implies that

‖An(v) − T (An(v))‖ ≤
1

n + 1
‖v − Tn+1(v)‖ ≤

2

n + 1
‖v‖(8.11)

for every v and n, and hence that

lim
n→∞

(An(v) − T (An(v))) = 0(8.12)

for every v ∈ V . If {An(v)}∞n=1 converges to some w ∈ V , then it follows that
T (w) = w. Of course, if I − T is one-to-one on V , then there are no nonzero
vectors w ∈ V such that T (w) = w. Otherwise, if v ∈ V satisfies T (v) = v, then
it follows that T l(v) = v for each l, so that An(v) = v for every n.

9 Unitary operators

Let V be a real or complex vector space with an inner product 〈v, w〉. As usual,
this leads to a norm ‖v‖ on V , which is the square root of 〈v, v〉. A linear
mapping T from V onto itself is said to be unitary if

〈T (v), T (w)〉 = 〈v, w〉(9.1)
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for every v, w ∈ V . This implies that

‖T (v)‖ = ‖v‖(9.2)

for every v ∈ V , and in particular that the kernel of T is trivial, so that T is
one-to-one. Conversely, if a linear mapping T from V into itself satisfies (9.2) for
every v ∈ V , then it is well known that T also satisfies (9.1) for every v, w ∈ V ,
because of polarization identities.

Suppose that T is a unitary linear mapping from V onto itself, and let Z be
the image of V under I − T . Also let

W = Z⊥ = {w ∈ V : 〈w, z〉 = 0 for every z ∈ Z}(9.3)

be the orthogonal complement of Z in V , so that w ∈ W if and only if

〈w, u − T (u)〉 = 0(9.4)

for every u ∈ V . Because T is unitary,

〈w, T (u)〉 = 〈T (T−1(w)), T (u)〉 = 〈T−1(w), u〉(9.5)

for every u ∈ V , and hence w ∈ W if and only if

〈w − T−1(w), u〉 = 0(9.6)

for every u ∈ V . Thus w ∈ W if and only if T−1(w) = w, which is the same as
saying that T (w) = w.

Suppose that V is also complete with respect to the metric associated to the
norm, which is to say that V is a Hilbert space. This can always be arranged by
passing to the completion of V , and extending T to a continuous linear mapping
on the completion, which is unitary as well. Let Z be the closure of Z in V ,
which is a closed linear subspace of V . It follows from well-known results about
Hilbert spaces that every v ∈ V can be expressed in a unique way as

v = w + z,(9.7)

where w ∈ W and z ∈ Z. The mapping P from v ∈ V to the corresponding
w ∈ W is known as the orthogonal projection of V onto W .

Let An be as in (8.1) for each nonnegative integer n. If z ∈ Z, then we
have seen that An(z) → 0 as n → ∞, as in the previous section. Similarly,
if w ∈ W , then An(w) = w for each n. It follows that {An}∞n=1 converges to
the orthogonal projection P of V onto W with respect to the strong operator
topology on BL(V ) under these conditions.

10 Measure-preserving transformations

Let (X,A, µ) be a measure space, and suppose that φ is a measure-preserving
transformation on X. More precisely, this means that φ is a one-to-one mapping
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from X onto itself such that φ(E), φ−1(E) are measurable for every measurable
set E ⊆ X, and

µ(φ(E)) = µ(E)(10.1)

for every measurable set A ⊆ X. Put

T (f) = Tφ(f) = f ◦ φ(10.2)

for every measurable real or complex-valued function f on X, which defines an
invertible linear mapping on the vector space of measurable functions on X.
In particular, T defines an isometric linear mapping from Lp(X) onto itself for
each p. Note that L2(X) is a Hilbert space with respect to the standard inner
product, and that T defines a unitary mapping on L2(X).

Let An be as in (8.1) for each nonnegative integer n, so that An defines a
bounded linear operator on Lp(X) with operator norm less than or equal to 1
for each p, 1 ≤ p ≤ ∞. If f ∈ L2(X), then {An(f)}∞n=1 converges in L2(X),
as in the previous section. We would like to show that the analogous statement
holds in Lp(X) when 1 < p < ∞, starting with the case where p > 2. If
g ∈ L2(X) ∩ L∞(X), then g ∈ Lp(X) for each p > 2, and

‖g‖p
p =

∫

X

|g(x)|p dµ(x) ≤ ‖g‖p−2
∞

∫

X

|g(x)|2 dµ(x) = ‖g‖p−2
∞ ‖g‖2

2,(10.3)

where ‖g‖q denotes the Lq norm of g for each q. Thus

‖g‖p ≤ ‖g‖1−(2/p)
∞ ‖g‖

2/p
2 .(10.4)

If {gj}
∞
j=1 is a sequence of elements of L2(X) ∩ L∞(X) that converges with

respect to the L2 norm and is uniformly bounded with respect to the L∞ norm,
then one can use (10.4) to show that {gj}

∞
j=1 also converges with respect to the

Lp norm when 2 < p < ∞. If f ∈ L2(X)∩L∞(X), then {An(f)}∞n=1 converges
with respect to the L2 norm and is uniformly bounded with respect to the L∞

norm, and hence converges with respect to the Lp norm when 2 < p < ∞.
This implies that {An(f)}∞n=1 converges in Lp(X) for every f ∈ Lp(X) when
2 < p < ∞, because L2(X) ∩ L∞(X) is dense in Lp(X) when 2 < p < ∞.

Similarly, if g ∈ L1(X) ∩ L2(X), then g ∈ Lp(X) for each p ∈ (1, 2), and
the Lp norm of g is bounded by a product of positive powers of the L1 and
L2 norms of g, by Hölder’s inequality. If {gj}

∞
j=1 is a sequence of elements of

L1(X) ∩ L2(X) that converges with respect to the L2 norm and is uniformly
bounded with respect to the L1 norm, then it follows that {gj}

∞
j=1 also converges

with respect to the Lp norm when 1 < p < ∞. If f ∈ L1(X) ∩ L2(X), then
{An(f)}∞n=1 converges with respect to the L2 norm and is uniformly bounded
with respect to the L1 norm, and hence converges with respect to the Lp norm
when 1 < p < 2. As before, this implies that {An(f)}∞n=1 converges in Lp(X)
for every f ∈ Lp(X) when 1 < p < 2, because L1(X)∩L2(X) is dense in Lp(X)
when 1 < p < 2.

This is all a bit simpler when µ(X) < ∞, in which case L∞(X) is a dense
linear subspace of Lp(X) for each p. In particular, L2(X) is a dense linear
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subspace of Lp(X) when 1 ≤ p ≤ 2, and the convergence of {An(f)}∞n=1 in
L2(X) for each f ∈ L2(X) implies the convergence of {An(f)}∞n=1 with respect
to the Lp norm when 1 ≤ p ≤ 2 and f ∈ L2(X). This implies that {An(f)}∞n=1

converges in Lp(X) for every f ∈ Lp(X) when 1 ≤ p ≤ 2, because L2(X) is
dense in Lp(X) when p ≤ 2. Note that this includes the case where p = 1, which
was not covered by the previous argument.

