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Preface

These informal notes are largely concerned with “calculus on manifolds”, where
“manifold” will normally mean something like a reasonably nice submanifold
of Rn for some positive integer n, perhaps with some sort of reasonable nice
boundary. The reader is expected to have some familiarity with basic analysis,
at least on Euclidean spaces, as well as linear algebra. Of course, the reader
should also be familiar with multivariable calculus, and my colleague Frank
Jones’ book [92] is a very helpful resource.

A basic question to be addressed here is

What is a differential form?

Normally we might be concerned with differential forms that depend on a point,
and we may also be interested in continuity or differentiability properties of the
form, as a function of the point. In order to answer the previous question, a
more basic question to be addressed is

What is a differential form at a point?

This involves multilinear functions, which will be discussed starting in Chapter
1.

More precisely, differential forms involve alternating multilinear functions,
and we shall look at symmetric multilinear functions some too. This is related
to permutations on finite sets, and the notion of even and odd permutations
in particular. A bit of group theory is relevant here, but the reader is not
necessarily expected to be familiar with that already.

We shall be interested in multiplying differential forms as well. This is related
to some other aspects of abstract algebra, and again the reader is not necessarily
expected to be familiar with that already. Certain products of multilinear forms
will be discussed in Chapter 2, corresponding to multiplying differential forms
at a point in particular. Differential forms are formally defined in Chapter 3,
along with related continuity and differentiability properties.

In Chapter 2, we shall also consider linear mappings between vector spaces,
and their relationship with multilinear functions on these vector spaces. This
will be used in Chapter 4 to pull differential forms back using differentiable
mappings. This works for some other types of tensor fields too, as we shall see.
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There is a particular type of derivative of a differential form known as the ex-
terior derivative, which will be discussed in Chapter 4 as well. This includes ex-
terior derivatives of products, and the relationship between the exterior deriva-
tive and pulling differential forms back using differentiable mappings.

We shall sometimes be concerned with n-dimensional volumes of reasonably
nice subsets of Rn, and integrals of continuous real-valued functions on them.
The reader is not necessarily expected to be familiar with Lebesgue measure or
integration, which permits one to deal with wider classes of sets and functions.
See Frank Jones’ book [91], for instance.

The inverse function theorem is reviewed in Chapter 5, without getting into
the proof, except for a few basic points. This includes some preliminary re-
marks about matrix-valued functions and invertible matrices. Diffeomorphisms
between open subsest of Rn are discussed as well. Some related aspects of anal-
ysis on Euclidean spaces are mentioned too, which will also be helpful later.
Among the various topics are some constructions of smooth real-valued func-
tions of one or more variables, and cells in Rn.

Chapter 6 is largely concerned with integration of differential forms. This
means integration of differential n-forms on Rn, and on suitable n-dimensional
objects in higher-dimensional Euclidean spaces. We shall also look at the role of
the injectivity of the differential of a continuously-differentiable mapping from
an open subset of Rn into Rm when m > n. The implicit function theorem
is related to the surjectivity of the differential of a continuously-differentiable
mapping from an open subset of Rm into Rn when m > n. We shall consider
whether a diffeomorphism between open subsets of Rn preserves or reverses
orientations as well.

Chapter 7 deals with n-simplices in Rm parameterized by various types of
mappings, starting with affine mappings. We also consider n-chains, which cor-
respond to formal sums of finitely many parameterized n-simplices with integer
coefficients. The boundary of a parameterized n-simplex can be defined as an
(n−1)-chain, for instance. Under suitable conditions, Stokes’ theorem says that
the integral of a differential (n − 1)-form ω over the boundary of an n-chain Γ
is equal to the integral of the exterior derivative of ω over Γ. This is discussed
in the first five sections of Chapter 8.

Vector fields are discussed briefly in Chapter 4, and we return to this in
Chapter 8. In particular, we consider Lie brackets of vector fields with suit-
able regularity on open sets in Rn, which corresponds to commutators of the
associated first-order differential operators. A version of the Poincaré lemma is
discussed as well.

Lie derivatives of functions and vector fields are discussed in Section 8.8, and
we continue with Lie derivatives of some other tensor fields in Chapter 9. More
precisely, tensor fields of type (0, k) were discussed in Sections 4.1 and 4.2, and
vector fields may be considered as tensor fields of type (1, 0), as in Section 4.3.
We shall also consider tensor fields of type (1, k) on open sets in Rn. Interior
products of multilinear forms on a vector space by elements of the vector space
are discussed as well.

Some related topics involving linear and abstract algebra, Lie algebras, and
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complex analysis are discussed in the appendices. A number of books and other
references may be found in the bibliography with more information and various
perspectives. Of course, there are many other texts dealing with questions like
these, and adjacent areas of mathematics.

There are also some places along the way with some elaborations or other
matters that may not be neeeded for the moment, and that are related to the
broader subject. The reader may want to skip some of these parts, at least
temporarily, or simply not dwell on them too much at the beginning.
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Chapter 1

Some helpful algebra

1.1 The binomial theorem

Let n be a positive integer, and let x, y be real numbers. It is well known that

(x+ y)n =

n∑
j=0

(
n

j

)
xj yn−j ,(1.1.1)

where the binomial coefficients
(
n
j

)
are given by(

n

j

)
=

n!

j! (n− j)!
.(1.1.2)

Of course, if l is a positive integer, then

l! =

l∏
k=1

k,(1.1.3)

which is interpreted as being equal to 1 when l = 0.
It is easy to see that (x+ y)n can be expressed as in the right side of (1.1.1)

for some coefficients
(
n
j

)
, which are positive integers. The expression (1.1.2)

for these coefficients can be verified using induction. This can also be obtained
using calculus. One can check that these are the only values of the coefficients
for which (1.1.1) holds for all x, y. Note that

(
n
j

)
is the same as the number of

ways of choosing j elements from a set with n elements.

1.2 Polynomials on Rn

The real line is denoted R, as usual. Let n be a positive integer, and let Rn

be the space of n-tuples x = (x1, . . . , xn) of real numbers. If x, y ∈ Rn, then
x+ y ∈ Rn is defined by adding the coordinates of x and y, so that

x+ y = (x1 + y1, . . . , xn + yn).(1.2.1)

1
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Similarly, if x ∈ Rn and t ∈ R, then t x ∈ Rn is defined by multiplying the
coordinates of x by t, so that

t x = (t x1, . . . , t xn).(1.2.2)

It is well known that Rn is a vector space over the real numbers with respect
to these operations of addition and scalar multiplication.

In order to talk about polynomials on Rn, it will be helpful to introduce
some additional notation and terminology. By a multi-index we mean an n-tuple
α = (α1, . . . , αn) of nonnegative integers. If α is a multi-index and x ∈ Rn,
then we put

xα =

n∏
j=1

x
αj

j .(1.2.3)

Here x
αj

j is interpreted as being equal to 1 when αj = 0, even if xj = 0. We
may refer to xα as the monomial associated to α.

A polynomial on Rn may be expressed as a linear combination of finitely
many monomials. This will be discussed further in the next section.

1.2.1 Homogeneous polynomials

Let d be a nonnegative integer, and suppose for the moment that

n∑
j=1

αj = d.(1.2.4)

Put
fα(x) = xα(1.2.5)

for each x ∈ Rn, for convenience. Observe that

fα(t x) = td fα(x)(1.2.6)

for every t ∈ R and x ∈ Rn. Thus fα is homogeneous of degree d on Rn.
A polynomial on Rn is homogeneous of degree d if it can be expressed as a
linear combination of monomials xα corresponding to multi-indices α that satisfy
(1.2.4).

It is well known that the number of multi-indices α satisfying (1.2.4) is equal
to (

n+ d− 1

n− 1

)
.(1.2.7)

This is the same as the number of ways of choosing n − 1 elements from a set
of n + d − 1 elements, as mentioned in the previous section. More precisely,
suppose that we have a set of n + d − 1 elements that is linearly ordered, like
the set of positive integers from 1 to n+d−1. If we choose n−1 elements from
this set, then the other d elements of the set can be partitioned into n subsets
in a natural way, some of which may be empty. The numbers of the elements
of these n subsets correspond exactly to a multi-index α that satisfies (1.2.4).
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1.3 More on polynomials

Let n be a positive integer, and let N be a nonnegative integer. A polynomial
on Rn of degree less than or equal to N with real coefficients may be expressed
as

p(x) =
∑

α1+···+αn≤N

cα x
α.(1.3.1)

More precisely, the sum is taken over all multi-indices α with

α1 + · · ·+ αn ≤ N,(1.3.2)

and it is easy to see that there are only finitely many such multi-indices. The
coefficient cα is supposed to be a real number for each of these multi-indices α,
so that (1.3.1) defines a real-valued function on Rn.

It is well known that the coefficients cα are uniquely determined by the
corresponding function p(x) on Rn. This can be obtained by considering p and
its derivatives at 0.

Let P(Rn) be the space of all polynomials on Rn with real coefficients.
This is a linear subspace of the space of all real-valued functions on Rn, so
that P(Rn) may be considered as a vector space over the real numbers with
respect to pointwise addition and scalar multiplication of functions. Of course,
pointwise addition and scalar multiplication of polynomials on Rn corresponds
exactly to termwise addition and scalar multiplications of sums as in the right
side of (1.3.1).

1.3.1 More on homogeneous polynomials

Let d be a nonnegative integer, and suppose that a polynomial p on Rn can be
expressed as

p(x) =
∑

α1+···+αn=d

cα x
α,(1.3.3)

where more precisely the sum is taken over all multi-indices α with

α1 + · · ·+ αn = d,(1.3.4)

and the coefficients cα are real numbers. This implies that p is homogeneous of
degree d on Rn, in the sense that

p(t x) = td p(x)(1.3.5)

for every t ∈ R and x ∈ Rn, as in Subsection 1.2.1. Conversely, if a polynomial
p on Rn is homogeneous of degree d, then one can check that p can be expressed
as in (1.3.3).

Of course, homogeneous polynomials on Rn of degree 0 are the same as
constant functions on Rn. A homogeneous polynomial of degree 1 on Rn is the
same as a linear functional on Rn, which is to say a linear mapping from Rn

into R.
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Let Pd(Rn) be the space of polynomials on Rn with real coefficients that are
homogeneous of degree d. This is a linear subspace of P(Rn). The collection
of monomials xα, where α is a multi-index that satisfies (1.3.4), is a basis for
Pd(Rn), as a vector space over the real numbers. Thus

the dimension of Pd(Rn) is equal to (1.2.7),(1.3.6)

as a vector space over the real numbers.
Let p1, p2 be polynomials on Rn with real coefficients of degrees ≤ N1, N2,

respectively. It is easy to see that their product

p1(x) p2(x)(1.3.7)

is a polynomial on Rn of degree ≤ N1+N2. If p1, p2 are homogeneous of degrees
d1, d2, respectively, then

p1(x) p2(x) is homogeneous of degree d1 + d2.(1.3.8)

1.4 Even and odd permutations

If t is a real number, then let us use sign(t) to denote the sign of t, which is 1
when t > 0, −1 when t < 0, and 0 when t = 0. Let n be a positive integer, and
let σ be a mapping from the set {1, . . . , n} of positive integers from 1 to n into
itself. Put

sgn(σ) =
∏

1≤j<l≤n

sign(σ(l)− σ(j)),(1.4.1)

which may be called the signum of σ, as on p319 of [20]. More precisely, the
product is taken over all pairs of integers j, l satisfying the conditions indicated.
If σ is not one-to-one on {1, . . . , n}, then

sgn(σ) = 0.(1.4.2)

Suppose that σ is one-to-one on {1, . . . , n}, so that

sgn(σ) = 1 or − 1.(1.4.3)

In this case, σ maps {1, . . . , n} onto itself, basically because {1, . . . , n} is a finite
set. We say that σ is a permutation on {1, . . . , n}, and the inverse mapping σ−1

is a permutation on {1, . . . , n} as well. One can verify that

sgn(σ) = sgn(σ−1).(1.4.4)

Note that sgn(σ) = 1 when σ is the identity mapping on {1, . . . , n}.
Sometimes sgn(σ) is only defined for permutations σ, and this definition

for all mappings σ from {1, . . . , n} is used in Definition 9.33 on p232 of [154].
This will also be helpful for considering some properties of related mappings.
If σ, τ are mappings from {1, . . . , n} into itself, then their composition τ ◦ σ
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is the mapping from {1, . . . , n} into itself that sends j to τ(σ(j)). This is a
permutation on {1, . . . , n} when σ and τ are both permuations. Note that

there are nn mappings from {1, . . . , n} into itself,(1.4.5)

and

there are n! permutations on {1, . . . , n}.(1.4.6)

A permutation τ on {1, . . . , n} is said to be a transposition if it interchanges
two elements of {1, . . . , n}, and maps every other element of {1, . . . , n} to itself.
One can check that

sgn(τ) = −1(1.4.7)

when τ is a transposition. A permutation σ on {1, . . . , n} is said to be even
when sgn(σ) = 1, and odd when sgn(σ) = −1. It is well known that every
permutation on {1, . . . , n} can be expressed as the composition of finitely many
transpositions.

If σ, τ are mappings from {1, . . . , n} into itself, then it is well known that

sgn(τ ◦ σ) = sgn(τ) sgn(σ).(1.4.8)

This is easy to see when either σ or τ is not one-to-one on {1, . . . , n}, which
implies that τ ◦ σ is not one-to-one on {1, . . . , n}, so that both sides of (1.4.8)
are equal to 0. A proof of (1.4.8) when σ and τ are both permutations will be
given in the next section.

1.5 More on permutations

Let n be a positive integer, and let σ be a mapping from {1, . . . , n} into itself.
If x ∈ Rn, then let Tσ(x) be the element of Rn whose jth coordinate is equal
to

(Tσ(x))j = xσ(j)(1.5.1)

for each j = 1, . . . , n. This defines a linear mapping from Rn into itself. If
σ is not one-to-one on {1, . . . , n}, then Tσ is not one-to-one on Rn. If σ is a
permutation on {1, . . . , n}, then Tσ is a one-to-one mapping from Rn onto itself,
with

(Tσ)
−1 = Tσ−1 .(1.5.2)

Let τ be another mapping from {1, . . . , n} into itself. If x ∈ Rn, then the
jth coordinate of Tσ(Tτ (x)) is equal to

(Tσ(Tτ (x)))j = (Tτ (x))σ(j) = xτ(σ(j)) = (Tτ◦σ(x))j(1.5.3)

for each j = 1, . . . , n. This means that

Tσ ◦ Tτ = Tτ◦σ.(1.5.4)
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1.5.1 An interesting polynomial

Consider the polynomial P (x) defined on Rn by

P (x) =
∏

1≤j<l≤n

(xl − xj).(1.5.5)

This is a homogeneous polynomial of degree n (n − 1)/2, which is the number
of factors in the product on the right side. Observe that

P (Tσ(x)) =
∏

1≤j<l≤n

((Tσ(x))l − (Tσ(x))j) =
∏

1≤j<l≤n

(xσ(l) − xσ(j))(1.5.6)

for every x ∈ Rn. One can use this to get that

P (Tσ(x)) = sgn(σ)P (x)(1.5.7)

for every x ∈ Rn. In particular, (1.5.6) is equal to 0 when σ is not one-to-one
on {1, . . . , n}.

On p153 of [20], a polynomial is defined which is the same as (1.5.5), except
for a possible factor of −1, depending on the dimension. This possible extra
factor is not important for (1.5.7). This polynomial is used to define even and
odd permuations, and sgn(σ) is defined for a permutation using that on p319
of [20]. Note that sgn(σ) is uniquely determined by (1.5.7).

One can get (1.4.8) from (1.5.4) and (1.5.7). This corresponds to the prop-
erties of compositions of even and odd permuations in (12) on p153 of [20].
This also corresponds to Theorem 17 on p66 of [124], with somewhat different
notation.

1.6 Multilinear forms on Rn

Let k and n be positive integers. In this section, we shall be concerned with
real-valued functions on the Cartesian product

Rn × · · · ×Rn,(1.6.1)

with k factors of Rn. This may also be expressed as (Rn)k, the space of k-tuples
of elements of Rn. A real-valued function on this space may be expressed as
µ(x(1), . . . , x(k)), where x(1), . . . , x(k) are elements of Rn. The jth coordinate
of x(l) may be expressed as xj(l) for each j = 1, . . . , n and l = 1, . . . , k.

We say that µ(x(1), . . . , x(k)) is multilinear on (Rn)k if it is linear in x(l)
for each l = 1, . . . , k, when x(r) is fixed for r 6= l. One may also say that µ is
k-linear in this case, to emphasize the role of k. One may call µ a multilinear
form or k-linear form on Rn as well, to emphasize the role of n and perhaps k
too, and the fact that µ takes values in R. If k = 1, then this is the same as a
linear mapping from Rn into R, which is to say a linear functional on Rn. If
k = 2, then this is the same as a bilinear form on Rn.
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Let λ1, . . . , λk be linear functionals on Rn. It is easy to see that

(x(1), . . . , x(k)) 7→
k∏
l=1

λl(x(l))(1.6.2)

defines a k-linear form on Rn. This k-linear form may be denoted λ1⊗· · ·⊗λk,
so that

(λ1 ⊗ · · · ⊗ λn)(x(1), . . . , x(k)) =

k∏
l=1

λl(x(l)).(1.6.3)

Let
Mk(R

n)(1.6.4)

be the space of all k-linear forms on Rn. If µ, ν ∈ Mk(R
n) and t ∈ R, then it

is easy to see that
µ+ ν ∈ Mk(R

n)(1.6.5)

and
t µ ∈ Mk(R

n).(1.6.6)

Thus Mk(R
n) is a linear subspace of the space of all real-valued functions on

(Rn)k, as a vector space over the real numbers with respect to pointwise addition
and scalar multiplication. In particular, Mk(R

n) is a vector space over the real
numbers with respect to pointwise addition and scalar multiplication.

1.6.1 Characterizing multilinear forms on Rn

Let e1, . . . , en be the standard basis for Rn, so that the jth coordinate of em is
equal to 1 when j = m, and to 0 otherwise. Thus

x =

n∑
m=1

xm em(1.6.7)

for every x ∈ Rn. Let µ be a k-linear form on Rn. If x(1), . . . , x(k) ∈ Rn, then

x(l) =

n∑
m=1

xm(l) em(1.6.8)

for each l = 1, . . . , k, as in (1.6.7). Using the linearity of µ(x(1), . . . , x(k)) in
x(l) for each l = 1, . . . , k, we get that

µ(x(1), . . . , x(k)) =

n∑
m1=1

· · ·
n∑

mk=1

xm1
(1) · · ·xmk

(k)µ(em1
, . . . , emk

).(1.6.9)

This shows that µ is uniquely determined on (Rn)k by the real numbers

µ(em1
, . . . , emk

), 1 ≤ m1, . . . ,mk ≤ n.(1.6.10)
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One can also get a k-linear form µ on Rn as in (1.6.9) for any family of real
numbers as in (1.6.10). It follows that

the dimension of Mk(R
n) is equal to nk,(1.6.11)

as a vector space over the real numbers.

1.6.2 A basis for Mk(R
n)

Let θj be the linear functional on Rn defined for each j = 1, . . . , n by

θj(x) = xj(1.6.12)

for every x ∈ Rn. If j1, . . . , jk are positive integers less than or equal to n, then

θj1 ⊗ · · · ⊗ θjk(1.6.13)

defines a k-linear form on Rn, as in (1.6.3). More precisely,

(θj1 ⊗ · · · ⊗ θjk)(x(1), . . . , x(k)) =

k∏
l=1

xjl(l).(1.6.14)

Thus

(θj1 ⊗ · · · ⊗ θjk)(em1 , . . . , emk
) = 1 when jl = ml for each l = 1, . . . , k

= 0 otherwise.(1.6.15)

The collection of k-linear forms on Rn as in (1.6.13) is a basis for Mk(R
n), as

a vector space over the real numbers.

1.7 Bilinear forms on Rn

Let n be a positive integer, and let b(x, y) be a bilinear form on Rn. If e1, . . . , en
are the standard basis vectors in Rn, then

b(x, y) =

n∑
m1=1

n∑
m2=1

xm1
ym2

b(em1
, em2

)(1.7.1)

for all x, y ∈ Rn, as in Subsection 1.6.1. Thus b is uniquely determined by the
family of real numbers

b(em1
, em2

), 1 ≤ m1,m2 ≤ n,(1.7.2)

and any family of real numbers of this type determines a bilinear form on Rn

as in (1.7.1).
If

b(x, y) = b(y, x)(1.7.3)
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for all x, y ∈ Rn, then b is said to be a symmetric bilinear form on Rn. It is
easy to see that this happens if and only if

b(em1
, em2

) = b(em2
, em1

)(1.7.4)

for all m1,m2 = 1, . . . , n.
If

b(x, y) = −b(y, x)(1.7.5)

for all x, y ∈ Rn, then b is said to be an antisymmetric bilinear form on Rn.
This happens if and only if

b(em1 , em2) = −b(em2 , em1)(1.7.6)

for all m1,m2 = 1, . . . , n. In particular, this implies that

b(em, em) = 0(1.7.7)

for every m = 1, . . . , n.
If b is any bilinear form on Rn, then

b(x+ y, x+ y) = b(x, x) + b(x, y) + b(y, x) + b(y, y).(1.7.8)

If b is antisymmetric, then
b(w,w) = 0(1.7.9)

for every w ∈ Rn. Conversely, if (1.7.9) holds for every w ∈ Rn, then one can
check that b is antisymmetric, using (1.7.8).

If b is any bilinear form on Rn again, then

(1/2) (b(x, y) + b(y, x))(1.7.10)

is a symmetric bilinear form on Rn, and

(1/2) (b(x, y)− b(y, x))(1.7.11)

is an antisymmetric bilinear form on Rn. Of course, b(x, y) is equal to the sum
of (1.7.10) and (1.7.11). If b is both symmetric and antisymmetric, then

b(x, y) = 0(1.7.12)

for every x, y ∈ Rn.

1.7.1 Associated quadratic polynomials

If b is any bilinear form on Rn, then

Pb(x) = b(x, x) =

n∑
m1=1

n∑
m2=1

xm1 xm2 b(em1 , em2)(1.7.13)
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defines a homogeneous polynomial on Rn of degree 2, with real coefficients. It
is easy to see that every homogeneous polynomial on Rn of degree 2 with real
coefficients corresponds to a bilinear form b on Rn in this way.

Note that the polynomial corresponding to b as in (1.7.13) is the same as
the polynomial corresponding to the symmetric part (1.7.10). This implies
that every homogeneous polynomial on Rn of degree 2 with real coefficients
corresponds to a symmetric bilinear form on Rn in the same way as before,
which could also be verified more directly.

If b is a symmetric bilinear form on Rn, then one can check that b is uniquely
determined by Pb, using (1.7.8).

1.8 Multilinear forms and homogeneous polyno-
mials

Let k and n be positive integers, and let µ be a k-linear form on Rn. Under
these conditions,

Pµ(x) = µ(x, . . . , x)(1.8.1)

defines a homogeneous polynomial on Rn of degree k. To be more precise, if
e1, . . . , en are the standard basis vectors in Rn, then

Pµ(x) =

n∑
m1=1

· · ·
n∑

mk=1

xm1
· · ·xmk

µ(em1
, . . . , emk

),(1.8.2)

as in Subsection 1.6.1. Note that

µ 7→ Pµ(1.8.3)

is a linear mapping from the space Mk(R
n) of all k-linear forms on Rn into

the space Pk(Rn) of all homogeneous polynomials on Rn of degree k with real
coefficients.

Let λ1, . . . , λk be k linear functionals on Rn, and suppose for the moment
that

µ = λ1 ⊗ · · · ⊗ λk,(1.8.4)

where the right side is as in Section 1.6. In this case,

Pµ(x) =

k∏
l=1

λl(x)(1.8.5)

for every x ∈ Rn.
Let θj be the linear functional on Rn defined by θj(x) = xj for each j =

1, . . . , n, as before. Suppose for the moment again that

µ = θj1 ⊗ · · · ⊗ θjk ,(1.8.6)
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where j1, . . . , jk are positive integers less than or equal to n. This implies that

Pµ(x) =

k∏
l=1

xjk(1.8.7)

for every x ∈ Rn.
Using this, it is easy to see that (1.8.3) maps Mk(R

n) onto Pk(Rn). This
was mentioned in Subsection 1.7.1 when k = 2. If k = 1, then (1.8.3) is one-to-
one.

1.9 Symmetric multilinear forms

If X is any nonempty set, then we let Sym(X) be the space of all one-to-one
mappings from X onto itself. This is a group with respect to composition of
mappings, which is known as the symmetric group on X. If k is a positive
integer and X = {1, . . . , k}, then we may use the notation Sym(k) for Sym(X).

Let k and n be positive integers, and let µ be a k-linear form on Rn. If
σ ∈ Sym(k), then let µσ be the k-linear form on Rn defined by

µσ(x(1), . . . , x(k)) = µ(x(σ(1)), . . . , x(σ(k))).(1.9.1)

Of course, this is the same as µ when σ is the identity mapping on {1, . . . , k}.
Note that

µ 7→ µσ(1.9.2)

is a onto-to-one linear mapping from the space Mk(R
n) of k-linear forms on Rn

onto itself. If σ is any mapping from {1, . . . , k} into itself, then (1.9.1) defines
a real-valued function on (Rn)k, but it is not necessarily k-linear.

Let τ be another element of Sym(k), so that τ ◦σ ∈ Sym(k) as well. Observe
that

µτ◦σ(x(1), . . . , x(k)) = µ(x(τ(σ(1))), . . . , x(τ(σ(k))))

= µσ(x(τ(1)), . . . , x(τ(k))) = (µσ)τ (x(1), . . . , x(k)).(1.9.3)

We say that µ is a symmetric k-linear form on Rn if

µσ = µ(1.9.4)

for every σ ∈ Sym(k). This holds trivially when k = 1, and it is equivalent to
the definition of a symmetric bilinear form on Rn in Section 1.7 when k = 2.
In order to verify that µ is symmetric for any k, it suffices to check that (1.9.4)
holds when σ is a transposition on {1, . . . , k}, because every element of Sym(k)
may be expressed as a composition of transpositions, as mentioned in Section
1.4.

Let e1, . . . , en be the standard basis vectors in Rn, as usual. If (1.9.4) holds
for some σ ∈ Sym(k), then

µ(emσ(1)
, . . . , emσ(k)

) = µ(em1
, . . . , emk

)(1.9.5)
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for all positive integers m1, . . . ,mk ≤ n. Conversely, if (1.9.5) holds for all such
m1, . . . ,mk, then (1.9.4) holds, as in Subsection 1.6.1. Thus µ is symmetric if
and only if (1.9.5) holds for all σ ∈ Sym(k) and positive integersm1, . . . ,mk ≤ n.
As before, it suffices to check that (1.9.5) holds for all transpositions σ on
{1, . . . , k} and 1 ≤ m1, . . . ,mk ≤ n, to get that µ is symmetric.

1.9.1 Symmetrizing multilinear forms

If µ is any k-linear form on Rn, then put

S(µ) =
1

k!

∑
σ∈Sym(k)

µσ,(1.9.6)

which is another k-linear form on Rn. Note that S is a linear mapping from
Mk(R

n) into itself, which may also be denoted Sk, to indicate the role of k. If
µ is symmetric, then

S(µ) =
1

k!

∑
σ∈Sym(k)

µ = µ,(1.9.7)

because Sym(k) has k! elements, as mentioned in Section 1.4. Let us check that

S(µ) is symmetric(1.9.8)

for every k-linear form µ on Rn. One may describe S(µ) as the symmetrization
of µ.

If τ ∈ Sym(k), then

S(µ)τ =
1

k!

∑
σ∈Sym(k)

(µσ)τ =
1

k!

∑
σ∈Sym(k)

µτ◦σ,(1.9.9)

using (1.9.3) in the second step. Observe that

σ 7→ τ ◦ σ(1.9.10)

is a one-to-one mapping from Sym(k) onto itself. It follows that

S(µ)τ = S(µ),(1.9.11)

so that (1.9.8) holds.
Similarly,

S(µτ ) =
1

k!

∑
σ∈Sym(k)

(µτ )σ =
1

k!

∑
σ∈Sym(k)

µσ◦τ .(1.9.12)

We also have that
σ 7→ σ ◦ τ(1.9.13)

is a one-to-one mapping from Sym(k) onto itself. This implies that

S(µτ ) = S(µ)(1.9.14)

for every τ ∈ Sym(k).
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1.10 More on symmetric multilinear forms

Let k and n be positive integers again, and let µ be a k-linear form on Rn.
Also let Pµ(x) = µ(x, . . . , x) be the homogeneous polynomial on Rn of degree
k associated to µ as in Section 1.8. If σ ∈ Sym(k), then

Pµσ = Pµ.(1.10.1)

This implies that

PS(µ) =
1

k!

∑
σ∈Sym(k)

Pµσ =
1

k!

∑
σ∈Sym(k)

Pµ = Pµ.(1.10.2)

Remember that every homogeneous polynomial on Rn of degree k with real
coefficients is of the form Pµ for some k-linear form µ on Rn, as in Section 1.8.
Using this and (1.10.2), we get that every such polynomial on Rn is of the form
Pµ for some symmetric k-linear form µ on Rn.

Let {1, . . . , n}k be the set of all k-tuples of positive integers less than or
equal to n. If (m1, . . . ,mk) is an element of this set, then put

αj = #{1 ≤ l ≤ k : ml = j},(1.10.3)

for each j = 1, . . . , n, where more precisely the right side is the number of
positive integers l ≤ k such that ml = j. This defines a multi-index α =
(α1, . . . , αn) with

n∑
j=1

αj = k.(1.10.4)

Note that every multi-index α that satisfies (1.10.4) corresponds to an element
of {1, . . . , n}k in this way.

Suppose that a multi-index α corresponds to (m1, . . . ,mk) ∈ {1, . . . , n}k as
in (1.10.3). If σ ∈ Sym(k), then

(mσ(1), . . . ,mσ(k))(1.10.5)

is another element of {1, . . . , n}k, which corresponds to α in the same way.
Conversely, every element of {1, . . . , n}k that corresponds to α in this way is of
the form (1.10.5) for some σ ∈ Sym(k).

Remember that a k-linear form µ on Rn is symmetric if and only if (1.9.5)
holds for all σ ∈ Sym(k) and positive integers m1, . . . ,mk ≤ n. This condition
holds if and only if

µ(em1 , . . . , emk
) only depends on the multi-index α(1.10.6)

corresponding to (m1, . . . ,mk),

by the remarks in the preceding paragraph.
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1.10.1 The space SMk(R
n)

Let
SMk(R

n)(1.10.7)

be the space of symmetric k-linear forms on Rn. It is easy to see that this is
a linear subspace of the space Mk(R

n) of all k-linear forms on Rn. One can
check that the dimension of SMk(R

n), as a vector space over the real numbers,
is equal to the number of multi-indices α that satisfy (1.10.4), using the remarks
in the previous paragraphs.

This is the same as the dimension of the space Pk(Rn) of all homogeneous
polynomials on Rn of degree k with real coefficients, as mentioned in Subsection
1.3.1. It follows that

µ 7→ Pµ defines a one-to-one mapping from SMk(R
n) onto Pk(Rn).(1.10.8)

1.11 Alternating multilinear forms

Let k and n be positive integers, and let µ be a k-linear form on Rn again. We
say that µ is an alternating k-linear form if

µσ = sgn(σ)µ(1.11.1)

for every σ ∈ Sym(k). This condition holds trivially when k = 1, and it reduces
to the definition of an antisymmetric bilinear form on Rn in Section 1.7 when
k = 2. In order to show that µ is alternating for any k, it suffices to check that

µσ = −µ(1.11.2)

when σ is a transposition on {1, . . . , k}, because every element of Sym(k) may
be expressed as a product of transpositions, as mentioned in Section 1.4.

If µ is an alternating k-linear form, then

µ(x(1), . . . , x(k)) = 0(1.11.3)

whenever
x(l1) = x(l2)(1.11.4)

for some 1 ≤ l1 < l2 ≤ k. This follows from (1.11.2), by taking σ to be the
transposition that interchanges l1 and l2.

Conversely, if (1.11.3) holds when (1.11.4) holds, then (1.11.2) holds, with σ
equal to the transposition just mentioned. To see this, let x(l) ∈ Rn be given
for l 6= l1, l2, so that µ(x(1), . . . , x(k)) may be considered as a bilinear form on
Rn, as a function of x(l1) and x(l2). In this case, the hypothesis that (1.11.3)
holds when (1.11.4) holds implies that this bilinear form is antisymmetric, as in
Section 1.7.

If (1.11.3) holds when (1.11.4) holds for any 1 ≤ l1 < l2 ≤ n, then we get
that (1.11.2) holds for every transposition σ. This implies that µ is alternating,
as before.
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Let e1, . . . , en be the standard basis vectors in Rn again, and let σ ∈ Sym(k)
be given. Of course, (1.11.1) implies that

µ(emσ(1)
, . . . , emσ(k)

) = sgn(σ)µ(em1
, . . . , emk

)(1.11.5)

for all positive integers m1, . . . ,mk ≤ n. Conversely, if (1.11.5) holds for all
1 ≤ m1, . . . ,mk ≤ n, then (1.11.1) holds, as in Subsection 1.6.1. This means
that µ is alternating if and only if (1.11.5) holds for all σ ∈ Sym(k) and positive
integers m1, . . . ,mk ≤ n.

Similarly, (1.11.2) holds for some transposition σ if and only if

µ(emσ(1)
, . . . , emσ(k)

) = −µ(em1
, . . . , emk

)(1.11.6)

for all positive integers m1, . . . ,mk ≤ n. It follows that µ is alternating if and
only if (1.11.6) holds for all transpositions σ and 1 ≤ m1, . . . ,mk ≤ n. In
particular, if µ is alternating, then

µ(em1 , . . . , emk
) = 0(1.11.7)

when
ml1 = ml2(1.11.8)

for some 1 ≤ l1 < l2 ≤ k, as in (1.11.3).
If k > n, then any family of k positive integers m1, . . . ,mk ≤ n satisfies

(1.11.8) for some 1 ≤ l1 < l2 ≤ k. If µ is alternating, then we get that µ = 0 in
this case, as in Subsection 1.6.1.

1.11.1 The space AMk(R
n)

Let
AMk(R

n)(1.11.9)

be the space of alternating k-linear forms on Rn. This is a linear subspace of
the space Mk(R

n) of all k-linear forms on Rn. If k > n, then

AMk(R
n) = {0},(1.11.10)

as in the preceding paragraph.

1.12 More on alternating multilinear forms

Let k and n be positive integers, and let e1, . . . , en be the standard basis for
Rn, as usual. If µ is any k-linear form on Rn, then µ is uniquely determined
by the family of real numbers

µ(em1
, . . . , emk

),(1.12.1)

where m1, . . . ,mk are positive integers less than or equal to n, as in Subsection
1.6.1. If µ is alternating, then (1.12.1) is equal to 0 unless the ml’s are distinct,
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as in (1.11.7). In particular, this always happens when k > n, and so we suppose
now that k ≤ n.

Thus, if µ is alternating, then µ is uniquely determined by the family of
real numbers (1.12.1), where m1, . . . ,mk ≤ n are distinct. We also have that
(1.12.1) determines

µ(emσ(1)
, . . . , emσ(k)

)(1.12.2)

for every σ ∈ Sym(k), as in (1.11.5). This implies that µ is uniquely determined
by the family of real numbers (1.12.1), with

1 ≤ m1 < · · · < mk ≤ n.(1.12.3)

The family of real numbers (1.12.1) with m1, . . . ,mk as in (1.12.3) for an
alternating k-linear form µ may be arbitrary too. More precisely, if (1.12.1) is
given when m1, . . . ,mk satisfy (1.12.3), then one can determine (1.12.1) when
m1, . . . ,mk are distinct positive integers less than or equal to n using (1.11.5).
If we set (1.12.1) equal to 0 when the ml’s are not distinct, then (1.12.1) has
been defined for all positive integers m1, . . . ,mk ≤ n. This determines a k-linear
form µ on Rn as in Subsection 1.6.1. One would like to check that

µ is alternating(1.12.4)

under these conditions.
To do this, it suffices to verify that (1.11.5) holds for all σ ∈ Sym(k) and

positive integers m1, . . . ,mk ≤ n. If the ml’s are not distinct, then the mσ(l)’s
are not distinct either, and both sides of (1.11.5) are equal to 0, by construction.
If the ml’s satisfy (1.12.3), then (1.11.5) holds by construction again.

If m1, . . . ,mk satisfy (1.12.3) and τ ∈ Sym(k), then mτ(1), . . . ,mτ(k) are
distinct positive integers less than or equal to k, and any sequence of k distinct
positive integers less than or equal to n can be expressed in this way. If σ is an
element of Sym(k), then we would like to have that

µ(emσ(τ(1))
, . . . , emσ(τ(k))

) = sgn(σ)µ(emτ(1)
, . . . , emτ(k)

).(1.12.5)

By construction, the left side is equal to

sgn(σ ◦ τ)µ(em1 , . . . , emk
),(1.12.6)

and the right side is equal to

sgn(σ) sgn(τ)µ(em1
, . . . , emk

).(1.12.7)

Thus (1.12.5) follows from the fact that sgn(σ◦τ) = sgn(σ) sgn(τ), as in Section
1.4 and Subsection 1.5.1.

1.12.1 The dimension of AMk(R
n)

This shows that the dimension of AMk(R
n), as a vector space over the real

numbers, is equal to the number of subsets of {1, . . . , n} with exactly k elements.
This means that

dimAMk(R
n) =

(
n

k

)
(1.12.8)
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when k ≤ n.
In particular,

dimAMn(R
n) = 1.(1.12.9)

It is well known that the determinant of an n × n matrix corresponds to an
element of AMn(R

n), which will be discussed further in Section 1.15. Indeed,
the determinant is uniquely determined by this and the fact that the determinant
of the identity matrix is equal to 1. Any other element of AMn(R

n) can be
expressed as a real number times the element of AMn(R

n) corresponding to
the determinant, because of (1.12.9).

1.13 Alternatizing multilinear forms

Let k and n be positive integers, and let µ be a k-linear form on Rn. Remember
that if σ ∈ Sym(k), then µσ may be defined as a k-linear form on Rn as in
Section 1.9. Put

A(µ) =
1

k!

∑
σ∈Sym(k)

sgn(σ)µσ.(1.13.1)

This defines a linear mapping from the space Mk(R
n) of k-linear forms on Rn

into itself, which may also be denoted Ak, to indicate the role of k.
If µ is alternating, then

A(µ) =
1

k!

∑
σ∈Sym(k)

sgn(σ)2 µ.(1.13.2)

This implies that

A(µ) =
1

k!

∑
σ∈Sym(k)

µ = µ,(1.13.3)

because sgn(σ)2 = 1 for every σ ∈ Sym(k), and Sym(k) has k! elements.
Let µ be any k-linear form on Rn again, and let τ ∈ Sym(k) be given.

Observe that

A(µ)τ =
1

k!

∑
σ∈Sym(k)

sgn(σ) (µσ)τ =
1

k!

∑
σ∈Sym(k)

sgn(σ)µτ◦σ,(1.13.4)

where the second step is as in Section 1.9. This means that

A(µ)τ =
sgn(τ)

k!

∑
σ∈Sym(k)

sgn(τ ◦ σ)µτ◦σ,(1.13.5)

because sgn(τ ◦ σ) = sgn(τ) sgn(σ) and sgn(τ)2 = 1. It follows that

A(µ)τ = sgn(τ)A(µ),(1.13.6)

because σ 7→ τ ◦ σ is a one-to-one mapping from Sym(k) onto itself. Thus

A(µ) is alternating,(1.13.7)
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and A(µ) may be described as the alternatization of µ.
Similarly,

A(µτ ) =
1

k!

∑
σ∈Sym(k)

sgn(σ) (µτ )σ =
1

k!

∑
σ∈Sym(k)

sgn(σ)µσ◦τ .(1.13.8)

This implies that

A(µτ ) =
sgn(τ)

k!

∑
σ∈Sym(k)

sgn(σ ◦ τ)µσ◦τ ,(1.13.9)

for essentially the same reasons as before. Using this, we get that

A(µτ ) = sgn(τ)A(µ),(1.13.10)

because σ 7→ σ ◦ τ is a one-to-one mapping from Sym(k) onto itself.

1.14 The multinomial theorem

Let n be a positive integer, and let α be a multi-index. If
∑n
j=1 αj = k, then

put (
k

α

)
=

(
k

α1 · · ·αn

)
=

k!

α1! · · ·αn!
,(1.14.1)

which is the multinomial coefficient corresponding to k and α. If n = 2, then
this is the same as the binomial coefficients

(
k
α1

)
and

(
k
α2

)
.

If k is a positive integer and x ∈ Rn, then it is well known then

(x1 + · · ·+ xn)
k =

∑
α1+···+αn=k

(
k

α

)
xα,(1.14.2)

where the sum is taken over all multi-indices α with
∑n
j=1 αj = k. This is trivial

when n = 1, and the n = 2 case is the same as the binomial theorem. The k = 1
case is also easy, for any n.

As for the binomial theorem, it is clear that the left side of (1.14.2) can
be expanded into a linear combination of monomials xα of degree k whose
coefficients are positive integers. One can get (1.14.2) directly using induction
on k, but if one already knows the binomial theorem, then it is easier to use
induction on n. One can also obtain (1.14.2) using calculus, by taking derivatives
of both sides of order k, which shows that these are the only coefficients such
that (1.14.2) holds for every x ∈ Rn.

The coefficient of xα in (1.14.2) is the same as the number of ways of par-
titioning {1, . . . , k} into n pairwise-disjoint sets, where the jth set has exactly
αj elements for each j. Thus the number of these partitions is the same as the
multinomial coefficient (1.14.1). Alternatively, any permutation on {1, . . . , k}
sends a partition of this type to another such partition, and every partiition of
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this type may be obtained from any other partition of this type in this way.
There are k! permutations on {1, . . . , k}, and the number of permutations that
send a particular partition of this type to itself is

α1! · · ·αn!.(1.14.3)

This is another way to see that the number of these partitions is equal to (1.14.1).
A partition of {1, . . . , k} into n pairwise-disjoint sets corresponds exactly

to a mapping from {1, . . . , k} into {1, . . . , n}. A mapping of this type also
corresponds to a k-tuple (m1, . . . ,mk) of positive integers less than or equal to
n. Of course,

(x1 + · · ·+ xn)
k =

n∑
m1=1

· · ·
n∑

mk=1

xm1 · · ·xmk
(1.14.4)

for every x ∈ Rn. A monomial of the form

xm1
· · ·xmk

(1.14.5)

is of the form xα exactly when

αj = #{1 ≤ l ≤ k : ml = j}(1.14.6)

for each j = 1, . . . , n.
Thus (1.14.1) is the same as the number of k-tuples (m1, . . . ,mk) of positive

integers less than or equal to n that satisfy (1.14.6) for each j. This is related
to some of the remarks in Section 1.10.

If we take xj = 1 for each j in (1.14.2), then we get that

nk =
∑

α1+···+αn=k

(
k

α

)
.(1.14.7)

Of course, the set {1, . . . , n}k of k-tuples of positive integers less than or equal
to n has exactly nk elements. The right side of (1.14.7) expresses this as the
sum over all multi-indices α with

∑n
j=1 αj = k of the number of k-tuples

(m1, . . . ,mk) in {1, . . . , n}k that satisfy (1.14.6) for each j.

1.15 Matrices and determinants

Let k and n be positive integers, and let x(1), . . . , x(k) be k elements of Rn.
Thus xj(l) defines an n× k matrix of real numbers.

Let u1, . . . , uk be the standard basis for Rk, so that the lth coordinate of ur
is equal to 1 when l = r, and to 0 when l 6= r. There is a unique linear mapping
from Rk into Rn such that

T (ul) = x(l)(1.15.1)
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for each l = 1, . . . , k. More precisely, if w ∈ Rk, then

w =

k∑
l=1

wl ul,(1.15.2)

and

T (w) =

k∑
l=1

wl T (ul) =

k∑
l=1

wl x(l).(1.15.3)

This means that the jth coordinate of T (w) is given by

(T (w))j =

k∑
l=1

xj(l)wl(1.15.4)

for each j = 1, . . . , n. Of course, this is the same as saying that T corresponds
to the matrix xj(l) in the usual way.

Suppose from now on in this section that k = n, so that xj(l) is an n × n
matrix of real numbers. Put

µdet(x(1), . . . , x(n)) =
∑

σ∈Sym(n)

sgn(σ)

n∏
j=1

xj(σ(j)).(1.15.5)

The right side is the same as the determinant of the matrix xj(l). Equivalently,

µdet(x(1), . . . , x(n)) =
∑

τ∈Sym(n)

sgn(τ)

n∏
l=1

xτ(l)(l).(1.15.6)

This corresponds to taking τ = σ−1 in (1.15.5), using the fact that sgn(σ) =
sgn(σ−1).

Clearly µdet is an n-linear form on Rn. More precisely, µdet is an alternating
n-linear form on Rn, and in fact it can be expressed as an alternatization in a
nice way. Put θj(y) = yj for each j = 1, . . . , n and y ∈ Rn, so that

(θ1 ⊗ · · · ⊗ θn)(y(1), . . . , y(n)) =

n∏
j=1

yj(j)(1.15.7)

defines an n-linear form on Rn, as in Section 1.6. If σ ∈ Sym(n), then

(θ1 ⊗ · · · ⊗ θn)
σ(x(1), . . . , x(n)) = (θ1 ⊗ · · · ⊗ θn)(x(σ(1)), . . . , x(σ(n)))

=

n∏
j=1

xj(σ(j)),(1.15.8)

using the notation in Section 1.9 in the first step. This means that

µdet =
∑

σ∈Sym(n)

sgn(σ) (θ1 ⊗ · · · ⊗ θn)
σ = n!A(θ1 ⊗ · · · ⊗ θn),(1.15.9)
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using the notation in Section 1.13 in the second step.
It is well known that the determinant of the identity matrix is equal to 1.

This corresponds to
µdet(e1, . . . , en) = 1(1.15.10)

in the present notation, where e1, . . . , en are the standard basis vectors in Rn.
Indeed,

(θ1 ⊗ · · · ⊗ θn)(e1, . . . , en) = 1,(1.15.11)

and

(θ1 ⊗ · · · ⊗ θn)
σ(e1, . . . , en) = (θ1 ⊗ · · · ⊗ θn)(eσ(1), . . . , eσ(n)) = 0(1.15.12)

when σ ∈ Sym(n) is not the identity mapping on {1, . . . , n}. Note that (1.15.6)
corresponds to the fact that the determinant of a matrix is equal to the determi-
nant of its transpose. Some other properties of determinants will be discussed
in Section 2.5.



Chapter 2

More on multilinear forms

2.1 Some direct sums

Let N be a positive integer, and let V1, . . . , VN be N vector spaces over the real
numbers. Consider the Cartesian product

N∏
j=1

Vj = V1 × · · · × VN ,(2.1.1)

which is the set of N -tuples (v1, . . . , vN ) with vj ∈ Vj for each j = 1, . . . , N .
This is also a vector space over the real numbers, with respect to coordinatewise
addition and scalar multiplication. This is the direct sum of V1, . . . , VN , which
may be denoted

N⊕
j=1

Vj or V1
⊕

· · ·
⊕

VN .(2.1.2)

If vj ∈ Vj for j = 1, . . . , N , then we may use the notation v1 ⊕ · · · ⊕ vN for the
element of the direct sum corresponding to (v1, . . . , vN ).

There is an obvious mapping ιl from Vl into the direct sum for each l =
1, . . . , N . Namely, if vl ∈ Vl, then let ιl(vl) be the element of the direct sum
whose lth coordinate is equal to vl, and whose other coordinates are equal to
0. This is a one-to-one linear mapping from Vl into the direct sum for each l.
Sometimes one may wish to identify Vl with its image ιl(Vl) in the direct sum
under ιl. Every element of the direct sum corresponds to a sum of elements of
ιl(Vl), 1 ≤ l ≤ N , in a unique way, by construction.

Let V be another vector space over the real numbers, and suppose for the
moment that Vl is a linear subspace of V for each l = 1, . . . , N . Suppose also
that every element of V can be expressed in a unique way as a sum of elements
of V1, . . . , VN . This leads to a one-to-one linear mapping from the direct sum
of V1, . . . , VN onto V . We may say that V corresponds to the direct sum of
V1, . . . , VN , as a vector space over the real numbers, under these conditions.

22
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If Vj has finite dimension for each j = 1, . . . , N , then the direct sum has
finite dimension as well, with

dim

N⊕
j=1

Vj =

N∑
j=1

dimVj .(2.1.3)

This may be seen by choosing a basis for each Vl, and considering the images
of the basis vectors in the direct sum under ιl. The combination of the images
of these bases of the Vl’s is a basis for the direct sum.

2.1.1 Direct sums and linear mappings

Let W be another vector space over the real numbers, and suppose that Tl is a
linear mapping from Vl into W for each l = 1, . . . , N . Observe that

T (v1 ⊕ · · · ⊕ vN ) =

N∑
l=1

Tl(vl)(2.1.4)

defines a linear mapping from
⊕N

j=1 Vj into W . Conversely, any linear mapping

T from
⊕N

j=1 Vj into W determines a unique linear mapping Tl from Vl into W
for each l = 1, . . . , N such that (2.1.4) holds. More precisely, one can take

Tl = T ◦ ιl(2.1.5)

for each l = 1, . . . , n.

2.2 Multilinear mappings

Let k be a positive integer, let V1, . . . , Vk be k vector spaces over the real num-
bers, and let Z be another vector space over the real numbers. Also let ϕ be a
function defined on the Cartesian product

k∏
l=1

Vl = V1 × · · · × Vk(2.2.1)

with values in Z. We say that ϕ is multilinear on (2.2.1) if ϕ(v1, . . . , vk) is linear
in vl for each l = 1, . . . , k, when vr is fixed for r 6= l. This is the same as in
Section 1.6 when Vl = Rn for each l = 1, . . . , k and Z = R. As before, we may
say that ϕ is k-linear to emphasize the role of k.

Of course, if k = 1, then this is the same as a linear mapping from V1 into
Z. If k = 2, then this is the same as a bilinear mapping from V1 × V2 into Z.

Remember that (2.2.1) may be considered as a vector space over the real
numbers with respect to coordinatewise addition and scalar multiplication, as
in the previous section. Note that k-linear mappings on (2.2.1) are not the same
as linear mappings when k ≥ 2.
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Suppose for the moment that Z = R, considered as a vector space over itself.
A real-valued multilinear function on (2.2.1) may be called a multilinear form
or k-linear form, as in Section 1.6 again. This is the same as a linear functional
on V1 when k = 1, and it may be called a bilinear form when k = 2, as before.

2.2.1 Some basic properties and examples

Let λl be a linear functional on Vl for each l = 1, . . . , k, which is to say a linear
mapping from Vl into R. Observe that

(λ1 ⊗ · · · ⊗ λk)(v1, . . . , vk) =

k∏
l=1

λl(vl)(2.2.2)

defines a k-linear form on (2.2.1). This was mentioned in Section 1.6 when
Vl = Rn for each l = 1, . . . , k.

Let Z be any vector space over the real numbers again, and let z ∈ Z be
given. Also let ψ be a k-linear form on (2.2.1). Under these conditions,

ϕ(v1, . . . , vk) = ψ(v1, . . . , vk) z(2.2.3)

defines a k-linear mapping from (2.2.1) into Z.
If X is a nonempty set, then the space of all Z-valued functions on X is a

vector space over the real numbers, with respect to pointwise addition and scalar
multiplication of functions. In particular, the space of all Z-valued functions on
(2.2.1) is a vector space over the real numbers in this way. It is easy to see that
the space of all k-linear mappings from (2.2.1) into Z is a linear subspace of the
space of all Z-valued functions on (2.2.1).

Let V be a vector space over the real numbers, and suppose that we take
Vl = V for each l = 1, . . . , k. In this case, (2.2.1) is the same as the Cartesian
product

V × · · · × V,(2.2.4)

with k factors of V . This is the same as the space V k of k-tuples of elements of
V . The space of all k-linear forms on V may be denoted

Mk(V ),(2.2.5)

as in Section 1.6. This is a linear subspace of the space of all real-valued func-
tions on V k, as in the preceding paragraph.

2.3 Some compositions

Let V andW be vector spaces over the real numbers, let k be a positive integer,
and let T1, . . . , Tk be k linear mappings from V into W . If µ is a k-linear form
on W , then

µ(T1(v1), . . . , Tk(vk))(2.3.1)
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defines a k-linear form on V .
If T is a linear mapping from V into W , then we can apply the preceding

remark with Tl = T for each l. We may use the notation

(T ∗(µ))(v1, . . . , vk) = µ(T (v1), . . . , T (vk))(2.3.2)

for the k-linear form on V obtained in this way, or the notation (T )∗k(µ) to
indicate the role of k. Note that this defines a linear mapping from Mk(W )
into Mk(V ). The notation δT may be used for this linear mapping as well, as
in 2.13 on p62 of [183]. If k = 1, then (2.3.2) is the same as saying that

T ∗(µ) = (T )∗1(µ) = µ ◦ T.(2.3.3)

Let Y be another vector space over the real numbers, and let R be a linear
mapping from W into Y . Also let ν be a k-linear form on Y , so that R∗(ν)
defines a k-linear form on W , as before. Similarly, T ∗(R∗(ν)) and (R ◦ T )∗(ν)
define k-linear forms on V , using the fact that R ◦ T is a linear mapping from
V into Y in the second case. If v1, . . . , vk ∈ V , then

(T ∗(R∗(ν)))(v1, . . . , vk) = (R∗(ν))(T (v1), . . . , T (vk))(2.3.4)

= ν(R(T (v1)), . . . , R(T (vk)))

= ((R ◦ T )∗(ν))(v1, . . . , vk).

This means that
(R ◦ T )∗ = T ∗ ◦R∗(2.3.5)

as linear mappings from Mk(Y ) into Mk(V ).
If T is a one-to-one linear mapping from V onto W , then it is easy to see

that

T ∗ = (T )∗k is a one-to-one linear mapping(2.3.6)

from Mk(W ) onto Mk(V ).

More precisely,
((T )∗k)

−1 = (T−1)∗k,(2.3.7)

as in (2.3.5).
If W has dimension n for some positive integer n, then there is a one-to-one

linear mapping T from Rn onto W . In fact, if e1, . . . , en is the standard basis
for Rn, then one can choose T so that T (e1), . . . , T (en) is any basis for W .

2.4 Compositions and permutations

Let V andW be vector spaces over the real numbers again, and let T be a linear
mapping from V intoW . Also let k be a positive integer, and let µ be a k-linear
form on W . If σ is a permutation on {1, . . . , k}, then µσ may be defined as a
k-linear form on W as in Section 1.9, which is to say that

µσ(w1, . . . , wk) = µ(wσ(1), . . . , wσ(k))(2.4.1)
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for all w1, . . . , wk ∈W . If τ is another permutation on {1, . . . , k}, then

µτ◦σ = (µσ)τ ,(2.4.2)

as before. Of course, we can do the same with k-linear forms on V .
In particular, we can do this for T ∗(µ). Observe that

(T ∗(µ))σ(v1, . . . , vk) = (T ∗(µ))(vσ(1), . . . , vσ(k))

= µ(T (vσ(1)), . . . , T (vσ(k)))(2.4.3)

= µσ(T (v1), . . . , T (vk)) = (T ∗(µσ))(v1, . . . , vk)

for all v1, . . . , vk ∈ V . Thus

(T ∗(µ))σ = T ∗(µσ),(2.4.4)

as k-linear forms on V .
We say that µ is a symmetric k-linear form on W if

µσ = µ(2.4.5)

for every permutation σ on {1, . . . , k}, as in Section 1.9. Similarly, we say that
µ is an alternating k-linear form on W if

µσ = sgn(σ)µ(2.4.6)

for every σ ∈ Sym(k), as in Section 1.11. In both cases, it suffices to check
that the condition holds when σ is a transposition on {1, . . . , k}, as before.
The analogous conditions may be used for k-linear forms on V as well. If µ is a
symmetric or alternating k-linear form onW , then T ∗(µ) has the same property
as a k-linear form on V , because of (2.4.4).

Let
SMk(W ) and AMk(W )(2.4.7)

be the spaces of symmetric and alternating k-linear forms on W , respectively.
These are linear subspaces of Mk(W ), as in the case where W = Rn for some
positive integer n, as in Subsections 1.10.1 and 1.11.1. Using the same notation
for V , we have that

T ∗(SMk(W )) ⊆ SMk(V )(2.4.8)

and
T ∗(AMk(W )) ⊆ AMk(V ),(2.4.9)

as in the preceding paragraph. If T is a one-to-one linear mapping from V onto
W , then we can combine these statements with their analogous for T−1, to get
that

T ∗(SMk(W )) = SMk(V )(2.4.10)

and
T ∗(AMk(W )) = AMk(V ).(2.4.11)
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2.4.1 Symmetrizations and alternatizations

If µ is any k-linear form on W again, then the symmetrization and alternatiza-
tion of µ are defined by

S(µ) = Sk(µ) =
1

k!

∑
σ∈Sym(k)

µσ(2.4.12)

and

A(µ) = Ak(µ) =
1

k!

∑
σ∈Sym(k)

sgn(σ)µσ,(2.4.13)

respectively, as in Subsection 1.9.1 and Section 1.13. As before, if µ is already
symmetric or alternating, then

S(µ) = µ(2.4.14)

or
A(µ) = µ,(2.4.15)

as appropriate. If µ is any k-linear form on W , then

S(µ) is symmetric(2.4.16)

and
A(µ) is alternating,(2.4.17)

for the same reasons as before. If τ ∈ Sym(k), then

S(µτ ) = S(µ)(2.4.18)

and
A(µτ ) = sgn(τ)A(µ),(2.4.19)

as before. It is easy to see that

T ∗(S(µ)) = S(T ∗(µ))(2.4.20)

and
T ∗(A(µ)) = A(T ∗(µ)),(2.4.21)

using (2.4.4) and the analogues of S and A for V on the right sides of the
equations.

2.5 Compositions and determinants

Let n be a positive integer, let T be a linear mapping from Rn into itself, and
let e1, . . . , en be the standard basis for Rn. The determinant of T is normally
defined as the determinant of the matrix associated to T using e1, . . . , en. This
means that

detT = µdet(T (e1), . . . , T (en)),(2.5.1)
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where µdet is the alternating n-linear form on Rn associated to the determinant
as in Section 1.15.

If ν is any alternating n-form on Rn, then

ν = ν(e1, . . . , en)µdet.(2.5.2)

To see this, remember that the space AMn(R
n) of alternating n-linear forms on

Rn has dimension 1 as a vector space over the real numbers, as in Subsection
1.12.1. This implies that ν is equal to a real number times µdet. This real
number is equal to ν(e1, . . . , en), because µdet(e1, . . . , en) = 1.

Note that T ∗(µdet) is an alternating n-linear form on Rn, as in the previous
section. We also have that

T ∗(µdet) = (T ∗(µdet))(e1, . . . , en)µdet = (detT )µdet,(2.5.3)

using (2.5.2) in the first step, and (2.5.1) in the second step. This implies that

T ∗(ν) = (detT ) ν(2.5.4)

for every alternating n-linear form ν on Rn, because ν is a constant multiple of
µdet.

Let R be another linear mapping from Rn into itself, so that

detR = µdet(R(e1), . . . , R(en)),(2.5.5)

as in (2.5.1). Similarly,

det(T ◦R) = µdet(T (R(e1)), . . . , T (R(en))).(2.5.6)

Observe that

(T ∗(µdet))(R(e1), . . . , R(en)) = (detT )µdet(R(e1), . . . , R(en)),(2.5.7)

by (2.5.3). Of course, the right side of (2.5.6) is the same as the left side of
(2.5.7). It follows that

det(T ◦R) = (detT ) (detR),(2.5.8)

by (2.5.5).

2.5.1 n-Dimensional vector spaces

Let W be a vector space over the real numbers of dimension n, and let L be a
one-to-one linear mapping from Rn onto W . If M is a linear mapping from W
into itself, then one can define the determinant of M by

detM = det(L−1 ◦M ◦ L),(2.5.9)

where the right side is the determinant of L−1 ◦M ◦ L, as a linear mapping
from Rn into itself. One can check that this does not depend on the choice of
L, using (2.5.8).
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Using L, we get a one-to-one linear mapping L∗ = (L)∗k from Mk(W ) onto
Mk(R

n) for each positive integer k, as in Section 2.3. We also get that (L)∗k
sends SMk(W ), AMk(W ) onto SMk(R

n), AMk(R
n), respectively, as in the

previous section. This implies that Mk(W ), SMk(W ), and AMk(W ) have the
same dimensions as Mk(R

n), SMk(R
n), and AMk(R

n), respectively.

In particular,

dimAMn(W ) = 1.(2.5.10)

One can verify that (2.5.4) holds for every linear mapping T from W into itself
and alternating n-linear form ν on W , by reducing to the analogous statement
for Rn using L.

2.6 Subgroups of Sym(k)

Let X be a nonempty set, and remember that Sym(X) is the space of one-to-one
mappings from X onto itself, as in Section 1.9. A subset Σ of Sym(X) is said
to be a subgroup if it satisfies the following three conditions. First, the identity
mapping on X is an element of Σ. Second, if σ ∈ Σ, then

σ−1 ∈ Σ.(2.6.1)

Third, if σ, τ ∈ Σ, then

σ ◦ τ ∈ Σ.(2.6.2)

It is well known that Sym(X) is an example of a group, with respect to
composition of mappings on X. The definition of a subgroup of Sym(X) in the
preceding paragraph corresponds exactly to the definition of a subgroup of an
arbitrary group. Some basic examples of subgroups of Sym(X) can be obtained
by considering the permutations that map cerain elements of X to themselves,
or certain subsets of X to themselves. Note that Sym(X) is a subgroup of itself,
and that the subset of Sym(X) consisting only of the identity mapping on X is
a subgroup of Sym(X) too.

Let k be a positive integer, and let us now take X = {1, . . . , k}. Thus we let
Σ be a subgroup of Sym(k). Also letW be a vector space over the real numbers,
and let µ be a k-linear form on W . Remember that µσ may be defined as a
k-linear form on W for every σ ∈ Sym(k) as in Section 2.4. Let us say that µ is
symmetric with respect to Σ if

µσ = µ(2.6.3)

for every σ ∈ Σ. Similarly, we say that µ is alternating with respect to Σ if

µσ = sgn(σ)µ(2.6.4)

for every σ ∈ Σ. If Σ = Sym(k), then these definitions are the same as the
previous definitions of symmetric and alternating k-forms on W in Section 2.4.
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2.6.1 Associated symmetrizations and alternatizations

The symmetrization and alternatization with respect to Σ of any k-linear form
µ on W may be defined by

SΣ(µ) =
1

#Σ

∑
σ∈Σ

µσ(2.6.5)

and

AΣ(µ) =
1

#Σ

∑
σ∈Σ

sgn(σ)µσ,(2.6.6)

respectively, where #Σ is the number of elements of Σ. These are the same as
the usual symmetrization and alternatization of µ, as in Subsection 2.4.1, when
Σ = Sym(k). It is easy to see that

SΣ(µ) = µ(2.6.7)

when µ is symmetric with respect to Σ, and that

AΣ(µ) = µ(2.6.8)

when µ is alternating with respect to Σ. One can check that

SΣ(µ) is symmetric with respect to Σ(2.6.9)

and
AΣ(µ) is alternating with respect to Σ(2.6.10)

for any k-linear form µ onW , using the same type of arguments as in Subsection
1.9.1 and Section 1.13. If τ ∈ Σ, then

SΣ(µ
τ ) = SΣ(µ)(2.6.11)

and
AΣ(µ

τ ) = sgn(τ)AΣ(µ),(2.6.12)

for essentially the same reasons as before.
Observe that

S(SΣ(µ)) = S
( 1

#Σ

∑
τ∈Σ

µτ
)

=
1

#Σ

∑
τ∈Σ

S(µτ )(2.6.13)

=
1

#Σ

∑
τ∈Σ

S(µ) = S(µ),

because S(µτ ) = S(µ) for every τ ∈ Sym(k), as in Subsection 2.4.1. Similarly,

A(AΣ(µ)) = A
( 1

#Σ

∑
τ∈Σ

sgn(τ)µτ
)

=
1

#Σ

∑
τ∈Σ

sgn(τ)A(µτ )

=
1

#Σ

∑
τ∈Σ

sgn(τ)2A(µ) = A(µ),(2.6.14)

because A(µτ ) = sgn(τ)A(µ) for every τ ∈ Sym(k), as before.
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2.7 Permutations on subsets

Let X be a nonempty set, and let E be a nonempty subset of X. Consider
the spaces Sym(X) and Sym(E) of one-to-one mappings from X and E onto
themselves, respectively, as before. If σ ∈ Sym(E), then let σ̂ be the mapping
from X into itself which is equal to σ on E, and equal to the identity mapping
on X \E. It is easy to see that σ̂ is an element of Sym(X), which is the identity
mapping on X when σ is the identity mapping on E. We also have that

̂(σ ◦ τ) = σ̂ ◦ τ̂(2.7.1)

for every σ, τ ∈ Sym(X).
This means that

σ 7→ σ̂(2.7.2)

is a homomorphism from Sym(E) into Sym(X), as groups with respect to com-
positions of mappings. Note that (2.7.2) is a one-to-one mapping from Sym(E)
into Sym(X). Put

ΣE = {σ̂ : σ ∈ Sym(E)},(2.7.3)

which is a subgroup of Sym(X), as in the previous section. This uses the fact
that ̂(σ−1) = (σ̂)−1(2.7.4)

for every σ ∈ Σ.
Now let k be a positive integer, and let us take X = {1, . . . , k} again. If

σ ∈ Sym(E), then one can check that

sgn(σ) = sgn(σ̂).(2.7.5)

More precisely, one can define sgn(σ) by identifying σ with an element of
Sym(#E), by listing the elements of E in order. In fact, one could list the
elements of E in any order and get the same result for sgn(σ), but we do not
really need that now.

