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Preface

These informal notes are intended to complement more detailed treatments, as
in the references. Some familiarity with basic analysis and linear algebra would
be helpful, and some definitions and results along these lines are reviewed here.
My colleague Frank Jones’ book [141] may be a very helpful resource for this.
Some familiarity with Lebesgue measure and integration could be helpful as
well, but we shall normally not be getting into this too much here.

Of course, there are many connections between complex analysis and partial
differential equations. The reader is not necessarily expected to be familiar
with complex analysis here, although some familiarity would be helpful in some
places.

The subject of partial differential equations is obviously closely related to
that of ordinary differential equations. Often only basic facts about ordinary
differential equations are used here, but some familiarity with standard results
related to existence and uniqueness of solutions would be helpful in some places.
More precisely, some familiarity with standard results concerning the depen-
dence of solutions on initial conditions and other parameters would be helpful
in some places.

There are many connections between partial differential equations, Fourier
analysis, and functional analysis too. We shall not get into this too much here,
but some of these connections will be mentioned a bit, or are fairly close.

A number of the texts in the bibliography include some aspects of the his-
tory of differential equations and related matters, such as Fourier analysis. In
particular, one may be interested in [13, 14, 43, 44, 45, 88, 93, 94, 100, 103, 105,
106, 123, 171, 172, 173, 177, 178, 181, 182, 183] in this regard.

Some additional perspectives concerning partial differential equations may
be found in [3, 57, 110, 115, 135, 142, 143, 146, 153, 210, 215, 222, 275, 279].

I would like to dedicate these notes to Eli Stein and Guido Weiss, whose
influence should hopefully be clear here, and in a variety of related directions.
Of course, Alberto Calderón and Antoni Zygmund are also very important here,
in connection with various related aspects of harmonic analysis, for which I have
endeavored to include some basic indications.
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Chapter 1

Some basic facts

Some very interesting introductory remarks about partial differential equations
can be found in the first chapter of [70]. Another interesting overview with
a somewhat different perspective is in Section A of Chapter 1 of [75]. Here
we begin with some basic notions related to Euclidean spaces and functions on
them, which are helpful for this.

1.1 Some preliminaries about Rn

Let n be a positive integer, and let Rn be the usual space of n-tuples x =
(x1, . . . , xn) of real numbers. If x, y ∈ Rn and t ∈ R, then x+ y and t x can be
defined as elements of Rn using coordinatewise addition and scalar multiplica-
tion, as usual.

1.1.1 The standard Euclidean norm

The standard Euclidean norm of x ∈ Rn is defined by

|x| =
( n∑

j=1

x2j

)1/2

,(1.1.1)

using the nonnegative square root on the right side. This reduces to the usual
absolute value of a real number when n = 1. Observe that

|t x| = |t| |x|(1.1.2)

for every t ∈ R and x ∈ Rn. It is well known that

|x+ y| ≤ |x|+ |y|(1.1.3)

for every x, y ∈ Rn. This is called the triangle inequality for the standard
Euclidean norm.

1
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1.1.2 The standard Euclidean metric

The standard Euclidean metric on Rn is defined by

d(x, y) = |x− y|(1.1.4)

for every x, y ∈ Rn. This may also be described as the distance between x and
y, with respect to the standard Euclidean metric.

1.1.3 Open sets

If x ∈ Rn and r is a positive real number, then the open ball in Rn centered at
x with radius r is defined by

B(x, r) = {y ∈ Rn : |x− y| < r}.(1.1.5)

Similarly, the closed ball in Rn centered at x with radius r is defined by

B(x, r) = {y ∈ Rn : |x− y| ≤ r}.(1.1.6)

A subset U of Rn is said to be an open set with respect to the standard
Euclidean metric if for every x ∈ U there is an r > 0 such that

B(x, r) ⊆ U.(1.1.7)

It is well known and not too difficult to show that

every open ball in Rn is an open set(1.1.8)

in this sense. Similarly, if t is a nonnegative real number, then one can check
that

{y ∈ Rn : |x− y| > t}(1.1.9)

is an open set.

1.1.4 Convergent sequences

Let {xj}∞j=1 be a sequence of points in Rn. There is a well-known definition of
what it means for {xj}∞j=1 to converge to a point x ∈ Rn with respect to the
standard Euclidean metric, and we shall not repeat this here. In this case, x is
said to be the limit of {xj}∞j=1, which may be expressed by

lim
j→∞

xj = x.(1.1.10)

It is well known and not difficult to show that the limit of a convergent sequence
is unique, and this works in any metric space.

Let xj,l be the lth coordinate of xj for each j ≥ 1 and l = 1, . . . , n, and
similarly let xl be the lth coordinate of x for each l = 1, . . . , n. It is well known
and not difficult to show that (1.1.10) holds if and only if

lim
j→∞

xj,l = xl(1.1.11)
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for each l = 1, . . . , n. More precisely, this means that {xj,l}∞j=1 converges to xl
as a sequence of real numbers for each l = 1, . . . , n, with respect to the standard
Euclidean metric on the real line R.

1.1.5 Closures of subsets of Rn

Let E be a subset of Rn. The closure of E in Rn with respect to the standard
Euclidean metric is defined to be the set

E(1.1.12)

of all x ∈ Rn with the following property: for every r > 0 there is a y ∈ E such
that

|x− y| < r.(1.1.13)

Equivalently, this means that for every r > 0,

E ∩B(x, r) 6= ∅.(1.1.14)

Note that
E ⊆ E(1.1.15)

automatically.
Alternatively, one can check that

x ∈ E(1.1.16)

if and only if

there is a sequence {xj}∞j=1 of elements of E that converges to x.(1.1.17)

If x ∈ Rn and r > 0, then one can check that

the closure of B(x, r) in Rn is equal to B(x, r).(1.1.18)

However, this does not always work in arbitrary metric spaces.

1.1.6 Closed sets

If
E = E,(1.1.19)

then E is said to be a closed set in Rn with respect to the standard Euclidean
metric. This is the same as saying that

E ⊆ E,(1.1.20)

because of (1.1.15). Equivalently, E is a closed set in Rn if and only if for every
sequence {xj}∞j=1 of elements of E that converges to an element x of Rn, we
have that

x ∈ E.(1.1.21)
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It is well known and not too difficult to show that

every closed ball in Rn is a closed set.(1.1.22)

If E is any subset of Rn, then it is well known and not too hard to show that

E is a closed set.(1.1.23)

1.1.7 Boundaries of subsets of Rn

If U is an open subset of Rn, then the boundary may be defined as the set

∂U(1.1.24)

of points in the closure of U that are not in U ,

∂U = U \ U.(1.1.25)

If x ∈ Rn and r > 0, then

∂B(x, r) = {y ∈ Rn : |x− y| = r},(1.1.26)

but this does not always work in arbitrary metric spaces.
If E is any subset of Rn, then the boundary of E is defined by

∂E = E ∩ (Rn \ E).(1.1.27)

One can check that this is equivalent to the definition in the preceding paragraph
when E is an open set.

1.2 Some spaces of functions

Let E be a nonempty subset of Rn, for some n ≥ 1, and let f be a real-valued
function on E. It is well known that f is continuous at a point x ∈ E if and
only if for every sequence {xj}∞j=1 of elements of E that converges to x, we have
that

lim
j→∞

f(xj) = f(x).(1.2.1)

If f is continuous at every point in E, then f is said to be continuous on E.
The space of continuous real-valued functions on E may be denoted

C(E).(1.2.2)

1.2.1 Continuous differentiability

Let U be a nonempty open subset of Rn, let f be a real-valued function on U ,
let x be an element of U , and let l be a positive integer less than or equal to n.
The partial derivative of f at x in the lth variable may be denoted

∂lf(x) = Dlf(x) =
∂f

∂xl
(x),(1.2.3)
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when it exists.
If (1.2.3) exists for every x ∈ U and l = 1, . . . , n, and is continuous on U for

each l, then f is said to be continuously differentiable on U . It is well known
that this implies that

f is continuous on U,(1.2.4)

although this may sometimes be included in the definition, for convenience. The
space of continuously-differentiable real-valued functions on U may be denoted

C1(U).(1.2.5)

1.2.2 k-Times continuous differentiability

If k is any positive integer, then we may say that f is k-times continuously
differentiable on U if f is continuous on U , and all derivatives of f up to order
k exist at every point in U , and are continuous on U . The space of k-times
continuously-differentiable real-valued functions on U may be denoted

Ck(U).(1.2.6)

More precisely, this may be defined recursively when k ≥ 2, by saying that
Ck(U) consists of all continuously-differentiable real-valued functions f on U
such that

∂f

∂xl
∈ Ck−1(U)(1.2.7)

for each l = 1, . . . , n. It is sometimes convenient to take

C0(U) = C(U).(1.2.8)

If derivatives of f of all orders exist everywhere on U and are continuous,
then f is said to be infinitely differentiable, or smooth, on U . The space of
infinitely-differentiable real-valued functions on U may be denoted

C∞(U).(1.2.9)

1.2.3 Multi-indices

An n-tuple α = (α1, . . . , αn) of nonnegative integers is said to be a multi-index,
of order

|α| =
n∑

j=1

αj .(1.2.10)

Of course, this is not necessarily the same as the standard Euclidean norm of
α, as an element of Rn, and it should normally be clear which is intended. If
f ∈ Ck(U) for some k ≥ 1 and |α| ≤ k, then the corresponding derivative of f
of order |α| may be denoted

∂αf = Dα f =
∂|α|f

∂xα1
1 · · · ∂xαn

n
.(1.2.11)
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Note that this function is continuously differentiable of order

k − |α|(1.2.12)

on U under these conditions.
If f is a twice continuously-differentiable function on U , then it is well known

that
∂2f

∂xj ∂xl
=

∂2f

∂xl ∂xj
(1.2.13)

on U for every j, l = 1, . . . , n. Similarly, if f is k-times continuously differentiable
on U , then derivatives of f up to order k may be taken in any order.

Sometimes derivatives are expressed using subscripts to indicate the variables
in which the derivative is taken. Thus one may put

fxj =
∂f

∂xj
, fxj xl

=
∂2f

∂xj ∂xl
,(1.2.14)

and so on, where appropriate.

1.2.4 Monomials

If x ∈ Rn, then we may put

xα = xα1
1 · · ·xαn

n ,(1.2.15)

where x
αj

j is interpreted as being equal to 1 when αj = 0, even when xj = 0.
This defines a real-valued function on Rn, which is the monomial of degree |α|
associated to α.

Similarly, (1.2.11) corresponds to

∂α = ∂α1
1 · · · ∂αn

n(1.2.16)

or
Dα = Dα1

1 · · ·Dαn
n(1.2.17)

applied to f . More precisely, ∂j = Dj defines a linear mapping from Ck(U)
into Ck−1(U) for each k ≥ 1. Composition of these mappings can be considered
as a type of multiplication, with ∂

αj

j = D
αj

j interpreted as being the identity
mapping when αj = 0.

1.3 Partial differential equations

Let k and n be positive integers, and let U be a nonempty open subset of Rn.
Also let u be a k-times continuously-differentiable real-valued function on U . A
kth-order partial differential equation for u on U can be expressed as

F (Dku(x), Dk−1u(x), . . . , Du(x), u(x), x) = 0,(1.3.1)
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as in Section 1.1 of [70], and Section A of Chapter 1 of [75]. Here Dlu(x) is
intended to represent the collection of all possible derivatives of u of order l at

x, which may be identified with an element of Rnl

(= R(nl)). Thus F may be
considered as a real-valued function on

Rnk

×Rnk−1

× · · · ×Rn ×R× U.(1.3.2)

A linear kth-order partial differential equation for u on U can be expressed
as ∑

|α|≤k

aα(x) ∂
αu(x) = f(x),(1.3.3)

as in Section 1.1 of [70], and Section A of Chapter 1 of [75]. More precisely, the
sum is taken over all multi-indices α with |α| ≤ k, which is of course a finite
set. Thus aα(x) should be a function on U for each such α, as well as f(x). If
f(x) = 0 for every x ∈ U , then (1.3.3) is said to be homogeneous.

One may also consider systems of partial differential equations, as in [70].
In this case, one can think of u as taking values in Rm for some positive integer
m. Continuous differentiability of u of order k on U means that each of the m
components of u is k-times continuously differentiable as a real-valued function
on U . One considers finitely many equations involving the components of u and
their deriviatives of order up to k on U , as before.

1.3.1 Invariance under translations

Let us say that a partial differential equation as in (1.3.1) is invariant under
translations if F does not depend on x in the last variable. This means that F
may be considered as a real-valued function on

Rnk

×Rnk−1

× · · · ×Rn ×R,(1.3.4)

so that (1.3.1) becomes

F (Dku(x), Dk−1u(x), . . . , Du(x), u(x)) = 0.(1.3.5)

If u satisfies this equation on U and a ∈ Rn, then

u(x− a)(1.3.6)

satisfies the same equation on

U + a = {x+ a : x ∈ U}.(1.3.7)

Note that this is also an open set in Rn. Of course, there are analogous notions
for systems.

The left side of (1.3.3) is said to have constant coefficients if aα(x) is a
constant for each multi-index α. If f is also a constant, then (1.3.3) is invariant
under translations, as in the preceding paragraph. There are analogous notions
for linear systems, as before.
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1.3.2 Divergence and directional derivatives

Let v be a continuously-differentiable Rn-valued function on U . The divergence
of v is the real-valued function on U defined as usual by

div v =

n∑
j=1

∂vj
∂xj

,(1.3.8)

where vj(x) is the jth coordinate of v(x) for each j = 1, . . . , n.
Let f be a real-valued function on U . The directional derivative of f at

x ∈ U in the direction w ∈ Rn is defined to be the derivative of

f(x+ t w)(1.3.9)

as a function of t ∈ R at t = 0, if it exists. If f is continuously differentiable on
U , then it is well known that the directional derivative exists, and is equal to

n∑
j=1

wj
∂f

∂xj
(x).(1.3.10)

1.4 Complex numbers

A complex number z can be expressed in a unique way as

z = x+ y i,(1.4.1)

where x, y ∈ R and i2 = −1. In this case, x and y are called the real and
imaginary parts of z, and may be denoted Re z, Im z, respectively. The complex
conjugate of z is the complex number

z = x− y i,(1.4.2)

and the absolute value or modulus of z is the nonnegative real number

|z| = (x2 + y2)1/2.(1.4.3)

In particular, the complex conjugate of z is z, and |z| = |z|.
The real line R may be considered as a subset of the set C of complex

numbers, and addition and multiplication of real numbers can be extended to
complex numbers in a standard way. Note that

z + w = z + w,(1.4.4)

z w = z w(1.4.5)

and

z z = |z|2(1.4.6)
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for every z, w ∈ C. One can use this to get that

|z w| = |z| |w|(1.4.7)

for every z, w ∈ C. If z ∈ C and z 6= 0, then z has a multiplicative inverse in
C, namely,

1

z
=

z

|z|2
.(1.4.8)

Of course, (1.4.3) is the same as the standard Euclidean norm of (x, y) ∈ R2.
The triangle inequality for the standard Euclidean norm on R2 is the same as
saying that

|z + w| ≤ |z|+ |w|(1.4.9)

for every z, w ∈ C, which can also be verified more directly in this case. The
standard metric on C is defined by

d(z, w) = |z − w|,(1.4.10)

which corresponds exactly to the standard Euclidean metric on R2.

1.4.1 Complex-valued functions

Let n be a positive integer, let U be an open subset of Rn, and let f be a
complex-valued function on U . Continuity of f on U can be defined in the
same way as for real-valued functions, and is equivalent to continuity of the
real and imaginary parts of f . Similarly, differentiability properties of f can
be defined in the same way as for real-valued functions, and are equivalent to
the corresponding differentiability properties of the real and imaginary parts of
f . Complex analysis deals with different types of differentiability properties of
complex-valued functions on open subsets of C. This is related to the Cauchy–
Riemann equations for the real and imaginary parts of such a function.

1.5 Complex exponentials

The exponential of a complex number z can be defined by

exp z =

∞∑
j=0

zj

j!
,(1.5.1)

where the absolute convergence of the series can be obtained from the ratio test,
for instance. This is equivalent to taking

exp(x+ y i) = (exp x) (cos y + i sin y)(1.5.2)

for every x, y ∈ R.
It is well known that

exp(z + w) = (exp z) (expw)(1.5.3)
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for every z, w ∈ C. This can be obtained using the binomial theorem, and
standard results about products of absolutely convergent series.

In particular, if z ∈ C, then one can take w = −z in (1.5.3) to get that
exp z 6= 0, with

1/(exp z) = exp(−z).(1.5.4)

Of course, if x ∈ R, then exp x ∈ R, with exp x ≥ 1 when x ≥ 0. If x ≤ 0, then
0 < expx = 1/(exp(−x)) ≤ 1.

It is easy to see that
(exp z) = exp z(1.5.5)

for every z ∈ C. One can use this to get that

| exp(i y)| = 1(1.5.6)

for every y ∈ R. Indeed,

| exp(i y)|2 = exp(i y) exp(i y) = exp(i y) exp(−i y) = 1,(1.5.7)

using (1.4.6) in the first step, (1.5.5) in the second step, and (1.5.3) in the third
step.

1.5.1 Differentiating complex exponentials

It is well known that exp z is complex-analytic, or equivalently holomorphic, as
a complex-valued function of z ∈ C. Here we shall be more concerned with
related complex-valued functions of real variables. If a ∈ C, then exp(a t) may
be considered as a complex-valued function of t ∈ R. It is well known that this
function is differentiable, with

d

dt
(exp(a t)) = a (exp(a t)).(1.5.8)

Let n be a positive integer, and let Cn be the space of n-tuples a =
(a1, . . . , an) of complex numbers. If a, b ∈ Cn, then put

a · b =
n∑

j=1

aj bj .(1.5.9)

If a ∈ Cn and x ∈ Rn, then exp(a · x) is a complex number, which defines a
complex-valued function of x on Rn. This function is continuously differentiable
on Rn, with

∂

∂xj
exp(a · x) = aj (exp(a · x))(1.5.10)

for every j = 1, . . . , n.
More precisely, exp(a ·x) is infinitely differentiable as a complex-valued func-

tion of x on Rn. If α is a multi-index, then

∂α exp(a · x) = aα exp(a · x).(1.5.11)

Here aα = aα1
1 · · · aαn

n , as in Subsection 1.2.4, which is now a complex number.
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1.6 More on complex-valued functions

Let n be a positive integer, and let E be a nonempty subset of Rn. The space
of continuous complex-valued functions on E may be denoted

C(E,C),(1.6.1)

and we may use

C(E,R)(1.6.2)

for the space of continuous real-valued functions on E to be more precise. Re-
member that a complex-valued function on E is continuous if and only if its
real and imaginary parts are continuous. Note that C(E,R) and C(E,C) are
vector spaces over the real and complex numbers, respectively, with respect to
pointwise addition and scalar multiplication of functions.

Similarly, if U is a nonempty open subset of Rn, and k is a positive integer,
then we let

Ck(U,C)(1.6.3)

be the space of k-times continuously-differentiable complex-valued functions on
U . Equivalently, these are the complex-valued functions on U whose real and
imaginary parts are k-times continuously differentiable. We may use

Ck(U,R)(1.6.4)

for the space of k-times continuously-differentiable real-valued functions on U .
As before, we may use the same notation with k = 0 for the corresponding
spaces of real and complex-valued continuous functions. The space of infinitely-
differentiable complex-valued functions on U may be denoted

C∞(U,C),(1.6.5)

and we may use

C∞(U,R)(1.6.6)

for the space of smooth real-valued functions on U . We may consider Ck(U,R),
Ck(U,C) as linear subspaces of C(U,R), C(U,C), respectively, for each k ≥ 1.
Similarly, C∞(U,R), C∞(U,C) are linear subspaces of Ck(U,R), Ck(U,C),
respectively, for each k.

1.6.1 Some linear mappings and eigenfunctions

If α is a multi-index with |α| ≤ k, then ∂α defines a linear mapping from each
of Ck(U,R), Ck(U,C) into Ck−|α|(U,R), Ck−|α|(U,C), respectively. Similarly,
∂α defines a linear mapping from each of C∞(U,R), C∞(U,C) into itself.

Let a ∈ Cn be given, so that

exp(a · x)(1.6.7)
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is a smooth complex-valued function on Rn, as in Subsection 1.5.1. This func-
tion is an eigenvector for ∂/∂xj for each j = 1, . . . , n, as a linear mapping from
C∞(Rn,C) into itself, with eigenvalue aj , as before. Similarly, (1.6.7) is an
eigenvector for ∂α for each muli-index α, as a linear mapping from C∞(Rn,C)
into itself, with eigenvalue aα.

1.7 Polynomials in n variables

Let n be a positive integer, and let us consider polynomials in the n variables
w1, . . . , wn with coefficients in R or C. Such a polynomial can be expressed as

p(w) =
∑

|α|≤N

aα w
α,(1.7.1)

where N is a nonnegative integer, and the sum is taken over all multi-indices
α with |α| ≤ N . The coefficients aα may be real or complex numbers for each
such α, and the monomial wα is as defined in Subsection 1.2.4. More precisely,
p is said to have degree less than or equal to N in this case. Note that p(w) ∈ C
when w ∈ Cn, and p(w) ∈ R when w ∈ Rn and the coefficients aα are real
numbers.

If p is as in (1.7.1), then put

p(∂) =
∑

|α|≤N

aα ∂
α,(1.7.2)

or equivalently

p(D) =
∑

|α|≤N

aαD
α.(1.7.3)

This defines a differential operator on Rn with constant coefficients in R or C,
as appropriate, of order less than or equal to N .

Let U be a nonempty open subset of Rn, and suppose that f is a k-times
continuously-differentiable real or complex-valued function on U , with N ≤ k.
Under these conditions,

p(∂)(f) =
∑

|α|≤N

aα ∂
αf(1.7.4)

defines a (k−N)-times continuously-differentiable real or complex-valued func-
tion on U , as appropriate. More precisely, this defines a linear mapping from
Ck(U,R) or Ck(U,C) into Ck−N (U,R) or Ck−N (U,C), respectively, as appro-
priate. Similarly, this defines a linear mapping from C∞(U,R) or C∞(U,C)
into itself, as appropriate.

If b ∈ Cn, then exp(b · x) defines an infinitely-differentiable complex-valued
function of x on Rn, as in Subsection 1.5.1. Observe that

p(∂)(exp(b · x)) = p(b) exp(b · x).(1.7.5)

Thus exp(b · x) is an eigenvector for p(∂) as a linear mapping from C∞(Rn,C)
into itself, with eigenvalue p(b).
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1.7.1 Products of polynomials

If α, β are multi-indices, then α+ β can be defined by coordinatewise addition,
as usual, and is another multi-index. Clearly

|α+ β| = |α|+ |β|,(1.7.6)

where | · | refers to the order of the multi-index, as in Subsection 1.2.3. Observe
that

wα wβ = wα+β .(1.7.7)

Similarly,
∂α ∂β = ∂α+β ,(1.7.8)

because of the commutativity of derivatives under suitable conditions, as in
Subsection 1.2.3.

Let p1(w), p2(w) be polynomials in w1, . . . , wn with real or complex coeffi-
cients, and of degrees less than or equal to nonnegative integers N1, N2. The
product

p(w) = p1(w) p2(w)(1.7.9)

can be defined as a polynomial of degree less than or equal to N1 + N2 in the
usual way, using (1.7.7). Similarly,

p(∂) = p1(∂) p2(∂),(1.7.10)

because of (1.7.8).
More precisely, let f be a k-times continuously-differentiable real or complex-

valued function on a nonempty open subset U of Rn again. If α, β are multi-
indices with |α|+ |β| ≤ k, then ∂βf is (k−|β|)-times continuously differentiable
on U , and

∂α(∂βf) = ∂α+βf(1.7.11)

on U . If p1, p2, and p are as in the preceding paragraph and N1 +N2 ≤ k, then
p2(∂)(f) is (k −N2)-times continuously differentiable on U , and

p1(∂)(p2(∂)(f)) = p(∂)(f)(1.7.12)

on U .

1.8 Connectedness and convexity

Let n be a positive integer, and let E be a subset of Rn. We say that

E is convex(1.8.1)

if for every x, y ∈ E and t ∈ R with 0 ≤ t ≤ 1, we have that

(1− t)x+ t y ∈ E.(1.8.2)
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It is well known and not too difficult to show that

open and closed balls in Rn are convex.(1.8.3)

More precisely, this means that open and closed balls in Rn with respect to
the standard Euclidean metric are convex, although one could also use a metric
associated to any norm.

1.8.1 Path connected sets

We say that
E is path connected(1.8.4)

if for every x, y ∈ E,

there is a continuous path in E connecting x and y.(1.8.5)

More precisely, this means that there is a continuous mapping f from the closed
unit interval [0, 1] in the real line into Rn such that

f(0) = x, f(1) = y,(1.8.6)

and
f(t) ∈ E(1.8.7)

for every t ∈ [0, 1]. If fj(t) is the jth coordinate of f(t) for every j = 1, . . . , n
and t ∈ [0, 1], then the continuity of f as a mapping from [0, 1] into Rn is
equivalent to the continuity of fj as a real-valued function on [0, 1] for each j.
It is easy to see that

if E is convex, then E is path connected.(1.8.8)

1.8.2 Connected sets

The precise definition of connectedness of subsets ofRn is a bit complicated, and
although we shall not discuss it here, we shall mention some of its properties.
It is well known and not too difficult to show that

path-connected sets are connected.(1.8.9)

It is also well known that

a subset of the real line is connected if and only if it is convex.(1.8.10)

Another well-known theorem states that

connected open subsets of Rn are path connected.(1.8.11)

Let U be an open subset of Rn. In this case,

U is not connected(1.8.12)
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if and only if

U can be expressed as the union of two(1.8.13)

nonempty disjoint open subsets of Rn.

This is close to the definition of connectedness, depending on how it is formu-
lated.

1.8.3 Nonemptiness of the boundary

If U 6= ∅,Rn, then
∂U 6= ∅.(1.8.14)

This is the same as saying that U is not a closed set, because of the description
of the boundary of an open set in Rn mentioned in Subsection 1.1.7. This can be
obtained from the connectedness of Rn. Alternatively, if x ∈ U and z ∈ Rn \U ,
then one can show that there is a t0 ∈ R such that 0 < t0 ≤ 1 and

(1− t0)x+ t0 z ∈ ∂U.(1.8.15)

More precisely, one can take t0 to be the infimum or greatest lower bound of
the set of t > 0 such that

(1− t)x+ t z ∈ Rn \ U.(1.8.16)

1.8.4 Locally constant functions

Let E be a nonempty subset of Rn, and let f be a function on E with values
in any set. Let us say that

f is locally constant at a point x ∈ E(1.8.17)

if there is an r > 0 such that
f(x) = f(y)(1.8.18)

for every y ∈ E with |x− y| < r. If E is connected, and f is locally constant at
every point in E, then one can show that

f is constant on E.(1.8.19)

One can also show that connectedness is characterized by this property.
Let U be a nonempty open subset of Rn, and let f be a real or complex-

valued function on U . Observe that if

f is locally constant at every point in U,(1.8.20)

then

f is continuously differentiable on U, with all(1.8.21)

of its first partial derivatives equal to 0 on U.
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If U is convex, then it is well known and not difficult to show that (1.8.21)
implies that

f is constant on U.(1.8.22)

Using this, one can check that (1.8.21) implies (1.8.20) for any open set U in
Rn. If U is connected, then it follows that (1.8.22) holds, as in the preceding
paragraph, although this is a bit simpler in this case.

1.9 Compactness in Rn

Let n be a positive integer, and let E be a subset of Rn. We say that E is
bounded if there is a nonnegative real number C such that

|x| ≤ C(1.9.1)

for every x ∈ E. It is easy to see that open and closed balls in Rn with respect
to the standard Euclidean metric are bounded sets.

The precise definition of compactness of a subset of Rn, or of an arbitrary
metric space, is a bit complicated, and we shall not discuss it here. However, we
would like to mention the following two well-known results about compactness.
The first is that a subset E of Rn is compact if and only if it is closed and
bounded. The second is the extreme value theorem, which states that if f is a
continuous real-valued function on a nonempty compact set E, then

the maximum and minimum of f on E are attained.(1.9.2)

1.9.1 Relative closure

Let U be an open subset of Rn. The relative closure of a subset E of U may be
defined to be the intersection of the closure of E in Rn with U ,

E ∩ U.(1.9.3)

In particular, E is said to be relatively closed in U if

E = E ∩ U.(1.9.4)

If E is closed as a subset of Rn, then it follows that E is relatively closed in U .
Note that U is automatically relatively closed as a subset of itself.

There is a notion of compactness of a subset E of U relative to U , with
respect to the restriction of the standard Euclidean metric on Rn. However, it
is well known that this holds if and only if E is compact as a subset of Rn.

1.9.2 Supports of functions

Let f be a real or complex-valued function on Rn, or a function with values in
Rm for some positive integer m. The support of f is the subset of Rn defined
by

supp f = {x ∈ Rn : f(x) 6= 0}.(1.9.5)
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Of course, this is a closed set in Rn, by construction.
Thus the support of f is compact exactly when it is bounded. This is the

same as saying that

f(x) = 0 when |x| is sufficiently large.(1.9.6)

Suppose now that f is a function defined on an open set U ⊆ Rn. We say
that f has compact support in U if there is a compact set E ⊆ Rn such that
E ⊆ U and

{x ∈ U : f(x) 6= 0} ⊆ E.(1.9.7)

1.9.3 Sequential compactness

Let {xj}∞j=1 be a sequence of elements of Rn, and let {jl}∞l=1 be a strictly
increasing sequence of positive integers. Under these conditions,

{xjl}∞l=1(1.9.8)

is said to be a subsequence of {xj}∞j=1. Note that {xj}∞j=1 may be considered as
a subsequence of itself. If {xj}∞j=1 converges to a point x ∈ Rn, then it is easy
to see that every subsequence of {xj}∞j=1 converges to x as well.

A subset E of Rn is said to be sequentially compact every sequence {xj}∞j=1

of elements of E has a subsequence that converges to an element of E. It is well
known that this is equivalent to compactness. More precisely, this works in any
metric space.

1.10 Some derivatives

Let n be a positive integer, and let α be a multi-index. It is customary to put

α! = α1!α2! · · ·αn!,(1.10.1)

which is a positive integer. Observe that

∂αxα = α!.(1.10.2)

Let β be another multi-index. If

βj < αj for some j,(1.10.3)

then

∂αxβ = 0.(1.10.4)

In particular, this holds when |α| = |β| and α 6= β.
Suppose now that αj ≤ βj for each j = 1, . . . , n, so that β − α is a multi-

index. Of course, ∂αxβ is a multiple of xβ−α in this case. If α 6= β, so that
αj < βj for some j, then we get that ∂α xβ is equal to 0 at 0.
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1.10.1 Taylor polynomials

Let U be a nonempty open subset of Rn, let k be a positive integer, and let f
be a k-times continuously-differentiable real-valued function on U . The degree
k Taylor polynomial of f at a point w ∈ U may be expressed as

P (x) =
∑
|β|≤k

1

β!
∂βf(w)xβ ,(1.10.5)

where the sum is taken over all multi-indices β with |β| ≤ k. Using the remarks
in the previous paragraphs, we get that

∂αP (0) = ∂αf(w)(1.10.6)

for every multi-index α with |α| ≤ k.

Put

g(x) = f(w + x)− P (x)(1.10.7)

for x ∈ U − w. Here U − w = U + (−w) is as in Subsection 1.3.1. This is a
k-times continuously-differentiable function on U − w, with

∂αg(0) = ∂αP (0)− ∂αf(w) = 0(1.10.8)

for every multi-index α with |α| ≤ k.

If x ∈ Rn and |x| is sufficiently small, then

t x ∈ U − w(1.10.9)

for all t ∈ [0, 1]. More precisely, this uses the fact that U − w is an open set in
Rn that contains 0, by hypothesis. In this case,

g(t x)(1.10.10)

may be considered as a k-times continuously-differentiable function of t on an
open set in the real line that contains [0, 1]. The derivatives of g(t x) in t up to
order k can be expressed in terms of derivatives of g, as a function on U −w, of
the same order. These derivatives are equal to 0 at t = 0, because of (1.10.8).

One can use this to show that

lim
x→0

|x|−k g(x) = 0,(1.10.11)

which is Taylor’s theorem in n dimensions. This uses the fact that ∂αg is
small near 0 when |α| = k, because of (1.10.8) and the continuity of ∂αg on
U − w. More precisely, this implies that the kth derivative of (1.10.10) in t is
small when |x| is small and t ∈ [0, 1]. This permits one to reduce (1.10.11) to
standard versions of Taylor’s theorem in one variable.
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1.11 Some smooth functions

Consider the real-valued function defined on R by

ψ(t) = exp(−1/t) when t > 0(1.11.1)

= 0 when t ≤ 0.

It is well known and not too difficult to show that ψ is infinitely differentiable
on R, with all of its derivatives at 0 equal to 0. This uses the fact that

lim
t→0+

t−l exp(−1/t) = 0(1.11.2)

for every positive integer l.

1.11.1 Some functions associated to intervals

Let a, b be real numbers with a < b, and put

ψa,b(t) = ψ(t− a)ψ(b− t).(1.11.3)

This is an infinitely-differentiable function on R that is positive on (a, b), and
equal to 0 otherwise.

One can integrate ψa,b to get an infinitely-differentiable function on R that is
equal to 0 when t ≤ a, is a positive constant when t ≥ b, and strictly increasing
on (a, b). Using this, one can get infinitely-differentiable nonnegative real-valued
functions on R that are equal to 1 on any given closed interval, and equal to 0
on the complement of a slightly larger open interval.

Alternatively, observe that

ψ(t− a) + ψ(b− t)(1.11.4)

is a positive smooth function on R. This implies that

ψ(t− a)

ψ(t− a) + ψ(b− t)
(1.11.5)

and

ψ(b− t)

ψ(t− a) + ψ(b− t)
(1.11.6)

are nonnegative smooth functions on R that are less than or equal to 1, by
construction. It is easy to see that (1.11.5) is equal to 0 when t ≤ a, and to 1
when t ≥ b. Similarly, (1.11.6) is equal to 0 when t ≥ b, and to 1 when t ≤ a.
Note that the sum of (1.11.5) and (1.11.6) is equal to 1 for every t ∈ R.



20 CHAPTER 1. SOME BASIC FACTS

1.11.2 Some smooth functions on Rn

If n is any positive integer, then one can use functions like these to get a lot of
infinitely-differentiable nonnegative real-valued functions on Rn with compact
support. One can take products of smooth functions on R with compact support
in each variable, for instance. If a ∈ Rn, then

|x− a|2 =

n∑
j=1

(xj − aj)
2(1.11.7)

is a polynomial in x, and infinitely differentiable on Rn in particular. If ϕ is a
smooth real-valued function on R, then

ϕ(|x− a|2)(1.11.8)

is a smooth function on Rn. If ϕ(t) = 0 when t ∈ R is sufficiently large, then
(1.11.8) has compact support in Rn.

1.12 Semilinearity and quasilinearity

Let k and n be positive integers, let U be a nonempty open subset of Rn, and let
u be a k-times continuously-differentiable real-valued function on U . One may
be interested in kth-order partial differential equations for u on U that have
some linearity properties, without being linear in u and its derivatives. Such a
differential equation is said to be semilinear if it can be expressed as∑

|α|=k

aα(x) ∂
αu(x) + a0(D

k−1u(x), . . . , Du(x), u(x), x) = 0,(1.12.1)

as in Section 1.1 of [70]. Here the sum is taken over all multi-indices α with
|α| = k, and aα(x) should be a real-valued function on U for each such α. As
before, a0 may be considered as a real-valued function on

Rnk−1

× · · · ×Rn ×R× U.(1.12.2)

Similarly, a kth order partial differential equation for u on U is said to be
quasilinear if it can be expressed as∑

|α|=k

aα(D
k−1u(x), . . . , Du(x), u(x), x) ∂αu(x)(1.12.3)

+a0(D
k−1u(x), . . . , Du(x), u(x), x) = 0,

as in Section 1.1 of [70], and Section A of Chapter 1 of [75]. In this case,
the coefficients aα as well as a0 may be considered as real-valued functions on
(1.12.2).

A kth-order partial differential equation for u on U is said to be fully non-
linear if it depends nonlinearly on at least some of the kth-order derivatives
of u, as in [70]. Of course, there are analogous notions for systems of partial
differential equations.
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1.12.1 More on invariance under translations

As in Subsection 1.3.1, one may be interested in partial differential equations
that are invariant under translations. In the case of a semilinear equation as in
(1.12.1), this means that aα is a constant for each multi-index α with |α| = k,
and that a0 does not depend on x in the last variable. Thus a0 may considered
as a real-valued function on

Rnk−1

× · · · ×Rn ×R.(1.12.4)

Similarly, a quasilinear equation as in (1.12.3) is invariant under translations
when the aα’s and a0 do not depend on x in the last variable, so that they
may be considered as real-valued functions on (1.12.4). There are analogous
statements for systems of partial differential equations, as usual.

1.13 More on Rn

Let n be a positive integer, and let U be an open subset of Rn. Suppose that
K is a compact subset of Rn such that

K ⊆ U.(1.13.1)

Under these conditions, it is well known that there is a positive real number t
such that for every x ∈ K, we have that

B(x, t) ⊆ U.(1.13.2)

1.13.1 Closed balls contained in U

Suppose now that w is an element of U and r is a positive real number such
that

B(w, r) ⊆ U.(1.13.3)

Remember that closed balls in Rn are closed and bounded, as in Subsection
1.1.6 and Section 1.9, and thus compact. It follows that there is a positive real
number ϵ such that

B(w, r + ϵ) ⊆ U,(1.13.4)

by the remarks in the preceding paragraph.

1.13.2 Open balls of maximal radius

Let y ∈ U be given, and let A be the set of positive real numbers r such that

B(y, r) ⊆ U.(1.13.5)

Note that A is nonempty, because U is an open set, by hypothesis. Suppose
that

U 6= Rn,(1.13.6)
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so that there is a point z in the complement of U in Rn. If r ∈ A, then we get
that

r ≤ |y − z|,(1.13.7)

because z 6∈ B(y, r). This means that |y − z| is an upper bound for A in R.
It is well known that A has a least upper bound or supremum ρ in R under

these conditions. One can check that

B(y, ρ) ⊆ U,(1.13.8)

because otherwise A would have an upper bound strictly less that ρ. We also
have that

B(y, ρ+ ϵ) 6⊆ U(1.13.9)

for every ϵ > 0, because ρ is an upper bound for A.
Using (1.13.9), we obtain that

B(y, ρ) 6⊆ U,(1.13.10)

because of the earlier remarks. This means that

∂B(y, ρ) 6⊆ U,(1.13.11)

because of (1.13.8).
It is easy to see that

B(y, ρ) ⊆ U,(1.13.12)

using (1.13.8). Combining this with (1.13.11), we get that

∂B(y, ρ) ∩ ∂U 6= ∅.(1.13.13)

In particular, ∂U 6= ∅, as mentioned in Subsection 1.8.3.

1.14 More on complex exponentials

Let a be a complex number. Suppose that f is a differentiable complex-valued
function on the real line such that

f ′ = a f(1.14.1)

on R. This implies that

d

dt
(exp(−a t) f(t)) = 0(1.14.2)

on R. Of course, this means that exp(−a t) f(t) is constant on R. It follows
that

f(t) = f(0) exp(a t)(1.14.3)

for every t ∈ R.
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Let n be a positive integer, and let b be an element of Cn. Suppose that u
is a complex-valued function on Rn such that for each j = 1, . . . , n, the partial
derivative of u in the jth variable exists at every point in Rn, with

∂u

∂xj
= bj u.(1.14.4)

Under these conditions, one can check that

u(x) = u(0) exp(b · x)(1.14.5)

for every x ∈ Rn, using the remarks in the preceding paragraph. Alternatively,
one can use the same type of argument as before, by verifying that

∂

∂xj
(exp(−b · x)u(x)) = 0(1.14.6)

for each j = 1, . . . , n and x ∈ Rn.

1.14.1 The definition of ta

Let a be a complex number again. If t is a positive real number, then put

ta = exp(a log t).(1.14.7)

This is a smooth complex-valued function of t on the set R+ of positive real
numbers, with

d

dt
(ta) = a ta−1(1.14.8)

for every t > 0. Note that
ta 6= 0(1.14.9)

for each t > 0, and that
ta tb = ta+b(1.14.10)

for all t > 0 and b ∈ C, because of the properties of the exponential function
mentioned in Section 1.5.

Let g be a differentiable complex-valued function on R+ such that

g′(t) = a t−1 g(t)(1.14.11)

for every t > 0. Using this, we get that

d

dt
(t−a g(t)) = 0(1.14.12)

on R+. This implies that t−a g(t) is constant on R+, so that

g(t) = g(1) ta(1.14.13)

for every t > 0.



24 CHAPTER 1. SOME BASIC FACTS

1.15 The dot product on Rn

If x, y ∈ Rn for some positive integer n, then their dot product is defined by

x · y =

n∑
j=1

xj yj ,(1.15.1)

which is consistent with the notation in Subsection 1.5.1. This is also known as
the standard inner product on Rn. Clearly

x · y = y · x(1.15.2)

for every x, y ∈ Rn.
Note that

x · x =

n∑
j=1

x2j = |x|2(1.15.3)

for every x ∈ Rn. This means that the standard Euclidean norm on Rn is the
same as the norm associated to the standard inner product.

It is well known that
|x · y| ≤ |x| |y|(1.15.4)

for every x, y ∈ Rn, which is a version of the Cauchy–Schwarz inequality. This
can be used to obtain the triangle inequality for the standard Euclidean norm
on Rn, by a standard argument.

If x, y ∈ Rn, then

|x+ y|2 = (x+ y) · (x+ y) = x · x+ x · y + y · x+ y · y(1.15.5)

= |x|2 + 2x · y + |y|2.

Thus
x · y = (1/2) (|x+ y|2 − |x|2 − |y|2),(1.15.6)

which is known as a polarization identity.

1.15.1 Orthogonal transformations

Let T be a linear mapping from Rn into itself. It is easy to see that

kerT = {x ∈ Rn : T (x) = 0}(1.15.7)

is a linear subspace of Rn, which is called the kernel of T .
One can check that T is one-to-one on Rn if and only if kerT = {0}, using

linearity. It is well known that T is one-to-one on Rn if and only if T maps Rn

onto itself, which is to say that T (Rn) = Rn. In this case, the inverse mapping
T−1 is linear on Rn too.

A one-to-one linear mapping T fromRn onto itself is said to be an orthogonal
transformation if T preserves the standard inner product on Rn. This means
that

T (x) · T (y) = x · y(1.15.8)
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for every x, y ∈ Rn. Under these conditions, the inverse mapping T−1 is an
orthogonal transformation on Rn as well.

If we take x = y in (1.15.8), then we get that

|T (x)| = |x|.(1.15.9)

Conversely, if (1.15.9) holds for every x ∈ Rn, then (1.15.8) holds for every
x, y ∈ Rn. This uses the linearity of T and the polarization identity (1.15.6).

Of course, if (1.15.9) holds for every x ∈ Rn, then kerT = {0}. This implies
that T is one-to-one on Rn, and thus that T maps Rn onto itself, as before.

1.15.2 The adjoint of T

If T is any linear mapping from Rn into itself, then it is well known that there
is a unique linear mapping T ′ from Rn into itself such that

T (x) · y = x · T ′(y)(1.15.10)

for every x, y ∈ Rn. More precisely, every linear mapping from Rn into itself
corresponds to an n × n matrix of real numbers in a standard way using the
standard basis for Rn. The matrix associated to T ′ in this way is the transpose
of the matrix associated to T .

If T is an orthogonal transformation on Rn, then one can check that T ′ is
the same as the inverse of T . Conversely, if T is an invertible linear mapping
on Rn, with inverse equal to T ′, then one can verify that T is an orthogonal
transformation on Rn.

If T is an orthogonal transformation on Rn, then it is well known that the
determinant of T is ±1, because T−1 = T ′. If the determinant of T is equal to
1, then T is said to be a rotation on Rn.
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Some related notions

2.1 The Laplacian

Let n be a positive integer. The Laplacian on Rn defined by

∆ =

n∑
j=1

∂2

∂x2j
.(2.1.1)

Let p(w) be the polynomial in n variables w1, . . . , wn with real coefficients
defined by

p(w) =

n∑
j=1

w2
j .(2.1.2)

Observe that

p(∂) =

n∑
j=1

∂2j = ∆,(2.1.3)

using the notation in Section 1.7.
If w ∈ Cn, then

p(w) = w · w,(2.1.4)

using the notation in Subsection 1.5.1. If w ∈ Rn, then

p(w) = |w|2.(2.1.5)

If b ∈ Cn, then

∆(exp(b · x)) = (b · b) exp(b · x),(2.1.6)

as in Section 1.7. In particular,

∆(exp(b · x)) = 0(2.1.7)

when b · b = 0.

26
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2.1.1 Laplace’s equation

Let U be a nonempty open subset of Rn, and let u be a twice continuuously-
differentiable real or complex-valued function on U . We say that u is harmonic
on U if it satisfies Laplace’s equation

∆u = 0(2.1.8)

on U .
Let T be a linear mapping from Rn into itself. It is easy to see that T is

continuous, so that the inverse image

T−1(U) = {x ∈ Rn : T (x) ∈ U}(2.1.9)

of U under T is an open subset of Rn too. If u is any twice continuously-
differentiable function on U , then the composition u ◦ T of T and u is twice
continuously differentiable on T−1(U).

If T is an orthogonal transformation on Rn, then one can check that

∆(u ◦ T ) = (∆u) ◦ T(2.1.10)

on T−1(U), as on p3 of [18]. In particular, if u is harmonic on U , then u ◦ T is
harmonic on T−1(U), as in Problem 2 in Section 2.5 of [70].

2.2 Two differential operators on R2

Consider the differential operators

L =
1

2

( ∂

∂x1
− i

∂

∂x2

)
(2.2.1)

and

L =
1

2

( ∂

∂x1
+ i

∂

∂x2

)
(2.2.2)

on R2. Observe that

L(x1 + i x2) = L(x1 − i x2) = 1(2.2.3)

and
L(x1 − i x2) = L(x1 + i x2) = 0.(2.2.4)

If z = x1 + i x2 is considered as a complex variable, then L and L may be
denoted ∂/∂z and ∂/∂z, respectively.

Let U be a nonempty open subset of R2, and let f be a continuously-
differentiable complex-valued function on U . If

L(f) = 0(2.2.5)

on U , then f is said to be complex analytic or holomorphic on U , as a function
of the complex variable z. More precisely, (2.2.5) is equivalent to the usual
Cauchy–Riemann equations for the real and imaginary parts of f . In this case,

f ′ = L(f)(2.2.6)

is the usual complex derivative of f .
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2.2.1 Some connections with the Laplacian

Note that

LL = LL =
1

4
∆.(2.2.7)

Let u be a twice continuously-differentiable complex-valued function on U . This
implies that L(u) and L(u) are continuously differentiable on U , and we have
that

L(L(u)) = L(L(u)) =
1

4
∆(u)(2.2.8)

on U . If u is harmonic on U , then it follows that L(u) is holomorphic on U .
If f is holomorphic on U , then it is well known that f is smooth on U , and

twice continuously differentiable in particular. It follows that

∆(f) = 4L(L(f)) = 0,(2.2.9)

so that f is harmonic on U .

2.2.2 Additional properties of L, L

If f , g are any continuously-differentiable complex-valued functions on U , then

L(f g) = L(f) g + f L(g)(2.2.10)

and

L(f g) = L(f) g + f L(g)(2.2.11)

on U , by the product rule. In particular, if f and g are holomorphic on U , then
their product f g is holomorphic on U .

If f is any continuously-differentiable complex-valued function on U again,
then it is easy to see that

L(f) = L(f)(2.2.12)

on U . It follows that L(f) = 0 on U if and only if f is holomorphic on U .
Observe that

V = {(x1,−x2) : (x1, x2) ∈ U}(2.2.13)

is an open subset of R2 as well. If f is a continuously-differentiable complex-
valued function on U again, then

f̃(x1, x2) = f(x1,−x2)(2.2.14)

is a continuously-differentiable complex-valued function on V . One can check
that f is holomorphic on U if and only if

f̃(x1, x2) = f(x1,−x2)(2.2.15)

is holomorphic on V .
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2.3 Some complex first-order operators

Let n be a positive integer, and let U be a nonempty open subset of Rn. Suppose
that a1, . . . , an are n complex-valued functions on U . Thus

a(x) = (a1(x), . . . , an(x))(2.3.1)

may be considered as a mapping from U into Cn. If u is a continuously-
differentiable complex-valued function on U , then

(La(u))(x) =

n∑
j=1

aj(x)
∂u

∂xj
(x)(2.3.2)

defines a complex-valued function on U . If aj is a real-valued function on U for
each j, so that (2.3.1) is an element of Rn at each x ∈ U , then (2.3.2) is the
same as the directional derivative of u at x in the direction a(x).

Let v be another continuously-differentiable complex-valued function on U ,
so that the product of u and v is continuously-differentiable on U as well. Ob-
serve that

La(u v) = La(u) v + uLa(v)(2.3.3)

on U , by the product rule. If La(u) = 0 on U , then

La(u v) = uLa(v)(2.3.4)

on U . If La(v) = 0 on U too, then

La(u v) = 0(2.3.5)

on U .

2.3.1 Some commutators

Suppose now that a1, . . . , an are continuously differentiable on U , and let

b1, . . . , bn(2.3.6)

be another n continuously-differentiable complex-valued functions on U . Let b
and Lb be as in (2.3.1) and (2.3.2), and put

cj = La(bj)− Lb(aj)(2.3.7)

for j = 1, . . . , n. These are continuous complex-valued functions on U , and we
let c and Lc be as in (2.3.1) and (2.3.2) again.

Suppose that u is twice continuously differentiable on U . This implies that

La(u) and Lb(u) are continuously differentiable on U,(2.3.8)

because the aj ’s and bj ’s are continuously differentiable on U , by hypothesis. It
is easy to see that

La(Lb(u))− Lb(La(u)) = Lc(u)(2.3.9)

on U . This is because the terms on the left side involving second derivatives of
u cancel each other out.
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2.3.2 Real and imaginary parts

Put

Re a(x) = (Re a1(x), . . . ,Re an(x))(2.3.10)

and

Im a(x) = (Im a1(x), . . . , Im an(x))(2.3.11)

for each x ∈ U , which define mappings from U into Rn. If u is any continuously-
differentiable complex-valued function on U , then LRe a(u) and LIm a(u) can be
defined on U as in (2.3.2), and we have that

La(u) = LRe a(u) + i LIm a(u).(2.3.12)

Of course, if u is real-valued on U , then LRe a(u) and LIm a(u) are real-valued
on U as well. Otherwise,

ReLa(u) = LRe a(Reu)− LIm a(Imu)(2.3.13)

and

ImLa(u) = LRe a(Imu) + LIm a(Reu)(2.3.14)

on U . In particular, La(u) = 0 may be considered as a system of first-order
homogeneous linear partial differential equations in the real and imaginary parts
of u, with real coefficients.

2.4 Linear differential operators

Let n be a positive integer, and let U be a nonempty open subset of Rn again.
Also let N be a nonnegative integer, and for each multi-index α with order
|α| ≤ N , let aα be a real or complex-valued function on U . If u is an N -times
continuously-differentiable real or complex-valued function on U , then put

L(u) =
∑

|α|≤N

aα ∂
αu(2.4.1)

on U , where the sum is taken over all multi-indices α with |α| ≤ N , as usual.
This defines a differential operator on U , which can have variable coefficients.

Let r be a nonnegative integer, and suppose that

aα is r-times continuously differentiable on U(2.4.2)

for each multi-index α with |α| ≤ N . If

u is (N + r)-times continuously differentiable on U,(2.4.3)

then

L(u) is r-times continuously differentiable on U.(2.4.4)
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In this case, L defines a linear mapping from CN+r(U,C) into Cr(U,C). If aα is
real-valued on U for each α, then L defines a linear mapping from CN+r(U,R)
into Cr(U,R).

Similarly, suppose that

aα is infinitely differentiable on U(2.4.5)

for every multi-index α with |α| ≤ N . If

u is infinitely differentiable on U,(2.4.6)

then
L(u) is infinitely differentiable on U(2.4.7)

too. This means that L defines a linear mapping from C∞(U,C) into itself. If aα
is real-valued on U for each α, then L defines a linear mapping from C∞(U,R)
into itself.

One can check that the coefficients aα are uniquely determined by L(u) for
polynomials u of degree less than or equal to N . More precisely, a0 is the same
as L(u) when u(x) ≡ 1 on U . If β 6= 0, then aβ can be obtained from L(xβ)
and the coefficients aγ with |γ| < |β|.

2.4.1 Composing linear differential operators

Let Ñ be another nonnegative integer, and let bβ be a real or complex-valued

function on U for each multi-index β with |β| ≤ Ñ . If u is an Ñ -times
continuously-differentiable real or complex-valued function on U , then

L̃(u) =
∑

|β|≤Ñ

bβ ∂
βu(2.4.8)

defines a real or complex-valued function on U , as appropriate.
Suppose that

bβ is N -times continuously differentiable on U(2.4.9)

for each multi-index β with |β| ≤ Ñ . If

u is (N + Ñ)-times continuously differentiable on U,(2.4.10)

then
L̃(u) is N -times continuously differentiable on U.(2.4.11)

This means that

L(L̃(u)) =
∑

|α|≤N

aα ∂
α(L̃(u)) =

∑
|α|≤N

∑
|β|≤Ñ

aα ∂
α(bβ ∂

βu)(2.4.12)

is defined as a real or complex-valued function on U , as appropriate.
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Under these conditions, (2.4.12) may be expressed as

L̂(u) =
∑

|γ|≤N+Ñ

cγ ∂
γu,(2.4.13)

where cγ is a real or complex-valued function on U for every multi-index γ with

|γ| ≤ N + Ñ . More precisely, the cγ ’s can be expressed as sums of products of
the αα’s with the bβ ’s and their derivatives of order less than or equal to N .

Let r be a nonnegative integer again, and suppose that aα is r-times contin-
uously differentiable on U for every α with |α| ≤ N . If the bβ ’s are (N+r)-times

continuously differentiable on U for every β with |β| ≤ Ñ , then the cγ ’s are r-

times continuously differentiable on U for every γ with |γ| ≤ N + Ñ . If u is also

(N + Ñ + r)-times continuously differentiable on U , then L̃(u) is (N + r)-times

continuously differentiable on U , and L̂(u) is r-times continuously differentiable
on U .

Similarly, if the aα’s and bβ ’s are infinitely differentiable on U , then the cγ ’s
are infinitely differentiable on U . If u is infinitely differentiable on U too, then
L̃(u) and L̂(u) are infinitely differentiable on U as well.

2.5 Some remarks about polynomials

Let n be a positive integer, and let

p(x) =
∑

|α|≤N

aα x
α(2.5.1)

be a polynomial in the n variables x1, . . . , xn with complex coefficients, as in
Section 1.7. Thus N is a nonnegative integer, aα ∈ C for each multi-index α
with order |α| ≤ N , and the sum is taken over all such multi-indices, as before.

If
p(x) = 0 for every x ∈ Rn,(2.5.2)

then ∂βp(x) = 0 for every x ∈ Rn and multi-index β. In particular, this implies
that

∂βp(0) = 0 for every multi-index β.(2.5.3)

In this case, this means that

aα = 0 for every multi-index α, |α| ≤ N.(2.5.4)

If x ∈ Cn, then p(x) can be defined as a complex number as in (2.5.1). If
(2.5.4) holds, then we get that

p(x) = 0 for every x ∈ Cn.(2.5.5)

Let r be a positive real number, and suppose that

p(x) = 0 for every x ∈ Rn with |x| < r.(2.5.6)
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This implies that ∂βp(x) = 0 for every x ∈ Rn with |x| < r, and every multi-
index β. It follows that (2.5.3) holds in particular under these conditions.

If b ∈ Rn or Cn, then

p(x+ b) =
∑

|α|≤N

aα (x+ b)α(2.5.7)

can be expressed as a polynomial in x with complex coefficients too. If

p(x+ b) = 0 for every x ∈ Rn with |x| < r,(2.5.8)

then the previous remarks imply that p(x + b) = 0 for every x ∈ Cn. This is
the same as saying that (2.5.5) holds.

2.5.1 The zero set of p

Note that

{x ∈ Rn : p(x) = 0}(2.5.9)

is a closed set in Rn, because p is continuous on Rn. If this set contains a ball
of positive radius, then (2.5.9) is equal to Rn, as in the preceding paragraph.

Equivalently, if (2.5.9) is not all of Rn, then the interior of (2.5.9) in Rn is
the empty set. In this case, (2.5.9) may be considered to be rather sparse in
Rn. There are stronger results of this type, although we shall not pursue this
here. This is related to the remarks in Section 3.10.

The fact that (2.5.9) is a closed set in Rn implies that

{x ∈ Rn : p(x) 6= 0}(2.5.10)

is an open set in Rn, which could also be verified more directly. If this set
is nonempty, then its intersection with any ball in Rn of positive radius is
nonempty, as before. This means that the closure of (2.5.10) in Rn is equal to
Rn in this case, which is the same as saying that (2.5.10) is dense in Rn, with
respect to the standard Euclidean metric. One may consider (2.5.10) as being
rather large everywhere as a subset of Rn under these conditions, and there are
other results of this type, as before.

Of course, if n = 1 and aα 6= 0 for some α, then it is well known that
p(x) = 0 for at most N points x ∈ C.

2.6 Some remarks about Cn

Let n be a positive integer, and consider the space Cn of n-tuples of complex
numbers. If z = (z1, . . . , zn) ∈ Cn, then put

|z| =
( n∑

j=1

|zj |2
)1/2

,(2.6.1)
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using the nonnegative square root on the right side, as usual. Here |zj | is the
modulus of zj ∈ C for each j = 1, . . . , n, as in Section 1.4. We may call (2.6.1)
the standard Euclidean norm on Cn.

If z, w ∈ Cn and t ∈ C, then z+w and t z may be defined as elements of Cn

using coordinatewise addition and scalar multiplication. It is easy to see that

|t z| = |t| |z|(2.6.2)

for every z ∈ Cn and t ∈ C. One can check that

|z + w| ≤ |z|+ |w|(2.6.3)

for every z, w ∈ Cn, using the analogous statements for the modulus of a com-
plex number and the standard Euclidean norm on Rn, as in Subsection 1.1.1
and Section 1.4. The standard Euclidean metric on Cn is defined by

d(z, w) = |z − w|(2.6.4)

for every z, w ∈ Cn.
If z, w ∈ Cn, then we put

〈z, w〉 = 〈z, w〉Cn =

n∑
j=1

zj wj .(2.6.5)

This is the standard inner product on Cn. Observe that (2.6.5) is Hermitian
symmetric, in the sense that

〈z, w〉 = 〈w, z〉(2.6.6)

for every z, w ∈ Cn.
Of course,

〈z, z〉 =
n∑

j=1

|zj |2 = |z|2(2.6.7)

for every z ∈ Cn. This means that the standard Euclidean norm on Cn is the
same as the norm associated to the standard inner product. It is well known
that

|〈z, w〉| ≤ |z| |w|(2.6.8)

for every z, w ∈ Cn, which is another version of the Cauchy–Schwarz inequality.
This can also be used to obtain the triangle inequality for the standard Euclidean
norm on Cn.

Every z ∈ Cn can be expressed in a unique way as

z = x+ i y,(2.6.9)

with x, y ∈ Rn. One can use this to identify Cn with R2n. Using this iden-
tification, the standard Euclidean norm and metric on Cn correspond exactly
to their analogues on R2n. Similarly, one can check that the real part of the
standard inner product on Cn corresponds to the standard inner product on
R2n.
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2.6.1 Holomorphic functions

Consider the differential operators

Lj =
∂

∂zj
=

1

2

( ∂

∂xj
− i

∂

∂yj

)
(2.6.10)

and

Lj =
∂

∂zj
=

1

2

( ∂

∂xj
+ i

∂

∂yj

)
(2.6.11)

on Cn, as identified with R2n, for each j = 1, . . . , n. These are the analogues
of the operators L = ∂/∂z and L = ∂/∂z in Section 2.2 with respect to

zj = xj + i yj(2.6.12)

for each j = 1, . . . , n.
Let U be a nonempty open subset of Cn, which may be identified with an

open subset of R2n. Also let f be a continuously-differentiable complex valued
function on U , as an open subset of R2n. This means that the partial derivatives
of f in xj and yj exist and are continuous on U for each j = 1, . . . , n. If

Lj(f) = 0(2.6.13)

on U for each j = 1, . . . , n, then f is said to be holomorphic on U . This is the
same as saying that

f(z) = f(z1, . . . , zn)(2.6.14)

is holomorphic as a function of zj for each j = 1, . . . , n, with zl fixed for j 6= l.
It is easy to see that products of holomorphic functions on U are holomor-

phic. The coordinate functions zl are holomorphic on Cn for each l = 1, . . . , n.
Of course, constant functions are holomorphic on Cn. It follows that polyno-
mials in z1, . . . , zn with complex coefficients are holomorphic on Cn.

2.7 Polynomials on Cn

Let n be a positive integer, and let p(z) be a polynomial in n complex variables
z1, . . . , zn with complex coefficients on Cn. If n = 1, and p(z) is not constant,
then it is well known that p(z) = 0 for some z ∈ C. More precisely, the number
of zeros of p, counted with their multiplicities, is equal to the degree of p.

