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Preface

These informal notes deal with some possible topics for a second course in
analysis. In particular, the reader is assumed to be familiar with metric spaces,
sequences and series, and continuous functions. Some topics may be mentioned
in a first course, with some review or elaboration here.

Of course, there are many textbooks in analysis, a few of which are mentioned
in the bibliography. The aim here is to complement these textbooks, while trying
to look ahead a bit to more advanced courses.

Although some basic notions are used frequently throughout the text, there
is a fair amout of independence between the various sections and chapters. Thus
the reader may wish to focus more on some parts, at least initially.

Some aspects of history related to topics like those considered here may be
found in [3, 15, 17, 18, 19, 20, 32, 33, 41, 42, 45, 66, 67, 68, 71, 72, 73, 74,
75, 76, 77, 79, 80, 96, 113, 152, 164], for instance. Some songs related to some
topics like those considered here may be found in [118, 119, 120]. Some remarks
concerning the clarity of explanations in mathematics may be found in [78].
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Chapter 1

Some mappings, metrics,
and norms

1.1 Lipschitz mappings

Let (X, dX(·, ·)) and (Y, dY (·, ·)) be metric spaces. A mapping f from X into Y
is said to be Lipschitz if there is a nonnegative real number C such that

dY (f(x), f(w)) ≤ C dX(x,w)(1.1.1)

for every x,w ∈ X. It is easy to see that Lipschitz mappings are uniformly
continuous. Note that (1.1.1) holds with C = 0 if and only if f is constant on
X.

Let X be a set, and let d(·, ·) and d′(·, ·) be metrics on X. Consider the
condition that there be a nonnegative real number C such that

d′(x,w) ≤ C d(x,w)(1.1.2)

for every x,w ∈ X. This is the same as (1.1.1), with dX = d, Y = X, dY = d′,
and f taken to be the identity mapping on X.

Let (X, d(·, ·)) be a metric space, and put

ρ(x,w) =
√
d(x,w)(1.1.3)

for every x,w ∈ X. One can check that this defines a metric on X as well. This
corresponds to the second part of Exercise 11 at the end of Chapter 2 in [155],
when we start with the standard Euclidean metric on the real line.

One can check that the identity mapping on X is uniformly continuous as a
mapping from X equipped with d(·, ·) into X equipped with ρ(x,w). Similarly,
one can check that the identity mapping on X in uniformly continuous as a
mapping from X equipped with ρ(·, ·) into X equipped with d(·, ·).

1



2 CHAPTER 1. SOME MAPPINGS, METRICS, AND NORMS

1.2 Lipschitz conditions on R

Let E be a nonempty subset of the real lineR, and let f be a real-valued function
on E. Note that f is Lipschitz on E with respect to the standard Euclidean
metric on R and its restriction to E if and only if there is a nonnegative real
number C such that

|f(x)− f(w)| ≤ C |x− w|(1.2.1)

for every x,w ∈ E. Here |t| denotes the usual absolute value of a real number t.
Of course, (1.2.1) holds automatically when x = w. If x 6= w, then (1.2.1) is

the same as saying that
|f(x)− f(w)|

|x− w|
≤ C.(1.2.2)

Suppose that x ∈ E is a limit point of E. The derivative of f at x is defined
as usual by

f ′(x) = lim
w∈E
w→x

f(w)− f(x)

w − x
,(1.2.3)

when the limit on the right exists. In this case, f is said to be differentiable at
x, as a function on E. If f is differentiable at x, and (1.2.1) holds for all w ∈ E,
or at least when w ∈ E is sufficiently close to x, then one can check that

|f ′(x)| ≤ C.(1.2.4)

If f is differentiable at x, then f is continuous at x, as a function on E, by
a standard argument. More precisely, if C is a real number such that

|f ′(x)| < C,(1.2.5)

then one can verify that (1.2.1) holds for all w ∈ E that are sufficiently close to
x.

Let a and b be real numbers with a < b, and suppose for the moment that
E is the corresponding open interval (a, b) in R. We may also allow a = −∞ or
b = +∞ here, so that E could be the real line, or an open half-line in R. Suppose
that f is differentiable at every point in E, and that there is a nonnegative real
number C such that (1.2.4) holds for every x ∈ E. Under these conditions, the
mean value theorem implies that (1.2.1) holds for every x,w ∈ E.

Let a and b be real numbers with a < b again, and suppose now that E
is the corresponding closed interval [a, b] in R. Suppose that f is continuous
on [a, b], and differentiable at every point in (a, b). If there is a nonnegative
real number C such that (1.2.4) holds for every x ∈ (a, b), then the mean-value
theorem implies that (1.2.1) holds for every x,w ∈ E.

Of course, there are analogous statements when E is a half-open, half-closed
interval in R, or a closed half-line in R.

See [13, 34, 39] for some related perspectives on the mean value theorem.
Some additional results related to the mean value theorem can be found in
[99, 181]. Some aspects of calculus on the rationals are discussed in [100, 102].
Some more connections between Lipschitz conditions and derivatives will be
considered in Chapter 8.
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1.3 Norms on Rn

Let n be a positive integer. Remember that Rn is the space of ordered n-tuples
x = (x1, . . . , xn) such that xj ∈ R for each j = 1, . . . , n. Addition can be
defined on Rn coordinatewise, so that

x+ y = (x1 + y1, . . . , xn + yn)(1.3.1)

for every x, y ∈ Rn. Similarly, if t ∈ R and x ∈ Rn, then

t x = (t x1, . . . , t xn)(1.3.2)

defines another element of Rn. Using these definitions of addition and scalar
multiplication, Rn becomes a vector space over the real numbers. Although
we shall not discuss the formal definition of a vector space here, the relevant
notions will hopefully be clear in the examples. Note that we shall use 0 to refer
to the element of Rn whose coordinates are equal to the real number 0, which
will hopefully also be clear from the context.

A nonnegative real-valued function N on Rn is said to define a norm on Rn

if it satisfies the following three conditions. First, N(x) = 0 if and only if x = 0.
Second,

N(t x) = |t|N(x)(1.3.3)

for every t ∈ R and x ∈ Rn. Third,

N(x+ y) ≤ N(x) +N(y)(1.3.4)

for every x, y ∈ Rn, which is the triangle inequality for norms.

The standard Euclidean norm is defined by

‖x‖2 =
( n∑

j=1

x2j

)1/2

(1.3.5)

for every x ∈ Rn. Of course, this uses the nonnegative square root on the
right side of the equation. It is easy to see that this satisfies the first two
requirements of a norm mentioned in the preceding paragraph. The triangle
inequality is more complicated, and can be obtained from the Cauchy–Schwarz
inequality. See Theorem 1.37 on p16 of [155].

One can check directly that

‖x‖1 =

n∑
j=1

|xj |(1.3.6)

defines a norm on Rn. (Exercise.) Similarly,

‖x‖∞ = max(|x1|, . . . , |xn|)(1.3.7)
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defines a norm on Rn, where more precisely the right side is the maximum of
|x1|, . . . , |xn|. In particular, if x, y ∈ Rn, then

‖x+ y‖∞ = max(|x1 + y1|, . . . , |xn + yn|)
≤ max(|x1|+ |y1|, . . . , |xn|+ |yn|) ≤ ‖x‖∞ + ‖y‖∞,(1.3.8)

using the triangle inequality for the absolute value function on R in the second
step.

If N is any norm on Rn, then

dN (x, y) = N(x− y)(1.3.9)

defines a metric on Rn. Indeed, the first requirement of a norm ensures that
(1.3.9) is equal to 0 if and only if x = y. The homogeneity condition (1.3.3)
implies that (1.3.9) is symmetric in x and y, by taking t = −1 in (1.3.3).
The triangle inequality for (1.3.9) as a metric on Rn follows from the triangle
inequality (1.3.4) for N as a norm on Rn.

The metric
d2(x, y) = ‖x− y‖2(1.3.10)

associated to the standard Euclidean norm (1.3.5) is the standard Euclidean
metric on Rn. Let

d1(x, y) = ‖x− y‖1(1.3.11)

and
d∞(x, y) = ‖x− y‖∞(1.3.12)

be the metrics on Rn corresponding to the norms (1.3.6) and (1.3.7), respec-
tively. If n = 1, then the norms (1.3.5), (1.3.6), and (1.3.7) reduce to the
absolute value function on R, and the corresponding metrics are the same as
the standard Euclidean metric on R.

If a1, . . . , an, b1, . . . , bn are nonnegative real numbers, then

n∑
j=1

aj bj ≤
( n∑

j=1

a2j

)1/2 ( n∑
j=1

b2j

)1/2

.(1.3.13)

This is a version of the Cauchy–Schwarz inequality. This is often formulated
a bit differently for arbitrary real or complex numbers, as in Theorem 1.35
on p15 of [155]. This formulation is included in the other one, by restricting
one’s attention to nonnegative real numbers. The other formulation can also be
obtained from this one, by applying (1.3.13) to the absolute values of the given
real or complex numbers.

1.4 Norms on Cn

Let C be the complex plane, as usual, and let n be a positive integer again. As
before, Cn is the set of ordered n-tuples of complex numbers. Addition can be
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defined on Cn coordinatewise, as in (1.3.1). One can also multiply an element of
Cn by a complex number coordinatewise, as in (1.3.2). In this way, Cn becomes
a vector space over the complex numbers.

A nonnegative real-valued function N on Cn is said to be a norm on Cn if it
satisfies the same type of conditions as in the previous section. More precisely,
the first and third conditions conditions are the same as before. In this situation,
the homogeneity condition (1.3.3) should hold for all complex numbers t and
elements of Cn, where |t| is the usual absolute value function on C.

The standard Euclidean norm is defined on Cn by

‖z‖2 =
( n∑

j=1

|zj |2
)1/2

,(1.4.1)

where |zj | is the absolute value of zj ∈ C for each j = 1, . . . , n. The triangle
inequality for (1.4.1) can be reduced to the real case, by taking the absolute
values of the coordinates of elements of Cn to get n-tuples of nonnegative real
numbers. This argument uses the triangle inequality for the absolute value
function on C, which is the same as the n = 1 case. The triangle inequality for
(1.4.1) on Cn can also be obtained from the Cauchy–Schwarz inequality, using
an argument analogous to the one in the real case. As before, it is easy to verify
the other two requirements for (1.4.1) to be a norm on Cn directly from the
definition.

Alternatively, the complex plane can be identified with R2, using the real
and imaginary parts of a complex number. Using this identification, the absolute
value of a complex number corresponds to the standard Euclidean norm on R2.
Similarly, Cn can be identified with R2n, using the real and imaginary parts of
the n coordinates of an element of Cn. Using this identification, the standard
Euclidean norm (1.4.1) on Cn corresponds exactly to the standard Euclidean
norm on R2n. This permits one to get the triangle inequality for (1.4.1) on Cn

from the triangle inequality for the standard Euclidean norm on R2n, because
addition on Cn corresponds exactly to addition on R2n with respect to this
identification.

As before, one can verify directly that

‖z‖1 =

n∑
j=1

|zj |(1.4.2)

and
‖z‖∞ = max(|z1|, . . . , |zn|)(1.4.3)

define norms on Cn as well. Of course, Rn may be considered as a subset of
Cn, because R is contained in C. The restrictions of (1.4.2) and (1.4.3) to
z ∈ Rn are the same as the corresponding norms defined on Rn in the previous
section. Similarly, the restriction of (1.4.1) to z ∈ Rn is the same as the standard
Euclidean norm on Rn.

If N is any norm on Cn, then

dN (z, w) = N(z − w)(1.4.4)
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defines a metric on Cn, for the same reasons as in the real case. The standard
Euclidean metric on Cn is the metric

d2(z, w) = ‖z − w‖2(1.4.5)

associated to the standard Euclidean norm (1.4.1). Similarly, let

d1(z, w) = ‖z − w‖1(1.4.6)

and

d∞(z, w) = ‖z − w‖∞(1.4.7)

be the metrics on Cn associated to the norms (1.4.2) and (1.4.3), respectively.
If n = 1, then the norms (1.4.1), (1.4.2), and (1.4.3) reduce to the absolute value
function on C, so that the corresponding metrics are the same as the standard
Euclidean metric on C.

The restriction of any norm N on Cn to Rn defines a norm on Rn. In
this case, the restriction of (1.4.4) to z, w ∈ Rn is the same as the metric on
Rn associated to the restriction of N to Rn. In particular, the restrictions of
(1.4.5), (1.4.6), and (1.4.7) to z, w ∈ Rn are the same as the corresponding
metrics defined on Rn in the previous section.

Let p be a positive real number, and put

‖z‖p =
( n∑

j=1

|zj |p
)1/p

(1.4.8)

for every z ∈ Cn. It is easy to see that this satisfies that positivity and ho-
mogeneity requirements of a norm. If p ≥ 1, then it is well known that (1.4.8)
satisfies the triangle inequality, and hence defines a norm on Cn. This is a
version of Minkowski’s inequality for sums. Of course, (1.4.8) is the same as
(1.4.1) when p = 2, and it is the same as (1.4.2) when p = 1. If n = 1, then
(1.4.8) reduces to the absolute value function on C. If 0 < p < 1 and n ≥ 2,
then one can show that (1.4.8) does not satisfy the triangle inequality, because
the corresponding balls in Cn are not convex. There are analogous statements
for the restriction of (1.4.8) to Rn.

1.5 Some basic inequalities

Let n be a positive integer, and let z ∈ Cn be given. It is easy to see that

‖z‖∞ ≤ ‖z‖2, ‖z‖1,(1.5.1)

directly from the definitions of these norms in the previous section. Similarly,

‖z‖22 =

n∑
j=1

|zj |2 ≤ ‖z‖∞
n∑

j=1

|zj | = ‖z‖∞ ‖z‖1 ≤ ‖z‖21,(1.5.2)
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so that
‖z‖2 ≤ ‖z‖1.(1.5.3)

It follows that the corresponding metrics satisfy

d∞(z, w) ≤ d2(z, w) ≤ d1(z, w)(1.5.4)

for every z, w ∈ Cn.
In the other direction, we have that

‖z‖2 ≤ n1/2 ‖z‖∞(1.5.5)

and
‖z‖1 ≤ n ‖z‖∞(1.5.6)

for every z ∈ Cn. One can also check that

‖z‖1 ≤ n1/2 ‖z‖2(1.5.7)

for every z ∈ Cn, using the Cauchy-Schwarz inequality (1.3.13). This implies
that

d2(z, w) ≤ n1/2 d∞(z, w),(1.5.8)

d1(z, w) ≤ nd∞(z, w),(1.5.9)

and
d1(z, w) ≤ n1/2 d2(z, w)(1.5.10)

for every z, w ∈ Cn.
Using these simple relationships, we get that d1(z, w), d2(z, w), and d∞(z, w)

have many of the same properties on Cn. They determine the same collections
of open sets, closed sets, compact sets, and bounded sets, for instance. They
also determine the same limit points of subsets of Cn, convergent sequences in
Cn, and Cauchy sequences. Using (1.5.4), it is easy to see that the identity
mapping on Cn is Lipschitz as a mapping from Cn equipped with d1(z, w)
into Cn equipped with d2(z, w), and from Cn equipped with d2(z, w) into Cn

equipped with d∞(z, w). Similarly, the identity mapping on Cn is Lipschitz as
a mapping from Cn equipped with d1(z, w) into Cn equipped with d∞(z, w).
We can use (1.5.8) to get that the identity mapping on Cn is Lipschitz as a
mapping from Cn equipped with d∞(z, w) into Cn equipped with d2(z, w), and
(1.5.10) implies that the identity mapping on Cn is Lipschitz as a mapping from
Cn equipped with d2(z, w) into Cn equipped with d1(z, w). One can use (1.5.9)
to get that the identity mapping on Cn is Lipschitz as a mapping from Cn

equipped with d∞(z, w) into Cn equipped with d1(z, w). Of course, there are
analogous statements for the restrictions of these metrics to Rn.

If N is any norm on Rn or Cn, then one can show that N is bounded by
a constant times the standard Euclidean norm, or equivalently by a constant
times either of the norms ‖ · ‖1, ‖ · ‖∞. To see this, one can express any element
of Rn or Cn as a linear combination of the standard basis vectors, to estimate
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N in terms of the absolute values of the coodinates of the given vector. One
can use this to show that N is continuous as a real-valued function on Rn or
Cn, as appropriate, with respect to the standard Euclidean metric. It follows
that N attains its minimum on the unit sphere in Rn or Cn, as appropriate,
with respect to the standard Euclidean metric again. Because the infimum is
positive, by definition of a norm, one can verify that the standard Euclidean
norm is bounded by a constant times N on Rn or Cn, as appropriate.

1.6 Functions with finite support

Let X be a nonempty set, and let f be a real or complex-valued function on X.
The support of f is defined to be the subset of X given by

supp f = {x ∈ X : f(x) 6= 0}.(1.6.1)

Let c00(X,R) be the space of real-valued functions on X whose support has
only finitely many elements, and let c00(X,C) be the space of complex-valued
functions on X with finite support. If f and g are real or complex-valued func-
tions on X with finite support, then their sum f(x) + g(x) also defines a real
or complex-valued function on X with finite support. Similarly, if f is a real or
complex-valued function on X with finite support, and t is a real or complex
number, as appropriate, then t f(x) has finite support in X. More precisely,
c00(X,R) and c00(X,C) are vector spaces over the real and complex numbers,
respectively, with respect to pointwise addition and scalar multiplication of func-
tions. These may be considered as linear subspaces of the spaces of all real or
complex-valued functions on X, respectively.

Of course, if X has only finitely many elements, then every real or complex-
valued function on X automatically has finite support. Let n be a positive
integer, and suppose for the moment that

X = {1, . . . , n}(1.6.2)

is the set of positive integers from 1 to n. In this case, c00(X,R) and c00(X,C)
can be identified with Rn and Cn, respectively. Similarly, if X is the set Z+ of
positive integers, then a real or complex-valued function on X corresponds to an
infinite sequence of real or complex numbers. Thus c00(Z+,R) and c00(Z+,C)
can be identified with the spaces of infinite sequences of real or complex numbers
for which all but finitely many terms are equal to 0, respectively.

As usual, a nonnegative real-valued function N on c00(X,R) or c00(X,C) is
said to be a norm if it satisfies the following three conditions. First, N(f) = 0
if and only if f = 0. Second, if f ∈ c00(X,R) or c00(X,C) and t ∈ R or C, as
appropriate, then

N(t f) = |t|N(f).(1.6.3)

Third,

N(f + g) ≤ N(f) +N(g)(1.6.4)
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for every f, g ∈ c00(X,R) or c00(X,C), as appropriate. In this case,

dN (f, g) = N(f − g)(1.6.5)

defines a metric on c00(X,R) or c00(X,C), as appropriate.
Let f be a real or complex-valued function on X. If A is a nonempty finite

subset of X, then ∑
x∈A

f(x)(1.6.6)

can be defined as a real or complex number, as appropriate. Suppose that f has
finite support in X, and observe that the finite sums (1.6.6) are all the same
when supp f ⊆ A. This permits us to define the sum∑

x∈X

f(x)(1.6.7)

as a real or complex number, as appropriate, as the value of (1.6.6) when A is
a nonempty finite subset of X that contains the support of f .

If f is a real or complex-valued function on X with finite support, then

‖f‖1 =
∑
x∈X

|f(x)|(1.6.8)

is defined as a nonnegative real number, as in the previous paragraph. Similarly,

‖f‖2 =
( ∑

x∈X

|f(x)|2
)1/2

(1.6.9)

is defined as a nonnegative real number, where the sum on the right is defined
as before. We can also put

‖f‖∞ = max
x∈X

|f(x)|,(1.6.10)

where the maximum of |f(x)| over x ∈ X is clearly attained in this situation.
One can check that these define norms on c00(X,R) and c00(X,C). In partic-
ular, the triangle inequality for (1.6.9) reduces to the analogous statement for
Rn and Cn, mentioned in Sections 1.3 and 1.4.

Using these norms, we get metrics

d1(f, g) = ‖f − g‖1,(1.6.11)

d2(f, g) = ‖f − g‖2,(1.6.12)

and
d∞(f, g) = ‖f − g‖∞(1.6.13)

on c00(X,R) and c00(X,C). IfX is as in (1.6.2) for some positive integer n, then
the norms mentioned in the previous paragraph correspond to the analogous
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norms defined on Rn and Cn in Sections 1.3 and 1.4. Similarly, these metrics
correspond to the analogous metrics defined earlier on Rn and Cn in this case.

If f is a real or complex-valued function on X with finite support, then

‖f‖∞ ≤ ‖f‖2 ≤ ‖f‖1.(1.6.14)

This follows from (1.5.1) and (1.5.3), since it is enough to look at the finitely
many elements of X in the support of f . This implies that

d∞(f, g) ≤ d2(f, g) ≤ d1(f, g)(1.6.15)

for all real and complex-valued functions f and g on X with finite support.
It follows that the identity mappings on c00(X,R) and c00(X,C) are Lip-

schitz with respect to d2(f, g) on the domain and d∞(f, g) on the range, as
before. Similarly, the identity mappings on c00(X,R) and c00(X,C) are Lip-
schitz with respect to d1(f, g) on the domain and d2(f, g) on the range. The
identity mappings on c00(X,R) and c00(X,C) are also Lipschitz with respect
to d1(f, g) on the domain and d∞(f, g) on the range.

1.7 Cauchy sequences and completeness

Let (X, dX(·, ·)) be a metric space. Remember that a sequence {xj}∞j=1 of
elements of X is said to be a Cauchy sequence with respect to dX(·, ·) if for
every ϵ > 0 there is a positive integer L such that

dX(xj , xl) < ϵ(1.7.1)

for every j, l ≥ L. It is not difficult to verify that

convergent sequences in X are Cauchy sequences.(1.7.2)

If
every Cauchy sequence in X converges to an element of X,(1.7.3)

then X is said to be complete with respect to dX(·, ·). It is well known that R
and C are complete with respect to their standard Euclidean metrics.

Let E be a subset of X, and remember that the restriction of dX(x,w) to
x,w ∈ E defines a metric on E. If {xj}∞j=1 is a sequence of elements of E, then
it is easy to see that

{xj}∞j=1 is a Cauchy sequence as a sequence of elements of E(1.7.4)

if and only if

{xj}∞j=1 is a Cauchy sequence as a sequence of elements of X,(1.7.5)

with respect to dX(·, ·) and its restriction to E. If X is complete with respect
to dX(·, ·), and if E is a closed set in X, then

E is complete with respect to the restriction of dX(·, ·) to E.(1.7.6)
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More precisely, if {xj}∞j=1 is a Cauchy sequence of elements of E, then {xj}∞j=1

is a Cauchy sequence in X, which converges to some x ∈ X, because X is
complete. We also have that x ∈ E, because E is a closed set in X, so that
{xj}∞j=1 converges to x in E, with respect to the restriction of dX(·, ·) to E.

Suppose now that E is complete with respect to the restriction of dX(·, ·) to
E, and let us check that

E is a closed set in X.(1.7.7)

Let x ∈ X be a limit point of E, which implies that there is a sequence {xj}∞j=1

of elements of E that converges to x in X. Note that {xj}∞j=1 is a Cauchy
sequence as a sequence of elements of X, and hence as a sequence of elements
of E. Because E is complete, there is an x′ ∈ E such that {xj}∞j=1 converges to
x′ with respect to the restriction of dX(·, ·) to E. Of course, {xj}∞j=1 converges
to x′ in X as well, so that x = x′, and thus x ∈ E.

Let (Y, dY (·, ·)) be another metric space, and let f be a uniformly continuous
mapping from X into Y . If {xj}∞j=1 is a Cauchy sequence of elements of X, then
one can check that

{f(xj)}∞j=1 is a Cauchy sequence in Y.(1.7.8)

This is the first part of Exercise 11 at the end of Chapter 4 in [155]. If Y is
complete, then it follows that {f(xj)}∞j=1 converges in Y . If {xj}∞j=1 converges
to an element x ofX, then continuity of f at x implies that {f(xj)}∞j=1 converges
to f(x) in Y .

1.8 Pointwise and uniform convergence

Let X be a set, and let (Y, dY (·, ·)) be a metric space. Also let {fj}∞j=1 be a
sequence of mappings from X into Y , and let f be another mapping from X
into Y . We say that {fj}∞j=1 converges to f pointwise on X if for every x ∈ X,
{fj(x)}∞j=1 converges to f(x) in Y . This means that for every x ∈ X and ϵ > 0
there is a positive integer L such that

dY (fj(x), f(x)) < ϵ(1.8.1)

for every j ≥ L. We say that {fj}∞j=1 converges to f uniformly on X if for every
ϵ > 0 there is a positive integer L such that (1.8.1) holds for every x ∈ X and
j ≥ L. Note that uniform convergence implies pointwise convergence. If X has
only finitely many elements, and {fj}∞j=1 converges to f pointwise on X, then
one can check that {fj}∞j=1 converges to f uniformly on X.

As an example, let us take X to be the closed unit interval [0, 1] in the real
line, and Y = R with the standard metric. Put

fj(x) = xj(1.8.2)



12 CHAPTER 1. SOME MAPPINGS, METRICS, AND NORMS

for each positive integer j and 0 ≤ x ≤ 1. In this case,

lim
j→∞

fj(x) = 0 when 0 ≤ x < 1(1.8.3)

= 1 when x = 1.

However, {fj}∞j=1 does not converge uniformly on [0, 1], because for each positive

integer j we have that xj is as close to 1 as we want when x is sufficiently close
to 1. If r is a positive real number with r < 1, then {fj}∞j=1 does converge to 0
uniformly on [0, r].

Now let (X, dX) be a metric space, and let (Y, dY ) be a metric space again
too. Also let

{fj}∞j=1 be a sequence of mappings from X into Y(1.8.4)

that converges uniformly to a mapping f from X into Y,

and let x ∈ X be given. If

fj is continuous at x for every j ≥ 1,(1.8.5)

then
f is continuous at x(1.8.6)

as well. To see this, let ϵ > 0 be given. Because {fj}∞j=1 converges uniformly to
f on X, there is an L ∈ Z+ such that

dY (fj(w), f(w)) < ϵ/3(1.8.7)

for every j ≥ L and w ∈ X. In particular, this holds at x, so that

dY (fj(x), f(x)) < ϵ/3(1.8.8)

for every j ≥ L. Because fL is continuous at x, there is a δL > 0 such that

dY (fL(x), fL(w)) < ϵ/3(1.8.9)

for every w ∈ X with dX(x,w) < δL. Observe that

dY (f(x), f(w)) ≤ dY (f(x), fL(x)) + dY (fL(x), fL(w))(1.8.10)

+dY (fL(w), f(w))

for every w ∈ X, by the triangle inequality. It follows that

dY (f(x), f(w)) < ϵ/3 + ϵ/3 + ϵ/3 = ϵ(1.8.11)

for every w ∈ X with dX(x,w) < δL, as desired.
Similarly, if {fj}∞j=1 is a sequence of uniformly continuous mappings from X

into Y that converges uniformly to a mapping f from X into Y , then

f is uniformly continuous on X.(1.8.12)
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As before, we let ϵ > 0 be given, and let L be a positive integer such that
(1.8.8) holds for every j ≥ L and w ∈ X. In this case, the uniform continuity
of fL implies that there is a δL > 0 such that (1.8.9) holds for every x,w ∈ X
with dX(x,w) < δL. This implies that (1.8.11) holds for every x,w ∈ X with
dX(x,w) < δL, as before.

Note that there are related statements about limits of functions at a given
point, instead of continuity at a point.

1.9 Bounded sets

Let (X, dX) be a metric space. If x ∈ X and r is a positive real number, then
the open ball in X centered at x with radius r is defined as usual by

B(x, r) = BX(x, r) = {w ∈ X : dX(x,w) < r}.(1.9.1)

If x′ is another element of X, then it is easy to see that

B(x, r) ⊆ B(x′, r + dX(x, x′)),(1.9.2)

using the triangle inequality. It is well known that open balls in X are open
sets.

A subset E of X is said to be bounded in X if there is an x ∈ X and an
r > 0 such that

E ⊆ B(x, r).(1.9.3)

This implies that for every x′ ∈ X there is an r′ > 0 such that

E ⊆ B(x′, r′),(1.9.4)

because of (1.9.2). Of course, this condition implies the previous one when
X 6= ∅. To avoid minor technicalities, the empty set will be considered as a
bounded set even when X = ∅.

If K is a compact subset of X, then K is bounded in X. This is trivial when
X = ∅, because the empty set is automatically considered to be a bounded set,
and so we may suppose that X 6= ∅. If x is any element of X, then the collection
of open balls B(x, j) with j ∈ Z+ is an open covering of K, because

∞⋃
j=1

B(x, j) = X.(1.9.5)

If K is compact, then there are finitely many positive integers j1, . . . , jn such
that

K ⊆
n⋃

l=1

B(x, jl).(1.9.6)

This implies that K ⊆ B(x, r), with r = max(j1, . . . , jn).
Note that subsets of bounded sets are bounded. Let E1, . . . , En be finitely

many bounded subsets of X, and let us check that their union
⋃n

j=1Ej is
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bounded. As before, this is trivial when X = ∅, and so we may suppose that
X 6= ∅. If x is any element of X, then for each j = 1, . . . , n there is a positive
real number rj such that

Ej ⊆ B(x, rj).(1.9.7)

This implies that
n⋃

j=1

Ej ⊆ B
(
x, max

1≤j≤n
rj
)
,(1.9.8)

as desired.
If x ∈ X and r is a nonnegative real number, then the closed ball in X

centered at x with radius r is defined by

B(x, r) = BX(x, r) = {w ∈ X : dX(x,w) ≤ r}.(1.9.9)

If x′ is another element of X, then

B(x, r) ⊆ B(x′, r + dX(x, x′)),(1.9.10)

as in (1.9.2). One can check that closed balls in X are closed sets.
If X 6= ∅, then a subset E of X is bounded if and only if it is contained in

a closed ball in X. In this case, E is contained in a closed ball centered at any
point in X, as before. In particular, if E is bounded, then the closure E of E
in X is bounded too.

A sequence {xj}∞j=1 of elements of X is said to be bounded in X if the set
of xj ’s, j ∈ Z+, is bounded in X. One can check that

convergent sequences in X are bounded.(1.9.11)

Similarly, one can verify that

Cauchy sequences in X are bounded.(1.9.12)

Totally bounded subsets of metric spaces are discussed in Section 4.2. In par-
ticular, compact sets are totally bounded, and totally bounded sets are bounded.

1.10 Some remarks and examples

Let n be a positive integer, and let E be a subset of Rn or Cn. If E is bounded
with respect to any of the metrics d1, d2, or d∞ defined in Sections 1.3 or 1.4, as
appropriate, then it is easy to see that E is bounded with respect to the other
two metrics, using the inequalities in Section 1.5. Similarly, if a sequence of
elements of Rn or Cn converges with respect to any of these three metrics, then
it converges with respect to the other two metrics, and with the same limit.

Let X be a nonempty set, and let E be a subset of c00(X,R) or c00(X,C).
If E is bounded with respect to the metric d2 defined in Section 1.6, then E is
bounded with respect to d∞. Similarly, if E is bounded with respect to d1, then
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E is bounded with respect to d2 and d∞. If X has only finitely many elements,
and E is bounded with respect to d∞, then E is bounded with respect to d1
and d2.

Let {fj}∞j=1 be a sequence of elements of c00(X,R) or c00(X,C), and let f
be another element of the same space. If {fj}∞j=1 converges to f with respect
to d2, then {fj}∞j=1 converges to f with respect to d∞. If {fj}∞j=1 converges to
f with respect to d1, then {fj}∞j=1 converges to f with respect to d2 and d∞. If
X has only finitely many elements, and {fj}∞j=1 converges to f with respect to
d∞, then {fj}∞j=1 converges to f with respect to d1 and d2.

One can check that {fj}∞j=1 converges to f with respect to d∞ if and only
if {fj}∞j=1 converges to f uniformly on X. This uses the standard metric on R
or C, as appropriate.

If x ∈ X, then let δx be the real-valued function on X equal to 1 at x, and to
0 at every other element of X. It is easy to see that the collection of δx’s, x ∈ X,
is a basis for each of c00(X,R) and c00(X,C), as vector spaces over R and C,
respectively, if one is familiar with these notions from linear algebra. Basically,
this means that every element f of c00(X,R) or c00(X,C) can be expressed in a
unique way as a linear combination of the δx’s, x ∈ X, with coefficients in R or
C, as appropriate. In fact, the coefficient of δx is equal to f(x) for each x ∈ X.

Observe that
‖δx‖1 = ‖δx‖2 = ‖δx‖∞ = 1(1.10.1)

for every x ∈ X. If x, y ∈ X and x 6= y, then

‖δx − δy‖∞ = 1,(1.10.2)

‖δx − δy‖2 =
√
2,(1.10.3)

‖δx − δy‖1 = 2.(1.10.4)

Let us now take X = Z+, and let δj be as before for each positive integer j.
It is easy to see that {δj}∞j=1 converges to 0 pointwise on Z+. Note that {δj}∞j=1

is bounded with respect to each of d1, d2, and d∞, and that {δj}∞j=1 does not
converge to 0 with respect to any of these three metrics.

Similarly, {j δj}∞j=1 converges to 0 pointwise on Z+. However,

‖j δj‖1 = ‖j δj‖2 = ‖j δj‖∞ = j(1.10.5)

for each j, so that {j δj}∞j=1 is not bounded with respect to d1, d2, or d∞.
If j ∈ Z+, then let fj be the real-valued function on Z+ defined by

fj(l) = 1 when l ≤ j(1.10.6)

= 0 when l > j.

Observe that {fj}∞j=1 converges pointwise to the function equal to 1 everywhere
on Z+. One can check that {fj}∞j=1 does not converge uniformly on Z+. We
also have that

‖fj‖∞ = 1,(1.10.7)

‖fj‖2 =
√
j,(1.10.8)

‖fj‖1 = j(1.10.9)
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for every j.
If α ∈ R, then

‖j−α fj‖∞ = j−α(1.10.10)

for every j. This means that {j−αfj}∞j=1 is bounded with respect to d∞ exactly
when α ≥ 0, and that {j−α fj}∞j=1 converges to 0 with respect to d∞ exactly
when α > 0. Similarly,

‖j−α fj‖2 = j(1/2)−α(1.10.11)

for every j, so that {j−α fj}∞j=1 is bounded with respect to d2 if and only
if α ≥ 1/2, and {j−α fj}∞j=1 converges to 0 with respect to d2 exactly when
α > 1/2. In the same way,

‖j−α fj‖1 = j1−α(1.10.12)

for every j, so that {j−α fj}∞j=1 is bounded with respect to d1 if and only if
α ≥ 1, and {j−α fj}∞j=1 converges to 0 with respect to d1 if and only if α > 1.

1.11 Bounded functions

Let X be a set, and let (Y, dY ) be a metric space. A mapping f from X into Y
is said to be bounded if

the image f(X) of X under f is a bounded subset of Y.(1.11.1)

Let B(X,Y ) be the space of bounded mappings from X into Y .
Let {fj}∞j=1 be a sequence of bounded mappings from X into Y that con-

verges uniformly to a mapping f from X into Y . This implies that there is an
L ∈ Z+ such that

dY (fj(x), f(x)) < 1(1.11.2)

for every j ≥ L and x ∈ X. One can use this to check that

f is bounded,(1.11.3)

because fL is bounded.
Suppose that X 6= ∅, and let f , g be bounded mappings from X into Y . It

is easy to see that
dY (f(x), g(x))(1.11.4)

is bounded as a nonnegative real-valued function of x on X, using the triangle
inequality. Put

θ(f, g) = sup{dY (f(x), g(x)) : x ∈ X}.(1.11.5)

If f = g, then f(x) = g(x) for every x ∈ X, so that

dY (f(x), g(x)) = 0(1.11.6)

for every x ∈ X, and hence
θ(f, g) = 0.(1.11.7)
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Conversely, if (1.11.7) holds, then (1.11.6) holds for every x ∈ X, so that f(x) =
g(x) for every x ∈ X, which means that f = g. We also have that

θ(f, g) = θ(g, f),(1.11.8)

because dY (f(x), g(x)) = dY (g(x), f(x)) for every x ∈ X. If h is another
bounded mapping from X into Y , then

dY (f(x), h(x)) ≤ dY (f(x), g(x)) + dY (g(x), h(x))(1.11.9)

≤ θ(f, g) + θ(g, h)

for every x ∈ X. This implies that

θ(f, h) ≤ θ(f, g) + θ(g, h).(1.11.10)

Thus (1.11.5) defines a metric on B(X,Y ), which is known as the supremum
metric.

Let {fj}∞j=1 be a sequence of bounded mappings from X into Y , and let f
be another bounded mapping from X into Y . If {fj}∞j=1 converges to f with
respect to the supremum metric, then for each ϵ > 0 there is an L(ϵ) ∈ Z+ such
that

θ(fj , f) < ϵ(1.11.11)

for every j ≥ L(ϵ). It follows that

dY (fj(x), f(x)) < ϵ(1.11.12)

for every j ≥ L(ϵ) and x ∈ X, so that {fj}∞j=1 converges to f uniformly on X.
Conversely, if {fj}∞j=1 converges to f uniformly on X, then for each ϵ > 0

there is an L′(ϵ) ∈ Z+ such that (1.11.12) holds for every j ≥ L′(ϵ) and x ∈ X.
This implies that

θ(fj , f) = sup{dY (fj(x), f(x)) : x ∈ X} ≤ ϵ(1.11.13)

for every j ≥ L′(ϵ), and hence that {fj}∞j=1 converges to f with respect to the
supremum metric.

1.12 Completeness of B(X,Y )

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Suppose that

Y is complete with respect to dY ,(1.12.1)

and let us check that

B(X,Y ) is complete with respect to the supremum metric.(1.12.2)
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Let {fj}∞j=1 be a sequence of bounded mappings from X into Y that is a
Cauchy sequence with respect to the supremum metric. This means that for
each ϵ > 0 there is an L(ϵ) ∈ Z+ such that

θ(fj , fl) < ϵ(1.12.3)

for every j, l ≥ L(ϵ). Thus

dY (fj(x), fl(x)) < ϵ(1.12.4)

for every j, l ≥ L(ϵ) and x ∈ X. In particular,

{fj(x)}∞j=1 is a Cauchy sequence in Y(1.12.5)

for every x ∈ X. Because Y is complete,

{fj(x)}∞j=1 converges in Y(1.12.6)

for every x ∈ X, and we put

f(x) = lim
j→∞

fj(x).(1.12.7)

This defines a mapping f from X into Y , and one can check that

dY (fj(x), f(x)) ≤ ϵ(1.12.8)

for every j ≥ L(ϵ) and x ∈ X, using (1.12.4). Indeed,

dY (fj(x), f(x)) ≤ dY (fj(x), fl(x)) + dY (fl(x), f(x))(1.12.9)

< ϵ+ dY (fl(x), f(x))

for all j, l ≥ L(ϵ) and x ∈ X, because of (1.12.4) and the triangle inequality.
This implies (1.12.8), because {fl(x)}∞l=1 converges to f(x) in Y .

It follows that {fj}∞j=1 converges to f uniformly on X, and hence that f is
bounded on X, as in the previous section. This implies that {fj}∞j=1 converges
to f with respect to the supremum metric, as before.

One can also verify that (1.12.2) implies (1.12.1). Indeed, every element of
Y corresponds to a constant function on X with values in Y . It is easy to see
that a Cauchy sequence in Y corresponds to a Cauchy sequence in B(X,Y ) with
respect to the supremum metric in this way. If a sequence of constant mappings
from X to Y converges with respect to the supremum metric, then it converges
uniformly on X, and thus pointwise on X, and it is easy to see that the limit is
a constant mapping as well.

1.13 More on bounded functions

The spaces of bounded real and complex-valued functions on a empty set X are
also denoted

ℓ∞(X,R) and ℓ∞(X,C),(1.13.1)



1.14. CONTINUOUS FUNCTIONS 19

respectively. This implicitly uses the standard Euclidean metrics on R and C.
If f and g are bounded real or complex-valued functions on X, then it is easy
to see that

f + g is bounded on X as well.(1.13.2)

Similarly, if f is a bounded real or complex-valued function on X, and t is a
real or complex number, as appropriate, then

t f is bounded on X(1.13.3)

too. Thus ℓ∞(X,R) and ℓ∞(X,C) are linear subspaces of the real and complex
vector spaces of all real and complex-valued functions on X, respectively.

If f is a bounded real or complex-valued function on X, then put

‖f‖∞ = sup{|f(x)| : x ∈ X}.(1.13.4)

Note that ‖f‖∞ = 0 if and only if f = 0 on X. If t ∈ R or C, as appropriate,
then one can check that

‖t f‖∞ = |t| ‖f‖∞.(1.13.5)

If g is another bounded real or complex-valued function on X, then

|f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ‖f‖∞ + ‖g‖∞(1.13.6)

for every x ∈ X. This implies that

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.(1.13.7)

It follows that (1.13.4) defines a norm on each of ℓ∞(X,R) and ℓ∞(X,C), which
is known as the supremum norm. The corresponding metric

d∞(f, g) = ‖f − g‖∞(1.13.8)

is the same as the supremum metric on these spaces, associated to the standard
Euclidean metric on R or C, as appropriate.

1.14 Continuous functions

Let (X, dX) and (Y, dY ) be metric spaces, and let C(X,Y ) be the space of
continuous mappings from X into Y . Also let

Cb(X,Y ) = B(X,Y ) ∩ C(X,Y )(1.14.1)

be the space of bounded continuous mappings fromX into Y . If f is a continuous
mapping from X into Y and X is compact, then it is well known that f(X) is
compact in Y , so that f(X) is bounded in Y in particular. Thus Cb(X,Y ) is
the same as C(X,Y ) when X is compact.

Suppose thatX 6= ∅, so that the supremum metric can be defined on B(X,Y )
as in Section 1.11. Note that

Cb(X,Y ) is a closed set in B(X,Y ),(1.14.2)
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with respect to the supremum metric. More precisely, if {fj}∞j=1 is a sequence
of bounded continuous mappings from X into Y that converges to a bounded
mapping f from X into Y with respect to the supremum metric, then we have
seen that {fj}∞j=1 converges to f uniformly on X, and hence that f is continuous
on X. Alternatively, if f ∈ B(X,Y ) is a limit point of Cb(X,Y ) with respect
to the supremum metric, then one can show that f is continuous on X. This
is very similar to the argument used to show that uniform limits of continuous
mappings are continuous, as in Section 1.8.

Of course, Cb(X,Y ) may be considered as a metric space, using the re-
striction of the supremum metric on B(X,Y ) to Cb(X,Y ). Suppose that Y is
complete with respect to dY , so that B(X,Y ) is complete with respect to the
supremum metric, as in Section 1.12. Under these conditions, we get that

Cb(X,Y ) is complete as a metric space(1.14.3)

with respect to the supremum metric, as in Section 1.7. This also uses (1.14.2).
Let us now take Y = R orC, with their standard Euclidean metrics. If f and

g are continuous real or complex-valued functions on X, then it is well known
that their sum f + g is continuous on X too. Similarly, if f is a continuous real
or complex-valued function on X, and t ∈ R or C, as appropriate, then t f is
continuous on X. This means that C(X,R) and C(X,C) are linear subspaces
of the real and complex vector spaces of all real and complex-valued functions
on X, respectively. We may also consider

Cb(X,R) = ℓ∞(X,R) ∩ C(X,R)(1.14.4)

as a linear subspace of both ℓ∞(X,R) and C(X,R), and

Cb(X,C) = ℓ∞(X,C) ∩ C(X,C)(1.14.5)

as a linear subspace of both ℓ∞(X,C) and C(X,C).

1.15 Continuous functions on [0, 1]

In this section, we take X to be the closed unit interval [0, 1] in the real line,
equipped with the restriction of the standard Euclidean metric on R to [0, 1].
It is well known that [0, 1] is compact as a subset of R, and thus as a subset of
itself. This means that every continuous real or complex-valued function f on
[0, 1] is bounded, as before.

A nonnegative real-valued function N on C([0, 1],R) or C([0, 1],C) is said to
be a norm if it satisfies the usual three conditions, as follows. First, N(f) = 0 if
and only if f = 0. Second, if f is a continuous real or complex-valued function
on [0, 1] and t ∈ R or C, as appropriate, then

N(t f) = |t|N(f).(1.15.1)

Third, if f and g are continuous real or complex-valued functions on [0, 1], then

N(f + g) ≤ N(f) +N(g).(1.15.2)
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In this case,

dN (f, g) = N(f − g)(1.15.3)

defines a metric on C([0, 1],R) or C([0, 1],C), as appropriate. The supremum
norm (1.13.4) defines a norm on each of C([0, 1],R) and C([0, 1],C), for which
the corresponding metric (1.13.8) is the supremum metric, as in Section 1.13.

If f is a continuous real or complex-valued function on [0, 1], then put

‖f‖1 =

∫ 1

0

|f(x)| dx.(1.15.4)

More precisely, it is well known and not difficult to verify that |f(x)| is also
continuous on [0, 1], so that the Riemann integral on the right side of (1.15.4)
exists. If f(x0) 6= 0 for some 0 ≤ x0 ≤ 1, then

|f(x)| ≥ |f(x0)|/2 > 0(1.15.5)

when 0 ≤ x ≤ 1 is sufficiently close to x0, because f is continuous at x0.
This implies that ‖f‖1 > 0, so that (1.15.4) satisfies the first condition in the
definition of a norm. It is easy to see that (1.15.4) satisfies (1.15.1) and (1.15.2),
so that (1.15.4) defines a norm on C([0, 1],R) and C([0, 1],C).

Similarly, put

‖f‖2 =
(∫ 1

0

|f(x)|2 dx
)1/2

(1.15.6)

for every continuous real or complex-valued function f on [0, 1]. One can check
that (1.15.6) is equal to 0 exactly when f = 0 on [0, 1], using the same type of
argument as in the preceding paragraph. It is easy to see that (1.15.6) satisfies
the homogeneity condition (1.15.1). If g is another continuous real or complex-
valued function on [0, 1], then it is well known that

‖f g‖1 ≤ ‖f‖2 ‖g‖2,(1.15.7)

which is an integral version of the Cauchy–Schwarz inequality. This can be used
to show that (1.15.6) satisfies the triangle inequality (1.15.2), as usual, so that
(1.15.6) defines a norm on C([0, 1],R) and C([0, 1],C).

Clearly

‖f‖1, ‖f‖2 ≤ ‖f‖∞(1.15.8)

for every continuous real or complex-valued function f on [0, 1]. One can can
also get that

‖f‖1 ≤ ‖f‖2,(1.15.9)

using (1.15.7). Let

d1(f, g) = ‖f − g‖1(1.15.10)

and

d2(f, g) = ‖f − g‖2(1.15.11)



22 CHAPTER 1. SOME MAPPINGS, METRICS, AND NORMS

be the metrics on C([0, 1],R) and C([0, 1],C) associated to (1.15.4) and (1.15.6)
as in (1.15.3), respectively. Using (1.15.8) and (1.15.9), we get that

d1(f, g) ≤ d2(f, g) ≤ d∞(f, g)(1.15.12)

for all continuous real and complex-valued functions f and g on [0, 1].
It follows that the identity mappings on C([0, 1],R) and C([0, 1],C) are Lips-

chitz with respect to d2(f, g) on the domain and d1(f, g) on the range. Similarly,
the identity mappings on C([0, 1],R) and C([0, 1],C) are Lipschitz with respect
to d∞(f, g) on the domain and d2(f, g) on the range. The identity mappings on
C([0, 1],R) and C([0, 1],C) are also Lipschitz with respect to d∞(f, g) on the
domain and d1(f, g) on the range.



Chapter 2

Basic ℓ1 and ℓ2 spaces

This chapter deals with classical ℓ1 and ℓ2 spaces, of absolutely summable and
square-summable sequences of real or complex numbers, respectively. We also
consider c0 spaces of real or complex-valued functions on arbitrary nonempty
sets that vanish at infinity. Sums over arbitrary nonempty sets and correspond-
ing ℓ1, ℓ2 spaces will be discussed in Chapter 11.

2.1 Infinite series

Remember that an infinite series

∞∑
j=1

aj(2.1.1)

of real or complex numbers is said to converge if the corresponding sequence of
partial sums

n∑
j=1

aj(2.1.2)

converges with respect to the standard Euclidean metric on R or C, as appro-
priate. Of course, the value of the sum (2.1.1) is defined to be the limit of the
sequence of partial sums (2.1.2) in this case. If (2.1.1) converges, and if

∑∞
j=1 bj

is another convergent series of real or complex numbers, as appropriate, then∑∞
j=1(aj + bj) converges, with

∞∑
j=1

(aj + bj) =

∞∑
j=1

aj +

∞∑
j=1

bj .(2.1.3)

This reduces to the corresponding statement for sums of convergent sequences of
real or complex numbers, applied to the partial sums of these series. Similarly,

23
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if (2.1.1) converges, and t ∈ R or C, as appropriate, then
∑∞

j=1 t aj converges,
with

∞∑
j=1

t aj = t

∞∑
j=1

aj .(2.1.4)

If aj is a nonnegative real number for each j ≥ 1, then the partial sums
(2.1.2) increase monotonically. It is well known that a monotonically increasing
sequence of real numbers converges with respect to the standard Euclidean
metric on R if and only if the sequence has an upper bound in R, in which
case the sequence converges to the supremum of the set of its terms. If aj is
a nonnegative real number for each j, but the partial sums (2.1.2) do not have
an upper bound in R, then it is sometimes convenient to consider the value of
the sum (2.1.1) to be +∞. Note that the partial sums (2.1.2) tend to +∞ as
n → ∞ in this situation. If aj and bj are nonnegative real numbers for each
j ≥ 1, then one can check that (2.1.3) holds, where the right side of (2.1.3)
is considered to be +∞ when either of the individual sums is +∞. Similarly,
(2.1.4) holds for every positive real number t, where the right side is considered
to be +∞ when (2.1.1) is +∞. If aj and bj are nonnegative real numbers with

aj ≤ bj(2.1.5)

for every j ≥ 1, then
∞∑
j=1

aj ≤
∞∑
j=1

bj ,(2.1.6)

which is trivial when the right side if +∞.
An infinite series (2.1.1) of real or complex numbers is said to converge

absolutely if
∞∑
j=1

|aj |(2.1.7)

converges as an infinite series of nonnegative real numbers. This means that
(2.1.7) is finite, in terms of the conventions for sums of nonnegative real numbers
mentioned in the previous paragraph. If (2.1.1) converges absolutely, then it is
well known that (2.1.1) converges in the usual sense. One can also check that∣∣∣∣ ∞∑

j=1

aj

∣∣∣∣ ≤ ∞∑
j=1

|aj |(2.1.8)

under these conditions. This uses the fact that∣∣∣∣ n∑
j=1

aj

∣∣∣∣ ≤ n∑
j=1

|aj |(2.1.9)

for every positive integer n, by the triangle inequality.
If (2.1.1) converges, then it is well known that {aj}∞j=1 converges to 0 as a

sequence of real or complex numbers, as appropriate. In particular, this holds
when (2.1.1) converges absolutely.



2.2. BASIC ℓ1 SPACES 25

2.2 Basic ℓ1 spaces

Let ℓ1(Z+,R) be the space of real-valued functions f on the set Z+ of positive
integers such that

‖f‖1 =

∞∑
j=1

|f(j)|(2.2.1)

is finite, which is to say that the right side converges as an infinite series of non-
negative real numbers. Similarly, let ℓ1(Z+,C) be the space of complex-valued
functions f on Z+ such that (2.2.1) is finite. In both cases, the convergence of
the series on the right side of (2.2.1) implies that

lim
j→∞

f(j) = 0,(2.2.2)

as mentioned in the previous section.

If f ∈ ℓ1(Z+,R) or ℓ1(Z+,C), then (2.2.1) is a nonnegative real number,
which is equal to 0 exactly when f(j) = 0 for every j ∈ Z+. If t ∈ R or C, as
appropriate, then t f(j) defines another real or complex-valued function on Z+,
as appropriate, and

‖tf‖1 =

∞∑
j=1

|t f(j)| = |t| ‖f‖1.(2.2.3)

In particular, t f ∈ ℓ1(Z+,R) or ℓ1(Z+,C), as appropriate.

Let g be another element of ℓ1(Z+,R) or ℓ1(Z+,C), as appropriate. Thus
f + g is a real or complex-valued function on Z+, as appropriate, and

‖f + g‖1 =

∞∑
j=1

|f(j) + g(j)| ≤
∞∑
j=1

(|f(j)|+ |g(j)|) = ‖f‖1 + ‖g‖1.(2.2.4)

This implies that f + g ∈ ℓ1(Z+,R) or ℓ1(Z+,C), as appropriate. Hence
ℓ1(Z+,R) and ℓ1(Z+,C) are linear subspaces of the real and complex vector
spaces of all real and complex-valued functions on Z+, respectively.

This means that ℓ1(Z+,R) and ℓ1(Z+,C) are vector spaces over the real and
complex numbers, respectively, with respect to pointwise addition and scalar
multiplication. We also get that (2.2.1) defines a norm on each of these spaces,
by the remarks in the preceding paragraphs. Using (2.2.3) and (2.2.4), one can
check that

d1(f, g) = ‖f − g‖1(2.2.5)

defines a metric on each of ℓ1(Z+,R) and ℓ1(Z+,C), as usual.

If f ∈ ℓ1(Z+,R) or ℓ1(Z+,C), then

∞∑
j=1

f(j)(2.2.6)
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converges as an infinite series of real or complex numbers, as in the previous
section. If g is another element of ℓ1(Z+,R) or ℓ1(Z+,C), as appropriate, then∣∣∣∣ ∞∑

j=1

f(j)−
∞∑
j=1

g(j)

∣∣∣∣ =

∣∣∣∣ ∞∑
j=1

(f(j)− g(j))

∣∣∣∣(2.2.7)

≤
∞∑
j=1

|f(j)− g(j)| = ‖f − g‖1,

using (2.1.8) in the second step. This implies that the mapping from f to the
sum (2.2.6) is uniformly continuous as a mapping from ℓ1(Z+,R) or ℓ1(Z,C)
into R or C, respectively, using the ℓ1 metric (2.2.5) on ℓ1(Z+,R) or ℓ1(Z+,C),
and the standard Euclidean metric on R or C.

If f ∈ ℓ1(Z+,R) or ℓ1(Z+,C), then it is easy to see directly that f is bounded
on Z+, with

‖f‖∞ ≤ ‖f‖1.(2.2.8)

Here ‖f‖∞ is the supremum norm of f on Z+, as in (1.13.4). If g is another
element of ℓ1(Z+,R) or ℓ1(Z+,C), as appropriate, then we get that

d∞(f, g) ≤ d1(f, g),(2.2.9)

where d∞(f, g) is the supremum metric for bounded real or complex-valued
functions on Z+, as in (1.13.8).

Remember that c00(Z+,R), c00(Z+,C) are the spaces of real and complex-
valued functions on Z+ with finite support, respectively, as in Section 1.6.
Clearly

c00(Z+,R) ⊆ ℓ1(Z+,R), c00(Z+,C) ⊆ ℓ1(Z+,C),(2.2.10)

since an infinite series automatically converges when all but finitely many terms
are equal to 0. One can also check that c00(Z+,R) and c00(Z+,C) are dense
subsets of ℓ1(Z+,R) and ℓ1(Z+,C), respectively, with respect to the ℓ1 metric
(2.2.5).

2.3 Basic ℓ2 spaces

Let ℓ2(Z+,R) and ℓ2(Z+,C) be the spaces of real and complex-valued functions
f on Z+ such that

∞∑
j=1

|f(j)|2(2.3.1)

converges as an infinite series of nonnegative real numbers, respectively. In both
cases, we put

‖f‖2 =
( ∞∑

j=1

|f(j)|2
)1/2

,(2.3.2)
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using the nonnegative square root on the right side. Note that this is equal to
0 if and only if f(j) = 0 for every j ≥ 1. The convergence of the series (2.3.1)
implies that

lim
j→∞

|f(j)|2 = 0,(2.3.3)

and hence that f(j) → 0 as j → ∞.
Let f ∈ ℓ2(Z+,R) or ℓ2(Z+,C) be given. If t ∈ R or C, as appropriate,

then
∞∑
j=1

|t f(j)|2 = |t|2
∞∑
j=1

|f(j)|2,(2.3.4)

and in particular the series on the left converges. This means that t f is an
element of ℓ2(Z+,R) or ℓ2(Z+,C), as appropriate, with

‖t f‖2 = |t| ‖f‖2.(2.3.5)

If a and b are nonnegative real numbers, then it is well known that

a b ≤ 1

2
(a2 + b2),(2.3.6)

because 0 ≤ (a − b)2 = a2 − 2 a b + b2. Suppose that g is another element of
ℓ2(Z+,R) or ℓ2(Z+,C), as appropriate. Using (2.3.6), we get that

|f(j)| |g(j)| ≤ 1

2
(|f(j)|2 + |g(j)|2)(2.3.7)

for every j ∈ Z+. Hence

∞∑
j=1

|f(j)| |g(j)| ≤
∞∑
j=1

1

2
(|f(j)|2 + |g(j)|2)

=
1

2

∞∑
j=1

|f(j)|2 + 1

2

∞∑
j=1

|g(j)|2 =
1

2
‖f‖22 +

1

2
‖g‖22.(2.3.8)

In particular, the series on the left converges, so that f g ∈ ℓ1(Z+,R) or
ℓ1(Z+,C), as appropriate.

In fact, we have that

∞∑
j=1

|f(j)| |g(j)| ≤ ‖f‖2 ‖g‖2(2.3.9)

under these conditions, which is another version of the Cauchy–Schwarz inequal-
ity. This follows from (2.3.8) when ‖f‖2 = ‖g‖2 = 1, and otherwise one can
reduce to that case using (2.3.5).

Observe that

|f(j) + g(j)|2 ≤ (|f(j)|+ |g(j)|)2 ≤ |f(j)|2 + 2 |f(j)| |g(j)|+ |g(j)|2(2.3.10)
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for every j ≥ 1, so that

∞∑
j=1

|f(j) + g(j)|2 ≤
∞∑
j=1

|f(j)|2 + 2

∞∑
j=1

|f(j)| |g(j)|+
∞∑
j=1

|g(j)|2.(2.3.11)

This implies that the series on the left converges, so that f + g ∈ ℓ2(Z+,R) or
ℓ2(Z+,C), as appropriate. Combining (2.3.9) and (2.3.11), we get that

‖f + g‖22 ≤ ‖f‖22 + 2 ‖f‖2 ‖g‖2 + ‖g‖22 = (‖f‖2 + ‖g‖2)2,(2.3.12)

so that
‖f + g‖2 ≤ ‖f‖2 + ‖g‖2.(2.3.13)

This shows that ℓ2(Z+,R) and ℓ2(Z+,C) are linear subspaces of the real
and complex vector spaces of all real and complex-valued functions on Z+,
respectively. We also get that (2.3.2) defines a norm on each of ℓ2(Z+,R) and
ℓ2(Z+,C), by (2.3.5) and (2.3.13). It follows that

d2(f, g) = ‖f − g‖2(2.3.14)

defines a metric on each of ℓ2(Z+,R) and ℓ2(Z+,C), as usual.
If f ∈ ℓ2(Z+,R) or ℓ2(Z+,C), then one can check directly that f is bounded

on Z+, with
‖f‖∞ ≤ ‖f‖2.(2.3.15)

If g is another element of ℓ2(Z+,R) or ℓ2(Z+,C), as appropriate, then we get
that

d∞(f, g) ≤ d2(f, g).(2.3.16)

Suppose now that f ∈ ℓ1(Z+,R) or ℓ1(Z+,C). Observe that

∞∑
j=1

|f(j)|2 ≤ ‖f‖∞
∞∑
j=1

|f(j)| = ‖f‖∞ ‖f‖1 ≤ ‖f‖21,(2.3.17)

using (2.2.8) in the third step. This implies that f ∈ ℓ2(Z+,R) or ℓ2(Z+,C),
as appropriate, with

‖f‖2 ≤ ‖f‖1.(2.3.18)

In particular, we get that

ℓ1(Z+,R) ⊆ ℓ2(Z+,R), ℓ1(Z+,C) ⊆ ℓ2(Z+,C).(2.3.19)

If g is another element of ℓ1(Z+,R) or ℓ1(Z+,C), as appropriate, then it follows
that

d2(f, g) ≤ d1(f, g).(2.3.20)

If f is a real or complex-valued function on Z+ with finite support, then f
is clearly an element of ℓ2(Z+,R) or ℓ2(Z+,C), as appropriate. One can verify
that c00(Z+,R) and c00(Z+,C) are dense subsets of ℓ2(Z+,R) and ℓ2(Z+,C),
respectively, with respect to the ℓ2 metric (2.3.14).
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2.4 Completeness of ℓ1, ℓ2

Let {fl}∞l=1 be a sequence of elements of ℓ1(Z+,R) or ℓ1(Z+,C), and suppose
that the fl’s have bounded ℓ

1 norms, so that there is a nonnegative real number
C1 such that

∞∑
j=1

|fl(j)| ≤ C1(2.4.1)

for every l ≥ 1. Suppose also that {fl}∞l=1 converges to a real or complex-valued
function f pointwise on Z+, as appropriate. Let us verify that f ∈ ℓ1(Z+,R)
or ℓ1(Z+,C), as appropriate, with

∞∑
j=1

|f(j)| ≤ C1.(2.4.2)

If n ∈ Z+, then
n∑

j=1

|f(j)| = lim
l→∞

n∑
j=1

|fl(j)| ≤ C1,(2.4.3)

using pointwise convergence in the first step, and (2.4.1) in the second step.
This implies (2.4.2), since this estimate holds for all n ≥ 1.

We would like to show that ℓ1(Z+,R) and ℓ1(Z+,C) are complete with re-
spect to the ℓ1 metric (2.2.5). Let {fl}∞l=1 be a sequence of elements of ℓ1(Z+,R)
or ℓ1(Z+,C) that is a Cauchy sequence with respect to (2.2.5). This implies
that for every ϵ > 0 there is a positive integer L(ϵ) such that

∞∑
j=1

|fk(j)− fl(j)| = ‖fk − fl‖1 < ϵ(2.4.4)

for all k, l ≥ L(ϵ). Hence
|fk(j)− fl(j)| < ϵ(2.4.5)

for every j ∈ Z+ when k, l ≥ L(ϵ). This means that {fl(j)}∞l=1 is a Cauchy
sequence of real or complex numbers, as appropriate, for every j ∈ Z+, and
with respect to the standard Euclidean metric on R or C. Remember that R
and C are complete as metric spaces with respect to their standard Euclidean
metrics. It follows that {fl(j)}∞l=1 converges in R or C, as appropriate, for every
j ∈ Z+, with respect to the standard Euclidean metric. Thus

f(j) = lim
l→∞

fl(j)(2.4.6)

defines a real or complex-valued function on Z+, as appropriate. We would like
to check that

∑∞
j=1 |f(j)| converges, so that f is an element of ℓ1(Z+,R) or

ℓ1(Z+,C), as appropriate. We would also like to verify that {fl}∞l=1 converges
to f with respect to the ℓ1 metric.

Let ϵ > 0 and l ≥ L(ϵ) be given. Note that {fk − fl}∞k=L(ϵ) is a sequence

of elements of ℓ1(Z+,R) or ℓ1(Z+,C), as appropriate, that converges to f − fl
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pointwise on Z+. The remarks at the beginning of the section imply that f − fl
is an element of ℓ1(Z+,R) or ℓ1(Z+,C), as appropriate, with

‖f − fl‖1 =

∞∑
j=1

|f(j)− fl(j)| ≤ ϵ,(2.4.7)

because of (2.4.4). Hence f ∈ ℓ1(Z+,R) or ℓ1(Z+,C), as appropriate, because
of the corresponding property of fl. It is easy to see that {fl}∞l=1 converges to
f with respect to the ℓ1 metric, because (2.4.7) holds for every l ≥ L(ϵ).