It is easier to verify (2.7.5) when the elements of E are consecutive in
{1, . . . , k}, which holds in many examples of interest. Otherwise, there can
be an even number of additional fectors of −1 in the definition of sgn(σ̂).

Alternatively, if σ is a transposition on E, then σ̂ is a transposition on
{1, . . . , k}. Thus (2.7.5) is clear in this case, and otherwise one can express σ
as the composition of finitely many transposition.

2.8 Products of multilinear forms

Let W be a vector space over the real numbers, and let r be a positive integer.
Also let k1, . . . , kr be r positive integers, and put

k =

r∑
m=1

km.(2.8.1)
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If 1 ≤ m ≤ r, then we put

L(m) =

m−1∑
i=1

ki,(2.8.2)

which is interpreted as being equal to 0 when m = 1. Note that every positive
integer less than or equal to k can be expressed in a unique way as

L(m) + l,(2.8.3)

where 1 ≤ m ≤ r and 1 ≤ l ≤ km.
Suppose that µm is a km-linear form on W for each m = 1, . . . , r. If

w1, . . . , wk are k elements of W , then put

(µ1 ⊗ · · · ⊗ µr)(w1, . . . , wk) =

r∏
m=1

µm(wL(m)+1, . . . , wL(m)+km).(2.8.4)

This defines a k-linear form

µ = µ1 ⊗ · · · ⊗ µr(2.8.5)

onW . This is related to some remarks in Section 1.6 and Subsection 2.2.1 when
km = 1 for each m = 1, . . . , r. Note that

(µ1, . . . , µr) 7→ µ1 ⊗ · · · ⊗ µr(2.8.6)

defines an r-linear mapping from

r∏
m=1

Mkm(W ) = Mk1(W )× · · · ×Mkr (W )(2.8.7)

into Mk(W ).
If r = 2, then (2.8.4) is the same as saying that

(µ1 ⊗ µ2)(w1, . . . , wk1+k2) = µ1(w1, . . . , wk1)µ2(wk1+1, . . . , wk1+k2).(2.8.8)

Similarly, if r = 3, then (2.8.4) is the same as saying that

(µ1 ⊗ µ2 ⊗ µ3)(w1, . . . , wk1+k2+k3)(2.8.9)

= µ1(w1, . . . , wk1)µ2(wk1+1, . . . , wk1+k2)µ3(wk1+k2+1, . . . , wk1+k2+k3).

2.8.1 Polynomials, associativity, and linear mappings

Suppose for the moment that W = Rn for some positive integer n. Remember
that a multilinear form ν on Rn corresponds to a homogeneous polynomial Pν
on Rn as in Section 1.8. If µ is as in (2.8.5), then it is easy to see that

Pµ =

r∏
m=1

Pµm
.(2.8.10)
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Suppose for the moment again that r = 3. One can define µ1 ⊗ µ2 as a
(k1 + k2)-linear form on W as before, and use that to define

(µ1 ⊗ µ2)⊗ µ3(2.8.11)

as a (k1 + k2 + k3)-linear form on W . Similarly, one can define µ2 ⊗ µ3 as a
(k2 + k3)-linear form on W , and use that to define

µ1 ⊗ (µ2 ⊗ µ3)(2.8.12)

as a (k1 + k2 + k3)-linear form on W . It is easy to see that (2.8.11) and (2.8.12)
are the same as

µ1 ⊗ µ2 ⊗ µ3.(2.8.13)

Let V be another vector space over the real numbers, and let T be a linear
mapping from V into W . It is easy to see that

T ∗(µ1 ⊗ · · · ⊗ µr) = T ∗(µ1)⊗ · · · ⊗ T ∗(µr),(2.8.14)

as k-linear forms on V . Of course, this uses the mappings induced on multilinear
forms by T as in Section 2.3.

2.8.2 Products and permutations

Let ϕ be a permutation on {1, . . . , r}, so that kϕ(1), . . . , kϕ(r) are r positive
integers with

r∑
m=1

kϕ(m) = k.(2.8.15)

Thus
ν = µϕ(1) ⊗ · · · ⊗ µϕ(r)(2.8.16)

is a k-linear form on W , as before. If W = Rn, then

Pν =

r∏
m=1

Pµϕ(m)
= Pµ.(2.8.17)

Put

Lϕ(m) =

m−1∑
i=1

kϕ(i)(2.8.18)

for each m = 1, . . . , r, as before. Every positive integer less than or equal to k
can be expressed in a unique way as

Lϕ(m) + l(2.8.19)

for some m = 1, . . . , r and l = 1, . . . , kϕ(m), as before.
Consider the mapping σϕ from {1, . . . , k} into itself defined by

σϕ(Lϕ(m) + l) = L(ϕ(m)) + l(2.8.20)
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for each m = 1, . . . , r and l = 1, . . . , kϕ(m). More precisely, this defines a
permutation on {1, . . . , k}. One can check that

ν = µσϕ ,(2.8.21)

where the right side is defined as in Section 2.4.

If r = 2, ϕ(1) = 2, and ϕ(2) = 1, then

ν = µ2 ⊗ µ1.(2.8.22)

Note that L(1) = 0, L(2) = k1 and Lϕ(1) = 0, Lϕ(2) = k2 in this case. This
means that

σϕ(l) = k1 + l for l = 1, . . . , k2 = kϕ(1)(2.8.23)

and

σϕ(k2 + l) = l for l = 1, . . . , k1 = kϕ(2).(2.8.24)

2.9 Symmetry and products

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If µ1, . . . , µr are symmetric multilinear forms on W , then we may prefer
to consider a product that is a symmetric multilinear form as well. In this case,
we may put

µ1 � · · · � µr = S(µ),(2.9.1)

where the right side is as in Subsection 2.4.1. This defines an r-linear mapping

(µ1, . . . , µr) 7→ µ1 � · · · � µr(2.9.2)

from
∏r
m=1 SMkm(W ) = SMk1(W )× · · · × SMkr (W ) into SMk(W ).

If W = Rn, then

PS(µ) = Pµ =

r∏
m=1

Pµm
,(2.9.3)

where the first step is as in Section 1.10. This determines S(µ) uniquely, as in
Subsection 1.10.1.

Let ϕ be a permutation on {1, . . . , r} again, and let ν be as in (2.8.16).
Observe that

S(ν) = S(µσϕ) = S(µ),(2.9.4)

using (2.8.21) in the first step, and where the second step is as in Subsection
2.4.1. This means that

µϕ(1) � · · · � µϕ(r) = µ1 � · · · � µr.(2.9.5)
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2.9.1 Some symmetrizations of products

Suppose for the moment that r = 2. We would like to check that

Sk1+k2(Sk1(µ1)⊗ µ2) = Sk1+k2(µ1 ⊗ µ2),(2.9.6)

where Sk1 , Sk1+k2 are the symmetrization operators associated to k1 and k1+k2
as in Subsection 2.4.1. If τ ∈ Sym(k1), then let τ̂ be the element of Sym(k1+k2)
that is equal to τ on {1, . . . , k1}, and is the identity mapping on {k1+1, . . . , k1+
k2}, as in Section 2.7. It is easy to see that

µτ1 ⊗ µ2 = (µ1 ⊗ µ2)
τ̂ ,(2.9.7)

using the notation from Section 2.4.
Remember that

Σ = {τ̂ : τ ∈ Sym(k1)}(2.9.8)

is a subgroup of Sym(k1+k2), as in Sections 2.6 and 2.7. Of course, the number
of elements of Σ is the same as the number of elements of Sym(k1), which is
k1!. One can check that

Sk1(µ1)⊗ µ2 = SΣ(µ1 ⊗ µ2),(2.9.9)

where SΣ is as in Subsection 2.6.1, using (2.9.7). This implies that

Sk1+k2(Sk1(µ1)⊗ µ2) = Sk1+k2(SΣ(µ1 ⊗ µ2)) = Sk1+k2(µ1 ⊗ µ2),(2.9.10)

where the second step is as in Subsection 2.6.1.
Alternatively, if W = Rn, then the polynomial associated to the right side

of (2.9.6) is as in (2.9.3). One can verify that this is the same as the polynomial
associated to the left side of (2.9.6).

Similarly,
Sk1+k2(µ1 ⊗ Sk2(µ2)) = Sk1+k2(µ1 ⊗ µ2).(2.9.11)

It follows that

Sk1+k2(Sk1(µ1)⊗ Sk2(µ2)) = Sk1+k2(µ1 ⊗ Sk2(µ2))(2.9.12)

= Sk1+k2(µ1 ⊗ µ2).

One could also look at this in terms of the subgroup of Sym(k1 + k2) corre-
sponding to the product of Sym(k1) and Sym(k2), as in Section 2.13.

Suppose now that r = 3 again. Observe that

Sk(Sk1+k2(µ1 ⊗ µ2)⊗ µ3) = Sk(µ1 ⊗ µ2 ⊗ µ3),(2.9.13)

where k = k1 + k2 + k3, as in (2.9.6). Similarly,

Sk(µ1 ⊗ Sk2+k3(µ2 ⊗ µ3)) = Sk(µ1 ⊗ µ2 ⊗ µ3),(2.9.14)

as in (2.9.11). It follows that

((µ1 � µ2)� µ3) = µ1 � µ2 � µ3 = µ1 � (µ2 � µ3)(2.9.15)

when µ1, µ2, µ3 are symmetric, in the notation of (2.9.1).
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2.10 Alternatizing products

Let W be a vector space over the real numbers, let k1, k2 be positive integers,
and let µ1, µ2 be k1, k2-linear forms on W , respectively. We would like to check
that

Ak1+k2(Ak1(µ1)⊗ µ2) = Ak1+k2(µ1 ⊗ µ2),(2.10.1)

where Ak1 and Ak1+k2 are the alternatization operators associated to k1 and
k1 + k2 as in Subsection 2.4.1.

If τ ∈ Sym(k1), then let τ̂ ∈ Sym(k1 + k2) be as in Subsection 2.9.1, and let
Σ be as in (2.9.8) again. Remember that sgn(τ) = sgn(τ̂) for every τ ∈ Sym(k1),
as in Section 2.7. One can use this and (2.9.7) to get that

Ak1(µ1)⊗ µ2 = AΣ(µ1 ⊗ µ2),(2.10.2)

where AΣ is as in Subsection 2.6.1. This implies that

Ak1+k2(Ak1(µ1)⊗ µ2) = Ak1+k2(AΣ(µ1 ⊗ µ2)) = Ak1+k2(µ1 ⊗ µ2),(2.10.3)

where the second step is as in Subsection 2.6.1.
Similarly,

Ak1+k2(µ1 ⊗Ak2(µ2)) = Ak1+k2(µ1 ⊗ µ2).(2.10.4)

Thus

Ak1+k1(Ak1(µ1)⊗Ak2(µ2)) = Ak1+k2(µ1 ⊗Ak2(µ2))(2.10.5)

= Ak1+k2(µ1 ⊗ µ2).

As before, one can look at this more directly in terms of the appropriate sub-
group of Sym(k1 + k2), as in Section 2.13.

Now let k1, k2, and k3 be positive integers, and put k = k1 + k2 + k3 again.
If µ1, µ2, and µ3 are k1, k2, and k3-linear forms on W , respectively, then

Ak(Ak1+k2(µ1 ⊗ µ2)⊗ µ3) = Ak(µ1 ⊗ µ2 ⊗ µ3),(2.10.6)

as in (2.10.1). Similarly,

Ak(µ1 ⊗Ak1+k2(µ2 ⊗ µ3)) = Ak(µ1 ⊗ µ2 ⊗ µ3),(2.10.7)

as in (2.10.4).

2.10.1 The ∧0 product

If µ1, µ2 are alternating k1, k2-linear forms on W , respectively, then put

µ1 ∧0 µ2 = Ak1+k2(µ1 ⊗ µ2)(2.10.8)

which is an alternating (k1 + k2)-linear form on W . This corresponds to

µ1 ∧β µ2(2.10.9)
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in the notation used in (3) on p60 of [183], and we shall say more about this in
the next section. Note that

(µ1, µ2) 7→ µ1 ∧0 µ2(2.10.10)

defines a bilinear mapping from AMk1(W )×AMk2(W ) into AMk1+k2(W ). If
µ3 is an alternating k3-linear form on W , then we have that

(µ1 ∧0 µ2) ∧0 µ3 = µ1 ∧0 (µ2 ∧0 µ3) = Ak1+k2+k3(µ1 ⊗ µ2 ⊗ µ3),(2.10.11)

by (2.10.6) and (2.10.7).
Now let r be a positive integer, let k1, . . . , kr be r positive integers, and put

k =
∑r
m=1 km, as in Section 2.8. If µm is an alternating km-linear form on W

for each m = 1, . . . , r, then

µ1 ∧0 · · · ∧0 µr = Ak(µ1 ⊗ · · · ⊗ µr)(2.10.12)

is an alternating k-linear form on W , where the right side is as in Subsection
2.4.1. More precisely, the left side may be defined by combining alternating
multilinear forms two at a time using ∧0 as in the preceding paragraph, and
one gets the same answer however this is done, because of (2.10.11). One can
also check that the result is equal to the right side of (2.10.12), using (2.10.11).
This defines an r-linear mapping from

r∏
m=1

AMkm(W ) = AMk1(W )× · · · × AMkr (W )(2.10.13)

into AMk(W ).
This is a nice way to “multiply” alternating multilinear forms on W , but it

is customary to use a different normalization. This will be discussed in the next
section.

2.11 The wedge product

Let W be a vector space over the real numbers, and let k1, k2 be positive
integers. If µ1, µ2 are alternating k1, k2-linear forms on W , respectively, then
put

µ1 ∧ µ2 =
(k1 + k2)!

k1! k2!
(µ1 ∧0 µ2) =

(k1 + k2)!

k1! k2!
Ak1+k2(µ1 ⊗ µ2),(2.11.1)

which is an alternating (k1 + k2)-linear form on W . This corresponds to

µ1 ∧α µ2(2.11.2)

in the notation used in (4) on p60 of [183]. Of course,

(µ1, µ2) 7→ µ1 ∧ µ2(2.11.3)



38 CHAPTER 2. MORE ON MULTILINEAR FORMS

is a bilinear mapping from AMk1(W )×AMk2(W ) into AMk1+k2(W ).
Let k3 be another positive integer, and let µ3 be an alternating k3-linear

form on W . Using (2.10.11), one can check that

(µ1 ∧ µ2) ∧ µ3 = µ1 ∧ (µ2 ∧ µ3)(2.11.4)

=
(k1 + k2 + k3)!

k1! k2! k3!
Ak1+k2+k3(µ1 ⊗ µ2 ⊗ µ3).

Similarly, let r be a positive integer, let k1, . . . , kr be r positive integers, and
put k =

∑r
m=1 km, as before. If µm is an alternating km-linear form on W for

each m = 1, . . . , r, then

µ1 ∧ · · · ∧ µr =
k!

k1! · · · kr!
(µ1 ∧0 · · · ∧0 µr)(2.11.5)

=
k!

k1! · · · kr!
Ak(µ1 ⊗ · · · ⊗ µr)

is an alternating k-linear form, where the second step is as in (2.10.12). As
before, the left side may be defined using the wedge product of alternating
multilinear forms two at a time, and one gets the same answer however this is
done, because of (2.11.4). To get the first step in (2.11.5), one should verify the
coefficient on the right side. Note that this defines an r-linear mapping from∏r
m=1 AMkm(W ) into AMk(W ).
Suppose for the moment that km = 1 for each m = 1, . . . , r, so that k = r.

In this case, (2.11.5) implies that

µ1 ∧ · · · ∧ µk = k!Ak(µ1 ⊗ · · · ⊗ µk)(2.11.6)

=
∑

σ∈Sym(k)

sgn(σ) (µ1 ⊗ · · · ⊗ µk)
σ,

using the definition of Ak in Subsection 2.4.1 in the second step.
Suppose for the moment again that W = Rn for some positive integer n,

and let θ1, . . . , θn be the usual coordinate functions on Rn, as in Subsection
1.6.2. Using (2.11.6), we get that

θ1 ∧ · · · ∧ θn = µdet,(2.11.7)

where µdet is as in Section 1.15.

2.12 More on wedge products

Let k1, k2 be positive integers, and let ψk1,k2 be the mapping from

{1, . . . , k1 + k2}(2.12.1)

into itself defined by

ψk1,k2(l) = l + k1 when 1 ≤ l ≤ k2(2.12.2)

= l − k2 when k2 + 1 ≤ l ≤ k1 + k2,
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It is easy to see that this defines a permutation on (2.12.1). One can check that

sgn(ψk1,k2) = (−1)k1 k2 .(2.12.3)

LetW be a vector space over the real numbers, and let µ1, µ2 be k1, k2-linear
forms on W , respectively. One can verify that

µ2 ⊗ µ1 = (µ1 ⊗ µ2)
ψk1,k2 ,(2.12.4)

where the right side is as defined in Section 2.4. This corresponds to a remark
in Subsection 2.8.2.

This implies that

Ak1+k2(µ2 ⊗ µ1) = Ak1+k2((µ1 ⊗ µ2)
ψk1,k2 )(2.12.5)

= sgn(ψk1,k2)Ak1+k2(µ1 ⊗ µ2)

= (−1)k1 k2 Ak1+k2(µ1 ⊗ µ2),

where the second step is as in Subsection 2.4.1. If µ1, µ2 are alternating k1,
k2-linear forms on W , then this is the same as saying that

µ2 ∧0 µ1 = (−1)k1 k2 (µ1 ∧0 µ2).(2.12.6)

Equivalently, this means that

µ2 ∧ µ1 = (−1)k1 k2 (µ1 ∧ µ2).(2.12.7)

It is convenient to put
M0(W ) = R,(2.12.8)

so that a real number is considered as a 0-linear form on W . We can extend
the previous definition of products of multilinear forms in Section 2.8 to include
0-linear forms, using scalar multiplication of multilinear forms by real numbers,
and ordinary multiplication on R.

Let us consider 0-linear forms on W to be both symmetric and alternating,
so that

AM0(W ) = SM0(W ) = R(2.12.9)

as well. The symmetrization and alternatization operators Sk and Ak defined
in Subsection 2.4.1 may be extended to k = 0 using the identity mapping on R.
Wedge products of alternating multilinear forms may be extended to include 0-
linear forms too, using scalar multiplication by real numbers again, and ordinary
multiplication on R.

2.12.1 Linear mappings and AM(W )

Let V be another vector space over the real numbers, and let T be a linear
mapping from V into W . If µ1, µ2 are alternating k1, k2-linear forms on W
again, then

T ∗(µ1 ∧0 µ2) = T ∗(Ak1+k2(µ1 ⊗ µ2)) = Ak1+k2(T
∗(µ1 ⊗ µ2))

= Ak1+k2(T
∗(µ1)⊗ T ∗(µ2)) = T ∗(µ1) ∧0 T

∗(µ2).(2.12.10)
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More precisely, the second step here is as in Subsection 2.4.1, and the third step
is as in Subsection 2.8.1. It follows that

T ∗(µ1 ∧ µ2) = T ∗(µ1) ∧ T ∗(µ2).(2.12.11)

Suppose now thatW has dimension n for some positive integer n, as a vector
space over the real numbers. Remember that

AMk(W ) = {0} when k > n(2.12.12)

in this case, as in Subsection 1.11.1 and Section 2.4. This implies that

µ1 ∧ µ2 = 0 when k1 + k2 > n.(2.12.13)

Let us define AM(W ) initially as a vector space over the real numbers by

AM(W ) =

n⊕
k=0

AMk(W ),(2.12.14)

where the right side is as in Section 2.1. We shall normally identify elements
of AMl(W ) with their images in AM(W ) under the embeddings mentioned
earlier, so that every element of AM(W ) corresponds to a sum of elements of
AMl(W ), 0 ≤ l ≤ n.

The wedge product has a natural extension to a bilinear mapping from
AM(W ) × AM(W ) into AM(W ). This makes AM(W ) into an associative
algebra over the real numbers. Note that R corresponds to a subalgebra of
AM(W ), because of (2.12.9), and that 1 is also the multiplicative identity ele-
ment of AM(W ).

2.13 Some more subgroups of Sym(k)

In this and the next two sections, we shall consider some additional subgroups
of Sym(k), and related properties of k-linear forms. This will be used to give
another way to look at wedge products in Subsection 2.15.2. The reader may
not want to dwell on these three sections too much at first.

Let r be a positive integer, let k1, . . . , kr be r positive integers, and put
k =

∑r
m=1 km, as before. If 1 ≤ m ≤ r, then put L(m) =

∑m−1
i=1 ki, which is

interpreted as being equal to 0 when m = 1, as in Section 2.8. Also put

Em = {L(m) + 1, . . . , L(m) + km},(2.13.1)

and note that
r⋃

m=1

Em = {1, . . . , k},(2.13.2)

and that the Em’s are pairwise-disjoint, as before.



2.13. SOME MORE SUBGROUPS OF SYM(K) 41

If σm ∈ Sym(km), then let σ̂m be the mapping from {1, . . . , k} into itself
defined by

σ̂m(L(m) + l) = L(m) + σ(l)(2.13.3)

for l = 1, . . . , km, and taking σ̂ to be the identity mapping on the complement
of Em. It is easy to see that this defines an element of Sym(k), and that

̂(σm ◦ τm) = σ̂m ◦ τ̂m(2.13.4)

for every σm, τm ∈ Sym(km). This basically corresponds to some remarks in
Section 2.7, by identifying Sym(km) with Sym(Em) using the mapping

l 7→ L(m) + l(2.13.5)

from {1, . . . , km} onto Em.
As before,

σm 7→ σ̂m(2.13.6)

is a one-to-one mapping from Sym(km) into Sym(k), and a group homomor-
phism. We also have that

sgn(σm) = sgn(σ̂m)(2.13.7)

for every σm ∈ Sym(km), as before.
Suppose for the moment that 1 ≤ m1 6= m2 ≤ r, so that

Em1 ∩ Em2 = ∅.(2.13.8)

If σm1
∈ Sym(km1

) and σm2
∈ Sym(km2

), then it is easy to see that

σ̂m1
◦ σ̂m2

= σ̂m2
◦ σ̂m1

.(2.13.9)

Consider the subset Σ of Sym(k) defined by

Σ = {σ̂1 ◦ · · · ◦ σ̂r : σm ∈ Sym(km) for each m = 1, . . . , r}.(2.13.10)

One can check that this is a subgroup of Sym(k), as in Section 2.6. Equivalently,
Σ consists of the elements of Sym(k) that map Em onto itself for each m =
1, . . . , r.

Consider the Cartesian product

r∏
m=1

Sym(km) = Sym(k1)× · · · × Sym(kr),(2.13.11)

which is the set of r-tuples (σ1, . . . , σr) with σm ∈ Sym(km) for each m =
1, . . . , r. By construction,

(σ1, . . . , σr) 7→ σ̂1 ◦ · · · ◦ σ̂r(2.13.12)
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maps this Cartesion product onto Σ. One can check that this mapping is one-
to-one as well. This implies that the number of elements of Σ is given by

#Σ =

r∏
m=1

(km!).(2.13.13)

In fact, (2.13.11) may be considered as a group, where the group operations
are defined coordinatewise. This is an example of a direct product of groups.
One can verify that (2.13.12) is a homomorphism from this group onto Σ, using
(2.13.9). More precisely, (2.13.12) is an isomorphism from (2.13.11) onto Σ,
because this mapping is one-to-one, as in the preceding paragraph.

2.14 Subgroups and products of forms

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Also let W be a vector space over the real numbers, and let µm be a
km-linear form on W for each m = 1, . . . , r. Thus µ = µ1 ⊗ · · · ⊗ µr defines a
k-linear form on W , as in Section 2.8.

Let σm ∈ Sym(km) be given for each m = 1, . . . , r, and put

σ = σ̂1 ◦ · · · ◦ σ̂r.(2.14.1)

It is easy to see that
µσ = µσ1

1 ⊗ · · · ⊗ µσm
m ,(2.14.2)

using the notation from Section 2.4. If µm is a symmetric km-linear form on W
for each m = 1, . . . , r, then it follows that µ is symmetric with respect to Σ, as
in Section 2.6.

Suppose for the moment that µm is an alternating km-linear form on W for
each m = 1, . . . , r. This implies that

µσ =
( r∏
m=1

sgn(σm)
)
µ,(2.14.3)

because of (2.14.2). Observe that

r∏
m=1

sgn(σm) =

r∏
m=1

sgn(σ̂m) = sgn(σ),(2.14.4)

using (2.13.7) in the first step. Thus

µσ = sgn(σ)µ,(2.14.5)

so that µ is alternating with respect to Σ, as in Section 2.6.
Remember that SΣ(µ) may be defined as in Subsection 2.6.1. If µm is any

km-linear form on W for each m again, then one can check that

SΣ(µ) = Sk1(µ1)⊗ · · · ⊗ Skr (µr),(2.14.6)
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using (2.14.2).
Similarly, AΣ(µ) may be defined as in Subsection 2.6.1. One can verify that

AΣ(µ) = Ak1(µ1)⊗ · · · ⊗ Akr (µr),(2.14.7)

using (2.14.2) and (2.14.4).

2.15 Some related shuffles

Let us continue with the same notation and hypotheses as in the previous two
sections. Let us say that τ ∈ Sym(k) is a shuffle with respect to k1, . . . , kr if
for each m = 1, . . . , r,

the restriction of τ to Em is increasing.(2.15.1)

This means that for each m = 1, . . . , r and 1 ≤ l1 < l2 ≤ km, we have that

τ(L(m) + l1) < τ(L(m) + l2).(2.15.2)

This is mentioned with r = 2 on p60 of [183]. If τ is a shuffle with respect to
k1, . . . , kr, then for each m = 1, . . . , r, the restriction of τ to Em is uniquely
determined by τ(Em).

Let ρ ∈ Sym(k) be given, and put

Cm = ρ(Em)(2.15.3)

for each m = 1, . . . , r. Observe that

#Cm = #Em(2.15.4)

for each m = 1, . . . , r,
r⋃

m=1

Cm = {1, . . . , k},(2.15.5)

and
the Cm’s are pairwise-disjoint.(2.15.6)

If C1, . . . , Cr is any sequence of r subsets of {1, . . . , k} that satisfies these three
conditions, then it is easy to see that there is a unique shuffle τ ∈ Sym(k) with
respect to k1, . . . , kr such that

Cm = τ(Em)(2.15.7)

for every m = 1, . . . , r. Put σ = τ−1 ◦ ρ, so that σ ∈ Sym(k) and

ρ = τ ◦ σ.(2.15.8)

Clearly
σ(Em) = Em(2.15.9)

for each m = 1, . . . , r, by construction.
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2.15.1 The set of shuffles

Remember that Σ is the subgroup of Sym(k) consisting of σ ∈ Sym(k) that
satisfy (2.15.9), as in Section 2.13. Let Ξ be the set of τ ∈ Sym(k) such that τ
is a shuffle with respect to k1, . . . , kr. Consider the Cartesian product

Ξ× Σ,(2.15.10)

which is the set of ordered pairs (τ, σ) with τ ∈ Ξ and σ ∈ Σ. Note that

(τ, σ) 7→ τ ◦ σ(2.15.11)

defines a mapping from (2.15.10) into Sym(k). In fact, this is a one-to-one map-
ping from (2.15.10) onto Sym(k), by the remarks in the preceding paragraph.

We also have that

#Ξ =

(
k

k1 · · · kr

)
=

k!

k1! · · · kr!
.(2.15.12)

More precisely, the number of shuffles τ ∈ Sym(k) with respect to k1, . . . , kr
is the same as the number of ways of partitioning {1, . . . , k} into r subsets
C1, . . . , Cr, where #Cm = km for each m = 1, . . . , r, as before. The number
of these partitions is the same as the multinomial coefficient in (2.15.12), as in
Section 1.14. Alternatively,

(#Ξ) (#Σ) = #Sym(k),(2.15.13)

as in the preceding paragraph. This implies (2.15.12), because #Sym(k) = k!
and #Σ =

∏r
m=1(km!).

2.15.2 Symmetrization, alternatization, and shuffles

If ν is a k-linear form on W , then

Sk(ν) =
1

k!

∑
ρ∈Sym(k)

νρ =
1

k!

∑
τ∈Ξ

∑
σ∈Σ

ντ◦σ =
1

k!

∑
τ∈Ξ

∑
σ∈Σ

(νσ)τ ,(2.15.14)

where the first and third steps are as in Section 2.4, and the second step uses
the earlier remarks about (2.15.11). This implies that

Sk(ν) =
1

k!

∑
τ∈Ξ

(∑
σ∈Σ

νσ
)τ

=
1

#Ξ

∑
τ∈Ξ

SΣ(ν)
τ ,(2.15.15)

using (2.15.13) and the definition of SΣ(ν) in Subsection 2.6.1 in the second
step. In particular, if ν is symmetric with respect to Σ, then

Sk(ν) =
1

#Ξ

∑
τ∈Ξ

ντ .(2.15.16)



2.15. SOME RELATED SHUFFLES 45

Similarly,

Ak(ν) =
1

k!

∑
ρ∈Sym(k)

sgn(ρ) νρ =
1

k!

∑
τ∈Ξ

∑
σ∈Σ

sgn(τ ◦ σ) ντ◦σ

=
1

k!

∑
τ∈Ξ

∑
σ∈Σ

sgn(τ) sgn(σ) (νσ)τ .(2.15.17)

It follows that

Ak(ν) =
1

k!

∑
τ∈Ξ

sgn(τ)
(∑
σ∈Σ

sgn(σ) νσ
)τ

=
1

#Ξ

∑
τ∈Ξ

sgn(τ)AΣ(ν)
τ .(2.15.18)

If ν is alternating with respect to Σ, then we get that

Ak(ν) =
1

#Ξ

∑
τ∈Ξ

sgn(τ) ντ .(2.15.19)

Suppose that µm is an alternating km-linear form onW for eachm = 1, . . . , r,
so that µ = µ1 ⊗ · · · ⊗ µr is alternating with respect to Σ, as in the previous
section. Observe that

µ1 ∧0 · · · ∧0 µr = Ak(µ) =
1

#Ξ

∑
τ∈Ξ

sgn(τ)µτ ,(2.15.20)

where the first step is as in Subsection 2.10.1, and the second step is as in
(2.15.19). It follows that

µ1 ∧ · · · ∧ µr =
∑
τ∈Ξ

sgn(τ)µτ ,(2.15.21)

using (2.15.12) and a remark in Section 2.11. This corresponds to (2) on p60 of
[183] when r = 2.



Chapter 3

Some geometry and analysis

3.1 Metric spaces

Let X be a set. A nonnegative real-valued function d(x, y) defined for x, y ∈ X
is said to be a metric on X if it satisfies the following three conditions. First,

d(x, y) = 0 is and only if x = y.(3.1.1)

Second,

d(x, y) = d(y, x)(3.1.2)

for every x, y ∈ X. Third,

d(x, z) ≤ d(x, y) + d(y, z)(3.1.3)

for every x, y, z ∈ X. This third condition is known as the triangle inequality.
If d(x, y) is a metric on X, then (X, d(x, y)) is called a metric space.

If t is a real number, then the absolute value |t| of t is defined as usual by
|t| = t when t ≥ 0, and |t| = −t when t ≤ 0. It is easy to see that

|r + t| ≤ |r|+ |t|(3.1.4)

for all r, t ∈ R. One can use this to check that

d(x, y) = |x− y|(3.1.5)

defines a metric on the real line, which is the standard Euclidean metric on R.
If X is any set, then the discrete metric on X is defined by

d(x, y) = 1 when x 6= y(3.1.6)

= 0 when x = y.

One can check that this defines a metric on X.

46
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Let (X, d(x, y)) be a metric space, and let E be a subset of X. It is easy to
see that

the restriction of d(x, y) to x, y ∈ E(3.1.7)

defines a metric on E.
We shall often be concerned here with metrics obtained from norms on vector

spaces, as in the next section. More precisely, we shall often be concerned with
norms obtained from inner products, as in Section 3.3.

3.2 Norms on vector spaces

Let V be a vector space over the real numbers. A nonnegative real-valued
function N on V is said to be a norm if it satisfies the following three conditions.
First,

N(v) = 0 if and only if v = 0.(3.2.1)

Second,
N(t v) = |t|N(v)(3.2.2)

for every t ∈ R and v ∈ V . Third,

N(v + w) ≤ N(v) +N(w)(3.2.3)

for every v, w ∈ V , which is the triangle inequality for a norm.
Let n be a positive integer, and remember that Rn is a vector space over the

real numbers with respect to coordinatewise addition and scalar multiplication.
The standard Euclidean norm is defined on Rn by

‖v‖2 =
( n∑
j=1

v2j

)1/2

,(3.2.4)

using the nonnegative square root on the right side. It is easy to see that this
satisfies the first two conditions in the definition of a norm, but the triangle
inequality is more complicated when n ≥ 2. This will be discussed further in
the next section.

One can check directly that

‖v‖1 =

n∑
j=1

|vj |(3.2.5)

defines a norm on Rn. One can also verify that

‖v‖∞ = max
1≤j≤n

|vj |(3.2.6)

defines a norm on Rn. More precisely, to get that this satisfies the triangle
inequality, one can observe that

‖v + w‖∞ = max
1≤j≤n

|vj + wj | ≤ max
1≤j≤n

(|vj |+ |wj |) ≤ ‖v‖∞ + ‖w‖∞(3.2.7)



48 CHAPTER 3. SOME GEOMETRY AND ANALYSIS

for every v, w ∈ Rn.
Note that

‖v‖∞ ≤ ‖v‖1, ‖v‖2(3.2.8)

for every v ∈ Rn. We also have that

‖v‖1 ≤ n ‖v‖∞(3.2.9)

and

‖v‖2 ≤
√
n ‖v‖∞(3.2.10)

for every v ∈ Rn.
If v ∈ Rn, then

‖v‖22 =

n∑
j=1

v2j ≤ ‖v‖1 ‖v‖∞ ≤ ‖v‖21,(3.2.11)

using (3.2.8) in the third step. This implies that

‖v‖2 ≤ ‖v‖1.(3.2.12)

If N is a norm on any vector space V over the real numbers, then it is easy
to see that

dN (v, w) = N(v − w)(3.2.13)

defines a metric on V . The standard Euclidean metric on Rn is the metric

d2(v, w) = ‖v − w‖2(3.2.14)

associated to the standard Euclidean norm ‖ · ‖2 on Rn. Similarly,

d1(v, w) = ‖v − w‖1(3.2.15)

and

d∞(v, w) = ‖v − w‖∞(3.2.16)

define metrics on Rn too.
If W is a linear subspace of V and N is a norm on V , then

the restriction of N to W defines a norm on W(3.2.17)

as well.

3.3 Inner product spaces

Let V be a vector space over the real numbers, and let 〈v, w〉 be a symmetric
bilinear form on V . If

〈v, v〉 > 0(3.3.1)
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for every v ∈ V with v 6= 0, then 〈·, ·〉 is said to be an inner product on V .
Under these conditions, (V, 〈·, ·〉) is called an inner product space.

If n is a positive integer, then the standard inner product on Rn is defined
by

〈v, w〉 =
n∑
j=1

vj wj .(3.3.2)

In this case,

〈v, v〉 =
n∑
j=1

v2j = ‖v‖22(3.3.3)

for every v ∈ Rn, which is strictly positive when v 6= 0.
Let (V, 〈·, ·〉) be an inner product space, and put

‖v‖ = 〈v, v〉1/2(3.3.4)

for every v ∈ V , using the nonnegative square root on the right side. Note that

‖t v‖ = 〈t v, t v〉1/2 = |t| ‖v‖(3.3.5)

for every v ∈ V and t ∈ R. If v, w ∈ V , then it is well known that

|〈v, w〉| ≤ ‖v‖ ‖w‖,(3.3.6)

which is known as the Cauchy–Schwarz inequality. This can be obtained from
the fact that

〈v − t w, v − t w〉 ≥ 0(3.3.7)

for every t ∈ R.
One can use the Cauchy–Schwarz inequality to show that

‖v + w‖ ≤ ‖v‖+ ‖w‖(3.3.8)

for every v, w ∈ V . This implies that

‖ · ‖ is a norm on V.(3.3.9)

Of course, the standard Euclidean norm on Rn is the same as the norm associ-
ated to the standard inner product on Rn.

If W is a linear subspace of V , then

the restriction of 〈v, w〉 to v, w ∈W defines an inner product on W.(3.3.10)

3.4 Continuous functions on Rn

Let n be a positive integer, and let E be a nonempty subset of Rn. Also let f be
a real-valued function on E, and let x be an element of E. One can define what
it means for f to be continuous at x as a function defined on E in a standard



50 CHAPTER 3. SOME GEOMETRY AND ANALYSIS

way. In fact, one can define what it means for a function defined on a subset of
a metric space with values in another metric space to be continuous at a point
in the set on which the function is defined in essentially the same way. Here we
are using the standard Euclidean metrics on Rn and R.

We say that f is continuous on E if f is continuous at every point in E. Let

C(E) = C(E,R)(3.4.1)

be the space of all continuous real-valued functions on E. It is well known
that this is a linear subspace of the space of all real-valued functions on E.
In particular, C(E) is a vector space over the real numbers with respect to
pointwise addition and scalar multiplication of functions on E.

If f , g are continuous real-valued functions on E, then it is well known that
their product

f g is continuous on E(3.4.2)

too. Using this, it is easy to see that polynomials are continuous on Rn. Thus
the space P(Rn) of all polynomials on Rn with real coefficients may be consid-
ered as a linear subspace of C(Rn).

If f is a continuous real-valued function on E, and f(x) 6= 0 for each x ∈ E,
then it is well known that

1/f is continuous on E.(3.4.3)

This implies that rational functions are continuous on sets where the denomi-
nator is nonzero.

Let m be a positive integer, and let f be a function on E with values in Rm.
If x ∈ E, then f(x) can be expressed as

f(x) = (f1(x), . . . , fm(x)),(3.4.4)

where f1(x), . . . , fm(x) are real numbers. Thus f corresponds to m real-valued
functions f1, . . . , fm on E. If x ∈ E, then one can define what it means for f to
be continuous at x in a standard way, using the standard Euclidean metric on
Rm. It is well known that this is equivalent to the continuity of f1, . . . , fm at x
as real-valued functions on E.

As before, we say that f is continuous on E if f is continuous at every point
in E. Let

C(E,Rm)(3.4.5)

be the space of all continuous functions on E with values in Rm. The space
of all Rm-valued functions on E is a vector space over the real numbers, with
respect to pointwise addition and scalar multiplication. It is easy to see that
C(E,Rm) is a linear subspace of the space of all Rm-valued functions on E.
Thus C(E,Rm) is a vector space over the real numbers with respect to pointwise
addition and scalar multiplication of functions on E.

Let A be a nonempty subset of Rm, and suppose that f(x) ∈ A for every
x ∈ E, so that

f(E) ⊆ A.(3.4.6)
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Also let k be another positive integer, and let g be a function on A with values
in Rk. Thus the composition g ◦ f of f and g may be defined as a function on
E with values in Rk, with

(g ◦ f)(x) = g(f(x))(3.4.7)

for every x ∈ E. If f is continuous at x, and g is continuous at f(x), then it is
well known that g ◦ f is continuous at x. In particular, if f is continuous on E,
and g is continuous on A, then g ◦ f is continuous on E.

3.4.1 Open balls and open sets

If x ∈ Rn and r is a positive real number, then the open ball in Rn centered
at x with radius r with respect to the standard Euclidean metric is defined as
usual by

B(x, r) = {y ∈ Rn : ‖x− y‖2 < r},(3.4.8)

where ‖ · ‖2 = ‖ · ‖2,Rn is the standard Euclidean norm on Rn, as in Section
3.2. A subset U of Rn is said to be an open set with respect to the standard
Euclidean metric if for every x ∈ U there is an r > 0 such that

B(x, r) ⊆ U.(3.4.9)

It is well known that open balls in Rn are open sets. This can be shown using
the triangle inequality. More precisely, one can define open balls and open sets
in any metric space, and one can show that open balls are open sets in the same
way.

3.5 Partial derivatives

Let n be a positive integer, and let U be a nonempty open subset of Rn, with
respect to the standard Euclidean metric. Also let f be a real-valued function
on U , and let x ∈ U be given. The partial derivative of f at x in the jth variable,
1 ≤ j ≤ n, may be denoted

∂jf(x) =
∂f

∂xj
(x),(3.5.1)

when it exists.
Similarly, let m be a positive integer, and suppose now that f is a function

on U with values in Rm. The partial derivative of f at x in the jth variable
may be denoted as in (3.5.1) again, when it exists, which is an element of Rm.
This happens exactly when the partial derivative of each of the components
f1, . . . , fm at x in the jth variable exists, in which case

∂jf(x) = (∂jf1(x), . . . , ∂jfm(x)).(3.5.2)
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3.5.1 Continuous differentiability

We say that f is continuously differentiable on U if

∂jf(x) exists at every point x ∈ U for each j = 1, . . . , n,(3.5.3)

and is continuous as an Rm-valued function on U.

Equivalently, this means that each of the components f1, . . . , fm of f is contin-
uously differentiable on U in the same sense as a real-valued function on U . It
is well known that this implies that f is continuous on U . Of course, if n = 1,
then continuity at a point is implied by the existence of the derivative at that
point.

Let
C1(U,Rm)(3.5.4)

be the space of continuously-differentiable Rm-valued functions on U . This is
a linear subspace of the space C(U,Rm) of all continuous Rm-valued functions
on U .

If f , g are continuously-differentiable real-valued functions on U , then one
can check that

f g is continuously differentiable on U,(3.5.5)

using the product rule. Note that polynomials are continuously differentiable
on Rn.

If f is a continuously-differentiable real-valued function on U and f(x) 6= 0
for every x ∈ U , then one can verify that

1/f is continuously differentiable on U.(3.5.6)

It follows that rational functions are continuously differentiable on the comple-
ment of the set where the denominator is equal to 0.

3.5.2 Second derivatives

Let f be an Rm-valued function on U again, and suppose that the partial
derivatives of f exist at each point in U and in each variable. The partial
derivative of ∂lf at x in the jth variable may be denoted

∂j∂lf(x) =
∂2f

∂xj ∂xl
(x),(3.5.7)

when it exists. If

the partial derivatives ∂1f, . . . , ∂nf of f(3.5.8)

are all continuously differentiable on U,

then f is said to be twice continuously differentiable on U . This implies that
the partial derivatives of f are continuous on U , and that f is continuous on
U , as before. Note that f is twice continuously differentiable on U if and only
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if the components f1, . . . , fm of f are all twice continuously differentiable as
real-valued functions on U .

If f is twice continuously differentiable on U , then it is well known that

∂2f

∂xj ∂xl
=

∂2f

∂xl ∂xj
(3.5.9)

on U for all j, l = 1, . . . , n. This is normally stated for real-valued functions,
which implies the analogouus result for Rm-valued functions.

3.6 Additional regularity

Let m, n, and r be positive integers, and let U be a nonempty open subset of
Rn again. If f is an Rm-valued function on U , then let us say that f is r-times
continuously differentiable on U if

all of the derivatives of f of order up to r(3.6.1)

exist and are continuous on U.

This is equivalent to continuous differentiability of f on U when r = 1, and
to twice continuous differentiability of f on U when r = 2. It is sometimes
convenient to interpret this with r = 0 as meaning that f is continuous on U .

More precisely, f is r-times continuously differentiable on U if

all of the derivatives of f of order up to r exist on U,(3.6.2)

and the derivatives of f of order r are continuous on U.

This corresponds to the previous definitions of continuous differentiability and
twice continuous differentiability of f when r = 1 and 2, respectively. If r ≥ 2,
then this is the same as saying that

all of the derivatives of f of order r − 1(3.6.3)

are continuously differentiable on U.

In particular, this implies that all of the derivatives of f of order r− 1 are con-
tinuous on U , as before. One can repeat the process to get that the derivatives
of f of all orders up to r are continuous on U .

Alternatively, if r ≥ 2, then f is r-times continuously differentiable on U if
and only if

the partial derivatives ∂1f, . . . , ∂nf exist on U(3.6.4)

and are (r − 1)-times continuously differentiable on U.

Note that f is r-times continuously differentiable on U if and only if each of the
components f1, . . . , fm of f is r-times continuously differentiable as a real-valued
function on U .
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3.6.1 More on r-times continuous differentiability

Let
Cr(U,Rm)(3.6.5)

be the space of all Rm-valued functions on U that are r-times continuously
differentiable on U . This may be interpreted as being the space C(U,Rm) of all
continuous Rm-valued functions on U when r = 0, as before. It is easy to see
that

Cr(U,Rm) is a linear subspace of C(U,Rm)(3.6.6)

for each r. We also have that

Cr+1(U,Rm) ⊆ Cr(U,Rm)(3.6.7)

for each r.
Let j1, . . . , jr be r positive integers less than or equal to n. Suppose that the

derivatives of f on U up to order r exist, and consider the rth-order derivative

∂j1 · · · ∂jrf(3.6.8)

of f on U . If σ is a permutation on {1, . . . , r}, then

∂jσ(1)
· · · ∂jσ(n)

f(3.6.9)

is an rth-order derivative of f on U as well. If f is r-times continuously differ-
entiable on U , then it is well known that (3.6.8) is equal to (3.6.9). The r = 2
case was mentioned in Subsection 3.5.2.

If r > 2, then the previous case implies that (3.6.8) is equal to (3.6.9) when
σ is a transposition of a pair of consecutive elements of {1, . . . , r}. To get that
this holds for all permutations σ on {1, . . . , r}, one can show that every such
permutation is the composition of finitely many transpositions of this type.

Let α be a multi-index with
n∑
j=1

αj = r.(3.6.10)

We may use the notation

∂αf = ∂α1
1 · · · ∂αn

n f =
∂rf

∂xα1
1 · · · ∂xαn

n
(3.6.11)

for the corresponding derivative of f of other r. Of course, this means that no
derivative is taken in the jth variable when αj = 0. If f is r-times continuously
differentiable on U , then the order in which the derivatives are taken does not
matter, as in the previous two paragraphs, and every rth-order derivative of f
is of this form for some α.

If f , g are real-valued functions on U that are r-times continuously differen-
tiable for some r, then one can check that

f g is r-times continuously differentiable on U.(3.6.12)

If f(x) 6= 0 for every x ∈ U , then one can verify that

1/f is r-times continuously differentiable on U.(3.6.13)
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3.7 Smooth functions

Let m and n be positive integers, let U be a nonempty open subset of Rn,
and let f be an Rm-valued function on U again. Let us say that f is infinitely
differentiable on U if

f is r-times continuously differentiable on U for every r ≥ 1.(3.7.1)

Sometimes f is simply said to be smooth on U in this case. As before, f is
infinitely differentiable on U if and only if each of the components f1, . . . , fm is
infinitely differentiable as a real-valued function on U . The space of infinitely
differentiable Rm-valued functions on U is denoted

C∞(U,Rm) =

∞⋂
r=1

Cr(U,Rm),(3.7.2)

which is a linear subspace of Cr(U,Rm) for each r.
If f and g are infinitely-differentiable real-valued functions on U , then

f g is infinitely differentiable on U.(3.7.3)

Of course, polynomials on Rn are infinitely differentiable. If f(x) 6= 0 for every
x ∈ U , then

1/f is infinitely differentiable on U.(3.7.4)

This implies that rational functions are infinitely differentiable on the comple-
ment of the set where the denominator is equal to 0.

3.7.1 Compositions with functions on R

Let V be an open set in the real line, and let ψ be a real-valued function on V .
Suppose that

f takes values in V on U,(3.7.5)

so that the composition ψ ◦ f is defined as a real-valued function on U . If the
partial derivative of f at x ∈ U in the jth variable exists, and if

ψ is differentiable at f(x) ∈ V,(3.7.6)

then the partial derivative of ψ ◦ f in the jth variable exists at x, with

∂(ψ ◦ f)
∂xj

(x) = ψ′(f(x))
∂f

∂xj
(x).(3.7.7)

This follows from the ordinary chain rule for functions of one variable, by con-
sidering f and ψ ◦ f as functions of the jth variable, with the other variables
kept fixed.

If f is continuously differentiable on U , and ψ is continuously differentiable
on V , then it follows that

ψ ◦ f is continuously differentiable on U.(3.7.8)
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If f is r-times continuously differentiable on U , and ψ is r-times continuously
differentiable on V , then one can check that

ψ ◦ f is r-times continuously differentiable on U.(3.7.9)

If f is infinitely differentiable on U , and ψ is infinitely differentiable on V , then
we get that

ψ ◦ f is infinitely differentiable on U.(3.7.10)

3.7.2 A smooth function on R

Consider the real-valued function defined on the real line by

ϕ(x) = exp(−1/x) when x > 0(3.7.11)

= 0 when x ≤ 0.

It is easy to see that ϕ is infinitely differentiable when x 6= 0, using the remarks
in the preceding paragraph when x > 0. It is well known and not too difficult
to show that

ϕ is infinitely differentiable on R,(3.7.12)

with derivatives of all orders of ϕ at 0 equal to 0.

3.8 Differentiability

Let m and n be positive integers, let U be an open subset of Rn, and let f be
a mapping from U into Rm. We say that f is differentiable at a point x ∈ U if
there is a linear mapping A from Rn into Rm such that

lim
h→0

‖f(x+ h)− f(x)−A(h)‖2,Rm

‖h‖2,Rn

= 0.(3.8.1)

Here ‖ · ‖2,Rm and ‖ · ‖2,Rn are the standard Euclidean norms on Rm and Rn,
respectively, as in Section 3.2. Note that the quotient whose limit is being
considered is defined for h ∈ Rn with h 6= 0 and ‖h‖2,Rn sufficiently small.

If f is differentiable at x, then one can check that

f is continuous at x.(3.8.2)

One can also check directly that the linear mapping A is unique if this case, and
another way to see this will be mentioned in Subsection 3.8.1. If n = 1, then
this definition of differentiability reduces to the usual notion of differentiability
of a function of one variable, where A corresponds to multiplying a real number
by the ordinary derivative of f at x.

If f is differentiable at x, then we may put

f ′(x) = A,(3.8.3)
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where A is as in (3.8.1). This may be called the differential of f at x. Although
this is similar to the notation for the usual derivative when n = 1, one should
keep in mind that this is a linear mapping from Rn into Rm. We may also use
the notation

dfx(3.8.4)

for the differential of f at x, when it exists.

3.8.1 Directional derivatives

If v ∈ Rn, then
f(x+ t v)(3.8.5)

may be considered as an Rm-valued function of t that is defined on an open
set in the real line that contains 0. The directional derivative of f at x in the
direction v is defined to be

d

dt
f(x+ t v) at t = 0,(3.8.6)

if the derivative exists, as usual. If f is differentiable at x and v ∈ Rn, then one
can check that the directional derivative of f at x in the direction v exists, and
is equal to

f ′(x)(v) = dfx(v).(3.8.7)

In particular, this means that the partial derivative of f at x in the jth variable
exists for each j = 1, . . . , n, with

∂f

∂xj
(x) = f ′(x)(ej) = dfx(ej),(3.8.8)

where e1, . . . , en are the usual standard basis vectors for Rn. This can be used
to get the uniqueness of the differential of f at x when it exists, as mentioned
earlier.

3.8.2 Some properties of the differential

Of course, if f is constant on U , then f is differentiable at every x ∈ U , with

f ′(x) = 0.(3.8.9)

If f is a linear mapping from Rn into Rm, then f is differentiable at every
x ∈ Rn, with differential equal to f . If f is any continuously-differentiable
mapping from U into Rm, then it is well known that

f is differentiable at every x ∈ U.(3.8.10)

If f is any mapping from U into Rm that is differentiable at x ∈ U , then

f ′(x)(v) = dfx(v) =

n∑
j=1

vj
∂f

∂xj
(x)(3.8.11)
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for every v ∈ Rn, by (3.8.8).
As usual, one can verify that f is differentiable at x if and only if its m

components f1, . . . , fm are each differentiable at x as real-valued functions on
U . In this case, if v ∈ Rn, then

f ′1(x)(v), . . . , f
′
m(x)(v)(3.8.12)

are the m components of f ′(x)(v).
If f is differentiable at x and t ∈ R, then it is easy to see that t f is differ-

entiable at x too, as an Rm-valued function on U , with

(t f)′(x) = t f ′(x).(3.8.13)

If g is another mapping from U into Rm that is differentiable at x, then one
can verify that f + g is differentiable at x as an Rm-valued function on U , with

(f + g)′(x) = f ′(x) + g′(x).(3.8.14)

If f , g are real-valued functions on U that are differentiable at x, then it is
not too difficult to show that f g is differentiable at x, with

(f g)′(x) = g(x) f ′(x) + f(x) g′(x).(3.8.15)

3.9 The chain rule

Let m, n, and p be positive integers, let U be an open subset of Rn, and let V
be an open subset of Rm. Also let f be a mapping from U into V , and let g be
a mapping from V into Rp. Thus the composition g ◦ f of f and g is defined as
a mapping from U into Rp. Suppose that

f is differentiable at x ∈ U,(3.9.1)

and that

g is differentiable at f(x) ∈ V,(3.9.2)

so that the differentials f ′(x) and g′(f(x)) of f and g at x and f(x), respectively,
are defined as linear mappings from Rn and Rm into Rm and Rp, respectively.
There is a version of the chain rule that states that

g ◦ f is differentiable at x,(3.9.3)

with

(g ◦ f)′(x) = g′(f(x)) ◦ f ′(x).(3.9.4)

Equivalently, this means that

d(g ◦ f)x = dgf(x) ◦ dfx,(3.9.5)
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as a linear mapping from Rn into Rp. It is easy to see that this reduces to the
usual chain rule for real-valued functions of a single variable when m = n = p =
1.

Of course, a linear mapping from Rn into Rm corresponds to an m × n
matrix of real numbers in a standard way. Similarly, a linear mapping from Rm

into Rp corresponds to a p × m matrix. The composition of these two linear
mappings corresponds to a p×n matrix, which can be expressed in terms of the
other two matrices using matrix multiplication.

The entries of the matrices associated to f ′(x) and g′(f(x)) are given by the
partial derivatives of the components of f and g at x and f(x), respectively.
The chain rule implies that

the partial derivatives of the components of g ◦ f at x(3.9.6)

can be expressed as a sum of products of the partial derivatives

of the components of f and g at x and f(x), respectively,

using matrix multiplication.

If f and g are continuously differentiable on U and V , respectively, then one
can use this to check that

g ◦ f is continuously differentiable on U.(3.9.7)

More precisely, this uses the fact that

(∂lg)(f(x)) is continuous on U(3.9.8)

for each l = 1, . . . ,m, because ∂lg is continuous on V , and f is continuous on U .
This also uses the fact that sums of products of continuous real-valued functions
on U are continuous as well.

3.9.1 Additional regularity of compositions

Suppose that g is twice continuously differentiable on V , so that the partial
derivatives of g are continuously differentiable on V . If f is continuously differ-
entiable on U , then it follows that

(∂lg)(f(x)) is continuously differentiable on U(3.9.9)

for each l = 1, . . . ,m, as in the preceding paragraph. If f is twice continuously
differentiable on U as well, then the partial derivatives of f are continuously
differentiable on U . One can use this to get that

the partial derivatives of g ◦ f are continuously differentiable on U,(3.9.10)

because sums of products of continuously differentiable functions on U are con-
tinuously differentiable on U too. This means that g ◦ f is twice continuously
differentiable on U .
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Similarly, if f and g are r-times continuously differentiable on U and V ,
respectively, for some positive integer r, then

g ◦ f is r-times continuously differentiable on U.(3.9.11)

This is the same as saying that

the partial derivatives of g ◦ f(3.9.12)

are (r − 1)-times continuously differentiable on U.

The partial derivatives of f and g are (r − 1)-times continuously differentiable
on U and V , respectively, by hypothesis. One can use induction to get that

(∂lg)(f(x)) is (r − 1)-times continuously differentiable on U(3.9.13)

for each l = 1, . . . ,m, because f is (r − 1)-times continuously differentiable on
U . This implies (3.9.12), because sums of products of (r−1)-times continuously
differentiable functions on U are (r − 1)-times continuously differentiable on U
as well.

If f and g are infinitely differentiable on U and V , respectively, then we get
that

g ◦ f is infinitely differentiable on U.(3.9.14)

This was mentioned in Subsection 3.7.1 when m = p = 1.

3.10 A basis for AMk(R
n)

Let k and n be positive integers, with k ≤ n, and let θ1, . . . , θn be the stan-
dard coordinate functions on Rn, as in Subsection 1.6.2. Remember that the
dimension of the space AMk(R

n) of alternating k-linear forms on Rn is equal
to

(
n
k

)
, as in Subsection 1.12.1. We would like to describe a particular basis for

AMk(R
n), as a vector space over the real numbers.

Let I be a subset of {1, . . . , n} with exactly k elements. Thus

I = {j1, . . . , jk}(3.10.1)

for some integers j1, . . . , jk with

1 ≤ j1 < · · · < jk ≤ n.(3.10.2)

Put

θI = θj1 ∧ · · · ∧ θjk ,(3.10.3)

where the right side is as in Section 2.11. This means that

θI =
∑

σ∈Sym(k)

sgn(σ) (θj1 ⊗ · · · ⊗ θjk)
σ,(3.10.4)
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as before. If x(1), . . . , x(k) are k elements of Rn, then we get that

θI(x(1), . . . , x(k)) =
∑

σ∈Sym(k)

sgn(σ) (θj1 ⊗ · · · ⊗ θjk)
σ(x(1), . . . , x(k))

=
∑

σ∈Sym(k)

sgn(σ) (θj1 ⊗ · · · ⊗ θjk)(x(σ(1)), . . . , x(σ(k)))(3.10.5)

=
∑

σ∈Sym(k)

sgn(σ)

k∏
l=1

θjl(x(σ(l)))

=
∑

σ∈Sym(k)

sgn(σ)

k∏
l=1

xjl(σ(l)),

where the second step is as in Section 1.9, and the third step is as in Section
1.6.

Let e1, . . . , en be the usual standard basis vectors for Rn, and let m1, . . . ,mk

be k positive integers less than or equal to n. Note that

θI(em1 , . . . , emk
) =

∑
σ∈Sym(k)

sgn(σ)

k∏
l=1

θjl(emσ(l)
),(3.10.6)

as in (3.10.5). This implies that

θI(em1
, . . . , emk

) = 0(3.10.7)

unless there is a τ ∈ Sym(k) such that

mτ(l) = jl for each l = 1, . . . , k.(3.10.8)

In particular, this means that m1, . . . ,mk are distinct elements of {1, . . . , n},
because j1, . . . , jk are distinct elements of {1, . . . , n}. In this case, there is
exactly one τ ∈ Sym(k) with this property, and we get that

θI(em1
, . . . , emk

) = sgn(τ).(3.10.9)

Of course, there is a τ ∈ Sym(k) such that (3.10.8) holds if and only if

{m1, . . . ,mk} = {j1, . . . , jk} = I.(3.10.10)

We also have that m1, . . . ,mk are k distinct positive integers less than or equal
to n if and only if

{m1, . . . ,mk}(3.10.11)

is a subset of {1, . . . , n} with exactly k elements.
Remember that a k-linear form µ on Rn is uniquely determined by the real

numbers
µ(em1

, . . . , emk
),(3.10.12)
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1 ≤ m1, . . . ,mk ≤ n, and that every family of nk real numbers corresponds to
a k-linear form on Rn in this way, as in Subsection 1.6.1. If µ is an alternating
k-linear form on Rn, then (3.10.12) is equal to 0 unless the ml’s are distinct, as
in Section 1.11. We also have that (3.10.12) determines

µ(emσ(1)
, . . . , emσ(k)

)(3.10.13)

for every σ ∈ Sym(k) in this case, as before. This implies that an alternating k-
linear form µ on R is uniqely determined by the family of real numbers (3.10.12)
with

1 ≤ m1 < · · · < mk ≤ n,(3.10.14)

as in Section 1.12. We have seen that any family of real numbers of this type
corresponds to an alternating k-linear form on Rn too.

One can use this to get that

the collection of θI , with I ⊆ {1, . . . , n} and #I = k,(3.10.15)

is a basis for AMk(R
n).

More precisely, one can use the θI ’s to get that that there is an alternating
k-linear form µ on Rn for which (3.10.12) is any real number when (3.10.14)
holds.

Remember that we take

AM0(R
n) = R,(3.10.16)

as in Section 2.12. Let us put

θI = 1 when I = ∅,(3.10.17)

so that (3.10.15) holds when k = 0.

3.11 A basis for AM(Rn)

Let n be a positive integer, and let us contunue with the notation used in the
previous section. As in Subsection 2.12.1, we put

AM(Rn) =

n⊕
k=0

AMk(R
n),(3.11.1)

and we shall normally identify elements of AMl(R
n) with their images in

AM(Rn) under the obvious embeddings for each l = 0, . . . , n. Using this iden-
tification, we get that

the collection of θI , I ⊆ {1, . . . , n}, is a basis for AM(Rn),(3.11.2)

as a vector space over the real numbers.
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Let k be a positive integer, and let λ1, . . . , λk be k linear functionals on Rn.
If τ ∈ Sym(k) and x(1), . . . , x(k) ∈ Rn, then

(λ1 ⊗ · · · ⊗ λk)
τ (x(1), . . . , x(k)) = (λ1 ⊗ · · · ⊗ λk)(x(τ(1)), . . . , x(τ(k)))

=

k∏
l=1

λl(x(τ(l))),(3.11.3)

using the notation in Section 1.9 in the first step, and the notation in Section
1.6 in the second step. It follows that

(λ1 ⊗ · · · ⊗ λk)
τ (x(1), . . . , x(k)) =

k∏
p=1

λτ−1(p)(x(p))

= (λτ−1(1) ⊗ · · · ⊗ λτ−1(k))(x(1), . . . , x(k)).(3.11.4)

This means that

(λ1 ⊗ · · · ⊗ λk)
τ = λτ−1(1) ⊗ · · · ⊗ λτ−1(k).(3.11.5)

We can replace τ with τ−1 to get that

λτ(1) ⊗ · · · ⊗ λτ(k) = (λ1 ⊗ · · · ⊗ λk)
τ−1

.(3.11.6)

This implies that

λτ(1) ∧ · · · ∧ λτ(k) = k!Ak(λτ(1) ⊗ · · · ⊗ λτ(k))(3.11.7)

= k!Ak((λ1 ⊗ · · · ⊗ λk)
τ−1

),

where the first step is as in Section 2.11. Thus

λτ(1) ∧ · · · ∧ λτ(k) = sgn(τ−1) k!Ak(λ1 ⊗ · · · ⊗ λk)(3.11.8)

= sgn(τ)λ1 ∧ · · · ∧ λk,

where the first step is as in Section 1.13. The second step uses the fact that
sgn(τ−1) = (sgn(τ))−1 = sgn(τ). In particular, if λ1, λ2 are linear functionals
on Rn, then

λ2 ∧ λ1 = −λ1 ∧ λ2,(3.11.9)

which also follows from a remark in Section 2.12. Using this, we get that

λ ∧ λ = 0(3.11.10)

for every linear functional λ on Rn.
Let I1, I2 be subsets of {1, . . . , n} with k1, k2 elements, respectively, and

put k = k1 + k2. If
I1 ∩ I2 6= ∅,(3.11.11)

then it is easy to see that
θI1 ∧ θI2 = 0,(3.11.12)
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using the remarks in the preceding paragraph. Note that (3.11.11) holds auto-
matically when k > n. Of course, we also know that AMk(R

n) = {0} in this
case, as in Subsection 1.11.1.