Part II

The weak operator topology

11 Definitions

Let V and W be vector spaces, both real or both complex, and equipped with
norms ‖v‖V and ‖w‖W , respectively. If v ∈ V and λ is a bounded linear
functional on W , then

Lv,λ(T ) = λ(T (v))(11.1)

defines a bounded linear functional on BL(V,W ) with respect to the operator
norm. More precisely,

|Lv,λ(T )| = |λ(T (v))| ≤ ‖λ‖W ′ ‖T (v)‖W ≤ ‖λ‖W ′‖T‖op ‖v‖V(11.2)

for every v ∈ V , λ ∈ W ′, and T ∈ BL(V,W ), where ‖λ‖W ′ denotes the dual
norm of λ with respect to the norm ‖w‖W on W . The weak topology on
BL(V,W ) determined by the collection of linear functionals Lv,λ with v ∈ V
and λ ∈ W ′ is known as the weak operator topology on BL(V,W ). Equivalently,
this is the topology on BL(V,W ) determined by the collection of seminorms

Nv,λ(T ) = |Lv,λ(T )| = |λ(T (v))|,(11.3)

with v ∈ V and λ ∈ W ′. Of course, if T 6= 0, then T (v) 6= 0 for some v ∈ V .
The Hahn–Banach theorem implies that W ′ separates points in W , and hence
there is a λ ∈ W ′ such that λ(T (v)) 6= 0. It follows that these collections of
linear functionals and seminorms on BL(V,W ) are nice, so that BL(V,W ) is
Hausdorff with respect to the weak operator topology.

As in (11.2),
|Lv,λ(T )| ≤ ‖λ‖W ′ ‖T (v)‖W(11.4)

for every v ∈ V , λ ∈ W ′, and T ∈ BL(V,W ). This implies that Lv,λ is a
continuous linear functional with respect to the strong operator topology on
BL(V,W ) for every v ∈ V and λ ∈ W ′. It follows that every open set in
BL(V,W ) with respect to the weak operator topology is also an open set with
respect to the strong operator topology. If W = R or C, as appropriate, then
BL(V,W ) is the same as the dual V ′ of V , and the weak operator topology
is the same as the strong operator topology on BL(V,W ), which corresponds
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exactly to the weak∗ topology on V ′. However, if V = R or C, as appropriate,
so that BL(V,W ) can be identified with W , then the weak operator topology on
BL(V,W ) corresponds to the weak topology on W , while the strong operator
topology on BL(V,W ) corresponds to the topology on W determined by the
norm.

Suppose that W is the dual of a vector space Z with a norm ‖z‖Z . In this
case, one might wish to restrict one’s attention to linear functionals on W that
correspond to evaluation at elements of Z, as for the weak∗ topology on W as
the dual of Z. This leads to a slightly different version of the weak operator
topology on BL(V,W ), that may be described as the weak∗ operator topology
on BL(V,W ). If V = R or C, as appropriate, then BL(V,W ) can be identified
with W , and the weak∗ operator topology on BL(V,W ) would correspond to
the weak∗ topology on W . Of course, if Z is reflexive, then every bounded linear
functional on W is of this form, and the weak∗ operator topology reduces to the
weak operator topology on BL(V,W ).

Suppose now that the norm on W comes from an inner product 〈·, ·〉W on
W , so that

‖w‖W = 〈w,w〉
1/2
W(11.5)

for every w ∈ W . This implies that

λw(u) = 〈u,w〉W(11.6)

is a bounded linear functional on W for every w ∈ W , by the Cauchy–Schwarz
inequality. If W is a Hilbert space, which is to say that W is also complete with
respect to the metric associated to the norm, then it is well known that every
bounded linear functional on W is of the form λw for some w ∈ W . In this case,
the linear functionals (11.1) on BL(V,W ) can be expressed as

L̃v,w(T ) = 〈T (v), w〉(11.7)

for some v ∈ V and w ∈ W , and the seminorms (11.3) can be expressed as

Ñv,w(T ) = |L̃v,w(T )| = |〈T (v), w〉|.(11.8)

12 Multiplication operators, 2

Let (X,A, µ) be a measure space, and let b be a bounded measurable real
or complex-valued function on X. Also let Tb(f) = b f be the corresponding
multiplication operator acting on measurable functions on X. In particular, this
defines a bounded linear operator on Lp(X) for each p, 1 ≤ p ≤ ∞. Let q be the
exponent conjugate to p, so that 1 ≤ q ≤ ∞ and 1/p + 1/q = 1. If g ∈ Lq(X),
then

λg(f) =

∫

X

f(x) g(x) dµ(x)(12.1)
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defines a bounded linear functional on Lp(X), by Hölder’s inequality. Thus
λg(T (f)) is one of the linear functionals on BL(Lp(X)) used to define the weak
operator topology. If we apply this to Tb, then we get

λg(Tb(f)) =

∫

X

b(x) f(x) g(x) dµ(x),(12.2)

which can be considered as a linear functional on L∞(X), acting on b. Of
course, f g ∈ L1(X) under these conditions, by Hölder’s inequality, so that
(12.2) is one of the usual linear functionals on L∞(X) defined by integrating b
times an integrable function on X. Note that every integrable function on X
can be expressed as f g for some f ∈ Lp(X) and g ∈ Lq(X).

If X is σ-finite with respect to µ, or if µ is counting measure on X, then
it is well known that every bounded linear functional on Lp(X) is of the form
(12.1) for some g ∈ Lq(X) when 1 ≤ p < ∞. In this case, the discussion in the
previous paragraph implies that the weak∗ topology on L∞(X) as the dual of
L1(X) corresponds exactly to the topology induced on the set of multiplication
operators Tb with b in L∞(X) by the weak operator topology on BL(Lp(X))
when 1 ≤ p < ∞. There is an analogous statement for p = ∞ using the weak∗

operator topology on BL(L∞(X)) associated to the weak∗ topology on L∞(X).
Let us now restrict our attention to the case where µ is counting measure on

X. Every element of ℓ1(X) determines a bounded linear functional on c0(X) ⊆
ℓ∞(X) as before, and it is well known that every bounded linear functional on
c0(X) is of this form. One can show that every summable function on X can
be expressed as the product of a summable function on X and a function that
vanishes at infinity on X. To see this, it is easy to reduce to the case where
X = Z+, because the set of points where a summable function on X is nonzero
has only finitely or countably many elements. This case can be handled as in
part (b) of Exercise 12 at the end of Chapter 3 in [30].