Suppose now that n ≥ 2, and let us identify Cn with Cn−1 × C. If z =
(z1, . . . , zn) is an element of Cn, then z′ = (z1, . . . , zn−1) ∈ Cn−1, and we
identify z with (z′, zn) ∈ Cn−1 ×C. Using this, we may express p(z) as

p(z) = p(z′, zn) =

r∑
l=0

pl(z
′) zln,(2.7.1)

where r is a nonnegative integer, and pl(z
′) is a polynomial on Cn−1 for each

l = 0, . . . , r.
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Suppose that r ≥ 1, and that pr(z
′) is not identically 0 on Cn−1. Otherwise,

if pl(z
′) is identically 0 on Cn−1 for each l ≥ 1, then p(z) would not depend on

zn, and we could consider it as a polynomial in a smaller number of variables.

Let z′ ∈ Cn−1 be given, and suppose that pr(z
′) 6= 0. Under these condi-

tions, (2.7.1) may be considered as a polynomial of degree r in zn, which has r
roots, with multiplicities, as before. There is an analogous statement as long as
pl(z

′) 6= 0 for some l ≥ 1.

2.8 The Euler operator

Let n be a positive integer, and put

aj(x) = xj(2.8.1)

for each j = 1, . . . , n and x ∈ Rn. In this case,

a(x) = (a1(x), . . . , an(x)) = (x1, . . . , xn)(2.8.2)

is the identity mapping on Rn.

Let U be a nonempty open subset of Rn, and let u be a continuously-
differentiable real or complex-valued function on U . Let La(u) be the continuous
real or complex-valued function on U , as appropriate, defined by

(La(u))(x) =

n∑
j=1

xj
∂u

∂xj
(x)(2.8.3)

for every x ∈ U , as in Section 2.3. The differential operator La is known as the
Euler operator.

In this case, (La(u))(x) is equal to the directional derivative of u at x in
the direction x. Alternatively, if x ∈ U , then u(t x) may be considered as a
continuously-differentiable real or complex-valued function of t in an open subset
of R that contains 1. The derivative of u(t x) in t at 1 is equal to (La(u))(x).

2.8.1 Homogeneous functions

Let b be a complex number. A real or complex-valued function u on Rn \ {0}
is said to be homogeneous of degree b if

u(t x) = tb u(x)(2.8.4)

for every x ∈ Rn\{0} and t ∈ R+. If u is continuously differentiable on Rn\{0},
then (2.8.4) implies that

La(u) = b u(2.8.5)

on Rn \ {0}.



2.8. THE EULER OPERATOR 37

Let x ∈ Rn \ {0} be given. If u is continuously differentiable on Rn \ {0},
then u(t x) is continuously differentiable as a function of t ∈ R+. In this case,

d

dt
(u(t x)) =

n∑
j=1

xj (∂ju)(t x) = t−1 (La(u))(t x)(2.8.6)

for every t > 0. If (2.8.5) holds, then we get that

d

dt
(u(t x)) = b t−1 u(t x)(2.8.7)

for every t > 0. This implies that (2.8.4) holds, as in Subsection 1.14.1.

2.8.2 Differentiating homogeneous functions

Let U be a nonempty open subset of Rn, and let t be a positive real number.
Observe that

t−1 U = {t−1 x : x ∈ U}(2.8.8)

is an open set in Rn too. If u is a continuously-differentiable real or complex-
valued function on U , then u(t x) is continuously differentiable as a function of
x on t−1 U . The partial derivatives of u(tx) are equal to

∂

∂xj
(u(t x)) = t (∂ju)(t x)(2.8.9)

for each j = 1, . . . , n and x ∈ t−1 U .
Let us now take U = Rn \ {0}, so that t−1 U = U for every t > 0. If u is

homogeneous of degree b ∈ C on Rn \ {0}, then

∂

∂xj
(u(t x)) =

∂

∂xj
(tb u(x)) = tb (∂ju)(x)(2.8.10)

for each j = 1, . . . , n. It follows that

t (∂ju)(t x) = tb (∂ju)(x)(2.8.11)

for each j, so that ∂ju is homogeneous of degree b− 1 on Rn \ {0} under these
conditions.

2.8.3 More on homogeneous functions

One can check that

|tb| = tRe b(2.8.12)

for every t > 0 and b ∈ C. Suppose that Re b > 0, and let us interpret tb as being
equal to 0 when t = 0. Let us say that a real or complex-valued function u on
Rn is homogeneous of degree b if (2.8.4) holds for every x ∈ Rn and nonnegative



38 CHAPTER 2. SOME RELATED NOTIONS

real number t. This means that u(0) = 0, and that u is homogeneous of degree
b on Rn \ {0}.

It is customary to interpret t0 as being equal to 1 for every t ∈ R, including
t = 0. Using this, one may interpret a real or complex-valued function u on Rn

as being homogeneous of degree 0 on Rn when u is constant on Rn.
Let u, v be real or complex-valued functions on Rn \ {0} that are homoge-

neous of degrees b, c ∈ C, respectively. It is easy to see that

their product u v is homogeneous of degree b+ c on Rn \ {0}.(2.8.13)

Of course, there is an analogous statement for homogeneous functions on Rn.

2.9 Some spaces of polynomials

Let n be a positive integer, and let

P(Rn,R) and P(Rn,C)(2.9.1)

be the spaces of polynomials on Rn with real and complex coefficients, respec-
tively. These are linear subspaces of the spaces C∞(Rn,R) and C∞(Rn,C) of
smooth real and complex-valued functions on Rn.

Let N be a nonnegative integer, and suppose that aα is a polynomial on Rn

for each multi-index α of order |α| ≤ N . Under these conditions,

L =
∑

|α|≤N

aα ∂
α(2.9.2)

defines a differential operator on Rn with polynomial coefficients. Of course,
the sum is taken over all mutli-indices α with |α| ≤ N , as usual.

It is easy to see that L defines a linear mapping from P(Rn,C) into itself.
If aα is a polynomial with real coefficients for each α, then L maps P(Rn,R)
into itself.

The composition of two differential operators on Rn with polynomial coeffi-
cients is a differential operator with polynomial coefficients too, as in Subsection
2.4.1.

2.9.1 Homogeneous polynomials

Let k be a nonnegative integer. If α is a multi-index of order |α| = k, then

the monomial xα is homogeneous of degree k(2.9.3)

as a real-valued function on Rn. If a polynomial p on Rn can be expressed as
a finite linear combination of monomials xα with |α| = k, then it follows that

p is homogeneous of degree k on Rn.(2.9.4)
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Conversely, if a polynomial on Rn is homogeneous of degree k on Rn, then one
can check that it is of this form.

Let

Pk(R
n,R) and Pk(R

n,C)(2.9.5)

be the space of polynomials on Rn with real and complex coefficients, re-
spectively, that are homogeneous of degree k. These are linear subspaces of
P(Rn,R) and P(Rn,C), respectively.

Let N be a nonnegative integer, and let p be a polynomial on Rn with real
or complex coefficients of degree less than or equal to N . It is easy to see that
p can be expressed in a unique way as a sum of homogeneous polynomials of
degrees from 0 to N .

If a real or complex-valued function u on Rn is k-times continuously differ-
entiable and homogeneous of degree k, then one can check that u is equal to its
degree k Taylor approximation at the origin.

2.10 Polynomials on R2

Of course,

z = x1 + i x2, z = x1 − i x2(2.10.1)

are homogeneous polynomials of degree 1 with complex coefficients on R2. We
also have that

x1 = (1/2) (z + z), x2 = (−i/2) (z − z).(2.10.2)

This means that every polynomial on R2 with complex coefficients corresponds
to a polynomial in z and z with complex coefficients, and that every polyno-
mial in z and z with complex coefficients determines a polynomial in x1, x2
with complex coefficients. More precisely, homogeneous polynomials in x1, x2
correspond to homogeneous polynomials in z, z of the same degree in this way.

2.10.1 The Laplacian of zj zl

Let ∂/∂z and ∂/∂z be as in Section 2.2, and remember that (∂/∂z)(z) =
(∂/∂z)(z) = 1 and (∂/∂z)(z) = (∂/∂z)(z) = 0. If j is a positive integer,
then it follows that

∂

∂z
(zj) =

∂

∂z
(zj) = 0,(2.10.3)

by the product rules for these operators. Similarly,

∂

∂z
(zj) = j zj−1(2.10.4)

and
∂

∂z
(zj) = j zj−1.(2.10.5)
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If l is another positive integer, then we get that

∆(zj zl) = 4
∂

∂z

∂

∂z
(zj zl)(2.10.6)

= 4
( ∂

∂z
(zj)

)( ∂

∂z
(zl)

)
= 4 j l zj−1 zl−1.

Note that zj zl is harmonic when j or l is equal to 0.

2.10.2 Homogeneous polynomials on R2

If k is a nonnegative integer, then a homogeneous polynomial of degree k on R2

with complex coefficients may be expressed as

k∑
j=0

cj z
j zk−j(2.10.7)

for some complex coefficients cj , 0 ≤ j ≤ k. If j ≤ k/2, then

zj zk−j = |z|2j zk−2 j .(2.10.8)

If j ≥ k/2, then
zj zk−j = z2 j−k |z|2 k−2 j(2.10.9)

If
|z|2 = x21 + x22 = 1,(2.10.10)

then we get that
zj zk−j = zk−2 j(2.10.11)

when j ≤ k/2, and that
zj zk−j = z2 j−k(2.10.12)

when j ≥ k/2. It follows that there is a harmonic polynomial on R2 of degree
less than or equal to k that is equal to (2.10.7) on the unit circle.

Using this, it is easy to see that every polynomial on R2 agrees with a
harmonic polynomial on the unit circle. This corresponds to some remarks on
p138 of [268].

2.10.3 The Dirichlet problem

Let U be a nonempty bounded open subset of Rn for some positive integer n.
If f is a continuous real or complex-valued function on ∂U , then the Dirichlet
problem asks one to find a continuous real or complex-valued function u on U ,
as appropriate, such that

u = f on ∂U,(2.10.13)

and u is harmonic on U .
The remarks in the previous subsection show that if n = 2, U is the open

unit disk in R2, and f is the restriction to the unit circle of a polynomial on
R2, then one can take u to be the restriction to U of a harmonic polynomial on
R2.
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2.11 Poisson’s equation

Let n be a positive integer, and let U be a nonempty open subset of Rn. If f
is a real or complex-valued function on U , then one might like to find a real or
complex-valued function u on U , as appropriate, such that

∆u = f(2.11.1)

on U . This is Poisson’s equation, as on p193 of [18], and p20 of [70].
Of course, one might like u to be twice continuously-differentiable on U ,

which would mean that f should be continuous on U . There are extended
formulations of the equation, which allow for less regularity. One may also be
interested in additional boundary conditions on u.

If f is a homogeneous polynomial of degree k ≥ 0 on R2, then one can find
a homogeneous polynomial u of degree k + 2 on R2 that satisfies (2.11.1) on
R2, using (2.10.6). It follows that if f is any polynomial on R2, then one can
find a polynomial u on R2 that satisfies (2.11.1).

2.11.1 Dirichlet boundary conditions

Let g be a real or complex-valued function on ∂U . Another version of the
Dirichlet problem asks one to find a real or complex-valued function u on U , as
appropriate, such that (2.11.1) holds on U and

u = g on ∂U,(2.11.2)

as in Section C of Chapter 2 of [75]. One might like u to be continuous on U ,
so that g should be continuous on ∂U . There are extended versions of this too.

The case where
u = 0 on ∂U(2.11.3)

is known as Dirichlet boundary conditions. If one can solve Poisson’s equation
(2.11.1) without restrictions on u on ∂U , and if one can solve the Dirchlet
problem for harmonic functions on U with arbitrary boundary values, then
one can get a solution to Poisson’s equation on U with prescribed boundary
values. Similarly, if one can solve Poisson’s equation U with Dirichlet boundary
conditions, then one can try to use that to solve the Dirichlet problem for
harmonic functions on U .

2.12 An interesting inner product

Let n be a positive integer, and let p, q be polynomials on Rn with complex
coefficients. Note that the complex conjugate q of q is a polynomial on Rn too.
Put

〈p, q〉 = 〈p, q〉P(Rn,C) = (p(∂)(q))(0),(2.12.1)

where p(∂) is as in Section 1.7.
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If p and q are homogeneous polynomials of the same degree k, then p(∂)(q)
is a constant, and (2.12.1) is the same as

〈p, q〉 = 〈p, q〉Pk(Rn,C) = p(∂)(q).(2.12.2)

This is the definition that is used in the proof of Proposition 2.47 in Section G
of Chapter 2 of [75], on p175 of [161], on p69 of [262], and on p139 of [268]. If
p and q are homogeneous polynomials of different degrees, then it is easy to see
that

〈p, q〉 = 0.(2.12.3)

More precisely, if α, β are multi-indices, then

〈xα, xβ〉 = α! when α = β(2.12.4)

= 0 when α 6= β.

Using (2.12.4), one can check that

〈p, q〉 = 〈q, p〉(2.12.5)

for all polynomials p, q on Rn with complex coefficients. Of course, (2.12.1)
is linear in p over the complex numbers, and conjugate-linear in q. If p(x) =∑

|α|≤N aα x
α for some nonnegative integer N and complex coefficients aα, then

〈p, p〉 =
∑

|α|≤N

|aα|2 α!.(2.12.6)

In particular, this is strictly positive, except when p = 0. It follows that

(2.12.1) defines an inner product on P(Rn,C),(2.12.7)

as a vector space over the complex numbers, as in the proof of Proposition 2.47
in Section G of Chapter 2 of [75], and on p176 of [161], p69 of [262], and p139
of [268].

2.12.1 Laplacians of polynomials

Note that the Laplacian maps Pk(R
n,C) into Pk−2(R

n,C) for every integer
k ≥ 2. Let us use this inner product to show that

∆(Pk(R
n,C)) = Pk−2(R

n,C)(2.12.8)

when k ≥ 2, as in the proof of Proposition 2.47 in Section G of Chapter 2 of
[75], and of Theorem 2.1 on p139 of [268]. Suppose that q ∈ Pk−2(R

n,C) is
orthogonal to every element of ∆(Pk(R

n,C)) with respect to this inner product,
so that

〈q,∆(p)〉 = 0(2.12.9)
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for every p ∈ Pk(R
n,C). This means that

q(∂)(∆(p)) = 0,(2.12.10)

because ∆(p) = ∆(p). This is the same as saying that

∆(q(∂)(p)) = 0.(2.12.11)

If we take p(x) = |x|2 q(x), then we get that

〈p, p〉 = p(∂)(p) = ∆(q(∂)(p)) = 0.(2.12.12)

This implies that p = 0, as before. This means that q = 0, because of the way
that we chose p. It follows that (2.12.8) holds, by standard arguments in linear
algebra. This also uses the fact that Pk−2(R

n,C) has finite dimension, as a
vector space over C.

2.13 An orthogonality argument

Let us continue with the same notation as in the previous section. If k is any
nonnegative integer, then let

Ak = {p ∈ Pk(R
n,C) : ∆(p) = 0}(2.13.1)

be the space of homogeneous polynomials on Rn of degree k with complex
coefficients that are harmonic, which is a linear subspace of Pk(R

n,C). Of
course, this is the same as Pk(R

n,C) when k = 0 or 1. If k ≥ 2, then put

Bk = {|x|2 q(x) : q ∈ Pk−2(R
n,C)},(2.13.2)

which is also a linear subspace of Pk(R
n,C).

Let k ≥ 2 and p ∈ Pk(R
n,C) be given, and put

rq(x) = |x|2 q(x)(2.13.3)

for every q ∈ Pk−2(R
n,C). Thus rq ∈ Pk(R

n,C), and

〈rq, p〉 = rq(∂)(p) = q(∂)(∆(p)) = 〈q,∆(p)〉.(2.13.4)

Observe that
〈q,∆(p)〉 = 0(2.13.5)

for every q ∈ Pk−2(R
n,C) if and only if ∆(p) = 0. It follows that

〈rq, p〉 = 0(2.13.6)

for every q ∈ Pk−2(R
n,C) if and only if ∆(p) = 0. This means that Ak is the

orthogonal complement of Bk in Pk(R
n,C) with respect to this inner product,
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as in the proof of Proposition 2.47 in Section G of Chapter 2 of [75], on p69 of
[262], and p140 of [268].

This implies that

every element of Pk(R
n,C) can be expressed in a unique way(2.13.7)

as a sum of elements of Ak and Bk,

by standard arguments in linear algebra. More precisely, this uses the fact that
Pk(R

n,C) is a finite-dimensional vector space over C. This also corresponds to
Proposition 5.5 on p76 of [18].

2.13.1 Repeating the process

We can repeat the process, to get that every element of Pk(R
n,C) can be

expressed as
l∑

j=0

|x|2 j pj(x),(2.13.8)

where 2 l ≤ k, and pj ∈ Pk−2 j(R
n,C) is harmonic for each j = 1, . . . , l. This

corresponds to Theorem 5.7 on p77 of [18], Corollary 2.48 in Section G of Chap-
ter 2 of [75], Proposition 4.1.1 on p176 of [161], some remarks on p70 of [262],
and Theorem 2.1 on p139 of [268].

One can use this to get that every polynomial on Rn agrees with a harmonic
polynomial on the unit sphere, as in some remarks on p77 of [18], Corollary 2.50
in Section G of Chapter 2 of [75], Corollary 4.1.2 on p177 of [161], mentioned
on p70 of [262], and Corollary 2.2 on p140 of [268]. This corresponds to the
Dirichlet problem on the open unit ball in Rn, for the restriction to the unit
sphere of a polynomial on Rn.

2.14 The binomial theorem

Ifm is a positive integer and x, y are real or complex numbers, then the binomial
theorem states that

(x+ y)m =

m∑
j=0

(
m

j

)
xj ym−j ,(2.14.1)

where (
m

j

)
=

m!

j! (m− j)!
(2.14.2)

is the usual binomial coefficient for each j = 0, 1, . . . ,m. Note that(
m

j

)
=

(
m

m− j

)
(2.14.3)
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for j = 0, 1, . . . ,m. If we take y = 1 in (2.14.1), then we get that

(x+ 1)m =

m∑
j=0

(
m

j

)
xj .(2.14.4)

Conversely, (2.14.1) can be obtained from (2.14.4) by replacing x with x/y when
y 6= 0.

Of course, it is easy to see that (x + 1)m can be expressed as a sum of
positive integer multiples of xj , 0 ≤ j ≤ m. To get that the multiples are given
by binomial coefficients as before, one can look at the jth derivative of (x+1)m at
0 for each j = 0, 1, . . . ,m. In particular, this shows that the binomial coefficients
are positive integers. Alternatively, one can verify (2.14.4) more directly, using
induction on m.

One can expand (x+1)m into a sum of 2m terms, each of which is a product
of m factors, where every factor is equal to x or to 1. The coefficient of xj in
(x + 1)m is the same as the number of these terms with exactly j factors of
x, and m − j factors of 1. This is also the same as the number of subsets of
{1, . . . ,m} with exactly j elements.

2.14.1 Multi-indices of order k

Let k and n be positive integers. It is well known that the number of multi-
indices α = (α1, . . . , αn) with order |α| = k is equal to(

n+ k − 1

k

)
=

(
n+ k − 1

n− 1

)
.(2.14.5)

This corresponds to Problem 2 in Section 1.5 of [70]. Equivalently, this is the
dimension of the spaces Pk(R

n,R), Pk(R
n,C) of homogeneous polynomials of

degree k on Rn with real or complex coefficients, as vector spaces over R or C,
as appropriate. This is mentioned on p78 of [18], in Proposition 2.52 of Section
G of Chapter 2 of [75], on p174f of [161], and on p139 of [268].

2.14.2 The multinomial theorem

If x ∈ Rn or Cn, then the multinomial theorem states that

(x1 + · · ·+ xn)
k =

∑
|α|=k

(
|α|
α

)
xα,(2.14.6)

as in Problem 3 in Section 1.5 of [70]. More precisely, the sum is taken over all
multi-indices α with order |α| = k, and we put(

|α|
α

)
=

|α|!
α!

,(2.14.7)

where α! is as in Section 1.10. One may refer to this as the multinomial coef-
ficient associated to α. Note that (2.14.6) is trivial when n = 1, and that the
n = 2 case is the same as the binomial theorem.
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2.14.3 Another interesting identity

Let α be a multi-index, and let x, y ∈ Rn or Cn be given. One can check that

(x+ y)α =
∑

β+γ=α

α!

β! γ!
xβ yγ ,(2.14.8)

where the sum is taken over all multi-indices β, γ with β + γ = α. This is the
same as the binomial theorem when n = 1.

If p(x) is a polynomial in x1, . . . , xn with real or complex coefficients and
b ∈ Rn or Cn, then p(x+ b) can be expressed as a polynomial in x with real or
complex coefficients, as appropriate, as in Section 2.5. One can use (2.14.8) to
get a more precise version of this.

2.15 Leibniz’ formula

Let n be a positive integer, and let α, β be multi-indices. If

βj ≤ αj(2.15.1)

for each j = 1, . . . , n, then put
β ≤ α,(2.15.2)

as in Problem 4 in Section 1.5 of [70]. Equivalently, this means that α− β is a
multi-index too. In this case, we put(

α

β

)
=

α!

β! (α− β)!
,(2.15.3)

as in [70].
Let u, v be smooth real-valued functions on Rn. Leibniz’ formula states

that

∂α(u v) =
∑
β≤α

(
α

β

)
(∂βu) (∂α−βv),(2.15.4)

as in Problem 4 in Section 1.5 of [70]. More precisely, the sum is taken over all
multi-indices β with β ≤ α. Of course, this also works when u, v are |α|-times
continuously-differentiable real or complex-valued functions on a nonempty open
subset of Rn. If |α| = 1, then this reduces to the usual product rule for partial
derivatives.

2.15.1 More on composing differential operators

Let U be a nonempty open subset of Rn, and let N , Ñ be nonnegative integers.
Suppose that for each multi-index α with order |α| ≤ N , aα is a real or complex-
valued function on U . This permits us to define the corresponding differential
operator

L =
∑

|α|≤N

aα ∂
α,(2.15.5)
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as in Section 2.4. Similarly, suppose that bβ is a real or complex-valued function

on U for each multi-index β with |β| ≤ Ñ . This permits us to define the
differential operator

L̃ =
∑

|β|≤Ñ

bβ ∂
β ,(2.15.6)

as before.
Suppose that bβ is N -times continuously differentiable on U for each multi-

index β with |β| ≤ Ñ . If u is an (N+Ñ)-times continuously-differentiable real or

complex-valued function on U , then L̃(u) is N -times continuously differentiable

on U , so that L(L̃(u)) is defined as a real or complex-valued function on U ,

as appropriate, as in Subsection 2.4.1. In fact, this can be expressed as L̂(u),
where

L̂ =
∑

|γ|≤N+Ñ

cγ ∂
γ ,(2.15.7)

and cγ is a real or complex-valued function on U for every multi-index γ with

|γ| ≤ N + Ñ , as before. Remember that the cγ ’s can be expressed in terms of
sums of products of the aα’s with the bβ ’s and their derivatives of order less
than or equal to N . This can be described more precisely using (2.15.4).



Chapter 3

Some integrals and other
matters

3.1 Eigenfunctions of differential operators

Let n be a positive integer, and let U be a nonempty open set in Rn. Also let
N be a positive integer, and let aα be a complex-valued function on U for each
multi-index α with order |α| ≤ N . If f is an N -times continuously-differentiable
complex-valued function on U , then put

L(f) =
∑

|α|≤N

aα ∂
αf(3.1.1)

on U , as in Section 2.4.
We say that f is an eigenfunction for L with eigenvalue λ ∈ C if

L(f) = λ f(3.1.2)

on U . One may wish to ask that f satisfy additional boundary conditions or
other restrictions, depending on the circumstances.

3.1.1 A related partial differential equation

Let us identify Rn ×R with Rn+1, so that

V = U ×R(3.1.3)

may be considered as an open subset of Rn+1. Put

u(x, t) = exp(λ t) f(x)(3.1.4)

for every x ∈ U and t ∈ R, which defines an N -times continuously-differentiable
complex-valued function on V . It is easy to see that

∂u

∂t
= L(u)(3.1.5)

48
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on V . We also have that
u(x, 0) = f(x)(3.1.6)

for every x ∈ U .

3.1.2 Two derivatives in t

Suppose that µ ∈ C satisfies
µ2 = λ,(3.1.7)

and put
v(x, t) = exp(µ t) f(x)(3.1.8)

for every x ∈ U and t ∈ R. Observe that v and all of its partial derivatives in t
are N -times continuously-differentiable on V , and that

∂2v

∂t2
= L(v)(3.1.9)

on V . In addition,
v(x, 0) = f(x)(3.1.10)

and
∂v

∂t
(x, 0) = µ f(x)(3.1.11)

for every x ∈ U .
Similarly,

w(x, t) = exp(−µ t) f(x)(3.1.12)

and all of its partial derivatives in t are N -times continuously-differentiable on
V . As before,

∂2w

∂t2
= L(w)(3.1.13)

on V , because (−µ)2 = λ too. In this case,

w(x, 0) = f(x)(3.1.14)

and
∂w

∂t
(x, 0) = −µ f(x)(3.1.15)

for every x ∈ U .
Of course, one may consider multiple eigenfunctions of L on U , with possibly

different eigenvalues, to get more solutions of partial differential equations like
these on V . One may also consider infinite sums, under suitable conditions.

3.1.3 Hearing shapes of drums

Mark Kac’ famous question of whether one can hear the shape of a drum involves
eigenvalues for the Laplacian. See [47, 97, 98, 99, 143] for more information.
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3.2 The spherical Laplacian

Let n be a positive integer, and let

Sn−1 = {x ∈ Rn : |x| = 1}(3.2.1)

be the unit sphere in Rn, with respect to the standard Euclidean norm. If u is
a complex-valued function on Rn \ {0} that is homogeneous of degree b ∈ C,
then

u(x) = |x|b u(|x|−1 x)(3.2.2)

for every x ∈ Rn \ {0}, as in Subsection 2.8.1. In particular, this means that u
is uniquely determined by its restriction to the unit sphere. Similarly, any real
or complex-valued function on the unit sphere can be extended to a function on
Rn \ {0} that is homogeneous of any given degree in C.

Suppose that n ≥ 2, and let u be a twice continuously-differentiable real
or complex-valued function on Rn \ {0} that is homogeneous of degree 0. The
restriction of u to the unit sphere may be considered as a twice continuously-
differentiable function on Sn−1. Smoothness of functions on Sn−1 can be defined
in terms of suitable local coordinates, but it is more convenient for us to look
at it here in terms of smoothness of homogeneous extensions to Rn \ {0}.

3.2.1 Defining the spherical Laplacian

The spherical Laplacian of u is the function ∆Su defined on Sn−1 by

∆Su = ∆u on Sn−1.(3.2.3)

Note that ∆u is homogeneous of degree −2 on Rn \ {0}, as in Subsection 2.8.2.
Thus

|x|2 (∆u)(x)(3.2.4)

is homogeneous of degree 0 on Rn \ {0}. Of course, this is the same as (3.2.3)
on Sn−1.

Now let v be a twice continuously-differentiable complex-valued function on
Rn \ {0} that is homogeneous of degree b ∈ C. Observe that

|x|−b v(x)(3.2.5)

is a twice continuously-differentiable function on Rn \ {0} that is homogeneous
of degree 0 and equal to v on Sn−1. The spherical Laplacian of the restriction
of v to Sn−1 is

(∆Sv)(x) = ∆(|x|−b v(x)) on Sn−1.(3.2.6)

3.2.2 Some eigenfunctions

Suppose that p is a homogeneous polynomial of degree k ≥ 0 on Rn, and that
p is harmonic on Rn. It is well known that the spherical Laplacian of the
restriction of p to Sn−1 satisfies

∆Sp = −k (k + n− 2) p on Sn−1,(3.2.7)
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as in Lemma 2.61 in Section G of Chapter 2 of [75], and on p70 of [262].

3.3 Connected components

Let n be a positive integer, and let U be a nonempty open subset of Rn. It
is well known that U can be expressed in a unique way as a union of a family
of pairwise-disjoint nonempty connected open subsets of Rn. These nonempty
connected open sets are called the connected components of U . If U is connected,
then U is the only connected component of itself.

In fact, one can define the notion of connected components for any subset E
of Rn, as well as subsets of arbitrary metric spaces or topological spaces. One
can show that the connected components of E are relatively closed in E, but
they are not necessarily relatively open in E.

The connected component of E that contains a point x ∈ E can be obtained
by taking the union of all of the connected subsets of E that contain x. One
can verify that this is a connected set too. By construction, this is the largest
possible connected subset of E that contains x.

Connected components of open subsets ofRn are open sets, basically because
Rn is locally connected. This follows from the connectedness of open balls in
Rn.

More precisely, Rn is locally path connected, because every point in an open
ball in Rn can be connected to the center of the ball by a line segment, which
is contained in the ball. Because of this, the connected components of U are
the same as the path connected components. These can be defined by saying
that x, y ∈ U are in the same path connected component of U when there is a
continuous path in U connecting x and y.

3.3.1 Some properties of connected components

If V is a connected component of U , then it is easy to see that

V ⊆ U,(3.3.1)

because V ⊆ U . In particular, this implies that

∂V ⊆ U.(3.3.2)

One can check that

∂V ⊆ ∂U(3.3.3)

under these conditions. Otherwise, if there is an element of ∂V in U , then one
can show that that point should be in V , to get a contradiction.

Suppose that U 6= Rn, so that V 6= Rn. This implies that ∂V 6= ∅, and thus
that ∂V has an element in ∂U .
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3.4 Smoothness near the boundary

Let n be a positive integer, and let V be a nonempty open subset of Rn. We
shall sometimes be concerned with smoothness properties of functions on V ,
including on the boundary. Suppose that U is an open subset of Rn with

V ⊆ U.(3.4.1)

If u is a function on U with some smoothness property, then the restriction of
u to V may be considered as having that property on V .

However, we may also be concerned with functions that are defined only on
V . If k is a positive integer, then we let Ck(V ,R), Ck(V ,C) be the spaces
of k-times continuously-differentiable real or complex-valued functions u on V ,
respectively, such that u and all of its derivatives ∂αu with |α| ≤ k can be
extended continuously to V , as in Section A of Chapter 0 of [75]. A continuous
extension of a function on V to V is unique when it exists, by standard argu-
ments, and so we may consider u and its derivatives of order less than or equal
to k as being defined on V in this case.

This is initially defined a bit differently in Appendix A.3 of [70], where one
considers k-times continuously-differentiable functions u on V such that u and
its derivatives ∂αu with |α| ≤ k are uniformly continuous on every bounded
subset of V . It is well known that continuous functions on compact sets are
uniformly continuous, which implies that continuous functions of V are uni-
formly continuous on bounded subsets of V . Conversely, if a function on V is
uniformly continuous on all bounded subsets of V , then it is well known and
not too difficult to show that the function has a continuous extension to V .

If m is a positive integer, then we may also be concerned with continuity
or smoothness properties of functions with values in Rm or Cm. Such a func-
tion may be considered as an m-tuple of real or complex-valued functions, and
the continuity or smoothness properties of the function are equivalent to the
analogous properties holding for each of the corresponding m components.

We may be concerned with smoothness properties of the boundary of V as
well. Properties like these are discussed in Appendix C.1 of [70], and Section B
of Chapter 0 of [75].

3.5 The divergence theorem

Let n ≥ 2 be an integer, although one could include n = 1, with suitable
interpretations. Also let V be a nonempty bounded open subset of Rn with
reasonably smooth boundary. Thus we may consider n-dimensional integrals
over V , and surface integrals over ∂V , of suitable functions on V and ∂V ,
respectively.

Let w be a continuously-differentiable function on V with values in Rn or
Cn. The divergence theorem states that∫

V

divw(x) dx =

∫
∂V

w(y′) · ν(y′) dy′,(3.5.1)
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where dy′ is the element of surface area on ∂V , and ν(y′) is the outward-pointing
unit normal to ∂V at y′ ∈ ∂V .

3.5.1 Using the divergence theorem

Let u be a twice continuously-differentiable real or complex-valued function on
V . If we take

wj =
∂u

∂xj
(3.5.2)

for each j = 1, . . . , n, then w defines a continuously-differentiable function on V
with values in Rn or Cn, as appropriate. In this case, the divergence theorem
implies that ∫

V

(∆u)(x) dx =

∫
∂V

(Dv(y′)u)(y
′) dy′,(3.5.3)

where Dν(y′) denotes the directional derivative in the direction of ν(y′). In
particular, if u is also harmonic on V , then∫

∂V

(Dν(y′)u)(y
′) dy′ = 0.(3.5.4)

3.5.2 Using the divergence theorem again

Suppose that v is a continuously-differentiable real or complex-valued function
on V , as appropriate. Under these conditions,∫

V

(∆u)(x) v(x) dx+

∫
V

n∑
j=1

∂u

∂xj
(x)

∂v

∂xj
(x) dx(3.5.5)

=

∫
∂V

(Dν(y′)u)(y
′) v(y′) dy′.

This follows from the divergence theorem, with

wj(x) = v(x)
∂u

∂xj
(x)(3.5.6)

for each j = 1, . . . , n. In particular, we can take v = u, to get that∫
V

(∆u)(x)u(x) dx+

∫
V

n∑
j=1

∣∣∣∣ ∂u∂xj (x)
∣∣∣∣2 dx =

∫
∂V

(Dν(y′)u)(y
′)u(y′) dy′.(3.5.7)

3.5.3 The Dirichlet integral

If u is any continuously-differentiable real or complex-valued function on V ,
then ∫

V

n∑
j=1

∣∣∣∣ ∂u∂xj (x)
∣∣∣∣2 dx(3.5.8)
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is called the Dirichlet integral of u on V , as in Section E of Chapter 2 of [75],
and Section 4 of Chapter 5 of [266]. This is equal to 0 exactly when all of the
first partial derivatives of u are equal to 0 on V . This happens if and only if u
is constant on each of the connected components of V .

3.6 Some consequences

Let n be a positive integer, and let V be a nonempty proper open subset of
Rn. Suppose that u is a continuous real or complex-valued function on V that
satisfies Dirichlet boundary conditions, so that u = 0 on ∂V . If u is constant
on any connected component of V , then it is easy to see that u = 0 on that
component. If u is constant on every connected component of V , then it follows
that u = 0 on V .

3.6.1 Using Dirichlet boundary conditions

Suppose now that V is bounded, with reasonably smooth boundary, and that
u is twice continuously differentiable on V . If u satisfies Dirichlet boundary
conditions on V , then (3.5.7) reduces to∫

V

(∆u)(x)u(x) dx+

∫
V

n∑
j=1

∣∣∣∣ ∂u∂xj (x)
∣∣∣∣2 dx = 0.(3.6.1)

If u is harmonic on V , then it follows that u = 0 on V , as in the preceding
paragraph. This corresponds to Theorem 16 in Section 2.2.5 a of [70]. The
same conclusion could also be obtained using the maximum principle, as in
Section 6.7.

3.6.2 Neumann boundary conditions

Let ν(y′) be the outward-pointing unit normal to ∂V at y′ ∈ ∂V , as in the
previous section. If

(Dν(y′)u)(y
′) = 0(3.6.2)

for every y′ ∈ ∂V , then u is said to satisfy Neumann boundary conditions on
V . Note that (3.5.7) reduces to (3.6.1) in this case too. If u is harmonic on V ,
then this implies that u is constant on every connected component of V . This
corresponds to part (a) of Problem 10 in Section 6.6 of [70] and Proposition 3.3
in Section A of Chapter 3 of [75], and is related to part (a) of Exercise 18 on
p108 of [18].

Part (b) of Problem 10 in Section 6.6 of [70] asks one to show the same
statement using the maximum principle, under suitable smoothness conditions
on V . This is related to Exercise 27 on p29 of [18].
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3.6.3 Eigenvalues of the Laplacian

Suppose that u is an eigenfunction for the Laplacian on V with eigenvalue λ ∈ C,
so that

∆u = λu(3.6.3)

on V . If u satisfies Dirichlet or Neumann boundary conditions on V , then we
get that

λ

∫
V

|u(x)|2 dx+

∫
V

n∑
j=1

∣∣∣∣ ∂u∂xj (x)
∣∣∣∣2 dx = 0,(3.6.4)

by (3.6.1). If u 6= 0 somewhere on V , then∫
V

|u(x)|2 dx > 0.(3.6.5)

Under these conditions, we obtain that λ ∈ R, and that λ ≤ 0. More precisely,
if u satisfies Dirichlet boundary conditions on V , then we get that λ < 0.

3.7 Some more consequences

Let n ≥ 2 be an integer, and let V be a nonempty bounded open subset of Rn

with reasonably smooth boundary again. Also let u be a twice continuously-
differentiable real or complex-valued function on V , and let v be a continuously-
differentiable real or complex-valued function on V , as appropriate. Suppose
that v satisfies Dirichlet boundary conditions on V , so that

v(y′) = 0 for every y′ ∈ ∂V.(3.7.1)

In this case, (3.5.5) reduces to∫
V

(∆u)(x) v(x) dx+

∫
V

n∑
j=1

∂u

∂xj
(x)

∂v

∂xj
(x) dx = 0.(3.7.2)

This means that ∫
V

n∑
j=1

∂u

∂xj
(x)

∂v

∂xj
(x) dx = 0(3.7.3)

if and only if ∫
V

(∆u)(x) v(x) dx = 0.(3.7.4)

Of course, (3.7.4) holds when u is harmonic on V . Conversely, if (3.7.4) holds
for every smooth function v on Rn with compact support contained in V , then
one can check that u is harmonic on V , as follows.
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3.7.1 Checking that u is harmonic on V

More precisely, suppose that u is a twice continuously-differentiable real or
complex-valued function on V . If v is a continuous real or complex-valued
function on Rn with compact support contained in V , then

(∆u)(x) v(x)(3.7.5)

may be extended to a continuous function on Rn with support contained in the
support of v, by setting it equal to 0 on Rn \V . Note that this implies that the
integral of (3.7.5) over V may be defined in the usual way. If u is not harmonic
on V , then there is a point x0 ∈ V such that

(∆u)(x0) 6= 0.(3.7.6)

One can find a nonnegative real-valued smooth function v0 on Rn such that

v0(x0) > 0(3.7.7)

and the support of v0 is contained in a ball centered at x0 with arbitrarily small
radius r0 > 0, as in Section1.11. If r0 is sufficiently small, then

u is always positive or always negative on the support of v0,(3.7.8)

because u is continuous at x0. One can also take r0 small enough so that the
support of v0 is contained in V . It is easy to see that∫

V

(∆u)(x) v0(x) dx 6= 0(3.7.9)

under these conditions. It follows that u is harmonic on V when (3.7.4) holds
for all smooth functions v on Rn with compact support contained in V .

3.7.2 Another version of (3.7.2)

Suppose that u is a twice continuously-differentiable real or complex-valued
function on V again, and now let v be a continuously-differentiable real or
complex-valued function on Rn with compact support contained in V . In this
case, for each j = 1, . . . , n, we can define wj as a continuously-differentiable real
or complex-valued function on Rn with compact support contained in V , using
(3.5.6) on V , and putting

wj(x) = 0 when x ∈ Rn \ V.(3.7.10)

Similarly, (∆u)(x) v(x) and

n∑
j=1

∂u

∂xj
(x)

∂v

∂xj
(x)(3.7.11)

can be extended to continuous real or complex-valued functions on Rn with
compact support contained in V . One can use the divergence theorem to get
that (3.7.2) holds in this case as well. Thus (3.7.3) is equivalent to (3.7.4) under
these conditions too.
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3.8 The Dirichlet principle

Let n ≥ 2 be an integer, and let V be a nonempty bounded open subset of
Rn with reasonably smooth boundary. Suppose that u and v are continuously-
differentiable complex-valued functions on V . Put

D(u, v) =

∫
V

n∑
j=1

∂u

∂xj
(x)

∂v

∂xj
(x) dx,(3.8.1)

as in Section E of Chapter 2 of [75]. It is easy to see that this is Hermitian
symmetric, in the sense that

D(u, v) = D(v, u).(3.8.2)

Of course, if u and v are real-valued, then D(u, v) is a real number, and sym-
metric in u and v.

If u = v, then (3.8.1) is the same as the Dirichlet integral (3.5.8), which is
a nonnegative real number. One might be interested in trying to minimize this
quantity, under suitable conditions.

3.8.1 Computing D(v, v) when u = v on ∂V

We can express v as
v = u+ (v − u),(3.8.3)

to get that

D(v, v) = D(u+ (v − u), u+ (v − u))

= D(u, u) +D(u, v − u) +D(v − u, u) +D(v − u, v − u)(3.8.4)

= D(u, u) + 2 ReD(u, v − u) +D(v − u, v − u).

Suppose now that u is twice continuously differentiable on V , and that

u = v on ∂V.(3.8.5)

This means that
v − u = 0 on ∂V,(3.8.6)

so that

D(u, v − u) = −
∫
V

(∆u)(x) (v(x)− u(x)) dx,(3.8.7)

as in (3.7.2).

3.8.2 Minimizing the Dirichlet integral

If u is harmonic on V , then it follows that

D(u, v − u) = 0.(3.8.8)
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This implies that

D(v, v) = D(u, u) +D(v − u, v − u),(3.8.9)

by (3.8.4). In particular, we get that

D(u, u) ≤ D(v, v),(3.8.10)

which is part of the Dirichlet principle.

More precisely, equality holds in (3.8.10) if and only if

D(v − u, v − u) = 0.(3.8.11)

This condition holds if and only if

u = v on V ,(3.8.12)

because of (3.8.5), as in the remarks in Subsection 3.5.3 and at the beginning
of Section 3.6.

3.8.3 Minimizers are harmonic

Conversely, suppose that (3.8.10) holds whenever (3.8.5) holds. If t ∈ C, then

w = u+ t (v − u)(3.8.13)

is another continuously-differentiable complex-valued function on V , and

u = w on ∂V,(3.8.14)

by (3.8.5). This means that

D(u, u) ≤ D(w,w),(3.8.15)

by hypothesis. Note that

D(w,w) = D(u, u) + 2 Re tD(u, v − u) + |t|2D(v − u, v − u),(3.8.16)

as in (3.8.4), because

w − u = t (v − u).(3.8.17)

One can use this and (3.8.15) to get that (3.8.8) holds, because t ∈ C is
arbitrary. This is a bit simpler when u and v are real-valued, in which case
one may as well take t ∈ R. This implies that u is harmonic on U , because of
(3.8.7), as in Subsection 3.7.1. This is another part of the Dirichlet principle.
See also Section 4 of Chapter 5 of [266].
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3.8.4 Minimizing sequences

Let f be a continuously-differentiable real or complex-valued function on V ,
and let Ef be the collection of continuously-differentiable real or complex-valued
functions on V , as appropriate, such that

u = f on ∂V.(3.8.18)

Note that f ∈ Ef , by construction. In connection with the Dirichlet principle,
one may be interested in the infimum or greatest lower bound

inf
u∈Ef

D(u, u)(3.8.19)

of the Dirichlet integral over all of the elements of Ef , and whether the infimum
is attained.

It is well known and not too difficult to show that there is always a min-
imizing sequence, namely, a sequence {uj}∞j=1 of elements of Ef such that the
corresponding sequence of Dirichlet integrals

D(uj , uj)(3.8.20)

converges to the infimum (3.8.19). More precisely, one can choose uj such that

inf
u∈Ef

D(u, u) ≤ D(uj , uj) < inf
u∈Ej

D(u, u) + 1/j(3.8.21)

for each j.

3.9 Another helpful fact about integrals

Let n ≥ 2 be an integer, and let V be a nonempty bounded open subset of Rn

with reasonably smooth boundary. One could also include n = 1, with suitable
interpretations, as before. If u, v are twice continuously-differentiable real or
complex-valued functions on V , then∫

V

(u(x) (∆v)(x)− v(x) (∆u)(x)) dx(3.9.1)

=

∫
∂V

(u(y′) (Dν(y′)v)(y
′)− v(y′) (Dν(y′)u)(y

′)) dy′.

Here ν(y′) is the outward-pointing unit normal to ∂V at y′ ∈ ∂V , and Dν(y′)

denotes the directional derivative in the direction of ν(y′), as usual. This can
be obtained from the divergence theorem, with

wj = u
∂v

∂xj
− v

∂u

∂xj
(3.9.2)

for each j = 1, . . . , n.
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3.9.1 Dirichlet or Neumann boundary conditions

Suppose for the moment that u and v both satisfy Dirichlet boundary conditions
on V , so that

u = v = 0 on ∂V.(3.9.3)

In this case, (3.9.1) reduces to∫
V

(u(x) (∆v)(x)− v(x) (∆u)(x)) dx = 0.(3.9.4)

Similarly, suppose that u and v both satisfy Neumann boundary conditions on
V , which is to say that

(Dν(y′)u)(y
′) = (Dν(y′)v)(y

′) = 0(3.9.5)

for every y′ ∈ ∂V . Clearly (3.9.1) reduces to (3.9.4) in this case as well.

3.9.2 Eigenfunctions for the Laplacian

Suppose now that u and v are eigenfunctions for the Laplacian on V with
eigenvalues λ and µ, respectively. This means that

∆u = λu(3.9.6)

and
∆v = µ v(3.9.7)

on V . Suppose also that either u and v both satisfy Dirichlet boundary condi-
tions on V , or that they both satisfy Neumann boundary conditions on V , so
that (3.9.4) holds. This means that

(µ− λ)

∫
V

u(x) v(x) dx = 0.(3.9.8)

If λ 6= µ, then it follows that ∫
V

u(x) v(x) dx = 0.(3.9.9)

3.10 Some remarks about zero sets

Let n be a positive integer, and let U be a nonempty open subset of Rn. Also
let ϕ be a continuous real-valued function on U , and consider the corresponding
zero set of ϕ in U ,

{x ∈ U : ϕ(x) = 0}.(3.10.1)

This is a relatively closed set in U .
Suppose now that ϕ is continuously-differentiable on U . Let w be an element

of U such that
ϕ(w) = 0(3.10.2)
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and
∂ϕ

∂xl
(w) 6= 0(3.10.3)

for some l ∈ {1, . . . , n}. Under these conditions, the implicit function theorem
implies that near w, the zero set (3.10.1) can be represented as the graph of a
continuously-differentiable real-valued function of the other variables xj , j 6= l.
Note that the implicit function theorem for real-valued functions can be shown
more directly than for Rm-valued functions with m ≥ 2, as in Theorem 3.2.1
on p36 of [170].

One can also look at this in terms of the inverse function theorem. Consider
the mapping Φ from U into Rn defined by

Φ(x) = (x1, . . . , xl−1, ϕ(x), xl+1, . . . , xn)(3.10.4)

for each x ∈ U . Equivalently, the jth coordinate of Φ(x) is defined to be xj when
j 6= l, and to be ϕ(x) when j = l. This mapping is continuously differentiable
on U , because ϕ is continuously differentiable on U , by hypothesis.

The differential of Φ at a point x ∈ U is the linear mapping from Rn into
itself that sends v ∈ Rn to the directional derivative (DvΦ)(x) of Φ in the
direction v at x. This linear mapping corresponds to the matrix of partial
derivatives of the components of Φ. One can check that the differential of Φ at
w is invertible as a linear mapping on Rn, because of (3.10.3).

Under these conditions, the inverse function theorem implies that the restric-
tion of Φ to a small neighborhood of w is invertible, where the inverse mapping
is continuously differentiable too. Of course, the zero set (3.10.1) is the same as
the inverse image of the xl = 0 hyperplane under Φ.

3.11 The Neumann problem

Let n be a positive integer, and let U be a nonempty bounded open subset
of Rn with reasonably smooth boundary. If y′ ∈ ∂U , then we let ν(y′) be
the outward-pointing unit normal to ∂U at y′, and we let Dν(y′) denote the
directional derivative in the direction ν(y′), as usual.

Let f be a real or complex-valued function on U , and let g be a real or
complex-valued function on ∂U . A version of the Neumann problem asks one
to find a real or complex-valued function u on U , as appropriate, such that

∆u = f(3.11.1)

on U , and

(Dν(y′)u)(y
′) = g(y′)(3.11.2)

for every y′ ∈ ∂U . This is discussed in Section C of Chapter 2 of [75].
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3.11.1 Uniqueness for the Neumann problem

Of course, one could add a constant to u without affecting (3.11.1) or (3.11.2).
More precisely, one could add a different constant to u on each connected com-
ponent of U , without affecting these conditions.

If u is twice-continuously differentiable on U , harmonic on U , and satisfies
Neumann boundary conditions on U , then u is constant on every connected
component of U , as in Subsection 3.6.2. This implies an appropriate uniqueness
result for the Neumann problem.

3.11.2 A necessary condition for the existence of solutions

Suppose that u is a twice continuously-differentiable real or complex-valued
function on U that satisfies (3.11.1) and (3.11.2). If V is a connected component
of U , then the restriction of u to V satisfies the analogous conditions there. It
follows that ∫

V

f(x) dx =

∫
∂V

g(y′) dy′,(3.11.3)

as in Subsection 3.5.1.

3.11.3 Two particular cases

One may be particularly concerned with the Neumann problem with f = 0 on
U , which may be described as the Neumann problem for harmonic functions.
Of course, (3.11.3) reduces to ∫

∂V

g(y′) dy′ = 0(3.11.4)

in this case. Alternatively, one may be particularly concerned with the case
where g = 0 on ∂U , so that u satisfies Neumann boundary conditions on U . In
this case, (3.11.3) reduces to ∫

V

f(x) dx = 0.(3.11.5)

As with the Dirichlet problem, these two cases of the Neumann problem are
related to each other. If one can solve the Poisson equation (3.11.1) without
(3.11.2), then a solution to a Neumann problem for harmonic functions could
be used to obtain (3.11.2). If one can solve the Poisson equation with Neumann
boundary conditions, then one can use that to try to solve the Neumann problem
for harmonic functions.

The Dirichlet and Neumann problems for harmonic functions are also dis-
cussed in Chapter 3 of [75]. Another approach is discussed in Chapter 7 of [75].
See also Problem 4 in Section 6.6 of [70].
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3.12 The unit ball in Rn

Let n be a positive integer, and let us consider the case where

U = B(0, 1)(3.12.1)

is the open unit ball in Rn in the previous section. If y′ is an element of
∂U = ∂B(0, 1), which is the unit sphere in Rn, then

ν(y′) = y′(3.12.2)

is the outward-pointing unit normal to ∂B(0, 1) at y′. If u is a continuously-
differentiable complex-valued function on U = B(0, 1), then

(Dν(y′)u)(y
′)(3.12.3)

is the same as the Euler operator applied to u at y′, as in Section 2.8.

3.12.1 Homogeneous polynomials and normal derivatives

Suppose that p is a polynomial on Rn with complex coefficients that is homo-
geneous of degree k for some nonnegative integer k. If y′ ∈ ∂B(0, 1), then

(Dν(y′)p)(y
′) = k p(y′),(3.12.4)

as in Subsection 2.8.1.
If k ≥ 1, and

q = k−1 p,(3.12.5)

then
(Dν(y′)q)(y

′) = p(y′).(3.12.6)

This may be considered as an instance of the Neumann problem for harmonic
functions on B(0, 1) when p is harmonic, so that q is harmonic as well.

If p is a harmonic polynomial on Rn that is homogeneous of degree k ≥ 1,
then ∫

∂B(0,1)

p(y′) dy′ = 0.(3.12.7)

This follows from (3.5.4) and (3.12.4).

3.12.2 The Neumann problem for polynomials

If g is any polynomial on Rn with complex coefficients, then g agrees with a
harmonic polynomial on ∂B(0, 1), as in Subsection 2.13.1. More precisely, g is
equal to a sum of homogeneous harmonic polynomials on ∂B(0, 1), as before.
If these homogeneous harmonic polynomials are all homogeneous of positive
degree, then one can get a polynomial solution to the corresponding Neumann
problem for harmonic functions on B(0, 1), using (3.12.6).
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If g is of this type, then ∫
∂B(0,1)

g(y′) dy′ = 0,(3.12.8)

because of (3.12.7). Conversely, it is easy to see that g is of this type when
(3.12.8) holds, because homogeneous polynomials of degree 0 are constants.
This condition is necessary to have a solution of the Neumann problem for
harmonic functions on B(0, 1), as in (3.11.4). This is related to Exercise 18 on
p108 of [18].

3.12.3 An orthogonality property

Let p1, p2 be harmonic polynomials on Rn with complex coefficients that are
homogeneous of degrees k1, k2 ≥ 0, respectively. Observe that

(k1 − k2)

∫
∂B(0,1)

p1(y
′) p2(y

′) dy′ = 0,(3.12.9)

because of (3.9.1) and (3.12.4). If k1 6= k2, then we get that∫
∂B(0,1)

p1(y
′) p2(y

′) dy′ = 0.(3.12.10)

Note that this includes (3.12.7) as a particular case. This corresponds to Propo-
sition 5.9 on p79 of [18], part of Theorem 2.51 in Section G of Chapter 2 of [75],
Proposition 4.1.5 on p179 of [161], 3.1.1 on p69 of [262], and Corollary 2.4 on
p141 of [268].

3.13 Some integrals over spheres

Let n be a positive integer, and let p be a polynomial on Rn with complex
coefficients. If p is harmonic on Rn and homogeneous of degree k ≥ 1, then∫

∂B(0,r)

p(y′) dy′ = 0(3.13.1)

for every r > 0. This is the same as (3.12.7) when r = 1. Otherwise, one can
reduce to that case using a change of variables, or use an analogous argument
for any r > 0.

3.13.1 Homogeneous harmonic polynomials

If p is any polynomial on Rn of degree less than or equal to N for some nonnega-
tive integer N , then p can be expressed in a unique way as a sum of homogeneous
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polynomials of degrees from 0 to N , as in Subsection 2.9.1. If p is a harmonic
polynomial, then one can use this to get that

p can be expressed as a sum of harmonic homogeneous(3.13.2)

polynomials of degrees from 0 to N.

This uses the fact that the Laplacian of a homogeneous polynomial of degree l is
a homogeneous polynomial of degree l− 2 when l ≥ 2. Of course, the Laplacian
of a homogeneous polynomial of degree l is 0 when l = 0 or 1.

3.13.2 A mean-value property

If p is a harmonic polynomial on Rn, then

1

|∂B(0, r)|

∫
∂B(0,r)

p(y′) dy′ = p(0)(3.13.3)

for every r > 0. Here |∂B(0, r)| denotes the (n− 1)-dimensional surface area of
∂B(0, r). More precisely, (3.13.3) follows from (3.13.1) when p is homogeneous
of degree k ≥ 1. If p is homogeneous of degree 0, and thus a constant, then
(3.13.3) is clear. One can reduce to the case where p is homogeneous of some
degree k ≥ 0, using the remarks in the preceding paragraph.

It follows that
1

|∂B(a, r)|

∫
∂B(a,r)

p(y′) dy′ = p(a)(3.13.4)

for every a ∈ Rn and r > 0 under these conditions. This uses the fact that
p(x + a) is also a harmonic polynomial in x on Rn. If one replaces p(x) with
p(x+ a) in (3.13.3), then the result is the same as (3.13.4), using a translation
by a to go from an integral over ∂B(0, r) to an integral over ∂B(a, r). Of course,
the surface area |∂B(a, r)| of ∂B(a, r) is the same as the surface area of ∂B(0, r).

This is known as the mean-value property of p, which will be discuseed
further in Chapter 6. Any harmonic function on an open subset of Rn has
a suitable version of this property, as in Section 6.2. A twice continuously-
differentiable function with the mean-value property is harmonic, as in Section
6.3. One can also use the mean-value property to get smoothness, as in Section
6.4.

3.14 Some remarks about compositions

Let W be a nonempty open subset of R2, and suppose that f is a continuously-
differentiable complex-valued function on W . If v ∈ R2, then the directional
derivative of f in the direction v is equal to

Dvf = v1 ∂1f + v2 ∂2f(3.14.1)
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on W , as mentioned in Subsection 1.3.2. If we identify v with the complex
number v1 + i v2, then it is easy to see that

Dvf = v
∂f

∂z
+ v

∂f

∂z
,(3.14.2)

where ∂f/∂z and ∂f/∂z are as in Section 2.2.

3.14.1 Some derivatives of compositions

Let n be a positive integer, let U be a nonempty open subset of Rn, and let u
be a continuously-differentiable complex-valued function on U . Suppose that

u(U) ⊆W,(3.14.3)

where W is considered as a subset of C, so that the composition f ◦ u of u and
f is defined as a complex-valued function on U . Suppose also that

f is holomorphic on W.(3.14.4)

Under these conditions, we get that

∂

∂xj
(f(u(x))) = f ′(u(x))

∂u

∂xj
(x)(3.14.5)

on U for each j = 1, . . . , n, where f ′ = ∂f/∂z is the usual complex derivative
of f . This is the same as the directional derivative of f at u(x) in the direction
∂ju(x), which can be expressed as in (3.14.2).

3.14.2 The n = 2 case

If n = 2 and (3.14.4) holds, then one can check that

∂

∂z
(f ◦ u) = (f ′ ◦ u) ∂u

∂z
(3.14.6)

on U , using (3.14.5). Similarly,

∂

∂z
(f ◦ u) = (f ′ ◦ u) ∂u

∂z
(3.14.7)

on U . If
u is holomorphic on U,(3.14.8)

then it follows that
f ◦ u is holomorphic on U,(3.14.9)

by (3.14.6). In this case, we also get that

(f ◦ u)′ = (f ′ ◦ u)u′(3.14.10)

on U , by (3.14.7).
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3.14.3 Some more derivatives of compositions

It is well known that and not too difficult to show that

the complex exponential function is holomorphic on C,(3.14.11)

with complex derivative equal to itself. If n is any positive integer again and u
is any continuously-differentiable complex-valued function on U , then it follows
that

∂

∂xj
(expu(x)) = (exp u(x))

∂u

∂xj
(x)(3.14.12)

on U for each j = 1, . . . , n, as in (3.14.5).
Suppose now that u is a continuously-differentiable real-valued function on

U , and that W is an open subset of R that satisfies (3.14.3). If f is any
continuously-differentiable complex-valued function on W , then (3.14.5) holds
on U , by the usual chain rule.

3.15 More on first-order operators

Let n be a positive integer, and let U be a nonempty open subset of Rn. Also
let a1, . . . , an be n complex-valued functions on U , so that a = (a1, . . . , an) may
be considered as a mapping from U into Cn. If u is a continuously-differentiable
complex-valued function on U , then

La(u) =

n∑
j=1

aj
∂u

∂xj
(3.15.1)

defines a complex-valued function on U , as in Section 2.3.
Let b be another complex-valued function on U , and put

La,b(u) = La(u) + b u.(3.15.2)

This defines a differential operator on U , as in Section 2.4, with N = 1.

3.15.1 An auxiliary function c

If c is a continuously-differentiable complex-valued function on U , then

La(c u) = La(c)u+ cLa(u)(3.15.3)

on U , as in Section 2.3. If c(x) 6= 0 for every x ∈ U , then we get that

c−1 La(c u) = La(u) + c−1 La(c)u(3.15.4)

on U . If

b = c−1 La(c)(3.15.5)
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on U , then it follows that

La,b(u) = c−1 La(c u)(3.15.6)

on U . Of course, (3.15.5) is the same as saying that

La(c) = b c(3.15.7)

on U .
If γ is a continuously-differentiable complex-valued function on U , then

c(x) = exp γ(x)(3.15.8)

is a continuously-differentiable complex-valued function on U with c(x) 6= 0 for
every x ∈ U . We also have that

c−1 La(c) = La(γ)(3.15.9)

on U , as in (3.14.12). If
b = La(γ),(3.15.10)

then (3.15.5) holds, so that (3.15.6) holds, as before.

3.15.2 Products of eigenfunctions of La

Suppose that u, v are continuously-differentiable complex-valued functions on U
that are eigenfunctions for La, with eigenvalues λ, µ ∈ C, respectively. Observe
that

La(u v) = La(u) v + uLa(v) = λu v + u (µ v) = (λ+ µ)u v(3.15.11)

on U , so that u v is an eigenfunction for La with eigenvalue λ+ µ.



Chapter 4

First-order equations

4.1 Some real first-order operators

Let n be a positive integer, and let U be a nonempty open subset of Rn. Also
let a1, . . . , an be n real-valued functions on U . Alternatively,

a(x) = (a1(x), . . . , an(x))(4.1.1)

defines a mapping from U into Rn.

If u is a continuously-differentiable real-valued function on U , then put

La(u) =

n∑
j=1

aj
∂u

∂xj
.(4.1.2)

This defines a real-valued function on U . The value of this function at x ∈ U is
the directional derivative of u at x in the direction a(x), as in Subsection 1.3.2.

4.1.1 Some related functions w(t), z(t)

Let I be a nonempty open interval in the real line, or an open half-line, or
the whole real line, and let w(t) be a continuously-differentiable function of
t ∈ I with values in Rn. Equivalently, this means that the jth component
wj(t) of w(t) is a continuously-differentiable real-valued function on I for each
j = 1, . . . , n. One could also allow I to contain one or both endpoints, with
suitable interpretations using one-sided derivatives at the endpoints.

