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Preface

Some aspects of history related to calculus and the theory behind it may be
found in [25, 49, 50, 51, 52, 93, 94, 108, 128, 129, 136, 137, 138, 139, 140, 143,
158, 198, 305]. See also [44, 126, 227], in connection with Fourier series in
particular. Some songs related to calculus may be found in [231, 232, 233], and
some remarks concerning the clarity of explanations in mathematics may be
found in [142]. The reader may be interested in [42] as well.

Some aspects of history related to multivariable calculus and differential
equations may be found in [14, 15, 60, 61, 62, 82, 118, 127, 134, 141, 143, 144,
158, 196, 219, 220, 221, 227, 229, 240, 241]. A number of other texts in the
bibliography include some discussion of history too.

Some additional perspectives concerning partial differential equations may
be found in [3, 45, 46, 79, 150, 154, 181, 187, 188, 192, 200, 264, 269, 272, 281,
302, 328, 345, 351].

The study of differential equations is closely related to that of mathematical
analysis, as indicated in particular in some of the references concerning his-
tory mentioned earlier. Some familiarity with analysis would be helpful here,
although it is not required. Of course, there are many textbooks in analysis,
some of which are mentioned in the bibliography. My colleague Frank Jones’
book [186] includes some of the theory related to multivariable calculus, which
may be helpful. The reader may also be interested in the brief introductions in
[145, 341], as well as Gouvêa’s recent text [135] on infinite series. Some aspects
of analysis that are related to the topics discussed here may be found in the
appendices. Some details are included for the sake of completeness, although
some results are merely stated, or are briefly explained somewhat informally.

Some basic familiarity with ordinary differential equations and linear algebra
would be helpful here too, but is not required. Some relevant notions may
be reviewed as needed, and a number of related references may be found in
the bibliography as well. Of course, many treatments of ordinary differential
equations include some linear algebra, as does Frank Jones’ book [186].
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Chapter 1

Some basic notions

1.1 What is a differential equation?

The title of Section 1.1 of [335] is “What is a partial differential equation?”
It seems helpful to begin by asking what an ordinary differential equation is.
Part of the answer is that ordinary differential equations deal with functions
of one independent variable, while partial differential equations are concerned
with functions of more than one independent variable.

A function of a single real variable might frequently be taken to be defined
on something like an interval in the real line R, particularly when considering
solutions of an ordinary differential equation. Various types of intervals are
mentioned in Subsection A.1.1. Sometimes one might consider functions defined
on other subsets of the real line, such as the function 1/x, defined for real
numbers x 6= 0.

Let u be a real-valued function defined on an interval I in R, and suppose
that u is differentiable at every point in I. If

u′(x) = 0(1.1.1)

for every x ∈ I, then it is well known that

u is constant on I,(1.1.2)

by the mean value theorem.

If x is an endpoint of I that is also an element of I, then the derivative
u′(x) of u at x should be considered as a one-sided deriviative, defined using a
one-sided limit, when it exists. Sometimes we may be concerned with functions
that are differentiable at points in the interior of an interval or half-line, and
continuous at an endpoint. This is sufficient for the result mentioned in the
preceding paragraph.

1



2 CHAPTER 1. SOME BASIC NOTIONS

1.1.1 First-order ordinary differential equations

A first-order ordinary differential equation may be expressed as

F (x, u(x), u′(x)) = 0.(1.1.3)

Here F is a function of three variables, and u is a real-valued function of one
variable.

These remarks are intended to be a bit informal, and in practice one should
probably be a bit more precise about where these functions are defined. A basic
possibility is that

F (x, p, q)(1.1.4)

should be defined for x in an interval I in the real line, and for all real numbers
p and q. In this case, the differential equation (1.1.3) would make sense for
functions u defined on a subinterval of I.

Of course, one would also like u to be differentiable, so that u′(x) is defined.
Sometimes one may be interested in functions as in (1.1.4) that are defined on
other sets of (x, p, q), and this may lead to additional restrictions on u.

If x0 is an element of I and p0 is a real number, then the corresponding initial
value problem for (1.1.3) concerns the existence and uniqueness of a solution u
defined on a subinterval of I that contains x0 such that

u(x0) = p0.(1.1.5)

Of course, this means in particular that

F (x0, u(x0), u
′(x0)) = 0.(1.1.6)

Let us express this as

F (x0, p0, q0) = 0,(1.1.7)

where q0 = u′(x0).

1.1.2 Some questions about F (x, p, q)

In order to have a solution of (1.1.4) that satisfies (1.1.5), there has to be a real
number q0 that satisfies (1.1.7).

Without additional hypotheses about F , it could be that (1.1.4) does not
depend on q. This means that

F (x, p, q) = F̃ (x, p)(1.1.8)

for some function F̃ (x, p) of two variables. In this case, the differential equation
(1.1.3) reduces to

F̃ (x, u(x)) = 0,(1.1.9)

and does not involve the derivative of u.
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Similarly, (1.1.4) might not depend on p or q, so that

F (x, p, q) = F̂ (x)(1.1.10)

for some function F̂ (x) of one variable. This means that the differential equation
(1.1.3) reduces to

F̂ (x) = 0,(1.1.11)

and does not involve u or its derivative.
If (1.1.8) holds, then (1.1.7) reduces to

F̃ (x0, p0) = 0.(1.1.12)

One can still look for solutions of (1.1.9) that satisfy (1.1.5). This is related to
the implicit function theorem, at least for x near x0. Part of the hypothesis of
the implicit function theorem is that the derivative of F̃ (x, p) in p at (x0, p0)
not be equal to 0.

1.1.3 A simpler type of ordinary differential equation

Often one considers first-order ordinary differential equations of the form

u′(x) = f(x, u(x)),(1.1.13)

where f is a function of two variables. We may take

f(x, p)(1.1.14)

to be defined for x in an interval in the real line again, and for all real numbers
p, although sometimes one may want to consider other restrictions on (x, p), as
before.

Observe that (1.1.13) is the same as (1.1.3), with

F (x, p, q) = q − f(x, p).(1.1.15)

In this case, (1.1.7) is the same as saying that

q0 = f(x0, p0).(1.1.16)

Suppose that we have a differential equation of the form (1.1.3) again, with
the initial condition (1.1.5), and a real number q0 that satisfies (1.1.7). Under
some conditions, we may be able to transform (1.1.3) into a differential equa-
tion of the form (1.1.13), at least for x close to x0, using the implicit function
theorem. Part of the hypothesis of the implicit function theorem is that

∂F

∂q
(x0, p0, q0) 6= 0,(1.1.17)

as before.
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1.2 Some other types of first-order equations

Consider a first-order ordinary differential equation of the form

a(x, u(x))u′(x) = b(x, u(x)),(1.2.1)

where a and b are functions of two variables. We may take a(x, p) and b(x, p) to
be defined for x in an interval in the real line, and all real numbers p, although
one may consider other restrictions on (x, p), as usual.

This equation is the same as (1.1.3), with

F (x, p, q) = a(x, p) q − b(x, p).(1.2.2)

Similarly, (1.1.7) is the same as saying that

a(x0, p0) q0 = b(x0, p0).(1.2.3)

Of course, (1.2.1) corresponds to (1.1.13) with

f(x, p) = b(x, p)/a(x, p),(1.2.4)

as long as the denominator is not zero. In particular, if

a(x0, p0) 6= 0,(1.2.5)

then (1.2.3) is the same as saying that

q0 = b(x0, p0)/a(x0, p0),(1.2.6)

as in (1.1.16). Note that (1.2.5) is the same as (1.1.17) when F is as in (1.2.2).
Otherwise, if

a(a0, p0) = 0,(1.2.7)

then (1.2.3) reduces to
b(x0, p0) = 0.(1.2.8)

If
a ≡ 0,(1.2.9)

then (1.2.1) is the same as (1.1.9), with

F̃ (x, p) = b(x, p).(1.2.10)

1.2.1 Linear first-order equations

A linear first-order ordinary differential equation may be expressed as

α(x)u′(x) + β(x)u(x) = γ(x),(1.2.11)

where α(x), β(x), and γ(x) are functions of one variable. We may take these
functions to be defined on an interval in R, as before.
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This equation is the same as in (1.2.1), with

a(x, p) = α(x) and b(x, p) = −β(x) p+ γ(x).(1.2.12)

Thus (1.2.3) is the same as saying that

α(x0) q0 = −β(x0) p0 + γ(x0)(1.2.13)

in this case.
Suppose that γ ≡ 0, so that (1.2.11) becomes

α(x)u′(x) + β(x)u(x) = 0.(1.2.14)

This type of equation is said to be homogeneous. If u satisfies this equation and
c is a real number, then c u satisfies the analogous equation

α(x) (c u)′(x) + β(x) (c u)(x) = 0.(1.2.15)

Similarly, if v is another real-valued function defined and differentiable on the
same interval as u that satisfies the analogous equation

α(x) v′(x) + β(x) v(x) = 0,(1.2.16)

then u+ v satisfies the analogous equation

α(x) (u+ v)′(x) + β(x) (u+ v)(x) = 0.(1.2.17)

1.2.2 Some first-order differential operators

Put
L(u) = αu′ + β u.(1.2.18)

More precisely, if u is a differentiable real-valued function defined on an interval
on which α and β are defined, then this defines a real-valued function on the
same interval. We may also use the notation

L = α
d

dx
+ β,(1.2.19)

and refer to this as a first-order differential operator,
It is easy to see that this defines a linear mapping from the space of differ-

entiable real-valued functions on an interval on which α and β are defined into
the space of all real-valued functions on that interval. This means that if u is
such a function and c is a real number, then

L(c u) = cL(u).(1.2.20)

This also means that if v is another such function on the same interval, then

L(u+ v) = L(u) + L(v).(1.2.21)
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If one is familiar with the notion of a vector space over the real numbers,
then one may know that the space of all real-valued functions on an interval
is a vector spaces, with respect to the usual definitions of addition and scalar
multiplication of such functions, using pointwise addition and scalar multiplica-
tion of functions. The space of differentiable real-valued functions on the same
interval is a linear subspace of the space of all real-valued functions on that
interval, and is another vector space over the real numbers in particular. The
differential operator L determines a linear mapping from this subspace into the
space of all real-valued functions on the interval, in the sense of linear algebra,
as in the previous paragraph.

Using L, the homogeneous equation (1.2.14) may be expressed as

L(u) = 0,(1.2.22)

and the inhomogeneous equation (1.2.11) may be expressed as

L(u) = γ.(1.2.23)

The space of solutions to the homogeneous equation on a suitable interval is a
linear subspace of the space of all differentiable real-valued functions on that
interval, as in the previous subsection. This also follows from the linearity of the
corresponding mapping between the appropriate vector spaces, by a standard
argument in linear algebra.

This is related to some remarks beginning on p2 of [335]. If u satisfies the
inhomogeneous equation (1.2.23), and v is a differentiable real-valued functio
on the same interval that satisfies the homogeneous equation

L(v) = 0,(1.2.24)

then
L(u+ v) = L(u) + L(v) = γ,(1.2.25)

so that u+ v satisfies the analogous inhomogeneous equation, as mentioned on
p3 of [335]. We shall consider analogous notions for functions of more variables,
as in [335].

1.3 Invariance under translations

Let us say that a first-order ordinary differential equation as in (1.1.3) is invari-
ant under translations if the corresponding function (1.1.4) does not depend on
x. This means that (1.1.4) may be expressed as

F (x, p, q) = F (p, q)(1.3.1)

for some function F (p, q) of two variables. In this case, the corresponding ordi-
nary differential equation (1.1.3) reduces to

F (u(x), u′(x)) = 0.(1.3.2)
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Let u be a real-valued function on an interval I in the real line that is
differentiable at every point in I. Also let ξ be a real number, and put

I + ξ = {t+ ξ : t ∈ I}.(1.3.3)

This is another interval in R, and

u(x− ξ)(1.3.4)

defines a real-valued of x on (1.3.3). Note that (1.3.4) is differentiable at every
point in (1.3.3), with

d

dx
(u(x− ξ)) = u′(x− ξ).(1.3.5)

Using this, it is easy to see that u satisfies (1.3.2) on I if and only if (1.3.4)
satisfies the same equation on (1.3.3), or equivalently

F (u(x− ξ), u′(x− ξ)) = 0(1.3.6)

on (1.3.3).
If c is any real number, then the first-order ordinary differential equation

F (x, u(x), u′(x)) = c(1.3.7)

corresponds to the function
F (x, p, q)− c(1.3.8)

as in Subsection 1.1.1. Invariance under translations in the sense considered here
means that this differential equation is invariant under translations as well.

1.3.1 Some equations of this type

Let ϕ be a real-valued function on the real line, and consider the differential
equation

ϕ(u(x))u′(x) = 1.(1.3.9)

This is the same as (1.3.2), with

F (p, q) = ϕ(p) q − 1.(1.3.10)

Suppose that Φ is a differentiable real-valued function on the real line such
that

Φ′ = ϕ(1.3.11)

on R. Thus (1.3.9) is the same as saying that

d

dx
(Φ(u(x))) = 1,(1.3.12)

by the chain rule. A differentiable real-valued function on an interval in R
satisfies this differential equation exactly when

Φ(u(x)) = x+ a constant(1.3.13)

on that interval.
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1.3.2 Constant coefficients

A differential operator L as in (1.2.19) is said to have constant coefficients if the
coefficients α and β are constants. If γ is also a constant, then the corresponding
inhomogeneous differential equation (1.2.23) is invariant under translations.