Suppose now that
I1 ∩ I2 = ∅,(3.11.13)

and put
I = I1 ∪ I2.(3.11.14)

Let 1 ≤ j1 < · · · < jk ≤ n be a list of the elements of I, in order. There is a
unique τ ∈ Sym(k) such that

τ({1, . . . , k1}) = I1, τ({k1 + 1, . . . , k}) = I2,(3.11.15)

and τ is increasing on each of {1, . . . , k1} and {k1 + 1, . . . , k}. Note that τ is a
shuffle, as in Section 2.15, with r = 2. We also have that

θI1 ∧ θI2 = θjτ(1)
∧ · · · ∧ θjτ(k)

= sgn(τ) θj1 ∧ · · · ∧ θjk = sgn(τ) θI ,(3.11.16)

using (3.11.8) in the second step.

3.12 Differential forms

Let n be a positive integer, and let E be a nonempty subset of Rn. A differential
form on E is

a function on E with values in AM(Rn).(3.12.1)

Similarly, if k is a nonnegative integer, then a differential k-form on E is

a function on E with values in AMk(R
n).(3.12.2)

This is automatically equal to 0 when k > n. A differential form on E may
be considered as a sum of differential k-forms on E, 0 ≤ k ≤ n. Note that a
differential 0-form on E is the same as a real-valued function on E.

A differential k-form on E may be expressed as

α =
∑
#I=k

αI θ
I ,(3.12.3)

where the sum is taken over all subsets I of {1, . . . , n} with exactly k elements.
This uses the fact that the θI ’s, #I = k, form a basis for AMk(R

n), as in
Section 3.10. The αI ’s, #I = k, are real-valued functions on E.

Similarly, a differential form on E may be expressed as

β =
∑
I

βI θ
I ,(3.12.4)

where now the sum is taken over all subsets I of {1, . . . , n}. The βI ’s are real-
valued functions on E, as before.
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The space of differential forms on E is a vector space over the real numbers
with respect to pointwise addition and scalar multiplication. The space of dif-
ferential k-forms on E may be considered as a linear subspace of the space of
differential forms on E. If α1, α2 are differential forms on E, then their wedge
product

α1 ∧ α2(3.12.5)

is defined as a differential form on E as well, using the wedge product of al-
ternating multilinear forms on Rn at each point. If α1, α2 are differential k1,
k2-forms on E for some nonnegative integers k1, k2, respectively, then

α1 ∧ α2 is a differential (k1 + k2)-form on E.(3.12.6)

Of course, this is equal to 0 when

k1 + k2 > n.(3.12.7)

3.12.1 Continuous differential forms

It is sometimes convenient to identify AMk(R
n) with R(nk) when k ≤ n, using

the basis for AMk(R
n) consisting of the θI ’s with #I = k. To do this, we should

list the subsets of {1, . . . , n} with exactly k elements in a sequence, with
(
n
k

)
terms. The order in which these subsets of {1, . . . , n} are listed will normally not
really matter. In particular, this leads to a metric on AMk(R

n), corresponding

to the standard Euclidean metric on R(nk). This metric does not depend on
the order in which the subsets of {1, . . . , n} with k elements are listed, because
the standard Euclidean metric on Rm is invariant under permutations of the
coordinates for any positive integer m.

Similarly, we may identify AM(Rn) with R2n , using the basis for AM(Rn)
consisting of the θI ’s corresponding to all subsets I of {1, . . . , n}. This involves
listing the subsets of {1, . . . , n} in a sequence with 2n terms, and the order in
which the subsets of {1, . . . , n} are listed will not normally matter, as before.
This leads to a metric on AM(Rn), corresponding to the standard Euclidean
metric on R2n , that does not depend on the order in which the subsets of
{1, . . . , n} are listed, as before.

Let us say that a differential form on E is continuous if it corresponds to
a continuous mapping from E into R2n in this way. This does not depend on
the order in which the subsets of {1, . . . , n} are listed, as usual. Equivalently, a
differential form β on E as in (3.12.4) is continuous if and only if

the coefficients βI are continuous as real-valued functions on E(3.12.8)

for all subsets I of {1, . . . , n}. The space

C(E,AM(Rn)) = C
(
E,R2n

)
(3.12.9)

of all continuous differential forms on E is a linear subspace of the space of all
differential forms on E.
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Similarly, we say that a differential k-form on E is continuous if it corre-

sponds to a continuous mapping from E into R(nk) when k ≤ n, which does
not depend on the order in which the subsets of {1, . . . , n} with k elements are
listed. This is the same as saying that a differential k-form α on E as in (3.12.3)
is continuous if and only if

the coefficients αI are continuous as real-valued functions on E(3.12.10)

for all subsets I of {1, . . . , n} with exactly k elements. The space

C(E,AMk(R
n)) = C

(
E,R(nk)

)
(3.12.11)

of all continuous differential k-forms on E is a linear subspace of the space of
all differential k-forms on E. This may be considered as a linear subspace of
the space of all continuous differential forms on E.

If α1, α2 are continuous differential forms on E, then it is easy to see that

α1 ∧ α2 is continuous as a differential form on E.(3.12.12)

More precisely, if α1 ∧ α2 is expressed as in (3.12.4), then the corresponding
coefficients of the θI ’s may be expressed in terms of sums of products of the
analogous coefficients of α1 and α2.

3.13 Additional regularity of differential forms

Let n and r be positive integers, and let U be a nonempty open subset of Rn.
Let us say that a differential form on U is r-times continuously differentiable on
U if it corresponds to an r-times continuously-differentiable mapping from U
into R2n , as in Subsection 3.12.1. This does not depend on the order in which
the subsets of {1, . . . , n} are listed, as before. A differential form β on U as in
(3.12.4) is r-times continuously differentiable if and only if

the coefficients βI are r-times continuously differentiable(3.13.1)

as real-valued functions on U

for all subsets I of {1, . . . , n}. The space

Cr(U,AM(Rn)) = Cr
(
U,R2n

)
(3.13.2)

of all r-times continuously differentiable differential forms on U is a linear sub-
space of the space of all continuous differential forms on U .

Similarly, if k is a nonnegative integer less than or equal to n, then we
say that a differential k-form on U is r-times continuously differentiable if it

corresponds to an r-times continuously-differentiable mapping from U intoR(nk).
This does not depend on the order in which the subsets of {1, . . . , n} with k
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elements are listed, as usual. A differential k-form α on U as in (3.12.3) is
r-times continuously differentiable on U if and only if

the coefficients αI are r-times continuously differentiable(3.13.3)

as real-valued functions on U

for all subsets I of {1, . . . , n} with exactly k elements. The space

Cr(U,AMk(R
n)) = Cr

(
U,R(nk)

)
(3.13.4)

of all r-times continuously-differentiable differential k-forms on U is a linear
subspace of the space of all continuous differential k-forms on U . This may
be considered as a linear subspace of the space of all r-times continuously-
differentiable differential forms on U .

Let us say that a differential form on U is infinitely differentiable or smooth
if it corresponds to an infinitely differentiable mapping from U into R2n , which
does not depend on the order in which the subsets of {1, . . . , n} are listed, as
usual. A differential form β on U as in (3.12.4) is infinitely differentiable on U
if and only if

the coefficients βI are infinitely differentiable(3.13.5)

as real-valued functions on U

for all subsets I of {1, . . . , n}. The space

C∞(U,AM(Rn)) = C∞(
U,R2n

)
(3.13.6)

of all infinitely-differentiable differential forms on U is a linear subspace of
(3.13.2) for each r.

Similarly, a diiferential k-form on U is said to be infinitely differentiable
or smooth if it corresponds to an infinitely-differentiable mapping from U into

R(nk), which does not depend on the order in which the subsets of {1, . . . , n}
with k elements are listed. A differential k-form α on U as in (3.12.3) is infinitely
differentiable on U if and only if

the coefficients αI are infinitely differentiable(3.13.7)

as real-valued functions on U

for all subsets I of {1, . . . , n} with exactly k elements. The space

C∞(U,AMk(R
n)) = C∞(

U,R(nk)
)

(3.13.8)

of all infinite-differentiable differential k-forms on U is a linear subspace of
(3.13.4) for each r. This may be considered as a linear subspace of the space of
all infinitely-differentiable differential forms on U .

As before, it is sometimes convenient to interpret r-times continuous differ-
entiability of a differential form as being the same as continuity when r = 0. If
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α1, α2 are r-times continuously-differentiable differential forms on U , then one
can check that

α1 ∧ α2 is r-times continuously differentiable(3.13.9)

as a differential form on U . If α1, α2 are infinitely differentiable on U , then it
follows that

α1 ∧ α2 is infinitely differentiable on U(3.13.10)

as well.

3.14 Differentials as 1-forms

Let n be a positive integer, let U be a nonempty open subset of Rn, and let f
be a real-valued function on U . Let us say that f is differentiable on U if

f is differentiable at every x ∈ U,(3.14.1)

in the sense of Section 3.8. In this case, the differential df of f defines a dif-
ferential 1-form on U , because it defines a linear functional dfx on Rn at every
x ∈ U .

It is customary to consider xj as the jth coordinate function on Rn for each
j = 1, . . . , n, which we have also denoted θj . The differential dxj of xj is the
same as θj at every point in Rn. Thus one often uses dxj for the differential
1-form on Rn that is equal to θj at every point.

If f is differentiable on U , then the differential of f may be expressed as

df =

n∑
j=1

(∂jf) dxj =

n∑
j=1

∂f

∂xj
dxj ,(3.14.2)

using this notation. This means that

dfx =

n∑
j=1

(∂jf)(x) dxj =

n∑
j=1

∂f

∂xj
(x) dxj(3.14.3)

for each x ∈ U . If v ∈ Rn, then we get that

dfx(v) =

n∑
j=1

(∂jf)(x) vj =

n∑
j=1

∂f

∂xj
(x) vj .(3.14.4)

If f is r-times continuously differentiable on U for some positive integer r, then

df is (r − 1)-times continuously differentiable(3.14.5)

as a differential 1-form on U . If f is infinitely differentiable on U , then df is
infinitely differentiable as a differential 1-form on U .
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Let I = {j1, . . . , jk} be a subset of {1, . . . , n} with k elements, where the jl’s
are strictly increasing. We may use the notation

dxI = dxj1 ∧ · · · ∧ dxjk ,(3.14.6)

which is the differential k-form equal to θI at every point.
Thus a differential k-form on U may be expressed as

α =
∑
#I=k

αI dx
I ,(3.14.7)

where the sum is taken over all subsets I of {1, . . . , n} with exactly k elements,
and αI is a real-valued function on U for each such I. Similarly, a differential
form on U may be expressed as

β =
∑
I

βI dx
I ,(3.14.8)

where the sum is taken over all subsets I of {1, . . . , n}, and βI is a real-valued
function on U for each such I.

3.15 Isometric mappings

Although the topics in this section may not be needed for the moment, they do fit
nicely with the discussion of metrics, norms, and inner products at the beginning
of the chapter. Of course, we are also concerned with various properties of
mappings more broadly, and some related matters will be mentioned later.

Let (X, dX) and (Y, dY ) be metric spaces. A mapping f from X into Y is
said to be an isometry if

dY (f(x), f(w)) = dX(x,w)(3.15.1)

for every x,w ∈ X. Note that this implies that f is one-to-one on X. If f
also maps X onto Y , then it is easy to see that the inverse mapping f−1 is an
isometry from Y onto X.

Let (Z, dZ) be another metric space. If f is an isometry from X into Y and
g is an isometry from Y into Z, then it is easy to see that

g ◦ f is an isometry from X into Z.(3.15.2)

Let V , W be vector spaces over the real numbers with norms NV , NW ,
respectively. A linear mapping T from V into W is said to be an isometric
linear mapping if

NW (T (v)) = NV (v)(3.15.3)

for every v ∈ V . Of course, this implies that

NW (T (u)− T (v)) = NW (T (u− v)) = NV (u− v)(3.15.4)
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for all u, v ∈ V , so that T is an isometry from V into W with respect to the
metrics associated to NV , NW , respectively.

If T is an isometric linear mapping from V ontoW , then the inverse mapping
T−1 is an isometric linear mapping from W onto V . If T is a one-to-one linear
mapping from V into W , and V , W have the same finite dimension, then it is
well known that T maps V onto W .

Let Z be another vector space over the real numbers with a norm NZ . If
T is an isometric linear mapping from V into W , and R is an isometric linear
mapping from W into Z, then

R ◦ T is an isometric linear mapping from V into Z.(3.15.5)

Let 〈·, ·〉V , 〈·, ·〉W be inner products on V , W , respectively. Observe that a
linear mapping T from V into W is an isometric linear mapping with respect
to the norms associated to these inner products if and only if

〈T (v), T (v)〉W = 〈v, v〉V(3.15.6)

for every v ∈ V . In this case, one can check that

〈T (u), T (v)〉W = 〈u, v〉V(3.15.7)

for every u, v ∈ V .
Some connections between isometries and volumes of sets will be mentioned

in Section 4.12. We shall say a bit more about isometries between finite-
dimensional inner product spaces in Subsection A.9.1.



Chapter 4

Pull-backs and exterior
differentiation

4.1 Tensors of type (0, k)

Let k and n be positive integers, and let E be a nonempty subset of Rn. A
tensor field of type (0, k) on E is

a function on E with values in Mk(R
n).(4.1.1)

If k = 1, then this is the same as a differential 1-form on E. If k = 0, then this
is interpreted as being a real-valued function on E, as before. One may also
consider tensor fields of type (r, s) for arbitrary nonnegative integers r, s, as in
Definition 2.15 on p63 of [183], but we shall not pursue this here.

If j1, . . . , jk are positive integers less than or equal to k, then

θj1 ⊗ · · · ⊗ θjk(4.1.2)

is an element of Mk(R
n), as in Section 1.6. The collection of these elements of

Mk(R
n) forms a basis for Mk(R

n), as a vector space over the real numbers,
as before. A tensor field of type (0, k) on E may be expressed as

a =
∑

{1,...,n}k

aj1,...,jk θj1 ⊗ · · · ⊗ θjk ,(4.1.3)

where the sum is taken over the set {1, . . . , n}k of all k-tuples of positive integers
less than or equal to n. Here the coefficients aj1,...,jk are real-valued functions
on E for all such k-tuples. The space of tensor fields of type (0, k) on E is a
vector space over the real numbers with respect to pointwise addition and scalar
multiplication.

71
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4.1.1 Continuous tensor fields

It is sometimes convenient to identiy Mk(R
n) with Rnk

, using the basis men-
tioned in the preceding paragraph. This involves listing the elements of

{1, . . . , n}k(4.1.4)

in a sequence with nk terms, and the order in which the elements of (4.1.4) are
listed will not normally matter, as usual. This leads to a metric on Mk(R

n), cor-

responding to the standard Euclidean metric on Rnk

. This metric on Mk(R
n)

does not depend on the order in which the elements of (4.1.4) are listed.
Let us say that a tensor field of type (0, k) on E is continuous if it corresponds

to a continuous mapping from E into Rnk

in this way. This does not depend
on the order in which the elements of (4.1.4) are listed. Equivalently, a tensor
field a of type (0, k) on E as in (4.1.3) is continuous if and only if

the coefficients aj1,...,jk are continuous as real-valued functions on E(4.1.5)

for all j1, . . . , jk. The space

C(E,Mk(R
n)) = C

(
E,Rnk)

(4.1.6)

of all continuous tensor fields of type (0, k) on E is a linear subspace of the
space of all tensor fields of type (0, k) on E.

If a, b are tensor fields of types (0, k1), (0, k2) on E, respectively, for some
nonnegative integers k1, k2, then their product

a⊗ b(4.1.7)

may be defined as a (k1+k2)-linear form on Rn at each point in E, as in Section
2.8. This defines (4.1.7) as a tensor field of type (0, k1 + k2) on E. If a, b are
continuous as tensor fields on E, then one can check that

a⊗ b is continuous as a tensor field on E.(4.1.8)

More precisely, the coefficients of (4.1.7) with respect to the usual basis for
Mk1+k2(R

n) may be expressed in terms of products of the coefficients of a and
b with respect to the usual bases for Mk1(R

n) and Mk2(R
n), respectively.

4.2 More on tensor fields

Let n be a positive integer, let U be a nonempty open subset of Rn, and let k, r
be nonnegative integers. A tensor field of type (0, k) on U is said to be r-times
continuously differentiable on U if it corresponds to an r-times continuously-

differentiable mapping from U into Rnk

as in Subsection 4.1.1. This does not
depend on the order in which the elements of {1, . . . , n}k are listed, as usual.
Remember that r-times continuous differentiability is interpreted as being the
same as continuity when r = 0.
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A tensor field a of type (0, k) on U as in (4.1.3) is r-times continuously
differentiable if and only if

the coefficients aj1,...,jk are r-times continuously differentiable(4.2.1)

as real-valued functions on U

for all j1, . . . , jk. The space

Cr(U,Mk(R
n)) = Cr

(
U,Rnk)

(4.2.2)

of all r-times continuously-differentiable tensor fields of type (0, k) on U is a
linear subspace of the space of all continuous tensor fields of type (0, k) on U .

A tensor field of type (0, k) on U is said to be infinitely differentiable or

smooth if it corresponds to an infinitely-differentiable mapping from U into Rnk

,
which does not depend on the order in which the elements of {1, . . . , n}k are
listed. A tensor field a of type (0, k) on U as in (4.1.3) is infinitely differentiable
on U if and only if

the coefficients aj1,...,jk are infinitely differentiable(4.2.3)

as real-valued functions on U

for all j1, . . . , jk. The space

C∞(U,Mk(R
n)) = C∞(

U,Rnk)
(4.2.4)

of all infinitely-differentiable tensor fields of type (0, k) on U is a linear subspace
of (4.2.2) for each r.

Let a, b be tensor fields of types (0, k1), (0, k2) on U , respectively, for some
nonnegative integers k1, k2, so that their product a⊗b is defined as a tensor field
of type (0, k1+k2) on U , as in Subsection 4.1.1. If a, b are r-times continuously
differentiable on U , then one can verify that

a⊗ b is r-times continuously differentiable(4.2.5)

as a tensor field on U . If a, b are infinitely differentiable on U , then we get that

a⊗ b is infinitely differentiable(4.2.6)

as a tensor field on U .
If a real-valued function f is differentiable on U , then the differential df of

f defines a tensor of type (0, 1) on U , as in Section 3.14. Note that

dxj1 ⊗ · · · ⊗ dxjk(4.2.7)

is the same as the tensor field of type (0, k) equal to (4.1.2) at every point. Thus
a tensor field a of type (0, k) on U may be expressed as

a =
∑

{1,...,n}k

aj1,...,jk dxj1 ⊗ · · · ⊗ dxjk ,(4.2.8)

as in (4.1.3).
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4.3 Vector fields

Let n be a positive integer, and let E be a nonempty subset of Rn. An Rn-
valued function on E may be called a vector field on E. This may be considered
as a tensor field of type (1, 0) on E, as in Definition 2.15 on p63 of [183].

Let k be a positive integer, and let a be a tensor field of type (0, k) on E.
Suppose that a is as in (4.1.3), so that the value ax of a at x ∈ E is given by

ax =
∑

{1,...,n}k

aj1,...,jk(x) θj1 ⊗ · · · ⊗ θjk ,(4.3.1)

as a k-linear form on Rn. Let ξ1, . . . , ξk be k vector fields on E, and let ξl,j be
the jth component of ξl for j = 1, . . . , n and l = 1, . . . , k. We can evaluate a at
ξ1, . . . , ξk at each point in E to get a real-valued function

a(ξ1, . . . , ξk)(4.3.2)

on E. More precisely, the value of this function at x ∈ E is

ax(ξ1(x), . . . , ξk(x)) =
∑

{1,...,n}k

aj1,...,jk(x)

k∏
l=1

ξl,jl(x).(4.3.3)

Suppose for the moment that a is continuous as a tensor field of type (0, k)
on E, as in Subsection 4.1.1. Suppose also that ξ1, . . . , ξk are continuous vector
fields on E, which is to say that they are continuous as Rn-valued functions on
E. Under these conditions,

a(ξ1, . . . , ξk) is continuous as a real-valued function on E.(4.3.4)

4.3.1 Associated differential operators

Now let U be a nonempty open subset of Rn. If ξ is a vector field on U , then

Xξ =
n∑
j=1

ξj
∂

∂xj
(4.3.5)

defines a first-order linear differential operator on U , where ξj is the jth com-
ponent of ξ for each j = 1, . . . , n. If f is a differentiable real-valued function on
U , then

Xξ(f) =
n∑
j=1

ξj
∂f

∂xj
(4.3.6)

is a real-valued function on U , whose value

(Xξ(f))(x) =
n∑
j=1

ξj(x)
∂f

∂xj
(x)(4.3.7)
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at x ∈ U is the same as the directional derivative of f at x in the direction ξ(x).
Equivalently,

df(ξ) = Xξ(f),(4.3.8)

where df is considered as a tensor field of type (0, 1) on U . This means that

dfx(ξ(x)) = (Xξ(f))(x)(4.3.9)

for every x ∈ U .
If f is r-times continuously differentiable on U for some positive integer r,

and ξ is (r − 1)-times continuously differentiable on U , then

Xξ(f) is (r − 1)-times continuously differentiable on U.(4.3.10)

If ξ and f are infinitely differentiable on U , then

Xξ(f) is infinitely differentiable on U.(4.3.11)

Let a be a tensor field of type (0, k) on U , and let ξ1, . . . , ξk be k vector fields
on U . If a and ξ1, . . . , ξk are r-times continuously differentiable on U , then

a(ξ1, . . . , ξk) is r-times continuously differentiable on U.(4.3.12)

If a and ξ1, . . . , ξk are infinitely differentiable on U , then

a(ξ1, . . . , ξk) is infinitely differentiable on U.(4.3.13)

4.4 Pulling some tensors back

Let n be a positive integer, let U be a nonempty open subset of Rn, and let k be
a nonnegative integer. Also let n1 be a positive integer, let U1 be a nonempty
open subset of Rn1 , and let ψ be a mapping from U1 into Rn such that

ψ(U1) ⊆ U.(4.4.1)

Suppose that ψ is differentiable on U1, in the sense that ψ is differentiable at
every point in U1, as in Section 3.8. If a is a tensor field of type (0, k) on U ,
then we would like to pull a back to get a tensor field

ψ∗(a)(4.4.2)

of type (0, k) on U1. This may also be denoted δψ(a), as in Definition 2.22 on
p68 of [183].

If k = 0, then a is simply a real-valued function on U . In this case, we put

ψ∗(a) = a ◦ ψ,(4.4.3)

which is a real-valued function on U1.
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Suppose that k ≥ 1, and let ax be the value of a at x ∈ U , which is a k-linear
form on Rn. Let w ∈ U1 be given, so that the differential dψw of ψ at w is a
linear mapping from Rn1 into Rn. The value of ψ∗(a) at w is defined to be the
k-linear form on Rn1 given by

(ψ∗(a))w = (dψw)
∗(aψ(w)),(4.4.4)

where the right side is defined as in Section 2.3. Note that ψ(w) ∈ U by
hypothesis, so that aψ(w) is defined as a k-linear form onRn. If v1, . . . , vk ∈ Rn1 ,
then

(ψ∗(a))w(v1, . . . , vk) = ((dψw)
∗(aψ(w)))(v1, . . . , vk)(4.4.5)

= aψ(w)(dψw(v1), . . . , dψw(vk)),

as in Section 2.3.

4.4.1 Some properties of pull-backs

Note that ψ∗(a) is linear in a, as in Section 2.3. If a is a differential k-form on
U , then ax is an alternating k-linear form on Rn for each x ∈ U , as in Section
3.12. This implies that (4.4.4) is an alternating k-linear form on Rn1 for every
w ∈ U1, as in Section 2.4. This means that

ψ∗(a) is a differential k-form on U1(4.4.6)

in this case. Similarly, if ax is a symmetric k-linear form on Rn for every x ∈ U ,
then

(ψ∗(a))w is a symmetric k-linear form on Rn1(4.4.7)

for every w ∈ U1.
Suppose that a, b are tensor fields of types (0, k1), (0, k2) on U for some

nonnegative integers k1, k2, respectively. Observe that

ψ∗(a⊗ b) = ψ∗(a)⊗ ψ∗(b)(4.4.8)

as tensor fields of type (0, k1+k2) on U1. This follows from the analogous state-
ment for multilinear forms in Subsection 2.8.1. Similarly, if a, b are differential
k1, k2-forms on U , then

ψ∗(a ∧ b) = ψ∗(a) ∧ ψ∗(b),(4.4.9)

as differential (k1 + k2)-forms on U1. This follows frm the analogous statement
for alternating multilinear forms in Subsection 2.12.1.

4.5 More on pull-backs

Let us continue with the same hypotheses and notation as in the previous sec-
tion. Remember that dxj is a differential 1-form on Rn for each j = 1, . . . , n,
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whose value at each point is the jth standard coordinate function θj , as in Sec-
tion 3.14. Equivalently, this may be considered as a tensor field of type (0, 1)
on Rn, as in Sections 4.1 and 4.2.

Let ψj be the jth component of ψ for each j = 1, . . . , n, which is a differen-
tiable real-valued function on U1. Of course, the differential of ψj corresponds to
the jth component of the differential of ψ in a simple way for each j = 1, . . . , n.
One can use this to get that

ψ∗(dxj) = dψj(4.5.1)

on U1 for each j = 1, . . . , n. More precisely, the right side is a differential 1-form
on U1, as in Section 3.14, and thus a tensor field of type (0, 1). To get (4.5.1),
one can take a = dxj in (4.4.5), so that k = 1.

Let a be a tensor field of type (0, k) on U , expressed as in (4.2.8). Observe
that

ψ∗(a) =
∑

{1,...,n}k

ψ∗(aj1,...,jk)ψ
∗(dxj1)⊗ · · · ⊗ ψ∗(dxjk)(4.5.2)

=
∑

{1,...,n}k

(aj1,...,jk ◦ ψ) dψj1 ⊗ · · · ⊗ dψjk

on U1.
Similarly, a differential k-form α on U may be expressed as

α =
∑

1≤j1<···<jk≤n

αj1,...,jk dxj1 ∧ · · · ∧ dxjk ,(4.5.3)

as in Section 3.14. More precisely, the sum on the right is taken over all k-tuples
(j1, . . . , jk) of integers such that 1 ≤ j1 < · · · < jk ≤ n. In this case, we get
that

ψ∗(α) =
∑

1≤j1<···<jk≤n

ψ∗(αj1,...,jk)ψ
∗(dxj1) ∧ · · · ∧ ψ∗(dxjk)(4.5.4)

=
∑

1≤j1<···<jk≤n

(αj1,...,jk ◦ ψ) dψj1 ∧ · · · ∧ dψjk

on U1.

4.5.1 Pull-backs and composiitons

Let n0 be a positive integer, let U0 be a nonempty open subset of Rn0 , and let
ϕ be a mapping from U0 into Rn1 such that

ϕ(U0) ⊆ U1.(4.5.5)

Suppose that ϕ is differentiable on U0 too. Thus ψ ◦ ϕ is a mapping from U0

into Rn with
(ψ ◦ ϕ)(U0) = ψ(ϕ(U0)) ⊆ ψ(U1) ⊆ U.(4.5.6)
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Remember that
ψ ◦ ϕ is differentiable on U0,(4.5.7)

as in Section 3.9.
If a is a tensor field of type (0, k) on U , then one can check that

(ψ ◦ ϕ)∗(a) = ϕ∗(ψ∗(a))(4.5.8)

on U0. This is very simple when k = 0. If k ≥ 1, then this follows from the
chain rule, and the analogous statement for multilinear forms on Section 2.3.

4.5.2 Regularity of pull-backs

Let a be a tensor field of type (0, k) on U again, expressed as in (4.2.8). If a is
continuous on U , and ψ is continuously differentiable on U1, then

ψ∗(a) is continuous on U1.(4.5.9)

More precisely, if k = 0, then this holds when ψ is continuous on U1. If k ≥ 1,
then this can be obtained using (4.5.2).

Similarly, if a is r-times continuously differentiable on U for some positive
integer r, and ψ is (r + 1)-times continuously differentiable on U1, then

ψ∗(a) is r-times continuously differentiable on U1.(4.5.10)

If k = 0, then it is enough to ask that ψ be r-times continuously differentiable
on U1, as in Section 3.9. If a is infinitely differentiable on U , and ψ is infinitely
differentiable on U1, then it follows that

ψ∗(a) is infinitely differentiable on U1.(4.5.11)

4.6 Exterior differentiation

Let n be a positive integer, and let U be a nonempty open subset of Rn. If
α is a continuously-differentiable differential form on U , then we would like to
define the exterior derivative

dα(4.6.1)

of α as a continuous differential form on U . More precisely, if α is a continuously-
differentiable differential k-form on U for some nonnegative integer k, then

dα is a continuous differential (k + 1)-form on U.(4.6.2)

In particular,
dα = 0 when k ≥ n.(4.6.3)

If α is a differential 0-form on U , then α is a real-valued function on U . If
α is continuously differentiable on U , then we take

dα to be the differential of α,(4.6.4)
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considered as a differential 1-form on U , as in Section 3.14.
Suppose that α is a differential k-form on U , with 1 ≤ k ≤ n, which may be

expressed as

α =
∑
#I=k

αI dx
I ,(4.6.5)

as in Section 3.14. If α is continuously differentiable on U , then

αI is continuously differentiable(4.6.6)

as a real-valued function on U for each subset I of {1, . . . , n} with exactly k
elements, as in Section 3.13. In this case, we put

dα =
∑
#I=k

dαI ∧ dxI .(4.6.7)

One can check that this defines a continuous differential (k+1)-form on U . Note
that this is equal to 0 when k = n, as before.

If α is any continuously-differentiable differential form on U , then α may
be expressed as a sum of continuously-differentiable differential k-forms on U ,
0 ≤ k ≤ n. Under these conditions, dα is defined to be the sum of the exterior
derivatives of these differential k-forms. This defines the exterior derivative as
a linear mapping from C1(U,AM(Rn)) into C(U,AM(Rn)).

If α is r-times continuously differentiable on U for some positive integer r,
then one can verify that

dα is (r − 1)-times continuously differentiable on U,(4.6.8)

so that
d(Cr(U,AM(Rn))) ⊆ Cr−1(U,AM(Rn)).(4.6.9)

If α is infinitely differentiable on U , then it follows that

dα is infinitely differentiable on U,(4.6.10)

so that
d(C∞(U,AM(Rn))) ⊆ C∞(U,AM(Rn)).(4.6.11)

4.7 The anti-derivation property

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let α be a continuously-differentiable differential k-form on U for some
0 ≤ k ≤ n, and let β be another continuously-differentiable differential form on
U . We would like to show that

d(α ∧ β) = (dα) ∧ β + (−1)k α ∧ (dβ)(4.7.1)

on U . This is the anti-derivation property of the exterior derivative, as in
Section 2.11 on p61 of [183], and Theorem 2.20 on p65 of [183]. Note that it
suffices to verify this when β is a differential l-form on U for some 0 ≤ l ≤ n.
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Suppose for the moment that k = 0. If β is also a differential 0-form on U ,
then (4.7.1) is the same as saying that

d(αβ) = (dα)β + α (dβ)(4.7.2)

on U . Of course, this holds by the usual product rule for partial derivatives. If
β is a differential l-form on U for some l ≥ 1, then (4.7.1) is the same as saying
that

d(αβ) = (dα) ∧ β + α (dβ).(4.7.3)

This can be verified directly from the definition of the exterior derivative using
the product rule for partial derivatives again, or by reducing to the l = 0 case.

Thus we suppose from now on in this section that k ≥ 1. If β is a differential
0-form on U , then (4.7.1) is the same as saying that

d(αβ) = (dα)β + (−1)k α ∧ (dβ).(4.7.4)

This can be verified directly, as in the preceding paragraph, using basic prop-
erties of the wedge product, as in Section 2.12. One could also reduce to the
previous case, using the fact that

α ∧ (dβ) = (−1)k (dβ) ∧ α,(4.7.5)

because dβ is a differential 1-form on U .

4.7.1 The cases where k, l ≥ 1

This permits us to take β to be a differential l-form on U with l ≥ 1. In fact,
we may as well suppose that

α = αI dx
I(4.7.6)

and
β = βL dx

L,(4.7.7)

where I, L are subsets of {1, . . . , n} with exactly k, l ≥ 1 elements, respectively,
and αI , βL are continuously-differentiable real-valued functions on U . If

I ∩ L 6= ∅,(4.7.8)

then one can check directly that both sides of (4.7.1) are equal to 0.
Suppose now that I ∩ L = ∅, and put

M = I ∪ L.(4.7.9)

In this case, we have that

dxI ∧ dxL = sgn(τ) dxM(4.7.10)

for a certain τ ∈ Sym(k + l), as in Section 3.11. Thus

α ∧ β = αI βL dx
I ∧ dxL = αI βL sgn(τ) dxM .(4.7.11)
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This implies that

d(α ∧ β) = sgn(τ) d(αI βL) ∧ dxM ,(4.7.12)

by the definition of the exterior derivative. This means that

d(α ∧ β) = sgn(τ)βL dαI ∧ dxM + sgn(τ)αI dβL ∧ dxM ,(4.7.13)

as in (4.7.2).
It follows that

d(α ∧ β) = βL dαI ∧ dxI ∧ dxL + αI dβL ∧ dxI ∧ dxL,(4.7.14)

because of (4.7.10). The second term on the right is the same as

(−1)k αI dx
I ∧ dβL ∧ dxL,(4.7.15)

because dβL is a differential 1-form on U , as in Section 2.12. This shows that
(4.7.1) holds in this case, as desired.

4.8 The second exterior derivative

Let n be a positive integer, and let U be a nonempty open subset of Rn. Also
let

α be a twice continuously-differentiable differential form on U,(4.8.1)

so that dα is a continuously-differentiable differential form on U . We would like
to show that

d(dα) = 0(4.8.2)

on U .
If α is a differential 0-form on U , then

dα =

n∑
l=1

(∂lα) dxl,(4.8.3)

as in Section 3.14. This implies that

d(dα) =

n∑
l=1

d(∂lα) ∧ dxl =
n∑
j=1

n∑
l=1

(∂j∂lα) dxj ∧ dxl.(4.8.4)

Remember that
dxj ∧ dxl = −dxl ∧ dxj(4.8.5)

for all j, l = 1, . . . , n, as in Section 2.12. We also have that

∂j ∂l α = ∂l ∂j α(4.8.6)

on U for all j, l = 1, . . . , n, as in Subsection 3.5.2. One can use this to get that
(4.8.2) holds in this case.
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Suppose now that α is as in (4.7.6) for some nonempty subset I of {1, . . . , n},
where αI is a twice continuously-differentiable real-valued function on U . Thus

dα = dαI ∧ dxI ,(4.8.7)

and
d(dα) = d(dαI) ∧ dxI ,(4.8.8)

as in the previous section. More precisely, this uses the fact that

d(dxI) = 0,(4.8.9)

by the definition of the exterior derivative. Of course, the right side of (4.8.8)
is equal to 0, as in the preceding paragraph. It follows that (4.8.2) holds in this
case, and for all twice continuously-differentiable differential forms on U .

If β is a continuously-differentiable differential form on U and

dβ = 0(4.8.10)

on U , then β is said to be closed as a differential form on U . If γ is a
continuously-differentiable differential form on U , then

dγ(4.8.11)

is said to be exact as a differential form on U . If γ is twice continuously differ-
entiable on U , then (4.8.11) is closed on U , as before.

4.9 Differentiating pull-backs

Let n, n1 be positive integers, let U , U1 be nonempty open subsets of Rn, Rn1 ,
respectively, and let

ψ be a twice continuously-differentiable mapping from U1 into Rn(4.9.1)

such that
ψ(U1) ⊆ U.(4.9.2)

If α is a continuously-differentiable differential form on U , then we would like
to show that

d(ψ∗(α)) = ψ∗(dα),(4.9.3)

as differential forms on U1. Remember that

ψ∗(α) is continuously differentiable on U1(4.9.4)

under these conditions, as in Subsection 4.5.2.
Suppose first that α is a differential 0-form on U , so that ψ∗(α) = α ◦ ψ.

Remember that dα, d(α◦ψ) are the same as the differentials of α, α◦ψ considered
as differential 1-forms on U , U1, respectively, as in Section 3.14. If w ∈ U1, then

d(α ◦ ψ)w = dαψ(w) ◦ dψw,(4.9.5)
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as linear functionals on Rn1 , by the chain rule, as in Section 3.9. This means
that

d(α ◦ ψ)w = (dψw)
∗(dαψ(w)),(4.9.6)

where the right side is as in Section 2.3. This is the same as saying that (4.9.3)
holds at w, as in Section 4.4.

More precisely, if α is a differential 0-form on U , then it suffices to ask that

ψ be a continuously-differentiable mapping from U1 into Rn(4.9.7)

with ψ(U1) ⊆ U , instead of (4.9.1). Note that ψ∗(α) = α ◦ ψ is continuously
differentiable on U1 in this case, as in Section 3.9.

4.9.1 Some basic cases

Suppose next that

f is a twice continuously-differentiable real-valued function on U,(4.9.8)

and that
α = df.(4.9.9)

Thus
ψ∗(α) = ψ∗(df) = d(f ◦ ψ)(4.9.10)

on U1, as in the preceding paragraph. We also have that

dα = d(df) = 0(4.9.11)

on U and
d(ψ∗(α)) = d(d(f ◦ α)) = 0(4.9.12)

on U1, as in the previous section. More precisely, this uses the fact that f ◦ψ is
twice continuously differentiable on U1, because ψ and f are twice continuously
differentiable by hypothesis, as in Subsection 3.9.1. It follows that both sides of
(4.9.3) are equal to 0 under these conditions.

Let k be a positive integer, and suppose that

α = dxj1 ∧ · · · ∧ dxjk(4.9.13)

for some positive integers j1 < · · · < jk ≤ n. Observe that

ψ∗(α) = ψ∗(dxj1) ∧ · · · ∧ ψ∗(dxjk),(4.9.14)

as in Subsection 4.4.1. This implies that

ψ∗(α) = dψj1 ∧ · · · ∧ dψjk ,(4.9.15)

where ψ1, . . . , ψn are the components of ψ, as in the preceding paragraph. Of
course,

d(dψj) = 0(4.9.16)
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on U1 for each j = 1, . . . , n, as in the previous section, because ψj is twice
continuously differentiable on U1, by hypothesis. It follows that

d(ψ∗(α)) = 0(4.9.17)

on U1, as in Section 4.7. Clearly dα = 0 on U , by definition of the exterior
derivative, in Section 4.6. This means that both sides of (4.9.3) are equal to 0
in this case too.

4.9.2 The rest of the proof

Let I be a nonempty subset of {1, . . . , n}, and suppose that

α = αI dx
I ,(4.9.18)

where αI is a twice-continuously-differentiable real-valued function on U . Of
course,

dα = dαI ∧ dxI ,(4.9.19)

by the definition of the exterior derivative. Observe that

ψ∗(α) = (αI ◦ ψ)ψ∗(dxI).(4.9.20)

This implies that

d(ψ∗(α)) = d(αI ◦ ψ) ∧ ψ∗(dxI) + (αI ◦ ψ) d(ψ∗(dxI))(4.9.21)

= ψ∗(dαI) ∧ ψ∗(dxI) = ψ∗(dα),

where the first step is as in Section 4.7. The second term on the right side of
the first line is equal to 0, as in (4.9.17). The second step also uses the earlier
remarks about differential 0-forms. The third step uses a remark in Subsection
4.4.1. This implies that (4.9.3) holds for differential k-forms on U when k ≥ 1.

4.10 Connected sets

This section and the next deal with connectedness, path connectedness, and the
relationship between them. Connectedness can be used to prove the intermedi-
ate value theorem, and it can also be helpful in calculus, as in Subsection 4.10.2.
Another aspect of this will be mentioned in Section 6.14.

Let n be a positive integer, and let E be a subset of Rn. The property of
connectedness of E can be defined in a standard way, that we shall not discuss
here. In fact, one can define connectedness for subsets of arbitrary metric spaces.

It is well known that a subset of a metric space is connected if and only if
it is connected as a subset of itself, with respect to the restriction of the metric
to that set. In particular,

E is connected as a subset of Rn,(4.10.1)
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with respect to the standard Euclidean metric, if and only if

E is connected as a subset of itself,(4.10.2)

with respect to the restriction of the standard Euclidean metric on Rn to E.
Suppose for the moment that n = 1. It is well known that E is connected if

and only if for every x, y ∈ E with x < y, we have that

(x, y) ⊆ E.(4.10.3)

Let m be a positive integer, and let f be a continuous mapping from E into
Rm. If E is connected as a subset of Rn, then it is well known that

f(E) is connected in Rm.(4.10.4)

This uses the equivalence of (4.10.1) and (4.10.2).

4.10.1 Convex sets

We say that E is convex if for every x, y ∈ E and t ∈ R with 0 ≤ t ≤ 1, we
have that

(1− t)x+ t y ∈ E.(4.10.5)

It is well known that

convex subsets of Rn are connected.(4.10.6)

This can be obtained from another result about connectedness that will be
mentioned in the next section. Note that connected subsets of the real line are
convex.

One can define convexity of a subset of any vector space V over the real
numbers in the same way. If N is a norm on V , as in Section 3.2, then one can
check that

open balls in V with respect to the metric(4.10.7)

associated to N are convex.

In particular, open balls in Rn with respect to the standard Euclidean metric
are convex.

4.10.2 Locally constant functions

It is well known that an open set U in Rn is connected if and only if U cannot
be expressed as the union of two nonempty open subsets of Rn. More precisely,
the analogous statement holds in any metric space.

Let f be a function defined on U with values in a set Y . Let us say that f
is locally constant on U is for each x ∈ U we have that

f(w) = f(x)(4.10.8)
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for all w ∈ U that are sufficiently close to x with respect to the standard
Euclidean metric on Rn, depending on x. This is equivalent to saying that f is
continuous as a mapping from U into Y when Y is equipped with the discrete
metric, as in Section 3.1.

Alternatively, f is locally constant on U if and only if for each y ∈ Y ,

f−1({y}) = {w ∈ U : f(w) = y}(4.10.9)

is an open set in Rn. This implies that

f−1(Y \ {z}) = U \ f−1({z}) = {w ∈ U : f(w) 6= z}(4.10.10)

for every z ∈ Y , because it is the union of f−1({y}) over y ∈ Y \ {z}. In this
case, if U is connected, then one can check that

f is constant on U.(4.10.11)

If U is not connected, then U can be expressed as the union of two nonempty
open sets, as before. One can use this to find locally constant functions on U
that are not constant.

Suppose now that f is a real-valued function on U . If f is locally constant
on U , then

∂f

∂xj
= 0(4.10.12)

at every point in U . Conversely, if the partial derivatives of f exist at every
point in U and satisfy (4.10.12), then one can check that f is locally constant
on U .

4.11 Path-connected sets

Let n be a positive integer again, and let E be a subset of Rn. We say that
E is path connected if every x, y ∈ E can be connected by a continuous path
in E. More precisely, this means that there are real numbers a ≤ b and a
continuous mapping p from the closed interval [a, b] in the real line into Rn

such that p(a) = x, p(b) = y, and

p([a, b]) ⊆ E.(4.11.1)

In this case, one can always take a = 0 and b = 1, although it is sometimes
convenient to use different intervals. Note that this definition can also be used
for subsets of arbitrary metric spaces.

It is well known that

path-connected sets are connected,(4.11.2)

and indeed this works in arbitrary metric spaces. This uses the fact that the
image of a continuous path is a connected set. In particular,

convex sets in Rn are path connected,(4.11.3)

and thus connected, as mentioned in Subsection 4.10.1.
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4.11.1 Path-connected components

If x, y ∈ E, then put

x ∼E y(4.11.4)

when x can be connected to y by a continuous path in E, as before. This holds
for every x, y ∈ E exactly when E is path connected. One can verify that

∼E defines an equivalence relation on E.(4.11.5)

This implies that E can be partitioned into the equivalence classes corresponding
to ∼E , where x, y ∈ E are elements of the same equivalence class if and only if
(4.11.4) holds.

These equivalence classes may be called the path-connected components of
E. They are path connected sets, and maximal with respect to inclusion among
path-connected subsets of E. This works in arbitrary metric spaces too.

Let U be an open subset of Rn, and let x ∼U y be defined for x, y ∈ U as
before. If x ∈ U , then one can check that

x ∼U w for all w ∈ U that are sufficiently close to x,(4.11.6)

with respect to the standard Euclidean metric on Rn. This implies that

the path-connected components of U are open sets.(4.11.7)

If U is connected, then one can use this to get that U has only one path-
connected component, so that

U is path connected.(4.11.8)

It is not too difficult to show that the path connected components of U are
maximal with respect to inclusion among connected subsets of U , so that they
may also be called the connected components of U .

4.12 Volumes and determinants

These next few sections are concerned with n-dimensional volumes of subsets
of Rn and other n-dimensional vector spaces over the real numbers. In this
section, we look at the effect on volumes of mappings from Rn into itself.

Let n be a positive integer, and let T be a linear mapping from Rn into
itself. If E is a reasonably nice subset of Rn, then its n-dimensional volume
Voln(E) can be defined in standard ways. In this case, it is well known that

Voln(T (E)) = | detT |Voln(E).(4.12.1)

If one is familiar with n-dimensional Lebesgue measure on Rn, then this holds
for all Lebesgue measurable subsets E of Rn, but we shall not pursue this here.
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Let N be a norm on Rn, as in Section 3.2. Suppose for the moment that T
is an isometry with respect to N , so that

N(T (v)) = N(v)(4.12.2)

for every v ∈ Rn, as in Section 3.15. Of course, this implies that T is one-to-one
on Rn, so that T (Rn) = Rn. One can use (4.12.1) to get that

| detT | = 1,(4.12.3)

by taking E to be the unit ball inRn with respect to N . More precisely, this uses
some additional well-known facts, such as that N and the standard Euclidean
norm on Rn can each be bounded by a constant multiple of the other, and we
shall not pursue this here.

Let dN (·, ·) be the metric on Rn associated to N , as in Section 3.2. One can
use this metric to define n-dimensional Hausdorff measure on Rn, which is equal
to a positive multiple of n-dimensional Lebesgue measure on Rn. Hausdorff
measures are automatically preserved by isometries. This gives another way to
look at (4.12.3), which we shall not pursue in detail here.

4.12.1 Orthogonal transformations

Suppose now that T is an isometry with respect to the standard Euclidean norm
on Rn. Let 〈·, ·〉 be the standard inner product on Rn, as in Section 3.3. The
condition that T be an isometry with respect to the standard Euclidean norm
on Rn is equivalent to saying that

〈T (u), T (v)〉 = 〈u, v〉(4.12.4)

for every u, v ∈ Rn, as in Section 3.15. This is also equivalent to saying that T
is a one-to-one linear mapping from Rn onto itself such that

〈T (u), w〉 = 〈u, T−1(w)〉(4.12.5)

for every u,w ∈ Rn. Under these conditions, T is said to be an orthogonal
transformation on Rn.

Of course, linear mappings from Rn into itself correspond to n×n matrices
of real numbers in a standard way. An invertible linear mapping T on Rn is an
orthogonal transformation if and only if

the matrix associated to T−1 is the same as(4.12.6)

the transpose of the matrix associated to T,

because this is equivalent to (4.12.5).
If T is any invertible linear mapping on Rn, then

detT−1 = (detT )−1.(4.12.7)
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If T is an orthogonal transformation, then

detT−1 = detT,(4.12.8)

because the determinant of a matrix is the same as the determinant of its trans-
pose. This implies that

(detT )2 = 1,(4.12.9)

which is the same as (4.12.3).

4.13 Admissible volumes

On an arbitrary finite-dimensional vector space over the real numbers, it is
not necessarily clear how to measure the volume of a set, without additional
information. However, there is a nice family of ways of doing this, that are
discussed in this section. One can use linear mappings to reduce to measuring
volumes in Euclidean spaces, and different linear mappings can lead to different
ways of measuring volumes.

Let n be a positive integer, and let W be an n-dimensional vector over the
real numbers. Also let L be a one-to-one linear mapping from Rn onto W . If
E is a reasonably nice subset of W , in the sense that L−1(E) is a reasonably
nice subset of Rn, then

Voln(L
−1(E))(4.13.1)

may be considered as a type of n-dimensional volume of E.

Let L1 be another one-to-one linear mapping from Rn onto W , so that
L−1
1 ◦L is a one-to-one linear mapping from Rn onto itself. If E is a reasonably

nice subset of W , then

Voln(L
−1
1 (E)) = Voln((L

−1
1 ◦ L)(L−1(E)))(4.13.2)

= | det(L−1
1 ◦ L)|Voln(L−1(E)),

using (4.12.1) in the second step.

Let us say that Λ is an admissible volume on W if there is a nonnegative
real number cΛ,L such that

Λ(E) = cΛ,LVoln(L
−1(E))(4.13.3)

for all reasonably nice subsets E of W . If

cΛ,L > 0,(4.13.4)

then we say that Λ is nondegenerate on W . If one uses a different one-to-one
linear mapping from Rn onto W , then one gets the same familty of admissible
volumes on W , because of (4.13.2).
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4.13.1 Admissible volumes and linear mappings

Let R be a linear mapping from W into itself, so that L−1 ◦ R ◦ L is a linear
mapping from Rn into itself. Remember that

detR = det(L−1 ◦R ◦ L),(4.13.5)

basically by the definition of the determinant of a linear mapping from W into
itself, as in Subsection 2.5.1. If E is a reasonably nice subset of W , then

Voln(L
−1(R(E))) = Voln((L

−1 ◦R ◦ L)(L−1(E)))(4.13.6)

= | det(L−1 ◦R ◦ L)|Voln(L−1(E))

= | detR|Voln(L−1(E)),

using (4.9.3) in the second step. If Λ is an admissible volume on W , then it
follows that

Λ(R(E)) = | detR|Λ(E).(4.13.7)

4.14 Parallelepipeds

Let V be a vector space over the real numbers, let k be a positive integer, and let
v1, . . . , vk be k elements of V . The parallelepiped in V associated to v1, . . . , vk
is the subset of V defined by

P (v1, . . . , vk) = PV (v1, . . . , vk)

=

{ k∑
l=1

tl vl : tl ∈ R, 0 ≤ tl ≤ 1 for each l = 1, . . . , k

}
.(4.14.1)

Let us say that this parallelepiped is nondegenerate when v1, . . . , vk are linearly
independent in V .

Let W be another vector space over the real numbers, and let T be a linear
mapping from V into W . Observe that

T (PV (v1, . . . , vk)) = PW (T (v1), . . . , T (vk)).(4.14.2)

Let n be a positive integer, and let e1, . . . , en be the standard basis vectors
in Rn. The corresponding parallelepiped in Rn is the same as the closed unit
cube in Rn,

PRn(e1, . . . , en) = [0, 1]n.(4.14.3)

Of course, the n-dimensional volume of this is equal to 1.
If B is any linear mapping from Rn into itself, then

PRn(B(e1), . . . , B(en)) = B(PRn(e1, . . . , en)) = B([0, 1]n),(4.14.4)

where the first step is as in (4.14.2). Note that B(e1), . . . , B(en) may be any n
elements of Rn. The relation between volumes and determinants mentioned in
Section 4.12 says that

Voln(PRn(B(e1), . . . , B(en))) = | detB|.(4.14.5)
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More precisely, this can be shown first, as in Theorem 8 on p329 of [20]. One
can use this to obtain the previous relation for reasonably nice subsets of Rn,
as in Theorem 9 and its corollary on p329f of [20].

4.14.1 Parallelepipeds and admissible volumes

Suppose that W has dimension equal to n, and let u1, . . . , un be a basis for W .
If L is a one-to-one linear mapping from Rn onto W , then

L−1(u1), . . . , L
−1(un)(4.14.6)

is a basis for Rn. In fact, we can choose L so that this is the standard basis for
Rn. In particular,

Voln(L
−1(PW (u1, . . . , un))) = Voln(PRn(L−1(u1), . . . , L

−1(un)))(4.14.7)

is strictly positive.
Let Λ be an admissible volume on W , as in (4.13.3). Thus

Λ(PW (u1, . . . , un)) = cΛ,LVoln(PRn(L−1(u1), . . . , L
−1(un))).(4.14.8)

by (4.14.7). We may choose cΛ,L so that this is any given nonnegative real num-
ber, because (4.14.7) is positive. More precisely, this determines cΛ,L uniquely,
so that Λ is uniquely determined in this way as well.

4.14.2 Admissible volumes and alternating forms

If ν is an alternating n-linear form on W , then it follows that there is a unique
admissible volume Λν on W such that

Λν(PW (u1, . . . , un)) = |ν(u1, . . . , un)|.(4.14.9)

If w1, . . . , wn are any n elements of W , then

Λν(PW (w1, . . . , wn)) = |ν(w1, . . . , wn)|.(4.14.10)

To see this, let R be the linear mapping fromW into itself such that R(uj) = wj
for each j. The left side of (4.14.10) is equal to

Λν(PW (R(u1), . . . , R(un))) = Λν(R(PW (u1, . . . , un)))(4.14.11)

= | detR|Λ(PW (u1, . . . , un)),

using (4.14.2) in the first step, and (4.13.7) in the second step. The right side
of (4.14.10) is equal to

|ν(R(u1), . . . , R(un))| = |(R∗(ν))(u1, . . . , un)|(4.14.12)

= | detR| |ν(u1, . . . , un)|,

using the definition of R∗(ν) in Section 2.3 in the first step, and a remark from
Subsection 2.5.1 in the second step.
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4.15 Volumes and inner products

Let n be a positive integer, and let W be an n-dimensional vector space over
the real numbers again. Also let 〈·, ·〉W be an inner product on W , and let
‖ ·‖W be the associated norm on W . Similarly, let 〈·, ·〉Rn be the standard inner
product on Rn, as in Section 3.3, whose associated norm ‖ · ‖Rn is the standard
Euclidean norm on Rn.

One can use an orthonormal basis for W to get an isometric linear mapping
L from Rn onto W , as in Section A.8. This means that

〈L(x), L(y)〉W = 〈x, y〉Rn(4.15.1)

for all x, y ∈ Rn, as in Section 3.15. Using L, we get an admissible volume

ΛW (E) = Voln(L
−1(E))(4.15.2)

on W , as in Section 4.13.
If L1 is another isometric linear mapping from Rn onto W , then L−1

1 ◦ L is
an isometric linear mapping from Rn onto itself. Equivalently,

L−1
1 ◦ L is an orthogonal transformation on Rn,(4.15.3)

and in particular L−1
1 ◦L preserves the n-dimensional volume of reasonably nice

subsets of Rn, as in Section 4.12. This implies that

ΛW (E) = Voln(L
−1
1 (E))(4.15.4)

for all reasonable nice subsets E of W , as in Section 4.13.
Let e1, . . . , en be the standard basis vectors in Rn, as usual. Any sequence

of n vectors in Rn may be expressed as

B(e1), . . . , B(en)(4.15.5)

for some linear mapping B from Rn into itself. This is an orthonormal basis for
Rn with respect to the standard inner product if and only if B is an orthogonal
transformation on Rn, as in Section A.8. In this case, we get that

Voln(PRn(B(e1), . . . , B(en))) = | detB| = 1,(4.15.6)

where the first step is as in (4.14.5), and the second step is as in Section 4.12.
If w1, . . . , wn are n elements of W , then

ΛW (PW (w1, . . . , wn)) = Voln(PRn(L−1(w1), . . . , L
−1(wn))),(4.15.7)

by (4.14.2) and (4.15.2). If

w1, . . . , wn is an orthonormal basis for W,(4.15.8)

then
L−1(w1), . . . , L

−1(wn) is an orthonormal basis for Rn,(4.15.9)

as in Section A.8. This implies that

ΛW (PW ((w1, . . . , wn))) = 1,(4.15.10)

by (4.15.6).



Chapter 5

Diffeomorphisms and cells

5.1 Matrix-valued functions

Let m1 and m2 be positive integers, and let

Mm1,m2(R)(5.1.1)

be the space of m1 ×m2 matrices of real numbers. This is a vector space over
the real numbers with respect to entrywise addition and scalar multiplication
of matrices. It is sometimes convenient to identify Mm1,m2(R) with Rm1m2 , by
listing the entries of an m1 ×m2 matrix by a sequence of length m1m2.

The order in which the entries of an m1×m2 matrix are listed will normally
not really matter, as long as we use the same listing for all such matrices.
This leads to a metric on Mm1,m2

(R), corresponding to the standard Euclidean
metric on Rm1m2 . In particular, this metric does not depend on the order in
which the entries of an m1 ×m2 matrix are listed, as long as we use the same
listing for all such matrices, because the standard Euclidean metric on Rk is
invariant under permutations of the coordinates for any positive integer k.

Let n be a positive integer, and let E be a nonempty subset of Rn. Also let
f be a function on E with values inMm1,m2

(R). Let us say that f is continuous
on E if it corresponds to a continuous mapping from E into Rm1m2 as in the
previous two paragraphs. This does not depend on the order in which the entries
of an m1 ×m2 matrix are listed, as long as we use the same listing for all such
matrices, as before. Equivalently, f is continuous on E if and only if the m1m2

entries of f are continuous as real-valued functions on E, as in Section 3.4.
Of course, the space of all Mm1,m2

(R)-valued functions on E is a vector
space over the real numbers, with respect to pointwise addition and scalar mul-
tiplication of these functions. The space

C(E,Mm1,m2
(R)) = C(E,Rm1m2)(5.1.2)

of all continuous Mm1,m2
(R)-valued functions on E is a linear subspace of the

space of all Mm1,m2
(R)-valued functions on E.

93
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5.1.1 Products of matrix-valued functions

If m3 is another positive integer, then the product of an m1×m2 matrix of real
numbers with an m2×m3 matrix of real numbers may be defined as an m1×m3

matrix of real numbers in the usual way. This defines a bilinear mapping from
Mm1,m2

(R)×Mm2,m3
(R) into Mm1,m3

(R).
If f and g are functions on E with values in Mm1,m2(R) and Mm2,m3(R),

respectively, then their product f g may be defined as a function on E with
values in Mm1,m3

(R) using matrix multiplication at each point. If f , g are
continuous on E, then one check that

f g is continuous on E.(5.1.3)

This is because the entries of f g are given by sums of products of the entries of
f and g.

5.1.2 Cr Matrix-valued functions

Let U be a nonempty open subset of Rn, and let r be a positive integer. We
say that a function f on U with values in Mm1,m2(R) is r-times continuously
differentiable on U if it corresponds to an r-times continuously-differentiable
mapping from U into Rm1m2 as before. This does not depend on the order in
which the entries of an m1 ×m2 matrix are listed, as long as we use the same
listing for all such matrices, as usual. Equivalently, this means that the m1m2

entries of f are r-times continuously differentiable as real-valued functions on
U . If r = 0, then we may interpret this as meaning that f is continuous on U ,
as before.

Let us say that f is infinitely differentiable or smooth on U if f corresponds to
an infinitely differentiable mapping from U into Rm1m2 . This does not depend
on the order in which the entries of an m1 ×m2 matrix are listed, as long as
we use the same listing for all such matrices, and indeed the smoothness of f is
equivalent to the smoothness of the m1m2 entries of f as real-valued functions
on U .

The space
Cr(U,Mm1,m2

(R)) = Cr(U,Rm1m2)(5.1.4)

of r-times continuously-differentiable functions on U with values in Mm1,m2
(R)

is a linear subspace of the space of continuous functions on U with values in
Mm1,m2(R) for each r. Similarly, the space

C∞(U,Mm1,m2(R)) = C∞(U,Rm1m2)(5.1.5)

of infinitely-differentiable functions on U with values in Mm1,m2
(R) is a linear

subspace of (5.1.4) for each r.
Let f and g be functions on U with values in Mm1,m2

(R) and Mm2,m3
(R),

so that f g is defined as a function on U with values in Mm1,m3
(R), as before.

If f , g are r-times continuously differentiable on U for some r, then one can
verify that

f g is r-times continuously differentiable on U.(5.1.6)
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If f , g are infinitely differentiable on U , then it follows that

f g is infinitely differentiable on U.(5.1.7)

5.2 General linear groups

Let m be a positive integer, and consider the space Mm,m(R) of m×m matrices
of real numbers, as in the previous section. As before, it is sometimes convenient
to identify Mm,m(R) with Rm2

, by listing the entries os an m×m matrix by a
sequence of length m2. The order in which the entries are listed will normally
not really matter, as long as we use the same listing for all of these matrices, as
usual.

Note that Mm,m(R) is an associative algebra over the real numbers with
respect to matrix multiplication. The identity matrix inMm,m(R) has diagonal
entries equal to 1, and all other entries equal to 0. This is the multiplicative
identity element in Mm,m(R).

An element of Mm,m(R) is said to be invertible if it has a multiplicative
inverse in Mm,m(R). Let

GL(m,R)(5.2.1)

be the set of invertible elements of Mm,m(R). This is another example of a
group, with respect to matrix multiplication in this case. This is known as the
general linear group of m×m matrices with entries in R.

5.2.1 GL(m,R) And the determinant

Of course, the determinant defines a real-valued function on Mm,m(R). More

precisely, the determinant corresponds to a homogeneous polynomial on Rm2

of degree m. In particular, this defines a continuous function on Rm2

.
It is well known that an element of Mm,m(R) is invertible if and only if its

determinant is not zero, because of Cramer’s rule. One can use this and the
continuity of the determinant to get that

GL(m,R) is an open set in Mm,m(R).(5.2.2)

This means that GL(m,R) corresponds to an open set in Rm2

, with respect to
the standard Euclidean metric.

Equivalently, the complement of GL(m,R) inMm,m(R) consists of matrices

whose determinant is equal to 0. This corresponds to a closed set in Rm2

,
because the determinant is continuous.

Cramer’s rule implies that the inverse of an element of GL(m,R) can be
expressed in terms of the determinant of the matrix, and the determinants of
its minors. In particular, the entries of the inverse are rational functions of the
entries of the matrix, wth the determinant of the matrix as the denominator.
This implies that

the mapping from GL(m,R) into itself that sends an element(5.2.3)

of GL(m,R) to its multiplicative inverse in Mm,m(R) is smooth.
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Another way to look at this mapping will be mentioned in Section 5.4.

5.3 Some spaces of linear mappings

Let m1 and m2 be positive integers, and let

L(Rm2 ,Rm1)(5.3.1)

be the space of linear mappings from Rm2 into Rm1 . This is a linear subspace
of the space of all functions on Rm2 with values in Rm1 , as a vector space over
the real numbers with respect to pointwise addition and scalar multiplication.
It is sometimes convenient to identify L(Rm2 ,Rm1) with Mm1,m2(R), using
the usual correspondence between linear mappings from Rm2 into Rm1 with
m1 × m2 matrices of real numbers. Thus we may also identify L(Rm2 ,Rm1)
with Rm1m2 , as in Section 5.1.

Let n be a positive integer, let E be a nonempty subset of Rn, and let f be
a function on E with values in L(Rm2 ,Rm1). Let us say that f is continuous
if f corresponds to a continuous function on E with values in Mm1,m2(R), or
equivalently Rm1,m2 , as in Section 5.1. Note that the space of functions on
E with values in L(Rm2 ,Rm1) is a vector space over the real numbers, with
respect to pointwise addition and scalar multiplication of these functions. The
space

C(E,L(Rm2 ,Rm1)) = C(E,Mm1,m2
(R)) = C(E,Rm1m2)(5.3.2)

of all continuous functions on E with values in L(Rm2 ,Rm1) is a linear subspace
of the space of all functions on E with values in L(Rm2 ,Rm1).

Let m3 be another positive integer, so that we may also consider linear
mappings from Rm3 into Rm1 or Rm2 . Of course, if T2 is a linear mapping
from Rm3 into Rm2 , and T1 is a linear mapping from Rm2 into Rm1 , then their
composition T1 ◦ T2 is a linear mapping from Rm3 into Rm1 . It is easy to see
that

(T1, T2) 7→ T1 ◦ T2(5.3.3)

defines a bilinear mapping from

L(Rm2 ,Rm1)× L(Rm3 ,Rm2)(5.3.4)

into L(Rm3 ,Rm1). This corresponds to multiplication of the matrices associated
to T1 and T2, as usual.

Let f and g be functions on E with values in L(Rm2 ,Rm1), L(Rm3 ,Rm2),
respectively. Their product f g may be defined as a function on E with values
in L(Rm3 ,Rm1), using composition of linear mappings as multiplication at each
point. This means that the value of f g at x ∈ E is equal to

(f g)(x) = f(x) ◦ g(x),(5.3.5)

where the right side is the linear mapping from Rm3 into Rm1 obtained by
composing g(x) with f(x). If f and g are continuus on E, then

f g is continuous on E,(5.3.6)
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as in Subsection 5.1.1.