Suppose that

w(t) ∈ U for every t ∈ I,(4.1.3)

so that

z(t) = u(w(t))(4.1.4)

69
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defines a real-valued function on I. It is well known that z(t) is continuously
differentiable on I under these conditions, with

z′(t) =

n∑
j=1

w′
j(t) (∂ju)(w(t))(4.1.5)

for every t ∈ I. This is the same as the directional derivative of u at w(t) in the
direction w′(t).

4.1.2 A differential equation for w(t)

Suppose that
w′

j(t) = aj(w(t))(4.1.6)

for each j = 1, . . . , n and t ∈ I. This is the same as saying that

w′(t) = a(w(t))(4.1.7)

for every t ∈ I, as elements of Rn. In this case, we get that

z′(t) =

n∑
j=1

aj(w(t)) (∂ju)(w(t)) = (La(u))(w(t))(4.1.8)

for every t ∈ I.
Suppose for the moment that we also have that

La(u) = 0 on U.(4.1.9)

This implies that
z′(t) = 0(4.1.10)

for every t ∈ I, so that z(t) is constant on I.

4.1.3 Semilinear first-order equations

Suppose now that u satisfies the semilinear equation

(La(u))(x) + b(u(x), x) = 0(4.1.11)

for some real-valued function b on R× U . Under these conditions, we get that

z′(t) + b(z(t), w(t)) = 0(4.1.12)

for every t ∈ I, because of (4.1.8).
The equations (4.1.7) and (4.1.12) are called the characteristic equations for

(4.1.11). This is related to some remarks in Section 3.2.2 a of [70], and Section
B of Chapter 1 of [75].

It is interesting to consider the case where a is a nonzero constant, as in
Section 2.1 in [70].
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4.2 Quasilinear first-order equations

Let n be a positive integer again, and let U be a nonempty open subset of
Rn. In this section, we let a1, . . . , an and b be real-valued functions on R× U .
Consider the quasi-linear first-order partial differential equation

n∑
j=1

aj(u(x), x)
∂u

∂xj
(x) + b(u(x), x) = 0,(4.2.1)

where u is a continuously-differentiable real-valued function on U .

4.2.1 Corresponding functions w(t) and z(t)

Let I be an interval in the real line with nonempty interior, which may be
unbounded, as in Subsection 4.1.1. Also let w(t) be a continuously-differentiable
function of t ∈ I with values in Rn, and in fact in U , as before. If u is a
continuously-differentiable real-valued function on U , then

z(t) = u(w(t))(4.2.2)

is a continuously-differentiable real-valued function of t ∈ I, with derivative as
in (4.1.5).

Suppose that
w′

j(t) = aj(u(w(t)), w(t))(4.2.3)

for each j = 1, . . . , n and t ∈ I. If we consider a = (a1, . . . , an) as an Rn-valued
function on R× U , then this is the same as saying that

w′(t) = a(u(w(t)), w(t))(4.2.4)

for every t ∈ I, as elements of Rn. In this case,

z′(t) =

n∑
j=1

aj(u(w(t)), w(t))
∂u

∂xj
(x)(4.2.5)

for every t ∈ I, because of (4.1.5). If (4.2.1) holds, then we get that

z′(t) + b(z(t), w(t)) = 0(4.2.6)

for every t ∈ I.
Observe that (4.2.3) is the same as saying that

w′
j(t) = aj(z(t), w(t))(4.2.7)

for each j = 1, . . . , n and t ∈ I. Equivalently, this means that

w′(t) = a(z(t), w(t))(4.2.8)

for every t ∈ I, as elements of Rn. This together with (4.2.6) forms a coupled
system of ordinary differential equations for w(t) and z(t) that does not depend
on u. These are the characteristic equations for (4.2.1). This is related to some
remarks in Section 3.2.2 b of [70], and in Section B of Chapter 1 of [75].
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4.2.2 Comparison with the previous case

There is an important difference between this case and the one discussed in the
previous section. It is well known that solutions of the initial value problem for
systems of ordinary differential equations are unique under suitable conditions.
This implies that different curves corresponding to solutions of (4.1.7) cannot
cross each other, under suitable conditions. Although one also has uniqueness for
the initial value problem for the system (4.2.6), (4.2.8) under suitable conditions,
it is possible for the curves corresponding to the w(t)’s to cross each other. This
corresponds to some remarks in Sections 3.2.5 a, b of [70].

4.3 Fully nonlinear first-order equations

Let n be a positive integer, let U be a nonempty open subset of Rn, and let

F (q, y, x)(4.3.1)

be a real-valued function on
Rn ×R× U.(4.3.2)

Consider the fully nonlinear first-order partial differential equation

F (Du(x), u(x), x) = 0,(4.3.3)

where u is a continuously-differentiable real-valued function on U .

4.3.1 The functions w(t), z(t), p(t)

As in the previous sections, we would like to find some systems of ordinary
differential equations that are related to (4.3.3). Let I be an interval in the real
line with nonempty interior, and which may be unbounded, and let w(t) be a
continuously-differentiable function of t ∈ I with values in U again. Suppose
that u is a continuously-differentiable real-valued function on U , so that

z(t) = u(w(t))(4.3.4)

is a continuously-differentiable real-valued function of t ∈ I, as before.
If t ∈ I, then let p(t) ∈ Rn be defined by

p(t) = Du(w(t)),(4.3.5)

so that
pj(t) = (∂ju)(w(t))(4.3.6)

for each j = 1, . . . , n. We would like to find a nice system of ordinary differential
equations for w(t), z(t), and p(t) related to (4.3.3), as before. To do this,
we suppose that u is twice continuously-differentiable on U , so that p(t) is
continuously differentiable on I. More precisely,

p′j(t) =

n∑
l=1

w′
l(t) (∂j∂lu)(w(t))(4.3.7)

for every j = 1, . . . , n and t ∈ I.
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4.3.2 Differentiating the equation

Suppose that u satisfies (4.3.3) on U , and that F is continuously differentiable
on (4.3.2). If we differentiate the left side of (4.3.3) with respect to xj , then we
get that

0 =
∂

∂xj
(F (Du(x), u(x), x))(4.3.8)

=

n∑
l=1

∂F

∂ql
(Du(x), u(x), x)

∂2u

∂xj ∂xl
(x)

+
∂F

∂y
(Du(x), u(x), x)

∂u

∂xj
(x) +

∂F

∂xj
(Du(x), u(x), x)

on U . If t ∈ I, then we can take x = w(t) and use the definition (4.3.6) of pj(t),
to get that

n∑
l=1

∂F

∂ql
(p(t), z(t), w(t)) (∂j∂lu)(w(t)) +

∂F

∂y
(p(t), z(t), w(t)) pj(t)(4.3.9)

+
∂F

∂xj
(p(t), z(t), w(t)) = 0

for each j = 1, . . . , n.

4.3.3 The characteristic equations

Suppose that

w′
l(t) =

∂F

∂ql
(p(t), z(t), w(t))(4.3.10)

for each l = 1, . . . , n and t ∈ I. If we substitute this into (4.3.7), then we get
that

p′j(t) =

n∑
l=1

∂F

∂ql
(p(t), z(t), w(t))

∂2u

∂xj ∂xl
(w(t))(4.3.11)

= −∂F
∂y

(p(t), z(t), w(t)) pj(t)−
∂F

∂xj
(p(t), z(t), w(t))

for each j = 1, . . . , n and t ∈ I, using (4.3.9) in the second step.
Remember that z′(t) can be expressed as in (4.1.5). Using (4.3.10) and the

definition (4.3.6) of pj(t), we get that

z′(t) =

n∑
j=1

∂F

∂qj
(p(t), z(t), w(t)) pj(t)(4.3.12)

for every t ∈ I.
Thus (4.3.10), (4.3.11), and (4.3.12) form a coupled system of ordinary dif-

ferential equations for w(t), z(t), and p(t) that does not depend on u. These
are the characteristic equations for (4.3.3). This corresponds to some remarks
in Section 3.2.1 of [70], and Section B of Chapter 1 of [75].



74 CHAPTER 4. FIRST-ORDER EQUATIONS

4.4 More on fully nonlinear equations

Let n be a positive integer, let U be a nonempty open subset of Rn, and let
F (q, y, x) be a continuously-differentiable real-valued function on Rn ×R × U
again. If w(t), z(t), and p(t) are any continuously-differentiable functions on I
with values in Rn, R, and U , respectively, then

d

dt
F (p(t), z(t), w(t)) =

n∑
j=1

∂F

∂qj
(p(t), z(t), w(t)) p′j(t)(4.4.1)

+
∂F

∂y
(p(t), z(t), w(t)) z′(t)

+

n∑
j=1

∂F

∂xj
(p(t), z(t), w(t))w′

j(t)

on I.
If w(t), z(t), and p(t) satisfy the characteristic equations (4.3.10), (4.3.11),

and (4.3.12) on I, then it is easy to see that

d

dt
F (p(t), z(t), w(t)) = 0(4.4.2)

on I. Of course, this means that F (p(t), z(t), w(t)) is constant on I.

4.4.1 Related initial value problems

If
F (p(t), z(t), w(t)) = 0(4.4.3)

for some t ∈ I, then it follows that this holds for all t ∈ I under these conditions.
This corresponds to step 2 in the proof of Theorem 2 in Section 3.2.4 of [70],
and a remark near the end of Section B of Chapter 1 of [75].

Of course, if w(t), p(t), and z(t) are associated to a solution u of (4.3.3) as in
the previous section, then (4.4.3) holds by construction. Alternatively, one may
consider initial value problems for the characteristic equations (4.3.10), (4.3.11),
and (4.3.12) that satisfy (4.4.3) for some t, and thus for all t. Solutions to initial
value problems of this type can be used to try to find solutions of (4.3.3), as in
the next section.

4.4.2 The quasilinear case

In the quasilinear case, we have that

F (q, y, x) =

n∑
j=1

aj(y, x) qj + b(y, x)(4.4.4)

for some real-valued functions aj(y, x), 1 ≤ j ≤ n, and b(y, x) on R× U . Note
that (4.3.10) is the same as (4.2.7) in this case. If (4.4.3) holds, then it is easy to
see that (4.3.12) is the same as (4.2.6). This corresponds to a remark in Section
3.2.2 b of [70], and just after (1.14) in Section B of Chapter 1 of [75].
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4.4.3 A related partial differential equation

If c is a real number, then

F̂ (q, y, x) = F (q, y, x)− c(4.4.5)

is another continuously-differentiable real-valued function on Rn × R × U . If
u is a continuously-differentiable real-valued function on U , then the first-order
partial differential equation

F̂ (Du(x), u(x), x) = 0(4.4.6)

on U is the same as saying that

F (Du(x), u(x), x) = c(4.4.7)

on U . Note that the characteristic equations associated to F̂ as in the previous
section are the same as for F , because they only involve the derivatives of F ,
F̂ .

If F is as in (4.4.4), then

F̂ (q, y, x) =

n∑
j=1

aj(y, x) qj + b̂(y, x),(4.4.8)

with b̂(y, x) = b(y, x)−c. However, the characteristic equations associated to the

quasilinear equations corresponding to F and F̂ as in Subsection 4.2.1 are not
the same when c 6= 0. The equations for w′

j(t) are the same, but the analogue

of the equation (4.2.6) for z′(t) with b̂(y, x) instead of b(y, x) is a bit different.
The conditions under which this equation is supposed to be the same as in the
previous section are also a bit different.

4.5 Non-characteristic conditions

Let n be a positive integer, and let U be a nonempty open set in Rn. In Sections
4.1 – 4.3, we started with a solution u of a first-order partial differential equation
on U , and found systems of ordinary differential equations that described the
behavior of u along certain curves. These systems of ordinary differential equa-
tions do not depend on u, and may be used to try to find solutions of the partial
differential equation, at least locally, as in Section 3.2.4 of [70], and Section B
of Chapter 1 of [75].

4.5.1 The corresponding Cauchy problem

More precisely, this normally involves additional regularity conditions on the
functions used to define the original partial differential equation, in order to use
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appropriate results about systems of ordinary differential equations. One might
suppose that

u is given along a nice (n− 1)-dimensional submanifold Σ of Rn,(4.5.1)

with suitable regularity on Σ, as in [70, 75]. One would like to

find a solution to the partial differential equation near Σ,(4.5.2)

with the given values on Σ,

perhaps at least near a given point on Σ. This may be considered as an initial
value problem or Cauchy problem for the partial differential equation.

4.5.2 Initial value problems for the characteristic equa-
tions

Remember that we considered systems of ordinary differential equations for
w(t), z(t), and possibly p(t) defined on an interval I in the real line. To deal
with the initial value problem for the partial differential equation along Σ, we
want to consider suitable initial value problems for these systems of ordinary
differential equations associated to points in Σ. Let

σ ∈ Σ and t0 ∈ R(4.5.3)

be given, although one might normally simply take t0 = 0. The initial conditions
for w(t) and z(t) at t = t0 are

w(t0) = σ(4.5.4)

and
z(t0) = u(σ),(4.5.5)

where u(σ) ∈ R should be given as in (4.5.1). In the fully nonlinear case, we
would also need to specify p(t0) ∈ Rn, and we shall return to that later.

4.5.3 The non-characteristic condition

We would like to define u near Σ in such a way that

u(w(t)) = z(t)(4.5.6)

on I. In particular, we would like to be able to reach points in U near Σ by
such a path w(t). In order to do this, there is an additional non-characteristic
condition, as in Section 3.2.3 c of [70], and Section B of Chapter 1 of [75]. The
non-characteristic condition at σ asks that

w′(t0) not be tangent to Σ at w(t0).(4.5.7)

If ν(σ) is a nonzero element of Rn that is normal to Σ at σ, then this means
that

w′(t0) · ν(w(t0)) = w′(t0) · ν(σ) 6= 0.(4.5.8)
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4.5.4 The semilinear and quasilinear cases

In Section 4.1, the ordinary differential equations for w are given in terms of
the functions aj(x), 1 ≤ j ≤ n, and the non-characteristic condition at σ ∈ Σ
can be expressed as

a(σ) · ν(σ) =
n∑

j=1

aj(σ) νj(σ) 6= 0.(4.5.9)

In Subsection 4.2.1, the ordinary differential equations for w are coupled with
those for z, and the non-characteristic condition at σ can be expressed as

a(u(σ), σ) · ν(σ) =
n∑

j=1

aj(u(σ), σ) νj(σ) 6= 0.(4.5.10)

In particular, this depends on the value of u at σ.

4.5.5 The fully nonlinear case

In Subsection 4.3.3, the ordinary differential equations for w are coupled with
those for z and p, and the non-characteristic condition at σ can be expressed as

n∑
j=1

∂F

∂qj
(p(t0), z(t0), w(t0)) νj(w(t0))(4.5.11)

=

n∑
j=1

∂F

∂qj
(p(t0), u(σ), σ) νj(σ) 6= 0.

This depends on the value of u at σ, and p(t0), which is supposed to represent
the values of the first partial derivatives of u at σ.

4.5.6 Choosing p(t0)

Observe that

the directional derivative of u at σ in a direction that is tangent(4.5.12)

to Σ at σ is determined by the restriction of u to Σ.

Another condition on the first partial derivatives of u at σ is given by the partial
differential equation (4.3.3) at x = σ, i.e.,

F (Du(σ), u(σ), σ) = 0.(4.5.13)

One basically needs to be able to choose p(t0) in a way that is compatible with
these conditions, and the non-characteristic condition (4.5.11) depends on the
choice of p(t0).

In particular, p(t0) should satisfy

F (p(t0), z(t0), w(t0)) = F (p(t0), u(σ), σ) = 0,(4.5.14)

where the second step is as in (4.5.13). This implies that (4.4.3) holds along the
curve, as before.
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4.5.7 Initial conditions for p corresponding to other points
in Σ

In Section 3.2.3 c of [70], one starts with a suitable choice of p(t0) for a point σ in
Σ. If the non-characteristic condition (4.5.11) holds at σ, then one can use the
implicit function theorem to get suitable initial conditions for p corresponding
to other points in Σ that are close to σ.

In Section B of Chapter 1 of [75], one simply asks to have suitable initial
conditions for p corresponding to points along Σ. An important case where this
is easy to get will be discussed in Section 4.10.

4.6 More on the Euler operator

Let n be a positive integer, and put aj(x) = xj on Rn for each j = 1, . . . , n.
Thus a = (a1, . . . , an) is the identity mapping on Rn, and

La =

n∑
j=1

xj
∂

∂xj
(4.6.1)

is the Euler operator, as in Section 2.8. In this case, (4.1.6) reduces to

w′
j(t) = wj(t).(4.6.2)

This is solved on the real line by

wj(t) = cj exp t,(4.6.3)

with cj ∈ R for j = 1, . . . , n. Equivalently, (4.1.7) reduces to

w′(t) = w(t),(4.6.4)

which is solved on the real line by

w(t) = (exp t) c,(4.6.5)

where c = (c1, . . . , cn) ∈ Rn.

4.6.1 Relation with homogeneous functions

Let u be a continuously-differentiable real or complex-valued function on

Rn \ {0}.(4.6.6)

Suppose that c 6= 0, so that (4.6.5) is nonzero for each t ∈ R. Observe that

d

dt
(u((exp t) c)) =

n∑
j=1

(exp t) cj (∂ju)((exp t) c) = (La(u))((exp t) c)(4.6.7)
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for every t ∈ R. This is the same as (4.1.8) in this case. Of course, this is
analogous to considering u(τ x) for x ∈ Rn \ {0} and τ > 0, and differentiating
in τ , as in Section 2.8.

If
La(u) = b u(4.6.8)

on Rn \ {0} for some b ∈ C, then (4.6.7) implies that

d

dt
(u((exp t) c)) = b u((exp t) c)(4.6.9)

for every t ∈ R. This means that

u((exp t) c) = u(c) exp(b t)(4.6.10)

for every t ∈ R, as in Section 1.14, which holds automatically when t = 0.
One can use this to get that u is homogeneous of degree b on Rn \ {0}, as in
Subsection 2.8.1. Conversely, if u is homogeneous of degree b on Rn \ {0}, then
(4.6.10) holds, which implies that (4.6.9) holds, and thus (4.6.8) holds.

4.7 Angular derivatives in the plane

Let a1(x), a2(x) be the real-valued functions on R2 defined by

a1(x) = −x2, a2(x) = x1.(4.7.1)

Thus
a(x) = (a1(x), a2(x)) = (−x2, x1)(4.7.2)

defines a mapping from R2 onto itself. If we identify x = (x1, x2) ∈ R2 with
x1 + x2 i ∈ C, then

a(x) = −x2 + x1 i = i x.(4.7.3)

The corresponding system of ordinary differential equations (4.1.6) reduces
to

w′
1(t) = −w2(t), w

′
2(t) = w1(t)(4.7.4)

in this case. If we identify w(t) = (w1(t), w2(t)) with

w1(t) + w2(t) i,(4.7.5)

as before, then this is the same as saying that

w′(t) = i w(t),(4.7.6)

as in (4.1.7). This is solved on the real line by

w(t) = (exp(i t)) c,(4.7.7)

where c = (c1, c2) ∈ R2 is identified with c1 + c2 i ∈ C, as usual. Note that
w(0) = c.
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4.7.1 Angular derivatives and exp(i t)

Let U be a nonempty open subset of R2, and suppose that u is a continuously-
differentiable real or complex-valued function on U . Let La(u) be the continuous
real or complex-valued function on U , as appropriate, defined by

(La(u))(x) = −x2
∂u

∂x1
(x) + x1

∂u

∂x2
(x)(4.7.8)

for every x ∈ U , as in Section 4.1. This is the same as the directional derivative
of u at x, in the direction corresponding to i x, because of (4.7.3).

Let x ∈ R2 be given, and consider

{t ∈ R : exp(i t)x ∈ U},(4.7.9)

where R2 is identified with C as before. This is an open subset of R, and

u(exp(i t)x)(4.7.10)

may be considered as a continuously-differentiable real or complex-valued func-
tion of t in (4.7.9). Observe that

d

dt
(u(exp(i t)x)) = (La(u))(exp(i t)x)(4.7.11)

for every t in (4.7.9), as in (4.1.8).
A nice example related to this case is discussed in Section 3.2.2 a of [70].

4.8 Another example on R2

Now let a1(x), a2(x) be the real-valued functions on R2 defined by

a1(x) = x1, a2(x) = −x2,(4.8.1)

and put
a(x) = (a1(x), a2(x)) = (x1,−x2)(4.8.2)

for every x ∈ R2. This leads to the system of ordinary differential equations

w′
1(t) = w1(t), w

′
2(t) = −w2(t),(4.8.3)

as in (4.1.6) again. These equations are solved on the real line by

w1(t) = c1 exp t, w2(t) = c2 exp(−t),(4.8.4)

with c1, c2 ∈ R. If we put w(t) = (w1(t), w2(t)) and c = (c1, c2), then we get
that w(0) = c. It follows from (4.8.4) that

w1(t)w2(t) = c1 c2(4.8.5)

for every t ∈ R.
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4.8.1 The corresponding operator La

Let U be a nonempty subset of R2 again, and suppose that u is a continuously-
differentiable real or complex-valued function on U . Also let La(u) be the
continuous real or complex-valued function defined on U by

(La(u))(x) = x1
∂u

∂x1
(x)− x2

∂u

∂x2
(x),(4.8.6)

as in Section 4.1.
Let x ∈ R2 be given, and note that

{r ∈ R+ : (r x1, r
−1 x2) ∈ U}(4.8.7)

is an open subset of R. We may consider

u(r x1, r
−1 x2)(4.8.8)

as a continuously-differentiable real or complex-valued function of r on (4.8.7).
If r is in (4.8.7), then

d

dr
(u(r x1, r

−1 x2)) = x1 (∂1u)(r x1, r
−1 x2)− r−2 x2 (∂2u)(r x1, r

−1 x2)

= r−1 (La(u))(r x1, r
−1 x2).(4.8.9)

4.8.2 Using w(t)

Alternatively,
{t ∈ R : ((exp t)x1, (exp(−t))x2) ∈ U}(4.8.10)

is an open subset of R, and

u((exp t)x1, (exp(−t))x2)(4.8.11)

may be considered as a continuously-differentiable real or complex-valued func-
tion of t on (4.8.10). If t is in (4.8.10), then

d

dt
(u((exp t)x1, (exp(−t))x2)) = (La(u))((exp t)x1, (exp(−t))x2),(4.8.12)

as in (4.1.8).
This is related to Exercise (3) in Section B of Chapter 1 of [75]. In particular,

if f is a continuously-differentiable real or complex-valued function on an open
subset V of the real line, then

u(x1, x2) = f(x1 x2)(4.8.13)

is a continuously-differentiable function on the open set

{(x1, x2) ∈ Rn : x1 x2 ∈ V }(4.8.14)

in the plane, and
La(u) = 0(4.8.15)

on (4.8.14).
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4.9 Some simpler quasilinear equations

Let n be a positive integer, and let U be a nonempty open subset of Rn. Also let
a1, . . . , an be real-valued functions on R×U , and let b be a real-valued function
on R. Consider the quasilinear first-order partial differential equation

n∑
j=1

aj(u(x), x)
∂u

∂xj
(x) + b(u(x)) = 0,(4.9.1)

where u is a continuously-differentiable real-valued function on U . This is the
same as in Section 4.2, with b not depending on x ∈ U .

4.9.1 A simpler equation for z(t)

Let I be an interval in the real line with nonempty interior, and which may be
unbounded, and let w(t) be a continuously-differentiable function of t ∈ I with
values in U , as before. We previously considered a system of ordinary differential
equations for w(t) and a continuously-differentiable real-valued function z(t) of
t ∈ I. The equation for w(t) is

w′(t) = a(z(t), w(t))(4.9.2)

for every t ∈ I, as before. In this case, the equation for z(t) is

z′(t) + b(z(t)) = 0(4.9.3)

for every t ∈ I. This does not depend on w(t), and so a solution to (4.9.3) can
be used to get that (4.9.2) may be considered as a system of ordinary differential
equations for w(t) on I.

4.9.2 The case where b ≡ 0

If b ≡ 0 on R, then (4.9.1) reduces to

n∑
j=1

aj(u(x), x)
∂u

∂xj
(x) = 0,(4.9.4)

on U . Similarly, (4.9.3) reduces to

z′(t) = 0(4.9.5)

for every t ∈ I. Of course, this means that z(t) is constant on I. In this case,
(4.9.2) is simpler than before, although it depends on the constant value of z(t)
on I.
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4.9.3 Another simplification

Suppose now that a1, . . . , an are real-valued functions on R, which is to say that
they do not depend on x ∈ U . This means that (4.9.1) reduces to

n∑
j=1

aj(u(x))
∂u

∂xj
(x) + b(u(x)) = 0(4.9.6)

on U . Similarly, (4.9.2) reduces to

w′(t) = a(z(t))(4.9.7)

on I. If z(t) satisfies (4.9.3), then (4.9.7) can be solved more directly than
before.

4.9.4 Another simplification with b ≡ 0

If we also ask that b ≡ 0 on R again, then (4.9.4) reduces to

n∑
j=1

aj(u(x))
∂u

∂xj
(x) = 0(4.9.8)

on U . Because (4.9.3) reduces to (4.9.5) in this case, as before, z(t) is constant
on I, so that the right side of (4.9.7) is constant on I as well. This means that
the curve corresponding to w(t) follows a straight line, at constant speed. Of
course, the constant value of the right side of (4.9.7) depends on the constant
value of z(t) on I.

Thus, although these curves follow straight lines at constant speeds, these
lines do not have to be parallel to each other, nor do the constant speeds of the
individual curves need to be the same. In particular, it is possible for curves
like these to cross each other, as mentioned in Section 3.2.5 b of [70]. This can
lead to limitations on continuously-differentiable solutions of (4.9.8), as in [70].

Some equations like these will be mentioned in Section 4.12.

4.10 A simplification with xn

Let n be an integer greater than or equal to 2, and let U be a nonempty open
subset of Rn. Also let

F (q, y, x) = F (q1, . . . , qn, y, x)(4.10.1)

be a real-valued function on Rn×R×U , as in Section 4.3. If u is a continuously-
differentiable real-valued function on U , then the first-order partial differential
equation corresponding to F (q, y, x) can be expressed as

F
( ∂u

∂x1
(x), . . . ,

∂u

∂xn
(x), u(x), x

)
= 0.(4.10.2)
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Suppose that F (q, y, x) can be expressed as

F (q1, . . . , qn−1, qn, y, x) = qn + F̃ (q1, . . . , qn−1, y, x)(4.10.3)

for some real-valued function F̃ (q1, . . . , qn−1, y, x) on Rn−1 × R × U . In this
case, (4.10.2) is the same as saying that

∂u

∂xn
(x) + F̃

( ∂u

∂x1
(x), . . . ,

∂u

∂xn−1
(x), u(x), x

)
= 0.(4.10.4)

4.10.1 The corresponding characteristic equations

Suppose that F̃ is continuously differentiable on Rn−1 × R × U , so that F is
continuously differentiable on Rn ×R × U . This leads to a coupled system of
ordinary differential equations for w(t), z(t), and p(t) as in Subsection 4.3.3.
The differential equation for the nth component wn(t) of w(t) reduces to

w′
n(t) = 1(4.10.5)

for every t in the interval I.
In the quasilinear case, as in Section 4.2, the condition analogous to (4.10.3)

is that
an ≡ 1(4.10.6)

on R × U . In this case, we have a coupled system of ordinary differential
equations for w(t) and z(t), as before. The differential equation for wn(t) reduces
to (4.10.5) again.

Similarly, one may consider the condition (4.10.6) in Section 4.1, where an
is a real-valued function on U . The system of ordinary differential equations
for w(t) depends only on a, and the differential equation for wn(t) reduces to
(4.10.5).

4.10.2 Some non-characteristic conditions

Suppose that the hypersurface Σ mentioned in Subsection 4.5.1 is contained in
a hyperplane

{x ∈ Rn : xn = c}(4.10.7)

for some c ∈ R. Note that the non-characteristic condition holds when the
differential equation for wn(t) is as in (4.10.5) and Σ is of this type.

The directional derivatives of u at a point in Σ in directions tangent to Σ
are determined by the restriction of u to Σ, as before. In this case, this means
that the partial derivative of u with respect to xj on Σ is determined by the
restriction of u to Σ for j = 1, . . . , n − 1. If u satisfies a partial differential
equation as in (4.10.4), then it follows that the partial derivative of u with
respect to xn on Σ is determined by the restriction of u to Σ as well.

If u is given on Σ, then this makes it easy to get initial conditions for p at
points in Σ, as in Subsection 4.5.5. More precisely, the initial condition for pj
at a point in Σ is given by the partial derivative of u with respect to xj at the
point when j = 1, . . . , n− 1, and is determined by (4.10.4) when j = n.



4.11. SOME SIMPLER FULLY NONLINEAR EQUATIONS 85

4.11 Some simpler fully nonlinear equations

Let n be a positive integer, and let U be a nonempty open subset of Rn. Also
let

F (q, x)(4.11.1)

be a real-valued function on Rn×U , and consider the fully nonlinear first-order
partial differential equation

F (Du(x), x) = 0,(4.11.2)

where u is a continuously-differentiable real-valued function on U . This is the
same as in Section 4.3, where the function F (q, y, x) on Rn ×R × U does not
depend on y ∈ R.

4.11.1 Simpler characteristic equations

Let I be an interval in the real line with nonempty interior, and which may be
unbounded, and let w(t), z(t), and p(t) be continuously-differentiable functions
of t ∈ I with values in U , R, and Rn, respectively. If F (q, x) is continuously
differentiable on Rn×U , then we get a system of ordinary differential equations
for w(t), z(t), and p(t), as in Subsection 4.3.3, which has some simplifications
in this case. The equations for w′(t) are now

w′
l(t) =

∂F

∂ql
(p(t), w(t))(4.11.3)

for each l = 1, . . . , n and t ∈ I. The equations for p′(t) reduce to

p′j(t) = − ∂F

∂xj
(p(t), w(t))(4.11.4)

for each j = 1, . . . , n and t ∈ I. The equation for z′(t) is

z′(t) =

n∑
j=1

∂F

∂qj
(p(t), w(t)) pj(t)(4.11.5)

on I.
The right sides of these equations do not involve z(t). Thus (4.11.3) and

(4.11.4) form a system of ordinary differential equations for w(t) and p(t). If
one has solutions for these equations, then (4.11.5) can be solved directly.

4.11.2 Another simplification with xn

Suppose now that n ≥ 2, and that F (q, x) can be expressed as

F (q1, . . . , qn−1, qn, x) = qn + F̃ (q1, . . . , qn−1, x)(4.11.6)



86 CHAPTER 4. FIRST-ORDER EQUATIONS

for some real-valued function F̃ (q1, . . . , qn−1, x) on Rn−1×U , as in the previous
section. This means that (4.11.2) is the same as saying that

∂u

∂xn
(x) + F̃

( ∂u

∂x1
(x), . . . ,

∂u

∂xn−1
(x), x

)
= 0,(4.11.7)

on U , as before. Of course, (4.11.3) reduces to (4.10.5) when l = n. Similarly,
(4.11.5) can be reexpressed as

z′(t) =

n−1∑
j=1

∂F̃

∂qj
(p1(t), . . . , pn−1(t), w(t)) pj(t) + pn(t)(4.11.8)

in this case.

4.11.3 The Hamilton–Jacobi equation

If
F̃ (q1, . . . , qn−1, x) = F̃ (q1, . . . , qn−1, x1, . . . , xn−1, xn)(4.11.9)

does not depend on xn, then (4.11.7) is the same as the Hamilton–Jacobi equa-
tion. Under these conditions, (4.11.4) says that

p′n(t) = 0(4.11.10)

for every t ∈ I when j = n, so that pn is constant on I. This type of equation
is discussed in [70], starting in Section 3.2.5 c. These equations are normally
expressed a bit differently, as in the next section.

4.12 Other notation in n+ 1 variables

Let n be a positive integer, and let us identify Rn ×R with Rn+1 in the usual
way. An element of Rn × R may be expressed as (x, τ), where x ∈ Rn and
τ ∈ R.

Let U be a nonempty open subset of Rn ×R, and let

F (q1, . . . , qn, qn+1, y, x, τ )(4.12.1)

be a real-valued function on Rn+1 × R × U . This means that (4.12.1) is de-
fined for q1, . . . , qn, qn+1, y ∈ R and (x, τ) ∈ U . If u(x, τ) is a continuously-
differentiable real-valued function on U , then the first-order partial differential
equation corresponding to (4.12.1) can be expressed as

F
( ∂u

∂x1
(x, τ), . . . ,

∂u

∂xn
(x, τ),

∂u

∂τ
(x, τ), u(x, τ), x, τ

)
= 0.(4.12.2)

Suppose that (4.12.1) can be expressed as

qn+1 + F̃ (q1, . . . , qn, y, x, τ )(4.12.3)
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for some real-valued function F̃ (q1, . . . , qn, y, x, τ ) on Rn ×R×U . Under these
coditions, (4.12.2) is the same as saying that

∂u

∂τ
(x, τ) + F̃

( ∂u

∂x1
(x, τ), . . . ,

∂u

∂xn
(x, τ), u(x, τ), x, τ

)
= 0.(4.12.4)

This corresponds to (4.10.4), in this notation.

If F̃ is continuously differentiable on Rn ×R×U , then we can consider the
associated system of characteristic equations, as before. The analogue of (4.10.5)
with n replaced by n+1 permits us to identify t with τ , perhaps with a suitable
translation. Of course, an equation of the form (4.12.4) is often expressed with
t in place of τ .

If F̃ (q1, . . . , qn, y, x, τ ) does not depend on y or τ , then (4.12.4) is the same as
the Hamilton–Jacobi equation, as in the previous section, with slightly different
notation.

4.12.1 Some quasilinear equations

Let Φ be a continuously-differentiable function on the real line with values in
Rn. The partial differential equation

∂u

∂τ
+ divΦ(u) = 0(4.12.5)

is called a scalar conservation law, as in Example 5 in Section 3.2.5 b of [70].
More precisely, the divergence is taken in the x variables here. Equivalently,
this can be expressed as

∂u

∂τ
+

n∑
j=1

Φ′
j(u)

∂u

∂xj
= 0,(4.12.6)

where Φj is the jth component of Φ for each j = 1, . . . , n. This may be consid-
ered as an equation of the type mentioned in Subsection 4.9.4.

If n = 1 and b ∈ R, then

∂u

∂τ
(x, τ) + u(x, τ)

∂u

∂x
(x, τ) = b(4.12.7)

is a quasilinear first-order equation that is a simpler version of the type men-
tioned in Subsection 4.9.3. This is the inviscid form of Burger’s equation when
b = 0, which is discussed in Section 3.4.1 of [70]. In this case, this equation is
an example of a scalar conservation law. This equation with b = 1 is mentioned
in Problem 5 (c) in Section 3.5 of [70], as well as Example 2 and Exercise (4) in
Section B of Chapter 1 of [75].

4.13 Some other fully nonlinear equations

Let n be a positive integer, and let

F (q, y)(4.13.1)
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be a real-valued function on Rn ×R. Also let U be a nonempty open subset of
Rn, and consider the fully nonlinear first-order partial differential equation

F (Du(x), u(x)) = 0,(4.13.2)

where u is a continuously-differentiable real-valued function on U . This is the
same as in Section 4.3 again, where the function F (q, y, x) on Rn ×R×U does
not depend on x ∈ U .

4.13.1 Simpler characteristic equations again

Let I be an interval in the real line with nonempty interior, and which may be
unbounded, and let w(t), z(t), and p(t) be continuously-differentiable functions
of t ∈ I with values in U , R, and Rn, respectively, as before. If F (q, y) is
continuously differentiable on Rn ×R, then the system of ordinary differential
equations for w(t), z(t), and p(t) discussed in Subsection 4.3.3 can be simplified
in this case too. The equations for w′(t) are

w′
l(t) =

∂F

∂ql
(p(t), z(t))(4.13.3)

for each l = 1, . . . , n and t ∈ I. The equations for p′(t) now reduce to

p′j(t) = −∂F
∂y

(p(t), z(t)) pj(t)(4.13.4)

for each j = 1, . . . , n and t ∈ I. The equation for z′(t) reduces to

z′(t) =

n∑
j=1

∂F

∂qj
(p(t), z(t)) pj(t)(4.13.5)

for every t ∈ I.
The right sides of these equations do not involve w(t), so that (4.13.4) and

(4.13.5) form a system of ordinary differential equations for p(t) and z(t). If one
has solutions to these equations, then (4.13.3) can be solved directly, as before.

4.13.2 An additional simplification

Suppose for the moment that the derivative of F (q, y) in y does not depend on
y. This means that

F (q, y) = F (q, 0) +
∂F

∂y
(q, 0) y(4.13.6)

for every q ∈ Rn and y ∈ R. Equivalently, if we put

F1(q) = F (q, 0) and F2(q) = (∂F/∂y)(q, 0),(4.13.7)

then
F (q, y) = F1(q) + F2(q) y(4.13.8)
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for every q ∈ Rn and y ∈ R. Note that F1(q) and F2(q) can be arbitrary
continuously-differentiable real-valued functions of q ∈ Rn here. In this case,
(4.13.2) reduces to

F1(Du(x)) + F2(Du(x))u(x) = 0.(4.13.9)

Similarly, (4.13.4) reduces to

p′j(t) = −F2(p(t)) pj(t)(4.13.10)

under these conditions. The right side of this equation depends only on p(t), so
that one gets a system of ordinary differential equations for p(t). If one has a
solution for this system, then (4.13.5) gives an ordinary differential equation

z′(t) =

n∑
j=1

(∂F1

∂qj
(p(t)) +

∂F2

∂qj
(p(t)) z(t)

)
pj(t)(4.13.11)

for z(t), that is linear in z(t). Observe that (4.13.3) reduces to

w′
l(t) =

∂F1

∂ql
(p(t)) +

∂F2

∂ql
(p(t)) z(t)(4.13.12)

under these conditions. This can be solved directly using solutions to (4.13.10)
and (4.13.11), as before.

4.13.3 Taking F2(q) to be constant

Suppose now that the derivative of F (q, y) in y is a constant c ∈ R, so that

F (q, y) = F (q, 0) + c y(4.13.13)

for every q ∈ Rn and y ∈ R. This is the same as saying that

F2(q) = c(4.13.14)

on Rn in the notation of (4.13.8), so that

F (q, y) = F1(q) + c y(4.13.15)

for every q ∈ Rn and y ∈ R, as in (4.13.8). Thus (4.13.9) reduces to

F1(Du(x)) + c u(x) = 0.(4.13.16)

In this case, (4.13.10) reduces to

p′j(t) = −c pj(t)(4.13.17)

on I for each j = 1, . . . , n. This is solved by taking

pj(t) = aj exp(−c t)(4.13.18)
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for some real numbers a1, . . . , an. Similarly, (4.13.11) reduces to

z′(t) =

n∑
j=1

∂F1

∂qj
(p(t)) pj(t),(4.13.19)

and (4.13.12) reduces to

w′
l(t) =

∂F1

∂ql
(p(t)).(4.13.20)

Note that the right sides of these equation do not involve z(t) under these
conditions. Example 3 in Section 3.2.2 c of [70] is a nice example of this type.

4.14 A simpler case

Let n be a positive integer again, and let

F (q)(4.14.1)

be a real-valued function on Rn. Consider the fully nonlinear first-order partial
differential equation

F (Du(x)) = 0,(4.14.2)

where u is a continuously-differentiable real-valued function on a nonempty open
subset U of Rn. This is the same as in Section 4.3, where the function F (q, y, x)
on Rn × R × U does not depend on either y ∈ R or x ∈ U . This may also
be considered as a particular case of the classes of fully nonlinear equations
discussed in each of Sections 4.11 and 4.13. If a ∈ Rn and b ∈ R, then

u(x) = a · x+ b(4.14.3)

satisfies (4.14.2) on Rn if and only if

F (a) = 0.(4.14.4)

4.14.1 Much simpler characteristic equations

Let I be an interval in the real line with nonempty interior, and which may be
unbounded, and let w(t), z(t), and p(t) be continuously-differentiable functions
on I with values in U , R, and Rn, respectively, as usual. If F (q) is continuously
differentiable on Rn, then the system of ordinary differential equations for w(t),
z(t), and p(t) discussed in Subsection 4.3.3 can be simplified further, as follows.
The equations for w′(t) are

w′
l(t) =

∂F

∂ql
(p(t))(4.14.5)

for each l = 1, . . . , n and t ∈ I. The equations for p′(t) are simply

p′j(t) = 0(4.14.6)



4.14. A SIMPLER CASE 91

for each j = 1, . . . , n and t ∈ I. The equation for z′(t) is

z′(t) =

n∑
j=1

∂F

∂qj
(p(t)) pj(t)(4.14.7)

for every t ∈ I.
Of course, (4.14.6) implies that p(t) is constant on I. This means that the

right sides of (4.14.5) and (4.14.7) are constant on I as well.

4.14.2 The eikonal equation

The eikonal equation
|∇u(x)| = 1(4.14.8)

is a partial differential equation of this type. More precisely, this is equivalent
to saying that

|∇u(x)|2 = 1(4.14.9)

on U . This corresponds to taking

F (q) = |q|2 − 1 =

n∑
j=1

q2j − 1,(4.14.10)

which is a smooth function on Rn.

4.14.3 More on Hamilton–Jacobi equations

Suppose that n ≥ 2, and that F (q) can be expressed as

F (q1, . . . , qn) = qn + F̃ (q1, . . . , qn−1)(4.14.11)

for some real-valued function F̃ (q1, . . . , qn−1) on Rn−1, as in Section 4.10. In
this case, (4.14.2) is the same as saying that

∂u

∂xn
(x) + F̃

( ∂u

∂x1
(x), . . . ,

∂u

∂xn−1
(x)

)
= 0(4.14.12)

on U , as before. Remember that (4.14.5) reduces to (4.10.5) when l = n.
Similarly, (4.14.7) reduces to

z′(t) =

n−1∑
j=1

∂F̃

∂qj
(p1(t), . . . , pn−1(t)) pj(t) + pn(t)(4.14.13)

under these conditions. Of course, (4.14.12) is a type of Hamilton–Jacobi equa-
tion, as in Subsection 4.11.3. This may normally be expressed a bit differently,
as in Section 4.12. This type of Hamilton–Jacobi equation is discussed in Section
3.3 of [70].
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4.15 Quasilinearity and derivatives

Let n be a positive integer, let U be a nonempty open subset of Rn, and let
F (q, y, x) be a continuously-differentiable real-valued function on Rn ×R× U .
Also let u be a twice continuously-differentiable real-valued function on U , and
suppose that

F (Du(x), u(x), x) is constant on U.(4.15.1)

This implies that
∂

∂xj
(F (Du(x), u(x), x)) = 0(4.15.2)

on U for each j = 1, . . . , n. This can be expanded using the chain rule to get
partial differential equations that are linear in the second derivatives of u, as in
Subsection 4.3.2.

4.15.1 A simplification in y

Suppose that there is a real number c such that

F (q, y, x) = F (q, 0, x) + c y(4.15.3)

on Rn ×R× U . Equivalently,

F (q, y, x) = F0(q, x) + c y(4.15.4)

on Rn × R × U , where F0(q, x) = F (q, 0, x) is a continuously-differentiable
real-valued function on Rn×U . In this case, (4.15.1) is the same as saying that

F0(Du(x), x) + c u(x) is constant on U.(4.15.5)

This implies that
∂

∂xj
(F0(Du(x), x)) + c

∂u

∂xj
(x) = 0(4.15.6)

on U for each j = 1, . . . , n, as before. It is easy to see that these equations only
involve the first and second derivatives of u, and not u itself.

4.15.2 Some related quasilinear equations

Suppose now that n ≥ 2, and that F (q, y, x) can be expressed as

F (q, y, x) = F̂ (q1, x) +

n∑
l=2

al ql + c y(4.15.7)

onRn×R×U . Here F̂ (q1, x) is a continuously-differentiable real-valued function
on R × U , and a2, . . . , an and c are real numbers. Under these conditions,
(4.15.1) is the same as saying that

F̂
( ∂u

∂x1
(x), x

)
+

n∑
l=2

al
∂u

∂xl
(x) + c u(x) is constant on U.(4.15.8)
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In this case, the equation (4.15.2) with j = 1 reduces to

∂F̂

∂q1

( ∂u

∂x1
(x), x

) ∂2u
∂x21

(x) +

n∑
l=2

al
∂2u

∂x1 ∂xl
(x)(4.15.9)

+c
∂u

∂x1
(x) +

∂F̂

∂x1

( ∂u

∂x1
(x), x

)
= 0.

This may be considered as a first-order quasilinear partial differential equation
in ∂u/∂x1 on U .

Suppose that n = 2, and that F (q, y, x) can be expressed as

F (q, y, x) = F̃ (q1) + q2,(4.15.10)

where F̃ is a continuously-differentiable real-valued function on R. This corre-
sponds to taking F̂ (q1, x) = F̃ (q1), a2 = 1, and c = 0 in (4.15.7). This means
that (4.15.9) reduces to

F̃ ′
( ∂u

∂x1
(x)

) ∂2u
∂x21

(x) +
∂2u

∂x1 ∂x2
(x) = 0.(4.15.11)

This may be considered as a scalar conservation law in ∂u/∂x1, as in Subsection
4.12.1. This corresponds to a remark about the initial value problem (26) in
Section 3.4.2 in [70].



Chapter 5

Some flows and
exponentials

5.1 Some flows on Rn

Let n be a positive integer, and let us identify Rn×R with Rn+1, as in Section
4.12. An element of Rn × R may be expressed as (x, τ), with x ∈ Rn and
τ ∈ R, as before. Let I be an interval in R with nonempty interior, which may
be unbounded, and let W be a nonempty open subset of Rn.

Suppose that for each t ∈ I,

ϕt is a mapping from W into itself.(5.1.1)

Typically we might have that 0 ∈ I, and that ϕ0 is the identity mapping on W .
If ξ ∈W , then we ask that

ϕt(ξ) be differentiable as a function of t ∈ I with values in Rn.(5.1.2)

This should be interpreted in terms of one-sided derivatives at any endpoints of
I that are contained in I.

5.1.1 Functions on W × I

Let u(x, τ) be a continuously-differentiable real or complex-valued function on
W×I. If x ∈W and τ is an endpoint of I that is contained in I, then the partial
derivative of u at (x, τ) in xj can be defined in the usual way for j = 1, . . . , n,
and the partial derivative in τ can be defined as a one-sided derivative.

If ξ ∈ W , then u(ϕt(ξ), t) is differentiable as a real or complex-valued func-
tion of t ∈ I, with

d

dt
(u(ϕt(ξ), t)) =

n∑
j=1

dϕt,j(ξ)

dt

∂u

∂xj
(ϕt(ξ), t) +

∂u

∂τ
(ϕt(ξ), t).(5.1.3)

Here ϕt,j(ξ) is the jth coordinate of ϕt(ξ) for each j = 1, . . . , n.
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5.1.2 An additional hypothesis on ϕt

Note that
Φ(ξ, t) = (ϕt(ξ), t)(5.1.4)

defines a mapping from W × I into itself. Suppose now that for each t ∈ I,

ϕt is a one-to-one mapping from W onto itself.(5.1.5)

Equivalently, this means that

Φ is a one-to-one mapping from W × I onto itself.(5.1.6)

If 1 ≤ j ≤ n, then let aj be the real-valued function on W × I such that

aj(ϕt(ξ), t) =
dϕt,j(ξ)

dt
(5.1.7)

for every ξ ∈W and t ∈ I. Also put

an+1 ≡ 1(5.1.8)

on W × I, so that
a = (a1, . . . , an, an+1)(5.1.9)

defines a mapping from W × I into Rn+1.

5.1.3 The associated operator La

Put

La(u) =

n∑
j=1

aj
∂u

∂xj
+
∂u

∂τ
(5.1.10)

on W × I, as in Section 4.1. By construction,

(La(u))(ϕt(ξ), t) =
d

dt
(u(ϕt(ξ), t))(5.1.11)

for every ξ ∈W and t ∈ I. Similarly, if ξ ∈W , then

(ϕt(ξ), t)(5.1.12)

satisfies the system of ordinary differential equations associated to a as a func-
tion of t ∈ I as for w(t) in Subsection 4.1.2.

5.1.4 Another additional hypothesis on ϕt

Suppose for the moment that I = R, and that

ϕr+t(ξ) = ϕr(ϕt(ξ))(5.1.13)

for every ξ ∈W and r, t ∈ R. This implies that the derivative of ϕt(ξ) in t at t
is the same as the derivative of ϕr(ϕt(ξ)) in r at r = 0. This means that

a(ϕt(ξ), t) = a(ϕt(ξ), 0),(5.1.14)

so that a(x, τ) does not depend on τ . Note that (5.1.13) implies that ϕ0 is the
identity mapping on W , because ϕ0 is supposed to map W onto itself.
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5.2 A more local version

Let n be a positive integer, and let us identify Rn ×R with Rn+1 again. Let
U be an open subset of Rn ×R, and put

Ut = {x ∈ Rn : (x, t) ∈ U}(5.2.1)

for each t ∈ R, which is an open set in Rn. Let V be another open subset of
Rn ×R, and let Vt be as in (5.2.1) for each t ∈ R. If ξ ∈ Rn, then

{t ∈ R : (ξ, t) ∈ V }(5.2.2)

is an open subset of R.
Suppose that for each t ∈ R,

ϕt is a mapping from Vt into Ut.(5.2.3)

This means that
Φ(ξ, t) = (ϕt(ξ), t)(5.2.4)

defines a mapping from V into U . If ξ ∈ Rn, then we ask that

ϕt(ξ) be differentiable as a function of t(5.2.5)

in (5.2.2) with values in Rn.

5.2.1 Functions on U

Let u be a continuously-differentiable real or complex-valued function on U ,
and let ξ ∈ Rn be given. If t is an element of (5.2.2), then (ξ, t) ∈ V , ξ ∈ Vt,
ϕt(ξ) ∈ Ut, and thus

(ϕt(ξ), t) ∈ U.(5.2.6)

This means that
u(ϕt(ξ), t)(5.2.7)

is defined as a real or complex-valued function on (5.2.2). In fact, (5.2.7) is
differentiable as a real or complex-valued function of t in (5.2.2), with derivative
in t as in (5.1.3).

5.2.2 An additional bijectivity condition

Suppose now that for each t ∈ R,

ϕt is a one-to-one mapping from Vt onto Ut.(5.2.8)

Equivalently, this means that the mapping Φ in (5.2.4) is a one-to-one mapping
from V onto U . If 1 ≤ j ≤ n, then let aj be the real-valued function on U such
that

aj(ϕt(ξ), t) =
dϕt,j(ξ)

dt
(5.2.9)
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for every (ξ, t) ∈ V . Also put an+1 ≡ 1 on U , so that a = (a1, . . . , an, an+1)
defines a mapping from U into Rn+1.

Let La(u) be defined on U as in (5.1.10). If (ξ, t) ∈ V , then

(La(u))(ϕt(ξ), t) =
d

dt
(u(ϕt(ξ), t)),(5.2.10)

as before. Similarly, if ξ ∈ Rn, then

(ϕt(ξ), t)(5.2.11)

satisfies the system of ordinary differential equations associated to a as a func-
tion of t in (5.2.2) as for w(t) in Subsection 4.1.2.

Let (ξ, t) ∈ V be given, and suppose that

(ϕt(ξ), 0) ∈ V.(5.2.12)

This implies that
(ϕt(ξ), r) ∈ V(5.2.13)

for every r ∈ R with |r| sufficiently small. Of course, we also have that

(ξ, t+ r) ∈ V(5.2.14)

when |r| is sufficiently small.

5.2.3 An additional condition on ϕr+t

Suppose that
ϕr+t(ξ) = ϕr(ϕt(ξ))(5.2.15)

when r is sufficiently small. This implies that the derivative of ϕt(ξ) in t at t
is equal to the derivative of ϕr(ϕt(ξ)) in r at r = 0, as in the previous section.
This means that

a(ϕt(ξ), t) = a(ϕt(ξ), 0),(5.2.16)

as before.

5.3 Some basic first-order operators

Let n be a positive integer, and suppose that aj(x) is a real-valued linear function
on Rn for each j = 1, . . . , n. This can be expressed as

aj(x) =

n∑
l=1

aj,l xl(5.3.1)

for x ∈ Rn and j = 1, . . . , n, where (aj,l) = (aj,l)
n
j,l=1 is an n× n matrix of real

numbers. Equivalently,

a(x) = (a1(x), . . . , an(x))(5.3.2)
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is a linear mapping from Rn into itself, which corresponds to this matrix in the
usual way.

Let U be a nonempty open subset of Rn, and let u be a continuously-
differentiable real or complex-valued function on U . Thus

(La(u))(x) =

n∑
j=1

aj(x)
∂u

∂xj
(x)(5.3.3)

defines a continuous real or complex-valued function on U , as appropriate. Note
that the examples mentioned in Sections 2.8, 4.7, and 4.8 are of this form.

5.3.1 Some homogeneity conditions

Suppose for the moment that U = Rn \ {0}, and that

u is homogeneous of degree b ∈ C.(5.3.4)

It is easy to see that

La(u) is homogeneous of degree b(5.3.5)

as well, because the partial derivatives of u are homogeneous of degree b− 1, as
in Subsection 2.8.2. Similarly, if p is a polynomial on Rn with real or complex
coefficients that is homogeneous of degree k for some nonnegative integer k,
then La(p) is a homogeneous polynomial of degree k on Rn too.

5.3.2 Commutators in this case

Let b1(x), . . . , bn(x) be n more real-valued linear functions on Rn, and let b and
Lb be as before. Observe that

cj = La(bj)− Lb(aj)(5.3.6)

is a real-valued linear function on Rn for each j = 1, . . . , n, as in the preceding
paragraph. If c and Lc are as before, then Lc corresponds to the commutator
of La and Lb, as in Subsection 2.3.1.

Let (bj,l) and (cj,l) be the matrices corresponding to b and c, respectively,
as before. Clearly

La(bj) =

n∑
k=1

n∑
l=1

ak,l xl
∂bj
∂xk

=

n∑
k=1

n∑
l=1

ak,lbj,k xl(5.3.7)

for each j = 1, . . . , n. Similarly,

Lb(aj) =

n∑
k=1

n∑
l=1

bk,l aj,k xl(5.3.8)
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for each j = 1, . . . , n. It follows that

cj,l =

n∑
k=1

bj,k ak,l −
n∑

k=1

aj,k bk,l(5.3.9)

for each j, l = 1, . . . , n.

5.4 Exponentiating real matrices

Let n be a positive integer, and let A be a linear mapping from Rn into itself.
This corresponds to an n × n matrix of real numbers in a standard way, as in
the previous section. Of course, the composition of two linear mappings on Rn

is another linear mapping on Rn. It is well known and not difficult to see that
this corresponds to matrix multiplication of the corresponding matrices.

If j is a positive integer, then Aj denotes the composition of A with itself
a total of j − 1 times, so that there are j factors of A. This is interpreted as
being the identity mapping I on Rn when j = 0. One would like to define the
exponential of A by

expA =

∞∑
j=0

(1/j!)Aj ,(5.4.1)

as another linear mapping on Rn.

5.4.1 Absolute convergence of the sum

More precisely, it is well known and not difficult to show that there is a non-
negative real number C such that

|A(v)| ≤ C |v|(5.4.2)

for every v ∈ Rn. The smallest such C is known as the operator norm of A
with respect to the standard Euclidean norm on Rn. It follows that

|Aj(v)| ≤ Cj |v|(5.4.3)

for every j ≥ 1 and v ∈ Rn. This also works with j = 0, and Cj interpreted as
being equal to 1, as usual.

If v ∈ Rn, then
∞∑
j=0

(1/j!)Cj |v|(5.4.4)

is a convergent series of nonnegative real numbers, with sum equal to

(expC) |v|,(5.4.5)

because of the usual series expansion for expC. It follows that

∞∑
j=0

(1/j!) |Aj(v)|(5.4.6)
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is a convergent series of nonnegative real numbers, with sum less than or equal
to (5.4.5), because of (5.4.3) and the comparison test. Let (Aj(v))l be the lth
coordinate of Aj(v) ∈ Rn for every l = 1, . . . , n, so that

|(Aj(v))l| ≤ |Aj(v)|(5.4.7)

for each j ≥ 0 and l = 1, . . . , n. Thus

∞∑
j=0

(1/j!) |(Aj(v))l|(5.4.8)

is a convergent series of nonnegative real numbers for every l = 1, . . . , n. This
means that

∞∑
j=0

(1/j!) (Aj(v))l(5.4.9)

is an absolutely convergent series of real numbers for every l = 1, . . . , n.
We would like to put

(expA)(v) =

∞∑
j=0

(1/j!)Aj(v),(5.4.10)

as an element of Rn. The lth coordinate of the right side is equal to (5.4.9) for
every l = 1, . . . , n. It is easy to see that this defines a linear mapping from Rn

into itself. One could also look at this in terms of matrices, where the entries
of the matrix corresponding to expA can be expressed as absolutely convergent
series of real numbers.

5.4.2 Exponentials and eigenvectors

Suppose that v is an eigenvector of A with eigenvalue λ ∈ R, so that

A(v) = λ v.(5.4.11)

This implies that
Aj(v) = λj v(5.4.12)

for every j ≥ 0. It follows that

(expA)(v) = (expλ) v.(5.4.13)

5.4.3 Exponentials and conjugations

Let T be a one-to-one linear mapping from Rn onto itself, so that the inverse
mapping T−1 is linear on Rn too. It is easy to see that

T ◦Aj ◦ T−1 = (T ◦A ◦ T−1)j(5.4.14)

for every j ≥ 0. This means that

T ◦ (expA) ◦ T−1 = exp(T ◦A ◦ T−1).(5.4.15)
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5.5 Exponentials of sums

Let n be a positive integer, and let A, B be linear mappings from Rn into itself.
Suppose that A and B commute on Rn, so that

A ◦B = B ◦A.(5.5.1)

If l is a positive integer, then one can check that

(A+B)l =

l∑
j=0

(
l

j

)
Aj ◦Bl−j ,(5.5.2)

as in the binomial theorem.
This implies that

exp(A+B) =

∞∑
l=0

(1/l!) (A+B)l(5.5.3)

=

∞∑
l=0

( l∑
j=0

(1/j!) (1/(l − j)!)Aj ◦Bl−j
)
.

The right side corresponds to the Cauchy product of the series used to define
expA and expB. In particular, this means that the same terms are being
summed, but in different ways. One can use this to show that

exp(A+B) = (expA) ◦ (expB)(5.5.4)

under these conditions. More precisely, this also uses absolute convergence of
the sums, to ensure that the different ways of arranging the sums lead to the
same results.

5.5.1 Invertibility of expA

Note that expA automatically commutes with A. Similarly, if A commutes with
B, then expA commutes with B. Of course, if A = 0, then expA = I. If A is
any linear mapping on Rn, then

(expA) ◦ (exp(−A)) = (exp(−A)) ◦ (expA) = I,(5.5.5)

by (5.5.4). This implies that expA is invertible on Rn, with inverse equal to
exp(−A).

5.5.2 The exponential of A′

Let A, B be any two linear mappings on Rn, and let A′, B′ be the linear
mappings corresponding to them as in Subsection 1.15.2. If v, w ∈ Rn, then

(A ◦B)(v) · w = A(B(v)) · w = B(v) ·A′(w)

= v ·B′(A′(w)) = v · (B′ ◦A′)(w).(5.5.6)
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This means that
(A ◦B)′ = B′ ◦A′.(5.5.7)

In particular,
(Aj)′ = (A′)j(5.5.8)

for each j ≥ 0. It follows that

(expA)′ = exp(A′).(5.5.9)

If
A′ = −A,(5.5.10)

then we get that

(expA)′ = exp(A′) = exp(−A) = (expA)−1.(5.5.11)

This means that expA is an orthogonal transformation on Rn, as in Subsection
1.15.1.

5.6 The exponential of t A

Let n be a positive integer, let A be a linear mapping from Rn into itself, and
let t be a real number. Of course, tA may be considered as a linear mapping on
Rn, with (tA)(v) = tA(v) for every v ∈ Rn. Thus the exponential of tA may
be defined as before, so that

exp(tA) =

∞∑
j=0

(1/j!) tj Aj .(5.6.1)

This may be considered as a power series in t, whose coefficients are linear
mappings on Rn. If v ∈ Rn, then

(exp(tA))(v) =

∞∑
j=0

(1/j!) tj Aj(v)(5.6.2)

may be considered as a power series in t, with coefficients in Rn.
More precisely, for each l = 1, . . . , n, the lth coordinate of (exp(tA))(v) is

((exp(tA))(v))l =

∞∑
j=0

(1/j!) tj (Aj(v))l.(5.6.3)

This is an absolutely convergent power series in t with coefficients in R. Sim-
ilarly, the entries of the matrix associated to exp(tA) may be expressed as
absolutely convergent power series in t with real coefficients.