Now let {fl}∞l=1 be a sequence of elements of ℓ2(Z+,R) or ℓ2(Z+,C) with
bounded ℓ2 norms, so that

‖fl‖2 ≤ C2(2.4.8)

for some C2 ≥ 0 and every l ≥ 1. This is the same as saying that

∞∑
j=1

|fl(j)|2 ≤ C2
2(2.4.9)

for every l ≥ 1. Suppose that {fl}∞l=1 also converges pointwise to a real or
complex-valued function f on Z+, which implies that {|fl|2}∞l=1 converges to
|f |2 pointwise on Z+ too. It follows that

∞∑
j=1

|f(j)|2 ≤ C2
2 ,(2.4.10)

by the remarks at the beginning of the section, applied to {|fl|2}∞l=1. This means
that f ∈ ℓ2(Z+,R) or ℓ2(Z+,C), as appropriate, with

‖f‖2 ≤ C2.(2.4.11)

Using this, one can show that ℓ2(Z+,R) and ℓ2(Z+,C) are complete with re-
spect to the ℓ2 metric (2.3.14). The argument is similar to the previous one for
ℓ1(Z+,R), ℓ1(Z+,C).

2.5 Vanishing at infinity

Let X be a nonempty set, and let f be a real or complex-valued function on X.
We say that f vanishes at infinity on X if for every ϵ > 0,

|f(x)| < ϵ(2.5.1)

for all but finitely many x ∈ X. Equivalently, this means that for each ϵ > 0,

Eϵ(f) = {x ∈ X : |f(x)| ≥ ϵ}(2.5.2)

has only finitely many elements. Let c0(X,R) and c0(X,C) be the spaces
of real and complex-valued functions on X that vanish at infinity, respectively.
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Remember that c00(X,R) and c00(X,C) denote the spaces of real and complex-
valued functions f on X such that the support of f has only finitely many
elements, respectively, as in Section 1.6. In this case, f automatically vanishes
at infinity on X, so that

c00(X,R) ⊆ c0(X,R), c00(X,C) ⊆ c0(X,C).(2.5.3)

In particular, if X has only finitely many elements, then every real or complex-
valued function on X vanishes at infinity.

If f is a real or complex-valued function on the set Z+ of positive integers,
then f vanishes at infinity on Z+ if and only if

lim
j→∞

f(j) = 0.(2.5.4)

Let X be any nonempty set again, and let {xj}∞j=1 be an infinite sequence of
distinct elements of X. Also let f be a real or complex-valued function on X,
and suppose that the support of f is contained in the set of xj ’s, j ∈ Z+. Under
these conditions, f vanishes at infinity on X if and only if

lim
j→∞

f(xj) = 0.(2.5.5)

Let f be any real or complex-valued function on X, and remember that the
support of f is the set of x ∈ X such that f(x) 6= 0. Equivalently,

supp f =

∞⋃
n=1

E1/n(f),(2.5.6)

where E1/n(f) is as in (2.5.2). If f vanishes at infinity on X, then it follows
that the support of f has only finitely or countably many elements.

If f is a real or complex-valued function on X that vanishes at infinity, then
it is easy to see that f is bounded on X. In fact, we have that

‖f‖∞ = max
x∈X

|f(x)|,(2.5.7)

which is to say that the maximum on the right is attained. Of course, this is
trivial when f ≡ 0 on X. Otherwise, if f(x0) 6= 0 for some x0 ∈ X, then there
are only finitely many x ∈ X such that |f(x)| ≥ |f(x0)|. In this case, it suffices
to take the maximum of |f(x)| over this finite set.

Thus

c0(X,R) ⊆ ℓ∞(X,R), c0(X,C) ⊆ ℓ∞(X,C).(2.5.8)

If g is another real or complex-valued function on X that vanishes at infinity,
then one can check that f + g vanishes at infinity on X as well. Similarly, if
t ∈ R or C, as appropriate, then t f vanishes at infinity on X. This means
that c0(X,R) and c0(X,C) are linear subspaces of ℓ∞(X,R) and ℓ∞(X,C),
respectively.
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Let f be a bounded real or complex-valued function on X. Suppose that f
is a limit point of c0(X,R) or c0(X,C) in ℓ∞(X,R) or ℓ∞(X,C), respectively,
with respect to the supremum metric. We would like to verify that f also
vanishes at infinity on X in this case. Let ϵ > 0 be given. By hypothesis, there
is a real or complex-valued function g on X, as appropriate, such that g vanishes
at infinity on X, and

‖f − g‖∞ < ϵ/2.(2.5.9)

This implies that

|f(x)| ≤ |g(x)|+ |f(x)− g(x)| ≤ |g(x)|+ ‖f − g‖∞ < |g(x)|+ ϵ/2(2.5.10)

for every x ∈ X. Of course, |g(x)| < ϵ/2 for all but finitely many x ∈ X, because
g vanishes at infinity on X. It follows that

|f(x)| < ϵ/2 + ϵ/2 = ϵ(2.5.11)

for all but finitely many x ∈ X, as desired.
This shows that c0(X,R) and c0(X,C) are closed sets in ℓ∞(X,R) and

ℓ∞(X,C), respectively, with respect to the supremum metric. As a slightly
different version of this, let {fj}∞j=1 be a sequence of real or complex-valued
functions on X that vanish at infinity and converge uniformly to a real or
complex-valued function f on X, as appropriate. Under these conditions, f
vanishes at infinity on X too. This can be obtained from the previous statement,
or using the same argument as in the preceding paragraph.

Let f be a real or complex-valued function on X that vanishes at infinity, and
let ϵ > 0 be given. Let fϵ be the real or complex-valued function, as appropriate,
defined on X by

fϵ(x) = f(x) when |f(x)| ≥ ϵ(2.5.12)

= 0 when |f(x)| < ϵ.

Note that fϵ has finite support in X, because f vanishes at infinity on X. By
construction,

‖f − fϵ‖∞ < ϵ,(2.5.13)

where the strict inequality uses the hypothesis that f vanish at infinity on X
again. This shows that c00(X,R) and c00(X,C) are dense in c0(X,R) and
c0(X,C), respectively, with respect to the supremum metric.
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Some more metric spaces

3.1 Functions on intervals

Let a, b be real numbers with a < b, and let

[a, b] = {x ∈ R : a ≤ x ≤ b}(3.1.1)

be the usual closed interval in the real line from a to b. It is well known that
[a, b] is compact with respect to the standard metric on R. As in Section 1.14,
C([a, b],R) and C([a, b],C) are the spaces of continuous real and complex-valued
functions on [a, b]. This uses the restriction of the standard metric on R to [a, b],
and the standard Euclidean metrics on R and C, as appropriate. As before,
these spaces are linear subspaces of the real and complex vector spaces of all
real and complex-valued functions on [a, b], as appropriate.

As usual, a nonnegative real-valued function N on C([a, b],R) or C([a, b],C)
is said to be a norm if it satisfies the following three conditions. First, N(f) = 0
if and only if f = 0. Second, if f is a continuous real or complex-valued function
on [a, b] and t ∈ R of C, as appropriate, then

N(t f) = |t|N(f).(3.1.2)

Third, if f and g are continuous real or complex-valued functions on [a, b], as
appropriate, then

N(f + g) ≤ N(f) +N(g).(3.1.3)

In this case,
dN (f, g) = N(f − g)(3.1.4)

defines a metric on C([a, b],R) or C([a, b],C), as appropriate.
Remember that continuous real and complex-valued functions on [a, b] are

bounded, because [a, b] is compact. The supremum norm is defined on each of
C([a, b],R) and C([a, b],C) by

‖f‖∞ = sup
a≤x≤b

|f(x)|,(3.1.5)

33
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as in (1.13.4). Note that the supremum is attained in this situation, because of
the extreme value theorem. The corresponding metric

d∞(f, g) = ‖f − g‖∞(3.1.6)

is the same as the supremum metric, as before.
If f is a continuous real or complex-valued function on [a, b], then put

‖f‖1 =

∫ b

a

|f(x)| dx,(3.1.7)

using the standard Riemann integral on the right side. This is the same as
(1.15.4) in the case of the unit interval in R. As before, one can check that
(3.1.7) defines a norm on each of C([a, b],R) and C([a, b],C). Let

d1(f, g) = ‖f − g‖1 =

∫ b

a

|f(x)− g(x)| dx(3.1.8)

be the metric associated to (3.1.7) on each of C([a, b],R) and C([a, b],C).
If f is a continuous real or complex-valued function on [a, b], then

‖f‖1 =

∫ b

a

|f(x)| dx ≤ (b− a) ‖f‖∞.(3.1.9)

Hence
d1(f, g) = ‖f − g‖1 ≤ (b− a) ‖f − g‖∞ = (b− a) d∞(f, g)(3.1.10)

for all real or complex-valued continuous functions f and g on [a, b]. This
implies that the identity mappings on C([a, b],R) and C([a, b],C) are Lipschitz
with respect to d∞(f, g) on the domain and d1(f, g) on the range.

3.2 The square norm

Let a, b be real numbers with a < b again. Put

‖f‖2 =
(∫ b

a

|f(x)|2 dx
)1/2

(3.2.1)

for each continuous real or complex-valued continuous function f on [a, b], using
the nonnegative square root on the right side, as usual. Note that this is the
same as (1.15.6) in the case of the unit interval. It is easy to see that this sat-
isfies the homogeneity and positivity requirements of a norm, as before. To get
the triangle inequality, one can use an integral version of the Cauchy–Schwarz
inequality, as follows.

Let f , g be continuous real or complex-valued functions on [a, b]. Observe
that

|f(x)| |g(x)| ≤ 1

2
|f(x)|2 + 1

2
|g(x)|2(3.2.2)
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for every a ≤ x ≤ b, as in (2.3.6). This implies that∫ b

a

|f(x)| |g(x)| dx ≤ 1

2

∫ b

a

|f(x)|2 dx+
1

2

∫ b

a

|g(x)|2 dx(3.2.3)

=
1

2
‖f‖22 +

1

2
‖g‖22.

Using this, we can get that∫ b

a

|f(x)| |g(x)| dx ≤ ‖f‖2 ‖g‖2,(3.2.4)

which is the integral version of the Cauchy–Schwarz inequality mentioned in the
preceding paragraph. More precisely, (3.2.4) follows from (3.2.3) when ‖f‖2 =
‖g‖2 = 1. If ‖f‖2, ‖g‖2 > 0, then one can reduce to the previous case, using
scalar multiplication. Otherwise, (3.2.4) is trivial when f = 0 or g = 0 on [a, b].

Clearly

‖f + g‖22 =

∫ b

a

|f(x) + g(x)|2 dx

≤
∫ b

a

(|f(x)|+ |g(x)|)2 dx(3.2.5)

=

∫ b

a

|f(x)|2 dx+ 2

∫ b

a

|f(x)| |g(x)| dx+

∫ b

a

|g(x)|2 dx.

It follows that

‖f + g‖22 ≤ ‖f‖22 + 2 ‖f‖2 ‖g‖2 + ‖g‖22 = (‖f‖2 + ‖g‖2)2,(3.2.6)

using (3.2.4) in the first step. Thus

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2,(3.2.7)

so that (3.2.1) defines a norm on each of C([a, b],R) and C([a, b],C). The
associated metric is given by

d2(f, g) = ‖f − g‖2 =
(∫ b

a

|f(x)− g(x)|2 dx
)1/2

.(3.2.8)

If f is a continuous real or complex-valued function on [a, b], then

‖f‖22 =

∫ b

a

|f(x)|2 dx ≤ (b− a) ‖f‖2∞.(3.2.9)

Equivalently,
‖f‖2 ≤ (b− a)1/2 ‖f‖∞.(3.2.10)

This implies that
d2(f, g) ≤ (b− a)1/2 d∞(f, g)(3.2.11)
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for all real or complex-valued continuous functions f and g on [a, b]. In partic-
ular, the identity mappings on C([a, b],R) and C([a, b],C) are Lipschitz with
respect to d∞(f, g) on the domain and d2(f, g) on the range.

Observe that

‖f‖1 =

∫ b

a

|f(x)| dx ≤ (b− a)1/2 ‖f‖2(3.2.12)

for every continuous real or complex-valued function f on [a, b], by (3.2.4).
Hence

d1(f, g) ≤ (b− a)1/2 d2(f, g)(3.2.13)

for all continuous real or complex-valued functions f and g on [a, b]. It follows
that the identity mappings on C([a, b],R) and C([a, b],C) are Lipschitz with
respect to d2(f, g) on the domain and d1(f, g) on the range.

3.3 Riemann–Stieltjes integrals

Let a, b be real numbers with a < b, and let α be a monotonically increasing
real-valued function on [a, b]. If f is a continuous real-valued function on [a, b],
then the corresponding Riemann–Stieltjes integral∫ b

a

f dα =

∫ b

a

f(x) dα(x)(3.3.1)

can be defined as a real number in a natural way. This reduces to the ordinary
Riemann integral of f on [a, b] when α(x) = x for every x ∈ [a, b].

To be a bit more precise, let P = {tj}lj=0 be a partition of [a, b]. This is a
finite sequence of real numbers with

a = t0 < t1 < · · · < tl−1 < tl = b,(3.3.2)

as usual. In the definition of the Riemann integral, one considers certain sums
associated to such a partition, involving the values of f on each interval [tj−1, tj ],
and the length of the interval. In the definition of the Riemann–Stieltjes integral,
one considers sums of a similar type, but using

α(tj)− α(tj−1)(3.3.3)

instead of the length of [tj−1, tj ]. Note that (3.3.3) is greater than or equal to
0 for each j, and that

l∑
j=1

(α(tj)− α(tj−1)) = α(b)− α(a).(3.3.4)

Riemann–Stieltjes integrals are discussed in many textbooks, as well as the
article [86]. See [28] for a geometric interpretation of the Riemann–Stieltjes
integral, and [153, 177] for some variants of the Riemann–Stieltjes integral.
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The Riemann–Stieltjes integral has many of the same properties as the Rie-
mann integral. In particular, (3.3.1) is greater than or equal to 0 when f ≥ 0
on [a, b]. In this case, if f(x0) > 0 for some x0 ∈ [a, b], and if α is not constant
near x0, then (3.3.1) is positive. If α is strictly increasing on [a, b], then this
works for any x0 ∈ [a, b]. If α is constant on [a, b], then (3.3.1) is equal to 0 for
any function f on [a, b].

If α is continuously-differentiable on [a, b], then it is well known that∫ b

a

f(x) dα(x) =

∫ b

a

f(x)α′(x) dx.(3.3.5)

In fact, this works when α is differentiable at every point in [a, b], and its
derivative α′ is Riemann integrable on [a, b]. Although monotonically increasing
functions on [a, b] are not necessarily continuous, it is well known that their only
possible discontinuities are jump discontinuities. It is also well known that such
a function can have only finitely or countably many discontinuities in [a, b]. It is
interesting to consider the Riemann–Stieltjes integral when α is a monotonically
increasing step function on [a, b], for instance.

It is well known that the Riemann integral of a bounded real-valued function
f on [a, b] can be defined when f is Riemann integrable on [a, b], in a suitable
sense, which includes the case where f is continuous on [a, b]. Similarly, (3.3.1)
can be defined when f is Riemann–Stieltjes integrable on [a, b] with respect to
α, in a suitable sense, which includes the case when f is continuous on [a, b]. If f
is a complex-valued function on [a, b], then one can consider the corresponding
integrability properties of the real and imaginary parts of f . If the real and
imaginary parts of f are Riemann–Stieltjes integrable on [a, b] with respect to
α, then one can define the Riemann–Stieltjes integral of f as a complex num-
ber, whose real and imaginary parts are the corresponding Riemann–Stieltjes
integrals of the real and imaginary parts of f . In particular, this works when f
is continuous on [a, b].

3.4 Riemann–Stieltjes integrals and seminorms

Let a, b be real numbers with a < b, and let N be a nonnegative real-valued
function on C([a, b],R) or C([a, b],C). As in Section A.6, N is said to be a
seminorm if

N(t f) = |t|N(f)(3.4.1)

and

N(f + g) ≤ N(f) +N(g)(3.4.2)

for every f, g ∈ C([a, b],R) or C([a, b],C) and t ∈ R orC, as appropriate. In this
case, N(0) = 0, by taking t = 0 in (3.4.1). If we also have that N(f) > 0 when
f 6≡ 0 on [a, b], then N is a norm on C([a, b],R) or C([a, b],C), as appropriate.
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Let α be a monotonically increasing real-valued function on [a, b]. If f is a
continuous real or complex-valued function on [a, b], then

‖f‖1,α =

∫ b

a

|f(x)| dα(x)(3.4.3)

is defined as a nonnegative real number, as in the previous section. Of course,
this is the same as (3.1.7) when α(x) = x on [a, b]. It is easy to see that

‖t f‖1,α = |t| ‖f‖1,α(3.4.4)

and
‖f + g‖1,α ≤ ‖f‖1,α + ‖g‖1,α(3.4.5)

for all continuous real or complex-valued functions f and g on [a, b] and t ∈ R
or C, as appropriate. Thus (3.4.3) defines a seminorm on each of C([a, b],R)
and C([a, b],C).

If α is strictly increasing on [a, b], and if f is a continuous real or complex-
valued function on [a, b] such that f(x0) 6= 0 for some x0 ∈ [a, b], then one can
check that (3.4.3) is positive, as before. This implies that (3.4.3) defines a norm
on each of C([a, b],R) and C([a, b],C) in this case. It follows that

d1,α(f, g) = ‖f − g‖1,α(3.4.6)

defines a metric on each of C([a, b],R) and C([a, b],C) under these conditions.
If f , g are continuous real or complex-valued function on [a, b], then∣∣∣∣∫ b

a

f dα−
∫ b

a

g dα

∣∣∣∣ =

∣∣∣∣∫ b

a

(f − g) dα

∣∣∣∣
≤

∫ b

a

|f − g| dα = ‖f − g‖1,α,(3.4.7)

using basic properties of the Riemann–Stieltjes integral in the first two steps.
Suppose for the moment that α is strictly increasing on [a, b]. It follows from
(3.4.7) that

f 7→
∫ b

a

f dα(3.4.8)

is Lipschitz as a mapping from C([a, b],R) or C([a, b],C) into R or C, as ap-
propriate, with respect to (3.4.6) on the domain and the standard Euclidean
metric on the range.

If f is a continuous real or complex-valued function on [a, b], then

‖f‖1,α ≤ (α(b)− α(a)) ‖f‖∞,(3.4.9)

where ‖f‖∞ is the supremum norm of f on [a, b], as in (3.1.5). Combining
(3.4.7) and (3.4.9), we get that∣∣∣∣∫ b

a

f dα−
∫ b

a

g dα

∣∣∣∣ ≤ (α(b)− α(a)) ‖f − g‖∞,(3.4.10)
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for all continuous real or complex-valued functions f , g on [a, b]. This implies
that (3.4.8) is Lipschitz as a mapping from C([a, b],R) or C([a, b],C) into R or
C, as appropriate, with respect to the supremum metric on the domain and the
standard Euclidean metric on the range.

Let {fj}∞j=1 be a sequence of real or complex-valued functions on [a, b] that
converges uniformly to a real or complex-valued function f on [a, b], as appro-
priate. If fj is continuous on [a, b] for each j, then f is continuous on [a, b],
and

‖fj − f‖1,α → 0 as j → ∞,(3.4.11)

by (3.4.9). This means that {fj}∞j=1 converges to f with respect to (3.4.6) when
α is strictly increasing on [a, b]. We also get that

lim
j→∞

∫ b

a

fj(x) dα(x) =

∫ b

a

f(x) dα(x),(3.4.12)

by (3.4.10).
More precisely, if fj is Riemann–Stieltjes integrable on [a, b] with respect

to α for each j, then it is well known that f is Riemann–Stieltjes integrable
on [a, b] with respect to α too. In this case, (3.4.12) holds for essentially the
same reasons as before. Similarly, one can define (3.4.3) for Riemann–Stieltjes
integrable functions on [a, b] with respect to α, and (3.4.11) holds as well.

3.5 Square seminorms

Let a, b be real numbers with a < b, and let α be a monotonically increasing real-
valued function on [a, b]. If f is a continuous real or complex-valued function
on [a, b], then

‖f‖2,α =
(∫ b

a

|f(x)|2 dα(x)
)1/2

(3.5.1)

is defined as a nonnegative real number. This reduces to (3.2.1) when α(x) = x
on [a, b], as before. Note that

‖t f‖2,α = |t| ‖f‖2,α(3.5.2)

for every t ∈ R or C, as appropriate.
Let g be another continuous real or complex-valued function on [a, b]. Ob-

serve that∫ b

a

|f(x)| |g(x)| dα(x) ≤ 1

2

∫ b

a

|f(x)|2 dα(x) + 1

2

∫ b

a

|g(x)|2 dα(x)

=
1

2
‖f‖22,α +

1

2
‖g‖22,α,(3.5.3)

using (3.2.2) in the first step. In particular,∫ b

a

|f(x)| |g(x)| dα(x) ≤ 1(3.5.4)
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when ‖f‖2,α, ‖g‖2,α ≤ 1.
Let f , g be arbitrary continuous real or complex-valued functions on [a, b],

and let r, t be positive real numbers such that

‖f‖2,α ≤ r, ‖g‖2,α ≤ t.(3.5.5)

Thus ‖r−1 f‖2,α, ‖t−1 g‖2,α ≤ 1, so that∫ b

a

|r−1 f(x)| |t−1 g(x)| dα(x) ≤ 1.(3.5.6)

Equivalently, this means that∫ b

a

|f(x)| |g(x)| dα(x) ≤ r t.(3.5.7)

One can use this to get that∫ b

a

|f(x)| |g(x)| dα(x) ≤ ‖f‖2,α ‖g‖2,α,(3.5.8)

which is the integral version of the Cauchy–Schwarz inequality for Riemann–
Stieltjes integrals on [a, b].

As in Section 3.2, one can show that

‖f + g‖2,α ≤ ‖f‖2,α + ‖g‖2,α,(3.5.9)

using (3.5.8). This implies that (3.5.1) defines a seminorm on each of C([a, b],R)
and C([a, b],C). If α is strictly increasing on [a, b], and if f is a continuous real
or complex-valued function on [a, b] that is not equal to 0 everywhere on [a, b],
then one can verify that (3.5.1) is positive, as usual. In this case, (3.5.1) defines
a norm on each of C([a, b],R) and C([a, b],C). Thus

d2,α(f, g) = ‖f − g‖2,α(3.5.10)

defines a metric on each of these spaces in this situation.
Observe that

‖f‖2,α ≤ (α(b)− α(a))1/2 ‖f‖∞(3.5.11)

for every continuous real or complex-valued function f on [a, b]. Of course, this
implies that

‖f − g‖2,α ≤ (α(b)− α(a))1/2 ‖f − g‖∞(3.5.12)

for all continuous real or complex-valued functions f , g on [a, b]. Similarly,

‖f‖1,α ≤ (α(b)− α(a))1/2 ‖f‖2,α,(3.5.13)

by (3.5.8). It follows that

‖f − g‖1,α ≤ (α(b)− α(a))1/2 ‖f − g‖2,α(3.5.14)

for every f, g ∈ C([a, b],R) or C([a, b],C).
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3.6 Some more monotone functions

Let a, b be real numbers with a < b, and let α, β be monotonically increasing
functions real-valued functions on [a, b]. Thus α+β is a monotonically increasing
real-valued function on [a, b] as well. If f is a continuous real-valued function
on [a, b], then the Riemann–Stieltjes integrals of f on [a, b] with respect to α,
β, α+ β may be defined in the usual way. It is well known that∫ b

a

f d(α+ β) =

∫ b

a

f dα+

∫ b

a

f dβ.(3.6.1)

In particular, if f ≥ 0 on [a, b], then∫ b

a

f dα,

∫ b

a

f dβ ≤
∫ b

a

f d(α+ β).(3.6.2)

Suppose now that f is a continuous real or complex-valued function on [a, b],
so that ‖f‖1,α and ‖f‖2,α may be defined as in the previous two sections. Of
course, the analogous quantities

‖f‖1,β , ‖f‖2,β , ‖f‖1,α+β , ‖f‖2,α+β(3.6.3)

associated to β and α+ β may be defined in the same way. Observe that

‖f‖1,α+β = ‖f‖1,α + ‖f‖1,β ,(3.6.4)

because of (3.6.1). Similarly,

‖f‖22,α+β = ‖f‖22,α + ‖f‖22,β .(3.6.5)

It follows that
‖f‖1,α, ‖f‖1,β ≤ ‖f‖1,α+β(3.6.6)

and
‖f‖2,α, ‖f‖2,β ≤ ‖f‖2,α+β(3.6.7)

Let t be a nonnegative real number, so that t α is a monotonically increasing
real-valued function on [a, b] too. If f is a continuous real-valued function on
[a, b], then the Riemann–Stieltjes integral of f on [a, b] with respect to t α may
be defined in the usual way. It is well known that∫ b

a

f d(t α) = t

∫ b

a

f dα.(3.6.8)

If f is a continuous real or complex-valued function on [a, b], then

‖f‖1,t α and ‖f‖2,t α(3.6.9)

may be defined as in the two previous sections again. It is easy to see that

‖f‖1,t α = t ‖f‖1,α(3.6.10)

and
‖f‖2,t α =

√
t ‖f‖2,α,(3.6.11)

using (3.6.8).
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3.7 Compact support

Let (X, d(x, y)) be a metric space, and let f be a real or complex-valued function
on X. The support of f in X is defined by

supp f = {x ∈ X : f(x) 6= 0},(3.7.1)

which is to say the closure of the set of x ∈ X with f(x) 6= 0 with respect
to d(·, ·). Note that this is different from the definition of the support used in
Section 1.6.

Suppose for the moment that d(x, y) is the discrete metric on X, which is
equal to 1 when x 6= y, and to 0 when x = y. In this case, it is easy to see that
every subset of X is a closed set. Similarly, the closure of any subset E of X is
the same as E. This means that (3.7.1) is the same as the previous definition
of the support in Section 1.6 under these conditions.

If t ∈ R or C, as appropriate, then

{x ∈ X : t f(x) 6= 0} = {x ∈ X : f(x) 6= 0} when t 6= 0(3.7.2)

= ∅ when t = 0.

This implies that

supp(t f) = supp f when t 6= 0(3.7.3)

= ∅ when t = 0.

If g is another real or complex-valued function on X, then it is easy to see that

{x ∈ X : f(x) + g(x) 6= 0} ⊆ {x ∈ X : f(x) 6= 0} ∪ {x ∈ X : g(x) 6= 0}.(3.7.4)

This implies that
supp(f + g) ⊆ (supp f) ∪ (supp g).(3.7.5)

More precisely, this also uses the well-known fact that

(E1 ∪ E2) ⊆ E1 ∪ E2(3.7.6)

for any two subsets E1, E2 of X.
Of course, f is said to have compact support in X if the support of f is a

compact subset of X. Suppose that there is a compact subset K of X such that

{x ∈ X : f(x) 6= 0} ⊆ K.(3.7.7)

This implies that
supp f ⊆ K,(3.7.8)

because compact subsets of metric spaces are closed sets. If E is a closed subset
of X such that E ⊆ K, then it is well known that E is also compact in X. Thus
(3.7.8) implies that supp f is compact, because supp f is a closed set in X, by
construction.
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If f has compact support in X, then t f has compact support in X for every
t ∈ R or C, as appropriate, because of (3.7.3). Let g be another real or complex-
valued function on X, as appropriate, with compact support. It is well known
and easy to see that the union of any two compact subsets of X is also compact,
so that the union of supp f and supp g is compact. Thus (3.7.5) implies that
the support of f + g is contained in a compact subset of X. It follows that the
support of f + g is compact, as in the preceding paragraph.

Suppose that X 6= ∅, and let Ccom(X,R) and Ccom(X,C) be the spaces
of continuous real and complex-valued functions on X with compact support,
respectively. These are linear subspaces of the real and complex vector spaces
C(X,R) and C(X,C) of continuous real and complex-valued functions on X,
respectively, by the remarks in the previous paragraph. Of course, if X is
compact, then every real or complex-valued function on X has compact support.

Suppose that f is a continuous real or complex-valued function on X with
compact support. This implies that

f(supp f)(3.7.9)

is a compact subset of R or C, as appropriate, because continuous mappings
send compact sets to compact sets. In particular, this means that f is bounded
on supp f , because compact subsets of metric spaces are bounded. It follows
that f is bounded on X, because f is equal to 0 on the complement of supp f ,
by construction. Thus

Ccom(X,R) ⊆ Cb(X,R), Ccom(X,C) ⊆ Cb(X,C),(3.7.10)

where Cb(X,Y ) is as in Section 1.14.
Suppose for the moment again that X is equipped with the discrete metric.

In this case, the only compact subsets of X are those with only finitely many
elements. If Y is any metric space, then every mapping from X into Y is
continuous. Hence Ccom(X,R) and Ccom(X,C) are the same as the spaces
c00(X,R) and c00(X,C) defined in Section 1.6 in this situation.

3.8 Functions on R

In this section, we take the real line to be equipped with the standard Euclidean
metric, as usual. Let f be a real or complex-valued function on R. If f has
compact support in R, then there are real numbers a, b with a < b and

supp f ⊆ [a, b],(3.8.1)

because compact subsets of R are bounded. Conversely, if (3.8.1) holds for some
a, b ∈ R with a ≤ b, then supp f is compact, because [a, b] is a compact subset of
R. Remember that the spaces Ccom(R,R) and Ccom(R,C) of continuous real
and complex-valued functions on R with compact support are linear subspaces
of the real and complex vector spaces of all continuous real and complex-valued
functions on R, respectively, as in the previous section.
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A nonnegative real-valued function N on Ccom(R,R) or Ccom(R,C) is said
to be a norm if it satisfies the following three conditions, as usual. First, N(f) =
0 if and only if f = 0. Second, if f is a continuous real or complex-valued
function on R with compact support and t ∈ R or C, as appropriate, then

N(t f) = |t|N(f).(3.8.2)

Third, if f and g are continuous real or complex-valued functions on R with
compact support, as appropriate, then

N(f + g) ≤ N(f) +N(g).(3.8.3)

This implies that

dN (f, g) = N(f − g)(3.8.4)

defines a metric on Ccom(R,R) or Ccom(R,C), as appropriate.

Remember that continuous real and complex-valued functions on R with
compact support are bounded, as in the previous section. The supremum norm
is defined on each of Ccom(R,R) and Ccom(R,C) by

‖f‖∞ = sup
x∈R

|f(x)|,(3.8.5)

as in (1.13.4). Equivalently,

‖f‖∞ = sup{|f(x)| : x ∈ supp f}(3.8.6)

when supp f 6= ∅, in which case the supremum is attained, by the extreme value
theorem. If (3.8.1) holds for some a, b ∈ R with a ≤ b, then

‖f‖∞ = sup
a≤x≤b

|f(x)|.(3.8.7)

As before, the corresponding metric

d∞(f, g) = ‖f − g‖∞(3.8.8)

is the same as the supremum metric.

Let f be a continuous real or complex-valued function on R with compact
support, and let a, b be real numbers such that a ≤ b and (3.8.1) holds. Under
these conditions, one can define the integral∫ ∞

−∞
f(x) dx(3.8.9)

to be the Riemann integral ∫ b

a

f(x) dx.(3.8.10)
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More precisely, one can check that (3.8.10) does not depend on the particular
choices of a and b, as long as (3.8.1) holds. If g is another continuous real or
complex-valued function on R, as appropriate, with compact support, then∫ ∞

−∞
(f(x) + g(x)) dx =

∫ ∞

−∞
f(x) dx+

∫ ∞

−∞
g(x) dx.(3.8.11)

To see this, one can choose a, b ∈ R such that a < b and the supports of both
f and g are contained in [a, b], so that the support of f + g is contained in [a, b]
too. In this case, (3.8.11) reduces to the well-known fact that∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.(3.8.12)

Of course, other basic properties of (3.8.9) follow from the corresponding state-
ments for (3.8.10).

If f is a continuous real or complex-valued function on R with compact
support, then put

‖f‖1 =

∫ ∞

−∞
|f(x)| dx,(3.8.13)

where the integral on the right is defined as in the preceding paragraph. One
can check that this defines a norm on each of Ccom(R,R) and Ccom(R,C), in
essentially the same way as for functions on an interval. This leads to a metric

d1(f, g) = ‖f − g‖1 =

∫ ∞

−∞
|f(x)− g(x)| dx(3.8.14)

on each of Ccom(R,R) and Ccom(R,C), as in (3.8.8).

Similarly, put

‖f‖2 =
(∫ ∞

−∞
|f(x)|2 dx

)1/2

(3.8.15)

for every continuous real or complex-valued function f on R with compact
support, using the nonnegative square root on the right side. One can verify
that this defines a norm on each of Ccom(R,R) and Ccom(R,C), using the
analogous statements for functions on an interval. Thus

d2(f, g) =
(∫ ∞

−∞
|f(x)− g(x)|2 dx

)1/2

(3.8.16)

defines a metric on each of Ccom(R,R) and Ccom(R,C).

Let f be any continuous real or complex-valued function on R with compact
support. Observe that

‖f‖22 =

∫ ∞

−∞
|f(x)|2 dx ≤ ‖f‖∞

∫ ∞

−∞
|f(x)| dx = ‖f‖1 ‖f‖∞.(3.8.17)
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3.9 Dense sets and Weierstrass’ theorem

Let (M,d(x, y)) be a metric space, and let E be a subset of M . Remember that
E is said to be dense in X if every element of M is an element of E, or a limit
point of E, or both. This is the same as saying that the closure E of E in M is
equal to M . Equivalently, it is easy to see that E is dense in M if and only if
for every x ∈M and ϵ > 0 there is a y ∈ E such that

d(x, y) < ϵ.(3.9.1)

Alternatively, one can verify that E is dense inM if and only if for every x ∈M
there is a sequence {xj}∞j=1 of elements of E that converges to x in M .

Let (X, dX) and (Y, dY ) be nonempty metric spaces, and let θ(·, ·) be the
corresponding supremum metric on the space Cb(X,Y ) of bounded continuous
mappings from X into Y , as in Sections 1.11 and 1.14. A subset E of Cb(X,Y )
is dense in Cb(X,Y ) with respect to θ(·, ·) if and only if for every f ∈ Cb(X,Y )
and ϵ > 0 there is a g ∈ E such that

θ(f, g) < ϵ,(3.9.2)

as in the preceding paragraph. Note that (3.9.2) implies that

dY (f(x), g(x)) < ϵ for every x ∈ X.(3.9.3)

If (3.9.3) holds, then

θ(f, g) ≤ ϵ,(3.9.4)

by the definition of the supremum metric. Using this, we get that E is dense in
Cb(X,Y ) with respect to θ(·, ·) if and only if for every f ∈ Cb(X,Y ) and ϵ > 0
there is a g ∈ E such that (3.9.3) holds.

We also have that E is dense in Cb(X,Y ) with respect to θ(·, ·) if and only
if for every f ∈ Cb(X,Y ) there is a sequence {fj}∞j=1 of elements of E that
converges to f uniformly onX. This uses the equivalence of uniform convergence
and convergence with respect to θ(·, ·) for sequences of bounded mappings from
X into Y , as in Section 1.11.

Let a, b be real numbers with a < b, and let f be a continuous complex-
valued function on [a, b]. Of course, this uses the restriction of the standard
Euclidean metric on R to [a, b], and the standard Euclidean metric on C. A
famous theorem of Weierstrass states that there is a sequence of polynomials
on R with complex coefficients that converges to f uniformly on [a, b]. If f is a
continuous real-valued function on [a, b], then one can use polynomials onR with
real coefficients. This means that the set of functions on [a, b] corresponding
to polynomials with complex coefficients is dense in the space C([a, b],C) of
continuous complex-valued functions on [a, b], with respect to the supremum
metric. Similarly, the set of functions on [a, b] corresponding to polynomials
with real coefficients is dense in the space C([a, b],R) of continuous real-valued
functions on [a, b], with respect to the supremum metric.
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Suppose now that (X, dX) is a nonempty compact metric space. The Stone–
Weierstrass theorem gives a criterion for a set of continuous real or complex-
valued functions on X to be dense in C(X,R) or C(X,C), as appropriate, with
respect to the supremum metric. This will be discussed in Section 3.11, after
some preliminaries in the next section.

3.10 Functions on sets

Let X be a nonempty set, and let

c(X,R), c(X,C)(3.10.1)

be the spaces of all real and complex-valued functions on X, respectively. Of
course, if f and g are real or complex-valued functions on X, then f + g is
a real or complex-valued function on X, as appropriate. Similarly, if f is a
real or complex-valued function on X, and t is a real or complex number, as
appropriate, then t f is a real or complex-valued function on X, as appropriate.
These are basic (classes of) examples of vector spaces over the real or complex
numbers.

A subsetW of c(X,R) or c(X,C) is said to be a linear subspace of c(X,R) or
c(X,C), as appropriate, if 0 ∈ W , and W satisfies the following two additional
conditions. First, if f, g ∈W , then

f + g ∈W.(3.10.2)

Second, if f ∈W and t ∈ R or C, as appropriate, then

t f ∈W.(3.10.3)

If f and g are real or complex-valued functions on X, then their product
f(x) g(x) defines a real or complex-valued function on X, as appropriate, too.
In fact, c(X,R), c(X,C) are basic (classes of) examples of commutative rings,
although we shall not discuss this in detail here. More precisely, these are
commutative algebras over the real and complex numbers, respectively.

Let A be a linear subspace of c(X,R) or c(X,C). Suppose that for every
f, g ∈ A, we have that

f g ∈ A.(3.10.4)

Under these conditions, A is said to be a subalgebra of c(X,R) or c(X,C), as
appropriate.

If X is equipped with a metric, then the corresponding spaces C(X,R) and
C(X,C) of continuous real and complex-valued functions on X are subalgebras
of c(X,R) and c(X,C), respectively. If X is equipped with the discrete metric,
then any mapping fromX into another metric space is continuous. In particular,
this means that

C(X,R) = c(X,R) and C(X,C) = c(X,C)(3.10.5)
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in this case.
Let W be a subset of c(X,R) or c(X,C). We say that W is nowhere van-

ishing on X if for every x ∈ X there is an f ∈W such that

f(x) 6= 0.(3.10.6)

In particular, this holds when W contains a nonzero constant function on X.
We say that W separates points in X if for every x,w ∈ X with x 6= w there is
an f ∈W such that

f(x) 6= f(w).(3.10.7)

Of course, at least one of f(x) and f(w) is not equal to 0 in this case.
Suppose now thatW is a subset of c(X,C). We shall sometimes be concerned

with situations whereW contains the complex-conjugate of each of its elements.
IfW is a linear subspace of c(X,C), then this is equivalent to the condition that
W contain the real and imaginary parts of all of its elements.

If W is a linear subspace of c(X,R) or c(X,C), then a subset of W may be
called a linear subspace of W if it is a linear subspace of c(X,R) or c(X,C), as
appropriate. Similarly, if A is a subalgebra of c(X,R) or c(X,C), then a subset
of A may be called a subalgebra of A if it is a subalgebra of c(X,R) or c(X,C),
as appropriate. In particular, if X is equipped with a metric, then the notions
of linear subspaces and subalgebras of C(X,R) and C(X,C) may be defined in
this way.

3.11 The Stone–Weierstrass theorem

Let (X, d(x, y)) be a metric space, and suppose that X is nonempty and com-
pact. Also let A be a subalgebra of the algebra C(X,R) of continuous real-
valued functions on X, and suppose that

A is nowhere vanishing on X,(3.11.1)

and that
A separates points in X.(3.11.2)

Under these conditions, the Stone–Weierstrass theorem states that

A is dense in C(X,R),(3.11.3)

with respect to the supremum metric. It is easy to see that (3.11.1) and (3.11.2)
are necessary for (3.11.3) to hold.

Let a, b be real numbers with a < b. Observe that the collection of func-
tions on [a, b] that can be expressed as a polynomial with real coefficients is
a subalgebra of the algebra of continuous real-valued functions on [a, b]. It is
easy to see that this subalgebra is nowhere vanishing on [a, b] and that it sep-
arates points in [a, b]. Thus Weierstrass’ original approximation theorem for
approximating real-valued continuous functions on [a, b] by polynomials with
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real coefficients uniformly on [a, b] can be obtained from the Stone-Weierstrass
theorem. However, Weierstrass’ original theorem, or at least an interesting case
of it, is typically used to show the Stone–Weierstrass theorem.

Let (X, d(x, y)) be any nonempty compact metric space again, and now let A
be a subalgebra of the algebra C(X,C) of continuous complex-valued functions
on X. Suppose that A is nowhere vanishing on X, that A separates points in
X, and that

A contains the complex conjugate of each of its elements.(3.11.4)

In this case, another version of the Stone–Weierstrass theorem states that

A is dense in C(X,C),(3.11.5)

with respect to the supremum metric.
This version of the Stone–Weierstrass theorem can be obtained from the

previous one, as follows. Note that

A contains the real and imaginary parts of all of its elements,(3.11.6)

as in the previous section. One can check that

the collection of real-valued functions in A(3.11.7)

is a subalgebra of C(X,R) that satisfies (3.11.1) and (3.11.2). Thus the previous
version of the theorem implies that every continuous real-valued function on X
can be approximated by elements of (3.11.7), uniformly on X. Using this,
it is easy to see that every continuous complex-valued function on X can be
approximated by elements of A, uniformly on X.

It is well known that the version of the Stone–Weierstrass theorem for
complex-valued functions does not always work without the hypothesis (3.11.6).
One can get a counterexample by taking X to be the closed unit disk in the
complex plane, and A to be the algebra of continuous complex-valued functions
on the closed unit disk that are holomorphic or complex-analytic on the open
unit disk. Alternatively, one can take X to be the unit circle in the complex
plane, and A to be the algebra of continuous complex-valued functions on the
circle that have a continuous extension to the closed unit disk that is holomor-
phic on the open unit disk. There are examples related to these that may be
described without using complex analysis.

3.12 Algebras of bounded functions

Let X be a nonempty set, and remember that ℓ∞(X,R) and ℓ∞(X,C) denote
the spaces of bounded real and complex-valued functions on X, respectively, as
in Section 1.13. If f , g are bounded real or complex-valued functions on X, then
it is easy to see that their product f g is bounded on X as well. More precisely,
one can check that the supremum norm of f g on X satisfies

‖f g‖∞ ≤ ‖f‖∞ ‖g‖∞.(3.12.1)
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Thus ℓ∞(X,R) and ℓ∞(X,C) are subalgebras of the algebras c(X,R) and
c(X,C) of all real and complex-valued functions on X, respectively, as in Section
3.10.

IfW is a subset of ℓ∞(X,R) or ℓ∞(X,C), then let W be the closure of W in
ℓ∞(X,R) or ℓ∞(X,C), as appropriate, with respect to the supremum metric.
If W is a linear subspace of ℓ∞(X,R) or ℓ∞(X,C), then one can check that

W is a linear subspace of ℓ∞(X,R) or ℓ∞(X,C),(3.12.2)

as appropriate. Similarly, if W is a subalgebra of ℓ∞(X,R) or ℓ∞(X,C), then
one can verify that

W is a subalgebra of ℓ∞(X,R) or ℓ∞(X,C),(3.12.3)

as appropriate.
Suppose now that (X, d(x, y)) is a nonempty metric space. The spaces

Cb(X,R) and Cb(X,C) of bounded continuous real and complex-valued func-
tions on X are subalgebras of ℓ∞(X,R) and ℓ∞(X,C), respectively. Remember
that Cb(X,R) and Cb(X,C) are also closed sets in ℓ∞(X,R) and ℓ∞(X,C),
respectively, with respect to the supremum metric, as in Section 1.14.

Let A be a subalgebra of Cb(X,R) or Cb(X,C), so that A may also be con-
sidered as a subalgebra of ℓ∞(X,R) or ℓ∞(X,C), as appropriate. The closure
A of A in Cb(X,R) or Cb(X,C), as appropriate, is the same as the closure of
A in ℓ∞(X,R) or ℓ∞(X,C), as appropriate. In particular, A is a subalgebra of
Cb(X,R) or Cb(X,C), as appropriate, as before.

If X is compact, then one can use these remarks to reduce to the case of
closed subalgebras of C(X,R) or C(X,C), with respect to the supremummetric,
in the Stone-Weierstrass theorem.

3.13 Some remarks about closed subalgebras

Let a be a positive real number. It is well known that the absolute value
function on R can be uniformly approximated on [−a, a] by polynomials p with
real coefficients such that

p(0) = 0,(3.13.1)

as in Corollary 7.27 on p161 of [155]. Of course, Weierstrass’ approximation
theorem implies that | · | may be approximated uniformly on [−a, a] by poly-
nomials q with real coefficients. The constant term of such an approximation
should be small, because |0| = 0, and so one can replace q with q − q(0) to get
approximations with the additional condition (3.13.1). This type of approxima-
tion can also be obtained more directly, without using Weierstrass’ theorem, as
in Exercise 23 on p169 of [155].

Let X be a nonempty set, and let A be a subalgebra of the algebra c(X,R)
of all real-valued functions on X. If f ∈ A, and if p is a polynomial with real
coefficients that satisfies (3.13.1), then it is easy to see that

p ◦ f ∈ A.(3.13.2)
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Now letA be a subalgebra of the algebra ℓ∞(X,R) of all bounded real-valued
functions on X. Suppose that A is a closed set in ℓ∞(X,R), with respect to
the supremum metric. If f ∈ A, then it is well known that

|f | ∈ A(3.13.3)

too. This corresponds to Step 1 in the proof of Theorem 7.32 on p162 of [155],
which is the Stone–Weierstrass theorem.

To see this, note that there is a nonnegative real number a such that |f | ≤ a
on X, which means that

f(X) ⊆ [−a, a].(3.13.4)

The absolute value function on R can be uniformly approximated on [−a, a] by
polynomials p with real coefficients that satisfy (3.13.1), as before, which implies
that |f | can be uniformly approximated on X by the corresponding functions
p ◦ f . Thus (3.13.3) can be obtained from (3.13.2), because A is a closed set in
ℓ∞(X,R), by hypothesis.

If g is another element of A, then it is well known that

max(f, g), min(f, g) ∈ A(3.13.5)

as well, as in Step 2 on p163 of [155]. This can be obtained by expressing the
maximum and minimum of two real numbers in terms of the absolute value
function, as in [155].

3.14 Local compactness

A metric space (X, d) is said to be locally compact at a point x ∈ X if there is a
positive real number r such that B(x, r) is a compact subset of X. Remember
that B(x, r) is the closed ball in X centered at x with radius r, and that this is
a closed set in X.

If there is a continuous real or complex-valued function f on X with compact
support such that f(x) 6= 0, then X is locally compact at x. More precisely, if
f(x) 6= 0, then there is an r > 0 such that f is nonzero at every point in B(x, r),
because f is continuous at x. This implies that

B(x, r) ⊆ supp f,(3.14.1)

and hence that B(x, r) is compact when supp f is compact, because B(x, r) is
a closed set in X.

If (X, d) is any metric space and x ∈ X, then it is well known that the
distance to x defines a continuous real-valued function on X. If r is a positive
real number, then one can use this to get continuous nonnegative real-valued
functions f on X such that f(x) > 0 and

supp f ⊆ B(x, r).(3.14.2)
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More precisely, one can obtain such functions f by composing the distance to
x with suitable continuous functions on the real line. If X is locally compact
at x, then one can choose r > 0 so that B(x, r) is compact in X. In this case,
(3.14.2) implies that f has compact support in X, as before.

If X is locally compact at every x ∈ X, then X is said to be locally com-
pact as a metric space. Of course, if X is compact, then X is automatically
locally compact. If X is equipped with the discrete metric, then X is clearly
locally compact. Note that Rn is locally compact with respect to the standard
Euclidean metric for every positive integer n.

3.15 Another vanishing condition

Let (X, d(x, y)) be a metric space, and let f be a real or complex-valued function
on X. We say that f vanishes at infinity on X if for every ϵ > 0 there is a
compact subset K(ϵ) of X such that

|f(x)| < ϵ(3.15.1)

for every x ∈ X \K(ϵ). Note that this is not the same as the definition used in
Section 2.5. However, if X is equipped with the discrete metric, then the two
notions are equivalent, because the only compact subsets of X are those with
only finitely many elements. If X is a compact metric space, then any real or
complex-valued function on X automatically vanishes at infinity in this sense.

Equivalently, f vanishes at infinity on X if for every ϵ > 0 there is a compact
set K(ϵ) ⊆ X such that

Eϵ(f) = {x ∈ X : |f(x)| ≥ ϵ} ⊆ K(ϵ).(3.15.2)

This condition implies that
Eϵ(f) ⊆ K(ϵ),(3.15.3)

where Eϵ(f) is the closure of Eϵ(f) in X, because compact subsets of metric
spaces are closed sets. It follows from (3.15.3) that Eϵ(f) is compact in X,
because a closed set in a metric space is compact when it is contained in a
compact set. Conversely, if Eϵ(f) is compact, then one might as well take it to
be K(ϵ). Thus f vanishes at infinity on X if and only if Eϵ(f) is compact for
every ϵ > 0.

Note that
Eϵ(f) ⊆ supp f(3.15.4)

for every ϵ > 0, where supp f is as in (3.7.1). If f has compact support in X,
then it follows that f vanishes at infinity on X.

If f vanishes at infinity on X, then it is easy to see that t f vanishes at
infinity for every t ∈ R or C, as appropriate. Let g be another real or complex-
valued function on X, as appropriate. If f and g both vanish at infinity on X,
then one can check that f + g vanishes at infinity on X too. This uses the fact
that the union of two compact subsets of X is compact as well.
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Suppose that X 6= ∅, and let C0(X,R) and C0(X,C) be the spaces of contin-
uous real and complex-valued functions onX that vanish at infinity, respectively.
These are linear subspaces of the real and complex vector spaces C(X,R) and
C(X,C) of continuous real and complex-valued functions on X, respectively, by
the remarks in the preceding paragraph. We also have that

Ccom(X,R) ⊆ C0(X,R), Ccom(X,C) ⊆ C0(X,C)(3.15.5)

because functions on X with compact support automatically vanish at infin-
ity, as before. If X is equipped with the discrete metric, then C0(X,R) and
C0(X,C) are the same as the spaces c00(X,R) and c00(X,C) defined in Section
2.5, respectively. This uses the fact that all functions on X are continuous in
this case.

Let f be a continuous real or complex-valued function on X. Note that
Eϵ(f) is a closed set in X for each ϵ > 0. Thus f vanishes at infinity on X if
and only if Eϵ(f) is compact for every ϵ > 0. Of course, the restriction of f
to any compact set K ⊆ X is bounded, because f(K) is compact, and hence
bounded. If Eϵ(f) is compact for any ϵ > 0, then it follows that f is bounded
on X. In particular, if f vanishes at infinity on X, then f is bounded on X.
This means that

C0(X,R) ⊆ Cb(X,R), C0(X,C) ⊆ Cb(X,C),(3.15.6)

where Cb(X,Y ) is as in Section 1.14.
Let f be a continuous real or complex-valued function on X again, and let

x be an element of X such that f(x) 6= 0. Thus |f(x)| > ϵ for some ϵ > 0, and
the continuity of f at x implies that there is an r > 0 such that |f(y)| ≥ ϵ for
every y ∈ X with d(x, y) ≤ r. Equivalently, this means that

B(x, r) ⊆ Eϵ(f),(3.15.7)

where B(x, r) is the closed ball in X centered at x with radius r, as before. If
f vanishes at infinity on X, then it follows that B(x, r) is compact, because
B(x, r) is a closed set in X. This implies that X is locally compact at x under
these conditions.

Let {fj}∞j=1 be a sequence of real or complex-valued functions on X that
converges uniformly to a real or complex-valued function f onX, as appropriate.
Suppose that fj vanishes at infinity on X for each j, and let us show that f
vanishes at infinity on X too. Let ϵ > 0 be given. Because {fj}∞j=1 converges
to f uniformly on X, there is an L ∈ Z+ such that

|fj(x)− f(x)| < ϵ/2(3.15.8)

for every x ∈ X and j ≥ L. There is also a compact set K ⊆ X such that

|fL(x)| < ϵ/2(3.15.9)

for every x ∈ X \K, because fL vanishes at infinity on X. Combining (3.15.8)
and (3.15.9), we get that

|f(x)| ≤ |f(x)− fL(x)|+ |fL(x)| < ϵ/2 + ϵ/2 = ϵ(3.15.10)
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for every x ∈ X \ K, as desired. In particular, this implies that C0(X,R)
and C0(X,C) are closed sets in Cb(X,R) and Cb(X,C) with respect to the
supremum metric.

Let f be a real or complex-valued function on X that vanishes at infinity.
Also let ϕ be a mapping from R or C into itself such that ϕ(0) = 0 and ϕ is
continuous at 0. Under these conditions, one can check that ϕ ◦ f vanishes at
infinity onX too. If ϕ vanishes on a neighborhood of 0 inR orC, as appropriate,
then one can verify that ϕ ◦ f has compact support in X. Of course, if f and
ϕ are continuous, then ϕ ◦ f is continuous on X too. It is easy to see that the
identity mappings on R and C can be approximated uniformly by continuous
functions that vanish on a neighborhood of 0. If f is a continuous function on
X that vanishes at infinity, then one can use this to approximate f uniformly by
continuous functions on X with compact support. This means that Ccom(X,R)
and Ccom(X,C) are dense in C0(X,R) and C0(X,C), respectively, with respect
to the supremum metric.



Chapter 4

Compactness and
completeness

4.1 Diameters of sets

Let (X, d(x, y)) be a metric space, and let E be a subset of X. If E 6= ∅, then
the diameter of E can be defined as a nonnegative extended real number by

diamE = sup{d(x, y) : x, y ∈ E}.(4.1.1)

It is easy to see that this is finite exactly when E is bounded in X. It is
sometimes convenient to define the diameter of the empty set to be 0. One can
check that

diamE = diamE(4.1.2)

for every E ⊆ X, where E is the closure of E in X, as usual.
If E1 ⊆ E2 ⊆ X, then

diamE1 ≤ diamE2.(4.1.3)

Observe that
diamB(x, r) ≤ 2 r(4.1.4)

for every x ∈ X and nonnegative real number r, by the triangle inequality. Here
B(x, r) is the closed ball in X centered at x with radius r, as before. If E ⊆ X
is a bounded set, then

E ⊆ B(x, diamE)(4.1.5)

for every x ∈ E.
Let E1, E2, E3, . . . be an infinite sequence of nonempty subsets of X such

that
Ej is closed and bounded(4.1.6)

for each j ≥ 1,
Ej+1 ⊆ Ej(4.1.7)

55
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for every j ≥ 1, and

lim
j→∞

diamEj = 0.(4.1.8)

Let xj be an element of Ej for each j ≥ 1. If 1 ≤ j ≤ l, then it follows that

xl ∈ El ⊆ Ej .(4.1.9)

It is easy to see that

{xj}∞j=1 is a Cauchy sequence in X.(4.1.10)

Suppose for the moment that X is complete with respect to d, so that

{xj}∞j=1 converges to an element x of X.(4.1.11)

If l is any positive integer, then {xj}∞j=l is a sequence of elements of El that
converges to x. This implies that

x ∈ El(4.1.12)

for every l ≥ 1, because El is a closed set, by hypothesis. Thus

∞⋂
j=1

Ej 6= ∅(4.1.13)

under these conditions.

Now let {xj}∞j=1 be a Cauchy sequence in X, and put

Ej = {xl : l ≥ j}(4.1.14)

for each j ≥ 1, which is the closure in X of the set of xl with j ≥ l. Clearly
Ej 6= ∅ and (4.1.7) holds for every j ≥ 1, and the Ej ’s are closed sets, by
construction. It is well known that the Ej ’s are bounded in X, because {xj}∞j=1

is a Cauchy sequence, and in fact we have that (4.1.8) holds. If

x ∈
∞⋂
j=1

Ej ,(4.1.15)

then one can check that

{xj}∞j=1 converges to x in X.(4.1.16)

This means that completeness of X is necessary in order to get (4.1.13) under
the conditions described in the preceding paragraph.
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4.2 Totally bounded sets

Let (X, d(x, y)) be a metric space again. A subset E of X is said to be totally
bounded if for every r > 0 there are finitely many elements x1, . . . , xl of X such
that

E ⊆
l⋃

j=1

B(xj , r).(4.2.1)

If E = ∅, then this may be considered to hold trivially with l = 0 for each r > 0,
even when X = ∅. If (4.2.1) holds for some r > 0 and finitely many points
x1, . . . , xl in X, then E is a bounded set in X. Thus totally bounded sets are
bounded in particular.

If E ⊆ X is compact, then

E is totally bounded.(4.2.2)

More precisely, for each r > 0, E can be covered by open balls in X of radius
r. Compactness implies that this open covering can be reduced to a finite
subcovering, as desired.

Suppose that E is a bounded subset of Rn for some positive integer n, with
respect to the standard Euclidean metric on Rn. In this case, one can check
directly that E is totally bounded.

Of course, finite subsets of X are totally bounded. If X is equipped with
the discrete metric and E ⊆ X is totally bounded, then

E has only finitely many elements.(4.2.3)

This can be seen by taking r = 1 in (4.2.1).
A subset E of X is totally bounded if and only if for every t > 0 there are

finitely many elements y1, . . . , yl of X such that

E ⊆
l⋃

j=1

B(yj , t).(4.2.4)

More precisely, the previous formulation implies this one, because B(x, r) is
contained in B(x, r) for every x ∈ X and r > 0. To get the converse, one can
use the fact that B(y, t) is contained in B(y, r) when t < r. If E is totally
bounded, then it follows from this reformulation that

the closure E of E in X is totally bounded(4.2.5)

too.
As another reformulation, a subset E of X is totally bounded if and only if

for every r1 > 0,

E is contained in the union of finitely many subsets of X(4.2.6)

with diameter strictly less than r1.
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More precisely, this formulation can be obtained from (4.2.1) using (4.1.4). Sim-
ilarly, one can get (4.2.1) from this formulation using (4.1.5). Equivalently,
E ⊆ X is totally bounded if and only if for every t1 > 0,

E is contained in the union of finitely many subsets of X(4.2.7)

with diameter less than or equal to t1.

Suppose that E ⊆ X is not totally bounded in X. This means that there
is an r > 0 such that E cannot be covered by finitely many open balls in X of
radius r. In particular, E 6= ∅, and we let x1 be an element of E. By hypothesis,
E is not contained in B(x1, r), and so there is an element x2 of E that is not
in B(x1, r). If elements x1, . . . , xl of E have been chosen in this way for some

positive integer l, then E is not contained in
⋃l

j=1B(xj , r), by hypothesis. This
permits us to choose xl+1 ∈ E such that xl+1 is not in B(xj , r) when 1 ≤ j ≤ l.
Continuing in this way, we get an infinite sequence {xj}∞j=1 of elements of E
such that xl is not in B(xj , r) when j < l. Equivalently,

d(xj , xl) ≥ r(4.2.8)

when j < l.

4.3 Separable metric spaces

A metric space (X, d(x, y)) is said to be separable if

there is a dense subset of X with only(4.3.1)

finitely or countably many elements.

It is well known that
Rn is separable(4.3.2)

with respect to the standard Euclidean metric for each positive integer n, as in
Exercise 22 at the end of Chapter 2 of [155]. More precisely, one can check that
the set of points in Rn with rational coordinates is a countable dense set in Rn,
as in the hint given in [155].

If X is any set equipped with the discrete metric, then

X is the only dense subset of itself.(4.3.3)

Thus X is separable with respect to the discrete metric if and only if

X has only finitely or countably many elements.(4.3.4)

Let (X, d(x, y)) be any metric space again. One can check that X is separable
if and only if for each ϵ > 0 there is a subset A(ϵ) of X such that

A(ϵ) has only finitely or countably many elements(4.3.5)
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and ⋃
x∈A(ϵ)

B(x, ϵ) = X.(4.3.6)

Indeed, if X is separable, then there is a dense set A ⊆ X with only finitely or
countably many elements, and one can take

A(ϵ) = A(4.3.7)

for every ϵ > 0. Conversely, if A(1/j) ⊆ X satisfies (4.3.6) with ϵ = 1/j for each
positive integer j, then it is easy to see that

A =

∞⋃
j=1

A(1/j)(4.3.8)

is dense in X. If A(1/j) also has only finitely or countably many elements for
each j ≥ 1, then (4.3.8) has only finitely or countably many elements as well.

Note that X is totally bounded if and only if for every ϵ > 0 there is a finite
set A(ϵ) ⊆ X such that (4.3.6) holds. This implies that

X is separable,(4.3.9)

as before.
A collection B of open subsets of X is said to be a base for the topology of

X if for every x ∈ X and r > 0 there is a U ∈ B such that x ∈ U and

U ⊆ B(x, r).(4.3.10)

Equivalently, this means that every nonempty open subset of X can be expressed
as a union of elements of B. One may consider the empty set to be the union
of the empty collection of sets.

Let E be a dense subset of X, and let B(E) be the collection of subsets of
X of the form B(y, 1/j), where y ∈ E and j ∈ Z+. We would like to show that

B(E) is a base for the topology of X.(4.3.11)

To do this, let x ∈ X and r > 0 be given. Let j be a positive integer such that
2/j < r. Because E is dense in X, there is a y ∈ E such that d(x, y) < 1/j.
This implies that x ∈ B(y, 1/j), and one can also verify that

B(y, 1/j) ⊆ B(x, r),(4.3.12)

using the triangle inequality, as desired.
If E has only finitely or countably many elements, then

B(E) has only finitely or countably many elements.(4.3.13)

Conversely, if there is a base B for the topology of X with only finitely or
countably many elements, then X is separable. More precisely, one can choose
an element from every nonempty element of B to get a dense set in X with only
finitely or countably many elements.
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4.4 Lindelöf ’s theorem

Let (X, d(x, y)) be a metric space, and suppose that B is a base for the topology
of X with only finitely or countably many elements. Let {Uα}α∈A be a family
of open subsets of X, indexed by a nonempty set A. Under these conditions, a
theorem of Lindelöf says that there is a subset A1 of A such that

A1 has only finitely or countably many elements(4.4.1)

and ⋃
α∈A1

Uα =
⋃
α∈A

Uα.(4.4.2)

To see this, put
Bα = {V ∈ B : V ⊆ Uα}(4.4.3)

for every α ∈ A. Observe that ⋃
V ∈Bα

V = Uα(4.4.4)

for every α ∈ A, because B is a base for the topology of X, and Uα is an open
set. Put

B′ =
⋃
α∈A

Bα,(4.4.5)

so that ⋃
V ∈B′

V =
⋃
α∈A

( ⋃
V ∈Bα

V
)
=

⋃
α∈A

Uα.(4.4.6)

If V ∈ B′, then V ∈ Bα for some α ∈ A, and we let α(V ) be an element of A
with this property. Let

A1 = {α(V ) : V ∈ B′}(4.4.7)

be the collection of elements of A that have been chosen in this way.
Thus ⋃

V ∈B′

V ⊆
⋃

α∈A1

Uα,(4.4.8)

because V ⊆ Uα(V ) for every V ∈ B′, by construction. This implies that⋃
α∈A

Uα ⊆
⋃

α∈A1

Uα,(4.4.9)

by (4.4.6). The opposite inclusion holds automatically, because A1 ⊆ A, so that
(4.4.2) holds. Clearly B′ has only finitely or countably many elements, because
B′ ⊆ B, and B has only finitely or countably many elements, by hypothesis. It
follows that A1 has only finitely or countably many elements too, as desired.

A subset E of X is said to have the Lindelöf property if every open covering
of E in X can be reduced to a subcovering with only finitely or countably many
elements. More precisely, this means that if {Uα}α∈A is an open covering of E
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in X, then there is a subset A1 of A such that A1 has only finitely or countably
many elements and

E ⊆
⋃

α∈A1

Uα.(4.4.10)

If there is a base B for the topology of X with only finitely or countably many el-
ements, then Lindelöf’s theorem implies that every subset of X has the Lindelöf
property.

Suppose that X has the Lindelöf property, and let ϵ > 0 be given. Of
course, X is covered by the collection of all open balls in X of radius ϵ. Because
X has the Lindelöf property, there is a subset A(ϵ) of X with only finitely
or countably many elements such that (4.3.6) holds. This implies that X is
separable, as mentioned in the previous section.

4.5 The limit point property

Let (X, d(x, y)) be a metric space. A subset E of X is said to have the limit
point property if for every infinite subset A of E there is an x ∈ E such that

x is a limit point of A in X.(4.5.1)

If E is compact, then it is well known that

E has the limit point property.(4.5.2)

Otherwise, there is an infinite set A ⊆ E which has no limit point in E. This
means that for every x ∈ E there is a positive real number r(x) such that
B(x, r(x)) does not contain any element of A, except perhaps for x itself. Be-
cause E is compact, there are finitely many elements x1, . . . , xn of E such that

E ⊆
n⋃

j=1

B(xj , r(xj)).(4.5.3)

In particular, this implies that

A ⊆
n⋃

j=1

(A ∩B(xj , r(xj))).(4.5.4)

This means that A has at most n elements, contradicting the hypothesis that
A have infinitely many elements.