Using these remarks, one can check that the weak∗ topology on ℓ∞(X) as
the dual of ℓ1(X) corresponds exactly to the topology induced on the set of
multiplication operators Tb with b ∈ ℓ∞(X) by the weak operator topology on
BL(c0(X)). Similarly, the weak∗ topology on ℓ∞(X) corresponds exactly to the
topology induced on the set of multiplication operators Tb with b ∈ ℓ∞(X) by
the weak∗ operator topology on BL(ℓ1(X)), where ℓ1(X) is identified with the
dual of c0(X).

13 Dual linear mappings

Let V and W be vector spaces, both real or both complex, and equipped with
norms ‖v‖V and ‖w‖W , respectively. Also let V ′ and W ′ be the dual spaces of
bounded linear functionals on V and W , respectively, with their corresponding
dual norms ‖λ‖V ′ and ‖µ‖W ′ . If T is a bounded linear mapping from V into
W , then there is an associated dual linear mapping T ′ from W ′ into V ′, which
sends µ ∈ W ′ to the linear functional T ′(µ) on V defined by

T ′(µ) = µ ◦ T.(13.1)
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Thus

|(T ′(µ))(v)| = |µ(T (v))| ≤ ‖µ‖W ′ ‖T (v)‖W ≤ ‖µ‖W ′ ‖T‖op,V W ‖v‖V(13.2)

for every v ∈ V and µ ∈ W ′, where ‖T‖op,V W is the operator norm of T as a
bounded linear mapping from V into W . This implies that

‖T ′(µ)‖W ′ ≤ ‖T‖op,V W ‖µ‖W ′(13.3)

for every µ ∈ W ′, so that T ′ is a bounded linear mapping from W ′ into V ′, with
operator norm less than or equal to ‖T‖op,V W . Similarly,

|µ(T (v))| = |(T ′(µ))(v)| ≤ ‖T ′(µ)‖V ′ ‖v‖V ≤ ‖T ′‖op,W ′V ′ ‖µ‖W ′ ‖v‖V(13.4)

for every v ∈ V and µ ∈ W ′, where ‖T ′‖op,W ′V ′ is the operator norm of T ′ as
a bounded linear mapping from W ′ into V ′. Using this and the Hahn–Banach
theorem, one gets that

‖T (v)‖W ≤ ‖T ′‖op,W ′V ′ ‖v‖V(13.5)

for every v ∈ V , and hence that

‖T ′‖op,W ′V ′ = ‖T‖op,V W .(13.6)

Of course,
T 7→ T ′(13.7)

defines a linear mapping from BL(V,W ) into BL(W ′, V ′). One can check that
the weak operator topology on BL(V,W ) corresponds exactly to the topology
induced on the image of BL(V,W ) in BL(W ′, V ′) under (13.7) by the weak∗

operator topology on BL(W ′, V ′). If V is reflexive, then the weak and weak∗

operator topologies on BL(W ′, V ′) are the same.
Let V ′′ and W ′′ be the dual spaces of bounded linear functionals on V ′ and

W ′, respectively, with their corresponding dual norms ‖ · ‖V ′′ and ‖ · ‖W ′′ . It is
well known that

Lv(λ) = λ(v)(13.8)

defines an element of V ′′ for every v ∈ V , and that

v 7→ Lv(13.9)

is an isometric linear mapping from V into V ′′. Let T be a bounded linear
mapping from V into W , and let T ′ be the dual linear mapping from W ′ into
V ′, as in the previous paragraph. Repeating the process, we get a bounded
linear mapping T ′′ from V ′′ into W ′′ such that

‖T ′′‖op,V ′′W ′′ = ‖T ′‖op,W ′V ′ = ‖T‖op,V W ,(13.10)

where ‖T ′′‖op,V ′′W ′′ is the corresponding operator norm of T ′′. It is easy to see
that the restriction of T ′′ to the image of V in V ′′ under (13.9) corresponds

18



exactly to T in the obvious way. Of course, if V and W are reflexive, then
we can identify V , W with V ”, W”, and hence we can identify BL(V,W ) with
BL(V ′′,W ′′). In this case, T ′′ corresponds exactly to T with respect to these
identifications.

Suppose now that V and W are Hilbert spaces, with inner products 〈·, ·〉V
and 〈·, ·〉W , respectively. If T is a bounded linear mapping from V into W , then
it is well known that there is a unique adjoint linear mapping T ∗ from W into
V such that

〈T (v), w〉W = 〈v, T ∗(w)〉V(13.11)

for every v ∈ V and w ∈ W . In the real case, one can use the inner products to
identify V and W with their dual spaces, and T ∗ is basically the same as the
dual linear mapping T ′ defined earlier. This does not quite work in the complex
case, because of complex conjugation. In particular,

T 7→ T ∗(13.12)

is a linear mapping from BL(V,W ) into BL(W,V ) in the real case, and a
conjugate-linear mapping in the complex case. In both cases,

‖T ∗‖op,WV = ‖T‖op,V W(13.13)

and
(T ∗)∗ = T(13.14)

for every T ∈ BL(V,W ), where the subscripts in (13.13) indicate which operator
norm is being used, as before. In particular, (13.14) implies that (13.12) maps
BL(V,W ) onto BL(W,V ). It is easy to see that (13.12) is also a homeomorphism
from BL(V,W ) onto BL(W,V ) with respect to the corresponding weak operator
topologies.

Let V1, V2, and V3 be vector spaces, all real or all complex, and with norms
‖ · ‖V1

, ‖ · ‖V2
, and ‖ · ‖V3

, respectively. If T1 : V1 → V2 and T2 : V2 → V3 are
bounded linear mappings, then their composition T2 ◦ T1 is a bounded linear
mapping from V1 into V3. One can check that the dual of T2 ◦ T1 is equal to
T ′

1 ◦ T ′
2, as a bounded linear mapping from V ′

3 into V ′
1 . Similarly, if V1, V2, and

V3 are Hilbert spaces, then the adjoint of T2◦T1 is equal to T ∗
1 ◦T ∗

2 as a bounded
linear mapping from V3 into V1.