Even if γ is not a constant, the inhomogeneous differential equation (1.2.23),
or equivalently (1.2.11), may be described as having constant coefficients when α
and β are constants. One may also be concerned with linear ordinary differential
equations of higher order with constant coefficients, as well as linear partial
differential equations with constant coefficients. Many of the equations that we
shall consider here are of this type.

1.4 First-order partial differential equations

Let u(x, y) be a real-valued function of two variables x, y. More precisely, u
should be a real-valued function defined on a subset of the plane R2. This is
the set of ordered pairs of real numbers, as in Section A.2, with n = 2.

In fact, we might typically ask that u be defined on an open set in R2. We
shall not get into the definition of an open set here, although it is mentioned
in Section B.10. The basic idea should be clear in many examples, such as an
open disk, an open rectangle, or something like that.

Suppose that the partial derivatives ∂u/∂x and ∂u/∂y exist at every point
in the domain of u. It is often convenient to use subscripts to denote these
partial derivatives, so that

ux =
∂u

∂x
and uy =

∂u

∂y
,(1.4.1)

as on p1 of [335], and as in Section B.11. Let us also ask that the partial
derivatives of u be continuous on the domain of u, so that u is continuously
differentiable, as in Subsection B.11.1. This implies in particular that u is con-
tinuous on its domain, as mentioned in Subsection B.11.1. Note that derivatives
under consideration in [335] are normally asked to be continuous, as mentioned
in item 2 on p4 of [335].

1.4.1 Equations in two variables

A first-order partial differential equation for functions of two variables may be
expressed as

F (x, y, u(x, y), ux(x, y), uy(x, y)) = 0,(1.4.2)

as in (1) on p1 of [335]. Here

F (x, y, p, q, r)(1.4.3)

is a function of the five real variables x, y, p, q, and r. As in Subsection 1.1.1,
a basic possibility is that (1.4.3) is defined for all (x, y) in a subset of R2 that
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contains the domain of u, and all real numbers p, q, r. As before, one may be
interested in functions as in (1.4.3) that are defined on other sets of (x, y, p, q, r),
and this may lead to additional restrictions on u.

It is sometimes convenient to express (1.4.2) more succinctly as

F (x, y, u, ux, uy) = 0,(1.4.4)

as in (1) on p1 of [335] again. It is implicit here that u and its derivatives are
supposed to be evaluated at (x, y), as in (1.4.2). In particular, partial differential
equations in more variables, or involving more derivatives of u, may be expressed
in this way.

1.4.2 Linear first-order equations in two variables

Let a(x, y), b(x, y), c(x, y), and d(x, y) be real-valued functions defined on a sub-
set of R2. Using these functions, we get the linear first-order partial differential
equation

a(x, y)ux(x, y) + b(x, y)uy(x, y) + c(x, y)u(x, y) = d(x, y).(1.4.5)

This is the same as (1.4.2), with

F (x, y, p, q, r) = a(x, y) q + b(x, y) r + c(x, y) p− d(x, y).(1.4.6)

Consider the corresponding first-order differential operator

L = a
∂

∂x
+ b

∂

∂y
+ c,(1.4.7)

as in Subsection 1.2.2. If the domain of u is contained in a subset of R2 on
which a, b, and c are defined, then

L(u) = a ux + b uy + c u(1.4.8)

is defined as a real-valued function on the domain of u. This defines a linear
mapping between suitable vector spaces of functions, as before.

Using L, (1.4.5) may be expressed as

L(u) = d.(1.4.9)

If d ≡ 0, then we get the corresponding homogeneous equation

a(x, y)ux(x, y) + b(x, y)uy(x, y) + c(x, y)u(x, y) = 0.(1.4.10)

This may be expressed as
L(u) = 0,(1.4.11)

as before. This determines a linear subspace of the space of continuously-
differentiable real-valued functions on a fixed open set in R2, as long as a,
b, and c are defined on that open set, as before.
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1.5 More on invariance under translations

Let us say that a first-order partial differential equation as in (1.4.2) is invariant
under translations if the corresponding function (1.4.3) does not depend on x
or y, so that it may be expressed as

F (x, y, p, q, r) = F (p, q, r)(1.5.1)

for some function F (p, q, r) of three variables. This means that the correspond-
ing partial differential equation (1.4.2) reduces to

F (u(x, y), ux(x, y), uy(x, y)) = 0.(1.5.2)

Let u be a continuously-differentiable real-valued function on an open subset
U of R2, and let ξ, η be real numbers. Put

U + (ξ, η) = {(x, y) + (ξ, η) = (x+ ξ, y + η) : (x, y) ∈ U},(1.5.3)

which is another open set in R2. If U is an open disk in R2, for instance,
then this is an open disk of the same radius, with the center of the initial disk
translated by (ξ, η). Similarly, if U is an open rectangle in R2, then this is an
open rectangle with the same sidelengths, and the center of the initial rectangle
translated by (ξ, η).

Observe that
u(x− ξ, y − η)(1.5.4)

defines a real-valued function of (x, y) on (1.5.3). The partial derivatives of this
function are equal to the corresponding translates of the partial derivatives of
u, so that

∂

∂x
(u(x− ξ, y − η)) = ux(x− ξ, y − η)(1.5.5)

and
∂

∂y
(u(x− ξ, y − η)) = uy(x− ξ, y − η)(1.5.6)

for all (x, y) in (1.5.3), as in the one-variable case.
In particular, (1.5.4) is continuously differentiable on (1.5.3), because u is

continuously differentiable on U , by hypothesis. Using (1.5.5) and (1.5.6), we
also have that u satisfies (1.5.2) on U if and only if (1.5.4) satisfies the same
equation on (1.5.3), so that

F (u(x− ξ, y − η), ux(x− ξ, y − η), uy(x− ξ, y − η)) = 0(1.5.7)

on (1.5.3).
If c is any real number, then the first-order partial differential equation

F (x, y, u(x, y), ux(x, y), uy(x, y)) = c(1.5.8)

corresponds to the function

F (x, y, p, q, r)− c(1.5.9)

in the same way as before. Invariance under translations in the sense considered
here means that this partial differential equation is invariant under translations
too.



1.6. SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS 11

1.5.1 More on constant coefficients

A differential operator L as in (1.4.7) is said to have constant coefficients if
the coefficients a, b, and c are constants. If d is a constant as well, then the
corresponding inhomogeneous partial differential equation (1.4.9) is invariant
under translations.

The inhomogeneous equation (1.4.9), or equivalently (1.4.5), may be de-
scribed as having constant coefficients when a, b and c are constants, even if d
is not a constant.

1.6 Second-order partial differential equations

Let u(x, y) be a real-valued function of two variables x and y defined on an
open subset U of R2 again. Suppose that the first partial derivatives ∂u/∂x
and ∂u/∂y exist at every point in U , as well as the second derivatives

∂2u

∂x2
,

∂

∂x

(∂u
∂y

)
,

∂

∂y

(∂u
∂x

)
, and

∂2u

∂y2
.(1.6.1)

More precisely, we ask that all of these second derivatives be continuous on U ,
so that u is twice continuously differentiable on U , as in Subsection B.11.3.

This is the same as saying that the partial derivatives ∂u/∂x and ∂u/∂y
are continuously differentiable on U , as in Subsection B.11.3. This implies that
∂u/∂x and ∂u/∂y are continuous on U , as mentioned in Subsection B.11.1, and
near the beginning of the previous section. This means that u is continuously
differentiable on U , so that u is continuous on U as well, as before.

It is well known that

∂

∂x

(∂u
∂y

)
=

∂

∂y

(∂u
∂x

)
(1.6.2)

on U , because u is twice continuously differentiable on U , as mentioned in
Subsection B.11.3. These second derivatives may be denoted

∂2u

∂x ∂y
=

∂2u

∂y ∂x
(1.6.3)

or

uxy = uyx.(1.6.4)

Similarly, we put

uxx =
∂2u

∂x2
and uyy =

∂2u

∂y2
,(1.6.5)

as in Subsection B.11.3.
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1.6.1 Equations in two variables again

A second-order partial differential equation for functions of two variables may
be expressed as

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0,(1.6.6)

as in (2) on p1 of [335]. Here

F (x, y, p, q, r, t, v, w)(1.6.7)

is a function of the eight real variables x, y, p, q, r, t, v, and w. As before, a basic
possibility is that (1.6.7) is defined for all (x, y) in a subset of R2 that contains
U , and for all real values of the other variables. Sometimes one may be interested
in functions as in (1.6.7) that are defined on other sets of (x, y, p, q, r, t, v, w),
and this may lead to additional restrictions on u.

As in Subsection 1.4.1, it is implicit here that u and its derivatives are
supposed to be evaluated at (x, y) in (1.6.7). Partial differential equations in
more variables, or involving more derivatives of u, may be expressed similarly,
as before. Of course, for equations involving more derivatives of u, one would
normally ask that U satisfy appropriate differentiability properties on U .



Appendix A

A bit of analysis

A.1 The real line

Let R be the real line, which is to say the set of real numbers. If x ∈ R, then
the absolute value is defined by

|x| = x when x ≥ 0(A.1.1)

= −x when x ≤ 0.

It is easy to see that
|x y| = |x| |y|(A.1.2)

for every x, y ∈ R. One can also check that

|x+ y| ≤ |x|+ |y|(A.1.3)

for every x, y ∈ R. This is a version of the triangle inequality.
If x, y ∈ R, then the distance from x to y with respect to the standard

Euclidean metric is defined by

d(x, y) = |x− y|.(A.1.4)

If z is another real number, then

d(x, z) = |x− z| = |(x− y) + (y − z)|(A.1.5)

≤ |x− y|+ |y − z| = d(x, y) + d(y, z).

This is another version of the triangle inequality.

A.1.1 Intervals in R

Let a, b be real numbers with a < b. The open interval in R from a to b is
defined by

(a, b) = {x ∈ R : a < x < b}.(A.1.6)

13
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Similarly, the closed interval from a to b is defined by

[a, b] = {x ∈ R : a ≤ x ≤ b},(A.1.7)

which may also be used when a = b. Sometimes one may wish to consider the
corresponding half-open, half-closed intervals

[a, b) = {x ∈ R : a ≤ x < b}(A.1.8)

and
(a, b] = {x ∈ R : a < x ≤ b}(A.1.9)

as well.
It is sometimes convenient to use the notation

(a,+∞) = {x ∈ R : a < x}(A.1.10)

and
(−∞, b) = {x ∈ R : x < b}.(A.1.11)

These may be described as open half-lines in R. We may also put

(−∞,+∞) = R.(A.1.12)

These may be considered as unbounded open intervals in R.
Similarly, we may use the notation

[a,+∞) = {x ∈ R : a ≤ x}(A.1.13)

and
(−∞, b] = {x ∈ R : x ≤ b}.(A.1.14)

These may be described as closed half-lines in R. Sometimes +∞, −∞ are
considered as extended real numbers, with

−∞ < x < +∞(A.1.15)

for every x ∈ R.

A.2 Euclidean spaces

Let n be a positive integer, and let Rn be the usual space of (ordered) n-tuples
of real numbers. This means that each x ∈ Rn may be expressed as

x = (x1, . . . , xn),(A.2.1)

with xj ∈ R for j = 1, . . . , n. This is the same as the real line when n = 1.
If x, y ∈ Rn, then x+ y is defined as an element of Rn by

x+ y = (x1 + y1, . . . , xn + yn).(A.2.2)
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If t ∈ R, then t x is defined as an element of Rn by

t x = (t x1, . . . , t xn).(A.2.3)

It is well known that Rn is a vector space over the real numbers, with addition
and sclalar multiplication defined in this way. This basically means that addi-
tion and scalar multiplication on Rn satisfy some standard properties, such as
commutativity and associaitvity of addition and distributivity of scalar multi-
plication, that follow easily from analogous properties of addition and multipli-
cation of real numbers.

A.2.1 The standard Euclidean norm and metric on Rn

If x ∈ Rn, then the standard Euclidean norm is the nonnegative real number
defined by

|x| =
( n∑

j=1

x2
j

)1/2

.(A.2.4)

The is the same as the absolute value of a real number when n = 1. Note that
|x| = 0 if and only if x = 0, which means that xj = 0 for j = 1, . . . , n.

It is easy to see that
|t x| = |t| |x|(A.2.5)

for every t ∈ R, where |t| is the absolute value of t, as in the previous section.
If y is another element of Rn, then it is well known that

|x+ y| ≤ |x|+ |y|.(A.2.6)

This is another version of the triangle inequality, which is more complicated
when n ≥ 2. A proof of this will be discussed in the next section.

If x, y ∈ Rn, then the distance from x to y with respect to the standard
Euclidean metric is defined by

d(x, y) = |x− y|,(A.2.7)

which is the same as before when n = 1. If z ∈ Rn too, then

d(x, z) ≤ d(x, y) + d(y, z),(A.2.8)

because of the triangle inequality for the standard Euclidean norm on Rn, as
before. This is the triangle inequality for the standard Euclidean metric on Rn.