In particular, these are smooth functions of t on R, by standard results
about power series. We can differentiate these series termwise, to get that

d

dt
((exp(tA))(v)) = A((exp(tA))(v))(5.6.4)
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for every v ∈ Rn. This can be expressed by

d

dt
(exp(tA)) = A ◦ (exp(tA)).(5.6.5)

5.6.1 Differential equations related to exp(t A)

Let U be a nonempty open subset of Rn, and let u be a real or complex-valued
function on U that is continuously-differentiable on U . Put

(LA(u))(x) =

n∑
l=1

(A(x))l
∂u

∂xl
(x)(5.6.6)

for each x ∈ U . This is the same as in Section 5.3, with different notation. This
is related to the system of ordinary differential equations

w′(t) = A(w(t)),(5.6.7)

as in Subsection 4.1.2, where w(t) is a continuously-differentiable function on
an interval in the real line with nonempty interior, and with values in Rn. If
v ∈ Rn, then

w(t) = (exp(tA))(v)(5.6.8)

satisfies (5.6.7), as in (5.6.4).
Let I be an open interval in the real line, which may be unbounded, with

(exp(tA))(v) ∈ U(5.6.9)

for each t ∈ I. Under these conditions,

d

dt
u((exp(tA))(v)) = (LA(u))((exp(tA))(v))(5.6.10)

on I, as in Subsection 4.1.2. This can be used to analyze first-order semilinear
equations on U involving LA, as before.

5.7 Traces and determinants

Let n be a positive integer, and let (aj,l) be an n × n matrix of real numbers.
The trace of this matrix is defined as usual as

n∑
j=1

aj,j .(5.7.1)

The determinant of (aj,l) is defined in a standard way, that we shall not repeat
here.

If A is a linear mapping from Rn into itself, then A corresponds to an n×n
matrix (aj,l) of real numbers in a standard way. The trace trA and determinant
detA of A are defined as the trace and determinant of (aj,l), respectively.
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Let B be another linear mapping from Rn into itself. It is well known and
not difficult to verify that

tr(A ◦B) = tr(B ◦A).(5.7.2)

It is also well known that

det(A ◦B) = (detA) (detB).(5.7.3)

If t is a real number, then I + tA is another linear mapping from Rn. It is
clear from the definition of the determinant that

det(I + tA)(5.7.4)

is a polynomial in t of degree at most n. One can check that this polynomial is
of the form

1 + (trA) t+ · · · ,(5.7.5)

where the additional terms are multiples of tj , 2 ≤ j ≤ n. This means that the
derivative of (5.7.4) in t at t = 0 is equal to trA.

5.7.1 A connection with the exponential

It is well known that

det(expA) = exp(trA).(5.7.6)

One way to see this is to use calculus to show that

det(exp(tA)) = exp(t trA)(5.7.7)

for every t ∈ R. Note that both sides of this equation are equal to 1 at t = 0.

The right side of (5.7.7) satisfies the differential equation

f ′(t) = (trA) f(t)(5.7.8)

on R. We would like to check that the left side of (5.7.7) satisfies the same
differential equation. If we can do that, then (5.7.7) follows, by standard argu-
ments.

One can verify directly that the left side of (5.7.7) satisfies (5.7.8) at t = 0.
Let t0 ∈ R be given, and observe that

exp(tA) = (exp((t− t0)A)) ◦ (exp(t0A))(5.7.9)

for every t ∈ R, as in Section 5.5. One can use this to obtain that the left side
of (5.7.7) satisifes (5.7.8) at t0 from the analogous statement at 0.
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5.8 Exponentiating complex matrices

Letm be a positive integer, and let A be a linear mapping from Cm into itself, as
a vector space over the complex numbers. This corresponds to an m×m matrix
of complex numbers in the usual way. The composition of two linear mappings
on Cm corresponds to matrix multiplication of the corresponding matrices of
complex numbers.

If j is a positive integer, then Aj denotes the composition of A with itself a
total of j − 1 times, so that there are j factors of A, and which is interpreted
as being the identity mapping I on Cm when j = 0. As in the real case, it is
well known and not difficult to show that there is a nonnegative real number C
such that

|A(v)| ≤ C |v|(5.8.1)

for every v ∈ Cm, and the smallest such C is the operator norm of A with
respect to the standard Euclidean norm on Cm. This implies that

|Aj(v)| ≤ Cj |v|(5.8.2)

for every j ≥ 0 and v ∈ Cm.
One would like to define the exponential of A as another linear mapping on

Cm by

expA =

∞∑
j=0

(1/j!)Aj ,(5.8.3)

as in Section 5.4. More precisely, if v ∈ Cm, then we would like to put

(expA)(v) =

∞∑
j=0

(1/j!)Aj(v),(5.8.4)

as an element of Cm, as before. This means that for each l = 1, . . . ,m, the lth
coordinate of (expA)(v) is equal to

((expA)(v))l =

∞∑
j=0

(1/j!) (Aj(v))l.(5.8.5)

The right side is an absolutely convergent series of complex numbers, by the
comparison test. This defines a linear mapping on Cm, and the entries of
the corresponding matrix can be expressed as absolutely convergent series of
complex numbers in an analogous way.

Note that a linear mapping from Rm into itself, as a vector space over the
real numbers, has a unique extension to a linear mapping from Cm into itself, as
a vector space over the complex numbers. Both linear mappings correspond to
the same m×m matrix of real numbers, which may be considered as an m×m
matrix of complex numbers too. The exponential of the linear mapping on Cm

is the same as the extension of the exponential of the linear mapping on Rm to
a linear mapping on Cm.
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5.8.1 Some additional properties of expA

Suppose that v ∈ Cm is an eigenvector of A with eigenvalue λ ∈ C, so that

A(v) = λ v.(5.8.6)

It is easy to see that
(expA)(v) = (expλ) v,(5.8.7)

as before. If T is a one-to-one linear mapping from Cm onto itself, then

T ◦ (expA) ◦ T−1 = exp(T ◦A ◦ T−1),(5.8.8)

as before.
Let B be another linear mapping from Cm into itself, and suppose that A

and B commute on Cm, so that

A ◦B = B ◦A.(5.8.9)

Under these conditions,

exp(A+B) = (expA) ◦ (expB),(5.8.10)

as in Section 5.5. We also have that expA commutes with B in this case, as
before. If we take B = −A, then we get that expA is invertible on Cm, with
inverse equal to exp(−A), as in Subsection 5.5.1.

The trace and determinant of anm×mmatrix of complex numbers can be de-
fined in the same way as for real numbers. Similarly, the trace and determinant
of A are defined to be the trace and determinant of the matrix corresponding
to A, respectively. These satisfy the same basic properties as in the real case.
In particular, it is well known that

det(expA) = exp(trA),(5.8.11)

which can be shown using an argument like the one in Subsection 5.7.1. Alter-
natively, one can use results from linear algebra to reduce to the case where A
corresponds to an upper triangular matrix, for which (5.8.11) can be verified
more directly.

5.9 More on Cm

Let m be a positive integer, and let 〈v, w〉 = 〈v, w〉Cm be the standard inner
product on Cm, as in Section 2.6. If v, w ∈ Cm, then

|v + w|2 = 〈v + w, v + w〉 = 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉(5.9.1)

= |v|2 + 2 Re〈v, w〉+ |w|2.

If we replace w with i w, then we get that

|v + iw|2 = |v|2 + 2Re(−i 〈v, w〉) + |w|2 = |v|2 + 2 Im〈v, w〉+ |w|2.(5.9.2)
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It follows that

〈v, w〉 = (1/2) (|v + w|2 − |v|2 − |w|2) + (i/2) (|v + i w|2 − |v|2 − |w|2).(5.9.3)

This is another polarization identity.
Let T be a linear mapping from Cm into itself, as a vector space over the

complex numbers. As in the real case,

kerT = {v ∈ Cm : T (v) = 0}(5.9.4)

is a linear subspace of Cm, called the kernel of T . This is equal to {0} if and
only if T is one-to-one, as before. It is is well known that T is one-to-one on Cm

if and only if T maps Cm onto itself, in which case the inverse mapping T−1 is
linear on Cm too.

5.9.1 Unitary transformations

A one-to-one linear mapping T from Cm onto itself is said to be unitary if

〈T (v), T (w)〉 = 〈v, w〉(5.9.5)

for every v, w ∈ Cm. Note that this implies that T−1 is unitary as well. In this
case, we can take v = w in (5.9.5), to get that

|T (v)| = |v|.(5.9.6)

Conversely, if (5.9.5) holds for every v ∈ Cm, then (5.9.5) holds for every v. w
in Cm, because of the polarization identity (5.9.3). Of course, (5.9.6) implies
that kerT = {0}.

If T is any linear mapping from Cm into itself, then it is well known that
there is a unique linear mapping T ∗ from Cm into itself such that

〈T (v), w〉 = 〈v, T ∗(w)〉(5.9.7)

for every v, w ∈ Cm. This is called the adjoint of T . As in the real case, every
linear mapping from Cm into itself corresponds to an m×m matrix of complex
numbers in a standard way. The matrix associated to T ∗ is obtained by taking
the complex conjugates of the entries of the transpose of the matrix associated
to T .

If T is a unitary transformation on Cm, then one can verify that T ∗ is the
same as the inverse of T . Conversely, if T is an invertible linear mapping on
Cm, with inverse equal to T ∗, then T is a unitary transformation on Cm.

5.9.2 Some additional properties of adjoints

Let A, B be linear mappings from Cm into itself, and let t be a complex number.
Under these conditions, A+B and tA are linear mappings on Cm, and one can
check that

(A+B)∗ = A∗ +B∗(5.9.8)
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and
(tA)∗ = tA∗.(5.9.9)

One can also verify that
(A ◦B)∗ = B∗ ◦A∗.(5.9.10)

This implies that
(Aj)∗ = (A∗)j(5.9.11)

for each nonnegative integer j, so that

(expA)∗ = exp(A∗).(5.9.12)

If
A∗ = −A,(5.9.13)

then it follows that

(expA)∗ = exp(A∗) = exp(−A) = (expA)−1,(5.9.14)

so that expA is a unitary transformation on Cm.

5.9.3 Self-adjoint linear mappings

A linear mapping A on Cm is said to be self-adjoint with respect to the standard
inner product on Cm if

A∗ = A.(5.9.15)

If T is any linear mapping on Cm, then it is easy to see that

(T ∗)∗ = T.(5.9.16)

One can use this to check that

A = (1/2) (T + T ∗)(5.9.17)

and
B = (−i/2) (T − T ∗)(5.9.18)

are self-adjoint. Note that
T = A+ i B.(5.9.19)

5.10 The exponential of z A

Let m be a positive integer, let A be a linear mapping from Cm into itself, and
let z be a complex number. Thus z A is another linear mapping from Cm into
itself, whose exponential

exp(z A) =

∞∑
j=0

(1/j!) zj Aj(5.10.1)
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may be considered as a power series in z, with coefficients that are linear map-
pings on Cm. If v ∈ Cm, then

(exp(z A))(v) =

∞∑
j=0

(1/j!) zj Aj(v)(5.10.2)

may be considered as a power series in z, with coefficients in Cm.
As in Section 5.6, the lth coordinate of (exp(z A))(v) is

((exp(z A))(v))l =

∞∑
j=0

(1/j!) zj(Aj(v))l(5.10.3)

for each l = 1, . . . ,m, which is an absolutely convergent power series in z with
complex coefficients. Similarly, the entries of the matrix associated to exp(z A)
may be expressed as absolutely convergent power series in z with complex co-
efficients. One can differentiate these series termwise, to get that they are
holomorphic functions of z, with

∂

∂z
((exp(z A))(v)) = A((exp(z A))(v))(5.10.4)

for every v ∈ Cm. This can be expressed by

∂

∂z
(exp(z A)) = A ◦ (exp(z A)),(5.10.5)

as before.

5.10.1 Nilpotent linear mappings

Let r be a nonnegative integer, and suppose that

Ar+1 = 0(5.10.6)

on Cm. In this case, A is said to be nilpotent on Cm. It is well known that if A
is nilpotent on Cm, then one can take r ≤ m − 1. Of course, if (5.10.6) holds,
then Aj = 0 when j ≥ r + 1. This means that

exp(z A) =

r∑
j=0

(1/j!) zj Aj(5.10.7)

is a polynomial in z, with coefficients that are linear mappings on Cm.
Note that

exp(c z I) = (exp(c z)) I(5.10.8)

for every c, z ∈ C, where I is the identity maping on Cm. If A is any linear
mapping on Cm, then A commutes with c I on Cm. This implies that

exp(z (c I +A)) = (exp(c z I)) ◦ (exp(z A)) = (exp(c z)) exp(z A).(5.10.9)
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5.11 Polynomials and differential operators

Let n be a positive integer, and remember that P(Rn,R) and P(Rn,C) are the
spaces of polynomials on Rn with real and complex coefficients, respectively, as
in Section 2.9. If k is a nonnegative integer, then let Pk(Rn,R) and Pk(Rn,C)
be the spaces of polynomials onRn with real and complex coefficients and degree
less than or equal to k, respectively. These are linear subspaces of P(Rn,R)
and P(Rn,C), as vector spaces over R and C, respectively.

Consider the collection of monomials xβ , where β is a multi-index with order
|β| ≤ k. This collection is a basis for Pk(Rn,R) and Pk(Rn,C), as vector spaces
over R and C, respectively. In particular, Pk(Rn,R) and Pk(Rn,C) have the
same finite dimension, as vector spaces over R and C, respectively.

Let N be a nonnegative integer, and suppose that aα is a polynomial on Rn

with real or complex coefficients for each multi-index α with |α| ≤ N , so that

L =
∑

|α|≤N

aα ∂
α(5.11.1)

defines a differential operator on Rn with polynomial coefficients, as in Section
2.9. Remember that L maps P(Rn,R) or P(Rn,C) into itself, as appropriate.
Suppose that

deg aα ≤ |α|(5.11.2)

for each α, |α| ≤ N . If p is a polynomial on Rn with real or complex coefficients,
as appropriate, then

degL(p) ≤ deg p.(5.11.3)

This means that L maps Pk(Rn,R) or Pk(Rn,C) into itself for each k ≥ 0, as
appropriate.

5.11.1 A more precise condition

Similarly, let c be a nonnegative integer, and suppose that

deg aα ≤ |α| − c(5.11.4)

for each α, |α| ≤ N . This is interpreted to mean that

aα = 0 when |α| < c.(5.11.5)

If p is a polynomial on Rn with real or complex coefficients, as appropriate,
then

degL(p) ≤ deg p− c.(5.11.6)

As before, this means that

L(p) = 0 when deg p < c.(5.11.7)

If j is a positive integer, then we get that

degLj(p) ≤ deg p− c j.(5.11.8)
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This means that
Lj(p) = 0 when deg p < c j,(5.11.9)

as usual. Suppose that c ≥ 1, and let k be a nonnegative integer. If

k < c j,(5.11.10)

then it follows that

Lj = 0 on Pk(Rn,R) or Pk(Rn,C),(5.11.11)

as appropriate. Thus the restriction of L to Pk(Rn,R) or Pk(Rn,C), as ap-
propriate, is nilpotent under these conditions.

5.12 Some related differential equations

Let n be a positive integer, let N be a nonnegative integer, and let L be a
differential operator of order less than or equal to N on Rn with polynomial
coefficients, as in the previous section. Suppose that the coefficients satisfy
(5.11.2) for each α, |α| ≤ N , and let k be a nonnegative integer. Thus L maps
Pk(Rn,R) or Pk(Rn,C) into itself, as before. Let Lk be the restriction of L to
Pk(Rn,R) or Pk(Rn,C), as appropriate.

Let m = m(k) be the number of multi-indices β with order |β| ≤ k. We can
identify Pk(Rn,R) and Pk(Rn,C) with Rm and Cm, respectively, by listing
the coefficients of a polynomial on Rn with degree less than or equal to k in
any reasonable way. This means that we can identify Lk with a linear mapping
from Rm or Cm into itself, as appropriate.

If t ∈ R, then we can define the exponential of t Lk as a linear mapping on
Pk(Rn,R) or Pk(Rn,C), as appropriate, as before. Let p be a polynomial on
Rn with real or complex coefficients, as appropriate, and of degree less than or
equal to k. Thus

(exp(t Lk))(p)(5.12.1)

is another polynomial on Rn with real or complex coefficients, as appropriate,
and degree less than or equal to k. Of course, the coefficients of (5.12.1), as a
polynomial on Rn, depend on t, and in fact they are smooth functions of t. It
follows that

u(x, t) = ((exp(t Lk))(p))(x)(5.12.2)

is smooth as a function of (x, t) on Rn ×R, which we can identify with Rn+1.
Note that

u(x, 0) = p(x)(5.12.3)

for every x ∈ Rn. We also have that

∂

∂t
((exp(t Lk))(p)) = Lk((exp(t Lk))(p)),(5.12.4)

as before. This means that
∂u

∂t
= L(u)(5.12.5)

on Rn ×R.
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5.12.1 Some nilpotency conditions

Suppose for the moment that the coefficients of L satisfy (5.11.4) for some c ≥ 1.
This implies that Lk is nilpotent on Pk(Rn,R) or Pk(Rn,C), as appropriate,
as in the previous section. It follows that exp(t Lk) is a polynomial in t with
coefficients that are linear mappings on Pk(Rn,R) or Pk(Rn,C), as appropri-
ate, as in Subsection 5.10.1. This means that (5.12.2) is a polynomial in x and
t in this case.

5.13 Some additional related equations

Let us continue with the same notation and hypotheses as at the beginning of the
previous section. Suppose now that we are interested in the partial differential
equation

∂2u

∂t2
= L(u)(5.13.1)

on Rn ×R. If we put

v =
∂u

∂t
,(5.13.2)

then (5.13.1) is the same as saying that

∂v

∂t
= L(u).(5.13.3)

Let us consider (5.13.2) and (5.13.3) as a system of partial differential equations
in u and v on Rn ×R.

Of course, we can identify Rm × Rm and Cm × Cm with R2m and C2m,
respectively. Similarly, we can identify

Pk(Rn,R)× Pk(Rn,R)(5.13.4)

and

Pk(Rn,C)× Pk(Rn,C)(5.13.5)

with R2m and C2m, respectively, using the analogous identifications mentioned
in the previous section. Let Tk be the mapping from (5.13.4) or (5.13.5) into
itself, as appropriate, defined by

Tk(p, q) = (q, Lk(p))(5.13.6)

for every p, q ∈ Pk(Rn,R) or Pk(Rn,C), as appropriate. Observe that

T 2
k (p, q) = Tk(Tk(p, q)) = Tk(q, Lk(p)) = (Lk(p), Lk(q))(5.13.7)

for all such p, q. We can identify Tk with a linear mapping from R2m or C2m

into itself, as before.
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If t ∈ R, then we can define the exponential of t Tk as a linear mapping on
(5.13.4) or (5.13.5), as appropriate, in the usual way. Let p, q be elements of
Pk(Rn,R) or Pk(Rn,C), as appropriate, so that

(exp(t Tk))(p, q)(5.13.8)

is an element of (5.13.4) or (5.13.5), as appropriate. Let u(·, t), v(·, t) be the
elements of Pk(Rn,R) or Pk(Rn,C), as appropriate, such that

(exp(t Tk))(p, q) = (u(·, t), v(·, t)).(5.13.9)

The coefficients of u(x, t) and v(x, t), as polynomials in x on Rn, are smooth
functions of t, as before. This implies that u(x, t) and v(x, t) are smooth as
functions of (x, t) on Rn ×R, which we can identify with Rn+1, as usual.

Note that

∂

∂t
((exp(t Tk))(p, q)) = Tk((exp(t Tk))(p, q)),(5.13.10)

as before. This means that

∂

∂t
(u(·, t), v(·, t)) = Tk(u(·, t), v(·, t)) = (v(·, t), L(u(·, t))),(5.13.11)

which is the same as saying that u and v satisfy (5.13.2) and (5.13.3). We also
have that

u(·, 0) = p, v(·, 0) = q.(5.13.12)

5.13.1 Some more nilpotency conditions

Suppose that the coefficients of L satisfy (5.11.4) for some c ≥ 1, so that Lk is
nilpotent on Pk(Rn,R) or Pk(Rn,C), as appropriate, as before. This implies
that Tk is nilpotent on (5.13.4) or (5.13.5), as appropriate, because of (5.13.7).
This means that exp(t Tk) is a polynomial in t with coefficients that are linear
mappings on (5.13.4) or (5.13.5), as appropriate, as in Subsection 5.10.1. It
follows that u(x, t) and v(x, t) are polynomials in x and t under these conditions.

5.14 Some products with exp(b · x)
Let n be a positive integer, and let b ∈ Rn or Cn be given. Also let N be
a nonnegative integer, and let p be a polynomial on Rn with real or complex
coefficients of degree less than or equal to N . Thus

pb(x) = p(x+ b)(5.14.1)

can be expressed as a polynomial of degree less than or equal to N with real or
complex coefficients, as appropriate, as in Section 2.5.
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Let p(∂) and pb(∂) be the differential operators corresponding to p and pb as
in Section 1.7, respectively. If f is a continuously-differentiable real or complex-
valued function on Rn, then

∂

∂xj
(f(x) exp(b · x)) =

( ∂f
∂xj

(x) + bj f(x)
)
exp(b · x).(5.14.2)

If f is N -times continuously differentiable on Rn, then we get that

p(∂)(f(x) exp(b · x)) = (pb(∂)(f))(x) exp(b · x).(5.14.3)

If b ∈ Rn, then let

P(Rn,R) exp(b · x)(5.14.4)

be the space of functions on Rn of the form

q(x) exp(b · x),(5.14.5)

where q ∈ P(Rn,R). This is a linear subspace of C∞(Rn,R), as a vector space
over the real numbers. If p is a polynomial with real coefficients, then pb is a
polynomial with real coefficients as well. In this case, p(∂) maps (5.14.4) into
itself, because of (5.14.3).

Similarly, if b ∈ Cn, then let

P(Rn,C) exp(b · x)(5.14.6)

be the space of functions on Rn of the form (5.14.5), with q ∈ P(Rn,C). This
is a linear subspace of C∞(Rn,C), as a vector space over the complex numbers.
We also have that p(∂) maps (5.14.6) into itself, because of (5.14.3), as before.

Let k be a nonnegative integer, and if b ∈ Rn, then let

Pk(Rn,R) exp(b · x)(5.14.7)

be the space of functions on Rn of the form (5.14.5), with q ∈ Pk(Rn,R). This
is a linear subspace of (5.14.4), as a vector space over the real numbers. If p is
a polynomial with real coefficients, then p(∂) maps (5.14.7) into itself, because
of (5.14.3) again.

If b ∈ Cn, then let

Pk(Rn,C) exp(b · x)(5.14.8)

be the space of functions on Rn of the form (5.14.5), with q ∈ Pk(Rn,C). This
is a linear subspace of (5.14.6), as a vector space over the complex numbers. As
usual, p(∂) maps (5.14.8) into itself, because of (5.14.3).

5.14.1 Another nilpotency condition

Suppose that

pb(0) = p(b) = 0.(5.14.9)
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If q is a polynomial on Rn with real or complex coefficients, then

deg(pb(∂))(q) ≤ deg q − 1.(5.14.10)

This implies that the restriction of pb(∂) to Pk(Rn,C) is nilpotent, as in Sub-
section 5.11.1. It follows that the restriction of p(∂) to (5.14.8) is nilpotent,
because of (5.14.3). If b ∈ Rn, and p is a polynomial with real coefficients, then
the restriction of p(∂) to (5.14.7) is nilpotent, for the same reasons.

5.15 Some remarks about derivatives

Let m be a positive integer, and let I be an interval in the real line, which may
be unbounded, and which has nonempty interior. One can define continuity of a
mapping from I into Cm in the usual way, using the restriction of the standard
Euclidean metric on R to I, and the standard Euclidean metric on Cm. It is
well known and not difficult to see that this is equivalent to the continuity of
the corresponding m component functions, as complex-valued functions on I.
Similarly, a complex-valued function on I is continuous if and only if its real
and imaginary parts are continuous.

Suppose that for each t ∈ I, A(t) is a linear mapping from Cm into itself, as a
vector space over the complex numbers. The continuity of A(t) as a function on
I with values in the space L(Cm) of linear mappings from Cm into itself can also
be defined in the usual way, using the restrction of the standard Euclidean metric
on R, and a suitable version of the standard Euclidean metric on L(Cm). More
prcisely, we can use the standard correspondence between elements of L(Cm)

and m×m matrices of complex numbers to identify L(Cm) with Cm2

, and use
the standard Euclidean metric there. The continuity of A(t) on I is equivalent
to the continuity of the m2 complex-valued functions on I corresponding to the
matrix entries of A(t). This is equivalent to the continuity of

(A(t))(v)(5.15.1)

for each v ∈ Cm, as a function of t ∈ I with values in Cm.

One can define differentiability of a mapping from I into Cm directly, using
one-sided derivatives at any endpoints of I. This is equivalent to the differen-
tiability of the m component functions, as complex-valued functions on I. The
differentiability of a complex-valued function on I is equivalent to the differen-
tiability of its real and imaginary parts.

Differentiability of A(t) on I can be defined directly, and is equivalent to
the differentiability of the m2 complex-valued functions on I corresponding to
the matrix entries of A(t). This is equivalent as well to the differentiability of
(5.15.1) for each v ∈ Cm, as a function of t ∈ I with values in Cm.

Let v(t) be a function on I with values in Cm, so that

(A(t))(v(t))(5.15.2)
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is an element of Cm for each t ∈ I. Of course, the components of (5.15.2) can
be expressed as a sum or products of matrix entries of A(t) and components
of v(t) in the usual way. If v(t) is continuous at a point t0 ∈ I, and if A(t) is
continuous at t0, then (5.15.2) is continuous at t0 too, as a function of t ∈ I
with values in Cm. If v(t) is differentiable at t0, and A(t) is differentiable at t0,
then (5.15.2) is differentiable at t0, with derivative equal to

(A′(t0))(v(t0)) + (A(t0))(v
′(t0)).(5.15.3)

This is basically another version of the product rule.

5.15.1 A particular case for A(t)

Let B be a linear mapping from Cm into itself, and consider

A(t) = exp(−tB).(5.15.4)

This is a differentiable function of t ∈ R with values in L(Cm), with derivative

A′(t) = −B ◦A(t) = −A(t) ◦B.(5.15.5)

Suppose that v(t) is differentiable on I, and put

w(t) = (A(t))(v(t)) = (exp(−tB))(v(t))(5.15.6)

for each t ∈ I. Thus w(t) is differentiable on I, with

w′(t) = −B(w(t)) + (A(t))(v′(t)),(5.15.7)

as before, using (5.15.5). Note that

v(t) = (exp(tB))(w(t))(5.15.8)

for each t ∈ I.
Suppose for the moment that

v′(t) = B(v(t))(5.15.9)

on I. In this case,
w′(t) = 0(5.15.10)

on I, by (5.15.7). This means that w(t) is constant on I, because of the analo-
gous statement for real-valued functions.

Similarly, consider the differential equation

v′(t) = B(v(t)) + z(t),(5.15.11)

where z(t) is a function of t ∈ I with values in Cm. This corresponds to the
differential equation

w′(t) = (exp(−tB))(z(t))(5.15.12)

on I. Note that the right side is continuous on I when z(t) is continuous on I.



Chapter 6

More on harmonic functions

Some nice references concerning harmonic functions include [18, 70, 75, 268],
and some additional information may be found in [262]. See also [7, 249, 266],
for instance.

6.1 Some particular harmonic functions

It is well known and not difficult to verify that

|x|2−n(6.1.1)

is harmonic on Rn \ {0} when n ≥ 3. This implies that

|x− a|2−n(6.1.2)

is harmonic on Rn \ {a} for every a ∈ Rn when n ≥ 3. Of course, this is much
simpler when n = 1.

Similarly, one can check that

log |x| = (1/2) log |x|2(6.1.3)

is harmonic on R2 \ {0}. This means that

log |x− a|(6.1.4)

is harmonic on R2 \ {a} for every a ∈ R2, as before.

6.1.1 Using complex variables when n = 2

If we put z = x1 + i x2, then we can express (6.1.3) as

(1/2) log |z|2.(6.1.5)

117
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Let ∂/∂z and ∂/∂z be the differential operators defined in Section 2.2. Observe
that

∂

∂z
((1/2) log |z|2) = 1

2 |z|2
∂

∂z
(|z|2) = 1

2 |z|2
∂

∂z
(z z) =

1

2 |z|2
z =

1

2 z
(6.1.6)

when z 6= 0.

It is well known and not difficult to check that

∂

∂z

(1
z

)
= 0(6.1.7)

for z 6= 0, which is to say that 1/z is holomorphic for z 6= 0. It follows that
(6.1.3) is harmonic on R2 \ {0}, as in Subsection 2.2.1.

6.1.2 Some more harmonic functions

If n ≥ 3 and 1 ≤ j ≤ n, then

∂

∂xj
(|x|2−n) =

∂

∂xj
((|x|2)(2−n)/2)

= ((2− n)/2) (|x|2)((2−n)/2)−1 (2xj) = (2− n)
xj
|x|n

(6.1.8)

on Rn \ {0}. Similarly,

∂

∂xj
(log |x|) = ∂

∂xj
((1/2) log |x|2) = (1/2) |x|−2 (2xj) =

xj
|x|2

(6.1.9)

on R2 \ {0} for j = 1, 2, which is basically the same as (6.1.6). Note that
these are harmonic functions too, because the partial derivatives of three-times
continuously-differentiable harmonic functions are harmonic.

6.2 The mean-value property

Let n ≥ 2 be an integer, and let V be a nonempty bounded open subset of
Rn with reasonably smooth boundary. It is convenient to use |V | for the n-
dimensional volume of V , and |∂V | for the (n − 1)-dimensional surface area of
∂V .

In particular, if a ∈ Rn and r > 0, then |B(a, r)| denotes the volume of
B(a, r), and |∂B(a, r)| denotes the surface area of ∂B(a, r). Note that

|B(a, r)| = rn |B(0, 1)|(6.2.1)

and

|∂B(a, r)| = rn−1 |∂B(0, 1)|.(6.2.2)
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Let U be a nonempty open subset of Rn, and let u be a twice continuously-
differentiable real or complex-valued function on U that is harmonic on U . Also
let a ∈ U and r > 0 be given, with

B(a, r) ⊆ U.(6.2.3)

Under these conditions, it is well known that

u(a) =
1

|∂B(a, r)|

∫
∂B(a,r)

u(y′) dy′.(6.2.4)

This works when n = 1 as well, with suitable interpretations, and is much
simpler.

6.2.1 Some preliminary steps

To see this, it suffices to show that

1

|∂B(a, t)|

∫
∂B(a,t)

u(y′) dy′ =
1

|∂B(a, r)|

∫
∂B(a,r)

u(y′) dy′(6.2.5)

when 0 < t < r. Indeed, one can check that

lim
t→0+

1

|∂B(a, t)|

∫
∂B(a,t)

u(y′) dy′ = u(a),(6.2.6)

because u is continuous at a. This permits one to obtain (6.2.4) from (6.2.5).
Note that ∫

∂B(a,r)

(Dν(y′)u)(y
′) dy′ = 0,(6.2.7)

where ν(y′) is the outward-pointing unit normal to ∂B(a, r) at a point y′ in
∂B(a, r). This follows from (3.5.4), with V = B(a, r). Similarly,∫

∂B(a,t)

(Dν(y′)u)(y
′) dy′ = 0,(6.2.8)

where ν(y′) is the outward-pointing unit normal to ∂B(a, t) at a point y′ in
∂B(a, t).

6.2.2 Using a previous integral identity

To get (6.2.5), consider

V = B(a, r) \B(a, t) = {x ∈ Rn : t < |x| < r},(6.2.9)

which is a nonempty bounded open subset of Rn. Observe that

∂V = (∂B(a, r)) ∪ (∂B(a, t)).(6.2.10)
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The outward-pointing unit normal to ∂V is the same as the outward-pointing
unit normal to ∂B(a, r) at points in ∂B(a, r), and it is −1 times the outward-
pointing unit normal to ∂B(a, t) at points in ∂B(a, t).

Put

v(x) = |x− a|2−n(6.2.11)

on Rn \ {a} when n ≥ 3, and

v(x) = log |x− a|(6.2.12)

on R2 \ {a} when n = 2. In both cases, v(x) is harmonic on Rn \ {a}, as in the
previous section.

We would like to use (3.9.1) in this case. The left side of that equation is
equal to 0, because u and v are harmonic on V . One can check that∫

∂V

v(y′) (Dν(y′)u)(y
′) dy′ = 0(6.2.13)

under these conditions, because of (6.2.7) and (6.2.8). This also uses the fact
that v is constant on ∂B(a, r) and ∂B(a, t).

It follows that ∫
∂V

u(y′) (Dν(y′)v)(y
′) dy′ = 0.(6.2.14)

One can use this to get (6.2.5), as desired.

6.2.3 Another approach

Alternatively,

1

|∂B(a, t)|

∫
∂B(a,t)

u(y′) dy′ =
1

|∂B(0, 1)|

∫
∂B(0,1)

u(a+ t z′) dz′(6.2.15)

when 0 < t ≤ r. This uses the change of variables where

y′ ∈ ∂B(a, t)(6.2.16)

corresponds to

a+ t z′ with z′ ∈ ∂B(0, 1).(6.2.17)

Note that the derivative of u(a+t z′) in t is the same as the directional derivative
of u in the direction z′ at a+ t z′. The derivative of the right side of (6.2.15) in
t is equal to

1

|∂B(0, 1)|

∫
∂B(0,1)

n∑
j=1

∂u

∂xj
(a+ t z′) z′j dz

′(6.2.18)

More precisely, one can verify that differentiation under the integral sign is
permitted here, using the continuous differentiability of u.
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We can change variables again, to get that (6.2.18) is equal to

1

|∂B(a, t)|

∫
∂B(a,t)

n∑
j=1

∂u

∂xj
(y′) t−1 (y′j − aj) dy

′(6.2.19)

=
1

|∂B(a, t)|

∫
∂B(a,t)

(Dν(y′)u)(y
′) dy′,

where ν(y′) is the outward-pointing unit normal to ∂B(a, t) at y′ ∈ ∂B(a, t)
again. If u is harmonic on U , then the right side of (6.2.19) is equal to 0, as in
(6.2.8). This implies that the left side of (6.2.15) is constant for 0 < t ≤ r, so
that (6.2.5) holds.

6.3 More on mean values

Let n be a positive integer, let U be a nonempty open subset of Rn, and let u
be a continuous real or complex-valued function on U . Let us say that u has the
mean-value property on U if for every a ∈ U and r > 0 such that B(a, r) ⊆ U ,
we have that (6.2.4) holds. Equivalently, this means that∫

∂B(a,r)

u(y′) dy′ = |∂B(a, r)|u(a) = rn−1 |∂B(0, 1)|u(a).(6.3.1)

In this case, we get that∫
B(a,r)

u(x) dx = |B(a, r)|u(a) = rn |B(0, 1)|u(a),(6.3.2)

by integrating in r. Of course, this is the same as saying that

u(a) =
1

|B(a, r)|

∫
B(a,r)

u(x) dx.(6.3.3)

Conversely, one can get (6.3.1) from (6.3.2), by differentiating in r.

6.3.1 Some basic integrals

One can check that∫
∂B(a,r)

(y′j − aj) dy
′ =

∫
B(a,r)

(xj − aj) dx = 0(6.3.4)

for every a ∈ Rn, r > 0, and j = 1, . . . , n. Similarly,∫
∂B(a,t)

(y′j − aj) (y
′
l − al) dy

′ =

∫
B(a,t)

(xj − aj) (xl − al) dx = 0(6.3.5)

when j 6= l. We also have that∫
∂B(a,r)

(y′j − aj)
2 dy′ =

∫
∂B(a,r)

(y′l − al)
2 dy′(6.3.6)
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and ∫
B(a,r)

(xj − aj)
2 dx =

∫
B(a,r)

(xl − al)
2 dx(6.3.7)

for every j, l = 1, . . . , n. One can use these remarks to show directly that a
polynomial on Rn of degree less than or equal to 2 satisfies the mean-value
property if and only if it is harmonic.

6.3.2 Using the mean-value property

If u is twice continuously differentiable on U , and u has the mean-value property
on U , then u is harmonic on U . This can be seen using the Taylor approximation
to u at a point a ∈ U of degree 2, to estimate the difference between the average
of u on balls or spheres centered at a with small radius and u(a).

Alternatively, the mean-value property implies that the right side of (6.2.19)
is 0 when B(a, t) ⊆ U , using the same type of argument as before. This means
that ∫

B(a,t)

(∆u)(x) dx = 0,(6.3.8)

because of (3.5.3). One can use this to get that (∆u)(a) = 0, by taking t to be
sufficiently small.

6.4 Mean values and smoothness

Let n be a positive integer, and let U be a nonempty open subset of Rn. Also
let u be a continuous real or complex-valued function on U with the mean-value
property. Let r > 0 be given, and let ϕ be a continuous real-valued function
on Rn supported in B(0, r). Suppose too that ϕ is a radial function on Rn, so
that ϕ(x) depends only on |x|.

Let a ∈ U be given, and suppose that B(a, r) ⊆ U . If 0 < t ≤ r, then∫
∂B(a,t)

u(y′)ϕ(y′ − a) dy′ =
(∫

∂B(a,t)

ϕ(y′ − a) dy′
)
u(a).(6.4.1)

This uses the mean-value property of u, and the fact that ϕ(y′ − a) is constant
as a function of y′ on ∂B(a, t), because ϕ is radial on Rn. It follows that∫

∂B(a,t)

u(y′)ϕ(y′ − a) dy′ =
(∫

∂B(0,t)

ϕ(z′) dz′
)
u(a).(6.4.2)

We can integrate over t to get that∫
B(a,r)

u(x)ϕ(x− a) dx =
(∫

B(0,r)

ϕ(w) dw
)
u(a).(6.4.3)

If ∫
B(0,r)

ϕ(w) dw = 1,(6.4.4)
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then we get that ∫
B(a,r)

u(x)ϕ(x− a) dx = u(a).(6.4.5)

Of course, we can get (6.4.4) by dividing ϕ by its integral over B(0, r), as long
as the integral is not zero. It is easy to see that the integral is positive when ϕ
is nonnegative and not equal to 0 at every point in B(0, r).

6.4.1 Points b near a

Remember that B(a, r) ⊆ U implies that

B(a, r + ϵ) ⊆ U(6.4.6)

for some ϵ > 0, as in Section 1.13. If b ∈ Rn and |a− b| ≤ ϵ, then it follows that

B(b, r) ⊆ B(a, r + ϵ) ⊆ U,(6.4.7)

using the triangle inequality in the first step. This means that

u(b) =

∫
B(b,r)

u(x)ϕ(x− b) dx,(6.4.8)

as before. This can also be expressed as

u(b) =

∫
B(a,r+ϵ)

u(x)ϕ(x− b) dx,(6.4.9)

because ϕ is supported in B(0, r).
Suppose that ϕ is a smooth function on Rn too, which can be arranged

by taking a suitable smooth function of |x|2. Under these conditions, one can
differentiate under the integral sign in (6.4.9), to get that u is smooth near a.
More precisely, this shows that the derivatives of u may be expressed in terms
of suitable integrals of u.

6.4.2 Harmonicity and smoothness

One can use this type of argument at every point in U , to get that u is smooth
on U . It follows that u is harmonic on U , as in Subsection 6.3.2.

If u is twice continuously differentiable and harmonic on U , then u has the
mean-value property, as in Section 6.2. This implies that u is smooth on U , as
in the preceding paragraph.

6.5 Uniform convergence

Let E be a nonempty set, let {fj}∞j=1 be a sequence of real or complex-valued
functions on E, and let f be another real or complex-valued function on E. We
say that

{fj}∞j=1 converges to f pointwise on E(6.5.1)
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if for every x ∈ E, {fj(x)}∞j=1 converges to f(x) in the usual sense, as a sequence
of real or complex numbers, as appropriate. We say that

{fj}∞j=1 converges uniformly to f on E(6.5.2)

if for every ϵ > 0 there is a positive integer L such that

|fj(x)− f(x)| < ϵ(6.5.3)

for every x ∈ E and j ≥ L. Uniform convergence on E clearly implies pointwise
convergence on E, because L is only supposed to depend on ϵ, and not on x.

6.5.1 Uniform convergence and continuity

Let n be a positive integer, and suppose now that E is a nonempty subset of
Rn. If {fj}∞j=1 is a sequence of continuous real or complex-valued functions on
E that converges uniformly to a real or complex-valued function f on E, as
appropriate, then it is well known that

f is continuous on E(6.5.4)

too. This does not always work for pointwise convergence, as one can see by
taking

fj(x) = xj(6.5.5)

on [0, 1].

6.5.2 Uniform convergence on compact subsets

Let U be a nonempty open subset of Rn, let {fj}∞j=1 be a sequence of real or
complex-valued functions on U , and let f be a real or complex-valued function
on U . We say that {fj}∞j=1 converges to f uniformly on compact subsets of U if

for every compact subset E of Rn such that E ⊆ U,(6.5.6)

{fj}∞j=1 converges to f uniformly on E.

Uniform convergence on U implies uniform convergence on compact subsets of
U , and uniform convergence on compact subsets of U implies pointwise conver-
gence on U .

If {fj}∞j=1 is a sequence of continuous real or complex-valued functions on
U that converges to f uniformly on compact subsets of U , then

f is continuous on U(6.5.7)

as well. More precisely, in order to show that f is continuous at a point x ∈ U ,
one can use the uniform convergence of {fj}∞j=1 to f on a closed ball centered
at x with sufficientlly small radius so that the ball is contained in U .
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6.5.3 Uniform convergence of harmonic functions

Let {uj}∞j=1 be a sequence of harmonic functions on U that converges to a
function u on U , uniformly on compact sets contained in U . This implies that
u is continuous on U , as before. One can use the mean-value property for uj
for each j to get that

u has the mean-value property on U(6.5.8)

too, because of standard results about uniform convergence and integration.
This means that u is harmonic on U , as in the previous section. One can also
show that derivatives of the uj ’s converge to the corresponding derivatives of
u, uniformly on compact subsets of U , by expressing the derivatives in terms of
suitable integrals of the functions, as in the previous section.

6.6 Liouville’s theorem

Let n be a positive integer, and let u be a bounded harmonic function on Rn.
Under these conditions, Liouville’s theorem states that

u is a constant function on Rn.(6.6.1)

6.6.1 Differences of averages

To see this, let x, y ∈ Rn and r > 0 be given, so that

u(x)− u(y) =
1

|B(x, r)|

∫
B(x,r)

u(w) dw − 1

|B(y, r)|

∫
B(y,r)

u(w)

=
1

|B(0, 1)| rn
(∫

B(x,r)

u(w) dw −
∫
B(y,r)

u(w) dw
)

(6.6.2)

=
1

|B(0, 1)| rn

∫
B(x,r)\B(y,r)

u(w) dw

− 1

|B(0, 1)| rn

∫
B(y,r)\B(x,r)

u(w) dw

If r > |x− y|, then one can check that

B(x, r) \B(y, r) ⊆ B(x, r) \B(x, r − |x− y|)(6.6.3)

= {z ∈ Rn : r − |x− y| < |x− z| < r},

and similarly with the roles of x and y interchanged. The n-dimensional volume
of the right side is equal to

|B(x, r)| − |B(x, r − |x− y|)| = |B(0, 1)| (rn − (r − |x− y|)n)

= |B(0, 1)|
n−1∑
j=0

(
n

j

)
(−1)n−j+1 rj |x− y|n−j ,(6.6.4)
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and similarly with the roles of x and y interchanged. It follows that the n-
dimensional volume of the left side of (6.6.3) is less than or equal to this, and
similarly with the roles of x and y exchanged.

The right side of (6.6.4) is small compared to rn when r is large. If u is
bounded on Rn, then one can use this to check that each of the two terms on
the right side of (6.6.2) tends to 0 as r → ∞. This implies that u(x) = u(y), as
desired.

6.6.2 Estimating first derivatives

Alternatively, we can use arguments like those in Section 6.4 to estimate first
derivatives of harmonic functions. These estimates will show that bounded
harmonic functions on Rn have all of their first derivatives equal to 0.

Let ϕ be a smooth real-valued radial function on Rn supported on the closed
unit ball B(0, 1), and with ∫

B(0,1)

ϕ(w) dw = 1.(6.6.5)

Put
ϕr(w) = r−n ϕ(r−1 w)(6.6.6)

for every w ∈ Rn and r > 0. It is easy to see that ϕr is a smooth real-valued
radial function on Rn that is supported on B(0, r) and satisfies∫

B(0,r)

ϕr(w) dw = 1.(6.6.7)

Let U be a nonempty open subset of Rn, and let u be a real or complex-
valued harmonic function on U . If a ∈ U , r > 0, and B(a, r) ⊆ U , then

u(a) =

∫
B(a,r)

u(x)ϕr(x− a),(6.6.8)

as in (6.4.5). If ϵ > 0 is as in (6.4.6), b ∈ Rn, and |a− b| ≤ ϵ, then we get that

u(b) =

∫
B(a,r+ϵ)

u(x)ϕr(x− b) dx,(6.6.9)

as in (6.4.9).
Observe that

∂

∂wj
(ϕr(w)) = r−n−1(∂jϕ)(r

−1w)(6.6.10)

for each j = 1, . . . , n. We can differentiate under the integral sign in (6.6.9) to
get that

(∂ju)(a) = −r−n−1

∫
B(a,r)

u(x) (∂jϕ)(r
−1 (x− a)) dx(6.6.11)

for each j = 1, . . . , n. This also uses the fact that ∂jϕ is supported in B(0, 1).
If U = Rn and u is bounded on Rn, then one can check that the right side

of (6.6.11) tends to 0 as r → ∞. This implies that ∂ju = 0 on Rn for each
j = 1, . . . , n, so that u is constant on Rn.



6.7. THE MAXIMUM PRINCIPLE 127

6.7 The maximum principle

Let n be a positive integer, let U be a nonempty open subset of Rn, and let u
be a continuous real-valued function on U . Suppose that for every a ∈ U there
is an r > 0 such that B(a, r) ⊆ U and

the average of u on B(a, r) is equal to u(a),(6.7.1)

as in (6.3.3). In particular, this happens when u is harmonic on U , as in Section
6.2.

6.7.1 The strong maximum principle

Let A be a real number such that

u(x) ≤ A(6.7.2)

for every x ∈ U . Note that

{x ∈ U : u(x) = A}(6.7.3)

is a relatively closed set in U , because u is continuous on U . Equivalently,

{x ∈ U : u(x) < A}(6.7.4)

is an open set.
Suppose that

u(a) = A(6.7.5)

for some a ∈ U . If B(a, r) ⊆ U and (6.7.1) holds, then one can verify that

u(x) = A(6.7.6)

for every x ∈ B(a, r). Equivalently, if u(x) < A for some x ∈ B(a, r), then one
can check that the average of u on B(a, r) is strictly less than A.

This shows that (6.7.3) is an open set under these conditions. If (6.7.3) is
nonempty, and U is connected, then it follows that (6.7.3) is equal to U , so that

u ≡ A on U.(6.7.7)

This is often called the strong maximum principle.

6.7.2 Bounded open sets

Suppose now that U is also bounded, and let u be a continuous real-valued
function on U . As before, we ask that for each a ∈ U there be an r > 0 such
that B(a, r) ⊆ U and (6.7.1) holds. Note that U is a nonempty compact subset
of Rn, so that u attains its maximum on U , by the extreme value theorem.

Suppose that u attains its maximum on U at a point a ∈ U . If V is the
connected component of U that contains a, then it follows that u is constant
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on V , as before. Of course, if u is constant on V , then u is constant on V , by
continuity. This implies that u attains its maximum on U at a point in ∂V ,
which is contained in ∂U , as in Subsection 3.3.1.

Otherwise, if u does not attain its maximum on U at a point in U , then

u attains its maximum on U at a point in ∂U.(6.7.8)

It follows that this holds in either case, which is another version of the maximum
principle.

In particular, if

u(x) = 0 for every x ∈ ∂U,(6.7.9)

then we get that u(x) ≤ 0 for every x ∈ U . The same argument can be used for
−u, to obtain that

u(x) = 0 for every x ∈ U.(6.7.10)

6.7.3 Some simple variants

Let U be any nonempty open set in Rn again, and let v be a continuous real or
complex-valued function on U . Suppose that v is harmonic on U , which is the
same as saying that the restriction of v to u satisfies the mean-value property.
Thus, if a ∈ U , r > 0, and B(a, r) ⊆ U , then

the averages of v on B(a, r) and ∂B(a, r) are equal to v(a).(6.7.11)

In fact, one can check that this holds when

B(a, r) ⊆ U(6.7.12)

under these conditions. Note that this implies that

B(a, r) ⊆ U.(6.7.13)

Indeed, if 0 < t < r, then

B(a, t) ⊆ B(a, r) ⊆ U.(6.7.14)

This implies that the averages of v on B(a, t) and ∂B(a, t) are equal to v(a), by
hypothesis. One can use this to get (6.7.11), by considering the limit as t→ r−.

Let u be a continuous real-valued function on U , and suppose that for each
a ∈ U there is an r > 0 such that (6.7.12) and (6.7.1) hold. More precisely,
(6.7.12) imples (6.7.13), so that the integral of u on B(a, r) may be defined in
the usual way in this case. If u attains its maximum on U at a ∈ U , and if
V is the connected component of V that contains a, then u is constant on V ,
for essentially the same reasons as before. This implies that (6.7.8) holds, as
before. If U is bounded, then we get that (6.7.8) holds without asking that u
attain its maximum on U at a point in U , as before.
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6.8 A helpful integral formula

Let n ≥ 2 be an integer, and let N(x) be the real-valued function defined on
Rn \ {0} by

N(x) =
|x|2−n

(2− n) |∂B(0, 1)|
when n ≥ 3(6.8.1)

=
1

2π
log |x| when n = 2.

Thus N(x) is harmonic on Rn \ {0}, as in Section 6.1.

Let V be a nonempty bounded open subset of Rn with reasonably smooth
boundary, and let u be a twice continuously-differentiable real or complex-valued
function on V , as in Section 3.4. Also let a ∈ V be given, and suppose that

B(a, r) ⊆ V(6.8.2)

for some r > 0. Put

Vr = V \B(a, r),(6.8.3)

which is an open subset of Rn. Note that

Vr = V \B(a, r)(6.8.4)

and that

∂Vr = (∂V ) ∪ (∂B(a, r)).(6.8.5)

6.8.1 Using a previous identity again

We would like to use (3.9.1), with V replaced with Vr, and v(x) = N(x − a).
This implies that

−
∫
Vr

N(x− a) (∆u)(x) dx

=

∫
∂Vr

(u(y′) (Dνr(y′)N)(y′ − a)−N(y′ − a) (Dνr(y′)u)(y
′)) dy′,(6.8.6)

where Dνr(y′) denoted the directional derivative in the direction νr(y
′) of the

outward-pointing unit normal to ∂Vr at y′ ∈ ∂Vr. It follows that

−
∫
Vr

N(x− a) (∆u)(x) dx

=

∫
∂V

(u(y′) (Dν(y′)N)(y′ − a)−N(y′ − a) (Dν(y′)u)(y
′)) dy′

−
∫
∂B(a,r)

(u(y′) (Dµ(y′)N)(y′ − a)−N(y′ − a) (Dµ(y′)u)(y
′)) dy′,(6.8.7)



130 CHAPTER 6. MORE ON HARMONIC FUNCTIONS

where ν(y′) is the outward-pointing unit normal to ∂V at y′ ∈ ∂V , and µ(y′) is
the outward-pointing unit normal to ∂B(a, r) at y′ ∈ ∂B(a, r). Of course,

νr(y
′) = ν(y′) when y′ ∈ ∂V(6.8.8)

= −µ(y′) when y′ ∈ ∂B(a, r).

One can check that∫
∂B(a,r)

u(y′) (Dµ(y′)N)(y′ − a) dy′ =
1

|∂B(a, r)|

∫
∂B(a,r)

u(y′) dy′,(6.8.9)

by expressing the partial derivatives of N as in Section 6.1. This tends to u(a)
as r → 0+, because u is continuous at a.

One can also verify that

lim
r→0+

∫
∂B(a,r)

N(y′ − a) (Dµ(y′)u)(y
′) dy′ = 0.(6.8.10)

This uses the continuous differentiability of u to get that the first derivatives of
u are bounded near a.

6.8.2 The integral formula

This implies that

lim
r→0+

∫
Vr

N(x− a) (∆u)(x) dx(6.8.11)

=

∫
∂V

(N(y′ − a) (Dν(y′)u)(y
′)− u(y′) (Dν(y′)N)(y′ − a)) dy′ + u(a).

The left side may be considered as∫
V

N(x− a) (∆u)(x) dx,(6.8.12)

defined as an improper integral, because N(x − a) is unbounded near a. One
can check that ∫

Vr

|N(x− a)| |(∆u)(x)| dx(6.8.13)

stays bounded as r → 0+, using polar coordinates near a, and the fact that
|(∆u)(x)| is bounded near a, because ∆u is continuous, by hypothesis. In fact,
if one uses polar coordinates centered at a, then one does not really need to
use an improper integral. In particular, (6.8.12) can be defined as a Lebesgue
integral.

6.8.3 A formula for harmonic functions

If u is harmonic on V , then we get that

u(a) =

∫
∂V

(u(y′) (Dν(y′)N)(y′ − a)−N(y′ − a) (Dν(y′)u)(y
′)) dy′.(6.8.14)

In particular, this gives another way to look at the regularity of u on V .
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6.9 Poisson’s equation on Rn

Let n ≥ 2 be an integer, and let N(x) be as in (6.8.1). If f is a real or
complex-valued function on Rn, then one might like to define u as a real or
complex-valued function on Rn, as appropriate, by

u(x) =

∫
Rn

N(x− y) f(y) dy =

∫
Rn

N(y) f(x− y) dy.(6.9.1)

If f is a continuous function on Rn with compact support, then the integral
on the right may be considered as an improper integral over a bounded region
for each x ∈ Rn. This is similar to the earlier remarks about (6.8.13), and one
does not really need to use an improper integral if one uses polar coordinates
centered at x for the first integral, or polar coordinates centered at 0 for the
second integral, as before. One can use the Lebesgue integral to define u as a
locally integrable function on Rn under suitable integrability conditions on f .

6.9.1 The Laplacian of u

One would like to have
∆u = f(6.9.2)

on Rn, under suitable conditions, or interpreted in a suitable way. Suppose for
the moment that f is twice continuously differentiable on Rn, with compact
support. In this case, one can show that u is twice continuously differentiable
on Rn, by differentiating the second integral in (6.9.1) in x under the integral
sign. In particular, one gets

(∆u)(x) =

∫
Rn

N(y) (∆f)(x− y) dy(6.9.3)

for each x ∈ Rn.
One can check that ∫

Rn

N(y) (∆f)(x− y) dy = f(x)(6.9.4)

for every x ∈ Rn, usng the remarks in the previous section. More precisely, one
can take V large enough so that the support of f is contained in V . It follows
that (6.9.2) holds on Rn. This corresponds to some remarks on p193 of [18],
and to Theorem 1 in Section 2.2.1 b in [70].

6.9.2 A distributional-type version

Let v be a twice continuously-differentiable real or complex-valued function on
Rn with compact support. Thus∫

Rn

N(x− y) (∆v)(x) dx = v(y)(6.9.5)
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for every y ∈ Rn, as in the previous section, with V taken large enough to
contain the support of v. Of course, this is very similar to (6.9.4).

Observe that∫
Rn

u(x) (∆v)(x) dx =

∫
Rn

(∫
Rn

N(x− y) f(y) dy
)
(∆v)(x) dx,(6.9.6)

by the definition (6.9.1) of u(x). Under suitable integrability conditions on f ,
we can interchange the order of integration on the right side, to get that∫

Rn

u(x) (∆v)(x) dx =

∫
Rn

(∫
Rn

N(x− y) (∆v)(x) dx
)
f(y) dy.(6.9.7)

This implies that ∫
Rn

u(x) (∆v)(x) dx =

∫
Rn

f(y) v(y) dy,(6.9.8)

by (6.9.5). This means that u satisfies (6.9.2) in the sense of distributions, as
in Theorem 2.16 in Section B of Chapter 2 of [75].

6.9.3 More on ∆u

If u is twice continuously differentiable on Rn, then one can verify that∫
Rn

u(x) (∆v)(x) dx =

∫
Rn

(∆u)(x) v(x) dx.(6.9.9)

In this case, (6.9.8) implies that∫
Rn

(∆u)(x) v(x) dx =

∫
Rn

f(y) v(y) dy.(6.9.10)

One can use this to get that (6.9.2) holds on Rn when f is continuous on Rn.
If f has a bit more regularity, then one can get that u is twice continuously
differentiable under suitable conditions, as in Theorem 2.17 in Section B of
Chapter 2 of [75].

Some topics related to integrals like those in (6.9.1) are discussed in Chapter
5 of [262].

6.10 The Poisson kernel

Let n ≥ 2 be an integer, and put

p(w′, x) =
1

|∂B(0, 1)|
(1− |x|2)
|x− w′|n

(6.10.1)

for every w′, x ∈ Rn with |w′| = 1 and x 6= w′. This is the Poisson kernel
associated to the unit ball in Rn.



6.10. THE POISSON KERNEL 133

6.10.1 Harmonicity in x

Let w′ ∈ Rn with |w′| = 1 be given, and let us check that

p(w′, x) is harmonic as a function of x for x 6= w′.(6.10.2)

Observe that

|x|2 = |(x− w′) + w′|2 = |x− w′|2 + 2 (x− w′) · w′ + |w′|2(6.10.3)

= |x− w′|2 + 2 (x− w′) · w′ + 1.

Thus

p(w′, x) =
1

|∂B(0, 1)|

( −1

|x− w′|n−2
− 2

(x− w′) · w′

|x− w′|n
)
.(6.10.4)

The first term on the right is harmonic in x for x 6= w′, as mentioned in
Section 6.1 when n ≥ 3, and trivially when n = 2. The second term on the right
can be expressed as a linear combination of derivatives of harmonic functions
in x for x 6= w′, as in Subsection 6.1.2, and these are harmonic too, as before.

6.10.2 A symmetry property

Suppose that w′, x′ ∈ Rn, |w′| = |x′|, and r ∈ R. It is easy to see that

|r x′ − w′| = |x′ − r w′|,(6.10.5)

because

|r x′ − w′|2 = r2 |x′|2 − 2 r x′ · w′ + |w′|2(6.10.6)

= r2 |w′|2 − 2x′ · (r w′) + |x′|2 = |x′ − r w′|2.

If |w′| = |x′| = 1 and either x′ 6= w′ or r 6= 1, then r x′ 6= w′, r w′ 6= x′, and
it follows that

p(w′, r x′) =
1

|∂B(0, 1)|
1− r2

|r x′ − w′|n
(6.10.7)

=
1

|∂B(0, 1)|
1− r2

|x′ − r w′|n
= p(x′, r w′).

6.10.3 Integrating the Poisson kernel

If x′ ∈ Rn, |x′| = 1, and 0 ≤ r < 1, then the mean-value property for harmonic
functions implies that

1

|∂B(0, 1)|

∫
∂B(0,1)

p(x′, r w′) dw′ = p(x′, 0) =
1

|∂B(0, 1)|
,(6.10.8)

because p(x′, z) is harmonic as a function of z for z 6= x′, as before. More
precisely, the first step is clear when r = 0, and if 0 < r < 1, then the left side
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is the same as the average of p(x′, z) over z ∈ ∂B(0, r). This is equal to p(x′, 0),
because p(x′, z) is harmonic as a function of z on B(0, 1).

This means that ∫
∂B(0,1)

p(x′, r w′) dw′ = 1.(6.10.9)

It follows that ∫
∂B(0,1)

p(w′, r x′) dw′ = 1,(6.10.10)

because of (6.10.7).

6.10.4 Positivity of the Poisson kernel

Note that
p(w′, x) > 0(6.10.11)

for every w′, x ∈ Rn with |w′| = 1 and |x| < 1. We also have that

p(w′, x) = 0(6.10.12)

for every w′, x ∈ Rn with |w′| = |x| = 1 and x 6= w′.

6.11 More on the Poisson kernel

Let us continue with the same notation and hypothese as in the previous section.

6.11.1 Some simple estimates

If x, y ∈ Rn, then
|x| ≤ |y|+ |x− y|(6.11.1)

and
|y| ≤ |x|+ |x− y|,(6.11.2)

by the triangle inequality for the standard Euclidean norm on Rn. This implies
that ∣∣|x| − |y|

∣∣ = max(|x| − |y|, |y| − |x|) ≤ |x− y|.(6.11.3)

Suppose for the moment that

|x− y| ≤ |y|/2,(6.11.4)

so that
|y| ≤ |x|+ |y|/2,(6.11.5)

by (6.11.2). This implies that

|y|/2 ≤ |x|,(6.11.6)

or equivalently
|y| ≤ 2 |x|.(6.11.7)
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6.11.2 Some additional simple estimates

Let w′, x, y′ ∈ Rn and η > 0 be given, and suppose that

|w′ − y′| ≥ η(6.11.8)

and

|x− y′| ≤ η/2,(6.11.9)

so that

|x− y′| ≤ |w′ − y′|/2,(6.11.10)

Under these conditions,

|w′ − y′| ≤ |w′ − x|+ |x− y′| ≤ |w′ − x|+ |w′ − y′|/2.(6.11.11)

It follows that

|w′ − y′|/2 ≤ |w′ − x|,(6.11.12)

or equivalently

|w′ − y′| ≤ 2 |w′ − x|.(6.11.13)

In particular,

η/2 ≤ |w′ − x|,(6.11.14)

by (6.11.8) and (6.11.12).

