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Preface

A fundamental question to be addressed in these informal notes is

What is a probability space?

A slight variant of this question that one may ask is

What is a probability measure?

In fact, a probability measure is included in the definition of a probability space.
More precisely, a probability space is defined to be a measurable space with a
probability measure. We shall discuss these and related matters in some detail
here.

Of course, these questions are related to measure theory and integration
more broadly. The reader is not necessarily expected to be familiar with measure
theory, and indeed part of the aim here is to give an introduction to some of
the relevant notions and results. However, this is not intended to be a detailed
treatment of measure theory, and instead we would like to emphasize some
aspects related to probability theory.

The reader is expected to be familiar with some basic analysis, along the lines
of metric spaces, sequences and series, continuous mappings, and compactness.
Some topics may be reviewed briefly, as needed.

Some familiarity with topological structures and spaces could be helpful in
some places, although it is not required. There are many connections with
Fourier analysis and functional analysis too, and we shall see some aspects of
this here.
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Chapter 1

Some basic notions

1.1 Extended real numbers

The set of extended real numbers is defined to be the set R of real numbers
together with two additional elements, +∞ and −∞, such that

−∞ < x < +∞(1.1.1)

for every x ∈ R. When we use extended real numbers here, we shall typically
only be concerned with nonnegative extended real numbers.

It is customary to put

x+ (+∞) = (+∞) + x = +∞(1.1.2)

when −∞ < x ≤ +∞, and

x+ (−∞) = (−∞) + x = −∞(1.1.3)

when −∞ ≤ x < +∞. Similarly, we put

x (+∞) = (+∞)x++∞, x (−∞) = (−∞)x = −∞(1.1.4)

when 0 < x ≤ +∞, and

x (+∞) = (+∞)x = −∞, x (−∞) = (−∞)x = +∞(1.1.5)

when −∞ ≤ x < 0.
We also put x/(+∞) = x/(−∞) = 0 when x ∈ R. Although 1/0 is not

normally defined, it may be appropriate to interpret it as being +∞ when
dealing with nonnegative extended real numbers.

The product of 0 and ±∞ is normally not defined. However, in measure
theory and integration, it turns out to be convenient to interpret it as being
equal to 0.

1
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1.1.1 Some remarks about sequences of real numbers

Let {xj}∞j=1 be a sequence of real numbers. We say that xj tends to +∞ as
j → ∞, or xj → +∞ as j → ∞, if for every nonnegative real number R there
is a positive integer L such that

xj > R for every j ≥ L.(1.1.6)

Similarly, we say that xj tends to −∞ as j → ∞, or xj → −∞ as j → ∞, if for
every nonnegative real number R there is a positive integer L such that

xj < −R for every j ≥ L.(1.1.7)

Suppose that xj → x as j → ∞ for some extended real number x, and
similarly that {yj}∞j=1 is a sequence of real numbers with yj → y as j → ∞ for
some extended real number y. If x + y is defined as an extended real number,
then

xj + yx → x+ y as j → ∞.(1.1.8)

Of course, this is well known when x, y ∈ R. If x = +∞, for instance, then one
can check that

xj + yj → +∞ as j → ∞(1.1.9)

when the set of yj ’s has a lower bound in R. In particular, this holds when
yj → y as j → ∞, with y > −∞.

Similarly, if x y is defined as an extended real number, then

xj yj → x y as j → ∞.(1.1.10)

This does not include the case where one of x or y is 0 and the other is ±∞.
If x, y ∈ R, then (1.1.10) is well known, as before. If x = +∞ and y > 0, for
example, then

xj yj → +∞ as j → ∞.(1.1.11)

More precisely, this works when there is a positive real number a such that
yj ≥ a for all but finitely many j.

If {xj}∞j=1 is a sequence of nonzero real numbers such that

|xj | → +∞ as j → ∞,(1.1.12)

then it is easy to see that

1/xj → 0 as j → ∞.(1.1.13)

If {xj}∞j=1 is a sequence of positive real numbers that converges to 0, then one
can verify that

1/xj → +∞ as j → ∞.(1.1.14)
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1.1.2 A topology on the set of extended real numbers

One might like to have a metric on the set of extended real numbers so that
sequences of real numbers tending to +∞ or −∞ correspond to convergent
sequences with respect to that metric. It is not too difficult to do that, although
one cannot simply extend the standard metric on the real line to the set of
extended real numbers in a convenient way. Instead one may consider metrics
on the set of extended real numbers whose restriction to R is equivalent to the
standard metric in a suitable sense, so that they determine the same convergent
sequences in R in particular.

It is somewhat simpler to define an appropriate topology on the set of ex-
tended real numbers, if one is familiar with the notion of a topological space.
This topology is determined by a metric on the set of extended real numbers,
as in the preceding paragraph. One can choose this topology so that the corre-
sponding induced topology on the real line is the same as the standard topology
on R. One can also choose this topology so that sequences of real numbers
tending to +∞ or −∞ correspond to convergent sequences with respect to the
topology.

It is sometimes convenient to consider sequences of extended real numbers
as well. One can define what it means for a sequence of extended real numbers
to tend to +∞ or to −∞ in the same way as for sequences of real numbers. A
sequence of extended real numbers can converge to a real number only when all
but finitely many terms in the sequence are real numbers, so that convergence
is basically the same as for sequences of real numbers.

1.2 More on extended real numbers

If A is any set of extended real numbers, then the notions of upper and lower
bounded for A in the set of extended real numbers may be defined in the usual
way. Similarly, the notions of supremum or least upper bound and infimum of
greatest lower bound for A in the set of extended real numbers may be defined
as usual. In fact, the supremum and infimum of A in the set of extended real
numbers always exist, as follows.

If +∞ ∈ A, or if A ∩ R has no upper bound in R, then supA = +∞. If
+∞ ̸∈ A, and if A ∩ R is nonempty and has an upper bound in R, then the
supremum of A is the same as the supremum of A∩R in R. Otherwise, if A = ∅
or A = {−∞}, then supA = −∞.

The infimum of A may be characterized analogously. Note that

inf A ≤ supA(1.2.1)

when A ̸= ∅.
Let t be a positive real number, and put

tA = {t x : x ∈ A}.(1.2.2)
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One can check that
sup(tA) = t (supA),(1.2.3)

and similarly for the infimum of tA.

1.2.1 Suprema and infima of functions

Let E be a set, and let f be a function on E with values in the set of extended
real numbers. We may use the notation

sup
x∈E

f(x) = sup f(E)(1.2.4)

and
inf
x∈E

f(x) = inf f(E).(1.2.5)

If t is a positive real number, then

sup
x∈E

(t f(x)) = t
(
sup
x∈E

f(x)
)

(1.2.6)

and

inf
x∈E

(t f(x)) = t
(∫

x∈E

f(x)
)
,(1.2.7)

as in (1.2.2) and (1.2.3), with A = f(E), respectively.
Let g be another function on E with values in the extended real numbers.

One can check that

sup
x∈E

(f(x) + g(x)) ≤
(
sup
x∈E

f(x)
)
+

(
sup
x∈E

g(x)
)

(1.2.8)

and
inf
x∈E

(f(x) + g(x)) ≥
(
inf
x∈E

f(x)
)
+

(
inf
x∈E

g(x)
)
.(1.2.9)

Suppose now that f, g ≥ 0 on E. One can verify that

sup
x∈E

(f(x) g(x)) ≤
(
sup
x∈E

f(x)
)(

sup
x∈E

g(x)
)

(1.2.10)

and
inf
x∈E

(f(x) g(x)) ≥
(
inf
x∈E

f(x)
)(

inf
x∈E

g(x)
)
.(1.2.11)

1.2.2 Infinite series with nonnegative terms

Let {xj}∞j=1 be a sequence of real numbers that is monotonically increasing, so
that xj ≤ xj+1 for each j. If the set of xj ’s has an upper bound in R, then it
is well known that {xj}∞j=1 converges to the supremum of this set. Otherwise,
if the set of xj ’s does not have an upper bound in R, then it is easy to see that
xj → +∞ as j → ∞. In both cases, if we put

x = sup
l≥1

xl,(1.2.12)
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then we have that xj → x as j → ∞.
Consider an infinite series

∑∞
j=1 aj of nonnegative real numbers. Of course,

the corresponding sequence of partial sums
∑n

j=1 aj is monotonically increas-

ing. If the sequence of partial sums has an upper bound in R, then
∑∞

j=1 aj
converges, with

∞∑
j=1

aj = sup
n≥1

n∑
j=1

aj ,(1.2.13)

as in the preceding paragraph. Otherwise, if the sequence of partial sums does
not have an upper bound on R, then we may interpret the value of

∑∞
j=1 aj as

being +∞.
If t is a positive real number, then

n∑
j=1

t aj = t

n∑
j=1

aj(1.2.14)

for each positive integer n. This implies that

∞∑
j=1

t aj = t

∞∑
j=1

aj .(1.2.15)

More precisely, this also works when the sums are equal to +∞. This works
when t = 0 too, with the right side interpreted as being equal to 0 even when∑∞

j=1 aj = +∞, as in the previous section.

Let
∑∞

j=1 bj be another infintie series of nonnegative real numbers, and note
that

n∑
j=1

(aj + bj) =

n∑
j=1

aj +

n∑
j=1

bj(1.2.16)

for every positive integer n. One can use this to get that

∞∑
j=1

(aj + bj) =

∞∑
j=1

aj +

∞∑
j=1

bj .(1.2.17)

This also works with suitable interpretations when any of the sums are equal to
+∞, as before.

1.3 Upper and lower limits of sequences in R

Let {xj}∞j=1 be a sequence of real numbers, and let E be the set of extended
real numbers x such that there is a subsequence {xjl}∞l=1 of {xj}∞j=1 with

xjl → x as l → ∞.(1.3.1)

It is well known that
E ̸= ∅.(1.3.2)
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Indeed, if the set of xj ’s has upper and lower bounds in R, then E ∩R ̸= ∅,
because closed intervals in R are sequentially compact. If the set of xj ’s does
not have an upper bound in R, then it is not too difficult to show that +∞ ∈ E.
Similarly, if the set of xj ’s does not have a lower bound in R, then −∞ ∈ E.

1.3.1 Defining upper and lower limits

The upper limit or limit superior of {xj}∞j=1 may be defined by

lim sup
j→∞

xj = supE,(1.3.3)

as on p56 of [158]. Similarly, the lower limit or limit inferior of {xj}∞j=1 may
be defined by

lim inf
j→∞

xj = inf E,(1.3.4)

as in [158]. Some other equivalent formulations are sometimes used, and we
shall say more about that soon.

Note that

lim inf
j→∞

xj ≤ lim sup
j→∞

xj .(1.3.5)

If there is an extended real number x such that xj → x as j → ∞, then

E = {x},(1.3.6)

and

lim sup
j→∞

xj = lim inf
j→∞

xj = x.(1.3.7)

One can check that

lim sup
j→∞

xj ≤ sup
j≥1

xj(1.3.8)

and

lim inf
j→∞

xj ≥ inf
j≥1

xj ,(1.3.9)

directly from the previous definitions, or using some of the other characteri-
zations of the upper and lower limits that we shall discuss. It is easy to give
examples where these inequalities are strict.

1.3.2 Some properties of the upper and lower limits

Put y = lim supj→∞ xj and u = lim infj→∞ xj . It is not too difficult to show
that

if z ∈ R and y < z, then xj < z for all but finitely many j.(1.3.10)

Otherwise, there would be a subsequence {xjl}∞l=1 of {xj}∞j=1 such that

xjl ≥ z(1.3.11)
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for each l. This would imply that there is an element of E greater than or equal
to z, using a subsequence of {xjl}∞l=1 that tends to an extended real number
that is necessarily greater than or equal to z. This corresponds to part (b) of
Theorem 3.17 on p56 of [158].