A.2.2 Open and closed balls

Let x ∈ Rn and a positive real number r be given. The open ball in Rn centered
at x with radius r with respect to the standard Euclidean metric is defined by

B(x, r) = {y ∈ Rn : |x− y| < r}.(A.2.9)
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Similarly, the closed ball in Rn centered at x with radius r with respect to the
standard Euclidean metric is defined by

B(x, r) = {y ∈ Rn : |x− y| ≤ r},(A.2.10)

which may also be used when r = 0.
If n = 1, then (A.2.9) is the same as the open interval (x − r, x + r), and

(A.2.10) is the same as the closed interval [x− r, x+ r].
Observe that the standard Euclidean metric on Rn is invariant under trans-

lations, in the sense that

d(x+ a, y + a) = |(x+ a)− (y + a)| = |x− y| = d(x, y)(A.2.11)

for all a, x, y ∈ Rn. This implies that translates of open balls in Rn are open
balls of the same radius. Similarly, translates of closed balls in Rn are closed
balls of the same radius.

A.3 The dot product on Rn

Let n be a positive integer, and let x, y ∈ Rn be given. The dot product of x
and y is the real number defined by

x · y =

n∑
j=1

xj yj .(A.3.1)

This is also known as the standard inner product on Rn. Note that the dot
product is symmetric in x and y, which is to say that

x · y = y · x.(A.3.2)

We also have that

x · x =

n∑
j=1

x2
j = |x|2,(A.3.3)

where |x| is the standard Euclidean norm of x, as in (A.2.4).
If t is a real number, then it is easy to see that

(t x) · y = x · (t y) = t (x · y).(A.3.4)

If w is another element of Rn, then

(x+ w) · y = x · y + w · y(A.3.5)

and
x · (y + w) = x · y + x · w.(A.3.6)

Of course,
x · y = 0(A.3.7)

when x = 0 or y = 0.
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A.3.1 The Cauchy–Schwarz inequality

The Cauchy–Schwarz inequality states that

|x · y| ≤ |x| |y|,(A.3.8)

using the absolute value of x · y as a real numbers on the left side, and the
standard Euclidean norms on x and y on the right side. Note that (A.3.8) holds
trivially when x = 0 or y = 0. Two proofs of the Cauchy–Schwarz inequality
when x, y 6= 0 will be given in the next section.

It is easy to see that equality holds in (A.3.8) when x = t y for some t ∈ R.
The proof will show that this is the only way to get equality in (A.3.8) when
y 6= 0.

A.3.2 Using the Cauchy–Schwarz inequality

Let us see how to use the Cauchy–Schwarz inequality to get the triangle in-
equality (A.2.6) for the standard Euclidean norm on Rn.

Observe that

|x+ y|2 = (x+ y) · (x+ y) = x · x+ 2x · y + y · y(A.3.9)

= |x|2 + 2x · y + |y|2.

Using the Cauchy–Schwarz inequality, we get that

|x+ y|2 ≤ |x|2 + 2 |x| |y|+ |y|2 = (|x|+ |y|)2.(A.3.10)

Of course, this implies (A.2.6).
More precisely, equality holds in (A.3.10) if and only if

x · y = |x| |y|.(A.3.11)

This means that equality holds in (A.2.6) if and only if (A.3.11) holds. The proof
of the Cauchy–Schwarz inequality will show that (A.3.11) holds only when y = 0
or x = t y for some nonnegative real number t.

A.4 Proving the Cauchy–Schwarz inequality

Let n be a positive integer again, and let x, y ∈ Rn be given. One way to prove
the Cauchy–Schwarz inequality is to use the fact that

(x− t y) · (x− t y) = |x− t y|2 ≥ 0(A.4.1)

for every t ∈ R. This implies that

x · x− 2 t (x · y) + t2 (y · y) ≥ 0,(A.4.2)

which is the same as saying that

|x|2 − 2 t (x · y) + t2 |y|2 ≥ 0.(A.4.3)
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Equivalently, this means that

2 t (x · y) ≤ |x|2 + t2 |y|2.(A.4.4)

Observe that these inequalities are strict when x 6= t y.
We may as well suppose that x, y 6= 0, as before. If we choose t so that

|t| = |x|/|y|,(A.4.5)

then we get that

2 (t/|t|) (x · y) ≤ |x|2/|t|+ |t| |y|2 = 2 |x| |y|.(A.4.6)

We may also choose t so that

(t/|t|) (x · y) = |x · y|.(A.4.7)

Using this, (A.3.8) follows from (A.4.7).
More precisely, this argument shows that if x, y 6= 0 and equality holds in

(A.3.8), then
x = t y(A.4.8)

for some t ∈ R.

A.4.1 Another approach to the Cauchy–Schwarz inequal-
ity

If a and b are real numbers, then

a2 − 2 a b+ b2 = (a− b)2 ≥ 0.(A.4.9)

This implies the well-known inequality

a b ≤ (1/2) (a2 + b2).(A.4.10)

These inequalities are strict when a 6= b.
It follows that

x · y ≤
n∑

j=1

(1/2) (x2
j + y2j ) = (1/2) (|x|2 + |y|2).(A.4.11)

This inequlity is strict when xj 6= yj for some j, so that x 6= y.
In particular,

x · y ≤ 1(A.4.12)

when
|x|, |y| ≤ 1.(A.4.13)

The inequality in (A.4.12) is strict when x 6= y, and when |x| < 1 or |y| < 1.
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This shows that
x · y ≤ |x| |y|(A.4.14)

when |x| = |y| = 1. If x, y 6= 0, then one can reduce to this case, using x/|x|
and y/|y|. We also get that the inequality is strict when x/|x| 6= y/|x|.

Observe that

−x · y = (−x) · y ≤ | − x| |y| = |x| |y|.(A.4.15)

The Cauchy–Schwarz inequality is the same as the combination of this and the
previous inequality.

A.5 Some other norms on Rn

Let n be a positive integer, and let N be a nonnegative real-valued function on
Rn. We say that N is a norm on Rn if it satisfies the following three conditions.
First, for each x ∈ Rn, we have that

N(x) = 0 if and only if x = 0.(A.5.1)

Second,
N(t x) = |t|N(x)(A.5.2)

for every t ∈ R and x ∈ Rn. Third,

N(x+ y) ≤ N(x) +N(y)(A.5.3)

for every x, y ∈ Rn, which is the triangle inequality for a norm.
The standard Euclidean norm on Rn is a norm on this sense. One can check

that

‖x‖1 =

n∑
j=1

|xj |(A.5.4)

also defines a norm on Rn. One can verify that

‖x‖∞ = max
1≤j≤n

|xj |(A.5.5)

defines a norm on Rn as well. The standard Euclidean norm on Rn may be
denoted ‖x‖2, to be consistent with this notation. Note that these three norms
are the same as the absolute value of a real number when n = 1.

A.5.1 Comparing these three norms

If x ∈ Rn, then it is easy to see that

‖x‖∞ ≤ ‖x‖1(A.5.6)

and
‖x‖∞ ≤ ‖x‖2.(A.5.7)
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One can also check that

‖x‖1 ≤ n ‖x‖∞(A.5.8)

and

‖x‖2 ≤ n1/2 ‖x‖∞.(A.5.9)

Observe that

‖x‖22 =

n∑
j=1

x2
j ≤ ‖x‖1 ‖x‖∞ ≤ ‖x‖21,(A.5.10)

using (A.5.6) in the third step. This implies that

‖x‖2 ≤ ‖x‖1.(A.5.11)

One can use the Cauchy–Schwarz inequality to get that

‖x‖1 ≤ ‖x‖2
( n∑

j=1

1
)1/2

= n1/2 ‖x‖2.(A.5.12)

A.6 Metrics associated to norms

Let n be a positive integer, and let N be a norm on Rn. If x, y ∈ Rn, then the
distance from x to y with respect to N may be defined by

dN (x, y) = N(x− y).(A.6.1)

Observe that

dN (x, y) = 0 if and only if x = y,(A.6.2)

because of (A.5.1). Similarly,

dN (x, y) = N(x− y) = N(y − x) = dN (y, x),(A.6.3)

using (A.5.2) in the second step, with t = −1. If z ∈ Rn too, then

dN (x, z) = N(x− z) ≤ N(x− y) +N(y − z) = dN (x, y) + dN (y, z),(A.6.4)

using (A.5.3) in the second step.

In fact, one can define the notion of a metric on any set. The remarks in the
preceding paragraph imply that dN defines a metric on Rn.

Note that dN is invariant under translations on Rn, in the sense that

dN (x+ a, y + a) = N((x+ a)− (y + a)) = N(x− y) = dN (x, y)(A.6.5)

for all a, x, y ∈ Rn.
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A.6.1 The metrics associated to ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞
In particular,

d1(x, y) = ‖x− y‖1(A.6.6)

and
d∞(x, y) = ‖x− y‖∞(A.6.7)

are the metrics on Rn associated to the norms ‖ · ‖1 and ‖ · ‖∞ in (A.5.4) and
(A.5.5), respectively. The metric

d2(x, y) = ‖x− y‖2(A.6.8)

on Rn associated to the standard Euclidean norm ‖ · ‖2 is the same as the
standard Euclidean metric.

Observe that
d∞(x, y) ≤ d2(x, y) ≤ d1(x, y)(A.6.9)

for all x, y ∈ Rn, because of (A.5.7) and (A.5.11). We also have that

d2(x, y) ≤ n1/2 d∞(x, y)(A.6.10)

and
d1(x, y) ≤ n1/2 d2(x, y)(A.6.11)

for every x, y ∈ Rn, by (A.5.9) and (A.5.12).

A.6.2 Open and closed balls with respect to a norm

Let N be a nrom on Rn again, and let x ∈ Rn and a positive real number r be
given. The open ball in Rn centered at x with radius r with respect to N , or
equivalently with respect to the metric dN associated to N , is defined by

BN (x, r) = BdN
(x, r) = {y ∈ Rn : N(x− y) < r}.(A.6.12)

Similarly, the closed ball in Rn centered at x with radius r with respect to N ,
or equivalently with respect to dN , is defined by

BN (x, r) = BdN
(x, r) = {y ∈ Rn : N(x− y) ≤ r}.(A.6.13)

Let us use Bd1
(x, r), Bd2

(x, r), and Bd∞(x, r) for the open balls correspond-
ing to the metrics d1, d2, and d∞ associated to the norms ‖·‖1, ‖·‖2, and ‖·‖∞,
respectively, and similarly for closed balls. It is easy to see that

Bd1
(x, r) ⊆ Bd2

(x, r) ⊆ Bd∞(x, r)(A.6.14)

and
Bd1

(x, r) ⊆ Bd2
(x, r) ⊆ Bd∞(x, r),(A.6.15)

using (A.6.9).
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We also have that
Bd∞(x, r) ⊆ Bd2(x, n

1/2 r)(A.6.16)

and
Bd∞(x, r) ⊆ Bd2

(x, n1/2 r),(A.6.17)

because of (A.6.10). Similarly,

Bd2(x, r) ⊆ Bd1(x, n
1/2 r)(A.6.18)

and
Bd2

(x, r) ⊆ Bd1
(x, n1/2 r),(A.6.19)

because of (A.6.11).

A.6.3 Convex subsets of Rn

A subset E of Rn is said to be convex if for any pair of elements w, z of E and
real number t with 0 < t < 1, we have that

(1− t)w + t z ∈ E.(A.6.20)

If N is a norm on Rn, then one can check that the open and closed balls in Rn

with respect to N are convex.

A.7 Complex numbers

A complex number z can be expressed in a unique way as z = x + y i, where
x, y ∈ R and i2 = −1. In this case, x and y are known as the real and imaginary
parts of z, and may be denoted Re z and Im z, respectively.

Addition and multiplication of real numbers can be extended to the set C
of complex numbers in a standard way.

A.7.1 Complex conjugates

The complex conjugate of z is the complex number defined by

z = x− y i.(A.7.1)

If w is another complex number, then one can check that

z + w = z + w(A.7.2)

and
(z w) = z w.(A.7.3)

Note that the complex conjugate of z is z.
It is easy to see that

Re z = (1/2) (z + z)(A.7.4)

and
Im z = (1/(2 i)) (z − z)(A.7.5)
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A.7.2 Absolute values

The absolute value or modulus is the nonnegative real number defined by

|z| = (x2 + y2)1/2.(A.7.6)

Clearly
|z| = |z|.(A.7.7)

It is easy to see that
z z = |z|2.(A.7.8)

It follows that

|z w|2 = z w (z w) = z w z w = z z ww = |z|2 |w|2.(A.7.9)

This means that
|z w| = |z| |w|.(A.7.10)

If z 6= 0, then |z| > 0, and

z (z/|z|2) = (z z)/|z|2 = 1.(A.7.11)

This implies that z has a multiplicative inverse in C, with

1/z = z/|z|2.(A.7.12)

A.7.3 Some inequalities

Observe that
|Re z|, | Im z| ≤ |z|.(A.7.13)

More precisely, |z| is equal to |Re z| or | Im z| exactly when z is real or purely
imaginary, as appropriate.

It follows that

|Re(z w)| ≤ |z w| = |z| |w| = |z| |w|.(A.7.14)

Equality holds if and only if z w is a real number, as in the preceding paragraph.
We also have that

|z + w|2 = (z + w) (z + w) = (z + w) (z + w)

= z z + z w + z w + ww = |z|2 + 2 Re(zw) + |w|2.(A.7.15)

Combining this with (A.7.14), we get that

|z + w|2 ≤ |z|2 + 2 |z| |w|+ |w|2 = (|z|+ |w|)2.(A.7.16)

Of course, this means that

|z + w| ≤ |z|+ |w|.(A.7.17)

One can verify that equality holds if and only if z w is a nonnegative real number.
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A.7.4 Comparison with R2

If z = x + y i with x, y ∈ R, as before, then z corresponds in a simple way to
(x, y) as an element of R2. This correspondence is compatible with addition on
C and R2, as well as multiplication by a real number. Similarly, the absolute
value of a complex number corresponds exactly to the standard Euclidean norm
on R2 in this way.