14 Shift operators, 3

Let f be a real or complex-valued function on Z, and put

T (f)(j) = f(j + 1)(14.1)

for each j ∈ Z, as in Section 7. Suppose that 1 ≤ p, q ≤ ∞ are conjugate
exponents, so that 1/p + 1/q = 1, and let f ∈ ℓp(Z) and g ∈ ℓq(Z) be given.
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Note that

∞∑

j=−∞

|Tn(f)(j)| |g(j)| =

∞∑

j=−∞

|f(j + n)| |g(j)|(14.2)

≤ ‖Tn(f)‖p ‖g‖q = ‖f‖p ‖g‖q

for each n, by Hölder’s inequality. If 1 < p, q < ∞, then one can check that

∞∑

j=−∞

Tn(f)(j) g(j) =

∞∑

j=−∞

f(j + n) g(j) → 0(14.3)

as |n| → ∞. More precisely, if g(j) 6= 0 for only finitely many j, then this
follows from the fact that f ∈ c0(Z) when p < ∞. One can then get (14.3) for
every f ∈ ℓp(Z) and g ∈ ℓq(Z) using the fact that functions with finite support
on Z are dense in ℓq(Z) when q < ∞. This implies that Tn → 0 as n → ∞ with
respect to the weak operator topology on BL(ℓp(Z)) when 1 < p < ∞. Similarly,
(14.3) holds when f ∈ c0(Z) and g ∈ ℓ1(Z), which implies that Tn → 0 with
respect to the weak operator topology on BL(c0(Z)). This also works when
f ∈ ℓ1(Z) and g ∈ c0(Z), which implies that Tn → 0 as n → ∞ with respect to
the weak∗ operator topology on BL(ℓ1(Z)), where ℓ1(Z) is identified with the
dual of c0(Z). However, this does not work when f ∈ ℓ1(Z) and g ∈ ℓ∞(Z), as
one can see by taking g to be a nonzero constant function on Z. Thus {Tn}∞n=1

does not converge to 0 with respect to the weak operator topology on BL(ℓ1(Z)).
If f ∈ ℓp(Z) and g ∈ ℓq(Z), where 1 ≤ p, q ≤ ∞ are conjugate exponents,

then

∞∑

j=−∞

(T (f))(j) g(j) =

∞∑

j=−∞

f(j + 1) g(j)(14.4)

=

∞∑

j=−∞

f(j) g(j − 1)

=
∞∑

j=−∞

f(j) (T−1(g))(j).

This shows that the dual of T on ℓp(Z) can be identified with T−1 on ℓq(Z)
when 1 ≤ p < ∞, and similarly the dual of T on c0(Z) can be identified with
T−1 on ℓ1(Z). This also shows that the adjoint of T on ℓ2(Z) as a Hilbert space
with respect to the standard inner product can be identified with T−1 in the
real case. The same conclusion holds in the complex case, because

∞∑

j=−∞

(T (f))(j) g(j) =

∞∑

j=−∞

f(j) (T−1(g))(j)(14.5)

for all complex-valued square-summable functions f , g on Z, as in (14.4).
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Now let f be a real or complex-valued function on Z+, and put

A(f)(j) = f(j − 1)(14.6)

when j ≥ 2, and A(f)(1) = 0. If we extend functions on Z+ to functions
on Z by setting them equal to 0 when j ≤ 0, then A(f) corresponds exactly
to T−1(f), where T is as in the previous paragraphs. In particular, An → 0
as n → ∞ with respect to the weak operator topology on BL(ℓp(Z+)) when
1 < p < ∞, and with respect to the weak operator topology on BL(c0(Z+)), for
the same reasons as before. This also works with respect to the weak∗ operator
topology on BL(ℓ1(Z+)), but not with respect to the weak operator topology
on BL(ℓ1(Z+)).

Similarly, put
B(f)(j) = f(j + 1)(14.7)

for each function f on Z+, which is the same as the operator considered in
Section 4. Let 1 ≤ p, q ≤ ∞ be conjugate exponents again, and note that A and
B are bounded linear operators on ℓp(Z+) for each p, and that they both map
c0(Z+) into itself. If f ∈ ℓp(Z+) and g ∈ ℓq(Z+), then

∞∑

j=1

A(f)(j) g(j) =

∞∑

j=2

f(j − 1) g(j)(14.8)

=

∞∑

j=1

f(j) g(j + 1) =

∞∑

j=1

f(j)B(g)(j),

where the convergence of the sums follows from Hölder’s inequality. Let us
identify the dual of ℓp(Z+) with ℓq(Z+) in the usual way when 1 ≤ p < ∞, and
the dual of c0(Z+) with ℓ1(Z+). It follows from (14.8) that the dual of A on
ℓp(Z+) can be identified with B acting on ℓq(Z+) when 1 ≤ p < ∞, and that the
dual of A on c0(Z+) can be identified with B acting on ℓ1(Z+). Similarly, the
dual of B on ℓp(Z+) can be identified with A acting on ℓq(Z+) when 1 ≤ p < ∞,
and the dual of B on c0(Z+) can be identified with A acting on ℓ1(Z+). This
also implies that A and B are adjoints of each other on ℓ2(Z+), as a Hilbert
space with respect to the usual inner product in the real case. One can get the
same conclusion in the complex case using the fact that

∞∑

j=1

A(f)(j) g(j) =

∞∑

j=1

f(j)B(g)(j),(14.9)

for all complex-valued square-summable functions f , g on Z+, as in (14.8).

15 Uniform boundedness

Let Z be a vector space over the real or complex numbers equipped with a norm
‖z‖Z , and let Z ′ be the dual space of bounded linear functionals on Z, equipped
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with the dual norm ‖λ‖Z′ . Also let E be a subset of Z ′ which is bounded
pointwise on Z, in the sense that for each z ∈ Z, the real or complex numbers
of the form λ(z) with λ ∈ E are bounded. If Z is complete with respect to
the metric associated to the norm, then the Banach–Steinhaus theorem implies
that E is bounded in Z ′ with respect to the dual norm.

Now let W be a real or complex vector space with a norm ‖w‖W , and let
W ′ be the dual of W , with the dual norm. Suppose that E ⊆ W is weakly
bounded, in the sense that for each µ ∈ W ′, the set of real or complex numbers
of the form µ(w) with w ∈ E is bounded. Under these conditions, it is also well
known that E has to be bounded with respect to the norm on W . This can be
derived from the remarks in the previous paragraph, applied to Z = W ′, and
using the standard isometric embedding of W in the dual W ′′ of W ′. Note that
W ′ is always complete with respect to the dual norm.

Suppose that V and W are vector spaces, both real or both complex, and
equipped with norms ‖v‖V and ‖w‖W , respectively. Let E be a subset of
BL(V,W ) with the property that for each v ∈ V and µ ∈ W ′, the real or
complex numbers of the form µ(T (v)) with T ∈ E are bounded. This implies
that for each v ∈ V , the set of vectors in W of the form T (v) with T ∈ E is
bounded, by the remarks in the previous paragraph. If V is complete, then it
follows that E is bounded with respect to the operator norm on BL(V,W ), by
the Banach–Steinhaus theorem. There are analogous statements for the case
where W is the dual of a Banach space Z, and one restricts one’s attention to
bounded linear functionals on W corresponding to evaluation at elements of Z.

In particular, if {Tj}
∞
j=1 is a sequence of bounded linear mappings from V

into W that converges with respect to the weak operator topology on BL(V,W ),
then {µ(Tj(v))}∞j=1 converges in R or C for every v ∈ V and µ ∈ W ′, and hence
is bounded. This implies that the operator norms of the Tj ’s are bounded when
V is complete, as in the preceding paragraph. Similarly, if W is the dual of a
Banach space Z, and if {Tj}

∞
j=1 converges with respect to the weak∗ operator

topology on BL(V,W ), then the operator norms of the Tj ’s are bounded.