5.3.1 Cr L(Rm2 ,Rm1)-Valued functions

Let U be a nonempty open subset of Rn, let r be a positive integer, and let
f be a function on U with values in L(Rm2 ,Rm1). We say that f is r-times
continuously differentiable on U if it corresponds to an r-times continuously dif-
ferentiable function on U with values in Mm1,m2(R), or equivalently in Rm1m2 ,
as in Subsection 5.1.2. If r = 0, then we may interpret this as meaning that f
is continuous on U , as usual. Similarly, we say that f is infinitely differentia-
bile if f corresponds to an infinitely differentiable function on U with values in
Mm1,m2

(R), or equivalently in Rm1m2 , as before.
The space

Cr(U,L(Rm2 ,Rm1)) = Cr(U,Mm1,m2
(R)) = Cr(U,Rm1m2)(5.3.7)

of r-times continuously-differentiable L(Rm2 ,Rm1)-valued functions on U is
a linear subspace of the space of continuous functions on U with values in
L(Rm2 ,Rm1) for each r. Similarly, the space

C∞(U,L(Rm2 ,Rm1)) = C∞(U,Mm1,m2
(R)) = C∞(U,Rm1m2)(5.3.8)

of infinitely-differentiable functions on U with values in L(Rm2 ,Rm1) is a linear
subspace of (5.3.7) for each r.

Let g be a function on U with values in L(Rm3 ,Rm2), so that f g is defined
as a function on U with values in L(Rm3 ,Rm1), as in (5.3.5). If f and g are
r-times continuously differentiable on U , then

f g is r-times continuously differentiable on U,(5.3.9)

as in Subsection 5.1.2. If f and g are infinitely differentiable on U , then we get
that

f g is infinitely differentiable on U.(5.3.10)

5.4 More on linear mappings

Let m1 and m2 be positive integers, and let T be a linear mapping from Rm2

into Rm1 . It is well known that there is a nonnegative real number C(T ),
depending on T , such that

‖T (v)‖2,Rm1 ≤ C(T ) ‖v‖2,Rm2(5.4.1)

for every v ∈ Rm2 . Here ‖ · ‖2,Rm is the standard Euclidean norm on Rm for
each m, as in Section 3.2, although one could consider other norms as well. In
fact, one can take C(T ) to be the standard Euclidean norm of the m1 × m2

matrix of real numbers associated to T , considered as an element of Rm1m2 , as
on p211 of [154].
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Now let m be a positive integer, and let T be a one-to-one linear mapping
from Rm onto itself. There is a positive real number C(T−1) such that

‖T−1(u)‖2,Rm ≤ C(T−1) ‖u‖2,Rm(5.4.2)

for every u ∈ Rm, as before. This is the same as saying that

C(T−1)−1 ‖v‖2,Rm ≤ ‖T (v)‖2,Rm(5.4.3)

for every v ∈ Rm, by taking v = T−1(u).
Let R be another linear mapping from Rm into itself, and suppose that R

is fairly close to T , in the sense that

‖R(v)− T (v)‖2,Rm ≤ (1/2)C(T−1)−1 ‖v‖2,Rm(5.4.4)

for every v ∈ Rm. If v ∈ Rm, then we get that

C(T−1)−1‖v‖2,Rm ≤ ‖T (v)‖2,Rm ≤ ‖R(v)‖2,Rm + ‖R(v)− T (v)‖2,Rm

≤ ‖R(v)‖2,Rm + (1/2)C(T−1)−1 ‖v‖2,Rm .(5.4.5)

This implies that

(1/2)C(T−1)−1 ‖v‖2,Rm ≤ ‖R(v)‖2,Rm .(5.4.6)

In particular, (5.4.6) implies that the kernel of R is trivial. This means that
R is a one-to-one mapping from Rm onto itself, by well-known results in linear
algebra. We also get that

‖R−1(u)‖2,Rm ≤ 2C(T−1) ‖u‖2,Rm(5.4.7)

for every u ∈ Rm, by taking v = R−1(u).

5.4.1 Linear mappings on Rm

Let
L(Rm) = L(Rm,Rm)(5.4.8)

be the space of linear mappings from Rm into itself. This is an associative
algebra over the real numbers with respect to composition of mappings. The
identity mapping on Rm is the multiplicative identity element in this algebra.
It is sometimes convenient to identify this algebra with Mm,m(R), as in the
previous section.

Let
GL(Rm)(5.4.9)

be the set of one-to-one linear mappings from Rm onto itself, which are the
same as the invertible elements of L(Rm). This is a group, with respect to
composition of mappings, which is known as the general linear group of Rm.
This corresponds exactly to GL(m,R), using the usual correspondence between
linear mappings from Rm into itself and m×m matrices of real numbers.
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The fact that GL(m,R) corresponds to an open set in Rm2

, as in Subsection
5.2.1, can also be obtained from the remarks in this section. If R.T ∈ GL(Rm),
then it is easy to see that

R−1 − T−1 = R−1 ◦ (T −R) ◦ T−1,(5.4.10)

as linear mappings on Rm. One can use this to get continuity and other regu-
larity properties of R 7→ R−1 on GL(Rm).

5.5 Continuity of the differential

Let m and n be positive integers, let W be a nonempty open subset of Rn,
and let f be a differentiable mapping from W into Rm. This means that f
is differentiable in the sense of Section 3.8 at every point in W , so that the
differential

f ′(x) = dfx(5.5.1)

of f at x ∈W defines a function on W with values in L(Rn,Rm).
Suppose from now on in this section that f is continuously differentiable

on W , which implies that f is differentiable on W , as mentioned in Subsection
3.8.2. In this case,

the differential of f is continuous(5.5.2)

as a function on W with values in L(Rn,Rm),

because the entries of the corresponding matrices are given by the partial deriva-
tives of the components of f . In fact, continuous differentiability may be defined
equivalently in terms of the existence and continuity of the differential in this
way, as in Definition 9.20 and Theorem 9.21 on p219 of [154].

Let us also suppose from now on in this section that m = n. One can check
that

{x ∈W : f ′(x) = dfx ∈ GL(Rn)}(5.5.3)

is an open set in Rn. This uses the continuity of the differential of f on W , the
hypothesis thatW be an open set inRn, and the fact that GL(n,R) corresponds

to an open set in Rn2

, as in Subsection 5.2.1 and the previous section. Although
one could use the definition of continuity directly here, it is convenient to use
a well-known characterization of continuity in terms of inverse images of open
sets, which will be reviewed in Section 5.9.

Alternatively, (5.5.3) is the same as

{x ∈W : det f ′(x) = det dfx 6= 0}.(5.5.4)

Observe that

det f ′(x) = det dfx is continuous as a real-valued function on W.(5.5.5)

because of (5.5.2), the continuity of the determinant as a real-valued function on
L(Rn), and the fact that compositions of continuous mappings are continuous,
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as in Section 3.4. As a slightly different approach, one can use the definition of
the determinant to express

det f ′(x) = det dfx(5.5.6)

in terms of a sum of products of partial derivatives of the components of f ,
and use the fact that sums and products of continuous real-valued functions are
continuous too. One can verify that (5.5.4) is an open set in Rn, using (5.5.5)
and the hypothesis that W be an open set in Rn, as before. Equivalently,

{x ∈W : det f ′(x) = det dfx = 0}(5.5.7)

is relatively closed in W , in the sense that is reviewed in Section 5.7.
We also have that

f ′(x)−1 = (dfx)
−1 is continuous on (5.5.3).(5.5.8)

More precisely, this means that the inverse of the differential of f at x, as a
linear mapping from Rn onto itself, is continuous as a function of x on (5.5.3)
with values in L(Rn). This follows from the continuity of the differential of f , as
a function on W with values in L(Rn), and the continuity of the mapping that
sends an element of GL(Rn) to its inverse, as in Subsections 5.2.1 and 5.4.1.
This uses the fact that compositions of continuous mappings are continuous
again too. Alternatively, the entries of the matrix associated to

f ′(x)−1 = (dfx)
−1(5.5.9)

can be expressed in terms of the partial derivatives of the components of f and
(5.5.6) using Cramer’s rule, and one can use this to get that the entries of the
matrix are continuous as real-valued functions of x on W .

5.6 The inverse function theorem

Let n be a positive integer, let W be a nonempty open subset of Rn, and let f
be a continuously-differentiable mapping from W into Rn. Also let w ∈ W be
given, and suppose that

f ′(w) = dfw ∈ GL(Rn).(5.6.1)

Under these conditions, the inverse function theorem states that there are open
subsets U(w) and V (w) of Rn with the following properties, that we shall de-
scribe in two parts.

In the first part, we have that

w ∈ U(w), U(w) ⊆W, and f(w) ∈ V (w).(5.6.2)

We are also able to choose U(w) and V (w) so that

the restriction of f to U(w) is a one-to-one mapping onto V (w)(5.6.3)
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and
f ′(x) = dfx ∈ GL(Rn) for each x ∈ U(w).(5.6.4)

Let g = gw be the inverse of the restriction of f to U(w), so that

g is a one-to-one mapping from V (w) onto U(w),(5.6.5)

with
g(f(x)) = x(5.6.6)

for every x ∈ U(w). The second part of the inverse function theorem states that

g is continuously differentiable on V (w),(5.6.7)

and that
g′(y) = f ′(g(y))−1(5.6.8)

for each y ∈ V (w). Equivalently, this means that

dgy = (dfg(y))
−1,(5.6.9)

where the right side is the inverse of the differential of f at g(y), as a linear
mapping from Rn onto itself.

Note that
f(g(y)) = y(5.6.10)

for each y ∈ V (w), by construction. The differentiability of g at y implies that

f ′(g(y)) ◦ g′(y) = dfg(y) ◦ dgy is the identity mapping on Rn,(5.6.11)

by the chain rule, as in Section 3.9. Of course, (5.6.8) or equivalently (5.6.9)
follows from this. One can use this to get the continuity of the differential of g
from the continuity of g and (5.5.8).

In this case, the restriction of f to U(w) is a C1 diffeomorphism from U(w)
onto V (w), in the sense discussed in Section 5.11. Note that the mean value
theorem and intermediate value theorem are very helpful for some properties like
these when n = 1, as in Section 5.11. If f is r-times continuously differentiable
for some positive integer r, or infinitely differentiable, then g has the same
property, as we shall see in Section 5.12. This means that the restriction of f
to U(w) is a Cr or C∞ diffeomorphism from U(w) onto V (w), as appropriate.

5.7 Closed sets and limit points

Let n be a positive integer, and let E be a subset of Rn. A point x ∈ Rn is
said to be a limit point of E with respect to the standard Euclidean metric if
for every positive real number r there is a w ∈ E such that w 6= x and

‖x− w‖2 < r,(5.7.1)

where ‖ · ‖2 = ‖ · ‖2,Rn is the standard Euclidean norm on Rn, as in Section 3.2.
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We say that E is a closed set in Rn if for every x ∈ Rn such that x is a limit
point of E with respect to the standard Euclidean metric, we have that

x ∈ E.(5.7.2)

It is well known and not difficult to show that this happens if and only if the
complement

Rn \ E = {z ∈ Rn : z 6∈ E}(5.7.3)

of E in Rn is an open set with respect to the standard Euclidean metric.
Note that

Rn \ (Rn \ E) = E.(5.7.4)

The previous statement is equivalent to saying that

U ⊆ Rn is an open set if and only if Rn \ U is a closed set.(5.7.5)

The closure of E in Rn is defined to be the set

E = {x ∈ Rn : x ∈ E or x is a limit point of E}.(5.7.6)

It is easy to see that E is a closed set in Rn if and only if

E = E.(5.7.7)

It is well known and not too difficult to show that for any subset E of Rn,

E is a closed set in Rn.(5.7.8)

Let us say that a subset A of E ⊆ Rn is relatively closed in E if A contains
all of its limit points in E. Equivalently, this means that

A = A ∩ E.(5.7.9)

Note that E is automatically relatively closed as a subset of itself. If E is a
closed set in Rn, then A ⊆ E is relatively closed in E if and only if A is a closed
set in Rn. This uses the fact that a limit point of A in Rn is also a limit point
of E when A ⊆ E. If A1 is a closed set in Rn, then one can check that

A1 ∩ E(5.7.10)

is relatively closed in E. Every relatively closed subset of E is of this form, as
in (5.7.9).

Let us say that a subset U of E ⊆ Rn is relatively open if for every x ∈ U
there is an r > 0 such that

B(x, r) ∩ E ⊆ U.(5.7.11)

It is well known and not too difficult to show that this happens if and only if
there is an open subset W of Rn such that

U =W ∩ E.(5.7.12)
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Clearly E is automatically relatively open as a subset of itself. If E is an open
set in Rn, then U ⊆ E is relatively open in E if and only if U is an open set in
Rn.

It is well known and not too difficult to show that A ⊆ E is relatively closed
in E if and only if

E \A = {x ∈ E : x 6∈ A}(5.7.13)

is relatively open in E. This means that U ⊆ E is relatively open in E if and
only if E \U is relatively closed in E. The relatively open and closed subsets of
E are the same as the subsets of E that are open or closed when E is considered
as a metric space, with respect to the restriction of the standard Euclidean
metric on Rn to E.

Let us say that E is bounded in Rn if E is contained in a ball. If E is
bounded, then one can check that

E is bounded in Rn(5.7.14)

too.
The boundary of E in Rn is defined by

∂E = E ∩ (Rn \ E).(5.7.15)

Note that this is automatically a closed set in Rn.

5.8 Compact sets

Let n be a positive integer, and let K be a subset of Rn. We say that K is
compact if every open covering ofK inRn can be reduced to a finite subcovering.
It is well known that

K is compact in Rn if and only if K is closed and bounded.(5.8.1)

More precisely, a compact subset of any metric space is closed and bounded,
and the converse uses additional properties of Rn.

Let E be a subset of Rn, and suppose for the moment that K ⊆ E. It
is well known and not too difficult to show that K is compact if and only if
every covering of K by relatively open subsets of E can be reduced to a finite
subcovering. This means that K is compact as a subset of Rn if and only if
K is compact as a subset of E, with respect to the restriction of the standard
Euclidean metric on Rn to E.

If K is compact and A is a closed subset of Rn, then it is well known that

K ∩A is compact.(5.8.2)

Although this follows from (5.8.1), this can be verified more directly, with an
argument that works in any metric space.

If every infinite subset of K has a limit point in K, then K is said to have
the limit point property. If every sequence of elements of K has a subsequence
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that converges to an element of K, then K is said to be sequentially compact.
It is well known that compactness, the limit point property, and sequential
compactness are equivalent in any metric space.

Suppose that U ⊆ Rn is an open set, and that

K ⊆ U.(5.8.3)

This implies that for every x ∈ K there is a positive real number r(x) such that

B(x, r(x)) ⊆ U.(5.8.4)

Observe that the open balls B(x, r(x)/2), x ∈ K, form an open covering of E
in Rn. If K is nonempty and compact, then there are finitely many elements
x1, . . . , xl of K such that

K ⊆
l⋃

j=1

B(xj , r(xj)/2).(5.8.5)

If we put
r0 = min

1≤j≤l
(r(xj)/2),(5.8.6)

then r0 is a positive real number, and one can check that

B(x, r0) ⊆ U(5.8.7)

for every x ∈ K.

5.8.1 Continuity and compactness

Let m be a positive integer, and let f be a continuous mapping from E into
Rm. If K is compact in Rn, and K ⊆ E, then it is well known that

f(K) = {f(x) : x ∈ K}(5.8.8)

is compact in Rm.
Let f be a continuous real-valued function on E. If K is compact in Rn,

K ⊆ E, and K 6= ∅, then the extreme value theorem states that

f attains its maximum and minimum on K.(5.8.9)

This can be obtained from the fact that f(K) is closed and bounded in the real
line, because f(K) is compact.

A mapping f from E into Rm is said to be uniformly continuous if for every
ϵ > 0 there is a δ > 0 such that for every x,w ∈ E with

‖x− w‖2,Rn < δ,(5.8.10)

we have that
‖f(x)− f(w)‖2,Rm < ϵ.(5.8.11)
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Here ‖ · ‖2,Rn and ‖ · ‖2,Rm are the standard Euclidean norms on Rn and Rm,
respectively, as in Section 3.2. It is easy to see that uniform continuity on E
implies ordinary continuity on E. If f is continuous on E, and if E is compact
in Rn, then it is well known that

f is uniformly continuous on E.(5.8.12)

5.9 More on continuous mappings

Let n and m be positive integers, and let W be an open subset of Rn. It is well
known that a mapping f from W into Rm is continuous if and only if for every
open set V ⊆ Rm,

f−1(V ) = {x ∈W : f(x) ∈ V }(5.9.1)

is an open set in Rn. If W is any subset of Rn, then f is continuous on W if
and only if for every open set V ⊆ Rm,

f−1(V ) is a relatively open set in W.(5.9.2)

We also have that f is continuous on W if and only if for every relatively open
set V0 ⊆ f(W ),

f−1(V0) is relatively open in W.(5.9.3)

Similarly, it is well known that a mapping f from a closed set E ⊆ Rn into
Rm is continuous if and only if for every closed set A ⊆ Rm,

f−1(A) = {x ∈ E : f(x) ∈ A}(5.9.4)

is a closed set in Rn. If E is any subset of Rn, then f is continuous on E if and
only if for every closed set A ⊆ Rm,

f−1(A) is a relatively closed set in E.(5.9.5)

Observe that
f−1(Rm \A) = E \ f−1(A)(5.9.6)

for every A ⊆ Rm. Alternatively, f is continuous on E if and only if for every
relatively closed set A0 ⊆ f(E),

f−1(A0) is relatively closed in E.(5.9.7)

5.9.1 Homeomorphisms

A mapping f from a subset E of Rn into Rm is said to be a homeomorphism
onto its image f(E) = {f(x) : x ∈ E} if f is one-to-one and continuous, and if

the inverse f−1 of f is continuous(5.9.8)

as a mapping from f(E) onto E.
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If E is compact, and f is a one-to-one continuous mapping from E into Rm,
then it is well known that

f is a homeomorphism of E onto f(E).(5.9.9)

Note that
f(E) is a compact subset of Rm(5.9.10)

in this case, so that
f(E) is a closed set in Rm(5.9.11)

in particular, as in the previous section. In order to show that f−1 is continuous
on f(E), it suffices to get that

(f−1)−1(A) is a closed set in Rm(5.9.12)

for every closed set A ⊆ Rn, as before.
In this case, one can check that

(f−1)−1(A) = f(A ∩ E).(5.9.13)

We also have that
A ∩ E is compact in Rn,(5.9.14)

because E is compact and A is a closed set, as in the previous section. This
implies that

f(A ∩ E) is compact in Rm,(5.9.15)

because f is continuous on E. It follows that

f(A ∩ E) is a closed set in Rm,(5.9.16)

as mentioned in the previous section.

5.10 Homeomorphisms and open mappings

Let m and n be positive integers, let E be a subset of Rn, and let f be a
mapping from E into Rm. Suppose for the moment that f is a homeomorphism
from E onto f(E), which means that

f−1 is a homeomorphism from f(E) onto E.(5.10.1)

Let k be another positive integer, and let g be a mapping from f(E) into Rk.
If g is a homeomorphism from f(E) onto g(f(E)), then

g ◦ f is a homeomorphism from E onto g(f(E)).(5.10.2)

A mapping f from an open subset W of Rn into Rm is said to be an open
mapping if for every open subset U of Rn with U ⊆W , we have that

f(U) is an open set in Rm.(5.10.3)
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In particular, this implies that

f(W ) is an open set in Rm.(5.10.4)

If W is any subset of Rn, then we may say that f is an open mapping as a
mapping from W onto its image f(W ) in Rm if for every relatively open subset
U of W ,

f(U) is relatively open in f(W ).(5.10.5)

Of course, (5.10.5) implies (5.10.3) when (5.10.4) holds. Similarly, if W is an
open set in Rn, then every relatively open subset U of W is an open set in Rn,
so that (5.10.3) implies (5.10.5).

If f is one-to-one on W , then

f is an open mapping as a mapping from W onto f(W )(5.10.6)

if and only if

f−1 is a continuous mapping from f(W ) onto W.(5.10.7)

This follows from one of the characterizations of continuity mentioned in the
previous section. In this case, f is a homeomorphism from W onto f(W ) if and
only if f is continuous and an open mapping as a mapping from W onto f(W ).
If W and f(W ) are open sets, then (5.10.6) is the same as saying that

f is an open mapping from W into Rm,(5.10.8)

as in the preceding paragraph.

5.10.1 A sufficient condition

Suppose that for every w ∈W there is an open subset U(w) in Rn such that

w ∈ U(w), U(w) ⊆W,(5.10.9)

and

the restriction of f to U(w)(5.10.10)

is an open mapping from U(w) into Rm.

Under these conditions, one can check that (5.10.8) holds. More precisely, if U
is an open subset of Rn with U ⊆W and w ∈ U , then U ∩U(w) is an open set
in Rn that is contained in U(w), so that

f(U ∩ U(w)) is an open set in Rm,(5.10.11)

by hypothesis. One can use this to verify that f(U) is an open set in Rm,
directly from the definition of an open set. Indeed, every element of f(U) is of
the form f(w) for some w ∈ U , and in this case f(U ∩ U(w)) is an open set in
Rm that contains f(w) and is contained in f(U).
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Alternatively, observe that

U =
⋃
w∈U

(U ∩ U(w)).(5.10.12)

This implies that

f(U) = f
( ⋃
w∈U

(U ∩ U(w))
)
=

⋃
w∈U

f(U ∩ U(w)).(5.10.13)

We also have that ⋃
w∈U

f(U ∩ U(w)) is an open set in Rm,(5.10.14)

because the union of any family of open sets is an open set as well. This means
that f(U) is an open set in Rm, as desired.

5.11 C1 Diffeomorphisms

Let n be a positive integer, let W be a nonempty open subset of Rn, and let f
be a mapping from W into Rn.

Suppose for the moment that f is one-to-one on W , and that f(W ) is an
open set in Rn too. If f is differentiable at x ∈W , and f−1 is differentiable at
f(x), then the chain rule implies that

d(f−1)f(x) ◦ dfx = dfx ◦ d(f−1)f(x) = the identity mapping on Rn,(5.11.1)

as in Section 3.9. This means that dfx is invertible as a linear mapping on Rn,
with

(dfx)
−1 = d(f−1)f(x).(5.11.2)

Suppose for the moment again that f is continuously differentiable on W ,
and that

dfx ∈ GL(Rn)(5.11.3)

for every x ∈W . Under these conditions, one can check that

f is an open mapping from W into Rn,(5.11.4)

using the inverse function theorem, as in Section 5.6. This also uses the criterion
for f to be an open mapping mentioned in Subsection 5.10.1. More precisely
in this case, (5.10.10) corresponds to the fact that V (w) is an open set in Rn,
and that gw is a continuous mapping from V (w) onto U(w), in the notation of
Section 5.6. In particular, this means that f(W ) is an open set in Rn.
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5.11.1 The definition of a diffeomorphism

Suppose that f is one-to-one on W again, and that f is continuously differen-
tiable on W . If f(W ) is an open set in Rn, and

f−1 is continuously differentiable on f(W ),(5.11.5)

then we say that

f is a C1 diffeomorphism from W onto f(W ).(5.11.6)

This implies that (5.11.3) holds for every x ∈W , as before. Of course, if (5.11.6)
holds, then

f is a homeomorphism from W onto f(W ).(5.11.7)

Alternatively, if (5.11.3) holds for every x ∈W , then f(W ) is an open set in
Rn, as before. If f is also one-to-one on W , then one can check that (5.11.5)
holds, using the inverse function theorem. More precisely, if w ∈ U , then the
restriction of f−1 to the open set V (w) in Rn mentioned in Section 5.6 is the
same as the function gw mentioned there. This means that f−1 is continuously
differentiable on V (w). It follows that (5.11.5) holds, because w ∈ U is arbitrary,
and V (w) is an open set that contains f(w).

Suppose that f is a C1 diffeomorphism from W onto f(W ), which implies
that

f−1 is a C1 diffeomorphism from f(W ) onto W.(5.11.8)

If g is a mapping from f(W ) into Rn that is a C1 diffeomorphism from f(W )
onto g(f(W )), then

g ◦ f is a C1 diffeomorphism from W onto g(f(W )).(5.11.9)

5.11.2 The n = 1 case

Suppose now that n = 1, and that f is a differentiable real-valued function on
W . If x ∈ W , then we let f ′(x) be the usual derivative of f at x, which is a
real number. Thus the differential of f at x, as a linear mapping from R into
itself, corresponds to multiplication by f ′(x). In this case, (5.11.3) is the same
as saying that

f ′(x) 6= 0.(5.11.10)

Suppose also that W is connected, so that W is basically an open interval in
R, which may be unbounded, like an open half-line, or the real line. If (5.11.10)
holds for every x ∈W , then either

f ′(x) > 0(5.11.11)

for every x ∈W , or
f ′(x) < 0(5.11.12)

for every x ∈ W . This follows from the intermediate value theorem when f ′

is continuous on W . There is a version of the intermediate value theorem for



110 CHAPTER 5. DIFFEOMORPHISMS AND CELLS

the derivative of a differentiable real-valued function on an interval, even if the
derivative is not continuous, as in Theorem 5.12 on p108 of [154]. One can use
this to get the same conclusion without asking that f ′ be continuous on W .

If (5.11.11) holds on W , then

f is strictly increasing on W,(5.11.13)

by the mean-value theorem. Similarly, if (5.11.12) holds on W , then

f is strictly decreasing on W.(5.11.14)

In both cases, we get that f is one-to-one on W . It is easy to see that f is an
open mapping on W in both cases too, using the intermediate value theorem.
This uses the fact that f is continuous on W , because f is differentiable.

5.12 Diffeomorphisms with more regularity

Let n and r be positive integers, let W be a nonempty open subset of Rn, and
let f be an r-times continuously differentiable mapping from W into Rn. Thus
the differential dfx of f at x ∈ W defines a function on W with values in the
space L(Rn) of linear mappings from Rn into itself. Observe that

df ∈ Cr−1(W,L(Rn)),(5.12.1)

in the notation of Subsections 5.3.1 and 5.4.1, because the entries of the n× n
matrix corresponding to dfx are given by the partial derivatives of the compo-
nents of f at x ∈W .

Using (5.12.1), we get that

det df ∈ Cr−1(W,R),(5.12.2)

because the determinant is a smooth function on L(Rn). Alternatively,

det df(5.12.3)

can be expressed in terms of sums of products of partial derivatives of the
cmponents of f , each of which is (r−1)-times continuously differentiable on W ,
by hypothesis.

Suppose also now that dfx ∈ GL(Rn) for every x ∈ W . In this case, we get
that

(df)−1 ∈ Cr−1(W,L(Rn)),(5.12.4)

because the mapping that sends an element of GL(Rn) to its inverse is smooth,
as in Subsections 5.2.1 and 5.4.1. This could be obtained from Cramer’s rule
too, using (5.12.2).
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5.12.1 Regularity of the inverse mapping

Suppose that f is one-to-one on W as well, and remember that f−1 is contin-
uously differentiable on W , as in Subsection 5.11.1, and that the differential of
f−1 is as in (5.11.2). Equivalently, this means that

d(f−1)y = (dff−1(y))
−1(5.12.5)

for every y ∈ f(W ). Let us use this to get that

d(f−1) ∈ Cr−1(f(W ),L(Rn)),(5.12.6)

which is the same as saying that

f−1 ∈ Cr(f(W ),Rn).(5.12.7)

More precisely, suppose for the moment that

f−1 ∈ Cl(f(W ),Rn),(5.12.8)

where 0 ≤ l ≤ r − 1. Observe that

dff−1(y) is l-times continuously differentiable(5.12.9)

as a function of y ∈ f(W ) with values in L(Rn), because of (5.12.1). This uses
the fact that compositions of l-times continuously differentiable functions are
l-times continuously differentiable too, as in Section 3.9. It follows that

(dff−1(y))
−1 is l-times continuously differentiable(5.12.10)

as a function of y ∈ f(W ) with values in L(Rn), as before.
This means that

d(f−1) ∈ Cl(f(W ),L(Rn)),(5.12.11)

because of (5.12.5). This is the same as saying that

f−1 ∈ Cl+1(f(W ),Rn),(5.12.12)

as before. One can repeat the process as needed to get (5.12.6), and thus
(5.12.7).

5.12.2 Cr And C∞ diffeomorphisms

Let us say that

f is a Cr diffeomorphism from W onto f(W )(5.12.13)

under these conditions. This implies that

f−1 is a Cr diffeomorphism from f(W ) onto W.(5.12.14)
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If g is a mapping from f(W ) into Rn that is a Cr diffeomorphism from f(W )
onto g(f(W )), then

g ◦ f is a Cr diffeomorphism from W onto g(f(W )).(5.12.15)

Similarly, if f is infinitely differentiable on W , then

df ∈ C∞(W,L(Rn)),(5.12.16)

and
det df ∈ C∞(W,R).(5.12.17)

If dfx ∈ GL(Rn) for every x ∈W , then it follows that

(df)−1 ∈ C∞(W,L(Rn)),(5.12.18)

as before. If f is also one-to-one on W , then we get that

f−1 ∈ C∞(W,Rn),(5.12.19)

as in (5.12.7). In this case, we say that

f is a C∞ diffeomorphism from W onto f(W ),(5.12.20)

and we have that

f−1 is a C∞ diffeomorphism from f(W ) onto W.(5.12.21)

If g is a mapping from f(W ) into Rn that is a C∞ diffeomorphism from f(W )
onto g(f(W )) as well, then

g ◦ f is a C∞ diffeomorphism from W onto g(f(W )).(5.12.22)

5.13 Cells and supports of functions

Let n be a positive integer, and let a1, . . . , an and b1, . . . , bn be real numbers
with aj ≤ bj for each j = 1, . . . , n. The Cartesian product

C =

n∏
j=1

[aj , bj ](5.13.1)

of the closed intervals [aj , bj ], 1 ≤ j ≤ n, is called a cell in Rn.
It is well known that

cells in Rn are compact,(5.13.2)

with respect to the standard Euclidean metric. In order to show that subsets of
Rn that are closed and bounded are also compact, one often starts by showing



5.13. CELLS AND SUPPORTS OF FUNCTIONS 113

that cells are compact. Note that a continuous mapping from a cell in Rn into
Rm for some positive integer m is uniformly continuous, as in Subsection 5.8.1.

Let e1, . . . , en be the standard basis vectors in Rn, and let α1, . . . , αn be real
numbers. Consider the corresponding parallelepiped

PRn(α1 e1, . . . , αn en)(5.13.3)

in Rn, as in Section 4.14. This is the same as the cell

n∏
j=1

Ij ,(5.13.4)

where Ij = [0, αj ] when αj ≥ 0, and Ij = [αj , 0] when αj ≤ 0. Every cell in Rn

is a translate of a cell of this type. Note that the n-dimensional volume of the
cell C is given by

Voln(C) =
n∏
j=1

(bj − aj).(5.13.5)

5.13.1 Integrals over cells

Let f be a continuous real-valued function on C, which is in fact uniformly
continuous on C, as mentioned earlier. One can check that for each l = 1, . . . , n,∫ bl

al

f(x1, . . . , xl, . . . , xn) dxl(5.13.6)

is uniformly continuous as a function of the n− 1 variables

x1, . . . , xl−1, xl+1, . . . , xn.(5.13.7)

More precisely, (5.13.6) is uniformly continuous as a real-valued function on
the cell in Rn−1 corresponding to the Cartesian product of the closed intervals
[aj , bj ] with j 6= l.

Of course, ∫
C
f(x) dx(5.13.8)

may be defined as an n-dimensional Riemann integral over C in a standard way.
It is well known that this is the same as the iterated integral∫ b1

a1

· · ·
(∫ bn

an

f(x1, . . . , xn) dxn

)
· · · dx1.(5.13.9)

In fact, it is well known that (5.13.8) is the same as iterated integrals like
(5.13.9), where x1, . . . , xn are integrated in any order. This may be shown
intially for n = 2, which can be used to get the analogous statement for any n.
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5.13.2 Supports of functions

Let m be another positive integer, and let f be a function on Rn with values
in Rm. The support of f is defined the closure of the set of x ∈ Rn such that
f(x) 6= 0, which may be denoted

supp f = {x ∈ Rn : f(x) 6= 0}.(5.13.10)

Note that the support of f is automatically a closed set in Rn. If the set of
x ∈ Rn such that f(x) 6= 0 is bounded, then the support of f is bounded too,
and thus compact.

Let f be a continuous real-valued function on Rn with bounded support.
This implies that there is a cell C in Rn such that

supp f ⊆ C.(5.13.11)

In this case, the integral of f over Rn may be defined by∫
Rn

f(x) dx =

∫
C
f(x) dx,(5.13.12)

as in (3) on p247 of [154]. One can check that this does not depend on the
particular cell C in Rn that satisfies (5.13.11).

5.14 Some smooth functions on R

Let ϕ be an infinitely-differentiable real-valued function on the real line such
that

ϕ(t) > 0 when t > 0(5.14.1)

= 0 when t ≤ 0,

as in Subsection 3.7.2. If a, b are real numbers with a < b, then put

ϕa,b(t) = ϕ(t− a)ϕ(b− t).(5.14.2)

This is an infinitely-differentiable real-valued function on the real line such that

ϕa,b(t) > 0 when a < t < b(5.14.3)

= 0 when t ≤ a and when b ≤ t.

If r ∈ R, then

ϕa,b(((a+ b)/2) + r) = ϕ(((b− a)/2) + r)ϕ(((b− a)/2)− r).(5.14.4)

This implies that

ϕa,b(((a+ b)/2) + r) = ϕa,b(((a+ b)/2)− r).(5.14.5)
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Note that ∫ b

a

ϕa,b(u) du > 0.(5.14.6)

Put

ψa,b(t) =
(∫ 1

0

ϕa,b(u) du
)−1

ϕa,b(t)(5.14.7)

for each t ∈ R. This is an infinitely-differentiable real-valued function on the
real line such that

ψa,b(t) > 0 when a < t < b(5.14.8)

= 0 when t ≤ a and when b ≤ t

and ∫ b

a

ψa,b(t) dt = 1.(5.14.9)

We can integrate ψa,b on R to get an infinitely-differentiable real-valued
function ηa,b on R such that

η′a,b = ψa,b(5.14.10)

on R, and
ηa,b(t) = 0 when t ≤ a.(5.14.11)

This means that

ηa,b(t) =

∫ t

a

ψa,b(u) du(5.14.12)

when t ≥ a, so that
0 < ηa,b(t) ≤ 1(5.14.13)

when t > a, and
ηa,b(t) = 1(5.14.14)

when t ≥ b. Note that ηa,b is strictly increasing on [a, b], by construction.
Note that 1 − ηa,b is an infinitely-differentiable real-valued function on R

such that
1− ηa,b(t) = 1(5.14.15)

when t ≤ a,
0 < 1− ηa,b(t) < 1(5.14.16)

when a < t < b, and
1− ηa,b(t) = 0(5.14.17)

when t ≥ b. We also have that 1 − ηa,b is strictly decreasing on [a, b]. More
precisely,

1− ηa,b(t) =

∫ b

t

ψa,b(u) du(5.14.18)

when t ≤ b, by (5.14.9) and (5.14.12). One can check that

1− ηa,b(((a+ b)/2) + r) = ηa,b(((a+ b)/2)− r)(5.14.19)
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for every r ∈ R. This uses (5.14.5), which implies that ψa,b has the same
property.

If c, d are real numbers with b ≤ c < d, then put

ξ(t) = ξa,b,c,d(t) = ηa,b(t) (1− ηc,d(t))(5.14.20)

for each t ∈ R. This is an infinitely-differentiable real-valued function on R
with

ξ(t) = 0(5.14.21)

when t ≤ a and when d ≤ t. Similarly,

0 < ξ(t) < 1(5.14.22)

when a < t < b and when c < t < d, and

ξ(t) = 1(5.14.23)

when b ≤ t ≤ c. In fact, ξ is strictly increasing on [a, b], and strictly decreasing
on [c, d].

5.15 Some smooth functions on Rn

Let n be a positive integer, let a1, . . . , an and b1, . . . , bn be real numbers with
aj ≤ bj for each j = 1, . . . , n, and let C =

∏n
j=1[aj , bj ] be the corresponding cell

in Rn, as in Section 5.13. Also let a′1, . . . , a
′
n and b′1, . . . , b

′
n be real numbers

with
a′j < aj and bj < b′j(5.15.1)

for each j. Note that

C ⊆
n∏
j=1

(a′j , b
′
j),(5.15.2)

and that the right side is an open set in Rn.
As in the previous section, there is an infinitely-differentiable real-valued

function ξj on R for each j such that

0 ≤ ξj ≤ 1(5.15.3)

on R,
ξj(t) > 0 if and only if a′j < t < b′j ,(5.15.4)

and
ξj(t) = 1 if and only if aj ≤ t ≤ bj .(5.15.5)

Put

ζ(x) =

n∏
j=1

ξj(xj)(5.15.6)
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for each x ∈ Rn, which defines an infinitely-differentiable real-valued function
on Rn such that

0 ≤ ζ(x) ≤ 1(5.15.7)

for every x ∈ Rn. Observe that

ζ(x) > 0 if and only if x ∈
n∏
j=1

(a′j , b
′
j),(5.15.8)

because of (5.15.4). Similarly,

ζ(1) = 1 if and only if x ∈ C,(5.15.9)

because of (5.15.5). Using (5.15.8), we get that the support of ζ is given by

supp ζ =

n∏
j=1

[a′j , b
′
j ].(5.15.10)

Now let a, b be positive real numbers with a < b, so that a2 < b2, and let

ηa2,b2(5.15.11)

be the infinitely-differentiable real-valued function on R corresponding to a2

and b2 as in the previous section. If x ∈ Rn, then put

ρa,b(x) = 1− ηa2,b2(‖x‖22) = 1− ηa2,b2
( n∑
j=1

x2j

)
,(5.15.12)

where ‖x‖2 is the standard Euclidean norm on Rn, as in Section 3.2. This is
an infinitely-differentiable real-valued function on Rn, with

0 ≤ ρa,b(x) ≤ 1(5.15.13)

for every x ∈ Rn. In fact, we have that

ρa,b(x) = 1(5.15.14)

when ‖x‖2 ≤ a,
0 < ρa,b(x) < 1(5.15.15)

when a < ‖x‖2 < b, and
ρa,b(x) = 0(5.15.16)

when ‖x‖2 ≥ b. It follows that

supp ρa,b = {x ∈ Rn : ‖x‖2 ≤ b}.(5.15.17)



Chapter 6

Integration and n-surfaces

6.1 Some partitions of unity

Let n be a positive integer, and let ϕ1, . . . , ϕl be finitely many real-valued func-
tions on Rn, with

0 ≤ ϕk ≤ 1(6.1.1)

on Rn for each k = 1, . . . , n. Put ψ1 = ϕ1, and

ψk =
( k−1∏
p=1

(1− ϕp)
)
ϕk(6.1.2)

for each k = 2, . . . , l, as in (28) on p251 of [154]. Observe that 0 ≤ 1 − ϕp ≤ 1
for each p = 1, . . . , l, so that

0 ≤ ψk ≤ 1(6.1.3)

on Rn for each k = 1, . . . , l. We also have that

ψk(x) = 0 when ϕk(x) = 0,(6.1.4)

so that
suppψk ⊆ suppϕk(6.1.5)

for every k = 1, . . . , l.
Let us check that

k∑
p=1

ψp = 1−
k∏
p=1

(1− ϕp)(6.1.6)

for each k = 1, . . . , l, as in (29) on p251 of [154]. This follows from the definition
of ψ1 when k = 1, and we can use induction to go from k to k + 1 when k < l.
This uses the fact that

ψk+1 =
( k∏
p=1

(1− ϕp)
)
ϕk+1 =

k∏
p=1

(1− ϕp)−
k+1∏
p=1

(1− ϕp)(6.1.7)
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when k < l. It follows that
l∑

p=1

ψp(x) = 1(6.1.8)

on the set
l⋃

q=1

{x ∈ Rn : ϕq(x) = 1},(6.1.9)

as on p251 of [154]. This is a type of partition of unity for the set (6.1.9), as on
p251 of [154].

If the ϕk’s are continuous on Rn, then

the ψk’s are continuous on Rn(6.1.10)

too. Similarly, if the ϕk’s are r-times continuously differentiable on Rn for some
positive integer r, then

the ψk’s are r-times continuously differentiable on Rn(6.1.11)

as well. If the ϕk’s are infinitely differentiable on Rn, then it follows that

the ψk’s are infinitely differentiable on Rn.(6.1.12)

This is related to Exercise 6 on p289 of [154].
Let m be another positive integer, let E be a subset of Rn, and let f be a

function on E with values in Rm. If E is contained in (6.1.9), then we get that

f(x) =

l∑
p=1

ψp(x) f(x)(6.1.13)

for every x ∈ E, by (6.1.8). Similarly, if f is defined on all of Rn, and the
support of f is contained in (6.1.9), then (6.1.13) holds for every x ∈ Rn.

6.2 The standard simplex in Rn

Let n be a positive integer, and consider

Qn =

{
x ∈ Rn : xj ≥ 0 for each j = 1, . . . , n, and

n∑
j=1

xj ≤ 1

}
.(6.2.1)

This is known as the standard simplex or standard n-simplex in Rn, as in Ex-
ample 10.4 on p247 of [154], and as mentioned on p141 of [183]. Note that

Qn is closed and bounded in Rn,(6.2.2)

and thus compact.
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In fact,

Qn ⊆ [0, 1]n,(6.2.3)

where the right side is the unit cube in Rn, consisting of x ∈ Rn such that
0 ≤ xj ≤ 1 for each j = 1, . . . , n. This is the same as the Cartesian product of
n copies of the closed unit interval [0, 1] in the real line, which is a cell in Rn in
particular. If n = 1, then we have equality in (6.2.3).

Let f be a continuous real-valued function on Qn, so that f is bounded and
uniformly continuous on Qn, because Qn is compact. The integral∫

Qn

f(x) dx(6.2.4)

of f over Qn may be defined as an n-dimensional Riemann integral in a standard
way. Another way to look at this is discussed in Example 10.4 on p247 of [154].
Of course, if n = 1, then this is the same as an ordinary Riemann integral on
[0, 1], and so we suppose that n ≥ 2.

Let Qn−1 be the standard simplex in Rn−1, which is defined in the same
way as before. If x ∈ Qn, then

(x1, . . . , xn−1) ∈ Qn−1.(6.2.5)

More precisely, if (6.2.5) holds, then

(x1, . . . , xn−1, xn) ∈ Qn(6.2.6)

if and only if

0 ≤ xn ≤ 1−
n−1∑
j=1

xj ,(6.2.7)

and every element of Qn occurs in this way.
If (6.2.5) holds, then put

fn−1(x1, . . . , xn−1) =

∫ 1−
∑n−1

j=1
xj

0

f(x1, . . . , xn−1, xn) dxn.(6.2.8)

One can check that fn−1 is bounded and uniformly continuous on Qn−1, because
f is bounded and uniformly continuous on Qn. We also have that

fn−1(x1, . . . , xn−1) = 0 when

n−1∑
j=1

xj = 1,(6.2.9)

by construction.
Let us extend fn−1 to a real-valued function on [0, 1]n−1 by putting

fn−1(x1, . . . , xn−1) = 0(6.2.10)



6.2. THE STANDARD SIMPLEX IN RN 121

when (x1, . . . , xn−1) ∈ [0, 1]n−1 \Qn−1, which means that

n−1∑
j=1

xj > 1.(6.2.11)

This defines a continuous function on [0, 1]n−1, because of (6.2.9).
Thus the integral of fn−1 over [0, 1]n−1 may be defined in the usual way,

which is the same as the integral of fn−1 over Qn−1. This is one way to look at
the integral of f over Qn.

6.2.1 More on integration over Qn

We can also extend f to a real-valued function on [0, 1]n by putting

f(x) = 0(6.2.12)

when x ∈ [0, 1]n \Qn, which means that

n∑
j=1

xj > 1.(6.2.13)

However, this extension will not be continuous at x ∈ [0, 1]n such that

n∑
j=1

xj = 1,(6.2.14)

unless (6.2.12) holds. Note that the previous extension of fn−1 to [0, 1]n−1 may
be expressed as

fn−1(x1, . . . , xn−1) =

∫ 1

0

f(x1, . . . , xn−1, xn) dxn,(6.2.15)

using this extension of f to [0, 1]n.
To deal with this, a continuous real-valued function F = Fδ on [0, 1]n may

be defined on [0, 1]n for 0 < δ < 1, with

F (x) = f(x) when

n∑
j=1

xj ≤ 1− δ(6.2.16)

= 0 when

n∑
j=1

xj ≥ 1,

and

|F (x)| ≤ |f(x)| when 1− δ <

n∑
j=1

xj < 1,(6.2.17)
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as on p247 of [154]. More precisely, we also have that

|f(x)− F (x)| ≤ |f(x)| when 1− δ <

n∑
j=1

xj < 1,(6.2.18)

because F (x) is defined so that it has the same sign as f(x) in this case.
Let C be a nonnegative real number such that

|f(x)| ≤ C(6.2.19)

for every x ∈ Qn. If Fn−1 = Fδ.n−1 is defined on [0, 1]n−1 as in (6.2.15), then
one can check that

|fn−1(x1, . . . , xn−1)− Fn−1(x1, . . . , xn−1)| ≤ C δ(6.2.20)

on [0, 1]n−1, as in (7) on p247 of [154]. In particular, this implies that the integral
of fn−1 over [0, 1]n−1 is approximated by the integral of F over [0, 1]n−1.

Of course, we could start by integrating f in any of the variables x1, . . . , xn,
with the same properties as before. The result would be uniformly approximated
by the integral of F in the same variable.

6.3 Jacobians and changes of variables

Let n be a positive integer, let W be a nonempty open subset of Rn, and let ϕ
be a mapping from W into Rn. If ϕ is differentiable at a point x ∈W , then the
determinant

detϕ′(x) = det dϕx(6.3.1)

of the differential ϕ′(x) = dϕx of ϕ at x is known as the Jacobian of ϕ at x.
Note that if n = 1, then the Jacobian of ϕ at x is the same as the ordinary
derivative of ϕ at x.

Suppose that ϕ is continously differentiable on W , so that the differential
ϕ′(x) of ϕ at x is continuous as a function of x ∈ W with values in the space
L(Rn) of linear mappings from Rn into itself, as in Section 5.5. This implies
that

detϕ′(x) is continuous(6.3.2)

as a real-valued function of x ∈W , as before.
Suppose now that ϕ(W ) is an open set in Rn, and that

ϕ is a C1 diffeomorphism from W onto ϕ(W ),(6.3.3)

as in Subsection 5.11.1. Let K be a compact subset of Rn that is contained in
W , and let f be a continuous real-valued function on ϕ(K). Note that ϕ(K) is
a compact set in Rn too, as in Subsection 5.8.1. It is well known that∫

ϕ(K)

f(y) dy =

∫
K

f(ϕ(x)) | detϕ′(x)| dx,(6.3.4)
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at least if K is nice enough for the Riemann integral to be defined. There are
versions of this using Lebesgue measure and integration with milder hypotheses,
but we shall not pursue this here.

Remember that if T is a linear mapping from Rn into itself and E is a
reasonably nice subset of Rn, then the n-dimensional volume of T (E) is equal
to | detT | times the n-dimensional volume of E, as mentioned in Section 4.12.
Basically (6.3.4) behaves approximately like this on sufficiently small sets. Of
course, if ϕ is a linear mapping on Rn, then its Jacobian is constant, and (6.3.4)
is somewhat simpler. This is also somewhat simpler when n = 1, in which case
it may normally be stated with milder hypotheses.

This version of the change of variables formula is essentially the same as the
one mentioned in (1) in Section 4.4 on p141 of [183]. Another version is given
in Theorem 10.9 on p252 of [154], which will be discussed on the next section.

6.4 Another version of changing variables

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let f be a continuous real-valued function Rn with compact support
and

supp f ⊆ ϕ(W ).(6.4.1)

This implies that

ϕ−1(supp f) is a compact set in Rn,(6.4.2)

as in Subsection 5.8.1, because ϕ−1 is continuous as a mapping from ϕ(W ) into
Rn. Of course,

ϕ−1(supp f) ⊆W,(6.4.3)

because ϕ−1(ϕ(W )) =W .
Let fϕ be the real-valued function defined on Rn by

fϕ(x) = f(ϕ(x)) when x ∈W(6.4.4)

= 0 when x ∈ Rn \W.

One can check that
fϕ is continuous on Rn,(6.4.5)

with
supp fϕ = ϕ−1(supp f).(6.4.6)

Let Fϕ be the real-valued function on Rn defined by

Fϕ(x) = f(ϕ(x)) | detϕ′(x)| when x ∈W(6.4.7)

= 0 when x ∈ Rn \W.

One can verify that
Fϕ is continuous on Rn,(6.4.8)
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with

suppFϕ = supp fϕ = ϕ−1(supp f).(6.4.9)

Under these conditions, Theorem 10.9 on p252 of [154] states that∫
Rn

f(y) dy =

∫
Rn

Fϕ(x) dx,(6.4.10)

where both sides of the equation are defined as in Subsection 5.13.2.
Part of the proof of (6.4.10) is to use partitions of unity to reduce to the

case of

functions f supported in sufficiently small balls in Rn.(6.4.11)

In that case, one can use another result on the local behavior of C1 diffeomor-
phisms between open subsets of Rn, in Theorem 10.7 on p249 of [154].

Of course, the change of variables formula is simpler when n = 1. One
can use this to obtain the change of variables formula for any n when the
diffeomorphism is “primitive” in the sense of Definition 10.5 on p248 of [154],
as mentioned on p252 of [154]. A linear mapping from Rn onto itself is called
a “flip” when it interchanges two coordinates of a point in Rn and does not
change the other coordinates, as in Definition 10.6 on p249 of [154]. It is easy to
see that the change of variables formula holds for these mappings, as mentioned
on p252 of [154].

Theorem 10.7 on p249 of [154] says that locally,

a C1 diffeomorphism can be expressed as a composition(6.4.12)

of primitive mappings, flips, and a translation.

This is used to get that the change of variables formula holds for functions
supported in sufficiently small balls, as before. Thus one would like to express
f as a sum of finitely many continuous functions supported in sufficiently small
balls of this type. This can obtained using a partition of unity, as in (6.1.13).
This also uses the compactness of the support of f , to cover f by finitely many
balls that are contained in balls that are a bit larger and sufficiently small too.

6.5 Some remarks about linear independence

Let n andm be positive integers with n < m, and let u1, . . . , um be the standard
basis vectors in Rm. Suppose that

v1, . . . , vn are n linearly independent vectors in Rm.(6.5.1)

Let L be the linear span of v1, . . . , vn in Rm, so that

dimL = n,(6.5.2)

as a vector space over the real numbers.
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Under these conditions, it is well known that there is a set I2 ⊆ {1, . . . ,m}
with exactly m− n elements such that

v1, . . . , vn together with uk, k ∈ I2, is a basis for Rm.(6.5.3)

One way to see this is to take I2 to be a maximal subset of {1, . . . ,m} so that
this collection of vectors is linearly independent. Alternatively, one can take I2
to be a minimal subset of {1, . . . ,m} so that the linear span of this collection
of vectors is equal to Rm.

Put
I1 = {1, . . . ,m} \ I2,(6.5.4)

so that I1 is a subset of {1, . . . ,m} with exactly n elements. Thus

I1 = {l1, . . . , ln},(6.5.5)

where
1 ≤ l1 < · · · < ln ≤ m.(6.5.6)

Let P1 be the linear mapping from Rm onto Rn such that for each y ∈ Rm,

the jth coordinate of P1(y) is equal to the lj-th coordinate of y(6.5.7)

for each j = 1, . . . , n. Note that

P1(uk) = 0 when k ∈ I2,(6.5.8)

by construction. More precisely, the kernel of P1 is spanned by the uk’s, k ∈ I2.
Let e1, . . . , en be the standard basis vectors in Rn. Remember that there is

a unique linear mapping T from Rn into Rm such that

T (ej) = vj(6.5.9)

for each j = 1, . . . , n. Of course,

L = T (Rn),(6.5.10)

by construction. The condition that the vj ’s be linearly independent in Rm says
exactly that

T is one-to-one on Rn.(6.5.11)

Observe that

P1(T (R
n)) = P1(L) = P1(R

m) = Rn,(6.5.12)

using (6.5.3) and (6.5.8) in the second step. This implies that

P1 ◦ T is one-to-one on Rn,(6.5.13)

because P1 ◦ T is a linear mapping from Rn into itself.
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6.5.1 Considering L as a graph

Equivalently,

P1 is one-to-one on L.(6.5.14)

This means that if v ∈ L, then

the coordinates of v corresponding to elements of I2(6.5.15)

are uniquely determined by

the coordinates of v corresponding to elements of I1.

It follows that

L corresponds to the graph of a linear mapping(6.5.16)

from Rn into Rm−n,

by arranging the coordinates appropriately.
More precisely, put

R = T ◦ (P1 ◦ T )−1,(6.5.17)

where (P1 ◦ T )−1 is the inverse of P1 ◦ T , as a one-to-one linear mapping from
Rn onto itself. Thus R is a one-to-one linear mapping from Rn into Rm, and

R(Rn) = T (Rn) = L.(6.5.18)

By construction, we also have that

P1 ◦R = P1 ◦ T ◦ (P1 ◦ T )−1 = IRn ,(6.5.19)

where IRn is the identity mapping on Rn. This basically means that L cor-
responds to the graph of a mapping from Rn into Rm−n obtained from the
components of R corresponding to elements of I2, with the coordinates arranged
appropriately.

6.6 Some nice local graphs

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Also letW be an open set in Rn, and let F be a continuously-differentiable
mapping from W into Rm. Suppose that w ∈W and

dFw is one-to-one on Rn,(6.6.1)

as a linear mapping from Rn into Rm. If we put

vj = dFw(ej)(6.6.2)

for each j = 1, . . . , n, then (6.5.1) holds, because of (6.6.1).
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This leads to subsets I1, I2 of {1, . . . ,m} as before, as well as the linear
mapping P1 from Rm onto Rn. We also have that

P1 ◦ dFw is a one-to-one mapping from Rn onto itself,(6.6.3)

as in (6.5.12) and (6.5.13). Under these conditions, we would like to use the
inverse function theorem to say more about F near w.

Put
f = P1 ◦ F,(6.6.4)

which is a continuously-differentiable mapping from W into Rn. Note that

dfw = P1 ◦ dFw,(6.6.5)

which is an easy instance of the chain rule that can be seen more directly. It
follows that

dfw ∈ GL(Rn),(6.6.6)

by (6.6.3). The inverse function theorem implies that

f has a local inverse near w that is continuously differentiable,(6.6.7)

as in Section 5.6.

6.6.1 Using the local inverse

We would like to use this to get that near w,

F takes values in the graph of a continuously-differentiable function(6.6.8)

defined on a neighborhood of f(w) in Rn with values in Rm−n,

with the coordinates arranged appropriately. More precisely, the inverse func-
tion theorem implies that there are open subsets U(w) and V (w) of Rn such
that w ∈ U(w), U(w) ⊆W , f(w) ∈ V (w), and

the restriction of f to U(w) is a one-to-one mapping onto V (w).(6.6.9)

In particular, the injectivity of f on U(w) implies that

F is one-to-one on U(w),(6.6.10)

by the definition (6.6.4) of f .
The inverse g = gw of the restriction of f to U(w) is continuously differen-

tiable on V (w), as before. It follows that

F ◦ g is continuously differentiable(6.6.11)

as a mapping from V (w) into Rm. Observe that

P1 ◦ F ◦ g = f ◦ g is the identity mapping on V (w),(6.6.12)
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by construction. This implies that

F (U(w)) = (F ◦ g)(V (w))(6.6.13)

corresponds to the graph of a continuously-differentiable function on V (w) with
values in Rm−n, with the coordinates arranged appropriately.

If F is r-times continuously differentiable on W for some positive integer r,
then f is r-times continuously differentiable on W , and

g is r-times continuously differentiable on V (w)(6.6.14)

too, as in Subsection 5.12.1. This implies that

F ◦ g is r-times continuously differentiable on V (w)(6.6.15)

as well, as in Subsection 3.9.1.
Similarly if F is infinitely differentiable on W , then f is infinitely differen-

tiable on W , and

g is infinitely differentiable on V (w).(6.6.16)

This means that

F ◦ g is infinitely differentiable on V (w)(6.6.17)

too.

6.7 Injective linear mappings

Let n and m be positive integers with n ≤ m, and let e1, . . . , en be the standard
basis vectors in Rn, as usual. Remember that a linear mapping T from Rn into
Rm is one-to-one on Rn if and only if

T (e1), . . . , T (en) are linearly independent in Rm.(6.7.1)

In this case, there is a linear mapping P1 from Rm onto Rn such that

P1 ◦ T ∈ GL(Rn),(6.7.2)

as in Section 6.5. More precisely, if m = n, then one can simply take P1 to the
the identity mapping on Rn. Conversely, if (6.7.2) holds for any linear mapping
P1 from Rm into Rn, then T is one-to-one on Rn.

If P1 is any linear mapping from Rm into Rn, then

T 7→ P1 ◦ T(6.7.3)

defines a linear mapping from the space L(Rn,Rm) of linear mappings from
Rn into Rm into the space L(Rn) of linear mappings from L(Rn) of linear
mappings from Rn into itself. This corresponds to a linear mapping from the



6.8. EMBEDDINGS AND IMMERSIONS 129

space Mm,n(R) of m× n matrices of real numbers into Mn,n(R), as in Section

5.3. This may be identified with a linear mapping from Rmn into Rn2

, as
in Section 5.1. In particular, this mapping is continuous with respect to the
standard Euclidean metrics on Rmn and Rn2

.
One can use this to get that

{T ∈ L(Rn,Rm) : P1 ◦ T ∈ GL(Rn)}(6.7.4)

is an open set in L(Rn,Rm), in the sense that it corresponds to an open set in

Rmn. This uses the fact that GL(Rn) corresponds to an open set in Rn2

, as in
Subsection 5.2.1 and Section 5.4. Note that (6.7.2) implies that

P1(R
m) = Rn.(6.7.5)

This means that (6.7.4) is the empty set unless (6.7.5) holds.
Of course, (6.7.4) is the same as

{T ∈ L(Rn,Rm) : det(P1 ◦ T ) 6= 0}.(6.7.6)

It is easy to see that
det(P1 ◦ T )(6.7.7)

is given by a polynomial in the entries of the matrix associated to T , with P1

fixed. In particular, this corresponds to a continuous real-valued function on
Rmn, so that (6.7.6) corresponds to an open set in Rmn, as before.

It follows that

{T ∈ L(Rn,Rm) : T is one-to-one on Rn}(6.7.8)

is an open set in L(Rn,Rm) too. More precisely, (6.7.8) is the same as the
union of (6.7.4) over all linear mappings P1 from Rm into Rn. In fact, one
can restrict one’s attention to linear mappings P1 that satisfy (6.7.5), because
otherwise (6.7.4) is the empty set, as before. The fact that (6.7.8) is an open
set in L(Rn,Rn) could also be obtained from an argument analogous to one in
Section 5.4. Of course, if m = n, then (6.7.8) is the same as GL(Rn).

6.8 Embeddings and immersions

Let n and m be positive integers with n ≤ m again, and let W be a nonempty
open subset of Rn. Also let F be a continuously-differentiable mapping from
W into Rm, so that the differential of F is continuous as a function on W with
values in L(Rn,Rm), as in Section 5.5. One can check that

{x ∈W : F ′(x) = dFx is one-to-one on Rn}(6.8.1)

is an open set in Rn, using the fact that (6.7.8) is an open set in L(Rn,Rm).
This is the same as a remark in Section 5.5 when m = n.
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Let us say that F is an immersion of W into Rm if

F ′(x) = dFx is one-to-one on Rn for every x ∈W.(6.8.2)

This corresponds to part (a) of Definition 1.27 on p22 of [183]. This implies
that

F is one-to-one on a neighborhood of every point in W,(6.8.3)

as in Subsection 6.6.1. If F is r-times continuously differentiable on W for some
positive integer r, or infinitely differentiable on W , then one may say that F is
a Cr or C∞ immersion, as appropriate.

Suppose that F is an immersion of W into Rm. If we also have that

F is one-to-one on W,(6.8.4)

then (W,F ) may be called a submanifold of Rm, as in part (b) of Definition
1.27 on p22 of [183]. In this case, if x ∈ W , then the tangent space of this
submanifold at x ∈W is the linear subspace

dFx(R
n)(6.8.5)

of Rm. Note that
dim dFx(R

n) = n,(6.8.6)

because of (6.8.2). If F is r-times continuously differentiable on W , or infinitely
differentiable on W , then (W,F ) may be called a Cr or C∞ submanifold of Rm,
as appropriate.

If
F is a homeomorphism from W onto F (W ),(6.8.7)

as in Subsection 5.9.1, then F may be called an imbedding of W into Rm, as
in part (c) of Definition 1.27 on p22 of [183]. However, some colleagues have
mentioned that the term embedding is sometimes used for one-to-one immer-
sions. In order to be precise, we may say that F is an embedding in the strong
sense when (6.8.7) holds. As before, if F is r-times continuously differentiable
on W , or infinitely differentiable on W , then one may say that F is a Cr or C∞

embedding of W into Rm, as appropriate.

6.8.1 Some remarks about manifolds

One can consider broader notions of manifolds, but we shall not pursue this
in detail here. One can start with n-dimensional topological manifolds, which
are topological spaces that are locally homeomorphic to open sets in Rn, and
which are often asked to satisfy some additional conditions. If r is a positive
integer, then one can consider n-dimensional Cr manifolds, which are locally Cr

diffeomorphic to open sets in Rn in a suitable sense. Similarly, one can consider
n-dimensional C∞ or smooth manifolds, which are locally C∞ diffeomorphic to
open sets in Rn in an analogous sense. These topics are discussed beginning on
p5 of [183], for instance.
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The notions of immersions and submanifolds can be extended to mappings
between Cr and C∞ manifolds, as on p22 of [183]. In particular, broader no-
tions of manifolds are already helpful for considering submanifolds of Euclidean
spaces.

Basically, a (reasonably nicely embedded) Cr or C∞ n-dimensional subman-
ifold of Rm should look locally like a Cr or C∞ submanifold in the previous
sense at each point, as appropriate. Equivalently, this means that it looks lo-
cally like the graph of a Cr or C∞ mapping from an open set in Rn into Rm−n,
with the coordinates of Rm arranged in a suitable way, as in Subsection 6.6.1.

The unit sphere in Rn+1 with respect to the standard Euclidean metric is
the same as

Sn =

{
y ∈ Rn+1 :

n+1∑
j=1

y2j = 1

}
.(6.8.8)

This is a nice example of a smooth n-dimensional manifold, which is a subman-
ifold of Rn+1.

6.9 Surjective linear mappings

Let n and m be positive integers with n < m, and let e1, . . . , en be the standard
basis for Rn, as usual. Also let T be a linear mapping from Rm into Rn. If

T (Rm) = Rn,(6.9.1)

then for each j = 1, . . . , n there is a vj ∈ Rm such that

T (vj) = ej .(6.9.2)

Conversely, this condition implies (6.9.1).
If v1, . . . , vn are any elements of Rm, then there is a unique linear mapping

R0 from Rn into Rm such that

R0(ej) = vj(6.9.3)

for each j = 1, . . . , n. In this case, (6.9.2) is the same as saying that

T (R0(ej)) = ej .(6.9.4)

It is easy to see that this holds if and only if

T ◦R0 is the identity mapping on Rn.(6.9.5)

Let R1 be a linear mapping from Rn into Rm. If

T (R1(R
n)) = Rn,(6.9.6)

then it is easy to see that (6.9.1) holds. Note that (6.9.6) holds if and only if

T ◦R1 ∈ GL(Rn),(6.9.7)
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because T ◦R1 is a linear mapping from Rn into itself. This means that T ◦R1

is one-to-one on Rn, which implies that

R1 is one-to-one on Rn.(6.9.8)

Of course,
T 7→ T ◦R1(6.9.9)

defines a linear mapping from L(Rm,Rn) into L(Rn), which corresponds to a
linear mapping from Mn,m(R) into Mn,n(R), as in Section 5.3. This may be

identified with a linear mapping from Rnm into Rn2

, as in Section 5.1, which
is continuous in particular, with respect to the standard Euclidean metrics on
Rnm and Rn2

.
It follows that

{T ∈ L(Rm,Rn) : T ◦R1 ∈ GL(Rn)}(6.9.10)

is an open set in L(Rm,Rn), in the sense that it corresponds to an open set

in Rnm, because GL(Rn) corresponds to an open set in Rn2

, as in Subsection
5.2.1 and Section 5.4. This is the empty set unless (6.9.8) holds, as before.