Similarly,

if t ∈ R and t < u, then xj > t for all but finitely many j.(1.3.12)

This can be obtained using an analogous argument, or by reducing to the pre-
vious case, for {−xj}∞j=1 in place of {xj}∞j=1.

We also have that

if w ∈ R and w < y, then xj > w for infinitely many j.(1.3.13)

Indeed, if w < y, then w is not an upper bound for E, by definition of the
supremum, so that there is an x ∈ E with w < x. One can use this to get that
xj > w for infinitely many j. Alternatively, if xj ≤ w for all but finitely many
j, then one can check that w is an upper bound for E.

Similarly,

if v ∈ R and u < v, then xj < v for infinitely many j.(1.3.14)

One can check that y is uniquely determined by (1.3.10) and (1.3.13). Sim-
ilarly, u is uniquely determined by (1.3.12) and (1.3.14).

1.3.3 Some variants and related properties

Part (a) of Theorem 3.17 on p56 of [158] says that

y ∈ E.(1.3.15)

This can be obtained from (1.3.10) and (1.3.13). Note that (1.3.15) implies
(1.3.14).

Another part of Theorem 3.17 on p56 of [158] states that y is uniquely
determined by (1.3.10) and (1.3.15). This is essentially the same as before.

Similarly,
u ∈ E,(1.3.16)

and u is uniquely determined by (1.3.12) and (1.3.16).
Suppose for the moment that

lim sup
j→∞

xj = lim inf
j→∞

xj ,(1.3.17)

and let x be their common value. One can check that xj → x as j → ∞, using
(1.3.10) and (1.3.12).

If {aj}∞j=1 and {bj}∞j=1 are sequences of real numbers, then it is well known
that

lim sup
j→∞

(aj + bj) ≤ lim sup
j→∞

aj + lim sup
j→∞

bj ,(1.3.18)

as long as the right side is defined as an extended real number, so that it is not
a sum of +∞ and −∞. This corresponds to part (b) of Exercise 4 on p32 of
[157], and to Exercise 5 on p78 of [158].
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1.3.4 Another approach to upper and lower limits

Let {xj}∞j=1 be a sequence of extended real numbers, and consider

sup
j≥l

xj(1.3.19)

for each positive integer l. This is a monotonically decreasing sequence of ex-
tended real numbers, and the upper limit of {xj}∞j=1 is sometimes defined by

lim sup
j→∞

xj = inf
l≥1

(
sup
j≥l

xj

)
,(1.3.20)

as in Definition 1.13 on p14 of [157].
Similarly,

inf
j≥l

xj(1.3.21)

is a monotonically increasing sequence of extended real numbers, and the lower
limit of {xj}∞j=1 is sometimes defined by

lim inf
j→∞

xj = sup
l≥1

(
inf
j≥l

xj

)
,(1.3.22)

as in [157]. This is essentially the way that upper and lower limits of sequences
of real numbers are defined in Section 2.9 beginning on p46 of [78].

If (1.3.19) is finite for each l, then this sequence tends to the infimum of
its terms as l → ∞. This also works when (1.3.19) may be ±∞, with suitable
interpretations. Similarly, the sequence (1.3.21) tends to the supremum of its
terms as l → ∞, with suitable interpretations when these terms may be ±∞.

It is mentioned on p14 of [157] that (1.3.20) satisfies the same conditions
as the previous definition of the upper limit, so that the two approaches are
equivalent. It is perhaps a bit simper to check that (1.3.20) satisfies (1.3.10)
and (1.3.13), and similarly that (1.3.22) satisfies (1.3.12) and (1.3.14). This
corresponds to Theorem 2.9 L on p50 of [78] for bounded sequences of real
numbers. It is mentioned just after the proof that (1.3.20) and (1.3.22) are
characterized by these properties.

The fact that (1.3.20) is an element of the set E defined earlier is shown
in the proof of Theorem 2.9 M on p51 of [78] for bounded sequences of real
numbers. The analogous statement for (1.3.22) is the first part of Exercise 3 on
p51 of [78]. Exercise 2 on p51 of [78] states that (1.3.20) is an upper bound for
E, and the second part of Exercise 3 on p51 of [78] is the same as saying that
(1.3.22) is a lower bound for E.

1.4 Indicator functions

Let X be a set, and let A be a subset of X. The indicator function of A with
respect to X is defined by

1A(x) = 1 when x ∈ A(1.4.1)

= 0 when x ∈ X \A.
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This is also known as the characteristic function of A, and denoted χA. However,
this terminology is often used for something else.

1.4.1 Some upper and lower limits

Let {xj}∞j=1 be an infinite sequence such that for each j, xj = 0 or 1. One can
check that

lim sup
j→∞

xj = 1 when xj = 1 for infinitely many j(1.4.2)

= 0 when xj = 0 for all but finitely many j.

Similarly,

lim inf
j→∞

xj = 0 when xj = 0 for infinitely many j(1.4.3)

= 1 when xj = 1 for all but finitely many j.

1.4.2 Upper and lower limits of sequences of sets

Let {Aj}∞j=1 be a sequence of subsets of X. The upper limit or limit superior
of {Aj}∞j=1 may be defined as a subset of X by

lim sup
j→∞

Aj = {x ∈ X : x ∈ Aj for infinitely many j},(1.4.4)

as in Definition 2.12 B on p65 of [78].

Similarly, the lower limit or limit inferior of {Aj}∞j=1 may be defined as a
subset of X by

lim inf
j→∞

Aj = {x ∈ X : x ∈ Aj for all but finitely many j},(1.4.5)

as in [78]. Note that

lim inf
j→∞

Aj ⊆ lim sup
j→∞

Aj ,(1.4.6)

as in Exercise 1 on p65 of [78].

If x ∈ X, then

lim sup
j→∞

1Aj (x) = 1lim supj→∞ Aj (x),(1.4.7)

as mentioned on p65 of [78]. Similarly,

lim inf
j→∞

1Aj (x) = 1lim infj→∞ Aj (x),(1.4.8)

as in [78]. This uses the remarks in the previous subsection.
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1.4.3 More on sequences of subsets of X

One can show that

lim sup
j→∞

Aj =

∞∩
l=1

( ∞∪
j=l

Aj

)
,(1.4.9)

as in part (b) of Exercise 3 on p66 of [78]. Similarly,

lim inf
j→∞

Aj =

∞∪
l=1

( ∞∩
j=l

Aj

)
,(1.4.10)

as in part (b) of Exercise 4 on p66 of [78].
If Aj ⊆ Aj+1 for each j, then

lim sup
j→∞

Aj = lim inf
j→∞

Aj =

∞∪
j=1

Aj ,(1.4.11)

as in part (a) of Exercise 5 on p66 of [78]. Similarly, if Aj+1 ⊆ Aj for each j,
then

lim sup
j→∞

Aj = lim inf
j→∞

Aj =

∞∩
j=1

Aj ,(1.4.12)

as in part (b) of Exercise 5 on p66 of [78].
If

lim sup
j→∞

Aj = lim inf
j→∞

Aj ,(1.4.13)

then one may say that {Aj}∞j=1 converges, with limit

lim
j→∞

Aj(1.4.14)

equal to (1.4.13). This means that

lim
j→∞

1Aj (x) = 1limj→∞ Aj (x)(1.4.15)

for each x ∈ X. Monotonic sequences of subsets of X converge, as in the
preceding paragraph.

1.5 Algebras and σ-algebras of sets

Let X be a set, and let A be a nonempty collection of subsets of X. We say
that A is an algebra of subsets of X if it has the following two properties. First,
if A,B ∈ A, then

A ∪B ∈ A.(1.5.1)

Second, if A ∈ A, then
X \A ∈ A.(1.5.2)
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This corresponds to parts of 11.1 on p118 of [85] and Definition 1.11 on p4 of
[86], with some minor differences in the formulation, and it is also mentioned
on p10 of [157] and p270 of [180].

If A is an algebra of subsets of X and A,B ∈ A, then it is easy to see that

A ∩B ∈ A.(1.5.3)

We also have that
X ∈ A,(1.5.4)

because A ̸= ∅, by hypothesis. Similarly, the empty set is an element of A.

1.5.1 σ-Algebras of sets

We say that A is a σ-algebra of subsets of X if (1.5.2) holds for every A ∈ A,
and if for every sequence A1, A2, A3, . . . of elements of A, we have that

∞∪
j=1

Aj ∈ A.(1.5.5)

This corresponds to parts of 11.1 on p118 of [85] and Definition 1.13 on p4 of
[86], and to part (a) of Definition 1.3 on p9 of [157], and it is mentioned on p23,
263 of [180].

Of course, if A is a σ-algebra of subsets of X, then A is an algebra of subsets
of X, and (1.5.4) holds in particular. In this case, if A1, A2, A3, . . . is a sequence
of elements of A, then

∞∩
j=1

Aj ∈ A.(1.5.6)

The collection of all subsets of X is a σ-algebra, as is the collection consisting
only of X and ∅.

A σ-algebra of subsets of X is called a Borel family in Definition 2.2.1 on
p59 of [62]. The σ-algebra of Borel sets in a metric or topological space will be
discussed in Section 2.2.

1.5.2 Rings of sets

We say that A is a ring of subsets of X if for every A,B ∈ A we have that
(1.5.1) holds, and also

A \B ∈ A.(1.5.7)

This corresponds to parts of 11.1 on p118 of [85] and Definition 1.11 on p4 of
[86] again, as well as Definition 11.1 on p301 of [158], although the condition
that A be nonempty does not appear to be included in [158]. The nonemptiness
of A implies that the empty set is an element of A, as mentioned in [86].

If A is a ring of subsets of A and A,B ∈ A, then (1.5.3) holds, because

A ∩B = A \ (A \B),(1.5.8)
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as mentioned in [86, 158]. If X ∈ A, then A is an algebra of subsets of X, as in
[86].

If A and B are subsets of X, then their symmetric difference is the subset
of X defined by

A△B = (A \B) ∪ (B \A).(1.5.9)

If A is a ring of subsets of X and A,B ∈ A, then

A△B ∈ A,(1.5.10)

as mentioned on p4 of [86].

Conversely, suppose that (1.5.3) and (1.5.10) hold for all A,B ∈ A, and let
us check that A is a ring of subsets of X. If A, B are any subsets of X, then

A \B = A△(A ∩B).(1.5.11)

This implies that (1.5.7) holds when A,B ∈ A. We also have that

(A \B)△B = ((A \B) \B) ∪ (B \ (A \B)) = (A \B) ∪B = A ∪B.(1.5.12)

It follows that (1.5.1) holds when A,B ∈ A.

1.5.3 More on rings of sets

If A and B are any subsets of X, then

1A(x)1B(x) = 1A∩B(x)(1.5.13)

for every x ∈ X. We also have that

1A(x) + 1B(x) = 1A∪B(x) + 1A∩B(x) = 1A△B(x) + 21A∩B(x)(1.5.14)

for every x ∈ X. In particular, this means that

1A(x) + 1B(x) ≡ 1A△B(x) modulo 2(1.5.15)

for every x ∈ X.

It is well known that {0, 1} is a field with respect to addition and multi-
plication modulo 2. The collection of all functions on X with values in {0, 1}
may be considered as a commutative ring with respect to pointwise addition
and multiplication of functions module 2. Of course, these functions on X are
the same as indicator functions of subsets of X.