16 Continuous linear functionals

Let V and W be vector spaces, both real or both complex, and equipped with
norms ‖v‖V and ‖w‖W , respectively. Suppose that L is a linear functional on
BL(V,W ) which is continuous with respect to the strong operator topology. This
implies that there are finitely many vectors v1, . . . , vn in V and a nonnegative
real number C such that

|L(T )| ≤ C max
1≤j≤n

‖T (vj)‖W(16.1)

for every T ∈ BL(V,W ). More precisely, this can be derived from the fact that
|L(T )| < 1 for all T in an open set in BL(V,W ) with respect to the strong
operator topology that contains 0.

Let Wn be the set of n-tuples (w1, . . . , wn) with coordinates in W . This is a
vector space with respect to coordinatewise addition and scalar multiplication,
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which is the same as the direct sum of n copies of W . Of course,

‖(w1, . . . , wn)‖W n = max
1≤j≤n

‖wj‖W(16.2)

defines a norm on Wn, for which the corresponding topology is the same as
the product topology associated to the topology on W determined by the norm
‖w‖W . Observe that

T 7→ (T (v1), . . . , T (vn))(16.3)

defines a continuous linear mapping from BL(V,W ) into Wn, with respect to
the strong operator topology on BL(V,W ) and the topology determined by the
norm on Wn. Moreover, L(T ) = 0 when T (vj) = 0 for each j, by (16.1), so that
L(T ) actually depends only on T (v1), . . . , T (vn).

We may as well ask also that v1, . . . , vn be linearly independent in V , since
otherwise we can drop some of the vj ’s until this occurs. The condition (16.1)
will still hold, but perhaps with a different constant C. Using the Hahn–Banach
theorem and the linear independence of the vj ’s, any n-tuple of vectors in W
can occur as T (v1), . . . , T (vn) for some T ∈ BL(V,W ), so that (16.3) maps
BL(V,W ) onto Wn. This implies that L can be expressed as the composition
of a bounded linear functional on Wn with (16.3). Alternatively, one can argue
directly that L is the composition of a bounded linear functional on a subspace of
Wn with (16.3), and then use the Hahn–Banach theorem to extend the bounded
linear functional on a subspace of Wn to all of Wn.

Of course, every bounded linear functional on Wn can be expressed as a sum
of bounded linear functionals on W applied to each of the n coordinates. This
implies that L can be expressed as

L(T ) =
n∑

j=1

λj(T (vj))(16.4)

for some bounded linear functionals λ1, . . . , λn on W and every T ∈ BL(V,W ).
Conversely, if a linear functional L on BL(V,W ) is of this form for some finite
collection of vectors v1, . . . , vn ∈ V and bounded linear functionals λ1, . . . , λn on
W , then L is obviously continuous with respect to the strong operator topology.
In fact, L is also continuous with respect to the weak operator topology on
BL(V,W ) under these conditions.

17 Bilinear functionals

Let V and Z be vector spaces, both real or both complex, and equipped with
norms ‖v‖V and ‖z‖Z , respectively. Also let b(v, z) be a real or complex-valued
function of v ∈ V and z ∈ Z, as appropriate. If b(v, z) is a linear function of v
for each z ∈ Z, and a linear function of z for each v ∈ V , then b(v, z) is said to
be bilinear. A bilinear functional b(v, z) on V × Z is said to be bounded if

|b(v, z)| ≤ C ‖v‖V ‖z‖Z(17.1)
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for some nonnegative real number C and every v ∈ V and z ∈ Z. It is easy
to see that a bounded bilinear functional b(v, z) on V × Z is continuous with
respect to the product topology on V × Z associated to the topologies on V
and Z determined by their norms. Conversely, if b(v, z) is continuous at 0 with
respect to the product topology on V ×Z, then there are positive real numbers
r, t such that

|b(v, z)| < 1(17.2)

for every v ∈ V and z ∈ Z that satisfy ‖v‖V < r and ‖z‖Z < t. Using this, one
can check that (17.1) holds with C = 1/r t.

Suppose that b(v, z) is a bounded bilinear functional on V × Z, and put
bv(z) = b(v, z) for each v ∈ V and z ∈ Z. Thus bv(z) is a bounded linear
functional on Z for each v ∈ V , and

v 7→ bv(17.3)

defines a bounded linear mapping from V into the dual Z ′ of Z, with respect
to the dual norm ‖ · ‖Z′ on Z. More precisely, if b(v, z) satisfies (17.1), then the
operator norm of (17.3) is less than or equal to C. Conversely, every bounded
linear mapping from V into Z ′ determines a bounded bilinear functional b(v, z)
on V × Z in this way.

Suppose for the moment that V is a real vector space, and let (W, 〈·, ·〉W )
be a real inner product space. Also let ‖w‖W be the corresponding norm on W ,
which is the square root of 〈w,w〉W . If T is a bounded linear mapping from V
into W , then

b(v, w) = 〈T (v), w〉W(17.4)

is a bounded bilinear functional on V × W . Conversely, if W is a Hilbert
space, then every bounded bilinear functional on V × W can be expressed as
(17.4) for some bounded linear mapping T from V into W . This uses the Riesz
representation theorem, which says that every bounded linear functional on W
can be expressed in terms of the inner product with a unique element of W .

If V and W are complex and T is a bounded linear mapping from V into
W , then (17.4) is linear in v and conjugate-linear in w. Of course, (17.4) still
satisfies the boundedness condition (17.1), with C equal to the operator norm of
T . Conversely, if b(v, w) is a complex-valued function on V ×W which is linear
in v, conjugate-linear in w, and bounded in the sense of (17.1), then b(v, w) is
of the form (17.4) for some bounded linear mapping from V into W . As before,
this can be derived from the representation of bounded linear functionals on W
in terms of the inner product.

18 Compactness

Let V and Z be vector spaces again, both real or both complex, and equipped
with norms ‖v‖V and ‖z‖Z , respectively. As in the previous section, the space
BL(V,Z ′) of bounded linear mappings from V into the dual Z ′ of Z can be
identified with the space of bounded bilinear functionals b(v, z) on V ×Z. Note
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that the space of bounded bilinear functionals on V × Z is a vector space with
respect to pointwise addition and scalar multiplication of functions. The weak∗

operator topology on BL(V,Z) corresponds to the weak topology on the space
of bounded bilinear functionals on V ×Z determined by the collection of linear
functionals of the form

L̂v,z(b) = b(v, z),(18.1)

with v ∈ V and z ∈ Z.
Let B be the closed unit ball in BL(V,Z ′) with respect to the operator norm.