Note that (6.9.10) is the same as

{T ∈ L(Rm,Rn) : det(T ◦R1) 6= 0}.(6.9.11)

One can check that
det(T ◦R1)(6.9.12)

is a polynomial in the entries of the matrix associated to T , with R1 fixed. This
can be used as another way to get that (6.9.11) corresponds to an open set in
Rnm.

Let us check that

{T ∈ L(Rm,Rn) : T (Rm) = Rn}(6.9.13)

is an open set in L(Rm,Rn) as well. In fact, (6.9.13) is the same as the union
of (6.9.10) over all linear mappings R1 from Rn into Rm. More precisely, we
may restrict our attention to linear mappings R1 that satisfy (6.9.8), because
(6.9.10) is the empty set otherwise, as before.

6.10 The implicit function theorem

Let n and m be positive integers with n < m again, and let W be a nonempty
open subset of Rm. Also let ϕ be a continuously-differentiable mapping from
W into Rn, so that the differential of ϕ is continuous as a mapping from W into
L(Rm,Rn), as in Section 5.5. Observe that

{x ∈W : dϕx(R
m) = Rn}(6.10.1)

is an open set in Rm, because (6.9.13) is an open set in L(Rm,Rn).
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Suppose that w ∈W and

dϕw(R
m) = Rn.(6.10.2)

We would like to add some components to ϕ to get a mapping Φ from W into
Rm with

dΦw ∈ GL(Rm),(6.10.3)

so that we can use the inverse function theorem. Note that

dim(ker dϕw) = m− n,(6.10.4)

because of (6.10.2) and standard arguments from linear algebra. This implies
that there is a linear mapping P0 from Rm onto Rm−n such that

P0 is one-to-one on ker dϕw,(6.10.5)

as in Section 6.5. More precisely, we can take P0 so that its components are the
same as m− n of the coordinates of an element of Rm, as before.

We would like to define Φ so that its first n components are the same as the
components of ϕ, and the otherm−n components are equal to the components of
P0. In this case, the first n components of dΦw are the same as the components
of dϕw, and the other m − n components of dΦw are equal to the components
of P0, so that

ker dΦw = (ker dϕw) ∩ (kerP0) = {0},(6.10.6)

using (6.10.5) in the second step. Thus (6.10.3) holds, so that we can use the
inverse function theorem, as in Section 5.6. This means that there are open sets
U(w), V (w) in Rm such that

w ∈ U(w), U(w) ⊆W, Φ(w) ∈ V (w),(6.10.7)

and

the restriction of Φ to U(w) is a C1 diffeomorphism onto V (w),(6.10.8)

as before. Let Ψ = Ψw be the inverse of the restriction of Φ to U(w), which is
a C1 diffeomorphism from V (w) onto U(w).

6.10.1 The zero set of ϕ

Suppose that

ϕ(w) = 0,(6.10.9)

and consider

U0(w) = {x ∈ U(w) : ϕ(x) = 0}.(6.10.10)

Put

V0(w) = Φ(U0(w)),(6.10.11)
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which is the same as the set of points in V (w) whose first n coordinates are
equal to 0. Of course,

Φ(w) ∈ V0(w),(6.10.12)

because w ∈ U0(w), by (6.10.9). We can identify V0(w) with an open set in
Rm−n, using the last m− n coordinates of the elements of V0(w). Note that

Ψ(V0(w)) = U0(w),(6.10.13)

by construction.
This shows that U0(w) is an (m − n)-dimensional C1 submanifold of Rm.

This is a version of the implicit function theorem. If x ∈ U0(w), then one can
check that the tangent space to U0(w) at x is equal to

ker dϕx.(6.10.14)

This uses the fact that
dΨΦ(x) = (dΦx)

−1,(6.10.15)

as in Section 5.6.
If ϕ is r-times continuously differentiable on W for some positive integer r,

then

the restriction of Φ to U(w) is a Cr diffeomorphism onto V (w),(6.10.16)

Ψ is a Cr diffeomorphism from V (w) onto U(w), and U0(w) is a C
r submanifold

of Rm. Similarly, if ϕ is infinitely differentiable on W , then

the restriction of Φ to U(w) is a C∞ diffeomorphism onto V (w),(6.10.17)

Ψ is a C∞ diffeomorphism from V (w) onto U(W ), and U0(w) is a C
∞ subman-

ifold of Rm.
Put

W0 = {x ∈W : ϕ(x) = 0},(6.10.18)

and suppose that
dϕx(R

m) = Rn(6.10.19)

for every x ∈W0. In this case, the previous remarks imply thatW0 is an (m−n)-
dimensional C1 submanifold of Rm. If ϕ is r-times continuously differentiable
on W , or infinitely differentiable on W , then W0 is a Cr or C∞ submanifold of
Rm, as appropriate. This corresponds to Theorem 1.38 on p31 of [183].

6.11 Injectivity and alternating forms

Let W be a vector space over the real numbers, and let W0 be a linear subspace
of W . If µ is a k-linear form on W for some positive integer k, then let µ0

be the k-linear form on W0 obtained by restricting µ to elements of W0. More
precisely,

µ0 is the restriction of µ to the set (W0)
k(6.11.1)



6.11. INJECTIVITY AND ALTERNATING FORMS 135

of k-tuples of elements of W0, considered as a subset of the set W k of k-tuples
of elements of W . Of course, if µ is alternating or symmetric on W , then µ0

has the same property on W0.
Suppose for the moment that

dimW0 < k.(6.11.2)

If µ is an alternating k-linear form onW , then µ0 is an alternating k-linear form
on W0, and thus

µ0 = 0,(6.11.3)

as in Subsections 1.11.1 and 2.5.1.
Let ι0 be the obvious inclusion mapping of W0 into W , which sends every

element of W0 to itself, and is considered as a linear mapping from W0 into W .
Note that ι∗0(µ) may be defined as a k-linear form on W0, as in Section 2.3. In
this case,

ι∗0(µ) = µ0.(6.11.4)

Let V be another vector space over the real numbers, and let T be a linear
mapping from V into W . Suppose that

T (V ) ⊆W0,(6.11.5)

and let T0 be the same as T , considered as a linear mapping from V into W0.
Observe that

T = ι0 ◦ T0,(6.11.6)

as a linear mapping from V into W . If T ∗(µ) is the k-linear form on V as in
Section 2.3, then we get that

T ∗(µ) = (ι0 ◦ T0)∗(µ) = T ∗
0 (ι

∗
0(µ)),(6.11.7)

where the second step is as in Section 2.3. This means that

T ∗(µ) = T ∗
0 (µ0),(6.11.8)

because of (6.11.4).
Of course, we can simply take W0 = T (V ). Suppose for the moment that

dimV = k.(6.11.9)

If
T is not one-to-one on V,(6.11.10)

then
dimT (V ) < k.(6.11.11)

If µ is an alternating k-linear form on W , then we get that

T ∗(µ) = 0,(6.11.12)

by (6.11.3) and (6.11.8).
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6.11.1 Injectivity of the differential

Let n and m be positive integers, and let U , V be nonempty open subsets of
Rn, Rm, respectively. Also let ψ be a mapping from U into Rm with

ψ(U) ⊆ V,(6.11.13)

and let α be a differential n-form on V . Suppose that ψ is differentiable on U ,
so that ψ∗(α) may be defined as a differential n-form on U , as in Section 4.4.

Let x ∈ U be given, and let αψ(x) be the value of α at ψ(x) ∈ V , which is
an alternating k-linear form on Rm. Remember that the value of ψ∗(α) at x is
the alternating k-linear form on Rn given by

(ψ∗(α))x = (dψx)
∗(αψ(x)),(6.11.14)

as in Section 4.4. Suppose that

dψx is not one-to-one(6.11.15)

as a linear mapping from Rn into Rm. Under these conditions, we get that

(ψ∗(α))x = 0(6.11.16)

as in (6.11.12).

6.12 Integrating n-forms on Rn

Let n be a positive integer, let E be a nonempty subset of Rn, and let α be a
differential n-form on E. Remember that α may be expressed as

α = α0 dx1 ∧ · · · ∧ dxn,(6.12.1)

where α0 is a real-valued function on E, as in Section 3.14.
Suppose that E is compact in Rn, and that α is continuous on E. This

means that α0 is continuous as a real-valued function on E, as in Subsection
3.12.1. If E is reasonably nice, then the integral of α over E may be defined by∫

E

α =

∫
E

α0(x) dx,(6.12.2)

where the right side is an ordinary Riemann integral, as in (1) in Section 4.5
on p141 of [183]. In particular, we may do this when E is a cell in Rn, as
in Subsection 5.13.1, or the standard simplex in Rn, as in Section 6.2. If one
uses the Lebesgue integral, then the right side of (6.12.2) may be defned more
broadly.

If β is a differential form on Rn, then the support

suppβ(6.12.3)
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of β may be defined as in Subsection 5.13.2. This is the closure of the set
of x ∈ Rn at which the value of β is not zero, as an element of AM(Rn).
Equivalentlyf, if we identify AM(Rn) with R2n , as in Subsection 3.12.1, then
the support of β is the same as the support of the corresponding function on
Rn with values in R2n .

Let α be a differential n-form on Rn as in (6.12.1), and note that the support
of α as a differential form on Rn is the same as the support of α0 as a real-valued
function on Rn. If α is continuous, and the support of α is compact, then the
integral of α over Rn may be defined by∫

Rn

α =

∫
Rn

α0(x) dx,(6.12.4)

where the right side is as in Subsection 5.13.2. If C is a cell in Rn that contains
the support of α, then ∫

Rn

α =

∫
C
α =

∫
C
α0(x) dx,(6.12.5)

as before.

6.12.1 A family of integrals

Let β be a differential (n− 1)-form on Rn. We may express β as

β =

n∑
j=1

βj dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn,(6.12.6)

as in Section 3.14, where βj is a real-valued function on Rn. Suppose that

β is continuously differentiable(6.12.7)

as a differential form on Rn, which means that βj is continuously differentiable
as a real-valued function on Rn for each j = 1, . . . , n, as in Section 3.13. Re-
member that the exterior derivative dβ of β is a continuous differential n-form
on Rn, as in Section 4.6.

Observe that

dβ =

n∑
j=1

dβj ∧ dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn,(6.12.8)

by the definition of the exterior derivative. Remember that

dβj =

n∑
l=1

(∂lβj) dxl(6.12.9)

for each j, as in Section 3.14. Using this, we get that

dβ =

n∑
j=1

(∂jβj) dxj ∧ dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn,(6.12.10)
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because dxl ∧ dxl = 0 for every l, as in Section 3.11. It follows that

dβ =

n∑
j=1

(−1)j−1 (∂jβj) dx1 ∧ · · · ∧ dxn,(6.12.11)

because dxj ∧ dxl = −dxl ∧ dxj for each j, l, as before.
Suppose that

β also has compact support in Rn,(6.12.12)

which means that βj has compact support for each j. This implies that ∂jβj
has compact support for each j, so that dβ has compact support too. Observe
that ∫

Rn

dβ =

∫
Rn

n∑
j=1

(−1)j−1(∂jβj)(x) dx(6.12.13)

=

n∑
j=1

(−1)j−1

∫
Rn

(∂jβj)(x) dx.

It is easy to see that ∫
Rn

(∂jβj)(x) dx = 0(6.12.14)

for each j, by integrating in the jth variable first, and using the fundamental
theorem of calculus. This means that∫

Rn

dβ = 0(6.12.15)

under these conditions.

6.13 More on changes of variables

Let m and n be positive integers, let W be a nonempty open subset of Rn, and
let ψ be a mapping from W into Rm. Suppose that

ψ is differentiable on W,(6.13.1)

in the sense that ψ is differentiable at every point in W . Let E be a nonempty
subset of W , and let α be a differential k-form on a subset of Rm that contains
ψ(E) for some positive integer k. Under these conditions, we can define the
pull-back

ψ∗(α)(6.13.2)

of α with respect to ψ as a differential k-form on E, in essentially the same
way as in Section 4.4. More precisely, if x ∈ E, and αψ(x) is the value of α at
ψ(x), as an alternating k-linear form on Rm, then the value of ψ∗(α) at x, as
an alternating k-linear form on Rn, is defined by

(ψ∗(α))x = (dψx)
∗(αψ(x)),(6.13.3)



6.13. MORE ON CHANGES OF VARIABLES 139

where the right side is as in Section 2.3.
Suppose now that k = m = n, and that α is as in (6.12.1) for some real-

valued function α0 defined on a subset of Rn that contains ψ(E). In this case,

ψ∗(α) = (α0 ◦ ψ)ψ∗(dx1 ∧ · · · ∧ dxn) = (α0 ◦ ψ) dψ1 ∧ · · · ∧ dψn(6.13.4)

on E, where the second step is as in Section 4.5. Remember that the components
ψ1, . . . , ψn of ψ are differentiable as real-valued functions on W .

The differential n-form

dx1 ∧ · · · ∧ dxn(6.13.5)

is equal to

θ1 ∧ · · · ∧ θn(6.13.6)

at every point in Rn, as an alternating n-linear form on Rn, as in Section 3.14.
Remember that µdet is the alternating n-linear form on Rn corresponding to the
determinant, as in Section 1.15, and that this is equal to (6.13.6), as in Section
2.11. It follows that

ψ∗(dx1 ∧ · · · ∧ dxn) = (det dψ) dx1 ∧ · · · ∧ dxn(6.13.7)

on W , as in Section 2.5. This means that

ψ∗(α) = (α0 ◦ ψ) (det dψ) dx1 ∧ · · · ∧ dxn(6.13.8)

on E, by (6.13.4).

6.13.1 Integrals and diffeomorphisms

Suppose that ψ(W ) is an open set in Rn too, and that

ψ is a C1 diffeomorphism from W onto ψ(W ).(6.13.9)

Suppose also that E is compact as a subset of Rn, and that α is continuous on
ψ(E), so that α0 is continuous as a real-valued function on ψ(E). This implies
that α0 ◦ ψ is continuous on E, so that

ψ∗(α) is continuous on E,(6.13.10)

because of (6.13.8). Remember that

det dψ is continuous(6.13.11)

as a real-valued function on W , because ψ is continuously differentiable on W ,
as in Section 6.3.

If we also have that

detψ′(x) = det dψx > 0(6.13.12)
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for every x ∈ E, then ∫
ψ(E)

α =

∫
E

ψ∗(α),(6.13.13)

at least if E is nice enough for the Riemann integral to be defined. This follows
from (6.13.8) and the change of variables formula in Section 6.3. Similarly, if

detψ′(x) = det dψx < 0(6.13.14)

for every x ∈ E, then ∫
ψ(E)

α = −
∫
E

ψ∗(α),(6.13.15)

if E is nice enought for the Riemann integral to be defined. This corresponds
to (2) in Section 4.5 on p141 of [183]. As before, there are versions of this using
Lebesgue measure and integration with milder hypotheses.

6.14 Diffeomorphisms and orientations

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Remember that

dψx is invertible as a linear mapping from Rn into itself(6.14.1)

for every x ∈ W , because ψ is a C1 diffeomorphism, as in Subsection 5.11.1.
Equivalently, this means that

det dψx 6= 0(6.14.2)

for every x ∈W . This implies that

sign(det dψx) is locally constant on W,(6.14.3)

as in Subsection 4.10.2, because of (6.13.11). If

W is connected,(6.14.4)

then it follows that
sign(det dψx) is constant on W,(6.14.5)

as before.
We say that

ψ is orientation-preserving on W(6.14.6)

if (6.13.12) holds for every x ∈W . Similarly,

ψ is orientation-reversing on W(6.14.7)

if (6.13.14) holds for every x ∈W .
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6.14.1 Another version

The version of the change of variables formula in Section 6.4 may be restated
in terms of differential forms as well. Let α be a differential n-form on Rn that
is continuous and has compact support, with

suppα ⊆ ψ(W ).(6.14.8)

Thus α may be expressed as in (6.12.1), where α0 is a continuous real-valued
function on Rn with compact support, and

suppα0 = suppα ⊆ ψ(W ).(6.14.9)

It follows that

ψ−1(suppα) = ψ−1(suppα0) is a compact set in Rn,(6.14.10)

because ψ−1 is continuous as a mapping from ψ(W ) into Rn, as in Subsection
5.8.1. Note that

ψ−1(suppα) = ψ−1(suppα0) ⊆W,(6.14.11)

because ψ−1(ψ(W )) =W .
Let β0 be the real-valued function defined on Rn by

β0(x) = α0(ψ(x)) det dψx when x ∈W(6.14.12)

= 0 when x ∈ Rn \W.

One can check that
β0 is continuous on Rn,(6.14.13)

as in Section 6.4. We also have that

suppβ0 = ψ−1(suppα0) = ψ−1(suppα),(6.14.14)

as before. Put
β = β0 dx1 ∧ · · · ∧ dxn,(6.14.15)

which is a differential n-form on Rn that is continuous, with

suppβ = supp β0.(6.14.16)

Note that
β = ψ∗(α) on W,(6.14.17)

by (6.13.8). It is easy to see that∫
Rn

α =

∫
Rn

β(6.14.18)

when ψ is orientation-preserving on W , using the remarks in Section 6.4. Sim-
ilarly, ∫

Rn

α = −
∫
Rn

β(6.14.19)

when ψ is orientation-reversing on W .
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6.15 n-Surfaces in Rm

Let m and n be positive integers, let U be a nonempty open subset of Rn, and
let ϕ be a continuously-differentiable mapping from U into Rm. Also let K be a
nonempty compact subset of U , which is reasonably nice, so that one can take
Riemann integrals of continuous real-valued functions on K. One may take K
to be a cell in Rn that is contained in U , for instance, or the standard simplex
in Rn, if that is contained in U . One could consider wider classes of sets K
using Lebesgue measure and integration, as usual.

Let V be a nonempty open subset of Rm. If

ϕ(K) ⊆ V,(6.15.1)

then the restriction of ϕ to K is considered to be

an n-surface in V,(6.15.2)

as a mapping from K into V . This corresponds to Definition 10.10 on p254 of
[154]. We may use Φ = Φ(K) to refer to this n-surface, which involves both K
and the restriction of ϕ to K. The set K may be called the parameter domain
of the n-surface, as in [154].

More precisely, we shall also use the differential of ϕ at points in K. If K is
reasonably nice, then the differential of ϕ at points in K is uniquely determined
by the restriction of ϕ to K. In particular, this holds when K is the closure of
an open set in Rn.

If ϕ is r-times continuously differentiable on U for some positive integer r,
then we may say that

Φ is a Cr n-surface in V.(6.15.3)

Similarly, if ϕ is infinitely differentiable on U , then we may say that

Φ is a C∞ n-surface in V.(6.15.4)

6.15.1 Integration over n-surfaces

Let α be a differential n-form on ϕ(K) that is continuous on ϕ(K). The integral
of α over the n-surface Φ is defined by∫

Φ

α =

∫
K

ϕ∗(α).(6.15.5)

More precisely, ϕ∗(α) is a differential n-form on K that is continuous on K
under these conditions, so that the right side may be defined as in Section 6.12.
This basically corresponds to (35) on p254 of [154], although this version is
closer to Theorem 10.24 on p264 of [154].

Remember that

ϕ−1(V ) = {x ∈ U : ϕ(x) ∈ V }(6.15.6)
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is an open subset of Rn, because ϕ is continuous, as mentioned in Section 5.9.
Note that

K ⊆ ϕ−1(V ),(6.15.7)

by (6.15.1). Of course,

ϕ(ϕ−1(V )) ⊆ V(6.15.8)

automatically. If α is a differential form on V , then ϕ∗(α) may be defined as a
differential form on ϕ−1(V ) in the usual way.

6.15.2 Changing variables in Rn

Let U0 be another nonempty open subset of Rn, and let θ be a C1 diffeomor-
phism from U0 onto U . Put

ϕ0 = ϕ ◦ θ,(6.15.9)

which is a continuously-differentiable mapping from U0 into Rm. Also put

K0 = θ−1(K),(6.15.10)

so that K0 is a compact subset of Rn that is contained in U0, and

ϕ0(K0) = ϕ(K) ⊆ V.(6.15.11)

Thus the restriction of ϕ0 to K0 is considered to be another n-surface in V ,
which may be expressed as Φ0 = Φ0(K0). More precisely, this also uses the
differential of ϕ0 at points in K0, as before.

Of course,

ϕ∗0(α) = θ∗(ϕ∗(α))(6.15.12)

on K0, as in Subsection 4.5.1. This implies that∫
Φ0

α =

∫
K0

ϕ∗0(α) =

∫
K0

θ∗(ϕ∗(α)).(6.15.13)

If θ is orientation-preserving on U0, then it follows that∫
Φ0

α =

∫
K

ϕ∗(α) =

∫
Φ

α,(6.15.14)

where the first step is as in Subsection 6.13.1. This also uses the fact that

θ(K0) = K,(6.15.15)

because θ(U0) = U , by hypothesis. Similarly, if θ is orientation-reversing on U0,
then ∫

Φ0

α = −
∫
K

ϕ∗(α) = −
∫
Φ

α.(6.15.16)
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6.15.3 Mapping V into Rp

Let p be another positive integer, and let η be a continuously-differentiable
mapping from V into Rp. Put

ψ = η ◦ ϕ,(6.15.17)

which is defined as a mapping from ϕ−1(V ) into Rp. In fact, ψ is continuously
differentiable on ϕ−1(V ), as in Section 3.9.

Let W be an open subset of Rp such that

ψ(K) = η(ϕ(K)) ⊆W.(6.15.18)

The restriction of ψ to K may be considered as an n-surface in W , as before.
We may use Ψ = Ψ(K) to refer to this n-surface.

Let β be a differential n-form on ψ(K) that is continuous on ψ(K), so that
ψ∗(β) is a differential n-form on K that is continuous on K, as before. Similarly,
η∗(β) defines a differential n-form on ϕ(K) that is continuous on ϕ(K), and
ϕ∗(η∗(β)) defines a differential n-form on K that is continuous on K. Note that

ψ∗(β) = ϕ∗(η∗(β))(6.15.19)

on K, as in Subsection 4.5.1. Under these conditions, we have that∫
Ψ

β =

∫
K

ψ∗(β) =

∫
K

ϕ∗(η∗(β)) =

∫
Φ

η∗(β).(6.15.20)

This corresponds to Theorem 10.25 on p265 of [154].



Chapter 7

Simplices and chains

7.1 Affine mappings

Let V and W be vector spaces over the real numbers. A mapping f from V
into W is said to be affine if

f − f(0) is a linear mapping from V into W,(7.1.1)

as in p266 of [154]. Equivalently, this means that there is a linear mapping T
from V into W such that

f(v) = f(0) + T (v)(7.1.2)

for every v ∈ V . It is easy to see that the space of all affine mappings from V
into W is a linear subspace of the space of all mappings from V into W , as a
vector space over the real numbers with respect to pointwise addition and scalar
multiplication of functions. The space L(V,W ) of all linear mappings from V
into W is a linear subspace of the space of all affine mappings from V into W .

Let Z be another vector space over the real numbers. If f is an affine
mapping from V into W , and g is an affine mapping from W into Z, then one
can check that

g ◦ f is an affine mapping from V into Z.(7.1.3)

Let f be an affine mapping from V into W , and let T be as in (7.1.2).
Observe that

f is one-to-one on V(7.1.4)

if and only if
T is one-to-one on V.(7.1.5)

Similarly,
f(V ) =W(7.1.6)

if and only if
T (V ) =W.(7.1.7)

145



146 CHAPTER 7. SIMPLICES AND CHAINS

Let n be a positive integer, and let e1, . . . , en be the standard basis vectors
in Rn. If f is an affine mapping from Rn intoW , then f is uniquely determined
by

f(0), f(e1), . . . , f(en).(7.1.8)

More precisely, if T is the corresponding linear mapping from Rn into W as in
(7.1.2), then

T (ej) = f(ej)− f(0)(7.1.9)

for each j = 1, . . . , n, and this determines T uniquely. It is easy to see that
(7.1.8) may be any n+ 1 elements of W , because T (e1), . . . , T (en) may be any
n elements of W .

Let m be another positive integer, and let f be an affine mapping from Rn

into Rm. If T is the linear mapping from Rn into Rm corresponding to f as in
(7.1.2), then T is the same as the differential of f at every point in Rn.

7.2 Some remarks about determinants

Let n be a positive integer, and let σ ∈ Sym(n) be given. Also let Tσ be the
linear mapping from Rn into itself defined by

(Tσ(x))j = xσ(j)(7.2.1)

for each x ∈ Rn and j = 1, . . . , n, as in Section 1.5. If e1, . . . , en is the standard
basis for Rn, then it is easy to see that

Tσ(el) = eσ−1(l)(7.2.2)

for each l = 1, . . . , n.
Remember that

detT = µdet(T (e1), . . . , T (en))(7.2.3)

for any linear mapping T from Rn into itself, as in Section 2.5. Here µdet is
the alternating n-linear form on Rn associated to the determinant as in Section
1.15. Thus

detTσ = µdet(eσ−1(1), . . . , eσ−1(n)).(7.2.4)

One can use this to check that

detTσ = sgn(σ).(7.2.5)

Let us put

e0 = 0,(7.2.6)

for convenience. Let τ be a permutation on {0, 1, . . . , n}, and let Rτ be the
linear mapping from Rn into itself such that

Rτ (el) = eτ(l) − eτ(0)(7.2.7)
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for each l = 1, . . . , n. Note that sgn(τ) can be defined in the same way as in
Section 1.4, which corresponds to identifying τ with an element of Sym(n+ 1)
in the obvious way.

Suppose for the moment that

τ(0) = 0,(7.2.8)

so that
Rτ (el) = eτ(l)(7.2.9)

for each l = 1, . . . , n. Let τ0 be the restriction of τ to {1, . . . , n}, which is an
element of Sym(n). Note that

Rτ = Tτ−1
0

(7.2.10)

in this case. Thus

detRτ = detTτ−1
0

= sgn(τ−1
0 ) = sgn(τ0),(7.2.11)

usng (7.2.5) in the second step. This implies that

detRτ = sgn(τ),(7.2.12)

because sgn(τ) = sgn(τ0), as in Section 2.7.

7.2.1 The case where τ(0) 6= 0

Suppose now that
τ(0) 6= 0,(7.2.13)

so that τ−1(0) 6= 0 too. Let ρ be the mapping from {1, . . . , n} into itself defined
by

ρ(l) = τ(l) when l 6= τ−1(0)(7.2.14)

= τ(0) when l = τ−1(0).

It is easy to see that ρ ∈ Sym(n). Observe that

Rτ (el) = eρ(l) − eρ(τ−1(0)) when l 6= τ−1(0)(7.2.15)

= −eτ(0) = −eρ(l) when l = τ−1(0).

Let Lρ be the linear mapping from Rn into itself such that

Lρ(el) = eρ(l) when l 6= τ−1(0)(7.2.16)

= −eρ(l) when l = τ−1(0).

One can check that
detRτ = detLρ.(7.2.17)
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More precisely, one can verify that

µdet(Rτ (e1), . . . , Rτ (en)) = µdet(Lρ(e1), . . . , Lρ(en)).(7.2.18)

Let Tρ−1 be the linear mapping on Rn associated to ρ−1 as at the beginning
of the section. It is easy to see that

detLρ = − detTρ−1 ,(7.2.19)

using (7.2.3) and the definition of Lρ. This means that

detLρ = − sgn(ρ),(7.2.20)

because of (7.2.5). It follows that

detRτ = − sgn(ρ),(7.2.21)

by (7.2.17).
Let ρ1 be the permutation on {0, 1, . . . , n} that is equal to ρ on {1, . . . , n},

and satisfies ρ1(0) = 0. Thus

sgn(ρ1) = sgn(ρ),(7.2.22)

as in Section 2.7 again. One can check that τ is the same as the composition
of ρ1 with the permutation on {0, 1, . . . , n} that interchanges 0 and τ(0), and
leaves the other points fixed. This implies that

sgn(τ) = − sgn(ρ1).(7.2.23)

It follows that
detRτ = − sgn(ρ1) = sgn(τ),(7.2.24)

so that (7.2.12) holds in this case as well.

7.3 Affine simplices

Let n be a positive integer, and let e1, . . . , en be the standard basis in Rn, as
usual. Remember that Qn denotes the standard simplex in Rn, as in Section
6.2. This may be described equivalently as the set of points in Rn of the form

n∑
j=1

tj ej ,(7.3.1)

where tj is a nonnegative real number for each j, and
∑n
j=1 tj ≤ 1, as on p266

of [154].
Let m be another positive integer, and let p0, p1, . . . , pn be elements of Rm.

These elements of Rm are not required to be distinct. Consider the affine
mapping

ϕ = ϕp0,p1,...,pn(7.3.2)
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from Rn into Rm defined by

ϕp0,p1,...,pn(x) = p0 +

n∑
j=1

xj (pj − p0).(7.3.3)

This is the unique affine mapping from Rn into Rm such that

ϕ(0) = p0 and ϕ(ej) = pj for each j = 1, . . . , n,(7.3.4)

as in Section 7.1. Note that every affine mapping from Rn into Rm corresponds
to elements p0, p1, . . . , pn of Rm in this way.

Let
Φ = Φ(p0, p1, . . . , pn) = [p0, p1, . . . , pn](7.3.5)

be the n-surface in Rm associated to ϕp0,p1,...,pn with parameter domain Qn, as
in Section 6.15. Let us call this the

parameterized affine n-simplex in Rm associated to p0, p1, . . . , pn.(7.3.6)

This may also be called the oriented affine n-simplex in Rn associated to
p0, p1, . . . , pn, as on p266 of [154]. Indeed, one is often primarily concerned
with the way that the affine n-simplex is oriented, rather than the particular
affine parameterization, as in Section 7.5. The points p0, p1, . . . , pn may be
called the vertices of this affine n-simplex.

Of course,

ϕp0,p1,...,pn(Q
n) =

{
p0 +

n∑
j=1

xj (pj − p0) : x ∈ Qn
}
.(7.3.7)

Equivalently,

ϕp0,p1,...,pn(Q
n) =

{(
1−

n∑
j=1

xj

)
p0 +

n∑
j=1

xj pj : x ∈ Qn
}
.(7.3.8)

If m = n, p0 = 0, and pj = ej for each j = 1, . . . , n, then ϕp0,p1,...,pn is the
identity mapping on Rn, so that ϕp0,p1,...,pn(Q

n) = Qn.
Alternatively, ϕp0,p1,...,pn(Q

n) consists of the points in Rm of the form

n∑
j=0

tj pj ,(7.3.9)

where t0, t1, . . . , tn are nonnegative real numbers such that
∑n
j=0 tj = 1. This

description shows that

ϕp0,p1,...,pn(Q
n) does not depend on the order(7.3.10)

in which the vertices p0, p1, . . . , pn are listed.

This will be discussed further in the next section.
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7.4 Some affine mappings on Rn

Let V and W be vector spaces over the real numbers, and let f be an affine
mapping from V into W , as in Section 7.1. Suppose that v1, . . . , vk are finitely
many elements of V , and thet t1, . . . , tk are real numbers such that

k∑
j=1

tj = 1.(7.4.1)

Under these conditions, one can check that

f
( k∑
j=1

tj vj

)
=

k∑
j=1

tj f(vj).(7.4.2)

In fact, one can verify that this property characterizes affine mappings, with
k = 2.

Let n be a positive integer, let e1, . . . , en be the standard basis in Rn, and
let us put e0 = 0, as in Section 7.2. Note that Qn is the set of points in Rn of
the form

n∑
j=0

tj ej ,(7.4.3)

where t0, t1, . . . , tn are nonnegative real numbers with
∑n
j=0 tj = 1. Let m be

another positive integer, let p0, p1, . . . , pn be elements of Rm, and let ϕp0,p1,...,pn
be as in the previous section. One can use (7.4.2) to get the description of the
elements of ϕp0,p1,...,pn(Q

n) in (7.3.9).

7.4.1 Some affine mappings from permutations

Let τ be a permutation on {0, 1, . . . , n}, and let Rτ be the linear mapping from
Rn into itself such that

Rτ (el) = eτ(l) − eτ(0)(7.4.4)

for each l = 1, . . . , n, as in Section 7.2. If x ∈ Rn, then put

ξτ (x) = eτ(0) +Rτ (x),(7.4.5)

This is the unique affine mapping from Rn into itself such that

ξτ (el) = eτ(l)(7.4.6)

for each l = 0, 1, . . . , n. This is the same as the identity mapping on Rn when
τ is the identity mapping on {0, 1, . . . , n}, and

ξτ = ϕeτ(0),eτ(1),...,eτ(n)
,(7.4.7)

with m = n, for any permutation τ on {0, 1, . . . , n}. In particular,

ξτ (Q
n) = Qn(7.4.8)
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for each τ , as in the preceding paragraph.
The differential of ξτ at any point in Rn is equal to Rτ , as in Section 7.1.

Remember that the determinant of Rτ is equal to sgn(τ), as in Section 7.2. This
means that

ξτ is orientation-preserving on Rn when τ is an even permutation,(7.4.9)

and that

ξτ is orientation-reversing on Rn when τ is an odd permutation,(7.4.10)

as in Section 6.14.
Observe that

ϕp0,p1,...,pn(ξτ (el)) = ϕp0,p1,...,pn(eτ(l)) = pτ(l)(7.4.11)

for each l = 0, 1, . . . , n. This implies that

ϕp0,p1,...,pn ◦ ξτ = ϕpτ(0),pτ(1),...,pτ(n)
.(7.4.12)

In particular,

ϕpτ(0),pτ(1),...,pτ(n)
(Qn) = ϕp0,p1,...,pn(ξτ (Q

n)) = ϕp0,p1,...,pn(Q
n),(7.4.13)

as mentioned in the previous section.

7.5 Integrals over affine simplices

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let β be a differential n-form on Qn that is continuous on Qn, so that
ξ∗τ (β) is another differential n-form on Qn that is continuous on Qn. Observe
that ∫

Qn

ξ∗τ (β) = sgn(τ)

∫
Qn

β,(7.5.1)

as in Subsection 6.13.1. More precisely, this uses the fact that the differential of
ξτ at any point is equal to Rτ , whose determinant is equal to sgn(τ), as before.

Similarly, let α be a differential n-form on ϕp0,p1,...,pn(Q
n) that is continuous

on this set. Note that

ϕ∗pτ(0),pτ(1),...,pτ(n)
(α) = ξ∗τ (ϕ

∗
p0,p1,...,pn(α))(7.5.2)

on Qn, because of (7.4.12). It follows that∫
Φ(pτ(0),pτ(1),...,pτ(n))

α =

∫
Qn

ϕ∗pτ(0),pτ(1),...,pτ(n)
(α)

=

∫
Qn

ξ∗τ (ϕ
∗
p0,p1,...,pn(α))(7.5.3)

= sgn(τ)

∫
Qn

ϕ∗p0,p1,...,pn(α) = sgn(τ)

∫
Φ(p0,p1,...,pn)

α.
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This uses (7.5.1) in the third step. Here Φ(p0, p1, . . . , pn) and

Φ(pτ(0), pτ(1), . . . , pτ(n)) = [pτ(0), pτ(1), . . . , pτ(n)](7.5.4)

are as in Section 7.3, and the integrals over them are as in Subsection 6.15.1.
Of course, (7.5.3) may be considered as a version of the remarks in Subsection
6.15.2. This corresponds to Theorem 10.27 on p267 of [154].

7.5.1 Orientations of affine simplices

Let us put

Φ(pτ(0), pτ(1), . . . , pτ(n)) ' sgn(τ)Φ(p0, p1, . . . , pn),(7.5.5)

or equivalently

[pτ(0), pτ(1), . . . , pτ(n)] ' sgn(τ) [p0, p1, . . . , pn].(7.5.6)

If τ is an even permutation, then this means that

Φ(p0, p1, . . . , pn) and Φ(pτ(0), pτ(1), . . . , pτ(n))(7.5.7)

have the same orientation,

even though they may be parameterized differently as n-surfaces in Rm. Simi-
larly, if τ is an odd permutation, then this means that

Φ(p0, p1, . . . , pn) and Φ(pτ(0), pτ(1), . . . , pτ(n))(7.5.8)

have opposite orientations .

This corresponds to some remarks on p267 of [154]. Of course, this notation is
compatible with (7.5.3).

Remember that ϕp0,p1,...,pn is one-to-one on Rn if and only if the correspond-
ing linear mapping

ϕp0,p1,...,pn(x)− p0 =

n∑
j=1

xj (pj − p0)(7.5.9)

is a one-to-one linear mapping from Rn intoRm, as in Section 7.1. This happens
if and only if

pj − p0, 1 ≤ j ≤ n, are linearly indpendent in Rm.(7.5.10)

If m = n, then we may say that Φ(p0, p1, . . . , pn) is positively oriented when the
determinant of (7.5.9) is positive, and negatively oriented when the determinant
is negative, as on p267 of [154].
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7.5.2 0-Simplices

An oriented affine 0-simplex in Rm is defined to be a point p0 ∈ Rm with a
sign attached to indicate the orientation, i.e., +p0 or −p0, as on p267 of [154].
This may be denoted

Φ = ϵ p0,(7.5.11)

with ϵ = ±1. If f is a differential 0-form defined at p0, which is to say a
real-valued function, then we put∫

Φ

f = ϵ f(p0)(7.5.12)

in this case, as in [154].
Alternatively,

the standard 0-simplex Q0(7.5.13)

may be defined as the set {0} with 0 as its only element, as on p141 of [183]. A
parameterized 0-simplex in Rm may be considered as a mapping from Q0 into
Rm, as on p142, 191 of [183]. This is essentially the same as a point in Rm,
without including a sign, as in the preceding paragraph. If p ∈ Rm, then we
may use

Φ(p)(7.5.14)

for the corresponding parameterized 0-simplex in Rm. The corresponding in-
tegral may be defined as in (7.5.12), without the extra factor of ϵ on the right
side.

However, signs may also be included in chains, as in the next section. Using
this, the difference mentioned in the previous paragraphs does not really matter.

7.6 Affine chains

Let m and n be positive integers, and let V be a nonempty open subset of
Rm. An affine n-chain Γ in V consists of finitely many parameterized affine
n-simplices

Φ1, . . . ,Φk(7.6.1)

in V with signs
ϵ1, . . . , ϵk(7.6.2)

attached. More precisely, for each l = 1, . . . , k, Φl corresponds to an affine
mapping ϕl from Rn into Rm such that

ϕl(Q
n) ⊆ V,(7.6.3)

as in Section 7.3, where Qn is the standard simplex in Rn, as in Section 6.2.
This basically corresponds to the definition in Section 10.28 on p268 of [154].

In [154], the signs ϵl = ±1 are not included directly in this way, and instead
they correspond to using odd permutations of the vertices of the simplices. As
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in [154], the n-simplices are not required to be distinct, so that they may occur
with multiplicity. We can also allow n = 0 here, using parameterized affine
0-simplices in Rm, as in Subsection 7.5.2. This is equivalent to using oriented
affine 0-simplices in Rm, by including the signs directly here.

We shall consider “simplices” that are parameterized by mappings that are
r-times continuously differentiable for some nonnegative integer r, or infinitely
differentiable, in Section 7.9. We shall also consider corresponding notions of
chains there. We shall say a bit more about some aspects of chains in Section
7.13.

7.6.1 Integrals over affine chains

Let α be a differential n-form on V that is continuous on V . If Γ is as before,
then we put ∫

Γ

α =

k∑
l=1

ϵl

∫
Φl

α,(7.6.4)

as in (82) on p268 of [154]. Remember that the integrals on the right are defined
as in Subsection 6.15.1 when n ≥ 1, and as in Subsection 7.5.2 when n = 0.

An affine n-chain Γ as before is often expressed as a formal sum

Γ =

k∑
l=1

ϵl Φl,(7.6.5)

as in (83), (84) on p268 of [154]. The commutativity of addition reflects the fact
that we are not really concerned with the order in which the terms are listed, as
in the right side of (7.6.4). Similarly, if c1, . . . , ck are integers, then the formal
sum

k∑
l=1

cl Φl(7.6.6)

may be considered as an affine n-chain in V . If cl 6= 0, then this means that
sign(cl)Φl occurs with multiplicity |cl| in the chain.

Note that this type of formal sum is different from taking sums of affine
mappings from Rn into Rm when n ≥ 1, as mentioned on p268 of [154]. Sim-
ilarly, if n = 0, then this type of formal sum is different from taking sums of
elements of Rm.

7.6.2 Defining ' for affine chains

Let Φ̃1, . . . , Φ̃k be parameterized affine n-simplices in V with signs ϵ̃1, . . . , ϵ̃k, so
that

Γ̃ =

k∑
l=1

ϵ̃l Φ̃l(7.6.7)
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is an affine n-chain in V . Suppose that

ϵl Φl ' ϵ̃l Φ̃l(7.6.8)

for each l = 1, . . . , k, in the notation of Subsection 7.5.1. Under these conditions,
we extend this notation by putting

Γ ' Γ̃.(7.6.9)

If α is as before, then (7.6.8) implies that

ϵl

∫
Φl

α = ϵ̃l

∫
Φ̃l

α(7.6.10)

for each l = 1, . . . , k, as in Section 7.5. It follows that∫
Γ

α =

∫
Γ̃

α,(7.6.11)

by summing over l, as in (7.6.4).

7.7 Boundaries of affine simplices

Let m and n be positive integers, and let p0, p1, . . . , pn be elements of Rm,
so that Φ(p0, p1, . . . , pn) defines a parameterized affine n-simplex in Rm, as in
Section 7.3. The boundary of Φ(p0, p1, . . . , pn) is defined as an affine (n − 1)-
chain in Rm by

∂Φ(p0, p1, . . . , pn) =

n∑
l=0

(−1)l Φ(p0, . . . , pl−1, pl+1 . . . , pn),(7.7.1)

as in (85) on p269 of [154]. Note that

the image of Φ(p0, . . . , pj−1, pj+1, . . . , pn)(7.7.2)

is contained in the image of Φ(p0, p1, . . . , pn)

for each j, by a remark in Section 7.3. If n = 1, then we get that

∂Φ(p0, p1) = Φ(p1)− Φ(p0),(7.7.3)

where Φ(p) is the parameterized 0-simplex corresponding to p ∈ Rm as in
Subsection 7.5.2.

If n = 2, then

∂Φ(p0, p1, p2) = Φ(p1, p2)− Φ(p0, p2) + Φ(p1, p2),(7.7.4)

as on p269 of [154]. Note that

Φ(p0, p2) ' −Φ(p2, p0),(7.7.5)
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in the notation of Subsection 7.5.1. We can extend this notation to affine n-
chains, as in Subsection 7.6.2, to get that

∂Φ(p0, p1, p2) ' Φ(p0, p1) + Φ(p1, p2) + Φ(p2, p0),(7.7.6)

as in [154].
If n is any positive integer and 1 ≤ l ≤ n, then

Φ(p0, . . . , pl−1, pl+1, . . . , pn) = [p0, . . . , pl−1, pl+1, . . . , pn](7.7.7)

is the parameterized affine (n − 1)-simplex in Rm associated to these vertices
as in Section 7.3. If n ≥ 2, then this corresponds to the affine mapping

ϕl = ϕp0,...,pl−1,pl+1,...,pn(7.7.8)

from Rn−1 into Rm defined by

ϕl(x) = p0 +

l−1∑
j=1

xj (pj − p0) +

n−1∑
j=l

xj (pj+1 − p0),(7.7.9)

as on p269 of [154]. Remember that the parameter domain of (7.7.7) is the
standard simplex Qn−1 in Rn−1.

The l = 0 term on the right side of (7.7.1) uses the parameterized affine
(n− 1)-simplex

Φ(p1, . . . , pn) = [p1, . . . , pn](7.7.10)

in Rm. If n ≥ 2, then this corresponds to the affine mapping

ϕ0 = ϕp1,...,pn(7.7.11)

from Rn−1 into Rm defined by

ϕ0(x) = p1 +

n−1∑
j=1

xj (pj+1 − p1),(7.7.12)

as on p269 of [154].

7.7.1 Boundaries of affine chains

Let V be a nonempty open subset of Rm, and let Γ be an affine n-chain in V ,
as in (7.6.5). The boundary of Γ is defined as an affine (n− 1)-chain in V by

∂Γ =

k∑
l=1

ϵl ∂Φl.(7.7.13)

This corresponds to (90) on p270 of [154], in the case of affine chains. The
boundary of a parameterized affine 0-simplex may be interpreted as being equal
to 0, so that the boundary of an affine 0-chain is interpreted as being equal to
0 as well.
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7.8 Boundaries and permutations

Let n be a positive integer, and let l be an integer with 0 ≤ l ≤ n. Put

En,l = {0, . . . , l − 1, l + 1, n},(7.8.1)

which is a set with n elements. Let ρn,l be the unique mapping from

{0, 1, . . . , n− 1}(7.8.2)

onto En,l that is strictly increasing, so that

ρn,l(j) = j when j ≤ l − 1(7.8.3)

= j + 1 when j ≥ l.

Equivalently, ρ−1
n,l is the unique mapping from En,l onto (7.8.2) that is strictly

increasing, with

ρ−1
n,l(k) = k when k ≤ l − 1(7.8.4)

= k − 1 when k ≥ l + 1.

If τ is a permutation on {0, 1, . . . , n}, then the restriction of τ to En,l defines
a one-to-one mapping onto En,τ(l). Put

τl = ρ−1
n,τ(l) ◦ τ ◦ ρn,l,(7.8.5)

which defines a permutation on (7.8.2). We can define sgn(τ) and sgn(τl) as in
Section 1.4, by identifying these permutations with elements of Sym(n+1) and
Sym(n), respectively, in the obvious way.

More precisely,

sgn(τ) =
∏

0≤j<k≤n

sign(τ(k)− τ(j)),(7.8.6)

as before. Similarly,

sgn(τl) =
∏

0≤p<q≤n−1

sign(τl(q)− τl(p)).(7.8.7)

It is easy to see that this is the same as saying that

sgn(τl) =
∏

0≤j<k≤n
j,k ̸=l

sign(τ(j)− τ(k))(7.8.8)

in this case. It follows that

sgn(τ) = sgn(τl)
( l−1∏
j=0

sign(τ(l)− τ(j))
)( n∏

k=l+1

sign(τ(k)− τ(l))
)
.(7.8.9)
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We would like to check that( l−1∏
j=0

sign(τ(l)− τ(j))
)( n∏

k=l+1

sign(τ(k)− τ(l))
)
= (−1)τ(l)−l.(7.8.10)

Observe that

τ(l) = #{j = 0, . . . , l − 1 : τ(j) < τ(l)}(7.8.11)

+#{k = l + 1, . . . , n : τ(k) < τ(l)}.

Of course,

l = #{j = 0, . . . , l − 1 : τ(j) < τ(l)}(7.8.12)

+#{j = 0, . . . , l − 1 : τ(j) > τ(l)}.

This implies that

τ(l)− l = #{k = l + 1, . . . , n : τ(k) < τ(l)}(7.8.13)

−#{j = 0, . . . , l − 1 : τ(j) > τ(l)}.

It is easy to use this to get (7.8.10). This means that

sgn(τl) = (−1)τ(l)−l sgn(τ).(7.8.14)

7.8.1 Permuting vertices of affine simplices

Let m be another positive integer, let p0, p1, . . . , pn be elements of Rm, and let
Φ(p0, p1, . . . , pn) be as in Section 7.3. Remember that

Φ(pτ(0), pτ(1), . . . , pτ(n)) ' sgn(τ)Φ(p0, p1, . . . , pn),(7.8.15)

in the notation of Subsection 7.5.1. Similarly, one can verify that

Φ(pτ(0), . . . , pτ(l−1), pτ(l+1), . . . , pτ(n))(7.8.16)

' sgn(τl)Φ(p0, . . . , pτ(l)−1, pτ(l)+1, . . . , pn),

as parameterized affine (n− 1)-simplices in Rm. Basically,

p0, . . . , pτ(l)−1, pτ(l)+1, . . . , pn(7.8.17)

and
pτ(0), . . . , pτ(l−1), pτ(l+1), . . . , pτ(n)(7.8.18)

list the same set of vertices in Rm, where the order in the second list corresponds
to the restriction of τ to En,l.

This implies that

Φ(pτ(0), . . . , pτ(l−1), pτ(l+1), . . . , pτ(n))(7.8.19)

' (−1)τ(l)−l sgn(τ)Φ(p0, . . . , pτ(l)−1, pτ(l)+1, . . . , pn),
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by (7.8.14). It follows that

∂Φ(pτ(0), pτ(1), . . . , pτ(n))(7.8.20)

=

n∑
l=0

(−1)l Φ(pτ(0), . . . , pτ(l−1), pτ(l+1), . . . , pn)

'
n∑
l=0

(−1)τ(l) sgn(τ)Φ(p0, . . . , pτ(l)−1, pτ(l)+1, . . . , pn)

= sgn(τ) ∂Φ(p0, p1, . . . , pn),

by the definition (7.7.1) of the boundary.

Let V be a nonempty open subset of Rm, and let Γ, Γ̃ be affine n-chains in
V , as in (7.6.5) and (7.6.7), respectively. If (7.6.8) holds, then we get that

∂Γ ' ∂Γ̃,(7.8.21)

because of (7.8.20).

7.9 Cr Simplices and chains

Let m, n, and r be positive integers, and let U , V be nonempty open subsets of
Rn, Rm, respectively. Remember that Qn is the standard simplex in Rn, as in
Section 6.2, and suppose that

Qn ⊆ U.(7.9.1)

Let ϕ be an r-times continuously-differentiable mapping from U into Rm with

ϕ(Qn) ⊆ V.(7.9.2)

This defines a Cr n-surface Φ in V with parameter domain Qn, as in Section
6.15.

Under these conditions,

Φ is considered as a parameterized Cr n-simplex in V.(7.9.3)

One may also call Φ an oriented Cr n-simplex in V , which basically corresponds
to the definition at the beginning of Section 10.30 on p269 of [154] when r = 2.

Similarly, if ϕ is infinitely differentiable on U , then

Φ is considered as a parameterized C∞ n-simplex in V.(7.9.4)

This corresponds to a definition in Section 4.6 on p141 in [183]. As before, Φ
may be called an oriented C∞ n-simplex in V in this case as well. Of course, a
parameterized affine n-simplex in V is a parameterized C∞ n-simplex in V in
particular.

If r = 0, then one can simply ask that

ϕ be a continuous mapping from Qn into V.(7.9.5)
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This is mentioned on p142, 191 of [183], and is used in algebraic topology.

We may interpret a parameterized Cr or C∞ 0-simplex in V to be the same
as a parameterized affine 0-simplex in V , as in Subsection 7.5.2. Similarly,
an oriented Cr or C∞ 0-simplex may be interpreted as being the same as an
oriented affine 0-simplex in V .

7.9.1 Cr chains

A Cr or C∞ n-chain Γ in V consists of finitely many parameterized Cr or C∞

n-simplices

Φ1, . . . ,Φk(7.9.6)

in V , respectively, with signs

ϵ1, . . . , ϵk(7.9.7)

attached. This basically corresponds to the definition on p270 of [154] when
r = 2. As in Section 7.6, the n-simplices are not required to be distinct. Note
that an affine n-chain in V is a C∞ n-chain in V in particular. Some aspects of
these notions will be discussed further in Section 7.13.

As before, Γ is often expressed as a formal sum

Γ =

k∑
l=1

ϵl Φl.(7.9.8)

Similarly, if c1, . . . , ck are integers, then the formal sum

k∑
l=1

cl Φl(7.9.9)

may be considered as a Cr or C∞ n-chain in V , as appropriate. In an analogous
definition on p142 of [183], one considers formal sums of parameterized C∞ n-
simplices in V with coefficients in R. A related definition on p192 of [183] uses
formal sums of continuous n-simplices in V with integer coefficients. We shall
say more about this in Section 7.13 as well.

Let Γ be a C1 n-chain in V as in (7.9.8), and let α be a differential n-form
on V that is continuous on V . Under these conditions, we put

∫
Γ

α =

k∑
l=1

ϵl

∫
Φl

α,(7.9.10)

where the integrals on the right are defined as in Subsection 6.15.1 when n ≥ 1,
and as in Subsection 7.5.2 when n = 0. This corresponds to (87) on p270 of
[154], and to (10) on p143 of [183].
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7.10 Simplices and compositions

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If ϕ and U are as before, then

ϕ−1(V ) = {x ∈ U : ϕ(x) ∈ V }(7.10.1)

is an open set in Rn, because ϕ is continuous on U , as in Section 5.9. We also
have that

Qn ⊆ ϕ−1(V ),(7.10.2)

because of (7.9.1) and (7.9.2). Note that

ϕ(ϕ−1(V )) ⊆ V.(7.10.3)

Let q be another positive integer, and let η be a mapping from V into Rq

that is r-times continuously differentiable or infinitely differentiable on V , as
appropriate. Observe that

ψ = η ◦ ϕ(7.10.4)

defines a mapping from ϕ−1(V ) into Rq that is r-times continuously differen-
tiable or infinitely differentiable, as appropriate. Let W be a nonempty open
subset of Rq with

η(V ) ⊆W,(7.10.5)

so that

ψ(Qn) = η(ϕ(Qn)) ⊆ η(V ) ⊆W.(7.10.6)

Using ψ, we get a Cr or C∞ n-surface Ψ in W , as appropriate, with parameter
domain Qn, as in Section 6.15. This may be considered as a parameterized Cr

or C∞ n-simplex in W , as appropriate.
Under these conditions, we may use the notation

Ψ = η ◦ Φ.(7.10.7)

Of course, if ϕ and η are both affine mappings, then

ψ is affine(7.10.8)

too, as in Section 7.1. Sometimes we may be concerned with cases where ϕ is
affine and η may not be, which is related to some of the remarks in Section
10.30 starting on p269 of [154].

7.10.1 Chains and compositions

Suppose that Γ is a Cr or C∞ n-chain in V as in (7.9.8). Thus

Ψl = η ◦ Φl(7.10.9)
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is a parameterized Cr or C∞ n-simplex in W for each l = 1, . . . , k, as appropri-
ate. Put

η ◦ Γ =

k∑
l=1

ϵlΨl,(7.10.10)

which is a Cr or C∞ n-chain in W . This is related to some remarks on p270 of
[154].

Let β be a differential n-form on W that is continuous on W , so that η∗(β)
is a differential n-form on V that is continuous on V . If Γ is a C1 n-chain in V ,
then ∫

η◦Γ
β =

∫
Γ

η∗(β).(7.10.11)

Of course, both sides of the equation are defined as in (7.9.10). This follows
from the analogous statement for integrals over n-surfaces in Subsection 6.15.3.

7.11 Boundaries of Cr simplices

Let n be a positive integer, let e1, . . . , en be the standard basis in Rn, and put
e0 = 0, as before. Consider the parameterized affine n-simplex

Φ(e0, e1, . . . , en) = [e0, e1, . . . , en](7.11.1)

in Rn associated to e0, e1, . . . , en as in Section 7.3. The corresponding affine
mapping

ϕe0,e1,...,en(7.11.2)

from Rn into itself is the identity mapping on Rn. In particular, this maps the
standard simplex Qn in Rn onto itself.

We may consider (7.11.1) as the standard parameterized affine n-simplex in
Rn. Its boundary

∂Φ(e0, e1, . . . , en) =

n∑
l=0

(−1)l Φ(e0, . . . , el−1, el+1, . . . , en)(7.11.3)

is an affine (n− 1)-chain in Rn, as in Section 7.7. This may be called

the positively oriented boundary of Qn,(7.11.4)

as in Section 10.31 on p270 of [154].

7.11.1 Cr Simplices as compositions

Letm be another positive integer, and let U , V be nonempty open subsets ofRn,
Rm, respectively, with Qn ⊆ U . Also let ϕ be a mapping from U into Rm such
that ϕ(Qn) ⊆ V , and suppose that ϕ is r-times continuously differentiable on
U for some nonnegative integer r, or infinitely differentiable on U . This defines
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a parameterized Cr or C∞ n-simplex Φ in V , as appropriate, as in Section 7.9.
Observe that

Φ = ϕ ◦ Φ(e0, e1, . . . , en),(7.11.5)

using the notation in the previous section on the right side. More precisely,
(7.11.2) corresponds to ϕ in the previous section, and ϕ here corresponds to η
in the previous section.

Under these conditions, the boundary of Φ may be defined as a Cr or C∞

(n− 1)-chain in V , as appropriate, by

∂Φ = ϕ ◦ (∂Φ(e0, e1, . . . , en))(7.11.6)

=

n∑
l=0

(−1)l ϕ ◦ Φ(e0, . . . , el−1, el+1, . . . , en),

where the right side is as in the previous section. This basically corresponds to
the definition of the boundary in (89) on p270 of [154]. One can check that this
also corresponds to the definition of the boundary in (4) on p142 of [183]. To
see this, let us look a bit more closely at (7.11.3).

If 1 ≤ l ≤ n, then the lth term on the right side of (7.11.3) uses the param-
eterized affine (n− 1)-simplex

Φ(e0, . . . , el−1, el+1, . . . , en) = [e0, . . . , el−1, el+1, . . . , en](7.11.7)

in Rn. If n ≥ 2, then this corresponds to the affine mapping

ϕl = ϕe0,...,el−1,el+1,...,en(7.11.8)

from Rn−1 into Rn defined by

ϕl(x) = e0 +

l−1∑
j=1

xj (ej − e0) +

n−1∑
j=l

xj (ej+1 − e0)(7.11.9)

=

l−1∑
j=1

xj ej +

n−1∑
j=l

xj ej+1,

where the first step is as in (7.7.9). Similarly, if l = 0, then the right side of
(7.11.3) uses the parameterized affine (n− 1)-simplex

Φ(e1, . . . , en) = [e1, . . . , en](7.11.10)

in Rn. If n ≥ 2, then this corresponds to the affine mapping

ϕ0 = ϕe1,...,en(7.11.11)

from Rn−1 into Rn defined by

ϕ0(x) = e1 +

n−1∑
j=1

xj (ej+1 − e1),(7.11.12)
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as in (7.7.12). One can use (7.11.9) and (7.11.12) to verify that (7.11.6) corre-
sponds to the definition of the boundary in (4) on p142 of [183].

If ϕ is an affine mapping from Rn into Rm, then Φ is a parameterized affine
n-simplex in Rm. In this case, one can check that (7.11.6) is equivalent to the
definition of the boundary of Φ as an affine (n− 1)-chain in Rm, as in Section
7.7. This corresponds to a remark on p270 of [154].

7.11.2 Boundaries of Cr chains

If Γ =
∑k
l=1 ϵl Φl is a C

r or C∞ n-chain in V , then the boundary of Γ may be
defined as a Cr or C∞ (n− 1)-chain in V , as appropriate, by

∂Γ =

k∑
l=1

ϵl ∂Φl,(7.11.13)

as in Subsection 7.7.1. This corresponds to (90) on p270 of [154], and to a
remark on p142 of [183].

7.12 Compositions and affine simplices

Let m and n be positive integers, and let p0, p1, . . . , pn be elements of Rm.
Using this, we get an affine mapping ϕp0,p1,...,pn from Rn into Rm as in Section
7.3, and the corresponding parameterized affine n-simplex Φ(p0, p1, . . . , pn) in
Rm. Let V be a nonempty open subset of Rm, and suppose that

ϕp0,p1,...,pn(Q
n) ⊆ V,(7.12.1)

so that Φ(p0, p1, . . . , pn) may be considered as a parameterized affine n-simplex
in V .

Let q be another positive integer, and let η be a mapping from V into Rq

that is r-times continuously differentiable for some nonnegative integer r, or
infinitely differentiable. Thus

ψ = η ◦ ϕp0,p1,...,pn(7.12.2)

defines a mapping from
ϕ−1
p0,p1,...,pn(V )(7.12.3)

into Rq that is r-times continuously differentiable or infinitely differentiable, as
appropriate. Let W be a nonempty open subset of Rq with η(V ) ⊆W , so that

ψ(Qn) = η(ϕp0,p1,...,pn(Q
n)) ⊆ η(V ) ⊆W.(7.12.4)

Using ψ, we get a parameterized Cr or C∞ n-simplex

Ψ = η ◦ Φ(p0, p1, . . . , pn)(7.12.5)

in W , as appropriate, as in Section 7.10.
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7.12.1 Defining ' for Cr simplices

Let τ be a permutation on {0, 1, . . . , n}, and remember that

ϕpτ(0),pτ(1),...,pτ(n)
(Qn) = ϕp0,p1,...,pn(Q

n),(7.12.6)

as in Sections 7.3 and 7.4. In particular,

ϕpτ(0),pτ(1),...,pτ(n)
(Qn) ⊆ V,(7.12.7)

so that
η ◦ Φ(pτ(0), pτ(1), . . . , pτ(n))(7.12.8)

may be considered as a parameterized Cr or C∞ n-simplex inW , as appropriate,
as before. Under these conditions, let us put

η ◦ Φ(pτ(0), pτ(1), . . . , pτ(n)) ' sgn(τ) (η ◦ Φ(p0, p1, . . . , pn)).(7.12.9)

This extends the notation in Subsection 7.5.1 from parameterized affine n-
simplices to parameterized Cr and C∞ n-simplices. If η is an affine mapping
fromRm intoRq, then (7.12.5) and (7.12.8) are parameterized affine n-simplices
in Rq, and (7.12.9) is equivalent to the analogous notation in Subsection 7.5.1.

7.12.2 Defining ' for Cr chains

Suppose that

Γ =

k∑
l=1

ϵl Φl, Γ̃ =

k∑
l=1

ϵ̃l Φ̃l(7.12.10)

are Cr or C∞ n-chains in W , as in Subsection 7.9.1. If

ϵl Φl ' ϵ̃l Φ̃l(7.12.11)

for each l = 1, . . . , k, then we put

Γ ' Γ̃,(7.12.12)

as in Subsection 7.6.2. In this case, one can check that

∂Γ ' ∂Γ̃,(7.12.13)

as in Subsection 7.8.1.

7.13 Some remarks about n-chains

Let m and n be positive integers, and let V be a nonempty open subset of Rm.
If r is a nonnegative integer, then

the space of Cr n-chains in V(7.13.1)
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may be defined as the free abelian group generated by the parameterized Cr n-
simplices in V . This is often used when r = 0 in algebraic topology, as on p192
of [183]. Similarly, the spaces of affine and C∞ n-chains in V may be defined
as the free abelian groups generated by the parameterized affine and C∞ n-
simplices in V , respectively. Although the details of this will not be discussed
here, we would like to mention some related aspects of this in this section.

One could also consider finite linear combinations of parameterized affine,
Cr, or C∞ n-chains in V with coefficients in the real numbers, as on p142 of
[183], and as mentioned in Subsection 7.9.1. The spaces of these finite linear
combinations may be defined as the free vector spaces over the real numbers
generated by the parameterized affine, Cr, or C∞ n-simplices, as appropriate.
We shall not get into the details of this here either, aside from some related
aspects in this section.

7.13.1 Linear functionals on differential forms

Let Φ be an n-surface in V , as in Section 6.15. If α is a differential n-form on
V that is continuous on V , then the integral of α over Φ may be defined as a
real number as in Subsection 6.15.1. Thus

α 7→
∫
Φ

α(7.13.2)

defines a real-valued function on the space

C(V,AMn(R
m))(7.13.3)

of all differential n-forms on V that are continuous on V , as mentioned in Section
10.28 on p268 of [154]. More precisely, (7.13.4) defines a linear functional on
(7.13.3), which is to say a linear mapping from (7.13.3) into R.

Similarly, if Γ is a C1 n-chain in V , then the integral of α over Γ may be
defined as a real number as in Subsection 7.9.1. This means that

α 7→
∫
Γ

α(7.13.4)

defines a real-valued function on (7.13.3) too, which is a linear functional as well.
By construction, this is a linear combination of linear functionals on (7.13.3)
associated to finitely many parameterized C1 n-simplices in V as in (7.13.2).

7.13.2 Defining ∼= for C1 n-chains

If Γ1, Γ2 are C1 n-chains in V , then put

Γ1
∼= Γ2(7.13.5)

when ∫
Γ1

α =

∫
Γ2

α(7.13.6)
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for every differential n-form α on V that is continuous on V . This is the same
as saying that the functions on (7.13.3) associated to Γ1 and Γ2 as in (7.13.4)
are the same.

One could simply look at a C1 n-chain in V as a type of linear functional
on (7.13.3), as in Section 10.28 on p268 of [154]. If the space of C1 n-chains
in V is considered as a commutative group with respect to addition, then we
get a homomorphism from this group into the space of linear functionals on
(7.13.3), as another commutative group with respect to addition. If the space
of C1 n-chains in V is defined using coefficients in R, then we get a linear map
from that space into the space of linear functionals on (7.13.3).