This means that the collection of all subsets of X may be considered as a
commutative ring with respect to symmetric differences as addition and inter-
sections as multiplication. Rings of subsets of X correspond to subrings of this
ring, as discussed in [199].
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1.5.4 σ-Rings of sets

A ring A of subsets of X is said to be a σ-ring of subsets of X if (1.5.5) holds
for every sequence A1, A2, A3, . . . of elements of A, as in 11.1 on p118 of [85],
Definition 1.13 on p4 of [86], and Definition 11.1 on p301 of [158]. If X ∈ A,
then it follows that A is a σ-algebra of subsets of X. This condition is included
in the definition of a measurable space on p310 of [158].

If A is a σ-ring of subsets of X and A1, A2, A3, . . . is a sequence of elements of
A, then (1.5.5) holds, as mentioned on p301 of [158]. This uses the observation
that

∞∩
j=1

Aj = A1 \
( ∞∪

j=1

(A1 \Aj)
)
.(1.5.16)

The collection of all finite subsets of X is a ring of subsets of X. If X has
infiitely many elements, then this is neither an algebra of subsets of X, nor a
σ-ring of subsets of X. This example is mentioned on p4 of [86], when X is the
set Z+ of positive integers.

Similarly, the collection of all subsets of X with only finitely or countably
many elements is a σ-ring of subsets of X. If X is uncountable, then this is not
a σ-algebra of subsets of X, as mentioned on p4 of [86].

1.6 Some remarks about intervals

Let a and b be extended real numbers with a < b. We may use (a, b) for the set
of real numbers x such that

a < x < b.(1.6.1)

Similarly, we may use [a, b] for the set of extended real numbers x such that

a ≤ x ≤ b.(1.6.2)

We may also use this notation when a = b, so that the set contains only one
element. In the same way, we may use the notation [a, b) for the set of extended
real numbers x such that

a ≤ x < b,(1.6.3)

and the notation (a, b] for the set of extended real numbers x such that

a < x ≤ b.(1.6.4)

A subset of the real line any of these four types may be described as an
interval. The length of such an interval is defined to be b− a. Thus the length
of the interval is finite exactly when a, b ∈ R, and we may say that the interval
is bounded in this case. The empty set may be considered as an interval in R
as well, with length 0.
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1.6.1 Some elementary subsets of R

Let us say that a subset of R is a bounded elementary set if it can be expressed as
the union of finitely many bounded intervals. This corresponds to an elementary
subset ofR as defined on p303 of [158]. Let E(R) be the collection of all bounded
elementary subsets of R. This is a ring of subsets of R, and not a σ-ring, as in
(12) on p303 of [158]. Note that E(R) is not an algebra of subsets of R.

Let us say that a subset of the real line is a possibly unbounded elementary
set if it can be expressed as the union of finitely many intervals that are not
necessarily bounded. Let E1(R) be the collection of all possibly unbounded
elementary subsets of R. This is an algebra of subsets of R that is not a σ-
algebra.

1.6.2 Intervals in Rn

Let n be a positive integer, and let A1, . . . , An be n sets. The Cartesian product
of A1, . . . , An may be denoted

A1 ×A2 × · · · × An or

n∏
j=1

Aj ,(1.6.5)

and is the set of n-tuples a = (a1, . . . , an) with aj ∈ Aj for j = 1, . . . , n.
In particular, the space Rn of n-tuples of real numbers is the same as the

Cartesian product of n copies of the real numbers. A subset of Rn may be
called a bounded interval if it is the Cartesian product of n bounded intervals
in R. This corresponds to the definition of an interval in Rn in Definition 11.4
on p302 of [158]. The n-dimensional volume of such a bounded interval may be
defined as the product of the lengths of these n intervals, as on p303 of [158].
Note that the empty set is considered to be a bounded interval in Rn, with
n-dimensional volume equal to 0.

Let us say that a subset of Rn is a possibly unbounded interval if it is the
Cartesian product of n intervals in the real line that are not necessarily bounded.
The n-dimensional volume may be defined as the product of the lengths of these
n intervals, as before. This is interpreted as being +∞ when each of the intervals
has positive length, and at least one of the intervals has length +∞. If at least
one of the intervals has length 0, then we interpret the product as being equal
to 0, even if some of the other intervals have length +∞.

1.6.3 Some elementary subsets of Rn

Let us say that a subset of Rn is a bounded elementary set if it can be expressed
as the union of finitely many bounded intervals in Rn. This corresponds to an
elementary subset of Rn as defined on p303 of [158] again. The collection E(Rn)
of all bounded elementary subsets of Rn is a ring of subsets of Rn, and not a
σ-ring, as in (12) on p303 of [158]. This is also not an algebra of subsets of Rn,
as before.
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Let us say that a subset of Rn is a possibly unbounded elementary set if it
can be expressed as the union of finitely many possibly unbounded intervals in
Rn. The collection E1(Rn) of all possibly unbounded elementary subsets of Rn

is an algebra of subsets of Rn that is not a σ-algebra.

Sometimes one may be interested in elementary subsets of a subset of Rn,
and this will be discussed more broadly in the next subsection.

1.6.4 Some more rings and algebras of sets

Let X be a set, let A be a nonempty collection of subsets of X, and let Y be a
subset of X. Note that

AY = {A ∩ Y : A ∈ A}(1.6.6)

is a nonempty collection of subsets of Y . If A is a ring, algebra, σ-ring, or
σ-algebra of subsets of X, then one can check that AY has the same property
as a collection of subsets of Y .

Suppose for the moment that there is an element A1 of A such that

Y ⊆ A1.(1.6.7)

This means that

Y = A1 ∩ Y ∈ AY .(1.6.8)

If A is a ring or σ-ring of subsets of X, then it follows that AY is an algebra or
σ-algebra of subsets of Y , as appropriate.

Let AY,0 be the collection of elements of A that are subsets of Y . Observe
that

AY,0 ⊆ AY ,(1.6.9)

and that ∅ ∈ AY,0 when ∅ ∈ A. If A is a ring or σ-ring of subsets of X, then
AY,0 has the same property, as a collection of subsets of Y or X. We also have
that

AY,0 = AY(1.6.10)

when Y ∈ A and A is a ring of subsets of X.

1.7 Finitely and countably additive measures

Let X be a set, and let A be a ring of subsets of X. Also let µ be a function on
A with values in the set of nonnegative extended real numbers. We say that µ
is a finitely additive measure on X with respect to A if

µ(∅) = 0(1.7.1)

and

µ(A ∪B) = µ(A) + µ(B)(1.7.2)
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for all A.B ∈ A with A∩B = ∅. If A1, . . . , An are finitely many pairwise-disjoint
elements of A, then it follows that

µ
( n∪

j=1

Aj

)
=

n∑
j=1

µ(Aj).(1.7.3)

This corresponds to part of 11.1 on p118 of [85], and to part of Definition 10.3
on p126 of [86] when A is an algebra of subsets of X.

This basically corresponds to part of Definition 11.2 on p301 of [158] as well.
Nonnegativity of µ is not part of this definition, although that is mostly what
is considered, as in Definition 11.12 on p310 of [158]. Other types of measures
are very interesting and important, but they are not our main focus here. More
precisely, in [158], µ is allowed to take the value +∞ on A, or the value −∞,
but not both, so that the sum on the right side of (1.7.2) is defined. One also
asks that µ(A) be finite for some A ∈ A, and this is used to obtain (1.7.1), as
in (5) on p301 of [158].

Suppose that µ is a finitely additive measure on X with respect to A, A, B
are elements of A, and A ⊆ B. Observe that

µ(A) ≤ µ(A) + µ(B \A) = µ(B),(1.7.4)

as in part (c) of Theorem 1.19 on p17 of [157], and (8) on p302 of [158].

1.7.1 Countable additivity

Similarly, we say that µ is a countably additive measure on X with respect to
A if (1.7.1) holds, and if

µ
( ∞∪

j=1

Aj

)
=

∞∑
j=1

µ(Aj)(1.7.5)

for every sequence A1, A2, A3, . . . of pairwise-disjoint elements of A such that

∞∪
j=1

Aj ∈ A.(1.7.6)

This corresponds to parts of 11.1 on p118 of [85], Definition 10.3 on p126 of [86],
and Definition 11.2 on p301 of [158], as before. If A is an algebra of subsets of
X, then µ may be called a premeasure, as on p270 of [180].

Of course, (1.7.6) holds automatically when A is a σ-ring of subsets of X.
This also corresponds to part (a) of Definition 1.18 on p17 of [157] when A is
a σ-algebra of subsets of X. One may refer to µ as a positive or nonnegative
measure, for emphasis, as in [157]. This corresponds to the definition of a
measure on p263 of [180] when A is a σ-algebra of subsets of X as well.
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1.7.2 Measurable and measure spaces

If A is a σ-algebra of subsets of X, then (X,A) may be called a measurable
space, as on p149 of [86], and in part (b) of Definition 1.3 on p9 of [157]. In this
case, the elements of A may be called measurable subsets of X with respect to
A.

If (X,A) is a measurable space and µ is a nonnegative countably additive
measure on (X,A), then (X,A, µ) is called a measure space. This corresponds
to part of Definition 10.3 on p126 of [86], and to part (b) of Definition 1.18 on
p17 of [157], and it is the same as on p263 of [180]. These terms are used a bit
differently on p310 of [158].

If (X,A, µ) is a measure space and

µ(X) < +∞,(1.7.7)

then (X,A, µ) is said to be a finite measure space, and µ is said to be a finite
measure, as in Definition 10.3 on p126 of [86]. If

µ(X) = 1,(1.7.8)

then (X,A, µ) may be called a probability space, and µ a probability measure.

1.7.3 Some basic examples of measures

Let X be any set, and let A be the collection of all subsets of X. If A is any
subset of X, then let µ(A) be the number of elements of A, interpreted as +∞
when A has infinitely many elements. One can check that this is a countably
additive measure, called counting measure on X. This corresponds to Example
10.4 (a) on p127 of [86] and Example 1.20 (a) on p18 of [157], and it is mentioned
on p310 of [158] with X = Z+. This is also mentioned in (i) on p263 of [180]
when X is countable.

Let x0 ∈ X be given. If A is any subset of X, then put

δx0
(A) = 1 when x0 ∈ A(1.7.9)

= 0 when x0 ̸∈ A.

It is easy to see that this is a probability measure, as in Example 1.20 (b) on
p18 of [157].

1.7.4 Some more examples of measures

Let X be an uncountable set, and let A1 be the collection of subsets A of X
such that either A has only finitely or countably many elements, or X \ A has
only finitely or countably many elements. Put

µ1(A) = 0(1.7.10)

in the first case, and
µ1(A) = 1(1.7.11)
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in the second case. One can check that A1 is a σ-algebra of subsets of X, and
that µ1 defines a probability measure. This corresponds to Exercise 6 on p33 of
[157].

Now let X be any infinite set, and let A0 be the collection of subsets A of
X such that either A has only finitely many elements, or X \A has only finitely
many elements. Put

µ0(A) = 0(1.7.12)

in the first case, and
µ0(A) = 1(1.7.13)

in the second case. One can verify that A0 is an algebra of subsets of X, and
that µ0 is finitely additive. If X is uncountable, then A0 ⊆ A1, and µ0 is the
same as the restriction of µ1 to A0. However, if X is countably infinite, then
µ0 is not countably additive on A0.