If E ⊆ X has the limit point property, then

E is totally bounded in X.(4.5.5)

Otherwise, there is an r > 0 and an infinite sequence {xj}∞j=1 of elements of X
such that

d(xj , xl) ≥ r when j < l,(4.5.6)
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as in Section 4.2. Let A be the set of xj ’s, j ≥ 1, which is an infinite subset of
E, because the xj ’s are distinct. If x ∈ X, then it is easy to see that

A ∩B(x, r/2) has at most two elements,(4.5.7)

using the triangle inequality. This implies that x is not a limit point of A, and
hence that E does not have the limit point property.

Suppose that E ⊆ X has the limit point property, and let U1, U2, U3, . . . be
an infinite sequence of open subsets of X such that

E ⊆
∞⋃
j=1

Uj .(4.5.8)

We would like to show that there is a positive integer n such that

E ⊆
n⋃

j=1

Uj .(4.5.9)

Otherwise, for each n ≥ 1, we can choose xn ∈ E such that xn 6∈
⋃n

j=1 Uj . Let
A be the set of points xn, n ≥ 1, that have been chosen in this way. Let us
check that A has infinitely many elements.

If y ∈ E, then y ∈ Ul for some l ≥ 1, by (4.5.8). This means that xn 6= y
when n ≥ l, because xn 6∈ Ul, by construction. Thus xn = y for at most finitely
many n ≥ 1, which implies that A has infinitely many elements.

Hence there is an x ∈ E such that x is a limit point of A in X, because
E has the limit point property. We also have that x ∈ Uj for some j ≥ 1, by
(4.5.8). Because Uj is an open set in X, there is an r > 0 such that

B(x, r) ⊆ Uj .(4.5.10)

There are infinitely many elements of A in B(x, r), because x is a limit point of
A. This means that there are infinitely many elements of A in Uj , by (4.5.10).
Thus xn ∈ Uj for infinitely many n ≥ 1. This contradicts the fact that xn 6∈ Uj

when n ≥ j, by construction.
Suppose that X has the limit point property, and let us show that

X is compact.(4.5.11)

Remember that X is totally bounded in this case, as mentioned earlier. This
implies that X is separable, as in the previous section, and hence that there
is a base for the topology of X with only finitely or countably many elements.
It follows that X has the Lindelöf property, as in the previous section again.
Combining this with the argument in the preceding paragraphs, we get that X
is compact, as desired.

Now let E be any subset of X with the limit point property, and let us verify
that

E is compact.(4.5.12)
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Remember that E may also be considered as a metric space, with respect to
the restriction of d(x, y) to x, y ∈ E. It is easy to see that E has the limit point
property as a subset of itself when E has the limit point property as a subset
of X. This implies that E is compact as a subset of itself, as in the previous
paragraph. It is well known that this implies that E is compact as a subset of
X, as desired.

4.6 Sequential compactness

Let (X, d(x, y)) be a metric space again. A subset E of X is said to be se-
quentially compact if for every sequence {xj}∞j=1 of elements of E there is a
subsequence {xjl}∞l=1 of {xj}∞j=1 and an element x of E such that

{xjl}∞l=1 converges to x in X.(4.6.1)

If E has the limit point property, then it is well known that

E is sequentially compact.(4.6.2)

More precisely, let {xj}∞j=1 be a sequence of elements of E, and let A be the set
of xj ’s, j ≥ 1. If A has only finitely many elements, then there is a subsequence
{xjl}∞l=1 of {xj}∞j=1 and an element x of E such that xjl = x for every l ≥ 1. In
particular, this implies that {xjl}∞l=1 converges to x in X. Otherwise, if A has
infinitely many elements, then there is an x ∈ E such that x is a limit point of
A in X, because E has the limit point property. In this case, one can show that
there is a subsequence {xjl}∞l=1 of {xj}∞j=1 that converges to x in X.

Conversely, if E ⊆ X is sequentially compact, then E has the limit point
property. To see this, let A be an infinite subset of E, and let {xj}∞j=1 be
a sequence of distinct elements of A. By hypothesis, there is a subsequence
{xjl}∞l=1 of {xj}∞j=1 that converges to an element x of E. It is easy to see that
x is a limit point of A in X, as desired.

Let us say that E ⊆ X has the Cauchy subsequence property if every sequence
{xj}∞j=1 of elements of E has a subsequence {xjl}∞l=1 that is a Cauchy sequence
in X. Sequential compactness automatically implies the Cauchy subsequence
property, because convergent sequences are Cauchy sequences.

Let us say that a sequence {xj}∞j=1 of elements of X is an ϵ-sequence for
some ϵ > 0 if

d(xj , xl) < ϵ(4.6.3)

for every j, l ≥ 1. Let us say that a subset E of X has the small subsequence
property if for every sequence {xj}∞j=1 of elements of E and every ϵ > 0 there is
a subsequence {xjl}∞l=1 of {xj}∞j=1 such that

{xjl}∞l=1 is an ϵ-sequence.(4.6.4)

If E has the Cauchy subsequence property, then it is easy to see that E has
the small subsequence property. This uses the fact that every Cauchy sequence
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in X is an ϵ-sequence for any ϵ > 0 after skipping finitely many terms in the
sequence.

If E ⊆ X is totally bounded, then E has the small subsequence property.
To see this, let a sequence {xj}∞j=1 of elements of E and an ϵ > 0 be given.
Because E is totally bounded, E can be covered by finitely many open balls in
X of radius ϵ/2. This implies that there is a single open ball of radius ϵ/2 that
contains xj for infinitely many j ≥ 1, so that there is a subsequence {xjl}∞l=1

of {xj}∞j=1 such that all of the xjl ’s are contained in that open ball. It follows
that {xjl}∞l=1 is an ϵ-sequence, as desired, by the triangle inequality.

Conversely, suppose that E ⊆ X has the small subsequence property, and let
us check that E is totally bounded. Otherwise, if E is not totally bounded, then
there is an r > 0 and a sequence {xj}∞j=1 of elements of E such that d(xj , xl) ≥ r
when j < l, as in Section 4.2. In this case, {xj}∞j=1 has no subsequence that is
an r-subsequence, so that E does not have the small subsequence property.

If E ⊆ X has the small subsequence property, then E has the Cauchy
subsequence property. To see this, let a sequence {xj}∞j=1 of elements of E be
given. By hypothesis, there is a subsequence of {xj}∞j=1 that is a (1/2)-sequence.
We can repeat the process, to get a subsequence of the first subsequence that
is a (1/4)-sequence. Continuing in this way, we get an infinite sequence of
subsequences of {xj}∞j=1, such that the (n + 1)th subsequence of {xj}∞j=1 is
also a subsequence of the nth subsequence of {xj}∞j=1 for every n ≥ 1, and the
nth subsequence is a 2−n-sequence for every n ≥ 1. One can check that the
sequence obtained by taking the rth term of the rth subsequence for each r ≥ 1
is a subsequence of {xj}∞j=1 as well. This subsequence is a Cauchy sequence too,
because the terms with r ≥ n may be considered as a subsequence of the nth
subsequence for each n ≥ 1.

4.7 A criterion for compactness

Let (X, d(x, y)) be a complete metric space. If

E ⊆ X is closed and totally bounded,(4.7.1)

then it is well known that E is compact. One way to show this is to use
the fact that E has the Cauchy subsequence property, because E is totally
bounded, as in the previous section. In this case, Cauchy sequences converge in
X, because X is complete. We also have that the limit of a convergent sequence
of elements of E is contained in E, because E is a closed set. It follows that
E is sequentially compact under these conditions. This implies that E has the
limit point property, as in the previous section, and hence that E is compact,
as in Section 4.5.

Before describing another proof, let us reformulate the hypothesis that E
be totally bounded. If r is a positive real number, then E is contained in the
union of finitely many subsets of X with diameter less than or equal to r, as in
Section 4.2. We may as well suppose that these are subsets of E, since we can
replace them with their intersections with E. We can also take these subsets
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to be closed sets in X, by replacing them with their closures, which have the
same diameters as before. The closures of these subsets of E are contained in
E, because E is a closed set, by hypothesis.

Let {Uα}α∈A be an open covering of E in X for which there is no finite
subcovering, so that E 6= ∅ in particular. As in the previous paragraph, E
can be expressed as the union of finitely many closed sets, each of which has
diameter less than or equal to 1/2. At least one of these finitely many sets
cannot be covered by finitely many Uα’s. This implies that there is a subset E1

of E such that E1 is a closed set in X, the diameter of E1 is less than or equal
to 1/2, and E1 cannot be covered by finitely many Uα’s.

Continuing in this way, we can get an infinite sequence E1, E2, E3, . . . of
subsets of E such that Ej is a closed set in X for every j ≥ 1,

Ej+1 ⊆ Ej(4.7.2)

for every j ≥ 1,
diamEj ≤ 2−j(4.7.3)

for every j ≥ 1, and Ej cannot be covered by finitely many Uα’s for any j ≥ 1.
More precisely, suppose that Ej has been chosen for some j ≥ 1, and let us
choose Ej+1. By hypothesis, Ej is a closed set contained in E, and hence Ej is
totally bounded. Thus Ej can be expressed as the union of finitely many closed
sets, each of which has diameter less than or equal to 2−j−1. At least one of
these subsets cannot be covered by finitely many Uα’s, because Ej cannot be
covered by finitely many Uα’s. Thus we take Ej+1 to be one of these subsets of
Ej , in such a way that Ej+1 cannot be covered by finitely many Uα’s. Clearly
Ej+1 satisfies (4.7.2), and the analogues of the other conditions for j + 1.

Note that diamEj → 0 as j → ∞, by (4.7.3). This implies that there is an
x ∈ X that is contained in Ej for every j ≥ 1, because X is complete, as before.
In particular, x ∈ E, so that there is an α0 ∈ A such that x ∈ Uα0

. It follows
that there is a positive real number r such that

B(x, r) ⊆ Uα0
,(4.7.4)

because Uα0
is an open set. If j is large enough so that 2−j < r, then Ej is

contained in B(x, r), because of (4.7.3) and the fact that x ∈ Ej . This means
that Ej ⊆ Uα0 , by (4.7.4). This contradicts the condition that Ej cannot be
covered by finitely many Uα’s, as desired.

Let {xj}∞j=1 be a Cauchy sequence of elements of a metric space X, which
is not necessarily complete. If there is a subsequence {xjl}∞l=1 of {xj}∞j=1 that
converges to an element x of X, then it is well known and not too difficult to
check that

{xj}∞j=1 converges to x(4.7.5)

inX. In particular, if {xj}∞j=1 is a sequence of elements of a sequentially compact
set E ⊆ X, then {xj}∞j=1 converges to an element of E. If X is sequentially
compact, then it follows that X is complete. Remember that compact subsets of
metric spaces have the limit point property, and hence are sequentially compact.
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We can also use the second proof of this criterion for compactness as another
way to show that sequential compactness implies compactness. More precisely,
if a metric space X is sequentially compact, then X is complete and totally
bounded, and hence compact, by this criterion. Now let E be a subset of an
arbitrary metric space X, and remember that E may be considered as a metric
space as well, by restricting the metric to elements of E. If E is sequentially
compact in X, then it is easy to see that E is sequentially compact as a subset
of itself too. This implies that E is compact as a subset of itself, as before, and
hence that E is compact as a subset of X.

4.8 The Baire category theorem

Let (X, d(x, y)) be a metric space. One can check that E ⊆ X is dense in X if
and only if for every open set V ⊆ X with V 6= ∅, we have that

E ∩ V 6= ∅.(4.8.1)

If E is dense in X and U is a dense open set in X, then one can verify that

E ∩ U is dense in X.(4.8.2)

This implies that the intersection of two dense open sets in X is a dense open
set in X as well. It follows that the intersection of finitely many dense open
subsets of X is a dense open subset of X too.

Let U1, U2, U3, . . . be an infinite sequence of dense open subsets of X. If X
is complete, then the Baire category theorem states that

∞⋂
j=1

Uj is dense in X.(4.8.3)

To see this, let x ∈ X and r > 0 be given, and let us show that

B(x, r) ∩
( ∞⋂

j=1

Uj

)
6= ∅.(4.8.4)

Because U1 is dense in X, there is a y1 ∈ U1 such that d(x, y1) < r. Let us
choose r1 > 0 so that r1 ≤ 1,

B(y1, r1) ⊆ U1,(4.8.5)

and
d(x, y1) + r1 ≤ r.(4.8.6)

This uses the hypothesis that U1 be an open set to get (4.8.5). Note that

B(y1, r1) ⊆ B(x, r), B(y1, r1) ⊆ B(x, r),(4.8.7)

by (4.8.6).
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Repeating the process, we get an infinite sequence {yj}∞j=1 of elements of
X and an infinite sequence {rj}∞j=1 of positive real numbers with the following
properties. First,

rj ≤ 1/j(4.8.8)

for each j ≥ 1. Second,
B(yj , rj) ⊆ Uj(4.8.9)

for every j ≥ 1. Third, (4.8.6) holds when j = 1, and otherwise

d(yj−1, yj) + rj ≤ rj−1(4.8.10)

when j ≥ 2. This implies that

B(yj , rj) ⊆ B(yj−1, rj−1), B(yj , rj) ⊆ B(yj−1, rj−1)(4.8.11)

when j ≥ 2.
More precisely, we can do this when j = 1, as before. Suppose that yj ∈ X

and rj > 0 have been chosen with these properties for some j ≥ 1, and let us
see how we can choose yj+1 and rj+1. Because Uj+1 is dense in X, there is a
yj+1 ∈ Uj+1 such that

d(yj , yj+1) < rj .(4.8.12)

We can choose rj+1 > 0 so that rj+1 ≤ 1/(j + 1),

B(yj+1, rj+1) ⊆ Uj+1,(4.8.13)

and
d(yj , yj+1) + rj+1 ≤ rj .(4.8.14)

This uses the hypothesis that Uj+1 be an open set to get (4.8.13), as before.
If 1 ≤ j ≤ l, then

B(yl, rl) ⊆ B(yj , rj), B(yl, rl) ⊆ B(yj , rj),(4.8.15)

by (4.8.11). In particular,

B(yl, rl) ⊆ B(x, r), B(yl, rl) ⊆ B(x, r)(4.8.16)

for every l ≥ 1, by (4.8.7). Using (4.8.8) and (4.8.15), we get that

{yl}∞l=1 is a Cauchy sequence in X.(4.8.17)

Hence {yl}∞l=1 converges to an element y of X, because X is complete.
Observe that yl ∈ B(x, r) for every l ≥ 1, by (4.8.16), so that

y ∈ B(x, r).(4.8.18)

Similarly, for each j ≥ 1, we have that yl ∈ B(yj , rj) when l ≥ 1, by (4.8.15).
This implies that

y ∈ B(yj , rj)(4.8.19)
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for every j ≥ 1. It follows that
y ∈ Uj(4.8.20)

for every j ≥ 1, because of (4.8.9). Thus

y ∈ B(x, r) ∩
( ∞⋂

j=1

Uj

)
,(4.8.21)

as desired.
Somse related results will be mentioned in the next section.

4.9 The interior of a set

Let (X, d(·, ·)) be a metric space. The interior E◦ of a subset E of X is the set
of x ∈ E for which there is an r > 0 such that B(x, r) ⊆ E. It is easy to see
that

X \ E◦ = X \ E.(4.9.1)

In particular, E◦ = ∅ if and only if X \ E is dense in X.
Let E1, E2, E3, . . . be an infinite sequence of closed subsets of X such that

E◦
j = ∅ for every j ≥ 1. If X is complete, then the Baire category theorem

implies that
∞⋃
j=1

Ej has empty interior(4.9.2)

too. More precisely, X \ Ej is a dense open set in X for each j, so that

∞⋂
j=1

(X \ Ej) is dense in X(4.9.3)

when X is complete. This means that X \
(⋃∞

j=1Ej

)
is dense in X, as desired.

A subset A of X is said to be nowhere dense in X if

the closure A of A in X has empty interior.(4.9.4)

A subset B of X is said to be of first category in X, or meager, if

B can be expressed as the union(4.9.5)

of a sequence of nowhere dense sets.

Otherwise, B is said to be of second category in X, or nonmeager. If B ⊆ X is
of first category and X is complete, then it follows that

B◦ = ∅.(4.9.6)

If B1, B2, B3, . . . is an infinite sequences of subsets of X of first category,
then it is not too difficult to show that

∞⋃
l=1

Bl(4.9.7)

is of first category in X as well.



Chapter 5

Equicontinuity and
sequences of functions

Let {fj}∞j=1 be a sequence of mappings from a set X into a metric space Y . In
some situations, we might like to find a subsequence {fjl}∞l=1 of {fj}∞j=1 that
converges to a mapping f from X into Y , at least in some sense. If X is a
metric space too, then we may be interested in additional continuity conditions
on the fj ’s, and on f . In particular, X may be a subset of Rn for some positive
integer n. These and related matters will be discussed in this chapter.

5.1 Pointwise convergent subsequences

Let E be a nonempty set with only finitely or countably many elements, and let
Y be a metric space. Also let {fj}∞j=1 be a sequence of mappings from E into
Y . Suppose that for each x ∈ E there is a sequentially compact set K(x) ⊆ Y
such that

fj(x) ∈ K(x)(5.1.1)

for every j ≥ 1. We would like to show that there is a subsequence {fjl}∞l=1 of
{fj}∞j=1 that converges pointwise to a mapping f from E into Y , with

f(x) ∈ K(x)(5.1.2)

for every x ∈ E. Remember that compact subsets of Y have the limit point
property, and thus are sequentially compact.

Of course, (5.1.1) implies that

{fj(x)}∞j=1 is a bounded sequence in Y.(5.1.3)

If Y is the complex plane, or Rn for some positive integer n, with the standard
Euclidean metric, and if {fj(x)}∞j=1 is a bounded sequence in Y , then there is
a sequentially compact set K(x) ⊆ Y such that (5.1.1) holds for each j.

69



70CHAPTER 5. EQUICONTINUITY AND SEQUENCES OF FUNCTIONS

Suppose first that E has only finitely many elements x1, . . . , xn. Using se-
quential compactness of K(x1), we can get a subsequence {fjl}∞l=1 of {fj}∞j=1

such that {fjl(x1)}∞l=1 converges to an element f(x1) of K(x1). If n ≥ 2, then
we can use sequential compactness of K(x2) to get a subsequence {fjlr }

∞
r=1 of

{fjl}∞l=1 such that {fjlr (x2)}
∞
r=1 converges to an element f(x2) of K(x2). Note

that {fjlr (x1)}
∞
r=1 converges to f(x1) in Y , because a subsequence of a conver-

gent sequence converges to the same limit. We can repeat the process until we
get a subsequence of {fj}∞j=1 that converges pointwise on E in this case.

Suppose now that E is countably infinite, and let x1, x2, x3, . . . be an enu-
meration of the elements of E. As before, we can use sequential compactness of
K(x1) to get a subsequence of {fj}∞j=1 that converges pointwise at x1. Repeat-
ing the process, we get a sequence of subsequences of {fj}∞j=1 with the following
properties. First, for each r ∈ Z+,

the rth subsequence converges pointwise at xr(5.1.4)

to an element of K(xr).

Second, if r ≥ 2, then

the rth subsequence is a subsequence of the (r − 1)th subsequence.(5.1.5)

The second property ensures that the rth subsequence is a subsequence of all
the previous subsequences, and of the initial sequence {fj}∞j=1. Combining this
with the first property, we get that the rth subsequence converges pointwise at
each of the previous points, with the same limits as the previous subsequences.

Let f be the mapping from E into Y such that for each r ≥ 1, f(xr) is the
limit of the rth subsequence of {fj}∞j=1 at xr. Thus

f(xr) ∈ K(xr)(5.1.6)

for every r ≥ 1, by construction. We would like to show that there is a subse-
quence of {fj}∞j=1 that converges to f pointwise on E.

Consider the sequence of mappings {gn}∞n=1 from E into Y obtained by
taking gn to be the nth term of the nth subsequence mentioned before for each
n ∈ Z+. One can check that

{gn}∞n=1 is a subsequence of {fj}∞j=1.(5.1.7)

Similarly, for each r ∈ Z+,

{gn}∞n=r is a subsequence of the rth subsequence mentioned earlier.(5.1.8)

This implies that
{gn(xr)}∞n=r converges to f(xr)(5.1.9)

in Y . It follows that

{gn(xr)}∞n=1 converges to f(xr)(5.1.10)

in Y for each r ∈ Z+, as desired.
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5.2 Equicontinuity

Let (X, dX) and (Y, dY ) be metric spaces. A collection E of mappings from X
into Y is said to be equicontinuous at a point x ∈ X if for every ϵ > 0 there is
a δ > 0 such that

dY (f(x), f(w)) < ϵ(5.2.1)

for every f ∈ E and w ∈ X with dX(x,w) < δ. In particular, this implies that
every f ∈ E is continuous at x.

Similarly, E is said to be uniformly equicontinuous on X if for every ϵ > 0
there is a δ > 0 such that (5.2.1) holds for every x,w ∈ X with dX(x,w) < δ.
This implies that E is equicontinuous at every point in X, and that every element
of E is uniformly continuous on X.

If X is compact, then it is well known that every continuous mapping from
X into Y is uniformly continuous. In this case, if E is equicontinuous at every
point in X, then one can show that

E is uniformly equicontinuous on X,(5.2.2)

using essentially the same argument.
Suppose for the moment that E has only finitely many elements. If x ∈ X

and every f ∈ E is continuous at x, then it is easy to see that E is equicontinuous
at x. Similarly, if every element of E is uniformly continuous on X, then E is
uniformly equicontinuous on X.

Let C be a nonnegative real number, and suppose that

every element of E is Lipschitz with constant C.(5.2.3)

It is easy to see that E is uniformly equicontinuous on X in this case. There
is an anlogous statement for Lipschitz or Hölder continuity conditions of any
order α > 0, as in Section A.2.

Let {fj}∞j=1 be a sequence of mappings from X into Y , and let x be an
element of X. We say that {fj}∞j=1 is equicontinuous at x if the collection of
fj ’s, j ∈ Z+, is equicontinuous at x. Suppose that {fj}∞j=1 converges pointwise
to a mapping f from X into Y , and that {fj}∞j=1 is equicontinuous at x. We
would like to check that

f is continuous at x(5.2.4)

as well under these conditions. Let ϵ > 0 be given, so that there is a δ =
δ(x, ϵ) > 0 such that

dY (fj(x), fj(w)) < ϵ(5.2.5)

for every j ∈ Z+ and w ∈ X with dX(x,w) < δ. If w ∈ X satisfies dX(x,w) < δ,
then one can check that

dY (f(x), f(w)) ≤ ϵ,(5.2.6)

using (5.2.5) and the fact that {fj(x)}∞j=1 and {fj(w)}∞j=1 converge to f(x) and
f(w) in Y , respectively, by hypothesis. More precisely,

dY (f(x), f(w)) ≤ dY (f(x), fj(x)) + dY (fj(x), fj(w)) + dY (fj(w), f(w))

< dY (fj(x), f(x)) + ϵ+ dY (fj(w), f(w))(5.2.7)
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for every j ∈ Z+ and w ∈ X with dX(x,w) < δ, and the right side is arbitrarily
close to ϵ when j is sufficiently large. This implies that f is continuous at x, as
desired.

Similarly, a sequence {fj}∞j=1 of mappings from X into Y is said to be
uniformly equicontinuous on X if the collection of fj ’s, j ∈ Z+, is uniformly
equicontinuous on X. If {fj}∞j=1 is uniformly equicontinuous on X, and if
{fj}∞j=1 converges pointwise to a mapping f from X into Y , then one can verify
that

f is uniformly continuous on X.(5.2.8)

This is basically the same as the argument in the preceding paragraph, except
that δ = δ(ϵ) does not depend on x ∈ X.

Let C be a nonnegative real number again, and let {fj}∞j=1 be a sequence
of mappings from X into Y such that fj is Lipschitz with constant C for each
j. If {fj}∞j=1 converges pointwise to a mapping f from X into Y , then one can
check that

f is Lipschitz with constant C(5.2.9)

too. There is an analogous statement for Lipschitz or Hölder continuity condi-
tions of any order α > 0, as before.

5.3 Uniformly Cauchy sequences

Let X be a set, and let (Y, dY ) be a metric space. Let us say that a sequence
{fj}∞j=1 of mappings from X into Y is uniformly Cauchy on X if for every ϵ > 0
there is a positive integer L(ϵ) such that

dY (fj(x), fl(x)) < ϵ(5.3.1)

for every x ∈ X and j, l ≥ L(ϵ). If X 6= ∅ and the fj ’s are bounded mappings
from X into Y , then it is easy to see that this is equivalent to the condition
that {fj}∞j=1 be a Cauchy sequence with respect to the supremum metric on the
space of bounded mappings from X into Y . This is analogous to the equivalence
between uniform convergence and convergence with respect to the supremum
metric for bounded mappings from X into Y , as in Section 1.11.

If {fj}∞j=1 is any sequence of mappings from X into Y that converges uni-
formly to a mapping f from X into Y , then one can check that

{fj}∞j=1 is uniformly Cauchy on X.(5.3.2)

This is analogous to the fact that convergent sequences in a metric space are
Cauchy sequences.

Let {fj}∞j=1 be a uniformly Cauchy sequence of mappings from X into Y .
In particular, this implies that

{fj(x)}∞j=1 is a Cauchy sequence in Y(5.3.3)
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for every x ∈ X. If Y is complete, then it follows that {fj}∞j=1 converges
pointwise to a mapping f from X into Y . One can verify that

{fj}∞j=1 converges uniformly to f on X(5.3.4)

in this situation. This is analogous to the fact that the space B(X,Y ) of bounded
mappings from X into Y is complete with respect to the supremum metric when
X 6= ∅ and Y is complete, as in Section 1.12.

Suppose now that (X, dX) is a metric space too, and let {fj}∞j=1 be a uni-
formly Cauchy sequence of mappings from X into Y . Let x ∈ X be given, and
suppose that fj is continuous at x for each j ∈ Z+. Under these conditions,

{fj}∞j=1 is equicontinuous at x.(5.3.5)

To see this, let ϵ > 0 be given, and let L(ϵ/3) ∈ Z+ be as before, so that

dY (fj(w), fl(w)) < ϵ/3(5.3.6)

for every w ∈ X and j, l ≥ L(ϵ/3). It follows that

dY (fj(x), fj(w)) ≤ dY (fj(x), fl(x)) + dY (fl(x), fl(w)) + dY (fl(w), fj(w))

< dY (fl(x), fl(w)) + 2 ϵ/3(5.3.7)

for every w ∈ X and j, l ≥ L(ϵ/3).

If l ≥ L(ϵ/3), then we can use the continuity of fl at x to get a δl(x, ϵ/3) > 0
such that

dY (fl(x), fl(w)) < ϵ/3(5.3.8)

for every w ∈ X with

dX(x,w) < δl(x, ϵ/3).(5.3.9)

Combining this with (5.3.7), we get that

dY (fj(x), fj(w)) < ϵ(5.3.10)

for every j ≥ L(ϵ/3) and w ∈ X such that (5.3.9) holds. We may as well take
l = L(ϵ/3) here.

We would like to find a δ(x, ϵ) > 0 such that (5.3.10) holds for every j ∈ Z+

and w ∈ X with

dX(x,w) < δ(x, ϵ).(5.3.11)

This can be obtained from the previous statement for j ≥ L(ϵ/3) and the
continuity of fj at x when j < L(ϵ/3).

Similarly, if fj is uniformly continuous on X for each j ≥ 1, then

{fj}∞j=1 is uniformly equicontinuous on X.(5.3.12)
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5.4 Equicontinuity and uniform convergence

Let (X, dX) and (Y, dY ) be metric spaces again, and let {fj}∞j=1 be a sequence
of mappings from X into Y . Suppose that

{fj}∞j=1 converges pointwise to a mapping f from X into Y,(5.4.1)

and that
{fj}∞j=1 is equicontinuous at every x ∈ X.(5.4.2)

Let ϵ > 0 be given, so that for each x ∈ X there is a δ(x, ϵ) > 0 such that

dY (fj(x), fj(w)) < ϵ/3(5.4.3)

for every j ∈ Z+ and w ∈ X with dX(x,w) < δ(x, ϵ). This implies that

dY (f(x), f(w)) ≤ ϵ/3(5.4.4)

for every x,w ∈ X with dX(x,w) < δ(x, ϵ), as in Section 5.2. It follows that

dY (fj(w), f(w))(5.4.5)

≤ dY (fj(w), fj(x)) + dY (fj(x), f(x)) + dY (f(x), f(w))

< 2 ϵ/3 + dY (fj(x), f(x))

for every j ∈ Z+ and x,w ∈ X with dX(x,w) < δ(x, ϵ), using the triangle
inequality twice in the first step, and (5.4.3), (5.4.4) in the second step.

If x ∈ X, then there is a positive integer L(x, ϵ) such that

dY (fj(x), f(x)) < ϵ/3(5.4.6)

for every j ≥ L(x, ϵ), because of (5.4.1). Combining this with (5.4.5), we obtain
that

dY (fj(w), f(w)) < ϵ(5.4.7)

for every x ∈ X, j ≥ L(x, ϵ), and w ∈ X with dX(x,w) < δ(x, ϵ).
Let K be a compact subset of X. The collection of open balls

BX(x, δ(x, ϵ))(5.4.8)

in X centered at elements x of K is an open covering of K in X. Because K is
compact, there are finitely many elements x1, . . . , xn of K such that

K ⊆
n⋃

l=1

BX(xl, δ(xl, ϵ)).(5.4.9)

Put
LK(ϵ) = max

1≤l≤n
L(xl, ϵ).(5.4.10)

It follows that (5.4.7) holds for every w ∈ K and j ≥ LK(ϵ), so that

{fj}∞j=1 converges to f uniformly on K(5.4.11)
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under these conditions.

If {fj}∞j=1 is uniformly equicontinuous on X, then we can take δ(x, ϵ) = δ(ϵ)
to be independent of x ∈ X. In this case, one can check that

{fj}∞j=1 converges to f uniformly on totally bounded subsets of X,(5.4.12)

using an argument like the one in the preceding paragraph.

5.5 Equicontinuity and Cauchy sequences

Let (X, dX), (Y, dY ) be metric spaces, and let {fj}∞j=1 be a sequence of mappings
from X into Y . Also let E be a subset of X, and suppose that for every w ∈ E,

{fj(w)}∞j=1 is a Cauchy sequence in Y.(5.5.1)

If x ∈ X is a limit point of E, and if

{fj}∞j=1 is equicontinuous at x,(5.5.2)

then

{fj(x)}∞j=1 is a Cauchy sequence in Y.(5.5.3)

To see this, let ϵ > 0 be given. Because of (5.5.2), there is a δ > 0 such that

dY (fj(x), fj(w)) < ϵ/3(5.5.4)

for every j ≥ 1 and w ∈ X with dX(x,w) < δ. Thus

dY (fj(x), fl(x))(5.5.5)

≤ dY (fj(x), fj(w)) + dY (fj(w), fl(w)) + dY (fl(w), fl(x))

< 2 ϵ/3 + dY (fj(w), fl(w))

for every j, l ≥ 1 and w ∈ X with dX(x,w) < δ. This uses the triangle inequality
twice in the first step, and (5.5.4) twice in the second step, applied to j and l.

If x is a limit point of E, then there is a w ∈ E such that dX(x,w) < δ. In
this case, (5.5.1) implies that there is a positive integer L such that

dY (fj(w), fl(w)) < ϵ/3(5.5.6)

for every j, l ≥ L. Combining this with (5.5.5), we get that

dY (fj(x), fl(x)) < ϵ(5.5.7)

for every j, l ≥ L, as desired. If Y is complete as a metric space, then it follows
that {fj(x)}∞j=1 converges in Y .
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5.6 Equicontinuity and subsequences

Let (X, dX) and (Y, dY ) be metric spaces again, and let {fj}∞j=1 be a sequence of
mappings from X into Y . Suppose that for every x ∈ X there is a sequentially
compact set K(x) ⊆ Y such that

fj(x) ∈ K(x)(5.6.1)

for every j ≥ 1. Suppose also that

X is separable(5.6.2)

as a metric space, and let E be a dense set in X with only finitely or countably
many elements. Thus

there is a subsequence {fjl}∞l=1 of {fj}∞j=1(5.6.3)

that converges pointwise on E,

as in Section 5.1.
Of course, if

{fj}∞j=1 is equicontinuous at every x ∈ X,(5.6.4)

then
{fjl}∞l=1 is equicontinuous at every x ∈ X(5.6.5)

too. In this case,

{fjl(x)}∞l=1 is a Cauchy sequence in Y(5.6.6)

for every x ∈ X, as in the previous section. It follows that

{fjl(x)}∞l=1 converges to an element of K(x)(5.6.7)

for each x ∈ X, because a Cauchy sequence of elements of a sequentially compact
set converges to an element of that set, as mentioned near the end of Section
4.7.

Let f(x) be the limit of {fjl(x)}∞l=1 for every x ∈ X, so that f is a mapping
from X into Y , and

{fjl}∞l=1 converges to f pointwise on X.(5.6.8)

Note that
f is continuous on X,(5.6.9)

because of (5.6.5), as in Section 5.2. We also get that

{fjl}∞l=1 converges to f uniformly on compact subsets of X,(5.6.10)

as in Section 5.4.
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Similarly, if

{fj}∞j=1 is uniformly equicontinuous on X,(5.6.11)

then

{fjl}∞l=1 is uniformly equicontinuous on X,(5.6.12)

f is uniformly continuous on X,(5.6.13)

and

{fjl}∞l=1 converges to f uniformly on totally bounded subsets of X.(5.6.14)

Of course, this is all a bit simpler when X is compact. Note that X is
automatically separable in this case, as in Section 4.3.

Let us now take X = [0, 1] and Y = R, using the standard Euclidean metric
on R and its restriction to [0, 1]. Put fj(x) = xj on [0, 1] for every j ≥ 1, and
remember that {fj}∞j=1 converges pointwise on [0, 1], as in Section 1.8. One can
check that {fj}∞j=1 is equicontinuous at x ∈ [0, 1] when x < 1, and not when
x = 1. More precisely, if 0 ≤ r < 1, then {fj}∞j=1 is uniformly equicontinuous
on [0, r], and {fj}∞j=1 converges to 0 uniformly on [0, r]. However, there is no
subsequence of {fj}∞j=1 that converges uniformly on [0, 1].

One can use uniformly convergent subsequences to get existence of solutions
to ordinary differential equations under suitable conditions, as in Exercises 25,
26 on p170f of [155], for instance. Note that uniqueness of solutions involves
additional conditions on the differential equation, as in Exercises 27, 28 on p119
of [155].

The question of finding more elementary approaches to existence theorems
like this was raised in [95]. Some responses to this question can be found in
[55, 186, 187].

5.7 Pointwise and uniform boundedness

Let X be a set, let (Y, dY ) be a metric space, and let E be a collection of
mappings from X into Y . If x ∈ X, then put

E(x) = {f(x) : f ∈ E},(5.7.1)

which is a subset of Y . Let us say that E is pointwise bounded on a subset A of
X if for every x ∈ A,

E(x) is bounded in Y.(5.7.2)

Similarly, put

E(A) =
⋃
x∈A

E(x) =
⋃
f∈E

f(A) = {f(x) : x ∈ A, f ∈ E},(5.7.3)
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which is a subset of Y as well. We say that E is uniformly bounded on A when

E(A) is bounded in Y.(5.7.4)

If E is uniformly bounded on A, then E is pointwise bounded on A, and the
restriction of every f ∈ E to A is bounded as a mapping from A into Y . Suppose
that X,Y 6= ∅, and let E be a collection of bounded mappings from X into Y .
One can check that

E is uniformly bounded on X(5.7.5)

if and only if E is bounded as a subset of the space B(X,Y ) of bounded mappings
from X into Y , with respect to the supremum metric.

Now let (X, dX) be a metric space too, and let E be a collection of mappings
from X into Y that is equicontinuous at a point x ∈ X. Let ϵ > 0 be given, so
that there is a δ(x, ϵ) > 0 such that

dY (f(x), f(w)) < ϵ(5.7.6)

for every f ∈ E and w ∈ X with dX(x,w) < δ(x, ϵ). If there is a w0 ∈ X such
that dX(x,w0) < δ(x, ϵ) and

E(w0) is bounded in Y,(5.7.7)

then it is easy to see that (5.7.2) holds. Similarly, if (5.7.2) holds, then

E is uniformly bounded on the open ball BX(x, δ(x, ϵ)).(5.7.8)

Suppose for the moment that

E is equicontinuous at every x ∈ X.(5.7.9)

One can check that

{u ∈ X : E(u) is bounded in Y } is a closed set in X,(5.7.10)

using the remarks in the preceding paragraph. If K ⊆ X is compact, and

E is pointwise bounded on K,(5.7.11)

then one can verify that

E is uniformly bounded on K.(5.7.12)

If
E is uniformly equicontinuous on X,(5.7.13)

then we can take δ(x, ϵ) = δ(ϵ) to be independent of x ∈ X in the preceding
paragraph. In this case, if

A ⊆ X is totally bounded(5.7.14)



5.8. TOTAL BOUNDEDNESS IN B(X,Y ) 79

and
E is pointwise bounded on A,(5.7.15)

then
E is uniformly bounded on A.(5.7.16)

Suppose that (5.7.9) holds again. One can check that the set of u ∈ X
such that E(u) is totally bounded in Y is a closed set in X. This uses the
equicontinuity condition for all ϵ > 0, while a single ϵ > 0 would suffice for the
remarks about boundedness in the previous paragraph. If K ⊆ X is compact,
and E(x) is totally bounded in Y for every x ∈ K, then E(K) is totally bounded
in Y . If E is uniformly equicontinuous on X, A ⊆ X is totally bounded, and
E(x) is totally bounded in Y for every x ∈ A, then E(A) is totally bounded in
Y .

5.8 Total boundedness in B(X,Y )

Let X be a nonempty set, and let (Y, dY ) be a nonempty metric space. Remem-
ber that B(X,Y ) is the space of bounded mappings from X into Y , and that
θ(f, g) denotes the supremum metric on B(X,Y ), as in Section 1.11. Suppose
that

E ⊆ B(X,Y ) is totally bounded with respect to θ(·, ·).(5.8.1)

Let x ∈ X be given, and remember that E(x) is the subset of Y defined in
(5.7.1). It is easy to see that

E(x) is totally bounded in Y.(5.8.2)

Suppose that (X, dX) is a metric space too, and that

every f ∈ E is continuous at x.(5.8.3)

We would like to check that

E is equicontinuous at x.(5.8.4)

Let ϵ > 0 be given. Because E is totally bounded with respect to the supremum
metric, there are finitely many elements f1, . . . , fn of E such that for every f ∈ E
there is a positive integer j ≤ n such that

θ(f, fj) ≤ ϵ/3.(5.8.5)

By hypothesis, fj is continuous at x for each j = 1, . . . , n, so that there is a
δj(x) > 0 such that

dY (fj(x), fj(w)) < ϵ/3(5.8.6)

for every w ∈ X with dX(x,w) < δj(x).
Put

δ(x) = min
1≤j≤n

δj(x) > 0.(5.8.7)
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Let f ∈ E be given, and let j ≤ n be as in (5.8.5). Thus

dY (f(x), f(w))(5.8.8)

≤ dY (f(x), fj(x)) + dY (fj(x), fj(w)) + dY (fj(w), f(w))

≤ dY (fj(x), fj(w)) + 2 ϵ/3

for every w ∈ X, using the triangle inequality in the first step. It follows that

dY (f(x), f(w)) < ϵ/3 + 2 ϵ/3 = ϵ(5.8.9)

when dX(x,w) < δ(x) ≤ δj(x), using (5.8.6) in the first step. This shows that
(5.8.4) holds, as desired.

Similarly, if

every f ∈ E is uniformly continuous on X,(5.8.10)

then
E is uniformly equicontinuous on X.(5.8.11)

This is essentially the same as before, but with δj(x) and hence δ(x) independent
of x.

Let A be a subset of X, and remember that E(A) is the subset of Y defined
in (5.7.3). Suppose that

for each f ∈ E , f(A) is totally bounded in Y.(5.8.12)

One can check that
E(A) is totally bounded in Y(5.8.13)

as well under these conditions. Of course, (5.8.1) holds automatically when E
has only finitely amy elements. However, (5.8.12) does not holds automatically
in this case.

5.9 Equicontinuity and total boundedness

Let (X, dX) and (Y, dY ) be nonempty metric spaces again. If f is a uniformly
continuous mapping from X into Y and A is a totally bounded subset of X,
then it is not difficult to show that

f(A) is totally bounded in Y.(5.9.1)

Suppose for the rest of the section that

X is totally bounded with respect to dX .(5.9.2)

This implies that uniformly continuous mappings from X into Y are bounded,
because totally bounded subsets of Y are bounded. Let θ(·, ·) be the supremum
metric on the space B(X,Y ) of bounded mappings from X into Y , as usual.



5.9. EQUICONTINUITY AND TOTAL BOUNDEDNESS 81

Suppose that

E is a uniformly equicontinuous(5.9.3)

collection of mappings from X into Y.

In particular, every f ∈ E is uniformly continuous as a mapping from X into
Y , and hence bounded, as in the preceding paragraph. Let ϵ > 0 be given, so
that there is a δ > 0 such that

dY (f(x), f(w)) < ϵ/3(5.9.4)

holds for every f ∈ E and x,w ∈ X with dX(x,w) < δ. Because X is totally
bounded, there are finitely many elements x1, . . . , xn of X such that

X =

n⋃
j=1

BX(xj , δ),(5.9.5)

where BX(x, r) is the open ball in X centered at x ∈ X with radius r > 0, as
usual.

Let f, g ∈ E and x ∈ X be given, so that dX(xj , x) < δ for some j ≤ n, by
(5.9.5). Under these conditions, we have that

dY (f(xj), f(x)), dY (g(xj), g(x)) < ϵ/3,(5.9.6)

as in (5.9.4). This implies that

dY (f(x), g(x))(5.9.7)

≤ dY (f(x), f(xj)) + dY (f(xj), g(xj)) + dY (g(xj), g(x))

< dY (f(xj), g(xj)) + 2 ϵ/3,

using the triangle inequality in the first step. Thus

dY (f(x), g(x)) < max
1≤j≤n

dY (f(xj), g(xj)) + 2 ϵ/3(5.9.8)

for every x ∈ X. It follows that

θ(f, g) ≤ max
1≤j≤n

dY (f(xj), g(xj)) + 2 ϵ/3(5.9.9)

for every f, g ∈ E .
Suppose that

E(x) = {f(x) : f ∈ E}(5.9.10)

is totally bounded in Y for each x ∈ X, in addition to the other conditions
mentioned in the previous paragraphs. Using this and (5.9.9), one can check
that

E is totally bounded with respect to the supremum metric.(5.9.11)
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5.10 Equiconvergence of limits

Let (X, dX) and (Y, dY ) be metric spaces, let A be a subset of X, and suppose
that x ∈ X is a limit point of A in X. Also let E be a collection of mappings
from E into Y , and suppose that for each f ∈ E , the limit

lim
w∈A
w→x

f(w) = qf(5.10.1)

exists in Y . Let us say that we have equiconvergence of the limit for f ∈ E if
for every ϵ > 0 there is a δ > 0 such that

dY (f(w), qf ) < ϵ(5.10.2)

for every f ∈ E and w ∈ A with dX(x,w) < δ and w 6= x.
More precisely, this condition includes the existence of the limit as in (5.10.1)

for each f ∈ E . If E has only finitely many elements, and the limit as in (5.10.1)
exists for each f ∈ E , then one can check that we have equiconvergence of the
limit for f ∈ E .

Suppose for the moment that A = X, so that x is a limit point of X. In
this case, it is well known and easy to see that a mapping f from X into Y is
continuous at x if and only if

lim
w→x

f(w) = f(x),(5.10.3)

where the existence of the limit is part of this condition. One can verify that
we have equiconvergence of the limit for f ∈ E , with qf = f(x) for every f ∈ E ,
exactly when E is equicontinuous at x.

Let A be any subset of X again, with x ∈ X a limit point of A, and let
{fj}∞j=1 be a sequence of mappings from A into Y . Suppose that for each
positive integer j, the limit

lim
w∈A
w→x

fj(w) = qj(5.10.4)

exists in Y . We can define equiconvergence of the limit for {fj}∞j=1 in the same
way as before, by considering the collection of fj ’s, j ∈ Z.

Suppose for the moment that

for each w ∈ A, {fj(w)}∞j=1 is a Cauchy sequence in Y.(5.10.5)

If we have equiconvergence of the limit in (5.10.4) for {fj}∞j=1, then one can
show that

{qj}∞j=1 is a Cauchy sequence in Y.(5.10.6)

This is very similar to the argument in Section 5.5. If Y is complete as a metric
space, then it follows that

{qj}∞j=1 converges to an element q of Y.(5.10.7)
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Suppose now that {fj}∞j=1 converges pointwise to a mapping f from A into
Y . If we have equiconvergence of the limit in (5.10.4) for {fj}∞j=1, and if (5.10.7)
holds, then one can show that

lim
w∈A
w→x

f(w) = q.(5.10.8)

This is analogous to the argument for equicontinuous sequences of functions
that converge pointwise, as in Section 5.2.

Let {fj}∞j=1 be a uniformly Cauchy sequence of mappings from A into Y ,
as in Section 5.3. Suppose that the limit as in (5.10.4) exists for each j ∈ Z+.
Under these conditions, one can check that (5.10.6) holds. Using this, one can
verify that we have equiconvergence of the limit as in (5.10.4) for {fj}∞j=1. This
is analogous to the argument for equicontinuity in Section 5.3.

Suppose that {fj}∞j=1 converges uniformly to a mapping f from A into Y ,
so that {fj}∞j=1 is uniformly Cauchy on A in particular. Suppose also that the
limit as in (5.10.4) exists for every j, and that (5.10.7) holds. Using the remarks
in the previous two paragraphs, we get that (5.10.8) holds too.

5.11 Equiconvergence and differentiability

Let a, b be real numbers with a < b, and let f be a real-valued function on [a, b].
As usual, the derivative of f at x ∈ [a, b] is defined by

f ′(x) = lim
w→x

f(w)− f(x)

w − x
,(5.11.1)

when the limit exists. Of course, this is really a one-sided limit and derivative
when x = a or b.

Let E be a collection of real-valued functions on [a, b], each of which is differ-
entiable at x ∈ [a, b]. In this case, we may be interested in the equiconvergence
of the limit of difference quotients in (5.11.1) for f ∈ E , as in the previous
section.

Suppose for the moment that each f ∈ E is differentiable at every point in
[a, b]. If the collection

E ′ = {f ′ : f ∈ E}(5.11.2)

of derivatives of elements of E is equicontinuous at x, then one can check that
we have equiconvergence of the limit as in (5.11.1) for f ∈ E , using the mean
value theorem.

Let {fj}∞j=1 be a sequence of real-valued functions on [a, b], and suppose
that fj is differentiable at a point x ∈ [a, b] for each j. As before, we may be
interested in the equiconvergence of the limit

f ′j(x) = lim
w→x

fj(w)− fj(x)

w − x
(5.11.3)

for {fj}∞j=1.
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Suppose for the moment that fj is differentiable at every point in [a, b] for
each j. If {fj}∞j=1 is equicontinuous at x, then we have equiconvergence of the
limit as in (5.11.3) for {fj}∞j=1, as before.

Suppose now that {fj}∞j=1 converges pointwise to a real-valued function f
on [a, b]. If x,w ∈ [a, b] and x 6= w, then it follows that

lim
j→∞

fj(w)− fj(x)

w − x
=
f(w)− f(x)

w − x
.(5.11.4)

If fj is differentiable at x for each j, and we have equiconvergence of the limit
as in (5.11.3) for {fj}∞j=1, then {f ′j(x)}∞j=1 is a Cauchy sequence in R, as in the
previous section. Of course, this means that {f ′j(x)}∞j=1 converges in R, because
R is complete with respect to the standard Euclidean metric. Using this, we
get that f is differentiable at x, with

f ′(x) = lim
j→∞

f ′j(x),(5.11.5)

as in the previous section.
Suppose that fj is differentiable at a point x ∈ [a, b] for each j again. Suppose

also that the sequence of difference quotients

fj(w)− fj(x)

w − x
(5.11.6)

is uniformly Cauchy as a sequence of real-valued functions of w on [a, b] \ {x}.
This implies that {f ′j(x)}∞j=1 is a Cauchy sequence, as in the previous section.
This means that {f ′j(x)}∞j=1 converges in R, because R is complete with respect
to the standard Euclidean metric. In this case, we get equiconvergence of the
limit as in (5.11.3) for {fj}∞j=1 too, as in the previous section.

Note that

fj(w)− fj(x)

w − x
− fl(w)− fl(x)

w − x
=

(fj(w)− fl(w))− (fj(x)− fl(x))

w − x
(5.11.7)

for every w ∈ [a, b]\{x} and j, l ≥ 1. The uniform Cauchy condition for (5.11.6)
on [a, b] \ {x} means that if j, l are sufficiently large, then (5.11.7) is as small
as we like, uniformly over w ∈ [a, b] \ {x}. Suppose that fj is differentiable
at every point in [a, b] for each j, and that {f ′j}∞j=1 is uniformly Cauchy as a
sequence of real-valued functions on [a, b]. In this case, one can use the mean
value theorem to get that (5.11.7) is as small as we like when j, l are sufficiently
large, uniformly over x,w ∈ [a, b] with x 6= w. This is related to Theorem 7.17
on p152 of [155].



Chapter 6

More on sums and norms

6.1 Weierstrass’ criterion

Let X be a nonempty set, and let a1(x), a2(x), a3(x), . . . be an infinite sequence
of complex-valued functions onX. Also let A1, A2, A3, . . . be an infinite sequence
of nonnegative real numbers such that

|aj(x)| ≤ Aj(6.1.1)

for every x ∈ X and j ≥ 1. Suppose that

∞∑
j=1

Aj(6.1.2)

converges, which implies that
∞∑
j=1

aj(x)(6.1.3)

converges absolutely for every x ∈ X. Under these conditions, the sequence of
partial sums

n∑
j=1

aj(x)(6.1.4)

converges to (6.1.3) uniformly on X. This is a well-known criterion of Weier-
strass for uniform convergence.

To see this, observe that∣∣∣∣ ∞∑
j=1

aj(x)−
n∑

j=1

aj(x)

∣∣∣∣ = ∣∣∣∣ ∞∑
j=n+1

aj(x)

∣∣∣∣ ≤ ∞∑
j=n+1

|aj(x)| ≤
∞∑

j=n+1

Aj(6.1.5)

for every x ∈ X and n ≥ 1. The convergence of (6.1.2) implies that the right
side of (6.1.5) tends to 0 as n → ∞. It follows that (6.1.4) converges to (6.1.3)
uniformly on X, because the right side of (6.1.5) does not depend on x.

85
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Suppose that (X, d(·, ·)) is a metric space, and that aj(x) is a continuous
complex-valued function on X for each j ≥ 1, with respect to the standard
Euclidean metric on the complex plane C. This implies that the partial sums
(6.1.4) are continuous on X as well. If (6.1.2) converges, then it follows that
(6.1.3) is continuous on X too.

Now let
∞∑
j=0

aj z
j(6.1.6)

be a power series with complex coefficients. Suppose that

∞∑
j=0

|aj | rj(6.1.7)

converges for some nonnegative real number r, which implies that (6.1.6) con-
verges absolutely for every z ∈ C with |z| ≤ r. Using Weierstrass’ criterion, we
get that the partial sums

n∑
j=0

aj z
j(6.1.8)

converge to (6.1.6) uniformly on the closed disk

{z ∈ C : |z| ≤ r}.(6.1.9)

Of course, (6.1.8) is continuous as a mapping from C into itself for each n ≥ 0,
using the standard metric on C. In particular, the restriction of (6.1.8) to
(6.1.9) is continuous with respect to the restriction of the standard metric on C
to (6.1.9), so that (6.1.6) is continuous on (6.1.9) as well.

Suppose that 0 < ρ ≤ ∞ has the property that (6.1.7) converges when
0 ≤ r < ρ. This implies that (6.1.6) converges absolutely for every z ∈ C with
|z| < ρ. Under these conditions, (6.1.6) defines a continuous complex-valued
function on

{z ∈ C : |z| < ρ},(6.1.10)

with respect to the restriction of the standard metric on C to (6.1.10). To see
this, let z0 ∈ C with |z0| < ρ be given, and let us check that (6.1.6) is continuous
at z0. Let r be a positive real number such that |z0| < r < ρ. The remarks in
the preceding paragraph imply that (6.1.6) is continuous on (6.1.9). One can
use this to verify that (6.1.6) is continuous at z0 as a complex-valued function
on (6.1.10), because |z0| < r.

6.2 Radius of convergence

Let
∞∑
j=0

aj z
j(6.2.1)
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be a power series with complex coefficients, and let A be the set of nonnegative
real numbers r such that

∞∑
j=0

|aj | rj(6.2.2)

converges. Of course, 0 ∈ A. If r ∈ A, then

[0, r] ⊆ A,(6.2.3)

by the comparison test. If t is a positive real number such that t 6∈ A, then it
follows that

[t,+∞) ∩A = ∅.(6.2.4)

The radius of convergence of (6.2.1) can be defined as a nonnegative extended
real number by

R = supA.(6.2.5)

If A = [0,∞), then R = +∞. Otherwise, R < +∞, and A is either [0, R) or
[0, R]. If z ∈ C and |z| < R, then (6.2.1) converges absolutely. In fact, (6.2.1)
defines a continuous function on

{z ∈ C : |z| < R},(6.2.6)

as in the previous section.
Let t be a positive real number such that {|aj | tj}∞j=0 is a bounded sequence of

nonnegative real numbers. This means that there is a nonnegative real number
C such that

|aj | tj ≤ C(6.2.7)

for every j ≥ 0. If r is any nonnegative real number, then we get that

|aj | rj ≤ C (r/t)j(6.2.8)

for every j ≥ 0. If r < t, then it follows that (6.2.2) converges, by comparison
with the convergent geometric series

∑∞
j=0(r/t)

j . This implies that

[0, t) ⊆ A,(6.2.9)

so that t ≤ R.
If (6.2.1) converges for some z ∈ C, then

lim
j→∞

aj z
j = 0.(6.2.10)

This implies that {aj zj}∞j=0 is a bounded sequence of complex numbers, which

is the same as saying that {|aj | |z|j}∞j=0 is a bounded sequence of nonnegative
real numbers. It follows that |z| ≤ R, as in the preceding paragraph.

Suppose that (6.2.2) converges for some positive real number r. If r0 is a
nonnegative real number strictly less that r, then

lim
j→∞

j (r0/r)
j = 0,(6.2.11)
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because r0/r < 1. In particular, {j (r0/r)j}∞j=0 is a bounded sequence of non-
negative real numbers, so that there is a nonnegative real number C0 such that

j (r0/r)
j ≤ C0(6.2.12)

for every j ≥ 0. Thus
j |aj | rj0 ≤ C0 |aj | rj(6.2.13)

for every j ≥ 0, which implies that

∞∑
j=0

j |aj | rj0(6.2.14)

converges, by the comparison test. It follows that (6.2.14) converges when r0 is
strictly less than the radius of convergence R.

6.3 Termwise differentiation

Let a, b be real numbers with a < b, and let {fj}∞j=1 be a sequence of continuous
real or complex-valued functions on [a, b] that converges uniformly to a real or
complex-valued function f on [a, b], as appropriate. Thus f is also continuous on
[a, b], as in Section 1.8. Of course, we are implicitly using the standard Euclidean
metrics on R and C here, and the restriction of the standard Euclidean metric
on R to [a, b]. If x ∈ [a, b], then put

Fj(x) =

∫ x

a

fj(t) dt(6.3.1)

for every j ∈ Z+, and

F (x) =

∫ x

a

f(t) dt,(6.3.2)

using standard Riemann integrals on the right sides of (6.3.1) and (6.3.2). Ob-
serve that

|Fj(x)− F (x)| =

∣∣∣∣∫ x

a

(fj(t)− f(t)) dt

∣∣∣∣(6.3.3)

≤
∫ x

a

|fj(t)− f(t)| dt ≤
∫ b

a

|fj(t)− f(t)| dt

for every j ≥ 1 and x ∈ [a, b]. This implies that {Fj}∞j=1 converges uniformly to
F on [a, b], because the right side of (6.3.3) tends to 0 as j → ∞, and does not
depend on x. We also have that F ′

j(x) = fj(x) for every j ≥ 1 and x ∈ [a, b], and
that F ′(x) = f(x) for every x ∈ [a, b], using the appropriate one-sided derivative
when x = a or b.

Now let {gj}∞j=1 be a sequence of continuously-differentiable real or complex-
valued functions on [a, b]. Thus, for each j ∈ Z+, the derivative g

′
j(x) of gj exists
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at every x ∈ [a, b], using the appropriate one-sided derivative when x = a or b,
and g′j is continuous on [a, b]. It follows that

gj(x) = gj(a) +

∫ x

a

g′j(t) dt(6.3.4)

for every j ≥ 1 and x ∈ [a, b], by the fundamental theorem of calculus. Suppose
that {gj(a)}∞j=1 converges to a real or complex number g(a), as appropriate,
and that {g′j}∞j=1 converges uniformly to a real or complex-valued function f on
[a, b], as appropriate. Note that f is continuous on [a, b], as in Section 1.8. Let
g be the real or complex-valued function defined on [a, b] by

g(x) = g(a) +

∫ x

a

f(t) dt(6.3.5)

for each x ∈ [a, b]. Under these conditions, {gj}∞j=1 converges uniformly to g on
[a, b], as in the preceding paragraph. Of course, g′ = f on [a, b].

Let
∑∞

j=0 aj x
j be a power series with real or complex coefficients, and sup-

pose that
∞∑
j=0

j |aj | rj(6.3.6)

converges for some positive real number r. In particular, this implies that

∞∑
j=0

|aj | rj(6.3.7)

converges, and we put

f(x) =

∞∑
j=0

aj x
j(6.3.8)

for every x ∈ R with |x| ≤ r. Similarly, put

ϕ(x) =

∞∑
j=1

j aj x
j−1(6.3.9)

for every x ∈ R with |x| ≤ r, where the series on the right converges absolutely
because of the convergence of (6.3.6). Under these conditions, the partial sums
of the series on the right sides of (6.3.8) and (6.3.9) converge uniformly on
[−r, r], as in Section 6.1. By construction, the partial sums of the right side
of (6.3.9) are the same as the first derivatives of the partial sums of the right
side of (6.3.8). Using the remarks in the previous paragraph, we get that f is
differentiable on [−r, r], with

f ′(x) = ϕ(x)(6.3.10)

for every x ∈ [−r, r]. This uses the appropriate one-sided derivatives when
x = ±r, as usual.
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Suppose that 0 < ρ ≤ +∞ has the property that (6.3.7) converges when
0 ≤ r < ρ. This implies that (6.3.6) converges when 0 ≤ r < ρ too. More
precisely, if

∑∞
j=0 |aj | tj converges for some t > r, then (6.3.6) converges, as in

the previous section. In this situation, the series on the right sides of (6.3.8)
and (6.3.9) converge absolutely for every x ∈ R with |x| < ρ, so that f(x) and
ϕ(x) may be defined on (−ρ, ρ) as before. Using the remarks in the preceding
paragraph, we get that f is differentiable on (−ρ, ρ), with derivative given by
(6.3.10).

6.4 Cauchy products

Let
∑∞

j=0 aj and
∑∞

l=0 bl be infinite seris of complex numbers, and put

cn =

n∑
j=0

aj bn−j(6.4.1)

for each nonnegative integer n. The infinite series
∑∞

n=0 cn is the Cauchy prod-
uct of the series

∑∞
j=0 aj and

∑∞
l=0 bl. It is easy to see that

∞∑
n=0

cn =
( ∞∑

j=0

aj

)( ∞∑
l=0

bl

)
(6.4.2)

formally. In particular, if aj = 0 for all but finitely many j ≥ 0, and bl = 0 for
all but finitely many l ≥ 0, then one can check that cn = 0 for all but finitely
many n ≥ 0, and that (6.4.2) holds.

Suppose for the moment that the aj ’s and bl’s are nonnegative real numbers,
so that the cn’s are nonnegative real numbers too. Observe that

N∑
n=0

cn ≤
( N∑

j=0

aj

)( N∑
l=0

bl

)
(6.4.3)

for every nonnegative integer N . If
∑∞

j=0 aj and
∑∞

l=0 bl converge, then

N∑
n=0

cn ≤
( ∞∑

j=0

aj

)( ∞∑
l=0

bl

)
(6.4.4)

for every N ≥ 0. This implies that
∑∞

n=0 cn converges, with

∞∑
n=0

cn ≤
( ∞∑

j=0

aj

)( ∞∑
l=0

bl

)
.(6.4.5)

We also have that ( N∑
j=0

aj

)( N∑
l=0

bl

)
≤

2N∑
n=0

cn ≤
∞∑

n=0

cn(6.4.6)
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for every N ≥ 0. If
∑∞

j=0 aj and
∑∞

l=0 bl converge, then we get that

( ∞∑
j=0

aj

)( ∞∑
l=0

bl

)
≤

∞∑
n=0

cn.(6.4.7)

Of course, (6.4.2) follows from (6.4.5) and (6.4.7) in this situation.
Suppose now that

∑∞
j=0 aj and

∑∞
l=0 bl are absolutely convergent series of

complex numbers. Clearly

|cn| ≤
n∑

j=0

|aj | |bn−j |(6.4.8)

for each n ≥ 0, by the triangle inequality. The right side of (6.4.8) is the same
as the nth term of the Cauchy product of

∑∞
j=0 |aj | and

∑∞
l=0 |bl|. These two

series converge, by hypothesis, and so their Cauchy product converges as well,
as in the previous paragraph. This implies that

∑∞
n=0 cn converges absolutely,

with
∞∑

n=0

|cn| ≤
∞∑

n=0

( n∑
j=0

|aj | |bl|
)
=

( ∞∑
j=0

|aj |
)( ∞∑

l=0

|bl|
)
.(6.4.9)

If the aj ’s and bl’s are real numbers, then
∑∞

j=0 aj and
∑∞

l=0 bl can be ex-
pressed as differences of convergent series of nonnegative real numbers. In this
case, (6.4.2) can be obtained from the corresponding statement for nonnegative
real numbers, as in the previous paragraph. If the aj ’s and bl’s are complex
numbers, then one can get (6.4.2) using the analogous statements for the real
and imaginary parts of the aj ’s and bl’s.

Alternatively, consider ∑
j,l≥0

aj bl,(6.4.10)

where more precisely the sum is taken over all ordered pairs (j, l) of nonnegative
integers j, l. This sum can be identified formally with both sides of (6.4.2). The
left side of (6.4.2) corresponds to summing first over (j, l) such that j + l = n,
and then summing over n ≥ 0. The right side of (6.4.2) can be obtained by
summing over j and l separately. If aj = 0 for all but finitely many j ≥ 0,
and bl = 0 for all but finitely many l ≥ 0, then aj bl = 0 for all but finitely
many (j, l), and all of these sums can be reduced to finite sums. If the aj ’s and
bl’s are nonnegative real numbers, then (6.4.10) can be defined as a nonnegative
extended real number, as in Section 11.2. This sum can be expressed in terms of
iterated sums, as in Section 11.15. In particular, one can check that (6.4.10) is
finite when

∑∞
j=0 aj and

∑∞
l=0 bl converge, in which case (6.4.10) is the same as

both sides of (6.4.2). Similarly, if
∑∞

j=0 aj and
∑∞

l=0 bl are absolutely convergent
series of complex numbers, then

∑
j,l≥0

|aj | |bl| =
( ∞∑

j=0

|aj |
)( ∞∑

l=0

|bl|
)
.(6.4.11)
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Thus aj bl is a summable complex-valued function of (j, l), so that (6.4.10) can be
defined as in Section 11.8. In this situation, (6.4.10) can be expressed in terms
of iterated sums, as in Section 11.16. This can be used to get that

∑∞
n=0 cn

converges absolutely, and that both sides of (6.4.2) are equal to (6.4.10).
Suppose now that

∑∞
j=0 aj z

j and
∑∞

l=0 bl z
l are power series with complex

coefficients. One can check that their Cauchy product is the power series

∞∑
n=0

cn z
n,(6.4.12)

where cn is as in (6.4.1) for each n ≥ 0.