Suppose that w = u + v i with u, v ∈ R, so that w corresponds to (u, v) as
an element of R2 in the same way. Observe that

Re(zw) = xu+ y v = (x, y) · (u, v),(A.7.18)

where the right side uses the dot product on R2. Thus (A.7.14) corresponds to
the Cauchy–Schwarz inequality on R2.

Note that
d(z, w) = |z − w|(A.7.19)

corresponds to the standard Euclidean metric on R2 in this way.

A.8 Convergent sequences

Let n be a positive integer, and let x(1), x(2), x(3), . . . be an infinite sequence
of elements of Rn. Thus, for each positive integer l, x(l) may be expressed as

x(l) = (x1(l), x2(l), . . . , xn(l)),(A.8.1)

where xj(l) is a real number for each j = 1, 2, . . . , n.

A.8.1 Convergent sequences in Rn

We say that {x(l)}∞l=1 converges to an element x of Rn if for every positive real
number ϵ there is a positive integer L such that

|x(l)− x| < ϵ(A.8.2)

for every l ≥ L.
In this case, x is said to be the limit of {x(l)}∞l=1, which may be expressed

by
lim
l→∞

x(l) = x(A.8.3)

or
x(l) → ∞ as l → ∞.(A.8.4)

More precisely, it is well known and not too difficult to show that the limit of a
convergent sequence is unique.

In particular, this reduces to the usual definition of a convergent sequence
of real numbers when n = 1. It is also well known and not too difficult to show
that (A.8.3) holds if and only if

lim
l→∞

xj(l) = xj(A.8.5)

for each j = 1, 2, . . . , n, as a sequence of real numbers.
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A.8.2 Bounded sequences in Rn

A sequence {x(l)}∞l=1 of elements of Rn is said to be bounded if there is a
nonnegative real number C such that

|x(l)| ≤ C(A.8.6)

for every l ≥ 1. It is well known and not difficult to check that convergent
sequences in Rn are bounded.

If {x(l)}∞l=1 converges to x ∈ Rn, then it is well known and not too difficult
to verify that

lim
l→∞

|x(l)| = |x|,(A.8.7)

as a sequence of real numbers.

A.8.3 Monotone sequences of real numbers

Let {xj}∞j=1 be a sequence of real numbers. A real number a is said to be a
lower bound for {xj}∞j=1 if

a ≤ xj(A.8.8)

for each j ≥ 1. Similarly, a real number b is said to be an upper bound for
{xj}∞j=1 if

xj ≤ b(A.8.9)

for each j ≥ 1. Note that {xj}∞j=1 is bounded inR, as in the previous subsection,
if and only if {xj}∞j=1 has both an upper and a lower bound in R.

Suppose for the moment that {xj}∞j=1 is monotonically increasing, so that

xj ≤ xj+1(A.8.10)

for each j ≥ 1. In particular, this implies that x1 is a lower bound for {xj}∞j=1. If
{xj}∞j=1 has an upper bound in R, then it is well known that {xj}∞j=1 converges
in R. In this case, the limit of {xj}∞j=1 is an upper bound for {xj}∞j=1, and in
fact

lim
j→∞

xj is the smallest upper bound for {xj}∞j=1.(A.8.11)

This is known as the least upper bound or supremum of the set of xj ’s, j ≥ 1,
which may be expressed as

sup
j≥1

xj .(A.8.12)

Suppose now that {xj}∞j=1 is monotonically decreasing, so that

xj ≥ xj+1(A.8.13)

for each j ≥ 1. This implies that x1 is an upper bound for {xj}∞j=1. If {xj}∞j=1

has a lower bound in R, then {xj}∞j=1 converges in R, and

lim
j→∞

xj is the largest lower bound for {xj}∞j=1.(A.8.14)
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This is known as the greatest lower bound or of the set of xj ’s, j ≥ 1, which
may be expressed as

inf
j≥1

xj .(A.8.15)

These statements can be obtained from those in the preceding paragraph, be-
cause {−xj}∞j=1 is monotonically increasing.

A.8.4 Convergent sequences of complex numbers

An infinite sequence {zj}∞j=1 of complex numbers is said to converge to a com-
plex number z if for every ϵ > 0 there is a positive integer L such that

|zj − z| < ϵ(A.8.16)

for each j ≥ L. This is equivalent to the convergence of the corresponding
sequence in R2, as in Subsection A.7.4. In this case, we have that

lim
j→∞

|zj | = |z|,(A.8.17)

as before.
Note that

lim
j→∞

zj = z(A.8.18)

if and only if
lim
j→∞

Re zj = Re z(A.8.19)

and
lim
j→∞

Im zj = Im z,(A.8.20)

as sequences of real numbers, as before. This is also equivalent to

lim
j→∞

zj = z.(A.8.21)

A.9 More on convergent sequences

Let {zj}∞j=1 and {wj}∞j=1 be sequences of complex numbers that converge to
z, w ∈ C, respectively. It is well known and not difficult to show that the
corresponding sequence {zj + wj}∞j=1 of sums converges to z + w. This means
that

lim
j→∞

(zj + wj) = lim
j→∞

zj + lim
j→∞

wj ,(A.9.1)

where more precisely the limits on the right exist by hypothesis, and the exis-
tence of the limit on the left is part of the conclusion.

It is also well known that the sequence {zj wj}∞j=1 of products converges to
z w, although this is a bit more complicated. This means that

lim
j→∞

(zj wj) =
(

lim
j→∞

zj

)(
lim
j→∞

wj

)
,(A.9.2)

where the limits on the right exist by hypothesis, and the existence of the limit
on th left is part of the conclusion.
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A.9.1 A helpful lemma

Let {aj}∞j=1 be a sequence of complex numbers that converges to 0, and let
{bj}∞j=1 be a bounded sequence of complex numbers. Under these conditions,
one can check that

lim
j→∞

(aj bj) = 0.(A.9.3)

In particular, one can use this to get that

lim
j→∞

((zj − z)wj) = 0.(A.9.4)

One can also verify that
lim
j→∞

(z wj) = z w,(A.9.5)

directly from the definitions. It is easy to obtain (A.9.2) from (A.9.4) and
(A.9.5).

A.9.2 Sequences of reciprocals

If zj 6= 0 for each j, and z 6= 0, then it is well known that {1/zj}∞j=1 converges
to 0. This means that

lim
j→∞

(1/zj) = 1/
(

lim
j→∞

zj

)
,(A.9.6)

whwre the limit on the right exists by hypohtesis, and the existence of the limit
on the left is part of the conclusion, as usual.

In order to show this, it is helpful to first use the convergence of {zj}∞j=1 to
z to get that there is a positive integer L1 such that

|zj − z| < |z|/2(A.9.7)

when j ≥ L1. One can check that this implies that

|zj | > |z|/2(A.9.8)

when j ≥ L1.

A.9.3 More on sequences in Rn

Let n be a positive integer, and let {x(l)}∞l=1, {y(l)}∞l=1 be sequences of elements
of Rn that converge to x, y ∈ Rn, respectively. Under these conditions, one can
check that {x(l) + y(l)}∞l=1 converges to x+ y. This means that

lim
l→∞

(x(l) + y(l)) = lim
l→∞

x(l) + lim
l→∞

y(l),(A.9.9)

where the limits on the right exist by hypothesis, and the existence of the limit
on the left is part of the conclusion, as before. This can be shown using an
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argument like that for sequences of real or complex numbers, or by reducing to
the analogous statement for sequences of real numbers.

One can also verify that the sequence {x(l) · y(l)}∞l=1 converges to the dot
product x · y of the limits. This means that

lim
l→∞

x(l) · y(l) =
(
lim
l→∞

x(l)
)
·
(
lim
l→∞

y(l)
)
,(A.9.10)

where the limits on the right existe by hypothesis, and the existence of the limit
on the left is part of the conclusion. This follows from the earlier statements
about sums and products of convergent sequences of real numbers.

Let {tl}∞l=1 be a sequence of real numbers that converges to t ∈ R. In this
case, we have that {tl x(l)}∞l=1 converges to t x in Rn. This means that

lim
l→∞

(tl x(l)) =
(
lim
l→∞

tl

)(
lim
l→∞

x(l)
)
,(A.9.11)

where the limits on the right exist by hypothesis, and the existence of the limit
on the left is part of the conclusion. This can be obtained from the analogous
statement for products of convergent sequences of real numbers, or shown in a
similar way.

A.10 Some particular sequences

We consider the convergence of some particular sequences of real and complex
numbers in this section. Some of the arguments for obtaining convergence are
at least sketched, although other approaches are sometimes used as well.

A.10.1 {1/jp}∞j=1

If p is a positive real number, then it is well known and not difficult to show
that

lim
j→∞

1/jp = 0.(A.10.1)

One might as well take p = 1/k for some positive integer k here, which is a bit
simpler.

A.10.2 {jα aj}∞j=1

If a is a complex number with
|a| < 1(A.10.2)

and α is any real number, then it is well known that

lim
j→∞

jα aj = 0.(A.10.3)

Of course, this is trivial when a = 0, and one can reduce to the case where a is
a positive real number. One can also reduce to the case where α < 1, using a
positive integer k such that

α/k < 1.(A.10.4)
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More precisely, if one can show that

lim
j→∞

jα/k aj/k = 0,(A.10.5)

then it follows that

jα aj = (jα/k aj/k)k → 0(A.10.6)

as j → ∞, as before. Note that a1/k < 1 when 0 < a < 1.

A.10.3 {p1/j}∞j=1

If p is a positive real number, then it is well known that

lim
j→∞

p1/j = 1.(A.10.7)

One can reduce to the case where p ≥ 1, using the remarks in Subsection A.9.2.
If ϵ is a positive real number, then

p1/j < 1 + ϵ(A.10.8)

if and only if

p < (1 + ϵ)j .(A.10.9)

It is not too difficult to show that (A.10.9) holds when j is sufficiently large.
This is basically the same as (A.10.3), with α = 0, and a = 1/(1 + ϵ).

A.10.4 {j1/j}∞j=1

It is also well known that

lim
j→∞

j1/j = 1.(A.10.10)

If ϵ is a positive real number again, then

j1/j < 1 + ϵ(A.10.11)

if and only if

j < (1 + ϵ)j .(A.10.12)

One can check that this holds when j is sufficiently large. Note that (A.10.12)
is the same as saying that

j (1 + ϵ)−j < 1.(A.10.13)

That this holds when j is sufficiently large corresponds to (A.10.3) with α = 1
and a = 1/(1 + ϵ).
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A.11 Infinite series

Let
∑∞

j=1 aj be an infinite series of complex numbers. If n is a positive integer,
then

sn =

n∑
j=1

aj(A.11.1)

is called the nth partial sum of
∑∞

j=1 aj . If the sequence {sn}∞n=1 of partial

sums converges, then we say that
∑∞

j=1 aj converges as an infinite series, and
that the value of the sum is

∞∑
j=1

aj = lim
n→∞

sn.(A.11.2)

If
∑∞

j=1 aj converges, then it is well known that

lim
j→∞

aj = 0.(A.11.3)

One way to see this is to observe that

an = sn − sn−1(A.11.4)

when n ≥ 2, and that the right side tends to 0 as n → ∞, because sn and sn−1

converge to the same limit.

A.11.1 Some properties of convergent series

If
∑∞

j=1 aj converges and
∑∞

j=1 bj is another convergent series of complex num-

bers, then
∑∞

j=1(aj + bj) converges too, with

∞∑
j=1

(aj + bj) =

∞∑
j=1

aj +

∞∑
j=1

bj .(A.11.5)

Indeed,
n∑

j=1

(aj + bj) =

n∑
j=1

aj +

n∑
j=1

bj(A.11.6)

for each n, so that

lim
n→∞

n∑
j=1

(aj + bj) = lim
n→∞

n∑
j=1

aj + lim
n→∞

n∑
j=1

bj .(A.11.7)

Similarly, if
∑∞

j=1 aj converges and c is a complex number, then
∑∞

j=1 c aj
converges, with

∞∑
j=1

c aj = c

∞∑
j=1

aj .(A.11.8)
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This is because
n∑

j=1

c aj = c

n∑
j=1

aj(A.11.9)

for each n, so that

lim
n→∞

n∑
j=1

c aj = c
(

lim
n→∞

n∑
j=1

aj

)
.(A.11.10)

A.11.2 Geometric series

If z is a complex number, then
∑∞

j=0 z
j is called a geometric series. Here zj is

interpreted as being equal to 1 when j = 0, even when z = 0. Of course, infinite
series beginning with j = 0, or any other integer, can be handled in the same
way as before.

Let n be a nonnegative integr, and observe that

(1− z)

n∑
j=0

zj =

n∑
j=0

zj −
n∑

j=0

zj+1 =

n∑
j=0

zj −
n+1∑
j=1

zj = 1− zn+1.(A.11.11)

If z 6= 1, then it follows that

n∑
j=0

zj = (1− zn+1)/(1− z).(A.11.12)

If |z| < 1, then
lim

n→∞
zn = 0,(A.11.13)

as in Subsection A.10.2, with α = 0. This implies that
∑∞

j=0 z
j converges, with

∞∑
j=0

zj = 1/(1− z),(A.11.14)

because zn → 0 as n → ∞,
If |z| ≥ 1, then

|zj | = |z|j ≥ 1(A.11.15)

for each j ≥ 0. This implies that {zj}∞j=0 does not converge to 0, so that∑∞
j=0 z

j does not converge.