This can be identified with the collection of bounded bilinear functionals b(v, z)
on V × Z that satisfy (17.1) with C = 1, as before. It is easy to see that this
is a closed set in BL(V,Z ′) with respect to the weak∗ operator topology, which
is the same as saying that the corresponding collection of bounded bilinear
functionals is a closed set with respect to the weak topology mentioned in the
previous paragraph. One can also show that B is compact with respect to this
topology. This is analogous to the Banach–Alaoglu theorem, which says that
the closed unit ball in the dual of a vector space with a norm is compact with
respect to the weak∗ topology.

As usual, there are some simplifications when V and Z are separable. Let
AV and AZ be subsets of V and Z with only finitely or countably many elements
whose linear spans are dense in V and Z, respectively. In this case, one can get
the same topology on B using linear functionals of the form (18.1) with v ∈ AV

and z ∈ AZ . This implies that the induced topology on B is determined by
a metric, so that compactness of B is equivalent to sequential compactness.
Let {bj(v, z)}∞j=1 be a sequence of bounded bilinear functionals on V × Z that
satisfy (17.1) with C = 1. We would like to show that there is a subsequence
{bjl

(v, z)}∞l=1 that converges for each v ∈ V and z ∈ Z to a bounded bilinear
functional b(v, z) on V × Z that also satisfies (17.1) with C = 1. Of course,
{bj(v, z)}∞j=1 is a bounded sequence of real or complex numbers for each v ∈ V
and z ∈ Z, and hence there is a subsequence depending on v and z that converges
in R or C, as appropriate. By standard Cantor diagonalization arguments, there
is an increasing sequence {jl}

∞
l=1 of positive integers such that {bjl

(v, z)}∞l=1

converges in R or C for every v ∈ AV and z ∈ AZ . Using bilinearity, it follows
that {bjl

(v, z)}∞l=1 converges for every v, z in the linear spans of AV , AZ in V ,
Z, respectively. Because the linear spans of AV , AZ are dense in V , Z, one can
use the uniform boundedness of the bj ’s to get that {bjl

(v, z)}∞l=1 is a Cauchy
sequence in R or C for every v ∈ V and z ∈ Z. This implies that {bjl

(v, z)}∞l=1

converges to a real or complex number b(v, z) for every v ∈ V and z ∈ Z. It
is easy to see that b(v, z) is a bilinear functional on V × Z, since bj(v, z) is
bilinear for each j. Similarly, b(v, z) satisfies (17.1) with C = 1, because of the
corresponding property of bj(v, z) for each j.

Let V and W be vector spaces, both real or both complex, and equipped
with norms. If W is reflexive, then the closed unit ball in BL(V,W ) is compact
with respect to the weak operator topology. This follows from the previous
discussion applied to Z = W ′, and identifying W with its second dual. In
the context of Hilbert spaces, this would typically be reformulated in terms of
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the inner product. In particular, for complex Hilbert spaces, one can also use
slightly different bilinearity conditions, as in the previous section.

19 Other operators, 2

Let V be a real or complex vector space with a norm ‖v‖V , and let T be a
bounded linear operator on V , with operator norm less than or equal to 1. Put

An =
1

n + 1

n∑

l=0

T l(19.1)

for each nonnegative integer n, so that An also has operator norm less than or
equal to 1, as in Section 8. Also let V ′ be the dual space of bounded linear
functionals on V , with the corresponding dual norm ‖λ‖V ′ , and let T ′ be the
dual linear mapping on V ′ associated to T as in Section 13. Thus T ′ is a
bounded linear operator on V ′, with operator norm equal to the operator norm
of T on V . Note that

(T l)′ = (T ′)l(19.2)

for each nonnegative integer l, and hence that

A′
n =

1

n + 1

n∑

l=0

(T ′)l(19.3)

for every nonnegative integer n. As before, the operator norm of A′
n on V ′ is

equal to the operator norm of An on V for each n, which is less than or equal
to 1. Remember that the closed unit ball in BL(V ′) is compact with respect to
the weak∗ operator topology, as in the previous section. If V is reflexive, then
V can be identified with the dual of V ′, and T can be identified with the dual
of T ′, so that the remarks in this section can be applied directly to V and T .

If V and V ′ are separable, then there is a subsequence of {A′
n}

∞
n=1 that

converges with respect to the weak∗ operator topology on BL(V ′) to a bounded
linear operator R on V ′, with operator norm less than or equal to 1, as in the
previous section. Otherwise, put

Ek = {A′
n : n ≥ k}(19.4)

for each nonnegative integer k, and let Ek be the closure of Ek with respect
to the weak∗ operator topology on BL(V ′). Note that Ek+1 ⊆ Ek for each
k, which implies that Ek+1 ⊆ Ek. Of course, Ek 6= ∅ for each k, and hence
the compactness of the closed unit ball in BL(V ′) with respect to the weak∗

operator topology implies that

∞⋂

k=0

Ek 6= ∅,(19.5)
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by standard arguments. Let R be an element of this intersection, which is a
bounded linear operator on V ′ with operator norm less than or equal to 1.

Put
Ek(λ) = {A′

n(λ) : n ≥ k}(19.6)

for each λ ∈ V ′, and let Ek(λ) be the closure of Ek(λ) with respect to the weak∗

topology on V ′. It is easy to see that

R(λ) ∈
∞⋂

k=0

Ek(λ)(19.7)

for each λ ∈ V ′, using the definition of the weak∗ operator topology on BL(V ′).
If {A′

n(λ)}∞n=0 converges to some µ ∈ V ′ with respect to the weak∗ topology on
V ′, then µ is the only element of

⋂∞

k=0 Ek(λ), by standard arguments. Thus
R(λ) = µ under these conditions.

Let I ′ be the identity operator on V ′, which is the dual of the identity
operator I on V . If λ ∈ V ′ is in the closure of (I ′ − T ′)(V ′) with respect to
the dual norm on V ′, then {A′

n(λ)}∞n=0 converges to 0 with respect to the dual
norm on V ′, as in Section 8. This implies that R(λ) = 0, by the remarks in the
previous paragraph. Similarly, if λ ∈ V ′ satisfies T ′(λ) = λ, then A′

n(λ) = λ for
every n ≥ 0, and hence R(λ) = λ. If λ is any element of V ′, then

A′
n(λ) − T ′(A′

n(λ)) → 0(19.8)

as n → ∞ with respect to the dual norm on V ′, as in Section 8. Using this, one
can show that

T ′(R(λ)) = R(λ)(19.9)

for every λ ∈ V ′. More precisely, this also uses the fact that T ′ is continuous
with respect to the weak∗ topology on V ′. Alternatively, one can check directly
that R commutes with T ′, because T ′ commutes with A′

n for each n.