7.13.3 Comparing ' and ∼=
Let Φ, Φ̃ be parameterized C1 n-simplices in V such that

ϵΦ ' ϵ̃ Φ̃(7.13.7)

for some ϵ, ϵ̃ = ±1, as in Subsection 7.12.1. Under these conditions, one can
check that

ϵΦ ∼= ϵ̃ Φ̃.(7.13.8)

This follows from a remark in Section 7.5 when Φ and Φ̃ are parameterized
affine n-simplices in V . One can reduce to that case as in Subsection 6.15.3. If
Γ1, Γ2 are C1 n-chains in V that satisfy (7.12.12), then it follows that (7.13.5)
holds as well.

7.14 An associativity property

Let m and n be positive integers again, and let U , V be nonempty open subsets
of Rn, Rm, respectively, with Qn ⊆ U . Also let ϕ be a mapping from U into
Rm such that ϕ(Qn) ⊆ V and ϕ is r-times continuously differentiable on U for
some nonnegative integer r, or infinitely differentiable on U , so that we get a
parameterized Cr or C∞ n-simplex Φ in V , as appropriate, as in Section 7.9.
Let q be another positive integer, let η be a mapping from V into Rq that is r-
times continuously differentiable or infintely differentiable, as appropriate, and
letW be a nonempty open subset of Rq with η(V ) ⊆W . Thus ψ = η◦ϕ defines
a mapping from ϕ−1(V ) into Rq that is r-times continuously differentiable or
infinitely differentiable, as appropriate, which leads to a parameterized Cr or
C∞ n-simplex Ψ = η ◦ Φ in W , as in Section 7.10.

Similarly, let q1 be a positive integer, let η1 be a mapping from W into
Rq1 that is r-times continuously differentiable or infinitely differentiable, as
appropriate, and let W1 be a nonempty open subset of Rq1 with

η1(W ) ⊆W1.(7.14.1)

Under these conditions,
ψ1 = η1 ◦ ψ(7.14.2)
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defines a mapping from ϕ−1(V ) into Rq1 that is r-times continuously differen-
tiable or infinitely differentiable, as appropriate, with

ψ1(Q
n) = η1(ψ(Q

n)) ⊆ η1(W ) ⊆W1.(7.14.3)

As before, we can use ψ1 to get a parameterized Cr or C∞ n-simplex Ψ1 in W1,
as appropriate, which may be expressed as

Ψ1 = η1 ◦Ψ.(7.14.4)

Observe that
ζ = η1 ◦ η(7.14.5)

defines a mapping from V into Rq1 that is r-times continuously differentiable
or infinitely differentiable, as appropriate, with

ζ(V ) ⊆W1.(7.14.6)

This means that
ζ ◦ ϕ(7.14.7)

defines a mapping from ϕ−1(V ) into Rq1 that is r-times continuously differen-
tiable or infinitely differentiable, as appropriate. This determines a parameter-
ized Cr or C∞ n-simplex ζ ◦ Φ in W1, as in Section 7.10 again. Of course,

ζ ◦ ϕ = η1 ◦ η ◦ ϕ = η1 ◦ ψ = ψ1,(7.14.8)

so that
ζ ◦ Φ = Ψ1.(7.14.9)

7.14.1 Associativity and chains

Let Γ be a Cr or C∞ n-chain in V , so that η ◦ Γ is a Cr or C∞ n-chain in W ,
as appropriate, as in Subsection 7.10.1. Similarly η1 ◦ (η ◦ Γ) and ζ ◦ Γ are Cr

or C∞ n-chains in W1, as appropriate. It is easy to see that

η1 ◦ (η ◦ Γ) = (η1 ◦ η) ◦ Γ,(7.14.10)

as in (7.14.9).

7.15 Compositions and boundaries

Let us return to the notation and hypotheses at the beginning of the previous
section. In particular, Ψ = η ◦Φ is a parameterized Cr or C∞ n-simplex in W ,
as appropriate. Also let e1, . . . , en be the standard basis in Rn, and put e0 = 0,
as before. Remember that

∂Φ = ϕ ◦ (∂Φ(e0, e1, . . . , en)),(7.15.1)
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as in (7.11.6). Similarly,

∂Ψ = ψ ◦ (∂Φ(e0, e1, . . . , en)).(7.15.2)

This means that

∂(η ◦ Φ) = (η ◦ ϕ) ◦ (∂Φ(e0, e1, . . . , en))(7.15.3)

= η ◦ (ϕ ◦ (∂Φ(e0, e1, . . . , en))) = η ◦ (∂Φ),

where the second step is as in (7.14.10). This is related to some of the remarks
on p270 of [154].

If Γ is a Cr or C∞ n-chain in V , then η ◦ Γ is a Cr or C∞ n-chain in
W , as appropriate, as in Subsection 7.10.1. Similarly, η ◦ (∂Γ) is a Cr or C∞

(n − 1)-chain in W , as appropriate. Under these conditions, it is easy to see
that

∂(η ◦ Γ) = η ◦ (∂Γ),(7.15.4)

using (7.15.3).

7.15.1 Boundaries of boundaries

If p0, p1, . . . , pn are elements of Rm, then one can check that

∂(∂Φ(p0, p1, . . . , pn)) = 0,(7.15.5)

as in Exercise 16 on p291 of [154]. More precisely, this is trivial when n ≤ 1,
because the boundary of a 0-simplex or 0-chain is interpreted as being equal to
0, as in Section 7.7. If ϕ and Φ are as before, then we get that

∂(∂Φ) = ∂(ϕ ◦ (∂Φ(e0, e1, . . . , en)))(7.15.6)

= ϕ ◦ (∂(∂Φ(e0, e1, . . . , en))) = 0,

using (7.11.6) in the first step, and (7.15.3) in the second step. This implies
that

∂(∂Γ) = 0(7.15.7)

for every Cr or C∞ n-chain Γ in Rm. This corresponds to the second part of
Exercise 16 on p291 of [154], and to (7) on p143 of [183].



Chapter 8

Stokes’ theorem and other
matters

8.1 Stokes’ theorem

Let m and n be positive integers, and let V be a nonempty open set in Rm.
Also let

ω be a continuously-differentiable differential (n− 1)-form on V,(8.1.1)

so that the exterior derivative dω of ω is a differential n-form on V that is
continuous on V , as in Section 4.6. If

Γ is a C2 n-chain in V,(8.1.2)

then Stokes’ theorem states that∫
∂Γ

ω =

∫
Γ

dω.(8.1.3)

This corresponds to Theorem 10.33 on p272 of [154], and Theorem 4.7 on p144
of [183]. More precisely, if n = 1, then it suffices to ask that

Γ be a C1 1-chain in V,(8.1.4)

instead of (8.1.2).
In particular, if

∂Γ = 0,(8.1.5)

then ∫
Γ

dω = 0,(8.1.6)

by (8.1.4). Similarly, let Γ1, Γ2 be C2 n-chains in V , or C1 1-chains in V . If

∂Γ1 = ∂Γ2,(8.1.7)

170
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then ∫
Γ1

dω =

∫
Γ2

dω.(8.1.8)

This corresponds to Remark (b) on p276 of [154].
Suppose now that ω is a closed (n− 1)-form on V , so that

dω = 0(8.1.9)

on V . In this case, (8.1.3) reduces to∫
∂Γ

ω = 0.(8.1.10)

This corresponds to Remark (c) on p276 of [154].

8.1.1 Stokes’ theorem and ∼=
Let Γ1, Γ2 be C2 n-chains in V again, or C1 1-chains in V . Suppose that
Γ1

∼= Γ2, in the sense of Subsection 7.13.2. If ω is as in (8.1.1), then we
have that (8.1.8) holds, by hypothesis. Under these conditions, Stokes’ theorem
implies that ∫

∂Γ1

ω =

∫
∂Γ2

ω.(8.1.11)

One can use this to get that

∂Γ1
∼= ∂Γ2,(8.1.12)

in the sense of Subsection 7.13.2 again. More precisely, (8.1.12) was defined to
mean that (8.1.11) holds for all differential (n−1)-forms ω on V that are contin-
uous on V , and not just when ω is continuously differentiable on V . Sometimes
this type of property is defined using smooth differential forms on V , for which
(8.1.11) could be used directly. One can also approximate continuous differ-
ential forms on V , uniformly on compact subsets of V , by differential forms
that are continuously differentiable, or even smooth, using partitions of unity,
for instance. Using this, one can get (8.1.11) when ω is continuous from the
analogous statement when ω is continuously differentiable.

8.2 More on Stokes’ theorem

Let us continue with the same notation and hypotheses as at the beginning of
the previous section. Let U be a open subset of Rn with Qn ⊆ U , and let ϕ be
a mapping from U into Rm such that ϕ(Qn) ⊆ V and

ϕ is twice continuously differentible on U,(8.2.1)

so that we get
a parameterized C2 n-simplex Φ in V,(8.2.2)
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as in Section 7.9. In this case, Stokes’ theorem says that∫
∂Φ

ω =

∫
Φ

dω,(8.2.3)

as in (92) on p273 of [154], and (2) on p144 of [183]. If n = 1, then it suffices to
ask that

ϕ be continuously differentiable on U,(8.2.4)

as before. It is easy to see that this version of Stokes’ theorem implies the
previous one for n-chains in V , as in [154, 183].

Let e1, . . . , en be the standard basis in Rn, put e0 = 0, and let

Φ0 = Φ(e0, e1, . . . , en)(8.2.5)

be the standard parameterized affine n-simplex in Rn. Thus

Φ = ϕ ◦ Φ0(8.2.6)

and
∂Φ = ϕ ◦ (∂Φ0),(8.2.7)

as in Subsection 7.11.1. Remember that

U0 = ϕ−1(V )(8.2.8)

is an open set in Rn that contains Qn, as in Section 7.10.
Of course, ϕ∗(ω) is a differential (n − 1)-form on ϕ−1(V ), as in Subsection

4.4.1. More precisely,

ϕ∗(ω) is continuously differentiable on U0,(8.2.9)

as in Subsection 4.5.2, because ω is continuously differentiable on V , and ϕ is
twice continuously differentiable on U , by hypothesis. If n = 1, then it suffices
to ask that ϕ be continuously differentiable on U , as before.

Remember that ∫
Φ

dω =

∫
Φ0

ϕ∗(dω),(8.2.10)

as in Subsection 6.15.3. We also have that

ϕ∗(dω) = d(ϕ∗(ω))(8.2.11)

on ϕ−1(V ), as in Section 4.9. Thus∫
Φ

dω =

∫
Φ0

d(ϕ∗(ω)).(8.2.12)

Similarly, ∫
∂Φ

ω =

∫
∂Φ0

ϕ∗(ω),(8.2.13)
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because of (8.2.7). If n = 1, then this involves integrals over parameterized
0-simplices, as in Subsection 7.5.2.

This means that (8.2.3) is the same as saying that∫
∂Φ0

ϕ∗(ω) =

∫
Φ0

d(ϕ∗(ω)).(8.2.14)

Thus we can reduce to the case where Φ = Φ0. This corresponds to (94) on
p273 of [154], and to (3) on p144 of [183]. If n = 1, then this is the same as the
fundamental theorem of calculus, as in [154, 183].

8.3 Stokes’ theorem for Φ0

Let n ≥ 2 be an integer, let e1, . . . , en be the standard basis for Rn, put e0 = 0,
and let Φ0 be the standard parameterized n-simplex in Rn, as in (8.2.5). Also
let V be an open set in Rn with

Qn ⊆ V,(8.3.1)

and let ω be a continuously-differentiable differential (n − 1)-form on V . We
would like to show that ∫

∂Φ0

ω =

∫
Φ0

dω,(8.3.2)

which corresponds to (8.2.3) with m = n and Φ = Φ0. This will imply Stokes’
theorem, as in the previous section.

Let k be an integer with 1 ≤ k ≤ n, and suppose that ω is of the form

ω = ωk(x) dx1 ∧ · · · ∧ dxk−1 ∧ dxk+1 ∧ · · · ∧ dxn,(8.3.3)

where

ωk(x) is a continuously-differentiable real-valued function on V.(8.3.4)

Note that every continuously-differentiable differential (n−1)-form on V can be
expressed a sum of differential forms of this type. Thus it suffices to show that
(8.3.2) holds in this case, because of the linearity of the integrals on both sides
of the equation. This corresponds to (96) on p273 of [154], and to a remark
shortly after (5) on p144 of [183].

8.3.1 The integral over ∂Φ0

Remember that

∂Φ0 =

n∑
l=0

(−1)l Φ(e0, . . . , el−1, el+1, . . . , en),(8.3.5)

as in Section 7.11. The parameterized affine (n− 1)-simplex

Φ(e0, . . . , el−1, el+1, . . . , en)(8.3.6)
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in Rn corresponds to the affine mapping

ϕl = ϕe0,...,el−1,el+1,...,en(8.3.7)

from Rn−1 into Rn for each l = 0, 1, . . . , n, as in Section 7.3. We have seen that

ϕ0(y) = e1 +

n−1∑
j=1

yj (ej+1 − e1)(8.3.8)

for every y ∈ Rn−1, as in Subsection 7.11.1. Similarly, if 1 ≤ l ≤ n, then

ϕl(y) =

l−1∑
j=1

yj ej +

n−1∑
j=l

yj ej+1(8.3.9)

for every y ∈ Rn−1, as before.
Observe that∫

∂Φ0

ω =

n∑
l=0

(−1)l
∫
Φ(e0,...,el−1,el+1,...,en)

ω =

n∑
l=0

(−1)l
∫
Qn−1

ϕ∗l (ω),(8.3.10)

where the first step is as in Subsection 7.6.1, and the second step is as in Sub-
section 6.15.1. If l ≥ 1, then it is easy to see that

ϕ∗l (dxl) = 0,(8.3.11)

because the lth component of ϕl is equal to 0, as in (8.3.9). This implies that

ϕ∗l (ω) = 0(8.3.12)

when l 6= 0, k and ω is as in (8.3.3). Thus (8.3.10) reduces to∫
∂Φ0

ω =

∫
Qn−1

ϕ∗0(ω) + (−1)k
∫
Qn−1

ϕ∗k(ω)(8.3.13)

in this case. This basically corresponds to the first line in (102) on p274 of [154],
and to part of (9) on p145 of [183].

8.3.2 The integral over Φ0

If ω is as in (8.3.3), then

dω = dωk ∧ dx1 ∧ · · · ∧ dxk−1 ∧ dxk+1 ∧ · · · ∧ dxn,(8.3.14)

as in Section 4.6. This implies that

dω = (∂kωk) dxk ∧ dx1 ∧ · · · ∧ dxk−1 ∧ dxk+1 ∧ · · · ∧ dxn.(8.3.15)

It follows that
dω = (−1)k−1 (∂kωk) dx1 ∧ · · · ∧ dxn.(8.3.16)
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This corresponds to remarks on p275 of [154], and on p144 of [183].
Using (8.3.16), we get that∫

Φ0

dω = (−1)k−1

∫
Qn

(∂kωk)(x) dx,(8.3.17)

as in Section 6.12. If x ∈ Qn, then

(x1, . . . , xk−1, xk+1, . . . , xn)(8.3.18)

is an element of Qn−1, as in Section 6.2. Let an element of Qn−1 be given as in
(8.3.18), and consider∫ 1−x1−···−xk−1−xk+1−···−xn

0

(∂kωk)(x1, . . . , xk−1, xk, xk+1, . . . , xn) dxk.(8.3.19)

This is equal to the sum of

ωk(x1, . . . , xk−1, 1− x1 − · · · − xk−1 − xk+1 − · · · − xn, xk+1, . . . , xn)(8.3.20)

and

−ωk(x1, . . . , xk−1, 0, xk+1, . . . , xn),(8.3.21)

by the fundamental theorem of calculus.
Observe that ∫

Qn

(∂kωk)(x) dx(8.3.22)

is equal to the integral of (8.3.19), as a function of (8.3.18), over Qn−1. This
is related to some of the remarks in Section 6.2. Thus (8.3.22) is equal to the
sum of the integrals of (8.3.20) and (8.3.21) over Qn−1, as in the preceding
paragraph.

8.3.3 Matching a pair of terms

If ω is as in (8.3.3), then it is easy to see that

ϕ∗k(ω) = (ωk ◦ ϕk) dy1 ∧ · · · ∧ dyn−1,(8.3.23)

using (8.3.9), with l = k. This means that

(−1)k
∫
Qn−1

ϕ∗k(ω)(8.3.24)

= (−1)k
∫
Qn−1

ωk(y1, . . . , yk−1, 0, yk, . . . , yn−1) dy,

as in Section 6.12. Of course, this is the same as (−1)k−1 times the integral of
(8.3.21) over Qn−1.
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8.3.4 Matching the other two terms

If y ∈ Rn−1, then

ϕ0(y) =
(
1−

n−1∑
j=1

yj

)
e1 +

n−1∑
j=1

yj ej+1,(8.3.25)

as in (8.3.8). This implies that

ϕ∗0(dx1) = −
n−1∑
j=1

dyj(8.3.26)

and
ϕ∗0(dxl) = dyl−1(8.3.27)

for l = 2, . . . , n. If ω is as in (8.3.3) and k = 1, then we get that

ϕ∗0(ω) = (ω1 ◦ ϕ0) dy1 ∧ · · · ∧ dyn−1.(8.3.28)

If k ≥ 2, then we obtain that

ϕ∗0(ω) =

−(ωk ◦ ϕ0)
( n−1∑
j=1

dyj

)
∧ dy1 ∧ · · · ∧ dyk−2 ∧ dyk ∧ · · · ∧ dyn−1.(8.3.29)

This means that

ϕ∗0(ω) = −(ωk ◦ ϕ0) dyk−1 ∧ dy1 ∧ · · · ∧ dyk−2 ∧ dyk ∧ · · · ∧ dyn−1,(8.3.30)

because all but one of the terms in the sum on the right side of (8.3.29) leads
to a wedge product that is equal to 0. Thus

ϕ∗o(ω) = (−1)k−1 (ωk ◦ ϕ0) dy1 ∧ · · · ∧ dyn−1,(8.3.31)

by rearranging the wedge product on the right side of (8.3.30) appropriately.
Note that this is the same as (8.3.28) when k = 1.

It follows that∫
Qn−1

ϕ∗0(ω) = (−1)k−1

∫
Qn−1

ωk(ϕ0(y)) dy.(8.3.32)

If k = 1, then this corresponds exactly to (−1)k−1 times the integral of (8.3.20)
over Qn−1. If k ≥ 2, then we basically need an additional change of variables,
as on p274 of [154], and p145 of [183]. More precisely, one can use a change
of variables as in (10) on p145 of [183] to get that (8.3.32) is equal to (−1)k−1

times the integral of (8.3.20) over Qn−1. This is related to some of the remarks
in Subsection 7.4.1.

On p274 of [154], one considers a permutation of the standard basis vectors
so that the argument is like the k = 1 case before. This will be discussed further
in the next section.
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8.4 A related argument

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Remember that ∫

Qn−1

ϕ∗0(ω) =

∫
Φ(e1,...,en)

ω,(8.4.1)

as in Subsection 6.15.1, which corresponds to the l = 0 term in the second
step in (8.3.10), and in the right side of (8.3.13). Let τ be the permutation on
{1, . . . , n} defined by

τ(l) = k when l = 1(8.4.2)

= l − 1 when l = 2, . . . , k

= l when l = k + 1, . . . , n.

One can check that

sgn(τ) = (−1)k−1.(8.4.3)

As in Subsection 7.5.1, we have that

Φ(eτ(1), . . . , eτ(n)) ' sgn(τ)Φ(e1, . . . , en).(8.4.4)

More precisely, the n in Subsection 7.5.1 should be taken to be n − 1 here, so
that {0, 1, . . . , n} before should be taken to be {0, 1, . . . , n− 1} now. However,
here we are basically using {1, . . . , n} instead. Equivalently, we get that

Φ(ek, e1, . . . , ek−1, ek+1, . . . , en) ' (−1)k−1 Φ(e1, . . . , en).(8.4.5)

This corresponds to a remark on p274 of [154].
We also have that∫

Φ(ek,e1,...,ek−1,ek+1,...,en)

ω = (−1)k−1

∫
Φ(e1,...,en)

ω,(8.4.6)

as in Section 7.5. Remember that the parameterized affine (n− 1)-simplex

Φ(ek, e1, . . . , ek−1, ek+1, . . . , en)(8.4.7)

corresponds to the affine mapping

ψk = ϕek,e1,...,ek−1,ek+1,...,en(8.4.8)

from Rn−1 into Rn as in Section 7.3. In this case, we have that

ψk(y) = ek +

k−1∑
j=1

yj (ej − ek) +

n−1∑
j=k

yj (ej+1 − ek)(8.4.9)
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for every y ∈ Rn−1, as in Section 7.7. This means that

ψk(y) =
(
1−

n−1∑
j=1

yj

)
ek +

k−1∑
j=1

yj ej +

n−1∑
k=k

yj ej+1(8.4.10)

for every y ∈ Rn−1.
As in Subsection 6.15.1,∫

Φ(ek,e1,...,ek−1,ek+1,...,en)

ω =

∫
Qn−1

ψ∗
k(ω).(8.4.11)

Observe that

ψ∗
k(dxl) = dyl when l = 1, . . . , k − 1(8.4.12)

= −
n−1∑
j=1

dyj when l = k

= dyl−1 when l = k + 1, . . . , n.

If ω is as in (8.3.3), then we get that

ψ∗
k(ω) = (ωk ◦ ψk) dy1 ∧ · · · ∧ dyn−1.(8.4.13)

This means that ∫
Qn−1

ψ∗
k(ω) =

∫
Qn−1

ωk(ψk(y)) dy,(8.4.14)

as in Section 6.12. This corresponds exactly to the integral of (8.3.20) over
Qn−1.

As before, we get that (8.3.32) corresponds to (−1)k−1 times the integral of
(8.3.20) over Qn−1, because of the factor of (−1)k−1 on the right side of (8.4.6).
This shows that (8.3.13) is equal to (8.3.17), as desired.

8.5 Stokes’ theorem on cells

Let n be a positive integer, let a1, . . . , an and b1, . . . , bn be real numbers with
aj < bj for each j = 1, . . . , n, and let C =

∏n
j=1[aj , bj ] be the corresponding cell

in Rn, as in Section 5.13. Also let U be an open set in Rn with

C ⊆ U,(8.5.1)

and let β be a continuously-differentiable differential (n − 1)-form on U . Thus
β may be expressed as

β =

n∑
j=1

βj dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn(8.5.2)



8.5. STOKES’ THEOREM ON CELLS 179

on U , as in Section 3.14, where βj is a continuously-differentiable real-valued
function on U for each j. The exterior derivative of β can be expressed as

dβ =

n∑
j=1

(−1)j−1 (∂jβj) dx1 ∧ · · · ∧ dxn,(8.5.3)

as in Subsection 6.12.1.
This means that∫

C
dβ =

∫
C

n∑
j=1

(−1)j−1 (∂jβj)(x) dx(8.5.4)

=

n∑
j=1

(−1)j−1

∫
C
(∂jβj)(x) dx.

In the jth term on the right side, we can integrate in the jth variable first, and
use the fundamental theorem of calculus. Let us express the result in terms of
integrals of β over suitable (n − 1)-surfaces in Rn. We suppose from now on
in this section that n ≥ 2, since otherwise one can simply use the fundamental
theorem of calculus directly.

If 1 ≤ l ≤ n, then put

Cl = [a1, b1]× · · · × [al−1, bl−1]× [al+1, bl+1]× · · · × [an, bn],(8.5.5)

which is a cell in Rn−1. Consider the mappings ϕl and ψl from Rn−1 into Rn

defined by
ϕl(w) = (w1, . . . , wl−1, al, wl, . . . , wn−1)(8.5.6)

and
ψl(w) = (w1, . . . , wl−1, bl, wl, . . . , wn−1)(8.5.7)

for each w = (w1, . . . , wn−1) ∈ Rn−1. Using ϕl and ψl, we get (n− 1)-surfaces

Φl = Φl(Cl) and Ψl = Ψl(Cl)(8.5.8)

in Rn with parameter domain Cl, as in Section 6.15. More precisely, these are
(n− 1)-surfaces in U , because

ϕl(Cl), ψl(Cl) ⊆ C ⊆ U.(8.5.9)

Observe that∫
C
(∂lβl)(x) dx =

∫
Cl

βl(ψl(w)) dw −
∫
Cl

βl(ϕl(w)) dw,(8.5.10)

by the fundamental theorem of calculus. We also have that ϕ−1
l (U), ψ−1

l (U)
are open subsets of Rn−1, with

Cl ⊆ ϕ−1
l (U), ψ−1

l (U),(8.5.11)
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because of (8.5.9).
It is easy to see that

ϕ∗l (β) = (βl ◦ ϕl) dw1 ∧ · · · ∧ dwn−1(8.5.12)

on ϕ−1
l (U). This uses the fact that ϕ∗l (dxl) = 0, so that only the j = l term in

sum on the right side of (8.5.2) can have a nonzero pull-back with respect to ϕl.
Similarly,

ψ∗
l (β) = (βl ◦ ψl) dw1 ∧ · · · ∧ dwn−1(8.5.13)

on ψ−1
l (U).

It follows that ∫
C
(∂βl)(x) dx =

∫
Ψl

β −
∫
Φl

β.(8.5.14)

More precisely, the two integrals on the right side are defined as in Subsection
6.15.1, with n replaced with n− 1.

Combining this with (8.5.4), we get that∫
C
dβ =

n∑
l=1

(−1)l−1
(∫

Ψl

β −
∫
Φl

β
)
.(8.5.15)

This is a version of Stokes’ theorem for cells in Rn. This version could be
obtained from the previous one, by expressing integrals over cells as integrals
over affine chains.

8.6 More on vector fields

Let n and r be positive integers, and let U be a nonempty open subset of Rn.
Also let ξ be an (r−1)-times continuously-differentiable vector field on U , which
is to say an (r − 1)-times continuously-differentiable function on U with values
in Rn, as in Section 4.3. Thus

Xξ(f) =
n∑
j=1

ξj
∂f

∂xj
(8.6.1)

defines a linear mapping from Cr(U,R) into Cr−1(U,R), as before. If ξ is
infinitely differentiable on U , then this defines a linear mapping from C∞(U,R)
into itself.

Note that
ξ 7→ Xξ(8.6.2)

defines a linear mapping from Cr−1(U,Rn) into the space

L(Cr(U,R), Cr−1(U,R))(8.6.3)

of linear mappings from Cr(U,R) into Cr−1(U,R). Similarly, (8.6.2) defines a
linear mapping from C∞(U,Rn) into the space

L(C∞(U,R))(8.6.4)
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of linear mappings from C∞(U,R) into itself. If fl(x) = xl on U for l = 1, . . . , n,
then

Xξ(fl) = ξl.(8.6.5)

In particular, this means that (8.6.2) is injective as a mapping from Cr−1(U,Rn)
into (8.6.3), and from C∞(U,Rn) into (8.6.4).

8.6.1 Commutators and Lie brackets

Suppose that r ≥ 2, and let η be another (r−1)-times continuously-differentiable
vector field on U . Note that Xξ and Xη define linear mappings from Cr(U,R)
into Cr−1(U,R), and from Cr−1(U,R) into Cr−2(U,R). This implies that the
compositions

Xξ ◦ Xη and Xη ◦ Xξ(8.6.6)

of Xξ and Xη, in either order, define linear maps from Cr(U,R) into Cr−2(U,R).
Thus

[Xξ,Xη] = Xξ ◦ Xη −Xη ◦ Xξ(8.6.7)

defines a linear mapping from Cr(U,R) into Cr−2(U,R) as well. One can check
that there is a unique (r− 2)-times continuously-differentiable vector field ζ on
U such that

[Xξ,Xη] = Xζ(8.6.8)

on Cr(U,R).

We may use the notation

ζ = [ξ, η](8.6.9)

in this case. This may be called the Lie bracket of ξ and η, as in Definition 1.44
on p36 of [183]. This defines a bilinear mapping from

Cr−1(U,Rn)× Cr−1(U,Rn)(8.6.10)

into Cr−2(U,Rn). It is easy to see that this mapping is antisymmetric, in the
sense that

[ξ, η] = −[η, ξ].(8.6.11)

Similarly if ξ and η are infinitely differentiable on U , then Xξ◦Xη and Xη◦Xξ
define linear mappings from C∞(U,R) into itself, so that their commutator
(8.6.7) defines a linear mapping from C∞(U,R) into itself too. As before, there
is a unique smooth vector field ζ on U such that (8.6.8) holds on C∞(U,R).
This may also be denoted

ζ = [ξ, η]C∞(U,Rn)(8.6.12)

under these conditions. This defines an antisymmetric bilinear mapping from
C∞(U,Rn)× C∞(U,Rn) into C∞(U,Rn).
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8.7 Some more compositions

Let n and r be positive integers again, and let U be a nonempty open subset of
Rn. Suppose now that r ≥ 3, and put

Vk = Cr−k(U,Rn)(8.7.1)

for k = 0, 1, 2, 3. Thus

V3 ⊆ V2 ⊆ V1 ⊆ V0,(8.7.2)

as in Section B.3. If α is an (r−1)-times continuously-differentiable vector field
on U , then Xα defines linear mappings from Cr−k(U,R) into Cr−k−1(U,R) for
k = 0, 1, 2. This means that

Xα ∈ L3,2(V1, V0),(8.7.3)

in the notation of Section B.3.
If β is another (r − 1)-times continuously-differentiable vector field on U ,

then

Xα ◦ Xβ ∈ L3(V2, V0),(8.7.4)

in the notation of Section B.3. Thus

[Xα,Xβ ] ∈ L3(V2, V0).(8.7.5)

If γ is an (r−1)-times continuously-differentiable vector field on U too, then

Xα ◦ Xβ ◦ Xγ ∈ L(V3, V0).(8.7.6)

Similarly,

([Xα,Xβ ]) ◦ Xγ , Xγ ◦ ([Xα,Xβ ]) ∈ L(V3, V0).(8.7.7)

Thus

[[Xα,Xβ ],Xγ ] = ([Xα,Xβ ]) ◦ Xγ −Xγ ◦ ([Xα,Xβ ]) ∈ L(V3, V0).(8.7.8)

In fact,

[[Xα,Xβ ],Xγ ] + [[Xβ ,Xγ ],Xα] + [[Xγ ,Xα],Xβ ] = 0(8.7.9)

in L(V3, V0), as in Section B.3. This is a version of the Jacobi identity.

8.7.1 The Jacobi identity for brackets

Note that

[α, β], [β, γ], and [γ, α](8.7.10)

may be defined as (r− 2)-times continuously-differentiable vector fields on U as
in (8.6.9). Similarly,

[[α, β], γ](8.7.11)
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and analogous expressions may be defined as vector fields on U that are (r−3)-
times continuously differentiable. One can verify that

[[α, β], γ] + [[β, γ], α] + [[γ, α], β] = 0,(8.7.12)

which is essentially the same as (8.7.9).
If α, β, and γ are infinitely differentiable on U , then Xα, Xβ , and Xγ define

linear mappings from C∞(U,R) into itself, so that their various compositions
define linear mappings from C∞(U,R) into itself too. In this case, the analogue
of (8.7.9) on C∞(U,R) is a bit simpler, as mentioned at the beginning of Section
B.3. This implies that

C∞(U,Rn) is a Lie algebra(8.7.13)

over the real numbers with respect to (8.6.12), as in Section B.1. This corre-
sponds to a remark after Proposition 1.45 on p36 of [183], and to example 3.5
(a) on p84 of [183].

8.8 Lie derivatives of functions and vector fields

Let n and r be positive integers, and let U be a nonempty open subset of Rn.
If ξ and η are r-times continuously-differentiable vector fields on U , then

Lξ(η) = [ξ, η](8.8.1)

is an (r−1)-times continuously-differentiable vector field on U , as in Subsection
8.6.1. This may be called the Lie derivative of η with respect to ξ. More
precisely, this type of Lie derivative is discussed in Definition 2.24 on p69 of
[183] for smooth vector fields. The fact that the Lie derivative may be expressed
as in (8.8.1) corresponds to part (b) of Theorem 2.25 on p70 of [183].

Similarly, if ξ is an (r−1)-times continuously-differentiable vector field on U
and f is an r-times continuously-differentiable real-valued function on U , then

Lξ(f) = Xξ(f)(8.8.2)

is an (r − 1)-times continuously-differentiable real-valued function on U , where
Xξ is as in Section 8.6. This may be called the Lie derivative of f with respect
to ξ. This type of Lie derivative may be considered as a particular case of those
discussed on the top of p70 of [183] for smooth vector fields. The fact that the
Lie derivative may be expressed in this way corresponds to part (a) of Theorem
2.25 of [183].

Let r be a nonnegative integer, let a be an r-times continuously-differentiable
real-valued function on U , and let ξ be an r-times continuously-differentiable
vector field on U . We can define a ξ as an r-times continuously-differentiable
vector field on U , using scalar multiplication on Rn, so that

(a ξ)(x) = a(x) ξ(x)(8.8.3)
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for every x ∈ U . If f is an (r + 1)-times continuously-differentiable real-valued
function on U , then

Xa ξ(f) = aXξ(f)(8.8.4)

on U .
Suppose that r ≥ 1 again, let a, ξ, and η be as before, and let b be another

r-times continuously-differentiable real-valued function on U . One can check
that

[a ξ, b η] = a b [ξ, η] + aXξ(b) η − bXη(a) ξ.(8.8.5)

This corresponds to part (b) of Proposition 1.45 on p36 of [183]. Equivalently,
this means that

La ξ(b η) = a bLξ(η) + aLξ(b) η − bLη(a) ξ.(8.8.6)

In particular, if a ≡ 1 on U , then

Lξ(b η) = Lξ(b) η + bLξ(η).(8.8.7)

Suppose now that r ≥ 2, let ξ and η be as before, and let η̃ be another
r-times continuously-differentiable vector field on U . Under these conditions,
one can check that

Lξ([η, η̃]) = [Lξ(η), η̃] + [η, Lξ(η̃)],(8.8.8)

using the Jacobi identity (8.7.12). If ξ is infinitely differentiable on U , then Lξ
is a derivation on the Lie algebra of smooth vector fields on U , as in Section
B.4.

8.9 ϕ-Related vector fields

Let n and m be positive integers, let U be a nonempty open subset of Rn, and
let V be a nonempty open subset of Rm. Also let ϕ be a differentiable mapping
from U into V , let α be a vector field on U , and let ξ be a vector field on V . This
means that α is an Rn-valued function on U , and ξ is an Rm-valued function
on V . We say that

α and ξ are ϕ-related(8.9.1)

if
dϕx(α(x)) = ξ(ϕ(x))(8.9.2)

for every x ∈ U . This corresponds to Definition 1.54 on p41 of [183].
Let f be a differentiable real-valued function on V , so that f ◦ ϕ is differen-

tiable on U , as in Section 3.9. Let us use

Xα(8.9.3)

for the first-order differential operator associated to α on U as in Subsection
4.3.1 and Section 8.6, and let us use

Yξ(8.9.4)
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for the analogous differential operator associated to ξ on V . One can check that

Xα(f ◦ ϕ) = (Yξ(f)) ◦ ϕ(8.9.5)

on U , using (8.9.2) and the chain rule. Conversely, one can get (8.9.2) from this
property, using fl(y) = yl on V for l = 1, . . . ,m.

8.9.1 Brackets of ϕ-related vector fields

Suppose now that ϕ is a twice continuously-differentiable mapping from U into
V , α and β are continuously-differentiable vector fields on U , and ξ and η
are continuously-differentiable vector fields on V . Note that [α, β] and [ξ, η]
are continuous vector fields on U and V , respectively, as in Subsection 8.6.1.
Suppose that (8.9.1) holds, and that

β and η are ϕ-related(8.9.6)

too. We would like to show that

[α, β] and [ξ, η] are ϕ-related(8.9.7)

under these conditions. This corresponds to Proposition 1.55 on p41 of [183].
Let f be a twice continuously-differentiable real-valued function on V . This

implies that f◦ϕ is twice continuously differentiable on U , as in Subsection 3.9.1,
so that Xα(f ◦ ϕ) and Xβ(f ◦ ϕ) are continuously differentiable on U . Similarly,
Yξ(f) and Yη(f) are continuously differentiable on V , and their compositions
with ϕ are continuously differentiable on U . Observe that

X[α,β](f ◦ ϕ) = ([Xα,Xβ ])(f ◦ ϕ) = Xα(Xβ(f ◦ ϕ))−Xβ(Xα(f ◦ ϕ))(8.9.8)

on U , as in Subsection 8.6.1. Using (8.9.1) and (8.9.6), we get that the right
side is equal to

Xα(Yη(f) ◦ ϕ)−Xβ(Yξ(f) ◦ ϕ),(8.9.9)

as in (8.9.5).
This is equal to

(Yξ(Yη(f))) ◦ ϕ− (Yη(Yξ(f))) ◦ ϕ,(8.9.10)

as in (8.9.5) again. This is the same as

(Y[ξ,η](f)) ◦ ϕ,(8.9.11)

as in Subsection 8.6.1. Thus we get that

X[α,β](f ◦ ϕ) = (Y[ξ,η](f)) ◦ ϕ(8.9.12)

on U . This implies (8.9.7), as before.
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8.10 Polynomial vector fields

Let (A, b) be an algebra in the strict sense over the real numbers, as in Section
A.2. Also let δ be a derivation on A with respect to b, as in Subsection A.2.1.
One can check that the kernel of δ is a subalgebra of A. If A has a multiplicative
identity element e with respect to b, then one can verify that δ(e) = 0.

Let m and n be positive integers. Consider the space

P(Rn,Rm)(8.10.1)

of functions on Rn with values in Rm each of whose components is a polynomial
on Rn with real coefficients. This is a linear subspace of the space C∞(Rn,Rm)
of infinitely-differentiable functions on Rn with values in Rm.

Let us now take m = n. One may describe

P(Rn,Rn)(8.10.2)

as the space of polynomial vector fields on Rn. This is a linear subspace of the
space C∞(Rn,Rn) of all smooth vector fields on Rn. Let ξ be a polynomial
vector field on Rn, and let Xξ be the corresponding first-order differential oper-
ator on Rn, as in Section 8.6. It is easy to see that Xξ defines a linear mapping
from the space

P(Rn) = P(Rn,R)(8.10.3)

of polynomials on Rn with real coefficients into itself.
As before, ξ 7→ Xξ defines a linear mapping from (8.10.2) into the space

L(P(Rn))(8.10.4)

of linear mappings from P(Rn) into itself. This mapping is injective, for the
same reasons as in Section 8.6. If ξ and η are polynomial vector fields on Rn,
then it is easy to see that

[ξ, η] ∈ P(Rn,Rn).(8.10.5)

This means that (8.10.2) is a Lie subalgebra of C∞(Rn,Rn), with respect to
the Lie bracket, as in Section B.2.

Of course, P(Rn) is a commutative associative algebra over the real numbers
with respect to ordinary multiplication. If ξ is a polynomial vector field on Rn,
then Xξ is a derivation on P(Rn). It is not too difficult to show that every
derivation on P(Rn) is of this type.

8.11 Cell-nice sets in Rn

Let n be a positive integer, and let x, y ∈ Rn be given. Consider the cell

C(x, y) =
n∏
j=1

[min(xj , yj),max(xj , yj)](8.11.1)
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in Rn, as in Section 5.13. Of course,

x, y ∈ C(x, y),(8.11.2)

by construction. If C is any cell in Rn such that

x, y ∈ C,(8.11.3)

then it is easy to see that

C(x, y) ⊆ C.(8.11.4)

Let us say that a subset E of Rn is cell-nice about a point w ∈ E if for every
x ∈ E,

C(w, x) ⊆ E.(8.11.5)

Cells in Rn are cell-nice about each of their elements, for instance. Remember
that the open ball B(w, r) in Rn centered at w ∈ Rn with radius r > 0 with
respect to the standard Euclidean metric may be defined as in Subsection 3.4.1.
One can check that

B(w, r) is cell-nice about w.(8.11.6)

It is easy to see that unions and intersections of families of subsets of Rn that
are cell-nice about w are cell-nice about w too.

Let p be a positive integer with p ≤ n, and let πp be the obvious projection
from Rn onto Rp, so that

πp(x) = (x1, . . . , xp)(8.11.7)

for each x = (x1, . . . , xn) ∈ Rn. If C is a cell in Rn, then

πp(C) is a cell in Rp.(8.11.8)

If E ⊆ Rn is cell-nice about w ∈ E, then one can verify that

πp(E) is cell-nice about πp(w),(8.11.9)

as a subset of Rp. If A ⊆ Rp, πp(w) ∈ W , and A is cell-nice about πp(w) in
Rp, then it is easy that π−1

p (A) is cell-nice about w in Rn.
If w ∈ Rn and r > 0, then it is easy to see that

πp(B(w, r))(8.11.10)

is the same as the open ball in Rp centered at πp(w) with radius r, with respect
to the standard Euclidean metric on Rp. If U is an open set in Rn, then it
follows that

πp(U) is an open set in Rp.(8.11.11)

This means that πp is an open mapping from Rn onto Rp, as in Section 5.10.
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8.12 Integrating some functions

Let n and p be positive integers with p ≤ n again, and let W be an open set in
Rn that is cell-nice about a point w ∈W . Thus

V = πp(W )(8.12.1)

is an open set in Rp that is cell-nice about πp(w), where πp is the obvious pro-
jection from Rn onto Rp, as before. Also let f be a continuously-differentiable
real-valued function on W , and suppose that

∂jf(x) = 0(8.12.2)

for each x ∈W and j = p+ 1, . . . , n. Of course, this condition holds vacuously
when p = n. One can check that this implies that f(x) does not depend on xj
for j = p + 1, . . . , n, because W is cell-nice about w. More precisely, if x ∈ W
and p < n, then

(x1, . . . , xp, wp+1, . . . , wn) ∈W,(8.12.3)

because W is cell-nice about w. One can verify that

f(x) = f(x1, . . . , xp, wp+1, . . . , wn)(8.12.4)

for every x ∈W under these conditions.
This means that f can be expressed as

f(x) = ϕ(πp(x)),(8.12.5)

where ϕ is a real-valued function on V . In fact, ϕ is continuously differentiable
on V , because it is the same as the right side of (8.12.4). If y = (y1, . . . , yp) ∈ V ,
then

(y1, . . . , yp−1, t) ∈ V(8.12.6)

when
wp ≤ t ≤ yp or yp ≤ t ≤ wp,(8.12.7)

as appropriate, because V is cell-nice about πp(w) in Rp. Consider the real-
valued function Φ defined on V by

Φ(y1, . . . , yp) =

∫ yp

wp

ϕ(y1, . . . , yp−1, t) dt when yp ≥ wp

= −
∫ wp

yp

ϕ(y1, . . . , yp−1, t) dt when yp ≤ wp.(8.12.8)

Note that
Φ(y1, . . . , yp) = 0 when yp = wp.(8.12.9)

One can check that
Φ is continuous on V.(8.12.10)
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This is straightforward when p = 1, and otherwise one can use the uniform
continuity of ϕ on compact subsets of V .

Of course,
∂pΦ = ϕ(8.12.11)

on V , by construction. If p ≥ 2 and j = 1, . . . , p − 1, then ∂jΦ can be ob-
tained by differentiating under the integral sign. More precisely, the difference
quotients of Φ used to define ∂jΦ are equal to analogous integrals of difference
quotients of ϕ. In order to differentiate under the integral sign, it is enough to
have uniform convergence of the difference quoitents of ϕ along the appropriate
closed segment. This can be obtained from the uniform continuity of ∂jϕ on
compact subsets of V , and the mean-value theorem of the fundamental theorem
of calculus.

If p ≥ 2, then ∂jΦ is continuous on V for each j = 1, . . . , p− 1. This follows
from the continuity of ∂jϕ on V , in the same way as in (8.12.10). This means
that

Φ is continuous differentiable on V,(8.12.12)

because (8.12.11) is continuous on V , by hypothesis.

8.12.1 Some properties of these functions

Consider the real-valued function F defined on W by

F = Φ ◦ πp.(8.12.13)

Note that
F is continuously differentiable on W,(8.12.14)

because Φ is continuously differentiable on V . It is easy to see that

∂pF = f(8.12.15)

on W , because of (8.12.11). If p < n, then F (x) does not depend on xj for
j = p+ 1, . . . , n, so that

∂jF (x) = 0(8.12.16)

for every x ∈W .
This basically corresponds to Theorem 10.38 on p278 of [154], which is stated

for convex open sets in Rn. The argument here is essentially the same as in
[154], with some simplifications in this case. This is also related to Exercise 29
on p297 of [154], as mentioned in [154].

Let r be a positive integer, and suppose now that f is r-times continuously
differentiable on W , which implies that ϕ is r-times continuously differentiable
on V . Under these conditions, one can check that

Φ is r-times continuously differentiable on V,(8.12.17)

using the same type of arguments as before. This implies that

F is r-times continuously differentiable on W.(8.12.18)
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If f is infinitely differentiable on W , then it follows that

F is infinitely differentiable on W.(8.12.19)

8.13 A version of Poincaré’s lemma

Let n be a positive integer, and let W be an open set in Rn that is cell-nice
about a point w ∈W again. Also let

β be an infinitely-differentiable differential k-form on W(8.13.1)

for some k = 1, . . . , n, and suppose that

β is a closed form on W,(8.13.2)

so that dβ = 0 on W . We would like to find an infinitely-differentiable differen-
tial (k − 1)-form α on W such that

dα = β(8.13.3)

on W , so that β is exact on W .
This is a version of the famous Poincaré lemma. This basically corresponds

to Theorem 10.39 in [154], which is stated for convex open subsets of Rn.
More precisely, suppose that β is r-times continuously differentiable on W

with
r ≥ n− k + 1,(8.13.4)

instead of infinite differentiability. Under these conditions, the proof will show
that we can find a differential (k − 1)-form α on W such that

α is (r − n+ k)-times continuously differentiable on W,(8.13.5)

and (8.13.3) holds on W .

8.13.1 Invariance under diffeomorphisms

Let U be a nonempty open subset of Rn, and suppose that

every infinitely-differentiable differential k-form on U(8.13.6)

that is closed on U can be expressed as the exterior derivative

of an infinitely differentiable differential (k − 1)-form on U.

If

ϕ is a C∞ diffeomorphism from U onto another open set V ⊆ Rn,(8.13.7)

as in Subsection 5.12.2, then one can check that V has the same property. This
corresponds to Theorem 10.40 on p280 of [154].
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8.14 Some initial steps

Let us continue with the same notation and hypotheses as at the beginning of
the previous section. Let p and r be positive integers, with

k ≤ p ≤ n.(8.14.1)

Consider the space
Y (k, p, r)(8.14.2)

of r-times continuously-differentiable differential k-forms γ on W of the form

γ =
∑

I⊆{1,...,p},#I=k

γI dx
I .(8.14.3)

More precisely, the sum on the right is taken over all subsets I of {1, . . . , p}
with exactly k elements.

Suppose for the moment that

γ ∈ Y (k, k, r).(8.14.4)

This means that
γ = f dx1 ∧ · · · ∧ dxk(8.14.5)

for some r-times continuously-differentiable real-valued function f on W . Ob-
serve that

dγ = 0(8.14.6)

on W if and only if
∂jf = 0(8.14.7)

on W for each j = k + 1, . . . , n, which is vacuous when k = n.
In this case, there is an r-times continuously-differentiable real-valued func-

tion F on W such that
∂kF = f(8.14.8)

on W , and
∂jF = 0(8.14.9)

on W for each j ≥ k+1, as in Subsection 8.12.1. Note that F does not depend
on r. In particular, if f is infinitely differentiable on W , then F is infinitely
differentiable on W too, as before.

Thus
(−1)k−1 F dx1 ∧ · · · ∧ dxk−1 ∈ Y (k − 1, k − 1, r).(8.14.10)

One can check that

d((−1)k−1 F dx1 ∧ · · · ∧ dxk−1)(8.14.11)

= (∂kF ) dx1 ∧ · · · ∧ dxk−1 ∧ dxk = γ

uunder these conditions. Note that this implies the Poincaré lemma when k = n.
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8.14.1 The induction hypothesis

Suppose now that
k + 1 ≤ p ≤ n,(8.14.12)

so that p ≥ 2 in particular. Our induction hypothesis is that

if r ≥ p− k and an element of Y (k, p− 1, r) is closed as a(8.14.13)

differential form on W, then it can be expressed as the exterior

derivative of an element of Y (k − 1, p− 2, r − p+ k + 1).

More precisely, this element of Y (k−1, p−2, r) should not depend on r, so that
it is infinitely differentiable when the initial element of Y (k, p−1, r) is infinitely
differentiable. Note that

(8.14.13) holds when p− 1 = k,(8.14.14)

as in (8.14.11).
We would like to use this to show that

if r ≥ p− k + 1 and an element of Y (k, p, r) is closed as a(8.14.15)

differential form on W, then it can be expressed as the exterior

derivative of an element of Y (k − 1, p− 1, r − p+ k).

As before, this element of Y (k − 1, p− 1, r − p+ k) should not depend on r, so
that it is smooth when the initial element of Y (k, p, r) is smooth.

We shall discuss (8.14.15) further in the next section. Of course, (8.14.13)
is the same as (8.14.15) with p replaced with p− 1.

8.15 The induction step

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Suppose that the induction hypothesis (8.14.13) holds, and let us show
that (8.14.15) holds as well, as in [154]. Let γ be an element of Y (k, p, r) as in
(8.14.3), with

r ≥ p− k + 1,(8.15.1)

and suppose that γ is closed on W .
Observe that

dγ =
∑

I⊆{1,...,p},#I=k

dγI ∧ dxI(8.15.2)

=
∑

I⊆{1,...,p},#I=k

n∑
j=1

(∂jγI) dxj ∧ dxI

on W . This is equal to 0 on W , by hypothesis. It follows that∑
I⊆{1,...,p},#I=k

(∂jγI) dxj ∧ dxI = 0(8.15.3)
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on W for j = p+ 1, . . . , n. In fact, one can use this to get that

∂jγI = 0(8.15.4)

on W for every I ⊆ {1, . . . , p} with exactly k elements and j = p+ 1, . . . , n.
Note that r ≥ 2, because of (8.14.12) and (8.15.1). If I ⊆ {1, . . . , p} has

exactly k elements, then there is an r-times continuously-differentiable real-
valued function ΓI on W such that

∂pΓI = γI(8.15.5)

and
∂jΓI = 0(8.15.6)

on W for j = p+1, . . . , n, as in Subsection 8.12.1. Remember that ΓI does not
depend on r, so that it is smooth on W when γ is smooth on W .

8.15.1 Using the induction hypothesis

Put
ξ =

∑
I⊆{1,...,p−1},#I=k

γI dx
I(8.15.7)

and
η =

∑
I⊆{1,...,p},p∈I,#I=k

γI dx
I ,(8.15.8)

so that ξ ∈ Yp−1 and
γ = ξ + η.(8.15.9)

If I ⊆ {1, . . . , p} has exactly k elements and p ∈ I, then put

I(p) = I \ {p},(8.15.10)

so that I(p) ⊆ {1, . . . , p− 1} has exactly k − 1 elements.
Put

ζ =
∑

I⊆{1,...,p},p∈I,#I=k

ΓI dx
I(p),(8.15.11)

which is a differential (k − 1)-form on W . We also have that

dζ =
∑

I⊆{1,...,p},p∈I,#I=k

dΓI ∧ dxI(p)

=
∑

I⊆{1,...,p},p∈I,#I=k

p−1∑
j=1

(∂jΓI) dxj ∧ dxI(p)(8.15.12)

+
∑

I⊆{1,...,p},p∈I,#I=k

γI dxp ∧ dxI(p)

=
∑

I⊆{1,...,p},p∈I,#I=k

p−1∑
j=1

(∂jΓI) dxj ∧ dxI(p) + (−1)k−1 η.
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Thus

γ − (−1)k−1 dζ

= ξ − (−1)k−1
∑

I⊆{1,...,p},p∈I,#I=k

p−1∑
j=1

(∂jΓI) dxj ∧ dxI(p).(8.15.13)

This is (r − 1)-times continuously differentiable on W , because γ and the ΓI ’s
are r-times continuously differentiable on W . It is easy to see that

γ − (−1)k−1 dζ ∈ Y (k, p− 1, r − 1),(8.15.14)

by construction. We also have that

d(γ − (−1)k−1 dζ) = 0(8.15.15)

on W , because ζ is closed on W , by hypothesis.
Of course,

r − 1 ≥ p− k,(8.15.16)

because of (8.15.1). This permits us to apply our induction hypothesis (8.14.13),
with r replaced with r − 1. It follows that

γ − (−1)k−1 can be expressed as the exterior derivative(8.15.17)

of an element of Y (k − 1, p− 2, r − p+ k).

Note that
ζ ∈ Y (k − 1, p− 1, r),(8.15.18)

by construction. This implies that

γ can be expressed as the exterior derivative(8.15.19)

of an element of Y (k − 1, p− 1, r − p+ k),

as in (8.14.15).



Chapter 9

Lie derivatives and tensor
fields

9.1 Tensor fields and multilinearity

Let k and n be positive integers, and let E be a nonempty subset of Rn. Also
let a be a tensor field of type (0, k) on E, as in Section 4.1. If η1, . . . , ηk are
vector fields on E, then

a(η1, . . . , ηk)(9.1.1)

defines a real-valued function on E, as in Section 4.3. Thus

(η1, . . . , ηk) 7→ a(η1, . . . , ηk)(9.1.2)

may be considered as a mapping from the space of k-tuples of vector fields on
E to the space of real-valued functions on E.

The spaces of real-valued functions on E and vector fields on E are vector
spaces over the real numbers with respect to pointwise addition and scalar multi-
plication, as before. In fact, (9.1.2) may be considered as a multilinear mapping
from the space of k-tuples of vector fields on E into the space of real-valued
functions on E, as in Section 2.2.

Let fl be a real-valued function on E for some positive integer l ≤ k. If ηl
is a vector field on E, then

fl ηl(9.1.3)

defines a vector field on E as well, whose value at x ∈ E is fl(x) ηl(x). If
η1, . . . , ηk are vector fields on E, then

a(η1, . . . , ηl−1, fl ηl, ηl+1, . . . , ηk) = fl a(η1, . . . , ηk)(9.1.4)

on E. This may be considered as a stronger version of the multilinearity of
(9.1.2).

The space of real-valued functions on E is a commutative associative algebra
over the real numbers, as in Section A.2. The space of vector fields on E may

195
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be considered as a module over the algebra of real-valued functions with respect
to multiplication as in (9.1.3), as in Subsections B.7.1 and B.7.2. One does not
need to distinguish between left and right modules here, because the algebra
is commutative. Note that the algebra of real-valued functions on E may be
considered as a module over itself, as in Subsections B.7.1 and B.7.2.

This means that we may consider (9.1.2) as a mapping from the space of
k-tuples of vector fields on E into the space of real-valued functions on E,
where the spaces of vector fields on E and real-valued functions on E are both
considered as modules over the algebra of real-valued functions on E. We may
say that this mapping is multilinear over the algebra of real-valued functions on
E, because of (9.1.4). This is related to some remarks in Section 2.18 beginning
on p64 of [183].

9.1.1 Multilinearity over C(E,R)

Suppose that a is continuous as a tensor field of type (0, k) on E, as in Sub-
section 4.1.1. If η1, . . . , ηk are continuous vector fields on E, then (9.1.1) is a
continuous real-valued function on E. The space C(E,R) of continuous real-
valued functions on E is a subalgebra of the space of all real-valued function on
E, and in particular it is a commutative associative algebra over R as well. The
space C(E,Rn) of continuous vector fields on E may be considered as a module
over C(E,R), with multiplication as in (9.1.3). We may consider C(E,R) as a
module over itself, as before.

Thus we may consider (9.1.2) as a mapping from the space C(E,Rn)k of
k-tuples of continuous vector fields on E into C(E,R), where C(E,R) and
C(E,Rn) are both considered as modules over C(E,R). This mpping is multi-
linear over C(E,R), because of (9.1.4).

9.1.2 Multilinearity over Cr(U,R)

Let U be a nonempty open subset of Rn, let r be a nonnegative integer, and
suppose that a is an r-times continuously differentiable tensor field of type (0, k)
on U , as in Section 4.2. If η1, . . . , ηk are r-times continuously-differentiable
vector fields on U , then (9.1.1) is r-times continuously differentiable as a real-
valued function on U , as in Subsection 4.3.1. The space Cr(U,R) of r-times
continuously-differentiable real-valued functions on U is a subalgebra of the
space C(U,R) of continuous real-valued functions on U , and in particular is
a commutative associaitve algebra over R. The space Cr(U,Rn) of r-times
continuously-differentiable vector fields on U may be considered as a module
over Cr(U,R), with multiplication as in (9.1.3). We may consider Cr(U,R) as
a module over itself, as usual.

We may consider (9.1.2) as a mapping from Cr(U,Rn)k into Cr(U,R), where
Cr(U,R) and Cr(U,Rn) are considered as modules over Cr(U,R). This map-
ping is multilinear over Cr(U,R), because of (9.1.4).

Similarly, suppose that a is infinitely differentiable as a tensor field of type
(0, k) on U , as in Section 4.2. If η1, . . . , ηk are infinitely differentiable vector
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fields on U , then (9.1.1) is infinitely-differentiable as a real-valued function on U ,
as in Subsection 4.3.1. The space C∞(U,R) of infinitely-differntiable real-valued
functions on U is a subalgebra of Cr(U,R) for each r ≥ 0, and in particular
C∞(U,R) is a commutative associaitve algebra over R. The space C∞(U,Rn)
of infinitely-differentiable vector fields on U may be considered as a module over
C∞(U,R), with multiplication as in (9.1.3), and we may consider C∞(U,R) as
a module over itself. If we consider (9.1.2) as a mapping from C∞(U,Rn)k into
C∞(U,R), then this mapping is multilinear over C∞(U,R), because of (9.1.4).

9.2 Spaces of multilinear mappings

Let k be a positive integer, and let V1, . . . , Vk, Z be vector spaces over the real
numbers. Consider the space

L(V1, . . . , Vk;Z)(9.2.1)

of multilinear mappings from
∏k
l=1 Vl into Z, as in Section 2.2. This is a linear

subspace of the space of all functions on
∏k
l=1 Vk with values in Z. In particular,

this is a vector space over the real numbers with respect to pointwise addition
and scalar multiplication of functions.

Let V be a vector space over the real numbers, and suppose now that Vl = V
for each l = 1, . . . , k. In this case, (9.2.1) is the same as the space of multilinear
mappings from the space V k of k-tuples of elements of V into Z. This space
may be denoted

Mk(V, Z),(9.2.2)

and is a linear subspace of the space of all Z-valued functions on V k, as before.
This is the same as Mk(V ) when Z = R, considered as a one-dimensional vector
space over itself.

Let µ be a multilinear mapping from V k into Z, and let σ be a permutation
on {1, . . . , k}. Put

µσ(v1, . . . , vk) = µ(vσ(1), . . . , vσ(k))(9.2.3)

for all v1, . . . , vk ∈ V , as in Section 2.4. This is another multilinear mapping
from V k into Z, as before. If τ is another permutation on {1, . . . , k}, then

µτ◦σ = (µσ)τ ,(9.2.4)

as in Sections 1.9 and 2.4. Note that µ 7→ µσ is a one-to-one linear mapping
from (9.2.2) onto itself, as before.

We say that µ is a symmetric multilinear mapping from V k into Z if

µσ = µ(9.2.5)

for every σ ∈ Sym(k), as in Section 1.9 and 2.4. Similarly, we say that µ is an
alternating if

µσ = sgn(σ)µ(9.2.6)
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for every σ ∈ Sym(k), as in Sections 1.11 and 2.4. As usual, it suffices to check
that these conditions hold when σ is a transposition on {1, . . . , k}. Let

SMk(V, Z) and AMk(V, Z)(9.2.7)

be the spaces of symmetric and alternating multilinear mappings from V k into
Z, respectively. It is easy to see that these are linear subspaces of Mk(V, Z).

9.2.1 Multilinear mappings and Rn

Let n be a positive integer, and let e1, . . . , en be the standard basis for Rn,
as usual. If µ is a multilinear mapping from (Rn)k into Z, then µ is uniquely
determined by its values

µ(em1 , . . . , emk
)(9.2.8)

on k-tuples of standard basis vectors in Rn, as in Subsection 1.6.1. These may
be arbitrary elements of Z, for the same reasons as before. It is easy to see that
µ is symmetric or alternating on (Rn) if and only if its values (9.2.8) on k-tuples
of standard basis vectors in Rn has the analogous property, as in Sections 1.9
and 1.11.

If µ is a multilinear mapping from V k into Rn, then the jth component µj
of µ is a k-linear form on V for each j = 1, . . . , n. Of course, µ is symmetric
or alternating on V k if and only if µj is symmetric or alternating on V k, as
appropriate, for each j = 1, . . . , n.

If µ is a multilinear mapping from (Rn)k into Rn, then

µj(em1 , . . . , emk
)(9.2.9)

is a real number for each j = 1, . . . , n and 1 ≤ m1, . . . ,mk ≤ n. We also have
that µ is uniquely determined by this family of real numbers, and that these
real numbers may be arbitrary. In particular, this implies that

dimMk(R
n,Rn) = nk+1.(9.2.10)

It is sometimes convenient to identify Mk(R
n,Rn) with Rnk+1

, by listing
the elements of

{1, . . . , n}k+1(9.2.11)

in a sequence with nk+1 terms. The order in which the elements of (9.2.11)
will normally not matter, as before. In particular, this leads to a metric on

Mk(R
n,Rn), corresponding to the standard Euclidean metric on Rnk+1

, that
does not depend on the order in which the elements of (9.2.11) are listed.

9.3 Tensor fields of type (1, k)

Let k and n be positive integers, and let E be a nonempty subset of Rn. A
tensor field of type (1, k) on E is a function on E with values in the space
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Mk(R
n,Rn) of multilinear mappings from (Rn)k into Rn. This corresponds to

part of Definition 2.15 on p63 of [183]. The space of tensor fields of type (1, k)
on E is a vector space over the real numbers with respect to pointwise addition
and scalar multiplication.

Let us say that a tensor field of type (1, k) on E is continuous if it corresponds

to a continuous mapping from E into Rnk+1

as in Subsection 9.2.1. The space

C(E,Mk(R
n,Rn)) = C

(
E,Rnk+1)

(9.3.1)

of continuous tensor fields of type (1, k) on E is a linear subspace of the space
of all tensor fields of type (1, k) on E.

Remember that one can get a multilinear mapping from (Rn)k into Rn by
multiplying an element of Rn by a k-linear form on Rn, as in Subsection 2.2.1.
Similarly, if a is a tensor field of type (0, k) on E, as in Section 4.1, and ξ is a
vector field on E, as in Section 4.3, then

a ξ(9.3.2)

defines a tensor field of type (1, k) on E. If a and ξ are continuous on E, then
it is easy to see that (9.3.2) is continuous on E, as a tensor field of type (1, k).

Let µ be a tensor field of type (1, k) on E, so that µx is a multilinear mapping
from (Rn)k into Rn for each x ∈ E. If η1, . . . , ηk are vector fields on E, then

µ(η1, . . . , ηk)(9.3.3)

defines another vector field on E. The value of this vector field at x ∈ E is

µx(η1(x), . . . , ηk(x)).(9.3.4)

If µ and η1, . . . , ηk are continuous on E, then (9.3.3) is a continuous vector field
on E.

Let U be a nonempty open subset of Rn, and let r be a nonnegative integer.
A tensor field of type (1, k) on U is said to be r-times continuously differentiable
if it corresponds to an r-times continuously-differentiable mapping from U into

Rnk+1

as before. This is interpreted as being the same as continuity when r = 0,
as usual. The space

Cr(U,Mk(R
n,Rn)) = Cr

(
U,Rnk+1)

(9.3.5)

of all r-times continuously-differentiable tensor fields of type (1, k) on U is a
linear subspace of the space of all continuous tensor fields of type (1, k) on U .

A tensor field of type (1, k) on U is said to be infinitely differentiable or
smooth if it corresponds to an infinitely-differentiable mapping from U into

Rnk+1

as before. The space

C∞(U,Mk(R
n,Rn)) = C∞(

U,Rnk+1)
(9.3.6)

of all infinitely-differentiable tensor fields of type (1, k) on U is a linear subspace
of (9.3.5) for each r.
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Let µ be a tensor field of type (1, k) on U , and let η1, . . . , ηk be vector fields
on U . If µ and η1, . . . , ηk are r-times continuously differentiable on U , then

µ(η1, . . . , ηk) is r-times continuously differentiable on U,(9.3.7)

as a vector field on U . Similarly, if µ and η1, . . . , ηk are infinitely differentiable
on U , then

µ(η1, . . . , ηk) is infinitely differentiable on U(9.3.8)

as well.