6.11.3 A localization property

Suppose now that we also have that

|w′| = |y′| = 1(6.11.15)

and

|x| < 1,(6.11.16)

in addition to (6.11.8) and (6.11.9). In this case, we obtain that

p(w′, x) =
1

|∂B(0, 1)|
(1− |x|2)
|x− w′|n

≤ 2n

|∂B(0, 1)|
(1− |x|2)
|w′ − y′|n

(6.11.17)

≤ 2n η−n (1− |x|2)
|∂B(0, 1)|

,

using (6.11.12) in the second step, and (6.11.8) in the third step.
It follows that∫

(∂B(0,1)\B(y′,η))

p(w′, x) dw′ ≤ 2n η−n (1− |x|2).(6.11.18)

Of course, the right side tends to 0 as |x| → 1.



136 CHAPTER 6. MORE ON HARMONIC FUNCTIONS

Observe that

1− |x|2 = (1 + |x|) (1− |x|) ≤ 2 (1− |x|) ≤ 2 |x− y′|,(6.11.19)

where the third step is as in (6.11.3). Combining this with (6.11.18), we get
that ∫

(∂B(0,1)\B(y′,η))

p(w′, x) dw′ ≤ 2n+1 η−n |x− y′|.(6.11.20)

Thus ∫
(∂B(0,1)\B(y′,η))

p(w′, x) dw′ → 0 as x→ y′.(6.11.21)

6.12 The Poisson integral

Let us continue with the same notation and hypotheses as in the previous two
sections. Let f be a continuous complex-valued function on the unit sphere
∂B(0, 1). Consider the complex-valued function u defined on the closed unit
ball B(0, 1) by

u(x) =

∫
∂B(0,1)

f(w′) p(w′, x) dw′ when |x| < 1(6.12.1)

= f(x) when |x| = 1.

This is the Poisson integral of f at x when |x| < 1.

6.12.1 Harmonicity of the Poisson integral

It is not too difficult to show that

u is harmonic on B(0, 1),(6.12.2)

because p(w′, x) is harmonic in x on B(0, 1) for every w′ ∈ ∂B(0, 1), as in the
previous section. One way to do this is to use standard results about differ-
entiation under the integral sign. Another way to do this is to check that u
is continuous and satisfies the mean-value property on B(0, 1). This uses the
mean-value property for p(w′, x) in x for each w′, and well known results about
interchanging the order of integration.

6.12.2 Continuity at the boundary

One can also show that

u is continuous on B(0, 1).(6.12.3)

The continuity of u on B(0, 1) is reasonably straightforward, as in the preceding
paragraph. If y′ ∈ ∂B(0, 1), then one would like to verify that

u is continuous at y′, as a function on B(0, 1).(6.12.4)
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Equivalently, this means that

u(x) → u(y′) = f(y′)(6.12.5)

as x ∈ B(0, 1) tends to y′. More precisely, it suffices to consider only x ∈ B(0, 1)
here, because f is continuous on ∂B(0, 1), by hypothesis.

Note that ∫
∂B(0,1)

p(w′, x) dw′ = 1(6.12.6)

for every x ∈ B(0, 1), by (6.10.10). This implies that

u(x)− f(y′) =

∫
∂B(0,1)

p(w′, x)f(w′) dw′ −
∫
∂B(0,1)

p(w′, x) f(y′) dw′

=

∫
∂B(0,1)

p(w′, x) (f(w′)− f(y′)) dw′(6.12.7)

for every x ∈ B(0, 1). It follows that

|u(x)− f(y′)| =

∣∣∣∣∫
∂B(0,1)

p(w′, x) (f(w′)− f(x)) dw′
∣∣∣∣(6.12.8)

≤
∫
∂B(0,1)

p(w′, x) |f(w′)− f(y′)| dw′

for every x ∈ B(0, 1), because of (6.10.11).

6.12.3 Estimating two terms

We would like to get that the right side of (6.12.8) is as small as we like when
x is sufficiently close to y′. If η > 0, then the right side of (6.12.8) can be
expressed as the sum of∫

(∂B(0,1))∩B(y′,η)

p(w′, x) |f(w′)− f(y′)| dw′(6.12.9)

and ∫
(∂B(0,1))\B(y′,η)

p(w′, x) |f(w′)− f(y′)| dw′.(6.12.10)

If η is sufficiently small, then

|f(w′)− f(y′)|(6.12.11)

is as small as we like when |w′ − y′| < η, because f is continuous at y′, by
hypothesis. We can use this to get that (6.12.9) is as small as we like, because
of (6.12.6). Let us now fix η > 0 in this way.

With η fixed, we can get that (6.12.10) is as small as we like when x is
sufficiently close to y′, as in (6.11.21). This also uses the fact that f is bounded
on ∂B(0, 1), because f is continuous on ∂B(0, 1), and ∂B(0, 1) is compact.
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6.12.4 Uniqueness of the Poisson integral

If v is any continuous complex-valued function on B(0, 1) that is harmonic on
B(0, 1) and equal to f on ∂B(0, 1), then

v = u on B(0, 1),(6.12.12)

as in Subsection 6.7.2.

6.13 Some more integral formulas

Let n be a positive integer, and let N(x) be the real-valued function defined on
Rn \ {0} as in Section 6.8. Put

cr =
r2−n

(2− n) |∂B(0, 1)|
when n ≥ 3(6.13.1)

=
1

2π
log r when n = 2

for each r > 0, so that N(x) = cr when |x| = r. Let a ∈ Rn and r > 0 be given,
and suppose that u is a twice continuously-differentiable real or complex-valued
function on B(a, r), as in Section 3.4.

6.13.1 Using the earlier identity again

Let 0 < t < r be given, and put

V = B(a, r) \B(a, t).(6.13.2)

If y′ ∈ ∂V = (∂B)(a, r)) ∪ (∂B)(a, t)), then let ν(y′) be the outward pointing
unit normal to ∂V at y′, as usual. We would like to use (3.9.1), with

v(x) = N(x− a)− cr.(6.13.3)

This implies that

−
∫
V

v(x) (∆u)(x) dx(6.13.4)

=

∫
∂V

(u(y′) (Dν(y′)v)(y
′)− v(y′) (Dν(y′)u)(y

′)) dy′.

6.13.2 The integral over ∂V

If ρ > 0 and y′ ∈ ∂B(a, ρ), then put

µρ(y
′) = ρ−1 (y′ − a),(6.13.5)
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which is the outward-pointing unit normal to ∂B(a, ρ) at y′. Thus

ν(y′) = µr(y
′) when y′ ∈ ∂B(a, r)(6.13.6)

= −µt(y
′) when y′ ∈ ∂B(a, t).

Using this and (6.13.4), we get that

−
∫
V

v(x) (∆u)(x) dx

=

∫
∂B(a,r)

u(y′) (Dµr(y′)v)(y
′)dy′

−
∫
∂B(a,t)

(u(y′) (Dµt(y′)v)(y
′)− v(y′) (Dµt(y′)u)(y

′)) dy′,(6.13.7)

because v = 0 on ∂B(a, r), by construction.

6.13.3 Some simplifications and modifications

It follows from this and (6.13.3) that∫
V

(cr −N(x− a)) (∆u)(x) dx

=
1

|∂B(a, r)|

∫
∂B(a,r)

u(y′) dy′ − 1

|∂B(a, t)|

∫
∂B(a,t)

u(y′) dy′(6.13.8)

+(ct − cr)

∫
∂B(a,t)

(Dµt(y′)u)(y
′) dy′,

using also (6.8.9) and its analogue for ∂B(a, t). Remember that∫
∂B(a,t)

(Dµt(y′)u)(y
′) dy′ =

∫
B(a,t)

(∆u)(x) dx,(6.13.9)

as in Subsection 3.5.1. Using this, we can reexpress (6.13.8) as∫
B(a,r)

min(cr −N(x− a), cr − ct) (∆u)(x) dx

=
1

|∂B(a, r)|

∫
∂B(a,r)

u(y′) dy′ − 1

|∂B(a, t)|

∫
∂B(a,t)

u(y′) dy′.(6.13.10)

We can take the limit as t→ 0+ on both sides of (6.13.8) or (6.13.10) to get
that ∫

B(a,r)

(cr −N(x− a)) (∆u)(x) dx(6.13.11)

=
1

|∂B(a, r)|

∫
∂B(a,r)

u(y′) dy′ − u(a),

as in Section 6.8. More precisely, the left side of the equation should be consid-
ered as an improper integral, or a Lebesgue integral, as before.
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6.13.4 Another argument

Alternatively, if 0 < ρ ≤ r, then

d

dρ

( 1

|∂B(a, ρ)|

∫
∂B(a,ρ)

u(y′) dy′
)

(6.13.12)

=
1

|∂B(a, ρ)|

∫
∂B(a,ρ)

(Dµρ(y′)u)(y
′) dy′,

as in Subsection 6.2.3. This means that

d

dρ

( 1

|∂B(a, ρ)|

∫
∂B(a,ρ)

u(y′) dy′
)

(6.13.13)

=
1

|∂B(a, ρ)|

∫
B(a,ρ)

(∆u)(x) dx,

by (6.13.9).
One can get (6.13.10) by integrating both sides of (6.13.13) in ρ from t to

r. This also involves interchanging the order of integration on the right side.
In some cases, we may be particularly interested simply in the nonnegativity of
some of these integrals of ∆u when ∆u ≥ 0, as in the next section.

6.14 Subharmonic functions

Let n be a positive integer, and let U be a nonempty open subset of Rn. A twice
continuously-differentiable real-valued function u on U is said to be subharmonic
if

∆u ≥ 0(6.14.1)

on U . Equivalently, umay be considered as a subsolution of the Laplace equation
in this case. If n = 1, then this corresponds to convexity of u.

6.14.1 Sub-mean-value inequalities

Let a ∈ U and r > 0 be given, with B(a, r) ⊆ U . If u is subharmonic on U ,
then it is well known that

u(a) ≤ 1

|∂B(a, r)|

∫
∂B(a,r)

u(y′) dy′.(6.14.2)

This can be obtained from suitable integral formulas, as in the previous section.
This corresponds to Theorem 4.3 on p76 of [268]. This is also related to Exercises
5 and 8 on p236 of [18], and we shall discuss this further in Chapter 11.

One can use this to get that

u(a) ≤ 1

|B(a, r)|

∫
B(a,r)

u(x) dx,(6.14.3)

as before. Conditions like these may be used to extend the notion of subhar-
monicity to functions with less regularity. This will be discussed further in
Chapter 11 as well.
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6.14.2 Points at which the maximum is attained

Suppose that u is a continuous real-valued function on U , and that there is a
real number A such that

u(x) ≤ A(6.14.4)

for every x ∈ U . Suppose also for the moment that

u(a) = A(6.14.5)

for some a ∈ U , and that (6.14.3) holds for some r > 0 such that B(a, r) ⊆ U .
Under these conditions, one can check that

u(x) = A(6.14.6)

for every x ∈ B(a, r). More precisely, A− u(x) ≥ 0 for every x ∈ U , and∫
B(a,r)

(A− u(x)) dx ≤ 0,(6.14.7)

because of (6.14.3) and (6.14.5).

6.14.3 Maximum principles for subharmonic functions

Suppose now that for every a ∈ U there is an r > 0 such that B(a, r) ⊆ U and
(6.14.3) holds. This implies that the set of x ∈ U such that (6.14.6) holds is an
open set, as in the preceding paragraph. This set is relatively closed in U as
well, because u is continuous on U . If this set is nonempty, and U is connected,
then this set is equal to U , so that

u ≡ A on U.(6.14.8)

This is another version of the strong maximum principle.
Suppose that U is bounded, and that u is a continuous real-valued function

on U such that for every a ∈ U there is an r > 0 with B(a, r) ⊆ U and for
which (6.14.3) holds. The extreme value theorem implies that u attains its
maximum on U . In fact, the maximum of u on U is attained as a point in ∂U ,
as in Subsection 6.7.2. More precisely, this uses the remarks in the previous
paragraph too. This is another version of the maximum principle.

6.15 Another approach to local maxima

Let n be a positive integer, let U be a nonempty open subset of Rn, and let u
be a twice continuously-differentiable real-valued function on U . If u has a local
maximum at a point a ∈ U , then

∂u

∂xl
(a) = 0(6.15.1)



142 CHAPTER 6. MORE ON HARMONIC FUNCTIONS

for each l = 1, . . . , n, and
∂2u

∂x2l
(a) ≤ 0(6.15.2)

for each l = 1, . . . , n, by the second-derivative test.
In particular, this means that

(∆u)(a) ≤ 0.(6.15.3)

If
(∆u)(x) > 0(6.15.4)

for every x ∈ U , then it follows that

u has no local maxima in U.(6.15.5)

6.15.1 Positive Laplacian on U

Suppose from now on in this section that U is bounded, and that u is a contin-
uous real-valued function on U that is twice continuously differentiable on U .
The extreme value theorem implies that u attains its maximum on U . If (6.15.4)
holds at every point in U , then the maximum of u on U cannot be attained at
a point in U , as in the preceding paragraph. This implies that the maximum of
u on U is attained at a point in ∂U .

6.15.2 An approximation argument

Suppose that u is subharmonic on U , so that ∆u ≥ 0 on U . Let ϵ > 0 be given,
and put

vϵ(x) = u(x) + ϵ |x|2(6.15.6)

for every x ∈ U . Note that vϵ is continuous on U , twice continuously differen-
tiable on U , and that

(∆vϵ)(x) ≥ 2n ϵ > 0(6.15.7)

for every x ∈ U . It follows that

the maximum of vϵ on U is attained at a point in ∂U,(6.15.8)

as in the previous paragraph.

6.15.3 The maximum principle for u

Of course, U is bounded in Rn, because U is bounded, so that there is a non-
negative real number R such that

|x| ≤ R(6.15.9)

for every x ∈ U . This means that

vϵ(x) ≤ u(x) + ϵR2(6.15.10)
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for every x ∈ U . It follows that

max
x∈U

vϵ(x) = max
x∈∂U

vϵ(x) ≤ max
x∈∂U

u(x) + ϵR2,(6.15.11)

using (6.15.8) in the first step.
This implies that

max
x∈U

u(x) ≤ max
x∈∂U

u(x) + ϵR2,(6.15.12)

because u ≤ vϵ on U , by construction. Thus

max
x∈U

u(x) ≤ max
x∈∂U

u(x),(6.15.13)

because ϵ > 0 is arbitrary.
This is the same as saying that the maximum of u on U is attained at a

point in ∂U . This is another approach to the maximum principle under these
conditions.

6.15.4 Some milder differentiability conditions

The argument mentioned at the beginning of this section works if instead of
asking that u be twice continuously differentiable on U , we ask that

the first and second derivatives of u in each variable(6.15.14)

exist at every point in U.

Similarly, the arguments in the previous subsections work if we ask that u
be continuous on U , and satisfy (6.15.14) on U , instead of twice continuous
differentiability on U .

If u satisfies (6.15.14), then we can define the Laplacian of u on U in the
usual way, as in Section 2.1. If u is also continuous on U and satisfies the
Laplace equation on U , then u is in fact harmonic on U . This is mentioned on
p243 of [7] when n = 2, and the same argument, due to Carathéodory, works in
all dimensions.

More precisely, if u is a continuous real-valued function on the closed unit
ball B(0, 1) that satisfies (6.15.14) on U = B(0, 1), and if u satisfies the Laplace
equation on B(0, 1), then u is equal to the Poisson integral of its restriction
to ∂B(0, 1), as in Section 6.12.4. This uses the fact that the difference of u
and the Poisson integral of its restriction to ∂B(0, 1) is a continuous function
on B(0, 1) that is equal to 0 on ∂B(0, 1) and satisfies the Laplace equation in
the same sense on B(0, 1). One can use translations and dilations to get the
analogous statement for any closed ball in Rn. If u is continuous on U and
satisfies (6.15.14) and the Laplace equation on U , then we can get that u is
harmonic on U , by considering closed balls contained in U .



Chapter 7

The heat equation

7.1 Some basic solutions

Let n be a positive integer, and let us identify Rn×R with Rn+1, as usual. Let
U be a nonempty open subset of Rn × R, and let u be a twice continuously-
differentiable real or complex-valued function on U . We shall use ∆u = ∆xu to
refer to the Laplacian of u(x, t) as a function of x, with t fixed.

We say that u(x, t) satisfies the heat equation on U if

∂u

∂t
= ∆u =

n∑
j=1

∂2u

∂x2j
(7.1.1)

on U . One may also consider continuously-differentiable functions u(x, t) on U
whose second derivatives in x exist and are continuous on U .

Let V be a nonempty open subset of Rn, and let v be a twice continuously-
differentiable real or complex-valued function on V . Thus W = V × R is an
open set in Rn ×R, and

w(x, t) = v(x)(7.1.2)

is twice continuously-differentiable on W . Clearly w satisfies the heat equation
on W if and only if v is harmonic on V .

Let a ∈ C and b ∈ Cn be given, and put

u(x, t) = exp(a t+ b · x)(7.1.3)

for every x ∈ Rn and t ∈ R. This satisfies the heat equation on Rn ×R if and
only if

a = b · b.(7.1.4)

If b ∈ Rn, then it follows that a ≥ 0. If b = i c for some c ∈ Rn, then (7.1.4)
implies that

a = −c · c ≤ 0.(7.1.5)

144
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7.1.1 The heat kernel

Put

K(x, t) = (4π t)−n/2 exp(−|x|2/(4 t))(7.1.6)

for x ∈ Rn and t > 0. One can check directly that this satisfies the heat
equation on Rn ×R+. This is known as the Gauss–Weierstrass or heat kernel,
as in Section A of Chapter 4 of [75] and p8 of [268]. This is also discussed in
Section 2.3.1 a of [70].

With this normalization, we have that∫
Rn

K(x, t) dx = 1(7.1.7)

for every t > 0. The integral on the left may be considered as an improper
integral or as a Lebesgue integral, and this will be discussed in the next two
sections.

Put

K(x, t) = 0(7.1.8)

when t = 0 and x 6= 0, and for every x ∈ Rn when t < 0. This together with
(7.1.6) defines K(x, t) on (Rn × R) \ {(0, 0)}. One can verify that K(x, t) is
smooth on this set, and satisfies the heat equation there, as in Section 2.3.1 b
of [70], and Section A of Chapter 4 of [75].

Of course, the heat equation is invariant under translations. In particular,
if y ∈ Rn and r ∈ R, then

K(x− y, t− r)(7.1.9)

is smooth as a function of (x, t) on (Rn × R) \ {(y, r)}, and satisfies the heat
equation there.

Note that

(−t)−n/2 exp(−|x|2/(4t))(7.1.10)

satisfies the heat equation on Rn × (−∞, 0), for the same reasons as before. If
y ∈ Rn and r ∈ R, then it follows that

(r − t)−n/2 exp(|x− y|2/(4(r − t)))(7.1.11)

satisfies the heat equation as a function of (x, t) on Rn × (−∞, r).

7.2 Integrable continuous functions

Let f be a nonnegative real-valued continuous function on the real line. If a, b
are real numbers with a ≤ b, then∫ b

a

f(x) dx(7.2.1)
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is defined as a Riemann integral, and is a nonnegative real number. Let us say
that f is integrable on R if the integrals (7.2.1) are bounded. In this case,∫ ∞

−∞
f(x) dx =

∫
R

f(x) dx(7.2.2)

may be defined as the supremum or least upper bound of the integrals in (7.2.1)
over all a, b ∈ R with a ≤ b. This could also be considered as an improper
integral, which is obtained by taking a suitable limit of (7.2.1) as a→ −∞ and
b→ ∞.

One could use the Lebesgue integral to define (7.2.2) as a nonnegative ex-
tended real number for any nonnegative continuous function on R. Integrability
of f in the sense considered in the preceding paragraph is the same as the finite-
ness of (7.2.2) as a Lebesgue integral, which implies that f is Lebesgue integrable
on R.

7.2.1 Integrable real-valued functions

If f is a real-valued continuous function on R, then

f+ = max(f, 0), f− = max(−f, 0)(7.2.3)

are nonnegative continuous functions on R such that

f = f+ − f−, |f | = f+ + f−.(7.2.4)

Let us say that f is integrable on R if

|f | is integrable as a nonnegative continuous function on R,(7.2.5)

which happens if and only if f+ and f− are integrable as nonnegative continuous
functions on R. This permits us to define the integral (7.2.2) as the difference of
the integrals of f+ and f− on R. This could also be considered as an improper
integral, as before. This is the same as the Lebesgue integral of f on R as well.

7.2.2 Integrable complex-valued functions

Similarly, a complex-valued continuous function f on R is said to be integrable
on R if (7.2.5) holds. This happens if and only if the real and imaginary parts
of f are integrable as real-valued continuous functions on R, and the real and
imaginary parts of the integral (7.2.2) are defined as the integrals of the real and
imaginary parts of f on R. This could be considered as an improper integral
too, and it is the same as the Lebesgue integral of f on R.

7.2.3 Integrability on Rn

There are analogous notions on Rn for any positive integer n. If f is a non-
negative real-valued continuous function on Rn, then the integrability of f on
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Rn can be defined in terms of the boundedness of the integrals of f over any
reasonable family of balls, cubes, or other regions that exhaust Rn. Under these
conditions, the integral ∫

Rn

f(x) dx(7.2.6)

of f on Rn can be defined as the supremum or least upper bound of these
integrals, and this could also be considered as a limit of these integrals.

If f is a real or complex-valued continuous function on Rn, then the inte-
grability of f is defined to mean that

|f | is integrable as a nonnegative continuous function on Rn,(7.2.7)

and this can be used to define the integral of f on Rn as before. This implies
that f is Lebesgue integrable on Rn, and the integral of f on Rn is the same
as the Lebesgue integral. In this case, it is well known and not too difficult to
show that ∣∣∣∣∫

Rn

f(x) dx

∣∣∣∣ ≤ ∫
Rn

|f(x)| dx.(7.2.8)

One might like to express an integral over Rn as an iterated integral too.
There are standard results for doing this when using Lebesgue integrals. Oth-
erwise, one can use standard results for doing this over nice bounded regions in
Rn, and pass to a limit under suitable conditions.

7.3 Some examples of integrable functions

Let n be a positive integer, and let α be a positive real number. Note that

min(1, |x|−α)(7.3.1)

is continuous on Rn, which is interpreted as being equal to 1 at x = 0. One can
check that this function is integrable on Rn exactly when

α > n.(7.3.2)

7.3.1 Integrating Gaussians

It is easy to see that exp(−|x|2) is integrable on Rn. It is well known that∫
Rn

exp(−|x|2) dx = πn/2.(7.3.3)

More precisely, the n = 2 case can be obtained using polar coordinates. The
2-dimensional integral is the same as the square of the one-dimensional integral,
which can be used to get the n = 1 case. Similarly, the n-dimensional integral
is equal to the nth power of the one-dimensional integral.
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If a is a positive real number again, then exp(−a |x|2) is integrable on Rn.
One can check that ∫

Rn

exp(−a |x|2) dx = (π/a)n/2,(7.3.4)

using a change of variables.

7.3.2 Linear terms in the exponential

If b ∈ Rn, then it is easy to see that

exp(−a |x|2 + b · x)(7.3.5)

is integrable on Rn. Observe that

exp(−a |x|2 + b · x) = exp(−a |x− (2 a)−1 b|2 + (4 a)−1|b|2)(7.3.6)

for every x ∈ Rn. It follows that∫
Rn

exp(−a |x|2 + b · x) dx =

∫
Rn

exp(−a |x− (2 a)−1 b|2 + (4 a)−1 |b|2) dx

=

∫
Rn

exp(−a |x|2 + (4 a)−1 |b|2) dx(7.3.7)

= (π/a)n/2 exp((4 a)−1 |b|2),

using a change of variables in the second step, and (7.3.4) in the third step.

7.3.3 Linear terms with complex coefficients

In fact, (7.3.5) is integrable on Rn when b ∈ Cn. It is well known that∫
Rn

exp(−a |x|2 + b · x) dx = (π/a)n/2 exp((4 a)−1 b · b)(7.3.8)

for every b ∈ Cn, which is the same as (7.3.7) when b ∈ Rn. One can first
reduce to the case where n = 1, because the left side is the same as the product
of n analogous integrals over R. If n = 1, then one can show that both sides of
(7.3.8) are holomorphic functions of b ∈ C. This permits one to reduce to the
case where b ∈ R, using standard results in complex analysis.

Alternatively, one can use the fact that

exp(−a z2 + b z) = exp(−a (z − (b/(2 a)))2 + b2/(4 a))(7.3.9)

is a holomorphic function of z ∈ C. One can reduce to the case where b ∈ R
again, using Cauchy’s theorem to make a suitable change of contour.

As another approach, one can reduce to the case where b is purely imaginary,
using a change of variables in x, as before. This corresponds to a Fourier
transform, as on p105f of [161], and Theorem 1.4 on p138 of [264].
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7.4 Some integral solutions

Let n be a positive integer, and let f be a continuous real or complex-valued
function on Rn. If x ∈ Rn and t > 0, then we would like to put

u(x, t) =

∫
Rn

K(x− y, t) f(y) dy(7.4.1)

=

∫
Rn

(4π t)−n/2 exp(−|x− y|2/(4 t)) f(y) dy.

This is called the Gauss–Weierstrass integral of f . The integral on the right is
defined as long as

exp(−|x− y|2/(4 t)) f(y)(7.4.2)

is integrable as a function of y on Rn, as in Subsection 7.2.3. Equivalently, this
means that

exp((2x · y − |y|2)/(4 t)) |f(y)|(7.4.3)

is integrable as a function of y on Rn, because

|x− y|2 = |x|2 − 2x · y + |y|2(7.4.4)

for all x, y ∈ Rn.

7.4.1 A sufficient condition for integrability

Let τ be a positive real number, and suppose that there is a nonnegative real
number C(τ) such that

|f(y)| ≤ C(τ) exp(|y|2/(4 τ))(7.4.5)

for every y ∈ Rn. If x ∈ Rn and t > 0, then (7.4.5) implies that

exp((2x · y − |y|2)/(4 t)) |f(y)|(7.4.6)

≤ C(τ) exp((2 x · y)/(4 t)− |y|2 ((4 t)−1 − (4 τ)−1))

for every y ∈ Rn. If t < τ , then

(4 τ)−1 < (4 t)−1,(7.4.7)

and one can check that (7.4.3) is integrable as a function of y on Rn. Thus
u(x, t) can be defined as in (7.4.1) in this case.

One can differentiate under the integral sign, to show that

u(x, t) is smooth on Rn × (0, τ)(7.4.8)

under these conditions. In particular, one can check that any number of deriva-
tives of (7.4.2) in x and t is integrable as a function of y on Rn when 0 < t < τ ,
because of (7.4.5). We also get that

u(x, t) satisfies the heat equation on Rn × (0, τ),(7.4.9)

because K(x − y, t) satisfies the heat equation as a function of (x, t) for every
y ∈ Rn.
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7.4.2 Some convergence properties

It is easy to see that ∫
Rn

K(x− y, t) dy = 1(7.4.10)

for every x ∈ Rn and t > 0, using (7.1.7). If z ∈ Rn and t < τ , then it follows
that

u(x, t)− f(z) =

∫
Rn

K(x− y, t) f(y) dy −
∫
Rn

K(x− y, t) f(z) dy

=

∫
Rn

K(x− y, t) (f(y)− f(z)) dy.(7.4.11)

This implies that

|u(x, t)− f(z)| =

∣∣∣∣∫
Rn

K(x− y, t) (f(y)− f(z)) dy

∣∣∣∣(7.4.12)

≤
∫
Rn

K(x− y, t) |f(y)− f(z)| dy,

because K(x− y, t) ≥ 0. One can use this to show that

u(x, t) → f(z)(7.4.13)

as (x, t) → (z, 0) in Rn ×R.
More precisely, if η > 0, then the right side of (7.4.12) is equal to the sum of∫

B(z,η)

K(x− y, t) |f(y)− f(z)| dy(7.4.14)

and ∫
Rn\B(z,η)

K(x− y, t) |f(y)− f(z)| dy.(7.4.15)

If η is sufficiently small, then we can get that (7.4.14) is as small as we like,
because f is continuous at z, and using (7.4.10) again. If we fix η > 0 with
this property, then we can get that (7.4.15) is as small as we like when (x, t)
is sufficiently close to (z, 0). This uses (7.4.5) and the definition (7.1.6) of the
heat kernel.

This means that

u(x, t) extends continuously to 0 ≤ t < τ,(7.4.16)

by taking it to be equal to f(x) when t = 0. Properties like these are mentioned
in Theorem 1 in Section 2.3.1 b of [70], and Theorem 4.3 in Section A of Chapter
4 of [75].

A related convergence property is that

u(x, t) → f(x)(7.4.17)
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uniformly on bounded subsets of Rn as t → 0. This can be obtained using the
uniform continuity of f on compact subsets of Rn. The previous convergence
property can be obtained from this one and the continuity of f on Rn. This
convergence property could also be obtained from the continuous extension of
u(x, t) to t ≥ 0, and the uniform continuity of this extension on compact sets.

7.4.3 Integrability for all t > 0

Suppose now that for every τ > 0 there is a nonnegative real number C(τ) such
that (7.4.5) holds. This implies that u(x, t) can be defined as in (7.4.1) for every
x ∈ Rn and t > 0.

Of course, this condition holds when f is bounded on Rn. This condition
also holds when f is the exponential of a linear function on Rn.

7.5 Some related integrability conditions

Let n be a positive integer, and let f be a continuous real or complex-valued
function on Rn. Also let τ1 be a positive real number, and suppose that

exp(−|y|2/(4 τ1)) |f(y)|(7.5.1)

is integrable on Rn, as in Subsection 7.2.3. This implies that (7.4.3) is integrable
as a function of y on Rn when 0 < t < τ1 and x ∈ Rn. This means that u(x, t)
can be defined as in (7.4.1) under these conditions.

Of course, (7.4.5) is the same as saying that

exp(−|y|2/(4 τ)) |f(y)|(7.5.2)

is bounded on Rn, where τ is a positive real number, as before. This implies
that (7.5.1) is integrable on Rn for 0 < τ1 < τ , as mentioned in the previous
section. If (7.5.1) is integrable on Rn for some τ1 > 0, then u(x, t) satisfies
the same properties on Rn × (0, τ1) as mentioned in the previous section when
(7.4.5) holds.

If (7.5.1) is integrable on Rn for every τ1 > 0, then u(x, t) can be defined
as in (7.4.1) for every x ∈ Rn and t > 0. In particular, this holds when (7.5.2)
is bounded on Rn for every τ > 0. Of course, if f is integrable on Rn, then
(7.5.1) is integrable on Rn for every τ1 > 0.

7.5.1 Using Lebesgue integrals

If one is familiar with Lebesgue integrals, then one may consider real or complex-
valued Lebesgue measurable functions f on Rn. The integral on the right side of
(7.4.1) can be defined as a Lebesgue integral when (7.4.2) is Lebesgue integrable
as a function of y on Rn. This is equivalent to the Lebesgue integrability of
(7.4.3) as a function of y on Rn, as before. Note that this implies that f is
locally integrable with respect to Lebesgue measure on Rn.
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If (7.5.1) is Lebesgue integrable on Rn for some τ1 > 0, then (7.4.3) is
Lebesgue integrable as a function of y on Rn when 0 < t < τ1 and x ∈ Rn, as
before. This implies that u(x, t) can be defined as in (7.4.1) on Rn×(0, τ1). One
can differentiate under the integral sign under these conditions too, to get that
u(x, t) is smooth on Rn× (0, τ1). Note that any number of derivatives of (7.4.2)
in x and t is Lebesgue integrable as a function of y on Rn when 0 < t < τ1,
because of the Lebesgue integrability of (7.5.1) on Rn. We also have that u(x, t)
satisfies the heat equation on Rn × (0, τ1), as before.

However, the convergence of u(x, t) to f(x) as t → 0+ is more complicated
in this case. Some results along these lines are mentioned in Theorem 4.3 in
Section A of Chapter 4 of [75], and Theorems 1.18 and 1.25 on p10, 13 of [268].

There are continuity and convergence results like those mentioned in the
previous section at points where f is continuous. One can also use Riemann
integrals on suitable regions in Rn, and corresponding improper integrals on
Rn, to deal with some types of functions that may not be continuous, instead
of Lebesgue integrals.

7.6 Translations and integrability

Let n be a positive integer, and let f be a continuous real or complex-valued
function on Rn. If a ∈ Rn, then

fa(x) = f(x− a)(7.6.1)

is a continuous function on Rn as well. Note that f is integrable on Rn if and
only if fa is integrable on Rn, in which case∫

Rn

fa(x) dx =

∫
Rn

f(x) dx.(7.6.2)

Of course, this also holds with |f | in place of f , so that∫
Rn

|fa(x)| dx =

∫
Rn

|f(x)| dx.(7.6.3)

7.6.1 Some related properties of translates

Let x ∈ Rn and t > 0 be given. Observe that

exp(−|x− y|2/(4 t)) f(y − a)(7.6.4)

= exp(−|(x− a)− (y − a)|2/(4 t)) f(y − a)

is the same as
exp(−|(x− a)− y|2/(4 t)) f(y)(7.6.5)

with y replaced by y− a. Thus (7.6.4) is integrable on Rn if and only if (7.6.5)
is integrable on Rn, as in the preceding paragraph. In this case, we get that

u(x− a, t) =

∫
Rn

(4π t)−n/2 exp(−|x− y|2/(4 t)) f(y − a) dy,(7.6.6)
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where the left side is defined as in (7.4.1).
Note that

exp(−|y|2/(4 t)) |f(y − a)|(7.6.7)

is integrable on Rn if and only if

exp(−|y + a|2/(4 t)) |f(y)|(7.6.8)

is integrable on Rn. This is equivalent to the integrability of

exp((−2 a · y − |y|2)/(4 t)) |f(y)|(7.6.9)

If (7.5.1) is integrable on Rn for some τ1 > 0, then (7.6.9) is integrable on Rn

when 0 < t < τ1, as in the previous section. This means that

(7.6.7) is integrable on Rn when 0 < t < τ1.(7.6.10)

Of course, there are analogous statements for Lebesgue measurable functions f
using Lebesgue integrability.

Similarly, (7.6.7) is bounded on Rn if and only if (7.6.8) is bounded on Rn,
which is equivalent to the boundedness of (7.6.9) on Rn. Suppose that (7.5.2)
is bounded on Rn for some τ > 0, which is the same as saying that (7.4.5) holds
for some C(τ) ≥ 0. It follows that (7.6.9) is bounded on Rn when 0 < t < τ , so
that

(7.6.7) is bounded on Rn when 0 < t < τ.(7.6.11)

Let 0 < τ0 ≤ +∞ be given. Consider the condition that

(7.5.1) be integrable on Rn for every positive real number τ1 < τ0.(7.6.12)

This implies that fa satisfies the analogous condition, as in (7.6.10). Similarly,
consider the condition that

(7.5.2) be bounded on Rn for every 0 < τ < τ0.(7.6.13)

This implies that fa satisfies the analogous condition, as in (7.6.11).

7.7 Some properties of these solutions

Let n be a positive integer, and let f be a continuous real or complex-valued
function on Rn. Also let x ∈ Rn and t > 0 be given, and suppose for the
moment that (7.4.2) or equivalently (7.4.3) is integrable as a function of y on
Rn. Thus u(x, t) may be defined as in (7.4.1), and we have that

|u(x, t)| ≤
∫
Rn

K(x− y, t) |f(y)| dy(7.7.1)

=

∫
Rn

(4π t)−n/2 exp(−|x− y|2/(4 t)) |f(y)| dy.

This also works when f is Lebesgue measurable on Rn, and (7.4.2) or equiva-
lently (7.4.3) is Lebesgue integrable as a function of y on Rn.
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7.7.1 Upper and lower bounds

Of course, if f is real-valued on Rn, then u(x, t) ∈ R. If f is also nonnegative
on Rn, then

u(x, t) ≥ 0.(7.7.2)

Similarly, if f(y) ≥ a for some a ∈ R and every y ∈ Rn, then

u(x, t) ≥ a,(7.7.3)

because of (7.4.10). If f(y) ≤ b for some b ∈ R and every y ∈ Rn, then

u(x, t) ≤ b,(7.7.4)

for basically the same reasons.

7.7.2 Bounded complex-valued functions

If f is a bounded continuous complex-valued function on Rn, then u(x, t) is
defined for every x ∈ Rn and t > 0, as in Subsection 7.4.3. More precisely,
suppose that

|f(y)| ≤ C(7.7.5)

for some C ≥ 0 and every y ∈ Rn. This implies that

|u(x, t)| ≤ C(7.7.6)

for every x ∈ Rn and t > 0, because of (7.4.10) and (7.7.1). This works when
f is a bounded Lebesgue measurable function on Rn as well. If f is a constant
on Rn, then u(x, t) is equal to the same constant for every x ∈ Rn and t > 0.

7.7.3 Integral bounds and convergence

Note that ∫
Rn

K(x− y, t) dx = 1(7.7.7)

for every y ∈ Rn and t > 0, because of (7.1.7). Of course, this is essentially the
same as (7.4.10).

Suppose now that f is a real or complex-valued function on Rn that is
continuous and integrable, or simply Lebesgue integrable. This implies that
u(x, t) may be defined as in (7.4.1) for every x ∈ Rn and t > 0. In this case,
u(x, t) is integrable as a function of x on Rn for every t > 0, with∫

Rn

|u(x, t)| dx ≤
∫
Rn

|f(y)| dy.(7.7.8)

This can be obtained from (7.7.1) by interchanging the order of integration, and
using (7.7.7). Similarly, ∫

Rn

u(x, t) dx =

∫
Rn

f(y) dy(7.7.9)
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for every t > 0.
One can also show that

lim
t→0+

∫
Rn

|u(x, t)− f(x)| dx = 0.(7.7.10)

This corresponds to taking p = 1 in Theorem 4.3 in Section A of Chapter 4 of
[75], and Theorem 1.18 on p10 of [268]. This is simpler when f is a continuous
function on Rn with compact support. Otherwise, one can approximate f by
such functions.

7.8 Parabolic boundaries and maxima

Let n be a positive integer, let V be a nonempty bounded open subset of Rn,
and let T be a positive real number. Thus

U = V × (0, T )(7.8.1)

is a bounded open subset of Rn × R, which we identify with Rn+1, as usual.
The closure U of U in Rn ×R is given by

U = V × [0, T ],(7.8.2)

where V is the closure of V in Rn. The boundary ∂U of U in Rn ×R is given
by

∂U = (V × {0}) ∪ ((∂V )× [0, T ]) ∪ (V × {T}),(7.8.3)

where ∂V is the boundary of V in Rn.
Note that

(V × {0}) ∪ ((∂V )× [0, T ])(7.8.4)

is a closed set in Rn × R that is contained in ∂U . This may be called the
parabolic boundary of U , as in Section 2.3.2 of [70], although the term is used
slightly differently there. This is the same as

(V × {0}) ∪ ((∂V )× [0, T ]),(7.8.5)

because (∂V )× {0} is contained in the second part of the union.

7.8.1 Some related maximum principles

Let u be a continuous real-valued function on U , and suppose that u is contin-
uously differentiable on U , and that the second derivatives of u(x, t) in x exist
and are continuous on U . Remember that u attains its maximum on U , by the
extreme value theorem. If u satisfies the heat equation on U , then it is well
known that

the maximum of u on U is attained on the parabolic boundary of U.(7.8.6)
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This is the maximum principle for the heat equation, as in Theorem 4.10 in
Section B of Chapter 4 of [75].

This corresponds to part (i) of Theorem 4 in Section 2.3.3 a of [70]. Part (ii)
of that theorem is a version of the strong maximum principle for the heat equa-
tion. The proof uses a mean-value property for the heat equation in Theorem
3 of Section 2.3.2 of [70]. A more direct approach to the first part is indicated
in Problem 16 in Section 2.5 of [70], which is similar to the argument in [75],
that we shall follow here. This version of the maximum principle also works for
subsolutions of the heat equation, which will be discussed in the next section.

7.8.2 Uniqueness and the parabolic boundary

If u = 0 on the parabolic boundary of U , then the maximum principle implies
that

u ≤ 0 on U.(7.8.7)

The same argument could be applied to −u, to get that

u ≡ 0 on U.(7.8.8)

This corresponds to Theorem 5 in Section 2.3.3 a of [70], and to Corollary 4.11
in Section B of Chapter 4 of [75].

7.8.3 A remark about the maximum of u on U

Of course, the parabolic boundary (7.8.4) of U is closed and bounded in Rn×R,
and thus compact. If u is any continuous real-valued function on U , then the
maximum of u on the parabolic boundary of U is attained, by the extreme
value theorem. In order to show that the maximum of u on U is attained on
the parabolic boundary of U , it suffices to show that for each (x, t) ∈ U , u(x, t)
is less than or equal to the maximum of u on the parabolic boundary of U .

7.8.4 The maximum of |u| when u is complex-valued

Suppose now that u is a continuous complex-valued function on U that is con-
tinuously differentiable on U , and that the second derivatives of u(x, t) in x exist
and are continuous on U . Thus the previous statements for real-valued func-
tions can be applied to the real and imaginary parts of u. Similarly, if α ∈ C,
then the previous statements can be applied to

Re(αu(x, t)).(7.8.9)

If w ∈ C, then it is easy to see that

|w| = max{Re(αw) : α ∈ C, |α| = 1}.(7.8.10)

One can use this to show that the maximum of |u| on U is attained on the
parabolic boundary of U , because of the analogous statement for (7.8.9).
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7.9 Subsolutions of the heat equation

Let n be a positive integer, let U be a nonempty open subset of Rn×R, and let
u be a real-valued function on U . Suppose that u is continuously differentiable
on U , and that the second derivatives of u(x, t) in x exist and are continuous
on U . If

∂u

∂t
≤ ∆u(7.9.1)

on U , then u is said to be a subsolution of the heat equation, as in Problem
17 in Section 2.5 of [70]. Let us say that u is a strict subsolution of the heat
equation if

∂u

∂t
< ∆u(7.9.2)

on U .

7.9.1 Strict subsolutions and local maxima

Suppose that u has a local maximum at (ξ, τ) ∈ U . This implies that (ξ, τ) is a
critical point of u, and that the second derivative of u at (ξ, τ) in xj is less than
or equal to 0 for each j = 1, . . . , n. It follows that u is not a strict subsolution
of the heat equation on U .

7.9.2 An argument for strict subsolutions

Now let V , T , and U be as in the previous section, and let u be a continuous
real-valued function on U . Suppose that u is continuously differentiable on U
again, and that the second derivatives of u(x, t) in x exist and are continuous on
U . Suppose for the moment that u is a strict subsolution of the heat equation
on U .

Let R be a positive real number with R < T , and note that

V × [0, R](7.9.3)

is closed and bounded in Rn×R, and thus compact. This means that the max-
imum of u on (7.9.3) is attained, by the extreme value theorem. The maximum
of u on (7.9.3) cannot be attained at a point in

V × (0, R),(7.9.4)

as before.
Suppose for the sake of a contradiction that u has a local maximum at (ξ,R)

for some ξ ∈ V , as a function on (7.9.3). In particular, (ξ,R) is a local maximum
for u as a function on

V × {R},(7.9.5)

so that ξ is a critical point for u(x,R) as a function of x, and the second
derivative of u at (ξ,R) in xj is less than or equal to 0 for each j = 1, . . . , n.
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We also get that the derivative of u in t at (ξ,R) is greater than or equal
to 0, because (ξ,R) is a local maximum for u on (7.9.3). This is not possible,
because u is supposed to be a strict subsolution of the heat equation on U .

It follows that the maximum of u on (7.9.3) can only be attained at a point
in

(V × {0}) ∪ ((∂V )× [0, R]).(7.9.6)

This is the parabolic boundary of (7.9.4), as in the previous section.
Remember that the maximum of u on the parabolic boundary (7.8.4) of U

is attained, by the extreme value theorem. Of course, the maximum of u on
(7.9.6) is less than or equal to the maximum of u on (7.8.4), because (7.9.6) is
contained in (7.8.4). This implies that the maximum of u on (7.9.3) is less than
or equal to the maximum of u on (7.8.4), by the statement in the preceding
paragraph. One can use this to get that the maximum of u on U is attained on
(7.8.4), because the previous statement holds for all R ∈ (0, T ).

In [70], one typically asks that the regularity properties of u extend to the
“parabolic cylinder”, which includes

V × {T}.(7.9.7)

In this case, one can get directly that the maximum of u on U can only be
attained on the parabolic boundary of U , as before.

7.9.3 Non-strict subsolutions

Suppose now that u is a non-strict subsolution of the heat equation on U , and
let ϵ > 0. It is easy to see that

uϵ(x, t) = u(x, t)− ϵ t(7.9.8)

and
vϵ(x, t) = u(x, t) + ϵ |x|2(7.9.9)

are strict subsolutions of the heat equation on U . Thus the maxima of uϵ and
vϵ on U are attained on the parabolic boundary of U , as before. One can use
either of these to get that the maximum of u on U is attained on the parabolic
boundary of U . This is a version of the maximum principle for subsolutions of
the heat equation, as mentioned in the previous section.

7.10 Another approach to uniqueness

Let n be a positive integer, let V be a nonempty bounded open subset of Rn

with reasonably smooth boundary, and let T be a positive real number. Put
U = V × (0, T ), which is a bounded open subset of Rn ×R, as before. Let u
be a continuously-differentiable real or complex-valued function on U , which is
twice continuously differentiable in x. More precisely, this means that u(x, t) is
twice continuously differentiable as a function of x on V for each t ∈ [0, T ], and
that all of the second derivatives of u(x, t) in x are continuous on U .
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7.10.1 A related function e(t)

If 0 ≤ t ≤ T , then put

e(t) =

∫
V

|u(x, t)|2 dx.(7.10.1)

Observe that

∂

∂t
(|u(x, t)|2) =

∂

∂t
(u(x, t)u(x, t)) =

∂u

∂t
(x, t)u(x, t) + u(x, t)

∂u

∂t
(x, t)

= 2 Re
(
u(x, t)

∂u

∂t
(x, t)

)
.(7.10.2)

We can differentiate under the integral sign under these conditions, to get that

de

dt
(t) = 2 Re

∫
V

u(x, t)
∂u

∂t
(x, t) dx.(7.10.3)

If u satisfies the heat equation, then this implies that

de

dt
(t) = 2 Re

∫
V

u(x, t) (∆u)(x, t) dx.(7.10.4)

7.10.2 Some boundary conditions

Suppose that either
u(y′, t) = 0 on (∂V )× [0, T ](7.10.5)

or
(Dν(y′)u)(y

′, t) = 0 on (∂V )× [0, T ],(7.10.6)

where ν(y′) is the outward-pointing unit normal to ∂V in Rn at y′ ∈ ∂V , as
usual, and Dν(y′) indicates the directional derivative in the direction ν(y′). In
both cases, we can use the divergence theorem, as in Subsection 3.5.2, to get
that

de

dt
(t) = −2

∫
V

|∇u(x, t)|2 dx.(7.10.7)

More precisely, ∇u(x, t) = ∇xu(x, t) refers to the gradient of u(x, t) in x. In
particular, the right side of (7.10.7) is less than or equal to 0, so that e(t)
decreases monotonically on [0, T ].

7.10.3 Some initial conditions

If we also have that
u(x, 0) = 0 on V,(7.10.8)

then we get that e(0) = 0. This implies that e(t) = 0 for every t ∈ [0, T ],
because e(t) decreases monotonically on [0, T ]. This means that

u(x, t) = 0 on U = V × [0, T ].(7.10.9)

This corresponds to Theorem 10 in Section 2.3.4 a of [70] in the case of the
Dirichlet boundary conditions (7.10.5), and Problem 1 in Section 7.5 of [70] for
the Neumann boundary conditions (7.10.6).
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7.11 Some integrals of products

Let n be a positive integer, let V be a nonempty bounded open subset of Rn

with reasonably smooth boundary, and let a, b be real numbers with a < b. Thus
U = V × (a, b) is a bounded open subset of Rn×R, with closure U = V × [a, b].
Let u, v be continuously-differentiable real or complex-valued functions on U
that are twice continuously differentiable in x. Suppose that u satisfies the heat
equation, and that v satisfies the “backwards” heat equation

∂v

∂t
= −∆v.(7.11.1)

Equivalently, this means that v(x,−t) satisfies the heat equation.

7.11.1 Some derivatives in t

Observe that
∂

∂t
(u v) =

∂u

∂t
v + u

∂v

∂t
= (∆u) v − u (∆v).(7.11.2)

If a ≤ t ≤ b, then one can differentiate under the integral sign to get that

d

dt

∫
V

u(x, t) v(x, t) dx =

∫
V

((∆u)(x, t) v(x, t)− u(x, t) (∆v)(x, t)) dx.(7.11.3)

This implies that

d

dt

∫
V

u(x, t) v(x, t) dx(7.11.4)

=

∫
∂V

((Dν(y′)u)(y
′, t) v(y′, t)− u(y′, t) (Dν(y′)v)(y

′, t)) dy′,

as in Section 3.9. Here ν(y′) is the outward-pointing unit normal to ∂V in Rn

at y′ ∈ ∂V , and Dν(y′) indicates the directional derivative in the direction ν(y′),
as before.

If we integrate in t over [a, b], then we get that∫
V

u(x, b) v(x, b) dx−
∫
V

u(x, a) v(x, a) dx(7.11.5)

=

∫ b

a

∫
∂V

((Dν(y′)u)(y
′, t) v(y′, t)− u(y′, t) (Dν(y′)v)(y

′, t))) dy′ dt.

This corresponds to Problem 3 in Section 7.5 of [70]. This could also be obtained
from the divergence theorem on U , as in the proof of Theorem 4.4 in Section A
of Chapter 4 of [75].
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7.11.2 An interesting v

Let K(x, t) be the heat kernel as defined on (Rn ×R) \ {(0, 0)} in Subsection
7.1.1, so that K(x, t) is smooth and satisfies the heat equation on this set. Let
z ∈ Rn and t1 ∈ R with t1 > b be given, and consider

v(x, t) = K(x− z, t1 − t),(7.11.6)

which is a smooth function on (Rn ×R) \ {(z, t1)} that satisfies the backward
heat equation. In particular, (7.11.6) is smooth and satisfies the backward heat
equation on U , so that (7.11.4) and (7.11.5) hold in this case.

If z ∈ V , then ∫
V

u(x, b)K(x− z, t1 − b) dx→ u(z, b)(7.11.7)

as t1 → b+, as in Subsection 7.4.2. This implies that

u(z, b) =

∫
V

u(x, a)K(x− z, b− a) dx(7.11.8)

+

∫ b

a

∫
∂V

(Dν(y′)u)(y
′)K(y′ − z, b− t) dy′ dt

−
∫ b

a

∫
∂V

u(y′, t) (Dν(y′)K)(y′ − z, b− t) dy′ dt,

by taking the limit as t1 → b+ in the other terms in (7.11.5).

7.11.3 Integrals over Rn

Suppose now that u is a continuously-differentiable real or complex-valued func-
tion on Rn× [a, b] that is twice continuously differentiable in x and satisfies the
heat equation. If z ∈ Rn, then we would like to use (7.11.8) to get that

u(z, b) =

∫
Rn

u(x, a)K(x− z, b− a) dx

=

∫
Rn

u(x, a) (4π (b− a))−n/2 exp(−|x− z|2/(4 (b− a))) dx(7.11.9)

under suitable conditions, as in the proof of Theorem 4.4 in Section A of Chapter
4 of [75].

Suppose that there are real numbers b1 > b and C,C ′ ≥ 0 such that

|u(x, t)| ≤ C exp(|x|2/(4 (b1 − t)))(7.11.10)

and
|∇u(x, t)| ≤ C ′ exp(|x|2/(4 (b1 − t)))(7.11.11)

for every x ∈ Rn and a ≤ t ≤ b. Here ∇u(x, t) = ∇xu(x, t) refers to the gradient
of u(x, t) in x, as before. In particular, if we take t = a in (7.11.10), then we
get that the integrand on the right side of (7.11.9) is integrable on Rn.
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If r is a positive real number with |z| < r, then we can take V = B(0, r) in
(7.11.8). The second and third terms on the right side of (7.11.8) tend to 0 as
r → ∞, because of (7.11.10) and (7.11.11). The first term on the right side of
(7.11.8) tends to the right side of (7.11.9) as r → ∞, because of (7.11.10) with
t = a. Thus (7.11.9) holds, as desired.

7.11.4 An integral representation

Suppose that 0 < T ≤ ∞, and let u(x, t) is a continuously-differentiable real or
complex-valued function on Rn× (0, T ) that is twice continuously differentiable
in x and satisfies the heat equation. If 0 < a < b < T , then (7.11.9) holds for
every z ∈ Rn under the conditions mentioned earlier. If u(x, t) has boundary
values as t → 0+ in an appropriate sense, then one can use (7.11.9) to express
u as the Gauss–Weierstrass integral of its boundary values, under suitable con-
ditions. A version of this is given by Theorem 4.4 in Section A of [75] and its
proof.

7.12 Upper bounds and t = 0

Let n be a positive integer, and let T be a positive real number. Also let u be
a continuous real-valued function on Rn × [0, T ]. Suppose that on Rn × (0, T ),
u(x, t) is continuously differentiable, twice continuously differentiable in x, and
satisfies the heat equation. If

u(x, 0) ≤ 0 for every x ∈ Rn,(7.12.1)

then we would like to be able to say that

u(x, t) ≤ 0 for every (x, t) ∈ Rn × [0, T ],(7.12.2)

at least under suitable conditions.
We shall do this here when

|x|−2 max(u(x, t), 0) → 0 as |x| → ∞,(7.12.3)

uniformly over t ∈ [0, T ]. An analogous statement with a much weaker condition
on u(x, t) is given in Theorem 6 in Section 2.3.3 a of [70], which will be discussed
in the next section. More precisely, it suffices to ask that u be a subsolution of
the heat equation on Rn × (0, T ), instead of satisfying the heat equation there.

7.12.1 Approximation by other subsolutions

Let ϵ > 0 be given, and observe that

|x|2 + 2n t(7.12.4)

satisfies the heat equation on Rn ×R. Thus

vϵ(x, t) = u(x, t)− ϵ (|x|2 + 2n t)(7.12.5)
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is a subsolution of the heat equation on Rn × (0, T ). Note that

vϵ(x, 0) ≤ u(x, 0) ≤ 0(7.12.6)

for every x ∈ Rn. We also have that

vϵ(x, t) ≤ 0(7.12.7)

for every t ∈ [0, T ] when |x| is sufficiently large, by hypothesis.
It follows that (7.12.7) holds for every (x, t) ∈ Rn × [0, T ], by the maximum

principle. This implies (7.12.2), because ϵ > 0 is arbitrary.

7.12.2 The corresponding uniqueness statement

Suppose now that u satisfies the heat equation on Rn × (0, T ), and that

u(x, 0) = 0 for every x ∈ Rn.(7.12.8)

If
|x|−2 u(x, t) → 0 as |x| → ∞,(7.12.9)

then
u(x, t) = 0 for every (x, t) ∈ Rn × [0, T ],(7.12.10)

by the previous argument for u and −u. This corresponds to Theorem 7 in
Section 2.3.3 a of [70], which has a much weaker condition on the size of u(x, t),
as before.

7.13 A weaker condition on u(x, t)

Let n, T , and u be as at the beginning of the previous section, and suppose that
(7.12.1) holds. Suppose also that there are nonnegative real numbers a, A such
that

u(x, t) ≤ A exp(a |x|2)(7.13.1)

for every (x, t) ∈ Rn × [0, T ]. Under these conditions, we have that (7.12.2)
holds, as in Theorem 6 in Section 2.3.3 a of [70]. As in the previous section,
it suffices to ask that u be a subsolution of the heat equation on Rn × (0, T ),
instead of satisfying the heat equation there.

7.13.1 An initial step

As in [70], we suppose first that

4 aT < 1.(7.13.2)

This implies that
4 a (T + η) < 1(7.13.3)
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for some η > 0. Note that

(T + η − t)−n/2 exp(|x|2/(4 (T + η − t)))(7.13.4)

satisfies the heat equation on Rn × (−∞, T + η), as in Subsection 7.1.1. It
follows that for each µ > 0,

w(x, t) = u(x, t)− µ (T + η − t)−n/2 exp(|x|2/(4 (T + η − t)))(7.13.5)

is a subsolution of the heat equation on Rn × (0, T ).

Clearly

w(x, 0) ≤ u(x, 0) ≤ 0(7.13.6)

for every x ∈ Rn. One can check that

w(x, t) ≤ 0(7.13.7)

for every t ∈ [0, T ] when |x| is sufficiently large, using (7.13.1) and (7.13.3).
This implies that (7.13.7) holds for every (x, t) ∈ Rn × [0, T ], by the maximum
principle. It follows that (7.12.2) holds, because µ > 0 is arbitrary.

7.13.2 Repeating the argument

If (7.13.2) does not hold, then we can use the same argument on smaller inter-
vals that satisfy this condition. One can use this repeatedly to get the same
conclusion as before, as in [70].

7.13.3 Another uniqueness statement

If u satisfies the heat equation on Rn × (0, T ), (7.12.8), and

|u(x, t)| ≤ A exp(a |x|2)(7.13.8)

for some a,A ≥ 0 and all (x, t) ∈ Rn × [0, T ], then (7.12.10) holds, as in the
previous section. This corresponds to Theorem 7 in Section 2.3.3 a of [70], as
before.

7.14 Some more integrals of products

Let n be a positive integer, let V be a nonempty bounded open subset of Rn

with reasonably smooth boundary, and let a, b be real numbers with a < b, as
in Section 7.11. Put U = V × (a, b), and let u, v be continuously-differentiable
real or complex-valued functions on U that are twice continuously differentiable
in x.
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7.14.1 Some more derivatives in t

If a ≤ t ≤ b, then

d

dt

∫
V

u(x, t) v(x, t) dx =

∫
V

(∂u
∂t

(x, t) v(x t) + u(x, t)
∂v

∂t
(x, t)

)
dx.(7.14.1)

We can combine this with an identity from Section 3.9 to get that

d

dt

∫
V

u(x, t) v(x, t) dx

=

∫
V

(∂u
∂t

(x, t)− (∆u)(x, t)
)
v(x, t) dx

+

∫
V

u(x, t)
(∂v
∂t

(x, t) + (∆v)(x, t)
)
dx(7.14.2)

+

∫
∂V

(u(y′, t) (Dν(y′)v)(y
′, t)− v(y′, t)(Dν(y′)u)(y

′, t)) dy′.

Here ν(y′) is the outward-pointing unit normal to ∂V in Rn at y′ ∈ ∂V , and
Dν(y′) indicates the directional derivative in the direction ν(y′), as usual.

Let us integrate in t over [a, b], to get that∫
V

u(x, b) v(x, b) dx−
∫
V

u(x, a) v(x, a) dx

=

∫ b

a

∫
V

(∂u
∂t

(x, t)− (∆u)(x, t)
)
v(x, t) dx dt

+

∫ b

a

∫
V

u(x, t)
(∂v
∂t

(x, t) + (∆v)(x, t)
)
dx dt(7.14.3)

+

∫ b

a

∫
∂V

(u(y′, t) (Dν(y′)v)(y
′, t)− v(y′, t) (Dν(y′)u)(y

′, t)) dy′ dt.

Of course, this can be simplified when u satisfies the heat equation, or v satisfies
the backward heat equation.

7.14.2 Using an interesting v

Let K(x, t) be the heat kernel as defined on (Rn ×R) \ {(0, 0)} in Subsection
7.1.1, which is smooth and satisfies the heat equation on this set. If z ∈ Rn and
t1 ∈ R, then

v(x, t) = K(x− z, t1 − t)(7.14.4)

is a smooth function on (Rn × R) \ {(z, t1)} that satisfies the backward heat
equation, as in Subsection 7.11.2. If t1 > b, then (7.14.4) is smooth and satisfies
the backward heat equation on U , as before. In this case, we get that∫

V

u(x, b)K(x− z, t1 − b) dx−
∫
V

u(x, a)K(x− z, t1 − a) dx
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=

∫ b

a

∫
V

(∂u
∂t

(x, t)− (∆u)(x, t)
)
K(x− z, t1 − t) dx dt

+

∫ b

a

∫
∂V

u(y′, t) (Dν(y′)K)(y′ − z, t1 − t) dy′ dt(7.14.5)

−
∫ b

a

∫
∂V

K(y′ − z, t1 − t) (Dν(y′)u)(y
′, t) dy′ dt.

Suppose that z ∈ V , and consider the limit as t1 → b+ of both sides of the
equation, as in Subsection 7.11.2. We would like to say that

u(z, b)−
∫
V

u(x, a)K(x− z, b− a) dx

=

∫ b

a

∫
V

(∂u
∂t

(x, t)− (∆u)(x, t)
)
K(x− z, b− t) dx dt

+

∫ b

a

∫
∂V

u(y′, t) (Dν(y′)K)(y′ − z, b− t) dy′ dt(7.14.6)

−
∫ b

a

∫
∂V

K(y′ − z, b− t) (Dν(y′)u)(y
′, t) dy′ dt.

More precisely, the first term on the right side should be handled a bit carefully,
as in the next section.

7.14.3 Using an interesting u

Similarly, if z ∈ Rn and t0 ∈ R, then

u(x, t) = K(x− z, t− t0)(7.14.7)

is a smooth function on (Rn ×R) \ {(z, t0)} that satisfies the heat equation. If
t0 < a, then (7.14.7) is smooth and satisfies the heat equation on U . If v is as
at the beginning of the section again, then we obtain that∫

V

K(x− z, b− t0) v(x, b) dx−
∫
V

K(x− z, a− t0) v(x, a) dx

=

∫ b

a

∫
V

K(x− z, t− t0)
(∂v
∂t

(x, t) + (∆v)(x, t)
)
dx dt

+

∫ b

a

∫
∂V

K(y′ − z, t− t0) (Dν(y′)v)(y
′, t) dy′ dt(7.14.8)

−
∫ b

a

∫
∂V

v(y′, t) (Dν(y′)K)(y′ − z, t− t0) dy
′ dt.