20 Composition operators

Let X be a nonempty topological space, and let Cb(X) be the space of bounded
continuous real or complex-valued functions on X, with the supremum norm.
Also let φ be a homeomorphism from X onto itself, and put

T (f) = Tφ(f) = f ◦ φ(20.1)

for every f ∈ Cb(X). This defines an isometric linear mapping from Cb(X) onto
itself under these conditions. Note that

T l(f) = f ◦ φl(20.2)

for each f ∈ Cb(X) and l ∈ Z+, where φl is the l-fold composition of φ. This
also works when l ≤ 0, with the usual conventions.
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Suppose for the moment that X is a compact Hausdorff topological space,
so that continuous functions on X are automatically bounded, and Cb(X) is the
same as the space C(X) of all continuous real or complex-valued functions on X.
Also let C(X)′ be the dual space of bounded linear functionals on C(X) with
respect to the supremum norm. The elements of C(X)′ can be identified with
real or complex-valued regular Borel measures on X, by a version of the Riesz
representation theorem. Remember that λ ∈ C(X)′ is said to be nonnegative
if λ(f) ≥ 0 for every nonnegative real-valued continuous function f on X, in
which case λ corresponds to a nonnegative real-valued regular Borel measure on
X, and the dual norm of λ is equal to λ(1X). Note that the set of nonnegative
elements of C(X)′ is closed with respect to the weak∗ topology on C(X)′.

Let T ′ be the dual linear mapping on C(X)′ associated to T , which is an
isometric linear mapping from C(X)′ onto itself, with respect to the dual norm.
The elements λ of C(X)′ that satisfy

T ′(λ) = λ(20.3)

correspond exactly to real or complex-valued regular Borel measures on X that
are invariant under φ. Note that

(T ′(λ))(1X) = λ(T (1X)) = λ(1X)(20.4)

for every λ ∈ C(X)′, and that T ′(λ) is nonnegative when λ is nonnegative. Let
A′

n be as in (19.3), which is the dual mapping associated to An in (19.1) for
each n. The operator norm of A′

n on C(X)′ is less than or equal to 1 for each
n, and one can argue as in the previous section to get the existence of limiting
operators R with respect to the weak∗ operator topology on BL(C(X)′).

If λ ∈ C(X)′ is nonnegative, then A′
n(λ) is nonnegative for each n, and it is

easy to see that R(λ) is nonnegative too. Similarly, (A′
n(λ))(1X) = λ(1X) for

each λ ∈ C(X)′ and n ≥ 0, which implies that

(R(λ))(1X) = λ(1X).(20.5)

In particular, R(λ) 6= 0 when λ(1X) 6= 0. If λ ∈ C(X)′ satisfies (20.3), then
A′

n(λ) = λ for each n, and hence R(λ) = λ. We also have that (19.9) holds for
every λ ∈ C(X)′, as in the previous section.

Suppose instead that X is a locally compact Hausdorff topological space
which is not compact, and let C0(X) be the space of continuous real or complex-
valued functions on X that vanish at infinity. Remember that C0(X) is a closed
linear subspace of Cb(X) with respect to the supremum norm, and let C0(X)′

be the dual space of bounded linear functionals on C0(X). As before, the
elements of C0(X) can be identified with real or complex-valued regular Borel
measures on X, by a version of the Riesz representation theorem. If φ is a
homeomorphism from X onto itself, then T = Tφ maps C0(X) onto itself, since
continuous mappings send compact sets to compact sets. If X is an infinite set
equipped with the discrete topology, then C0(X) is the same as c0(X), whose
dual can be identified with ℓ1(X).
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At any rate, if X is not compact, then 1X is not an element of C0(X),
which is the main difference between this case and the previous one. Of course,
one can always consider the one-point compactification of X, for which the
corresponding space of continuous functions can be identified with the linear
span of C0(X) and constant functions on X. This is the same as the space of
continuous functions on X with a limit at infinity, which is also a closed linear
subspace of Cb(X). The dual space of bounded linear functionals can then be
identified with the linear span of C0(X)′ and the linear functional associated to
the limit at infinity. If φ is a homeomorphism from X onto itself, then φ has
a natural extension to a homeomorphism on the one-point compactification of
X, which sends the point at infinity to itself.

Let X be an infinite set equipped with the discrete topology, so that Cb(X) =
ℓ∞(X) can be identified with the dual of ℓ1(X). If φ is a one-to-one mapping
from X onto itself, then the composition operator T = Tφ on ℓ∞(X) can be
identified with the dual of the composition operator on ℓ1(X) associated to
φ−1. This permits us to apply the remarks in the previous section directly
to Tφ on ℓ∞(X), to get a bounded linear operator A on ℓ∞(X) which can be
approximated by the operators An in (19.1) for arbitrarily large n with respect
to the weak∗ operator topology on BL(ℓ∞(X)). Of course, constant functions
on Z are invariant under T , and hence A maps constant functions to themselves
too. The analogue of (19.9) in this context implies that

T (A(f)) = A(f)(20.6)

for every f ∈ ℓ∞(X).
Let us now take X = Z and φ(j) = j +1. In this case, constant functions on

Z are the only functions that are invariant under T , so that A(f) is a constant
function on Z for every f ∈ ℓ∞(Z). Thus A can be expressed as

A(f) = λ(f)1Z(20.7)

for some bounded linear functional λ on ℓ∞(Z) such that λ(1Z) = 1. If f is
a nonnegative real-valued bounded function on Z, then T l(f) ≥ 0 for each l,
An(f) ≥ 0 for each n, and hence A(f) ≥ 0. This implies that λ(f) ≥ 0, so that
λ is a nonnegative linear functional on ℓ∞(Z). We also have that

An(f − T (f)) → 0(20.8)

as n → ∞ with respect to the supremum norm on ℓ∞(Z) for every f ∈ ℓ∞(Z),
as in Section 8. It follows that A(f −T (f)) = 0 for every f ∈ ℓ∞(Z), and hence
that λ(f − T (f)) = 0 for every f ∈ ℓ∞(Z). Equivalently,

λ(T (f)) = λ(f)(20.9)

for every f ∈ ℓ∞(Z), which is to say that λ is invariant under translations. If
f ∈ c0(Z), then we have seen that ‖An(f)‖∞ → 0 as n → ∞, so that λ(f) = 0.
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21 Continuity properties

Let V , W , and Z be vector spaces, all real or all complex, and equipped with
norms ‖v‖V , ‖w‖W , and ‖z‖Z , respectively. Let B be a bounded linear mapping
from V into W , and consider

R 7→ R ◦ B(21.1)

as a linear mapping from BL(W,Z) into BL(V,Z). It is easy to see that (21.1)
is a bounded linear mapping from BL(W,Z) into BL(V,Z) with respect to the
corresponding operator norms. One can also check that (21.1) is continuous
with respect to the strong operator topologies on BL(W,Z) and BL(V,Z), and
with respect to the weak operator topologies on BL(W,Z) and BL(V,Z). If Z
is the dual of another real or complex vector space with a norm, then (21.1)
is continuous with respect to the corresponding weak∗ operator topologies on
BL(W,Z) and BL(V,Z).