A.11.3 Infinite series with nonnegative terms

If
∑∞

j=1 aj is a convergent series of complex numbers, then the corresponding
sequence of partial sums is bounded, because it converges.

Suppose now that
∑∞

j=1 aj is an infinite series whose terms are nonnegative
real numbers. This implies that

sn ≤ sn + an+1 = sn+1(A.11.16)
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for each n, so that the corresponding sequence of partial sums is monotonically
increasing. If {sn}∞n=1 has an upper bound in R, then it follows that

∑∞
j=1 aj

converges, as in Subsection A.8.3.
If p is a positive real number, then it is well known that

∞∑
j=1

1/jp(A.11.17)

converges if and only if p > 1.

A.11.4 Absolute convergence

An infinite series
∑∞

j=1 aj of complex numbers is said to converge absolutely if

∞∑
j=1

|aj |(A.11.18)

converges. It is well known that this implies that
∑∞

j=1 aj converges. In this
case, it is not too difficult to show that∣∣∣∣ ∞∑

j=1

aj

∣∣∣∣ ≤ ∞∑
j=1

|aj |.(A.11.19)

If
∑∞

j=1 aj is an absolutely convergent series of real numbers, then one can
show that the corresponding sums of the positive and negative parts of the aj ’s
converge, using the remarks in the previous subsection. One can use this to get
that

∑∞
j=1 aj converges.

If
∑∞

j=1 aj is an absolutely convergent series of complex numbers, then it is
easy to see that the corresponding series of real and imaginary parts of the aj ’s
are absolutely convergent. One can use this and the remarks in the preceding
paragraph to get that

∑∞
j=1 aj converges.

Let
∑∞

j=1 aj be an infinite series of complex numbers, and let
∑∞

j=1 bj be an
infinite series of nonnegative real numbers. If

|aj | ≤ bj(A.11.20)

for each j, and
∑∞

j=1 bj converges, then the comparison test says that
∑∞

j=1 aj
converges absolutely. This can be obtained from the remarks in the previous
subsection.

A.12 More on infinite series

Let {aj}∞j=0 be a sequence of complex numbers such that the sequence of sums

An =

n∑
j=0

aj(A.12.1)
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is bounded. Also let {bj}∞j=0 be a monotonically decreasing sequence of nonneg-
ative real numbers that converges to 0. Under these conditions, it is well known
that

∞∑
j=0

aj bj(A.12.2)

converges. This is Theorem 3.42 on p70 of [309].
If aj = (−1)j for each j, then it is easy to see that An = 1 when n is

even, and An = 0 when n is odd. In this case, this criterion for convergence
corresponds to Leibniz’ alternating series test. This corresponds to Theorem
3.3 A on p72 of [125], and to Theorem 3.43 on p71 of [309].

Suppose that z is a complex number with |z| = 1 and z 6= 1. If

aj = zj(A.12.3)

for each j, then one can check that {An}∞n=0 is a bounded sequence in C, using
some of the remarks in Section A.11.2. This corresponds to Theorem 3.44 on
p71 of [309].

A.12.1 Power series

Let a0, a1, a2, a3, . . . be an infinite sequence of complex numbers, and consider
the corresponding power series

∞∑
j=0

aj z
j .(A.12.4)

Suppose for the moment that (A.12.4) converges absolutely for some z ∈ C,
and that w ∈ C satisfies

|w| ≤ |z|.(A.12.5)

One can check that
∞∑
j=0

aj w
j(A.12.6)

converges absolutely, using the comparison test.
Suppose for the moment again that (A.12.4) converges for some z ∈ C with

z 6= 0. If w ∈ C satisifes
|w| < |z|,(A.12.7)

then it is not too difficult to show that (A.12.6) converges absolutely.
More precisely, the convergence of (A.12.4) implies that

lim
j→∞

aj z
j = 0,(A.12.8)

and in particular that {aj zj}∞j=0 is a bounded sequence. This means that there
is a nonnegative real number C such that

|aj zj | ≤ C(A.12.9)
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for each j. Using this, it is easy to see that

|aj wj | ≤ C (|w|/|z|)j(A.12.10)

for each j. If (A.12.7) holds, then
∑∞

j=0(|w|/|z|)j is a convergent geometric se-
ries. In this case, one can use the comparison test to get that (A.12.6) converges
asbolutely.

A.12.2 The radius of convergence

Suppose for the moment that there is a z ∈ C such that (A.12.4) does not
converge. In this case, it is well known that there is a nonnegative real number
ρ with the following two properties. First, if w ∈ C and

|w| > ρ,(A.12.11)

then (A.12.6) does not converge. Second, if w ∈ C and

|w| < ρ,(A.12.12)

then (A.12.6) converges absolutely.
If (A.12.4) converges for every z ∈ C, then (A.12.6) converges absolutely for

every w ∈ C, as in the previous subsection. In this case, we can take ρ = +∞.
One can check that ρ is uniquely determined by these properties. This is

called the radius of convergence of the power series (A.12.4).

A.13 Rearrangements of infinite series

Let π be a one-to-one mapping from the set Z+ of positive integers onto itself.
This means that π(j) ∈ Z+ for every positive inetger j, and that every positive
integer k can be expressed as π(j) for exactly on j ∈ Z+, which may be expressed
as π−1(k).

If
∑∞

j=1 aj is an infinite series of complex numbers, then the infinite series

∞∑
j=1

aπ(j)(A.13.1)

is called a rearrangement of
∑∞

j=1 aj . If

aj = 0 for all but finitely many j,(A.13.2)

then it is easy to see that

aπ(j) = 0 for all but finitely many j(A.13.3)

as well, with
∞∑
j=1

aπ(j) =

∞∑
j=1

aj .(A.13.4)
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Suppose for the moment that aj is a nonnegative real number for each j.
Under these conditions, it is well known and not too difficult to show that∑∞

j=1 aj converges if and only if (A.13.1) converges, in which case (A.13.4)
holds. This is because

every partial sum of

∞∑
j=1

aj is less than or equal to(A.13.5)

some partial sum of (A.13.1),

and vice-versa. This corresponds to Lemma 3.5 E on p77 of [125].
If
∑∞

j=1 aj is an absolutely convergent series of complex numbers, then it fol-
lows that (A.13.1) is absolutely convergent too. More precisely, the convergence
of

∑∞
j=1 |aj | implies the convergence of

∞∑
j=1

|aπ(j)|,(A.13.6)

as in the preceding paragraph.
If aj is a real number for each j, then one can get that (A.13.4) holds, by

considering the positive and negative parts of aj separately. This corresponds
to Theorem 3.5 F on p77 of [125]. Otherwise, one can reduce to this case, by
considering the real and imaginary parts of aj for each j.

Another argument is used in the proof of Theorem 3.55 on p78 of [309].
Basically, one can show more directly that

lim
n→∞

( n∑
j=1

aj −
n∑

j=1

aπ(j)

)
= 0(A.13.7)

under these conditions.
Suppose now that

∑∞
j=1 aj is an infinite series of real numbers that converges,

and does not converge absolutely. In this case, it is well known that there are
rearrangements of the series that do not converge, as in Exercises 4, 5 on p80 of
[125]. There are also rearrangements that converge, with the sum equal to any
real number, as in Theorem 3.5 D on p77 of [125]. See Theorem 3.54 on p76 of
[309] as well.

A.14 Cauchy products of infinite series

If
∑∞

j=0 aj and
∑∞

l=0 bl are infinite series of complex numbers, then one might
like to multiply these two series, and arrange the terms into a single series. A
nice way to do this is to take

cn =

n∑
j=0

aj bn−j(A.14.1)
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for each nonnegative integer n. The corresponding infinite series
∑∞

n=0 cn is
called the Cauchy product of

∑∞
j=0 aj and

∑∞
l=0 bl.

It is not difficult to see that

∞∑
n=0

cn =
( ∞∑

j=0

aj

)( ∞∑
l=0

bl

)
(A.14.2)

formally. In fact, both sides of the equation correspond to∑
j,l≥0

aj bl(A.14.3)

formally, where the sum is taken over all pairs of nonnegative integers j, l.
Suppose for the moment that aj = 0 for all but finitely many j, and that

bl = 0 for all but finitely many l. This implies that aj bl = 0 for all but finitely
many pairs of nonnegative integers j, l. One can also check that cn = 0 for
all but finitely many n. In this case, one can verify that (A.14.2) holds. One
can interpret (A.14.3) as reducing to a finite sum, that is equal to both sides of
(A.14.2).

A.14.1 Cauchy products and power series

The definition of the Cauchy product works well with power series. Indeed,
the Cauchy product of the power series

∑∞
j=0 aj z

j and
∑∞

l=0 bl z
l, is the power

series
∞∑

n=0

cn z
n,(A.14.4)

where cn is as in (A.14.1) for each n.

A.14.2 Convergence of Cauchy products

Suppose for the moment that aj is a nonnegative real number for each j, and that
bl is a nonnegative real number for each l. This implies that cn is a nonnegative
real number for each n. If N is a nonnegative integer, then one can check that

N∑
n=0

cn ≤
( N∑

j=0

aj

)( N∑
l=0

bl

)
.(A.14.5)

Similarly, if N1 and N2 are nonnegative integers, then one can verify that

( N1∑
j=0

aj

)( N2∑
l=0

bl

)
≤

N1+N2∑
n=0

cn.(A.14.6)

If
∑∞

j=0 aj and
∑∞

l=0 bl converge, then one can use these inequalities to get that∑∞
n=0 cn converges, with sum as in (A.14.2).
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Observe that

|cn| ≤
n∑

j=0

|aj | |bn−j |(A.14.7)

for each n when the aj ’s and bl’s are any complex numbers. The right side of
this inequality is the same as the nth term of the Cauchy product of the series∑∞

j=0 |aj | and
∑∞

l=0 |bl|. If these series converge, then their Cauchy product

converges, as in the previous paragraph. This implies that
∑∞

n=0 |cn| converges,
by the comparison test.

It is not difficult to show that (A.14.2) holds under these conditions, by
reducing to convergent series of nonnegative real numbers. This corresponds to
the theorem on p78 of [125], which uses another argument.

If one of
∑∞

j=0 aj and
∑∞

l=0 bl converges absolutely, and the other series con-

verges, then it is well known that
∑∞

n=0 cn converges, with sum as in (A.14.2).
This is Theorem 3.50 on p74 of [309]. However, the Cauchy product of conver-
gent series may not converge, as in Example 3.49 on p73 of [309].

A.15 The binomial theorem

If j is a positive integer, then j! is j factorial, the product of the positive integers
from 1 to j, as usual. This is interpreted as being equal to 1 when j = 0.

Let n be a nonnegative integer, and let z, w be complex numbers. The
binomial theorem states that

(z + w)n =

n∑
j=0

(
n

j

)
zj wn−j ,(A.15.1)

where (
n

j

)
=

n!

j! (n− j)!
(A.15.2)

is the usual binomial coefficient.
It is easy to see that

(z + w)n(A.15.3)

can be expanded into a sum of terms of the form

zj wn−j ,(A.15.4)

0 ≤ j ≤ n, where each of these terms occurs a positive number of times. One
can show that the number of times that these terms occur is equal to (A.15.2),
using induction.

These coefficients can also be obtained using differentiation.
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B.1 The complex exponential function

If z is a complex number, then put

E(z) =

∞∑
j=0

zj

j!
,(B.1.1)

as in (25) on p178 of [309]. One can check that the series on the right converges
absolutely, using the ratio test. Alternatively, one can use the comparison test,
by comparing this series with a convergent geometri series.

If z ∈ R, then the right side of (B.1.1) is the usual Taylor series expansion
for the exponential function. One can also use this to define the exponential
function on the real line, and as a complex-valued function on the complex
plane.

Of course, we would like to check that this satisfies the usual properties of the
exponential function on the real line. We would like to consider its properties
on the complex plane as well.

B.1.1 Exponentials of sums

If w is another complex number, then

E(z + w) =

∞∑
n=0

(z + w)n

n!
=

∞∑
n=0

( n∑
j=0

zj

j!

wn−j

(n− j)!

)
,(B.1.2)

using the binomial theorem in the second step, as in Section A.15. The right
side is the same as the Cauchy product of the series used to define E(z) and
E(w), as in Section A.14. This implies that

E(z + w) = E(z)E(w),(B.1.3)

38



B.2. CONTINUOUS COMPLEX-VALUED FUNCTIONS 39

as in (26) on p178 of [309], because these series converge absolutely, as in Sub-
section A.14.2.

In particular, we can take w = −z, to get that

E(z)E(−z) = E(z − z) = E(0) = 1,(B.1.4)

as in (27) on p178 of [309]. This means that E(z) 6= 0, with

E(z)−1 = E(−z).(B.1.5)

If x ∈ R, then E(x) ∈ R, and one can check that E(x) is positive and
strictly increasing for x ≥ 0. One can verify that the same properties hold when
x ≤ 0, using (B.1.5).

Similarly, if x ∈ R, then E(x) → +∞ as x → +∞, as on p179 of [309]. It
follows that E(x) → 0 as x → −∞, because of (B.1.5), as in [309].

We may use E(z) as the definition of the complex exponential function ez =
exp z for z ∈ C, as on p1 of [308]. We shall use this notation from now on here.