Suppose that z ∈ V again, and consider the limit as t0 → a− of both sides
of the equation. Of course, this is basically the same as the previous version,



7.15. SOME INTEGRALS WITH K(X,T ) 167

and we get that∫
V

K(x− z, b− a) v(x, b) dx− v(z, a)

=

∫ b

a

∫
V

K(x− z, t− a)
(∂v
∂t

(x, t) + (∆v)(x, t)
)
dx dt

+

∫ b

a

∫
∂V

K(y′ − z, t− a) (Dν(y′)v)(y
′, t) dy′ dt(7.14.9)

−
∫ b

a

∫
∂V

v(y′, t) (Dν(y′)K)(y′ − z, t− a) dy′ dt.

7.15 Some integrals with K(x, t)

Let K(x, t) be the heat kernel as defined on (Rn×R)\{(0, 0)}, as in Subsection
7.1.1. Remember that ∫

Rn

K(x, t) dx = 1(7.15.1)

for every t > 0. This implies that∫ r2

r1

∫
Rn

K(x, t) dx dt = r2 − r1(7.15.2)

when r1, r2 are positive real numbers with r1 ≤ r2. One could also allow r1 = 0
here, by considering the integral over t as an improper integral, or defining the
integrand at t = 0, or using Lebesgue integrals.

One may consider the left side of (7.15.2) as an (n+1)-dimensional integral
over Rn × [r1, r2], even when r1 = 0, using suitable improper integrals, or
Lebesgue integrals. In particular, K(x, t) is locally integrable on Rn ×R, with
respect to (n+ 1)-dimensional Lebesgue measure.

7.15.1 Some integrals on bounded sets

Let W be a nonempty bounded open subset of Rn, let T be a positive real
number, and let f be a continuous real or complex-valued function onW×[0, T ].
Note that f is bounded on W × [0, T ], so that

|f(x, t)| ≤ C(7.15.3)

for some C ≥ 0 and every x ∈ W , t ∈ [0, T ]. If one is using Riemann integrals,
then one should ask for a bit more regularity of the boundary of W , or that f is
equal to 0 on (∂W )× [0, T ]. If one is using Lebesgue integrals, then one might
simply ask that f be bounded and measurable on W × [0, T ].

If 0 < t ≤ T , then ∫
W

K(x, t) |f(x, t)| dx ≤ C,(7.15.4)
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by (7.15.1) and (7.15.3). This implies that∫ r2

r1

∫
W

K(x, t) |f(x, t)| dx dt ≤ C (r2 − r1)(7.15.5)

when 0 < r1 ≤ r2 ≤ T . This also works with r1 = 0, with suitable inter-
pretations when 0 ∈ W , or using Lebesgue integrals, as before. In particular,
this means that K(x, t) |f(x, t)| is integrable with respect to (n+1)-dimensional
Lebesgue measure on W × [0, T ].

Similarly, if η is a positive real number, then∫
W

K(x, t+ η) |f(x, t)| dx ≤ C(7.15.6)

for every t ∈ [0, T ]. It follows that∫ r2

r1

∫
W

K(x, t+ η) |f(x, t)| dx dt ≤ C (r2 − r1)(7.15.7)

when 0 ≤ r1 ≤ r2 ≤ T .

7.15.2 Some more integrals

Of course, ∣∣∣∣∫
W

K(x, t) f(x, t) dx

∣∣∣∣ ≤ C(7.15.8)

when 0 < t ≤ T , by (7.15.4). If r ∈ [0, T ], then∫ r

0

∫
W

K(x, t) f(x, t) dx dt(7.15.9)

may be defined directly unless 0 ∈ W , in which case the integral over t may
be considered as an improper integral, or defined a bit carefully as a Riemann
integral, or using Lebesgue integrals, as before. Note that∣∣∣∣∫ r

0

∫
W

K(x, t) f(x, t) dx dt

∣∣∣∣ ≤ C r.(7.15.10)

If 0 < r1 ≤ r2 ≤ T , then

lim
η→0+

∫ r2

r1

∫
W

K(x, t+ η) f(x, t) dx dt(7.15.11)

=

∫ r2

r1

∫
W

K(x, t) f(x, t) dx dt,

by standard arguments. It is not too difficult to show that this works with
r1 = 0 as well, using the previous remarks.



Chapter 8

Some more equations and
solutions

8.1 Another uniqueness argument

Let n be a positive integer, let V be a nonempty bounded open subset of Rn

with reasonably smooth boundary, and let T be a positive real number. Put
U = V × (0, T ), which is a bounded open subset of Rn × R, with closure
U = V ×[0, T ]. Let u(x, t) be a twice continuously-differentiable real or complex-
valued function on U .

8.1.1 A related function E(t)

If 0 ≤ t ≤ T , then put

E(t) =
1

2

∫
V

(∣∣∣∣∂u∂t (x, t)
∣∣∣∣2 + n∑

j=1

∣∣∣∣ ∂u∂xj (x, t)
∣∣∣∣2) dx.(8.1.1)

We can differentiate under the integral sign in t, to get that

d

dt
E(t) = Re

∫
V

(∂u
∂t

(x, t)
∂2u

∂t2
(x, t) +

n∑
j=1

∂u

∂xj
(x, t)

∂2u

∂xj ∂t
(x, t)

)
dx.(8.1.2)

8.1.2 Using some boundary conditions

Suppose that

u(y′, t) = 0 on (∂V )× [0, T ],(8.1.3)

so that
∂u

∂t
(y′, t) = 0 on (∂V )× [0, T ].(8.1.4)

169
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Under these conditions,∫
V

(∆u)(x, t)
∂u

∂t
(x, t) dx+

∫
V

n∑
j=1

∂u

∂xj
(x, t)

∂2u

∂xj ∂t
(x, t) dx = 0,(8.1.5)

as in Subsection 3.5.2, where (∆u)(x, t) refers to the Laplacian of u(x, t) in x.
This also works when

(Dν(y′)u)(y
′, t) = 0 on (∂V )× [0, T ],(8.1.6)

where ν(y′) is the outward-pointing unit normal to ∂V in Rn at y′ ∈ ∂V , and
Dν(y′) indicates the directional derivative in the direction ν(y′). Combining
(8.1.2) and (8.1.5), we obtain that

d

dt
E(t) = Re

∫
V

∂u

∂t
(x, t)

(∂2u
∂t2

(x, t)− (∆u)(x, t)
)
dx.(8.1.7)

8.1.3 The wave equation

Suppose now that u satisfies the wave equation

∂2u

∂t2
= ∆u(8.1.8)

on U . In this case, (8.1.7) reduces to

d

dt
E(t) = 0.(8.1.9)

If
E(0) = 0,(8.1.10)

then it follows that
E(t) = 0(8.1.11)

for every t ∈ [0, T ]. This means that the first derivatives of u(x, t) in x and t
are equal to 0 on U .

Of course, (8.1.10) holds when

u(x, 0) =
∂u

∂t
(x, 0) = 0(8.1.12)

for every x ∈ V . If
∂u

∂t
(x, t) = 0(8.1.13)

on U , then (8.1.12) implies that

u(x, t) = 0(8.1.14)

on U .
Thus (8.1.14) holds on U when (8.1.12) holds, and (8.1.11) holds for each

t ∈ [0, T ]. This means that (8.1.14) holds on U when u satisfies (8.1.3), (8.1.8),
and (8.1.12). This corresponds to Theorem 5 in Section 2.4.3 a in [70].

A more localized version of this will be discussed in the next section.
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8.2 A more localized version

Let n be a positive integer, let T be a positive real number, and let u(x, t) be a
twice continuously-differentiable real or complex-valued function on Rn× [0, T ].
Also let ξ ∈ Rn and a positive real number t0 ≤ T be given, and if 0 ≤ t ≤ t0,
then put

e(t) =
1

2

∫
B(ξ,t0−t)

(∣∣∣∣∂u∂t (x, t)
∣∣∣∣2 + n∑

j=1

∣∣∣∣ ∂u∂xj (x, t)
∣∣∣∣2) dx.(8.2.1)

Here B(ξ, t0 − t) is the open ball in Rn centered at ξ with radius t0 − t, which
may be interpreted as the empty set when t = t0, in which case the integral is
interpreted as being equal to 0.

8.2.1 Differentiating e(t)

Observe that

d

dt
e(t) = Re

∫
B(ξ,t0−t)

(∂u
∂t

(x, t)
∂2u

∂t2
(x, t) +

n∑
j=1

∂u

∂xj
(x, t)

∂2u

∂xj ∂t
(x, t)

)
dx

−1

2

∫
∂B(ξ,t0−t)

(∣∣∣∣∂u∂t (y′, t)
∣∣∣∣2 + n∑

j=1

∣∣∣∣ ∂u∂xj (y′, t)
∣∣∣∣2) dy′.(8.2.2)

8.2.2 More on differentiating e(t)

As in Subsection 3.5.2, we have that∫
B(ξ,t0−t)

(∆u)(x, t)
∂u

∂t
(x, t) dx(8.2.3)

+

∫
B(ξ,t0−t)

n∑
j=1

∂u

∂xj
(x, t)

∂2u

∂xj ∂t
(x, t) dx

=

∫
∂B(ξ,t0−t)

(Dνt(y′)u)(y
′, t)

∂u

∂t
(y′, t) dy′.

More precisely, if y′ ∈ ∂B(ξ, t0 − t), then νt(y
′) denotes the outward-pointing

unit normal to ∂B(ξ, t0−t) at y′, and Dνt(y′) indicates the directional derivative
in the direction νt(y

′), as usual.
If u(x, t) satisfies the wave equation (8.1.8), then the integral in the first

term on the right side of (8.2.2) is the same as the left side of (8.2.3). This
means that

d

dt
e(t) = Re

∫
∂B(ξ,t0−t)

(Dνt(y′)u)(y
′, t)

∂u

∂t
(y′, t) dy′

−1

2

∫
∂B(ξ,t0−t)

(∣∣∣∣∂u∂t (y′, t)
∣∣∣∣2 + n∑

j=1

∣∣∣∣ ∂u∂xj (y′, t)
∣∣∣∣2) dy′.(8.2.4)



172 CHAPTER 8. SOME MORE EQUATIONS AND SOLUTIONS

8.2.3 A monotonicity property

We would like to use this to get that

d

dt
e(t) ≤ 0(8.2.5)

To do this, note that

Re
(
(Dνt(y′)u)(y

′, t)
∂u

∂t
(y′, t)

)
≤ |(Dνt(y′)u)(y

′, t)|
∣∣∣∣∂u∂t (y′, t)

∣∣∣∣(8.2.6)

≤ |(∇u)(y′, t)|
∣∣∣∣∂u∂t (y′, t)

∣∣∣∣
for every y′ ∈ ∂B(ξ, t0 − t), where (∇u)(x, t) is the gradient of u(x, t) in x,
as before. This uses the Cauchy–Schwarz inequality in the second step, as in
Section 1.15.

The right side of this inequality is less than or equal to

1

2

(
|(∇u)(y′, t)|2 +

∣∣∣∣∂u∂t (y′, t)
∣∣∣∣2),(8.2.7)

because of the well-known fact that 2 a b ≤ a2 + b2 for all a, b ∈ R. One can use
this to obtain (8.2.5) from (8.2.4).

8.2.4 Using monotonicity to get uniqueness

This shows that e(t) decreases monotonically on [0, t0]. If

e(0) = 0,(8.2.8)

then we get that
e(t) = 0(8.2.9)

when 0 ≤ t ≤ t0.
Suppose now that

u(x, 0) =
∂u

∂t
(x, 0) = 0(8.2.10)

for every x ∈ B(ξ, t0), which implies that (8.2.8) holds. If

0 ≤ t ≤ t0 and x ∈ B(ξ, t0 − t),(8.2.11)

then it follows that

(∇u)(x, t) = ∂u

∂t
(x, t) = 0,(8.2.12)

by (8.2.9).
One can use (8.2.10) and (8.2.12) to get that

u(x, t) = 0(8.2.13)

when (8.2.11) holds. More precisely, in this argument, we only need that u(x, t)
be twice continuously differentiable and satisfy the wave equation on the set
where (8.2.11) holds. This corresponds to Theorem 6 in Section 2.4.3 b of [70],
and Theorem 5.3 in Section A of Chapter 5 of [75].
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8.3 Some differential equations on R2

Let w(y1, y2) be a twice continuously-differentiable real or complex-valued func-
tion on R2, and consider the partial differential equation

∂2w

∂y1 ∂y2
= 0.(8.3.1)

This equation obviously holds when w(y1, y2) depends only on y1 or y2.
Conversely, it is well known and not too difficult to show that if w(y1, y2)

satisfies (8.3.1) on R2, then w(y1, y2) can be expressed as the sum of a function
of y1 and a function of y2. More precisely, (8.3.1) implies that ∂w/∂y1 does not
depend on y2, so that it depends only on y1. This means that there is a function
of y1 whose derivative is equal to ∂w/∂y1, so that the derivative with respect
to y1 of w minus this function of y1 is equal to 0. It follows that w minus this
function of y1 depends only on y2, so that w is the sum of a function of y1 and
a function of y2. Alternatively, one could use (8.3.1) to get that ∂w/∂y2 does
not depend on y1, and use this to get the same type of representation of w.

8.3.1 The wave equation with n = 1

Let u(x, t) be a twice continuously-differentiable real or complex-valued function
on R2, and consider the partial differential equation

∂2u

∂t2
− ∂2u

∂x2
= 0.(8.3.2)

This is the same as the wave equation with n = 1, and it can also be expressed
as ( ∂

∂t
+

∂

∂x

)( ∂
∂t

− ∂

∂x

)
u = 0.(8.3.3)

It is easy to see that (8.3.1) corresponds to (8.3.3) under the change of variables

y1 = x+ t, y2 = x− t.(8.3.4)

Clearly any function of x + t or of x − t satisfies (8.3.2). Conversely, if u(x, t)
satisfies (8.3.2) on R2, then u(x, t) can be expressed as a sum of a function of
x+ t and a function of x− t, as before.

8.3.2 Related first-order equations

Alternatively, put

v(x, t) =
( ∂
∂t

− ∂

∂x

)
u(x, t),(8.3.5)

which is a continuously differentiable function on R2. Thus (8.3.3) is the same
as saying that

∂v

∂t
+
∂v

∂x
= 0.(8.3.6)
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This is a linear first-order partial differential equation in v, as in Section 4.1,
whose solutions are given by functions of x − t on R2. Given such a solution,
(8.3.5) may be considered as a linear first-order partial differential equation in
u. This corresponds to some remarks in Section 2.4.1 a in [70]. Of course, we
could consider

ṽ(x, t) =
( ∂
∂t

+
∂

∂x

)
u(x, t)(8.3.7)

instead, which is another continuously differentiable function on R2. Using this,
(8.3.3) is the same as saying that

∂ṽ

∂t
− ∂ṽ

∂x
= 0.(8.3.8)

8.3.3 Some remarks about uniqueness

Suppose that
u(x, t) = ϕ(x+ t) + ψ(x− t)(8.3.9)

for some continuously-differentiable real or complex-valued functions ϕ, ψ on
the real line. This implies that

u(x, 0) = ϕ(x) + ψ(x)(8.3.10)

and
∂u

∂t
(x, 0) = ϕ′(x)− ψ′(x)(8.3.11)

for every x ∈ R. Of course,

∂u

∂x
(x, 0) = ϕ′(x) + ψ′(x)(8.3.12)

for every x ∈ R, by (8.3.10). It follows that ϕ′ and ψ′ are uniquely determined
by (∂u/∂t)(x, 0) and (∂u/∂x)(x, 0) on R.

This means that ϕ and ψ are uniquely determined on R, up to adding
a constant to ϕ and subtracting the same constant from ψ, by u(x, 0) and
(∂u/∂t)(x, 0) on R. Note that the right side of (8.3.9) is not affected by adding
a constant to ϕ, and subtracting the same constant from ψ. Thus we get that
u(x, t) is uniquely determined on R2 by u(x, 0) and (∂u/∂t)(x, 0) on R. This
corresponds to some more remarks in Section 2.4.1 a of [70], and some remarks
in Section B of Chapter 5 of [75].

8.3.4 Arbitrary initial conditions

Observe that ϕ′ and ψ′ may be arbitrary continuous real or complex-valued
functions on R, so that the right sides of (8.3.11) and (8.3.12) may be arbitrary
continuous functions on R. Similarly, the right side of (8.3.10) may be any
continuously-differentiable function on R, which can be chosen at the same
time as the right side of (8.3.11), as an arbitrary continuous function on R.
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If we take ϕ and ψ to be twice continuously-differentiable functions on R,
then the right side of (8.3.10) can be any twice continuously-differentiable func-
tion on R, which can be chosen at the same time as the right side of (8.3.11), as
an arbitrary continuously-differentiable function on R. In this case, (8.3.9) is a
twice continuously-differentiable function on R2 that satisfies the wave equation
(8.3.2). This corresponds to Theorem 1 in Section 2.4.1 a of [70], and Theorem
5.6 in Section B of Chapter 5 of [75].

8.4 Some remarks about the Laplacian

Let n be a positive integer, and let a, b be real numbers with

0 ≤ a < b,(8.4.1)

although one could also permit b = +∞ here. Also let f be a twice continuously-
differentiable real or complex-valued function on (a, b). Note that

{x ∈ Rn : a < |x| < b}(8.4.2)

is an open set in Rn. Put

F (x) = f(|x|)(8.4.3)

on (8.4.2), which is a twice continuously-differentiable function on this set. A
function of the form (8.4.3) is said to be radial on (8.4.2).

One can check that

∆F (x) = f ′′(|x|) + (n− 1) |x|−1 f ′(|x|)(8.4.4)

on this set, as in Lemma 2.60 in Section G of Chapter 2 of [75]. In particular,
F is harmonic on (8.4.2) if and only if

f ′′(r) + (n− 1) r−1 f ′(r) = 0(8.4.5)

on (a, b), as in (5) in Section 2.2.1 a of [70]. This is related to some of the
remarks about harmonic functions in Section 6.1.

Let p be a homogeneous polynomial of degree k ≥ 0 on Rn, and suppose
that p is harmonic on Rn. Thus

q(x) = |x|−k p(x)(8.4.6)

is a smooth function on Rn \ {0} that is homogeneous of degree 0 and equal to
p on the unit sphere. One can check that

∆q(x) = −k (k + n− 2) |x|−2 q(x)(8.4.7)

on Rn \ {0}, as in Lemma 2.61 in Section G of Chapter 2 of [75]. This was
mentioned in Subsection 3.2.2 when |x| = 1.
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Under these conditions, one can also verify that

∆(F q)(x)

=
(
f ′′(|x|) + (n− 1) |x|−1 f ′(|x|)− k (k + n− 2) |x|−2 f(|x|)

)
q(x)(8.4.8)

on (8.4.2), as in Lemma 2.62 in Section G of Chapter 2 of [75]. More precisely,
it is not too difficult to see that

∇F (x) · ∇q(x) = 0(8.4.9)

on (8.4.2). This only uses the fact that q is homogeneous of degree 0, and not
the hypothesis that p be harmonic. Using this, one can get (8.4.8) from (8.4.4)
and (8.4.7).

8.4.1 Some eigenfunctions for the Laplacian

Suppose that

f ′′(r) + (n− 1) r−1 f ′(r)− k (k + n− 2) r−2 f(r) = µ f(r)(8.4.10)

on (a, b) for some real or complex number µ. Combining this with (8.4.8), we
get that

∆(F q) = µF q(8.4.11)

on (8.4.2). This is discussed further in Section G of Chapter 2 of [75].

8.5 More on radial functions

Let n be a positive integer, and let b be a positive real number, or +∞. Also
let f(r) be a real or complex-valued function defined for 0 ≤ r < b, so that F
may be defined on

{x ∈ Rn : |x| < b}(8.5.1)

as in (8.4.3). If f(r) is continuous for 0 ≤ r < b, then F is continuous on (8.5.1).
If f is l-times continuously differentiable on (0, b) for some positive integer l,
then F is l-times continuously differentiable on

{x ∈ Rn : 0 < |x| < b}.(8.5.2)

Suppose that f is differentiable at 0, where the derivative f ′(0) of f at 0 is
actually a derivative from the right. If

f ′(0) = 0,(8.5.3)

then it is easy to see that F is differentiable at 0, with differential at 0 equal to
0. Equivalently, this means that

|x|−1 F (x) = |x|−1 f(|x|) → 0 as x→ 0.(8.5.4)
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In particular, this implies that the partial derivatives of F at 0 are equal to 0,
and in fact that the directional derivative of F at 0 in any direction is equal to
0.

If f(r) is continuously differentiable for 0 ≤ r < b, and (8.5.3) holds, then
one can check that

F is continuously differentiable on (8.5.1).(8.5.5)

More precisely, F is continuously differentiable on (8.5.2), as before. To get
(8.5.5), one can verify that the partial derivatives of F are continuous at 0,
which is to say that they tend to 0 as x→ 0.

8.5.1 Second derivatives

Suppose that f(r) is twice continuously differentiable for 0 ≤ r < b, and that
(8.5.3) holds, and note that

lim
r→0+

r−1 f ′(r) = f ′′(0).(8.5.6)

Under these conditions, one can verify that

F is twice continuously differentiable on (8.5.1).(8.5.7)

Of course, F is twice continuously differentiable on (8.5.2), as before. Thus it
suffices to show that the second derivatives of F exist at 0, and are continuous
at 0.

If
f ′′(0) = 0,(8.5.8)

then one can show that the second derivatives of F at 0 are equal to 0, using
(8.5.6). One can also check that the second derivatives of F at x 6= 0 tend to 0
as x→ 0 in this case.

If f(r) = r2, then F (x) = |x|2 is a polynomial. Otherwise, one can reduce
to these two cases.

One can verify that (8.4.4) holds at x = 0 under these conditions, suitably
interpreted, using (8.5.6) to define r−1 f ′(r) at r = 0.

8.5.2 Higher derivatives

Similarly, let l be a positive integer, and suppose that f(r) is l-times continuously
differentiable for 0 ≤ r < b. If

the derivatives of f at 0 of odd order less than or equal to l(8.5.9)

are equal to 0,

then
F is l-times continuously differentiable on (8.5.1).(8.5.10)
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As usual, F is l-times continuously differentiable on (8.5.2), and so it is enough
to show that the derivatives of F of order up to l exist at 0, and are continuous
at 0.

As before, if all of the derivatives of f at 0 of order less than or equal to l
are equal to 0, then the derivatives of F at 0 of order less than or equal to l are
equal to 0. One can verify that the derivatives of F at x 6= 0 of order less than
or equal to l tend to 0 as x→ 0 as well.

If f(r) is a polynomial of r2, then F (x) is a polynomial. Otherwise, one can
reduce to these two cases.

8.6 Some spherical means

Let n be a positive integer, and let ϕ be a continuous real or complex-valued
function on Rn. If x ∈ Rn and r ∈ R, then the corresponding spherical mean
of ϕ may be defined by

Mϕ(x; r) =
1

|∂B(0, 1)|

∫
∂B(0,1)

ϕ(x+ r y′) dy′,(8.6.1)

as in Section B of Chapter 5 of [75]. Note that

Mϕ(x;−r) =Mϕ(x; r),(8.6.2)

and that
Mϕ(x; 0) = ϕ(x),(8.6.3)

as in [75]. If r > 0, then

Mϕ(x; r) =
1

|∂B(x, r)|

∫
∂B(x,r)

ϕ(z′) dz′.(8.6.4)

If x ∈ Rn is fixed, then

Mϕ(x; r) is continuous as a function of r ∈ R.(8.6.5)

Similarly, if
ϕ is k-times continuously differentiable on Rn(8.6.6)

for some positive integer k, then

Mϕ(x; r) is k-times continuously differentiable as a function of r ∈ R,(8.6.7)

as in [75]. In this case,
∂lMϕ(x; r)

∂rl
= 0 at r = 0(8.6.8)

when l ≤ k and l is odd, because of (8.6.2).
Let us consider

Mϕ(x; |w|)(8.6.9)
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as a real or complex-valued function of w ∈ Rn. If (8.6.6) holds, then we get
that

Mϕ(x; |w|) is k-times continuously differentiable(8.6.10)

as a function of w ∈ Rn,

because of (8.6.8), as in Section 8.5.

8.6.1 Spherical means and orthogonal transformations

Let T be an orthogonal transformation on Rn, and consider

ϕ(x+ T (w))(8.6.11)

as a real or complex-valued function of w ∈ Rn. We can average (8.6.11) over T
in the set O(n) of orthogonal transformations onRn, as mentioned in Subsection
A.5.1. It may be reasonably clear that the average is equal to (8.6.9), without
getting into too many details.

Of course, if (8.6.6) holds, then (8.6.11) is k-times continuously differentiable
as a function of w ∈ Rn for each T ∈ O(n). This is another way to look at
(8.6.10) under these conditions.

8.7 More on spherical means

Let a and b be real numbers with a < b, although we could also allow a = −∞ or
b = +∞ here. Suppose now that ϕ(x, t) is a continuous real or complex-valued
function on Rn × (a, b). If x ∈ Rn and t ∈ (a, b), then put

Mϕ(x; r, t) =
1

|∂B(0, 1)|

∫
∂B(0,1)

ϕ(x+ r y′, t) dy′(8.7.1)

for each r ∈ R. This is the same as (8.6.1) for ϕ(x, t) as a function of x on Rn

for each t ∈ (a, b). In particular,

Mϕ(x;−r, t) =Mϕ(x; r, t)(8.7.2)

for each r ∈ R,

Mϕ(x; 0, t) = ϕ(x, t),(8.7.3)

and

Mϕ(x; r, t) =
1

|∂B(x, r)|

∫
∂B(x,r)

ϕ(z′, t) dz′(8.7.4)

when r > 0, as before.
If x ∈ Rn is fixed, then

Mϕ(x; r, t) is continuous as a function of (r, t) ∈ R× (a, b),(8.7.5)
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as before. Similarly, if

ϕ(w, t) is k-times continuously differentiable on Rn × (a, b)(8.7.6)

for some positive integer k, then

Mϕ(x; r, t) is k-times continuously differentiable(8.7.7)

as a function of (r, t) ∈ R× (a, b).

Under these conditions, we get that

∂lMϕ(x; r, t)

∂rl
= 0 at r = 0(8.7.8)

when l ≤ k and l is odd, because of (8.7.2), as before.

8.7.1 The Euler–Poisson–Darboux equation

Let us now take a = 0 and b = +∞, and let u(x, t) be a twice continuously-
differentiable real or complex-valued function on Rn × R+ that satisfies the
wave equation. If x ∈ Rn, then Mu(x; r, t) satisfies

∂2Mu

∂t2
(x; r, t) =

∂2Mu

∂r2
(x; r, t) +

n− 1

r

∂Mu

∂r
(x; r, t)(8.7.9)

for r, t > 0, as in Proposition 5.8 in Section B of Chapter 5 of [75]. This
corresponds to part of Lemma 1 in Section 2.4.1 b of [70]. This is known as the
Euler–Poisson–Darboux equation, as in [70].

More precisely, in [75], Mu(x; r, t) is considered as a function of r ∈ R and
t > 0. Of course, one should be a bit careful about (8.7.9) at r = 0, and (8.7.8)
is relevant here, with l = 1. If r < 0, then (8.7.9) corresponds to the analogous
statement for −r > 0, because of (8.7.2).

The right side of (8.7.9) corresponds to the Laplacian of

Mu(x; |w|, t)(8.7.10)

as a function of w ∈ Rn \ {0}, with r = |w|, as in (8.4.4). Thus (8.7.9) is the
same as saying that

Mu(x; |w|, t) satisfies the wave equation(8.7.11)

as a function of w and t > 0,

as in the remark after Proposition 5.8 in [75]. This also corresponds to a remark
after the statement of Lemma 1 in Section 2.4.1 b of [70]. More precisely, this
works at w = 0 too, suitably interpreted, as in the preceding paragraph.
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8.7.2 Using orthogonal transformations

Let T be an orthogonal transformation on Rn, and consider

u(x+ T (w), t)(8.7.12)

as a real or complex-valued function of w ∈ Rn and t > 0. It may be reasonably
clear that the average of (8.7.12) over T ∈ O(n) is equal to (8.7.10), without
getting into too many details, as in the previous section. In particular, this is
another way to look at the regularity of (8.7.10) as a function of w and t in
terms of the regularity of u, as before.

Remember that the Laplacian on Rn is invariant under orthogonal transfor-
mations, as in Subsection 2.1.1. Using this, it is easy to see that

u(x+ T (w), t) satisfies the wave equation, as a function of w and t,(8.7.13)

for each T ∈ O(n). One can use this to get (8.7.11), by averaging over T ∈ O(n),
as before. This is another way to look at (8.7.9).

8.8 The n = 2, 3 cases

Suppose for the moment that n = 3, and let u(x, t) be a twice continuously-
differentiable real or complex-valued function on R3×R+ that satisfies the wave
equation. Also let x ∈ R3 be given, and let Mu(x; r, t) be as in the previous
section. This is a twice continuously-differentiable function of r ∈ R and t > 0,
as before. Put

v(r, t) = rMu(x; r, t)(8.8.1)

for r ∈ R and t > 0. This corresponds to Ũ in (17) in Section 2.4.1 c of [70].
Clearly

v(r, t) is twice continuously differentiable in r and t,(8.8.2)

because Mu(x; r, t) has this property. One can check that

∂2v

∂r2
=
∂2v

∂t2
,(8.8.3)

using (8.7.9), with n = 3. This corresponds to a remark in Section 2.4.1 c of
[70], and to a remark after (5.10) in Section B of Chapter 5 of [75], with n = 3.

Note that
v(0, t) = 0(8.8.4)

for all t > 0, by construction. We also have that

lim
r→0

r−1 v(r, t) = u(x, t)(8.8.5)

for every t > 0, by construction.
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In [70], v(r, t) is considered as a solution of (8.8.3) for r, t > 0, and (8.8.4) is
considered as a boundary condition. An additional argument is used to reduce
to a solution of the wave equation on R×R+. This is used to obtain Kirchhoff’s
formula for u(x, t) in terms of initial values of u and ∂u/∂t, as in (22) of Section
2.4.1 c of [70]. This corresponds to an analogous formula (5.12) in Section B in
Chapter 5 of [75], with n = 3.

More precisely, u(x, t) can be obtained from a suitable formula for v(r, t) in
terms of initial values of v and ∂v/∂t, using (8.8.5). The initial values of v and
∂v/∂t are easily obtained from the initial values of u and ∂u/∂t.

8.8.1 Reducing the n = 2 case to the n = 3 case

A solution to the wave equation on Rn ×R+ may be considered as a solution
to the wave equation on Rn+1×R+, by considering the solution to be constant
in xn+1. This can be used to obtain Poisson’s formula for solutions of the wave
equation when n = 2, in terms of the initial values of the function and its
derivative in t, from Kirchhoff’s formula. This corresponds to (27) in Section
2.4.1 c of [70]. This also corresponds to Theorem 5.14 in Section B in Chapter
5 of [75], with n = 2.

If n ≥ 5 is odd, then there is an analogous although somewhat more com-
plicated way to get solutions of (8.8.3) from solutions of the Euler–Poisson–
Darboux equation. This will be discussed in the next section.

If n ≥ 4 is even, then n+ 1 is odd, and one can use the results for n+ 1, by
considering functions that are constant in xn+1, as before. This is discussed in
Section 2.4.1 e of [70], and in Section B of Chapter 5 of [75].

8.9 Some helpful identities

Let k be a positive integer, and let ϕ be a (k+1)-times continuously-differentiable
real or complex-valued function on an open set in R \ {0}. Under these condi-
tions, it is well known that

d2

dr2

(1
r

d

dr

)k−1

(r2k−1 ϕ(r)) =
(1
r

d

dr

)k (
r2k

dϕ

dr
(r)

)
(8.9.1)

and (1
r

d

dr

)k−1

(r2k−1 ϕ(r)) =

k−1∑
j=0

cj(k) r
j+1 d

jϕ

drj
(r),(8.9.2)

where cj(k) is a constant that does not depend on ϕ for each j. More precisely,

c0(k) = 1 · 3 · 5 · · · (2 k − 1).(8.9.3)

This also works when ϕ is defined on an open subset of R that contains 0, with
suitable interpretations, because there are sufficiently many factors of r being
differentiated that there are not really any factors of 1/r left after expanding
out the derivatives, as in (8.9.2).
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This corresponds to Lemma 2 in Section 2.4.1 d of [70], and to (5.9) and
(5.10) in Section B of Chapter 5 of [75]. The proof by induction is left as an
exercise in [70], and some additional hints are given in [75].

8.9.1 Using these identities

Let n be an odd integer with n ≥ 3, so that n = 2 k + 1 for some positive
integer k. Also let u(x, t) be a (k + 1)-times continuously-differentiable real
or complex-valued function on Rn ×R+ that satisfies the wave equation. Let
x ∈ Rn be given, and letMu(x; r, t) be as in Section 8.7, which is a (k+1)-times
continuously-differentiable function of r, t > 0. Put

v(r, t) =
(1
r

d

dr

)k−1

(r2k−1Mu(x; r, t)),(8.9.4)

as mentioned some time after (5.10) in [75]. This corresponds to Ũ(r, t) in (28)
in Section 2.4.1 d of [70].

Note that v(r, t) is twice continuously differentiable, because Mu(x; r, t) is
(k+1)-times continuously differentiable in r, t, as in Section 8.7. One can show
that

∂2v

∂r2
=
∂2v

∂t2
,(8.9.5)

using (8.7.9) and (8.9.1). This corresponds to part of Lemma 3 in Section 2.4.1
d of [70], and some remarks after (5.10) in [75].

In fact, Mu(x; r, t) is (k + 1)-times continuously differentiable as a function
of (r, t) ∈ R ×R+, as in Section 8.7. This implies that v(r, t) may be defined
as a twice continuously-differentiable function of (r, t) ∈ R × R+, because of
(8.9.2). It is easy to see that

v(0, t) = 0(8.9.6)

for all t > 0, using (8.9.2), which is another part of Lemma 3 in Section 2.4.1 d
of [70]. Indeed, we have that

lim
r→0

v(r, t)

c0(k) r
= lim

r→0
Mu(x; r, t) = u(x, t),(8.9.7)

using (8.9.2) in the first step, and the definition of Mu(x; r, t) in the second step.
This is mentioned after Lemma 3 in Section 2.4.1 d of [70], and after (5.11) in
Section B of Chapter 5 of [75].

If n = 3, then k = 1, and (8.9.4) is the same as (8.8.1). If [70], v(r, t) is
considered as a solution of (8.9.5) for r, t > 0, and (8.9.6) is considered as a
boundary condition, as before. An additional argument is used to reduce to
a solution to the wave equation on R × R, exactly as before. This is used to
obtain a formula for u(x, t) in terms of initial values of u and ∂u/∂t, as in (31)
in Section 2.4.1 d of [70].

More precisely, u(x, t) can be obtained from a suitable formula for v(r, t) in
terms of initial values of v and ∂v/∂t, using (8.9.7), in essentially the same way
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as before. The initial values for v and ∂v/∂t may be obtained from the initial
values of u and ∂u/∂t, as before. A slightly different version of this formula for
u(x, t) may be found in Section B of Chapter 5 of [75], as before.

8.10 An inhomogeneous problem

Let n be a positive integer, and let [n/2] be the integer part of n/2, which is
equal to n/2 when n is even, and to (n− 1)/2 when n is odd. Also let f be real
or complex-valued function on Rn × (R+ ∪ {0}) that is

([n/2] + 1)-times continuously differentiable.(8.10.1)

This may be interpreted as in Section 3.4, which amounts in this case to using
one-sided derivatives in t from the right at t = 0.

Consider the problem of finding a twice continuously-differentiable real or
complex-valued function u on Rn × (R+ ∪ {0}), as appropriate, such that

∂2u

∂t2
−∆u = f(8.10.2)

on Rn ×R+, with

u(x, 0) =
∂u

∂t
(x, 0) = 0(8.10.3)

on Rn. To deal with this, one can use a version of Duhamel’s principle, as in
Section 2.4.2 of [70], and Section C of Chapter 5 of [75].

8.10.1 Duhamel’s principle

If τ is a nonnegative real number, then let v(x, t; τ) be the real or complex-valued
function of (x, t) on Rn × (R+ ∪ {0}) that satisfies the wave equation

∂2v

∂t2
−∆v = 0(8.10.4)

on Rn ×R+, with

v(x, 0; τ) = 0(8.10.5)

and
∂v

∂t
(x, 0; τ) = f(x, τ)(8.10.6)

on Rn. More precisely, this may be obtained as in [70, 75], and is twice contin-
uously differentiable under these conditions. Equivalently,

v(x, t− τ ; τ)(8.10.7)

satisfies the wave equation on Rn × (τ,+∞), is equal to 0 when t = τ , and its
derivative in t is equal to f(x, τ) at t = τ , as in [70].
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If x ∈ Rn and t ≥ 0, then we take

u(x, t) =

∫ t

0

v(x, t− τ ; τ) dτ,(8.10.8)

as in [75], which is expressed a bit differently in [70]. Of course, this is equal to
0 when t = 0. We also have that

∂u

∂t
(x, t) = v(x, 0; t) +

∫ t

0

∂v

∂t
(x, t− τ ; τ) dτ =

∫ t

0

∂v

∂t
(x, t− τ ; τ) dτ,(8.10.9)

using (8.10.5) in the second step. This is equal to 0 when t = 0 as well.
Similarly,

∂2u

∂t2
(x, t) =

∂v

∂t
(x, 0; t) +

∫ t

0

∂2v

∂t2
(x, t− τ ; τ) dτ(8.10.10)

= f(x, t) +

∫ t

0

∂2v

∂t2
(x, t− τ ; τ) dτ.

Note that

∆u(x, t) =

∫ t

0

∆v(x, t− τ ; τ) dτ =

∫ t

0

∂2v

∂t2
(x, t− τ, τ) dτ,(8.10.11)

using (8.10.4) in the second step. Clearly (8.10.2) follows from these two equa-
tions. One can get solutions of (8.10.2) with other initial conditions using this
and solutions of the wave equation with prescribed initial conditions, as men-
tioned in [70, 75].

8.11 More on holomorphic functions

Let n be a positive integer, and remember that Cn is the space of n-tuples of
complex numbers, as in Section 2.6. Every z ∈ Cn can be expressed in a unique
way as z = x + i y, with x, y ∈ Rn, and one can use this to identify Cn with
R2n, as before. Let U be a nonempty open set in Cn, which may be identified
with an open set in R2n, as in Subsection 2.6.1. Equivalently, this means that
U is an open set in Cn with respect to the standard Euclidean metric on Cn.

Let f be a continuously-differentiable complex-valued function on U , as an
open subset of R2n. Suppose that

f is holomorphic on U,(8.11.1)

as in Subsection 2.6.1. It is well known that this implies that

f is smooth on U,(8.11.2)

although we shall not get into that here. Let us simply ask for the moment that

f be twice continuously differentiable as a complex-valued(8.11.3)

function on U, as an open set in R2n.

This will be clear in many cases of interest, and anyway it holds automatically,
as before.
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8.11.1 Harmonicity of holomorphic functions

If n = 1, then it follows that f is harmonic on U , as an open subset of R2, as
in Subsection 2.2.1. Similarly, for any n, we have that

∂

∂xj

∂

∂xj
f +

∂

∂yj

∂

∂yj
f = 0(8.11.4)

on U for each j = 1, . . . , n. Of course, this implies that

n∑
j=1

∂

∂xj

∂

∂xj
f +

n∑
j=1

∂

∂yj

∂

∂yj
f = 0(8.11.5)

on U . This means that

f is harmonic on U, as an open subset of R2n.(8.11.6)

It follows that (8.11.2) holds, as in Subsection 6.4.2. Remember that (8.11.3)
is part of the hypothesis here. There are other arguments for obtaining (8.11.2)
without this hypothesis, as mentioned earlier.

Observe that
∂

∂zl

∂

∂zj
f =

∂

∂zj

∂

∂zl
f = 0(8.11.7)

on U for each j, l = 1, . . . , n under these conditions. This uses the twice con-
tinuous differentiability of f in the first step, and the hypothesis that f be
holomorphic in the second step. This means that

∂

∂zj
f is holomorphic on U(8.11.8)

for each j = 1, . . . , n. Similarly,

∂

∂zj

∂

∂zl
f =

∂

∂zl

∂

∂zj
f(8.11.9)

on U for each j, l = 1, . . . , n, because f is twice continuously differentiable on
U , as an open set in R2n.

8.11.2 A complex Laplace equation

Consider the partial differential equation

n∑
j=1

∂

∂zj

∂

∂zj
f = 0(8.11.10)

on U . This may be considered as a complex version of the Laplace equation.
This equation clearly holds when f is constant, or

f(z) = zl(8.11.11)
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for some l. If
f(z) = zl zm,(8.11.12)

then this equation holds if and only if l 6= m. We also have that (8.11.10) holds
when

f(z) = z2l − z2m.(8.11.13)

It is well known that the complex exponential function is holomorphic on C,
as mentioned in Subsection 3.14.3. If a ∈ Cn, then one can use this to check
that

exp(a · z) = exp(a1 z1 + · · ·+ an zn)(8.11.14)

is a holomorphic function on Cn. We also have that

∂

∂zj
exp(a · z) = aj exp(a · z)(8.11.15)

for each j. One can use this to get that (8.11.14) satisfies (8.11.10) if and only
if

a · a =

n∑
j=1

a2j = 0.(8.11.16)

8.12 More on this differential equation

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let f be a holomorphic function on U that satisfies (8.11.3) and thus
(8.11.2) again. In particular, this means that f is three-times continuously
differentiable on U , as an open set in R2n. In this case, it is easy to see that

∂

∂zj

∂

∂zl
f is holomorphic on U(8.12.1)

for all j, l, using (8.11.8). It follows that

n∑
j=1

∂

∂zj

∂

∂zj
f is holomorphic on U.(8.12.2)

8.12.1 Real and complex derivatives

If f is any complex-valued continuously-differentiable function on U , as an open
subset of R2n, then

∂

∂zj
f +

∂

∂zj
j =

∂

∂xj
f(8.12.3)

on U for each j, because of the way that ∂/∂zj and ∂/∂zj are defined, as in
Subsection 2.6.1. If f is holomorphic on U , then it follows that

∂

∂zj
f =

∂

∂xj
f(8.12.4)
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on U for each j. Similarly,

∂

∂zj

∂

∂zl
f =

∂

∂xj

∂

∂xl
f(8.12.5)

on U for all j, l if we also ask that f be twice continuously differentiable on
U , as an open set in R2n, which holds automatically anyway, as before. This
implies that

n∑
j=1

∂

∂zj

∂

∂zj
f =

n∑
j=1

∂

∂xj

∂

∂xj
f(8.12.6)

on U under these conditions. Thus (8.11.10) is the same as saying that

n∑
j=1

∂

∂xj

∂

∂xj
f = 0(8.12.7)

on U in this case.
If y ∈ Rn, then put

Uy = {x ∈ Rn : x+ i y ∈ U}.(8.12.8)

One can check that this is an open set in Rn, because U is an open set in Cn,
which may identified with an open set in R2n, as before. Put

fy(x) = f(x+ i y)(8.12.9)

for each x ∈ Uy, so that fy defines a complex-valued function on Uy that is twice
continuously differentiable, by hypothesis. The condition that (8.12.7) hold on
U is the same as saying that fy is harmonic on Uy for each y ∈ Rn. This is
considered to hold vacuously when Uy = ∅.

8.12.2 The case of polynomials

Let p be a polynomial in z1, . . . , zn with complex coefficients, as in Section
1.7. Remember that p defines a holomorphic function on Cn, as mentioned in
Subsection 2.6.1. Suppose more precisely that the degree of p is less than or
equal to N for some nonnegative integer N , as in Section 1.7 again. It is easy
to see that

∂

∂zj
p =

∂

∂xj
p(8.12.10)

is a polynomial in z1, . . . , zn for each j, with degree less than or equal to N − 1
when N ≥ 1. Similarly,

∂

∂zj

∂

∂zl
p =

∂

∂xj

∂

∂xl
p(8.12.11)

is a polynomial in z1, . . . , zn for each j, l, with degree less than or equal to N−2
when N ≥ 2.
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In particular,
n∑

j=1

∂

∂zj

∂

∂zj
p =

n∑
j=1

∂

∂xj

∂

∂xj
p(8.12.12)

is a polynomial in z1, . . . , zn of degree less than or equal to N − 2 when N ≥ 2.
Suppose that this is equal to 0 on Rn, so that p is harmonic on Rn. In this
case, (8.12.12) is equal to 0 on all of Cn, as in Section 2.5. More precisely, if
y ∈ Rn, and py(x) is defined as in (8.12.9), then py(x) can be expressed as a
polynomial in x1, . . . , xn with complex coefficients, as mentioned in Section 2.5.
If py is harmonic on Rn for some y ∈ Rn, then (8.12.12) is equal to 0 on all of
Cn, as in Section 2.5 again.

8.13 The complex wave equation

Let n ≥ 2 be an integer, and let U be a nonempty open subset of Cn, which
which may be identified with an open set in R2n, as usual. Also let f be a twice
continuously-differentiable complex-valued function on U , as an open subset of
R2n, and suppose that f is holomorphic on U . Consider the partial differential
equation

n−1∑
j=1

∂

∂zj

∂

∂zj
f − ∂

∂zn

∂

∂zn
f = 0(8.13.1)

on U . This may be considered as a complex version of the wave equation. This
is the same as saying that

n−1∑
j=1

∂

∂xj

∂

∂xj
f − ∂

∂xn

∂

∂xn
f = 0(8.13.2)

on U under these conditions, as in Subsection 8.12.1.
If y ∈ Rn, then let Uy be as in (8.12.8), and let fy be defined on Uy as in

(8.12.9). Of course, (8.13.2) holds on U if and only if

n−1∑
j=1

∂

∂xj

∂

∂xj
fy −

∂

∂xn

∂

∂xn
fy = 0(8.13.3)

on Uy for each y ∈ Rn. This is considered to hold vacuously when Uy = ∅, as
before. If f is a polynomial in z1, . . . , zn with complex coefficients, and (8.13.3)
holds onRn for some y ∈ Rn, then (8.13.2) holds on Cn, as in Subsection 8.12.2.
There are analogous statements for holomorphic functions more broadly, under
suitable conditions, that we shall not pursue here.

8.13.1 A simple change of variables

Put
Ũ = {z ∈ Cn : (z1, . . . , zn−1, i zn) ∈ U}.(8.13.4)
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One can check that this is an open set in Cn too, or equivalently that it corre-
sponds to an open set in R2n. Let f̃ be the complex-valued function defined on
Ũ by

f̃(z) = f(z1, . . . , zn−1, i zn)(8.13.5)

for each z ∈ Ũ . One can verify that f̃ is twice continuously differentiable on
Ũ , as an open subset of R2n, and that f̃ is holomorphic on Ũ , because of the
analogous properties of f on U . We also have that (8.13.2) holds on U if and

only if f̃ satisfies the complex version of the Laplace equation

n∑
j=1

∂

∂zj

∂

∂zj
f̃ = 0(8.13.6)

on Ũ .

8.13.2 Some solutions with n = 2

Let V be a nonempty open subset of the complex plane, which may be identified
with R2, as before, and let ϕ be a twice continuously-differentiable complex-
valued function on V , as an open subset of R2, that is holomorphic on V , as in
Section 2.2. One can check that

{z ∈ C2 : z1 − z2 ∈ V }(8.13.7)

is an open set in C2, so that it corresponds to an open set in R4. One can also
verify that

ϕ(z1 − z2)(8.13.8)

is twice continuously differentiable on (8.13.7), as an open subset of R4, and
that (8.13.8) is holomorphic on (8.13.7), because of the analogous properties of
ϕ on V . It is easy to see that (8.13.8) satisfies the complex version of wave
equation on (8.13.7). Of course, if V = C, then (8.13.7) is all of C2.

Similarly, let W be a nonempty open subset of C, which may be identified
with R2, as usual, and let ψ be a twice continuously-differentiable complex-
valued function on W , as an open set in R2, that is holomorphic on W . As
before, one can check that

{z ∈ C2 : z1 + z2 ∈W}(8.13.9)

is an open set in C2, so that it corresponds to an open set in R4. We also have
that

ψ(z1 + z2)(8.13.10)

is twice continuously differentiable on (8.13.9), as an open subset of R4, and that
(8.13.10) is holomorphic on (8.13.9), because of the corresponding properties of
ψ on W . In fact, (8.13.10) satisfies the complex version of the wave equation
on (8.13.9), as before. Note that (8.13.9) is all of C2 when W = C, as before.
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Let V and ϕ be as before, and observe that

{z ∈ C2 : z1 − i z2 ∈ V }(8.13.11)

is an open set in C2, or equivalently that it corresponds to an open set in R4.
If (8.13.7) is denoted U , then (8.13.11) is the same as (8.13.4). One can check
that

ϕ(z1 − i z2)(8.13.12)

is twice continuously differentiable on (8.13.11), as an open set in R4, and that
(8.13.12) is holomorphic on (8.13.11). One can also verify that (8.13.12) satisfies
the complex version of the Lapalce equation on (8.13.11). If (8.13.8) is denoted
f , then (8.13.12) is the same as (8.13.5).

Similarly, if W and ψ are as before, then

{z ∈ C2 : z1 + i z2 ∈W}(8.13.13)

is an open set in R2, so that it corresponds to an open set in R4. If (8.13.9) is
denoted U , then (8.13.13) is the same as (8.13.4). As usual,

ψ(z1 + i z2)(8.13.14)

is twice continuously

8.14 Another inhomogeneous problem

Let n be a positive integer, and let f(x, t) be a real or complex-valued function
defined for x ∈ Rn and t ≥ 0. Suppose that f(x, t) is continuously differen-
tiable, and that the second derivatives of f(x, t) in x exist and are continuous
as functions of x and t. Suppose also that f(x, t) has compact support, so that

f(x, t) = 0(8.14.1)

when |x| or t is large enough. More precisely, it suffices to ask here that for
every positive real number T there be a positive real number R(T ) such that
(8.14.1) holds when

|x| ≥ R(T ) and 0 ≤ t ≤ T.(8.14.2)

Consider the problem of finding a real or complex-valued function u(x, t), as
appropriate, defined for x ∈ Rn and t ≥ 0, and with the following properties.
First, u(x, t) should be continuously differentiable, ans the second derivatives
of u(x, t) should exist and be continuous as functions of x and t. Second, we
would like to have that

∂u

∂t
(x, t)− (∆u)(x, t) = f(x, t)(8.14.3)

for all x ∈ Rn and t ≥ 0, where (∆u)(x, t) is the Laplacian of u(x, t) in x, as
before. Third,

u(x, 0) = 0(8.14.4)

for every x ∈ Rn.
We can use another version of Duhamel’s principle here, as in Section 2.3.1

c of [70]. This is related to Theorem 4.7 in Section A of Chapter 4 of [75].
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8.14.1 Another version of Duhamel’s principle

Let K(x, t) be the heat kernel, as in Subsection 7.1.1. If x ∈ Rn, t is a positive
real number, and τ is a nonnegative real number, then put

v(x, t; τ) =

∫
Rn

K(x− y, t) f(y, τ) dy.(8.14.5)

This satisfies the heat equation as a function of x and t, as in Section 7.4. If we
put

u(x, 0; τ) = f(x, τ),(8.14.6)

then u(x, t; τ) is continuous as a function of x ∈ Rn and t ≥ 0, as before. More
precisely, it is not too difficult to show that u(x, t; τ) is continuous as a function
of x ∈ Rn and t, τ ≥ 0, because f is continuous, by hypothesis.

Equivalently,
v(x, t− τ ; τ)(8.14.7)

satisfies the heat equation as a function of x ∈ Rn and t > τ , and it is equal to
f(x, τ) when t = τ , as in [70]. If x ∈ Rn and t ≥ 0, then put

u(x, t) =

∫ t

0

v(x, t− τ ; τ) dτ,(8.14.8)

which is expressed a bit differently in [70]. Note that this satisfies (8.14.4). If
t > 0, then

u(x, t) =

∫ t

0

∫
Rn

K(x− y, t− τ) f(y, τ) dy dτ,(8.14.9)

as in [70].

8.14.2 Differentiating u(x, t)

One should be a bit careful about differentiating under the integral sign here,
because of the behavior of the heat kernel near (0, 0), as mentioned in the proof
of Theorem 2 in Section 2.3.1 c of [70]. It is helpful to begin with a change of
variables, to get that

u(x, t) =

∫ t

0

∫
Rn

K(y, τ) f(x− y, t− τ) dy dτ(8.14.10)

when t > 0, as in [70]. One can use this to obtain that

∂u

∂t
(x, t) =

∫ t

0

∫
Rn

K(y, τ)
∂f

∂t
(x− y, t− τ) dy dτ(8.14.11)

+

∫
Rn

K(y, t) f(x− y, 0) dy,

as in [70]. In particular, this is continuous as a function of x ∈ Rn and t > 0.
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Similarly, the first and second derivatives of u(x, t) in x may be obtained
by differentiating the right side of (8.14.10) under the integral sign, and are
continuous functions of x ∈ Rn and t > 0, as in [70]. This implies that

∂u

∂t
(x, t)− (∆u)(x, t)

=

∫ t

0

∫
Rn

K(y, τ)
(∂f
∂t

(x− y, t− τ)− (∆f)(x− y, t− τ)
)
dy dτ

+

∫ t

0

K(y, t) f(x− y, 0) dy.(8.14.12)

It follows that

∂u

∂t
(x, t)− (∆u)(x, t)

= −
∫ t

0

∫
Rn

K(y, τ)
(( ∂

∂τ
+∆y

)
f(x− y, t− τ)

)
dy dτ

+

∫ t

0

K(y, t) f(x− y, 0) dy.(8.14.13)

Of course, we would like the right side of (8.14.13) to be equal to f(x, t),
as in (8.14.3). This may be obtained as in Subsection 7.14.3. More precisely,
remember that V is a nonempty bounded open subset of Rn with reasonably
smooth boundary in Section 7.14. Here we want to take V sufficiently large so
that the corresponding integrals over V are the same as integrals over Rn, and
the integrals over the boundary of V are equal to 0, because of the hypothesis
on the support of f mentioned at the beginning of the section.

8.15 The porous medium equation

Let n be a positive integer, and let u(x, t) be a real-valued function on an open
subset of Rn ×R, which we can identify with Rn+1, as usual. Also let γ be a
real number, and consider the partial differential equation

∂u

∂t
−∆(uγ) = 0,(8.15.1)

as in Example 2 in Section 4.1.1 of [70]. This is known as the porous medium
equation, at least for suitable γ. Of course, this reduces to the heat equation
when γ = 1. If γ = 0, then this may be interpreted as

∂u

∂t
= 0.(8.15.2)

If γ is not an integer, then we ask that u ≥ 0, so that uγ is defined. Similarly,
if γ < 0, then we ask that u 6= 0.
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One way to try to solve this equation is to look for solutions of the form

u(x, t) = v(t)w(x),(8.15.3)

where v(t) and w(x) are real-valued functions defined on open subsets of R and
Rn, respectively. We also ask that v(t), w(x) ≥ 0 when γ is not an integer, and
that v(t), u(x) 6= 0 when γ < 0, as before. In this case, (8.15.1) is the same as
saying that

v′(t)w(x)− v(t)γ ∆(w(x)γ) = 0.(8.15.4)

This means that
v′(t)

v(t)γ
=

∆(w(x)γ)

w(x)
(8.15.5)

when v(t), w(x) 6= 0. To get this, we need both sides of the equation to be
constant, so that

v′(t)

v(t)γ
= µ =

∆(w(x)γ)

w(x)
,(8.15.6)

where µ is a constant.
Of course, if γ = 0, then µ = 0. The first part of (8.15.6) is the same as

saying that
v′(t) = µ v(t)γ ,(8.15.7)

and the second part is the same as saying that

∆(w(x)γ) = µw(x).(8.15.8)

One can also consider these equations when v(t) or w(x) is equal to 0, at least
if γ ≥ 0. Note that (8.15.4) holds when these two equations hold. These two
equations are much simpler when µ = 0, and so we suppose now that µ 6= 0.

The case where γ = 1 is discussed in Example 1 in Section 4.1.1 of [70], and
is related to some of the remarks in Section 3.1. Suppose that γ 6= 1, and let us
solve (8.15.7) to get that

v(t) = ((1− γ)µ t+ λ)1/(1−γ),(8.15.9)

where λ is a constant, as in [70]. More precisely, we ask that

(1− γ)µ t+ λ 6= 0(8.15.10)

when γ > 1, and when γ < 0, as before. We also ask that

(1− γ)µ t+ λ ≥ 0(8.15.11)

when 1/(1 − γ) is not an integer, and when γ is not an integer, as before. Of
course, γ and 1/(1− γ) are both integers only when γ = 0 or 2.

Let us look for solutions of (8.15.8) of the form

w(x) = |x|α(8.15.12)
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for some α ∈ R, as in [70]. One can check that

µw(x)−∆(w(x)γ) = µ |x|α − αγ (αγ + n− 2) |x|αγ−2,(8.15.13)

as in [70], where x 6= 0 when α < 0 or αγ − 2 < 0. Let us ask that

αγ − 2 = α,(8.15.14)

which means that

α =
2

γ − 1
,(8.15.15)

as in [70]. In this case, (8.15.13) is the same as saying that

µw(x)−∆(w(x)γ) = (µ− αγ (αγ + n− 2)) |x|α,(8.15.16)

where x 6= 0 when α < 0.
Under these conditions, we get that (8.15.8) holds when

µ = αγ (αγ + n− 2),(8.15.17)

as in [70]. In [70], one takes γ > 1, which implies that α > 0, and that

αγ =
2 γ

γ − 1
> 2.(8.15.18)

This means that one can take w(x) as in (8.15.12) on Rn, and that w(x)γ is
twice continuously differentiable on Rn. Note that µ > 0 in this case, as in [70].

Of course,
(1− γ)µ t+ λ > 0(8.15.19)

when γ > 1 and

t < t∗ =
λ

(γ − 1)µ
,(8.15.20)

because µ > 0. In [70], one also takes λ > 0, so that t∗ > 0.



Chapter 9

Some more classes of
functions

9.1 Semicontinuity

Let n be a positive integer, let E be a nonempty subset of Rn, and let f be a
real-valued function on E. We say that f is upper semicontinuous at a point
x ∈ E if for every ϵ > 0 there is a δ > 0 such that

f(y) < f(x) + ϵ(9.1.1)

for every y ∈ E with

|x− y| < δ.(9.1.2)

Similarly, f is said to be lower semicontinuous at x if for every ϵ > 0 there is a
δ > 0 such that

f(y) > f(x)− ϵ(9.1.3)

for every y ∈ E that satisfies (9.1.2). It is easy to see that

f is continuous at x if and only if(9.1.4)

f is both upper and lower semicontinuous at x.

Note that f is upper semicontinuous at x if and only if −f is lower semicontin-
uous at x.

If f is upper semi-continuous at every point in E, then f is said to be upper
semicontinuous on E. Similarly, if f is lower semicontinuous at every point in
E, then f is said to be lower semicontinuous on E. As before, f is continuous
on E if and only if f if both upper and lower semicontinous on E. We also have
that f is upper semicontinuous on E if and only if −f is lower semicontinuous
on E.

196
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9.1.1 Uniform semicontinuity?

One might like to say that f is uniformly upper semicontinuous on E if for every
ϵ > 0 there is a δ > 0 such that (9.1.1) holds for all x, y ∈ E that satisfy (9.1.2).
Similarly, one might say that f is uniformly lower semicontinuous on E if for
every ϵ > 0 there is a δ > 0 such that (9.1.3) holds for all x, y ∈ E that satisfy
(9.1.2). However, one can check that these uniform versions of upper and lower
semicontinuity are equivalent to each other, by exchanging the roles of x and y.
In fact, these uniform versions of upper and lower semicontinuity of f on E are
equivalent to the usual notion of uniform continuity of f on E, which says that
for every ϵ > 0 there is a δ > 0 such that

|f(x)− f(y)| < ϵ(9.1.5)

for all x, y ∈ E that satisfy (9.1.2). It is well known that every continuous
function on E is uniformly continuous when E is compact.

9.1.2 Relatively open sets

A subset A of E is said to be relatively open in E if for every x ∈ A there is an
r > 0 such that

B(x, r) ∩ E ⊆ A.(9.1.6)

If E is an open subset of Rn, then A ⊆ E is relatively open in E if and only if
A is an open set in Rn.

It is well known and not difficult to show that f is upper semicontinuous on
E if and only if for every real number b,

{x ∈ E : f(x) < b}(9.1.7)

is a relatively open set in E. Similarly, f is lower semicontinuous on E if and
only if for every a ∈ R,

{x ∈ E : f(x) > a}(9.1.8)

is a relatively open set in E.