6.5 Rearrangements

Let
∑∞

j=1 aj be an infinite series of real or complex numbers, and let π be a
one-to-one mapping from the set Z+ onto itself. Under these conditions, the
infinite series

∞∑
l=1

aπ(l)(6.5.1)

is called a rearrangement of
∑∞

j=1 aj . If aj = 0 for all but finitely many positive
integers j, then aπ(l) = 0 for all but finitely many l too, and it is easy to see
that

∞∑
l=1

aπ(l) =

∞∑
j=1

aj .(6.5.2)

Suppose for the moment that aj is a nonnegative real number for each j ≥ 1.
If n ∈ Z+, then

n∑
l=1

aπ(l) ≤
N∑
j=1

aj(6.5.3)

for every N ≥ max1≤l≤n π(l). Similarly,

n∑
j=1

aj ≤
N∑
l=1

aπ(l)(6.5.4)

for every N ≥ max1≤j≤n π
−1(j). This implies that

∑∞
j=1 aj converges if and

only if
∑∞

l=1 aπ(l) converges, in which case (6.5.2) holds.
If

∑∞
j=1 aj is an infinite series of real or complex numbers, then it follows

that
∑∞

j=1 aj converges absolutely if and only if
∑∞

l=1 aπ(l) converges absolutely.
One can check that (6.5.2) holds in this situation as well. More precisely, if the
aj ’s are real numbers, then one can reduce to the previous case by expressing∑∞

j=1 aj as a difference of convergent series of nonnegative real numbers. If the
aj ’s are complex numbers, then one can consider their real and imaginary parts.
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6.6 Comparing norms on Rn, Cn

Let n be a positive integer, and let

ej = (ej,1, . . . , ej,n)(6.6.1)

be the jth standard basis vector in Rn for each j = 1, . . . , n. Thus

ej,l = 1 when j = l(6.6.2)

= 0 when j 6= l.

If v = (v1, . . . , vn) ∈ Rn, then v can be expressed as

v =

n∑
j=1

vj ej ,(6.6.3)

where the right side is a linear combination of elements of Rn. The ej ’s may
also be considered as standard basis vectors in Cn. If v = (v1, . . . , vn) ∈ Cn,
then v can be expressed as in (6.6.3) again, where now the right side is a linear
combination of elements of Cn.

Let N be a norm on Rn or Cn, as in Sections 1.3 and 1.4. If v = (v1, . . . , vn)
is an element of Rn or Cn, as appropriate, then

N(v) = N
( n∑

j=1

vj ej

)
,(6.6.4)

by (6.6.3). This implies that

N(v) ≤
n∑

j=1

N(vj ej) =

n∑
j=1

|vj |N(ej),(6.6.5)

using the triangle inequality for N in the first step, and the homogeneity condi-
tion for N in the second step. Note that this argument also works for seminorms
instead of norms.

It follows that

N(v) ≤
(

max
1≤l≤n

N(el)
) n∑

j=1

|vj | =
(

max
1≤l≤n

N(el)
)
‖v‖1,(6.6.6)

where ‖v‖1 is as in (1.3.6) or (1.4.2), as appropriate. Remember that

dN (v, w) = N(v − w)(6.6.7)

is the metric on Rn or Cn, as appropriate, associated to N , as in (1.3.9) and
(1.4.4). Similarly, we let

d1(v, w) = ‖v − w‖1(6.6.8)
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be the metric on Rn or Cn, as appropriate, associated to ‖ · ‖1, as in (1.3.11)
and (1.4.6). Thus

dN (v, w) ≤
(

max
1≤l≤n

N(el)
)
d1(v, w)(6.6.9)

for every v, w in Rn or Cn, as appropriate. In particular, the identity mapping
on Rn or Cn, as appropriate, is Lipschitz with respect to (6.6.8) on the domain
and (6.6.7) on the range.

Observe that

N(v) ≤
( n∑

l=1

N(ej)
2
)1/2 ( n∑

j=1

|vj |2
)1/2

(6.6.10)

for every v ∈ Rn or Cn, as appropriate, using the Cauchy–Schwarz inequality
(1.3.13) on the right side of (6.6.5). Equivalently, this means that

N(v) ≤
( n∑

l=1

N(ej)
2
)1/2

‖v‖2,(6.6.11)

where ‖v‖2 is the standard Euclidean norm of v, as in (1.3.5) or (1.4.1), as
appropriate. Remember that

d2(v, w) = ‖v − w‖2(6.6.12)

is the standard Euclidean metric on Rn or Cn, as appropriate, as in (1.3.10)
and (1.4.5). It follows that

dN (v, w) ≤
( n∑

l=1

N(el)
2
)1/2

d2(v, w)(6.6.13)

for every v, w in Rn or Cn, as appropriate. This implies that the identity
mapping on Rn or Cn, as appropriate, is Lipschitz with respect to (6.6.12) on
the domain and (6.6.7) on the range.

Using (6.6.5), we also get that

N(v) ≤
( n∑

j=1

N(ej)
)

max
1≤l≤n

|vl| =
( n∑

j=1

N(ej)
)
‖v‖∞(6.6.14)

for every v ∈ Rn or Cn, as appropriate. Here ‖v‖∞ is as in (1.3.7) or (1.4.3),
as appropriate. Let

d∞(v, w) = ‖v − w‖∞(6.6.15)

be the metric on Rn or Cn, as appropriate, associated to ‖ · ‖∞ as in (1.3.12)
and (1.4.7). Note that

dN (v, w) ≤
( n∑

j=1

N(ej)
)
d∞(v, w)(6.6.16)

for every v, w in Rn or Cn, as appropriate. Hence the identity mapping on Rn

or Cn, as appropriate, is Lipschitz with respect to (6.6.15) on the domain and
(6.6.7) on the range.



6.7. ANOTHER COMPARISON 95

6.7 Another comparison

Let N be a norm on Rn or Cn for some n ∈ Z+ again. Observe that

N(v) ≤ N(w) +N(v − w)(6.7.1)

and
N(w) ≤ N(v) +N(v − w)(6.7.2)

for every v, w in Rn or Cn, as appropriate. This implies that

|N(v)−N(w)| = max(N(v)−N(w), N(w)−N(v)) ≤ N(v − w),(6.7.3)

for every v, w in Rn or Cn, as appropriate. More precisely, the left side of
(6.7.3) is the usual absolute value of N(v)−N(w), as a real number.

Remember that
N(v) ≤ C ‖v‖2(6.7.4)

for some nonnegative real number C and every v ∈ Rn or Cn, as appropriate,
as in (6.6.11). Combining this with (6.7.3), we get that

|N(v)−N(w)| ≤ C ‖v − w‖2 = C d2(v, w)(6.7.5)

for every v, w in Rn or Cn, as appropriate. Thus N is Lipschitz as a real-
valued function on Rn or Cn, as appropriate, using the corresponding Euclidean
metrics on the domain and range. In particular, N is continuous. This argument
works for seminorms instead of norms as well.

The extreme value theorem implies that there is a u ∈ Rn or Cn, as appro-
priate, such that ‖u‖2 = 1 and

N(u) ≤ N(w)(6.7.6)

for every w ∈ Rn or Cn, as appropriate, with ‖w‖2 = 1. This uses the fact
that the unit sphere in Rn or Cn, as appropriate, is compact with respect to
the Euclidean metric. Put

c = N(u),(6.7.7)

and note that c > 0, because N is a norm. Let us check that

c ‖v‖2 ≤ N(v)(6.7.8)

for every v ∈ Rn or Cn. Of course, (6.7.8) is trivial when v = 0, and so we may
suppose that v 6= 0. In this case, ‖v‖2 > 0, and

w =
v

‖v‖2
(6.7.9)

satisfies ‖w‖2 = 1. Thus

N(v)/‖v‖2 = N(v/‖v‖2) = N(w) ≥ N(u) = c,(6.7.10)
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using (6.7.6) in the third step. This implies (6.7.8), as desired.
Put C ′ = 1/c, so that (6.7.8) is the same as saying that

‖v‖2 ≤ C ′N(v)(6.7.11)

for every v ∈ Rn or Cn, as appropriate. It follows that

d2(v, w) = ‖v − w‖2 ≤ C ′N(v − w) = C ′ dN (v, w)(6.7.12)

for every v, w in Rn or Cn, as appropriate. In particular, this implies that the
identity mapping on Rn or Cn, as appropriate, is Lipschitz with respect to the
metric dN (v, w) associated to N on the domain, and the standard Euclidean
metric on the range. Of course, there are analogous arguments using ‖ · ‖1 or
‖ · ‖∞ here, instead of the Euclidean norm ‖ · ‖2.

6.8 Inner products on Rn, Cn

Let n be a positive integer, and let x, y ∈ Rn be given. Thus

〈x, y〉 = 〈x, y〉Rn =

n∑
j=1

xj yj(6.8.1)

is defined as a real number. This is the standard inner product on Rn. Note
that

〈x, x〉Rn =

n∑
j=1

x2j = ‖x‖22,(6.8.2)

where ‖x‖2 is the standard Euclidean norm of x, as in (1.3.5). We also have
that

|〈x, y〉Rn | =
∣∣∣∣ n∑
j=1

xj yj

∣∣∣∣ ≤ n∑
j=1

|xj | |yj | ≤ ‖x‖2 ‖y‖2,(6.8.3)

using the Cauchy–Schwarz inequality (1.3.13) in the third step.
Let z = x + i y be a complex number, where x and y are real numbers.

Remember that the complex conjugate of z is the complex number defined by

z = x− i y.(6.8.4)

If w is another complex number, then

(w + z) = w + z(6.8.5)

and
(w z) = w z.(6.8.6)

It is easy to see that
z z = x2 + y2 = |z|2,(6.8.7)
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where |z| is the usual absolute value of z. The well-known fact that

|w z| = |z| |w|(6.8.8)

follows from (6.8.6) and (6.8.7).
Clearly

(z) = z(6.8.9)

and
|z| = |z|.(6.8.10)

Let u, v ∈ R be the real and imaginary parts of w, so that w = u+ i v. The real
part of w z is given by

Re(w z) = ux+ v y.(6.8.11)

As usual, w and z correspond to (u, v) and (x, y), respectively, as elements of
R2. The right side of (6.8.11) is the same as the inner product of (u, v) and
(x, y) as elements of R2.

If w, z ∈ Cn, then

〈w, z〉 = 〈w, z〉Cn =

n∑
j=1

wj zj(6.8.12)

is defined as a complex number. This is the standard inner product on Cn.
Observe that

〈w, z〉Cn =
( n∑

j=1

wj zj

)
=

n∑
j=1

zj wj = 〈z, w〉Cn .(6.8.13)

As before,

〈z, z〉Cn =

n∑
j=1

zj zj =

n∑
j=1

|zj |2 = ‖z‖22,(6.8.14)

where ‖z‖2 is the standard Euclidean norm of z, as in (1.4.1). Moreover,

|〈w, z〉Cn | =
∣∣∣∣ n∑
j=1

wj zj

∣∣∣∣ ≤ n∑
j=1

|wj | |zj | ≤ ‖w‖2 ‖z‖2,(6.8.15)

using the Cauchy–Schwarz inequality (1.3.13) in the third step.

6.9 Sums and inner products

Let X be a nonempty set, and let f , g be real-valued functions on X with finite
support in X. Put

〈f, g〉 = 〈f, g〉c00(X,R) =
∑
x∈X

f(x) g(x),(6.9.1)
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where the sum on the right reduces to a finite sum of real numbers, as in Section
1.6. This may be considered as the standard inner product on c00(X,R). Of
course,

〈f, f〉c00(X,R) =
∑
x∈X

f(x)2 = ‖f‖22,(6.9.2)

where ‖f‖2 is as in Section 1.6. Observe that

|〈f, g〉c00(X,R)| =
∣∣∣∣∑
x∈X

f(x) g(x)

∣∣∣∣ ≤ ∑
x∈X

|f(x)| |g(x)| ≤ ‖f‖2 ‖g‖2,(6.9.3)

by the Cauchy–Schwarz inequality.
Similarly, if f , g are complex-valued functions on X with finite support, then

〈f, g〉 = 〈f, g〉c00(X,C) =
∑
x∈X

f(x) g(x)(6.9.4)

reduces to a finite sum of complex numbers. This may be considered as the
standard inner product on c00(X,C). As before,

〈f, f〉c00(X,C) =
∑
x∈X

|f(x)|2 = ‖f‖22(6.9.5)

for every f ∈ c00(X,C). Using the Cauchy–Schwarz inequality again, we get
that

|〈f, g〉c00(X,C)| =
∣∣∣∣∑
x∈X

f(x) g(x)

∣∣∣∣ ≤ ∑
x∈X

|f(x)| |g(x)| ≤ ‖f‖2 ‖g‖2(6.9.6)

for every f, g ∈ c00(X,C). We also have that

〈f, g〉c00(X,C) =
( ∑

x∈X

f(x) g(x)
)
=

∑
x∈X

g(x) f(x) = 〈g, f〉c00(X,C)(6.9.7)

for every f, g ∈ c00(X,C).
Suppose now that f, g ∈ ℓ2(Z+,R), and remember that f g ∈ ℓ1(Z+,R), as

in Section 2.3. In this case, we put

〈f, g〉 = 〈f, g〉ℓ2(Z+,R) =

∞∑
j=1

f(j) g(j),(6.9.8)

where the right side converge absolutely. This may be considered as the standard
inner product on ℓ2(Z+,R). Note that

〈f, f〉ℓ2(Z+,R) =

∞∑
j=1

f(j)2 = ‖f‖22,(6.9.9)
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where ‖f‖2 is as in Section 2.3. The version of the Cauchy–Schwarz inequality
mentioned in Section 2.3 implies that

|〈f, g〉ℓ2(Z+,R)| =
∣∣∣∣ ∞∑
j=1

f(j) g(j)

∣∣∣∣ ≤ ∞∑
j=1

|f(j)| |g(j)| ≤ ‖f‖2 ‖g‖2.(6.9.10)

Let f, g ∈ ℓ2(Z+,C) be given, so that |f | |g| ∈ ℓ1(Z+,C), and hence f g is
an element of ℓ1(Z+,C). Put

〈f, g〉 = 〈f, g〉ℓ2(Z+,C) =

∞∑
j=1

f(j) g(j),(6.9.11)

which may be considered as the standard inner product on ℓ2(Z+,C). As usual,

〈f, f〉ℓ2(Z+,C) =

∞∑
j=1

|f(j)|2 = ‖f‖22.(6.9.12)

We also have that

|〈f, g〉ℓ2(Z+,C)| =
∣∣∣∣ ∞∑
j=1

f(j) g(j)

∣∣∣∣ ≤ ∞∑
j=1

|f(j)| |g(j)| ≤ ‖f‖2 ‖g‖2,(6.9.13)

by the version of the Cauchy–Schwarz inequality in Section 2.3. Moreover,

〈f, g〉ℓ2(Z+,C) =
( ∞∑

j=1

f(j) g(j)
)
=

∞∑
j=1

g(j) f(j) = 〈g, f〉ℓ2(Z+,C).(6.9.14)

6.10 Integral inner products

Let a, b be real numbers with a < b, and let α be a monotonically increasing
real-valued function on [a, b]. If f , g are continuous real-valued functions on
[a, b], then

〈f, g〉 = 〈f, g〉α =

∫ b

a

f(x) g(x) dα(x)(6.10.1)

is defined as a real number, using a Riemann–Stieltjes integral on the right side.
Clearly

〈f, f〉α =

∫ b

a

f(x)2 dα(x) = ‖f‖22,α,(6.10.2)

where ‖f‖2,α is as in (3.5.1). Observe that

|〈f, g〉α| =

∣∣∣∣∫ b

a

f(x) g(x) dα(x)

∣∣∣∣(6.10.3)

≤
∫ b

a

|f(x)| |g(x)| dα(x) ≤ ‖f‖2,α ‖g‖2,α,



100 CHAPTER 6. MORE ON SUMS AND NORMS

by the integral version (3.5.8) of the Cauchy–Schwarz inequality for Riemann–
Stieltjes integrals. Of course, (6.10.1) is symmetric in f and g, and linear in
each of f and g, because of linearity of the integral. If α is strictly increasing
on [a, b], then (6.10.2) is positive when f 6≡ 0 on [a, b], as before. In this case,
(6.10.1) defines an inner product on the space C([a, b],R) of continuous real-
valued functions on [a, b].

If f and g are continuous complex-valued functions on [a, b], then

〈f, g〉 = 〈f, g〉α =

∫ b

a

f(x) g(x) dα(x)(6.10.4)

is defined as a complex number, using a Riemann–Stieltjes integral on the right
side again. In this situation, we also have that

〈f, f〉α =

∫ b

a

|f(x)|2 dα(x) = ‖f‖22,α,(6.10.5)

where ‖f‖2,α is as in (3.5.1). As before,

|〈f, g〉α| =

∣∣∣∣∫ b

a

f(x) g(x) dα(x)

∣∣∣∣(6.10.6)

≤
∫ b

a

|f(x)| |g(x)| dα(x) ≤ ‖f‖2,α ‖g‖2,α,

using (3.5.8) in the third step. Note that

〈f, g〉α =
(∫ b

a

f(x) g(x) dα(x)
)
=

∫ b

a

g(x) f(x) dα(x) = 〈g, f〉α.(6.10.7)

It is easy to see that (6.10.4) is linear in f , because of linearity of the integral.
Similarly, (6.10.4) is conjugate-linear in g, which is to say that it is additive
in g, while multiplying g by a complex number t corresponds to multiplying
(6.10.4) by t. If α is strictly increasing on [a, b], then (6.10.5) is positive when
f 6≡ 0 on [a, b], and (6.10.4) defines an inner product on the space C([a, b],C) of
continuous complex-valued functions on [a, b]. If α(x) = x for every x ∈ [a, b],
then (6.10.1) and (6.10.4) are called the standard integral inner products on
C([a, b],R) and C([a, b],C), respectively.

Now let f , g be continuous real-valued functions on the real line with com-
pact support. In this case,

〈f, g〉 = 〈f, g〉Ccom(R,R) =

∫ ∞

−∞
f(x) g(x) dx(6.10.8)

is defined as a real number, where the integral on the right reduces to a Riemann
integral over a bounded interval, as in Section 3.8. This is the standard integral
inner product on the space Ccom(R,R) of continuous real-valued functions on
R with compact support. As before,

〈f, f〉Ccom(R,R) =

∫ ∞

−∞
f(x)2 dx = ‖f‖22,(6.10.9)
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where ‖f‖2 is as defined in (3.8.15). We also have that

|〈f, g〉Ccom(R,R)| =

∣∣∣∣∫ ∞

−∞
f(x) g(x) dx

∣∣∣∣(6.10.10)

≤
∫ ∞

∞
|f(x)| |g(x)| dx ≤ ‖f‖2 ‖g‖2,

where the third step reduces to the integral version (3.2.4) of the Cauchy–
Schwarz inequality on bounded intervals. Clearly (6.10.8) is symmetric in f
and g. The inner product (6.10.8) is linear in f and g, because of the linearity
of the integral.

Similarly, if f and g are continuous complex-valued functions on R with
compact support, then

〈f, g〉 = 〈f, g〉Ccom(R,C) =

∫ ∞

−∞
f(x) g(x) dx(6.10.11)

is defined as a complex number. This is the standard integral inner product
on the space Ccom(R,C) of continuous complex-valued functions on R with
compact support. As usual,

〈f, f〉Ccom(R,C) =

∫ ∞

−∞
|f(x)|2 dx = ‖f‖22,(6.10.12)

where ‖f‖2 is as in (3.8.15) again. In addition,

|〈f, g〉Ccom(R,C)| =

∣∣∣∣∫ ∞

−∞
f(x) g(x) dx

∣∣∣∣(6.10.13)

≤
∫ ∞

−∞
|f(x)| |g(x)| dx ≤ ‖f‖2 ‖g‖2,

using (3.2.4) in the third step. Observe that

〈f, g〉Ccom(R,C) =
(∫ ∞

−∞
f(x) g(x) dx

)
(6.10.14)

=

∫ ∞

−∞
g(x) f(x) dx = 〈g, f〉Ccom(R,C).

As before, (6.10.11) is linear in f , because of the linearity of the integral. The
inner product (6.10.11) is also conjugate-linear in g.

6.11 Some remarks about n-dimensional volume

Let n be a positive integer. If E is a reasonably nice subset of Rn, then the
n-dimensional volume

Voln(E)(6.11.1)
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of E may be defined in the usual way. In fact, if n-dimensional volume on
Rn is interpreted as n-dimensional Lebesgue measure, then this is defined for
Lebesgue measurable subsets of Rn. This includes all open and closed subsets
of Rn, as well as their countable unions or intersections. Note that Voln(E)
may be +∞ when E is not bounded.

If n-dimensional volume on Rn is interpreted as Lebesgue outer measure,
then Voln(E) is defined for all subsets E of Rn. However, this may not always
behave as one might expect in terms of additivity of volumes of unions of disjoint
subsets of Rn. This is related to the Banach–Tarski paradox, as in [172, 176,
182].

Let a1, . . . , an and b1, . . . , bn be real numbers with aj ≤ bj for each j =
1, . . . , n. The set

C = {x ∈ Rn : aj ≤ xj ≤ bj for each j = 1, . . . , n}(6.11.2)

may be called a cell in Rn, as on p31 of [155]. This is the same as the Cartesian
product of the closed intervals [aj , bj ], j = 1, . . . , n. In this case,

Voln(C) =
n∏

j=1

(bj − aj).(6.11.3)

In particular, this is equal to 0 when aj = bj for any j.
If a ∈ Rn and E ⊆ Rn, then put

E + a = {x+ a : x ∈ E},(6.11.4)

which is the translation of E by a in Rn. It is well known that

Voln(E + a) = Voln(E),(6.11.5)

which is to say that the n-dimensional volume on Rn is invariant under trans-
lations. It is easy to check directly that this is compatible with (6.11.3).

If t ∈ R and E ⊆ Rn, then put

t E = {t x : x ∈ E},(6.11.6)

which corresponds to dilating E by t in Rn. It is also well known that

Voln(t E) = |t|n Voln(E).(6.11.7)

One can check directly that this is compatible with (6.11.3) as well.

6.12 Volumes and Lipschitz mappings

Let n be a positive integer, and let N be a norm on Rn, so that dN (x, y) =
N(x− y) defines a metric on Rn, as usual. Observe that

dN (x+ a, y + a) = N((x+ a)− (y + a)) = N(x− y) = dN (x, y)(6.12.1)
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for all a, x, y ∈ Rn, so that dN (·, ·) is invariant under translations on Rn. Sim-
ilarly,

dN (t x, t y) = N(t x− t y) = N(t (x− y)) = |t|N(x− y) = |t| dN (x, y)(6.12.2)

for every x, y ∈ Rn and t ∈ R.
Suppose that f is a Lipschitz mapping from E ⊆ Rn into Rn with constant

C ≥ 0 with respect to dN (·, ·) and its restriction to E, so that

dN (f(x), f(y)) ≤ C dN (x, y)(6.12.3)

for every x, y ∈ E. It is well known that

Voln(f(E)) ≤ Cn Voln(E).(6.12.4)

One can look at this in terms of the standard way of changing variables in
n-dimensional integrals, under suitable conditions. Although the latter is dis-
cussed in many textbooks, one may also be interested in the articles [25, 115,
116, 169], as well as [47, 184, 185], in connection with Lebesgue measure and
integration. Of course, Lebesgue measure and integration are discussed in many
textbooks too, and one may be interested in the articles [40, 58, 117] as well.

Alternatively, one can consider (6.12.4) in terms of n-dimensional Hausdorff
measure on Rn with respect to dN (·, ·). It is well known that this is equal to a
constant multiple of Lebesgue outer measure on Rn.

If α is any positive real number, then α-dimensional Hausdorff measure may
be defined on any metric space. There is an analogue of (6.12.4) for Lipschitz
mappings between arbitrary metric spaces, using Hausdorff measures of the
same dimension on the domain and range.

If k is a positive integer less than or equal to n, then k-dimensional Hausdorff
measure on Rn with respect to the standard Euclidean metric is related to the
usual k-dimensional volume of reasonably nice k-dimensional submanifolds of
Rn.

6.13 Bounded vector-valued functions

Let X be a nonempty set, and let m be a positive integer. Consider the spaces

c(X,Rm), c(X,Cm)(6.13.1)

of functions onX with values inRm, Cm, respectively. These spaces withm = 1
were discussed in Section 3.10. As before, if f and g are functions on X with
values in Rm or Cm, then f + g defines a function on X with values in Rm or
Cm, as appropriate. Similarly, if t is a real or complex number, as appropriate,
then t f is a function on X with values in Rm or Cm, as appropriate. As usual,
c(X,Rm) and c(X,Cm) are basic classes of examples of vector spaces over the
real and complex numbers, respectively. We shall also be interested in linear
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subspaces of these spaces, which are subsets of the spaces that contain 0 and
are closed under addition and scalar multiplcation, as before.

If f is a function on X with values in Rm or Cm, then let fj(x) be the
jth coordinate of f(x) for each j = 1, . . . ,m and x ∈ X. Thus fj is a real
or complex-valued function on X, as appropriate, for each j. Of course, any
m-tuple of real or complex-valued functions on X determines a function on X
with values in Rm or Cm, as appropriate, in this way.

Let N be a norm on Rm or Cm, so that dN (v, w) = N(v − w) defines a
metric on Rm or Cm, as appropriate. Using this, we get the corresponding
space

B(X,Rm) = BN (X,Rm) or B(X,Cm) = BN (X,Cm)(6.13.2)

of mappings from X into Rm or Cm, as appropriate, that are bounded with
respect to dN (·, ·), as in Section 1.11. This space does not depend on the par-
ticular norm N , because any norm on Rm or Cm can be compared with the
standard Euclidean norm up to constant factors, as in Sections 6.6 and 6.7. The
corresponding supremum metric does depend on N , but it can be compared with
the supremum metric associated to the standard Euclidean norm on Rm or Cm,
as appropriate, with the same constant factors.

We may also use the notation

ℓ∞(X,Rm) = ℓ∞N (X,Rm) or ℓ∞(X,Cm) = ℓ∞N (X,Cm)(6.13.3)

for (6.13.2), as appropriate. Note that a function f on X with values in Rm or
Cm, as appropriate, is bounded with respect to dN (·, ·) if and only if

N(f(x))(6.13.4)

is bounded as a real-valued function on X. This happens if and only if fj is
bounded as a real or complex-valued function on X, as appropriate, for each
j, because of the usual comparisons of N with the standard Euclidean norm.
It is easy to see that (6.13.3) is a linear subspace of c(X,Rm) or c(X,Cm), as
appropriate.

If f is an element of (6.13.3), as appropriate, then put

‖f‖∞,N = sup{N(f(x)) : x ∈ X}.(6.13.5)

This is a nonnegative real number, which is equal to 0 exactly when f = 0 on
X. One can check that

‖t f‖∞,N = |t| ‖f‖∞,N(6.13.6)

for every t ∈ R or C, as appropriate. If g is another element of (6.13.3), as
appropriate, then one can verify that

‖f + g‖∞,N ≤ ‖f‖∞,N + ‖g‖∞,N .(6.13.7)

This means that (6.13.5) defines a norm on (6.13.3), as appropriate. This is the
supremum norm associated to N . This can be compared with the supremum
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norm associated to the standard Euclidean norm on Rm or Cm, as appropriate,
with the same constant factors as before. Note that

‖f − g‖∞,N(6.13.8)

is the same as the supremum metric on (6.13.3), as appropriate, corresponding
to dN (·, ·).

Suppose now that (X, dX) is a nonempty metric space, and consider the
space

C(X,Rm) = CN (X,Rm) or C(X,Cm) = CN (X,Cm)(6.13.9)

of continuous mappings from X into Rm or Cm, as appropriate, with respect to
dN (·, ·) on the range. This is the same as the space of continuous mappings from
X intoRm orCm, as appropriate, with respect to the standard Euclidean metric
on the range, because of the usual comparisons between N and the standard
Euclidean norm. Equivalently, one can check that a mapping f from X into Rm

or Cm is continuous if and only if fj is continuous as a real or complex-valued
function on X, as appropriate, for each j = 1, . . . ,m. In particular, the space of
continuous mappings from X into Rm or Cm is a linear subspace of c(X,Rm)
or c(X,Cm), as appropriate.

Similarly, we get the space

Cb(X,R
m) = Cb,N (X,Rm) or Cb(X,C

m) = Cb,N (X,Cm)(6.13.10)

of bounded continuous mappings from X into Rm or Cm, as appropriate, with
respect to dN (·, ·) on the range. This is the same as the analogous space defined
using the standard Euclidean metric on the range, as before. This is a linear
subspace of (6.13.3) and (6.13.9), as appropriate.



Chapter 7

Matrix norms and Lipschitz
conditions

7.1 Real and complex matrices

Let m and n be positive integers, and let us consider m×n matrices with entries
in the real or complex numbers. Such a matrix may be denoted as

[aj,l] = [aj,l]
m,n
j,l=1,(7.1.1)

where aj,l is a real or complex number, as appropriate, for each j = 1, . . . ,m
and l = 1, . . . , n. Let Mm,n(R) and Mm,n(C) be the spaces of m × n matrices
with entries in R and C, respectively.

If [aj,l] and [bj,l] are m× n matrices with real or complex entries, then their
sum is defined as an m× n matrix by adding the corresponding entries, so that

[aj,l] + [bj,l] = [aj,l + bj,l].(7.1.2)

Similarly, if t is a real or complex number, as appropriate, then t times [aj,l] is
defined as an m× n matrix by multiplying the entries of [aj,l] by t,

t [aj,l] = [t aj,l].(7.1.3)

This makesMm,n(R) andMm,n(C) into vector spaces over the real and complex
numbers, respectively. Of course, one can also identify Mm,n(R) and Mm,n(C)
with Rmn and Cmn, respectively.

As usual, a nonnegative real-valued function N defined on Mm,n(R) or
Mm,n(C) is said to be a norm if it satisfies the following three conditions.
First,

N([aj,l]) = 0(7.1.4)

if and only if [aj,l] = 0 as a matrix, which means that aj,l = 0 for every
j = 1, . . . ,m and l = 1, . . . , n. Second,

N(t [aj,l]) = |t|N([aj,l])(7.1.5)

106
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for every [aj,l] ∈Mm,n(R) or Mm,n(C) and t ∈ R or C, as appropriate. Third,

N([aj,l] + [bj,l]) ≤ N([aj,l]) +N([bj,l])(7.1.6)

for every [aj,l], [bj,l] ∈Mm,n(R) or Mm,n(C), as appropriate. In this case,

dN ([aj,l], [bj,l]) = N([aj,l]− [bj,l]) = N([aj,l − bj,l])(7.1.7)

defines a metric on Mm,n(R) or Mm,n(C), as appropriate. If Mm,n(R) and
Mm,n(C) are identified with Rmn and Cmn, respectively, as before, then the
definition of a norm on Mm,n(R) orMm,n(C) corresponds exactly to the earlier
definitions for Rmn and Cmn in Sections 1.3 and 1.4. Similarly, the metric
associated to a norm on Mm,n(R) or Mm,n(C) corresponds to the analogous
notions for Rmn and Cmn.

Put

‖[aj,l]‖HS =
( m∑

j=1

n∑
l=1

|aj,l|2
)1/2

(7.1.8)

for every [aj,l] ∈ Mm,n(R) or Mm,n(C). This is known as the Hilbert–Schmidt
norm on Mm,n(R) and Mm,n(C). More precisely, (7.1.8) corresponds to the
standard Euclidean norm onRmn andCmn, using the identifications mentioned
earlier. In particular, the fact that (7.1.8) defines a norm on Mm,n(R) and
Mm,n(C) follows from the analogous statements for the standard Euclidean
norms on Rmn and Cmn. More precisely, the triangle inequality for (7.1.8)
follows from the triangle inequality for the Euclidean norm, and the first two
requirements of a norm can be verified directly.

7.2 Matrices and linear mappings

Let m and n be positive integers again. As usual, a mapping A from Rn into
Rm is said to be linear if

A(v + w) = A(v) +A(w)(7.2.1)

for every v, w ∈ Rn, and
A(t v) = tA(v)(7.2.2)

for every v ∈ Rn and t ∈ R. Similarly, a mapping A from Cn into Cm is said
to be (complex) linear if (7.2.1) holds for every v, w ∈ Cn, and (7.2.2) holds for
every v ∈ Cn and t ∈ C.

Let [aj,l] be an m× n matrix whose entries are real or complex numbers. If
v = (v1, . . . , vn) ∈ Rn or Cn, as appropriate, then put

(A(v))j =

n∑
l=1

aj,l vl(7.2.3)

for each j = 1, . . . ,m. This defines A(v) as an element of Rm or Cm, as
appropriate, where the jth coordinate of A(v) is given by (7.2.3) for each j =
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1, . . . ,m. It is easy to see that A is linear as a mapping from Rn into Rm or
from Cn into Cm, as appropriate. Conversely, it is well known and not too
difficult to show that every linear mapping A from Rn into Rm or from Cn

into Cm corresponds to a unique m× n matrix with real or complex entries, as
appropriate, in this way.

Let ek = (ek,1, . . . , ek,n) be the kth standard basis vector in Rn or Cn for
each k = 1, . . . , n. Thus ek,l = 1 when k = l, and ek,l = 0 when k 6= l. If A
corresponds to [aj,l] ∈Mm,n(R) or Mm,n(C) as in (7.2.3), then

(A(ek))j = aj,k(7.2.4)

for every j = 1, . . . ,m and k = 1, . . . , n. If A is any linear mapping from Rn

into Rm or from Cn into Cm, then one can use (7.2.4) to define an m×n matrix
[aj,l] of real or complex numbers, as appropriate. This implies that (7.2.3) holds
for every v ∈ Rn or Cn, as appropriate, because of linearity, and by expressing
v as a linear combination of e1, . . . , en.

Let [aj,l] ∈ Mm,n(R) or Mm,n(C) be given again, and let A be the corre-
sponding linear mapping from Rn into Rm or from Cn into Cm, as in (7.2.3).
Using (7.2.4), we get that

‖A(ek)‖2 =
( m∑

j=1

|aj,k|2
)1/2

(7.2.5)

for every k = 1, . . . , n. More precisely, the left side of (7.2.5) refers to the
standard Euclidean norm of A(ek) in Rm or Cm, as appropriate. It follows that
the Hilbert–Schmidt norm of [aj,l] defined in the previous section can be given
by

‖[aj,l]‖HS =
( n∑

k=1

‖A(ek)‖22
)1/2

.(7.2.6)

Let v = (v1, . . . , vn) ∈ Rn or Cn be given, as appropriate. Remember that

v =

n∑
k=1

vk ek,(7.2.7)

where the right side is a linear combination of e1, . . . , en in Rn or Cn, as ap-
propriate. Using the linearity of A, we get that

A(v) =

n∑
k=1

vk A(ek),(7.2.8)

where the right side is a linear combination of A(e1), . . . , A(ek) in Rm or Cm,
as appropriate. It follows that

‖A(v)‖2 ≤
n∑

k=1

|vk| ‖A(ek)‖2,(7.2.9)
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where ‖ · ‖2 refers to the standard Euclidean norm on Rm or Cm again, as
appropriate. This implies that

‖A(v)‖2 ≤
( n∑

k=1

|vk|2
)1/2

‖[aj,l]‖HS ,(7.2.10)

using the Cauchy–Schwarz inequality on the right side of (7.2.9).

7.3 Some related estimates

Let m and n be positive integers, and let A be a linear mapping from Rn into
Rm, or from Cn into Cm. Also let N be a norm on Rm or Cm, as appropriate.
If v ∈ Rn or Cn, as appropriate, then v can be expressed as a linear combination
of the standard basis vectors e1, . . . , en in Rn or Cn as in (7.2.7). Hence A(v)
can be expressed as in (7.2.8), so that

N(A(v)) ≤
n∑

k=1

|vk|N(A(ek)).(7.3.1)

This corresponds to (7.2.9) when N is the standard Euclidean norm on Rm or
Cm, as appropriate.

Let us now look at this in terms of various norms on Rn or Cn, as appro-
priate. Let us start with the standard Euclidean norm

‖v‖2 =
( n∑

k=1

|vk|2
)1/2

(7.3.2)

of v. As before, we can apply the Cauchy–Schwarz inequality to the right side
of (7.3.1) to get that

N(A(v)) ≤
( n∑

k=1

N(A(ek))
2
)1/2

‖v‖2.(7.3.3)

This is the same as (7.2.10) when N is the standard Euclidean norm on Rm or
Cm, as appropriate.

Consider the norm

‖v‖1 =

n∑
k=1

|vk|(7.3.4)

of v discussed in Sections 1.3 and 1.4. It is easy to see that

N(A(v)) ≤
(

max
1≤k≤n

N(A(ek))
)
‖v‖1,(7.3.5)

using (7.3.1). Similarly, we can consider the norm

‖v‖∞ = max
1≤k≤n

|vk|(7.3.6)
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of v discussed in Sections 1.3 and 1.4 as well. Observe that

N(A(v)) ≤
( n∑

k=1

N(A(ek))
)
‖v‖∞,(7.3.7)

by (7.3.1) again.
Let N0 be any norm on Rn or Cn, as appropriate. One can check that there

is a nonnegative real number C such that

N(A(v)) ≤ C N0(v)(7.3.8)

for every v ∈ Rn or Cn, as appropriate. This follows from the previous remarks
when N0(v) is given by (7.3.2), (7.3.4), or (7.3.6). Otherwise, one can use the
fact that (7.3.2) is bounded by a constant multiple of N0(v), as in Section 6.7.

If v, w ∈ Rn or Cn, as appropriate, then

N(A(v)−A(w)) = N(A(v − w)) ≤ C N0(v − w).(7.3.9)

This uses the linarity of A in the first step, and (7.3.8) in the second step. Thus

dN (A(v), A(w)) ≤ C dN0
(v, w),(7.3.10)

where dN0 is the metric associated to N0 on Rn or Cn, and dN is the metric
associated to N on Rm or Cm, as appropriate.

7.4 Spaces of linear mappings

Let m and n be positive integers again. The space of linear mappings from Rn

into Rm may be denoted L(Rn,Rm). Similarly, the space of (complex) linear
mappings from Cn into Cm may be denoted L(Cn,Cm).

Let A, B be linear mappings from Rn into Rm or from Cn into Cm, and
let t be a real or complex number, as appropriate. Thus tA can be defined as
a mapping from Rn into Rm, or from Cn into Cm, as appropriate, by putting

(tA)(v) = tA(v)(7.4.1)

for every v ∈ Rn or Cn, as appropriate. Similarly, A + B can be defined as a
mapping from Rn into Rm, or from Cn into Cm, as appropriate, by putting

(A+B)(v) = A(v) +B(v)(7.4.2)

for every v ∈ Rn or Cn, as appropriate. It is easy to see that these are also
linear as mappings from Rn into Rm, or from Cn into Cm, as appropriate.

As in Section 7.2, there are standard one-to-one correspondences between
Mm,n(R) and L(Rn,Rm), and between Mm,n(C) and L(Cn,Cm). These cor-
respondences are linear, in the sense that sums of matrices are associated to
sums of linear mappings, and similarly for multiplication of matrices and linear
mappings by real or complex numbers, as appropriate.
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A nonnegative real-valued function N on L(Rn,Rm) or L(Cn,Cm) is said
to be a norm if it satisfies the usual three conditions, as follows. First, if A is
a linear mapping from Rn into Rm or from Cn into Cm, as appropriate, then

N(A) = 0(7.4.3)

if and only if A = 0, which means that A(v) = 0 for every v ∈ Rn or Cn, as
appropriate. Second, if A is a linear mapping from Rn into Rm or from Cn

into Cm and t ∈ R or C, as appropriate, then

N(tA) = |t|N(A).(7.4.4)

Third, if A and B are linear mappings from Rn into Rm or from Cn into Cm,
as appropriate, then

N(A+B) ≤ N(A) +N(B).(7.4.5)

Under these conditions,

dN (A,B) = N(A−B)(7.4.6)

defines a metric on L(Rn,Rm) or L(Cn,Cm), as appropriate. Observe that
norms on L(Rn,Rm) and L(Cn,Cm) correspond exactly to norms onMm,n(R)
and Mm,n(C), respectively, using the correspondence between matrices and lin-
ear mappings described in Section 7.2. The metrics associated to these norms
correspond to each other in the same way.

Let A be a linear mapping from Rn into Rm or from Cn into Cm again.
Also let e1, . . . , en be the standard basis vectors in Rn or Cn, as in Section 7.2,
and let ‖ · ‖2 be the standard Euclidean norm on Rm or Cm, as appropriate.
Put

‖A‖HS =
( n∑

k=1

‖A(ek)‖22
)1/2

,(7.4.7)

which corresponds exactly to the Hilbert–Schmidt norm of the matrix associ-
ated to A, as in Section 7.2. This defines a norm on each of L(Rn,Rm) and
L(Cn,Cm), which may be called the Hilbert–Schmidt norm as well.

7.5 Operator norms

Let m and n be positive integers, and let A be a linear mapping from Rn into
Rm, or from Cn into Cm. Also let N0 be a norm on Rn or Cn, and let N be a
norm on Rm or Cm, as appropriate. The corresponding operator norm

‖A‖op(7.5.1)

of A is defined to be the supremum of

N(A(v))

N0(v)
(7.5.2)
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over all v ∈ Rn or Cn, as appropriate, with v 6= 0. Note that this ratio is
bounded, by (7.3.8), so that the supremum is finite. More precisely, (7.3.8) is
equivalent to saying that the nonnegative real number C is an upper bound
for (7.5.2) when v 6= 0, because (7.3.8) holds automatically when v = 0. Thus
(7.3.8) holds exactly when

‖A‖op ≤ C.(7.5.3)

In particular, (7.3.8) holds with C = ‖A‖op. Alternatively, ‖A‖op is the infimum
of the nonnegative real numbers C for which (7.3.8) holds.

Note that

N(A(v))

N0(v)
= N((1/N0(v))A(v)) = N(A((1/N0(v)) v))(7.5.4)

for every v ∈ Rn or Cn, as appropriate, with v 6= 0. Similarly,

N0((1/N0(v)) v) = N0(v)/N0(v) = 1(7.5.5)

for every v ∈ Rn or Cn, as appropriate, with v 6= 0. Using this, one can verify
that ‖A‖op is the same as the supremum of

N(A(v))(7.5.6)

over all v ∈ Rn or Cn, as appropriate, such that N0(v) = 1. This is also the
same as the supremum of (7.5.6) over all v ∈ Rn or Cn, as appropriate, with
N0(v) ≤ 1. Of course, (7.5.6) is equal to 0 when v = 0, and otherwise

N(A(v)) = N(A((1/N0(v)) v))N0(v),(7.5.7)

as in (7.5.4).
By construction, ‖A‖op is a nonnegative real number, and ‖A‖op = 0 if and

only if A(v) = 0 for every v ∈ Rn or Cn, as appropriate. If t ∈ R or C, as
appropriate, then tA also defines a linear mapping from Rn into Rm or from
Cn into Cm, as appropriate. It is easy to see that

‖tA‖op = |t| ‖A‖op,(7.5.8)

because
N(tA(v)) = |t|N(A(v))(7.5.9)

for every v ∈ Rn or Cn, as appropriate. Let B be another linear mapping from
Rn into Rm or from Cn into Cm, as appropriate, so that A+B defines another
such linear mapping. Observe that

N((A+B)(v)) = N(A(v) +B(v)) ≤ N(A(v)) +N(B(v))

≤ ‖A‖opN0(v) + ‖B‖opN0(v)(7.5.10)

= (‖A‖op + ‖B‖op)N0(v)

for every v ∈ Rn or Cn, as appropriate. This implies that

‖A+B‖op ≤ ‖A‖op + ‖B‖op.(7.5.11)
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Thus the operator norm satisfies the requirements of a norm on the space of
linear mappings from Rn into Rm or from Cn into Cm, as appropriate.

Suppose that N0 is the standard Euclidean norm on Rn or Cn, and that N
is the standard Euclidean norm on Rm or Cm, as appropriate. In this case, we
get that

‖A‖op ≤ ‖A‖HS ,(7.5.12)

as in (7.2.10), where the right side is the Hilbert–Schmidt norm of A, as in the
previous section. One can check that

‖A‖HS ≤ n1/2 ‖A‖op,(7.5.13)

directly from the definitions of these two norms.

7.6 Determinants and volume

Let n be a positive integer, and let [aj,l] be an n× n matrix of real or complex
numbers. The determinant

det[aj,l](7.6.1)

can be defined as a real or complex number, as appropriate, in a standard way.
If A is the linear mapping from Rn or Cn into itself, as appropriate, associated
to [aj,l], then the determinant of A is defined by

detA = det[aj,l].(7.6.2)

The determinant of the identity mapping I on Rn or Cn is equal to 1. Similarly,
if t is a real or complex number, as appropriate, then

det(t I) = tn.(7.6.3)

Let A be a linear mapping from Rn into itself, and let E be a subset of Rn.
It is well known that

Voln(A(E)) = | detA|Voln(E),(7.6.4)

where Voln(·) is the usual n-dimensional volume of a subset of Rn. This is
discussed in many textbooks, and one may also be interested in the articles
[31, 84].

More precisely, E should be sufficiently nice for the volume to be defined,
depending on the definition of the volume being used. The right side of (7.6.4)
should be interpreted as being equal to 0 when detA = 0, even if Voln(E) may
be +∞. Note that | detA| is uniquely determined by (7.6.4) when Voln(E) is
positive and finite.

Let N be a norm on Rn, and let ‖A‖op be the corresponding operator norm
of A, as in the previous section. More precisely, this uses N as the norm on Rn

as both the domain and the range of A. It is well known that

| detA| ≤ ‖A‖nop(7.6.5)
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under these conditions.
Suppose for the moment that N is the standard Euclidean norm on Rn. If

A can be diagonalized using an orthonormal basis for Rn with respect to the
standard inner product, then (7.6.5) can be verified directly. Otherwise, one
can reduce to that case, by considering the composition of A with its adjoint
with respect to the standard inner product on Rn.

If N is any norm on Rn, then let BN be the closed unit ball in Rn with
respect to N , as in Section A.6. It is easy to see that

A(BN ) ⊆ ‖A‖opBN ,(7.6.6)

by the definition of the operator norm. Note that ‖A‖opBN is the same as the
closed ball in Rn centered at 0 with radius ‖A‖op with respect to the metric
dN (v, w) = N(v − w) associated to N . Using (7.6.6), we get that

Voln(A(BN )) ≤ Voln(‖A‖opBN ) = ‖A‖nop Voln(BN ).(7.6.7)

One can use this to get (7.6.5) from (7.6.4), with E = BN .
Let A be a linear mapping from Rn or Cn into itself again. If v ∈ Rn or Cn

satisfies
A(v) = λ v(7.6.8)

for some λ ∈ R or C, as appropriate, then v is said to be an eigenvector of
A with eigenvalue λ. Let N be a norm on Rn or Cn, as appropriate, and let
‖A‖op be the corresponding operator norm of A, using N on both the domain
and the range. Observe that

|λ|N(v) = N(λ v) = N(A(v)) ≤ ‖A‖opN(v),(7.6.9)

by (7.6.8) and the definition of the operator norm. This implies that

|λ| ≤ ‖A‖op(7.6.10)

when v 6= 0.
In the complex case, it is well known that the determinant of A is equal to the

product of its n eigenvalues, associated to nonzero eigenvectors, counted with
their appropriate multiplicities. One can use this to get (7.6.5) from (7.6.10).

7.7 Lipschitz constants

Let (X, dX) and (Y, dY ) be (nonempty) metric spaces. Remember that a map-
ping f from X into Y is said to be Lipschitz if

dY (f(x), f(w)) ≤ C dX(x,w)(7.7.1)

for some nonnegative real number C and every x,w ∈ X. In this case, we may
also say that f is Lipschitz with constant C, to make the role of C more explicit.
Let Lip(X,Y ) be the space of all Lipschitz mappings from X into Y .
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Let f be a mapping from X into Y again, and note that (7.7.1) holds auto-
matically when x = w. If x, w are distinct elements of X, then (7.7.1) is the
same as saying that

dY (f(x), f(w))

dX(x,w)
≤ C.(7.7.2)

If f is Lipschitz, and X has at least two elements, then put

Lip(f) = sup

{
dY (f(x), f(w))

dX(x,w)
: x,w ∈ X, x 6= w

}
.(7.7.3)

Otherwise, if X has only one element, then we take Lip(f) = 0. Thus (7.7.1)
holds for some C ≥ 0 and every x,w ∈ X if and only if f is Lipschitz and

Lip(f) ≤ C.(7.7.4)

In particular, if f is Lipschitz, then (7.7.1) holds with C = Lip(f). Equivalently,
Lip(f) is the infimum of the nonnegative real numbers C such that (7.7.1) holds
for every x,w ∈ X.

Let m and n be positive integers, and suppose for the moment that X = Rn

and Y = Rm, or that X = Cn and Y = Cm. Also let N0 be a norm on Rn or
Cn, and let N be a norm on Rm or Cm, as appropriate. Thus N0 determines
a metric dN0 on Rn or Cn, and N determines a metric dN on Rm or Cm, as
appropriate. Let A be a linear mapping from Rn into Rm, or from Cn into Cm,
as appropriate. Under these conditions, A is Lipschitz with respect to dN0

and
dN , as in (7.3.10). More precisely,

Lip(A) = ‖A‖op,(7.7.5)

where Lip(A) is defined using the metrics dN0 and dN as in the preceding para-
graph, and the operator norm ‖A‖op of A is defined using N0 and N as in
Section 7.5. This is easy to verify, directly from the definitions.

Let (X, dX) be any nonempty metric space again, and let m be a positive
integer. Let us take Y = Rm orCm, equipped with a norm N , which determines
a metric dN in the usual way. In this situation, if f is a mapping from X into
Y , then (7.7.1) is the same as saying that

N(f(x)− f(w)) = dN (f(x), f(w)) ≤ C dX(x,w).(7.7.6)

Let t be a real or complex number, as appropriate, so that t f also defines a
mapping from X into Y , and

dN (t f(x), t f(w)) = N(t f(x)− t f(w)) = N(t (f(x)− f(y)))(7.7.7)

= |t|N(f(x)− f(w)) = |t| dN (f(x), f(w))

for every x,w ∈ X. If f is Lipschitz, then it is easy to see that t f is Lipschitz
too, with

Lip(t f) = |t| Lip(f).(7.7.8)
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Similarly, let g be another mapping from X into Y , so that f + g defines a
mapping from X into Y as well. Observe that

dN ((f + g)(x), (f + g)(w)) = N((f(x) + g(x))− (f(w) + g(w)))

= N((f(x)− f(w)) + (g(x)− g(w)))(7.7.9)

≤ N(f(x)− f(w)) +N(g(x)− g(w))

for every x,w ∈ X. If f and g are both Lipschitz, then it follows that

dN ((f + g)(x), (f + g)(w)) ≤ Lip(f) dX(x,w) + Lip(g) dX(x,w)

= (Lip(f) + Lip(g)) dX(x,w)(7.7.10)

for every x,w ∈ X. This implies that f + g is Lipschitz, with

Lip(f + g) ≤ Lip(f) + Lip(g).(7.7.11)

In particular, the space of Lipschitz mappings from X into Rm or Cm may be
considered as a vector space over the real or complex numbers, as appropriate,
with respect to pointwise addition and scalar multiplication. In the terminology
of Section A.6, Lip(f) defines a seminorm on this vector space. More precisely,
Lip(f) = 0 if and only if f is a constant mapping on X.

7.8 Compositions and isometries

Let (X, dX), (Y, dY ), and (Z, dZ) be (nonempty) metric spaces. If f is a mapping
from X into Y , and g is a mapping from Y into Z, then the composition g ◦ f
can be defined as a mapping from X into Z, as usual. Suppose that f and g
are both Lipschitz, so that

dZ((g ◦ f)(x), (g ◦ f)(w)) = dZ(g(f(x)), g(f(w)))(7.8.1)

≤ Lip(g) dY (f(x), f(w))

≤ Lip(f) Lip(g) dX(x,w)

for every x,w ∈ X. This implies that g ◦ f is Lipschitz as well, with

Lip(g ◦ f) ≤ Lip(f) Lip(g).(7.8.2)

More precisely, Lip(f), Lip(g), and Lip(g ◦ f) are as defined in the previous
section, using the appropriate metric spaces in the domains and ranges of these
meppings.

A mapping f from X into Y is said to be an isometry if

dY (f(x), f(w)) = dX(x,w)(7.8.3)

for every x,w ∈ X. In particular, this implies that f is Lipschitz, with constant
C = 1. If a mapping g from Y into Z is an isometry too, then it is easy to see
that the composition g ◦ f of f and g is an isometric mapping from X into Z.
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Note that an isometric mapping f from X into Y is automatically injective. If
f maps X onto Y , then the corresponding inverse mapping f−1 is an isometry
from Y onto X.

Let n, m, and k be positive integers. Suppose that either A is a linear
mapping from Rn into Rm and B is a linear mapping from Rm into Rk, or
that A is a linear mapping from Cn into Cm and B is a linear mapping from
Cm into Ck. Thus the composition B ◦ A is either defined as a mapping from
Rn into Rk, or as a mapping from Cn into Ck. In both cases, B ◦A is a linear
mapping. Of course, the matrix associated to B ◦ A can be given in terms of
the matrices associated to A and B using matrix multiplication.

Let N1, N2, and N3 be norms on Rn, Rm, and Rk, respectively, or on Cn,
Cm, and Ck, respectively, as appropriate. Using these norms, the operator
norms ‖A‖op, ‖B‖op, and ‖B ◦A‖op can be defined as in Section 7.5. If v ∈ Rn

or Cn, as appropriate, then

N3((B ◦A)(v)) = N3(B(A(v))) ≤ ‖B‖opN2(A(v))(7.8.4)

≤ ‖A‖op ‖B‖opN1(v).

It follows that

‖B ◦A‖op ≤ ‖A‖op ‖B‖op.(7.8.5)

This could also be obtained from (7.8.2), using (7.7.5).
In this situation, A is said to be an isometric linear mapping with respect

to N1 and N2 if

N2(A(v)) = N1(v)(7.8.6)

for every v ∈ Rn or Cn, as appropriate. This implies that

dN2
(A(v), A(w)) = N2(A(v)−A(w)) = N2(A(v − w))

= N1(v − w) = dN1
(v, w)(7.8.7)

for every v, w ∈ Rn or Cn, as appropriate, where dN1
and dN2

are the metrics
associated to N1 and N2, respectively. Conversely, (7.8.6) follows from (7.8.7)
by taking w = 0. Thus A is isometric as a linear mapping with respect to N1

and N2 if and only if A is isometric with respect to the corresponding metrics
dN1 and dN2 . If B is also an isometric linear mapping with respect to N2 and
N3, then their composition B ◦ A is an isometric linear mapping with respect
to N1 and N3.

7.9 Bilipschitz embeddings

Let (X, dX) and (Y, dY ) be (nonempty) metric spaces, and let f be a mapping
from X into Y . Also let c be a positive real number, and consider the following
condition: for every x,w ∈ X, we have that

c dX(x,w) ≤ dY (f(x), f(w)).(7.9.1)
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In particular, this condition implies that f is injective. If f is a one-to-one map-
ping from X onto Y , then (7.9.1) is the same as saying that the corresponding
inverse mapping f−1 is Lipschitz with constant 1/c as a mapping from Y into
X. Otherwise, if f is injective but not necessarily surjective, then one can con-
sider the inverse mapping f−1 as a mapping from the image f(X) of X under
f into X, and use the restriction of dY to f(X).

A mapping f from X into Y is said to be bilipschitz if f is Lipschitz and
(7.9.1) holds for some c > 0. To be more precise, one may say that f is bilipschitz
with constant C ≥ 1 if f is Lipschitz with constant C and (7.9.1) holds with
c = 1/C. Using this terminology, an isometric mapping from X into Y is the
same as a bilipschitz mapping with constant C = 1. A one-to-one mapping f
from X onto Y is bilipschitz if and only if f is Lipschitz and the inverse mapping
f−1 is Lipschitz as a mapping from Y into X. If f is not surjective, then one
can consider the inverse mapping f−1 as a mapping from f(X) into X, using
the restriction of dY to f(X), as before.

Let (Z, dZ) be another metric space, and let g be a mapping from Y into Z.
Suppose that there is a positive real number c′ such that

c′ dY (y, u) ≤ dZ(g(y), g(u))(7.9.2)

for every u, y ∈ Y . If f : X → Y satisfies (7.9.1) for some c > 0, then the
composition g ◦ f satisfies an analogous condition as a mapping from X into Z.
More precisely, for each x,w ∈ X, we have that

c c′ dX(x,w) ≤ c′ dY (f(x), f(w)) ≤ dZ(g(f(x)), g(f(w)))(7.9.3)

= dZ((g ◦ f)(x), (g ◦ f)(w)).

In particular, if f and g are both bilipschitz, then g◦f is bilipschitz as a mapping
from X into Z.

Let m and n be positive integers, and let A be a linear mapping from Rn

into Rm or from Cn into Cm. Also let N0 and N be norms on Rn and Rm,
respectively, or on Cn and Cm, respectively, as appropriate. Suppose that

cN0(v) ≤ N(A(v))(7.9.4)

for some positive real number c and every v ∈ Rn or Cn, as appropriate. If
v, w ∈ Rn or Cn, as appropriate, then we get that

c dN0(v, w) = cN0(v − w) ≤ N(A(v − w))

= N(A(v)−A(w)) = dN (A(v), A(w)),(7.9.5)

where dN0
and dN are the metrics associated to N0 and N , respectively. Of

course, (7.9.5) corresponds to (7.9.1) in this situation. Note that (7.9.5) implies
(7.9.4), by taking w = 0. Observe too that (7.9.4) implies directly that v = 0
when A(v) = 0, which is to say that the kernel of A is trivial.

Let k be another positive integer, and let B be a linear mapping from Rm

into Rk or from Cm into Ck, as appropriate. Also let N3 be a norm on Rk or
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Ck, as appropriate. Suppose that

c′N(y) ≤ N3(B(y))(7.9.6)

for some positive real number c′ and every y ∈ Rm or Cm, as appropriate. If
v ∈ Rn or Cn, as appropriate, then we get that

c c′N0(v) ≤ c′N(A(v)) ≤ N3(B(A(v))) = N3((B ◦A)(v)).(7.9.7)

This basically corresponds to (7.9.3) in this situation, as before.

7.10 Linear mappings and seminorms

Let m and n be positive integers, and let A be a linear mapping from Rn

into Rm or from Cn into Cm. Also let N be a seminorm on Rm or Cm, as
appropriate, as in Section A.6. More precisely, the definition of a seminorm
was mentioned previously in the real case, and the complex case is analogous.
Under these conditions, one can check that N(A(v)) defines a seminorm on
Rn or Cn, as appropriate. Indeed, it is easy to see that N(A(v)) satisfies the
homogeneity requirement for a seminorm on Rn or Cn, as appropriate, because
of the analogous property for N and the linearity of A. Similarly, N(A(v))
satisfies the triangle inequality on Rn or Cn, as appropriate, because of the
triangle inequality for N and the linearity of A. Suppose for the rest of the
section that N is a norm on Rm or Cm, as appropriate, so that

N(A(v)) = 0(7.10.1)

only when A(v) = 0.
If the kernel of A is trivial, then (7.10.1) holds only when v = 0. This means

that N(A(v)) defines a norm on Rn or Cn, as appropriate. Let N0 be another
norm on Rn or Cn, as appropriate. Under these conditions, one can get that
(7.9.4) holds for some c > 0 using the remarks in Section 6.7.

Suppose now that m = n, so that A is a linear mapping from Rn into itself,
or from Cn into itself. If the kernel of A is trivial, then it is well known that A
maps Rn or Cn onto itself, as appropriate. This means that A has an inverse
mapping A−1 on Rn or Cn, as appropriate. Of course, the inverse mapping is
also linear.

In this case, (7.9.4) can be reformulated as saying that

N0(A
−1(u)) ≤ (1/c)N(u)(7.10.2)

for every u ∈ Rn or Cn, as appropriate. We have seen previously that this
type of condition holds, because A−1 is a linear mapping on Rn or Cn, as
appropriate. More precisely, this condition holds with

1/c = ‖A−1‖op,(7.10.3)
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where the operator norm of A−1 is defined using N on the domain of A−1, and
N0 on the range of A−1. Note that ‖A−1‖op > 0, because A−1 6= 0. Of course,
if (7.10.2) holds for some c > 0, then we have that

‖A−1‖op ≤ 1/c.(7.10.4)

7.11 Small perturbations

Let (X, dX) be a nonempty metric space, let m be a positive integer, and let f
be a mapping from X into Rm or Cm. Also let N be a norm on Rm or Cm, as
appropriate, which leads to a metric dN in the usual way. Suppose that

c dX(x,w) ≤ dN (f(x), f(w)) = N(f(x)− f(w))(7.11.1)

for some positive real number c and all x,w ∈ X. Let g be another mapping
from X into Rm or Cm, as appropriate. We would like to show that g satisfies
an analogous condition when g is sufficiently close to f , in a suitable sense.
More precisely, we ask first that f − g be Lipschitz with respect to dN on the
range. This means that

N((f(x)− g(x))− (f(w)− g(w))) = dN (f(x)− g(x), f(w)− g(w))

≤ Lip(f − g) dX(x,w)(7.11.2)

for every x,w ∈ X, where Lip(f − g) is as defined in Section 7.7. Of course,

N(f(x)− f(w)) ≤ N((f(x)− g(x))− (f(w)− g(w)))(7.11.3)

+N(g(x)− g(w))

for every x,w ∈ X, by the triangle inequality. Combining this with (7.11.1) and
(7.11.2), we get that

c dX(x,w) ≤ N(g(x)− g(w)) + Lip(f − g) dX(x,w)(7.11.4)

for every x,w ∈ X. It follows that

(c− Lip(f − g)) dX(x,w) ≤ N(g(x)− g(w)) = dN (g(x), g(w))(7.11.5)

for every x,w ∈ X. If Lip(f − g) < c, then this is the same type of condition as
before.

Let n be a positive integer, and let us now take X = Rn or Cn, as appro-
priate. Let N0 be a norm on Rn or Cn, as appropriate, which leads to a metric
dN0

, as usual. Also let A be a linear mapping from Rn into Rm or from Cn

into Cm, as appropriate. Suppose that

cN0(v) ≤ N(A(v))(7.11.6)

for some c > 0 and all v ∈ Rn or Cn, as appropriate. Let B be another linear
mapping from Rn into Rm or from Cn into Cm, as appropriate. We would like
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to verify that B satisfies the same type of condition when B is sufficiently close
to A. This could be obtained from the remarks in the preceding paragraph, but
the analogous argument is a bit simpler in this case, as follows.

Remember that

N(A(v)−B(v)) ≤ ‖A−B‖opN0(v)(7.11.7)

for every v ∈ Rn or Cn, as appropriate, where the operator norm ‖A−B‖op of
A−B is as defined in Section 7.5. Thus

N(A(v)) ≤ N(A(v)−B(v)) +N(B(v))(7.11.8)

≤ N(B(v)) + ‖A−B‖opN0(v)

for every v ∈ Rn or Cn, as appropriate, using the triangle inequality in the first
step. This implies that

cN0(v) ≤ N(B(v)) + ‖A−B‖opN0(v)(7.11.9)

for every v ∈ Rn or Cn, as appropriate, by (7.11.6). Hence

(c− ‖A−B‖op)N0(v) ≤ N(B(v))(7.11.10)

for every v ∈ Rn or Cn, as appropriate. This is the same type of condition as
before when ‖A−B‖op < c.

In particular, if ‖A − B‖op < c, then (7.11.10) implies that the kernel of B
is trivial. If m = n, then it follows that B is invertible.

7.12 The contraction mapping theorem

Let (X, d(x, y)) be a nonempty metric space, and let f be a mapping from X
into itself. Suppose that f is Lipschitz with constant c ≥ 0, so that

d(f(x), f(y)) ≤ c d(x, y)(7.12.1)

for every x, y ∈ X. If c < 1, and if X is complete with respect to d(·, ·), then a
famous theorem states that there is a unique point x ∈ X such that f(x) = x.
More precisely, uniqueness can be verified directly, without using completeness.