B.1.2 Exponentials and complex conjugates

It is easy to see that

(exp z) = exp(z)(B.1.6)

for every z ∈ C. This implies that

| exp z|2 = (exp z) (exp z) = (exp z) (exp z)(B.1.7)

= exp(z + z) = exp(2Re z).

In particular,

| exp(i y)| = 1(B.1.8)

for every y ∈ R. In fact, Euler’s identity states that

exp(i y) = cos y + i sin y,(B.1.9)

as in (46) on p182 of [309], and (5) on p2 of [308].

B.2 Continuous complex-valued functions

Let n be a positive integer, let E be a nonempty subset of Rn, and let f be a
complex-valued function on E. We say that f is continuous at a point x ∈ E if
for every ϵ > 0 there is a δ > 0 such that

|f(x)− f(y)| < ϵ(B.2.1)

for every y ∈ E such that

|x− y| < δ.(B.2.2)
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Let {xj}∞j=1 be a sequence of elements of E that converges to x, as in Sub-
section A.8.1. One can check that

lim
j→∞

f(xj) = f(x)(B.2.3)

under these conditions.
It is well known that continuity of f at x is characterized by this property.

This can be shown using an argument by contradiction.
If f is continuous at every point in E, then we may simply say that f is

continuous on E.

B.2.1 More on continuous functions

Let g be another complex-valued function on E. If f and g are both continuous
at x ∈ E, then it is well known that

f + g and f g are continuous at x,(B.2.4)

as complex-valued functions on E. This can be obtained from the characteriza-
tion of continuity in terms of convergent sequences and the analogous statements
for convergent sequences of complex numbers, as in Section A.9.

Suppose for the moment that f(y) 6= 0 for each y ∈ E, so that 1/f defines
a complex-valued function on E. If f is continuous at x, then it is well known
that

1/f is continuous at x(B.2.5)

too. This can be obtained from the analogous statement for sequences of com-
plex numbers, as in Subsection A.9.2.

One can use (B.2.4) to get that functions on Rn defined by polynomials are
continuous. Similarly, a rational function is continuous on any set where the
denominator does not take the value 0.

B.2.2 Continuity of compositions

Let A be a nonempty subset of the complex plane, and let ϕ be a complex-valued
function on A. If

f(y) ∈ A(B.2.6)

for every y ∈ E, then the composition ϕ ◦ f of f with ϕ may be defined as
another complex-valued function on E, with

(ϕ ◦ f)(y) = ϕ(f(y))(B.2.7)

for every y ∈ E, as usual.
If f is continuous at x ∈ E, and ϕ is continuous at f(x), then it is well

known that

ϕ ◦ f is continuous at x.(B.2.8)
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This can be verified directly from the definitions, or using the characterization
of continuity in terms of convergent sequences.

Of course,

z 7→ 1/z(B.2.9)

defines a complex-valued function on the setC\{0} of nonzero complex numbers.
If f(y) 6= 0 for each y ∈ E, then 1/f is the same as the composition of f with
(B.2.9).

If f is any complex-valued function on E, then

|f(y)|(B.2.10)

defines a nonnegative real-valued function on E. This is the same as the com-
position of f with

z 7→ |z|,(B.2.11)

as a nonnegative real-valued function on C. It is well known and not too difficult
to show that (B.2.11) is continuous on C, which corresponds to a remark about
convergent sequences of complex numbers in Subsection A.8.4. If f is continous
at x ∈ E, then it follows that (B.2.10) is continuous at x as well.

Similarly, it is well known and not difficult to show that

w 7→ |w|(B.2.12)

is a continuous real-valued function on Rn, which corresponds to a remark about
convergent sequences in Rn in Subsection A.8.2.

B.2.3 Real and imaginary parts

It is easy to see that f is continuous on E if and only if

Re f(y) and Im f(y)(B.2.13)

are continuous real-valued functions on E. Of course, these two functions are
the same as the compositions of f with

z 7→ Re z and z 7→ Im z,(B.2.14)

respectively, as real valued functions on C.

Similarly, f is continuous on E if and only if

f(y)(B.2.15)

is continuous on E. This is the same as the composition of f with the complex-
valued function defined on C by complex conjugation.
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B.3 Pointwise and uniform convergence

Let E be a nonempty set, let {fj}∞j=1 be a sequence of complex-valued functions
on E, and let f be a complex-valued function on E. We say that {fj}∞j=1

converges to f pointwise on E if for every y ∈ E,

{fj(y)}∞j=1 converges to f(y),(B.3.1)

as a sequence of complex numbers.
We say that {fj}∞j=1 converges to f uniformly on E if for every ϵ > 0 there

is a positive integer L such that

|fj(y)− f(y)| < ϵ(B.3.2)

for every y ∈ E and j ≥ L. This implies that {fj}∞j=1 converges to f pointwise
on E. If E has only finitely many elements, and {fj}∞j=1 converges to f pointwise
on E, then one can verify that {fj}∞j=1 converges to f uniformly on E.

B.3.1 An example with E = [0, 1]

Let us take E to be the closed unit interval [0, 1] in the real line, and put

fj(y) = yj(B.3.3)

for each j and 0 ≤ y ≤ 1. This sequence of functions converges pointwise on
[0, 1], with

lim
j→∞

fj(y) = 0 when 0 ≤ y < 1(B.3.4)

= 1 when y = 1.

If r is a positive real number with r < 1, the one can check that

{fj}∞j=1 converges to 0 uniformly on [0, r].(B.3.5)

However, one can also verify that {fj}∞j=1 does not converge uniformly on [0, 1].

Indeed, for each j, yj is as close to 1 as we want when y is sufficiently close to
1.

B.3.2 Uniform convergence and continuity

Let n be a posiitve integer, and let E be a nonempty subset of Rn. Also
let {fj}∞j=1 be a sequence of complex-valued functions on E that converges
uniformly to a complex-valued function f on E. Suppose that x ∈ E, and that

fj is continuous at x(B.3.6)

for each j. Under these conditions, it is well known and not too difficult to show
that

f is continuous at x.(B.3.7)
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B.4 Weierstrass’ criterion for uniform conver-
gence

Let E be a nonempty set, and let a1(y), a2(y), a3(y), . . . be an infinite sequence
of complex-valued functions on E. Also let A1, A2, A3, . . . be an infinite sequence
of nonnegative real numbers such that

|aj(y)| ≤ Aj(B.4.1)

for every y ∈ E and j ≥ 1. Suppose that

∞∑
j=1

Aj(B.4.2)

converges. This implies that
∞∑
j=1

aj(y)(B.4.3)

converges absolutely for each y ∈ E, by the comparison test.

In fact, the sequence of partial sums

l∑
j=1

aj(y)(B.4.4)

converges to (B.4.3) uniformly on E under these conditions. This is a well-known
criterion of Weierstrass for uniform convergence.

Indeed, if l is a positive integer, than

∣∣∣∣ ∞∑
j=1

aj(y)−
l∑

j=1

aj(y)

∣∣∣∣ = ∣∣∣∣ ∞∑
j=l+1

aj(y)

∣∣∣∣ ≤ ∞∑
j=l+1

|aj(y)| ≤
∞∑

j=l+1

Aj(B.4.5)

for every y ∈ E. The right side tends to 0 as l → ∞, because of the conver-
gence of (B.4.2). This implies that (B.4.4) converges to (B.4.3) uniformly on E,
because the right side of (B.4.5) does not depened on y.

B.4.1 Continuity of the sum

Let n be a positive integer, and suppose that E is a subset of Rn. If aj(y) is
continuous on E for each j, then the partial sums (B.4.4) are continuous on E
for each l as well.

If (B.4.2) converges, then the uniform convergence of the partial sums implies
that (B.4.3) is continuous on E, as in Subsection B.3.2.
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B.5 Continuity of functions defined by power se-
ries

Let
∑∞

j=0 aj z
j be a power series with complex coefficients. Suppose for the

moment that r is a positive real number such that

∞∑
j=0

|aj | rj(B.5.1)

converges. This implies that
∑∞

j=0 aj z
j converges absolutely for each z ∈ C

with |z| ≤ r, by the comparison test, as in Subsection A.12.1.
Thus

f(z) =

∞∑
j=0

aj z
j(B.5.2)

defines a complex-valued function on the closed disk

{z ∈ C : |z| ≤ r}.(B.5.3)

We can use Weierstrass’ criterion to get that the sequence of partial sums

l∑
j=0

aj z
j(B.5.4)

converges uniformly to f(z) on (B.5.3) as l → ∞. This uses the fact that

|aj zj | = |aj | |z|j ≤ |aj | rj(B.5.5)

on (B.5.3) for each j.
Note that (B.5.4) is continuous as a complex-valued function on C for each

nonnegative integer l, as in Subsection B.2.1. In particular, the restriction of
(B.5.4) to (B.5.3) is continuous for each l. It follows that f(z) is continuous on
(B.5.3), as in Subsection B.4.1.

B.5.1 Continuity on open disks

Suppose now that ρ is a positive real number such that (B.5.1) converges when
0 < r < ρ. It is convenient to include the case where ρ = +∞ here too, so that
(B.5.1) converges for all r > 0.

Under these conditions,
∑∞

j=0 aj z
j converges absoutely for every complex

number z with |z| < ρ, as before. This means that (B.5.2) defines a complex-
valued function on

{z ∈ C : |z| < ρ}.(B.5.6)

Of course, (B.5.6) is the same as the complex plane when ρ = +∞.
In fact, f(z) is continuous as a complex-valued function on (B.5.6). To see

this, let z0 ∈ C with |z0| < ρ be given. It suffices to check that f is continuous
at z0, as a function on (B.5.6).
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Let r be a positive real number such that

|z0| < r < ρ.(B.5.7)

We have already seen that f is continuous at z0 as a function defined on (B.5.3).
One can use this to get that f is continuous at z0 as a function on (B.5.6),
because |z0| < r.

B.6 Bounded functions

Let E be a nonempty set, and let f be a complex-valued function on E. We say
that f is bounded on E if there is a nonnegative real number C such that

|f(y)| ≤ C(B.6.1)

for every y ∈ E.

Suppose that f satisfies (B.6.1), and that g is another bounded complex-
valued function on E, with

|g(y)| ≤ C ′(B.6.2)

for some C ′ ≥ 0 and all y ∈ E. In this case, f + g is bounded on E, with

|f(y) + g(y)| ≤ |f(y)|+ |g(y)| ≤ C + C ′(B.6.3)

for every y ∈ E. Similarly, f g is bounded on E, with

|f(y) g(y)| = |f(y)| |g(y)| ≤ C C ′(B.6.4)

for every y ∈ E.

B.6.1 A version of the extreme value theorem

Let n be a positive integer, let w be an element of Rn, and let r be a positive
real number. Remember that B(w, r) is the closed ball in Rn centered at w with
radius r, as in Subsection A.2.2. Let f be a continuous real-valued function on
B(w, r). Under these conditions, the extreme value theorem states that f attains
its maximum and minimum on B(w, r). This means that there are points u, v
in B(w, r) such that

f(u) ≤ f(y) ≤ f(v)(B.6.5)

for every y ∈ E.

If f is a continuous complex-valued function on B(w, r), then |f | is a con-
tinuous real-valued function on B(w, r), as in Subsection B.2.2. This implies
that |f | attains its maximum and minimum on B(w, r), as in the preceding
paragraph. In particular, this means that f is bounded on B(w, r).
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B.7 Uniformly bounded sequences of functions

Let E be a nonempty set again, and let {fj}∞j=1 be a sequence of complex-
valued functions on E. We say that {fj}∞j=1 is uniformly bounded if there is a
nonnegative real number C such that

|fj(y)| ≤ C(B.7.1)

for every y ∈ E and positive integer j. Of course, this implies in particular that
fj is bounded nn E for each j.

Suppose that {fj}∞j=1 satisfies (B.7.1) on E. Suppose also for the moment
that {fj}∞j=1 converges pointwise to a complex-valued function f on E. In this
case, one can check that (B.6.1) holds for every y ∈ E. In particular, this means
that f is bounded on E.

Let {gj}∞j=1 be another uniformly bounded sequence of complex-valued func-
tions on E, with

|gj(y)| ≤ C ′(B.7.2)

for some C ′ ≥ 0 and all y ∈ E and j ≥ 1. Observe that {fj+gj}∞j=1 is uniformly
bounded on E, with

|fj(y) + gj(y)| ≤ C + C ′(B.7.3)

for every y ∈ E and j ≥ 1. Similarly, {fj gj}∞j=1 is uniformly bounded on E,
with

|fj(y) gj(y)| ≤ C C ′(B.7.4)

for each y ∈ E and j ≥ 1.

B.7.1 More on uniform convergence

Suppose now that {fj}∞j=1 and {gj}∞j=1 are sequences of complex-valued func-
tions on E that converge uniformly to complex-valued functions f and g on E,
respectively. One can check that

{fj + gj}∞j=1 converges uniformly to f + g on E(B.7.5)

under these conditions. If a is a complex number, then one can verify that

{a fj}∞j=1 converges uniformly to a f on E.(B.7.6)

Suppose in addition that {fj}∞j=1 and {gj}∞j=1 are uniformly bounded on E.
This implies that f and g are bounded on E too, as before. In this case, it is
well known and not too difficult to show that

{fj gj}∞j=1 converges uniformly to f g on E.(B.7.7)

To see this, observe that

fj(y) gj(y)− f(y) g(y) = (fj(y)− f(y)) gj(y) + f(y) (gj(y)− g(y))(B.7.8)
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for every y ∈ E and j ≥ 1. This implies that

|fj(y) gj(y)− f(y) g(y)| ≤ |fj(y)− f(y)| |gj(y)|+ |f(y)| |gj(y)− g(y)|(B.7.9)

for all y ∈ E and j ≥ 1. If C,C ′ ≥ 0 are as in (B.6.1) and (B.7.2), respectively,
then we get that

|fj(y) gj(y)− f(y) g(y)| ≤ C ′ |fj(y)− f(y)|+ C |gj(y)− g(y)|(B.7.10)

for each y ∈ E and j ≥ 1. One can use this to get (B.7.7).