9.1.3 Upper and lower limits

Remember that the continuity of f at x ∈ E can be characterized in terms of
convergent sequences, as mentioned at the beginning of Section 1.2. There are
analogues of this for upper and lower semicontinuity, in terms of upper and lower
limits of sequences of real numbers, if one is familiar with that. Namely, f is
upper semicontinuous at x if and only if for every sequence {xj}∞j=1 of elements
of E that converges to x, we have that

lim sup
j→∞

f(xj) ≤ f(x).(9.1.9)

Similarly, f is lower semicontinuous at x if and only if for every sequence {xj}∞j=1

of elements of E that converges to x,

lim inf
j→∞

f(xj) ≥ f(x).(9.1.10)
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9.1.4 Limits of functions

A point z ∈ Rn is said to be a limit point of E if for every r > 0 there is a
y ∈ E such that

|y − z| < r(9.1.11)

and y 6= z. Remember that E denotes the closure of E in Rn with respect to
the standard Euclidean metric, as in Subsection 1.1.5. One can check that

E = {z ∈ Rn : z ∈ E or z is a limit point of E}.(9.1.12)

Suppose for the moment that x ∈ E is a limit point of E. In this case, it is
well known that f is continuous at x if and only if the limit of f(y) as y ∈ E
approaches x is equal to f(x), so that

lim
y→x
y∈E

f(y) = f(x).(9.1.13)

There are also analogues of this for upper and lower semicontinuity, in terms
of upper and lower limts of real-valued functions, if one is familiar with that.
More precisely, f is upper semicontinuous at x if and only if

lim sup
y→x
y∈E

f(y) ≤ f(x).(9.1.14)

Similarly, f is lower semicontinuous at x if and only if

lim inf
y→x
y∈E

f(y) ≥ f(x).(9.1.15)

9.2 More on semicontinuity

Let us continue with the same notation and hypotheses as in the previous sec-
tion. However, one could also consider analogous notions for real-valued func-
tions on arbitrary metric spaces, or topological spaces. This is related to the
direct method in the calculus of variations, in which one seeks a function or
other object that minimizes an expression of interest.

9.2.1 Semicontinuity and compactness

Suppose now that E is a nonempty compact subset of Rn. If f is upper semi-
continuous on E, then it is well known that

f attains its maximum on E.(9.2.1)

Similarly, if f is lower semicontinuous on E, then

f attains its minimum on E.(9.2.2)

This extends the extreme value theorem, as in Section 1.9.
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More precisely, (9.2.1) implies that f has a finite upper bound on E, and
(9.2.2) implies that f has a finite lower bound on E. It can be helpful to show
these statements first, as appropriate. This means that f has a supremum or
infimum over E in R, as appropriate. One can show that the supremum or infi-
mum is attained when f is upper or lower semicontinuous on E, as appropriate.

9.2.2 Combining semicontinuous functions

If t be a positive real number and f is upper or lower semicontinuous on E,
then one can check that t f has the same property.

Let g be another real-valued function on E, and suppose for the moment
that f and g are both upper semicontinuous on E. One can check that

f + g is upper semicontinuous on E.(9.2.3)

One can also verify that

max(f, g) and min(f, g) are upper semicontinuous on E.(9.2.4)

If f, g ≥ 0 on E, then one can show that

f g is upper semicontinuous on E.(9.2.5)

Suppose for the moment again that f and g are lower semicontinuous on E.
One can check that

f + g, max(f, g), and min(f, g) are lower semincontinuous on E.(9.2.6)

If f, g ≥ 0 on E, then one can verify that

f g is lower semicontinuous on E.(9.2.7)

If f ≥ 0 on E and f(x) = 0 for some x ∈ E, then it is easy to see that f is
lower semicontinuous at x. This means that f is upper semicontinuous at x if
and only if f is continuous at x in this case.

9.2.3 Sequences of semicontinuous functions

Let {fj}∞j=1 be a sequence of real-valued functions on E, and suppose for the
moment that {fj}∞j=1 converges to f uniformly on E, as in Section 6.5. If

fj is upper semicontinuous on E for each j,(9.2.8)

then one can show that f is upper semicontinuous on E, using an argument like
the one for the analogous statement for continuous functions. Similarly, if

fj is lower semicontinuous on E for each j,(9.2.9)

then f is lower semicontinuous on E.
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Suppose now that {fj}∞j=1 converges to f pointwise on E. Suppose also for
the moment that

fj+1(x) ≤ fj(x)(9.2.10)

for each x ∈ E and j ≥ 1. If (9.2.8) holds, then it is not too difficult to show
that f is upper semicontinuous on E. Suppose for the moment again that

fj(x) ≤ fj+1(x)(9.2.11)

for each x ∈ E and j ≥ 1. If (9.2.9) holds, then one can verify that f is lower
semicontinuous on E.

9.3 Lipschitz functions

Let n be a positive integer, let E be a nonempty subset of Rn, and let f be a
real or complex-valued function on E. We say that f is Lipschitz if there is a
nonnegative real number C such that

|f(x)− f(y)| ≤ C |x− y|(9.3.1)

for every x, y ∈ E. We may also say that f is Lipschitz with constant C on E
in this case, to be more precise. Note that this holds with C = 0 if and only
if f is constant on E. It is easy to see that Lipschitz functions are uniformly
continuous.

9.3.1 Real-valued Lipschitz functions

If f is a real-valued function on E, then one can check that f is Lipschitz with
constant C on E if and only if

f(x) ≤ f(y) + C |x− y|(9.3.2)

for every x, y ∈ E. If w ∈ Rn, then one can use this to check that

fw(x) = |x− w|(9.3.3)

is Lipschitz with constant C = 1 on Rn.

9.3.2 Complex-valued Lipschitz functions

Let f be a complex-valued function on E, and for each a ∈ C with |a| = 1, let
fa be the real-valued function defined on E by

fa(x) = Re(a f(x))(9.3.4)

for every x ∈ E. Note that

fa(x)− fa(y) = Re(a (f(x)− f(y)))(9.3.5)
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for every x, y ∈ E. It follows that

|fa(x)− fa(y)| ≤ |f(x)− f(y)|(9.3.6)

for every x, y ∈ E, and in fact

|f(x)− f(y)| = max{|fa(x)− fa(y)| : a ∈ C, |a| = 1}.(9.3.7)

One can use this to check that f is Lipschitz with constant C on E if and only
if

fa is Lipschitz with constant C on E for every a ∈ C with |a| = 1.(9.3.8)

9.3.3 Lipschitz conditions and bounded derivatives

Suppose for the moment that n = 1, and that E is an open set in R. If f is
Lipschitz with constant C on E, and if f is differentiable at a point x ∈ E, then
one can check that

|f ′(x)| ≤ C.(9.3.9)

Suppose now that E is an open interval in R, which may be unbounded, such
as R itself, or an open hal-line in R. If f is a real-valued function on E that
is differentiable at every point in E, and if (9.3.9) holds for some nonnegative
real number C and every x ∈ E, then one can use the mean value theorem to
get that

f is Lipschitz with constant C on E.(9.3.10)

This could also be obtained using the fundamental theorem of calculus when f
is continuously differentiable on E.

9.3.4 Bounded derivatives on Rn

Now let E be an open set in Rn for some n, and suppose for the moment that
f is Lipschitz with constant C on E. If x ∈ E, v ∈ Rn, and the directional
derivative Dvf(x) of f at x in the direction v exists, then one can verify that

|Dvf(x)| ≤ C |v|.(9.3.11)

If f is differentiable in a suitable sense at x, then one can use this to show that

|∇f(x)| ≤ C.(9.3.12)

It is well known that f is differentiable at every point in E in this sense when
f is continuously differentiable on E.

Suppose that f is differentiable in this sense at every point in E, and that
(9.3.12) holds for some C ≥ 0 and every x ∈ E. If E is also convex, then one
can show that f is Lipschitz with constant C on E. More precisely, if x, y ∈ E,
then this can be obtained by considering

f((1− t)x+ t y)(9.3.13)
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as a function of t on an appropriate open set in R.
If f is Lipschitz on E, then it is well known that f is differentiable in the

sense mentioned before at almost every point in E with respect to Lebesgue
measure.

9.4 More on Lipschitz functions

Of course, if m and n are positive integers, and E is a nonempty subset of
Rn, then the notion of a Lipschitz mapping from E into Rm may be defined in
essentially the same way as before. One can also consider Lipschitz mappings
between arbitrary metric spaces. In particular, the contraction mapping theo-
rem deals with the existence and uniqueness of fixed points for a mapping from
a metric space into itself under suitable conditions. A contraction in this sense
is a Lipschitz mapping with constant strictly less than one.

9.4.1 Distances to subsets of Rn

Let n be a positive integer, and let A be a nonempty subset of Rn. If x ∈ Rn,
then the distance from x to A with respect to the standar Euclidean metric on
Rn is defined by

dist(x,A) = inf{|x− a| : a ∈ Rn},(9.4.1)

where the left side is the infimum or greatest lower bound of the set of distances
|x− a| from x to elements a of A. Of course,

dist(x,A) = 0(9.4.2)

when x ∈ A. More precisely, one can check that (9.4.2) holds if and only if x is
an element of the closure A of A in Rn, as in Subsection 1.1.5.

One can verify that
dist(x,A) = dist(x,A)(9.4.3)

for every x ∈ Rn. If A is a closed set in Rn, then it is not too difficult to show
that the infimum on the right side of (9.4.1) is attained for each x ∈ Rn. This
uses the fact that closed and bounded sets in Rn are compact.

If x, y ∈ Rn and a ∈ A, then

dist(x,A) ≤ |x− a| ≤ |x− y|+ |y − a|.(9.4.4)

Equivalently, this means that

dist(x,A)− |x− y| ≤ |y − a|.(9.4.5)

It follows that
dist(x,A)− |x− y| ≤ dist(y,A),(9.4.6)

by the definition of dist(y,A). This is the same as saying that

dist(x,A) ≤ dist(y,A) + |x− y|.(9.4.7)
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This implies that

dist(x,A) is Lipschitz with constant C = 1 on Rn,(9.4.8)

as before.

9.4.2 Some combinations of Lipschitz functions

Let E be a nonempty subset of Rn again, and suppose that f is a real or
complex-valued function on E that is Lipschitz with constant C(f). If t is a
real or complex number, as appropriate, then it is easy to see that

t f is Lipschitz on E with constant |t|C(f).(9.4.9)

Let g be another real or complex-valued function on E, and suppose that g
is Lipschitz on E with constant C(g). One can check that

f + g is Lipschitz on E with constant C(f) + C(g).(9.4.10)

Let
Lip(E,R) and Lip(E,C)(9.4.11)

be the spaces of real and complex-valued Lipschitz functions on E, respectively.
These are linear subspaces of the spaces C(E,R) and C(E,C) of continuous
real and complex-valued functions on E, respectively.

Suppose for the moment that f and g are real-valued functions on E. One
can verify that

max(f, g) and min(f, g) are Lipschitz on E(9.4.12)

with constant max(C(f), C(g)).

9.4.3 Products of bounded Lipschitz functions

If x, y ∈ E, then

f(x) g(x)− f(y) g(y) = (f(x)− f(y)) g(x) + f(y) (g(x)− g(y)),(9.4.13)

so that

|f(x) g(x)− f(y) g(y)| ≤ |f(x)− f(y)| |g(x)|+ |f(y)| |g(x)− g(y)|.(9.4.14)

Suppose that f and g are also bounded on E, so that there are nonnegative real
numbers A(f), A(g) such that

|f(z)| ≤ A(f)(9.4.15)

and
|g(z)| ≤ A(g)(9.4.16)
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for every z ∈ E. Note that

f and g are bounded on E when E is a bounded set in Rn,(9.4.17)

because f and g are Lipschitz on E, by hypothesis. Using (9.4.14), we get that

|f(x) g(x)− f(y) g(y)| ≤ (C(f)A(g) +A(f)C(g)) |x− y|(9.4.18)

for every x, y ∈ E. This shows that

f g is Lipschitz on E with constant C(f)A(g) +A(f)C(g)(9.4.19)

under these conditions.

9.4.4 Sequences of Lipschitz functions

Let E be a nonempty subset of Rn again, and let {fj}∞j=1 be a sequence of real
or complex-valued functions on E that converges pointwise to a real of complex-
valued function f on E, as appropriate. Suppose that there is a nonnegative
real number C such that

fj is Lipschitz on E with constant C(9.4.20)

for each j. One can check that

f is Lipschitz on E with constant C(9.4.21)

in this case.

One can also verify that

{fj}∞j=1 converges to f uniformly on bounded subsets of E(9.4.22)

under these conditions. This uses the fact that bounded sets in Rn can be
covered by finitely many balls of arbitrarily small radius.

9.5 Convex functions of one variable

Let I be an open interval in the real line, which may be unbounded, such as R
itself, or an open half-line. A real-valued function f on I is said to be convex if

f(t a+ (1− t) b) ≤ t f(a) + (1− t) f(b)(9.5.1)

for every a, b ∈ I and t ∈ R with 0 ≤ t ≤ 1. Of course, this holds automatically
when t = 0 or 1, and when a = b.
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9.5.1 A reformulation of convexity

Suppose that a < b and 0 < t < 1, and put

c = t a+ (1− t) b,(9.5.2)

so that a < c < b. It is easy to see that (9.5.1) is the same as saying that

t (f(c)− f(a)) ≤ (1− t) (f(b)− f(c)).(9.5.3)

Observe that b− c = t (b− a), so that

t =
b− c

b− a
, 1− t =

c− a

b− a
.(9.5.4)

Using this, one can check that (9.5.3) is equivalent to

f(c)− f(a)

c− a
≤ f(b)− f(c)

b− c
.(9.5.5)

More precisely, f is convex on I if and only if this holds for all a, b, c ∈ I with
a < c < b, because any such c may be expressed as in (9.5.2), as mentioned on
p62 of [249].

9.5.2 A refinement of this reformulation

Suppose that f is convex on I, w, x, y, z ∈ I, and

w < x < y < z.(9.5.6)

Under these conditions, we get that

f(x)− f(w)

x− w
≤ f(y)− f(x)

y − x
≤ f(z)− f(y)

z − y
,(9.5.7)

as in Exercise 23 on p101 of [248]. Indeed, each of these inequalities may be
considered as an instance of (9.5.5).

9.5.3 Convexity of differentiable functions

Suppose for the moment that f is differentiable on I. If f is convex on I, then
one can use (9.5.7) to get that

f ′ is monotonically increasing on I.(9.5.8)

Conversely, if (9.5.8) holds, then one can use the mean value theorem to get that
(9.5.5) holds, so that f is convex on I. This corresponds to Exercise 14 on p115
of [248], and a remark on p63 of [249]. In particular, if f is twice differentiable
on I, then it follows that f is convex on I if and only if f ′′ ≥ 0 on I.
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9.6 More on convex functions

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If f is convex on I, then Theorem 3.2 on p63 of [249] states that f is
continuous on I. This also corresponds to parts of part (b) of Exercise 13.34 on
p202 of [121] and Exercise 23 on p101 of [248], and we shall say more about this
in a moment. Note that it is important here that I be an open interval, as in
part (b) of Exercise 13.34 on p202 of [121], and as mentioned on p63 of [249].

9.6.1 Some continuity conditions

If f is convex on I, then we can use (9.5.7) when w, x, y, z ∈ I and (9.5.6) holds
to get that

f(x)− f(w)

x− w
≤ f(z)− f(y)

z − y
.(9.6.1)

This also holds when x = y, as in (9.5.5).
Similarly, if u, v ∈ I and

u < v ≤ w,(9.6.2)

then
f(v)− f(u)

v − u
≤ f(x)− f(w)

x− w
.(9.6.3)

It follows that f is Lipschitz on [v, y], with constant

max
(
− f(v)− f(u)

v − u
,
f(z)− f(y)

z − y

)
.(9.6.4)

Of course, this implies that f is continuous on I in particular.
This is related to part (b) of Exercise 17.37 on p272 of [121]. We shall say

more about this in the next section.

9.6.2 Another characterization of convexity

Suppose for the moment that f is continuous on I. If

f
(a+ b

2

)
≤ f(a) + f(b)

2
(9.6.5)

for all a, b ∈ I, then one can show that f is convex on I, as in Exercise 24 on
p101 of [248], and Exercise 3 on p73 of [249].

Suppose for the moment again that f is upper semicontinuous on I. If (9.6.5)
holds for all a, b ∈ I, then one can show that f is continuous on I.

9.6.3 Some combinations of convex functions

If f is convex on I and r is a nonnegative real number, then it is easy to see
that

r f is convex on I(9.6.6)
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too. If g is another convex function on I, then

f + g is convex on I(9.6.7)

as well.
In this case, one can also check that

max(f, g) is convex on I.(9.6.8)

This corresponds to part of Exercise 1 on p73 of [249].

9.6.4 Sequences of convex functions

Let {fj}∞j=1 be a sequence of real-valued functions on I that converges pointwise
to a real-valued function f on I. If

fj is convex on I for each j,(9.6.9)

then one can verify that
f is convex on I.(9.6.10)

This is another part of Exrecise 1 on p73 of [249].

9.7 One-sided derivatives

Let I be a nonempty open set in the real line, and let f be a real-valued function
on I. The one-sided derivatives of f at y are defined by

f ′+(y) = lim
z→y+

f(z)− f(y)

z − y
(9.7.1)

and

f ′−(y) = lim
x→y−

f(y)− f(x)

y − x
,(9.7.2)

when these limits exist. If f is differentiable at y, then these two limits exist,
and

f+(y) = f ′−(y) = f ′(y).(9.7.3)

Conversely, if the one-sided derivatives of f at y exist and are equal, then f is
differentiable at y, with derivative as in (9.7.3).

9.7.1 Some more reformulations of convexity

Suppose from now on in this section that I is an open interval in R, which may
be unbounded, as before. Also let a, b ∈ I and t ∈ R be given, with a < b and
0 < t < 1, and put c = t a+ (1− t) b ∈ I. The usual convexity condition (9.5.1)
is the same as saying that

f(c)− f(a) ≤ (1− t) (f(b)− f(a)).(9.7.4)
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This is also the same as saying that

t (f(b)− f(a)) ≤ f(b)− f(c).(9.7.5)

As before, we can express 1 − t in terms of a, b, and c to get that (9.7.4) is
equivalent to

f(c)− f(a)

c− a
≤ f(b)− f(a)

b− a
.(9.7.6)

Similarly, (9.7.5) is equivalent to

f(b)− f(a)

b− a
≤ f(b)− f(c)

b− c
.(9.7.7)

It follows that f is convex on I if and only if (9.7.6) holds for every a, b, c ∈ I
with a < c < b. Similarly, f is convex on I if and only if (9.7.7) holds for every
a, b, c ∈ I with a < c < b.

9.7.2 One-sided derivatives and convexity

Suppose that f is convex on I. If x, y, z ∈ I and x < y < z, then

f(y)− f(x)

y − x
≤ f(z)− f(y)

z − y
,(9.7.8)

as in (9.5.5), and this could also be obtained from (9.7.6) and (9.7.7). Observe
that

f(y)− f(x)

y − x
(9.7.9)

is monotonically increasing in x, because of (9.7.7). Similarly,

f(z)− f(y)

z − y
(9.7.10)

is monotonically increasing in z, because of (9.7.6).
One can use this to show that the one-sided derivatives of f at y exist, with

f ′−(y) = sup

{
f(y)− f(x)

y − x
: x ∈ I, x < y

}
(9.7.11)

and

f ′+(y) = inf

{
f(z)− f(y)

z − y
: z ∈ I, y < z

}
.(9.7.12)

We also have that
f ′−(y) ≤ f ′+(y),(9.7.13)

because of (9.7.8). This corresponds to part of part (a) of Exercise 17.37 on
p271 of [121].

If y1, y2 ∈ I and y1 < y2, then

f ′+(y1) ≤
f(y2)− f(y1)

y2 − y1
≤ f ′−(y2).(9.7.14)

This implies that f ′− and f ′+ are monotonically increasing on I, because of
(9.7.13). This is another part of part (a) of Exercise 17.37 on p271 of [121].
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9.7.3 Lipschitz conditions on closed subintervals

Let us continue to ask that f be convex on I, and let v, y ∈ I be given, with
v < y. One can check that f is Lipschitz on [v, y], with constant

max(−f ′−(v), f ′+(y)).(9.7.15)

More precisely, this follows from the analogous statement in Subsection 9.6.1.

9.7.4 A more precise Lipschitz condition

Let a, b ∈ I be given with a < b. In fact, we have that f is Lipschitz on [a, b]
with constant

max(−f ′+(a), f−(b)).(9.7.16)

This corresponds to part (b) of Exercise 17.37 on p272 of [121].
To see this, one can first verify that f is Lipschitz on (a, b) with constant

(9.7.16). One can use this to get that f is Lipschitz with the same constant on
[a, b], because f is continuous on [a, b].

9.8 One-sided limits on R

Let I be an open interval in R again, which may be unbounded, and let α be a
real-valued function on I. If y ∈ I, then the one-sided limits of α at y may be
expressed as

α(y+) = lim
z→y+

α(z)(9.8.1)

and
α(y−) = lim

x→y−
α(x),(9.8.2)

when these limits exist. It is well known and easy to see that the limit

lim
w→y

α(w)(9.8.3)

exists if and only if the one-sided limits (9.8.1) and (9.8.2) exist and are equal,
in which case (9.8.3) is equal to the common value of (9.8.1) and (9.8.2). Of
course, α is continuous at y if and only if the limit (9.8.3) exists and is equal to
α(y). This means that α is continuous at y if and only if the one-sided limits
(9.8.1) and (9.8.2) exist and are equal to α(y).

If (9.8.1) exists and
α(y+) = α(y),(9.8.4)

then α is said to be continuous at y on the right. Similarly, if (9.8.2) exists and

α(y−) = α(y),(9.8.5)

then α is said to be continuous at y on the left. Thus α is continuous at y if
and only if α is continuous at y on both the right and the left.
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9.8.1 Monotonically increasing functions on R

Suppose now that α is monotonically increasing on I, so that

α(u) ≤ α(v)(9.8.6)

for all u, v ∈ I with u < v. If y ∈ I, then it is well known that the one-sided
limits (9.8.1) and (9.8.2) exist, with

α(y+) = inf{α(z) : z ∈ I, y < z}(9.8.7)

and
α(y−) = sup{α(x) : x ∈ I, x < y}.(9.8.8)

We also have that
α(y−) ≤ α(y) ≤ α(y+).(9.8.9)

If y1, y2 ∈ I and y1 < y2, then

α(y1+) ≤ α(y2−).(9.8.10)

It follows from (9.8.9) that α is continuous at y if and only if

α(y−) = α(y+).(9.8.11)

Equivalently, α is discontinuous at y if and only if

α(y−) < α(y+).(9.8.12)

It is well known that this can happen at only finitely or countably many elements
of I.

9.8.2 Monotonicity and semicontinuity

Let us continue to ask that α be monotomically increasing on I. If y ∈ I, then
one can check that α is upper semicontinuous at y if and only if α is continuous
at y on the right. Similarly, one can verify that α is lower semicontinuous at y
if and only if α is continuous at y on the left.

9.8.3 Convex functions on I

Let f be a convex real-valued function on I, and remember that f ′+, f
′
− are

monotonically increasing on I, as in Subsection 9.7.2. Thus the one-sided limits
of f ′+ and f ′− exist at every point in I, as before. If y1 ∈ I, then one can check
that

f ′+(y1) ≤ f ′−(y1+),(9.8.13)

using (9.7.14). Similarly, if y2 ∈ I, then one can use (9.7.14) to verify that

f ′+(y2−) ≤ f ′−(y2).(9.8.14)
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Remember that f ′− ≤ f ′+ on I, as in (9.7.13). If f ′− is right continuous at
y ∈ I, then we get that

f ′+(y) = f ′−(y),(9.8.15)

because of (9.8.13). Similarly, (9.8.15) holds when f ′+ is left continuous at y,
because of (9.8.14). In both cases, it follows that f is differentiable at y, as in
the previous section.

This implies that f is differentiable at all but finitely or countably many
elements of I, as in part (a) of Exercise 17.37 on p271 of [121].

9.9 Some related inequalities

If p is a real number with p ≥ 1, then it is easy to see that

xp is convex on R+,(9.9.1)

because its second derivative is positive when p > 1. Of course, xp is also defined
and continuous at x = 0, and one can check that it satisfies the condition in the
definition of convexity on the set of all nonnegative real numbers.

One can verify that
|x| is convex on R(9.9.2)

as well. Using this and the remarks in the preceding paragraph, one can check
that

|x|p is convex on R when p ≥ 1.(9.9.3)

9.9.1 Another reformulation of convexity

Let I be an open interval in R, which may be unbounded, and let f be a real-
valued function on I. Suppose for the moment that f is convex on I, and let
c ∈ I be given. Remember that

f ′−(c) ≤ f ′+(c),(9.9.4)

as in Subsection 9.7.2. Let α be a real number such that

f ′−(c) ≤ α ≤ f ′+(c).(9.9.5)

Under these conditions, one can check that

f(x) ≥ f(c) + α (x− c)(9.9.6)

for every x ∈ I. More precisely,

f(x) ≥ f(c) + f ′+(c) (x− c) ≥ f(c) + α (x− c)(9.9.7)

when x ≥ c, and

f(x) ≥ f(c) + f ′−(c) (x− c) ≥ f(c) + α (x− c)(9.9.8)
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when x ≤ c. Of course, this is trivial when x = c. If x 6= c, then these
inequalities may be obtained from the characterizations of f ′−(c) and f ′+(c) in
Subsection 9.7.2.

This corresponds to part (c) of Exercise 13.34 on p202 of [121]. This fact
is also mentioned in the proof of Theorem 3.3 on p63 of [249]. Note that one
could get α more directly using the characterization of convexity in Subsection
9.5.1.

Conversely, one can check that f is convex on I if for every c ∈ I there is an
α ∈ R such that (9.9.6) holds for every x ∈ I.

9.9.2 Jensen’s inequalities

Suppose that f is convex on I again, and let a1, . . . , an be finitely many elements
of I. If t1, . . . , tn are positive real numbers, then it is easy to see that

min(a1, . . . , an) ≤
t1 a1 + · · ·+ tn an

t1 + · · · tn
≤ max(a1, . . . , an).(9.9.9)

This implies that
t1 a1 + · · ·+ tn an
t1 + · · ·+ tn

∈ I.(9.9.10)

One can check that

f
( t1 a1 + · · ·+ tn an

t1 + · · ·+ tn

)
≤ t1 f(a1) + · · ·+ tn f(an)

t1 + · · ·+ tn
,(9.9.11)

as in part (a) of Exercise 13.34 on p202 of [121]. This is a version of Jensen’s
inequality. Sometimes this may be stated with the additional condition that

n∑
j=1

tj = 1,(9.9.12)

and it is easy to reduce to this case. If n = 2, then this is essentially the same
as the definition of convexity in Section 9.5.

One can get (9.9.11) for all n using induction, as mentioned in [121]. One
can also use the characterization of convexity in the previous subsection.

There is a version of Jensen’s inequality for averages defined using integrals,
as in part (d) of Exercise 13.34 of [121], and Theorem 3.3 on p63 of [249]. This
can be obtained by approximating an integral average by averages of finitely
many real numbers, and using (9.9.11). One can use the characterization of
convexity in the previous subsection more directly, as in [121, 249].

9.10 Lipschitz functions of order α > 0

Let n be a positive integer, let α be a positive real number, let E be a nonempty
subset of Rn, and let f be a real or complex-valued function on E. We say that
f is Lipschitz of order α if there is a nonnegative real number Cα such that

|f(x)− f(y)| ≤ Cα |x− y|α(9.10.1)
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for every x, y ∈ E. This is the same as the definition of a Lipschitz function in
Section 9.3 when α = 1.

As before, we may say that f is Lipschitz of order α with constant Cα when
(9.10.1) holds, to be more precise. One may also say that f is Hölder continuous
of order α with constant Cα in this case.

Observe that (9.10.1) holds with Cα = 0 if and only if f is constant on E.
If f is Lipschitz or Hölder continuous on E of any positive order, then

f is uniformly continuous on E.(9.10.2)

Suppose for the moment that f is a complex-valued function on E, and for
each a ∈ C with |a| = 1, let fa be the real-valued function defined on E by

fa(x) = Re(a f(x)),(9.10.3)

as in Subsection 9.3.2. One can check that f is Lipschitz of order α with constant
Cα on E if and only if

fa is Lipschitz of order α with constant Cα on E(9.10.4)

for every a ∈ C with |a| = 1,

as before.

9.10.1 The case where α > 1

Suppose for the moment in this subsection that α > 1. If a real or complex-
valued function a on an interval I in the real line is Lipschitz of order α, then
one can show that

a is constant on I.(9.10.5)

This corresponds to part (a) of Exercise 17.31 on p270 of [121]. One way to do
this is to show that the derivative of a is equal to 0 at every point in I when I
has more than one element.

Suppose for the moment that E is a nonempty convex subset of Rn. If f is
Lipschitz of order α > 1 on E, then

f is constant on E.(9.10.6)

Indeed, if x, y ∈ E, then it is easy to see that

f((1− t)x+ t y)(9.10.7)

is Lipschitz of order α as a function of t ∈ [0, 1]. This implies that (9.10.7) is
constant as a function of t on [0, 1], as in the preceding paragraph.

Let U be a nonempty open set in Rn. If a real or complex-valued function
b on U is Lipschitz of order α > 1, then

b is locally constant on U,(9.10.8)

as in Subsection 1.8.4. In fact, b is constant on any convex set contained in
U , as in the previous paragraph. Remember that open balls in Rn are convex,
as mentioned in Section 1.8. Alternatively, it is easy to see that the partial
derivatives of b are equal to 0 at every point in U under these conditions.
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9.10.2 A helpful inequality

Let a be a positive real number with a ≤ 1. If r, t are nonnegative real numbers,
then it is well known that

(r + t)a ≤ ra + ta.(9.10.9)

To see this, observe first that

max(r, t) ≤ (ra + ta)1/a.(9.10.10)

Using this, we get that

r + t ≤ max(r, t)1−a (ra + ta) ≤ (ra + ta)((1−a)/a)+1 = (ra + ta)1/a.(9.10.11)

This is equivalent to (9.10.9).

9.10.3 Real-valued functions on E

Let α be any positive real number again, and suppose that f is a real-valued
function on E. One can check that f is Lipschitz of order α with constant Cα

on E if and only if
f(x) ≤ f(y) + Cα |x− y|α(9.10.12)

for every x, y ∈ E. This was mentioned in Subsection 9.3.1 when α = 1, and
the same argument works for any α > 0.

Suppose now that f ≥ 0 on E, and that f is Lipschitz of order β with
constant Cβ on E for some positive real number β. If 0 < a ≤ 1 and x, y ∈ E,
then

f(x)a ≤ (f(y) + Cβ |x− y|β)a ≤ f(y)a + Ca
β |x− y|a β ,(9.10.13)

where the first step is as in (9.10.12), and the second step is as in (9.10.9). This
implies that

fa is Lipschitz of order a β with constant Ca
β on E.(9.10.14)

If A is a nonempty subset of Rn, then dist(x,A) is Lipschitz of order one
with constant C = 1, as in Subsection 9.4.1. If 0 < a ≤ 1, then it follows that

dist(x,A)a is Lipschitz of order a with constant Ca = 1 on Rn,(9.10.15)

as in (9.10.14).

9.11 More on these Lipschitz conditions

Let n be a positive integer, let E be a nonempty subset of Rn, and let f be a
real or complex-valued function on E again. Suppose for the moment that f is
bounded on E, so that there is a nonnegative real number A such that

|f(x)| ≤ A(9.11.1)
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for every x ∈ E. Alternatively, the boundedness of f on E means that there is
a nonnegative real number B such that

|f(x)− f(y)| ≤ B(9.11.2)

for every x, y ∈ E. More precisely, (9.11.1) implies that (9.11.2) holds, with

B = 2A.(9.11.3)

Conversely, if (9.11.2) holds, and if w ∈ E, then (9.11.1) holds with

A = B + |f(w)|.(9.11.4)

Let a be a positive real number with a < 1. Observe that

|f(x)− f(y)| = |f(x)− f(y)|1−a |f(x)− f(y)|a(9.11.5)

≤ B1−a |f(x)− f(x)|a

for every x, y ∈ E.
Let β be a positive real number, and suppose that f is Lipschitz of order β

with constant Cβ on E. Combining this with (9.11.5), we get that

|f(x)− f(y)| ≤ B1−a Ca
β |x− y|a β(9.11.6)

for every x, y ∈ E. This shows that

f is Lipschitz of order a β with constant B1−a Ca
β on E.(9.11.7)

Of course, a β may be any positive real number strictly less than β here.

9.11.1 Diameters of bounded sets

Suppose for the moment that

E is a bounded set in Rn.(9.11.8)

It is easy to see that this is the same as saying that there is an upper bound
for the set of distances between elements of E. In this case, the diameter of
E is defined to be the least upper bound or supremum of the set of distances
between elements of E, i.e.,

diamE = sup{|x− y| : x, y ∈ E}.(9.11.9)

This is a nonnegative real number that is equal to 0 exactly when E has only
one element.

Let α and β be positive real numbers with α < β, and suppose that f is
Lipschitz of order β with constant Cβ on E again. If x, y ∈ E, then

|f(x)− f(y)| ≤ Cβ |x− y|β ≤ Cβ (diamE)β−α |x− y|α.(9.11.10)
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This means that

f is Lipschitz of order α with constant Cβ (diamE)β−α on E.(9.11.11)

In this case, it is easy to see that f is bounded on E, and more precisely
that (9.11.2) holds, with

B = Cβ (diamE)β .(9.11.12)

If we take a = α/β, then one can check that (9.11.10) also follows from (9.11.6).

9.11.2 Combining Lipschitz functions

Let E be any nonempty subset of Rn again, and let f be a real or complex-
valued function on E that is Lipschitz if order α on E with constant Cα(f) for
some positive real number α. If t is a real or complex number, as appropriate,
then it is easy to see that

t f is Lipschitz of order α on E with constant |t|Cα(f),(9.11.13)

as in Subsection 9.4.2.
Let g be another real or complex-valued function on E, and suppose that g

is Lipschitz of order α on E with constant Cα(g). One can check that

f + g is Lipschitz of order α on E with constant Cα(f) + Cα(g),(9.11.14)

as before.
Let

Lipα(E,R) and Lipα(E,C)(9.11.15)

be the spaces of real and complex-valued functions on E that are Lipschitz of
order α on E, respectively. These are linear subspaces of C(E,R) and C(E,C),
respectively, as before. If E is bounded and β is a real number with α < β, then

Lipβ(E,R) ⊆ Lipα(E,R) and Lipβ(E,C) ⊆ Lipα(E,C),(9.11.16)

as in the previous subsection.
If f and g are real valued on E, then one can verify that

max(f, g) and min(f, g) are Lipschitz of order α on E(9.11.17)

with constant max(Cα(f), Cα(g)),

as before.
Suppose that f and g are also bounded on E, so that there are nonnegative

real numbers A(f) and A(g) such that

|f | ≤ A(f) and |g| ≤ A(g)(9.11.18)

on E. One can check that

f g is Lipschitz of order α on E(9.11.19)

with constant Cα(f)A(g) +A(f)Cα(g)

under these conditions, as in Subsection 9.4.3.
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9.11.3 Lipschitz conditions and sequences

Let {fj}∞j=1 be a sequence of real or complex-valued functions on E that con-
verges pointwise to a real or complex-valued function f on E, as appropriate.
Suppose that there is a nonnegative real number Cα such that

fj is Lipschitz of order α on E with constant Cα(9.11.20)

for each j. One can check that

f is Lipschitz of order α on E with constant Cα,(9.11.21)

as in Subsection 9.4.4.
One can also verify that {fj}∞j=1 converges to f uniformly on bounded sub-

sets of E, as before.

9.12 Convex functions of several variables

Let n be a positive integer, and let U be a nonempty convex open subset of Rn.
Also let f be a real-valued function on U . We say that f is convex on U if for
every x, y ∈ U and t ∈ R with 0 ≤ t ≤ 1 we have that

f(t x+ (1− t) y) ≤ t f(x) + (1− t) f(y).(9.12.1)

This is the same as the definition in Section 9.5 when n = 1. Note that (9.12.1)
holds automatically when t = 0 or 1, and when x = y, as before.

It is easy to see that the standard Euclidean norm is convex as a real-valued
function on Rn. In fact, every norm on Rn is convex as a real-valued function
on Rn, and we shall say more about that in Section A.6.

9.12.1 Convexity on intersections with lines

Alternatively, let z, v ∈ Rn be given, and put

Uz,v = {t ∈ R : z + t v ∈ U}.(9.12.2)

It is easy to see that

Uz,v is a convex open subset of R.(9.12.3)

This means that Uz,v is an open interval in the real line, which may be un-
bounded, or the empty set. Put

Fz,v(t) = f(z + t v)(9.12.4)

for every t ∈ Uz,v. One can check that f is convex on U if and only if

Fz,v is convex on Uz,v(9.12.5)

for every z, v ∈ Rn. This is considered to hold vacuously when Uz,v = ∅. If
z ∈ U and v = 0, then Uz,v = R, and (9.12.5) holds trivially, because Fz,v is a
constant function.
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9.12.2 Convexity and distance functions

Let A be a nonempty subset of Rn, and let dist(x,A) be as in Subsection 9.4.1.
If A is a convex set, then it is well known that

dist(x,A) is a convex function on Rn.(9.12.6)

To see this, let x ∈ Rn and t ∈ Rn be given, with 0 ≤ t ≤ 1, and let us show
that

dist(t x+ (1− t) y,A) ≤ t dist(x,A) + (1− t) dist(y,A).(9.12.7)

To do this, let a, b ∈ A be given, and note that

t a+ (1− t) b ∈ A,(9.12.8)

because A is convex, by hypothesis. This implies that

dist(t x+ (1− t) y,A) ≤ |t x+ (1− t) y − t a− (1− t) b|.(9.12.9)

It follows that

dist(t x+ (1− t) y,A) ≤ |t (x− a) + (1− t) (y − b)|(9.12.10)

≤ t |x− a|+ (1− t) |y − b|.

One can use this to get (9.12.7), because a, b ∈ A are arbitrary.

9.12.3 Convexity and second derivatives

Suppose for the moment in this subsection that f is twice continuously differ-
entiable on U . If z, v ∈ Rn, then it follows that Fz,v is twice continuously
differentiable on Uz,v, which is considered to hold vacuously when Uz,v = ∅.
Under these conditions, (9.12.5) holds if and only if

F ′′
z,v ≥ 0 on Uz,v,(9.12.11)

as in Subsection 9.5.3. If Uz,v = ∅, then (9.12.11) is considered to hold vacuously,
as usual. Thus f is convex on U if and only if (9.12.11) holds for every z, v ∈ Rn.

Observe that

F ′
z,v(t) =

n∑
l=1

(∂lf)(z + t v) vl(9.12.12)

for every z, v ∈ Rn and t ∈ Uz,v. This is the same as the directional derivative
of f at z + t v in the direction v, as in Subsection 1.3.2. Similarly,

F ′′
z,v(t) =

n∑
j=1

n∑
l=1

(∂j∂lf)(z + tv)vjvl(9.12.13)

for every z, v ∈ Rn and t ∈ Uz,v. One can use this to get that f is convex on U
if and only if

n∑
j=1

n∑
l=1

(∂j∂lf)(x) vj vl ≥ 0(9.12.14)

for every x ∈ U and v ∈ Rn.
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9.12.4 Some remarks about convex functions

If f is convex on U and r is a nonnegative real number, then it is easy to see
that

r f is convex on U.(9.12.15)

If g is another real-valued function on U that is convex on U , then

f + g is convex on U.(9.12.16)

We also have that
max(f, g) is convex on U(9.12.17)

in this case. These statements correspond to those in Subsection 9.6.3 when
n = 1.

Let {fj}∞j=1 be a sequence of real-valued functions on U that converges
pointwise to a real-valued function f on U . If

fj is convex on U for each j,(9.12.18)

then
f is convex on U.(9.12.19)

This is the same as in Subsection 9.6.4 when n = 1.

9.13 Some subsets of Rn

Let n be a positive integer, and let A be a nonempty subset of Rn. Remember
that dist(x,A) is defined for x ∈ Rn as in Subsection 9.4.1. If r is a positive
real number, then put

Ar = {x ∈ Rn : dist(x,A) < r}.(9.13.1)

One can check that this is the same as⋃
a∈A

B(a, r).(9.13.2)

Note that this is an open set in Rn that contains A.
Similarly, if r is a nonnegative real number, then put

Ar = {x ∈ Rn : dist(x,A) ≤ r}.(9.13.3)

This is the same as the closure A of A in Rn when r = 0, as in Subsection 9.4.1.
One can verify that

Ar is a closed set in Rn(9.13.4)

for each r ≥ 0, because dist(x,A) is continuous on Rn. If 0 < r < t, then

Ar ⊆ Ar ⊆ At.(9.13.5)
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It is easy to see that ⋃
a∈A

B(a, r) ⊆ Ar(9.13.6)

for each r ≥ 0, directly from the definition of Ar. If A is a closed set in Rn,
then ⋃

a∈A

B(a, r) = Ar.(9.13.7)

This follows from the fact that the infimum in the definition of dist(x,A) is
attained in this case, as mentioned in Section 9.4.1.

9.13.1 Some remarks about bounded sets

Let E1, E2 be bounded nonempty subsets of Rn. If

E1 ⊆ E2,(9.13.8)

then it is easy to see that

diamE1 ≤ diamE2,(9.13.9)

by the definition of the diameter, as in Subsection 9.11.1.
If E is a bounded set in Rn, then one can check that the closure E of E is

bounded in Rn too. More precisely, if E 6= ∅, then

diamE = diamE.(9.13.10)

Indeed,
diamE ≤ diamE,(9.13.11)

because E ⊆ E, as in (9.13.9). It is not too difficult to show that

diamE ≤ diamE,(9.13.12)

using the definition of E, as in Section 1.1.5.

9.13.2 Bounded sets A

If A is a bounded set in Rn, then it is easy to see that

Ar is bounded(9.13.13)

for each r ≥ 0. More precisely, one can check that

diamAr ≤ diamA+ 2 r(9.13.14)

for each r ≥ 0. If A is also a closed set in Rn, then this can be obtained from
(9.13.7).

If A is not asked to be a closed set, then one can verify (9.13.14) directly,
with a slightly more complicated argument. Alternatively, one can reduce to the
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case of closed sets, using (9.13.10). Note that (9.13.12) is the same as (9.13.14)
when r = 0.

As another approach, one can check that

diamAt ≤ diamA+ 2 t(9.13.15)

for every t > 0, using the description of At as in (9.13.2). One can use this to
get (9.13.14), by considering t > r.

9.13.3 Convex sets A

If A is a convex set in Rn, then one can check that

Ar is convex(9.13.16)

for every r > 0, and that
Ar is convex(9.13.17)

for every r ≥ 0. This uses the fact that dist(x,A) is a convex function on Rn,
as in Subsection 9.12.2.

9.14 Some local Lipschitz conditions

Let n be a positive integer, let α be a positive real number, and let E be a
nonempty subset of Rn. Also let f be a real or complex-valued function on E,
let r be another positive real number, and let Cα be a nonnegative real number.
Let us say that f is Lipschitz of order α on E at the scale r with constant Cα if

|f(x)− f(y)| ≤ Cα |x− y|α(9.14.1)

for every x, y ∈ E with
|x− y| ≤ r.(9.14.2)

Note that f is Lipschitz of order α on E with constant Cα if and only if this
condition holds for all r > 0. If this condition holds for some r > 0, then f is
uniformly continuous on E.

Let β be a positive real number, let Cβ be a nonnegative real number, and
suppose that f is Lipschitz of order β on E at the scale r with constant Cβ . If
α < β and x, y ∈ E satisfy (9.14.2), then

|f(x)− f(y)| ≤ Cβ |x− y|β ≤ Cβ r
β−α |x− y|α.(9.14.3)

This means that f is Lipschitz of order α on E at the scale r, with constant

Cβ r
β−α.(9.14.4)

If f is Lipschitz of order α on E at the scale r, and if f is bounded on E,
then it is easy to see that f is Lipschitz of order α on E.
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If E is a bounded set in Rn, then it is well known and not too difficult to
show that E can be covered by finitely many sets of arbitrarily small diameter.
One can use this to show that f is bounded on E when f is uniformly continuous
on E. In particular, this means that f is bounded on E when f is Lipschitz of
order α on E at the scale r. If E is compact, then any continuous function on
E is bounded.

9.14.1 Local Lipschitz conditions along subsets

Let A be a nonempty subset of E. Let us say that f is Lipschitz of order α
at the scale r with constant Cα along A if (9.14.1) holds for every x ∈ A and
y ∈ E that satisfy (9.14.2). Of course, if A = E, then this is the same as saying
that f is Lipschitz of order α at the scale r with constant Cα on E. Otherwise,
this property implies that the restriction of f to A is Lipschitz of order α at the
scale r with constant Cα on A. Note that this property also implies that f is
continuous at every point in A, as a function on E.

Let Ar be as in (9.13.3), and consider the restriction of f to

Ar ∩ E.(9.14.5)

If the restriction of f to (9.14.5) is Lipschitz of order α at the scale r with
constant Cα, then f is Lipschitz of order α at the scale r with constant Cα

along A. More precisely, if x ∈ A and y ∈ E satisfy (9.14.2), then

dist(y,A) ≤ r,(9.14.6)

so that
y ∈ Ar ∩ E.(9.14.7)

If f is Lipschitz of order β > α at the scale r with constant Cβ ≥ 0 along A,
then f is Lipschitz of order α at the scale r along A with constant as in (9.14.4),
for the same reasons as before.

9.14.2 Functions on open sets

Let U be a nonempty open subset of Rn, and let f be a real or complex-valued
function on U . Let us say that f is locally Lipschitz of order α on U if for every
nonempty compact set K ⊆ Rn with

K ⊆ U,(9.14.8)

we have that

the restriction of f to K is Lipschitz of order α on K.(9.14.9)

If K is a compact subset of Rn that satisfies (9.14.8), then there is a positive
real number r = r(U,K) such that

Kr ⊆ U,(9.14.10)
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where Kr is as in (9.13.3). This follows from the result mentioned at the begin-
ning of Section 1.13. Remember that Kr is a closed set in Rn, as in (9.13.4),
and that Kr is a bounded set, as in (9.13.13). This means that Kr is a compact
set in Rn, as mentioned in Section 1.9.

If f is locally Lipschitz of order α on U , then it follows that

the restriction of f to Kr is Lipschitz of order α on Kr.(9.14.11)

This implies that

f is Lipschitz of order α at the scale r along K,(9.14.12)

as in the previous subsection. This is essentially the same type of local Lipschitz
condition as mentioned in the discussion of “Function Spaces” in Section A of
Chapter 0 of [75].

Let
C0,α(U,R) = C0,α

loc (U,R) and C0,α(U,C) = C0,α
loc (U,C)(9.14.13)

be the spaces of real and complex-valued functions on U that are locally Lip-
schitz of order α, respectively. These are linear subspaces of the spaces of all
continuous real and complex-valued functions on U , respectively.

If f is locally Lipschitz of order α on U and α > 1, then one can check that
f is locally constant on U , as in Subsection 1.8.4. This uses the remarks in
Subsection 9.10.1.

If f is locally Lipschitz of order β > α on U , then f is locally Lipschitz of
order α on U . This follows from a remark in Subsection 9.11.1, because compact
sets are bounded.

If f is continuously differentiable on U , then f is locally Lipschitz of order
one on U . More precisely, let K be a compact subset of Rn that satisfies
(9.14.8), and let r be a positive real number such that (9.14.10) holds. Under
these condition, f is Lipschitz of order one at the scale r along K, with constant

sup{|∇f(x)| : x ∈ Kr}.(9.14.14)

This can be obtained using the remarks in Subsection 9.3.4.
Let k be a positive integer, and let

Ck,α(U,R) = Ck,α
loc (U,R) and Ck,α(U,C) = Ck,α

loc (U,C)(9.14.15)

be the spaces of k-times continuously-differentiable real and complex-valued
functions on U , respectively, whose derivatives of order k are locally Lips-
chitz of order α on U . These are linear subspaces of the spaces of all k-times
continuously-differentiable real and complex-valued functions on U , respectively.

9.15 Some remarks about convexity

Let n be a positive integer, and let U be a convex set in Rn. Also let

a(1), . . . , a(m)(9.15.1)
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be finitely many elements of U , and let t1, . . . , tm be positive real numbers. One
can check that

m∑
l=1

tl
t1 + · · ·+ tm

a(l) ∈ U,(9.15.2)

using induction on m. More precisely, this works when t1, . . . , tm are nonneg-
ative real numbers, at least one of which is positive. Sometimes one may ask
that

m∑
l=1

tl = 1,(9.15.3)

and it is easy to reduce to this case.
The convex hull of (9.15.1) may be denoted

conv(a(1), . . . , a(m))(9.15.4)

and is the subset of Rn consisting of points of the form

m∑
l=1

tl a(l),(9.15.5)

where t1, . . . , tm are nonnegative real numbers that satisfy (9.15.3). One can
verify that

conv(a(1), . . . , a(m)) is a convex set in Rn.(9.15.6)

Note that
conv(a(1), . . . , a(n)) ⊆ U,(9.15.7)

as in (9.15.2).
Suppose from now on in this section that U is also an open set in Rn. If

x ∈ U , then it is not too difficult to show that there are finitely many elements
of U as in (9.15.1) such that

B(x, r) ⊆ conv(a(1), . . . , a(m))(9.15.8)

for some positive real number r.

9.15.1 Convex functions on U

Let f be a convex function on U , as in Section 9.12, and let (9.15.1) be finitely
many elements of U , as before. If t1, . . . , tm are positive real numbers, then one
can check that

f
( m∑

l=1

tl
t1 + · · ·+ tm

a(l)
)
≤

m∑
l=1

tl
t1 + · · ·+ tm

f(a(l)),(9.15.9)

using induction on m. This was mentioned in Subsection 9.9.2 when n = 1.
This also works when t1, . . . , tm are nonnegative real numbers, at least one of
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which is positive, as before. It is easy to reduce to the case where (9.15.3) holds,
and sometimes this may be stated in this way.

In particular, we get that

f ≤ max(f(a(1)), . . . , f(a(m)))(9.15.10)

on (9.15.4). If x ∈ U and r > 0 are as in (9.15.8), then it follows that (9.15.10)
holds on B(x, r). If K is a compact subset of Rn and K ⊆ U , then one can use
this to get that there is an upper bound for f on K.

If x ∈ U , B(x, r) ⊆ U for some r > 0, and f has an upper bound on B(x, r),
then one can get a lower bound for f on B(x, r) too. This means that f is
bounded on B(x, r) when (9.15.8) holds. One can use this to get that f is
bounded on any compact subset K of Rn that is contained in U .

One can use this type of local boundedness property of f on U to get that
f is locally Lipschitz of order one on U . This uses the Lipschitz conditions
for convex functions of one variable mentioned in Subsection 9.6.1. See also
[241, 295].



Chapter 10

More on harmonic
functions, 2

10.1 Removing some isolated singularities

Let n ≥ 2 be an integer, let U be a nonempty open subset of Rn, and let a ∈ U
be given. Note that

U \ {a}(10.1.1)

is an open set too, and let u be a harmonic function on (10.1.1). Under some
conditions, one may be able to extend u to a harmonic function on U .

Suppose that
lim
x→a

|x− a|n−2 u(x) = 0(10.1.2)

when n ≥ 3, and that

lim
x→a

u(x)

log |x− a|
= 0(10.1.3)

when n = 2. It is well known that

u can be extended to a harmonic function on U(10.1.4)

under these conditions, as in Theorem 2.69 in Section H of Chapter 2 of [75].
This corresponds to Theorem 2.3 on p32 of [18] when u is bounded on U , and
the stronger statement is mentioned in Execise 2 on p42 of [18] when U is the
open unit ball and a = 0.

It is easy to reduce to the case where a = 0, using a translation. One can
also reduce to the case where

B(0, 1) ⊆ U,(10.1.5)

using a dilation. Thus we may as well suppose that u is a continuous real or
complex-valued function on

B(0, 1) \ {0}(10.1.6)

226
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that is harmonic on
B(0, 1) \ {0}.(10.1.7)

Because a = 0, (10.1.2) means that

lim
x→0

|x|n−2 u(x) = 0(10.1.8)

when n ≥ 3, and (10.1.3) means that

lim
x→0

u(x)

log |x|
= 0(10.1.9)

when n = 2. We would like to show that u can be extended to a continuous
function on B(0, 1) that is harmonic on B(0, 1).

10.1.1 Using a Poisson integral

Let v be the function on B(0, 1) obtained by taking the Poisson integral of the
restriction of u to the unit sphere ∂B(0, 1), as in Section 6.12. It suffices to
show that

u = v(10.1.10)

on (10.1.6). We may as well suppose that u is real-valued on (10.1.6), by con-
sidering the real and imaginary parts of u separately if necessary. Of course,
this means that v is real-valued on B(0, 1).

Equivalently, we would like to show that

u ≤ v(10.1.11)

and
v ≤ u(10.1.12)

on (10.1.6). In fact, we shall show that (10.1.11) holds on (10.1.6). One can get
(10.1.12) using an analogous argument, or by considering −u in place of u.

10.1.2 A helpful family of functions

Let ϵ > 0 be given, and consider the real-valued function wϵ defined on (10.1.6)
by

wϵ(x) = u(x)− v(x)− ϵ (|x|2−n − 1) when n ≥ 3(10.1.13)

= u(x)− v(x) + ϵ log |x| when n = 2.

Note that
wϵ(x) = 0 when |x| = 1,(10.1.14)

by construction. We also have that wϵ is continuous on (10.1.6), and harmonic
on (10.1.7). This uses the remarks in Section 6.1.

We would like to show that
wϵ ≤ 0(10.1.15)

on (10.1.6). If we can do this, then we get (10.1.11), because ϵ > 0 is arbitrary.
In order to do this, we shall use the maximum principle.
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10.1.3 Using the maximum principle

Let t be a real number with 0 < t < 1, and put

Vt = B(0, 1) \B(0, t).(10.1.16)

This is a bounded open set in Rn, with

Vt = B(0, 1) \B(0, t).(10.1.17)

Thus the boundary of Vt is

∂Vt = Vt \ Vt = ∂B(0, 1) ∪ ∂B(0, t).(10.1.18)

It is easy to see that (10.1.15) holds on ∂B(0, t)

when t is sufficiently small,(10.1.19)

depending on ϵ. This uses the hypothesis (10.1.8) or (10.1.9), as appropriate,
and the fact that v is bounded on B(0, 1). It follows that (10.1.15) holds on Vt
for the same sufficiently small t, by the maximum principle, because of (10.1.14).
This means that (10.1.15) holds on (10.1.6).

10.2 Positive harmonic functions

Let n be a positive integer, and suppose for the moment that u is a positive
real-valued harmonic function on Rn. Another version of Liouville’s theorem
states that u has to be constant on Rn. This can be shown in a way that is
somewhat analogous to the first proof in Section 6.6, with some adjustments.
This is Theorem 3.1 on p45 of [18].

10.2.1 Harnack’s inequality

Now let u be a positive harmonic function on a nonempty open subset U of Rn.
Suppose that x, y ∈ U and r > 0 satisfy

|x− y| ≤ r(10.2.1)

and
B(x, 2 r) ⊆ U.(10.2.2)

It is easy to see that
B(y, r) ⊆ B(x, 2 r),(10.2.3)

using (10.2.1) and the triangle inequality. It follows that

u(y) =
1

|B(y, r)|

∫
B(y,r)

u(z) dz ≤ 1

|B(y, r)|

∫
B(x,2 r)

u(z) dz

=
2n

|B(x, 2 r)|

∫
B(x,2 r)

u(z) dz = 2n u(x).(10.2.4)
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Similarly, if (10.2.1) holds and

B(y, 2 r) ⊆ U,(10.2.5)

then

u(x) ≤ 2n u(y).(10.2.6)

Note that

B(y, 2 r) ⊆ B(x, 3 r),(10.2.7)

by (10.2.1) and the triangle inequality again. If

B(x, 3 r) ⊆ U,(10.2.8)

then (10.2.7) implies (10.2.5).
Suppose that U is connected, and that K is compact subset of Rn that is

contained in U . In this case, it is well known that there is a real number C ≥ 1
such that

C−1 u(x) ≤ u(y) ≤ C u(x)(10.2.9)

for every x, y ∈ K. More precisely, this constant C does not depend on u. This
is Harnack’s inequality, as in Theorem 3.6 on p48 of [18], and Theorem 11 in
Section 2.2.3 f of [70].

One can get more precise estimates on balls using the Poisson integral for-
mula, as in 3.4, 3.5 on p47f of [18], and Problem 7 in Section 2.5 of [70]. In-
equalities like these are also discussed on p243f of [7] when n = 2. Note that
the inequalities mentioned in this subsection work as well when u is nonnegative
on U , and are sometimes stated this way. However, if U is connected, and u
is a nonnegative real-valued harmonic function on U , then u is either strictly
positive on U , or identically equal to 0 on U . This follows from the strong
maximum principle for −u on U , as in Subsection 6.7.1.

10.3 Some criteria for harmonicity

Let n be a positive integer, let B0 be an open ball in Rn, and let u be a
continuous real or complex-valued function on the closure B0 of B0. Suppose
that for every a ∈ B0 there is an r(a) > 0 such that

B(a, r(a)) ⊆ B0(10.3.1)

and

the average of u on B(a, r(a)) is equal to u(a).(10.3.2)

We would like to show that

u is harmonic on B0(10.3.3)

under these conditions.
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We may as well suppose that

B0 = B(0, 1),(10.3.4)

because otherwise we can reduce to that case with a translation and dilation. We
may suppose that u is real-valued too, by considering the real and imaginary
parts of u separately. Using the Poisson integral, as in Section 6.12, we get
that there is a continuous real-valued function v on B(0, 1) that is harmonic on
B(0, 1) and satisfies

v = u on ∂B(0, 1).(10.3.5)

It suffices to verify that
u = v on B(0, 1).(10.3.6)

Remember that the average of v on any open ball contained in B(0, 1) is
equal to the value of v at the center of the ball, as in Subsection 6.7.3. If
a ∈ B(0, 1) and r(a) is as before, then (10.3.2) implies that

the average of u− v on B(a, r(a)) is equal to u(a)− v(a).(10.3.7)

It follows that the maximum of u − v on B(0, 1) is attained on ∂B(0, 1), as in
Subsection 6.7.3. Similarly, the maximum of v − u on B(0, 1) is attained on
∂B(0, 1). This means that (10.3.6) follows from (10.3.5),

10.3.1 Arbitrary open sets in Rn

Now let U be a nonempty open subset of Rn, and let u be a continuous real or
complex-valued function on U . Suppose that for every a ∈ U and ϵ > 0 there is
an r(a, ϵ) > 0 such that

r(a, ϵ) < ϵ,(10.3.8)

B(a, r(a, ϵ)) ⊆ U,(10.3.9)

and
the average of u on B(a, r(a, ϵ)) is equal to u(a).(10.3.10)

Of course, (10.3.8) implies (10.3.9) when ϵ is sufficiently small, depending on a.
Let us verify that

u is harmonic on U(10.3.11)

in this case.
Let B0 be an open ball in Rn such that

B0 ⊆ U.(10.3.12)

It suffices to check that the restriction of u to B0 is harmonic. To get this, we can
use the criterion discussed at the beginning of the section. More precisely, we
can take r(a) = r(a, ϵ) with ϵ small enough so that (10.3.8) impies (10.3.1). This
uses the fact that open balls in Rn are open sets, as mentioned in Subsection
1.1.3.
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10.4 The reflection principle

Let n be a positive integer, and let U be a nonempty open subset of Rn. Suppose
that U is symmetric about the xn = 0 hyperplane in Rn, so that

(x1, . . . , xn−1, xn) ∈ U(10.4.1)

if and only if
(x1, . . . , xn−1,−xn) ∈ U.(10.4.2)

Put
U+ = {x ∈ U : xn > 0},(10.4.3)

and
Ũ+ = {x ∈ U : xn ≥ 0}.(10.4.4)

One can check that U+ is also a nonempty open subset of Rn, and that Ũ+ is
relatively closed in U , as in Subsection 1.9.1.

Let u be a continuous real or complex-valued function on Ũ+, and suppose
that

u(x) = 0 when x ∈ Ũ+ and xn = 0.(10.4.5)

If x ∈ U and xn < 0, then (x1, . . . , xn−1,−xn) ∈ U+, and we put

u(x) = −u(x1, . . . , xn−1,−xn).(10.4.6)

This defines an extension of u to a real or complex-valued function on U . One
can check that

u is continuous on U(10.4.7)

under these conditions.
If u is harmonic on U+, then the reflection principle states that

u is harmonic on U.(10.4.8)

To see this, it suffices to show that for each a ∈ U , we have that

the average of u on B(a, r) is equal to u(a)(10.4.9)

for all sufficiently small r > 0, as in the previous section. If a ∈ U+, then this
holds when

B(a, r) ⊆ U+,(10.4.10)

because u is harmonic on U+, by hypothesis. There is an analogous statement
when an < 0, by construction.

Suppose now that a ∈ U and an = 0. If

B(a, r) ⊆ U,(10.4.11)

then it is easy to see that ∫
B(a,r)

u(x) dx = 0.(10.4.12)

This means that (10.4.9) holds in this case too.
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10.4.1 A uniqueness result

Suppose that u is also bounded on U+. This implies that u is bounded on U ,
by construction. If U = Rn, then it follows that u is a constant function, by
Liouville’s theorem, as in Section 6.6. This means that

u ≡ 0 on Rn,(10.4.13)

because of (10.4.5).