To get the existence of the fixed point, let x0 be any element of X, and let
x1, x2, x3, . . . be the sequence of elements of X defined recursively by

xj = f(xj−1)(7.12.2)

when j ≥ 1. Observe that

d(xj , xj+1) = d(f(xj−1), f(xj)) ≤ c d(xj−1, xj)(7.12.3)

for every j ≥ 1. This implies that

d(xj , xj+1) ≤ cj d(x0, x1)(7.12.4)
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for every j ≥ 1. If l < n are positive integers, then it follows that

d(xl, xn) ≤
n−1∑
j=l

d(xj , xj+1) ≤
n−1∑
j=l

cj d(x0, x1)

= cl
n−l−1∑
j=0

cj d(x0, x1) ≤
cl

1− c
d(x0, x1).(7.12.5)

This implies that {xj}∞j=0 is a Cauchy sequence in X, because cl → 0 as l → ∞
when c < 1.

If X is complete, then it follows that {xj}∞j=0 converges to an element x of X.
We also have that {f(xj)}∞j=0 converges to f(x) in X, because f is continuous.
By construction, {f(xj)}∞j=0 is the same as {xj+1}∞j=0, which converges to x.
Hence f(x) = x, as desired.

Let n be a positive integer, and let B(0, 1) be the closed unit ball in Rn with
respect to the standard Euclidean metric. Also let f be a continuous mapping
from B(0, 1) into itself, with respect to the restriction of the standard Euclidean
metric on Rn to B(0, 1). Under these conditions, Brouwer’s fixed-point theorem
states that f has a fixed point, which is to say that there is an x ∈ B(0, 1) such
that f(x) = x. If n = 1, then this can be obtained from the intermediate value
theorem. These and related matters are discussed in many textbooks, as well
as the articles [22, 23, 26, 51, 110, 115, 130, 132, 135, 138, 150, 158, 164], for
instance.

Let n be a positive integer again, and let N be a norm on Rn. Note that
Rn is complete with respect to the metric dN associated to N . This can be
obtained from the completeness of Rn with respect to the standard Euclidean
metric, and the comparability of N with the standard Euclidean norm on Rn,
as in Section 6.7.

Let g be a Lipschitz mapping from Rn into itself, with respect to dN , and
with constant c ≥ 0. This means that

N(g(x)− g(y)) ≤ cN(x− y)(7.12.6)

for every x, y ∈ Rn in this situation. Let a ∈ Rn be given, and put

ga(x) = g(x) + a(7.12.7)

for every x ∈ Rn. Observe that

N(ga(x)− ga(y)) = N(g(x)− g(y)) ≤ cN(x− y)(7.12.8)

for every x, y ∈ Rn. Thus ga is also Lipschitz with constant c as a mapping
from Rn into itself, with respect to dN .

Suppose that c < 1, so that the contraction mapping theorem can be applied
to ga on Rn. It follows that there is a unique point x(a) ∈ Rn such that

g(x(a)) + a = ga(x(a)) = x(a).(7.12.9)



7.13. A LOCALIZED CONDITION 123

Put

h(x) = x− g(x)(7.12.10)

for every x ∈ Rn, which defines a mapping from Rn into itself. The previous
statement can be reformulated as saying that for every a ∈ Rn there is a unique
x(a) ∈ Rn such that

h(x(a)) = a.(7.12.11)

Of course, this is the same as saying that h is a one-to-one mapping from Rn

onto itself. Note that h is Lipschitz with constant 1 + c on Rn with respect to
dN , as in Section 7.7. We also have that

(1− c)N(x− w) ≤ N(h(x)− h(w))(7.12.12)

for every x, y ∈ Rn, as in the previous section.

7.13 A localized condition

Let n be a positive integer again, and let N be a norm on Rn. Also let

BN (r) = {x ∈ Rn : N(x) ≤ r}(7.13.1)

be the closed ball in Rn centered at 0 with radius r ≥ 0 with respect to the
metric dN on Rn associated to N . Remember that this is a closed set in Rn

with respect to dN for each r ≥ 0. It is easy to see that BN (r) is complete as
a metric space with respect to the restriction of dN to BN (r) for every r ≥ 0,
as in Section 1.7. More precisely, any Cauchy sequence of elements of BN (r)
with respect to dN may be considered as a Cauchy sequence in Rn with respect
to dN as well. Such a sequence converges to an element of Rn with respect to
dN , because Rn is complete with respect to dN , as in the previous section. The
limit of this sequence is contained in BN (r), because BN (r) is a closed set in
Rn with respect to dN .

Let r be a positive real number, and let g be a Lipschitz mapping from
BN (r) into Rn with constant c ≥ 0, with respect to dN and its restriction to
BN (r). Thus

N(g(x)− g(y)) ≤ cN(x− y)(7.13.2)

for every x, y ∈ BN (r). Suppose also that

g(0) = 0.(7.13.3)

This implies that

N(g(x)) ≤ cN(x) ≤ c r(7.13.4)

for every x ∈ BN (r), using (7.13.2) in the first step.
Suppose too that

c < 1,(7.13.5)
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and let a ∈ Rn be given, with

N(a) ≤ (1− c) r.(7.13.6)

Put
ga(x) = g(x) + a(7.13.7)

for each x ∈ BN (r), as before. Observe that

N(ga(x)) ≤ N(g(x)) +N(a) ≤ c r + (1− c) r = r(7.13.8)

for every x ∈ BN (r), using (7.13.4) and (7.13.6) in the second step.
This shows that ga maps BN (r) into itself under these conditions. Note

that ga is Lipschitz with constant c with respect to dN as well, as in (7.12.8).
Hence we can apply the contraction mapping theorem to ga on BN (r), because
of (7.13.5). This implies that there is a unique point x(a) ∈ BN (r) such that

g(x(a)) + a = ga(x(a)) = x(a).(7.13.9)

Let h be the mapping from BN (r) into Rn defined by

h(x) = x− g(x)(7.13.10)

for every x ∈ BN (r). Observe that

h(x(a)) = x(a)− g(x(a)) = a,(7.13.11)

by (7.13.9). It follows that

h(BN (r)) ⊇ BN ((1− c) r)(7.13.12)

in this situation. Note that h is Lipschitz with constant 1 + c on BN (r) with
respect to dN , and (7.12.12) holds for all x,w ∈ BN (r), as in Sections 7.7 and
7.11.

7.14 Open mappings

Let (X, dX) and (Y, dY ) be metric spaces. A mapping f from X into Y is said
to be an open mapping if for every open set U ⊆ X,

f(U) is an open set in Y.(7.14.1)

One can check that this happens if and only if for every x ∈ X and r > 0 there
is a t > 0 such that

BY (f(x), t) ⊆ f(BX(x, r)).(7.14.2)

Let n be a positive integer, and let N be a norm on Rn. If v ∈ Rn and
r > 0, then let

BN (v, r) = {w ∈ Rn : N(v − w) < r}(7.14.3)



7.14. OPEN MAPPINGS 125

and
BN (v, r) = {w ∈ Rn : N(v − w) ≤ r}(7.14.4)

be the open and closed balls in Rn centered at v with radius r with respect to
the metric dN associated to N .

Let v0 ∈ Rn and r0 > 0 be given, and let f be a mapping from BN (v0, r0)
into Rn. Suppose that f(x)− x is Lipschitz with constant c ≥ 0 on BN (v0, r0),
with respect to dN and its restriction to BN (v0, r0). If c < 1, then

BN (f(v0), (1− c) r0) ⊆ f(BN (v0, r0)).(7.14.5)

This follows from the remarks in the previous section when v0 = f(v0) = 0, and
otherwise one can reduce to this case.

Similarly, let v ∈ Rn and r > 0 be given, and let f be a mapping from
BN (v, r) into Rn. Suppose that f(x)−x is Lipschitz with constant c, 0 ≤ c < 1,
on BN (v, r), with respect to dN and its restriction to BN (v, r). Let w ∈ BN (v, r)
be given, and let r1 be a positive real number such that

r1 ≤ r −N(v − w).(7.14.6)

Note that r −N(v − w) > 0, and that (7.14.6) implies that

BN (w, r1) ⊆ BN (v, r).(7.14.7)

If 0 < r0 < r1, then BN (w, r0) ⊆ BN (w, r1), and

BN (f(w), (1− c) r0) ⊆ f(BN (w, r0)),(7.14.8)

as in (7.14.5). This implies that

BN (f(w), (1− c) r1) ⊆ f(BN (w, r1)).(7.14.9)

In particular, this means that f is an open mapping from BN (v, r) into Rn,
with respect to dN and its restriction to BN (v, r).



Chapter 8

Some topics related to
differentiability

8.1 An integral triangle inequality

Let m be a positive integer, and let N be a norm on Rm or Cm. If v1, . . . , vl are
finitely many elements of Rm or Cm and t1, . . . , tl are real or complex numbers,
as appropriate, then it is easy to see that

N
( l∑

k=1

tk vk

)
≤

l∑
k=1

|tk|N(vk).(8.1.1)

We would like to consider analogous statements for integrals instead of finite
sums. Although this works for Riemann–Stieltjes integrals, it is sufficient to
consider Riemann integrals for the result in the next section.

Let a and b be real numbers with a < b, and let f be a continuous function
defined on the closed interval [a, b] with values in Rm or Cm, as appropriate.
This implicitly uses the restriction of the standard Euclidean metric on the real
line to [a, b], and one can also use the standard Euclidean metric on Rm or Cm,
as appropriate. Equivalently, f can be given as

f(t) = (f1(t), . . . , fm(t)),(8.1.2)

where f1, . . . , fm are continuous real or complex-valued functions on [a, b], as
appropriate. Of course, the continuity of a complex-valued function on [a, b]
is equivalent to the continuity of its real and imaginary parts, as real-valued
functions on [a, b].

Let α be a monotonically increasing real-valued function on [a, b]. As before,
it suffices to consider the case where α(t) = t for every t ∈ [a, b] for the result
discussed in the next section, which corresponds to using ordinary Riemann
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integrals on [a, b]. To define the Riemann–Stieltjes integral∫ b

a

f(t) dα(t)(8.1.3)

as an element of Rm or Cm, as appropriate, one can take the jth coordinate
of (8.1.3) to be the Riemann–Stieltjes integral of fj with respect to α on [a, b]
for each j = 1, . . . ,m. Similarly, the Riemann–Stieltjes integral of a continuous
complex-valued function on [a, b] can be reduced to the real case, by considering
the real and imaginary parts of the function.

Remember that N is (uniformly) continuous as a real-valued function on Rm

or Cm, as appropriate, as in Section 6.7. Thus N(f(t)) defines a nonnegative
real-valued continuous function on [a, b]. In particular, its Riemann–Stieltjes
integral over [a, b] with respect to α can be defined as a nonnegative real number
in the usual way.

Under these conditions, one can check that

N
(∫ b

a

f(t) dα(t)
)
≤

∫ b

a

N(f(t)) dα(t).(8.1.4)

More precisely, these integrals can be approximated by Riemann–Stieltjes sums
associated to sufficiently fine partitions of [a, b]. To get (8.1.4), one can use the
analogous inequalities for Riemann–Stieltjes sums, which follow from (8.1.1).
One can also consider Riemann–Stieltjes integrability conditions on [a, b], in-
stead of continuity.

8.2 A basic Lipschitz estimate

Let a and b be real numbers with a < b, and let m be a positive integer. Also
let f be a function defined on [a, b] with values in Rm or Cm. The derivative
f ′(t) of f at a point t ∈ (a, b) can be defined in the usual way, as the limit of
difference quotients, when the limit exists. Similarly, if t = a or b, then one
can consider the corresponding one-sided limit. The differentiability of f at any
t ∈ [a, b] is equivalent to the differentiability of the jth component fj of f at t
for each j = 1, . . . ,m, as a real or complex-valued function on [a, b]. Similarly,
the differentiability of a complex-valued function on [a, b] is equivalent to the
differentiability of its real and imaginary parts. If f is differentiable at t ∈ [a, b],
then the jth coordinate of f ′(t) is equal to the derivative of fj at t for each
j = 1, . . . ,m, and their common value is denoted f ′j(t).

Let us suppose from now on in this section that f is continuously differen-
tiable on [a, b]. This means that the derivative f ′(t) exists for every t ∈ [a, b],
and that f ′(t) is continuous as a function on [a, b] with values in Rm or Cm, as
appropriate. Here we use the restriction of the standard Euclidean metric on
R to [a, b], and the standard Euclidean metric on Rm or Cm, as appropriate.
Equivalently, fj should be continuously differentiable as a real or complex-valued
function on [a, b] for each j = 1, . . . ,m. Of course, f ′(t) is really a one-sided
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derivative when t = a or b. If x ∈ [a, b], then the fundamental theorem of
calculus implies that ∫ x

a

f ′(t) dt = f(x)− f(a),(8.2.1)

where the Riemann integral on the left side can be defined as in the previous
section. Of course, this can be reduced to the case of real-valued functions in
the usual way. Similarly, if a ≤ w ≤ x ≤ b, then∫ x

w

f ′(t) dt = f(x)− f(w).(8.2.2)

Let N be a norm on Rm or Cm, as appropriate. If a ≤ w ≤ x ≤ b, then

N(f(x)− f(w)) = N
(∫ x

w

f ′(t) dt
)
≤

∫ x

w

N(f ′(t)) dt.(8.2.3)

This uses (8.2.2) in the first step, and (8.1.4) in the second step, applied to f ′

and α(t) = t. Note that N(f ′(t)) is continuous as a real-valued function on
[a, b], as in the previous section. In particular, N(f ′(t)) is bounded on [a, b],
because [a, b] is compact, and in fact the maximum of N(f ′(t)) is attained on
[a, b]. It follows from (8.2.3) that

N(f(x)− f(w)) ≤ |x− w| sup
a≤t≤b

N(f ′(t))(8.2.4)

for every x,w ∈ [a, b]. Thus f is Lipschitz with respect to the restriction of the
standard Euclidean metric on R to [a, b] and the metric dN associated to N on
Rm or Cm, as appropriate.

More precisely,

Lip(f) = sup
a≤t≤b

N(f ′(t)),(8.2.5)

where Lip(f) is as defined in Section 7.7. The fact that Lip(f) is less than
or equal to the right side of (8.2.5) follows from (8.2.4). To get the opposite
inequality, it suffices to verify that N(f ′(t)) is less than or equal to Lip(f) for
every t ∈ [a, b]. The difference quotients used to define f ′(t) have norm less than
or equal to Lip(f), by definition of Lip(f). This implies that N(f ′(t)) ≤ Lip(f),
by taking the limit of the difference quotient.

8.3 Some partial Lipschitz conditions

Let n be a positive integer, and let E be a subset of Rn. Also let (Y, dY ) be a
metric space, and let f be a mapping from E into Y . Suppose that l is a positive
integer less than or equal to n, and that Cl is a nonnegative real number. Let
us say that f is partially Lipschitz in the lth variable with constant Cl on E if

dY (f(x), f(x
′)) ≤ Cl |xl − x′l|(8.3.1)
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for every x, x′ ∈ E such that xj = x′j when j 6= l. This means that f(x) is
Lipschitz as a function of xl with constant Cl, when the other coordinates of
x are fixed. More precisely, this uses the restriction of the standard Euclidean
metric on R to the set of real numbers that occur as lth coordinates of elements
of E, when the other coordinates are fixed. This is the same as saying that if L
is any line in Rn that is parallel to the lth coordinate axis, then the restriction
of f to E ∩ L is Lipschitz with constant Cl.

Let a1, . . . , an and b1, . . . , bn be real numbers such that ak < bk for each
k = 1, . . . , n. Remember that the corresponding set

C = {x ∈ Rn : ak ≤ xk ≤ bk for each k = 1, . . . , n}(8.3.2)

is called a cell in Rn, as in [155]. This is the same as the Cartesian product of
the closed intervals [ak, bk], k = 1, . . . , n, as mentioned in Section 6.11. Suppose
now that f is a mapping from C into Y . Thus f(x) may be considered as a
function of xl on [al, bl], when the other variables are fixed elements of [ak, bk],
k 6= l.

Let Cl be a nonnegative real number for each l = 1, . . . , n, and suppose that
f is partially Lipschitz in the lth variable with constant Cl for each l = 1, . . . , n.
Let x,w ∈ C be given, and observe that

dY (f(x), f(w)) ≤
n∑

l=1

Cl |xl − wl|.(8.3.3)

To see this, one can go from x to w in n steps, only changing one coordinate in
each step. It follows that

dY (f(x), f(w)) ≤
(

max
1≤l≤n

Cl

)
‖x− w‖1,(8.3.4)

where ‖ · ‖1 is defined on Rn as in Section 1.3. Similarly,

dY (f(x), f(w)) ≤
( n∑

l=1

C2
l

)1/2

‖x− w‖2,(8.3.5)

where ‖ · ‖2 is the standard Euclidean norm on Rn. This uses the Cauchy–
Schwarz inequality, applied to the sum on the right side of (8.3.3). We also get
that

dY (f(x), f(w)) ≤
( n∑

l=1

Cl

)
‖x− w‖∞,(8.3.6)

where ‖·‖∞ is as defined in Section 1.3. In particular, f is Lipschitz with respect
to the restrictions of the metrics on Rn associated to these norms to C.

Let f be a mapping from a set E ⊆ Rn into Y again, and suppose that f
is partially Lipschitz in the lth variable on E with constant Cl ≥ 0 for every
l = 1, . . . , n. If C is a cell in Rn with

C ⊆ E,(8.3.7)
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then the restriction of f to C has the same properties mentioned in the preceding
paragraph. In particular, if E = Rn, then these properties hold for every
x,w ∈ Rn.

8.4 Partial derivatives

Let m and n be positive integers, and let U be a nonempty open subset of Rn,
with respect to the standard Euclidean metric. Also let f be a mapping from
U into Rm, and let x ∈ U be given. If l is a positive integer less than or equal
to n, then the lth partial derivative

∂lf(x) = Dlf(x) =
∂f

∂xl
(x)(8.4.1)

of f at x can be defined, as usual, as the derivative of f in the lth variable at
xl, when it exists, and with the other variables being fixed. More precisely, if
we consider f as a function of the lth variable, with the kth variable equal to
xk when k 6= l, then f is defined on an open subset of the real line that contains
xl. Note that ∂lf(x) exists if and only if the lth partial derivative ∂lfj(x) of the
jth component fj of f at x exists for each j = 1, . . . ,m, in which case ∂lfj(x) is
the same as the jth component of ∂lf(x) for each j = 1, . . . ,m, as an element
of Rm.

Let a1, . . . , an and b1, . . . , bn be real numbers with ak < bk for each k =
1, . . . , n, and let C be the corresponding cell in Rn, as in (8.3.2). Suppose now
that f is a mapping from C into Rm. Let x ∈ C and a positive integer l ≤ n be
given. If al < xl < bl, then the lth partial derivative of f at x can be defined
as the derivative of f as a function of the lth variable on [al, bl] at xl, when it
exists, and with the other variables being fixed. If xl = al or bl, then one can
use the corresponding one-sided derivative, as before.

Suppose that the lth partial derivative of f exists everywhere on C, and that
it is continuous as a mapping from C into Rm, with respect to the restriction of
the standard Euclidean metric on Rn to C, and the standard Euclidean metric
on Rm. Let N be a norm on Rm. Remember that N is continuous on Rm, as
in Section 6.7, so that N(∂lf(x)) is continuous as a real-valued function on C.
This implies that N(∂lf(x)) is bounded on C, because C is compact, and that
its maximum on C is attained.

Let dN be the metric on Rm associated to N . Using the remarks in Section
8.2, we get that f is partially Lipschitz in the lth variable on C, with respect to
dN on Rm, with constant

Cl = sup
x∈C

N(∂lf(x)).(8.4.2)

This is the smallest value of Cl with this property, for the same reasons as
before.

Let f be a mapping from an open subset U of Rn into Rm again. Let us say
that f is continuously differentiable on U if for each l = 1, . . . , n, the lth partial
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derivative ∂lf(x) of f exists at every x ∈ U , and defines a continuous mapping
from U into Rm. This uses the restriction of the standard Euclidean metric on
Rn to U , and the standard Euclidean metric on Rm, as usual. If C is a cell in
Rn and C ⊆ U , then the restriction of f to C satisfies the analogous continuous
differentiability property on C.

8.5 Using the mean value theorem

Let n be a positive integer, let a1, . . . , an and b1, . . . , bn be real numbers with
ak < bk for each k = 1, . . . , n, and let C be the corresponding cell in Rn again,
as in (8.3.2). Also let f be a real-valued function on C, and let 1 ≤ l ≤ n be
given. Suppose that f(x) is continuous as a real-valued function of xl on [al, bl],
when xk ∈ [ak, bk] is kept fixed for k 6= l.

Suppose in addition that f(x) is differentiable as a function of xl on (al, bl)
when xk ∈ [ak, bk] is kept fixed for k 6= l, so that ∂lf(x) is defined under these
conditions. Let us suppose as well that ∂lf(x) is bounded, and put

Cl = sup{|∂lf(x)| : x ∈ C, al < xl < bl}.(8.5.1)

Under these conditions, one can use the mean value theorem to get that
f is partially Lipschitz in the lth variable on C, with respect to the standard
Euclidean metric on R, with constant Cl. This is the smallest value of Cl with
this property, as usual.

Now let U be a nonempty open subset of Rn, with respect to the standard
Euclidean metric, and let f be a real-valued function on U . Suppose that ∂lf(x)
exists for every x ∈ U , which implies that f is continuous as a function of xl,
with the other variables kept fixed, everywhere on U . If

C ⊆ U(8.5.2)

and ∂lf is bounded on C, then we get that f is partially Lipschitz in the lth
variable on C, with constant Cl as in (8.5.1), as before.

If ∂lf is bounded on U , then this holds for every cell C as in (8.5.2). If ∂lf
exists and is bounded on U for each l = 1, . . . , n, then one can use this to get
that f is continuous on U , as in Exercise 7 on p239 of [155].

8.6 Directional derivatives

Let m and n be positive integers, and let U be an open subset of Rn, with
respect to the standard Euclidean metric. Also let f be a mapping from U into
Rm, and let x ∈ U and v ∈ Rn be given. It is easy to see that

U(x, v) = {t ∈ R : x+ t v ∈ U}(8.6.1)

is an open set in the real line, with respect to the standard Euclidean metric on
R. Of course, 0 ∈ U(x, v), because x ∈ U . Let us consider

fx,v(t) = f(x+ t v)(8.6.2)
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as an Rm-valued function of t ∈ U(x, v). If this function is differentiable at 0,
then put

Dvf(x) = f ′x,v(0).(8.6.3)

This is the directional derivative of f at x in the direction v.

Let r ∈ R be given, so that r v ∈ Rn too. Observe that

U(x, r v) = {t ∈ R : r t ∈ U(x, v)},(8.6.4)

and

fx,r v(t) = fx,v(r t)(8.6.5)

on U(x, r v). If Dvf(x) exists, then it is easy to see that Dr vf(x) exists, with

Dr vf(x) = r Dvf(x).(8.6.6)

Let e1, . . . , en be the usual standard basis vectors in Rn, so that the lth
coordinate of ek is equal to 1 when k = l, and to 0 when k 6= l. The directional
derivative

Dekf(x)(8.6.7)

is the same as the kth partial derivative ∂kf(x), when it exists, for each k =
1, . . . , n.

If j ∈ {1, . . . ,m}, then let fj(x) ∈ R be the jth coordinate of f(x), as
an element of Rm. Thus fj(x) defines a real-valued function on U for each
j = 1, . . . ,m. Of course, the directional derivative Dvf(x) exists if and only
if the directional derivative Dvfj(x) exists for every j = 1, . . . ,m, in which
case Dvfj(x) is the jth coordinate of Dvf(x) for each j. Similarly, note that
f is continuously differentiable on U if and only if for each j = 1, . . . ,m, fj is
continuously-differentiable as a real-valued function on U .

Suppose for the moment that Dvf(x) exists for every v ∈ Rn. In some
situations, we may also have that

Dv+wf(x) = Dvf(x) +Dwf(x)(8.6.8)

for every v, w ∈ Rn. This means that

v 7→ Dvf(x)(8.6.9)

defines a linear mapping from Rn into Rm, because of (8.6.6). In this case, we
get that

Dvf(x) =

n∑
k=1

vkDekf(x) =

n∑
k=1

vk ∂kf(x)(8.6.10)

for every v ∈ Rn, because v =
∑n

k=1 vk ek.
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8.7 Differentiable mappings

Let m and n be positive integers again, and let U be a nonempty open subset
of Rn, with respect to the standard Euclidean metric on Rn. Also let f be a
mapping from U intoRm, and let x ∈ U be given. We say that f is differentiable
at x if there is a linear mapping A from Rn into Rm such that

lim
h→0

‖f(x+ h)− f(x)−A(h)‖2,Rm

‖h‖2,Rn

= 0.(8.7.1)

Here ‖ · ‖2,Rm and ‖ · ‖2,Rn are the standard Euclidean norms on Rm and Rn,
respectively. It is easy to see that this implies that f is continuous at x.

Put

Ux = {h ∈ Rn : x+ h ∈ U},(8.7.2)

which is an open set in Rn that contains 0. Of course, f(x + h) is defined for
every h ∈ Ux, by construction. Put

a(h) = f(x+ h)− f(x)−A(h)(8.7.3)

for each h ∈ Ux, so that

f(x+ h) = f(x) +A(h) + a(h)(8.7.4)

for every h ∈ Ux. Using this, (8.7.1) says that

lim
h→0

‖a(h)‖2,Rm

‖h‖2,Rn

= 0.(8.7.5)

Similarly, if h ∈ Ux and h 6= 0, then put

α(h) = a(h) ‖h‖−1
2,Rn .(8.7.6)

Let us put α(0) = 0, so that

f(x+ h) = f(x) +A(h) + α(h) ‖h‖2,Rn(8.7.7)

for every h ∈ Ux, as in (8.7.4). Clearly (8.7.5) is equivalent to

lim
h→0

‖α(h)‖2,Rm = 0.(8.7.8)

One can check directly that A is unique, when it exists. In this case, we put
f ′(x) = A, which may be called the differential of f at x.

If n = 1, then this reduces to the usual definition of the derivative of a
function of one variable. More precisely, a linear mapping from R into Rm

corresponds to multiplying a real number by a fixed element of Rm. The dif-
ferential of f at x is the linear mapping that corresponds to multiplying a real
number by the usual derivative of f at x, as an element of Rm.
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Suppose that f is differentiable at x. If v ∈ Rn, then one can verify that
the directional derivative of f at x in the direction v exists, with

Dvf(x) = f ′(x)(v).(8.7.9)

In particular, if k ∈ {1, . . . , n}, then the kth partial derivative of f at x exists,
with

∂f

∂xk
(x) = f ′(x)(ek).(8.7.10)

Here ek is the kth standard basis vector in Rn, as before.
Remember that linear mappings from Rn into Rm are associated to m× n

matrices of real numbers in a standard way, using the standard basis vectors
in Rn. The entries of the matrix associated to f ′(x) are given by the partial
derivatives of the m components of f at x. If m = 1, then this is related to the
gradient of f at x, as in (8.6.10).

If t ∈ R, then t f is a function defined on U with values in Rm too. It is
easy to see t f is differentiable at x as well, with

(t f)′(x) = t f ′(x).(8.7.11)

Similarly, let g be another mapping from U into Rm that is differentiable at x.
One can check that f + g is differentiable at x, with

(f + g)′(x) = f ′(x) + g′(x).(8.7.12)

One can verify that a mapping from U into Rm is differentiable at x if and
only if its m components are differentiable at x as real-valued functions on U .
Suppose now that f , g are real-valued functions on U that are differentiable at
x. It is not too difficult to show that f g is differentiable at x as well, with

(f g)′(x) = g(x) f ′(x) + f(x) g′(x).(8.7.13)

8.8 Pointwise Lipschitz conditions

Let (X, dX) and (Y, dY ) be metric spaces, and let f be a mapping from X into
Y . Also let x be an element of X, let C be a nonnegative real number, and let
r be a positive real number. Let us say that

f is pointwise Lipschitz at x with constant C up to the scale r(8.8.1)

if for every w ∈ X with
dX(x,w) < r,(8.8.2)

we have that
dY (f(x), f(w)) ≤ C dX(x,w).(8.8.3)

Of course, this implies that

f is continuous at x.(8.8.4)
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We may allow r = +∞ here too, so that (8.8.2) holds for every w ∈ X.
Let m and n be positive integers, let U be a nonempty open subset of Rn,

and let f be a mapping from U into Rm. Also let x ∈ U be given, and suppose
that

f is differentiable at x.(8.8.5)

If N and N0 are norms on Rm and Rn, respectively, then (8.7.1) is equivalent
to

lim
h→0

N(f(x+ h)− f(x)− f ′(x)(h))

N0(h)
= 0.(8.8.6)

This follows from the comparison between N , N0 and the standard Euclidean
norms on Rm, Rn, respectively, as in Section 6.7.

Let ϵ > 0 be given, so that there is a δ > 0 such that

N(f(x+ h)− f(x)− f ′(x)(h))

N0(h)
< ϵ(8.8.7)

for every h ∈ Rn such that h 6= 0,

N0(h) < δ,(8.8.8)

and x+h ∈ U . This uses the comparison betweenN0 and the standard Euclidean
norm on Rn again, to express (8.8.8) in terms of N0(h). We may as well take δ
small enough so that (8.8.8) implies that x+ h ∈ U .

If h ∈ Rn satisfies (8.8.8), then it follows that

N(f(x+ h)− f(x)− f ′(x)(h)) ≤ ϵN0(h).(8.8.9)

This implies that

N(f(x+ h)− f(x)) ≤ N(f(x+ h)− f(x)− f ′(x)(h)) +N(f ′(x)(h))

≤ N(f ′(x)(h)) + ϵN0(h)(8.8.10)

when (8.8.8) holds. Using this, we get that

N(f(x+ h)− f(x)) ≤ ‖f ′(x)‖opN0(h) + ϵN0(h)(8.8.11)

= (‖f ′(x)‖op + ϵ)N0(h)

when (8.8.8) holds, where ‖f ′(x)‖op is the operator norm of f ′(x) corresponding
to N0 and N , as in Section 7.5. This is a pointwise Lipschitz condition for f at
x, with respect to the metrics associated to N0 and N .

Using (8.8.9) and the triangle inequality for N again, we get that

N(f ′(x)(h)) ≤ N(f(x+ h)− f(x)) + ϵN0(h)(8.8.12)

when h ∈ Rn satisfies (8.8.8). Let r be a positive real number, let C(r) be a
nonnegative real number, and suppose that

f is pointwise Lipschitz at x with constant C(r) up to scale r,(8.8.13)
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with respect to the metric on Rm associated to N , and the restriction to U of
the metric on Rn associated to N0. This means that

N(f(x+ h)− f(x)) ≤ C(r)N0(h)(8.8.14)

for every h ∈ Rn such that
N0(h) < r(8.8.15)

and x+ h ∈ U . As before, we may as well take r small enough so that (8.8.15)
implies that x + h ∈ U , using the comparison between N0 and the standard
Euclidean norm on Rn. Combining (8.8.12) and (8.8.14), we get that

N(f ′(x)(h)) ≤ C(r)N0(h) + ϵN0(h) = (C(r) + ϵ)N0(h)(8.8.16)

for every h ∈ Rn with
N0(h) < min(δ, r).(8.8.17)

It is easy to see that this implies that (8.8.16) holds for every h ∈ Rn, because
f ′(x)(h) is linear in h. More precisely, one can reduce to the case where (8.8.17)
holds, by multiplying h by a sufficiently small positive real number. It follows
that

‖f ′(x)‖op ≤ C(r) + ϵ.(8.8.18)

This implies that
‖f ′(x)‖op ≤ C(r),(8.8.19)

because ϵ > 0 is arbitrary.

8.9 The chain rule

Let m, n, and p be positive integers, let U be a nonempty open subset of Rn,
and let f be a mapping from U into Rm. Also let V be an open set in Rm, and
suppose that

f(U) ⊆ V.(8.9.1)

If g is a mapping from V into Rp, then the composition g ◦ f of f and g is
defined as a mapping from U into Rp. Suppose that

f is differentiable at x ∈ U,(8.9.2)

and that
g is differentiable at f(x) ∈ V.(8.9.3)

Thus the differential f ′(x) of f at x is defined as a linear mapping from Rn into
Rm, and the differential g′(f(x)) of g at f(x) is defined as a linear mapping
from Rm into Rp.

Under these conditions, it is not too difficult to show that

g ◦ f is differentiable at x,(8.9.4)
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with
(g ◦ f)′(x) = g′(f(x)) ◦ f ′(x).(8.9.5)

This is the analogue of the chain rule in this situation. One can check that this
reduces to the usual version of the chain rule for real-valued functions of one
real varaible when m = n = p = 1.

If g is a linear mapping from Rm into Rp, then one can check the chain rule
directly. Otherwise, one can use this to reduce to the case where

g′(f(x)) = 0,(8.9.6)

and one can verify that
(g ◦ f)′(x) = 0(8.9.7)

when f satisfies a pointwise Lipschitz condition at x.
In particular, (8.9.5) can be used to obtain the partial derivatives of g ◦ f at

x in terms of the partial derivatives of f at x and the partial derivatives of g at
f(x). Similarly, let v ∈ Rn be given, so that

w = f ′(x)(v) = Dvf(x)(8.9.8)

is an element of Rm. Using (8.9.5), we get that

Dv(g ◦ f)(x) = (g ◦ f)′(x)(v) = g′(f(x))(f ′(x)(v))(8.9.9)

= g′(f(x))(w) = (Dwg)(f(x)).

If m = 1, then this can be obtained from the usual chain rule for differentiable
real-valued functions of one real variable.

Let l1, l2 be positive integers. Of course, constant mappings from Rl1 into
Rl2 are differentiable at every point in Rl1 , with differential equal to 0. If f = A
is a linear mapping from Rl1 into Rl2 , then f is differentiable at every point
x ∈ Rl1 , with f ′(x) = A.

It is well known that t 7→ t2 is differentiable as a real-valued function on the
real line, with derivative equal to 2 t. Let f be a real-valued function on U , and
suppose that f is differentiable at x ∈ U . Using the chain rule, we get that

f2 is differentiable at x(8.9.10)

too, with
(f2)′(x) = 2 f(x) f ′(x).(8.9.11)

Let g be another real-valued function on U that is differentiable at x, so that
g2 is differentiable at x as well, with

(g2)′(x) = 2 g(x) g′(x).(8.9.12)

Similarly, f + g is differentiable at x, so that (f + g)2 is differentiable at x, with

((f + g)2)′(x) = 2 (f(x) + g(x)) (f ′(x) + g′(x)).(8.9.13)
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Note that
f g = (1/2) ((f + g)2 − f2 − g2)(8.9.14)

on U . It follows that f g is differentiable at x, with (f g)′(x) as in (8.7.13).
Similarly, it is well known that t 7→ 1/t is differentiable as a real-valued

function on R \ {0}, with derivative equal to −1/t2. Let f be a real-valued
function on U such that f(w) 6= 0 for every w ∈ U , and suppose that f is
differentiable at x ∈ U . The chain rule implies that

1/f is differentiable at x,(8.9.15)

with
(1/f)′(x) = (−1/f(x)2) f ′(x).(8.9.16)

In particular, one can use these remarks to get that polynomial functions on
Rn are differentiable at every point. Similarly, rational functions are differen-
tiable on open sets where the denominator is not zero.

8.10 Continuous differentiability

Let m and n be positive integers, let U be an open set in Rn, and let f be a
mapping from U into Rm. If

f is differentiable at every point in U,(8.10.1)

then f is said to be differentiable on U . Remember that f is said to be con-
tinuously differentiable on U if for each k = 1, . . . , n, the kth partial derivative
∂kf(x) exists at every x ∈ U , and is continuous as a mapping from U into Rm,
as in Section 8.4. It is well known that

continuously-differentiable mappings on U are differentiable(8.10.2)

in the sense just mentioned. More precisely, if x ∈ U , then f ′(x) is the linear
mapping from Rn into Rm defined by

f ′(x)(h) =

n∑
k=1

hk ∂kf(x)(8.10.3)

for every h ∈ Rn.
To see this, suppose that f is continuously differentiable on U , and let x ∈ U

be given. Suppose for the moment that

∂kf(x) = 0 for each k = 1, . . . , n,(8.10.4)

so that we would like to show that f is differentiable at x, with f ′(x) = 0. This
is equivalent to saying that

lim
h→0

‖f(x+ h)− f(x)‖2,Rm

‖h‖2,Rn

= 0.(8.10.5)
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Because ∂kf is continuous on U , (8.10.4) implies that ∂kf is as small as we want
near x. One can use this to get (8.10.5), as in Sections 8.3 and 8.4.

Alternatively, it is not difficult to reduce to the case where m = 1. This
permits one to use the mean value theorem, as in Section 8.5. In order to
estimate

f(x+ h)− f(x),(8.10.6)

one can go from x to x + h in n steps, only changing one coordinate in each
step, as in Section 8.3.

We can reduce to the case where (8.10.4) holds, as follows. If w ∈ U , then
put

f̃(w) = f(w)−
n∑

k=1

(wk − xk) ∂kf(x).(8.10.7)

This defines a mapping from U into Rm, as a function of w. The partial
derivatives of f̃ are given by

∂lf̃(w) = ∂lf(w)− ∂lf(x)(8.10.8)

for every w ∈ U and l = 1, . . . , n. In particular, f̃ is continuously differentiable
on U , with

∂lf̃(x) = ∂lf(x)− ∂lf(x) = 0(8.10.9)

for every l = 1, . . . , n. This implies that

lim
h→0

‖f̃(x+ h)− f̃(x)‖2,Rn

‖h‖2,Rm

= 0,(8.10.10)

as before. This is the same as saying that f is differentiable at x, with f ′(x) as
in (8.10.3).

We can think of f ′(x) as a function of x ∈ U with values in the space
L(Rn,Rm) of linear mappings from Rn into Rm. One can get nice metrics on
L(Rn,Rm) from norms in the usual way, such as the Hilbert–Schmidt norm or
the operator norm associated to the standard Euclidean norms on Rn and Rm.
If f is continuously differentiable on U , then

f ′ is continuous as a mapping from U into L(Rn,Rm),(8.10.11)

with respect to such a metric. Conversely, if f is differentiable on U , and if f ′

is continuous on U in this sense, then

the partial derivatives of f are continuous on U.(8.10.12)

Thus continuous differentiability on U can be defined equivalently in this way.



140 CHAPTER 8. SOME TOPICS RELATED TO DIFFERENTIABILITY

8.11 Another basic Lipschitz estimate

Let m and n be positive integers, let U be a nonempty open subset of Rn,
and let f be a continuously-differentiable mapping from U into Rm. Thus f is
differentiable at every x ∈ U , as in the previous section, so that f ′(x) is defined
as a linear mapping from Rn into Rm for every x ∈ U . We also have that f ′ is
continuous on U , as before.

Let N and N0 be norms on Rm and Rn, respectively, and let ‖ · ‖op be
the corresponding operator norm for linear mappings from Rn into Rm, as in
Section 7.5. Remember that N and N0 can be compared with the standard
Euclidean norms on Rm and Rn, respectively, as in Section 6.7. This leads
to an analogous comparison between ‖ · ‖op and the operator norm for linear
mappings from Rn into Rm with respect to the standard Euclidean norms on
Rn and Rm. In particular, one can use this to check that ‖·‖op is continuous on
the space of linear mappings from Rn into Rm, with respect to the metric that
corresponds to the Hilbert–Schmidt norm on m × n matrices of real numbers.
This implies that

‖f ′(x)‖op is continuous as a real-valued function on U,(8.11.1)

because f ′(x) is continuous on U . If x ∈ U and v ∈ Rn, then the directional
derivative Dvf(x) of f at x in the direction of v is the same as f ′(x) applied to
v, as in (8.7.9). Hence

N(Dvf(x)) = N(f ′(x)(v)) ≤ ‖f ′(x)‖opN0(v),(8.11.2)

by the definition of ‖ · ‖op.
Let us suppose from now on in this section that U is also convex in Rn. This

means that for each x,w ∈ U and t ∈ R with 0 ≤ t ≤ 1 we have that

t x+ (1− t)w ∈ U.(8.11.3)

Let x,w ∈ U be given, and consider

f(t x+ (1− t)w) = f(w + t (x− w))(8.11.4)

as a function of t ∈ [0, 1] with values in Rm. Because f is differentiable on U ,
we can differentiate (8.11.4) in t, to get that

d

dt
(f(t x+ (1− t)w)) = (D(x−w)f)(t x+ (1− t)w)(8.11.5)

for every t ∈ [0, 1]. It follows that∫ 1

0

(D(x−w)f)(t x+ (1− t)w) dt = f(x)− f(w),(8.11.6)

by the fundamental theorem of calculus.
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This implies that

N(f(x)− f(w)) ≤
∫ 1

0

N((D(x−w)f)(t x+ (1− t)w)) dt,(8.11.7)

as in Section 8.1. Combining this with (8.11.2), we get that

N(f(x)− f(w)) ≤ N0(x− w)

∫ 1

0

‖f ′(t x+ (1− t)w)‖op dt.(8.11.8)

Suppose that f ′ is bounded on U , and observe that

N(f(x)− f(w)) ≤
(
sup
u∈U

‖f ′(u)‖op
)
N0(x− w),(8.11.9)

by (8.11.8). This means that f is Lipschitz as a mapping from U into Rm, using
the restriction to U of the metric on Rn associated to N0, and the metric on
Rm associated to N . More precisely, the corresponding Lipschitz constant is
given by

Lip(f) = sup
u∈U

‖f ′(u)‖op.(8.11.10)

Indeed, Lip(f) is less than or equal to the right side of (8.11.10), because of
(8.11.9). In order to get the opposite inequality, one can check directly that
‖f ′(u)‖op is less than or equal to Lip(f) for every u ∈ U , as in Section 8.8.

If m = 1, then we can take N to be the usual absolute value function on R.
In this case, one can use the mean value theorem to get that

|f(x)− f(w)| ≤
(
sup
u∈U

‖f ′(u)‖op
)
N0(x− w)(8.11.11)

for every x,w ∈ U when f is differentiable on U , and f ′ is bounded on U . The
corresponding Lipschitz constant of f on U is given by (8.11.10), as before.

8.12 Some remarks about connectedness

Let (X, dX) be a metric space. Remember that subsets A, B of X are said to
be separated in X if

A ∩B = A ∩B = ∅,(8.12.1)

where A, B are the closures of A, B in X, respectively. A subset E of X is
said to be connected if E cannot be expressed as the union of two nonempty
separated subsets of X.

Let X0 be a subset of X, and remember that X0 may be considered as a
metric space with respect to the restriction of dX(x,w) to x,w ∈ X0. If A ⊆ X0,
then let AX be the closure of A in X, and let AX0 be the closure of A in X0.
One can check that

AX0
= AX ∩X0(8.12.2)



142 CHAPTER 8. SOME TOPICS RELATED TO DIFFERENTIABILITY

for every A ⊆ X0. More precisely, if x is any element of X0, then one can verify
that x is a limit point of A as a subset of X if and only if x is a limit point of
A as a subset of X0.

If A, B are subsets of X0, then it follows that

A, B are separated as subsets of X0(8.12.3)

if and only if
A, B are separated as subsets of X.(8.12.4)

If E is a subset of X0, then the previous statement implies that

E is connected as a subset of X0 if and only if(8.12.5)

E is connected as a subset of X.

Note that disjoint closed subsets of X are separated in X. One can check
that

disjoint open subsets of X are separated in X(8.12.6)

too. If X is not connected, then X can be expressed as the union of two
nonempty separated sets A, B. In this case, one can verify that

A and B are each both open and closed in X.(8.12.7)

Suppose that E ⊆ X is not connected, so that E = A∪B for some nonempty
separated subsets A, B of X. If E is a closed set in X, then one can check that

A and B are closed sets in X.(8.12.8)

If E is an open set in X, then one can verify that

A and B are open sets in X.(8.12.9)

8.13 Locally constant mappings

Let (X, dX) be a metric space, let Y be a set, and let f be a mapping from X
into Y . We say that f is locally constant on X if for every x ∈ X there is a
positive real number r(x) such that

f(w) = f(x)(8.13.1)

for every w ∈ X with dX(x,w) < r(x). If Y is equipped with a metric dY , then

any locally constant mapping from X into Y is continuous.(8.13.2)

If Y is equipped with the discrete metric, as mentioned in Section 3.7, then it
is easy to see that

every continuous mapping from X into Y is locally constant.(8.13.3)
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Let f be a locally constant mapping from X into Y , and let E be a subset
of X. If E is connected as a subset of X, then

f is constant on E.(8.13.4)

Equivalently, if f is not constant on E, then E is not connected. One way to see
this is to use the fact that f is continuous with respect to the discrete metric on
Y . It is well known that any continuous mapping from X into another metric
space maps connected subsets of X to connected subsets of the range. If E is
connected in X, then it follows that

f(E) is connected with respect to the discrete metric on Y.(8.13.5)

However, one can check that a subset of Y is connected with respect to the
discrete metric if and only if it has at most one element.

If X is not connected, then X can be expressed as the union of two nonempty
disjoint open sets, as in the previous section. One can use this to get a mapping
f from X into any set Y with at least two elements such that f is locally
constant on X, and not constant on X.

Let m and n be positive integers, let U be a nonempty open subset of Rn,
and let f be a mapping from U into Rm. Suppose that f is differentiable on U ,
and that

f ′(x) = 0(8.13.6)

for every x ∈ U . If U is convex, then it follows that f is constant on U , as in
Section 8.11. Similarly,

the restriction of f to any convex open subset of U is constant.(8.13.7)

One can check that open balls in Rn with respect to the metric associated to
any norm on Rn are convex. This implies that

f is locally constant on U,(8.13.8)

with respect to the restriction to U of the standard Euclidean metric on Rn.
Of course, if f is any mapping from U into Rm that is locally constant with
respect to the restriction to U of the standard Euclidean metric on Rn, then f
is differentiable on U , and satisfies (8.13.6) for every x ∈ U .

If U is also connected as a subset of Rn, then (8.13.8) implies that

f is constant on U,(8.13.9)

as before. More precisely, this uses the fact that U is connected as a subset of
itself, with respect to the restriction of the standard Euclidean metric on Rn to
U , as in the previous section. This is related to Exercise 9 on p239 of [155]. If
U is not connected as a subset of Rn, then U can be expressed as the union of
two nonempty disjoint open subsets of Rn, as in the previous section. One can
use this to get a locally constant mapping from U into Rm that is not constant
on U , as before.
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8.14 Some local Lipschitz conditions

Let (X, dX) and (Y, dY ) be metric spaces, and let f be a mapping from X into
Y . If x ∈ X and r > 0, then we let

BX(x, r)(8.14.1)

be the open ball in X centered at x with radius r with respect to dX , as usual.
Let us say that

f is locally Lipschitz with constant C ≥ 0 at x(8.14.2)

if there is a positive real number r such that

the restriction of f to BX(x, r) is Lipschitz with constant C,(8.14.3)

with respect to the restriction of dX(·, ·) to BX(x, r). Note that this implies that
f is pointwise Lipschitz at x with constant C up to the scale r, as in Section
8.8.

We may also simply say that

f is locally Lipschitz at x(8.14.4)

if there is a nonnegative real number C such that f is locally Lipschitz at x with
constant C. Similarly, we may say that

f is locally Lipschitz on X(8.14.5)

if f is locally Lipschitz at every x ∈ X. Of course, this implies that

f is continuous on X.(8.14.6)

Note that f is locally constant on X exactly when

f is locally Lipschitz with constant C = 0 at every x ∈ X.(8.14.7)

Let W be an open subset of X, and suppose that the restriction of f to W
is Lipschitz with constant C ≥ 0, with respect to the restriction of dX(·, ·) to
W . This implies that for each w ∈W , f is locally Lipschitz at w with constant
C.

Let K be a compact subset of X, and suppose that

for each x ∈ K, f is locally Lipschitz at x.(8.14.8)

This means that for every x ∈ K, there is a positive real number r(x) and a
nonnegative real number C(x) such that the restriction of f to BX(x, r(x)) is
Lipschitz with constant C(x). Thus K can be covered by open balls of this type,
and so there are finitely many elements x1, . . . , xl of K such that

K ⊆
l⋃

j=1

BX(xj , r(xj)),(8.14.9)
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because K is compact. If we put

C = max
1≤j≤l

C(xj),(8.14.10)

then it is easy to see that

f is locally Lipschitz with constant C(8.14.11)

at every x ∈ K. More precisely, this holds at every x in the right side of (8.14.9).
Letm and n be positive integers, let U be a nonempty open subset ofRn, and

let f be a continuously-differentiable mapping from U into Rm. Also let N and
N0 be norms on Rm and Rn, respectively, and let ‖ · ‖op be the corresponding
operator norm for linear mappings from Rn into Rm. Suppose that E is a
nonempty convex subset of Rn such that E ⊆ U , and that

‖f ′(u)‖op is bounded on E.(8.14.12)

If x,w ∈ E, then

N(f(x)− f(w)) ≤
(
sup
u∈E

‖f ′(u)‖op
)
N0(x− w),(8.14.13)

as in Section 8.11. This means that

the restriction of f to E is Lipschitz(8.14.14)

with respect to the metric on Rm associated to N , and the restriction to E of
the metric on Rn associated to N0.

If E is also closed and bounded in Rn, then E is compact in Rn. It is well
known that this implies that E is compact as a subset of U , with respect to
the restriction to U of the standard Euclidean metric on Rn. Remember that
‖f ′(u)‖op is continuous as a real-valued function on U , as in Section 8.11. It
follows that (8.14.12) holds under these conditions.

One can check that open and closed balls in Rn with respect to the metric
associated to a norm are convex subsets of Rn, as before. If v ∈ U and ϵ is a
positive real number, then

‖f ′(u)‖op < ‖f ′(v)‖op + ϵ(8.14.15)

when u ∈ U is sufficiently close to v, because ‖f ′(u)‖op is continuous at v. One
can use this to get that f is locally Lipschitz at v with constant

C = ‖f ′(v)‖op + ϵ,(8.14.16)

with respect to the metric on Rm associated to N , and the restriction to U of
the metric on Rn associated to N0. We also have that ‖f ′(u)‖op is bounded
on any closed ball contained in U , as in the preceding paragraph. This implies
that the restriction of f to such a ball is Lipschitz, as before.



Chapter 9

More on differentiable
mappings

9.1 Continuously-differentiable mappings

Let m and n be positive integers, let U be an open subset of Rn, and let f be a
continuously-differentiable mapping from U into Rm. Also let x be an element
of U , and put

A = f ′(x),(9.1.1)

for convenience. Observe that f −A is continuously differentiable as a mapping
from U into Rm too. If w ∈ U , then

(f −A)′(w) = f ′(w)−A = f ′(w)− f ′(x).(9.1.2)

This tends to 0 as w approaches x, because f is continuously differentiable on
U .

Let N0 and N be norms on Rn and Rm, respectively. Thus dN0(v, w) =
N0(v−w) and dN (y, z) = N(y−z) are metrics on Rn and Rm, respectively. The
corresponding operator norm for linear mappings from Rn into Rm is denoted
‖ · ‖op, as usual. In particular,

‖f ′(w)−A‖op = ‖f ′(w)− f ′(x)‖op → 0 as w → x,(9.1.3)

because f is continuously-differentiable on U .
Let U1 be a convex open subset of Rn such that x ∈ U1 and U1 ⊆ U .

Suppose that f ′ is bounded on U1, so that f ′−A is bounded on U1 as well. Put

b1 = sup
w∈U1

‖f ′(w)−A‖op.(9.1.4)

The restriction of f −A to U1 is Lipschitz with constant b1, as in Sections 8.11
and 8.14. This uses the restriction of dN0

to U1, and dN on Rm.

146
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Suppose that

N(A(v)) = N(f ′(x)(v)) ≥ cN0(v)(9.1.5)

for some c > 0 and all v ∈ Rn. This implies that

dN (A(u), A(v)) ≥ c dN0
(u, v)(9.1.6)

for every u, v ∈ Rn, as in (7.9.5). Remember that there is a positive real number
c such that (9.1.5) holds for all v ∈ Rn exactly when A is one-to-one on Rn, as
in Sections 7.9 and 7.10.

Suppose that

b1 < c.(9.1.7)

Under these conditions, we have that

dN (f(u), f(v)) ≥ (c− b1) dN0
(u, v)(9.1.8)

for every u, v ∈ U1. More precisely, this corresponds to (7.11.5), with some
changes in notation.

Similarly, if w ∈ U1, then

N(f ′(w)(v)) ≥ (c− b1)N0(v)(9.1.9)

for every v ∈ Rn. This corresponds to (7.11.10).
Suppose for instance that U1 is the open ball in Rn centered at x with radius

r > 0 with respect to dN0
. This is a convex open subset of Rn, as before. If

r is small enough, then U1 ⊆ U , because U is an open set in Rn that contains
x. We can make b1 as small as we want by taking r small enough, because of
(9.1.3). In particular, (9.1.7) holds when r is sufficiently small.

Some more properties of mappings like these will be discussed in Section 9.7.

9.2 Invertible linear mappings

Let n be a positive integer, and let

L(Rn) = L(Rn,Rn)(9.2.1)

be the space of linear mappings from Rn into itself. Also let N be a norm on
Rn, and let ‖A‖op be the corresponding operator norm for A ∈ L(Rn). More
precisely, this uses N on Rn as both the domain and range of A. Remember
that

dop(A,B) = ‖A−B‖op(9.2.2)

defines a metric on L(Rn).
Let I be the identity mapping on Rn, which sends every element of Rn to

itself. It is easy to see that

‖I‖op = 1.(9.2.3)
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If A,B ∈ L(Rn), then their composition B ◦ A defines a linear mapping from
Rn into itself as well, so that B ◦A ∈ L(Rn). Remember that

‖B ◦A‖op ≤ ‖A‖op ‖B‖op,(9.2.4)

as in Section 7.8.
A linear mapping A from Rn into itself is said to be invertible if A is a

one-to-one mapping from Rn onto itself. In this case, the inverse mapping A−1

is linear as well. The collection of invertible linear mappings on Rn may be
denoted GL(Rn). It is well known that A ∈ L(Rn) is one-to-one if and only if
A(Rn) = Rn.

If A ∈ GL(Rn), then

N(A−1(u)) ≤ ‖A−1‖opN(u)(9.2.5)

for every u ∈ Rn. More precisely, ‖A−1‖op is the smallest nonnegative real
number with this property, by definition of the operator norm. Equivalently,
(9.2.5) says that

N(v) ≤ ‖A−1‖opN(A(v))(9.2.6)

for every v ∈ Rn. Note that ‖A−1‖op > 0, because A−1 6= 0. Thus (9.2.6) is
the same as saying that

‖A−1‖−1
op N(v) ≤ N(A(v))(9.2.7)

for every v ∈ Rn.
Suppose that B ∈ L(Rn) satisfies

‖A−B‖op < 1/‖A−1‖op.(9.2.8)

Using (9.2.7), we get that

(‖A−1‖−1
op − ‖A−B‖op)N(v) ≤ N(B(v))(9.2.9)

for every v ∈ Rn, as in Section 7.11. In particular, this implies that B(v) = 0
only when v = 0, so that B is injective. It follows that B(Rn) = Rn, and hence

B ∈ GL(Rn),(9.2.10)

as before. This shows that

GL(Rn) is an open set in L(Rn),(9.2.11)

with respect to the metric (9.2.2) associated to the operator norm.
Note that

N(B−1(u)) ≤ (‖A−1‖−1
op − ‖A−B‖op)−1N(u)(9.2.12)

for every u ∈ Rn, by (9.2.9). This means that

‖B−1‖op ≤ (‖A−1‖−1
op − ‖A−B‖op)−1(9.2.13)

=
‖A−1‖op

1− ‖A−1‖op ‖A−B‖op
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in this situation. If
‖A−B‖op ≤ 1/(2‖A−1‖op),(9.2.14)

then we get that
‖B−1‖op ≤ 2 ‖A−1‖op.(9.2.15)

Of course, (9.2.14) implies (9.2.8).
We would like to look at continuity properties of

A 7→ A−1(9.2.16)

on GL(Rn). If A,B ∈ GL(Rn), then it is easy to see that

A−1 −B−1 = A−1 ◦ (B −A) ◦B−1.(9.2.17)

This implies that

‖A−1 −B−1‖op ≤ ‖A−1‖op ‖B−1‖op ‖A−B‖op.(9.2.18)

If (9.2.14) holds, then we get that

‖A−1 −B−1‖op ≤ 2 ‖A−1‖2op ‖A−B‖op,(9.2.19)

by (9.2.15). It follows that B 7→ B−1 is continuous at A, with respect to the
metric (9.2.2) associated to the operator norm, and its restriction to GL(Rn).

9.3 The inverse function theorem

Let n be a positive integer, and let N be a norm on Rn, so that dN (v, w) =
N(v − w) is a metric on Rn. Using N , we get the corresponding operator
norm ‖ · ‖op on the space L(Rn) of linear mappings from Rn into itself, and
its associated metric, as in (9.2.2). Of course, one can simply take N to be the
standard Euclidean norm on Rn.

Let W be an open subset of Rn, and let f be a continuously-differentiable
mapping from W into Rn. Also let w ∈W be given, and suppose that

f ′(w) is invertible(9.3.1)

as a linear mapping from Rn into itself. Under these conditions, the inverse
function theorem states that there are open subsets U and V of Rn with the
following properties, which we describe in two parts.

In the first part,

w ∈ U, U ⊆W, and f(w) ∈ V.(9.3.2)

We are able to choose U and V so that

f is a one-to-one mapping from U onto V.(9.3.3)
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We can also choose U so that

f ′(x) is invertible as a linear mapping on Rn for each x ∈ U.(9.3.4)

In particular, we can define a mapping g from V onto U to be the inverse of
the restriction of f to U , so that

g(f(x)) = x(9.3.5)

for every x ∈ U . The second part of the inverse function theorem says that

g is continuously-differentiable as a mapping from V into Rn,(9.3.6)

with
g′(y) = (f ′(g(y)))−1(9.3.7)

for every y ∈ V . More precisely, the right side of (9.3.7) is the inverse of f ′(g(y)),
as a linear mapping on Rn.

If x ∈ U and g is differentiable at f(x) ∈ V , then the chain rule implies that

g′(f(x)) ◦ f ′(x) = I,(9.3.8)

because of (9.3.5). This is the same as (9.3.7), with y = f(x). The proof of the
inverse function theorem will be discussed in the next section. Note that the
proof could be simplified when n = 1, using the mean value theorem and the
intermediate value theorem, which is related to Exercise 2 on p114 of [155].

9.4 Proving the inverse function theorem

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Remember that f ′(x) is continuous as a function of x ∈ W with values
in L(Rn), as in Section 8.10. We have also seen that the collection GL(Rn)
of invertible linear mapping from Rn into itself is an open set in L(Rn), as in
Section 9.2. It follows that

{x ∈W : f ′(x) ∈ GL(Rn)}(9.4.1)

is an open set in Rn, becauseW is an open set, by hypothesis. Of course, (9.4.1)
is the same as

(f ′)−1(GL(Rn)),(9.4.2)

where f ′ is considered as a mapping from W into L(Rn).
To prove the inverse function theorem, we can reduce to the case where

f ′(w) is the identity mapping I on Rn.(9.4.3)

More precisely, this can be obtained by replacing f with

(f ′(w))−1 ◦ f,(9.4.4)
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as a continuously-differentiable mapping from W into Rn. It is easy to see that
the differential of (9.4.4) at w is equal to I, by construction. If we can prove
the inverse function theorem in this case, then the analogous conclusions for f
can be obtained by composing (9.4.4) with f ′(w), as a linear mapping from Rn

into itself.
Let BN (w, r) be the open ball in Rn centered at w with radius r > 0 with

respect to dN (·, ·), as before. Note that

BN (w, r) ⊆W(9.4.5)

when r is sufficiently small, because W is an open set that contains w. We also
have that f ′(x) − I is as small as we want when x ∈ Rn is close enough to
w, because f ′(x) is continuous at w. In particular, we can choose r > 0 small
enough so that (9.4.5) holds and

‖f ′(x)− I‖op ≤ 1/2(9.4.6)

for every x ∈ Rn with N(x−w) < r. This implies that f ′(x) is invertible when
N(x− w) < r, as in Section 9.2.

Using (9.4.6), we get that

the restriction of f(x)− x to BN (w, r)(9.4.7)

is Lipschitz with constant c = 1/2,

with respect to dN (·, ·) and its restriction to BN (w, r), as in Section 8.11. This
uses the fact that the differential of f(x)−x is equal to f ′(x)−I for each x ∈W .
It follows that

f is bilipschitz on BN (w, r),(9.4.8)

as in Section 7.11, and in particular that f is one-to-one on BN (w, r). The
restriction of f to BN (w, r) is an open mapping too, as in Section 7.14. The
first part of the inverse function theorem now follows by taking

U = BN (w, r)(9.4.9)

and

V = f(BN (w, r)).(9.4.10)

Let g be the inverse of the restriction of f to BN (w, r), as before. This is a
Lipschitz mapping from V into Rn, with respect to dN (·, ·) and its restriction
to V , because f is bilipschitz on BN (w, r), as in the preceding paragraph. One
can verify that

g is differentiable on V,(9.4.11)

with differential as in (9.3.7), using the differentiability of f . This corresponds
to part of part (b) of Theorem 9.24 on p221 of [155], for instance. The continuity
of g′ on V follows from (9.3.7), because f ′ and g are continuous, and using the
continuity of (9.2.16) on GL(Rn).
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9.5 Some remarks about Rn+m

Let n and m be positive integers, so that Rn, Rm, and Rn+m are the usual
spaces of n-tuples, m-tuples, and (n +m)-tuples of real numbers, respectively.
It will sometimes be convenient for us to identify Rn+m with the Cartesian
product Rn × Rm of Rn and Rm. Thus, if x = (x1, . . . , xn) ∈ Rn and y =
(y1, . . . , ym) ∈ Rm, then we may identify

(x, y) ∈ Rn ×Rm(9.5.1)

with
(x1, . . . , xn, y1, . . . , ym) ∈ Rn+m.(9.5.2)

In particular, (x, 0) and (0, y) can be identified with elements of Rn+m.
If f is a function defined on a subset of Rn+m, then we may use

f(x, y)(9.5.3)

to denote the value of f at the point in Rn+m identified with (x, y), when that
point is in the domain of f .

Let A be a linear mapping from Rn+m into Rn. If x ∈ Rn and y ∈ Rm,
then put

A1(x) = A(x, 0)(9.5.4)

and
A2(y) = A(0, y).(9.5.5)

This defines A1 and A2 as linear mappings from Rn and Rm into Rn, respec-
tively. Note that

A(x, y) = A1(x) +A2(y)(9.5.6)

for every x ∈ Rn and y ∈ Rm. Conversely, if A1 and A2 are linear mappings
from Rn and Rm into Rn, respectively, then (9.5.6) defines a linear mapping
from Rn+m into Rn.

Let A be a linear mapping from Rn+m into Rn, and let A1 and A2 be as
in (9.5.4) and (9.5.5), respectively. Also let x ∈ Rn and y ∈ Rm be given, and
observe that

A(x, y) = 0(9.5.7)

if and only if
A1(x) = −A2(y),(9.5.8)

by (9.5.6). If A1 is a one-to-one mapping from Rn onto itself, then (9.5.8) is
the same as saying that

x = −A−1
1 (A2(y)).(9.5.9)

In particular, for each y ∈ Rm there is a unique x ∈ Rn such that (9.5.7) holds
in this situation.