1.8 Measures and nonnegative sums

Let X be a nonempty set, and let A0 be the collection of all finite subsets of X.
This is a ring of subsets of X, as mentioned in Subsection 1.5.4. Also let w be
a function on X with values in the set of nonnegative extended real numbers.
If A ∈ A0, then put

µw(A) =
∑
x∈A

w(x).(1.8.1)

This should be interpreted as being equal to 0 when A = ∅.
It is easy to see that µw is a finitely additive measure on X with respect to

A0. Conversely, if µ is any finitely additive measure on X with respect to A0,
then µ is of this form in a unique way. In fact, µ = µw exactly when

w(x) = µ({x})(1.8.2)

for every x ∈ X.

1.8.1 Nonnegative sums over arbitrary sets

Let f be a nonnegative real-valued function on X. The sum∑
x∈X

f(x)(1.8.1)

may be defined as a nonnegative extended real number as the supremum of the
finite subsums ∑

x∈A

f(x)(1.8.2)

over all nonempty finite subsets A of X. Of course, if X has only finitely many
elements, then this is the same as the usual sum over X. We may also consider
functions f on X with values in the set of nonnegative extended real numbers,
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by interpreting (1.8.2) as being +∞ when f(x) = +∞ for some x ∈ A. This
means that (1.8.1) is equal to +∞ when f(x) = +∞ for some x ∈ X.

Let {xj}∞j=1 be a sequence of distinct elements of X, and suppose for the
moment that f(x) = 0 when x ∈ X is not one of the terms of this sequence.
One can check that ∑

x∈X

f(x) =

∞∑
j=1

f(xj)(1.8.3)

under these conditions. More precisely, the sum on the right should also be
interpreted as being equal to +∞ when any of its terms is +∞. Note that the
partial sums

n∑
j=1

f(xj)(1.8.4)

of the sum on the right side of (1.8.3) are of the form (1.8.2). It is easy to see
that any finite subsum of the form (1.8.2) is less than or equal to (1.8.4) when
n is sufficiently large.

Let us say that f is summable on X when∑
x∈X

f(x) < +∞.(1.8.5)

If there is an ϵ > 0 such that

f(x) ≥ ϵ(1.8.6)

for infinitely many x ∈ X, then one can check that f is not summable on X.
If f is summable on X, then it follows that (1.8.6) holds for only finitely many
x ∈ X. One can use this to get that

f(x) > 0(1.8.7)

for only finitely or countably many x ∈ X when f is summable on X.

1.8.2 Some properties of the sum

If t is a positive real number, then one can check that∑
x∈X

t f(x) = t
∑
x∈X

f(x),(1.8.8)

where the right side is interpreted as being +∞ when (1.8.1) is +∞, as usual.
This also works with t = 0, with the right side interpreted as being 0 even when
(1.8.1) is +∞, as in a remark in Section 1.1.

If g is another nonnegative extended real-valued function on X, then∑
x∈X

(f(x) + g(x)) =
∑
x∈X

f(x) +
∑
x∈X

g(x).(1.8.9)
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To see this, let A be a finite subset of X, and observe that∑
x∈A

(f(x) + g(x)) =
∑
x∈A

f(x) +
∑
x∈A

g(x) ≤
∑
x∈X

f(x) +
∑
x∈X

g(x).(1.8.10)

This implies that ∑
x∈X

(f(x) + g(x)) ≤
∑
x∈X

f(x) +
∑
x∈X

g(x).(1.8.11)

If B is another finite subset of X, then∑
x∈A

f(x) +
∑
x∈B

g(x) ≤
∑

x∈A∪B

(f(x) + g(x)) ≤
∑
x∈X

(f(x) + g(x)).(1.8.12)

One can use this to get that∑
x∈X

f(x) +
∑
x∈X

g(x) ≤
∑
x∈X

(f(x) + g(x)).(1.8.13)

If E is any subset of X, then
∑

x∈E f(x) may be defined as before, as the
supremum of the sums (1.8.2) over all finite subsets A of E. If E1 and E2 are
disjoint subsets of X, then we get that∑

x∈E1∪E2

f(x) =
∑
x∈E1

f(x) +
∑
x∈E2

f(x).(1.8.14)

1.8.3 Monotone convergence for nonnegative sums

Let {fj}∞j=1 be a sequence of functions on X with values in the nonnegative
extended real numbers, and suppose that

fj(x) ≤ fj+1(x)(1.8.15)

for each j ≥ 1 and x ∈ X. Put

f(x) = sup
j≥1

fj(x)(1.8.16)

for all x ∈ X, and note that∑
x∈X

fj(x) ≤
∑
x∈X

fj+1(x) ≤
∑
x∈X

f(x)(1.8.17)

for each j. Under these conditions, a version of the monotone convergence
theorem states that ∑

x∈X

fj(x) →
∑
x∈X

f(x) as j → ∞.(1.8.18)
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To see this, let A be a finite subset of X, and observe that∑
x∈A

fj(x) →
∑
x∈A

f(x) as j → ∞.(1.8.19)

This means that ∑
x∈A

f(x) ≤ sup
j≥1

∑
x∈A

fj(x) ≤ sup
j≥1

∑
x∈X

fj(x).(1.8.20)

It follows that ∑
x∈X

f(x) ≤ sup
j≥1

∑
x∈X

fj(x),(1.8.21)

by the definition of the sum on the left. Of course, the opposite inequality holds
because of (1.8.17).

Let f be any nonnegative extended real-valued function on X again, and let
E1, E2, E3, . . . be an infinite sequence of pairwise-disjoint subsets of X. One can
use the monotone convergence theorem to get that

n∑
j=1

∑
x∈Ej

f(x) =
∑

x∈
∪n

j=1
Ej

f(x) →
∑

x∈
∪∞

j=1
Ej

f(x) as n → ∞.(1.8.22)

Equivalently,
∞∑
j=1

∑
x∈Ej

f(x) =
∑

x∈
∪∞

j=1
Ej

f(x).(1.8.23)

1.8.4 Measures defined using these sums

Let w be a nonnegative extended real-valued function on X again, and now let
µw(A) be as in (1.8.1) for every subset A of X. This defines a nonnegative
countably additive measure on the collection of all subsets of X. This basically
corresponds to the example (i) on p263 of [180] when X is countably infinite.

Let A1 be the collection of all subsets of X with only finitely or countably
many elements, and remember that this is a σ-ring of subsets of X, as in Sub-
section 1.5.4. If µ is any countably additive measure on X with respect to A1,
then it is easy to see that µ = µw on A1 exactly when w is as in (1.8.2).

1.9 Some basic properties of measures

Let X be a set, let A be a ring of subsets of X, and let µ be a countably
additive nonnegative measure on X with respect to A. Also let B1, B2, B3, . . .
be a sequence of elements of A such that

Bj ⊆ Bj+1(1.9.1)



22 CHAPTER 1. SOME BASIC NOTIONS

for each j, and put

B =

∞∪
j=1

Bj .(1.9.2)

If B ∈ A, then it is well known that

µ(Bj) → µ(B) as j → ∞.(1.9.3)

This corresponds to Theorem 10.13 on p130 of [86], part (d) of Theorem 1.19
on p17 of [157], and Theorem 11.3 on p302 of [158].

To see this, put A1 = B1, and

Aj = Bj \Bj−1(1.9.4)

for j ≥ 2. This defines a sequence of pairwise-disjoint elements of A. Observe
that

Bn =

n∪
j=1

Aj(1.9.5)

for each n, and that

B =

∞∪
j=1

Aj .(1.9.6)

This implies that

µ(Bn) =

n∑
j=1

µ(Aj)(1.9.7)

for each n, and

µ(B) =

∞∑
j=1

µ(Aj).(1.9.8)

Clearly (1.9.8) is the same as (1.9.3), because of (1.9.7).

1.9.1 A partial converse

Now let A1, A2, A3, . . . be any sequence of pairwise-disjoint elements of A. Also
let Bn be as in (1.9.5) for each n, and let B be as in (1.9.6). Note that
B1, B2, B3, . . . is a sequence of elements of A that satisfies (1.9.1) and (1.9.2).
Of course, (1.9.7) only uses finite additivity of µ on A. In this case, if B ∈ A,
then (1.9.3) implies the countable additivity property (1.9.8).

1.9.2 Decreasing sequences of measurable sets

Let C1, C2, C3, . . . be a sequence of elements of A such that

Cj+1 ⊆ Cj(1.9.9)
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for each j, and put

C =

∞∩
j=1

Cj .(1.9.10)

If C ∈ A and
µ(C1) < +∞,(1.9.11)

then it is well known that

µ(Cj) → µ(C) as j → ∞.(1.9.12)

This corresponds to Theorem 10.15 on p131 of [86], and part (e) of Theorem
1.19 on p17 of [157].

This can be reduced to the previous statement, by taking

Bj = C1 \ Cj(1.9.13)

for each j. This defines a sequence of elements of A that satisfies (1.9.1), because
of (1.9.9). If B is as in (1.9.6), then

B =

∞∪
j=1

(C1 \ Cj) = C1 \
( ∞∩

j=1

Cj

)
= C1 \ C(1.9.14)

under these conditions. If C ∈ A, then B ∈ A, and (1.9.3) implies that

µ(C1 \ Cj) → µ(C1 \ C) as j → ∞.(1.9.15)

Of course,
µ(C1) = µ(C1 \ Cj) + µ(Cj)(1.9.16)

for each j, and
µ(C1) = µ(C1 \ C) + µ(C),(1.9.17)

using finite additivity. If (1.9.11) holds, then (1.9.12) may be obtained from
(1.9.15).

1.9.3 Another partial converse

Let B1, B2, B3, . . . be a sequence of elements of A that satisfies (1.9.1) again,
and let B be as in (1.9.2). Suppose that B ∈ A, and put

Cj = B \Bj(1.9.18)

for each j. This implies that (1.9.9) holds, and if C is as in (1.9.10), then

C =

∞∩
j=1

(B \Bj) = ∅.(1.9.19)

In this case, (1.9.12) says that

µ(B \Bj) = µ(Cj) → 0 as j → ∞.(1.9.20)

We also have that
µ(B) = µ(Bj) + µ(B \Bj)(1.9.21)

for each j, using finite additivity, so that (1.9.20) implies (1.9.3).



24 CHAPTER 1. SOME BASIC NOTIONS

1.9.4 A counterexample with µ(C1) = +∞
Let X be the set Z+ of positive integers, and let µ be counting measure on X.
If Cj is the set of positive integers greater than or equal to j for each j, then
(1.9.9) holds, and (1.9.10) is the empty set. However, (1.9.12) does not hold.
This is Example 1.20 (c) on p18 of [157].

1.10 Subadditivity and outer measures

Let X be a set, let A be a ring of subsets of X, and let µ be a nonnegative
extended real-valued function on A.