9.4 Some more multilinearity conditions

Let k and n be positive integers, let E be a nonempty subset of Rn, and let µ
be a tensor field of type (1, k) on E, as in the previous section. If η1, . . . , ηk are
vector fields on E, then (9.3.3) is another vector field on E, as before. In fact,

(η1, . . . , ηk) 7→ µ(η1, . . . , ηk)(9.4.1)

defines a multilinear mapping from the space of k-tuples of vector fields on E
into the space of vector fields on E. If fl is a real-valued function on E for some
positive integer l ≤ k, then

µ(η1, . . . , ηl−1, fl ηl, ηl+1, . . . , ηk) = fl µ(η1, . . . , ηk)(9.4.2)

on E. This may be considered as a stronger version of multilinearity of (9.4.1),
as in Section 9.1.

As before, the spaces of real-valued functions on E and vector fields on E
may be considered as modules over the algebra of real-valued functions on E.
We may say that (9.4.1) is multilinear over the algebra of real-valued functions
on E, because of (9.4.2). This is related to some remarks on p65 of [183].

Suppose that
µ is continuous on E,(9.4.3)

and remember that the space C(E,Rn) of continuous vector fields on E may
be considered as a module over C(E,R), as in Subsection 9.1.1. If η1, . . . , ηk
are continuous on E, then (9.3.3) is continuous on E, as in the previous section.
In this case, (9.4.1) is multilinear over C(E,R), as a mapping from C(E,Rn)k

into C(E,Rn), because of (9.4.2).
Let U be a nonempty open subset of Rn, let r be a nonnegative integer, and

suppose that µ is an r-times continuously-differentiable tensor field of type (1, k)
on U , as in the previous section. The space Cr(U,Rn) of r-times continuously-
differentiable vector fields on U may be considered as a module over Cr(U,R), as
in Subsection 9.1.2. If η1, . . . , ηk are r-times continuously-differentiable vector
fields on U , then (9.3.3) is an r-times continuously-differentiable vector field
on U as well, as in (9.3.7). Under these conditions, (9.4.1) is multilinear over
Cr(U,R), as a mapping from Cr(U,Rn)k into Cr(U,Rn), because of (9.4.2).
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Similarly, suppose that µ is infinitely differentiable as a tensor field of type
(1, k) on U , as in the previous section. The space C∞(U,Rn) of infinitely-
differentiable vector fields on U may be considered as a module over C∞(U,R),
as in Subsection 9.1.2. If η1, . . . , ηk are infinitely-differentiable vector fields on
U , then (9.3.3) is an infinitely-differentiable vector field on U too, as in (9.3.8).
If we consider (9.4.1) as a mapping from C∞(U,Rn)k into C∞(U,Rn), then it
is multilinear over C∞(U,R), because of (9.4.2).

9.5 Some more Lie derivatives

Let n be a positive integer, and let U be a nonempty open subset of Rn. Also
let k be a positive integer, and let a be a tensor field of type (0, k) on U that
is r-times continuously differentiable on U for some positive integer r, as in
Sections 4.1 and 4.2. If ξ is an r-times continuously-dfferentiable vector field on
U , then we would like to define the Lie derivative

Lξ(a)(9.5.1)

of a with respect to ξ as a tensor field of type (0, k) on U that is (r − 1)-times
continuously differentiable on U . This type of Lie derivative is mentioned on
p70 of [183].

If η1, . . . , ηk are vector fields on U that are r-times continuously differen-
tiable, then

a(η1, . . . , ηk)(9.5.2)

is a real-valued function on U that is r-times continuously differentiable as well,
as in Section 4.3. We would like to define (9.5.1) so that

Lξ(a(η1, . . . , ηk)) = (Lξ(a))(η1, . . . , ηk)

+

k∑
l=1

a(η1, . . . , ηl−1, Lξ(ηl), ηl+1, . . . , ηk),(9.5.3)

where the Lie deriviatives of (9.5.2) and η1, . . . , ηk are as in Section 8.8. This
means that

Xξ(a(η1, . . . , ηk)) = (Lξ(a))(η1, . . . , ηk)

+

k∑
l=1

a(η1, . . . , ηl−1, [ξ, ηl], ηl+1, . . . , ηk),(9.5.4)

where Xξ and [ξ, η] are as in Sections 4.3 and 8.6.
Thus we would like to define (9.5.1) so that

(Lξ(a))(η1, . . . , ηk) = Xξ(a(η1, . . . , ηk))

−
k∑
l=1

a(η1, . . . , ηl−1, [ξ, ηl], ηl+1, . . . , ηk)(9.5.5)
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on U . This can be used to define (9.5.1) as a tensor field of type (0, k) on U , by
taking η1, . . . , ηk to be constant vector fields on U equal to any combination of
standard basis vectors in Rn. More precisely,

Lξ(a) is (r − 1)-times continuously differentiable on U,(9.5.6)

because the right side of (9.5.5) is (r − 1)-times continuously differentiable on
U . Similarly, if a and ξ are infinitely differentiable on U , then

Lξ(a) is infinitely differentiable on U.(9.5.7)

If (9.5.1) is defined as in (9.5.5) when η1, . . . , ηk are constant vector fields
on U , each of which is a standard basis vector in Rn, then it is easy to see that
(9.5.5) holds for any constant vector fields η1, . . . , ηk on U , using multilinearity.
In fact, (9.5.5) holds when η1, . . . , ηk are any continuously-differentiable vector
fields on U . This will be discussed further in the next section.

9.6 Using nonconstant vector fields

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let η1, . . . , ηk be continuously-differentiable vector fields on U , and let
f1, . . . , fk be continuously-differentiable real-valued functions on U . Note that

f1 η1, . . . , fk ηk(9.6.1)

are continuously-differentiable vector fields on U as well, as in Section 8.8. Of
course,

a(f1 η1, . . . , fk ηk) = (f1 · · · fk) a(η1, . . . , ηk)(9.6.2)

on U . We also have that

[ξ, fl ηl] = Xξ(fl) ηl + fl [ξ, ηl](9.6.3)

on U for each l = 1, . . . , k, as in Section 8.8.

It follows from (9.6.2) that

Xξ(a(f1 η1, . . . , fkηk)) = Xξ(f1 · · · fk) a(η1, . . . , ηk)(9.6.4)

+(f1 · · · fk)Xξ(a(η1, . . . , ηk))

on U . We can use (9.6.3) to get that

a(f1 η1, . . . , fl−1 ηl−1, [ξ, fl ηl], fl+1 ηl+1, . . . , fk ηk)(9.6.5)

= (f1 · · · fl−1 Xξ(fl) fl+1 · · · fk) a(η1, . . . , ηk)
+(f1 · · · fk) a(η1, . . . , ηl−1, [ξ, ηl], ηl+1, . . . , ηk)
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on U for each l = 1, . . . , k. Combining (9.6.4) and (9.6.5), we obtain that

Xξ(a(f1 η1, . . . , fk ηk))(9.6.6)

−
k∑
l=1

a(f1 η1, . . . , fl−1 ηl−1, [ξ, fl ηl], fl+1 ηl+1, . . . , fk ηk)

= (f1 · · · fk)
(
Xξ(a(η1, . . . , ηk))−

k∑
l=1

a(η1, . . . , ηl−1, [ξ, ηl], ηl+1, . . . , ηk)
)

on U .
Note that

(Lξ(a))(f1 η1, . . . , fk ηk) = (f1 · · · fk) (Lξ(a))(η1, . . . , ηk)(9.6.7)

on U , as in (9.6.2). Suppose that η1, . . . , ηk are constant vector fields on U ,
so that (9.5.5) holds on U , by construction. This means that the right side of
(9.6.7) is equal to the right side of (9.6.6), so that

(Lξ(a))(f1 η1, . . . , fk ηk) = Xξ(a(f1 η1, . . . , fk ηk))(9.6.8)

−
k∑
l=1

a(f1 η1, . . . , fl−1 ηl−1, [ξ, fl ηl], fl+1 ηl+1, . . . , fk ηk)

on U . This is the same as (9.5.5), with η1, . . . , ηk replaced with f1 η1, . . . , fk ηk.
One can use this and multilinearity to get that (9.5.5) holds for all continuously-
differentiable vector fields η1, . . . , ηk on U .

9.7 Another family of Lie derivatives

Let k and n be positive integers, and let U be a nonempty open subset of Rn.
Also let µ be a tensor field of type (1, k) on U , as in Section 9.3. Suppose that
µ is r-times continuously differentiable on U for some positive integer r, and let
ξ be an r-times continuously-differentiable vector field on U . We would like to
define the Lie derivative

Lξ(µ)(9.7.1)

of µ with respect to ξ as an (r−1)-times continuously-differentiable tensor field
of type (1, k) on U . This type of Lie deriviative is mentioned on p70 of [183] as
well.

Let η1, . . . , ηk be r-times continuously-differentiable vector fields on U , so
that

µ(η1, . . . , ηk)(9.7.2)

is r-times continuously differentiable as a vector field on U , as before. We would
like to define (9.7.1) so that

Lξ(µ(η1, . . . , ηk)) = (Lξ(µ))(η1, . . . , ηk)

+

k∑
l=1

µ(η1, . . . , ηl−1, Lξ(ηl), ηl+1, . . . , ηk),(9.7.3)
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using Lie derivatives of vector fields as in Section 8.8. This is the same as saying
that

[ξ, µ(η1, . . . , ηk)] = (Lξ(µ))(η1, . . . , ηk)(9.7.4)

+

k∑
l=1

µ(η1, . . . , ηl−1, [ξ, ηl], ηl+1, . . . , ηk),

where the brackets of vector fields are as in Section 8.6.1.

As in Section 9.5, we can define (9.7.1) by taking

(Lξ(µ))(η1, . . . , ηk) = [ξ, µ(η1, . . . , ηk)]

−
k∑
l=1

µ(η1, . . . , ηl−1, [ξ, ηl], ηl+1, . . . , ηk)(9.7.5)

on U when η1, . . . , ηk are constant vector fields on U equal to any combination
of standard basis vectors in Rn. Note that

Lξ(µ) is (r − 1)-times continuously differentiable on U,(9.7.6)

because the right side of (9.7.5) is r-times continuously differentiable on U .
Similarly, if µ and ξ are infinitely differentiable on U , then

Lξ(µ) is infinitely differentiable on U.(9.7.7)

It is easy to see that (9.7.5) also holds when η1, . . . , ηk are any constant vector
fields on U , using multilinearity. We would like to check that (9.7.5) when
η1, . . . , ηk are any continuously-differentiable vector fields on U too.

9.7.1 Using nonconstant vector fields again

Let η1, . . . , ηk be continuously-differentiable vector fields on U , and let f1, . . . , fk
be continuously-differentiable real-valued functions on U , so that

f1 η1, . . . , fk ηk(9.7.8)

are continuously-differentiable vector fields on U , as before. Note that

µ(f1 η1, . . . , fk ηk) = (f1 · · · fk)µ(η1, . . . , ηk),(9.7.9)

as vector fields on U . This implies that

[ξ, µ(f1 η1, . . . , fk ηk)] = Xξ(f1 · · · fk)µ(η1, . . . , ηk)(9.7.10)

+(f1 · · · fk) [ξ, µ(η1, . . . , ηk)]

on U , as in Section 8.8.
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We also have that

µ(f1 η1, . . . , fl−1 ηl−1, [ξ, fl ηl], fl+1 ηl+1, · · · , fk ηk)(9.7.11)

= (f1 · · · fl−1 Xξ(fl) fl+1 · · · fk)µ(η1, . . . , ηk)
+(f1 · · · , fk)µ(η1, . . . , ηl−1, [ξ, ηl], ηl+1, . . . , ηk)

on U for each l = 1, . . . , k, as in the previous section. Combining this with
(9.7.10), we get that

[ξ, µ(f1 η1, . . . , fkηk)](9.7.12)

−
k∑
l=1

µ(f1 η1, . . . , fl−1 ηl−1, [ξ, fl ηl], fl+1 ηl+1, . . . , fk ηk)

= (f1 · · · fk)
(
[ξ, µ(η1, . . . , ηk)]−

n∑
l=1

µ(η1, . . . , ηl−1, [ξ, ηl], ηl+1, . . . , ηk)
)

on U .
Of course,

(Lξ(µ))(f1 η1, . . . , fk ηk) = (f1 · · · fk) (Lξ(µ))(η1, . . . , ηk)(9.7.13)

on U , as in (9.7.9). If η1, . . . , ηk are constant vector fields on U , then the right
side of (9.7.12) is equal to the right side of (9.7.13), as in (9.7.5). This implies
that

(Lξ(µ))(f1 η1, . . . , fk ηk) = [ξ, µ(f1 η1, . . . , fk ηk)](9.7.14)

−
k∑
l=1

µ(f1 η1, . . . , fl−1, ηl−1, [ξ, fl ηl].fl+1 ηl+1, . . . , fk ηk)

on U . This is the same as (9.7.5), with η1, . . . , ηk replaced with f1 η, . . . , fk ηk.
One can use this to get that (9.7.5) holds for all continuously-differentiable
vector fields η1, . . . , ηk on U .

9.8 Lie derivatives as representations

Let n and r be positive integers, and let U be a nonempty open subset of
Rn. Also let ξ, ζ be r-times continuously-differentiable vector fields on U , so
that [ξ, ζ] is an (r − 1)-times continuously-differentiable vector field on U , as
in Subsection 8.6.1. If f is an r-times continuously-differentiable real-valued
function on U , then

L[ξ,ζ](f) = X[ξ,ζ](f)(9.8.1)

is an (r − 1)-times continuously=differentiable real-valued function on U , as in
Section 8.8. If f is twice continuously differentiable on U , then

L[ξ,ζ](f) = Xξ(Xζ(f))−Xζ(Xξ(f)) = Lξ(Lζ(f))− Lζ(Lξ(f))(9.8.2)
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on U , where the first step is as in Subsection 8.6.1.
If ξ is an infinitely-differentiable vector field on U , then Xξ defines a linear

mapping from the space C∞(U,R) of infinitely-differentiable real-valued func-
tions on U into itself, as in Subsection 4.3.1. Thus we may consider

ξ 7→ Lξ = Xξ(9.8.3)

as a linear mapping from the space C∞(U,Rn) of infinitely-differentiable vector
fields on U into the space

L(C∞(U,R))(9.8.4)

of linear mappings from C∞(U,R) into itself. Remember that C∞(U,Rn) is a
Lie algebra over the real numbers with respect to the Lie bracket, as mentioned
in Section 8.7.1. Using (9.8.2), we get that (9.8.3) defines a representation of
C∞(U,Rn), as a Lie algebra over R, on C∞(U,R), as in Section B.7.

Suppose that r ≥ 2, and let η be another r-times continuously-differentiable
vector field on U . Note that

L[ξ,ζ](η) = [[ξ, ζ], η](9.8.5)

on U , as in Section 8.8. One can check that

L[ξ,ζ](η) = [ξ, [ζ, η]]− [ζ, [ξ, η]] = Lξ(Lζ(η))− Lζ(Lξ(η))(9.8.6)

on U , using the Jacobi identity in the first step, as in Subsection 8.7.1.
If ξ is an infinitely-differentiable vector field on U , then Lξ defines a linear

mapping from C∞(U,Rn) into itself, as in Subsection 8.6.1. In fact,

ξ 7→ Lξ = [ξ, ·](9.8.7)

defines a linear mapping from C∞(U,Rn) into the space

L(C∞(U,Rn))(9.8.8)

of linear mappings from C∞(U,Rn) into itself. This defines a representation of
C∞(U,Rn), as a Lie algebra over R, on itself, as a vector space over the real
numbers. This is the same as the adjoint representation of C∞(U,Rn), as in
Section B.8.

9.9 Some more representations

Let n, k, and r be positive integers, let U be a nonempty open subset of Rn,
and let a be a tensor field of type (0, k) on U that is r-times continuously
differentiable on U . Suppose that r ≥ 2, and that ξ, ζ are r-times continuously-
differentiable vector fields on U . Thus [ξ, ζ] is an (r − 1)-times continuously-
differentiable vector field on U , as in Subsection 8.6.1, and one can check that

L[ξ,ζ](a) = Lξ(Lζ(a))− Lζ(Lξ(a))(9.9.1)
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on U , where these Lie derivatives of a are as in Section 9.5. This uses the
analogous statements for Lie derivatives of functions and vector fields mentioned
in the previous section.

Remember that C∞(U,Mk(R
n)) is the space of all infinitely-differentiable

tensor fields of type (0, k) on U , as in Section 4.2. If ξ is infinitely differentiable
on U , then Lξ defines a linear mapping from C∞(U,Mk(R

n)) into itself, as in
Section 9.5. Note that

ξ 7→ Lξ(9.9.2)

defines a linear mapping from C∞(U,Rn) into the space

L(C∞(U,Mk(R
n)))(9.9.3)

of linear mappings from C∞(U,Mk(R
n)) into itself. This is a representation

of C∞(U,Rn), as a Lie algebra over the real numbers with respect to the Lie
bracket, on C∞(U,Mk(R

n)), because of (9.9.1).
Similarly, let µ be a tensor field of type (1, k) on U that is r-times continu-

ously differeneitable on U . One can check that

L[ξ,ζ](µ) = Lξ(Lζ(µ))− Lζ(Lξ(µ))(9.9.4)

on U , where these Lie derivatives are as in Section 9.7. This uses the analogous
statement for vector fields in the previous section.

The space of all infinitely-differentiable tensor fields of type (1, k) on U is
denoted C∞(U,Mk(R

n,Rn)), as in Section 9.3. If ξ is infinitely differentiable
on this space, then Lξ defines a linear mapping from this space into itself, as in
Section 9.7. As before, ξ 7→ Lξ defines a linear mapping from C∞(U,Rn) into
the space

L(C∞(U,Mk(R
n,Rn)))(9.9.5)

of linear mappings from C∞(U,Mk(R
n,Rn)) into itself. This is a representa-

tion of C∞(U,Rn), as a lie algebra over R with respect to the Lie bracket, on
C∞(U,Mk(R

n,Rn)), by (9.9.4).

9.10 Some properties of Lie derivatives

Let n, k, and r be positive integers, let U be a nonempty open subset of Rn, let
a be a tensor field of type (0, k) on U that is r-times continuously differentiable
on U , and let ξ be an r-times continuously-differentiable vector field on U . If
σ is a permutation on {1, . . . , k}, then let aσ be the tensor field of type (0, k)
defined on U by

(aσ)x = (ax)
σ(9.10.1)

for every x ∈ U . More precisely, if x ∈ U , then ax is a k-linear form on Rn, so
that (ax)

σ may be defined as a k-linear form on Rn as in Section 1.9. It is easy
to see that aσ is r-times continuously differentiable on U as well, as in Section
4.2.
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One can verify that
Lξ(a

σ) = (Lξ(a))
σ,(9.10.2)

where these Lie derivatives are as in Section 9.5. If ax is a symmetric k-linear
form on Rn for every x ∈ U , then it follows that

(Lξ(a))x is a symmetric k-linear form on Rn for every x ∈ U.(9.10.3)

Similarly, if ax is an alternating k-linear form on Rn for every x ∈ U , then

(Lξ(a))x is an alternating k-linear form on Rn for every x ∈ U.(9.10.4)

This means that

if a is a differential k-form on U,(9.10.5)

then Lξ(a) is a differential k-form on U too.

Lie derivatives of smooth differential forms are discussed on p70 of [183]. The
definition of the Lie derivative of a differential form used here corresponds to
part (e) of Proposition 2.25 on p70 of [183].

9.10.1 Lie derivatives of products

Let f be an r-times continuously-differentiable real-valued function on U , and
note that f a defines an r-times continuously-differentiable tensor field of type
(0, k) on U . If η1, . . . , ηk are vector fields on U , then

(f a)(η1, . . . , ηk) = f a(η1, . . . , ηk),(9.10.6)

as real-valued functions on U . Remember that Lξ(f) = Xξ(f) on U , as in
Section 8.8. One can check that

Lξ(f a) = Lξ(f) a+ f Lξ(a),(9.10.7)

as tensor fields of type (0, k) on U .
Let k′ be another positive integer, and let b be a tensor field of type (0, k′)

on U that is r-times continuously differentiable on U . Remember that a⊗b may
be defined as a tensor field of type (0, k1+k2) on U that is r-times continuously
differentiable on U , as in Sections 4.1 and 4.2. If η1. . . . , ηk+k′ are vector fields
on U , then

(a⊗ b)(η1, . . . , ηk+1) = a(η1, . . . , ηk) b(ηk+1, . . . , ηk+k′),(9.10.8)

as real-valued functions on U . One can verify that

Lξ(a⊗ b) = (Lξ(a))⊗ b+ a⊗ (Lξ(b)),(9.10.9)

as tensor fields of type (0, k + k′) on U .
If a, b are differential k, k′-forms on U , respectively, then

Lξ(a ∧ b) = (Lξ(a)) ∧ b+ a ∧ (Lξ(b)),(9.10.10)

as differential (k + k′)-forms on U . This can be obtained from (9.10.9) using
(9.10.2). This corresponds to part of part (c) of Proposition 2.25 on p70 of [183].



9.10. SOME PROPERTIES OF LIE DERIVATIVES 209

9.10.2 Lie derivatives and exterior differentiation

Let f be an (r+1)-times continuously-differentiable real-valued function on U ,
so that

a = df(9.10.11)

is an r-times continuously-differentiable differential one-form on U , or equiv-
alently a tensor field of type (0, 1) on U . If η is an r-times continuously-
differentiable vector field on U , then

a(η) = (df)(η) = Xη(f)(9.10.12)

is an r-times continuously-differentiable real-valued function on U . Observe that

(Lξ(a))(η) = Xξ(a(η))− a([ξ, η]) = Xξ(Xη(f))−X[ξ,η](f)

= Xη(Xξ(f)) = (d(Xξ(f)))(η),(9.10.13)

where the first step is as in Section 9.5, and the second step is as in Subsection
8.6.1. This means that

Lξ(df) = d(Lξ(f)),(9.10.14)

as differential one-forms on U .
Of course, Lξ(f) = Xξ(f) is an r-times continuously-differentiabl real-valued

function on U . If r ≥ 2, then it follows that

d(Lξ(df)) = d(d(Lξ(f))) = 0,(9.10.15)

as in Section 4.8.
Let α be a differential k-form on U that is twice continuously differentiable on

U , so that dα is a differential (k+1)-form on U that is continuously differentiable
on U . If ξ is twice continuously differentiable on U , then one can check that

Lξ(dα) = d(Lξ(α))(9.10.16)

as differential (k+1)-forms on U . More precisely, if k = 0, then this is the same
as (9.10.14), and it is enough to ask that ξ be continuously differentiable. If
k ≥ 1, then this can be obtained using the earlier remarks about Lie derivatives
of products. This corresponds to another part of part (c) of Proposition 2.25
on p70 of [183].

9.10.3 Tensors of type (1, k)

Let µ be a tensor field of type (1, k) on U that is r-times continuously differen-
tiable on U . If σ ∈ Sym(k), then let µσ be the tensor field of type (1, k) on U
defined by

(µσ)x = (µx)
σ(9.10.17)

for each x ∈ U , where the right side is as in Section 9.2. Note that µσ is r-times
continuously differentiable on U as well.
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One can check that
Lξ(µ

σ) = (Lξ(µ))
σ,(9.10.18)

where these Lie derivatives are as in Section 9.7. If µx is symmetric as a multi-
linear mapping from (Rn)k into Rn for each x ∈ U , then it follows that

(Lξ(µ))x is symmetric as a multilinear mapping(9.10.19)

from (Rn)k into Rn for every x ∈ U.

Similarly, if µx is alternating as a multilinear mapping from (Rn)k into Rn for
each x ∈ U , then

(Lξ(µ))x is alternating as a multilinear mapping(9.10.20)

from (Rn)k into Rn for every x ∈ U.

Let a be a tensor field of type (0, k) on U that is r-times continuously
differentiable on U agagin, and let ζ be a vector field on U that is r-times
continuously differentiable on U . Consider

µ = a ζ,(9.10.21)

as in Section 9.3, which is also r-times continuously differentiable on U . If
η1, . . . , ηk are vector fields on U , then

µ(η1, . . . , ηk) = a(η1, . . . , ηk) ζ,(9.10.22)

as vector fields on U . One can check that

Lξ(a ξ) = (Lξ(a)) ζ + aLξ(ζ),(9.10.23)

as tensor fields of type (1, k) on U .

9.11 Some interior products

Let W be a vector space over the real numbers, and let u be an element of W .
Also let k and p be positive integers, with p ≤ k. If µ is a k-linear form on W ,
then let

(ik,p(u))(µ)(9.11.1)

be the (k − 1)-linear form on W defined by

((ik,p(u))(µ))(w1, . . . , wk−1) = µ(w1, . . . , wp−1, u, wp, . . . , wk−1).(9.11.2)

This defines a linear mapping
ik,p(u)(9.11.3)

from Mk(W ) into Mk−1(W ). This linear mapping may be described as the pth
interior product by u on Mk(W ).
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If k = 1, then µ is a linear functional on W . In this case, p = 1, and

(i1,1(u))(µ) = µ(u),(9.11.4)

which is a real number. Remember that M0(W ) = R, as in Section 2.12.
Put

ik,tot(u) =

k∑
p=1

ik,p(u),(9.11.5)

which is another linear mapping from Mk(W ) into Mk−1(W ). This may be
described as the total interior product by u on Mk(W ). It is convenient to take
ik,tot(u) to be 0 on M0(W ) when k = 0.

9.11.1 Connection with products of forms

Let k1 and k2 be positive integers, and let µ1, µ2 be k1, k2-linear forms on W ,
respectively. Thus µ1 ⊗ µ2 may be defined as a (k1 + k2)-linear form on W , as
in Section 2.8. One can check that

(ik1+k2,p(u))(µ1 ⊗ µ2)(9.11.6)

= ((ik1,p(u))(µ1))⊗ µ2 when 1 ≤ p ≤ k1

= µ1 ⊗ ((ik2,p−k1(u))(µ2)) when k1 + 1 ≤ p ≤ k1 + k2.

Using this, one can verify that

(ik1+k2,tot(u))(µ1 ⊗ µ2)(9.11.7)

= ((ik1,tot(u))(µ1))⊗ µ2 + µ1 ⊗ ((ik2,tot(u))(µ2)).

This also holds when k1 or k2 is 0, with suitable interpretations.
The algebra M(W ) of multilinear forms on W may be defined as the direct

sum of Mk(W ) over all nonnegative integers k, as in Section A.6. One can
define a linear mapping

itot(u)(9.11.8)

from M(W ) into itself, using ik,tot(u) on Mk(W ) for each k ≥ 0. This may be
described as the total interior product by u on M(W ). It is easy to see that

itot(u) is a derivation on M(W ),(9.11.9)

as in Subsection A.2.1.

9.12 Interior products and symmetrizations

Let W be a vector space over the real numbers, let u be an element of W , and
let k be a positive integer. If µ is a symmetric k-linear form on W , then it is
easy to see that

(ik,p(u))(µ) = (ik,q(u))(µ)(9.12.1)
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for all positive integers p, q ≤ k. This implies that

k (ik,p(u))(µ) = (ik,tot(u))(µ)(9.12.2)

for each p ≤ k. Note that

(ik,p(u))(µ) is a symmetric (k − 1)-linear form on W(9.12.3)

in this case. Thus the restriction of ik,p(u) to SMk(W ) defines a linear mapping
into SMk−1(W ).

Suppose that k ≥ 2, let µ be any k-linear form on W , and let τ be a
permutation on {1, . . . , k − 1}. Observe that

((ik,p(u))(µ))
τ (w1, . . . , wk−1) = ((ik,p(u))(µ))(wτ(1), . . . , wτ(k−1))

= µ(wτ(1), . . . , wτ(p−1), u, wτ(p), . . . , wτ(k−1))(9.12.4)

for each p ≤ k and w1, . . . , wk−1 ∈ W , where the left side is as in Section 2.4.
We also have that

Sk−1((ik,tot(u))(µ)) =
1

(k − 1)!

k∑
p=1

∑
τ∈Sym(k−1)

((ik,p(u))(µ))
τ ,(9.12.5)

where Sk−1 is as in Subsection 2.4.1. It follows that

Sk−1((ik,tot(u))(µ))(w1, . . . , wk−1)(9.12.6)

=
1

(k − 1)!

k∑
p=1

∑
τ∈Sym(k−1)

((ik,p(u))(µ))
τ (w1, . . . , wk−1)

=
1

(k − 1)!

k∑
p=1

∑
τ∈Sym(k−1)

µ(wτ(1), . . . , wτ(p−1), u, wτ(p), . . . , wτ(k−1))

for all w1, . . . , wk−1 ∈W .
One can check that this is equal to

k (Sk(µ))(u,w1, . . . , wk−1)(9.12.7)

for all w1, . . . , wk−1 ∈W . One can look at this in terms of shuffles, as in Section
2.15, with r = 2, k1 = 1, and k2 = k − 1. This means that

Sk−1((ik,tot(u))(µ)) = k (ik,1(u))(Sk(µ)).(9.12.8)

Equivalently,
Sk−1((ik,tot(u))(µ)) = (ik,tot(u))(Sk(µ)),(9.12.9)

because of (9.12.2). Of course, this is the same as saying that

Sk−1 ◦ ik,tot(u) = ik,tot(u) ◦ Sk(9.12.10)

on Mk(W ).
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9.12.1 Connection with symmetric products

Let k1, k2 be positive integers, and let µ1, µ2 be symmetric k1, k2-linear forms
on W , respectively. Remember that µ1 � µ2 may be defined as a symmetric
(k1 + k2)-linear form on W as in Section 2.9. Observe that

(ik1+k2,tot(u))(µ1 � µ2) = (ik1+k2,tot(u))(Sk1+k2(µ1 ⊗ µ2))

= Sk1+k2−1((ik1+k2,tot(u))(µ1 ⊗ µ2)),(9.12.11)

using (9.12.9) in the second step. Combining this with (9.11.7), we get that

(ik1+k2,tot(u))(µ1 � µ2) = Sk1+k2−1(((ik1,tot(u))(µ1))⊗ µ2)

+Sk1+k2−1,tot(µ1 ⊗ ((ik2,tot(u))(µ2)))(9.12.12)

= ((ik1,tot(u))(µ1))� µ2 + µ1 � ((ik2,tot(u))(µ2)).

The algebra SM(W ) of symmetric multilinear forms on W may be defined
as the direct sum of SMk(W ) over all nonnegative integers k, as in Subsection
A.6.1. This may be considered as a linear subspace of M(W ). Note that the
restriction of ik,tot(u) to SMk(W ) defines a linear mapping into SMk−1(W )
for each k, so that

itot(u) maps SM(W ) into itself.(9.12.13)

In fact,
itot(u) is a derivation on SM(W ),(9.12.14)

as in Subsection A.2.1, because of (9.12.12).

9.13 Interior products and polynomials

Let k and n be positive integers, and let us now take W = Rn. If µ is a k-linear
form on Rn, then Pµ(x) = µ(x, . . . , x) defines a homogeneous polynomial of
degree k on Rn, as in Section 1.8. Let u ∈ Rn be given, so that (ik,q(u))(µ) is
defined as a (k − 1)-linear form on Rn as in Section 9.11 for each q = 1, . . . , k.
Thus

P(ik,q(u))(µ)(9.13.1)

defines a homogeneous polynomial of degree k − 1 on Rn for each q. Simi-
larly, (ik,tot(u))(µ) is a (k − 1)-linear form on Rn, which corresponds to the
homogeneous polynomial

P(ik,tot(u))(µ) =

k∑
q=1

P(ik,q(u))(µ)(9.13.2)

of degree k − 1 on Rn.
One can check that

P(ik,tot(u))(µ)(x) = (P ′
µ(x))(u) = d(Pµ)x(u)(9.13.3)
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for each x ∈ Rn. This is the same as the directional derivative of Pµ at x in the
direction u, as in Subsection 3.8.1.

Similarly, if µ ∈ M(Rn), then Pµ may be defined as a polynomial on Rn

with real coefficients as in Subsection A.6.2. Remember that (itot(u))(µ) may
be defined as an element of M(Rn) as in Subsection 9.11.1. As before, we have
that

P(itot(u))(µ)(x) = (P ′
µ(x))(u) = d(Pµ)x(u)(9.13.4)

for every x ∈ Rn.

9.14 Interior multiplication on AM(W )

Let W be a vector space over the real numbers, let u be an element of W , and
let k be a positive integer. If µ is an alternating k-linear form on W , then let

(ik(u))(µ)(9.14.1)

be the (k − 1)-linear form defined on W by

((ik(u))(µ))(w1, . . . , wk−1) = µ(u,w1, . . . , wk−1).(9.14.2)

It is easy to see that this is an alternating (k−1)-linear form onW . This defines
a linear mapping from AMk(W ) into AMk−1(W ), which is known as interior
multiplication by u. This corresponds to part of Section 2.11 on p61 of [183].

Equivalently, ik(u) is the same as the restriction of ik,1(u), as in Section
9.11, to AMk(W ). Similarly,

ik,p(u) = (−1)p−1 ik(u) on AMk(W )(9.14.3)

for each p ≤ k. It is convenient to take ik(u) to be 0 on AM0(W ) = R when
k = 0. We can define i(u) as a linear mapping from AM(W ) into itself, which
corresponds to ik(u) on AMk(W ) for each k ≥ 0. This uses the definition of
AM(W ) in Subsection 2.12.1 when W has finite dimension, or the definition in
Section A.7 otherwise.

Let k1 and k2 be nonnegative integers, and let µ1, µ2 be alternating k1,
k2-linear forms on W , respectively. We would like to show that

(ik1+k2(u))(µ1 ∧ µ2)(9.14.4)

= ((ik1(u))(µ1)) ∧ µ2 + (−1)k1 µ1 ∧ ((ik2(u))(µ2)).

This means that i(u) is an anti-derivation on AM(W ), as in Section 2.11 on p61
of [183]. This corresponds to Proposition 2.12 on p61 of [183]. It is easy to see
that (9.14.4) holds when k1 or k2 is 0, and so we suppose now that k1, k2 ≥ 1.

9.14.1 Checking the anti-derivation property

Put
E1 = {1, . . . , k1} and E2 = {k1 + 1, . . . , k1 + k2},(9.14.5)
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as in Section 2.13, with r = 2. Remember that τ ∈ Sym(k1 + k2) is said to be
a shuffle with respect to k1, k2 if the restriction of τ to each of E1 and E2 is
increasing, as in Section 2.15. Let Ξ be the set of τ ∈ Sym(k1 + k2) that are
shuffles with respect to k1, k2, as in Subsection 2.15.1. Thus

µ1 ∧ µ2 =
∑
τ∈Ξ

sgn(τ) (µ1 ⊗ µ2)
τ ,(9.14.6)

as in Subsection 2.15.2. Of course, (µ1 ⊗ µ2)
τ is defined as in Sections 2.4 and

2.8.
If v1, . . . , vk1+k2 ∈W , then

(µ1 ⊗ µ2)
τ (v1, . . . , vk1+k2) = (µ1 ⊗ µ2)(vτ(1), . . . , vτ(k1+k2))

= µ1(vτ(1), . . . , vτ(k1))µ2(vτ(k1+1), . . . , vτ(k1+k2))(9.14.7)

for every τ ∈ Sym(k1 + k2). If τ is a shuffle with respect to k1, k2, then it is
easy to see that

τ−1(1) = 1 or k1 + 1.(9.14.8)

This means that

µ1 ∧ µ2 =
∑

τ∈Ξ,τ−1(1)=1

sgn(τ) (µ1 ⊗ µ2)
τ(9.14.9)

+
∑

τ∈Ξ,τ−1(1)=k1+1

sgn(τ) (µ1 ⊗ µ2)
τ .

In order to get (9.14.4), it suffices to verify that∑
τ∈Ξ,τ−1(1)=1

sgn(τ) (ik1+k2(u))((µ1 ⊗ µ2)
τ ) = ((ik1(u))(µ1)) ∧ µ2(9.14.10)

and ∑
τ∈Ξ,τ−1(1)=k1+1

sgn(τ) (ik1+k2(u))((µ1 ⊗ µ2)
τ )(9.14.11)

= (−1)k1 µ1 ∧ ((ik2(u))(µ2)).

This uses (9.14.7) with v1 = u in both cases.
Note that the wedge products on the right sides of (9.14.10) and (9.14.11)

may be expressed as in Subsection 2.15.2 as well, using shuffles with respect to
k1 − 1, k2 and k1, k2 − 1, respectively. More precisely, this works when k1 ≥ 2
or k2 ≥ 2, as appropriate, and otherwise these wedge products reduce to the
product of a real number and an alternating multilinear form. If τ−1(1) = 1
and k1 ≥ 2, then τ corresponds to a shuffle with respect to k1 − 1, k2 in a
simple way, which can be used to obtain (9.14.10). This is easier when k1 = 1,
so that (ik1(u))(µ1) is a real number. Similarly, if τ−1(1) = k1 + 1 and k2 ≥ 2,
then τ corresponds to a shuffle with respect to k1, k2 − 1 in a nice way. This
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can be used to obtain (9.14.11), because the shuffle with respect to k1, k2 − 1
corresponding to τ has sign equal to (−1)k1 sgn(τ). This is easier when k2 = 1,
as before.

One may focus on finite-dimensional vector spaces, as on p54 of [183], which
is often of primary interest anyway. One can also reduce to that case, by con-
sidering finite-dimensional linear subspaces of W .

9.15 More on interior multiplication

Let n, k, and r be positive integers, let U be a nonempty open subset of Rn,
let α be a differential k-form on U that is r-times continuously differentiable on
U , and let ξ be an r-times continuously-differentiable vector field on U . We can
define

(ik(ξ))(α)(9.15.1)

as a differential (k− 1)-form on U using interior multiplication pointwise on U .
This means that for each x ∈ U ,

((ik(ξ))(α))x = (ik(ξ(x)))(αx),(9.15.2)

where the right side is defined as an alternating (k − 1)-linear form on Rn as
in the previous section. One can check that (9.15.1) is r-times continuously
differentiable on U as well. It is convenient to interpret (9.15.1) as being equal
to 0 when k = 0, as before.

9.15.1 Some related linear mappings

Put
Lk,ξ(α) = (ik+1(ξ))(dα) + d((ik(ξ))(α)),(9.15.3)

which is a differential k-form on U that is (r−1)-times continuously differentiable
on U . If k = 0, then this is interpreted as being

L0,ξ(α) = (ik(ξ))(dα) = (dα)(ξ) = Xξ(α).(9.15.4)

Let k′ be another positive integer, and let β be a differential k′-form on U
that is r-times continuously differentiable on U . One can check that

Lk+k′,ξ(α ∧ β) = (Lk,ξ(α)) ∧ β + α ∧ (Lk′,ξ(β)),(9.15.5)

as differential (k + k′)-forms on U . This also works when k or k′ is 0, with
the usual interpretations. This uses the anti-derivation properties of interior
multiplication and exterior differentiation. This corresponds to a remark on
p72 of [183], related to the proof of part (d) of Proposition 2.25 on p70 of [183].

Suppose that α is (r+ 1)-times continuously differentiable on U , so that dα
is a differential (k + 1)-form on U that is r-times continuously differentiable on
U . In this case,

Lk+1,ξ(dα) = d((ik+1(ξ))(dα))(9.15.6)
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on U , which also works when k = 0. If ξ is (r + 1)-times continuously differen-
tiable on U too, then (9.15.1) is (r + 1)-times continuously differentiable on U
as well, and

d(Lk,ξ(α)) = d((ik+1(ξ))(dα))(9.15.7)

on U . This means that

d(Lk,ξ(α)) = Lk+1,ξ(dα)(9.15.8)

on U under these conditions. This corresponds to another remark on p72 of
[183].

9.15.2 Connections with Lie derivatives

If f is an (r + 1)-times continuously-differentiable real-valued function on U ,
then df is an r-times continuously-differentiable differential 1-form on U , and

L1,ξ(df) = d((i1(ξ))(df)) = d((df)(ξ)) = d(Xξ(f))(9.15.9)

on U . One can check that
Lk,ξ(α) = Lξ(α)(9.15.10)

on U , where the right side is the Lie derivative of α, as in Section 9.5. This is
the same as (9.15.4) when k = 0, and it follows from (9.15.9) when k = 1 and
α = df , as in Subsection 9.10.2. One can reduce to these cases using (9.15.5)
and the analogous statement for Lie derivatives, as in Subsection 9.10.1. This
corresponds to part (d) of proposition 2.25 on p70 of [183].



Appendix A

Some linear and abstract
algebra

A.1 Some remarks about vector spaces

Let V be a vector space over the real numbers. We shall not get into the abstract
definition of a vector space too much here, but it is sometimes convenient to
use the terminology. Basically V should be a set with a distinguished element
called 0, and with operations of addition and scalar multiplication defined on
V that satisfy some standard properties. These include commutativity and
associativity of addition, and distributivity of scalar multiplication with respect
to addition.

If n is a positive integer, then the space Rn of n-tuples of real numbers
is a vector space over R with respect to coordinatewise addition and scalar
multiplication. Similarly, if X is a nonempty set, then the space of all real-valued
functions on X is a vector space over R with respect to pointwise addition and
scalar multiplication.

If V is a vector space over the real numbers, then a linear subspace of V is
a subset V0 of V that satisfies the following three conditions. First,

0 ∈ V0.(A.1.1)

Second, if u, v ∈ V0, then
u+ v ∈ V0.(A.1.2)

Third, if v ∈ V0 and t ∈ R, then

t v ∈ V0.(A.1.3)

Note that (A.1.3) implies (A.1.1) when V0 6= ∅, by taking t = 0.
Under these conditions, V0 is a vector space over the real numbers too, with

respect to the restrictions of the operations of addition and scalar multiplication
on V to V0. Many of the vector spaces with which we shall be concerned here

218
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are linear subspaces of Rn for some n, or linear subspaces of the space of all
real-valued functions on some nonempty set X.

Let X be a nonempty set again, and let W be a vector space over the real
numbers. The space of all W -valued functions on X is a vector space over the
real numbers with respect to pointwise addition and scalar multiplication. Thus
linear subspaces of this space are vector spaces over R as well.

A.2 Algebras over the real numbers

Let A be a vector space over the real numbers, and let b be a bilinear mapping
from A × A into A, as in Section 2.2. Under these conditions, (A, b) is said to
be an algebra in the strict sense over the real numbers. This corresponds to
the definition of an F -algebra, with F = R, in Section 1.3 on p4 of [85]. This
also corresponds to the definition of a k-algebra, with k = R, on p2 of [159].
One may describe b as a bilinear operation on A as well, as in Definition 3.53
on p117 of [183].

If

b(x, y) = b(y, x)(A.2.1)

for every x, y ∈ A, then (A, b) is said to be commutative as an algebra in the
strict sense over R. If

b(b(x, y), z) = b(x, b(y, z))(A.2.2)

for every x, y, z ∈ A, then (A, b) is said to be an associative algebra over the
real numbers.

An element e of A is said to be a multiplicative identity element with respect
to b if

b(e, x) = b(x, e) = x(A.2.3)

for every x ∈ A. It is easy to see that this is uique when it exists.
Let A0 be a linear subspace of A. If

b(x, y) ∈ A0(A.2.4)

for every x, y ∈ A, then A0 is called a subalgebra of A with respect to b. This
means that A0 is an algebra in the strict sense over the real numbers with
respect to the restriction of b(x, y) to x, y ∈ A.

A.2.1 Algebra homomorphisms

Let (A1, b1) and (A2, b2) be algebras over the real numbers in the strict sense,
and let ϕ be a linear mapping from A1 into A2. We say that ϕ is a homomor-
phism from A1 into A2, as algebras in the strict sense with respect to b1, b2,
respectively, if

ϕ(b1(x, y)) = b2(ϕ(x), ϕ(y))(A.2.5)

for every x, y ∈ A1.
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If ϕ is a homomorphism from A1 into A2 with respect to b1 and b2, respec-
tively, then it is easy to see that

ϕ(A1) is a subalgebra of A2 with respect to b2.(A.2.6)

If A0 is a subalgebra of A with respect to b, then the obvious inclusion mapping
from A0 into A is a homomorphism, with respect to b on A and its restriction
to A0.

Let (A3, b3) be another algebra in the strict sense over the real numbers. If ϕ
is a homomorphism from A1 into A2 with respect to b1 and b2, respectively, and
ψ is a homomorphism from A2 into A3 with respect to b2 and b3, respectively,
then one can check that

ψ ◦ ϕ is a homomorphism from A1 into A3,(A.2.7)

with respect to b1 and b3, respectively.
Suppose that ϕ is a homomorphism from A1 into A2 with respect to b1 and

b2, respectively, again. If ϕ is a one-to-one mapping from A1 onto A2, then
it is easy to see that the inverse mapping ϕ−1 is a homomorphism from A2

into A1 with respect to b2 and b1, respectively. In this case, ϕ is said to be an
isomorphism from A1 onto A2 with respect to b1 and b2, respectively.

If ϕ is an isomorphism from A1 onto A2 with respect to b1 and b2, respec-
tively, and ψ is an isomorphism from A2 onto A3 with respect to b2 and b3,
respectively, then

ψ ◦ ϕ is an isomorphism from A1 onto A3,(A.2.8)

with respect to b1 and b3, respectively.
An isomorphism from A onto itself with respect to b is said to be an au-

tomorphism of A with respect to b. Note that the identity mapping on A is
automatically an automorphism of A with respect to b. The set of automor-
phisms of A with respect to b is a subgroup of the group of all one-to-one
mappings from A onto itself, as in Section 2.6.

A linear mapping δ from A into itself is said to be a derivation with respect
to b if

δ(b(x, y)) = b(δ(x), y) + b(x, δ(y))(A.2.9)

for every x, y ∈ A.

A.3 More on vector spaces

Let V and W be vector spaces over the real numbers, and let ϕ be a one-to-one
linear mapping from V onto W . It is well known and easy to see that ϕ−1

is a linear mapping from W onto V in this case. One may say that ϕ is an
isomorphism from V onto W as vector spaces over R under these conditions.

The space of one-to-one linear mappings from V onto itself is denotedGL(V ).
This is a subgroup of the group of all one-to-one mappings from V onto itself,
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as in Section 2.6. In particular, GL(V ) is a group with respect to composition
of mappings on V , which is known as the general linear group of V .

Let V ∗ be the space of all linear functionals on V , which is to say the space
of all linear mappings from V into R, as a vector space over itself. This is known
as the dual of V , which is sometimes denoted V ′. This is a linear subspace of the
space of all real-valued functions on V , as a vector space over the real numbers
with respect to pointwise addition and scalar multiplication. In particular, V ∗

is a vector space over the real numbers.

If V has finite dimension, then it is well known that

dimV ∗ = dimV.(A.3.1)

If n is a positive integer, then the n standard coordinate functions on Rn form
a basis for the dual of Rn.

A.3.1 Dual linear mappings

Let T be a linear mapping from V into W . If λ is a linear functional on W ,
then

T ∗(λ) = λ ◦ T(A.3.2)

is a linear functional on V . This defines a linear mapping T ∗ from W ∗ into
V ∗, which is the dual linear mapping corresponding to T . This corresponds to
the k = 1 case of an analogous definition in Section 2.3. If the dual spaces are
denoted V ′, W ′, then one may use the notation T ′ for the dual linear mapping
associated to T .

Let Z be another vector space over the real numbers, and let R be a linear
mapping from W into Z. One can check that

(R ◦ T )∗ = T ∗ ◦R∗,(A.3.3)

as linear mappings from Z∗ into V ∗, as in Section 2.3. If T is a one-to-one linear
mapping from V onto W , then T ∗ is a one-to-one linear mapping from W ∗ onto
V ∗, with

(T ∗)−1 = (T−1)∗,(A.3.4)

as before.

A.3.2 Direct sums and dual spaces

Let N be a positive integer, and let V1, . . . , VN be N vector spaces over the real
numbers. The direct sum of the Vj ’s may be defined as a vector space over R
as in Section 2.1. Similarly, the direct sum

n⊕
j=1

V ∗
j(A.3.5)
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of the corresponding dual spaces is defined as a vector space over R. The dual

( N⊕
j=1

Vj

)∗
(A.3.6)

of
⊕N

j=1 Vj is defined as a vector space over R as well. There is a natural iso-
morphism between (A.3.5) and (A.3.6), as vector spaces over the real numbers,
as follows.

If λj is a linear functional on Vj for each j = 1, . . . , N , then

v1 ⊕ · · · ⊕ vV 7→
N∑
j=1

λj(vj)(A.3.7)

defines a linear functional on
⊕N

j=1 Vj . This defines a linear mapping from
(A.3.5) into (A.3.6), which sends λ1 ⊕ · · · ⊕ λN to the linear functional (A.3.7).
One can check that this mapping is a bijection. More precisely, let λ be a linear
functional on

⊕N
j=1 Vj , and let ιl be the natural mapping from Vl into

⊕N
j=1 Vj

for each l = 1, . . . , N . Thus
λ ◦ ιl(A.3.8)

is a linear functional on Vl for each l = 1, . . . , N . This can be used to define
a linear mapping from (A.3.6) into (A.3.5). It is easy to see that this is the
inverse of the previous mapping.

A.4 Some direct sums and products

Let Vj be a vector space over the real numbers for each nonnegative integer j.
Of course, one could restrict one’s attention to positive integers here, or use any
nonempty set of indices. Consider the Cartesian product

∞∏
j=0

Vj ,(A.4.1)

which is the set of infintie sequences {vj}∞j=0 with vj ∈ Vj for each j ≥ 0. This
is a vector space over the real numbers, with respect to coordinatewise addition
and scalar multiplication. This is known as the direct product of the Vj ’s, j ≥ 0.

The direct sum of the Vj ’s, j ≥ 0, is defined by

∞⊕
j=0

Vj =

{
{vj}∞j=0 ∈

∞∏
j=0

Vj : vj = 0 for all but finitely many j

}
.(A.4.2)

This is a linear subspace of the direct product. The direct sum of finitely many
vector spaces over the real numbers, as in Section 2.1, may also be considered
as a direct product.
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If l is a nonnegative integer, then there is an obvious mapping ιl from Vl into
the direct sum (A.4.2). This mapping sends wl ∈ Vl to the sequence whose lth
term is equal to wl, and whose jth term in Vj is equal to 0 when j 6= l. This is
a one-to-one linear mapping from Vl into (A.4.2) for each l ≥ 0, and one may
wish to identify Vl with its image in the direct sum for each l. The direct sum is
the same as the linear subspace of the direct product generated by the images
of the Vl’s.

A.4.1 Sums, products, and dual spaces

Consider the direct product
∞∏
j=0

V ∗
j(A.4.3)

of the duals of the Vj ’s. Let us also consider the dual

( ∞⊕
j=0

Vj

)∗
(A.4.4)

of the Vj ’s. There is a natural isomorphism between (A.4.3) and (A.4.4), as
vector spaces over the real numbers, which is analogous to the corresponding
statement for finite direct sums in Subsection A.3.2. If λj is a linear functional
on Vj for each j, vj ∈ Vj for each j, and vj = 0 for all but finitely many j, then

λj(vj) = 0 for all but finitely many j.(A.4.5)

This means that
∞∑
j=0

λj(vj)(A.4.6)

may be defined as a real number, which is the same as

n∑
j=0

λj(vj)(A.4.7)

when n is sufficiently large. This defines a linear functional on
⊕∞

j=0 Vj . Using
this, we get a linear mapping from (A.4.3) into (A.4.4).

One can check that this mapping is a bijection. More precisely, if λ is a
linear functional on

⊕∞
j=0 Vj , then

λ ◦ ιl(A.4.8)

is a linear functional on Vl for each l ≥ 0. This leads to a linear mapping
from (A.4.4) into (A.4.3). This is the inverse of the mapping described in the
preceding paragraph, as before.
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A.5 Some remarks about linear mappings

If V and W are vector spaces over the real numbers, then let

L(V,W )(A.5.1)

be the space of all linear mappings from V into W . This is a linear subspace
of the space of all W -valued functions on V , with respect to pointwise addition
and scalar multiplication of functions. If V and W have finite dimension, then
it is well known that the dimension of L(V,W ) is given by

dimL(V,W ) = (dimV ) (dimW ).(A.5.2)

Indeed, one can use bases for V and W to describe linear mappings from V into
W in terms of matrices to get (A.5.2).

Suppose for the moment that W = R, considered as a one-dimensional
vector space over itself. In this case, L(V,W ) = L(V,R) is the same as the dual
space V ∗ of linear functionals on V , as in Section A.3.

A.5.1 Linear mappings and direct sums

Let V1, . . . , VN be finitely many vector spaces over the real numbers. If Tj is a
linear mapping from Vj into W for each j = 1, . . . , N , then one can get a linear

mapping T from
⊕N

j=1 Vj intoW as in Subsection 2.1.1. Conversely, every linear

mapping from
⊕N

j=1 Vj into W corresponds to unique linear mappings from Vj
into W , 1 ≤ j ≤ N , in this way, as before. This leads to an isomorphism from

N⊕
j=1

L(Vj ,W )(A.5.3)

onto

L
( N⊕
j=1

Vj ,W
)
,(A.5.4)

as vector spaces over the real numbers.
Similarly, let W1, . . . ,WM be finitely many vector spaces over the real num-

bers. If Rl is a linear mapping from V into Wl for each l = 1, . . . ,M , then

R(v) = R1(v)⊕ · · · ⊕RM (v)(A.5.5)

defines a linear mapping from V into
⊕M

l=1Wl. Conversely, it is easy to see

that every linear mapping R from V into
⊕M

l=1Wl corresponds to unique linear
mappings from V intoWl, 1 ≤ l ≤M , in this way. This leads to an isomorphism
from

M⊕
l=1

L(V,Wl)(A.5.6)
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onto

L
(
V,

M⊕
l=1

Wl

)
,(A.5.7)

as vector spaces over the real numbers.

A.5.2 Linear mappings and direct products

Now let Vj be a vector space over the real numbers for each nonnegative integer
j. If Tj is a linear mapping from Vj into W for each j ≥ 0, then one can get
a linear mapping T from

⊕∞
j=0 Vj into W in basically the same way as before.

This defines a linear mapping from

∞∏
j=0

L(Vj ,W )(A.5.8)

into

L
( ∞⊕
j=0

Vj ,W
)
.(A.5.9)

Conversely, if T is any linear mapping from
⊕∞

j=0 Vj into W , then one can get
a linear mapping Tl from Vl into W for each l ≥ 0, by composing the standard
embedding of Vl into

⊕∞
j=0 Vj with T . This defines a linear mapping from

(A.5.9) into (A.5.8), which is the inverse of the previous mapping.
Similarly, let Wl be a vector space over the real numbers for every nonnega-

tive integer l. If Rl is a linear mapping from V into Wl for each l ≥ 0, then we
get a linear mapping R from V into

∏∞
l=0Wl, where the lth coordinate of R(v)

is equal to Rl(v) for every v ∈ V and l ≥ 0. This defines a linear mapping from

∞∏
l=0

L(V,Wl)(A.5.10)

into

L
(
V,

∞∏
l=0

Wl

)
.(A.5.11)

Conversely, if R is any linear mapping from V into
∏∞
l=0Wl, then one can get

a linear mapping Rk from V into Wk for each k ≥ 0, by composing R with
the kth standard coordinate projection from

∏∞
l=0Wl onto Wk. This defines a

linear mapping from (A.5.11) into (A.5.10), which is the inverse of the previous
mapping.

A.5.3 Some more direct sums

Of course,
∞⊕
l=0

L(V,Wl)(A.5.12)
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is a linear subspace of (A.5.10), as in the previous section. We also have that

L
(
V,

∞⊕
l=0

Wl

)
(A.5.13)

is a linear subspace of (A.5.11), because
⊕∞

l=0Wl is a linear subspace of
∏∞
l=0Wl.

The restriction of the linear mapping from (A.5.10) into (A.5.11) defined in the
preceding paragraph is a one-to-one linear mapping from (A.5.12) into (A.5.13).

Let R be a linear mapping from V into
⊕∞

l=0Wl, and let Rk be the compo-
sition of R with the kth standard coordinate projection from

⊕∞
l=0Wl onto Wk

for each k ≥ 0. If v ∈ V , then

Rk(v) = 0 for all but finitely many k ≥ 0,(A.5.14)

by the definition of
⊕∞

l=0Wl. If V has finite dimension, then one can check that

Rk = 0 for all but finitely many k ≥ 0.(A.5.15)

This means that the linear mapping from (A.5.12) into (A.5.13) defined in the
previous paragraph is surjective when V has finite dimension.

A.6 The algebra of multilinear forms

Let W be a vector space over the real numbers. Let us define M(W ) initially
as a vector space over the real numbers by

M(W ) =

∞⊕
k=0

Mk(W ),(A.6.1)

where the right side is as in Section A.4. We shall normally identify elements of
Ml(W ) with their images in M(W ) under the embeddings defined before, so
that every element of M(W ) corresponds to a finite sum of elements of Ml(W ),
l ≥ 0.

If µ, ν ∈ M(W ), then we can define

µ⊗ ν(A.6.2)

as an element of M(W ) in an obvious way. More precisely, if µ ∈ Ml1(W ) and
ν ∈ Ml2(W ) for some positive integers l1, l2, then (A.6.2) may be defined as
an element of Ml1+l2(W ) as in Section 2.8. The cases where l1 or l2 is equal to
0 may be included as in Section 2.12. Otherwise, µ and ν correspond to finite
sums of multilinear l1, l2-linear forms on W , l1, l2 ≥ 0, and (A.6.2) may be
defined as the corresponding sum of finitely many (l1 + l2)-linear forms on W .

This defines a bilinear mapping from M(W ) × M(W ) into M(W ). This
makes M(W ) into an associative algebra over the real numbers, because of the
associativity property of products of multilinear forms on W mentioned in Sub-
section 2.8.1. Remember that we take M0(W ) = R, as in Section 2.12, which
corresponds to a subalgebra of M(W ). In fact, the real number 1 corresponds
to the multiplicative identity element of M(W ) in this way.
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A.6.1 The definition of SM(W )

Similarly, we can define SM(W ) as a vector space over the real numbers by

SM(W ) =

∞⊕
k=0

SMk(W ),(A.6.3)

which is a linear subspace of M(W ). Using the symmetrization mapping Sk
from Mk(W ) onto SMk(W ) defined for each k ≥ 1 in Subsection 2.4.1, we
get a symmetrization mapping S from M(W ) onto SM(W ). More precisely,
we can take Sk to be the identity mapping on M0(W ) = SM0(W ) = R when
k = 0, as in Section 2.12.

If µ, ν ∈ SM(W ), then we can define

µ� ν(A.6.4)

in an obvious way, to get a bilinear mapping from SM(W ) × SM(W ) into
SM(W ). This uses the bilinear mapping from SMl1(W ) × SMl2(W ) into
SMl1+l2(W ) defined in Section 2.9. This makes SM(W ) into a commutative
associative algebra over the real numbers, because of the analogous properties
discussed in Section 2.9. Remember that SM0(R) = R, as in Section 2.12,
which corresponds to a subalgebra of SM(W ). The real number 1 corresponds
to the multiplicative identity element of SM(W ), as before.

If µ, ν ∈ M(W ), then

S(µ⊗ ν) = S(S(µ)⊗ S(ν)) = S(µ)� S(ν).(A.6.5)

The first step corresponds to a property of multilinear forms mentioned in Sub-
section 2.9.1, and the second step follows from the definition of the right side.
This shows that S is an algebra homomorphism from M(W ) onto SM(W ).

A.6.2 Polynomials and M(Rn)

If W = Rn for some positive integer n and µ ∈ M(Rn), then we can define

Pµ(A.6.6)

as a polynomial on Rn with real coefficients, using the earlier definition for
multilinear forms on Rn. If ν ∈ M(Rn) too, then

Pµ⊗ν = Pµ Pν ,(A.6.7)

because of the analogous property of multilinear forms on Rn mentioned in
Subsection 2.8.1. Thus µ 7→ Pµ defines an algebra homomorphism from M(Rn)
onto the space P(Rn) of all polynomials on Rn with real coefficients, with
respect to pointwise multiplication of polynomials on Rn.

Similarly, the restriction of µ → Pµ to SM(Rn) defines an algebra isomor-
phism onto P(Rn), with respect to � on SM(Rn). This uses some of the
remarks in Section 1.10.
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A.7 More on AM(W )

Let W be a vector space over the real numbers again. Let us define AM(W )
initially as a vector space over the real numbers by

AM(W ) =

∞⊕
k=0

AMk(W ),(A.7.1)

where the right side is as in Section A.4. If W has dimension n for some positive
integer n, then AMk(W ) = {0} when k > n, and this is essentially the same as
the definition of AM(W ) in Subsection 2.12.1. We can use the alternatization
mapping Ak from Mk(W ) onto AMk(W ) defined for k ≥ 1 in Subsection 2.4.1
to get an alternatization mapping A from M(W ) onto AM(W ). As in Section
2.12, we take A0 to be the the identity mapping on M0(W ) = AM0(W ) = R.

If µ, ν ∈ AM(W ), then we can define

µ ∧0 ν(A.7.2)

as an element of AM(W ) in an obvious way, using the analogous definition for
alternating multilinear forms on W in Subsection 2.10.1. This defines a bilinear
mapping from AM(W )×AM(W ) into AM(W ). This makes AM(W ) into an
associative algebra over the real numbers, because of the associativity property
of ∧0 mentioned in Subsection 2.10.1. As before, AM0(W ) = R corresponds to
a subalgebra of AM(W ) with respect to ∧0, and the real number 1 corresponds
to the multiplicative identity element in AM(W ) with respect to ∧0.

If µ, ν ∈ M(W ), then

A(µ⊗ ν) = A(A(µ)⊗A(ν)) = A(µ) ∧0 A(ν),(A.7.3)

where the first step corresponds to a property of multilinear forms mentioned
in Section 2.10, and the second step follows from the definition of the right side.
This means that A is an algebra homomorphism from M(W ) onto AM(W ),
with respect to ∧0 on AM(W ).

If µ, ν ∈ AM(W ), then we can define

µ ∧ ν(A.7.4)

as an element of AM(W ) in an obvious way, using the analogous definition
for alternating multilinear forms on Section 2.11. This defines a bilinear map-
ping from AM(W ) × AM(W ) into AM(W ), which makes AM(W ) into an
associative algebra over the real numbers, because of the associativity property
mentioned in Section 2.11. Note that AM0(W ) = R also corresponds to a sub-
algebra of AM(W ) with respect to ∧, and that the real number 1 corresponds
to the multiplicative identity element in AM(W ) with respect to ∧.

If µ ∈ Mk(W ) for some nonnegative integer k, then put

Ãk(µ) = k!Ak(µ).(A.7.5)
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Using these mappings, we get a linear mapping Ã from M(W ) onto AM(W ).
If µ, ν are k1, k2-linear forms on W for some nonnegative integers k1, k2,

then µ⊗ ν is a (k1 + k2)-linear form on W , and we have that

Ãk1+k2(µ⊗ ν) = (k1 + k2)!Ak1+k2(µ⊗ ν) = (k1 + k2)!Ak1(µ) ∧0 Ak2(ν)

=
(k1 + k2)!

k1! k2!
Ãk1(µ) ∧o Ãk2(ν) = Ãk1(µ) ∧ Ãk2(ν),(A.7.6)

using (A.7.3) in the second step, and the definition of ∧ in the fourth step. This
implies that

Ã(µ⊗ ν) = Ã(µ) ∧ Ã(ν)(A.7.7)

for all µ, ν ∈ M(W ). Thus Ã is an algebra homomorphism from M(W ) onto
AM(W ), with respect to ∧ on AM(W ).

A.8 More on inner products

Let W be a vector space over the real numbers with an inner product 〈·, ·〉W ,
and let ‖ · ‖W be the corresponding norm on W , as in Section 3.3. We say that
u,w ∈W are orthogonal with respect to 〈·, ·〉W if

〈u,w〉W = 0.(A.8.1)

It is easy to see that this happens if and only if

‖u+ w‖2W = ‖u‖2W + ‖w‖2W .(A.8.2)

Let n be a positive integer, and let w1, . . . , wn be n pairwise-orthogonal
vectors in W . We say that w1, . . . , wn ∈ W are orthonormal with respect to
〈·, ·〉W if

‖wj‖W = 1(A.8.3)

for each j = 1, . . . , n. It is well known and not difficult to check that this implies
that w1, . . . , wn are linearly independent in W . Note that the standard basis
vectors e1, . . . , en in Rn are orthonormal with respect to the standard inner
product 〈·, ·〉Rn on Rn.

If W has finite dimension, then it is well known that W has an orthonormal
basis. In fact, an orthonormal basis for W can be obtained from any basis for
W using the Gram–Schmidt process.