Clearly
A1(R

n) ⊆ A(Rn+m),(9.5.10)
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by the definition (9.5.4) of A1. In particular, if A1(R
n) = Rn, then

A(Rn+m) = Rn.(9.5.11)

Consider the mapping Â from Rn+m into itself defined by

Â(x, y) = (A(x, y), y)(9.5.12)

for every x ∈ Rn and y ∈ Rm. This is a linear mapping from Rn+m into itself,
which can also be expressed as

Â(x, y) = (A1(x) +A2(y), y)(9.5.13)

for every x ∈ Rn and y ∈ Rm, by (9.5.6). If A1 is a one-to-one mapping from
Rn onto itself, then one can check that

Â is a one-to-one mapping from Rn+m onto itself.(9.5.14)

It is easy to see that the converse holds as well.
Let u1, . . . , un+m be the standard basis vectors in Rn+m, so that for each

l = 1, . . . ,m+n, the lth coordinate of ul is equal to 1, and the other coordinates
of ul are equal to 0. If A is a linear mapping from Rn+m onto Rn, then

Rn is spanned by A(u1), . . . , A(un+m).(9.5.15)

Under these conditions, it is well known that there is a subset K of {1, . . . , n+m}
such that K has exactly n elements, and

A(uk), k ∈ K, forms a basis for Rn.(9.5.16)

If K = {1, . . . , n}, then the linear mapping A1 on Rn associated to A as in
(9.5.4) is invertible. Otherwise, one could rearrange the coordinates on Rn+m

to reduce to this case.

9.6 The implicit function theorem

Let n and m be positive integers again, and let O be an open subset of Rn+m,
with respect to the standard Euclidean metric. Also let f be a continuously-
differentiable mapping from O into Rn. Suppose that a ∈ Rn and b ∈ Rm have
the properties that (a, b) ∈ O and

f(a, b) = 0,(9.6.1)

where (a, b) is identified with an element of Rn+m, as in the previous section.
Put

A = f ′(a, b),(9.6.2)

which is a linear mapping from Rn+m into Rn. This leads to a linear mappings
A1 and A2 from Rn and Rm into Rn, respectively, as in (9.5.4) and (9.5.5).
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Suppose that

A1 is a one-to-one mapping from Rn onto itself.(9.6.3)

Under these conditions, the implicit function theorem states that there are open
sets U ⊆ Rn+m andW ⊆ Rm with the following properties, as in Theorem 9.28
on p224 of [155].

First,
(a, b) ∈ U, U ⊆ O, and b ∈W.(9.6.4)

Second, for each y ∈W there is a unique x ∈ Rn such that

(x, y) ∈ U and f(x, y) = 0.(9.6.5)

If y ∈ W , then let g(y) be the element of Rn just mentioned, so that g is a
mapping from W into Rn, g(b) = a, and for every y ∈W we have that

(g(y), y) ∈ U(9.6.6)

and
f(g(y), y) = 0.(9.6.7)

We also have that g is continuously differentiable on W , with

g′(b) = −A−1
1 ◦A2.(9.6.8)

To prove the implicit function theorem, we put

F (x, y) = (f(x, y), y)(9.6.9)

for every (x, y) ∈ O, where the right side is identified with an element of Rn+m,
as before. This defines F as a continuously-differentiable mapping from O into
Rn+m, with

F ′(a, b) = Â,(9.6.10)

where Â is as in (9.5.12). In this situation, Â is a one-to-one linear mapping
from Rn+m onto itself, so that the inverse function theorem can be applied to
F at (a, b).

Thus there are open sets U , V in Rn+m such that (a, b) ∈ U , U ⊆ O,

F (a, b) = (f(a, b), b) = (0, b) ∈ V,(9.6.11)

and F is a one-to-one mapping from U onto V . The inverse G of the restriction
of F to U is a continuously-differentiable mapping from V onto U . We also have
that G preserves the last m coordinates of points in its domain, because of the
analogous property of F .

Observe that
W = {y ∈ Rm : (0, y) ∈ V }(9.6.12)

is an open subset of Rm that contains b. If y ∈W , then we can take g(y) ∈ Rn

so that
(g(y), y) = G(0, y).(9.6.13)

See [155] or other texts for more details.
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9.7 Local embeddings

Let n and m be positive integers, and let us continue to identify Rn+m with
Rn ×Rm, as in Section 9.5. Suppose that A is a linear mapping from Rn into
Rn+m. If v ∈ Rn, then A(v) ∈ Rn+m can be expressed as

A(v) = (A1(v), A2(v)),(9.7.1)

where A1(v) ∈ Rn and A2(v) ∈ Rm, using the identification just mentioned.
More precisely, this defines A1 and A2 as linear mappings from Rn into Rn and
Rm, respectively. Conversely if A1 and A2 are linear mappings from Rn into
Rn and Rm, respectively, then (9.7.1) defines a linear mapping from Rn into
Rn+m.

Suppose now that
A1 is injective on Rn,(9.7.2)

which implies that
A1 is invertible on Rn,(9.7.3)

as before. Of course, (9.7.2) also implies that

A is injective on Rn.(9.7.4)

It can be shown that (9.7.4) implies a condition like (9.7.2), after rearranging
the coordinates on Rn+m is a suitable way. We shall discuss this further at the
end of the section.

Note that
A2 ◦A−1

1(9.7.5)

defines a linear mapping from Rn into Rm. Put

B(v) = (v,A2(A
−1
1 (v)))(9.7.6)

for every v ∈ Rn, which defines a linear mapping from Rn into Rn+m. Thus

A = B ◦A1,(9.7.7)

as a mapping from Rn into Rn+m.
LetW be an open subset of Rn, and let f be a mapping fromW into Rn+m.

If w ∈W , then f(w) ∈ Rn+m can be expressed as

f(w) = (f1(w), f2(w)),(9.7.8)

where f1(w) ∈ Rn and f2(w) ∈ Rm, as before. This defines f1 and f2 as
mappings from W into Rn and Rm, respectively. Conversely, if f1 and f2 are
mappings from W into Rn and Rm, respectively, then (9.7.8) defines f as a
mapping from W into Rn+m.

It is easy to see that f is differentiable at a point w ∈W if and only if

f1 and f2 are differentiable at w.(9.7.9)
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In this case,
f ′(w)(v) = (f ′1(w)(v), f

′
2(w)(v))(9.7.10)

for every v ∈ Rn. Equivalently, this means that A = f ′(w) corresponds to
A1 = f ′1(w) and A2 = f ′2(w) as in (9.7.1).

Similarly, one can check that f is continuously-differentiable as a mapping
from W into Rn+m if and only if

f1 and f2 are continuously-differentiable(9.7.11)

as mappings from W into Rn and Rm, respectively. In this situation, suppose
that w ∈W has the property that

f ′1(w) is invertible(9.7.12)

as a linear mapping from Rn into itself. Thus the inverse function theorem
implies that the restriction of f1 to a suitable neighborhood U of w is a one-
to-one mapping onto a neighborhood V of f1(w), and that the corresponding
inverse mapping has some additional nice properties.

This can be used to obtain more information about the behavior of f near
w. Of course, this is all much simpler when f1 is the identity mapping on Rn.
Otherwise, one can try to reduce to this case, at least locally near w. If f1 has
a local inverse near w, as in the preceding paragraph, then f can be expressed
near w as the composition of f1 with a simpler mapping into Rn+m.

Let e1, . . . , en be the standard basis vectors in Rn, and let u1, . . . , un+m be
the standard basis vectors for Rn+m. If (9.7.4) holds, then

A(e1), . . . , A(en) are linearly independent in Rn+m.(9.7.13)

In this case, it is well known that there is a set L ⊆ {1, . . . , n+m} with exactly
m elements such that

A(e1), . . . , A(en) together with uk, k ∈ L, is a basis for Rn+m.(9.7.14)

If L = {n+ 1, . . . , n+m}, then it is easy to see that

A1(R
n) = Rn,(9.7.15)

so that (9.7.3) holds. Otherwise, one can get an analogous condition with the
coordinates on Rn+m rearranged.

9.8 Ranks of linear mappings

In this section, we suppose that the reader has some familiarity with linear
algebra on Euclidean spaces. Let m and n be arbitrary positive integers, and
let A be a linear mapping from Rn into Rm. It is easy to see that the image
A(Rn) of Rn under A is a linear subspace of Rm. The rank of A is defined to
be

the dimension of A(Rn).(9.8.1)
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Thus the rank of A is a nonnegative integer less than or equal to m.
Of course, the rank of A is equal to 0 exactly when A = 0 on Rn. The rank

of A is equal to m exactly when A(Rn) = Rm.
Suppose that A has rank r ≥ 1, and let w1, . . . , wr be a basis for A(Rn). If

j ∈ {1, . . . , r}, then choose vj ∈ Rn such that

A(vj) = wj .(9.8.2)

Observe that
v1, . . . , vr are linearly independent in Rn,(9.8.3)

because w1, . . . , wr are linearly independent in Rm. Let V be the linear span of
v1, . . . , vr in Rn, so that

V is a linear subspace of Rn of dimension r.(9.8.4)

In particular,
r ≤ n(9.8.5)

automatically. By construction, A(V ) = A(Rn). One can check that

the restriction of A to V is one-to-one(9.8.6)

in this situation.
Alternatively, let u1, . . . , un be any basis for Rn, such as the standard basis.

Thus
A(Rn) is spanned by A(u1), . . . , A(un).(9.8.7)

It is well known that a subset of the vectors A(u1), . . . , A(un) forms a basis for
A(Rn). Such a subset has exactly r elements, by hypothesis. The corresponding
subset of the vectors u1, . . . , un can be used as a basis for a linear subspace V
of Rn as in the preceding paragraph.

Now let V0 be a linear subspace of Rn, and suppose that

the restriction of A to V0 is one-to-one.(9.8.8)

The dimension of V0 is equal to the dimension of A(V0), which is less than or
equal to the dimension of A(Rn). Equivalently, the dimension of V0 is less than
or equal to r. The remarks in the previous paragraphs show that it is always
possible to choose V0 so that its dimension is equal to r. This shows that

the rank of A is equal to the maximum of the dimensions(9.8.9)

of the linear subspaces V0 of Rn on which A is one-to-one.

If A is one-to-one on Rn, then the rank of A is equal to n. Conversely, if the
rank of A is equal to n, then A is one-to-one on Rn.

Let V0 be a linear subspace of Rn on which A is one-to-one again, and let
B be another linear mapping from Rn into Rm. If B is sufficiently close to A,
as linear mappings from Rn into Rm, then

the restriction of B to V0 is one-to-one(9.8.10)
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as well. This can be obtained from the remarks in Section 7.11. It follows that

the rank of B is greater than or equal to the rank of A(9.8.11)

when B is sufficiently close to A. Note that the rank of B may be greater than
the rank of A in this case.

Let f be a continuously-differentiable mapping from an open subset W of
Rn into Rm, and let w be an element ofW . Suppose that if x ∈W is sufficiently
close to w, then

the rank of f ′(x) is equal to the rank of f ′(w),(9.8.12)

as linear mappings from Rn into Rm. The rank theorem describes the behavior
of f near w in this situation, and we shall return to this in Section 9.12.

9.9 Some remarks about determinants

Let n be a positive integer, and let [aj,l] be an n× n matrix of real or complex
numbers. The determinant det[aj,l] of [aj,l] can be defined as a real or complex
number, as appropriate, in a standard way, as mentioned in Section 7.6. More
precisely, det[aj,l] is a polynomial of degree n in the entries aj,l. In particular,

det[aj,l] is continuous(9.9.1)

as a real or complex-valued function on the spaces Mn,n(R), Mn,n(C) of n× n
matrices with entries in R, C, respectively, with respect to the metric associated
to the Hilbert–Schmidt norm.

Now let A be a linear mapping from Rn or Cn into itself. Remember that A
corresponds to an n×n matrix of real or complex numbers, as appropriate, as in
Section 7.2. The determinant detA of A is defined to be the determinant of the
corresponding matrix, as in Section 7.6 again. This defines continuous real and
complex-valued functions on the spaces L(Rn), L(Cn) of linear mappings from
Rn, Cn into themselves, respectively, with respect to the metrics associated
to the corresponding Hilbert–Schmidt norms. One could also use the metrics
associated to the operator norms corresponding to the standard Euclidean norms
on Rn, Cn, or to any other norms on Rn, Cn.

It is well known that a linear mapping A from Rn or Cn into itself is invert-
ible if and only if

detA 6= 0.(9.9.2)

The fact that the sets of invertible elements of L(Rn), L(Cn) are open sets with
respect to the metrics associated to the Hilbert–Schmidt or operator norms can
be obtained from this, and the continuity of the determinant.

If A is an invertible linear mapping on Rn or Cn, then it is well known
that the matrix corresponding to the inverse of A can be obtained from the
determinant of A and the determinants of (n− 1)× (n− 1) submatrices of the
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matrix corresponding to A, as in Cramer’s rule. This can be used to get the
continuity of

A 7→ A−1(9.9.3)

on the spaces of invertible elements of L(Rn) or L(Cn), with respect to the
restrictions of the metrics associated to the Hilbert–Schmidt or operator norms
to these spaces.

9.10 Some remarks about linear subspaces

In this section, we suppose again that the reader has some familiarity with linear
algebra on Euclidean spaces, although some basic notions will also be reviewed
here. In particular, if n is a positive integer, then a linear subspace of Rn is a
subset V of Rn such that

u+ v ∈ V(9.10.1)

for every u, v ∈ V , and
t v ∈ V(9.10.2)

for every v ∈ Rn and t ∈ R. If V 6= {0}, then it is well known that V can be
spanned by finitely many of its elements. The smallest number of elements of
V that span V is known as the dimension of V , and is denoted dim V . This is a
nonnegative integer less than or equal to n, which is interpreted as being equal
to 0 when V = {0}.

If V , W be linear subspaces of Rn, then their sum may be defined as the
subset of Rn given by

V +W = {v + w : v ∈ V, w ∈W}.(9.10.3)

It is easy to see that this is a linear subspace of Rn too. Note that

dim(V +W ) ≤ dimV + dimW.(9.10.4)

It is easy to see that the intersection of V and W is a linear subspace of Rn

as well. If
V ∩W = {0},(9.10.5)

then V and W may be said to be transverse as linear subspaces of Rn. This
means that the elements of V +W can be expressed in a unique way as v + w,
with v ∈ V and w ∈W . In this case,

dim(V +W ) = dimV + dimW,(9.10.6)

because one can combine bases for V andW to get a basis for V +W . Conversely,
it is not too difficult to show that (9.10.6) implies (9.10.5).

Let m be another positive integer, and let A be a linear mapping from Rn

into Rm. The kernel or null space is defined by

kerA = {v ∈ Rn : A(v) = 0}.(9.10.7)
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It is easy to see that this is also a linear subspace of Rn. One can check that

kerA = {0}(9.10.8)

if and only if A is one-to-one on Rn. Of course, A(Rm) is a linear subspace of
Rm, as mentioned in Section 9.8.

Suppose that A 6= 0, so that the dimension r of A(Rn) is positive. One can
choose v1, . . . , vr ∈ Rn such that

A(v1), . . . , A(vr) is a basis for A(Rn),(9.10.9)

as in Section 9.8. In this case, v1, . . . , vr are linearly independent in Rn, as
before. If V is the linear span of v1, . . . , vr in Rn, then one can check that

V + kerA = Rn(9.10.10)

and
V ∩ (kerA) = {0}.(9.10.11)

This implies the well-known fact that

dimkerA+ dimA(Rn) = n,(9.10.12)

because dimA(Rn) = r = dimV .

9.11 Complementary linear subspaces

Let n be a positive integer, and let V , W be linear subspaces of Rn. We say
that V and W are complementary linear subspaces of Rn if

V +W = Rn(9.11.1)

and (9.10.5) holds. This means that every element of Rn can be expressed in a
unique way as a sum of elements of V and W , as before. Note that

dimV + dimW = n(9.11.2)

in this case. If V andW are any two linear subspaces of Rn that satisfy (9.11.2),
then one can check that (9.10.5) is equivalent to (9.11.1).

If V is any linear subspace of Rn, then one can find a linear subspace W of
Rn such that

V and W are complementary linear subspaces of Rn.(9.11.3)

One way to do this is to start with a basis for V , and extend it to a basis for Rn.
In this case, one can check that the linear span of the additional basis elements
is complementary to V in Rn.

A linear mapping P from Rn into itself is said to be a projection if

P ◦ P = P(9.11.4)
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on Rn. In this case, one can check that

kerP and P (Rn) are complementary linear subspaces of Rn.(9.11.5)

One can also verify that

I − P is a projection on Rn(9.11.6)

as well. In fact,
ker(I − P ) = P (Rn)(9.11.7)

and
(I − P )(Rn) = kerP.(9.11.8)

If V andW are comlementary linear subspaces of Rn, then there is a unique
projection P on Rn such that

kerP = V(9.11.9)

and
P (Rn) =W.(9.11.10)

More precisely,
P (v + w) = w(9.11.11)

for every v ∈ V and w ∈W . This can be used to define P on Rn, because every
element of Rn can be expressed in a unique way as a sum of elements of V and
W , as before.

9.12 The rank theorem

Let m, n, and r be positive integers with

r ≤ min(m,n).(9.12.1)

Also let W be a nonempty open subset of Rn, and let F be a continuously-
differentiable mapping from W into Rm. Suppose that

the rank of F ′(w) is equal to r for every w ∈W.(9.12.2)

Let a ∈W be given, and put

A = F ′(a).(9.12.3)

Also put
Y1 = A(Rn),(9.12.4)

which is a linear subspace of Rm of dimension r. Let Y2 be a linear subspace
of Rm such that

Y1 and Y2 are complementary linear subspaces of Rm,(9.12.5)
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as in the previous section. This leads to a projection P on Rm such that

P (Rm) = Y1(9.12.6)

and
kerP = Y2,(9.12.7)

as before.
Under these conditions, there are open subsets U , V ofRn with the following

properties. First,
a ∈ U and U ⊆W.(9.12.8)

Second, there is a one-to-one mapping H from V onto U such that

H is continuously differentiable on V,(9.12.9)

H−1 is continuously differentiable on U,(9.12.10)

and
P (F (H(x))) = A(x)(9.12.11)

for every x ∈ V . This is part of the rank theorem, as on p229 of [155]. More
precisely, (9.12.11) corresponds to (71) on p230 of [155].

Of course, (9.12.2) implies that

the rank of A = F ′(a) is equal to r.(9.12.12)

If w ∈W is sufficiently close to a, then (9.12.12) implies that

the rank of F ′(w) is greater than or equal to r,(9.12.13)

because F ′(w) is close to F ′(a), as in Section 9.8. Remember that the rank
of any linear mapping from Rn into Rm is less than or equal to min(m,n). If
r = min(m,n), then (9.12.12) implies that

the rank of F ′(w) is equal to r(9.12.14)

when w ∈W is sufficiently close to a.

In this case, we can get (9.12.2) by replacing W with a sufficiently small open
set in Rn that contains a.

If r = m, then (9.12.12) is the same as saying that

Y1 = A(Rn) = Rm.(9.12.15)

This implies that Y2 = {0}, so that P is the identity mapping on Rm. In this
case, (9.12.11) means that

F (H(x)) = A(x)(9.12.16)

for every x ∈ V .
If r = m = n, then A = F ′(a) is invertible on Rn, and the rank theorem

is basically the same as the inverse function theorem. If r = m < n, then the
rank theorem is closely related to the implicit function theorem.

If r = n, then (9.12.12) is the same as saying that

A = F ′(a) is injective on Rn.(9.12.17)

If r = n < m, then the rank theorem is related to the remarks in Section 9.7.
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9.13 Proving this part

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Note that

dimY1 = r,(9.13.1)

by (9.12.4) and (9.12.12). Let y1, . . . , yr be a basis for Y1.
Choose zj ∈ Rn for each j = 1, . . . , r so that

A(zj) = yj .(9.13.2)

Let T be the unique linear mapping from Y1 into Rn such that

T (yj) = zj(9.13.3)

for each j = 1, . . . , r. Thus A(T (yj)) = A(zj) = yj for each j = 1, . . . , r, so that

A(T (y)) = y(9.13.4)

for every y ∈ Y1.
If w ∈W , then put

G(w) = w + T (P (F (w)−A(w))),(9.13.5)

as in (69) on p229 of [155]. This defines a continuously-differentiable mapping
from W into Rn. It is easy to see that

G′(a) = IRn ,(9.13.6)

the identity mapping on Rn, because A = F ′(a). Thus the inverse function
theorem implies that there are open subsets U and V of Rn such that U satisfies
(9.12.8), and the restriction of G to U is a one-to-one mapping from U onto
V whose inverse is continuously differentiable too. Let H be the inverse of the
restriction of G to U , which is a one-to-one mapping from V onto U that satisfies
(9.12.9) and (9.12.10).

Note that
H ′(x) is invertible for every x ∈ V,(9.13.7)

as in Section 9.3. We may also suppose that

V is convex,(9.13.8)

by replacing it with a convex open subset that contains G(a), if necessary, and
adjusting U appropriately.

Let us check that
A ◦ T ◦ P ◦A = A,(9.13.9)

as a linear mapping from Rn into Rm. More precisely,

P ◦A = A,(9.13.10)
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as a linear mapping from Rn into Y1 = A(Rn), because P is a projection of
Rm onto Y1, as in the previous section. We also have that A ◦ T is the identity
mapping on Y1, as in (9.13.4). This implies (9.13.9).

If w ∈W , then

A(G(w)) = A(w) +A(T (P (F (w)−A(w)))),(9.13.11)

by (9.13.5). This implies that

A(G(w)) = A(T (P (F (w)))),(9.13.12)

because of (9.13.9). It follows that

A(G(w)) = P (F (w)),(9.13.13)

as in (70) on p230 of [155]. This uses (9.13.4), and the fact that P maps Rm

into Y1.
It is easy to see that (9.12.11) follows from (9.13.13), by taking w = H(x),

x ∈ V . Some more properties of F ◦H will be discussed in the next section.

9.14 Some more properties of F ◦H
We continue with the same notation and hypotheses as in the previous two
sections. Put

Φ(x) = F (H(x))(9.14.1)

for each x ∈ V , so that Φ is a continuously-differentiable mapping from V into
Rm. Of course,

Φ′(x) = F ′(H(x)) ◦H ′(x)(9.14.2)

for every x ∈ V , by the chain rule. This implies that

the rank of Φ′(x) is equal to the rank of F ′(H(x))(9.14.3)

for every x ∈ V , because of (9.13.7). It follows that

the rank of Φ′(x) is equal to r(9.14.4)

for every x ∈ V , because of (9.12.2), as in (75) on p230 of [155].
Observe that

P ◦ Φ = A(9.14.5)

on V , by (9.12.11). This implies that

P ◦ Φ′(x) = A(9.14.6)

for every x ∈ V , by the chain rule.
Let x ∈ V be given, and put

M = (Φ′(x))(Rn)(9.14.7)
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which is a linear subspace of Rm. Note that

dimM = r,(9.14.8)

by (9.14.4). We also have that

P (M) = A(Rn) = Y1,(9.14.9)

using (9.14.6) in the first step, and the definition (9.12.4) of Y1 in the second
step. It follows that

P is one-to-one on M,(9.14.10)

because M and Y1 have the same dimension r.
Suppose that h ∈ Rn satisfies

A(h) = 0.(9.14.11)

This means that
P ((Φ′(x))(h)) = 0,(9.14.12)

because of (9.14.6). Using (9.14.10), we get that

(Φ′(x))(h) = 0,(9.14.13)

because h ∈M .
Suppose that y ∈ V satisfies

A(y) = A(x).(9.14.14)

We would like to show that
Φ(x) = Φ(y),(9.14.15)

which corresponds to (74) on p230 of [155]. If t ∈ R and 0 ≤ t ≤ 1, then

(1− t)x+ t y ∈ V,(9.14.16)

because of (9.13.8). In this case,

d

dt
Φ((1− t)x+ t y) = (Φ′((1− t)x+ t y))(y − x) = 0,(9.14.17)

using (9.14.13) in the second step, and the fact that A(y− x) = 0, by (9.14.14).
This implies (9.14.15).

Put
ψ(x) = Φ(x)−A(x) = F (H(x))−A(x)(9.14.18)

for every x ∈ V , as in (72) on p230 of [155]. This defines a continuously-
differentiable mapping from V into Rm with

P (ψ(x)) = 0(9.14.19)
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for every x ∈ V , because of (9.12.11), or equivalently (9.14.5). This means that

ψ(V ) ⊆ kerP = Y2,(9.14.20)

using (9.12.7) in the second step. Note that

ψ(x) = ψ(y)(9.14.21)

for all x, y ∈ V that satisfy (9.14.14), because of (9.14.15), as in (74) on p230 of
[155].

One may prefer to consider ψ(x) as a function of A(x) ∈ A(Rn) = Y1, as in
[155].



Chapter 10

Product spaces and related
matters

10.1 Products of metric spaces

Let (X1, dX1), . . . , (Xn, dXn) be finitely many metric spaces. Also let

X = X1 ×X2 × · · · ×Xn =

n∏
j=1

Xj(10.1.1)

be the Cartesian product of X1, . . . , Xn, as sets. This is the set of n-tuples
x = (x1, . . . , xn) with xj ∈ Xj for each j = 1, . . . , n.

We would like to define suitable metrics on X using dX1
, . . . , dXn

, and indeed
there are various ways to do this, as usual. If x, y ∈ X, then put

dX,1(x, y) =

n∑
j=1

dXj
(xj , yj).(10.1.2)

It is easy to see that this defines a metric on X.
Similarly, put

dX,∞(x, y) = max
1≤j≤n

dXj
(xj , yj)(10.1.3)

for every x, y ∈ X. One can check that this defines a metric on X as well. More
precisely, the triangle inequality for dX,∞ follows from the triangle inequality
for the norm ‖ · ‖∞ on Rn, as in Section 1.3.

Put

dX,2(x, y) =
( n∑

j=1

dXj
(xj , yj)

2
)1/2

(10.1.4)

for each x, y ∈ X, using of course the nonnegative square root on the right
side. One can verify that this satisfies the triangle inequality, using the triangle

167
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inequality for the standard Euclidean norm on Rn. It follows that dX,2 defines
another metric on X.

If n = 1, then X = X1, and dX,1, dX,2, and dX,∞ are all the same as dX1 .
Suppose for the moment that Xj = R for each j = 1, . . . , n, equipped with

the standard Euclidean metric. In this case, X is the same as Rn. The metrics
dX,1, dX,2, and dX,∞ on X are the same as the metrics associated to the norms
‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ on Rn, respectively, as in Section 1.3.

Let (Xj , dXj
) be any metric space for j = 1, . . . , n again. Observe that

dX,∞(x, y) ≤ dX,1(x, y), dX,2(x, y)(10.1.5)

for every x, y ∈ X. We also have that

dX,2(x, y) ≤ dX,1(x, y)(10.1.6)

for every x, y ∈ X, because the standard Euclidean norm on Rn is less than or
equal to the norm ‖ · ‖1, as in Section 1.5.

Similarly,

dX,2(x, y) ≤ n1/2 dX,∞(x, y)(10.1.7)

and

dX,1(x, y) ≤ ndX,∞(x, y)(10.1.8)

for every x, y ∈ X. As before, one can use the Cauchy–Schwarz inequality to
get that

dX,1(x, y) ≤ n1/2 dX,2(x, y)(10.1.9)

for every x, y ∈ X.
One can use these inequalities to get that dX,1, dX,2, and dX,∞ have many

of the same properties on X, in essentially the same way as for the analogous
metrics on Rn. In particular, these metrics determine the same collections of
open sets, closed sets, compact sets, and so on, in X. They also determine
the same limit points of subsets of X, and the same convergent sequences and
Cauchy sequences. Some of these and related properties will be discussed further
in the next sections.

These metrics have many of the same properties in terms of continuity con-
ditions for mappings between X and other metric spaces too. More precisely,
the identity mapping on X is Lipschitz as a mapping from X equipped with any
of these three metrics into X equipped with any other of these three metrics.
This implies that the identity mapping on X is uniformly continuous and thus
continuous as a mapping from X equipped with any of these three metrics into
X equipped with any other of these three metrics.

10.2 Open and closed sets

Let (X1, dX1
), . . . , (Xn, dXn

) be finitely many metric spaces again, put X =∏n
j=1Xj , and let dX,1, dX,2, and dX,∞ be the metrics defined on X as in the
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previous section. Let x = (x1, . . . , xn) ∈ X and r > 0 be given, and for each
j = 1, . . . , n, let

BXj ,dXj
(xj , r), BXj ,dXj

(xj , r)(10.2.1)

be the open and closed balls in Xj centered at xj with radius r with respect to
dXj

, respectively. Similarly, let

BX,dX,1
(x, r), BX,dX,2

(x, r), BX,dX,∞(x, r)(10.2.2)

and
BX,dX,1

(x, r), BX,dX,2
(x, r), BX,dX,∞(x, r)(10.2.3)

be the open and closed balls in X centered at x with radius r with respect to
dX,1, dX,2, and dX,∞, respectively.

It is easy to see that

BX,dX,∞(x, r) =

n∏
j=1

BXj ,dXj
(xj , r)(10.2.4)

and

BX,dX,∞(x, r) =

n∏
j=1

BXj ,dXj
(xj , r),(10.2.5)

by the definition (10.1.3) of dX,∞. Using (10.1.5) and (10.1.8), we get that

BX,dX,1
(x, r) ⊆ BX,dX,∞(x, r) ⊆ BX,dX,1

(x, n r)(10.2.6)

and
BX,dX,1

(x, r) ⊆ BX,dX,∞(x, r) ⊆ BX,dX,1
(x, n r).(10.2.7)

Similarly,
BX,dX,2

(x, r) ⊆ BX,dX,∞(x, r) ⊆ BX,dX,2
(x, n1/2 r)(10.2.8)

and
BX,dX,2

(x, r) ⊆ BX,dX,∞(x, r) ⊆ BX,dX,2
(x, n1/2 r),(10.2.9)

by (10.1.5) and (10.1.7). We also have that

BX,dX,1
(x, r) ⊆ BX,dX,2

(x, r) ⊆ BX,dX,1
(x, n1/2 r)(10.2.10)

and
BX,dX,1

(x, r) ⊆ BX,dX,2
(x, r) ⊆ BX,dX,1

(x, n1/2 r),(10.2.11)

by (10.1.6) and (10.1.9).
Let Uj be an open subset of Xj with respect to dX,j for each j = 1, . . . , n.

One can check that

U =

n∏
j=1

Uj(10.2.12)

is an open set in X with respect to dX,∞, using (10.2.4). It follows that U is an
open set with respect to dX,1 and dX,2 as well, by (10.2.6) and (10.2.8).
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Let Aj ⊆ Xj be given for each j = 1, . . . , n, and put

A =

n∏
j=1

Aj .(10.2.13)

One can verify that the closure of A in X with respect to dX,∞ is equal to

n∏
j=1

Aj ,(10.2.14)

where Aj is the closure of Aj in Xj with respect to dXj
for every j = 1, . . . , n.

This is the same as the closure of A in X with respect to dX,1 and dX,2. In
particular, if

Aj is a closed set in Xj(10.2.15)

with respect to dXj
for each j = 1, . . . , n, then

A is a closed set in X(10.2.16)

with respect to dX,1, dX,2, and dX,∞.

10.3 Sequences and bounded sets

Let (X1, dX1
), . . . , (Xn, dXn

) be finitely many nonempty metric spaces, put X =∏n
j=1Xj , and let dX,1, dX,2, and dX,∞ be the metrics defined on X as in Section

10.1. Also let {x(l)}∞l=1 be a sequence of elements of X, so that

x(l) = (x1(l), . . . , xn(l))(10.3.1)

for each l ≥ 1. One can check that

{x(l)}∞l=1 converges to x = (x1, . . . , xn) ∈ X(10.3.2)

with respect to dX,∞ if and only if

{xj(l)}∞l=1 converges to xj in Xj(10.3.3)

with respect to dXj for each j = 1, . . . , n. This is equivalent to the convergence
of {x(l)}∞l=1 to x in X with respect to dX,1, and with respect to dX,2, as well.

Similarly,
{x(l)}∞l=1 is a Cauchy sequence in X(10.3.4)

with respect to dX,∞ if and only if

{xj(l)}∞l=1 is a Cauchy sequence in Xj(10.3.5)

with respect to dXj for each j = 1, . . . , n. This is equivalent to {x(l)}∞l=1 being a
Cauchy sequence in X with respect to dX,1, and with respect to dX,2. Observe
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that the completeness of X with respect to any of the metrics dX,1, dX,2, and
dX,∞ are equivalent. The completeness of X with respect to these metrics is
equivalent to the completeness of Xj with respect to dXj

for each j = 1, . . . , n.
Note that the boundedness of any subset of X with respect to any of the

metrics dX,1, dX,2, or dX,∞ implies the boundedness of the set with respect to
the other two metrics. Let Ej be a nonempty subset of Xj for each j = 1, . . . , n,
and put

E =

n∏
j=1

Ej .(10.3.6)

If
Ej is bounded in Xj(10.3.7)

with respect to dXj
for each j = 1, . . . , n, then it is easy to see that

E is bounded in X(10.3.8)

with respect to dX,1, dX,2, and dX,∞. Conversely, if E is bounded in X with
respect to dX,1, dX,2, or dX,∞, then Ej is bounded in Xj with respect to dXj

for each j = 1, . . . , n.
Suppose that Ej is bounded in Xj with respect to dXj

for each j = 1, . . . , n,
and let

diamXj ,dXj
Ej(10.3.9)

be the diameter of Ej as a subset ofXj with respect to dXj
for every j = 1, . . . , n,

as in Section 4.1. One can verify that the diameter of E as a subset of X with
respect to dX,∞ is given by

diamX,dX,∞E = max
1≤j≤n

(
diamXj ,dXj

Ej

)
.(10.3.10)

Similarly, the diameter of E with respect to dX,1 is given by

diamX,dX,1
E =

n∑
j=1

diamXj ,dXj
Ej .(10.3.11)

The diameter of E with respect to dX,2 is given by

diamX,dX,2
E =

( n∑
j=1

(
diamXj ,dXj

E
)2)1/2

.(10.3.12)

The total boundedness of any subset of X with respect to any of dX,1, dX,2,
and dX,∞ implies the total boundedness of that set with respect to the other
two metrics. If

Ej is totally bounded in Xj(10.3.13)

with respect to dXj
for each j = 1, . . . , n, then one can check that

E is totally bounded in X(10.3.14)
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with respect to dX,∞.
More precisely, let r > 0 be given, and suppose that

Ej can be covered by Lj(r) balls of radius r(10.3.15)

in Xj for each j = 1, . . . , n. One can verify that E can be covered by

L(r) =

n∏
j=1

Lj(r)(10.3.16)

balls of radius r in X with respect to dX,∞. This uses the products of the balls
in the covering of Xj for each j.

This implies that E is totally bounded with respect to dX,1 and dX,2, as
before. Conversely, if E is totally bounded in X with respect to dX,1, dX,2, or
dX,∞, then Ej is totally bounded in Xj with respect to dXj

for each j = 1, . . . , n.

10.4 Products of compact sets

Let (X1, dX1
), . . . , (Xn, dXn

) be finitely many metric spaces, put X =
∏n

j=1Xj ,
and let dX,1, dX,2, and dX,∞ be the metrics defined on X as in Section 10.1. If
a subset of X is compact with respect to dX,1, dX,2, or dX,∞, then it is compact
with respect to the other two metrics. This follows from the fact that an open
subset of X with respect to dX,1, dX,2, or dX,∞ is an open set with respect to
the other two metrics.

Similarly, if a subset of X is sequentially compact with respect to any of the
metrics dX,1, dX,2, or dX,∞, then one can check directly that it is sequentially
compact with respect to the other two metrics. This uses the fact that conver-
gence of sequences of elements of X with respect to dX,1, dX,2, and dX,∞ are
the same, as in the previous section.

Let Kj be a compact subset of Xj with respect to dXj for each j = 1, . . . , n,
and put

K =

n∏
j=1

Kj .(10.4.1)

It is well known that
K is compact in X,(10.4.2)

with respect to any of the metrics dX,1, dX,2, and dX,∞. This may be considered
as a particular case of a famous theorem of Tychonoff for arbitrary topological
spaces, instead of metric spaces. Let us mention a couple of other ways to look
at this.

If Kj is sequentially compact in Xj with respect to dXj for each j = 1, . . . , n,
then

K is sequentially compact in X(10.4.3)

with respect to any of the metrics dX,1, dX,2, and dX,∞. This can be seen
using an argument like one in Section 5.1, when the set E considered there is
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{1, . . . , n}. Remember that compactness and sequential compactness are equiv-
alent in metric spaces, as in Sections 4.5 and 4.6.

Alternatively, if

Kj is compact in Xj(10.4.4)

with respect to dXj
for each j = 1, . . . , n, then

Kj is closed and totally bounded in Xj(10.4.5)

with respect to dXj
for every j = 1, . . . , n. This implies that

K is closed and totally bounded in X(10.4.6)

with respect to each of dX,1, dX,2, and dX,∞, as in the previous two sections.
If X is complete with respect to dX,1, dX,2, or dX,∞, then it follows that K is
compact, as in Section 4.7. If

Xj is complete with respect to dXj
(10.4.7)

for each j = 1, . . . , n, then X is complete with respect to each of dX,1, dX,2, and
dX,∞, as in the previous section.

Note that one can reduce to the case where Kj = Xj for each j = 1, . . . , n,
by standard results. It is well known that compact metric spaces are complete,
as in Section 4.7. Thus the argument mentioned in the preceding paragraph can
be used when Kj = Xj for each j = 1, . . . , n.

If Kj 6= ∅ for each j = 1, . . . , n, and K is compact in X with respect to dX,1,
dX,2, or dX,∞, then it is not too difficult to show that Kj is compact in Xj with
respect to dXj for each j = 1, . . . , n.

10.5 Some mappings on products

Let (X1, dX1
), . . . , (Xn, dXn

) be finitely many nonempty metric spaces, put X =∏n
j=1Xj , and let dX,1, dX,2, and dX,∞ be the metrics defined on X as in Section

10.1. If x = (x1, . . . , xn) ∈ X and 1 ≤ l ≤ n, then put

pl(x) = xl.(10.5.1)

This defines a mapping pl from X onto Xl.
Clearly

dXl
(pl(x), pl(w)) = dXl

(xl, wl) ≤ dX,∞(x,w)(10.5.2)

≤ dX,1(x,w), dX,2(x,w)

for every x,w ∈ X. This means that pl is Lipschitz with constant 1 with respect
to dX,∞ on X, and thus with respect to dX,1 and dX,2 on X. In particular, pl
is uniformly continuous on X with respect to dX,1, dX,2, and dX,∞.
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If x ∈ X and r > 0, then

pl
(
BX,dX,∞(x, r)

)
= pl

( n∏
j=1

BXj ,dXj
(xj , r)

)
= BXl,dXl

(xl, r),(10.5.3)

using (10.2.4) in the first step. It follows that

pl
(
BX,dX,1

(x, r)
)
⊇ pl

(
BX,dX,∞(x, r/n)

)
= BXl,dXl

(xl, r/n),(10.5.4)

using (10.2.6) in the first step. Similarly,

pl
(
BX,dX,2

(x, r)
)
⊇ pl

(
BX,dX,∞(x, r/n1/2)

)
= BXl,dXl

(xl, r/n
1/2),(10.5.5)

using (10.2.8) in the first step. This shows that pl is an open mapping from X
onto Xl, with respect to dX,1, dX,2, or dX,∞ on X, as in Section 7.14.

Let (Y, dY ) be another metric space, let E be a subset of X, and let f be
a mapping from E into Y . Let us say that f is partially Lipschitz in the lth
variable with constant Cl ≥ 0 on E if

dY (f(x), f(x
′)) ≤ Cl dXl

(xl, x
′
l)(10.5.6)

for every x, x′ ∈ E such that xj = x′j when j 6= l. This is analogous to the
condition discussed in Section 8.3 for functions defined on subsets of Rn.

Suppose that E =
∏n

j=1Ej for some Ej ⊆ Xj , 1 ≤ j ≤ n, and that f
is partially Lipschitz in the lth variable with constant Cl ≥ 0 on E for each
l = 1, . . . , n. If x,w ∈ E, then

dY (f(x), f(w)) ≤
n∑

l=1

Cl dXl
(xl, wl),(10.5.7)

as in Section 8.3. This implies that

dY (f(x), f(w)) ≤
(

max
1≤l≤n

Cl

)
dX,1(x,w),(10.5.8)

as before. Similarly,

dY (f(x), f(w)) ≤
( n∑

l=1

C2
l

)1/2

dX,2(x,w)(10.5.9)

and

dY (f(x), f(w)) ≤
( n∑

l=1

Cl

)
dX,∞(x,w).(10.5.10)

This shows that f is Lipschitz on E with respect to the restrictions of dX,1,
dX,2, and dX,∞ to E under these conditions.

Now let f be any mapping from X into Y . If f is continuous at a point
x ∈ X with respect to any of the metrics dX,1, dX,2, or dX,∞ on X, then it is
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easy to see that f is continuous at x with respect to the other two metrics. This
is often called joint continuity of f at x.

It is often convenient to consider f as a function of n variables in X1, . . . , Xn.
If 1 ≤ l ≤ n, then we may consider f as a function of the lth variable on Xl with
values in Y , with the jth variable equal to xj when j 6= l. If f is continuous
as a function of the lth variable on Xl at xl in this way for each l = 1, . . . , n,
then f is said to be separately continuous at x. Note that joint continuity at x
implies separate continuity.

10.6 Uniform continuity

Let (X, dX) and (Y, dY ) be metric spaces, let f be a mapping from X into Y ,
and let A be a subset of X. Let us say that f is uniformly continuous along A
if for every ϵ > 0 there is a δ > 0 such that for every x ∈ A and w ∈ X with
dX(x,w) < δ, we have that

dY (f(x), f(w)) < ϵ.(10.6.1)

This implies that the restriction of f to A is uniformly continuous, with respect
to the restriction of dX to A. This also implies that f is continuous at every
element of A, as a mapping from X into Y .

Suppose for the moment that A is a compact subset of X. If f is continuous
at every element of A, as a function on X, then one can show that f is uniformly
continuous along A. This uses the same type of arguments as used to show that
continuous mappings on compact metric spaces are uniformly continuous.

Let (X1, dX1), (X2, dX2) be metric spaces, and let us now take

X = X1 ×X2.(10.6.2)

We can define the metrics dX,1, dX,2, and dX,∞ on X using dX1 and dX2 as in
Section 10.1, with n = 2. If a mapping f from X into Y is uniformly continuous
along a set A ⊆ X with respect to any of these three metrics on X, then it is
easy to see that f is uniformly continuous along A with respect to the other two
metrics.

Let x1 ∈ X1 be given, and consider

A = {x1} ×X2.(10.6.3)

Let f be a mapping from X into Y again, and for each x2 ∈ X2, let us consider
f(·, x2) as a mapping from X1 into Y . Let

E = {f(·, x2) : x2 ∈ X2}(10.6.4)

be the collection of these mappings from X1 into Y .
If f is uniformly continuous along A with respect to any of the metrics dX,1,

dX,2, or dX,3 on X, then one can check that E is equicontinuous at x1, as a
collection of mappings from X1 into Y . As before, uniform continuity along A
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implies that the restriction of f to A is uniformly continuous, which in this case
means that f(x1, ·) is uniformly continuous as a mapping from X2 into Y .

Conversely, suppose that f(x1, ·) is uniformly continuous as a mapping from
X2 into Y , and that E is equicontinuous at x1 as a collection of mappings from
X1 into Y . Under these conditions, one can verify that f is uniformly continuous
along A with respect to dX,1, dX,2, and dX,∞ on X.

Observe that
x2 7→ (x1, x2)(10.6.5)

defines an isometry from X2 into X, with respect to dX,1, dX,2, and dX,∞ on
X. In particular, if X2 is compact, then it follows that A is compact in X, with
respect to dX,1, dX,2, and dX,∞. In this case, if f is continuous at every point
in A as a mapping from X into Y , then f is uniformly continuous along A, as
before.

10.7 Continuity and integration

Let (X1, dX1) be a metric space, and let a, b be real numbers, with a < b. Let
us take

X2 = [a, b],(10.7.1)

and dX2 to be the restriction of the standard Euclidean metric on R to X2. As
in the previous section, we take

X = X1 ×X2 = X1 × [a, b],(10.7.2)

and dX,1, dX,2, and dX,∞ to be the metrics defined on X as in Section 10.1,
with n = 2.

Let f be a continuous real-valued function on X, with respect to any of dX,1,
dX,2, or dX,∞, and thus with respect to each of these metrics. If x1 ∈ X1, then
f(x1, ·) is a continuous real-valued function on X2, and we put

F (x1) =

∫ b

a

f(x1, x2) dx2.(10.7.3)

This defines a real-valued function on X1. Note that

|F (x1)| ≤
∫ b

a

|f(x1, x2)| dx2 ≤ (b− a) sup
a≤x2≤b

|f(x1, x2)|.(10.7.4)

More precisely, the supremum on the right is finite, because [a, b] is compact
as a subset of the real line, and thus as a subset of itself, with respect to the
standard Euclidean metric on R and its restriction to [a, b].

If x1 ∈ X1, then
{x1} × [a, b] = {x1} ×X2(10.7.5)

is compact in X, with respect to dX,1, dX,2, and dX,∞, as in the previous
section. This implies that f is uniformly continuous along (10.7.5), as before.
This means that

E = {f(·, x2) : a ≤ x2 ≤ b}(10.7.6)
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is equicontinuous at x1 as a collection of real-valued functions on X1, as in the
previous section.

One can use this to check that F is continuous at x1, as a real-valued function
on X1. Indeed, if w1 ∈ X1, then

|F (x1)− F (w1)| =

∣∣∣∣∫ b

a

(f(x1, x2)− f(w1, x2)) dx2

∣∣∣∣(10.7.7)

≤
∫ b

a

|f(x1, x2)− f(w1, x2)| dx2

≤ (b− a) sup
a≤x2≤b

|f(x1, x2)− f(w1, x2)|,

as before. The right side can be made arbitrarily small by taking w1 sufficiently
close to x1 in X1, because of the equicontinuity of E at x1.

Alternatively, let {x1,j}∞j=1 be a sequence of elements of X1 that converges to
x1. It is easy to see that f(x1,j , ·) converges to f(x1, ·) uniformly as a sequence
of real-valued functions on [a, b], because of the equicontinuity of E at x1. This
implies that

lim
j→∞

F (x1,j) = F (x1).(10.7.8)

It follows that F is continuous at x1.
If E is uniformly equicontinuous on X1, then it is easy to see that F is

uniformly continuous on X1, using (10.7.7). In particular, this holds when X1

is compact, because E is equicontinuous at every point in X1, as in Section 5.2.
If X1 is compact, then X is compact with respect to any of the metrics

dX,1, dX,2, and dX,∞, as in Section 10.4, because X2 is compact. In this case,
f is uniformly continuous with respect to any of these three metrics on X. Of
course, uniform continuity of f on X with respect to any of these three metrics
implies that E is uniformly equicontinuous on X1.

10.8 Iterated integrals

Let n be a positive integer, and let a1, . . . , an and b1, . . . , bn be real numbers,
with

aj < bj(10.8.1)

for each j = 1, . . . , n. Let us consider

Xj = [aj , bj ](10.8.2)

as a metric space for each j = 1, . . . , n, with dXj equal to the restriction of the
standard Euclidean metric on R to Xj .

Put

X l =

l∏
j=1

Xj(10.8.3)
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for each l = 1, . . . , n. We can define metrics dXl,1, dXl,2, and dXl,∞ on X l, as
in Section 10.1. We shall refer to functions on X l as being continuous if they
are continuous with respect to any of these three metrics, and thus with respect
to the other two metrics.

Of course, X l is a subset of Rl for each l = 1, . . . , n. Note that dXl,1, dXl,2,
and dXl,∞ are the same as the restrictions to X l of the metrics on Rl associated
to the norms ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞, respectively, as in Section 1.3.

Let f be a continuous real-valued function on Xn, and put fn = f . Suppose
that fl has been defined as a continuous real-valued function on X l for some
l = 1, . . . , n. If l ≥ 2 and xj ∈ Xj for j = 1, . . . , l − 1, then put

fl−1(x1, . . . , xl−1) =

∫ bl

al

fl(x1, . . . , xl−1, xl) dxl.(10.8.4)

This defines fl−1 as a continuous real-valued function onX l−1, as in the previous
section. More precisely, this uses the obvious identification of X l withX l−1×Xl.

Continuing in this way, we define fl on X
l for each l = 1, . . . , n. Similarly,

put

f0 =

∫ b1

a1

f1(x1) dx1,(10.8.5)

which is the analogue of (10.8.4) with l = 1, and which is simply a real number.
This can be used to define the n-fold iterated integral of f over Xn, as on p246
of [155].

Alternatively, one can define the integral of f over Xn as an n-dimensional
Riemann integral. Any reasonable approach to this will give the same answer,
because f is uniformly continuous on Xn, since Xn is compact.

Of course, one could also define n-fold iterated integrals of f over Xn by
integrating the variables in a different order, and one would like to verify that
this leads to the same result. One way to do this is to show that the iterated
integrals are all the same as the corresponding n-dimensional Riemann integral.
Another approach is given in Theorem 10.2 on p246 of [155].

10.9 Partitions of intervals

Let a, b be real numbers, with a < b. Suppose that P = {tj}kj=0 is a partition
of [a, b], which is to say a finite sequence of real numbers such that

a = t0 < t1 < · · · < tk−1 < tk = b.(10.9.1)

A real-valued function on [a, b] is said to be piecewise linear with breakpoints
in P if the function is linear on [tj−1, tj ] for each j = 1, . . . , k. It is easy to
see that such a function is continuous, with respect to the standard Euclidean
metric on R, and its restriction to [a, b]. Note that such a function is uniquely
determined by its values at the points in P. The values of such a function at
the points in P can be arbitrary real numbers. This is because linear functions
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on R are uniquely determined by their values at any two distinct points, and
those values can be arbitrary real numbers.

If f is any real-valued function on [a, b], then we let AP(f) be the unique
piecewise-linear function on [a, b] with breakpoints in P that is equal to f at
the points in P. If x ∈ [a, b] and tj−1 ≤ x ≤ tj for some j = 1, . . . , k, then

(AP(f))(x) = f(tj−1) (tj − tj−1)
−1 (tj − x)(10.9.2)

+f(tj) (tj − tj−1)
−1 (x− tj−1).

In this case,

f(x)− (AP(f))(x) = (f(x)− f(tj−1)) (tj − tj−1)
−1 (tj − x)

+(f(x)− f(tj)) (tj − tj−1)
−1 (x− tj−1).(10.9.3)

This implies that

|f(x)− (AP(f))(x)| ≤ |f(x)− f(tj−1)| (tj − tj−1)
−1 (tj − x)

+|f(x)− f(tj)| (tj − tj−1)
−1 (x− tj−1).(10.9.4)

It follows that

|f(x)− (AP(f))(x)| ≤ max(|f(x)− f(tj−1)|, |f(x)− f(tj)|),(10.9.5)

because

(tj − tj−1)
−1 (tj − x) + (tj − tj−1)

−1 (x− tj−1)(10.9.6)

= (tj − tj−1)
−1 (tj − tj−1) = 1,

where both terms on the first line are greater than or equal to 0.
Observe that∫ b

a

(AP(f))(x) dx =

k∑
j=1

∫ tj

tj−1

(AP(f))(x) dx(10.9.7)

=

k∑
j=1

(1/2) (f(tj−1) + f(tj)) (tj − tj−1).

Suppose that f is continuous on [a, b], with respect to the standard Euclidean
metric on R and its restriction to [a, b]. Under these conditions, we have that∣∣∣∣∫ b

a

f(x) dx−
∫ b

a

(AP(f))(x) dx

∣∣∣∣ =

∣∣∣∣∫ b

a

(f(x)− (AP(f))(x)) dx

∣∣∣∣
≤

∫ b

a

|f(x)− (AP(f))(x)| dx(10.9.8)

≤ (b− a) sup
a≤x≤b

|f(x)− (AP(f))(x)|.
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Note that f is uniformly continuous on [a, b], because [a, b] is compact. Using
this and (10.9.5), we get that f is uniformly approximated by AP(f) on [a, b]
when the partition P of [a, b] is sufficiently fine. More precisely, this means that

sup
a≤x≤b

|f(x)− (AP(f))(x)|(10.9.9)

is as small as we want when

max
1≤j≤k

(tj − tj−1)(10.9.10)

is sufficiently small. It follows that the left side of (10.9.8) is as small as we
want when (10.9.10) is sufficiently small. Similarly, one can check that the left
side of (10.9.8) is arbitrarily small for suitable partitions P of [a, b] when f is
Riemann integrable on [a, b].

10.10 Partitions and products

Let (X1, dX1) be a metric space, and let a2, b2 be real numbers, with a2 < b2.
Let us take

X2 = [a2, b2],(10.10.1)

and dX2
to be the restriction of the standard Euclidean metric on R to X2. We

also take
X = X1 ×X2 = X1 × [a2, b2],(10.10.2)

and dX,1, dX,2, and dX,∞ to be the metrics defined on X as in Section 10.1,
with n = 2. We shall refer to functions on X as being continuous if they are
continuous with respect to any of these three metrics, and thus with respect to
the other two metrics, as before.

Let P2 = {t2,j}kj=0 be a partition of [a2, b2], so that

a2 = t2,0 < · · · < t2,k = b2.(10.10.3)

Let f be a continuous real-valued function on X, and let us define A2,P2
(f)

as a real-valued function on X in essentially the same way as in the previous
section, as a function of the second variable. Thus, if x1 ∈ X1, x2 ∈ [a2, b2],
and t2,j−1 ≤ x2 ≤ t2,j for some j = 1, . . . , k, then we put

(A2,P2(f))(x1, x2) = f(x1, t2,j−1) (t2,j − t2,j−1)
−1 (t2,j − x2)

+f(x1, t2,j) (t2,j − t2,j−1)
−1 (x2 − t2,j−1).(10.10.4)

Under these conditions, we get that

|f(x1, x2)− (A2,P2
(f))(x1, x2)|

≤ max(|f(x1, x2)− f(x1, t2,j−1)|, |f(x1, x2)− f(x1, t2,j)|),(10.10.5)

as in (10.9.5).
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As in Section 10.7, ∫ b2

a2

f(x1, x2) dx2(10.10.6)

defines a continuous real-valued function of x1 ∈ X1. The analogous statement
for A2,P2

(f) can be seen more directly. Namely,∫ b2

a2

(A2,P2
(f))(x1, x2) dx2(10.10.7)

=

k∑
j=1

(1/2) (f(x1, t2,j−1) + f(x1, t2,j)) (t2,j − t2,j−1)

for every x1 ∈ X1, as in (10.9.7). We also have that∣∣∣∣∫ b2

a2

f(x1, x2) dx2 −
∫ b2

a2

(A2,P2
(f))(x1, x2) dx2

∣∣∣∣(10.10.8)

≤
∫ b2

a2

|f(x1, x2)− (A2,P2
(f))(x1, x2)| dx2

≤ (b2 − a2) sup
a2≤x2≤b2

|f(x1, x2)− (A2,P2(f))(x1, x2)|

for every x1 ∈ X1, as in (10.9.8).

Suppose that

E2 = {f(x1, ·) : x1 ∈ X1}(10.10.9)

is uniformly equicontinuous as a collection of real-valued functions on [a2, b2].
This implies that

sup
a2≤x2≤b2

|f(x1, x2)− (A2,P2(f))(x1, x2)|(10.10.10)

is as small as we want, uniformly over x1 ∈ X1, when

max
1≤j≤k

(t2,j − t2,j−1)(10.10.11)

is sufficiently small, because of (10.10.5). It follows that (10.10.6) can be uni-
formly approximated by (10.10.7), as real-valued functions of x1 ∈ X1, when
(10.10.11) is sufficiently small, by (10.10.8).

If X1 is compact, then E2 is equicontinuous at every point in [a2, b2], as in
Section 10.6. This implies that E2 is uniformly equicontinuous on [a2, b2], as in
Section 5.2, because [a2, b2] is compact. Alternatively, if X1 is compact, then X
is compact with respect to any of the metrics dX,1, dX,2, and dX,∞, as in Section
10.4, because [a2, b2] is compact. This means that f is uniformly continuous on
X, with respect to any of these three metrics. It is easy to see that this implies
that E2 is uniformly equicontinuous on [a2, b2].
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10.11 Partitions and integrals

Let a1, b1 be real numbers, with a1 < b1. We would like to continue with the
same notation and hypotheses as in the previous section, with

X1 = [a1, b1],(10.11.1)

and with dX1
equal to the restriction of the standard Euclidean metric on R to

X1. Thus

X = X1 ×X2 = [a1, b1]× [a2, b2],(10.11.2)

and dX,1, dX,2, and dX,∞ are the same as the restrictions to X of the metrics
on R2 associated to the norms ‖ ·‖1, ‖ ·‖2, and ‖ ·‖∞, respectively, as in Section
1.3. Note that f is uniformly continuous on X, because X is compact.

We can integrate f(x1, x2) in x1 to get a continuous real-valued function∫ b1

a1

f(x1, x2) dx1(10.11.3)

of x2 on [a2, b2], as in Section 10.7. The analogous statement for A2,P2
(f) can

be seen more directly, as before. Indeed, if x2 ∈ [a2, b2] and t2,j−1 ≤ x2 ≤ t2,j
for some j = 1, . . . , k, then∫ b1

a1

(A2,P2(f))(x1, x2) dx1(10.11.4)

= (t2,j − t2,j−1)
−1 (t2,j − x2)

∫ b1

a1

f(x1, t2,j−1) dx1

+(t2,j − t2,j−1)
−1 (x2 − t2,j−1)

∫ b1

a1

f(x1, t2,j) dx1,

by (10.10.4). Of course, this is equal to (10.11.3) when x2 = t2,j−1 or t2,j .
Observe that∣∣∣∣∫ b1

a1

f(x1, x2) dx1 −
∫ b1

a1

(A2,P2
(f))(x1, x2) dx1

∣∣∣∣(10.11.5)

=

∣∣∣∣∫ b1

a1

(f(x1, x2)− (A2,P2
(f))(x1, x2)) dx1

∣∣∣∣
≤

∫ b1

a1

|f(x1, x2)− (A2,P2
(f))(x1, x2)| dx1

≤ (b1 − a1) sup
a1≤x1≤b1

|f(x1, x2)− (A2,P2(f))(x1, x2)|

for every x2 ∈ [a2, b2]. We also have that

sup
a1≤x1≤b1

|f(x1, x2)− (A2,P2
(f))(x1, x2)|(10.11.6)
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is as small as we want, uniformly over x2 ∈ [a2, b2], when (10.10.11) is sufficiently
small. Equivalently, this means that

sup
a1≤x1≤b1

sup
a2≤x2≤b2

|f(x1, x2)− (A2,P2
(f))(x1, x2)|(10.11.7)

is as small as we want when (10.10.11) is sufficiently small. This is the same as
the analogous statement for (10.10.10), which follows from the uniform continu-
ity of f onX, as before. Combining this with (10.11.5), we get that (10.11.3) can
be uniformly approximated by (10.11.4), as real-valued functions of x2 ∈ [a2, b2],
when (10.10.11) is sufficiently small.

One can check directly that∫ b1

a1

(∫ b2

a2

(A2,P2(f))(x1, x2) dx2

)
dx1(10.11.8)

=

∫ b2

a2

(∫ b1

a1

(A2,P2(f))(x1, x2) dx1

)
dx2.

More precisely, one can verify that∫ b1

a1

(∫ t2,j

t2,j−1

(A2,P2
(f))(x1, x2) dx2

)
dx1(10.11.9)

=

∫ t2,j

t2,j−1

(∫ b1

a1

(A2,P2(f))(x1, x2) dx1

)
dx2

for each j = 1, . . . , k, using the definition (10.10.4) of A2,P2
(f). It is easy to see

that (10.11.8) follows from (10.11.9), by summing over j.
We can use (10.11.8) to get that∫ b1

a1

(∫ b2

a2

f(x1, x2) dx2

)
dx1 =

∫ b2

a2

(∫ b1

a1

f(x1, x2) dx1

)
dx2,(10.11.10)

as follows. The left side of (10.11.10) can be approximated by the left side of
(10.11.8) when (10.10.11) is sufficiently small, because (10.10.6) is uniformly
approximated by (10.10.7), as before. Similarly, the right side of (10.11.10)
can be approximated by the right side of (10.11.8) when (10.10.11) is suffi-
ciently small, because (10.11.3) is uniformly approximated by (10.11.4). This
implies (10.11.10), because we can take P2 to be a partition of [a2, b2] for which
(10.10.11) is arbitarily small.

10.12 A simpler approximation

Let us continue with the same notation and hypotheses as in the previous two
sections. Put

a2,P2
(j) = sup

a1≤x1≤b1

sup
t2,j−1≤x2≤t2,j

|f(x1, x2)− f(x1, t2,j)|(10.12.1)
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for each j = 1, . . . , k, and

a2,P2 = max
1≤j≤k

a2,P2(j).(10.12.2)

It is easy to see that a2,P2
is as small as we want when (10.10.11) is sufficiently

small, because f is uniformly continuous on X.
Observe that∫ b1

a1

(∫ t2,j

t2,j−1

f(x1, x2) dx2

)
dx1 − (t2,j − t2,j−1)

∫ b1

a1

f(x1, t2,j) dx1(10.12.3)

=

∫ b1

a1

(∫ t2,j

t2,j−1

(f(x1, x2)− f(x1, t2,j)) dx2

)
dx1

for each j = 1, . . . , k. This implies that∣∣∣∣∫ b1

a1

(∫ t2,j

t2,j−1

f(x1, x2) dx2

)
dx1 − (t2,j − t2,j−1)

∫ b1

a1

f(x1, t2,j) dx1

∣∣∣∣(10.12.4)

≤
∫ b1

a1

(∫ t2,j

t2,j−1

|f(x1, x2)− f(x1, t2,j)| dx2
)
dx1

≤ (b1 − a1) (t2,j − t2,j−1) a2,P2
(j).

Similarly, ∣∣∣∣∫ t2,j

t2,j−1

(∫ b1

a1

f(x1, x2) dx1

)
dx2 − (t2,j − t2,j−1)

∫ b1

a1

f(x1, t2,j) dx1

∣∣∣∣(10.12.5)

≤
∫ t2,j

t2,j−1

(∫ b1

a1

|f(x1, x2)− f(x1, t2,j)| dx1
)
dx2

≤ (b1 − a1) (t2,j − t2,j−1) a2,P2(j)

for each j = 1, . . . , k.
Using (10.12.3) and (10.12.5), we get that∣∣∣∣∫ b1

a1

(∫ t2,j

t2,j−1

f(x1, x2) dx2

)
dx1 −

∫ t2,j

t2,j−1

(∫ b1

a1

f(x1, x2) dx1

)
dx2

∣∣∣∣(10.12.6)

≤ 2 (b1 − a1) (t2,j − t2,j−1) a2,P2
(j).

It follows that ∣∣∣∣∫ b1

a1

(∫ b2

a2

f(x1, x2) dx2

)
dx1 −

∫ b2

a2

(∫ b1

a1

f(x1, x2) dx1

)
dx2

∣∣∣∣(10.12.7)

≤
k∑

j=1

2 (b1 − a1) (t2,j − t2,j−1) a2,P2(j)

≤ 2 (b1 − a1)

k∑
j=1

(t2,j − t2,j−1) a2,P2

= 2 (b1 − a1) (b2 − a2) a2,P2
.
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The right side of (10.12.7) is as small as we want when (10.10.11) is suffi-
ciently small, as before. This is another way to obtain (10.11.10), by taking P2

to be a partition of [a2, b2] for which (10.10.11) is arbitrarily small again.

10.13 Another approximation

Let us continue with the same notation and hypotheses as in the previous three
sections. Also let P1 = {t1,l}ml=0 be a partition of [a1, b1], so that

a1 = t1,0 < · · · < t1,m = b1.(10.13.1)

Of course, ∫ b1

a1

(∫ b2

a2

f(x1, x2) dx2

)
dx1(10.13.2)

=

m∑
l=1

k∑
j=1

∫ t1,l

t1,l−1

(∫ t2,j

t2,j−1

f(x1, x2) dx2

)
dx1.

Similarly, ∫ b2

a2

(∫ b1

a1

f(x1, x2) dx1

)
dx2(10.13.3)

=

m∑
l=1

k∑
j=1

∫ t2,j

t2,j−1

(∫ t1,l

t1,l−1

f(x1, x2) dx1

)
dx2.