1.10.1 Finite subadditivity

We say that µ is finitely subadditive on A if for any finite sequence B1, . . . , Bn

of elements of A, we have that

µ
( n∪

j=1

Bj

)
≤

n∑
j=1

µ(Bj).(1.10.1)

If µ is finitely additive, then it is well known that µ is finitely subadditive.
To see this, put A1 = B1, and

Aj = Bj \
( j−1∪

l=1

Bl

)
(1.10.2)

for j = 2, . . . , n. It is easy to see that A1, A2, . . . , An are pairwise-disjoint
elements of A. We also have that

n∪
j=1

Aj =

n∪
j=1

Bj .(1.10.3)

More precisely, if x ∈ Bl for some l, then x ∈ Aj for the first j such that x ∈ Bj .
Note that Aj ⊆ Bj for each j, so that

µ(Aj) ≤ µ(Bj).(1.10.4)

Thus

µ
( n∪

j=1

Bj

)
= µ

( n∪
j=1

Aj

)
=

n∑
j=1

µ(Aj) ≤
n∑

j=1

µ(Bj).(1.10.5)

1.10.2 Countable subadditivity

Similarly, we say that µ is countably subadditive if for any infinite sequence
B1, B2, B3, . . . of elements of A with

∞∪
j=1

Bj ∈ A,(1.10.6)
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we have that

µ
( ∞∪

j=1

Bj

)
≤

∞∑
j=1

µ(Bj).(1.10.7)

If µ is countably additive, then it is well known that µ is countably subba-
ditive, for essentially the same reasons as before. Indeed, if we put A1 = B1

and let Aj be as in (1.10.2) for j ≥ 2, then A1, A2, A3, . . . is a sequence of
pairwise-disjoint elements of A such that

∞∪
j=1

Aj =

∞∪
j=1

Bj .(1.10.8)

It follows that

µ
( ∞∪

j=1

Bj

)
= µ

( ∞∪
j=1

Aj

)
=

∞∑
j=1

µ(Aj) ≤
∞∑
j=1

µ(Bj),(1.10.9)

because of (1.10.4).

1.10.3 A criterion for countable additivity

Suppose that µ is finitely additive on A, and let A1, A2, A3, . . . be a sequence
of pairwise-disjoint elements of A whose union is an element of A. If n is any
positive integer, then

n∑
j=1

µ(Aj) = µ
( n∪

j=1

Aj

)
≤ µ

( ∞∪
j=1

Aj

)
.(1.10.10)

This implies that
∞∑
j=1

µ(Aj) ≤ µ
( ∞∪

j=1

Aj

)
.(1.10.11)

If µ is also countably subadditive, then it follows that µ is countably additive.

1.10.4 Outer measures

Now let µ be a nonnegative extended real-valued function defined on the collec-
tion of all subsets of X. We say that µ is a (Carathéodory) outer measure on
X if it satisfies the following three conditions, as in Definition 10.2 on p126 of
[86]. First,

µ(∅) = 0.(1.10.12)

Second, if A ⊆ B ⊆ X, then
µ(A) ≤ µ(B).(1.10.13)

Third, µ should be countably subadditive on the collection of all subsets of X.
Outer measures are also known as exterior measures, as on p264 of [180].

Sometimes outer measures are simply called measures, as on p1 of [61], p53 of
[62], and p8 of [134].



26 CHAPTER 1. SOME BASIC NOTIONS

1.11 More on outer measures

Let X be a set, and let µ be an outer measure on X.

1.11.1 Measurability with respect to µ

A subset A of X is said to be measurable with respect to µ if

µ(Y ) = µ(Y ∩A) + µ(Y \A)(1.11.1)

for every subset Y of X. This is due to Carathéodory, and corresponds to
Definition 10.5 on p127 of [86] and Definition 1.3 on p8 of [134], and it is also
mentioned on p2 of [61], p54 of [62], and p264 of [180].

Of course,
µ(Y ) ≤ µ(Y ∩A) + µ(Y \A)(1.11.2)

automatically, by subadditivity. Thus, in order to get (1.11.1), it suffices to
check that

µ(Y ) ≥ µ(Y ∩A) + µ(Y \A).(1.11.3)

In particular, this implies that A is measurable when µ(A) = 0.
Note that A is measurable with respect to µ if and only if X\A is measurable

with respect to µ, by the definition of measurability. It is well known that
the collection of subsets of X that are measurable with respect to µ is a σ-
algebra, and that the restriction of µ to this σ-algebra is countably additive.
This corresponds to parts (i) and (ii) of Theorem 1 on p2 of [61], parts (2) and
(3) of Theorem 2.1.3 on p54 of [62], Theorem 10.11 on p129 of [86], and Theorem
1.1 on p265 of [180], and it is mentioned in parts (1) and (3) of Theorem 1.4 on
p8 of [134].

1.11.2 Metric outer measures

Suppose for the moment that (X, d) be a metric space. Let A, B be nonempty
subsets of X, and suppose that there is a positive real number η such that

d(x, y) ≥ η(1.11.4)

for all x ∈ A and y ∈ B. If

µ(A ∪B) = µ(A) + µ(B)(1.11.5)

under these conditions, then µ is said to be a metric outer measure or metric
exterior measure on X.

In this case, it is well known that

open and closed sets in X are measurable with respect to µ,(1.11.6)

as in Theorem 5 on p9 of [61], Exercise 10.48 on p144 of [86], and Theorem 1.2
on p267 of [180]. This is part of Carathéodory’s criterion, as in (9) on p75 of
[62], and as mentioned in Theorem 1.7 on p10 of [134].
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In order to verify (1.11.5), it suffices to check that

µ(A ∪B) ≥ µ(A) + µ(B),(1.11.7)

because of subadditivity, as before. Metric outer measures can often be defined
using suitable coverings of subsets of X. More precisely, one may be able to use
covering by subsets of X with arbitrarily small diameter. If A and B satisfy
(1.11.4), then any subset of X with diameter less than η can intersect at most
one of A and B. This means that a covering of A ∪ B by sets of diameter less
than η can be split into coverings of A and B separately, and this can often be
used to get (1.11.7).

1.11.3 Hopf’s extension theorem

Let X be any set again, let A be an algebra of subsets of X, and let µ be a
countably additive measure on X with respect to A. If E is any subset of X,
then consider sequences A1, A2, A3, . . . of elements of A such that

E ⊆
∞∪
j=1

Aj .(1.11.8)

Using such a sequence, we get a sum

∞∑
j=1

µ(Aj).(1.11.9)

Let µ(E) be the infimum of these sums over all such coverings of E.
It is well known that µ is an outer measure on X such that

µ(A) = µ(A)(1.11.10)

for every A ∈ A, and that the elements of A are measurable with respect to µ.
This corresponds to parts (a), (b), and (c) of Exercise 10.36 on p141 of [86], and
to Lemma 1.4 on p271 of [180]. This implies E. Hopf’s extension theorem, that
µ can be extended to a countably additive measure on a σ-algebra of subsets of
X that contains A, as in part (d) of Exercise 10.36 on p142 of [86], and Theorem
1.5 on p272 of [180].

1.11.4 Another version of Hopf’s theorem

Let X be a set, let A be an algebra of subsets of X, and let µ be a finitely
additive measure on X with respect to A. Suppose that for every sequence
C1, C2, C3, . . . of elements of A such that Cj+1 ⊆ Cj for each j and

∞∩
j=1

Cj = ∅,(1.11.11)
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we have that
µ(Cj) → 0 as j → ∞.(1.11.12)

This implies that µ satisfies the condition mentioned at the beginning of Sec-
tion 1.9, as in Subsection 1.9.3. It follows that µ is countably additive, as in
Subsection 1.9.1. Thus the remarks in the previous subsection hold in this case
as well, as in Exercise 10.37 on p142 of [86].

1.12 Some regularity conditions for measures

Let X be a metric space, or at least a topological space. Also let A be a ring
of subsets of X, and let µ be a finitely additive measure on X with respect to
A. Sometimes µ may satisfy some additional conditions related to the metric
or topology on X.

1.12.1 An outer regularity condition

Let us say that µ is outer regular if for every A ∈ A we have that

µ(A) = inf{µ(U) : U ∈ A, A ⊆ U, and U is an open set in X}.(1.12.1)

If X is equipped with the discrete metric or topology, then every subset of X is
an open set, and this outer regularity condition is trivial.

1.12.2 Two inner regularity conditions

Let us say that µ is inner regular with respect to closed sets if for every A ∈ A
we have that

µ(A) = sup{µ(E) : E ∈ A, E ⊆ A, and E is a closed set in X}.(1.12.2)

If X is equipped with the discrete metric or topology, then every subset of X is
a closed set, and this is trivial, as before.

Similarly, let us say that µ is inner regular with respect to compact sets if for
every A ∈ A we have that

µ(A) = sup{µ(K) : K ∈ A, K ⊆ A, and K is a compact set in X}.(1.12.3)

It is well known that compact sets are closed sets in metric spaces, and in
Hausdorff topological spaces. Thus inner regularity with respect to compact
sets implies inner regularity with respect to closed sets in these cases.

If X is compact, then it is well known that closed sets in X are compact
too. This means that inner regularity with respect to closed sets implies inner
regularity with respect to compact sets in this case.

Suppose for the moment that A is an algebra of subsets of X, and that
µ(X) < +∞. One can check that inner regularity with respect to closed sets
is equivalent to outer regularity under these conditions. More precisely, inner
refularity with respect to closed sets for A ∈ A corresponds to outer regularity
for X \A.
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1.12.3 Some examples concerning inner regularity

Suppose for the moment that A contains all one-element subsets of X, and thus
all finite subsets of X. Of course, finite subsets of X are automatically compact.
If w is a nonnegative extended real-valued function on X and µw is defined on
A as in Subsection 1.8.4, then µw is inner regular with respect to compact sets,
by construction.

Suppose for the moment as well that X is equipped with discrete metric or
topology. It is well known that the finite subsets of X are the only compact
sets. If µ is inner regular with respect to compact sets, then one can check that
µ = µw on A exactly when w is obtained from µ as at the beginning of Section
1.8.

Let us continue to suppose for the moment that X is equipped with the
discrete metric or topology. If X has infinitely many elements, then the finitely
additive measure defined on the algebra A0 of subsets of X in Subsection 1.7.4
is not inner regular with respect to compact sets. Similarly, if X is uncountable,
then the countably additive measure defined on the σ-algebra A1 of subsets of
X in Subsection 1.7.4 is not inner regular with respect to compact sets.

1.12.4 Regularity and elementary sets

Let n be a positive integer, and remember that E(Rn) is the ring of bounded
elementary subsets of Rn, as in Subsection 1.6.3. Also let µ be a finitely additive
measure on Rn with respect to E(Rn) such that µ(A) < +∞ for every A in
E(Rn). One can check that µ is both outer regular and inner regular with
respect to closed sets if and only if µ is regular in the sense of Definition 11.5
on p303 of [158]. Of course, this uses the standard Euclidean metric on Rn.

If µ is any finitely additive measure on E(Rn), then inner regularity with
respect to closed sets implies inner regularity with respect to compact sets. This
uses the well-known fact that closed and bounded sets in Rn are compact. This
also uses the fact that the elements of E(Rn) are bounded subsets of Rn, by
construction.

1.13 Regularity conditions and countable addi-
tivity

Let X be a metric or a topological space, let A be a ring of subsets of X, and
let µ be a finitely additive measure on X with respect to A. Suppose that µ is
outer regular, as well as inner regular with respect to compact sets, as in the
previous section. We would like to show that µ is countably additive on A. It
suffices to show that µ is countably subadditive on A, as in Subsection 1.10.3.

Let A1, A2, A3, . . . be a sequence of elements of A such that
∪∞

j=1 Aj ∈ A,
and let us show that

µ
( ∞∪

j=1

Aj

)
≤

∞∑
j=1

µ(Aj).(1.13.1)
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We may as well suppose that the sum on the right is finite, since otherwise there
is nothing to do. In particular, this means that µ(Aj) < +∞ for each j.