B.7.2 Boundedness and uniform convergence

Let {fj}∞j=1 be a sequence of complex-valued functions on E that converges
uniformly to a complex-valued function f on E again. If

fj is bounded on E(B.7.11)

for each j, then one can check that

f is bounded on E.(B.7.12)

Using this, one can also verify that

{fj}∞j=1 is uniformly bounded on E(B.7.13)

under these conditions.

B.8 Uniform convergence and integration

Let a and b be real numbers with a < b, and let {fj}∞j=1 be a sequence of
continuous real-valued functions on [a, b] that converges uniformly to a real-
valued function f on [a, b]. Remember that f is also continuous on [a, b], as in
Subsection B.3.2. It is well known and not too difficult to show that

lim
j→∞

∫ b

a

fj(x) dx =

∫ b

a

f(x) dx.(B.8.1)

More precisely,∣∣∣∣∫ b

a

fj(x) dx−
∫ b

a

f(x) dx

∣∣∣∣ =

∣∣∣∣∫ b

a

(fj(x)− f(x)) dx

∣∣∣∣(B.8.2)

≤
∫ b

a

|fj(x)− f(x)| dx

for each j. One can use uniform convergence to get that

lim
j→∞

∫ b

a

|fj(x)− f(x)| dx = 0.(B.8.3)
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There are analogous statements for multiple integrals over suitable regions
in Rn.

One may also consider the case where the functions fj are Riemann inte-
grable, instead of continuous. It is well known that uniform convergence implies
that f is Riemann integrable as well.

One may consider integrals of complex-valued functions too. The integral
of a complex-valued function may be defined under suitable conditions as the
complex number whose real and imaginary parts are the corresponding integrals
of the real and imaginary parts of the function.

B.8.1 The bounded convergence theorem

Let {fj}∞j=1 be a sequence of continuous real-valued functions on [a, b] again.
Suppose now that {fj}∞j=1 converges to a continuous real-valued function f
pointwise on [a, b], and that {fj}∞j=1 is uniformly bounded on [a, b]. Under
these conditions, a classical theorem of Arzelà and Osgood impies that (B.8.1)
holds, as in [83, 133, 235, 242, 348]. This also works when the fj ’s and f are
Riemann integrable on [a, b], instead of continuous.

More results like these can be obtained using Lebesgue integrals.

B.9 Uniform convergence and differentiation

Let a and b be real numbers with a < b again, and let {gj}∞j=1 be a sequence of
continuously-differentiable real-valued functions on [a, b]. This means that for
each positive integer j, the derivative g′j(x) of gj exists at every x ∈ [a, b], using
the appropriate one-sided derivative when x = a or b, and that g′j is continuous
on [a, b].

Suppose that {gj(a)}∞j=1 converges to a real number g(a), and that {g′j}∞j=1

converges uniformly to a real-valued function f on [a, b]. Note that f is contin-
uous on [a, b], as in Subsection B.3.2.

Of course,

gj(x) = gj(a) +

∫ x

a

g′j(t) dt(B.9.1)

for each j ≥ 1 and x ∈ [a, b], by the fundamental theorem of calculus. Let g be
the real-valued function defined on [a, b] by

g(x) = g(a) +

∫ x

a

f(t) dt(B.9.2)

for each x ∈ [a, b].
One can check that

{gj}∞j=1 converges uniformly to g on [a, b],(B.9.3)

using the same type of arguments as mentioned at the beginning of the previous
section. We also have that g is uniformly continuous on [a, b], with g′ = f .
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There are analogous statements for complex-valued functions, as before. The
derivative of a complex-valued function at a point may be defined as the complex
number whose real and imaginary parts are the derivatives of the real and
imaginary parts of the function at the same point, when they exist.

B.9.1 Differentiating power series

Let
∑∞

j=0 aj x
j be a power series with real or complex coefficients, and suppose

that
∞∑
j=0

j |aj | rj(B.9.4)

converges for some positive real number r. It is easy to see that this implies
that

∞∑
j=0

|aj | rj(B.9.5)

converges.
Put

f(x) =

∞∑
j=0

aj x
j(B.9.6)

and

ϕ(x) =

∞∑
j=1

j aj x
j−1(B.9.7)

for each x ∈ R with |x| ≤ r. The partial sums of these series converge uniformly
on [−r, r], as in Section B.5. One can use the remarks at the beginning of the
section to get that f is differentiable on [−r, r], with

f ′ = ϕ(B.9.8)

on [−r, r].

B.9.2 Differentiating exp(a t)

If a is a complex number, then

exp(a t) =

∞∑
j=1

aj tj

j!
(B.9.9)

defines a complex-valued function of t on the real line, as in Section B.1. One
can use the remarks in the previous subsection to get that this function is
differentiable on R, with

d

dt
exp(a t) = a exp(a t).(B.9.10)
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Alternatively, one can check more directly that this holds at t = 0. In
order to take the derivative at other points in R, one can use the fact that the
exponential of a sum if equal to the product of the exponentials, as on p179 of
[309], and p2 of [308].

B.9.3 More on differentiating power series

Suppose that 0 < ρ ≤ +∞ has the property that (B.9.5) converges for all
positive real numbers r with r < ρ. In this case, it is well known and not
difficult to show that this implies that (B.9.4) converges when r < ρ too. More
precisely, if r < t < ρ, then one can use the convergence of

∞∑
j=0

|aj | tj(B.9.11)

to get that (B.9.4) converges.

It follows that the series on the right sides of (B.9.6) and (B.9.7) converge
absolutely for every x ∈ R with |x| < ρ, so that f(x) and ϕ(x) may be defined on
(−ρ, ρ) as before. We also get that f is differentiable on (−ρ, ρ), with derivative
as in (B.9.8).

B.10 Open and closed sets

Let n be a positive integer, and let U be a subset of Rn. We say that U is an
open set in Rn if for every x ∈ U there is a positive real number r such that

B(x, r) ⊆ U.(B.10.1)

Remember that B(x, r) is the open ball in Rn centered at x with radius r with
respect to the standard Euclidean metric, as in Subsection A.2.2.

If w ∈ Rn and t is a positive real number, then it is well known and not
difficult to show that

B(w, t) is an open set.(B.10.2)

Indeed, if x ∈ B(w, t), then one can check that

B(x, r) ⊆ B(w, t)(B.10.3)

when r = t− d(w, x) > 0, using the triangle inequality.

If U1, . . . , Ul are finitely many open sets in Rn, then one can verify that

U1 ∩ · · · ∩ Un is an open set.(B.10.4)

It is easy to see that the union of any family of open sets in Rn is an open set
too.
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B.10.1 Limit points and closed sets

Let E be a subset of Rn, and let x be an element of Rn. We say that x is a
limit point of E if for every positive real number r there is a y ∈ E such that
x 6= y and

|x− y| < r.(B.10.5)

Note that x need not be an element of E, and that elements of E may not be
limit points of E.

If x is a limit point of E and t is a positive real number, then it is well known
and not difficult to show that

there are infinitely many elements of E in B(x, t).(B.10.6)

In particular, if E has only finitely many elements, then E has no limit points
in Rn.

We say that E is a closed set in Rn if E contains all of its limit points.
Equivalently, this means that if x ∈ Rn is a limit point of E, then

x ∈ E.(B.10.7)

It is well known that

closed balls in Rn are closed sets.(B.10.8)

This can be verified directly from the definitions, or using another characteri-
zation of closed sets in the next subsection.

B.10.2 Complements of subsets of Rn

If A and B are sets, then put

A \B = {x ∈ A : x 6∈ B}.(B.10.9)

If B is a subset of A, then this may be called the complement of B in A. Observe
that

A \ (A \B) = B(B.10.10)

when B ⊆ A.
If E is any subset of Rn, then it is well known and not too difficult to show

that E is a closed set if and only if

Rn \ E is an open set.(B.10.11)

Equivalently, this means that a subset U of Rn is an open set if and only if

Rn \ U is a closed set,(B.10.12)

because of (B.10.10).
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If E1, . . . , El are finitely many closed sets in Rn, then it is well known that

E1 ∪ · · · ∪ El is a closed set in Rn.(B.10.13)

Indeed, if E1, . . . , El are any subsets of Rn, then one can check that

Rn \
( l⋃

j=1

Ej

)
=

l⋂
j=1

(Rn \ Ej).(B.10.14)

If E1, . . . , El are closed sets, then the right side is an open set, because of
(B.10.4).

It is also well known that the intersection of any family of closed sets in Rn

is a closed set as well. This can be obtained from the definition of a closed set,
or using the fact that the complement of an intersection is equal to the union
of the complements of the sets.

B.10.3 Bounded sets and the extreme value theorem

A subset E of Rn is said to be bounded if there is a nonnegative real number C
such that

|x| ≤ C.(B.10.15)

One can check that open and closed balls in Rn are bounded sets, using the
triangle inequality.

Suppose that E is a nonempty subset of Rn that is both closed and bounded.
Also let f be a continuous real-valued continuous function on E. Another version
of the extreme value theorem states that f attains its maximum and minimum
on E. This was mentioned in Subsection B.6.1 when E is a cosed ball in Rn.

If f is a continuous complex-valued function on E, then one can apply the
previous statement to |f |, to get that f is bounded on E, as before.

B.10.4 Closures and boundaries

If E is any subset of Rn, then the closure of E in Rn is the subset E of Rn

consisting of the elements of E and the limit points of E in Rn. In particular,

E ⊆ E,(B.10.16)

by definition. One can check that E = E if and only if E is a closed set, directly
from the definitions.

If E is any subset of Rn again, then it is well known and not too difficult to
show that

E is a closed set.(B.10.17)

This is the same as saying that

Rn \ E is an open set,(B.10.18)
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as before.

The boundary of E in Rn is defined to be the set

∂E = E ∩ (Rn \ E).(B.10.19)

This is a closed set in Rn, because it is the intersection of two closed sets.

If U is an open set in Rn then the boundary of U may be expressed more
simply as

∂U = U \ U.(B.10.20)

This is because the complement of U in Rn is a closed set, and thus equal to
its own closure.

B.11 Partial derivatives

Let n be a positive integer, let U be an open subset of Rn, and let f be a
real-valued function on U . If x is an element of U and l is a positive integer less
than or equal to n, then the partial derivative of f at x in the lth variable may
be denoted

∂lf(x) = Dlf(x) =
∂f

∂xl
(x),(B.11.1)

when it exists. Sometimes subscripts are used to indicate partial derivatives, so
that (B.11.1) may also be denoted fxl

(x).

If n is not too large, then we may use different letters for the coordinates of
a point in Rn, and similar notation for partial derivatives. A point in R2 may
be expressed as (x, y), for instance, and the partial derivatives of f with respect
to x and y may be expressed as

fx =
∂f

∂x
and fy =

∂f

∂y
,(B.11.2)

respectively.

Sometimes one of the variables may be denoted t, and the other variables
may be expressed as in either of the previous two paragraphs. The partial
derivative of f with respect to t may be expressed as

ft =
∂f

∂t
,(B.11.3)

and the other partial derivatives may be expressed as in (B.11.1) or (B.11.2),
as appropriate.

One may also consider complex-valued functions f on U . In this case, the real
and imaginary parts of a partial derivative of f are the same as the corresponding
partial derivative of the real and imaginary parts of f , respectively, when they
exist.
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B.11.1 Continuous differentiability

Suppose that f is a real or complex-valued function on U such that the par-
tial derivatives of f in each variable exist at every point in U . If each of the
partial derivatives of f is continuous on U , then f is said to be continuously
differentiable on U .

If f is continuously differentiable on U , then it is well known that

f is continuous on U.(B.11.4)

More precisely, this holds when the partial derivatives of f are locally bounded
on U , in the sense that for each x ∈ U there is a positive real number r such
that B(x, r) ⊆ U and the partial derivatives of f are bounded on B(x, r). If
n = 1, then a function is continuous at any point at which the derivative exists.

Let g be another real or complex-valued function on U , and suppose that f
and g are both continuously differentiable on U . It is easy to see that f + g and
f g are continuously differentiable on U as well.

B.11.2 Directional derivatives

Let f be a real or complex-valued function on U again, and let x ∈ U and
w ∈ Rn be given. Also let U(x,w) be the of real numbers t such that

x+ t w ∈ U.(B.11.5)

One can check that this is an open set in the real line that contains 0.
The directional derivative of f at x in the direction of w is defined to be the

derivative of
f(x+ t w)(B.11.6)

as a function of t ∈ U(x,w) at 0, when it exists. This may be denoted

Dwf(x).(B.11.7)

If f is continuously differentiable on U , then it is well known that the direc-
tional derivative exists, with

Dwf(x) =

n∑
j=1

wj
∂f

∂xj
(x).(B.11.8)

Note that the right side is linear in w.