If 1 ≤ l ≤ m and 1 ≤ j ≤ k, then we can approximate∫ t1,l

t1,l−1

(∫ t2,j

t2,j−1

f(x1, x2) dx2

)
dx1(10.13.4)

and ∫ t2,j

t2,j−1

(∫ t1,l

t1,l−1

f(x1, x2) dx1

)
dx2(10.13.5)

by

(t1,l − t1,l−1) (t2,j − t2,j−1) f(t1,l, t2,j).(10.13.6)

If t1,l − t1,l−1 and t2,j − t2,j−1 are sufficiently small, then the errors in these
approximations will be small compared to

(t1,l − t1,l−1) (t2,j − t2,j−1),(10.13.7)

because of the uniform continuity of f on X. This means that the difference of
(10.13.4) and (10.13.5) is small compared to (10.13.7) in this case.
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Note that

m∑
l=1

k∑
j=1

(t1,l − t1,l−1) (t2,j − t2,j−1)(10.13.8)

=
( m∑

l=1

(t1,l − t1,l−1)
)( k∑

j=1

(t2,j − t2,j−1)
)

= (b1 − a1) (b2 − a2).

It follows that the difference of (10.13.2) and (10.13.3) is as small as we like when
P1 and P2 are sufficiently fine partitions of [a1, b1] and [a2, b2], respectively. This
implies that the iterated integrals are equal, as in (10.11.10), because they do
not depend on P1 or P2. Basically, we are approximating the iterated integrals
on the left sides of (10.13.2) and (10.13.3) by two-dimensional Riemann sums,
and these two-dimensional Riemann sums are equal to each other.

10.14 Partitions of unity

Let (X, dX) be a metric space. As in Section 3.7, the support supp f of a real
or complex-valued function f on X is defined to be the closure in X of the set
of x ∈ X such that f(x) 6= 0.

It is often helpful to be able to find finite collections of continuous real-valued
functions ψ1, . . . , ψr on X with properties like the following. First,

0 ≤ ψj(x) ≤ 1(10.14.1)

for every j = 1, . . . , r. Second,

r∑
j=1

ψj(x) = 1(10.14.2)

for all x in a particular subset of X, which may be X itself. If (10.14.2) holds
on a proper subset of X, then one may ask that

r∑
j=1

ψj(x) ≤ 1(10.14.3)

for every x ∈ X. Of course, the first inequality in (10.14.1) together with
(10.14.3) implies the second inequality in (10.14.1).

In addition, one may want to have restrictions on the supports of the ψj ’s.
One may ask that the supports of the ψj ’s be contained in open sets in a
particular family, for instance. A collection of functions like this is called a
partition of unity on the set where (10.14.2) holds.

Let a, b be real numbers with a < b, and let P = {tj}kj=0 be a partition of
[a, b]. If 0 ≤ l ≤ r, then there is a unique nonnegative real-valued function τl on
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[a, b] that is piecewise linear with breakpoints in P such that

τl(tj) = 1 when j = l(10.14.4)

= 0 when j 6= l.

It is easy to see that
k∑

l=0

τl(x) = 1(10.14.5)

for every x ∈ [a, b], because the left side is a piecewise-linear function on [a, b]
with breakpoints in P that is equal to 1 at tj for each j = 0, . . . , k. The support
of τl, as a real-valued function on [a, b], is given by

supp τl = [t0, t1] when l = 0(10.14.6)

= [tl−1, tl+1] when 1 ≤ l ≤ k − 1

= [tk−1, tk] when l = k.

Let (X, dX) be any metric space again, and let ϕ1, . . . , ϕr be nonnegative
continuous real-valued functions on X. There are a couple of common ways to
get a partition of unity ψ1, . . . , ψr from ϕ1, . . . , ϕr, under suitable conditions.

In the first approach, we put

Φ(x) =

r∑
j=1

ϕj(x)(10.14.7)

for each x ∈ X, and suppose that

Φ(x) > 0 for every x ∈ X.(10.14.8)

In this case,

ψj(x) = ϕj(x)/Φ(x)(10.14.9)

defines a continuous real-valued function on X for each j = 1, . . . , r, and
(10.14.2) holds for every x ∈ X, by construction. We also have that

suppψj = suppϕj(10.14.10)

for every j = 1, . . . , r.
In the second approach, we suppose that

0 ≤ ϕj(x) ≤ 1(10.14.11)

for every j = 1, . . . , r and x ∈ X. Put ψ1 = ϕ1, and

ψl =
( l−1∏

j=1

(1− ϕj)
)
ϕl(10.14.12)
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for l = 2, . . . , r, as on p251 of [155]. Clearly (10.14.1) holds for every j = 1, . . . , r,
and one can check that

l∑
j=1

ψj = 1−
l∏

j=1

(1− ϕj)(10.14.13)

for every l = 1, . . . , r, by induction. This implies that (10.14.3) holds for every
x ∈ X, and that (10.14.2) holds for every x ∈ X such that

ϕj(x) = 1 for some j = 1, . . . , r.(10.14.14)

Note that
suppψj ⊆ suppϕj(10.14.15)

for every j = 1, . . . , r.

10.15 Another approximation argument

Let (X1, dX1
), (X2, dX2

) be metric spaces, and put X = X1 × X2. Also let
dX,1, dX,2 and dX,∞ be the corresponding metrics defined on X as in Section
10.1. As before, we shall refer to functions on X as being continuous if they are
continuous with respect to any of these three metrics, and thus with respect to
the other two metrics.

Let ψ2,1, . . . , ψ2,r be finitely many continuous nonnegative real-valued func-
tions on X2 that form a partition of unity on X2, so that

r∑
j=1

ψ2,j(x2) = 1(10.15.1)

for every x2 ∈ X2. If f is a real-valued function on X, then

f(x1, x2) =

r∑
j=1

f(x1, x2)ψ2,j(x2)(10.15.2)

for every x1 ∈ X1 and x2 ∈ X2.
Suppose that for each j = 1, . . . , r, x2,j ∈ X2 and

ψ2,j(x2,j) > 0.(10.15.3)

Put

(A2(f))(x1, x2) =

r∑
j=1

f(x1, x2,j)ψ2,j(x2)(10.15.4)

for every x1 ∈ X1 and x2 ∈ X2. Thus

f(x1, x2)− (A2(f))(x1, x2) =

r∑
j=1

(f(x1, x2)− f(x1, x2,j))ψ2,j(x2)(10.15.5)
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for every x1 ∈ X1 and x2 ∈ X2, by (10.15.2). It follows that

|f(x1, x2)− (A2(f))(x1, x2)| ≤
r∑

j=1

|f(x1, x2)− f(x1, x2,j)|ψ2,j(x2)(10.15.6)

for every x1 ∈ X1 and x2 ∈ X2.
Put

a2,j(x1) = sup{|f(x1, x2)− f(x1, x2,j)| : x2 ∈ X2, ψ2,j(x2) > 0}(10.15.7)

for each j = 1, . . . , r. The right side is allowed to be +∞ here, although we
shall typically be concerned with situations where it is finite. Observe that

|f(x1, x2)− f(x1, x2,j)|ψ2,j(x2) ≤ a2,j(x1)ψ2,j(x2)(10.15.8)

for every x1 ∈ X1 and x2 ∈ X2, where the right side may be interpreted as
being equal to 0 when ψ2,j(x2) = 0, even if (10.15.7) is +∞. This implies that

|f(x1, x2)− (A2(f))(x1, x2)| ≤
r∑

j=1

a2,j(x1)ψ2,j(x2)(10.15.9)

for every x1 ∈ X1 and x2 ∈ X2, by (10.15.6).
Put

a2(x1) = max
1≤j≤r

a2,j(x1)(10.15.10)

for each x1 ∈ X1. Using (10.15.9), we get that

|f(x1, x2)− (A2(f))(x1, x2)| ≤ a2(x1)(10.15.11)

for every x1 ∈ X1, because of (10.15.1).
We may frequently be interested in situations where X2 is compact, or at

least totally bounded, and

{x2 ∈ X2 : ψ2,j(x2) > 0}(10.15.12)

is a small subset of X2 for each j = 1, . . . , r. This may mean that (10.15.12) is
contained in a ball in X2 centered at x2,j with small radius, or that (10.15.12)
has small diameter with respect to dX2 , which is nearly the same thing. If
(10.15.12) is sufficiently small in this way, then we may be able to show that
(10.15.7) is small, using suitable continuity properties of f .

Suppose that E2 = {f(x1, ·) : x1 ∈ X1} is uniformly equicontinuous as a
collection of real-valued functions on X2. In this case, (10.15.10) is as small
as we like when (10.15.12) is contained in a ball centered at x2,j of sufficiently
small radius for each j = 1, . . . , r, or the diameter of (10.15.12) is sufficiently
small for each j = 1, . . . , r, which is almost the same thing, as before.

If X1 is compact, then E2 is equicontinuous at every x2 ∈ X2, as in Section
10.6. If X2 is compact, then the equicontinuity of E2 at every point in X2 implies
that E2 is uniformly equicontinuous on X2, as in Section 5.2. If f is uniformly
continuous on X with respect to dX,1, dX,2, or dX,3, then it is easy to see that
E2 is uniformly equicontinuous on X2. If X1 and X2 are compact, then X is
compact with respect to dX,1, dX,2, and dX,3, as in Section 10.4. In this case,
continuity of f on X implies uniform continuity, as usual.
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10.16 Some continuous functions

If c is any real number, then one can check that

max(t, c) and min(t, c)(10.16.1)

are Lipschitz functions of t ∈ R, with constant 1. Of course, this uses the
standard Euclidean metric on the real line.

Let (X, dX) be a metric space, and let A be a nonempty subset of X. If
x ∈ X, then the distance from x to A with respect to dX is defined by

dist(x,A) = inf{d(x, a) : a ∈ A}.(10.16.2)

One can check that
dist(x,A) = 0(10.16.3)

if and only if x is an element of the closure A of A in X. One can also verify
that

dist(x,A) = dist(x,A)(10.16.4)

for every x ∈ X.
It is easy to see that

dist(x,A) ≤ d(x,w) + dist(w,A)(10.16.5)

for every x,w ∈ X. Using this, one can check that dist(x,A) is Lipschitz with
constant 1, as a real-valued function on X.

Let A, B be nonempty disjoint closed subsets of X. Observe that

dist(x,A) + dist(x,B) > 0(10.16.6)

for every x ∈ X. It follows that

dist(x,A)

dist(x,A) + dist(x,B)
(10.16.7)

defines a continuous real-valued function on X. This function is equal to 0
exactly on A, and it is equal to 1 exactly on B. It also takes values in [0, 1] on
X, by construction.

Let r > 0 be given, and note that

min(dist(x,A), r)(10.16.8)

is Lipschitz with constant 1, as a real-valued function of x ∈ X. This implies
that

(1/r) min(dist(x,A), r)(10.16.9)

is Lipschitz with constant 1/r on X.
Suppose for the moment that

d(a, b) ≥ r(10.16.10)
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for every a ∈ A and b ∈ B. Equivalently, this means that

dist(b, A) ≥ r(10.16.11)

for every b ∈ B. This implies that (10.16.8) is equal to r when x ∈ B, so that
(10.16.9) is equal to 1.

Conversely, suppose that there is a uniformly continuous real-valued function
f on X such that

f(a) = 0 for every a ∈ A, and f(b) = 1 for every b ∈ B.(10.16.12)

Under these conditions, it is easy to see that there is an r > 0 such that
(10.16.10) holds for every a ∈ A and b ∈ B.

Let a0 ∈ X and r0 > 0 be given, and note that

d(x, a0)(10.16.13)

is Lipschitz with constant 1 as a real-valued function of x ∈ X. This is the same
as (10.16.2), with A = {a0}. It follows that

r0 − d(x, a0)(10.16.14)

is Lipschitz with constant 1 on X, so that

max(r0 − d(x, a0), 0)(10.16.15)

is Lipschitz with constant 1 on X as well. Of course, (10.16.15) is equal to 0
when

d(x, a0) ≥ r0,(10.16.16)

and otherwise (10.16.15) is strictly positive.
Let r1 be a nonnegative real number with

r1 < r0,(10.16.17)

and consider
min(max(r0 − d(x, a0), 0), r0 − r1).(10.16.18)

This is another real-valued Lipschitz function on X with constant 1, so that

(1/(r0 − r1)) min(max(r0 − d(x, a0), 0), r0 − r1)(10.16.19)

is Lipschitz with constant 1/(r0 − r1) on X. This function is equal to 0 when
(10.16.16) holds, and it is equal to 1 when

d(x, a0) ≤ r1.(10.16.20)

If
r1 < d(x, a0) < r0,(10.16.21)

then (10.16.19) is in (0, 1).
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10.17 Products and reciprocals

Let (X, dX) be a metric space, and let f , g be real-valued functions on X. If
f and g are uniformly continuous on X, then it is easy to see that f + g is
uniformly continuous on X too. If f and g are Lipschitz functions on X, then
f + g is a Lipschitz function on X as well, as in Section 7.7.

Suppose for the moment that f and g are bounded on X. If f and g are
also uniformly continuous on X, then one can check that their product f g is
uniformly continuous on X. Similarly, if f and g are Lipschitz functions on X,
then one can verify that f g is Lipschitz on X.

If t1, t2 are nonzero real numbers, then

1/t1 − 1/t2 = (t2 − t1)/(t1 t2).(10.17.1)

This implies that
|1/t1 − 1/t2| = |t1 − t2|/(|t1| |t2|).(10.17.2)

If r is a positive real number, and |t1|, |t2| ≥ r, then we get that

|1/t1 − 1/t2| ≤ r−2 |t1 − t2|.(10.17.3)

This means that t 7→ 1/t is Lipschitz with constant r−2 as a real-valued function
on

{t ∈ R : |t| ≥ r}.(10.17.4)

Of course, this uses the standard Euclidean metric on R, and its restriction to
(10.17.4).

Suppose now that
|f(x)| ≥ r(10.17.5)

for every x ∈ X. If f is uniformly continuous on X, then it is easy to see that

1/f is uniformly continuous on X.(10.17.6)

Similarly, if f is Lipschitz on X, then

1/f is Lipschitz on X.(10.17.7)

These statements can be verified directly, or by considering 1/f as the com-
position of f with t 7→ 1/t on (10.17.4). There are analogous statements for
complex numbers, and complex-valued functions on X.

10.18 Graphs of mappings

Let X1, X2 be nonempty sets, and let X = X1×X2 be their Cartesian product.
If f is a mapping from X1 into X2, then the graph of f is the subset of X given
by

{(x1, f(x1)) : x1 ∈ X1},(10.18.1)
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as usual. Put

F (x1) = (x1, f(x1))(10.18.2)

for every x1 ∈ X1, which defines F as a mapping from X1 into X. Note that
(10.18.1) is the same as the image of X1 under F .

Let p1, p2 be the usual coordinate projections from X onto X1, X2, respec-
tively, as in Section 10.5. Thus pj(x) = xj for each x = (x1, x2) ∈ X and
j = 1, 2. Clearly

f = p2 ◦ F(10.18.3)

on X1, and p1 ◦ F is the identity mapping on X1.
Suppose now that (X1, dX1) and (X2, dX2) are metric spaces, so that we can

define the metrics dX,1, dX,2, and dX,∞ on X as in Section 10.1. Remember
that these metrics determine the same collections of open sets, closed sets, and
compact sets in X, and that convergence of sequences in X with respect to these
metrics are equivalent, as before.

If

f is continuous as a mapping from X1 into X2,(10.18.4)

then one can check that

F is continuous as a mapping from X1 into X,(10.18.5)

with respect to each of dX,1, dX,2, and dX,∞ onX. Conversely, if (10.18.5) holds,
with respect to any of the metrics dX,1, dX,2, or dX,∞ onX, then (10.18.4) holds.
This can be seen using (10.18.3), and the fact that p2 is a continuous mapping
from X onto X2 with respect to each of dX,1, dX,2, and dX,∞ on X, as in Section
10.5.

One can check that a subset E of a metric spaceM is a closed set if and only
if for every sequence {wj}∞j=1 of elements of E that converges to an element w
of M , we have that

w ∈ E.(10.18.6)

More precisely, if {wj}∞j=1 is a sequence of elements of any set E ⊆ M that
converges to an element w of M , and if wj 6= w for each j, then w is a limit
point of E. If w ∈M is a limit point of E, then one can find a sequence {wj}∞j=1

of elements of E that converges to w, with wj 6= w for each j.
It is well known that if (10.18.4) holds, then

the graph of f is a closed set in X,(10.18.7)

with respect to each of the metrics dX,1, dX,2, dX,∞. As in the preceding
paragraph, (10.18.7) holds if and only if for every sequence of elements of the
graph of f that converges to an element of X, the limit of the sequence is in the
graph of f . In this case, this means that (10.18.7) holds if and only if for every
sequence {x1,j}∞j=1 of elements of X1 such that

{(x1,j , f(x1,j))}∞j=1(10.18.8)
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converges to an element (x1, x2) of X, we have that

f(x1) = x2.(10.18.9)

As in Section 10.3, the convergence of (10.18.8) to (x1, x2) ∈ X with re-
spect to any of the metrics dX,1, dX,2, dX,∞ is equivalent to the convergence
of {x1,j}∞j=1 to x1 in X1 and the convergence of {f(x1,j)}∞j=1 to x2 in X2. If f
is continuous at x1, then the convergence of {x1,j}∞j=1 to x1 in X1 implies that
{f(x1,j)}∞j=1 converges to f(x1) in X2. This implies that (10.18.9) holds when
{f(x1,j)}∞j=1 converges to x2 in X2.

If (10.18.4) holds, and if

X1 is compact,(10.18.10)

then
the graph of f is a compact subset of X,(10.18.11)

with respect to each of dX,1, dX,2, and dX,∞. Remember that the graph of f
is the same as F (X1), and that F is continuous as a mapping from X1 into
X in this case. This implies that F (X1) is a compact subset of X when X1 is
compact.

Conversely, let f be any mapping from X1 into X2, and suppose that
(10.18.11) holds, with respect to dX,1, dX,2, or dX,∞. It is easy to see that
(10.18.10) holds in this case, because p1 maps the graph of f onto X1. This also
use the fact that p1 is continuous as a mapping from X onto X1, as in Section
10.5.

It is well known that (10.18.4) holds under these conditions as well. To see
this, let x1 ∈ X1 be given, and suppose for the sake of a contradiction that f
is not continuous at x1. This means that there is an ϵ > 0 such that for every
δ > 0 there is a point w1 ∈ X1 with

dX1(x1, w1) < δ(10.18.12)

and
dX2(f(x1), f(w1)) ≥ ϵ.(10.18.13)

One can use this to get a sequence {x1,j}∞j=1 of elements of X1 that converges
to x1, with

dX2(f(x1), f(x1,j)) ≥ ϵ(10.18.14)

for every j.
If (10.18.11) holds, then the graph of f is sequentially compact in X. Using

this, we get that there is a subsequence {x1,jl}∞l=1 of {x1,j}∞j=1 such that

{(x1,jl , f(x1,jl))}∞l=1(10.18.15)

converges to an element (y1, f(y1)) of the graph of f in X. This means that

{x1,jl}∞l=1 converges to y1 in X1,(10.18.16)
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and that
{f(x1,jl)}∞l=1 converges to f(y1) in X2,(10.18.17)

as in Section 10.3. Note that {x1,jl}∞l=1 converges to x1 in X1, because {x1,j}∞j=1

converges to x1, by construction. Thus

x1 = y1.(10.18.18)

It follows that
{f(x1,jl)}∞l=1 converges to f(x1) in X2.(10.18.19)

This contradicts (10.18.14), as desired.

10.19 Semicontinuity

Let us continue with the same notation and hypotheses as in the previous sec-
tion, except that now we take X2 = R, with the standard Euclidean metric. If
f is a real-valued function on X1, then

{(x1, x2) ∈ X1 ×R : f(x1) > x2}(10.19.1)

and
{(x1, x2) ∈ X1 ×R : f(x1) ≤ x2}(10.19.2)

are complementary subsets of X = X1 ×R. In particular, (10.19.1) is an open
set in X = X1 ×R if and only if (10.19.2) is a closed set in X, with respect to
any, and thus each, of the metrics dX,1, dX,2, and dX,∞.

Similarly,
{(x1, x2) ∈ X1 ×R : f(x1) ≥ x2}(10.19.3)

and
{(x1, x2) ∈ X1 ×R : f(x1) < x2}(10.19.4)

are complementary subsets of X. It follows that (10.19.3) is a closed set in X if
and only if (10.19.4) is an open set, as before. Note that the graph of f is the
same as the intersection of (10.19.2) and (10.19.3).

If f is continuous on X, then one can show that (10.19.2) and (10.19.3) are
closed sets in X, using the same type of argument as in the previous section.
However, there are more precise statements, using notions of semicontinuity.

We say that f is upper semicontinuous at a point x1 ∈ X1 if for every ϵ > 0
there is a δ > 0 such that

f(w1) < f(x1) + ϵ(10.19.5)

for every w1 ∈ X1 with dX1
(x1, w1) < δ. Similarly, we say that f is lower

semicontinuous at x1 if for every ϵ > 0 there is a δ′ > 0 such that

f(w1) > f(x1)− ϵ(10.19.6)

for every w1 ∈ X1 with dX1
(x1, w1) < δ′.
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Observe that f is continuous at x1 if and only if f is both upper and lower
semicontinuous at x1. It is easy to see that f is upper semicontinuous at x1 if
and only if −f is lower semicontinuous at x1.

Let us say that f is upper semicontinuous on X1 if f is upper semicontinuous
at every x1 ∈ X1. Similarly, we say that f is lower semicontinuous on X1 if f
is lower semicontinuous at every x1 ∈ X1.

One can check that f is upper semicontinuous on X1 if and only if for every
real number b,

{x1 ∈ X1 : f(x1) < b}(10.19.7)

is an open subset of X1. Similarly, f is lower semicontinuous on X1 if and only
if for every a ∈ R,

{x1 ∈ X1 : f(x1) > a}(10.19.8)

is an open set in X1.
One can also verify that f is upper semicontinuous on X1 if and only if

(10.19.4) is an open set in X. Similarly, f is lower semicontinuous on X1 if and
only if (10.19.1) is an open set in X.

Let K be a nonempty compact subset of X1. If f is upper semi-continuous
on X1, then it is not too difficult to show that f attains its maximum on K.
Similarly, if f is lower semicontinuous on X1, then f attains its minimum on
K. Of course, this is another version of the extreme value theorem.

Let {x1,j}∞j=1 be a sequence of elements of X1 that converges to x1 ∈ X1. If
f is upper semi-continuous at x1, then one can check that

lim sup
j→∞

f(xj) ≤ f(x1).(10.19.9)

Similarly, if f is lower semicontinuous at x1, then

lim inf
j→∞

f(xj) ≥ f(x1).(10.19.10)

One can verify that these properties characterize upper and lower semicontinuity
of f at x1 too.

10.20 Homeomorphisms between metric spaces

Let (X, dX) and (Y, dY ) be metric spaces. A one-to-one mapping f from X
onto Y is said to be a homeomorphism if f is continuous, and the correspond-
ing inverse mapping f−1 from Y onto X is continuous. Of course, f−1 is a
homeomorphism from Y onto X in this case.

Let (Z, dZ) be another metric space. If f is a homeomorphism from X onto
Y , and g is a homeomorphism from Y onto Z, then their composition g ◦ f is a
homeomorphism from X onto Z.

Let f be a one-to-one continuous mapping from X onto Y . If X is compact,
then it is well known that the inverse mapping f−1 is continuous, so that

f is a homeomorphism.(10.20.1)
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One can show this using sequences, or by looking at closed sets.
To show this using sequences, let {yj}∞j=1 be a sequence of elements of Y

that converges to a point y ∈ Y , and let us check that

{f−1(yj)}∞j=1 converges to f−1(y) in X.(10.20.2)

Put xj = f−1(yj) for each j, and x = f−1(y), for convenience. Suppose for the
sake of a contradiction that {xj}∞j=1 does not converge to x in X. This implies
that there is an ϵ > 0 such that

dX(x, xj) ≥ ϵ(10.20.3)

for infinitely many j ≥ 1. Equivalently, this means that there is a subsequence
{xjl}∞l=1 of {xj}∞j=1 such that

dX(x, xjl) ≥ ϵ(10.20.4)

for every l ≥ 1.
If X is compact, and thus sequentially compact, then there is a subsequence

{xjln }
∞
n=1 of {xjl}∞l=1 that converges to an element w of X. It follows that

{f(xjln )}
∞
n=1 converges to f(w) in Y,(10.20.5)

because f is continuous at w, by hypothesis. However,

{f(xjln )}
∞
n=1 = {yjln }

∞
n=1(10.20.6)

is a subsequence of {yj}∞j=1, which converges to y = f(x). This implies that

f(w) = f(x),(10.20.7)

so that w = x, because f is one-to-one. This means that {xjln }
∞
n=1 converges

to x in X, contradicting (10.20.4), as desired.
Alternatively, let E be a closed set in X. In order to check that f−1 is

continuous as a mapping from Y into X, we would like to verify that

(f−1)−1(E) = {y ∈ Y : f−1(y) ∈ E}(10.20.8)

is a closed set in Y . It is easy to see that

(f−1)−1(E) = f(E).(10.20.9)

Note that
E is compact in X,(10.20.10)

because X is compact, and E is a closed set. This implies that

f(E) is a compact set in Y,(10.20.11)

because f is continuous. It follows that

f(E) is a closed set in Y.(10.20.12)

This means that f−1 is continuous, by a standard characterization of continuous
mappings between metric spaces.

One might notice that the first argument is very similar to one in Section
10.18. This will be discussed further in the next section.



198 CHAPTER 10. PRODUCT SPACES AND RELATED MATTERS

10.21 Graphs and homeomorphisms

Let (X1, dX1), (X2, dX2) be nonempty metric spaces, and put X = X1×X2. As
usual, we can define metrics dX,1, dX,2, and dX,∞ on X as in Section 10.1. Let
f be a mapping from X1 into X2, and let F be the mapping from X1 into X
defined by putting F (x1) = (x1, f(x1)) for every x1 ∈ X1, as in Section 10.18.

Let
Y = F (X1)(10.21.1)

be the graph of f in X, as before. We may consider Y as a metric space, using
the restriction of dX,1, dX,2, or dX,∞ to Y . Note that F is a one-to-one mapping
from X1 onto Y , by construction.

Let p1, p2 be the usual coordinate projections from X onto X1, X2, respec-
tively, as in Section 10.5. The restriction of p1 to Y is the same as the inverse
mapping F−1 of F on Y . It follows that

F−1 is continuous on Y,(10.21.2)

with respect to the restriction of dX,1, dX,2, or dX,∞ to Y , as in Section 10.5.
If f is continuous as a mapping from X1 into X2, then F is continuous as

a mapping from X1 into X with respect to each of dX,1, dX,2, and dX,∞, as in
Section 10.18. In this case, we get that

F is a homeomorphism from X1 onto Y,(10.21.3)

with respect to the restriction of any of dX,1, dX,2, and dX,∞ to Y .
If Y is compact with respect to any of dX,1, dX,2, or dX,∞, then one can get

that
F is continuous,(10.21.4)

because F−1 is continuous on Y , as in the previous section. Of course, this
implies that

f = p1 ◦ F is continuous on X1,(10.21.5)

because p1 is continuous on X, as in Section 10.5. This is another way to look
at how the compactness of Y implies the continuity of f , as in Section 10.18.

Let m be a positive integer, and let us now take

X2 = Rm,(10.21.6)

equipped with the standard Euclidean metric, or the metric associated to a
norm. Let f be a mapping from X1 into Rm, and let Φ be the mapping from
X = X1 ×Rm into itself defined by

Φ(x) = (x1, x2 + f(x1))(10.21.7)

for every x = (x1, x2) ∈ X. It is easy to see that Φ is a one-to-one mapping
from X onto itself. More precisely, the inverse mapping is given by

Φ−1(x) = (x1, x2 − f(x1))(10.21.8)
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for every x ∈ X.
If f is continuous on X1, then one can check that Φ and Φ−1 are continuous

on X, with respect to any of the metrics dX,1, dX,2, or dX,∞. This means that
Φ is a homeomorphism from X onto itself, with respect to any of these three
metrics. It is easy to see that the continuity of f is necessary for the continuity
of Φ or Φ−1.

If x1 ∈ X1 and x = (x1, 0), then Φ(x) = F (x1). In particular,

Φ(X1 × {0}) = F (X1).(10.21.9)

Equivalently,
F (X1) = (Φ−1)−1(X1 × {0}).(10.21.10)

It is easy to see that X1 × {0} is a closed set in X, with respect to any of dX,1,
dX,2, or dX,∞. If f is continuous, then Φ−1 is continuous, and (10.21.10) gives
another way to see that F (X1) is a closed set in X, as in Section 10.18.

Suppose now that m = 1, so that f is a real-valued function on X1. Observe
that

Φ(X1 × (0,+∞)) = {(x1, x2) ∈ X1 ×R : x2 > f(x1)}(10.21.11)

and
Φ(X1 × (−∞, 0)) = {(x1, x2) ∈ X1 ×R : x2 < f(x1)}.(10.21.12)

It is easy to see that X1 × (0,+∞) and X × (0,−∞) are open sets in X, with
respect to any of dX,1, dX,2, or dX,∞. If f is continuous, then one can use the
continuity of Φ−1 to get another way to see that (10.21.11) and (10.21.12) are
open sets in X, as in Section 10.19.



Chapter 11

Summable functions

Sums of real and complex-valued functions on arbitrary nonempty sets are con-
sidered in this chapter, extending sums of absolutely convergent series of real
and complex numbers. The reader may choose to skip this chapter, at least
initially.

11.1 Extended real numbers

As usual, the set of extended real numbers consists of the real numbers together
with two additional elements, denoted +∞ and −∞. The standard ordering is
extended to the set of extended real numbers by putting

−∞ < x < +∞(11.1.1)

for every x ∈ R. Normally when we consider extended real numbers here, we
shall only be concerned with nonnegative extended real numbers.

In some situations, addition and multiplication of extended real numbers
can be defined in a natural way. In particular, we put

x+∞ = ∞+ x = ∞+∞ = +∞(11.1.2)

for every x ∈ R. Similarly, we put

x · ∞ = ∞ · x = ∞ ·∞ = ∞(11.1.3)

for every positive real number x. Although 0 · ∞ is not necessarily defined, it
will normally correspond to 0 here.

The notions of upper and lower bounds, supremum, and infimum can be
defined for sets of extended real numbers, in the same way as for sets of real
numbers. In particular, if A is a nonempty set of real numbers that does not
have a finite upper bound in R, then the supremum of A can be defined as an
extended real number to be +∞. Of course, if +∞ is an element of A, then the

200
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supremum of A is equal to +∞ automatically. If +∞ is the only element of A,
then the infimum of A is equal to +∞.

Let t be a positive real number, and let E be a nonempty set of extended
real numbers. Put

t E = {t x : x ∈ E},(11.1.4)

which is another nonempty set of extended real numbers. One can check that

sup(t E) = t (supE).(11.1.5)

Let {xj}∞j=1 be a sequence of real numbers. If {xj}∞j=1 converges to a real
number x with respect to the standard metric on R, then we may express this
by xj → x as j → ∞. As usual, we say that {xj}∞j=1 tends to +∞ as j → ∞,
or xj → +∞ as j → ∞, if for every positive real number R there is a positive
integer L such that

xj > R(11.1.6)

for each j ≥ L.
Let {xj}∞j=1 be a monotonically increasing sequence of real numbers, so that

xj ≤ xj+1(11.1.7)

for every j ≥ 1. Put
x = sup{xj : j ∈ Z+},(11.1.8)

which is a real number when the set of xj ’s, j ∈ Z+, has a finite upper bound
in R, and otherwise is equal to +∞. It is well known that

xj → x as j → ∞(11.1.9)

under these conditions.
Now let {xj}∞j=1 be a sequence of real numbers such that xj → +∞ as

j → ∞. If {yj}∞j=1 is a sequence of real numbers with a finite lower bound in
R, then it is easy to see that

xj + yj → +∞ as j → ∞.(11.1.10)

In particular, this holds when yj → y as j → ∞, where y ∈ R or y = +∞.

11.2 Nonnegative sums

Let X be a nonempty set, and let f be a nonnegative real-valued function on
X. If A is a nonempty finite subset of X, then the sum∑

x∈A

f(x)(11.2.1)

can be defined as a nonnegative real number in the usual way. Put∑
x∈X

f(x) = sup

{∑
x∈A

f(x) : A is a nonempty finite subset of X

}
,(11.2.2)
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where the supremum on the right side is defined as a nonnegative extended
real number, as in the previous section. Of course, if X has only finitely many
elements, then the supremum is attained with A = X. Similarly, if f has finite
support in X, then the supremum is attained with any nonempty finite subset
A of X such that A contains the support of f .

Suppose for the moment that X is the set Z+ of positive integers, and let f
be a nonnegative real-valued function defined on Z+. In this case, one may put

∞∑
j=1

f(j) = sup

{ n∑
j=1

f(j) : n ∈ Z+

}
,(11.2.3)

where the supremum on the right side is defined as a nonnegative extended
real number again. Of course, the sequence of partial sums

∑n
j=1 f(j) increases

monotonically in this case. The sequence of partial sums tends to its supremum
as n → ∞, as in the previous section. If the sequence of partial sums has a
finite upper bound in R, then the sequence of partial sums converges in R in
the usual sense. This means that the infinite series on the left side of (11.2.3)
converges in the usual sense, with sum equal to the right side of (11.2.3). If
the sequence of partial sums does not have a finite upper bound, so that the
right side of (11.2.3) is +∞, then one may interpret the sum on the left side of
(11.2.3) as being +∞ as well.

If f is any nonnegative real-valued function on Z+, then

∞∑
j=1

f(j) =
∑
j∈Z+

f(j),(11.2.4)

where these sums are as defined in (11.2.2) and (11.2.3). More precisely, one
can check that

∞∑
j=1

f(j) ≤
∑
j∈Z+

f(j),(11.2.5)

because each of the partial sums on the right side of (11.2.3) may be considered
as one of the finite sums on the right side of (11.2.2). To get the other inequality,
one can use the fact that every finite subset A of Z+ is contained in {1, . . . , n}
for some n ∈ Z+.

It is sometimes convenient to consider a nonnegative extended real-valued
function f on a nonempty set X. If A is a nonempty finite subset of X and
f(x) = +∞ for some x ∈ A, then the corresponding sum (11.2.1) is equal to
+∞. If f(x) = +∞ for some x ∈ X, then the right side of (11.2.2) is equal
to +∞. Similarly, if X = Z+, then the partial sum

∑n
j=1 f(j) is +∞ when

f(j) = +∞ for some j ≤ n, so that the right side of (11.2.3) is +∞ when
f(j) = +∞ for some j. Thus (11.2.4) also holds in this situation.

11.3 Compositions and subsets

Let X and Y be nonempty sets, and let ϕ be a one-to-one mapping from X
onto Y . Also let f be a nonnegative extended real-valued function on Y , so
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that f(ϕ(x)) defines a nonnegative extended real-valued function on Y . If A is
a nonempty finite subset of X, then ϕ(A) is a nonempty finite subset of Y , and∑

x∈A

f(ϕ(x)) =
∑

y∈ϕ(A)

f(y).(11.3.1)

If B is any nonempty finite subset of Y , then A = ϕ−1(B) is a nonempty finite
subset of X, and B = ϕ(A). It follows that∑

x∈X

f(ϕ(x)) =
∑
y∈Y

f(y),(11.3.2)

because both sums are defined by taking the supremum of the corresponding
finite subsums in (11.3.1).

Let f be a nonnegative extended real-valued function on a nonempty set X.
If E is a nonempty subset of X, then the sum∑

x∈E

f(x)(11.3.3)

can be defined as a nonnegative extended real number in the same way as before,
as the supremum of the corresponding collection of finite subsums. This is the
same as applying the definition in the previous section to the restriction of f to
E. If E1, E2 are nonempty subsets of X and E1 ⊆ E2, then∑

x∈E1

f(x) ≤
∑
x∈E2

f(x).(11.3.4)

This uses the fact that every finite subsum of the sum on the left is also a
finite subsum of the sum on the right. If we also have that f(x) = 0 for every
x ∈ E2 \ E1, then it follows that∑

x∈E1

f(x) =
∑
x∈E2

f(x).(11.3.5)

This is because finite subsums of the sum on the right side can be reduced to
finite subsums of the sum on the left, except possibly for sums over nonempty
finite subsets of E2 \ E1, which are equal to 0 in this case.

Let {xj}∞j=1 be a sequence of distinct elements of X, and let

E = {xj : j ∈ Z+}.(11.3.6)

If f is a nonnegative extended real-valued function on X again, then f(xj) may
be considered as a nonnegative extended real-valued function on Z+. Thus

∞∑
j=1

f(xj) =
∑
j∈Z+

f(xj),(11.3.7)
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as in (11.2.4). We also have that∑
j∈Z+

f(xj) =
∑
x∈E

f(x),(11.3.8)

as in (11.3.2). More precisely, this uses the fact that j 7→ xj is a one-to-one
mapping from Z+ onto E.

Let f , g be nonnegative extended real-valued functions on X, and suppose
that

f(x) ≤ g(x)(11.3.9)

for every x ∈ X. If A is a nonempty finite subset of X, then∑
x∈A

f(x) ≤
∑
x∈A

g(x).(11.3.10)

Using this, it is easy to see that∑
x∈X

f(x) ≤
∑
x∈X

g(x).(11.3.11)

11.4 Nonnegative summable functions

Let f be a nonnegative real-valued function on a nonempty set X. If∑
x∈X

f(x) <∞,(11.4.1)

then f is said to be summable on X. Of course, if f has finite support in X,
then f is summable on X. Suppose now that f is summable on X, and let us
check that f vanishes at infinity on X, as in Section 2.5.

Let ϵ > 0 be given, and put

Eϵ(f) = {x ∈ X : f(x) ≥ ϵ}.(11.4.2)

If A is a nonempty finite subset of Eϵ(f), then

ϵ (#A) ≤
∑
x∈A

f(x) ≤
∑
x∈X

f(x),(11.4.3)

where #A denotes the number of elements of A. Thus

#A ≤ (1/ϵ)
∑
x∈X

f(x).(11.4.4)

It follows that Eϵ(f) has only finitely many elements, with

#Eϵ(f) ≤ (1/ϵ)
∑
x∈X

f(x).(11.4.5)
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Let us continue to suppose that f is summable on X, and let ϵ > 0 be given
again. Observe that there is a nonempty finite subset A(ϵ) of X such that∑

x∈X

f(x)− ϵ <
∑

x∈A(ϵ)

f(x),(11.4.6)

by the definition (11.2.2) of the sum over X. If A is a finite subset of X that
contains A(ϵ), then∑

x∈A(ϵ)

f(x) ≤
∑
x∈A

f(x) ≤
∑
x∈X

f(x) <
∑

x∈A(ϵ)

f(x) + ϵ.(11.4.7)

Let B be a nonempty finite subset of X that is disjoint from A(ϵ), so that∑
x∈A(ϵ)

f(x) +
∑
x∈B

f(x) =
∑

x∈A(ϵ)∪B

f(x) ≤
∑
x∈X

f(x).(11.4.8)

This implies that ∑
x∈B

f(x) ≤
∑
x∈X

f(x)−
∑

x∈A(ϵ)

f(x).(11.4.9)

If A(ϵ) 6= X, then it follows that∑
x∈X\A(ϵ)

f(x) ≤
∑
x∈X

f(x)−
∑

x∈A(ϵ)

f(x) < ϵ.(11.4.10)

If A(ϵ) = X, then the sum on the left side of (11.4.10) may be interpreted as
being equal to 0.

If f is summable on X and E is a nonempty subset of X, then the restriction
of f to E is summable on E. More precisely, the sum of f(x) over x ∈ E is less
than or equal to the sum of f(x) over x ∈ X, as in (11.3.4). Similarly, let f and
g be nonnegative real-valued functions on X such that f(x) ≤ g(x) for every
x ∈ X. If g is summable on X, then f is summable on X too, by (11.3.11).

11.5 Some linearity properties

Let X be a nonempty set, and let f be a nonnegative extended real-valued
function on X. Also let t be a positive real number, so that t f is a nonnegative
extended real-valued function on X as well. If A is a nonempty finite subset of
X, then ∑

x∈A

t f(x) = t
∑
x∈A

f(x).(11.5.1)

Using this, one can check that∑
x∈X

t f(x) = t
∑
x∈X

f(x).(11.5.2)
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More precisely, this can be obtained from (11.1.5) and the definition (11.2.2) of
the sum over X.

Let g be another nonnegative extended real-valued function on X, so that
f+g is a nonnegative extended real-valued function on X too. If A is a nonempty
finite subset of X, then∑

x∈A

(f(x) + g(x)) =
∑
x∈A

f(x) +
∑
x∈A

g(x).(11.5.3)

One can use this to show that∑
x∈X

(f(x) + g(x)) =
∑
x∈X

f(x) +
∑
x∈X

g(x).(11.5.4)

More precisely, if A is a nonempty finite subset of X, then∑
x∈A

(f(x) + g(x)) ≤
∑
x∈X

f(x) +
∑
x∈X

g(x),(11.5.5)

by (11.5.3). This implies that∑
x∈X

(f(x) + g(x)) ≤
∑
x∈X

f(x) +
∑
x∈X

g(x).(11.5.6)

We would like to verify that∑
x∈X

f(x) +
∑
x∈X

g(x) ≤
∑
x∈X

(f(x) + g(x)),(11.5.7)

in order to get (11.5.4). This is trivial when the right side of (11.5.7) is +∞,
and so we may suppose that it is finite, so that f + g is summable on X. It
follows that f and g are summable on X, because f, g ≤ f+g, as in the previous
section. In particular, f(x) and g(x) are finite for every x ∈ X. Let A and B
be nonempty finite subsets of X, and observe that∑

x∈A

f(x) +
∑
x∈B

g(x) ≤
∑

x∈A∪B

f(x) +
∑

x∈A∪B

g(x)

=
∑

x∈A∪B

(f(x) + g(x)) ≤
∑
x∈X

(f(x) + g(x)).(11.5.8)

Thus ∑
x∈A

f(x) ≤
∑
x∈X

(f(x) + g(x))−
∑
x∈B

g(x).(11.5.9)

This implies that ∑
x∈X

f(x) ≤
∑
x∈X

(f(x) + g(x))−
∑
x∈B

g(x)(11.5.10)
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for every nonempty finite set B ⊆ X. Equivalently,∑
x∈B

g(x) ≤
∑
x∈X

(f(x) + g(x))−
∑
x∈X

f(x)(11.5.11)

for every nonempty finite set B ⊆ X, and hence∑
x∈X

g(x) ≤
∑
x∈X

(f(x) + g(x))−
∑
x∈X

f(x).(11.5.12)

This shows that (11.5.7) holds under these conditions, as desired.
Let f be a nonnegative extended real-valued function on X again, and let

E1, E2 be disjoint nonempty subsets of X. It is easy to see that∑
x∈E1∪E2

f(x) =
∑
x∈E1

f(x) +
∑
x∈E2

f(x),(11.5.13)

using (11.5.4). More precisely, this can be obtained by expressing f on E1 ∪E2

as the sum of two functions, with supports contained in E1 and E2.

11.6 ℓ1 Spaces

A real or complex–valued function f on a nonempty setX is said to be summable
on X if |f | is summable as a nonnegative real-valued function on X. Let
ℓ1(X,R) and ℓ1(X,C) be the spaces of real and complex-valued summable
functions on X, respectively. Of course, if a real or complex-valued function
f on X has finite support, then f is summable on X, so that

c00(X,R) ⊆ ℓ1(X,R), c00(X,C) ⊆ ℓ1(X,C).(11.6.1)

If f is any real or complex-valued summable function on X, then |f | vanishes
at infinity on X, as in Section 11.4. This means that f vanishes at infinity on
X too, so that

ℓ1(X,R) ⊆ c0(X,R), ℓ1(X,C) ⊆ c0(X,C).(11.6.2)

If f is a real or complex-valued summable function on X, then put

‖f‖1 =
∑
x∈X

|f(x)|.(11.6.3)

This is a nonnegative real number, which is equal to 0 exactly when f(x) = 0
for every x ∈ X. If t ∈ R or C, as appropriate, then |t f | = |t| |f | is summable
on X, by (11.5.2), and we have that

‖t f‖1 =
∑
x∈X

|t f(x)| = |t|
∑
x∈X

|f(x)| = |t| ‖f‖1.(11.6.4)
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Similarly, if g is another real or complex-valued summable function on X, as
appropriate, then it is easy to see that f + g is summable on X as well, with

‖f + g‖1 =
∑
x∈X

|f(x) + g(x)| ≤
∑
x∈X

(|f(x)|+ |g(x)|) = ‖f‖1 + ‖g‖1.(11.6.5)

Thus ℓ1(X,R) and ℓ1(X,C) are linear subspaces of the real and complex vector
spaces of all real and complex-valued functions on X, respectively, and (11.6.3)
defines a norm on each of ℓ1(X,R) and ℓ1(X,C).

One can verify that
d1(f, g) = ‖f − g‖1(11.6.6)

defines a metric on each of ℓ1(X,R) and ℓ1(X,C), using (11.6.4) and (11.6.5),
as usual. Remember that ‖f‖∞ denotes the supremum norm of a bounded
real or complex-valued f on X, as in (1.13.4). If f is a real or complex-valued
summable function on X, then

|f(x)| ≤ ‖f‖1(11.6.7)

for every x ∈ X. This implies that f is bounded on X, with

‖f‖∞ ≤ ‖f‖1.(11.6.8)

If f , g are real or complex-valued summable functions on X, then it follows that

d∞(f, g) ≤ d1(f, g),(11.6.9)

where d∞(f, g) is the supremum metric, as in (1.13.8).
Let us check that c00(X,R), c00(X,C) are dense in ℓ1(X,R), ℓ1(X,C),

respectively, with respect to the ℓ1 metric (11.6.6). Of course, this is trivial
when X has only finitely many elements, and so we suppose that X is an infinite
set. Let f be a real or complex-valued summable function on X, and let ϵ > 0
be given. Remember that there is a finite subset A(ϵ) of X such that∑

x∈X\A(ϵ)

|f(x)| < ϵ,(11.6.10)

as in (11.4.10). Let fϵ be the real or complex-valued function, as appropriate,
defined on X by

fϵ(x) = f(x) when x ∈ A(ϵ)(11.6.11)

= 0 when x ∈ X \A(ϵ).

Thus fϵ has finite support in X. Note that f − fϵ is equal to 0 on A(ϵ), and to
f on X \A(ϵ). This implies that

‖f − fϵ‖1 =
∑

x∈X\A(ϵ)

|f(x)| < ϵ,(11.6.12)

as desired.
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11.7 Real-valued summable functions

Let f be a real-valued function on a nonempty set X, and put

f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0)(11.7.1)

for each x ∈ X. These are nonnegative real-valued functions on X that satisfy

f+(x) + f−(x) = |f(x)|(11.7.2)

and
f+(x)− f−(x) = f(x)(11.7.3)

for every x ∈ X. If f is summable on X, so that |f | is summable on X, then f+
and f− are summable as nonnegative real-valued functions on X. In this case,
we put ∑

x∈X

f(x) =
∑
x∈X

f+(x)−
∑
x∈X

f−(x).(11.7.4)

Note that ∣∣∣∣∑
x∈X

f(x)

∣∣∣∣ ≤ ∑
x∈X

f+(x) +
∑
x∈X

f−(x) =
∑
x∈X

|f(x)|.(11.7.5)

Let f1, f2 be nonnegative real-valued summable functions on X such that

f(x) = f1(x)− f2(x)(11.7.6)

for every x ∈ X. This implies that

f1(x) + f−(x) = f+(x) + f2(x)(11.7.7)

for every x ∈ X, because of (11.7.3). Hence∑
x∈X

f1(x) +
∑
x∈X

f−(x) =
∑
x∈X

f+(x) +
∑
x∈X

f2(x),(11.7.8)

as in (11.5.7). It follows that∑
x∈X

f1(x)−
∑
x∈X

f2(x) =
∑
x∈X

f+(x)−
∑
x∈X

f−(x),(11.7.9)

because the individual sums are all finite. This means that∑
x∈X

f(x) =
∑
x∈X

f1(x)−
∑
x∈X

f2(x),(11.7.10)

by (11.7.4).
If f is a real-valued summable function on X and t ∈ R, then t f is summable

on X too, as in the previous section. One can check that∑
x∈X

t f(x) = t
∑
x∈X

f(x).(11.7.11)
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Of course, this is trivial when t = 0. If t > 0, then (11.7.11) can be derived
from the analogous fact (11.5.2) for nonnegative real-valued functions on X,
and the definition (11.7.4) of the sum for real-valued summable functions on X.
If t = −1, then (11.7.11) can be obtained directly from (11.7.4).

If f , g are real-valued summable functions on X, then f + g is summable on
X as well, as in the previous section again. One can verify that∑

x∈X

(f(x) + g(x)) =
∑
x∈X

f(x) +
∑
x∈X

g(x).(11.7.12)

We have already seen in Section 11.5 that this holds when f and g are non-
negative. Otherwise, f and g can be expressed as differences of nonnegative
real-valued summable functions on X, as in (11.7.3). This leads to an expres-
sion of f + g as a difference of nonnegative real-valued summable functions on
X. Each of the sums of f , g, and f + g over X can be given as the difference of
the corresponding sums of nonnegative summable functions, as in (11.7.4) and
(11.7.10). Using this, one can reduce (11.7.12) to the analogous statement for
nonnegative functions.

11.8 Complex-valued summable functions

Let f be a complex-valued summable function on a nonempty set X, and let
Re f(x), Im f(x) be the real and imaginary parts of f(x) for each x ∈ X, as
usual. Note that

|Re f(x)|, | Im f(x)| ≤ |f(x)| ≤ |Re f(x)|+ | Im f(x)|(11.8.1)

for every x ∈ X. This implies that f is summable as a complex-valued function
on X if and only if its real and imaginary parts are summable as real-valued
functions on X. In this case, we put∑

x∈X

f(x) =
∑
x∈X

Re f(x) + i
∑
x∈X

Im f(x),(11.8.2)

where the sums on the right side are defined as in the preceding section.
If f , g are complex-valued summable functions on X, then f+g is summable

on X too, as in Section 11.6. It is easy to see that∑
x∈X

(f(x) + g(x)) =
∑
x∈X

f(x) +
∑
x∈X

g(x).(11.8.3)

Of course, the real and imaginary parts of f +g are the same as the sums of the
real and imaginary parts of f and g, respectively. Thus (11.8.3) follows from the
definition (11.8.2) of the sum in the complex case and the analogous statement
for the sum in the real case.

If f is a complex-valued summable function on X and t ∈ C, then t f is
summable on X as well, as in Section 11.6 again. Let us check that∑

x∈X

t f(x) = t
∑
x∈X

f(x).(11.8.4)
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If t ∈ R, then this can be obtained from the definition (11.8.2) of the sum in the
complex case and the analogous property of the sum in the real case. Similarly,
if t is imaginary, then (11.8.4) can be reduced to the analogous statement in the
real case. If t ∈ C, then (11.8.4) can be derived from the previous two cases,
using (11.8.3).

Let f be a complex-valued summable function on X again, and observe that∣∣∣∣∑
x∈X

f(x)

∣∣∣∣ ≤ ∣∣∣∣∑
x∈X

Re f(x)

∣∣∣∣+ ∣∣∣∣∑
x∈X

Im f(x)

∣∣∣∣,(11.8.5)

by the definition (11.8.2) of the sum. This implies that∣∣∣∣∑
x∈X

f(x)

∣∣∣∣ ≤ ∑
x∈X

|Re f(x)|+
∑
x∈X

| Im f(x)|,(11.8.6)

because of (11.7.5). It follows that∣∣∣∣∑
x∈X

f(x)

∣∣∣∣ ≤ 2
∑
x∈X

|f(x)|,(11.8.7)

using the first step in (11.8.1). Of course, we would rather have that∣∣∣∣∑
x∈X

f(x)

∣∣∣∣ ≤ ∑
x∈X

|f(x)|.(11.8.8)

This corresponds to the ordinary triangle inequality for the standard absolute
value function on C in the case of finite sums. In this situation, one can get
(11.8.8) by approximating by finite sums. Some more details about this type of
approximation will be given in the next section.

11.9 Some properties of the sum

Let f be a real or complex-valued function on a nonempty set X, and suppose
for the moment that f has finite support in X. In this case, the sum

∑
x∈X f(x)

can be defined as a real or complex number by reducing to a finite sum. If f is
a nonnegative real-valued function on X, then we have seen that the definition
of the sum in Section 11.2 reduces to the same finite sum. If f is a real or
complex-valued function on X, then we can apply this to |f(x)|, to get that f is
summable on X. If f is a real-valued function on X, then the functions defined
on X in (11.7.1) have finite support. This implies that the definition of the sum
in Section 11.7 is the same as the finite sum, because of the analogous statement
for nonnegative real-valued functions on X with finite support. Similarly, if f
is a complex-valued function on X, then the real and imaginary parts of f have
finite support in X. It follows that the definition of the sum in the preceding
section is the same as the finite sum, because of the analogous statement for
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real-valued functions on X with finite support. In particular, (11.8.8) holds,
because of the ordinary triangle inequality for finite sums.

Now let f , g be real or complex-valued summable functions on X. Observe
that ∣∣∣∣∑

x∈X

f(x)−
∑
x∈X

g(x)

∣∣∣∣ = ∣∣∣∣∑
x∈X

(f(x)− g(x))

∣∣∣∣ ≤ 2
∑
x∈X

|f(x)− g(x)|.(11.9.1)

This uses the linearity of the sum in the first step, and (11.8.7) in the second
step. It follows that the mapping from a real or complex-valued summable
function f on X to its sum

∑
x∈X f(x) is uniformly continuous as a mapping

from ℓ1(X,R), ℓ1(X,C) into R, C, respectively. Here we use the corresponding
ℓ1 metric on the domain, as in (11.6.6), and the standard Euclidean metric on
the range.

One can use these properties of the sum to check that (11.8.8) holds for
all complex-valued summable functions f on X. More precisely, if f has finite
support in X, then we have already seen that (11.8.8) holds. Otherwise, if f
is any complex-valued summable function on X, then f can be approximated
by complex-valued functions on X with finite support with respect to the ℓ1

metric, as in Section 11.6. To get that f satisfies (11.8.8) as well, one can use
the continuity condition (11.9.1).

Once we have that (11.8.8) holds for every complex-valued summable func-
tion on X, we get that∣∣∣∣∑

x∈X

f(x)−
∑
x∈X

g(x)

∣∣∣∣ ≤ ∑
x∈X

|f(x)− g(x)|(11.9.2)

for all complex-valued summable functions f , g on X. This is basically the same
as (11.9.1), except that we use (11.8.8) in the second step. Of course, if f and g
are real-valued summable functions on X, then we could already get this using
(11.7.5).

Let f be a real or complex-valued summable function on X again. If E
is a nonempty subset of X, then the restriction of f to E is summable as
a real or complex-valued function on E, as appropriate. This follows from the
analogous statement for nonnegative real-valued summable functions, which was
mentioned in Section 11.4. In particular, this means that

∑
x∈E f(x) can be

defined as a real or complex number, as appropriate, as in the previous two
sections.

Note that ∑
x∈E

f(x) =
∑
x∈X

f(x)(11.9.3)

when f(x) = 0 for every x ∈ X \ E. This was mentioned in Section 11.3 when
f is a nonnegative real-valued function on X. If f is a real-valued summable
function onX with support contained in E, then the functions defined in (11.7.1)
have support contained in E too. In this case, (11.9.3) can be reduced to the
corresponding statement for nonnegative real-valued functions, because of the
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way that the sum was defined in Section 11.7. Similarly, if f is a complex-
valued summable function on X with support contained in E, then (11.9.3) can
be obtained from the corresponding statement for real-valued functions, applied
to the real and imaginary parts of f .

If E1 and E2 are nonempty disjoint subsets of X, then∑
x∈E1∪E2

f(x) =
∑
x∈E1

f(x) +
∑
x∈E2

f(x).(11.9.4)

This was mentioned in Section 11.5 when f is nonnegative. If f is any real or
complex-valued summable function onX, then (11.9.4) can be obtained from the
linearity of the sum, by expressing f on E1∪E2 as a sum of functions supported
in E1 and E2, as before. Alternatively, if f is a real-valued summable function
on X, then one can reduce to the case of nonnegative real-valued summable
functions on X, because of the way that the sum is defined in Section 11.7.
Similarly, if f is a complex-valued summable function on X, then one can apply
the previous statement to the real and imaginary parts of f .

11.10 Generalized convergence

Let f be a real or complex-valued function on a nonempty set X. The sum∑
x∈X

f(x)(11.10.1)

is said to converge in the generalized sense if there is a real or complex number
λ, as appropriate, such that for every ϵ > 0 there is a nonempty finite subset
Aϵ of X with the property that∣∣∣∣∑

x∈A

f(x)− λ

∣∣∣∣ < ϵ(11.10.2)

for every nonempty finite subset A of X with Aϵ ⊆ A. In this case, the value
of the sum (11.10.1) is defined to be λ. More precisely, one can check that λ
is unique when it exists. Of course, if X has only finitely many elements, then
one can take Aϵ = X for every ϵ > 0, to get that this condition holds trivially
with λ equal to the finite sum (11.10.1).

Suppose that f is summable on X, and let us check that the sum (11.10.1)
converges in the generalized sense, with the same value of the sum as defined
in Sections 11.2, 11.7, and 11.8. This is trivial when X has only finitely many
elements, and so we suppose now that X is an infinite set. If A is a nonempty
finite subset of X, then∑

x∈X

f(x) =
∑
x∈A

f(x) +
∑

x∈X\A

f(x),(11.10.3)
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as in (11.9.4). Note that X \A 6= ∅ in this situation, and that the restriction of
f to X \A is summable, as in the previous section. It follows that∣∣∣∣∑

x∈A

f(x)−
∑
x∈X

f(x)

∣∣∣∣ = ∣∣∣∣ ∑
x∈X\A

f(x)

∣∣∣∣ ≤ ∑
x∈X\A

|f(x)|,(11.10.4)

using (11.7.5) or (11.8.8) in the second step, as appropriate. Remember that
for each ϵ > 0 there is a nonempty finite subset A(ϵ) of X such that∑

x∈X\A(ϵ)

|f(x)| < ϵ,(11.10.5)

as in (11.4.10). If A(ϵ) ⊆ A, then X \A ⊆ X \A(ϵ), and hence∑
x∈X\A

|f(x)| ≤
∑

x∈X\A(ϵ)

|f(x)|,(11.10.6)

as in (11.3.4). Thus∣∣∣∣∑
x∈A

f(x)−
∑
x∈X

f(x)

∣∣∣∣ ≤ ∑
x∈X\A

|f(x)| ≤
∑

x∈X\A(ϵ)

|f(x)| < ϵ(11.10.7)

when A is a nonempty finite subset of X with A(ϵ) ⊆ A, as desired.

Alternatively, if f is a nonnegative real-valued summable function on X, then
the convergence of the sum (11.10.1) in the generalized sense can be obtained
from (11.4.7). If f is a real-valued summable function on X, then f can be
expressed as a difference of nonnegative real-valued summable functions on X, as
in (11.7.3). In this case, the convergence of the sum (11.10.1) in the generalized
sense can be reduced to the previous statement. Similarly, if f is a complex-
valued summable function on X, then the real and imaginary parts of f are
summable on X too. This permits one to reduce the convergence of (11.10.1)
in the generalized sense to the analogous statements for the real and imaginary
parts of f .

Let f be a real or complex-valued function on X again, and suppose that the
sum (11.10.1) converges in the generalized sense. Applying the earlier definition
with ϵ = 1, we get that there is a real or complex number λ, as appropriate,
and a nonempty finite subset A1 of X such that∣∣∣∣∑

x∈A

f(x)− λ

∣∣∣∣ < 1(11.10.8)

for every nonempty finite subset A of X with A1 ⊆ A. In particular,∣∣∣∣∑
x∈A

f(x)

∣∣∣∣ < |λ|+ 1(11.10.9)



11.11. COMPOSITIONS AND SUMS 215

for every nonempty finite subset A of X with A1 ⊆ A. Let us check that∣∣∣∣∑
x∈B

f(x)

∣∣∣∣ ≤ |λ|+ 1 +
∑
x∈A1

|f(x)|(11.10.10)

for every nonempty finite subset B of X. Of course, (11.10.10) follows from
(11.10.9) when A1 ⊆ B. Otherwise, we can apply (11.10.9) to A = B ∪ A1, to
get that ∣∣∣∣ ∑

x∈B∪A1

f(x)

∣∣∣∣ < |λ|+ 1.(11.10.11)

This implies that∣∣∣∣∑
x∈B

f(x)

∣∣∣∣ =

∣∣∣∣ ∑
x∈B∪A1

f(x)−
∑

x∈A1\B

f(x)

∣∣∣∣(11.10.12)

≤
∣∣∣∣ ∑
x∈B∪A1

f(x)

∣∣∣∣+ ∣∣∣∣ ∑
x∈A1\B

f(x)

∣∣∣∣
≤ |λ|+ 1 +

∑
x∈A1\B

|f(x)|.

This shows that (11.10.10) also holds when A1 \B 6= ∅, as desired.
If f is a nonnegative real-valued function on X, then (11.10.10) implies that

f is summable on X. If f is a real-valued function on X, then (11.10.10) implies
that the positive and negative parts of f are summable on X. More precisely,
one can get this by applying (11.10.10) to nonempty finite subsets B of X on
which f has constant sign. It follows that f is summable on X too in this case.
If f is a complex-valued function on X, then one can use (11.10.10) to get that
the real and imaginary parts of f are summable on X, and hence that f is
summable on X.

11.11 Compositions and sums

Let X and Y be nonempty sets, and let ϕ be a one-to-one mapping from X
onto Y . Also let f be a real or complex-valued function on Y , so that f(ϕ(x))
defines a real or complex-valued function on X, as appropriate. Note that∑

x∈X

|f(ϕ(x))| =
∑
y∈Y

|f(y)|,(11.11.1)

as in (11.3.2). Thus f is summable on Y if and only if f(ϕ(x)) is summable on
X. Let us check that ∑

x∈X

f(ϕ(x)) =
∑
y∈Y

f(y)(11.11.2)

in this case. If f is a nonnegative real-valued function on Y , then (11.11.2) is
the same as (11.11.1). If f is a real-valued function on Y , then one can get
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(11.11.2) by expressing f as a difference of nonnegative real-valued summable
functions on Y , as in Section 11.7. If f is a complex-valued summable function
on Y , then (11.11.2) can be obtained by applying the previous statement to the
real and imaginary parts of f .

Similarly, if f is a real or complex-valued function on Y , then one can check
directly that

∑
x∈X f(ϕ(x)) converges in the generalized sense if and only if∑

y∈Y f(y) converges in the generalized sense, with the same value of the sums.
This uses the fact that A 7→ ϕ(A) defines a one-to-one correspondence between
nonempty finite subsets of X and nonempty finite subsets of Y .

Now let X be a countably infinite set, and let {xj}∞j=1 be a sequence of
elements of X in which every element of X occurs exactly once. Thus j 7→ xj
is a one-to-one mapping from the set Z+ of positive integers onto X. Let f be
a real or complex-valued function on X, so that f(xj) may be considered as
a real or complex-valued function of j ∈ Z+, as appropriate. As before, f is
summable on X if and only if f(xj) is summable on Z+, in which case∑

j∈Z+

f(xj) =
∑
x∈X

f(x).(11.11.3)

Alternatively, the sum on the left converges in the generalized sense if and only
if the sum on the right converges in the generalized sense, with the same value
of the sum, as in the preceding paragraph.

Remember that
∞∑
j=1

|f(xj)| =
∑
j∈Z+

|f(xj)|,(11.11.4)

as in (11.2.4). Thus f(xj) is summable on Z+ if and only if the infinite series
on the left side of (11.11.4) converges in the usual sense, which means that∑∞

j=1 f(xj) converges absolutely. Under these conditions,

∞∑
j=1

f(xj) =
∑
j∈Z+

f(xj).(11.11.5)

More precisely, (11.11.5) is the same as (11.11.4) when f is real-valued and
nonnegative. If f is real-valued, then (11.11.5) can be obtained from the previous
statement by expressing f as a difference of nonnegative real-valued summable
functions. If f is complex-valued, then one can get (11.11.5) by considering the
real and imaginary parts separately. Alternatively, if the sum on the right side
of (11.11.5) converges in the generalized sense, then it is easy to see that the
sum on the left side of (11.11.5) converges, and with the same value of the sum.