Let ϵ > 0 be given, and let us use outer regularity to get an open set Uj in
X for each j such that Aj ⊆ Uj , Uj ∈ A, and

µ(Uj) < µ(Aj) + 2−j ϵ.(1.13.2)

This implies that
∞∑
j=1

µ(Uj) <

∞∑
j=1

µ(Aj) + ϵ.(1.13.3)

Let K be a compact subset of X such that K ∈ A and

K ⊆
∞∪
j=1

Aj .(1.13.4)

It follows that

K ⊆
∞∪
j=1

Uj ,(1.13.5)

so that

K ⊆
n∪

j=1

Uj(1.13.6)

for some positive integer n. This means that

µ(K) ≤
n∑

j=1

µ(Uj),(1.13.7)

by finite subadditivity, as in Subsection 1.10.1. Thus

µ(K) ≤
∞∑
j=1

µ(Uj) <

∞∑
j=1

µ(Aj) + ϵ.(1.13.8)

We can now use inner regularity with respect to compact sets to get that

µ
( ∞∪

j=1

Aj

)
≤

∞∑
j=1

µ(Aj) + ϵ.(1.13.9)

This implies (1.13.1), because ϵ > 0 is arbitrary.

1.13.1 Volumes of elementary sets

Let n be a positive integer, and remember that the ring E(Rn) of bounded
elementary subsets of Rn and the algebra E1(Rn) of possibly unbounded ele-
mentary subsets of Rn may be defined as in Subsection 1.6.3. More precisely,
one can check that the elements of E(Rn) may be expressed as the union of
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finitely many pairwise-disjoint bounded intervals in Rn, as in (13) on p303
of [158]. Similarly, the elements of E1(Rn) may be expressed as the union of
finitely many pairwise-disjoint possibly unbounded intervals in Rn. Remember
also that the n-dimensional volume of bounded as well as possibly unbounded
intervals in Rn may be defined as in Subsection 1.6.2.

The n-dimensional volume of a bounded elementary set inRn may be defined
as in (11) on p303 of [158]. That is to say, if the bounded elementary set
is expressed as the union of finitely many pairwise-disjoint bounded intervals,
then the volume of the elementary set is equal to the sum of the volumes of these
intervals. This does not depend on the way that the elementary set is expressed
as the union of finitely many pairwise-disjoint intervals, as in (14) on p303 of
[158]. This defines a finitely additive measure on Rn with respect to E(Rn),
as in (15) on p303 of [158]. There are analogous remarks for the n-dimensional
volume of a possibly unbounded elementary set in Rn.

1.13.2 Regularity of the volume

One can check that n-dimensional volume is outer regular and inner regular
with respect to compact sets on E(Rn). This corresponds to Example 11.6 (a)
on p303 of [158]. More precisely, it suffices to verify these regularity properties
for bounded intervals in Rn, and this is easy to do. It follows that n-dimensional
volume is countably additive on E(Rn), as before.

Similarly, n-dimensional volume is inner regular with respect to compact
sets on E1(Rn). As before, it is enough to verify this for possibly unbounded
intervals in Rn, and this is also fairly simple. One can check that 1-dimensional
volume is outer regular on E1(R) as well.

However, if n ≥ 2, then n-dimensional volume is not outer regular on E1(Rn).
This is because of unbounded intervals with n-dimensional volume equal to
0. Outer regularity does work for these sets, because unbounded open sets in
E1(Rn) have n-dimensional volume +∞. We shall consider another version of
outer regularity in the next section that works in this case.

1.14 Another outer regularity condition

Let X be a metric or topological space again, let A be a ring of subsets of X,
and let µ be a finitely additive measure on A. Let us say that µ is outer regular
with respect to subsets of compact sets if the outer regularity property (1.12.1)
holds when A ∈ A and there is a compact subset K of X such that A ⊆ K and
K ∈ A. Of course, this is equivalent to outer regularity when X is compact.

1.14.1 Using this condition to get countable additivity

Suppose that µ is outer regular with respect to subsets of compact sets, and
inner regular with respect to compact sets. We would like to show that µ is
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countably additive on A under these conditions as well. It is enough to show
that µ is countably subadditive on A, as before.

Let A1, A2, A3, . . . be a sequence of elements of A such that
∪∞

j=1 Aj ∈ A, so
that we would like to show that (1.13.1) holds. To do this, let K be a compact
subset of X such that K ∈ A and (1.13.4) holds. It suffices to show that

µ(K) ≤
∞∑
j=1

µ(Aj),(1.14.1)

because of inner regularity with respect to compact sets.

In fact,

µ(K) ≤
∞∑
j=1

µ(Aj ∩K).(1.14.2)

We may as well suppose that the sum on the right is finite, as before. Let ϵ > 0
be given, and let us use outer reguarity with respect to subsets of compact sets
to get an open set Vj in X for each j such that Aj ∩K ⊆ Vj , Vj ∈ A, and

µ(Vj) < µ(Aj ∩K) + 2−j ϵ.(1.14.3)

Note that
∞∑
j=1

µ(Vj) <

∞∑
j=1

µ(Aj ∩K) + ϵ.(1.14.4)

Using (1.13.4), we get that

K =

∞∪
j=1

(Aj ∩K) ⊆
∞∪
j=1

Vj .(1.14.5)

This implies that

K ⊆
n∪

j=1

Vj(1.14.6)

for some positive integer n, by compactness, so that

µ(K) ≤
n∑

j=1

µ(Vj),(1.14.7)

because of finite subadditivity. It follows that

µ(K) ≤
∞∑
j=1

µ(Vj) <

∞∑
j=1

µ(Aj) + ϵ.(1.14.8)

This means that (1.14.1) holds, because ϵ > 0 is arbitrary.
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1.14.2 More on the n-dimensional volume on E1(Rn)

Let n be a positive integer, and et us continue with the discussion of the n-
dimensional volume on E1(Rn) from the previous section. It is easy to see that
the n-dimensional volume is outer regular with respect to subsets of compact
sets on E1(Rn), because of outer regularity of n-dimensional volume on E(Rn).

It follows that n-dimensional volume is countably additive on E1(Rn), using
the remarks in the previous subsection. This also uses the inner regularity of
n-dimensional volume on E(Rn) with respect to compact sets, as in the previous
section.

1.15 Lebesgue outer measure on Rn

This suggests a way to define n-dimensional Lebesgue outer measure, using the
construction discussed in Subsection 1.11.3. Often one defines Lebesgue outer
measure on Rn a bit more directly, and shows that it has the usual properties
using related arguments.

If E is any subset of Rn, then in the construction in Subsection 1.11.3,
one considers coverings of E by sequences of elements of E1(Rn). As a variant
of this, one can consider coverings of E by sequences of possibly unbounded
intervals in Rn. It is easy to see that this leads to an equivalent definition of
the Lebesgue outer measure of E, because of the way that the volume of an
element of E1(Rn) is defined.

As another variant, one can consider coverings of E by sequences of bounded
intervals. It is not too difficult to show that this also leads to an equivalent
definition of Lebesgue outer measure. This is simpler when n = 1, because
the 1-dimensional volume of an unbounded interval in R is +∞. If n ≥ 2,
then the n-dimensional volume of an unbounded interval is either 0 or +∞,
as in Subsection 1.6.2. If it is 0, then one should check that its n-dimensional
Lebesgue outer measure is equal to 0 when it is defined using coverings by
sequences of bounded intervals.

One can also restrict one’s attention to coverings of E by sequences of
bounded open intervals. This is because any bounded interval in Rn is con-
tained in a bounded open interval whose n-dimensional volume is arbitrarily
close to the volume of the initial interval. This approach to defining Lebesgue
outer measure on Rn is essentially the same as in Definition 11.7 on p304 of
[158], where coverings by sequences of bounded open elementary sets is used.
More precisely, in the construction in [158], one considers any finitely additive
measure on E(Rn) that is outer regular, inner regular with respect to closed or
equivalently compact sets, and finite on the elements of E(Rn).

One could consider coverings of E by sequences of cubes as well. To check
that this leads to the same result, one can verify that bounded intervals can
be covered by finitely many cubes, with the sum of the volumes of these cubes
arbitrarily close to the volume of the interval. One can restrict one’s attention
to closed cubes too, as on p10 of [180].
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One-dimensional Lebesgue outer measure is defined a bit differently on p26
of [61], using coverings of E by sequences of arbitrary subsets of the real line,
and taking the infimum of the sum of the diameters of the sets in the covering,
over all such coverings. This is equivalent to using coverings by sequences of
intervals as before, because the diameter of an interval in R is the same as its
length, or one-dimensional volume. This also uses the fact that any subset of
the real line is contained in an interval with the same diameter. Lebesgue outer
measure on Rn is obtained another way in [61] when n ≥ 2, using the n = 1
case.

It is not too difficult to show that one gets an outer measure when defining
Lebesgue outer measure using converings in these ways. More precisely, one can
check that it is enough to use coverings by sets whose diameter is as small as
one likes. This implies that Lebesgue outer measure is a metric outer measure,
as in Subsection 1.11.2. This corresponds to Observation 4 on p14 of [180], as
mentioned on p267 of [180].

One-dimensional Lebesgue outer measure is obtained using the Riemann
integral on p111 of [62], and in Definition 9.19 on p120 of [86]. This is used to
get n-dimensional Lebesgue outer measure beginning on p119 of [62].

1.15.1 Lebesgue measure on Rn

One may define n-dimensional Lebesgue measure to be the restriction of n-
dimensional Lebesgue outer measure to the corresponding σ-algebra of mea-
surable sets, as in Subsection 1.11.1. A subset of Rn that is measurable with
respect to Lebesgue outer measure may be called Lebesgue measurable. Another
definition of measurability is used on p16 of [180], and Exercise 3 on p312 of
[180] asks one to show that this is equivalent to measurability with respect to
Lebesgue outer measure, as in Subsection 1.11.1.

Lebesgue measure on Rn is defined on the σ-algebra of Lebesgue measurable
sets another way on p53 of [157].



Chapter 2

More on measures and
σ-algebras

2.1 Getting an outer measure from a measure

Let X be a set, let A be a σ-algebra of subsets of X, and µ be a nonnegative
countably additive measure defined on A. If E is any subset of X, then put

µ(E) = inf{µ(A) : A ∈ A, E ⊆ A},(2.1.1)

as in (1.2) of p8 of [134]. It is easy to see that this is the same as in Subsection
1.11.3 under these conditions.

The properties of µ mentioned in Subsection 1.11.3 are somewhat simpler in
this case. In particular, one can check more directly that µ is an outer measure
on X, as in Exercise 1 on p22 of [134]. Clearly µ = µ on A, by construction.
One can also verify that the elements of A are measurable with respect to µ, in
the sense described in Subsection 1.11.1.

2.1.1 The infimum in the definition of µ(E) is attained

Let E be any subset of X, and let us check that the infimum on the right side
of (2.1.1) is attained. This is clear when µ(E) = +∞, and so we suppose that
µ(E) < ∞. In this case, for each positive integer l there is an Al ∈ A such that
E ⊆ Al and

µ(Al) < µ(E) + 1/l.(2.1.2)

If we put B =
∩∞

l=1 Al, then B ∈ A, E ⊆ B, and

µ(B) ≤ µ(E),(2.1.3)

because µ(B) ≤ µ(Al) for each l. It follows that

µ(E) = µ(B),(2.1.4)

35
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by the definition of µ(E).
In particular, µ(B) = 0 when µ(E) = 0. If E is measurable with respect to

µ, as in Subsection 1.11.1, then one can use (2.1.4) to get that

µ(B \ E) = 0.(2.1.5)

2.1.2 When E is σ-finite with respect to µ

Suppose now that E is σ-finite with respect to µ, in the sense that there is a
sequence E1, E2, E3, . . . of subsets ofX such that E =

∪∞
j=1 Ej and µ(Ej) < +∞

for each j. Let Bj be an element of A such that Ej ⊆ Bj and

µ(Ej) = µ(Bj)(2.1.6)

for each j, as before. Note that Ej ⊆ E ∩Bj for each j, so that

µ(E ∩Bj) = µ(Bj).(2.1.7)

If E is measurable with respect to µ, then E∩Bj is measurable with respect
to µ for each j. This implies that

µ(Bj \ E) = 0(2.1.8)

for each j, as before. It follows that

µ
(( ∞∪

j=1

Bj

)
\ E

)
= µ

( ∞∪
j=1

(Bj \ E)
)
= 0.(2.1.9)

2.1.3 Complete measure spaces

The measure space (X,A, µ) is said to be complete if for every subset E of X
such that there is a B ∈ A with E ⊆ B and µ(B) = 0, we have that E ∈ A. This
corresponds to Definition 11.20 on p155 of [86], and it is also mentioned on p29
of [157], and p266 of [180]. Equivalently, this means that E ∈ A when µ(E) = 0.
Note that any outer measure is complete with respect to the corresponding σ-
algebra of measurable sets, as in Subsection 1.11.1.