B.11.3 Twice continuous differentiability

Let f be a real or complex-valued function on U , and suppose for the moment
that the partial derivative of f in the lth variable exists at every point in U for
some l ≤ n. Consider the partial derivative

∂

∂xj

( ∂f

∂xl

)
(B.11.9)
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of ∂f/∂xl in the jth variable, 1 ≤ j ≤ n, when it exists.
Suppose now that ∂f/∂xl exists at every point in U for each l = 1, . . . , n,

and that its partial derivatives (B.11.9) exist at every point in U for each j =
1, . . . , n. If each of these second derivatives of f is continuous on U , then f is
said to be twice continuously differentiable on U .

Equivalently, this means that

∂f

∂xl
is continuously differentiable on U(B.11.10)

for each l. This implies that

∂f

∂xl
is continuous on U(B.11.11)

for each l, as before, so that

f is continuously differentiable on U.(B.11.12)

It follows that f is continuous on U , as before.
If f is twice continuously differentiable on U , then it is well known that

∂

∂xj

( ∂f

∂xl

)
=

∂

∂xl

( ∂f

∂xj

)
(B.11.13)

on U . These second derivatives may be denoted

∂2f

∂xj ∂xl
=

∂2f

∂xl ∂xj
(B.11.14)

or
fxj xl

= fxl xj .(B.11.15)

Let g be another real or complex-valued function on U , and suppose that f
and g are both twice continuously differentiable on U . One can check that f +g
and f g are also twice continuously differentiable on U .

B.12 Connected sets in Rn

Let n be a positive integer, and let A, B be subsets of Rn. We say that A and
B are separated if

A ∩B = A ∩B = ∅,(B.12.1)

where A, B are the closures of A, B in Rn, respectively, as in Subsection B.10.4.
Note that disjoint closed subsets of Rn are separated. It is well known and

not difficult to show that disjoint open subsets of Rn are separated too.
If a subset E of Rn can be expressed as

E = A ∪B,(B.12.2)
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where A, B are separated and A,B 6= ∅, then E is said to be not connected in
Rn. Otherwise, E is said to be connected.

If E is a closed set in Rn, and E is expressed as in (B.12.2), where A, B are
separated sets in Rn, then one can check that A and B are closed sets in Rn.
In this case, we get that E is connected if and only if E cannot be expressed as
the union of two nonempty disjoint closed subsets of Rn.

Similarly, if E is an open set in Rn, and E is expressed as in (B.12.2), where
A, B are separated sets in Rn, then one can verify that A and B are open sets
in Rn. This means that E is connected if and only if E cannot be expressed as
the union of two nonempty disjoint open subsets of Rn.

B.12.1 Connectedness in the real line

It is well known that a subset E of the real line is connected if and only if for
every x, y ∈ E with x < y and every w ∈ R with

x < w < y,(B.12.3)

we have that
w ∈ E.(B.12.4)

The necessity of this condition can be obtained directly from the definitions.
More precisely, if w 6∈ E, then one can check that

A = {t ∈ E : t < w}(B.12.5)

and
B = {t ∈ E : t > w}(B.12.6)

are nonempty separated subsets of R whose union is equal to E.
One can use this to show that

convex subsets of Rn are connected.(B.12.7)

The converse holds when n = 1, as in the preceding paragraph.

B.12.2 Locally constant functions on subsets of Rn

Let E be a nonempty subset of Rn, and let f be a function on E with values
in any set. We say that

f is locally constant at a point x ∈ E(B.12.8)

if there is a positive real number r such that

f(x) = f(y)(B.12.9)

for every y ∈ E with
|x− y| < r.(B.12.10)
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Supose for the moment that f is locally constant on E, in the sense that f
is locally constant at every point in E. Let w be an element of E, and put

A = {x ∈ E : f(x) = f(w)}(B.12.11)

and
B = {x ∈ E : f(x) 6= w}.(B.12.12)

Clearly w ∈ A, and E is equal to the union of A and B.
One can check that A and B are separated in Rn, because f is locally

constant on E. If E is connected, then it follows that B = ∅, so that f is
constant on E.

Conversely, if E is not connected, then E may be expressed as the union of
two nonempty separated sets A and B in Rn. In this case, one can get a locally
constant function f on E that is not constant by taking f to be constant on
each of A and b, with different constant values on these sets.

B.12.3 Locally constant functions on open sets

Let U be a nonempty open set in Rn, and let f be a real-valued function on U .
Suppose that the first partial derivatives of f exist at every point in U , with

∂f

∂xl
= 0(B.12.13)

on U for each l = 1, . . . , n. Under these cnditions, it is well known and not
difficult to show that f is locally constant on U . If U is connected, then it
follows that f is constant on U . This also works for complex-valued functions
on U .

B.13 Vector-valued functions

Let m and n be positive integers, let E be a nonempty subset of Rn, and let f
be a function on E with values in Rm. Thus, if x ∈ E, then

f(x) = (f1(x), . . . , fm(x))(B.13.1)

is an element of Rm. This means that f1, . . . , fm are real-valued functions on
E.

One can define what it means for f to be continuous at a point x ∈ E in
essentially the same way as in Section B.2, using the standard Euclidean metrics
on Rn and Rm. One can check that f is continuous at x if and only if f1, . . . , fm
are all continuous at x, as real-valued functions on E.

Continuity of f at x can be characterized in terms of convergence of se-
quences as before. This can be shown using the same type of arguments as
for real or complex-valued functions, or by reducing to the case of real-valued
functions.

If f is continuous at every point in E, then we may simply sat that f is
continuous on E, as before.
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B.13.1 More on continuity of compositions

Let A be a nonempty subset of Rm, let p be another positive integer, and let ϕ
be a function on A with values in Rp. If

f(y) ∈ A(B.13.2)

for every y ∈ E, then the composition ϕ ◦ f of f with ϕ may be defined as a
function on E with values in Rp by

(ϕ ◦ f)(y) = ϕ(f(y)),(B.13.3)

as usual.

If f is continuous at x ∈ E, and ϕ is continuous at f(x), then ϕ ◦ f is
continuous at x, as in Subsection B.2.2.

Remember that v 7→ |v| is continuous as a real-valued function on Rm, as in
Subsection B.2.2. If f is continuous at x ∈ E, then |f | is continuous at x as a
real-valued function on E, as before.

B.13.2 More on partial derivatives

Suppose now that E is an open set in Rn. If x ∈ E and l is a positive integer
less than or equal to n, then the partial derivative of f at x in the lth variable
may be denoted as in (B.11.1), when it exists. Of course, the partial derivative
is an element of Rm, when it exists.

This partial derivative exists exactly when the partial derivatives of the
components of f at x in the lth variable exist. In this case, the components of
the partial derivative of f at x in the lth variable are equal to the corresponding
partial derivatives of the components of f at x.

We say that f is continuously differentiable on E if the partial derivatives
of f in each variable exist at every point in E, and are continuous as Rm-
valued functions on E. This is the same as saying that the components of f
are continuously differentiable as real-valued functions on E, as in Subsection
B.11.1. This implies that f is continuous as an Rm-valued function on E, as
before.

If x ∈ E and w ∈ Rn, then the directional derivative Dwf(x) of f at x in the
direction of w may be defined as in Subsection B.11.2, when it exists. Note that
Dwf(x) is an element of Rm, when it exists. This happens exactly when the
directional derivatives of the components of f at x in the direction of w exist,
in which case the componentis of Dwf(x) are the same as the corresponding
directional derivatives of the components of f .

If f is continuously differentiable on E, then Dwf(x) exists and may be
expressed as in (B.11.8), as before.
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B.13.3 Compositions and continuous differentiability

Suppose that A is an open subset of Rm too. If f is continuously differentiable
on E, and ϕ is continuously differentiable on A, then it is well known that

ϕ ◦ f is continuously differentiable on E.(B.13.4)

In fact, if x ∈ U and w ∈ Rn, then the directional derivative of ϕ ◦ f at x in
the direction of w may be expressed as

Dw(ϕ ◦ f)(x) = (DDwf(x)ϕ)(f(x)),(B.13.5)

which is to say that it is equal to the directional derivative of ϕ at f(x) in the
direction of Dwf(x). This is the version of the chain rule for vector-valued
functions of several variables.

Let e1, . . . , en be the standard basis vectors in Rn. This means that the jth
component of el is equal to 1 when j = l and to 0 otherwise, 1 ≤ j, l ≤ n. The
partial derivative at x of a function on E in the lth variable is the same as the
directional derivative at x of the function in the direction el.

Thus (B.13.5) may be used to express the partial derivatives of ϕ ◦ f at x in
terms of the partial derivatives of ϕ at f(x) and the partial derivatives of f at
x. More precisely,

∂l(ϕ ◦ f)(x) = (D∂lf(x)ϕ)(f(x)) =

m∑
k=1

(∂lfk(x)) (∂kϕ(f(x)))(B.13.6)

for each l = 1, . . . , n, where fk is the kth component of f for each k = 1, . . . ,m.
It is easy to reduce to the case where p = 1, by considering the components

of ϕ separately, as real-valued functions on A. If we also have that m = 1, then
this version of the chain rule reduces to the usual formulation for real-valued
functions of one variable. Indeed, (B.13.5) is the same as saying that

Dw(ϕ ◦ f)(x) = ϕ′(f(x)) (Dwf(x))(B.13.7)

in this case. In particular, (B.13.6) simplifies to

∂l(ϕ ◦ f)(x) = ϕ′(f(x)) (∂lf(x)).(B.13.8)

The continuity of the partial derivatives of ϕ ◦ f may be obtained more di-
rectly from the continuity of f , its first partial derivatives, and ϕ′ under these
conditions.

B.13.4 More on twice continuous differentiability

If ∂f/∂xl exists at every point in E, then we may consider its partial derivatives,
as in (B.11.9), when they exist. If ∂f/∂xl is continuously differentiable on E
for each l = 1, . . . , n, then f is said to be twice continuously differentiable on E,
as in Subsection B.11.3. This happens exactly when the components of f are
continuously differentiable as real-valued functions on E, as usual.
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If f is twice continuously differentiable on E, then f is continuously differen-
tiable on E, and thus continuous on E, as before. We also have that (B.11.13)
holds in this case, as before.

If f is twice continuously differentiable on E, and ϕ is twice continuously
differentiable on A, then

ϕ ◦ f is twice continuously differentiable on E.(B.13.9)

Equivalently, one can check that the partial derivatives of ϕ◦f are continuously
differentiable on E, using (B.13.6). This also uses the fact that

(∂kϕ) ◦ f is continuously differentiable on E,(B.13.10)

because ∂kϕ is continuously differentiable on A and f is continuously differen-
tiable on E.

B.14 More on connectedness

Let m and n be positive integers, let E be a nonempty subset of Rn, and let f
be a continuous mapping from E into Rm. Put

f(E) = {f(y) : y ∈ E},(B.14.1)

so that f(E) is a subset of Rm. If E is connected as a subset of Rn, then it is
well known that

f(E) is connected as a subset of Rm.(B.14.2)

More precisely, in order to obtain this from standard results about conti-
nuity and connectedness, one also uses the fact that E is connected when it is
considered as a subset of itself, with respect to the restriction of the standard
Euclidean metric on Rn to E. This is not needed when f is the restriction to
E of a continuous mapping from Rn into Rm.

The intermediate value theorem basically corresponds to the case where
m = n = 1.

Suppose for the moment that n = 1, and that E = [a, b] for some a, b ∈ R
with a ≤ b. If f is a continuous mapping from [a, b] into Rm, then f can be
extended to a continuous mapping fom R into Rm, by putting

f(t) = f(a)(B.14.3)

when t < a, and

f(t) = f(b)(B.14.4)

when t > b.
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B.14.1 Path connectedness

A subset E of Rn is said to be path connected if for every x, y ∈ E there is
a continuous path in E from x to y. This means that there is a continuous
mapping p from the closed unit interval [0, 1] in the real line into Rm such that

p(0) = x, p(1) = y, and p([0, 1]) ⊆ E.(B.14.5)

It is easy to see that

convex sets in Rn are path connected.(B.14.6)

It is well known and not too difficult to show that

path-connected sets in Rn are connected.(B.14.7)

This uses the fact that if p is a continuous mapping from [0, 1] into Rn, then
p([0, 1]) is a connected set in Rn.

It is also well known that

connected open sets in Rn are path connected.(B.14.8)

Suppose that E is a path-connected subset of Rn, and that f is a continuous
mapping from E into Rm. Under these conditions, one can check that

f(E) is path connected in Rm.(B.14.9)

B.14.2 Nonemptiness of the boundary of an open set

Let U be a nonempty open subset of Rn that is a proper subset of Rn, so that
U 6= Rn. One can verify that

∂U 6= ∅.(B.14.10)

This is the same as saying that U is not a closed set in Rn, because of the
description of the boundary of an open set in Subsection B.10.4. Otherwise, one
could check that Rn would not be connected.

Alternatively, let x be an element of U , and let z be an element of Rn \ U .
One can show that there is a real number t0 such that 0 < t0 ≤ 1 and

(1− t0)x+ t0 z ∈ ∂U.(B.14.11)

In fact, one can take t0 to be the infimum or greatest lower bound of the set of
positive real numbers t such that

(1− t)x+ t z ∈ Rn \ U.(B.14.12)
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[287] T. Radó, On semi-continuity, American Mathematical Monthly 49 (1942),
446–450.
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[352] F. Trèves, Applications of distributions to PDE theory, American Mathe-
matical Monthly 77 (1970), 241–248.
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