Let V be a vector space over the real numbers with an inner product 〈·, ·〉V
and associated norm ‖ · ‖V . Also let T be a linear mapping from V into W , and
remember that T is an isometry with respect to these norms if and only if T
preserves the inner products, as in Section 3.15. Suppose that V has dimension
n, and let v1, . . . , vn be an orthonormal basis for V . One can check that T is an
isometry if and only if

T (v1), . . . , T (vn) are orthonormal in W with respect to 〈·, ·〉W .(A.8.4)
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Any sequence of n vectors in W may be realized as

L(e1), . . . , L(en),(A.8.5)

where L is a linear mapping from Rn into W . These vectors are linearly inde-
pendent in W exactly when L is one-to-one, and these vectors span W exactly
when L maps Rn onto W . If W has dimension n, then we can use an orthonor-
mal basis for W to get an isometric linear mapping from Rn onto W , with
respect to the standard inner product and norm on Rn.

A.9 Inner products and adjoints

Let V be a vector space over the real numbers with an inner product 〈·, ·〉V . If
v ∈ V , then

λv(u) = 〈u, v〉V(A.9.1)

defines a linear functional on V . It is easy to see that

v 7→ λv(A.9.2)

defines a linear mapping from V into the dual space of linear functionals on V .
Note that

λv(v) = 〈v, v〉V(A.9.3)

is equal to 0 if and only if v = 0. This implies that (A.9.2) is one-to-one.
If V has finite dimension, then it is well known that every linear functional

on V may be expressed as in (A.9.1) for a unique v ∈ V . Equivalently, this
means that (A.9.2) is a one-to-one linear mapping from V onto the dual space
of V . This can be verified directly when V = Rn for some positive integer n,
with the standard inner product. Otherwise, one can use an orthonormal basis
for V to reduce to that case, or to essentially the same argument. Alternatively,
one can use the fact that the dimension of the dual space of V is the same as
the dimension of V when the dimension of V is finite, as in Section A.3.

Let W be another vector space over the real numbers with an inner product
〈·, ·〉W , and let T be a linear mapping from V into W . If w ∈W , then

µw(u) = 〈T (u), w〉W(A.9.4)

defines a linear functional on V . Suppose that V has finite dimension, so that
there is a unique element T ∗(w) of V such that

〈T (u), w〉W = 〈u, T ∗(w)〉V(A.9.5)

for every u ∈ V , as in the preceding paragraph. One can check that T ∗ is a
linear mapping from W into V . This is called the adjoint of T with respect to
the inner products on V and W .

This is not quite the same as the dual linear mapping associated to T as in
Subsection A.3.1, although we are using the same notation here. Sometimes one
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may use other notation for dual linear spaces and the corresponding dual linear
mappings, such as V ′, W ′, and T ′, to distinguish the dual linear mapping from
the adjoint. If W also has finite dimension, then one can characterize linear
functionals on W in terms of the inner product in the same way, so that the
dual linear mapping corresponds more closely to the adjoint.

If W has finite dimension too, then one can use orthonormal bases for V
and W to characterize T in terms of a matrix. In this case, T ∗ corresponds to
the transpose of this matrix, with respect to the same orthonormal bases for V
and W .

A.9.1 Some properties of the adjoint

Let Z be a third vector space over the real numbers with an inner product
〈·, ·〉Z , and let R be a linear mapping from W into Z. If V and W have finite
dimension, then the adjoints R∗, (R ◦ T )∗ of R, R ◦ T may be defined as linear
mappings from Z into W , V , respectively, as before. In particular,

〈R(w), z〉Z = 〈w,R∗(z)〉W(A.9.6)

for every w ∈W and z ∈ Z. If u ∈ V and z ∈ Z, then

〈R(T (u)), z〉Z = 〈T (u), R∗(z)〉W = 〈u, T ∗(R∗(z))〉V .(A.9.7)

This implies that

(R ◦ T )∗ = T ∗ ◦R∗,(A.9.8)

as linear mappings from Z into V .
Remember that T is an isometric linear mapping from V intoW , with respect

to the norms associated to the inner products, if and only if

〈T (u), T (v)〉W = 〈u, v〉V(A.9.9)

for every u, v ∈ V , as in Section 3.15. If V has finite dimension, then this is the
same as saying that

〈u, T ∗(T (v))〉V = 〈u, v〉V(A.9.10)

for every u, v ∈ V . One can check that this holds if and only if

T ∗ ◦ T = IV ,(A.9.11)

where IV is the identity mapping on V .
If V has finite dimension and T is a one-to-one linear mapping from V onto

itself, then

T ∗ ◦ (T−1)∗ = (T−1 ◦ T )∗ = IV ∗ = IV ,(A.9.12)

using (A.9.8) in the first step. Similarly,

(T−1)∗ ◦ T ∗ = (T ◦ T−1)∗ = I∗W = IW ,(A.9.13)
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where IW is the identity mapping on W . This implies that T ∗ is a one-to-one
linear mapping from W onto V , with

(T ∗)−1 = (T−1)∗,(A.9.14)

as linear mappings from V into W , using (A.9.8). Note that T is an isometric
linear mapping from V onto W if and only if

T−1 = T ∗,(A.9.15)

because of (A.9.11). This is related to a remark in Section 4.12.

A.10 Nonnegativity and self-adjointness

Let n be a positive integer, and let V be an n-dimensional vector space over the
real numbers with an inner product 〈·, ·〉V and its associated norm ‖ · ‖V . Of
course, this includes Rn with its standard inner product and norm, and one can
often reduce to this case using an isometric linear mapping from Rn onto V .
This basically corresponds to choosing an orthonormal basis for V , as before.

A linear mapping B from V into itself is said to be self-adjoint if

B∗ = B.(A.10.1)

This means that the matrix associated to B with respect to an orthonormal
basis of V is symmetric, in the sense that it is equal to its transpose.

Under these conditions, it is well known that

there is an orthonormal basis for V(A.10.2)

consisting of eigenvectors for B.

This is often stated for real symmetric matrices, or self-adjoint linear mappings
from Rn into itself, and one can reduce to that case.

A self-adjoint linear mapping B from V into itself is said to be nonnegative
if

〈B(v), v〉V ≥ 0(A.10.3)

for every v ∈ V . One can check that this implies that the eigenvalues of B are
nonnegative real numbers. Conversely, if the eigenvalues of B are nonnegative
real numbers, then one can use diagonalization of B mentioned in the preceding
paragraph to get that B is nonnegative in this sense. We also get that

detB ≥ 0(A.10.4)

when B is nonnegative, because the determinant of B is equal to the product
of its eigenvalues.
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A.10.1 A family of examples

Let W be another vector space over the real numbers with an inner product
〈·, ·〉W and associated norm ‖ · ‖W , and let T be a linear mapping from V into
W . Let us check that

(T ∗)∗ = T,(A.10.5)

as linear mappings from V into W . If u ∈ V and w ∈W , then

〈T (u), w〉W = 〈u, T ∗(w)〉V = 〈(T ∗)∗(u), w〉W ,(A.10.6)

using the definition of T ∗ in the first step, and the definition of (T ∗)∗ in the
second step. This implies (A.10.5).

Note that T ∗ ◦ T is a linear mapping from V into itself. This mapping is
self-adjoint, because

(T ∗ ◦ T )∗ = T ∗ ◦ (T ∗)∗ = T ∗ ◦ T.(A.10.7)

If v ∈ V , then

〈(T ∗ ◦ T )(v), v〉V = 〈T ∗(T (v)), v〉V = 〈T (v), T (v)〉W = ‖T (v)‖2W .(A.10.8)

Thus T ∗ ◦ T is nonnegative as a self-adjoint linear mapping from V into itself.
This implies that

det(T ∗ ◦ T ) ≥ 0,(A.10.9)

as before.
Of course, if V =W , then T and T ∗ are linear mappings from V into itself,

and
det(T ∗ ◦ T ) = (detT ∗) (detT ).(A.10.10)

If 〈·, ·〉V = 〈·, ·〉W too, then
detT ∗ = detT.(A.10.11)

This is because the matrix associated to T ∗ with respect to an orthonormal
basis for V is the same as the transpose of the matrix associated to T with
respect to that basis. This implies that

det(T ∗ ◦ T ) = (detT )2(A.10.12)

in this case. This is another way to get (A.10.9) under these conditions.

A.11 Adjoints and volumes

Let n be a positive integer, and let W be an n-dimensional vector space over the
real numbers with an inner product 〈·, ·〉W and associated norm ‖ · ‖W . We can
use an orthonormal basis for W to get an isometric linear mapping L from Rn

onto W , as in Section A.8, with respect to the standard inner product 〈·, ·〉Rn

and norm ‖ · ‖Rn on Rn. If E is a reasonably nice subset of W , then put

ΛW (E) = Voln(L
−1(E)),(A.11.1)
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as in Section 4.15. Remember that this depends only on the inner product on
W , and not the particular choice of L.

Let T be a linear mapping from Rn intoW . If E0 is a reasonably nice subset
of Rn, then

ΛW (T (E0)) = Voln(L
−1(T (E0))) = | det(L−1 ◦ T )|Voln(E0),(A.11.2)

where the second step is as in Section 4.12. In particular, if e1, . . . , en is the
standard basis in Rn, then

PW (T (e1), . . . , T (en)) = T (PRn(e1, . . . , en)) = T ([0, 1]n),(A.11.3)

as in Section 4.14. If we take E0 = [0, 1]n in (A.11.2), then we get that

ΛW (PW (T (e1), . . . , T (en))) = | det(L−1 ◦ T )|.(A.11.4)

Observe that

(L−1 ◦ T )∗ = T ∗ ◦ (L−1)∗ = T ∗ ◦ L,(A.11.5)

where the second step uses the fact that L is an isometry from Rn onto W .
This means that

(L−1 ◦ T )∗ ◦ (L−1 ◦ T ) = T ∗ ◦ L ◦ L−1 ◦ T = T ∗ ◦ T.(A.11.6)

It follows that

det(T ∗ ◦ T ) = det((L−1 ◦ T )∗ ◦ (L−1 ◦ T )) = (det(L−1 ◦ T ))2,(A.11.7)

where the second step is as in (A.10.12). This shows that

| det(L−1 ◦ T )| = (det(T ∗ ◦ T ))1/2.(A.11.8)

If E0 is a reasonably nice subset of Rn, then we get that

ΛW (T (E0)) = (det(T ∗ ◦ T ))1/2 Voln(E0),(A.11.9)

by (A.11.2). In particular,

ΛW (PW (T (e1), . . . , T (en))) = (det(T ∗ ◦ T ))1/2,(A.11.10)

by (A.11.4). This is very close to Theorem 7 on p328 of [20], and we shall return
to that in a moment.

A.11.1 Another inner product space

Let Z be another vector space over the real numbers with an inner product
〈·, ·〉Z . Suppose that W is a linear subspace of Z, and that 〈·, ·〉W is the same as
the restriction of 〈·, ·〉Z to W . Let T1 be the same as T , considered as a linear
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mapping from Rn into Z. The adjoint T ∗
1 of T1 may be defined as before, as a

linear mapping from Z into Rn. Let us check that

T ∗
1 ◦ T1 = T ∗ ◦ T,(A.11.11)

as linear mappings from Rn into itself.
If u, v ∈ Rn, then

〈(T ∗ ◦ T )(u), v〉Rn = 〈T ∗(T (u)), v〉Rn = 〈T (u), T (v)〉W
= 〈T1(u), T1(v)〉Z = 〈T ∗

1 (T1(u)), v〉Rn(A.11.12)

= 〈(T ∗
1 ◦ T1)(u), v〉Rn .

This implies (A.11.11). Of course, it follows that

det(T ∗
1 ◦ T1) = det(T ∗ ◦ T ).(A.11.13)

In Theorem 7 on p328 of [20], one basically takes Z to be another Euclidean
space, with the standard inner product. It is also stated in terms of the matrix
associated to T1.

More precisely, the volume of a parallelepiped in a Euclidean space is defined
on p328 of [20], and Theorem 7 there expresses the square of the volume as a
determinant. This is used to determine the effect of a linear mapping from Rn

into itself on the n-dimensional volumes of parallelepipeds or other subsets of
Rn.

If W is an n-dimensional linear subspace of a Euclidean space, then the
restriction of the standard inner product on the Euclidean space to W defines an
inner product on W . Remember that an admissible volume on W is determined
by its value at a parallelepiped corresponding to a basis for W , as in Subsection
4.14.1. If the n-dimensional volume of a parallelepiped in a Euclidean space has
already been defined, then one can use that to determine ΛW .

A.12 Traces and transposes of matrices

Letm and n be positive integers, and let a = (aj,l)
m,n
j,l=1 be anm×nmatrix of real

numbers. The transpose of a is defined to be the n×m matrix at = (atl,j)
n,m
l,j=1

of real numbers with
atl,j = aj,l(A.12.1)

for each j = 1, . . . ,m and l = 1, . . . , n. If m = n, then the trace of a is defined
as usual by

tr a =

n∑
j=1

aj,j .(A.12.2)

This defines a linear functional on the space Mn,n(R) of n × n matrices with
entries in R. Clearly

tr at = tr a(A.12.3)
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in this case.
Let r be another positive integer, and let b be an n×r matrix of real numbers.

If a is an m × n matrix of real numbers again, then a b is defined as an m × r
matrix of real numbers, by matrix multiplication. It is well known and not
difficult to check that

(a b)t = bt at,(A.12.4)

as r ×m matrices of real numbers.
Suppose that m = r, so that a b is an m ×m matrix of real numbers, and

b a is an n×n matrix of real numbers. Under these conditions, it is well known
and not difficult to verify that

tr(a b) = tr(b a) =

m∑
j=1

n∑
l=1

aj,l bl,j .(A.12.5)

Let In be the identity matrix in Mn,n(R), whose diagonal entries are equal
to 1, and whose other entries are equal to 0. If a ∈ Mn,n(R) and t ∈ R, then
put

pa(t) = det(In + t a),(A.12.6)

which is a polynomial in t with real coefficients. It is well known and not too
difficult to check that

p′a(0) = tr a.(A.12.7)

A.12.1 Traces of linear mappings

Let V be a vector space over the real numbers of dimension n, and let v1, . . . , vn
be a basis for V . If T is a linear mapping from V into itself, then T corresponds
to an n × n matrix c(T ) of real numbers with respect to this basis for V in a
standard way. The trace of T may be defined as a real number by

trT = tr c(T ).(A.12.8)

It is well known that this does not depend on the basis for V , and we shall
return to this in a moment.

Let W be a vector space over the real numbers of dimension m, and let
w1, . . . , wm be a basis for W . One can use this basis to define the trace of a
linear mapping from W into itself, as in the preceding paragraph. Let A be a
linear mapping from V into W , and let B be a linear mapping from W into V .
Using the bases for V and W , we can associate m × n and n ×m matrices a
and b of real numbers to A and B, respectively.

Of course, A◦B is a linear mapping from W into itself, and B ◦A is a linear
mapping from V into itself. These linear mappings correspond to the product
matrices a b and b a, respectively, with respect to the given bases on V and W .
It follows that

tr(A ◦B) = tr(B ◦A),(A.12.9)

because of (A.12.5).
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In particular, this holds with V = W , and vj = wj . If R is a one-to-one
linear mapping from V onto itself, then it follows that

tr(R ◦ T ◦R−1) = trT.(A.12.10)

One can use this to get that (A.12.8) does not depend on the particular basis
for V , by standard arguments.



Appendix B

Lie algebras

B.1 The definition and some examples

Let A be a vector space over the real numbers, and let [·, ·] = [·, ·]A be a bilinear
mapping from A×A into A. Thus, if x, y ∈ A, then [x, y] = [x, y]A is an element
of A too, and this is linear in each of x and y. We say that A is a Lie algebra over
the real numbers with respect to [·, ·] if the following two additional conditions
hold, as in Definition 3.4 on p84 of [183]. The first condition is that

[x, y] = −[y, x](B.1.1)

for every x, y ∈ A. The second condition is that

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0(B.1.2)

for every x, y, z ∈ A, which is known as the Jacobi identity.
Sometimes the Jacobi identity is formulated as saying that

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0(B.1.3)

for every x, y, z ∈ A. It is easy to see that this is equivalent to (B.1.2) when the
first condition (B.1.1) holds.

Of course, (B.1.1) implies that

[x, x] = 0(B.1.4)

for every x ∈ A. Conversely, if (B.1.4) holds for every x ∈ A, then one can
check that (B.1.1) holds for every x, y ∈ A, as in Section 1.7. The definition of
a Lie algebra is often formulated using (B.1.4) instead of (B.1.1), as on p1 of
[85], and Definition 1 on p2 of [159]. These formulations are used more broadly,
where (B.1.4) implies (B.1.1), but the converse may not hold.

If A is a Lie algebra with respect to [·, ·], then [·, ·] may be called the Lie
bracket on A. Of course, a Lie algebra over R is a particular type of algebra
over R in the strict sense, as in Section A.2. In particular, the notions of
homomorphisms and isomorphisms between Lie algebras may be defined in the
same way as before.

238
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B.1.1 Some examples of Lie algebras

Suppose for the moment that A is an associative algebra over the real numbers,
where multiplication of x, y ∈ A is expressed as x y. In this case, one can verify
that A is a Lie algebra with respect to

[x, y] = x y − y x.(B.1.5)

This corresponds to Example (iii) on p2 of [159].
Let V be a vector space over the real numbers, and let

L(V ) = L(V, V )(B.1.6)

be the space of linear mappings from V into itself. This is a vector space over
the real numbers, as in Section A.5. In fact, L(V ) is an associative algebra over
R, with composition of linear mappings as multiplication.

If R, T ∈ L(V ), then put

[R, T ] = [R, T ]L(V ) = R ◦ T − T ◦R,(B.1.7)

which is another element of L(V ). As before, L(V ) is a Lie algebra over R with
respect to (B.1.7). This is known as the general linear algebra associated to V ,
and denoted

gl(V ),(B.1.8)

as on p2 of [85]. Of course, this is the same as L(V ) as a vector space over R.
Let n be a positive integer, and let Mn,n(R) be the space of n× n matrices

with entries in R, as in Sections 5.1 and 5.2. This is a vector space over the
real numbers with respect to entrywise addition and scalar multiplication, and
an associative algebra over R with respect to matrix multiplication, as before.
The general linear algebra

gl(n,R)(B.1.9)

of n×n matrices with entries in R is the same asMn,n(R) as a vector space over
the real numbers, considered as a Lie algebra with respect to the corresponding
commutator bracket (B.1.5). This is example 3.5 (c) on p84 of [183].

There is a standard one-to-one correspondence between linear mappings from
Rn into itself, and n× n matrices of real numbers, using the standard basis for
Rn. This defines an isomorphism between L(Rn) andMn,n(R), as vector spaces
over R, and associative algebras over R. This also defines an isomorphism
between gl(Rn) and gl(n,R), as Lie algebras over R.

If A is any vector space over the real numbers, then A is a Lie algebra with
respect to the Lie bracket defined by putting

[x, y] = 0(B.1.10)

for every x, y ∈ A. In this case, we may say that A is abelian or commutative
as a Lie algebra, as in Section 1.4 on p4 of [85], Example (ii) on p2 of [159], and
example 3.5 (b) on p84 of [183].
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If (A, [·, ·]) is any Lie algebra over R, then A is commutative as an algebra
in the strict sense if and only if

[x, y] = [y, x](B.1.11)

for every x, y ∈ A, as in Section A.2. Of course, (B.1.1) and (B.1.11) imply
(B.1.10). However, this does not always work when considering vector spaces
over other fields, or modules over other commutative rings. In those cases, a
Lie algebra is considered to be abelian or commutative if the corresponding Lie
bracket is identically 0, and not merely symmetric. Thus a Lie algebra over
other fields or commutative rings could be commutative as an algebra in the
strict sense, and not commutative as a Lie algebra.

B.2 Subalgebras of Lie algebras

Let (A, [·, ·]) be a Lie algebra over the real numbers. If A0 is a linear subspace
of A such that

[x, y] ∈ A0(B.2.1)

for every x, y ∈ A0, then A0 is said to be a Lie subalgebra of A. This is the same
as saying that A0 is a subalgebra of A as an algebra in the strict sense over R,
as in Section A.2. It is easy to see that A0 is also a Lie algebra with respect to
the restriction of [x, y] to x, y ∈ A0 in this case.

Suppose for the moment that A is an associative algebra over R, with mul-
tiplication of x, y ∈ A expressed as x y. If A0 is a subalgebra of A, then A0

is also a subalgebra of A as a Lie algebra with respect to the corresponding
commutator bracket (B.1.5).

If n is a positive integer, then the special linear algebra

sl(n,R)(B.2.2)

consists of the n× n matrices a with entries in R such that

tr a = 0.(B.2.3)

It is easy to see that this is a Lie subalgebra of gl(n,R), using (A.12.5). More
precisely, if a, b are any n× n matrices of real numbers, then

a b− b a ∈ sl(n,R).(B.2.4)

Similarly, if V is a finite-dimensional vector space over the real numbers,
then the special linear algebra

sl(V )(B.2.5)

associated to V consists of the linear mappings T from V into itself such that

trT = 0.(B.2.6)
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If R and T are any linear mappings from V into itself, then

R ◦ T − T ◦R ∈ sl(V ),(B.2.7)

because of (A.12.9). In particular, sl(V ) is a Lie subalgebra of gl(V ), as on p2
of [85]. The isomorphism between gl(Rn) and gl(n,R), as Lie algebras over the
real numbers, mentioned in Subsection B.1.1 also maps sl(Rn) onto sl(n,R).

The orthogonal algebra
o(n,R)(B.2.8)

consists of the n×n matrices a of real numbers that are anti-symmetric, in the
sense that

at = −a.(B.2.9)

One can check that this is a Lie subalgebra of gl(n,R), using (A.12.4). More
precisely, this is a Lie subalgebra of sl(n,R).

Let V be a finite-dimensional vector space over the real numbers with an
inner product 〈·, ·〉V . If T is a linear mapping from V into itself, then the adjoint
T ∗ of T with respect to 〈·, ·〉V may be defined as a linear mapping from V into
itself as in Section A.9. Under these conditions, we say that T is anti-self-adjoint
if

T ∗ = −T.(B.2.10)

The orthogonal algebra
o(V )(B.2.11)

associated to 〈·, ·〉V on V consists of the anti-self-adjoint linear mappings from
V into itself. One can check that this is a Lie subalgebra of gl(V ), using (A.9.8).

If V = Rn with the standard inner product, then o(Rn) corresponds to
o(n,R) under the Lie algebra isomorphism between gl(Rn) and gl(n,R) men-
tioned in Subsection B.1.1. This follows from the fact that the adjoint of a
linear mapping from Rn into itself with respect to the standard inner product
corresponds to the transpose of the associated n× n matrix, as in Section A.9.

Let V be a vector space over the real numbers, and let b be a bilinear form
on V . Let us say that a linear mapping T from V into itself is anti-symmetric
with respect to b if

b(T (v), w) = −b(v, T (w))(B.2.12)

for every v, w ∈ V . One can check that the collection of these linear mappings
is a Lie subalgebra of gl(V ). This corresponds to part of Theorem 3.56 on p119
of [183].

B.3 Some linear mappings

Let V0 be a vector space over the real numbers. If R and T are linear mappings
from V0 into itself, then let [R, T ] put

[R, T ] = R ◦ T − T ◦R,(B.3.1)
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as in (B.1.7). If U is another linear mapping from V0 into itself, then

[[R, T ], U ] + [[T,U ], R] + [[U,R], T ] = 0,(B.3.2)

by the Jacobi identity, as in Section B.1.

Let V1, V2, V3 be linear subspaces of V , with

V3 ⊆ V2 ⊆ V1.(B.3.3)

Consider the space

L3,2(V1, V0)(B.3.4)

of linear mappings T from V1 into V0 such that

T (V3) ⊆ V2, T (V2) ⊆ V1.(B.3.5)

This is a linear subspace of the space L(V1, V0) of all linear mappings from V1
into V0.

Similarly, let

L3(V2, V0)(B.3.6)

be the space of linear mappings B from V2 into V0 such that

B(V3) ⊆ V1.(B.3.7)

This is a linear subspace of L(V2, V0). If R, T ∈ L3,2(V1, 0), then

R ◦ T ∈ L3(V2, V0).(B.3.8)

In this case, the commutator (B.3.1) of R and T is defined as a linear mapping
from V2 into V0, and in fact

[R, T ] ∈ L3(V2, V0).(B.3.9)

If R, T, U ∈ L3,2(V1, V0), then

R ◦ T ◦ U ∈ L(V3, V0).(B.3.10)

Similarly,

([R, T ]) ◦ U, U ◦ ([R, T ]) ∈ L(V3, V0),(B.3.11)

so that

[[R, T ], U ] = ([R, T ]) ◦ U − U ◦ ([R, T ]) ∈ L(V3, V0).(B.3.12)

One can check that (B.3.2) holds in L(V3, V0) under these conditions.
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B.4 Some more Lie subalgebras

Let (A, b) be an algebra in the strict sense over the real numbers, as in Section
A.2. Thus A is a vector space over the real numbers in particular, so that the
space L(A) of all linear mappings from A into itself is a vector space over R, and
an associative algebra over R with respect to composition of linear mappings.
Similarly gl(A) is a Lie algebra over R with respect to the usual commutator
of linear mappings, as in Section B.2.

Let
Der(A) = Der(A, b)(B.4.1)

be the space of derivations on A with respect to b, as in Subsection A.2.1. It is
easy to see that this is a linear subspace of L(A). In fact, one can check that

Der(A) is a subalgebra of gl(A),(B.4.2)

as a Lie algebra over R. This corresponds to a remark on p4 of [85], to Example
(iv) on p2 of [159], and to part of Theorem 3.54 on p117 of [183].

Suppose for the moment that A is an associative algebra, where multiplica-
tion of x, y in A is expressed as x y. If a ∈ A, then put

δa(x) = [a, x] = a x− x a(B.4.3)

for each x ∈ A. One can check that

δa ∈ Der(A).(B.4.4)

More precisely, δa is called an inner derivation of A. Note that

a 7→ δa(B.4.5)

defines a linear mapping from A into Der(A).
If b ∈ A too, then one can verify that

δa ◦ δb − δb ◦ δa = δ[a,b].(B.4.6)

This implies that
{δa : a ∈ A}(B.4.7)

is a Lie subalgebra of Der(A).
Suppose now that (A, [·, ·]A) is a Lie algebra over the real numbers. In

particular, A is an algebra over R in the strict sense, so that the previous
notions and remarks about algebras in the strict sense may be used in this case.
Thus a linear mapping δ from A into itself is a derivation of A as a Lie algebra
if

δ([x, y]A) = [δ(x), y]A + [x, δ(y)]A(B.4.8)

for every x, y ∈ A, as in Subsection A.2.1.
If x ∈ A, then let ad x = adx be the linear mapping from A into itself defined

by
adx(y) = [x, y]A(B.4.9)
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for every y ∈ A. One can check that

adx ∈ Der(A),(B.4.10)

using the Jacobi identity. This corresponds to a remark on p4 of [85], and the
first part of Theorem 3 on p3 of [159]. In fact, adx is called an inner derivation of
A, as on p4 of [85]. It is sometimes convenient to use the notation adA x = adA,x
for adx, to indicate the role of A.

Clearly
x 7→ adx(B.4.11)

is a linear mapping from A into Der(A). One can check that

adx ◦ ady − ady ◦ adx = ad[x,y]A(B.4.12)

for every x, y ∈ A, using the Jacobi identity. This corresponds to a remark on
p8 of [85], and to the second part of Theorem 3 on p3 of [159]. It follows that

{adx : x ∈ A}(B.4.13)

is a Lie subalgebra of Der(A).

B.5 Some multiplication operators

Let (A, b) be an algebra over the real numbers in the strict sense, as in Section
A.2. If a ∈ A, then put

La(x) = b(a, x)(B.5.1)

and
Ra(x) = b(x, a)(B.5.2)

for every x ∈ A. These define linear mappings from A into itself, which are the
left and right multiplication operators on A associated to a, respectively. Note
that

a 7→ La(B.5.3)

and
a 7→ Ra(B.5.4)

define linear mappings from A into the space L(A) of all linear mappings from
A into itself.

Suppose for the moment that A has a multipicative identity element e with
respect to b. In this case,

La(e) = Ra(e) = a(B.5.5)

for every a ∈ A. In particular, this means that (B.5.3) and (B.5.4) are one-to-one
mappings from A into L(A).

Let δ be a derivation on A with respect to b. It is easy to see that

δ ◦ La − La ◦ δ = Lδ(a)(B.5.6)
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for every a ∈ A. Similarly,

δ ◦Ra −Ra ◦ δ = Rδ(a)(B.5.7)

for every a ∈ A.
Of course, if A is commutative with respect to b, then La and Ra are the

same. If (A, [·, ·]A) is a Lie algebra over R, then

La = ada(B.5.8)

and
Ra = −ada(B.5.9)

for every a ∈ A.

B.5.1 Multiplication operators on associative algebras

Suppose now that A is an associative algebra over the real numbers, where
multiplication of x, y ∈ A is expressed as x y. Thus

La(x) = a x(B.5.10)

and
Ra(x) = a x(B.5.11)

for all a, x ∈ A. If a1, a2 ∈ A, then

La1 a2(x) = (a1 a2)x = a1 (a2 x) = La1(La2(x))(B.5.12)

for every x ∈ A. This means that

La1 a2 = La1 ◦ La2(B.5.13)

on A.
Similarly,

Ra1 a2(x) = x (a1 a2) = (x a1) a2 = Ra2(Ra1(x))(B.5.14)

for every x ∈ A. This is the same as saying that

Ra1 a2 = Ra2 ◦Ra1(B.5.15)

on A. Observe that

La1(Ra2(x)) = a1 (x a2) = (a1 x) a2 = Ra2(La1(x))(B.5.16)

for every x ∈ A. This shows that

La1 ◦Ra2 = Ra2 La1(B.5.17)

on A.
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If a ∈ A, then put

δa = La −Ra,(B.5.18)

as in (B.4.3). If δ is a derivation on A, then

δ ◦ δa − δa ◦ δ = δδ(a),(B.5.19)

because of (B.5.6) and (B.5.7).

Suppose that A is commutative as well. If δ is a derivation on A, then it is
easy to see that

La ◦ δ ∈ Der(A)(B.5.20)

for every a ∈ A.

B.6 Ideals in algebras over R

Let (A, b) be an algebra over the real numbers in the strict sense again, as in
Section A.2. A linear subspace A0 of A is said to be a left ideal in A with respect
to b if

b(x, y) ∈ A0(B.6.1)

for every x ∈ A and y ∈ A0. Similarly, A0 is said to be a right ideal in A if
(B.6.1) holds for every x ∈ A0 and y ∈ A. If A0 is both a left and right ideal in
A0, then A0 is said to be a two-sided ideal in A. Of course, if A is commutative
with respect to b, then left and right ideals in A are the same.

If A0 is a left or right ideal in A, then A0 is a subalgebra of A. It is easy
to see that the kernel of a homomorphism from A into another algebra in the
strict sense over R is a two-sided ideal in A.

Let A0 be a linear subspace of A. One can define the quotient space A/A0

as a vector space over the real numbers in a standard way. This includes a
quotient mapping q, which is a linear mapping from A onto A/A0 with

ker q = A0.(B.6.2)

If A0 is a two-sided ideal in A, then it is not too difficult to show that there is
a unique bilinear mapping b0 from (A/A0)× (A/A0) into A/A0 such that

q(b(x, y)) = b0(q(x), q(y))(B.6.3)

for every x, y ∈ A. This means that A/A0 is an algebra in the strict sense over
the real numbers with respect to b0, and that q is an algebra homomorphism
from A onto A/A0. This corresponds to a remark on p2 of [159].

If A is commutative or associative, then it is easy to see that A/A0 has the
same property. If A has a multiplicative identity element e with respect to b,
then q(e) is the multiplicative identity element in A/A0 with respect to b0.
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B.6.1 Ideals in Lie algebras

Let (A, [·, ·]A) be a Lie algebra over the real numbers. A linear subspace A0 of
A is said to be an ideal in A if

[x, y]A ∈ A0(B.6.4)

for every x ∈ A and y ∈ A0, as on p6 of [85]. This is the same as being a left,
right, or two-sided ideal in A, because of the antisymmetry of the Lie bracket.
It is easy to see that A/A0 is also a Lie algebra in this case, as on p7 of [85].

If n is a positive integer, then sl(n,R) is an ideal in gl(n,R). Similarly, if
V is a finite-dimensional vector space over R, then sl(V ) is an ideal in gl(V ).

If B is an associative algebra over R, then the set Der(B) of derivations on
B is a Lie subalgebra of gl(B), as in Section B.4. We have also seen that the
set of derivations on B defined by commutators with elements of B is a Lie
subalgebra of Der(B). In fact, this is an ideal in Der(B), as a Lie algebra over
R, as in (B.5.19).

Similarly, the set Der(A) of derivations on A as a Lie algebra is a Lie subal-
gebra of gl(A), and the set (B.4.13) of derivations on A of the form adx, x ∈ A,
is a Lie subalgebra of Der(A). More precisely, (B.4.13) is an ideal in Der(A),
because of (B.5.6). This corresponds to Exercise 1 on p9 of [85].

The center of an associative algebra B is defined to be the set of elements
of B that commute witl all other elements of B. It is easy to see that this is a
subalgebra of B. The center of A as a Lie algebra is defined by

Z(A) = {x ∈ A : [x, y]A = 0 for all y ∈ A}.(B.6.5)

This is an ideal in A, as mentioned on p6 of [85].

B.7 Representations

Let (A, [·, ·]A) be a Lie algebra over the real numbers, and let V be a vector space
over R. A representation of A on V is defined to be a homomorphism from A
into the Lie algebra gl(V ) of linear mappings from V into itself. If ρ is such a
representation, then we may use ρx for the linear mapping on V corresponding
to x ∈ A. In order for ρ to be a representation of A as a Lie algebra on V , we
should have that

x 7→ ρx(B.7.1)

is linear as a mapping from A into the space of linear mappings on V , and that

ρ[x,y]A = ρx ◦ ρy − ρy ◦ ρx,(B.7.2)

as linear mappings from V into itself, for every x, y ∈ A.
Under these conditions, we may say that V is a module over A, as a Lie

algebra over R. We may also put

x · v = ρx(v)(B.7.3)
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for each x ∈ A and v ∈ V , which is another element of V . Using this notation,
the condition that (B.7.1) be a linear mapping from A into the space of linear
mappings on V is equivalent to asking that

(x, v) 7→ x · v(B.7.4)

be a bilinear mapping from A × V into V . Similarly, (B.7.2) is the same as
saying that

([x, y]A) · v = x · (y · v)− y · (x · v)(B.7.5)

for every x, y ∈ A and v ∈ V .
This corresponds to some remarks on p8, 25 of [85], p31 of [159], and p90 of

[183].

B.7.1 Representations of associative algebras

Suppose now that A is an associative algebra over the real numbers, where
multiplication of x, y ∈ A is expressed as x y. A representation of A on a vector
space V over the real numbers is defined to be a homomorphism from A into the
algebra L(V ) of linear mappings from V into itself. If ρ is such a representation,
then we may use ρx for the linear mapping on V corresponding to x ∈ A, as
before. In order for ρ to be a representation of A as an associative algebra on
V , we should have that x 7→ ρx is linear as a mapping from A into L(V ), and
that

ρx y = ρx ◦ ρy,(B.7.6)

as linear mappings from V into itself, for every x, y ∈ A.
Remember that A may also be considered as a Lie algebra over R with

respect to the corresponding commutator bracket, as in Subsection B.1.1. If
ρ is a representation of A as an associative algebra on V , then ρ may also be
considered as a representation of A as a Lie algebra on V .

If ρ is a representation of A, as an associative algebra over R, on V , then
we may say that V is a left module over A. We may use the notation x · v for
ρx(v) when x ∈ A and v ∈ V , as before. With this notation, the linearity of
x 7→ ρx as a mapping from A into L(V ) is equivalent to the bilinearity of x ·v as
a mapping from A×V into V , as before. We also have that (B.7.6) is equivalent
to the condition that

(x y) · v = x · (y · v)(B.7.7)

for every x, y ∈ A and v ∈ V . If A has a multiplicative identity element e, then
one may ask that

e · v = v(B.7.8)

for every v ∈ V too, so that ρe is the identity mapping on V .
We may consider A as a left module over itself, using multiplication in the

algebra. This corresponds to the mapping that sends a ∈ A to the left multipli-
cation operator La on A, as in Subsection B.5.1.
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B.7.2 Right modules over associative algebras

Let V be a vector space over the real numbers again, and suppose that v · x is
defined as an element of V for every x ∈ A and v ∈ V . More precisely, we ask
that

(v, x) 7→ v · x(B.7.9)

be a bilinear mapping from V ×A into V . If

(v · x) · y = v · (x y)(B.7.10)

for all x, y ∈ A and v ∈ V , then we say that V is a right module over A. If A
has a multiplicative identity element e, then one may ask that

v · e = v(B.7.11)

for every v ∈ V as well.
It is easy to see that A may be considered as a right module over itself, using

multiplication in the algebra.
Suppose that V is a right module over A, and put

x · v = −v · x(B.7.12)

for every x ∈ X and v ∈ V . One can check that V is a module over A, as a Lie
algebra with respect to the corresponding commutator bracket, in this way.

B.8 More on representations

Let (A, [·, ·]A) be a Lie algebra over the real numbers, and let V be a vector space
over the real numbers. The trivial representation sends every element of A to
the linear mapping equal to 0 on V . In particular, R may be considered as a
module over A with respect to the trivial representation. We shall normally only
be concerned with trivial representations of Lie algebras on R, unless otherwise
indicated, as on p31 of [159].

As in Section B.4, we put adx(y) = [x, y]A for every x, y ∈ A. This defines a
representation of A on itself, as before. This is called the adjoint representation
of A. Note that the kernel of

x 7→ adx(B.8.1)

is the center Z(A) of A as a Lie algebra, defined in Subsection B.6.1, as men-
tioned on p8 of [85].

B.8.1 Subrepresentations

Let ρ be any representation of A on V , and let W be a linear subspace of V . If

ρx(W ) ⊆W(B.8.2)
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for every x ∈ A, then the restriction of ρx to W defines a representation of A
on W . This is called a subrepresentation of ρ. Equivalently, W is said to be a
submodule of V , as a module over A. An ideal in A is the same as a submodule
of A as a module over itself with respect to the adjoint representation.

Now let A be an associative algebra over R, where multiplication of x, y ∈ A
is expressed as x y, and let ρ be a representation of A on V , as in Subsection
B.7.1. If W is a linear subspace of V that satisfies (B.8.2) for every x ∈ A,
then the restriction of ρx to W defines a representation of A on W , called a
subrepresentation of ρ again. We may also call W a submodule of V , as a left
module over A. A left ideal in A is the same as a submodule of A as a left
module over itself, using multiplication on A, as in Subsection B.7.1.

Suppose that V is a right module over A, as in Subsection B.7.2. If

w · x ∈W(B.8.3)

for every w ∈ W and x ∈ A, then W is said to be a submodule of V , as a right
module over A. A right ideal in A is the same as a submodule of A as a right
module over itself, using multiplication on A, as in Subsection B.7.2.

B.8.2 Direct sums of representations

Let V1, . . . , VN be finitely many vector spaces over the real numbers, so that their
direct sum

⊕N
j=1 Vj may be defined as a vector space over the real numbers as

in Section 2.1. If (A, [·, ·]A) is a Lie algebra over R and Vj is a module over A

for each j, then
⊕N

j=1 Vj may be considered as a module over A in a natural
way too, so that

Vl corresponds to a submodule of

N⊕
j=1

Vj(B.8.4)

for each l. Similarly, if A is an associative algebra over R and Vj is a left module

over A for each j, then
⊕N

j=1 Vj is a left module over A in a natural way. If Vj

is a right module over A for each j, then
⊕N

j=1 Vj is a right module over A in
a natural way.

If Vj is a vector space over R for each nonnegative integer j, then the direct
sum

⊕∞
j=0 Vj and direct product

∏∞
j=0 Vj of the Vj ’s may be defined as vector

space over R as in Section A.4. If A is a Lie algebra again and Aj is a module
over A for each j, then it is easy to see that

∏∞
j=0 Vj is a module over A too,

where the action of x ∈ A on an element of
∏∞
j=0 Vj is defined coordinatewise.

In this case,
∞⊕
j=0

Vj is a submodule of

∞∏
j=0

Vj ,(B.8.5)

as a module over A. There are analogous statements for left and right modules
over associative algebras, as before.
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B.8.3 Representations and dual spaces

Let V be a vector space over the real numbers, and let V ∗ be the dual space
of linear functionals on V , as in Section A.3. If T is a linear mapping from V
into itself, then T ∗(λ) = λ ◦ T defines a linear mapping from V ∗ into itself, as
in Subsection A.3.1. If R is another linear mapping from V into itself, then we
have seen that

(R ◦ T )∗ = T ∗ ◦R∗.(B.8.6)

This implies that

(R ◦ T − T ◦R)∗ = −(R∗ ◦ T ∗ − T ∗ ◦R∗).(B.8.7)

Note that T 7→ T ∗ defines a linear mapping from L(V ) into itself.
Let A be an associative algebra over R again, and suppose for the moment

that V is a left module over A. If x ∈ A and λ ∈ V ∗, then put

(λ · x)(v) = λ(x · v)(B.8.8)

for every v ∈ V . This defines λ ·x as a linear functional on V , and one can check
that V ∗ is a right module over A in this way, using the remarks in the preceding
paragraph. Equivalently, if Tx is the linear mapping from V into itself defined
by

Tx(v) = x · v,(B.8.9)

then
λ · x = T ∗

x (λ)(B.8.10)

for every x ∈ A and λ ∈ V ∗.
Similarly, suppose that V is a right module over A. If x ∈ A and v ∈ V ,

then put
(x · λ)(v) = λ(v · x)(B.8.11)

for every v ∈ V , which defines a linear functional on V . One can check that V ∗

is a left module over A in this way.
Let (A, [·, ·]A) be a Lie algebra over R, and let ρ = ρV be a representation

of A on V . If x ∈ A, then ρx is a linear mapping from V into itself, so that the
dual linear mapping (ρx)

∗ is defined on V ∗ as before. One can check that

ρV
∗

x = −(ρx)
∗(B.8.12)

defines a representation of A on V . Equivalently, if x ∈ A acts on V as in
(B.7.3), and λ ∈ V ∗, then put

(x · λ)(v) = −λ(x · v)(B.8.13)

for each v ∈ V . One can verify that V ∗ is a module over A in this way, as before.
This is the dual representation or module of A associated to V , as on p26 of
[85]. This is related to some remarks on p31 of [159], which will be discussed
further in the next section.
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B.8.4 Commuting representations of Lie algebras

Let (A, [·, ·]A) be a Lie algebra over R again, and let ρ1, . . . , ρn be finitely many
representations of A on V . Suppose that these representations commute with
each other, in the sense that

ρjx ◦ ρly = ρly ◦ ρjx(B.8.14)

on V for all x, y ∈ A and j, l = 1, . . . , n. Under these conditions, one can check
that

ρx =

n∑
j=1

ρjx(B.8.15)

defines a representation of A on V .

B.9 Representations and multilinear mappings

Let (A, [·, ·]A) be a Lie algebra over the real numbers, let k be a positive integer,
and let V1, . . . , Vk and Z be vector spaces over R. Suppose that

ρVl(B.9.1)

is a representation of A on Vl for each l = 1, . . . , k, and that

ρZ(B.9.2)

is a representation of A on Z. It will be convenient to express the actions of
x ∈ A on V1, . . . , Vk and Z as in (B.7.3).

Remember that

L(V1, . . . , Vk;Z)(B.9.3)

denotes the space of multilinear mappings from
∏k
l=1 Vl into Z, as in Section

9.2. We would like to define representations

ρ1, . . . , ρk and ρ0(B.9.4)

on (B.9.3) corresponding to ρV1 , . . . , ρVk and ρZ , respectively, as follows. If µ

is a multilinear mapping from
∏k
l=1 Vl into Z and x ∈ A, then let ρ0x(µ) be the

multilinear mapping from
∏k
l=1 Vl into Z defined by

(ρ0x(µ))(v1, . . . , vk) = x · µ(v1, . . . , vk)(B.9.5)

for each v1, . . . , vk in V1, . . . , Vk, respectively. Equivalently,

ρ0x(µ) = ρZx ◦ µ(B.9.6)

on
∏k
l=1 Vl. It is easy to see that this defines a representation ρ0 of A on (B.9.3).
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Similarly, for each l = 1, . . . , k, let ρlx(µ) be the multilinear mapping from∏k
l=1 Vl into Z defined by

(ρlx(µ))(v1, . . . , vk) = −µ(v1, . . . , vl−1, x · vl, vl+1, . . . , vk)(B.9.7)

= −µ(v1, . . . , vl−1, ρ
Vl
x (vl), vl+1, . . . , vk)

for every v1, . . . , vk in V1, . . . , Vk, respectively. One can check that this defines
a representation ρl of A on (B.9.3) as well. This is related to the remarks in
Subsection B.8.3.

It is easy to see that these representations on (B.9.3) commute with each
other, as in (B.8.14). This implies that

ρ =

k∑
l=0

ρl(B.9.8)

defines a representation of A on (B.9.3) too, as in (B.8.15). This corresponds
to some remarks on p27 of [85], and on p31 of [159].

This is a bit simpler when k = 1, so that (B.9.3) is the same as the space

L(V1, Z)(B.9.9)

of linear mappings from V1 into Z. In this case,

ρ1x(µ) = −µ ◦ ρV1
x(B.9.10)

for every x ∈ A and linear mapping µ from V1 into Z.

B.9.1 Representations on Mk(V, Z)

Let V be a vector space over the real numbers, and suppose that

Vl = V(B.9.11)

for each l = 1, . . . , k. This means that (B.9.3) is the same as the space

Mk(V, Z)(B.9.12)

of multilinear mappings from V k into Z, as in Section 9.2. Also let ρV be a
representation of A on V , and suppose that

ρVl = ρV(B.9.13)

for each l = 1, . . . , k.
Let µ be a multilinear mapping from V k into Z, and let σ be a permuta-

tion on {1, . . . , k}. Remember that µσ may be defined as another element of
Mk(V, Z) as in Section 9.2. It is easy to see that

ρ0x(µ
σ) = (ρ0x(µ))

σ(B.9.14)
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for every x ∈ A. If x ∈ A and 1 ≤ l ≤ k, then

(ρlx(µ
σ))(v1, . . . , vk)

= −µσ(v1, . . . , vl−1, x · vl, vl+1, . . . , vk)(B.9.15)

= −µ(vσ(1), . . . , vσ(σ−1(l)−1), x · vl, vσ(σ−1(l)+1), . . . , vσ(k))

= (ρσ
−1(l)
x (µ))(vσ(1), . . . , vσ(k)) = (ρσ

−1(l)
x (µ))σ(v1, . . . , vk)

for every v1, . . . , vk ∈ V . Thus

ρlx(µ
σ) = (ρσ

−1(l)
x (µ))σ.(B.9.16)

One can use (B.9.14), (B.9.16), and the definition (B.9.8) of ρ to get that

ρx(µ
σ) = (ρx(µ))

σ.(B.9.17)

If µ is symmetric or antisymmetric on V k, as in Section 9.2, then it follows that
ρx(µ) has the same property. This means that

ρx(SMk(V, Z)) ⊆ SMk(V, Z)(B.9.18)

and
ρx(AMk(V, Z)) ⊆ SMk(V, Z),(B.9.19)

where AMk(V, Z) and SMk(V, Z) are as in Section 9.2. Thus SMk(V, Z) and
AMk(V, Z) are submodules of Mk(V, Z), as a module over A with respect to
ρ, as in Subsection B.8.1.

B.10 Homomorphisms between representations

Let (A, [·, ·]A) be a Lie algebra over the real numbers, let V , W be vector spaces
over the real numbers, and let ρV , ρW be representations of A on V , W , respec-
tively. A linear mapping ϕ from V into W is said to define a homomorphism
between these representations if

ϕ ◦ ρVx = ρWx ◦ ϕ(B.10.1)

for every x ∈ A. Equivalently, this means that

ϕ(x · v) = x · ϕ(v)(B.10.2)

for every x ∈ A and v ∈ V , where the actions of x on v and ϕ(v) are defined
using ρVx and ρWx , as in Section B.7. We may also say that ϕ is a homomorphism
from V into W as modules over A under these conditions, as on p25 of [85], and
on p31 of [159].

Let W0 be a linear subspace of W that is a submodule of W , as a module
over A, as in Subsection B.8.1. In this case, the obvious inclusion mapping from
W0 into W is a module homomorphism.
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If ϕ is a homomorphism from V into W , as modules over A, then it is easy
to see that

kerϕ is a submodule of V,(B.10.3)

as a module over A. Similarly,

ϕ(V ) is a submodule of W,(B.10.4)

as a module over A.
Let Z be another module over A, and let ψ be a homomorphism from W

into Z, as modules over A. One can check that

ψ ◦ ϕ is a homomorphism from V into Z,(B.10.5)

as modules over A.
If ϕ is a homomorphism from V into W , as modules over A, and ϕ is a

one-to-one mapping from V onto W , then

ϕ−1 is a homomorphism from W onto V,(B.10.6)

as modules over A. Under these conditions, we say that ϕ is an isomorphism
from V onto W , as modules over A, or equivalently that ϕ is an isomorphism
between these representations of A. Of course, this means that ϕ−1 is an iso-
morphism from W onto V , as modules over A. If ψ is also an isomorphism from
W onto Z, as modules over A, then

ψ ◦ ϕ is an isomorphism from V onto Z,(B.10.7)

as modules over A.
Let V0 be a linear subspave of V that is a submodule of V , as a module

over A. The quotient space V/V0 can be defined as a vector space over the real
numbers in the usual way, with the corresponding quotient mapping q from V
onto V/V0 with kernel V0. If x ∈ A and v ∈ V , then we would like to put

x · q(v) = q(x · v).(B.10.8)

It is easy to see that the right side depends only on x and q(v), because V0 is a
submodule of V .

One can check that V/V0 is a module over A with respect to (B.10.8). This
may be described as a quotient module or quotient representation. Of course, q
is a homomorphism from V onto V/V0, as modules over A, by construction.

B.10.1 Modules over associative algebras

Now let A be an associative algebra over the real numbers, where multiplication
of x, y ∈ A is expressed as x y, let V , W be vector spaces over the real numbers,
and let ϕ be a linear mapping from V intoW . If V andW are left nodules over A,
and ϕ intertwines the corresponding representations of A, then we say that ϕ is
a homomorphism between these representations, or equivalent a homomorphism
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from V intoW , as left modules over A. Similarly, if V andW are right modules
over A, and if

ϕ(v · x) = ϕ(v) · x(B.10.9)

for every x ∈ A and v ∈ V , then we say that ϕ is a homomorphism from V into
W , as right modules over A.

B.11 Invariant elements

Let A be an associative algebra over the real numbers, where multiplication of
x, y ∈ A is expressed as x y, and let V be a vector space over R. If v ∈ V and
V is a left module over A, then it is easy to see that

{x ∈ A : x · v = 0}(B.11.1)

is a left ideal in A. Similarly, if V is a right module over A, then

{x ∈ A : v · x = 0}(B.11.2)

is a right ideal in A.

Suppose now that (A, [·, ·]A) is a Lie algebra over R, and that V is a module
over A. If v ∈ V , then one can check that (B.11.1) is a subalgebra of A.

An element v of V is said to be invariant under the representation of A on
V if

x · v = 0(B.11.3)

for every x ∈ A, as on p31 of [159]. The collection of invariant elements of V is
a linear subspace of V , and a submodule of V , as a module over A.

B.11.1 Invariant linear mappings

Let V and W be vector spaces over the real numbers that are also modules over
A. The space L(V,W ) of linear mappings from V into W may be considered as
a module over A as well, as in Section B.9. More precisely, if T ∈ L(V,W ) and
x ∈ A, then

x · T ∈ L(V,W )(B.11.4)

is defined by putting

(x · T )(v) = x · (T (v))− T (x · v)(B.11.5)

for every v ∈ V , as before. It is easy to see that T is an invariant element
of L(V,W ) with respect to this representation of A if and only if T is a ho-
momorphism from V into W , as modules over A, as in Example 1 on p31 of
[159].
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B.11.2 Invariant bilinear forms

Let V and W be modules over A again, and consider the space

L(V,W ;R)(B.11.6)

of all bilinear mappings from V × W into R. This may be considered as a
module over A too, as in Section B.9, using the trivial representation of A on
R. If β ∈ L(V,W ;R) and x ∈ A, then

x · β ∈ L(V,W ;R)(B.11.7)

is defined by
(x · β)(v, w) = −β(x · v, w)− β(v, x · w)(B.11.8)

for every v ∈ V and w ∈ W . It follows that β is invariant with respect to this
representation of A if and only if

β(x · v, w) = −β(v, x · w)(B.11.9)

for every x ∈ A, v ∈ V , and w ∈ W , as in Example 2 on p31 of [159]. If
V = W = A, considered as a module over itself with respect to the adjoint
representation, then this corresponds to the condition that a bilinear form on
A be associative, as on p21 of [85].



Appendix C

Complex numbers and
complex analysis

C.1 Complex numbers

A complex number z can be expressed in a unique way as

z = x+ y i,(C.1.1)

with x, y ∈ R, and where i2 = −1. We may call x and y the real and imaginary
of Z, respectively, and these may be denoted Re z and Im z, respectively. The
set of complex numbers is denoted C, and addition and multiplication on R can
be extended to C in a standard way. Note that addition and multiplication on
C satisfy the usual commutativity, associativity, and distributivity properties.

If z ∈ C is as in (C.1.1), then the complex conjugate of z is defined by

z = x− y i.(C.1.2)

If w is another complex number, then one can check that

z + w = z + w(C.1.3)

and
z w = z w.(C.1.4)

The absolute value or modulus is defined by

|z| = (x2 + y2)1/2,(C.1.5)

using the nonnegative square root on the right side. If z ∈ R, then this is the
same as the absolute value of z as a real number.

Observe that
z z = |z|2(C.1.6)

258
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for every z ∈ C. One can use this and (C.1.4) to get that

|z w| = |z| |w|(C.1.7)

for every z, w ∈ C. If z 6= 0, then |z| > 0, one can check that

1

z
=

z

|z|2
(C.1.8)

is the multiplicative inverse of z in C. This means that C is a field, although
we shall not discuss this in detail here.

If z ∈ C is as in (C.1.1), then we may identify z with (x, y) ∈ R2. Note that
addition of complex numbers corresponds to addition on R2, and that (C.1.5)
is the same as the standard Euclidean norm of (x, y) in R2. Similarly, we may
identify the complex plane C with R2 as a metric space, with respect to the
standard Euclidean metric.

C.1.1 Complex vector spaces

One can define the notion of a vector space over the complex numbers in essen-
tially the same way as for vector spaces over the real numbers, using complex
numbers as the scalars instead of real numbers, although we shall not discuss
this in detail here. If n is a positive integer, then the space Cn of n-tuples of
complex numbers is a vector space over C, with respect to coordinatewise addi-
tion and scalar multiplication. Similarly, if X is a nonempty set, then the space
of all complex-valued functions on X is a vector space over C, with respect to
pointwise addition and scalar multiplication.

Note that any vector space over the complex numbers may be considered as
a vector space over the real numbers, by simply not using multiplication by i.
In particular, C may be considered as a two-dimensional vector space over R,
which may be identified with R2, as before.

If V and W are vector spaces over the complex numbers, then the notion of
a linear mapping from V into W , as vector spaces over the complex numbers,
may be defined in the usual way. We may also consider linear mappings from
V into W as vector spaces over R. In order to be precise, we may refer to a
mapping T from V into W as being real-linear if T is linear as a mapping from
V into W when they are considered as vector spaces over the real numbers, and
we may say that T is complex-linear if T is linear as a mapping from V into W
when they are considered as vector spaces over the complex numbers. Thus T
is complex-linear if and only if T is real-linear and

T (i v) = i T (v)(C.1.9)

for every v ∈ V . A complex-linear mapping from C into itself corresponds to
multiplication by a complex number, for instance, and a real-linear mapping
from C into itself is really the same as a linear mapping from R2 into itself.
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C.2 Complex derivatives

Let U be a nonempty open subset of the complex plane, and let f be a complex-
valued function on U . The complex derivative of f at a point z ∈ U is defined
by

f ′(z) = lim
w→z

f(w)− f(z)

w − z
,(C.2.1)

when the limit on the right exists. If the complex derivative of f exists at every
z ∈ U , then f is said to be complex analytic or holomorphic on U .

A complex-valued function on U corresponds to a mapping from U into R2,
using the usual identification between C and R2. If the complex derivative of
f at z ∈ U exists, then one can check that f is differentiable at z as a mapping
from U into R2, as in Section 3.8. In this case, the differential of f at z is the
linear mapping from R2 into itself that corresponds to

multiplication by f ′(z) on C,(C.2.2)

which is a complex-linear mapping from C into itself.
Conversely, suppose that f is differentiable at z as a mapping from U into

R2, as in Section 3.8, and that

the differential of f at z is complex-linear,(C.2.3)

when considered as a mapping from C into itself. This means that

the differential of f at z corresponds to(C.2.4)

multiplication by a complex number on C,

and one can verify that the complex derivative of f at z exists and is equal to
that complex number.

The condition (C.2.3) is characterized by a first-order linear system of partial
differential equations in the real and imaginary parts of f , which are known as
the Cauchy–Rieamann equations.

C.2.1 More on holomorphic functions

If f is complex analytic on U , then it is well known that

the complex derivatives of f of all orders exist on U.(C.2.5)

In particular, this implies that f is infinitely differentiable on U , as a mapping
from U into R2.

Let g be another complex-valued function on U . If the complex derivatives
of f and g exist at z ∈ U , then one can show that the complex derivatives of
f + g and f g exist at z, with

(f + g)′(z) = f ′(z) + g′(z)(C.2.6)



C.2. COMPLEX DERIVATIVES 261

and
(f g)′(z) = f ′(z) g(z) + f(z) g′(z).(C.2.7)

If f and g are both holomorphic on U , then it follows that

f + g and f g are holomorphic on U(C.2.8)

as well.
Of course, constant functions are holomorphic on C, with complex derivative

equal to 0. It is easy to see that the identity mapping on C is holomorphic,
with complex derivative equal to 1. Using this and (C.2.8), we get that

all polynomials in z with complex coefficients are holomorphic on C.(C.2.9)

Suppose that f is not equal to 0 at any point in U , so that 1/f defines
a complex-valued function on U too. If the complex derivative of f exists at
z ∈ U , then one can show that the complex derivative of 1/f exists at z, with

(1/f)′(z) = − f ′(z)

f(z)2
.(C.2.10)

This implies that

1/f is holomorphic on U when f is holomorphic on U.(C.2.11)

One can use this to get that rational functions of z are holomorphic on the set
where the denominator is not zero.

C.2.2 Some related differential operators

Let f be a complex-valued function on U again. If U is considered as an open
set in R2, then the partial derivatives

∂f/∂x and ∂f/∂y(C.2.12)

may be defined as complex numbers, when they exist, in the same way as for
real-valued functions on U . This is the same as taking the partial derivatives of
f as a function on U with values in R2, and interpreting the partial derivatives,
when they exist, as complex numbers.

Put
∂f

∂z
=

1

2

(∂f
∂x

− i
∂f

∂y

)
(C.2.13)

and
∂f

∂z
=

1

2

(∂f
∂x

+ i
∂f

∂y

)
,(C.2.14)

when the partial derivatives on the right sides of these equations exist. We
may be particularly concerned with these expresseions at points where f is
differentiable as a mapping from U into R2. One can check that

∂f

∂z
= 0(C.2.15)
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is equivalent to the system of Cauchy–Riemann equations for the real and imag-
inary parts of f . If the complex derivative of f at a point z ∈ U exists, then
one can verify that

f ′(z) =
∂f

∂z
(z).(C.2.16)

C.3 Complex differential forms

Let k be a positive integer, and let V be a vector space over the real numbers.
Consider the space

Mk(V,C)(C.3.1)

of multilinear mappings from the space V k of k-tuples of eleents of V into C, as
a vector space over the real numbers. This is the same as in Section 9.2, with
Z = C, as a vector space over the real numbers.

The elements of (C.3.1) may be described as complex-valued k-linear forms
on V . Note that a complex-valued function on V k is an element of (C.3.1) if
and only if its real and imaginary parts are real-valued k-linear forms on V .

It is easy to see that (C.3.1) is a linear subspace of the space of all complex-
valued functions on V k, as a vector space over the complex numbers with respect
to pointwise addition and scalar multiplication of functions. This means that
(C.3.1) may be considered as a vector space over the complex numbers, with
respect to pointwise addition and scalar multiplication on V k.

Basically everything that we did before for ordinary differential forms can
be extended to differential forms with complex-valued coefficients.

C.3.1 Complex differential forms on C

In particular,

dz = dx+ i dy and dz = dx− i dy(C.3.2)

may be considered as differential 1-forms on the the complex plane with complex
coefficients. Observe that

dz ∧ dz = dz ∧ dz = 0(C.3.3)

and

dz ∧ dz = −dz ∧ dz = −2 i dx ∧ dy.(C.3.4)

Of course,

dx = (1/2) (dz + dz) and dy = (−i/2) (dz − dz).(C.3.5)

Thus any differential 1-form on a subset E of C with complex-valued coefficients
may be expressed in a unique way as

a dz + b dz,(C.3.6)

where a and b are complex-valued functions on E.
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Let U be a nonempty open set in C, and let f be a complex-valued function
on U . Suppose that f is continuously differentiable as an R2-valued function
on U . One can check that

df =
∂f

∂z
dz +

∂f

∂z
dz(C.3.7)

on U , as differential 1-forms on U with complex coefficients.

C.3.2 Some closed forms on C

Similarly,

d(f dz) = df ∧ dz = ∂f

∂z
dz ∧ dz = −∂f

∂z
dz ∧ dz(C.3.8)

on U , using (C.3.3) in the second step. This implies that f dz is closed as a
differential 1-form on U with complex coefficients if and only if f is holomorphic
on U .

Let F be another complex-valued function on U , and suppose that F is
continuously-differentiable as an R2-valued function on U . It is easy to see that

dF = f dz(C.3.9)

on U if and only if F is holomorphic on U , with

F ′ = f(C.3.10)

on U .
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/ Springer, 2013.

[108] J. Lafontaine, An Introduction to Differential Manifolds, based on the
2010 French second edition, Springer, 2015.

[109] S. Lang, Undergraduate Analysis, 2nd edition, Springer-Verlag, 1997.

[110] S. Lang, Complex Analysis, 4th edition, Springer-Verlag, 1999.

[111] H. Lass, A Note on Cauchy’s Theorem, American Mathematical Monthly
60 (1953), 110–112.

[112] J. Lasserre and K. Avrachenkov, The multi-dimensional version of∫ b
a
xp dx, American Mathematical Monthly 108 (2001), 151–154.

[113] R. Lawlor, On the Invariance of the Divergence of a Vector Function,
American Mathematical Monthly 38 (1931), 28–29.

[114] P. Lax, Change of variables in multiple integrals, American Mathematical
Monthly 106 (1999), 497–501.

[115] P. Lax, Change of variables in multiple integrals II, American Mathemat-
ical Monthly 108 (2001), 115–119.

[116] P. Lax, The Cauchy integral theorem, American Mathematical Monthly
114 (2007), 725–727.

[117] P. Ledden, A Note on the Theorem of Green and Stokes, American Math-
ematical Monthly 75 (1968), 1095–1098.

[118] J. Lee, Introduction to Smooth Manifolds, 2nd edition, Springer, 2013.

[119] C.-K. Li, Norms, isometries, and isometry groups, American Mathemati-
cal Monthly 107 (2000), 334–340.

[120] C.-K. Li and W. So, Isometries of lp norm, American Mathematical
Monthly 101 (1994), 452–453.



BIBLIOGRAPHY 271

[121] P. Loeb, A note on Dixon’s proof of Cauchy’s integral theorem, American
Mathematical Monthly 98 (1991), 242–244.

[122] P. Loeb, A Further Simplification of Dixon’s Proof of Cauchy’s Integral
Theorem, American Mathematical Monthly 100 (1993), 680–681.

[123] W. Lovitt, A Geometrical Interpretation of Green’s Formula, American
Mathematical Monthly 22 (1915), 152–154.

[124] S. Mac Lane and G. Birkhoff, Algebra, 3rd edition, Chelsea, 1988.

[125] W. Massey, Cross products of vectors in higher-dimensional Euclidean
spaces, American Mathematical Monthly 90 (1983), 697–701.

[126] W. Massey, A Basic Course in Algebraic Topology, Springer-Verlag, 1991.

[127] P. McGrath, Another proof of Clairaut’s theorem, American Mathematical
Monthly 121 (2014), 165–166.

[128] A. McInerney, First Steps in Differential Geometry: Riemannian, Con-
tact, Symplectic, Springer, 2013.

[129] B. Mendelson, Introduction to Topology, 3rd edition, Dover, 1990.
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