It is well known that one can get a completion of A as follows. A subset of
X is said to measurable with respect to the completion if it can be expressed as
A ∪ E, when A ∈ A and E ⊆ X is as in the previous paragraph. In this case,
the measure of A ∪ E is defined to be µ(A). One can check that this defines a
complete measure space, as in Theorem 11.21 on p155 of [86], Theorem 1.36 on
p29 of [157], and Exercise 2 on p312 of [180]. This is related to Exercise 10.38
on p142 of [86].

2.1.4 More on σ-finiteness

We say that A ∈ A is σ-finite with respect to µ if A can be expressed as the
union of a sequence of elements of A with finite measure, as on p118 of [85],
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p138 of [86], and p49 of [157]. If X is σ-finite with respect to µ, then (X,A, µ)
is said to be σ-finite as a measure space, as on p127 of [86], and p263 of [180].
Note that σ-finiteness of a set with respect to an outer measure is defined on
p4 of [61] to mean that the set may be expressed as the union of a sequence of
measurable sets with respect to the outer measure with finite measure.

It is easy to see that the collection of elements of A that are σ-finite with
respect to µ is a σ-ring.

2.2 Borel sets

Let X be a set, and let E be any collection of subsets of X. Also let A(E) be
the intersection of all of the σ-algebras of subsets of X that contain E . One
can check that A(E) is a σ-algebra of subsets of X as well. Of course, A(E) is
the smallest σ-algebra of subsets of X that contains E , by construction. This
is mentioned beginning on p59 of [62], and in Definition 10.19 on p132 of [86],
and it corresponds to Theorem 1.10 on p12 of [157].

Suppose now that X is a metric space, or a topological space. The collection
of Borel sets in X is the smallest σ-algebra of subsets of X that contain the
open sets, as on p4 of [61], p60 of [62], p118 of [85], in Definition 10.19 on p132
of [86], p9 of [134], p13 of [157], p309 of [158], and p23, 267 of [180]. Note that
some variants of this terminology have sometimes been used.

2.2.1 Borel measures

A nonnegative countably additive measure defined on the σ-algebra of Borel
sets in X may be called a Borel measure, as in the footnote on p329 of [86],
in Definition 2.15 on p49 of [157], and on p269 of [180]. However, this term is
sometimes also used for an outer measure µ on X such that the Borel sets in X
are measurable with respect to µ, in the sense discussed in Subsection 1.11.1, as
on p4 of [61], and in (2) in Definition 1.5 on p9 of [134]. We may use the term
Borel outer measure for this here.

Of course, if µ is a Borel outer measure on X, then the restriction of µ to
the Borel sets is a Borel measure on µ. If X is a metric space, then a metric
outer measure on X is a Borel outer measure on X, as in Subsection 1.11.2.

2.2.2 Two basic families of examples of Borel sets

A subset of X is said to be an Fσ set if it can be expressed as the union of a
sequence of closed sets. Similarly, a subset of X is said to be a Gδ set if it can
be expressed as an intersection of a sequence of open sets. Clearly Fσ sets and
Gδ sets are Borel sets in X. It is easy to see that a subset of X is an Fσ set if
and only if its complement in X is a Gδ set.

Suppose that (X, d(·, ·)) is a metric space. If x ∈ X and r is a positive real
number, then let

B(x, r) = {y ∈ X : d(x, y) < r}(2.2.1)
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be the usual open ball in X centered at x of radius r with respect to d. It is well
known and not difficult to show that open balls in X are open sets. Similarly,
if r is a nonnegative real number, then let

B(x, r) = {y ∈ X : d(x, y) ≤ r}(2.2.2)

be the closed ball in X centered at x of radius r with respect to d. One can
check that closed balls in X are closed sets.

It is easy to see that an open ball in X may be expressed as the union of a
sequence of closed balls with the same center. This implies that open balls are
Fσ sets. Similarly, a closed ball in X may be expressed as the intersection of a
sequence of open balls with the same center, and is thus a Gδ set.

If A is any subset of X, then put

Ar =
∪
x∈A

B(x, r).(2.2.3)

This is an open set in X, because it is a union of open sets. One can check that

A =
∩
r>0

Ar,(2.2.4)

where A is the closure of A in X. This implies that

A =

∞∩
l=1

A1/l,(2.2.5)

so that closed sets in X are Gδ sets. It follows that open sets in X are Fσ sets.

2.2.3 Some examples concerning intervals

Let a and b be real numbers with a < b. One can check that [a, b) and (a, b]
are each both Fσ sets and Gδ sets in the real line, with respect to the standard
Euclidean metric. More precisely, [a, b) and (a, b] may each be expressed as the
union of a sequence of closed intervals, and as the intersection of a sequence of
open intervals. Similarly, (a, b) may be expressed as the union of a sequence of
closed intervals, and [a, b] may be expressed as the intersection of a sequence
of open intervals. We also have that an open half-line may be expressed as the
union of a sequence of closed half-lines, and a closed half-line may be expressed
as the intersection of a sequence of open half-lines.

Let n be a positive integer, and remember that a subset of Rn may be called
an interval if it can be expressed as the Cartesian product of n intervals in the
real line, as in Subsection 1.6.2. If a subset of Rn can be expressed as a product
of n open intervals in R, then one can check that this set is an open set in Rn,
with respect to the standard Euclidean metric. Similarly, if a subset of Rn can
be expressed as the product of n closed intervals in R, then one can verify that
this set is a closed set in Rn. It is well known that the product of n closed
intervals in R that are also bounded is compact in Rn.



2.3. SEPARABILITY AND COUNTABLE BASES 39

One can check that any interval in Rn is both an Fσ set and a Gδ set. More
precisely, it can be expressed as the union of a sequence of closed intervals, and
as the intersection of a sequence of open intervals. In particular, intervals in Rn

are Borel sets.

2.3 Separability and countable bases

Let X be a metric space, or a topological space. A collection B of open subsets
of X is said to be a base for the topology of X if every open set may be expressed
as a union of elements of B. One may consider the empty set as being the union
of an empty collection of sets, so that it has this property automatically.

Equivalently, B is a base for the topology of X if for every open set U ⊆ X
and point x ∈ U there is a V ∈ B such that x ∈ V and V ⊆ U . If X is a metric
space, then this is also equivalent to saying that for every x ∈ X and r > 0
there is a V ∈ B such that x ∈ V and V ⊆ B(x, r).

The collection of all open balls in X is a base for the topology of X when X
is a metric space. In fact, the collection of all open balls in X with radii of the
form 1/l for some positive integer l is a base for the topology of X.

Suppose that X is a metric space again, and let E be a dense set in X. One
can check that

BE = {B(y, 1/l) : y ∈ E, l ∈ Z+}(2.3.1)

is a base for the topology of X. Indeed, if x ∈ X amd r is a posiitve real number,
then let l be a positive integer such that 2/l < r, and let y be an element of E
such that

d(x, y) < 1/l.(2.3.2)

Thus B(y, 1/l) is an element of BE that contains x as an element, and one can
check that

B(y, 1/l) ⊆ B(x, r),(2.3.3)

using the triangle inequality.

2.3.1 Separable metric and topological spaces

A metric or topological space X is said to be separable if there is a dense set E
in X such that E has only finitely or countably many elements. If X is a metric
space, and E ⊆ X has only finitely or countably many elements, then one can
verify that (2.3.1) has only finitely or countably many elements.

It is well known that the set Q of rational numbers is a countable dense
set in the real line with respect to the standard Euclidean metric, so that R is
separable. If n is a positive integer, then it is well known and not too difficult
to show that the set Qn of n-tuples of rational numbers is a countable dense set
in Rn with respect to the standard Euclidean metric, so that Rn.

If X is any set with the discrete metric or topology, then X is the only dense
set in itself. It follows that X is separable if and only if X has only finitely or
countably many elements.
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Let X be a metric or topological space again, and let B be a base for the
topology of X. If V ∈ B and V ̸= ∅, then let x(V ) be an element of V . Consider
the set E of these points x(V ). One can check that E is dense in X, because
B is a base for the topology of X. If B has only finitely or countably many
elements, then E has only finitely or countably many elements, so that X is
separable.

2.3.2 Bases and Borel sets

If E is any collection of Borel sets, then the σ-algebra A(E) of subsets of X
generated by E , as in the previous section, is contained in the σ-algebra of Borel
sets in X.

If E is a base for the topology of X with only finitely or countable many
elements, then A(E) contains all Borel sets in X. More precisely, if a subset U
of X can be expressed as the union of finitely or countably many elements of E ,
then U ∈ A(E). If this holds for all open sets U in X, then A(E) contains the
Borel sets in X.

2.3.3 Some more examples of bases using intervals

The collection of all open intervals in the real line is a base for the topology of
R with respect to the standard metric. More precisely, the collection of open
intervals in R with rational endpoints is a countable base for the topology of R.

If n is a positive integer, then the collection of all open intervals in Rn is a
base for the topology of Rn with respect to the standard metric. In fact, the
collection of all open intervals in Rn obtained by taking the Cartesian product
of n open intervals in R with rational endpoints is a countable base for the
topology of Rn.

Let E(Rn) and E1(Rn) be the collections of bounded and possibly unbounded
elementary subsets of Rn, as in Subsection 1.6.3. Note that elementary subsets
of Rn are Borel sets, because intervals are Borel sets, as in the previous section.

We also have that A(E(Rn)) contains all of the Borel sets in Rn, because the
collection of open intervals in Rn obtained from products of open intervals in
R with rational endpoints is a countable base for the topology of Rn, as before.
It follows that A(E(Rn)) and A(E(Rn)) are both the same as the collection of
all Borel sets in Rn.

2.4 Limits of functions

We would like consider some more Borel measures on the real line, related to
monotonically increasing real-valued functions on R. In order to do this, we
shall first review some facts related to one-sided limits of functions on R.

Let (X, dX) and (Y, dY ) be metric spaces, let E be a subset of X, and let p
be an element of X that is a limit point of E. Also let f be a function on E
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with values in Y , and let q be an element of Y . We say that the limit of f(x),
as x ∈ E approaches p, is equal to q, if for every ϵ > 0 there is a δ > 0 such that

dY (f(x), q) < ϵ(2.4.1)

for every x ∈ E with d(p, x) < δ and x ̸= p. It is well known and not difficult
to show that the limit q is unique when it exists. In this case, we put

lim
x∈E
x→p

f(x) = q,(2.4.2)

or simply
lim
x→p

f(x) = q(2.4.3)

when E = X.
It is well known that (2.4.2) holds if and only if for every sequence {xj}∞j=1

of elements of E that converges to p and satisfies xj ̸= p for each j, we have
that {f(xj)}∞j=1 converges to q in Y . If E = X, then it is easy to see that f is
continuous at p if and only if

lim
x→p

f(x) = f(p).(2.4.4)

If p is not a limit point of X, then any mapping from X into Y is continuous
at p.