11.12 Completeness of ℓ1 spaces

Let X be a nonempty set, and let {fj}∞j=1 be a sequence of real or complex-
valued functions on X that converge pointwise to a real or complex-valued
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function f on X, as appropriate. Suppose also that the fj ’s are summable on
X, with bounded ℓ1 norms, so that there is a nonnegative real number C such
that ∑

x∈X

|fj(x)| ≤ C(11.12.1)

for every j ≥ 1. We would like to show that f is summable on X too under
these conditions, with ∑

x∈X

|f(x)| ≤ C.(11.12.2)

If A is any nonempty finite subset of X, then∑
x∈A

|f(x)| = lim
j→∞

∑
x∈A

|fj(x)| ≤ C,(11.12.3)

using basic properties of limits in the first step, and (11.12.1) in the second step.
This implies (11.12.2), as desired.

Let us now check that ℓ1(X,R) and ℓ1(X,C) are complete as metric spaces,
with respect to the ℓ1 metric (11.6.6). Let {fj}∞j=1 be a sequence of real or
complex-valued summable functions on X that is a Cauchy sequence with re-
spect to the ℓ1 metric. This means that for each ϵ > 0 there is an L(ϵ) ∈ Z+

such that ∑
x∈X

|fj(x)− fl(x)| = ‖fj − fl‖1 < ϵ(11.12.4)

for every j, l ≥ L(ϵ). In particular, if x ∈ X, then it follows that

|fj(x)− fl(x)| < ϵ(11.12.5)

for every j, l ≥ L(ϵ). Thus {fj(x)}∞j=1 is a Cauchy sequence in R or C, as
appropriate, with respect to the standard Euclidean metric.

It is well known that R and C are complete as metric spaces with respect
to the corresponding Euclidean metric. Thus {fj(x)}∞j=1 converges in R or C,
as appropriate, for each x ∈ X. Put

f(x) = lim
j→∞

f(x)(11.12.6)

for every x ∈ X, which defines f as a real or complex-valued function on X, as
appropriate. We would like to show that f is summable on X, and that {fj}∞j=1

converges to f with respect to the ℓ1 metric. Of course, if X has only finitely
many elements, then this follows easily from pointwise convergence.

Let ϵ > 0 and l ≥ L(ϵ) be given, and consider {fj − fl}∞j=L(ϵ) as a sequence

of summable functions on X that converges pointwise to f −fl. Using (11.12.4)
and the remarks at the beginning of the section, we get that f − fl is summable
on X, with ∑

x∈X

|f(x)− fl(x)| ≤ ϵ.(11.12.7)

In particular, f is summable onX, because fl is summable onX. More precisely,
we can simply take ϵ = 1 and l = L(1) in this step. It follows from (11.12.7)
that {fj}∞j=1 converges to f with respect to the ℓ1 metric, as desired.



218 CHAPTER 11. SUMMABLE FUNCTIONS

11.13 Monotone convergence

Let X be a nonempty set, and let {fj}∞j=1 be a sequence of nonnegative real-
valued functions on X. Suppose that the fj ’s are monotonically increasing in
j, so that

fj(x) ≤ fj+1(x)(11.13.1)

for every x ∈ X and j ≥ 1. Put

f(x) = sup
j≥1

fj(x)(11.13.2)

for each x ∈ X, which defines f as a nonnegative extended real-valued function
on X. Equivalently, this means that

fj(x) → f(x) as j → ∞(11.13.3)

for every x ∈ X, as in Section 11.1. Note that∑
x∈X

fj(x) ≤
∑
x∈X

fj+1(x)(11.13.4)

for every j ≥ 1, because of (11.13.1), as in (11.3.11).
Similarly, ∑

x∈X

fj(x) ≤
∑
x∈X

f(x)(11.13.5)

for every j ≥ 1, because fj(x) ≤ f(x) for every x ∈ X and j ≥ 1, by construc-
tion. Thus

sup
j≥1

( ∑
x∈X

fj(x)
)
≤

∑
x∈X

f(x).(11.13.6)

We would like to show that

sup
j≥1

( ∑
x∈X

fj(x)
)
=

∑
x∈X

f(x)(11.13.7)

under these conditions. This is basically the same as saying that∑
x∈X

fj(x) →
∑
x∈X

f(x) as j → ∞,(11.13.8)

because of (11.13.4). More precisely, if fj is summable on X for each j ≥ 1,
then (11.13.7) is equivalent to (11.13.8), as in Section 11.1. Otherwise, if fj
is not summable on X for some j ≥ 1, then fj is not summable on X for all
sufficiently large j, because of (11.13.1). In this case, it is easy to see that f
is not summable on X, so that (11.13.7) holds, and that (11.13.8) holds in a
suitable sense.

In order to show (11.13.7) or (11.13.8), let a be a real number such that

a <
∑
x∈X

f(x).(11.13.9)
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By definition of the sum on the right, there is a nonempty finite subset A of X
such that

a <
∑
x∈A

f(x).(11.13.10)

Observe that ∑
x∈A

fj(x) →
∑
x∈A

f(x) as j → ∞,(11.13.11)

because of (11.13.3). It follows that

a <
∑
x∈A

fj(x)(11.13.12)

for all but finitely many j ≥ 1. This implies that

a <
∑
x∈X

fj(x)(11.13.13)

for the same j’s, and hence all but finitely many j ≥ 1. Using this, one can check
that (11.13.7) or (11.13.8) holds, as desired. This is the monotone convergence
theorem for sums. Of course, if X has only finitely many elements, then this is
more elementary, as in (11.13.11).

11.14 Dominated convergence

Let X be a nonempty set, and let {fj}∞j=1 be a sequence of real or complex-
valued functions on X that converges pointwise to a real or complex-valued
function f on X, as appropriate. Suppose that there is a nonnegative real-
valued summable function g on X such that

|fj(x)| ≤ g(x)(11.14.1)

for every x ∈ X and j ≥ 1. This implies that

|f(x)| ≤ g(x)(11.14.2)

for every x ∈ X, because {fj(x)}∞j=1 converges to f(x), by hypothesis. In
particular, fj is summable on X for each j ≥ 1, because of (11.14.1), and f is
summable on X too, because of (11.14.2). We would like to show that

lim
j→∞

∑
x∈X

|fj(x)− f(x)| = 0(11.14.3)

under these conditions. Of course, if X has only finitely many elements, then
this follows from standard results about sums of convergent sequences. Thus
we may suppose that X has infinitely many elements.

Let ϵ > 0 be given. Because g is summable on X, there is a nonempty finite
subset A0 of X such that ∑

x∈X\A0

g(x) < ϵ/3,(11.14.4)
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as in (11.4.10). Note that

|fj(x)− f(x)| ≤ |fj(x)|+ |f(x)| ≤ 2 g(x)(11.14.5)

for every x ∈ X and j ≥ 1, by (11.14.1) and (11.14.2). It follows that∑
x∈X\A0

|fj(x)− f(x)| ≤
∑

x∈X\A0

2 g(x) < 2 ϵ/3(11.14.6)

for every j ≥ 1.
As before,

lim
j→∞

∑
x∈A0

|fj(x)− f(x)| = 0,(11.14.7)

because A0 has only finitely many elements. Hence there is an L ∈ Z+ such
that ∑

x∈A0

|fj(x)− f(x)| < ϵ/3(11.14.8)

for every j ≥ L. Combining this with (11.14.6), we get that∑
x∈X

|fj(x)− f(x)| =
∑
x∈A0

|fj(x)− f(x)|+
∑

x∈X\A0

|fj(x)− f(x)|

< ϵ/3 + 2 ϵ/3 = ϵ(11.14.9)

for every j ≥ L, as desired.
Observe that∣∣∣∣∑

x∈X

fj(x)−
∑
x∈X

f(x)

∣∣∣∣ =

∣∣∣∣∑
x∈X

(fj(x)− f(x))

∣∣∣∣(11.14.10)

≤
∑
x∈X

|fj(x)− f(x)|

for every j ≥ 1. This uses (11.7.5) or (11.8.8), as appropriate, in the second
step. Thus (11.14.3) implies that

lim
j→∞

∑
x∈X

fj(x) =
∑
x∈X

f(x).(11.14.11)

The fact that this holds under these conditions is the dominated convergence
theorem for sums. If X has only finitely many elements, then this is a standard
result about sums of convergent sequences, as before.

11.15 Nonnegative sums of sums

Let X be a nonempty set, and let f be a nonnegative real-valued function on
X. Also let I be a nonempty set, and let Ej be a nonempty subset of X for
each j ∈ I. Suppose that

Ej ∩ El = ∅(11.15.1)
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for every j, l ∈ I with j 6= l, and put

E =
⋃
j∈I

Ej .(11.15.2)

As usual, ∑
x∈Ej

f(x)(11.15.3)

is defined as a nonnegative extended real number for each j ∈ I, so that (11.15.3)
may be considered as a nonnegative extended real-valued function of j on I.
Thus ∑

j∈I

( ∑
x∈Ej

f(x)
)

(11.15.4)

can also be defined as a nonnegative extended real number, as in Section 11.2.
Of course, ∑

x∈E

f(x)(11.15.5)

can be defined as a nonnegative extended real number as well. We would like to
show that (11.15.4) is equal to (11.3.3). This is elementary when E is a finite
set, which is the same as saying that I is a finite set, and that Ej is a finite set
for each j ∈ I.

Let us first verify that (11.15.5) is less than or equal to (11.15.4). Let A be
a nonempty finite subset of E. Put

IA = {j ∈ I : A ∩ Ej 6= ∅},(11.15.6)

which is a nonempty finite subset of I, and observe that

A =
⋃

j∈IA

A ∩ Ej .(11.15.7)

Thus ∑
x∈A

f(x) =
∑
j∈IA

( ∑
x∈A∩Ej

f(x)
)
,(11.15.8)

as mentioned earlier. If j ∈ IA, then∑
x∈A∩Ej

f(x) ≤
∑
x∈Ej

f(x),(11.15.9)

because A ∩ Ej ⊆ Ej . Combining this with (11.15.8), we get that∑
x∈A

f(x) ≤
∑
j∈IA

( ∑
x∈Ej

f(x)
)
.(11.15.10)

It follows that ∑
x∈A

f(x) ≤
∑
j∈I

( ∑
x∈Ej

f(x)
)
,(11.15.11)
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because IA ⊆ I. This implies that∑
x∈E

f(x) ≤
∑
j∈I

( ∑
x∈Ej

f(x)
)
,(11.15.12)

by the definition of the sum over E on the left.
Now let us check that (11.15.4) is less than or equal to (11.15.5). Let I0 be

a nonempty finite subset of I, and put

E(I0) =
⋃
j∈I0

Ej .(11.15.13)

Observe that ∑
j∈I0

( ∑
x∈Ej

f(x)
)
=

∑
x∈E(I0)

f(x).(11.15.14)

This follows from the analogous statement (11.5.13) for the union of two disjoint
nonempty subsets of X. Hence∑

j∈I0

( ∑
x∈Ej

f(x)
)
≤

∑
x∈E

f(x),(11.15.15)

because E(I0) ⊆ E. It follows that∑
j∈I

( ∑
x∈E

f(x)
)
≤

∑
x∈E

f(x),(11.15.16)

by the definition of the sum over I on the left. Combining (11.15.12) and
(11.15.16), we get that (11.15.4) is equal to (11.15.5), as desired.

11.16 Real and complex sums

Let X be a nonempty set again, and let f be a real or complex-valued summable
function on X. As in the previous section, we let I be a nonempty set, and we
let Ej be a nonempty subset of X for each j ∈ I. We suppose that the Ej ’s are
pairwise disjoint, as in (11.15.1), and we let E be their union, as in (11.15.2).
The sum (11.15.3) of f(x) over x ∈ Ej is now defined as a real or complex
number for each j ∈ I, as appropriate. Similarly, the sum (11.15.5) of f(x) over
x ∈ E is defined as a real or complex number, as appropriate.

If j ∈ I, then ∣∣∣∣ ∑
x∈Ej

f(x)

∣∣∣∣ ≤ ∑
x∈Ej

|f(x)|,(11.16.1)

as in (11.7.5) or (11.8.8), as appropriate. Thus∑
j∈I

∣∣∣∣ ∑
x∈Ej

f(x)

∣∣∣∣ ≤ ∑
j∈I

( ∑
x∈Ej

|f(x)|
)
,(11.16.2)
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where these sums over I are defined as nonnegative extended real numbers in
the usual way. The remarks in the previous section imply that∑

j∈I

( ∑
x∈Ej

|f(x)|
)
=

∑
x∈E

|f(x)|.(11.16.3)

We also have that ∑
x∈E

|f(x)| ≤
∑
x∈X

|f(x)| <∞,(11.16.4)

because f is summable on X, by hypothesis. It follows that∑
j∈I

∣∣∣∣ ∑
x∈Ej

f(x)

∣∣∣∣ <∞.(11.16.5)

This means that the sum (11.15.3) of f(x) over x ∈ Ej is summable as a real
or complex-valued function of j ∈ I, as appropriate. Hence the sum (11.15.4) of
this sum over j ∈ I can be defined as a real or complex number, as appropriate.
We would like to check that this sum is equal to the sum (11.15.5) of f(x) over
x ∈ E. If f is a nonnegative real-valued function on X, then this follows from
the remarks in the previous section. If f is a real-valued summable function
on X, then f can be expressed as the difference of two nonnegative real-valued
summable functions on X, as in (11.7.3). In this case, the equality of (11.15.4)
and (11.15.5) follows from the analogous statement for nonnegative real-valued
summable functions on X. If f is a complex-valued summable function on X,
then one can apply the previous statement to the real and imaginary parts of
f .

Let Y and Z be nonempty sets, and suppose that X = Y × Z is their
Cartesian product. If f(y, z) is a nonnegative real-valued function on Y × Z,
then ∑

z∈Z

f(y, z)(11.16.6)

defines a nonnegative extended real-valued function of y ∈ Y , and∑
y∈Y

f(y, z)(11.16.7)

defines a nonnegative extended real-valued function of z ∈ Z. Thus∑
y∈Y

(∑
z∈Z

f(y, z)
)

(11.16.8)

and ∑
z∈Z

( ∑
y∈Y

f(y, z)
)

(11.16.9)

are defined as nonnegative extended real numbers, as is∑
(y,z)∈Y×Z

f(y, z).(11.16.10)
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The remarks in the previous section imply that (11.16.8) is equal to (11.16.10).
This corresponds to expressing Y × Z as the union of the pairwise-disjoint
nonempty subsets of the form {y}×Z, with y ∈ Y . Similarly, (11.16.9) is equal
to (11.16.10), which corresponds to expressing Y ×Z as the uion of the pairwise-
disjoint nonempty subsets of the form Y × {z}, with z ∈ Z. In particular, it
follows that (11.16.8) is equal to (11.16.9).

Suppose now that f(y, z) is a real or complex-valued summable function on
Y ×Z. In this case, (11.16.6) defines a real or complex-valued function of y ∈ Y ,
and (11.16.7) defines a real or complex-valued function of z ∈ Z, as appropriate.
These functions are summable on Y and Z, respectively, as in (11.16.5). Hence
(11.16.8) and (11.16.9) are defined as real or complex numbers, as appropriate.
The sum (11.16.10) is also defined as a real or complex number, as appropriate,
and it is equal to (11.16.8) and (11.16.9), as before.

11.17 Square-summable functions

Let X be a nonempty set, and let f be a real or complex-valued function on X.
If |f(x)|2 is summable on X, then we say that f is square-summable on X. In
this case, we put

‖f‖2 =
( ∑

x∈X

|f(x)|2
)1/2

,(11.17.1)

using the nonnegative square root on the right side, as usual. If t ∈ R or
C, as appropriate, then t f is square-summable on X too, because |t f(x)|2 =
|t|2 |f(x)|2 is summable on X. We also have that

‖t f‖2 =
( ∑

x∈X

|t|2 |f(x)|2
)1/2

= |t| ‖f‖2.(11.17.2)

Remember that

a b ≤ 1

2
(a2 + b2)(11.17.3)

for all nonnegative real numbers a, b, as in (2.3.6). Let g be another real or
complex-valued square-summable function on X, as appropriate. Observe that

|f(x)| |g(x)| ≤ 1

2
(|f(x)|2 + |g(x)|2)(11.17.4)

for every x ∈ X, by (11.17.3). This implies that∑
x∈X

|f(x)| |g(x)| ≤
∑
x∈X

1

2
(|f(x)|2 + |g(x)|2)

=
1

2

∑
x∈X

|f(x)|2 + 1

2

∑
x∈X

|g(x)|2 =
1

2
‖f‖22 +

1

2
‖g‖22.(11.17.5)

In particular, |f(x)| |g(x)| is summable on X when f and g are square-summable
on X.
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More precisely, ∑
x∈X

|f(x)| |g(x)| ≤ ‖f‖2 ‖g‖2(11.17.6)

when f and g are square-summable onX. This is another version of the Cauchy–
Schwarz inequality. If ‖f‖2 = ‖g‖2 = 1, then (11.17.6) follows from (11.17.5).
If ‖f‖2, ‖g‖2 > 0, then one can reduce to the previous case, using (11.17.2).
Otherwise, if f(x) = 0 for every x ∈ X, or g(x) = 0 for every x ∈ X, then
(11.17.6) is trivial.

Note that

|f(x) + g(x)|2 ≤ (|f(x)|+ |g(x)|)2(11.17.7)

= |f(x)|2 + 2 |f(x)| |g(x)|+ |g(x)|2

for every x ∈ X. Hence∑
x∈X

|f(x) + g(x)|2(11.17.8)

≤
∑
x∈X

|f(x)|2 + 2
∑
x∈X

|f(x)| |g(x)|+
∑
x∈X

|g(x)|2.

If f and g are square-summable on X, then it follows that f + g is square-
summable on X, because |f(x)| |g(x)| is summable on X, as before. Using
(11.17.6), we get that

‖f + g‖22 ≤ ‖f‖22 + 2 ‖f‖2 ‖g‖2 + ‖g‖22 = (‖f‖2 + ‖g‖2)2.(11.17.9)

Equivalently, this means that

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2.(11.17.10)

11.18 ℓ2 Spaces

Let X be a nonempty set again, and let ℓ2(X,R) and ℓ2(X,C) be the spaces of
real and complex-valued square-summable functions on X, respectively. These
are linear subspaces of the real and complex vector spaces of all real and
complex-valued functions on X, respectively, as in the previous section. Note
that (11.17.1) defines a norm on each of ℓ2(X,R) and ℓ2(X,C), because of
(11.17.2), (11.17.10), and the fact that ‖f‖2 = 0 if and only if f(x) = 0 for
every x ∈ X. This implies that

d2(f, g) = ‖f − g‖2(11.18.1)

defines a metric on each of ℓ2(X,R) and ℓ2(X,C), as usual.
If f is a real or complex-valued square-summable function on X, then

|f(x)| ≤ ‖f‖2(11.18.2)
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for every x ∈ X, by the definition (11.17.1) of ‖f‖2. It follows that f is bounded
on X, with

‖f‖∞ ≤ ‖f‖2.(11.18.3)

Here ‖f‖∞ denotes the supremum norm of f , as in (1.13.4). If g is another real
or complex-valued square-summable function on X, as appropriate, then we get
that

d∞(f, g) ≤ d2(f, g),(11.18.4)

where d∞(f, g) is the supremum metric, as in (1.13.8).
Let f be a real or complex-valued square-summable function on X again, so

that |f |2 is summable on X. This implies that |f |2 vanishes at infinity on X,
as in Section 11.4. Using this, it is easy to see that f vanishes at infinity on X
as well. Thus

ℓ2(X,R) ⊆ c0(X,R), ℓ2(X,C) ⊆ c0(X,C).(11.18.5)

Let f be a real or complex-valued summable function on X, and remember
that f is bounded on X, as in Section 11.6. Observe that∑

x∈X

|f(x)|2 ≤ ‖f‖∞
∑
x∈X

|f(x)| = ‖f‖∞ ‖f‖1 ≤ ‖f‖21,(11.18.6)

where ‖f‖1 is the ℓ1 norm of f , as in (11.6.3). This implies that f is square-
summable on X, with

‖f‖2 ≤ ‖f‖1.(11.18.7)

Hence
ℓ1(X,R) ⊆ ℓ2(X,R), ℓ1(X,C) ⊆ ℓ2(X,C).(11.18.8)

If g is another real or complex-valued summable function on X, as appropriate,
then we have that

d2(f, g) ≤ d1(f, g),(11.18.9)

where d1(f, g) is the ℓ
1 metric, as in (11.6.6).

In particular, real or complex-valued functions on X with finite support
are square-summable. Let us verify that c00(X,R), c00(X,C) are dense in
ℓ2(X,R), ℓ2(X,C), respectively, with respect to the ℓ2 metric (11.18.1). This
is very similar to the analogous argument for ℓ1 spaces, in Section 11.6. As
before, there is nothing to do when X has only finitely many elements, and so
we suppose that X is an infinite set. Let f be a real or complex-valued square-
summable function on X, and let ϵ > 0 be given. Because |f |2 is summable on
X, there is a finite subset A(ϵ) of X such that∑

x∈X\A(ϵ)

|f(x)|2 < ϵ2,(11.18.10)

as in (11.4.10). Let fϵ be the real or complex-valued function on X, as appropri-
ate, that is equal to f on A(ϵ) and to 0 on X \A(ϵ). Thus fϵ has finite support
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in X, and f − fϵ is equal to 0 on A(ϵ), and to f on X \A(ϵ). It follows that∑
x∈X

|f(x)− fϵ(x)|2 =
∑

x∈X\A(ϵ)

|f(x)|2 < ϵ2,(11.18.11)

so that

‖f − fϵ‖2 < ϵ,(11.18.12)

as desired.

11.19 Completeness of ℓ2 spaces

Let X be a nonempty set, and let {fj}∞j=1 be a sequence of real or complex-
valued functions on X that converges pointwise to a real or complex-valued
function f on X, as appropriate. Suppose that the fj ’s are square-summable
on X, with bounded ℓ2 norms, so that

‖fj‖2 ≤ C(11.19.1)

for some nonnegative real number C and every j ≥ 1. Equivalently, this means
that ∑

x∈X

|fj(x)|2 ≤ C2(11.19.2)

for every j ≥ 1. Of course, {|fj(x)|2}∞j=1 converges to |f(x)|2 with respect to the
standard Euclidean metric on R for every x ∈ X, by well-known results about
convergent sequences of real or complex numbers. Under these conditions, f is
a square-summable function on X, with∑

x∈X

|f(x)|2 ≤ C2.(11.19.3)

This follows from the remarks at the beginning of Section 11.12, applied to |fj |2.
Of course, (11.19.3) is the same as saying that

‖f‖2 ≤ C.(11.19.4)

We would like to show that ℓ2(X,R), ℓ2(X,C) are complete with respect
to the ℓ2 metric (11.18.1). Let {fj}∞j=1 be a sequence of real or complex-valued
square-summable functions on X that is a Cauchy sequence with respect to the
ℓ2 metric. Thus for each ϵ > 0 there is an L(ϵ) ∈ Z+ such that

‖fj − fl‖2 < ϵ(11.19.5)

for every j, l ≥ L(ϵ). If x ∈ X, then it follows that

|fj(x)− fl(x)| < ϵ(11.19.6)
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for every j, l ≥ L(ϵ), by (11.18.2). This implies that {fj(x)}∞j=1 is a Cauchy
sequence in R or C, as appropriate, with respect to the standard Euclidean
metric.

Hence {fj(x)}∞j=1 converges in R or C, as appropriate, for every x ∈ X,
because R and C are complete as metric spaces. Let f(x) be the limit of this
sequence for each x ∈ X, so that f defines a real or complex-valued function on
X, as appropriate. We want to verify that f is square-summable on X, and that
{fj}∞j=1 converges to f with respect to the ℓ2 metric. If X has only finitely many
elements, then f is automatically square-summable on X, and convergence with
respect to the ℓ2 metric can be obtained from pointwise convergence.

Let ϵ > 0 and l ≥ L(ϵ) be given, and let us consider {fj − fl}∞j=L(ϵ) as a
sequence of square-summable functions on X that converges to f − fl pointwise
on X. The remarks at the beginning of the section imply that f − fl is square-
summable on X, with

‖f − fl‖2 ≤ ϵ,(11.19.7)

because of (11.19.5). In particular, this holds with ϵ = 1 and l = L(1). This
implies that f is square-summable on X, because fL(1) is square-summable on
X. Using (11.19.7) again, we get that {fj}∞j=1 converges to f with respect to

the ℓ2 metric, as desired.

11.20 Inner products on ℓ2 spaces

Let X be a nonempty set, and let f , g be square-summable real-valued func-
tions on X. Under these conditions, |f(x)| |g(x)| is summable as a nonnegative
real-valued function on X, as in Section 11.17. This means that f(x) g(x) is
summable as a real-valued function on X, so that

〈f, g〉 = 〈f, g〉ℓ2(X,R) =
∑
x∈X

f(x) g(x)(11.20.1)

can be defined as a real number, as in Section 11.7. This is the standard inner
product on ℓ2(X,R). In particular,

〈f, f〉ℓ2(X,R) =
∑
x∈X

f(x)2 = ‖f‖22,(11.20.2)

where ‖f‖2 is the ℓ2 norm of f , as in (11.17.1). As before,

|〈f, g〉ℓ2(X,R)| =
∣∣∣∣∑
x∈X

f(x) g(x)

∣∣∣∣ ≤ ∑
x∈X

|f(x)| |g(x)| ≤ ‖f‖2 ‖g‖2,(11.20.3)

using the Cauchy–Schwarz inequality (11.17.6) in the third step. Of course, it
is much easier to define this inner product on the space c00(X,R) of real-valued
functions on X with finite support, by reducing the sum on the right side of
(11.20.1) to a finite sum.
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Note that

〈f, g〉ℓ2(X,R) =
∑
x∈X

f(x) g(x) =
∑
x∈X

g(x) f(x) = 〈g, f〉ℓ2(X,R).(11.20.4)

If t ∈ R, then t f is square-summable on X too, and

〈t f, g〉ℓ2(X,R) =
∑
x∈X

t f(x) g(x)(11.20.5)

= t
∑
x∈X

f(x) g(x) = t 〈f, g〉ℓ2(X,R).

If f1 and f2 are square-summable real-valued functions on X, then we have seen
in Section 11.17 that f1 + f2 is square-summable on X as well. In this case, we
have that

〈f1 + f2, g〉ℓ2(X,R) =
∑
x∈X

(f1(x) + f2(x)) g(x)(11.20.6)

=
∑
x∈X

f1(x) g(x) +
∑
x∈X

f2(x) g(x)

= 〈f1, g〉ℓ2(X,R) + 〈f2, g〉ℓ2(X,R),

using the linearity of the sum in the second step. The analogous linearity
properties of the inner product (11.20.1) in g can be obtained in the same way,
or using (11.20.4).

Now let f , g be square-summable complex-valued functions on X. As before,
|f(x)| |g(x)| is summable as a nonnegative real-valued function on X, so that
f(x) g(x) is summable as a complex-valued function on X. Hence

〈f, g〉 = 〈f, g〉ℓ2(X,C) =
∑
x∈X

f(x) g(x)(11.20.7)

can be defined as a complex number, as in Section 11.8, which is the standard
inner product on ℓ2(X,C). As usual,

〈f, f〉ℓ2(X,C) =
∑
x∈X

|f(x)|2 = ‖f‖22,(11.20.8)

where ‖f‖2 is the ℓ2 norm of f . We also have that

|〈f, g〉ℓ2(X,C)| =
∣∣∣∣∑
x∈X

f(x) g(x)

∣∣∣∣ ≤ ∑
x∈X

|f(x)| |g(x)| ≤ ‖f‖2 ‖g‖2,(11.20.9)

using the Cauchy–Schwarz inequality (11.17.6) in the third step again.
In this situation, we have that

〈f, g〉ℓ2(X,C) =
( ∑

x∈X

f(x) g(x)
)
=

∑
x∈X

g(x) f(x) = 〈g, f〉ℓ2(X,C).(11.20.10)
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If t ∈ C, then t f is square-summable on X, and it is easy to see that

〈t f, g〉ℓ2(X,C) = t 〈f, g〉ℓ2(X,C),(11.20.11)

as before. Similarly, t g is square-summable on X, and

〈f, t g〉ℓ2(X,C) = t 〈f, g〉ℓ2(X,C),(11.20.12)

by the same type of argument, or using (11.20.10). If f1 and f2 are square-
summable complex-valued functions on X, then f1 + f2 are square-summable
on X, and

〈f1 + f2, g〉ℓ2(X,C) = 〈f1, g〉ℓ2(X,C) + 〈f2, g〉ℓ2(X,C),(11.20.13)

as in the real case. The analogous additivity property of the inner product
(11.20.7) in g can be obtained in the same way, or using (11.20.10).



Chapter 12

Some additional topics

12.1 Lebesgue measure and integration

Let a, b be real numbers with a < b, and remember that

d1(f, g) =

∫ b

a

|f(x)− g(x)| dx(12.1.1)

defines a metric on the space C([a, b],R) of continuous real-valued functions on
[a, b], as in Section 3.1. It is not difficult to see that this space is not complete
with respect to (12.1.1), as in Section A.5. In order to get completeness, one
can use the Lebesgue integral. Although we shall not discuss this in detail here,
let us mention a few other topics related to Lebesgue’s theory of measure and
integration.

Let {fj}∞j=1 be a sequence of continuous real-valued functions on [a, b], and
let f be another continuous real-valued function on [a, b]. If {fj}∞j=1 converges
to f uniformly on [a, b], then it is easy to see that {fj}∞j=1 converges to f with
respect to (12.1.1). In particular, this implies that

lim
j→∞

∫ b

a

fj(x) dx =

∫ b

a

f(x) dx,(12.1.2)

because ∣∣∣∣∫ b

a

fj(x) dx−
∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|fj(x)− f(x)| dx(12.1.3)

for every j ≥ 1. However, one can give examples to show that this does not
work if we only ask that {fj}∞j=1 converge to f pointwise on [a, b], as in Section
A.4.

Suppose now that {fj}∞j=1 is uniformly bounded on [a, b], in the sense that
there is a nonnegative real number A such that

|fj(x)| ≤ A(12.1.4)

231
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for every x ∈ [a, b] and j ≥ 1. If {fj}∞j=1 converges to f pointwise on [a, b],
then a classical theorem of Arzelà and Osgood implies that (12.1.2) holds, as
in [37, 69, 122, 126, 180]. More precisely, this works when the fj ’s and f
are Riemann integrable on [a, b], instead of continuous. One can also get that
{fj}∞j=1 converges to f with respect to (12.1.1), by considering {|fj − f |}∞j=1 in
the previous statement. Questions like these can be treated more extensively
using the Lebesgue integral.

If f is a bounded real-valued function on [a, b], then a famous theorem states
that f is Riemann integrable on [a, b] if and only if f is continuous at “almost
every” point in [a, b] with respect to Lebesgue measure. This means that the set
of points in [a, b] at which f is not continuous has Lebesgue measure equal to
0. This is discussed in many textbooks, as well as the articles [24, 147]. Some
related results can be found in [121, 134], and also in in [177], for Riemann–
Stieltjes integrability.

Now let f be a monotonically increasing real-valued function on [a, b]. It is
well known that the one-sided limits of f exist at every point in (a, b), as well
as the appropriate one-sided limits at the endpoints a, b. This can be used to
show that f is continuous at all but finitely or countably many points in [a, b].
A famous theorem states that f is also differentiable at almost every point in
[a, b], with respect to Lebesgue measure. Of course, the derivative is nonnegative
when it exists, because of monotonicity.

One can show that ∫ b

a

f ′(x) dx ≤ f(b)− f(a),(12.1.5)

where the integral on the left is defined as a Lebesgue integral. If f has a jump
discontinuity at any point in [a, b], then the inequality in (12.1.5) is strict. There
are also examples where f is both continuous and monotonically increasing on
[a, b], and the inequality in (12.1.5) is still strict.

Suppose that f is a real-valued Lipschitz function on [a, b], with respect
to the standard Euclidean metric on R and its restriction to [a, b], but not
necessarily monotonic. Another famous theorem states that f is differentiable
almost everywhere with respect to Lebesgue measure on [a, b]. It is easy to see
that

|f ′(x)| ≤ Lip(f),(12.1.6)

when the derivative exists. This permits the integral on the left side of (12.1.5)
to be defined as a Lebesgue integral, and in fact one has∫ b

a

f ′(x) dx = f(b)− f(a)(12.1.7)

in this situation. If f is a real-valued Lipschitz function on Rn for some n ∈ Z+,
with respect to the standard Euclidean metrics on Rn and R, then another
famous theorem states that f is differentiable almost everywhere with respect
to n-dimensional Lebesgue measure on Rn.
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12.2 Banach spaces

We shall now suppose that the reader has some familiarity with abstract vector
spaces and related notions. Let V be a vector space over the real or complex
numbers. Thus V is a set, on which operations of addition and scalar multiplica-
tion over R or C have been defined. These operations should satisfy a number
of standard conditions, such as associativity and commutativity of addition,
and compatibility of scalar multiplication with addition on V and addition and
multiplication on R or C, as appropriate. There should also be a distinguished
additive element in V , denoted 0.

As usual, a nonnegative real-valued function N on V is said to be a norm
on V if it satisfies the following three conditions. First, N(v) = 0 if and only if
v = 0. Second,

N(t v) = |t|N(v)(12.2.1)

for every v ∈ V and t ∈ R or C, as appropriate. Third,

N(v + w) ≤ N(v) +N(w)(12.2.2)

for every v, w ∈ V . In this case, it is easy to see that

dN (v, w) = N(v − w)(12.2.3)

defines a metric on V . If V is also complete as a metric space with respect to
(12.2.3), then V is said to be a Banach space with respect to N . Otherwise,
one can pass to a suitable completion of V , but we shall get into that now.

Suppose that {vj}∞j=1, {wj}∞j=1 are sequences of elements of V that converge
to v, w ∈ V , respectively, with respect to (12.2.3). Under these conditions, one
can check that {vj + wj}∞j=1 converges to v + w in V with respect to (12.2.3).
Similarly, suppose that {tj}∞j=1 is also a sequence of real or complex numbers
that converges to a real or complex number t, with respect to the standard
metric on R or C, as appropriate. In this case, one can verify that {tj vj}∞j=1

converges to t v in V with respect to (12.2.3). The proofs of these statements
are analogous to those for the corresponding facts about sums and products of
convergent sequences of real and complex numbers.

Let W be a linear subspace of V . This means that W is a subset of V that
contains 0 and satisfies the following two properties. First, if v, w ∈W , then

v + w ∈W.(12.2.4)

Second, if v ∈W and t ∈ R or C, as appropriate, then

t v ∈W.(12.2.5)

It follows thatW is also a vector space over R or C, as appropriate, with respect
to the restriction of the vector space operations on V to W . If N is a norm
on V , then it is easy to see that the restriction of N to W defines a norm on
W . Of course, the metric on W associated to the restriction of N to W is the
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same as the restriction to W of the metric (12.2.3) associated to N on V . If V
is a Banach space with respect to N and W is a closed set in V with respect to
(12.2.3), then W is a Banach space with respect to the restriction of N to W .
More precisely, W is complete with respect to the restriction of (12.2.3) to W
in this situation.

12.3 Hilbert spaces

Let V be a vector space over the real numbers. A real-valued function 〈v, w〉
defined for v, w ∈ V is said to be an inner product on V if it satisfies the
following three conditions. First, for each w ∈ V , 〈v, w〉 should be linear in V ,
as a mapping from V into R. This means that

〈v + v′, w〉 = 〈v, w〉+ 〈v′, w〉(12.3.1)

for every v, v′ ∈ V , and that

〈t v, w〉 = t 〈v, w〉(12.3.2)

for every v ∈ V and t ∈ R. Second, 〈v, w〉 should be symmetric in v and w, so
that

〈v, w〉 = 〈w, v〉(12.3.3)

for every v, w ∈ V . This implies that 〈v, w〉 is linear in w for every v ∈ V ,
because of the linearity in v. Third,

〈v, v〉 > 0(12.3.4)

for every v ∈ V with v 6= 0. Of course, 〈v, w〉 = 0 whenever v = 0 or w = 0,
because of linearity in v and w.

Similarly, if V is a vector space over the complex numbers, then a complex-
valued function 〈v, w〉 defined for v, w ∈ V is said to be an inner product if it
satisfies the following three conditions. First, for every w ∈ V , 〈v, w〉 should be
(complex) linear in v, as a mapping from V into C. This means that (12.3.1)
should hold for every v, v′ ∈ V , as before, and that (12.3.2) should hold for
every v ∈ V and t ∈ C. Second, 〈v, w〉 should be Hermitian symmetric in v and
w, which means that

〈w, v〉 = 〈v, w〉(12.3.5)

for every v, w ∈ V , where a is the complex conjugate of a complex number a.
Combining this with the first condition, we get that 〈v, w〉 is conjugate-linear
in w for each v ∈ V , so that

〈v, w + w′〉 = 〈v, w〉+ 〈v, w′〉(12.3.6)

for every w,w′ ∈ V , and

〈v, t w〉 = t 〈v, w〉(12.3.7)
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for every w ∈ V and t ∈ C. Observe that

〈v, v〉 = 〈v, v〉(12.3.8)

for every v ∈ V , which means that 〈v, v〉 ∈ R. The third condition is that
(12.3.4) hold for every v ∈ V with v 6= 0 again. As before, 〈v, w〉 = 0 whenever
v = 0 or w = 0.

Let (V, 〈v, w〉) be a real or complex inner product space. Put

‖v‖ = 〈v, v〉1/2(12.3.9)

for every v ∈ V , using the nonnegative square root on the right side. It is well
known that

|〈v, w〉| ≤ ‖v‖ ‖w‖(12.3.10)

for every v, w ∈ V , which is another version of the Cauchy–Schwarz inequality.
More precisely, this can be shown using the fact that

〈v + t w, v + t w〉 = ‖v + t w‖2 ≥ 0(12.3.11)

for every v, w ∈ V amd t ∈ R or C, as appropriate. Note that

‖t v‖ = |t| ‖v‖(12.3.12)

for every v ∈ V and t ∈ R or C, as appropriate. One can also check that

‖v + w‖ ≤ ‖v‖+ ‖w‖(12.3.13)

for every v, w ∈ V , using (12.3.10). Thus (12.3.9) defines a norm on V as a
vector space over R or C, as appropriate.

If V is complete with respect to the metric associated to the norm (12.3.9),
then V is said to be a Hilbert space with respect to the inner product 〈v, w〉.
Otherwise, one can pass to a completion of V , as before.

12.4 Infinite series in Banach spaces

Let V be a vector space over the real or complex numbers, and let N be a norm
on V . An infinite series

∞∑
j=1

vj(12.4.1)

with terms vj in V for each j ≥ 1 is said to converge in V with respect to N if
the corresponding sequence of partial sums

l∑
j=1

vj(12.4.2)

converges to an element of V with respect to the metric dN associated to N . In
this case, the value of the sum (12.4.1) is defined to be the limit of the sequence
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(12.4.2). If (12.4.1) converges in V , and if
∑∞

j=1 wj is another infinite series of

elements of V that converges in V , then
∑∞

j=1(vj+wj) converges in V too, with

∞∑
j=1

(vj + wj) =

∞∑
j=1

vj +

∞∑
j=1

wj .(12.4.3)

This follows from the analogous statement for sums of convergent sequences in
V , applied to the partial sums of these series. Similarly, if (12.4.1) converges in
V , and t ∈ R or C, as appropriate, then

∑∞
j=1 t vj converges in V as well, with

∞∑
j=1

t vj = t

∞∑
j=1

vj .(12.4.4)

This uses the fact that t times a convergent sequence in V converges to t times
the limit of the sequence.

The condition that the sequence of partial sums (12.4.2) of an infinite series
(12.4.1) be a Cauchy sequence with respect to the metric dN associated to N is
equivalent to saying that for each ϵ > 0 there is a positive integer L such that

N
( l∑

j=k

vj

)
< ϵ(12.4.5)

for every l ≥ k ≥ L. In particular, this holds when (12.4.1) converges in V ,
because a convergent sequence in any metric space is a Cauchy sequence. Note
that the Cauchy condition for the partial sums implies that

lim
l→∞

N(vl) = 0,(12.4.6)

by taking k = l in (12.4.5). This is the same as saying that {vj}∞j=1 converges
to 0 in V , with respect to dN . If V is a Banach space with respect to N , then
the Cauchy condition for the partial sums implies that the series converges in
V .

An infinite series (12.4.1) with terms in V is said to be absolutely convergent
with respect to N if

∞∑
j=1

N(vj)(12.4.7)

converges as an infinite series of nonnegative real numbers. Observe that

N
( l∑

j=k

vj

)
≤

l∑
j=k

N(vj)(12.4.8)

for every l ≥ k ≥ 1, by the triangle inequality for N . If (12.4.1) converges
absolutely with respect to N , then the sequence of partial sums (12.4.2) is a
Cauchy sequence with respect to dN . More precisely, one verify (12.4.5) using
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(12.4.8) and the analogous Cauchy condition for the partial sums of (12.4.7). If
V is a Banach space with respect to N , then it follows that (12.4.1) converges
in V .

Now let (V, 〈v, w〉) be a real or complex inner product space, and let us use
the corresponding norm ‖ · ‖, as in the previous section. A pair v, w of vectors
in V are said to be orthogonal if

〈v, w〉 = 0.(12.4.9)

In this case, it is easy to see that

‖v + w‖2 = ‖v‖2 + ‖w‖2.(12.4.10)

Let (12.4.1) be an infinite series of pairwise-orthogonal vectors in V , so that vj
is orthogonal to vk when j 6= k. This implies that∥∥∥∥ l∑

j=k

vj

∥∥∥∥2 =

l∑
j=k

‖vj‖2(12.4.11)

for every l ≥ k ≥ 1. If
∞∑
j=1

‖vj‖2(12.4.12)

converges as an infinite series of nonnegative real numbers, then the sequence
(12.4.2) is a Cauchy sequence in V . This uses (12.4.11) to get the Cauchy
condition (12.4.5) from the analogous Cauchy condition for the partial sums
of (12.4.12). If V is a Hilbert space with respect to 〈·, ·〉, then it follows that
(12.4.1) converges in V .

12.5 Bounded linear mappings

Let V and W be vector spaces, where more precisely V and W should both be
defined over the real numbers, or both defined over the complex numbers. Also
let NV and NW be norms on V and W , respectively. Thus

dV (v, v
′) = NV (v − v′) and dW (w,w′) = NW (w,w′)(12.5.1)

define metrics on V and W , respectively. A linear mapping T from V into W
is said to be bounded with respect to NV and NW if there is a nonnegative real
number C such that

NW (T (v)) ≤ C NV (v)(12.5.2)

for every v ∈ V . In this case, we have that

dW (T (u), T (v)) = NW (T (u)− T (v)) = NW (T (u− v))

≤ C NV (u− v) = C dV (u, v)(12.5.3)
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for every u, v ∈ V , so that T is Lipschitz with respect to the corresponding
metrics on V and W .

Conversely, if a linear mapping T from V into W is Lipschitz with respect
to the metrics dV (·, ·) and dW (·, ·), then it is easy to see that T is bounded
with respect to NV and NW . More precisely, if a linear mapping T from V
into W has the property that NW (T (v)) is bounded on a ball in V of positive
radius, then one can check that T is bounded as a linear mapping. This uses
scalar multiplication to obtain (12.5.2) from the boundedness of NW (T (v)) when
NV (v) is less than a fixed radius. In particular, if T is continuous at 0 with
respect to the metrics dV (·, ·) and dW (·, ·) on V and W , then there is a δ > 0
such that NW (T (v)) < 1 when v ∈ V satisfies NV (v) < 1. This implies that T
is a bounded as a linear mapping, as before.

If V is a finite-dimensional vector space, then every linear mapping T from
V into W is bounded. Of course, this is trivial when V = {0}. Otherwise, there
is a positive integer n such that V is isomorphic to Rn or Cn as a vector space
over the real or complex numbers, as appropriate. This permits one to reduce
to the same type of arguments as in Section 7.3.

Suppose that V 6= {0}, and that T is a bounded linear mapping from V into
W with respect to NV and NW . The corresponding operator norm is defined
by

‖T‖op = sup

{
NW (T (v))

NV (v)
: v ∈ V, v 6= 0

}
,(12.5.4)

where the finiteness of the supremum follows from the boundedness of T . If
V = {0}, then one can simply take ‖T‖op = 0. Equivalently, ‖T‖op is the same
as the infimum of the nonnegative real numbers C such that (12.5.2) holds. As
in Section 7.7, ‖T‖op is also the same as Lip(T ), defined with respect to the
metrics dV (·, ·) and dW (·, ·) associated to NV and NW .

If a is a real or complex number, as appropriate, then aT also defines a
linear mapping from V into W , where (aT )(v) = aT (v) for every v ∈ V . It is
easy to see that aT is a bounded linear mapping when T is, with

‖aT‖op = |a| ‖T‖op.(12.5.5)

Note that ‖T‖op = 0 if and only if T = 0, which is to say that T (v) = 0 for
every v ∈ V . If T1 and T2 are linear mappings from V into W , then T1 + T2
defines a linear mapping from V into W as well, with

(T1 + T2)(v) = T1(v) + T2(v).(12.5.6)

If T1, T2 are bounded as linear mappings with respect to NV and NW , then one
can check that T1 + T2 is bounded as well, with

‖T1 + T2‖op ≤ ‖T1‖op + ‖T2‖op.(12.5.7)

The space of linear mappings from V into W is a vector space over the real
or complex numbers, as appropriate, with respect to pointwise addition and
scalar multiplication of mappings. The space of bounded linear mappings from
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V into W is a linear subspace of the space of all linear mappings from V into
W , as in the preceding paragraph. The operator norm (12.5.4) defines a norm
on the space of bounded linear mappings from V into W , as a vector space over
the real or complex numbers, as appropriate.

Let Z be another vector space, which is defined over the real or complex
numbers, depending on whether V and W are defined over the real or complex
numbers. Also let NZ be a norm on Z, let T1 be a bounded linear mapping
from V into W , and let T2 be a bounded linear mapping from W into Z. Under
these conditions, one can verify that the composition T2 ◦ T1 is bounded as a
linear mapping from V into Z, with

‖T2 ◦ T1‖op ≤ ‖T1‖op ‖T2‖op.(12.5.8)

Here the various operator norms are defined with respect to the given norms on
V , W , and Z, as appropriate.



Appendix A

Some more on mappings,
metrics, and norms

A.1 A nice inequality

Let a be a positive real number, with a ≤ 1. If r and t are nonnegative real
numbers, then it is well known that

(r + t)a ≤ ra + ta.(A.1.1)

To see this, observe first that

max(r, t) ≤ (ra + ta)1/a.(A.1.2)

Using this, we get that

r + t ≤ max(r, t)1−a (ra + ta) ≤ (ra + ta)((1−a)/a)+1 = (ra + ta)1/a.(A.1.3)

This is equivalent to (A.1.1).
Let (X, d(x, y)) be a metric space. If 0 < a ≤ 1, then it is easy to see that

d(x, y)a(A.1.4)

is a metric on X as well, using (A.1.1). This was mentioned in Section 1.1 when
a = 1/2.

Let us use Bd(x, r), Bd(x, r) to denote the open and closed balls in X cen-
tered at x ∈ X with radius r with respect to d(·, ·), respectively, as in Section
1.9, and Bda(x, r), Bda(x, r) for the open and closed balls in X centered at x
with radius r with respect to d(·, ·)a, respectively. Observe that

Bda(x, ra) = Bd(x, r)(A.1.5)

for every r > 0, and that

Bda(x, ra) = Bd(x, r)(A.1.6)

240
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for every r ≥ 0.
It is easy to see that the identity mapping on X is uniformly continuous as

a mapping from X equipped with d(·, ·) into X equipped with d(·, ·)a. Simi-
larly, the identity mapping on X is uniformly continuous as a mapping from X
equipped with d(·, ·)a into X equipped with d(·, ·). These statements were also
mentioned in Section 1.1 when a = 1/2.

If a > 1, then one can verify that

|x− y|a(A.1.7)

is not a metric on the real line. This corresponds to the first part of Exercise
11 at the end of Chapter 2 in [155] when a = 2.

A.2 Some more Lipschitz conditions

Let (X, dX) and (Y, dY ) be metric spaces, and let α be a positive real number.
A mapping f from X into Y is said to be Lipschitz of order α if there is a
nonnegative real number C such that

dY (f(x), f(w)) ≤ C dX(x,w)α(A.2.1)

for every x,w ∈ X. This is the same as a Lipschitz mapping as in Section 1.1
when α = 1. One may also say that f is Hölder continuous of order α in this
case.

Lipschitz mappings of any order are uniformly continuous, as before. Of
course, (A.2.1) holds with C = 0 if and only if f is constant on X.

Let a be a positive real number, and suppose that

dX(x,w)a is a metric on X.(A.2.2)

This holds automatically when a ≤ 1, as in the previous section. Note that
(A.2.1) is the same as saying that

dY (f(x), f(w)) ≤ C (dX(x,w)a)α/a(A.2.3)

for every x, y ∈ X. This means that

f is Lipschitz of order α with respect to dX on X(A.2.4)

if and only if

f is Lipschitz of order α/a with respect to dX(·, ·)a on X,(A.2.5)

and with the same constant C.
Similarly, let b be a positive real number, and suppose that

dY (·, ·)b is a metric on Y.(A.2.6)
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Clearly (A.2.1) is the same as saying that

dY (f(x), f(w))
b ≤ Cb dX(x,w)α b(A.2.7)

for every x, y ∈ X. Thus

f is Lipschitz of order α with constant C with respect to dY on Y(A.2.8)

if and only if

f is Lipschitz of order α b with constant Cb(A.2.9)

with respect to dY (·, ·)b on Y.

Suppose that X = Y = R, with the standard Euclidean metric. If f is
Lipschitz of order α > 1, then

f is constant on R.(A.2.10)

More precisely, it is easy to see that the derivative of f is equal to 0 at every
point in R under these conditions.

A.3 Another nice inequality

Let X be a nonempty set, and let f be a real or complex-valued function on X
with finite support, as in Section 1.6. If p is a positive real number, then put

‖f‖p =
( ∑

x∈X

|f(x)|p
)1/p

.(A.3.1)

This is the same as in Section 1.6 when p = 1 or 2. If X = {1, . . . , n} for some
positive integer n, then this corresponds to an analogous expression in Section
1.4. We also put

‖f‖∞ = max
x∈X

|f(x)|,(A.3.2)

as before.
Observe that

‖f‖∞ ≤ ‖f‖p.(A.3.3)

If 0 < p1 ≤ p2 <∞, then we would like to check that

‖f‖p2
≤ ‖f‖p1

.(A.3.4)

Clearly

‖f‖p2
p2

=
∑
x∈X

|f(x)|p2 ≤ ‖f‖p2−p1
∞

∑
x∈X

|f(x)|p1 = ‖f‖p2−p1
∞ ‖f‖p1

p1
.(A.3.5)

This implies that
‖f‖p2

p2
≤ ‖f‖p2

p1
,(A.3.6)
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because of (A.3.3). It follows that (A.3.4) holds, as desired.
It is easy to see that (A.1.1) follows from (A.3.4), with p1 = a, p2 = 1, and

where X has two elements.
Observe that

‖f‖p ≤ (# supp f)1/p ‖f‖∞,(A.3.7)

where # supp f is the number of elements in the support of f . One can use this
and (A.3.3) to get that

‖f‖p → ‖f‖∞ as p→ ∞.(A.3.8)

Of course, ‖f‖p = 0 if and only if f = 0 on X, and

‖t f‖p = |t| ‖f‖p(A.3.9)

for every t ∈ R or C, as appropriate. If g is another real or complex-valued
function on X with finite support and 0 < p ≤ 1, then

‖f + g‖pp =
∑
x∈X

|f(x) + g(x)|p ≤
∑
x∈X

(|f(x)|+ |g(x)|)p

≤
∑
x∈X

(|f(x)|p + |g(x)|p) =
∑
x∈X

|f(x)|p +
∑
x∈X

|g(x)|p(A.3.10)

= ‖f‖pp + ‖g‖pp,

using (A.1.1) in the third step, with a = p. This implies that

‖f − g‖pp(A.3.11)

defines a metric on c00(X,R) and c00(X,C) when 0 < p ≤ 1.

A.4 Some functions on [0, 1]

Let j be a positive integer, and let fj be the real-valued function defined on
[0, 1] by

fj(x) = 2 j x when 0 ≤ x ≤ 1/(2 j)(A.4.1)

= 2− 2 j x when 1/(2 j) ≤ x ≤ 1/j

= 0 when 1/j ≤ x ≤ 1.

Thus
fj(0) = 0, fj(1/(2 j)) = 1, and f(1/j) = 0,(A.4.2)

with the overlapping definitions of fj(x) agreeing at x = 1/(2 j), 1/j. Equiv-
alently, fj is defined to be linear on [0, 1/(2 j)] and [1/(2 j), 1/j], with these
values at the endpoints. Note that fj is continuous on [0, 1]. One can check
that

{fj}∞j=1 converges to 0 pointwise on [0, 1],(A.4.3)
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and not uniformly.
In fact,

‖fj‖∞ = 1(A.4.4)

for every j, where ‖ · ‖∞ is the supremum norm on C([0, 1],R), as before.
Observe that

‖fj‖1 =

∫ 1

0

fj(x) dx = 2

∫ 1/(2 j)

0

fj(x) dx = 2 j (1/(2 j))2 = 1/(2 j)(A.4.5)

for every j, where ‖ · ‖1 is as in (1.15.4). More precisely,

fj(x) = fj((1/j)− x) when 0 ≤ x ≤ 1/j,(A.4.6)

which is to say that fj(x) is symmetric about x = 1/(2 j) on [0, 1/j]. This
implies that the integrals of fj(x) over [0, 1/(2 j)] and [1/(2 j), 1/j] are the same.
Of course, (A.4.5) is the same as the area of the triangle determined by the graph
of fj on [0, 1/j].

Similarly,

‖fj‖22 =

∫ 1

0

fj(x)
2 dx = 2

∫ 1/(2 j)

0

fj(x)
2 dx(A.4.7)

= (2/3) (2 j)2 (1/(2 j))3 = 1/(3 j)

for every j, where ‖ · ‖2 is as in (1.15.6). This uses (A.4.6) in the second step, to
get that the integrals of fj(x)

2 over [0, 1/(2 j)] and [1/(2 j), 1/j] are the same.
It follows that

‖fj‖2 = 1/(3 j)1/2(A.4.8)

for each j.
If α ∈ R, then one can verify that

{j−α fj}∞j=1 converges to 0 pointwise on [0, 1].(A.4.9)

Note that
‖j−α fj‖∞ = j−α(A.4.10)

for every j, by (A.4.4). This implies that {j−α fj}∞j=1 is bounded with respect
to the supremum metric exactly when α ≥ 0, and that {fj}∞j=1 converges to 0
with respect to the supremum metric exactly when α > 0.

Similarly,
‖j−α fj‖1 = (1/2) j−1−α(A.4.11)

for every j, by (A.4.5). This means that {j−α fj}∞j=1 is bounded with respect
to the metric d1 on C([0, 1],R) associated to ‖ · ‖1 as in (1.15.10) exactly when
α ≥ −1, and that {j−α fj}∞j=1 converges to 0 with respect to d1 exactly when
α > −1. We also have that

‖j−α fj‖2 = (1/
√
3) j−(1/2)−α(A.4.12)

for every j, by (A.4.8). It follows that {j−α fj}∞j=1 is bounded with respect to
the metric d2 on C([0, 1],R) associated to ‖ · ‖2 as in (1.15.11) if and only if
α ≥ −1/2, and that {j−α fj}∞j=1 converges to 0 with respect to d2 if and only
if α > −1/2.
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A.5 Some Cauchy sequences

Let j be a positive integer, and let fj be the real-valued function defined on
[0, 1] by

fj(x) = 0 when 0 ≤ x ≤ 1/2− 1/(2 j)

= 2 j (x− (1/2− 1/(2 j))) when 1/2− 1/(2 j) ≤ x ≤ 1/2(A.5.1)

= 1 when 1/2 ≤ x ≤ 1.

The second case says that fj is linear in that range, with the same values at
the endpoints as in the other two cases. In particular, fj is continuous on [0, 1]
for each j. It is easy to see that {fj}∞j=1 converges pointwise on [0, 1] to the
real-valued function f defined on [0, 1] by

f(x) = 0 when 0 ≤ x < 1/2(A.5.2)

= 1 when 1/2 ≤ x ≤ 1.

Note that {fj}∞j=1 does not converge to f uniformly on [0, 1].
However, one can check that {fj}∞j=1 is a Cauchy sequence in C([0, 1],R)

with respect to the metric d1 defined in (1.15.10). Basically, {fj}∞j=1 converges
to f with respect to a metric like d1 on a larger space. Similarly, one can verify
that {fj}∞j=1 is a Cauchy sequence in C([0, 1],R) with respect to the metric d2
defined in (1.15.11).

Let j be a positive integer again, and let fj be the real-valued function
defined on [0, 1] by

fj(x) = min(1/
√
x, j),(A.5.3)

where the right side is interpreted as being equal to j when x = 0. Note that
fj is continuous on [0, 1] for each j. One can check that {fj}∞j=1 is a Cauchy
sequence in C([0, 1],R) with respect to d1. However, {fj}∞j=1 is not bounded as
a sequence in C([0, 1],R) with respect to d2.

Now let f be a real or complex-valued function on X = Z+. If j is a positive
integer, then let fj be the real or complex-valued function, as appropriate,
defined on Z+ by

fj(l) = f(l) when l ≤ j(A.5.4)

= 0 when l > j.

Clearly {fj}∞j=1 converges to f pointwise on Z+. If

lim
l→∞

f(l) = 0,(A.5.5)

then {fj}∞j=1 converges to f uniformly on Z+.
By construction, the support of fj has only finitely many elements for each

j. Suppose for the moment that

∞∑
l=1

|f(l)|(A.5.6)
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converges as an infinite series of nonnegative real numbers. In this case, one
can check that {fj}∞j=1 is a Cauchy sequence in c00(Z+,R) or c00(Z+,C), as
appropriate, with respect to the metric d1(·, ·) defined in Section 1.6. Similarly,
suppose instead that

∞∑
l=1

|f(l)|2(A.5.7)

converges as an infinite series of nonnegative real numbers. One can verify that
{fj}∞j=1 is a Cauchy sequence in c00(Z+,R) or c00(Z+,C), as appropriate, with
respect to the metric d2(·, ·) defined in Section 1.6 in this situation.

A.6 Norms and convexity

If the reader is familiar with the abstract notion of a vector space, then let V
be a vector space over the real numbers. Otherwise, one can consider particular
situations like V = Rn for some positive integer n, or a vector space of real-
valued functions on a nonempty set. As usual, a subset E of V is said to be
convex if for every v, w ∈ E and t ∈ R with 0 ≤ t ≤ 1 we have that

t v + (1− t)w ∈ E.(A.6.1)

Let N be a nonnegative real-valued function on V such that

N(t v) = |t|N(v)(A.6.2)

for every t ∈ R and v ∈ V . If N also satisfies the triangle inequality

N(v + w) ≤ N(v) +N(w)(A.6.3)

for every v, w ∈ V , then N is said to be a seminorm on V . Thus a norm on V
is the same as a seminorm N such that N(v) > 0 for every v ∈ V with v 6= 0.
Put

BN = {v ∈ V : N(v) ≤ 1},(A.6.4)

which is the closed unit ball in V with respect to N . If N is a seminorm on
V , then it is easy to see that BN is a convex subset of V . Conversely, if N is
a nonnegative real-valued function on V that satisfies (A.6.2), and if BN is a
convex set in V , then N satisfies (A.6.3), and hence is a seminorm on V . This
is not too difficult to show, directly from the definitions.

Let X be a nonempty set, and let c00(X,R) be the space of real-valued
functions on X with finite support, as in Section 1.6. If f ∈ c00(X,R) and p
is a positive real number, then ‖f‖p may be defined as in Section A.3. This
satisfies the first two conditions in the definition of a norm on c00(X,R), as
before. If p ≥ 1, then one can show that the corresponding closed unit ball

Bp = {f ∈ c00(X,R) : ‖f‖p ≤ 1}(A.6.5)
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is a convex set in c00(X,R). More precisely, (A.6.5) is the same as taking

Bp =

{
f ∈ c00(X,R) : ‖f‖pp =

∑
x∈X

|f(x)|p ≤ 1

}
.(A.6.6)

One can show that this is a convex subset of c00(X,R) when p ≥ 1, using the
convexity of rp for r ≥ 0 when p ≥ 1. This implies that ‖f‖p defines a norm
on c00(X,R) when p ≥ 1, as in the preceding paragraph. If 0 < p < 1, then
(A.6.5) is not convex in c00(X,R) when X has at least two elements.

A vector space over the complex numbers may be considered as a vector space
over the real numbers as well, to which the earlier remarks about convexity can
be applied. In particular, there are analogues of the statements in the preceding
paragraph for the space c00(X,C) of complex-valued functions on X with finite
support.

Let n be a positive integer, and let N be a seminorm on Rn. The closed
unit ball BN in Rn with respect to N is convex, as before, as is the open unit
ball

BN = {v ∈ Rn : N(v) < 1}.(A.6.7)

Note that BN and BN are also symmetric about the origin, which is to say
that they are invariant under the mapping v 7→ −v on Rn. One can show that
N is continuous as a real-valued function on Rn, and in fact it is Lipschitz
with respect to the standard Euclidean metric on Rn, as in Section 6.7. This
implies that BN is an open set, and BN is a closed set, with respect to the
standard Euclidean metric on Rn. If N is a norm on Rn, then the standard
Euclidean norm on Rn is bounded by a constant multiple of N , as in Section
6.7. It follows that BN and BN are bounded sets with respect to the standard
Euclidean metric on Rn in this case.

A.7 Path-connected sets

Let (X, dX) be a metric space, and let a, b be real numbers with a < b. Suppose
that

p is a continuous mapping from the closed interval [a, b] into X,(A.7.1)

with respect to the restriction of the standard Euclidean metric on R to [a, b].
Under these conditions, one can check that

p([a, b]) is a connected subset of X.(A.7.2)

More precisely, it is well known that [a, b] is a connected subset of the real
line, with respect to the standard metric. This implies that [a, b] is connected
as a subset of itself, with respect to the restriction of the standard metric on R
to [a, b], as in Section 8.12. It follows that (A.7.2) holds, because of the well-
known theorem that continuous mappings send connected sets to connected
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sets. Alternatively, one can extend p to a continuous mapping from R into X,
by putting p(t) = p(a) when t < a, and p(t) = p(b) when t > b.

A subset E of X is said to be path connected if for every pair of points
x,w ∈ E there are real numbers a, b with a < b and a continuous mapping p
from [a, b] into X such that p(a) = x, p(b) = w, and

p([a, b]) ⊆ E.(A.7.3)

It is well known and not too difficult to show that

path-connected sets are connected,(A.7.4)

using (A.7.2).
If E is a convex set in Rn for some positive integer n, then

E is path connected,(A.7.5)

with respect to the standard Euclidean metric on Rn. Note that connected
subsets of R are convex.

If U is a connected open set in Rn, then it is well known that

U is path connected.(A.7.6)

To see this, let x ∈ U be given, and let Ux be the set of w ∈ U for which there
is a continuous path in U from x to w, as before. One can check that

Ux is an open set in Rn.(A.7.7)

Similarly, one can verify that

U \ Ux is an open set in Rn.(A.7.8)

If U is connected, then it follows that

Ux = U.(A.7.9)

It is well known that there are connected subsets of R2 that are not path
connected.

If E is a connected set in any metric space X, then it is well known and not
too difficult to show that

E is connected in X(A.7.10)

too. However, there are path-connected subsets of R2 whose closures are not
path connected.

Let (Y, dY ) be another metric space, and let f be a continuous mapping from
X into Y . If E is a path-connected subset of X, then it is easy to see that

f(E) is path connected in Y.(A.7.11)
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contraction mapping theorem, 121
convergent series, 23, 235
convex sets, 246
Cramer’s rule, 159

dense sets, 46
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of order α, 241
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pointwise boundedness, 77
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rank theorem, 158, 162
rearrangements, 92
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Weierstrass’ criterion, 85
Weierstrass’ theorem, 46

Z+, 8