Now let A be a bounded linear mapping from W into Z, and consider

T 7→ A ◦ T(21.2)

as a linear mapping from BL(V,W ) into BL(V,Z). As before, (21.2) is a
bounded linear mapping from BL(V,W ) into BL(V,Z), with respect to the
corresponding operator norms. Similarly, (21.2) is continuous with respect to
the strong operator topologies on BL(V,W ) and BL(V,Z), and with respect
to the weak operator topologies on BL(V,W ) and BL(V,Z). If W and Z are
both duals of other real or complex vector spaces with norms, then the weak∗

operator topologies can be defined on BL(V,W ) and BL(V,Z) in the usual way
too. If A is the dual of a bounded linear mapping from the pre-dual of Z into
the pre-dual of W , then (21.2) is continuous with respect to the corresponding
weak∗ operator topologies on BL(V,W ) and BL(V,Z) as well.

If A, B are bounded linear mappings from W into Z and from V into W ,
respectively, then A ◦ B is a bounded linear mapping from V into Z, and we
can consider

(A,B) 7→ A ◦ B(21.3)

as a mapping from BL(W,Z) × BL(V,W ) into BL(V,Z). In order to look at
the behavior of this mapping at a point (A0, B0), it is helpful to observe that

A ◦ B − A0 ◦ B0 = A ◦ (B − B0) + (A − A0) ◦ B0.(21.4)

In particular,

‖A ◦ B − A0 ◦ B0‖op,V Z ≤ ‖A‖op,WZ ‖B − B0‖op,V W(21.5)

+‖A − A0‖op,WZ ‖B0‖op,V W ,

where the subscripts indicate which operator norm is being used. It follows easily
from this that (21.3) is continuous with respect to the topologies on BL(V,W ),
BL(W,Z), and BL(V,Z) determined by the corresponding operator norms, and
using the associated product topology on BL(W,Z) × BL(V,W ).
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Similarly,

‖(A ◦ B − A0 ◦ B0)(v)‖Z ≤ ‖A‖op,WZ ‖(B − B0)(v)‖W(21.6)

+‖(A − A0)(B0(v))‖Z

for every v ∈ V . Suppose that E is a bounded subset of BL(W,Z) with respect
to the operator norm, and consider (21.3) as a mapping from E ×BL(V,W ) into
BL(V,Z). It is easy to see that this mapping is continuous with respect to the
strong operator topologies on BL(V,W ) and BL(V,Z), and using the topology
induced on E by the strong operator topology on BL(W,Z). Of course, one also
uses the corresponding product topology on E × BL(V,W ). Note that A ◦ B
tends to 0 with respect to the strong operator topology on BL(V,Z) when B
approaches 0 with respect to the strong operator topology on BL(V,W ) and
the operator norm of A remains bounded, which corresponds to the case where
B0 = 0.

If v ∈ V and λ is a bounded linear functional on Z, then

|λ((A ◦ B − A0 ◦ B0)(v))| ≤ ‖λ‖Z′ ‖A‖op,WZ ‖(B − B0)(v)‖W(21.7)

+|λ((A − A0)(B0(v))|,

where ‖λ‖Z′ denotes the dual norm of λ corresponding to the norm ‖z‖Z on
Z. Let E be a bounded subset of BL(W,Z) with respect to the operator norm
again, equipped now with the topology induced by the weak operator topology
on BL(W,Z). Also let BL(V,W ) be equipped with the strong operator topology,
and let E ×BL(V,W ) be equipped with the corresponding product topology. If
BL(V,Z) is equipped with the weak operator topology, then one can check that
(21.3) is continuous as a mapping from E×BL(V,W ) into BL(V,Z), using (21.7).
There is an analogous statement for the weak∗ operator topologies instead of the
weak operator topologies on BL(V,Z) and BL(W,Z) when Z is a dual space.

Suppose that V = W = Z = ℓp(Z+) for some p, 1 < p < ∞, and let A
and B be the shift operators discussed in Section 14. Thus An and Bn have
operator norm equal to 1 on ℓp(Z+) for each n ∈ Z+, An → 0 as n → ∞ with
respect to the weak operator topology on BL(ℓp(Z+)), and Bn → 0 as n → ∞
with respect to the strong operator topology on BL(ℓp(Z+)). However, Bn ◦An

is the identity operator on ℓp(Z+) for each n ≥ 1, and hence does not converge
to 0 as n → ∞ with respect to the weak operator topology on BL(ℓp(Z+)). The
analogous statements for these operators acting on c0(Z+) also hold. There are
analogous statements for these operators acting on ℓ1(Z+) as well, except that
An → 0 as n → ∞ with respect to the weak∗ operator topology on BL(ℓ1(Z+)),
where ℓ1(Z+) is identified with the dual of c0(Z+). Of course, An ◦ Bn → 0
as n → ∞ with respect to the strong operator topology on BL(ℓp(Z+)) when
1 ≤ p < ∞, and on BL(c0(Z+)). This simply uses the fact that Bn → 0 as
n → ∞ with respect to the strong operator topology, while the operator norm
of An is bounded.

Let V and W be vector spaces again, both real or both complex, and with
norms ‖v‖V and ‖w‖W , respectively. Also let A, A0 be bounded linear operators

31



from V onto W which are invertible, in the sense that their inverses are bounded
linear mappings from W onto V . Observe that

A−1 − A−1
0 = A−1 ◦ A0 ◦ A−1

0 − A−1 ◦ A ◦ A−1
0(21.8)

= A−1 ◦ (A0 − A) ◦ A−1
0 ,

and hence that

‖A−1 − A−1
0 ‖op,WV ≤ ‖A−1‖op,WV ‖A0 − A‖op,V W ‖A0‖op,WV .(21.9)

If A is sufficiently close to A0 with respect to the operator norm on BL(V,W ),
then one can show that the operator norm of A−1 is uniformly bounded, using
the triangle inequality to estimate ‖A(v)‖W from below in terms of ‖A0(v)‖W .
It follows from this and (21.9) that A 7→ A−1 is continuous as a mapping from
the set of invertible elements of BL(V,W ) into BL(W,V ) with respect to the
operator norm.

If w ∈ W , then

‖(A−1 − A−1
0 )(w)‖V ≤ ‖A−1‖op,WV ‖((A0 − A)(A−1

0 (w)))‖W(21.10)

for all invertible bounded linear mappings A, A0 from V into W , by (21.8). Let E
be a collection of bounded linear mappings from V into W which are invertible,
and whose inverses have uniformly bounded operator norms. It follows from
(21.10) that A 7→ A−1 is continuous as a mapping from E into BL(W,V ), where
E is equipped with the topology induced by the strong operator topology on
BL(V,W ), and where BL(W,V ) is equipped with the strong operator topology
as well.
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[24] A. Knapp, Advanced Real Analysis, Birkhäuser, 2005.
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