2.4.1 One-sided limits on R

Let us now take E = X = R, with the standard metric. The limit of f(x) as
x ∈ R approaches p from the right is defined by

f(p+) = lim
x→p+

f(x) = lim
x∈(p,+∞)

x→p

f(x),(2.4.5)

when the limit on the right side exists. Similarly, the limit of f(x) as x ∈ R
approaces p from the left is defined by

f(p−) = lim
x→p−

f(x) = lim
x∈(−∞,p)

x→p

f(x),(2.4.6)

when the limit on the right side exists. One can check that

lim
x→p

f(x)(2.4.7)

exists if and only if the one-sided limits (2.4.5) and (2.4.6) and are equal. Of
course, (2.4.7) is equal to the common value of the one-sided limits in this case.

Let us say that f is continuous at p from the right if

lim
x→p+

f(x) = f(p).(2.4.8)

Similarly, we say that f is continuous at p from the left if

lim
x→p−

f(x) = f(p).(2.4.9)

Thus f is continuous at p if and only if f is continuous at p from both the left
and the right.
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2.4.2 Monotonically increasing functions on R

Let f be a monotonically increasing real-valued function on R, so that

f(x) ≤ f(y)(2.4.10)

for every x, y ∈ R with x < y. It is well known that the limits of f at p ∈ R
from the left and right exist, with

f(p+) = inf
p<x<+∞

f(x)(2.4.11)

and
f(p−) = sup

−∞<x<p
f(x).(2.4.12)

This corresponds to Theorem 4.1 H on p102 of [78] and its proof, the first part
of Theorem 8.19 on p111 of [86] and its proof, and to parts of Theorem 4.29 on
p95 of [158]. Note that

f(p−) ≤ f(p) ≤ f(p+),(2.4.13)

and that
f(p1+) ≤ f(p2−)(2.4.14)

when p1 < p2, as in [158].
It follows from (2.4.13) that f is continuous at p exactly when

f(p−) = f(p+).(2.4.15)

Thus f is not continuous at p exactly when

f(p−) < f(p+).(2.4.16)

It is well known that f is continuous at all but finitely or countably many
elements of R, as in the first part of Theorem 8.19 on p111 of [86], and Theorem
4.30 on p96 of [158].

It is convenient to put

f(+∞) = sup
x∈R

f(x)(2.4.17)

and
f(−∞) = inf

x∈R
f(x).(2.4.18)

These satisfy
f(x) → f(+∞) as x → +∞(2.4.19)

and
f(x) → f(−∞) as x → −∞,(2.4.20)

with suitable interpretations. This is related to Definition 4.1 E on p101 of [78],
Exercise 11 and 21 at the end of Section 4.1 of [78], and some remarks on p98
of [158].
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2.5 Lengths of intervals with respect to α

Let α be a monotonically increasing real-valued function on the real line. If a
and b are real numbers with a < b, then put

λα([a, b)) = α(b−)− α(a−),(2.5.1)

λα([a, b]) = α(b+)− α(a−),(2.5.2)

λα((a, b]) = α(b+)− α(a+),(2.5.3)

λα((a, b)) = α(b−)− α(a+),(2.5.4)

as in Example 11.6 (b) on p303 of [158]. We may also use (2.5.2) when a = b.
These may be described as the α-lengths of these intervals. Of course, this is
the same as the ordinary length of an interval when α(x) = x for every x ∈ R.

Similarly, put

λα([a,+∞)) = α(+∞)− α(a−),(2.5.5)

λα((a,+∞)) = α(+∞)− α(a+),(2.5.6)

λα((−∞, b]) = α(b+)− α(−∞),(2.5.7)

λα((−∞, b)) = α(b−)− α(−∞),(2.5.8)

λα((−∞,+∞)) = α(+∞)− α(−∞).(2.5.9)

Note that (2.5.9) is finite if and only if α is bounded on R. Similarly, (2.5.5)
and (2.5.6) are finite exactly when α has a finite upper bound on R, and (2.5.7)
and (2.5.8) are finite exactly when α has a finite lower bound on R.

Let E(R) be the ring of bounded elementary sets in R, and let E1(R) be
the algebra of possibly unbounded elementary sets in R, as in Subsection 1.6.3.
We can extend λα to a finitely additive measure on E(R), in the same way as
in Subsection 1.13.1. Similarly, we can extend λα to a finitely additive measure
on E1(R), and we use λα to denote this extension as well.

One can check that λα is outer regular and inner regular with respect to
compact sets on E(R), as in Example 11.6 (a) on p303 of [158]. Similarly, λα

is outer regular and inner regular with respect to compact sets on E1(R). As
in Subsection 1.13.2, it suffices to check these regularity properties for inter-
vals, and one can do this directly from the definitions. This implies that λα is
countably additive on E1(R), by the remarks at the beginning of Section 1.13.

2.5.1 Lebesgue–Stieltjes outer measures

Using λα, we get an outer measure λα on the real line as in Subsection 1.11.3.
This may be called the Lebesgue–Stieltjes outer measure associated to α. Note
that λα = λα on E1(R), and that the elements of E1(R) are measurable with
respect to λα, as before. This means that the Borel sets in R with respect to
the standard metric are measurable with respect to λα, as in Subsection 2.3.3.

In the construction in Subsection 1.11.3, one considers coverings of a subset
E of the real line by sequences of elements of E1R). One can consider cov-
erings of E by sequences of possibly unbounded intervals instead, and get an
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equivalent definition of λα, as in Section 1.15. One can consider coverings by
sequences of bounded intervals too. In fact, one can consider coverings by se-
quences of bounded open intervals, and get an equivalent definition of λα. This
is essentially the same as in Definition 11.7 on p304 of [158], where coverings by
sequences of bounded open elementary sets are used.

Alternatively, one can consider coverings by sequences of bounded intervals
of the form (a, b], as on p282 of [180]. One can also show that λα is a metric
outer measure on R with respect to the standard metric, as on p283 of [180].
This is another way to see that the Borel sets in R are measurable with respect
to λα.

One can obtain Lebesgue–Stieltjes outer measures using Riemann–Stieltjes
integrals as well, as on p111 of [62], and in Definition 9.19 on p120 of [86].

One may define the Lebesgue–Stieltjes measure associated to α to be the
restriction of λα to the corresponding σ-algebra of measurable sets, or simply
to the Borel sets. The restriction of λα to the measurable sets may be denoted
λα again.

2.6 Monotone classes

Let X be a set, and let M be a collection of subsets of X. We say that M is a
monotone class or monotone family if it satisfies the following two conditions,
as on p380 of [86], and p145 of [157]. First, if A1, A2, A3, . . . is a sequence of
elements of M such that Aj ⊆ Aj+1 for each j, then

∞∪
j=1

Aj ∈ M.(2.6.1)

Second, if B1, B2, B3, . . . is a sequence of elements of M such that Bj+1 ⊆ Bj

for each j, then
∞∩
j=1

Bj ∈ M.(2.6.2)

Note that σ-algebras of subsets of X are monotone classes.
Let E be any collection of subsets of X, and let M(E) be the intersection

of all of the monotone classes of subsets of X that contains X. One can check
that M(E) is also a montone class of subsets of X, as mentioned on p381 of
[86], and at the beginning of the proof of Theorem 7.3 on p146 of [157]. This is
the smallest monotone class of subsets of X that contains E , by construction.

Let A(E) be the smallest σ-algebra of subsets of X that contains E , as in
Section 2.2. Note that

M(E) ⊆ A(E),(2.6.3)

because σ-algebras of subsets of X are monotone classes.
If E is an algebra of subsets of X, then it is well known that

M(E) = A(E).(2.6.4)
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This corresponds to Theorem 21.6 on p380 of [86], and Theorem 7.3 on p146 of
[157] is a particular case of this.
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2009.

[13] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional
Analysis, American Mathematical Society, 2000.

46



BIBLIOGRAPHY 47

[14] S. Berberian, The product of two measures, American Mathematical
Monthly 69 (1962), 961–968.

[15] S. Berberian, Counterexamples in Haar measure, American Mathematical
Monthly 73 (1966), 135–140.

[16] S. Berberian, Sesquilregular measures, American Mathematical Monthly
74 (1967), 986–990.

[17] S. Berberian, A First Course in Real Analysis, Sringer-Verlag, 1994.

[18] S. Berberian, Fundamentals of Real Analysis, Springer-Verlag, 1999.

[19] S. Berberian, Measure and Integration, reprint of the 1965 original, AMS
Chelsea, 2011.

[20] S. Berberian and J. Jakobsen, A note on Borel sets, American Mathemat-
ical Monthly 70 (1963), 55.

[21] G. Birkhoff, What is a lattice?, American Mathematical Monthly 50
(1943), 484–487.

[22] G. Birkhoff, Lattice Theory, corrected reprint of the 1967 third edition,
American Mathematical Society, 1979.

[23] G. Birkhoff and S. Mac Lane, A Survey of Modern Algebra, 4th edition,
Macmillan, 1977.

[24] G. Blom, A simple property of exchangeable random variables, American
Mathematical Monthly 92 (1985), 491–492.

[25] C. Blyth, Convolutions of Cauchy distributions, American Mathematical
Monthly 93 (1986), 645–647.

[26] R. Boas, Jr., Inversion of Fourier and Laplace transforms, American
Mathematical Monthly 69 (1962), 955–960.

[27] R. Boas, A Primer of Real Functions, 4th edition, revised and with a
preface by H. Boas, Mathematical Association of America, 1996.

[28] T. Botts, Probability theory and the Lebesgue integral, Mathematics Mag-
azine 42 (1969), 105–111.

[29] L. Bragg and J. Grossman, An application of the dominated convergence
theorem to mathematical statistics, Mathematics Magazine 56 (1983), 41–
42.

[30] A. Browder, Mathematical Analysis: An Introduction, Springer-Verlag,
1996.



48 BIBLIOGRAPHY

[31] S. Buckley and D. MacHale, Variations on a theme: rings satisfying x3 =
x are commutative, American Mathematical Monthly 120 (2013), 430–
440.

[32] G. Bullock, The teaching of mathematics: A geometric interpretation
of the Riemann–Stieltjes Integral, American Mathematical Monthly 95
(1988), 448–455.

[33] R. Burnside, Convexity and Jensen’s inequality, American Mathematical
Monthly 82 (1975), 1005.

[34] D. Burton and J. Coleman, Quasi-Cauchy sequences, American Mathe-
matical Monthly 117 (2010), 328–333.

[35] R. Cameron, Some introductory exercises in the manipulation of Fourier
transforms, National Mathematics Magazine 15 (1941), 331–356.

[36] M. Carter and B. van Brunt, The Lebesgue–Stieltjes Integral: A Practical
Introduction, Springer-Verlag, 2000.

[37] J. Cassels, Local Fields, Cambridge University Press, 1986.

[38] F. Cater, A partition of the unit interval, American Mathematical Monthly
91 (1984), 564–566.

[39] S. Chatterji, Some elementary characterizations of the Poisson distribu-
tion, American Mathematical Monthly 70 (1963), 958–964.

[40] C. Chin, A short and elementary proof of the central limit theorem by
individual swapping, American Mathematical Monthly 129 (2022), 374–
380.

[41] M. Cohen, Sample means of independent standard Cauchy random vari-
ables are standard Cauchy: A new approach, American Mathematical
Monthly 119 (2012), 240–244.

[42] R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative
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