10.5 More on Liouville’s theorem

Let n be a positive integer, and let u be a real or complex-valued harmonic
function on Rn. If

u(x)

|x|
→ 0 as |x| → ∞,(10.5.1)

then a refinement of Liouville’s theorem implies that u is constant on Rn. This
can be obtained using either of the arguments mentioned in Section 6.6. Of
course, (10.5.1) holds when u is bounded on Rn.

10.5.1 Another growth condition

Let k be a positive integer, and suppose now that

u(x)

|x|k+1
→ 0 as |x| → ∞.(10.5.2)

One can show that
∂ju(x)

|x|k
→ 0 as |x| → ∞(10.5.3)

for each j = 1, . . . , n, using the same type of argument as in Subsection 6.6.2.

If α is a multi-index with |α| ≤ k, then one repeat the argument to get that

∂αu(x)

|x|k−|α|+1
→ 0 as |x| → ∞.(10.5.4)

In particular, if |α| = k, then we get that

∂αu(x)

|x|
→ 0 as |x| → ∞.(10.5.5)

This implies that ∂αu is constant on Rn when |α| = k, as before. Equivalently,
if β is a multi-index with |β| = k + 1, then ∂βu = 0 on Rn.

This implies that u is a polynomial on Rn of degree at most k, by standard
arguments. This will be discussed further in the next subsections.
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10.5.2 Polynomials and derivatives

Let f be a real or complex-valued function on Rn that is k times condintuously
differentiable, and suppose that ∂αf is constant on Rn for each multi-index
α with |α| = k. Equivalently, this means that f is smooth on Rn, and that
∂βf = 0 on Rn for every multi-index β with |β| = k + 1. It is well known that
f is a polynomial of degree at most k on Rn under these conditions, and we
would like to mention a couple fo ways to see that. We might as well take f to
be real-valued, since otherwise one can consider the real and imaginary parts of
f . This is simpler and more familiar when n = 1, and so we may suppose that
n ≥ 2.

If x ∈ Rn, then f(t x) may be considered as a smooth function of t ∈ R.
The derivative of f(t x) in t of order k + 1 may be expressed in terms of the
derivatives of f or oder k+1, and is thus equal to 0, by hypothesis. This implies
that f(t x) is a polynomial of degree at most k in t, with coefficients that may
depend on x. More precisely, the coefficient of tl in f(t x) as a polynomial in t
may be obtained from the lth derivative of f(t x) at t = 0 for each l, as usual.
One can take t = 1 to get that f(x) is a polynomial of degree at most k on Rn.

10.5.3 Using homogeneous polynomials

Suppose again that ∂αf is constant on Rn for each multi-index α with |α| = k.
One can find a homogeneous polynomial Pk of degree k on Rn such that

∂αPk = ∂αf(10.5.6)

for each multi-index α with |α| = k. Of course, this means that ∂α(f −Pk) = 0
on Rn for each multi-index α with |α| = k. If k = 1, then it follows that f −P1

is a constant on Rn. If k ≥ 2, then it follows that the derivatives of f − Pk of
order k − 1 are constant on Rn, and one can repeat the argument.

10.5.4 Reducing the number of variables

Let a be a continuously-differentiable real or complex-valued function on Rn

such that ∂ja is a polynomial on Rn for each j = 1, . . . , n. We would like
to show that a is a polynomial on Rn as well under these conditions. This is
straightforward when n = 1, and for any n it is not too difficult to show that
there is a polynomial P on Rn such that

∂1a = ∂1P(10.5.7)

onRn. This implies that a−P does not depend on x1, and its partial derivatives
in the other variables are polynomials. One can repeat the argument to get that
a is a polynomial on Rn, and one can use this to get another way to show the
result mentioned earlier.
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10.6 Some more remarks about compositions

Let W be a nonempty open subset of R2, and suppose that f is a continuously-
differentiable complex-valued function on W . Thus ∂f = ∂f/∂z and ∂f =
∂f/∂z are continuous complex-valued functions on W , as in Section 2.2. If
v ∈ R2 is identified with the complex number v1 + i v2, as usual, then the
directional derivative of f in the direction v at a point z ∈W may be expressed
as

(Dvf)(z) = v (∂f)(z) + v (∂f)(z),(10.6.1)

as in Section 3.14.

Let U be another nonempty open subset of R2, and let u be a continuously-
differentiable complex-valued function on U . Suppose that

f(W ) ⊆ U,(10.6.2)

where U is considered as a subset of the complex plane, so that the composition
u◦f of f and u is defined as a complex-valued function on W . Note that u◦f is
continuously differentiable on W , and the directional derivative of u ◦ f at z in
the direction v is equal to the directional derivative of u at f(z) in the direction
(Dvf)(z). This means that

(Dv(u ◦ f))(z) = (Dvf)(z) (∂u)(f(z)) + (Dvf)(z) (∂u)(f(z)),(10.6.3)

as before.

10.6.1 Composition with holomorphic functions

Suppose now that f is holomorphic on W , so that ∂f = 0 on W , as in Section
2.2. In this case, we get that

(Dvf)(z) = v (∂f)(z)(10.6.4)

and

(Dv(u ◦ f))(z) = v (∂f)(z) (∂u)(f(z)) + v (∂f)(z) (∂u)(f(z)).(10.6.5)

One can use this to get that

(∂(u ◦ f))(z) = (∂f)(z) (∂u)(f(z))(10.6.6)

and

(∂(u ◦ f))(z) = (∂f)(z) (∂u)(f(z)).(10.6.7)

In particular, if u is also holomorphic on U , then it follows that u ◦ f is holo-
morphic on W , as in Subsection 3.14.2.
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10.6.2 The Laplacian of the composition

Suppose that u and f are twice continuously differentiable, although in fact f
is automatically smooth, because it is holomorphic, as mentioned in Subsection
2.2.1. Observe that

(∆(u ◦ f))(z) = 4 ((∂∂)(u ◦ f))(z) = 4 ∂((∂f)(z) (∂u)(f(z))),(10.6.8)

where the first step is as in Subsection 2.2.1, and the secod step uses (10.6.7).
It follows that

(∆(u ◦ f))(z) = 4 (∂f)(z) ∂((∂u)(f(z))),(10.6.9)

using the product rule, as in Subsection 2.2.2, and the fact that f is harmonic,
as in Subsection 2.2.1. This implies that

(∆(u ◦ f))(z) = 4 (∂f)(z) (∂f)(z) (∂∂u)(f(z)),(10.6.10)

as before. This means that

(∆(u ◦ f))(z) = |(∂f)(z)|2 (∆u)(f(z)).(10.6.11)

If u is harmonic on U , then it follows that

u ◦ f is harmonic on W.(10.6.12)

This also works when f is holomorphic on W , so that ∂f = 0 on W . This can
be obtained from the same type of argument, or using the analogous statement
for complex conjugation as a mapping from C onto itself.

10.6.3 The Kelvin transform

Let n ≥ 2 be an integer. It is easy to see that

x 7→ x/|x|2(10.6.13)

is a one-to-one mapping from Rn \{0} onto itself. More precisely, one can check
that this mapping is its own inverse.

Let U be a nonempty open set contained in Rn\{0}, and let u be a complex-
valued function on U . Put

Ũ = {x/|x|2 : x ∈ U},(10.6.14)

which is another open set in Rn \{0}. The Kelvin transform of u is the function

ũ defined on Ũ by
ũ(x) = u(x/|x|2) |x|2−n.(10.6.15)

If u is harmonic on U , then it is well-known that

ũ is harmonic on Ũ .(10.6.16)

This corresponds to Theorem 4.7 on p63 of [18], Problem 11 in Section 2.5 of
[70], and Theorem 2.72 in Section H of Chapter 2 of [75].
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10.7 The Green’s function

Let n ≥ 2 be an integer, and let U be a nonempty bounded open subset of Rn.
Also let N be the real-valued function defined on Rn \ {0} at the beginning of
Section 6.8. Note that this corresponds to −Φ in the definition in Section 2.2.1
a of [70].

Let x ∈ U be given. Suppose that ηx is a continuous real-valued function on
U such that

ηx is harmonic on U(10.7.1)

and
ηx(y′) = N(y′ − x) for every y′ ∈ ∂U.(10.7.2)

Note that
ηx is uniquely determined by these properties,(10.7.3)

as in Subsection 6.7.2.
Let us say that

ηx is a corrector function corresponding to U and x(10.7.4)

under these conditions, as in Section 2.2.4 a of [70]. More precisely, this corre-
sponds to −ϕx in the notation of [70].

In this case, the Green’s function associated to U and x is

G(x, y) = N(y − x)− ηx(y).(10.7.5)

This is a real-valued function of y ∈ U \ {x}, although

G(x, y)−N(y − x) = −ηx(y)(10.7.6)

is considered to be defined as a function of y ∈ U . Of course,

G(x, y′) = 0 for every y′ ∈ ∂U,(10.7.7)

by construction. This basically corresponds to the definitions in Section 2.2.4 a
in [70] and Section D of Chapter 2 in [75], and we shall say more about this in
Section 10.9. This is also discussed on p257 of [7] when n = 2.

10.7.1 Another helpful integral formula

Suppose for the moment that U has reasonably smooth boundary, and that ηx is
twice continuously differentiable on U . If u is a twice continuously-differentiable
real or complex-valued function on U , then

−
∫
U

ηx(z) (∆u)(z) dz(10.7.8)

=

∫
∂U

u(y′) (Dν(y′)η
x)(y′)− ηx(y′) (Dν(y′)u)(y

′) dy′,
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as in Section 3.9, with v = ηx. Here ν(y′) is the outward-pointing unit normal
to ∂U at y′ ∈ ∂U , and Dν(y′) denotes the directional derivative in the direction
ν(y′), as before.

Remember that∫
U

N(z − x) (∆u)(z) dz(10.7.9)

=

∫
∂U

(N(y′ − x) (Dν(y′)u)(y
′)− u(y′) (Dν(y′)N)(y′ − x)) dy′ + u(x),

as in Subsection 6.8.2, where the integral on the left may be considered as an
improper integral, or a Lebesgue integral. We can combine this with (10.7.8)
using (10.7.2) to get that∫

U

G(x, z) (∆u)(z) dz = −
∫
∂U

u(y′) (Dν(y′)G)(x, y
′) dy′ + u(x),(10.7.10)

where the left side may be considered as an improper integral or a Lebesgue
integral, as before. More precisely,

(Dν(y′)G)(x, y
′)(10.7.11)

is the directional derivative of G(x, z) as a function of z evaluated at y′. This
corresponds to (28) in Section 2.2.4 a of [70], with a different sign because of
the slightly different conventions there.

If u is harmonic on U , then we get that

u(x) =

∫
∂U

u(y′) (Dν(y′)G)(x, y
′) dy′.(10.7.12)

In particular, we can take u ≡ 1 on U to get that∫
∂U

(Dν(y′)G)(x, y
′) dy′ = 1.(10.7.13)

Similarly, if u = 0 on ∂U , then (10.7.10) implies that

u(x) =

∫
U

G(x, z) (∆u)(z) dz.(10.7.14)

This is related to some remarks in Section D of Chapter 2 in [75].

10.7.2 Another property of G(x, y)

Let U be any nonempty bounded open subset of Rn again, and let ηx be a
corrector function corresponding to U and x. Also let r be a positive real
number such that

B(x, r) ⊆ U.(10.7.15)
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Put

Ur = U \B(x, r),(10.7.16)

and observe that Ur is an open set in Rn with

Ur = U \B(x, r)(10.7.17)

and

∂Ur = ∂U ∪ ∂B(x, r).(10.7.18)

It is easy to see that

G(x, y) = N(y − x)− ηx(y) ≤ 0(10.7.19)

for every y ∈ U with x 6= y and |x − y| sufficiently small. If r is sufficiently
small, then one can use this and (10.7.7) to get that (10.7.19) holds for every
y ∈ Ur, because of the maximum principle, as in Section 6.7.2. This means that
(10.7.19) holds for all y ∈ U \ {x}.

10.7.3 Nonnegativity of the normal derivative

Suppose that U has reasonably smooth boundary, and that ηx is continuously
differentiable on U , so that G(x, y) is continuously differentiable in y on U \{x}.
Under these conditions, one can check that

(Dν(y′)G)(x, y
′) ≥ 0(10.7.20)

for every y′ ∈ ∂U , because of (10.7.7) and (10.7.19).

10.8 Some examples of corrector functions

Let n ≥ 2 be an integer, let a ∈ Rn and r > 0 be given. It is easy to see that the
corrector function associated to U = B(a, r) and x = a is the constant function

ηa =
r2−n

(2− n) |∂B(0, 1)|
when n ≥ 3(10.8.1)

=
1

2π
log r when n = 2.

In this case, the right side of (10.7.12) reduces to the usual average of u on
∂B(a, r), which was basically mentioned in Subsection 6.2.2. Similarly, (10.7.10)
corresponds to an integral formula in Subsection 6.13.3. More precisely, (10.8.1)
is the same as the definition of cr at the beginning of Section 6.13.

Let us now take a = 0 and r = 1. We would like to find corrector functions
associated to the unit ball U = B(0, 1) and x 6= 0.
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10.8.1 Some preliminary remarks

If x, y ∈ Rn and x 6= 0, then

|x| |(x/|x|2)− y| =
∣∣(x/|x|)− |x| y

∣∣.(10.8.2)

If |y| = 1, then we have that∣∣(x/|x|)− |x| y
∣∣ = |x− y|.(10.8.3)

This follows from an identity mentioned in Subsection 6.10.2, with x′ = x/|x|,
w′ = y, and r = |x|. Combining this with (10.8.2), we get that

|x− y| = |x|
∣∣(x/|x|2)− y

∣∣(10.8.4)

when |y| = 1.
In fact, if y ∈ Rn and y 6= 0, then∣∣(x/|x|)− |x| y

∣∣ = ∣∣(x/|x|)− |x| |y| (y/|y|)
∣∣.(10.8.5)

We also have that∣∣(x/|x|)− |x| |y| (y/|y|)
∣∣ = ∣∣|x| |y| (x/|x|)− (y/|y|)

∣∣,(10.8.6)

as in Subsection 6.10.2. This implies that∣∣(x/|x|)− |x| y
∣∣ = ∣∣|y|x− (y/|y|)

∣∣.(10.8.7)

10.8.2 The unit ball, n ≥ 3

Suppose that n ≥ 3 and |x| < 1, so that∣∣(x/|x|2)∣∣ = 1/|x| > 1.(10.8.8)

If |y| = 1, then y 6= x, x/|x|2, and (10.8.4) implies that

N(x− y) = |x|2−nN((x/|x|2)− y),(10.8.9)

where N is as in Section 6.8, as before. Let ηx be the real-valued function
defined on Rn \ {x/|x|2} by

ηx(y) = |x|2−nN((x/|x|2)− y).(10.8.10)

Note that ηx(y) is harmonic as a function of y 6= x/|x|2, because N is harmonic
on Rn \ {0}, as in Section 6.1. The restriction of ηx to B(0, 1) is the corrector
function corresponding to U = B(0, 1) and x, as in the previous section.

Thus the Green’s function associated to U = B(0, 1) and x is

G(x, y) = N(y − x)− ηx(y) = N(y − x)− |x|2−nN((x/|x|2)− y),(10.8.11)
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as in (10.7.5). This corresponds to some remarks in Section 2.2.4 c of [70], and
Section G of Chapter 2 in [75]. This is also related to some remarks on p10f of
[18].

One can verify that (10.7.12) corresponds to the Poisson integral formula
in Section 6.12 in this case. This is how the Poisson kernel is obtained in
[18, 70, 75].

Equivalently,
ηx(y) = N((x/|x|)− |x| y).(10.8.12)

This also works when n = 2, as in the next subsection.

10.8.3 The unit disk

Suppose now that n = 2, and that |x| < 1 again. If |y| = 1, then y 6= x, x/|x|2,
and we can use (10.8.4) to get that

N(x− y) =
1

2π
log |x− y| = 1

2π
log |x|+ 1

2π
log |(x/|x|2)− y|,(10.8.13)

where N is as in Section 6.8. Let ηx be the real-valued function defined on
R2 \ {x/|x|2} by

ηx(y) =
1

2π
log |x|+ 1

2π
log |(x/|x|2)− y|.(10.8.14)

This is harmonic as a function of y 6= x/|x|2, because log | · | is harmonic on
R2 \ {0}, as in Section 6.1. It follows that the restriction of ηx to B(0, 1) is the
corrector function associated to U = B(0, 1) and x.

This means that the Green’s function associated to U = B(0, 1) and x is

G(x, y) = N(y − x)− ηx(y)

=
1

2π
log |x− y| − 1

2π
log |x| − 1

2π
log |(x/|x|2)− y|.(10.8.15)

This corresponds to some remarks in Section 2.2.4 c of [70], and Section G of
Chapter 2 in [75], as before.

One can check that (10.7.12) corresponds to the Poisson integral formula in
this case too, as in [70, 75].

10.9 More on the Green’s function

Let n ≥ 2 be an integer, let U be a nonempty bounded open subset of Rn,
and let N be as in Section 6.8, as usual. Suppose that for each x ∈ U , ηx is a
corrector function associated to U and x, as in Section 10.7. This means that
the Green’s function

G(x, y) = N(y − x)− ηx(y)(10.9.1)

is defined for x ∈ U and y ∈ U with x 6= y. This corresponds to the definitions
in Section 2.2.4 a in [70] and Section D of Chapter 2 in [75].
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10.9.1 Symmetry of the Green’s function

Suppose now that U has reasonably smooth boundary, and let x, y ∈ U with
x 6= y be given. Suppose also that

ηx, ηy are corrector functions associated to U and x, y, respectively,(10.9.2)

and that ηx, ηy are twice continuously differentiable on U . The corresponding
Green’s functions G(x, ·) and G(y, ·) may be defined on U \ {x} and U \ {y}, as
before. Under these conditions, we would like to show that

G(x, y) = G(y, x).(10.9.3)

This corresponds to Theorem 13 in Section 2.2.4 a in [70] and Lemma 2.33 in
Section D of Chapter 2 in [75], and it is discussed on p258 of [7] when n = 2.

Let r be a positive real number that is small enough so that

B(x, r), B(y, r) ⊆ U(10.9.4)

and 2 r < |x− y|, so that

B(x, r) ∩B(y, r) = ∅.(10.9.5)

Put
Vr = U \ (B(x, r) ∪B(y, r)).(10.9.6)

This is an open set in Rn, with

Vr = U \ (B(x, r) ∪B(y, r))(10.9.7)

and
∂Vr = ∂B(x, r) ∪ ∂B(y, r).(10.9.8)

If z ∈ U , then put

v(z) = G(x, z) = N(z − x)− ηx(z)(10.9.9)

when x 6= z, and
w(z) = G(y, z) = N(z − y)− ηy(z)(10.9.10)

when y 6= z. These define twice continuously-differentiable real-valued functions
on Vr, by hypothesis. It follows that∫

Vr

(v(z) (∆w)(z)− w(z) (∆v)(z)) dz(10.9.11)

=

∫
∂Vr

(v(z′) (Dνr(z′)w)(z
′)− w(z′) (Dνr(z′)v)(z

′)) dz′,

as in Section 3.9. Here νr(z
′) is the outward-pointing unit normal to ∂Vr at

z′ ∈ ∂Vr, as before.
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The left side of (10.9.11) is equal to 0, because v and w are harmonic on
Vr, by construction. The contribution to the right side of (10.9.11) from the
integral over ∂V is equal to 0 too, because v = w = 0 on ∂V . Thus we are
left with the contributions to the integral on the right side of (10.9.11) from the
integrals over ∂B(x, r) and ∂B(y, r).

Let µx,r(z
′), µy,r(z

′) be the outward-pointing unit normals to ∂B(x, r),
∂B(y, r) at z′ ∈ ∂B(x, r), ∂B(y, r), respectively. Note that

νr(z
′) = −µx,r(z

′) when z′ ∈ ∂B(x, r)(10.9.12)

= −µy,r(z
′) when z′ ∈ ∂B(y, r).

Using (10.9.11) and the remarks in the preceding paragraph, we get that

0 =

∫
∂B(x,,r)

(v(z′) (Dµx,r(z′)w)(z
′)− w(z′) (Dµx,r(z′)v)(z

′)) dz′

+

∫
∂B(y,r)

(v(z′) (Dµy,r(z′)w)(z
′)− w(z′) (Dµy,r(z′)v)(z

′)) dz′.(10.9.13)

10.9.2 Some limits as r → 0

In order to get (10.9.3), we would like to consider the limits of the various terms
on the right side of (10.9.13) as r → 0, as in [70, 75]. One can check that

lim
r→0

∫
∂B(x,r)

v(z′) (Dµx,r(z′)w)(z
′)) dz′ = 0,(10.9.14)

because w is smooth near x. This also uses the fact that the (n−1)-dimensional
volume of ∂B(x, r) is a multiple of rn−1, which takes care of the singularity of
v near x. Similarly,

lim
r→0

∫
∂B(y,r)

w(z′) (Dµy,r(z′)v)(z
′) dz′ = 0.(10.9.15)

It is easy to see that

lim
r→0

∫
∂B(x,r)

w(z′) (Dµx,r(z′)η
x)(z′) dz′ = 0,(10.9.16)

because w is continuous at x, and ηx is continuously differentiable near x. Sim-
ilarly,

lim
r→0

∫
∂B(y,r)

v(z′) (Dµy,r(z′)η
y)(z′) dz′ = 0.(10.9.17)

This leaves terms on the right side of (10.9.13) of the form

−
∫
∂B(x,r)

w(z′) (Dµx,r(z′)N)(z′) dz′(10.9.18)
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and ∫
∂B(y,r)

v(z′) (Dµy,r(z′)N)(z′) dz′.(10.9.19)

These are the same as

− 1

|∂B(x, r)|

∫
∂B(x,r)

w(z′) dz′(10.9.20)

and
1

|∂B(y, r)|

∫
∂B(y,r)

v(z′) dz′,(10.9.21)

respectively, as mentioned in Subsection 6.8.1. One could deal with the limits
of these integrals as r → 0 in the usual way, or use the mean-value property of
harmonic functions to evaluate these integrals. Combining this with (10.9.13)
and the previous remarks, we obtain that

0 = −w(x) + v(y).(10.9.22)

Of course, this is the same as (10.9.3).

10.10 The upper half-space

Let n ≥ 2 be an integer, and consider the open upper half-space

Rn
+ = {x ∈ Rn : xn > 0}(10.10.1)

in Rn. This is an open set in Rn, whose closure is the closed upper half-space

Rn
+ = {x ∈ Rn : xn ≥ 0}.(10.10.2)

Similarly, the boundary of Rn
+ is the xn = 0 hyperplane,

∂Rn
+ = {x ∈ Rn : xn = 0}.(10.10.3)

If x ∈ Rn, then let x̃ be the element of Rn defined by

x̃ = (x1, . . . , xn−1,−xn).(10.10.4)

Note that

(̃x̃) = x.(10.10.5)

It is easy to see that

|ỹ − x̃| = |y − x|(10.10.6)

for every y ∈ Rn. In particular, if yn = 0, then ỹ = y, and we get that

|y − x̃| = |y − x|.(10.10.7)
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10.10.1 The Green’s function for Rn
+

Let N be the real-valued function defined on Rn\{0} at the beginning of Section
6.8 again. Although Rn

+ is unbounded, many of the basic notions in Section
10.7 can also be used here.

If x ∈ Rn
+, then

N(y′ − x̃) = N(y′ − x)(10.10.8)

for every y′ ∈ Rn with y′n = 0, because of (10.10.7). Put

ηx(y) = N(y − x̃)(10.10.9)

for y ∈ Rn with y 6= x̃. Note that ηx is harmonic on Rn \{x̃}, and in particular
ηx is continuous on Rn

+ and harmonic on Rn
+. This is considered a corrector

function corresponding to Rn
+ and x, as in Section 2.2.4 b of [70].

Thus we put

G(x, y) = N(y − x)− ηx(y) = N(y − x)−N(y − x̃)(10.10.10)

when y ∈ Rn and y 6= x, x̃, and in particular when y ∈ Rn
+ \ {x}, as in Section

10.7. This is considered as the Green’s function associated to Rn
+, as in Sections

10.7 and 10.9, and Section 2.2.4 b of [70].

10.11 The Poisson kernel for Rn
+

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If y′ ∈ Rn and yn = 0, then let ν(y′) be the outward-pointing unit normal
to the boundary of Rn

+ at y′. In this case, this simply means that

ν(y′) = (0, . . . , 0,−1).(10.11.1)

The directional derivative in this direction is the same as −1 times the partial
derivative in the nth variable.

In particular, if x ∈ Rn
+, then

(Dν(y′)G)(x, y
′) = − ∂G

∂yn
(x, y′) = −(∂nN)(y′ − x) + (∂nN)(y′ − x̃).(10.11.2)

Note that

(∂jN)(z) =
1

|∂B(0, 1)|
zj
|z|n

(10.11.3)

for each j = 1, . . . , n, z ∈ Rn \ {0}, and n ≥ 2, by the definition of N in Section
6.8, and the remarks in Subsection 6.1.2. Thus the right side of (10.11.2) is
equal to

1

|∂B(0, 1)|

( xn
|y′ − x|n

− x̃n
|y′ − x̃|n

)
.(10.11.4)

This is equal to

P (x, y′) =
2

|∂B(0, 1)|
xn

|x− y′|n
,(10.11.5)



10.12. POISSON INTEGRALS FOR RN
+ 245

because of (10.10.7) and the definition (10.10.4) of x̃.

This is the Poisson kernel associated to Rn
+, as in Section 2.2.4 b in [70].

This is also mentioned on p145 of [18], where it was obtained another way.
Sometimes

P (x, 0) =
2

|∂B(0, 1)|
xn
|x|n

(10.11.6)

is called the Poisson kernel associated to Rn
+. Note that

P (x, y′) = P (x− y′, 0).(10.11.7)

The Poisson kernel may also be obtained using Fourier analysis.

10.11.1 Some properties of P (x, y′)

Observe that

P (x, y′) is harmonic as a function of x ∈ Rn
+(10.11.8)

for each y′ ∈ Rn with y′n = 0. This follows from the remarks in Subsection
6.1.2.

It is well known that ∫
∂Rn

+

P (x, y′) dy′ = 1(10.11.9)

for each x ∈ Rn
+. More precisely, the integral on the left corresponds to an

integral over Rn−1 in an obvious way. This integral may be defined as in
Section 7.2. The integrability of P (x, y′) as a function of y′ ∈ ∂Rn

+ corresponds
to a remark at the beginning of Section 7.3.

It is easy to see that the left side of (10.11.9) does not depend on xj for
j = 1, . . . , n − 1, because of invariance of the integral under translations. One
can also check that the left side of (10.11.9) does not depend on xn, using a
change of variables.

One way to get (10.11.9) is discussed on p145 of [18].

Alternatively, (10.11.9) corresponds to a property of Green’s functions men-
tioned in Subsection 10.7.1 for bounded open sets with reasonably nice bound-
ary. One can use an analogous argument here, by considering suitable bounded
open sets contained in Rn

+. To do this, one can estimate the partial derivatives
of (10.10.10) in y as |y| → ∞.

10.12 Poisson integrals for Rn
+

We continue with the same notation and hypotheses as in the previous two
sections. Let f be a continuous real or complex-valued function on ∂Rn

+. We
can identify ∂Rn

+ with Rn−1×{0}, or simply with Rn−1, so that f corresponds
to a continuous real or complex-valued function on Rn−1.
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If x ∈ Rn
+, then we would like to put

u(x) =

∫
∂Rn

+

P (x, y′) f(y′) dy′(10.12.1)

=
2

|∂B(0, 1)|

∫
∂Rn

+

xn
|x− y′|n

f(y′) dy′.

This is the Poisson integral of f on Rn
+. More precisely, the integral on the

right is defined as long as

P (x, y′) f(y′) =
2

|∂B(0, 1)|
xn

|x− y′|n
f(y′)(10.12.2)

is integrable as a function of y′ on ∂Rn
+. This corresponds to a continuous

real or complex-valued function on Rn−1, as before, whose integrability may be
defined as in Subsection 7.2.3. One can check that the integrability of (10.12.2)
is equivalent to the integrability of

min(1, |y′|−n) |f(y′)|(10.12.3)

on ∂Rn
+.

Suppose that there are nonnegative real numbers a and C(a) such that a < 1
and

|f(y′)| ≤ C(a) max(1, |y′|a)(10.12.4)

for all y′ ∈ ∂Rn
+. This implies that

min(1, |y′|−n) |f(y′)| ≤ C(a) min(1, |y′|a−n)(10.12.5)

for all y′ ∈ ∂Rn
+. The right side is integrable on ∂Rn

+, because n − a > n − 1,
as in Section 7.3. It follows that (10.12.3) is integrable on ∂Rn−1 in this case.

10.12.1 Differentiating under the integral sign

Suppose that (10.12.3) is integrable on ∂Rn
+. If α is a multi-index, then one can

check that
∂|α|

∂xα
P (x, y′) f(y′)(10.12.6)

is integrable as a function of y′ ∈ ∂Rn
+ for every x ∈ Rn

+. In fact, it is not too
difficult to show that u(x) is smooth on Rn

+, with

∂|α|u

∂xα
(x) =

∫
∂Rn

+

∂|α|

∂xα
P (x, y′) f(y′) dy′(10.12.7)

for every x ∈ Rn
+.

In particular, this implies that

u is harmonic on Rn
+,(10.12.8)
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because of (10.11.8). This could also be obtained by verifying that u is contin-
uous on Rn

+ and satisfies the mean-value property, as in Subsections 6.4.2 and
6.12.1.

If one is familiar with Lebesgue integrals, then one may consider real or
complex-valued Lebesgue measurable functions f on ∂Rn

+, which correspond to
Lebesgue measurable functions on Rn−1, as before. In this case, one should ask
that (10.12.3) be Lebesgue integrable on ∂Rn

+, in the sense that it corresponds
to a Lebesgue integrable function on Rn−1. This permits one to define the
Poisson integral (10.12.1) as a Lebesgue integral for each x ∈ Rn

+.
If α is a multi-index, then it follows that (10.12.6) is Lebesgue integrable

as a function of y′ ∈ ∂Rn
+ for every x ∈ Rn

+, and it is not too difficult to
show that u is smooth on Rn

+, with derivatives as in (10.12.7), as before. This
implies (10.12.8), which could also be obtained using the mean-value property,
as before.

10.13 Limits at points in ∂Rn
+

Let n ≥ 2 be an integer again, and let f be a continuous real or complex-valued
function on ∂Rn

+ such that (10.12.3) is integrable on ∂Rn
+. Also let u be the

Poisson integral of f on Rn
+, as in (10.12.1), and let x ∈ Rn

+ and z′ ∈ ∂Rn
+ be

given. Observe that

u(x)− f(z′) =

∫
∂Rn

+

P (x, y′)f(y′) dy′ −
∫
∂Rn

+

P (x, y′) f(z′) dz′

=

∫
∂Rn

+

P (x, y′) (f(y′)− f(z′)) dy′,(10.13.1)

using (10.11.9) in the first step. It follows that

|u(x)− f(z′)| =

∣∣∣∣∫
∂Rn

+

P (x, y′) (f(y′)− f(z′)) dy′
∣∣∣∣(10.13.2)

≤
∫
∂Rn

+

P (x, y′) |f(y′)− f(z′)| dy′,

because
P (x, y′) ≥ 0(10.13.3)

for every y′ ∈ ∂Rn
+, by the definition (10.11.5) of the Poisson kernel.

One can use this to show that

u(x) → f(z′) as x→ z′.(10.13.4)

More precisely, if η is a positive real number, then the right side of (10.13.2) is
equal to the sum of ∫

∂Rn
+
∩B(z′,η)

P (x, y′) |f(y′)− f(z′)| dy′(10.13.5)
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and ∫
∂Rn

+
\B(z′,η)

P (x, y′) |f(y′)− f(z′)| dy′.(10.13.6)

If η is sufficiently small, then we can get that (10.13.5) is as small as we like,
because f is continuous at z′, and using (10.11.9) again. If η > 0 is fixed with
this property, then we can get that (10.13.6) is as small as we like when x
is sufficiently close to z′. This uses the integrability of (10.12.3) on ∂Rn

+, by
hypothesis, and the definition (10.11.5) of the Poisson kernel.

This means that

u extends continuously to Rn
+,(10.13.7)

by taking it equal to f on ∂Rn
+. This corresponds to parts of 7.3 on p147 of

[18], Theorem 14 in Section 2.2.4 b of [70], and Theorem 2.43 in Section F of
Chapter 2 of [75], at least is f is bounded on ∂Rn

+.

10.13.1 Some related results about limits

If one is familiar with Lebesgue integrals, then one may consider real and
complex-valued Lebesgue measurable functions f on ∂Rn

+ such that (10.12.3)
is Lebesgue integrable on ∂Rn

+, as mentioned in Subsection 10.12.1. If f is
also continuous at z′, then (10.13.4) holds, for essentially the same reasons as
before. Otherwise, one may consider the convergence of u(x) to f(z′) along the
line where

xj = z′j for j = 1, . . . , n− 1,(10.13.8)

as xn → 0+, for almost every z′ ∈ ∂Rn
+ with respect to (n − 1)-dimensional

Lebegue measure. This corresponds to part (b) of Theorem 1 on p62 of [262], and
to part of Theorem 1.25 on p13 of [268], at least when f is integrable on ∂Rn

+. It
is easy to reduce to this case when (10.12.3) is integrable on ∂Rn

+, by considering
separately parts of f supported on a bounded set, and its complement.

10.14 More on these Poisson integrals

Let n ≥ 2 be an integer, and let f be a contnuous real or complex-valued
function on ∂Rn

+ such that (10.12.3) is integrable on ∂Rn
+, as before. Note that

the Poisson integral u of f , as in (10.12.1), satisfies

|u(x)| ≤
∫
∂Rn

+

P (x, y′) |f(y′)| dy′(10.14.1)

=
2

|∂B(0, 1)|

∫
∂Rn

+

xn
|x− y′|n

|f(y′)| dy′

for every x ∈ Rn
+, because of (10.13.3). This also works when f is Lebesgue

measurable on ∂Rn
+, and (10.12.3) is Lebesgue integrable on ∂Rn

+.
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If f is real-valued on ∂Rn
+, then u is real-valued on Rn

+. If f is also nonneg-
ative on ∂Rn

+, then
u ≥ 0(10.14.2)

on Rn
+, because of (10.13.3).

Similarly, if
f ≥ a(10.14.3)

on ∂Rn
+ for some a ∈ R, then

u ≥ a(10.14.4)

on Rn
+, because of (10.11.9) and (10.13.3). If

f ≤ b(10.14.5)

on ∂Rn
+ for some b ∈ R, then

u ≤ b(10.14.6)

on Rn
+.

If f is a bounded continuous complex-valued function on ∂Rn
+, then (10.12.3)

is integrable on ∂Rn
+, as before. More precisely, if

|f | ≤ C(10.14.7)

on ∂Rn
+ for some nonnegative real number C, then

|u| ≤ C(10.14.8)

on Rn
+, because of (10.11.9) and (10.14.1). This works when f is a bounded

Lebesgue measurable function on ∂Rn
+ too. Note that if f is a constant on

∂Rn
+, then u is equal to the same constant on Rn

+, because of (10.11.9).

10.14.1 An integral estimate

If x ∈ Rn, then put
x̃ = (x1, . . . , xn−1) ∈ Rn−1,(10.14.9)

so that x is determined by x̃ and xn ∈ R. If xn is a positive real number, then
it is easy to see that ∫

Rn−1

P (x, y′) dx̃ = 1(10.14.10)

for every y′ ∈ ∂Rn
+, where P (x, y

′) is considered as a function of x̃ on Rn−1.
More precisely, this is equivalent to (10.11.9).

Suppose that f is a real or complex-valued function on ∂Rn
+ that is contin-

uous and integrable, or simply Lebesgue integrable. This implies that u(x) is
integrable as a function of x̃ ∈ Rn−1 for every xn > 0, with∫

Rn−1

|u(x)| dx̃ ≤
∫
∂Rn

+

|f(y′)| dy′.(10.14.11)
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This can be obtained from (10.14.1) by interchanging the order of integration,
and using (10.14.10). Similarly,∫

Rn−1

u(x) dx̃ =

∫
∂Rn

+

f(y′) dy′(10.14.12)

for every xn > 0.
Put

x̃′ = (x1, . . . , xn−1, 0) ∈ ∂Rn
+.(10.14.13)

One can also show that

lim
xn→0+

∫
Rn−1

|u(x)− f(x̃′)| dx̃ = 0.(10.14.14)

This corresponds to taking p = 1 in Theorem 7.8 on p148 of [18], Theorem 2.43
in Section F of Chapter 2 of [75], part (c) of Theorem 1 on p62 of [262], and
Theorem 1.18 on p10 of [268]. This is simpler when f is a continuous function
on ∂Rn

+ with compact support, and otherwise one can approximate f by such
functions.

10.15 Harnack’s principle

Let n ≥ 2 be an integer, and let U be a nonempty connected open subset of Rn.
Also let {uj}∞j=1 be a sequence of real-valued harmonic functions on U that are
monotonically increasing in j, so that

uj(x) ≤ uj+1(x)(10.15.1)

for every x ∈ U and j ≥ 1.
It is well known that a monotonically increasing sequence of real numbers

converges in R if and only if it has an upper bound in R. It follows that for
each x ∈ U ,

{uj(x)}∞j=1 converges in R(10.15.2)

if and only if {uj(x)}∞j=1 has an upper bound in R.
Harnack’s principle states that there are two possibilities in this situation.

The first possibility is that there is a real-valued harmonic function u on U such
that

{uj}∞j=1 converges to u uniformly on compact subsets of U,(10.15.3)

as in Subsection 6.5.2. The second possibility is that

uj → +∞ as j → ∞, uniformly on compact subsets of U.(10.15.4)

More precisely, this means that if K is a nonempty compact set in Rn such
that K ⊆ U , and if R is a positive real number, then there is a positive integer
L = L(K,R) with the following property. If x ∈ K and j ≥ L, then

uj(x) > R.(10.15.5)

This corresponds to 3.8 on p49 of [18]. This also corresponds to Theorem 7
on p244 of [7] when n = 2, and which is stated somewhat more broadly.
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10.15.1 Using Harnack’s inequality

To show this, we may as well suppose that

uj(x) ≥ 0(10.15.6)

for every x ∈ U and j ≥ 1. Otherwise, we can simply replace uj with uj − u1
for each j.

Let x0 ∈ U be given. If {uj(x0)}∞j=1 does not have an upper bound in R,
then

uj(x0) → +∞ as j → ∞,(10.15.7)

because of monotonicity. In this case, it is easy to see that (10.15.4) holds, using
Harnack’s inequality, as in Subsection 10.2.1.

If {uj(x0)}∞j=1 has an upper bound in R, then

{uj}∞j=1 is uniformly bounded on compact subsets of U,(10.15.8)

because of Harnack’s inequality. In particular, for each x ∈ U ,

{uj(x)}∞j=1 has an upper bound in R,(10.15.9)

and thus converges in R, as before. Put

u(x) = lim
j→∞

uj(x)(10.15.10)

for each x ∈ U , which defines a real-valued function on U . We would like to
show that (10.15.3) holds under these conditions. This would imply that u is
harmonic on U , as in Subsection 6.5.3.

Let K be a nonempty compact subset of Rn that is contained in U . One can
use Harnack’s inequality to get that there is a real number C0 ≥ 1 such that

ul(x)− uj(x) ≤ C0 (ul(x0)− uj(x0))(10.15.11)

for all x ∈ K and l ≥ j ≥ 1. One can use this to get that

u(x)− uj(x) ≤ C0 (u(x0)− uj(x0))(10.15.12)

for all x ∈ K and j ≥ 1. This means that (10.15.3) follows from the fact that
{uj(x0)}∞j=1 converges to u(x0) in R.



Chapter 11

More on subharmonic
functions

11.1 Continuous subharmonic functions

Let n ≥ 2 be an integer, let U be a nonempty open subset of Rn, and let u be
a continuous real-valued function on U . Let us say that u is subharmonic on U
if for every a ∈ U and positive real number r with

B(a, r) ⊆ U,(11.1.1)

we have that

u(a) ≤ 1

|∂B(a, r)|

∫
∂B(a,r)

u(y′) dy′.(11.1.2)

This corresponds to the definition of subharmonicity on p76 of [268].
There are some well-known variations on this definition, some of which will

be discussed here. On p224 of [18], for instance, it is asked that

(11.1.2) hold for all sufficiently small r > 0, depending on a.(11.1.3)

An exercise is mentioned where the formulation used here can be obtained from
that version, and we shall say more about that later.

Sometimes upper semicontinuous functions on U are considered instead of
continuous functions, as in Section 9.1. In this case, the appropriate integrals of
u may be considered as Lebesgue integrals. One may also consider functions u
that take the value −∞ at some points in U . We shall not consider formulations
like these here, for the sake of simplicity.

Suppose for the moment that n = 1, and that U is an open interval in
R, which may be unbounded. Under these conditions, the previous definition
of subharmonicity, suitably interpreted, corresponds to the characterization of
convexity in Subsection 9.6.2, as mentioned on p75 of [268].

252
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11.1.1 Averages over balls

Let a ∈ U be given, and let t be a positive real number such that

B(a, t) ⊆ U.(11.1.4)

If (11.1.2) holds for every positive real number r with r ≤ t, then one can check
that

u(a) ≤ 1

|B(a, t)|

∫
B(a,t)

u(x) dx.(11.1.5)

More precisely, this can be seen using the fact that∫
B(a,t)

u(x) dx =

∫ t

0

(∫
∂B(a,r)

u(y′) dy′
)
dr,(11.1.6)

which corresponds to using polar coordinates centered at a, as in Section 6.3.
In particular, the first version of subharmonicity mentioned earlier implies

that (11.1.5) holds when (11.1.4) holds. The second version of subharmonicity
mentioned earlier implies that

(11.1.5) holds for all sufficiently small t > 0, depending on a.(11.1.7)

As another version of subharmonicity, we shall consider the condition that

(11.1.5) hold for some arbitrarily small t > 0, depending on a.(11.1.8)

Note that u satisfies the mean-value property on U , as in Section 6.3, if and
only if

u and − u are subharmonic on U,(11.1.9)

using the first version of subharmonicity mentioned earlier.

11.2 More on subharmonicity conditions

Let n ≥ 2 be an integer, let U be a nonempty open subset of Rn, and suppose
that u is twice continuously differentiable on U . In Section 6.14, subharmonicity
of u was defined to mean that

∆u ≥ 0(11.2.1)

on U . This implies (11.1.2) when (11.1.1) holds, as before, and as in Theorem
4.3 on p76 of [268].

Suppose for the moment that

∆u(a) > 0(11.2.2)

for some a ∈ U . In this case, one can check that

u(a) <
1

|∂B(0, 1)|

∫
∂B(a,r)

u(y′) dy′(11.2.3)
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when r > 0 is sufficiently small. This can be obtained in essentially the same
way as in Section 6.14, or using the Taylor approximation to u at a of degree 2,
as in Subsection 6.3.2. We also have that

u(a) <
1

|B(a, t)|

∫
B(a,t)

u(x) dx(11.2.4)

when t > 0 is sufficiently small. This can be obtained from (11.2.3), or using
the Taylor approximation to u at a of degree 2, as before.

If (11.2.2) holds for every a ∈ U , then it follows that u satisfies the second
version of subharmonicity mentioned in the previous section, as in (11.1.3). This
corresponds to part of the “if” part of Exercise 8 on p236 of [18].

11.2.1 Getting a nonnegative Laplacian

Suppose for the moment again that

∆u(a) < 0(11.2.5)

for some a ∈ U . This implies that

1

|∂B(0, 1)|

∫
∂B(a,r)

u(y′) dy′ < u(a)(11.2.6)

for all sufficiently small r > 0, as before. Similarly,

1

|B(0, 1)|

∫
B(a,t)

u(x) dx < u(a)(11.2.7)

for all sufficiently small t > 0.
This means that u does not satisfy any of the versions of subharmonicity

on U mentioned in the previous section when (11.2.5) holds for some a ∈ U .
Thus, if u satisfies any of the versions of subharmonicity on U mentioned in the
previous section, and if u is twice continuously differentiable on U , then (11.2.1)
holds on U . This corresponds to the “only if” part of Exercise 8 on p236 of [18].

11.3 Some properties of subharmonic functions

Let n ≥ 2 be an integer, let U be a nonempty open subset of Rn, and let u, v be
continuous real-valued functions on U . If u satisfies any of the subharmonicity
conditions mentioned in Section 11.1 and a is a nonnegative real number, then
it is easy to see that

a u satisfies the same subharmonicity condition on U.(11.3.1)

If u and v both satisfy the first version of subharmonicity mentioned in
Section 11.1, then

u+ v satisfies the same subharmonicity condition on U.(11.3.2)
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This also works when u and v both satisfy (11.1.3), and when they both satisfy
(11.1.7).

If u and v both satisfy the first version of subharmonicity mentioned in
Section 11.1 again, then one can check that

max(u, v) satisfies the same subharmonicity condition on U.(11.3.3)

This works as well when u and v both satisfy (11.1.3), and when they both
satisfy (11.1.7). This corresponds to Proposition 11.4 on 225 of [18], and to
part of (4) on p79 of [268].

11.3.1 Subharmonicity and uniform convergence

Let {uj}∞j=1 be a sequence of continuous real-valued functions on U that con-
verges to u uniformly on compact subsets of U , as in Subsection 6.5.2. If uj
satisfies the first version of subharmonicity mentioned in Section 11.1 for each
j, then u satisfies this condition too.

11.3.2 Compositions with convex functions

Let I be an open interval in the real line, which may be unbounded, and let f
be a convex real-valued function on I. Suppose that u takes values in I on U ,
so that the composition f ◦ u is defined as a real-valued function on U . Note
that

f ◦ u is continuous on U,(11.3.4)

because f is continuous on I, as in Subsection 9.6.1, and u is continuous on U ,
by hypothesis.

If u is harmonic on U , then one can check that

f ◦ u is subharmonic on U,(11.3.5)

using the integral version of Jensen’s inequality, as mentioned in Section 9.9.2.
This corresponds to part (c) of Problem 5 in Section 2.5 of [70] when I = R
and f is smooth.

Suppose now that f is also monotonically increasing on I. If u satisfies any
of the subharmonicity conditions mentioned in Section 11.1, then one can check
that f ◦u satisfies the same condition on U , using the integral version of Jen’ssen
inequality again. This corresponds to Execise 3 on p236 of [18], and to (2) on
p79 of [268].

11.3.3 Convex functions are subharmonic

Suppose that U is also convex, and that u is convex on U , as in Section 9.12.
One can check that u is subharmonic on U .
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11.4 More on the maximum principle

Let n ≥ 2 be an integer, let V be a nonempty open subset of Rn, and let u be
a continuous real-valued function on V . Suppose that

for every a ∈ V there is a t > 0 such that(11.4.1)

B(a, t) ⊆ V and (11.1.5) holds.

If u attains its maximum on V , and if V is connected, then

u is constant on V,(11.4.2)

as in Subsection 6.14.3.
Let U be a nonempty open subset of Rn, and let u be a continuous real-

valued function on U . Suppose that u satisfies (11.1.8) on U . If V is a nonempty
open set contained in U , then

the restriction of u to V satisfies (11.4.1).(11.4.3)

11.4.1 A helpful version

Let V be a bounded nonempty open set in Rn, and let u be a continuous real-
valued function on V that satisfies (11.4.1) on V . Under these conditions, the
maximum of u on V is attained at a point in ∂V , as in Subsection 6.14.3.

Let v be another continuous real-valued function on V , and suppose that

v is harmonic on V.(11.4.4)

If

u ≤ v on ∂V,(11.4.5)

then

u ≤ v on V .(11.4.6)

This is a version of Theorem 11.3 on p225 of [18], and of Theorem 4.5 on p78
of [268].

To see this, note that u − v is a continuous real-valued function on V , and
that

u− v ≤ 0 on ∂V,(11.4.7)

by (11.4.5). Of course, v satisfies the mean-value property on V , because of
(11.4.4), as in Section 6.2. One can use this to get that u − v satisfies the
analogue of (11.4.1) on V , because u satisfies (11.4.1) on V , by hypothesis.
This implies that the maximum of u− v on V is attained as a point in ∂V , as
before. It follows that

u− v ≤ 0 on V ,(11.4.8)

because of (11.4.7).
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11.5 Using the Poisson integral

Let n ≥ 2 be an integer, let a ∈ Rn be given, and let r be a positive real number.
Also let u be a continuous real-valued function on B(a, r), and suppose that the
restriction of u to

V = B(a, r)(11.5.1)

satisfies (11.4.1). We would like to show that (11.1.2) holds under these condi-
tions.

We can reduce to the case where a = 0 and r = 1, using a translation and a
dilation, so that

V = B(0, 1).(11.5.2)

Let v be the real-valued function defined on

V = B(0, 1)(11.5.3)

using the Poisson integral of the restriction of u to ∂B(0, 1), as in Section 6.12.
Observe that

u ≤ v on B(0, 1),(11.5.4)

as in (11.4.6). This implies that

u(0) ≤ v(0)(11.5.5)

in particular. This is the same as (11.1.2) in this case.

11.5.1 A monotonicity property

If r0 is a real number with 0 < r0 < r, then

1

|∂B(a, r0)|

∫
∂B(a,r0)

u(z′) dz′ ≤ 1

|∂B(a, r)|

∫
∂B(a,r)

u(y′) dy′.(11.5.6)

This corresponds to the first part of Exercise 5 on p236 of [18].

We can reduce to the case where a = 0 and r = 1, as before. If v is as before,
then (11.5.4) implies that

1

|∂B(0, r0)|

∫
∂B(0,r0)

u(z′) dz′ ≤ 1

|∂B(0, r0)|

∫
∂B(0,r0)

v(z′) dz′.(11.5.7)

It follows that
1

|∂B(0, r0)|

∫
∂B(0,r0)

u(z′) dz′ ≤ v(0),(11.5.8)

because v is harmonic on B(0, 1), and thus satisfies the mean-value property.
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11.6 Some related characterizations

Let n ≥ 2 be an integer, let U be a nonempty open subset of Rn, and let u
be a continuous real-valued function on U . We would like to check that u is
subharmonic on U if and only if it has the following property. Let V be a
nonempty bounded open set in Rn such that

V ⊆ U.(11.6.1)

and let v be a continuous real-valued function on V that is harmonic on V . If
(11.4.5) holds, then this property asks that (11.4.6) hold. This corresponds to
Exercise 4 on p236 of [18].

That this property holds when u is subharmonic on U follows from the
remarks in Subsection 11.4.1. The converse can be obtained using an argument
like the one at the beginning of the previous section.

11.6.1 A variant of this property

Similarly, let us check that u is subharmonic on U if and only if it has the
following property. Let V be a nonempty connected open set in Rn such that

V ⊆ U,(11.6.2)

and let v be a real-valued harmonic function on V . The property asks that

u− v satisfy the strong maximum principle on V,(11.6.3)

as in Section 6.7.1. This means that if u − v attains its maximum on V , then
u− v is constant on V .

One can verify that this property implies the one mentioned at the beginnign
of the section. This uses the same argument as in Subsection 6.7.2. Conversely,
if u s subharmonic on U , then this property may be obtained from the version
of the strong maximum principle mentioned at the beginning of Section 11.4.

This characterization of subharmonicity corresponds to Definition 1 on p245
of [7], at least when n = 2 and U is connected.

11.6.2 Using milder differentiability conditions

Suppose that the first and second derivatives lf u in each variable exist at every
point in U , as in Subsection 6.15.4. If the Laplacian of u is defined on U as
before, and if

∆u ≥ 0 on U,(11.6.4)

then u is subharmonic on U .
To see this, we can use the characterization of subharmonicity mentioned at

the beginning of the section. Let V and v be as before, and note that the first
and second derivatives of u−v in each variable exist at evry point in V , because
v is smooth on V . We also have that

∆(u− v) = ∆u ≥ 0 on V,(11.6.5)
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because v is harmonic on V . This implies that the maximum of u − v on V is
attained on ∂V , as in Subsections 6.15.3 and 6.15.4. This means that (11.4.8)
holds when (11.4.7) holds, so that u has the property mentioned at the beginning
of the section.

11.7 Subharmonicity at a point

Let n ≥ 2 be an integer, let U be a nonempty open subset of Rn, and let u be
a continuous real-valued function on U . Let us say that u is subharmonic at a
point x0 ∈ U if there is an open set U0 in Rn such that x0 ∈ U0, U0 ⊆ U , and

the restriction of u to U0 is subharmonic on U0,(11.7.1)

as on p245 of [7]. Of course, this depends on the definition of suharmonicity
that is being used.

If one uses the first version of subharmonicity in Section 11.1, then it is clear
that subharmonicity on U implies subharmonicity at every point in U . If one
uses the second version of subharmonicity in Section 11.1, then subharmonicity
on U is clearly equivalent to subharmonicity at every point in U . This also
works for the two other versions of subharmonicity mentioned in Section 11.1.
If u is subharmonic at every point in U with respect to the first version of
subharmonicity in Section 11.1, then u is subharmonic on U with respect to
the second version of subharmonicity considered there. These subharmonicity
conditions are in fact equivalent to each other, as in Section 11.5.

11.7.1 Using Ahlfors’ definition of subharmonicity

If u satisfies the subharmonicity property described in Subsection 11.6.1, then
it clear that u satisfies this property at every point in U , in the sense mentioned
before. It is not too difficult to get the converse directly, as mentioned on p245
of [7].

Let V be a nonempty connected open subset of Rn that is contained in U ,
and let v be a real-valued harmonic function on V . Suppose that u− v attains
its maximum on V , and that u satisfies the subharmonicity property described
in Subsection 11.6.1 at every point in U . One can use this to obtain that the
subset of V on which u− v attains its maximum is an open set. This set is also
relatively closed in V , because u− v is continuous on V . It follows that this set
is equal to V , because V is connected, by hypothesis.

11.7.2 A variant of Ahlfors’ definition

Here is another subharmonicity property for u on U . Let W be a nonempty
open set in Rn that is contained in U , and let v be a real-valued harmonic
function on W . If

u− v has a local maximum at point y ∈W,(11.7.2)
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then the property asks that

u− v be constant near y.(11.7.3)

This means that
u(x)− v(x) = u(y)− v(y)(11.7.4)

for all x ∈W sufficiently close to y.
If u satisfies Ahlfors’ subharmonicity property at every point in U , then

it is easy to see that u satisfies this property. More precisely, this follows by
restricting v to a connected open set V contained in W such that y ∈ V and
u−v attains its maximum on V at y. If u satisfies the subharmonicity property
described in the preceding paragraph at every point in U , then u clearly satisfies
this subharmonicity property on U .

If u satisfies the subharmonicity condition considered in this subsection, then
one can check directly that u satisfies Ahlfors’ subharmonicity property. This
uses the same argument as in the previous subsection.

11.8 Poisson modifications

Let n ≥ 2 be an integer, let U be a nonempty open subset of Rn, and let u be a
continuous real-valued function on U that is subharmonic on U . Also let a ∈ U
be given, and let R be a positive real number such that

B(a,R) ⊆ U.(11.8.1)

Consider the continuous real-valued function v on B(a,R) that is harmonic
on B(a,R) and equal to u on ∂B(a,R). This may be obtained using the Poisson
integral when a = 0 and R = 1, as in Section 6.12, and otherwise one can reduce
to that case using translations and dilations.

Put

w = u on U \B(a,R)(11.8.2)

= v on B(a,R),

so that w is a real-valued function on U . This may be called the Poisson
modification of u associated to B(a,R) on U , as on p225 of [18]. One can check
that

w is continuous on U(11.8.3)

under these conditions. In fact,

w is subharmonic on U.(11.8.4)

This corresponds to property 4 on p247 of [7] when n = 2, and to Theorem 11.5
on p225 of [18].

Note that
u ≤ v on B(a,R),(11.8.5)
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as in Subsection 11.4.1. This implies that

u ≤ w on U.(11.8.6)

In order to get (11.8.4), it is enough to verify then w satisfies the sub-mean-
value property at every point x ∈ U , for sufficiently small radius, and using
averages of w over spheres or balls. If x ∈ U \ B(a,R), so that w(x) = u(x),
then this follows from the analogous property of u, because of (11.8.6). If
x ∈ B(a,R), then one can use the fact that v satisfies the mean-value property
on B(a,R).

11.8.1 A couple of additional remarks

Let u1 be another continuous real-valued function on U that is subharmonic on
U , and let v1 and w1 be as before. If

u ≤ u1 on U,(11.8.7)

then one can check that

v ≤ v1 on B(a,R).(11.8.8)

This implies that

w ≤ w1 on U.(11.8.9)

Suppose now that u is a continuous real-valued function on U that is sub-
harmonic on U . If w is defined on U as in (11.8.2) and we put w = u on ∂U ,
then w is continuous on U as well.

11.9 The Perron process

Let n ≥ 2 be an integer, let U be a nonempty bounded open subset of Rn, and
let f be a continuous real-valued function on ∂U . Note that

f is bounded on ∂U,(11.9.1)

because ∂U is closed and bounded, and thus compact, as in Section 1.9.
Let

Pf(11.9.2)

be the collection of continuous real-valued functions u on U that are subhar-
monic on U and satisfy

u ≤ f on ∂U.(11.9.3)

This may be called the Perron family associated to f , as on p226 of [18]. If α
is a real number such that

α ≤ f on ∂U,(11.9.4)

then the constant function on U equal to α is an element of Pf .
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Let β be a real number such that

f ≤ β on ∂U.(11.9.5)

If u ∈ Pf , then
u ≤ β on U.(11.9.6)

This follows from the maximum principle, as mentioned at the beginning of
Subsection 11.4.1.

If x ∈ U , then put

hf (x) = sup{u(x) : u ∈ Pf}.(11.9.7)

This may be called the Perron function on U associated to f , as on p226 of
[18]. More precisely, if β ∈ R is as in (11.9.5), then

hf ≤ β on U,(11.9.8)

because of (11.9.6). If α is a real number that satisfies (11.9.4), then

α ≤ hf on U.(11.9.9)

11.9.1 The Perron function is harmonic

It is well known that
hf is harmonic on U,(11.9.10)

as in Theorem 11.6 on p226 of [18]. This basically corresponds to Lemma 1
on p248 of [7] as well, at least when n = 2. The construction in [7] is a bit
more complicated, so that one may consider functions f on ∂U that may not
be continuous.

The arguments in [7, 18] are quite similar in the beginning, and somewhat
different after that. The first part will be discussed in the rest of this section,
and the two arguments for the second part will be discussed in the next two
sections.

Let a ∈ U and R > 0 be given, such that (11.8.1) holds. It suffices to show
that

hf is harmonic on B(a,R).(11.9.11)

Let
x0 ∈ B(a,R)(11.9.12)

be given. If j s a positive integer, then let u0,j be an element of Pf such that

u0,j(x0) > hf (x0)− 1/j.(11.9.13)

In [18], one takes x0 = a.
Put

ũ0,j = max(u0,1, . . . , u0,j)(11.9.14)
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for each j. Observe that

ũ0,j ∈ Pf(11.9.15)

and

ũ0,j(x0) ≥ u0,j(x0) > hf (x0)− 1/j(11.9.16)

for each j. We also have that

ũ0,j ≤ ũ0,j+1(11.9.17)

on U for each j.

11.9.2 Using Poisson modifications

Let w0,j be the Poisson modification of ũ0,j associated to B(a,R), as in the
previous section. It is easy to see that

w0,j ∈ Pj(11.9.18)

and

w0,j(x0) ≥ ũ0,j(x0) > hf (x0)− 1/j(11.9.19)

for each j. Using (11.9.17), we get that

w0,j ≤ w0,j+1(11.9.20)

on U for each j, as in (11.8.9).

Of course,

w0,j ≤ hf on U(11.9.21)

for each j, by construction. This implies that {w0,j}∞j=1 converges pointwise on

U , because of (11.9.20). Put

w0(x) = lim
j→∞

w0,j(x)(11.9.22)

for every x ∈ U , so that w0 is a real-valued function on U . Note that

w0(x) ≤ hf (x)(11.9.23)

for every x ∈ U . In fact,

w0(x0) = hf (x0),(11.9.24)

because of (11.9.19).
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11.9.3 Using Harnack’s principle

Remember that w0,j is harmonic on B(a,R) for each j, as in the previous section.
Harnack’s principle implies that

{w0,j}∞j=1 converges to w0(11.9.25)

uniformly on compact subsets of B(a,R),

and that
w0 is harmonic on B(a,R),(11.9.26)

as in Section 10.15.
In order to get (11.9.11), it suffices to show that

hf = w0(11.9.27)

on B(a,R). We shall discuss two proofs of this in the next two sections, following
[7, 18], as before.

11.10 The first argument

Let us continue with the same notation and hypotheses as in the previous sec-
tion. In order to get (11.9.27) using the argument from [7], let x1 ∈ B(a,R) be
given, and let us show that

hf (x1) = w0(x1).(11.10.1)

If j is a positive integer, then let u1,j be an element of Pj such that

u1,j(x1) > hf (x1)− 1/j,(11.10.2)

as before. Before continuing with the earlier construction, put

uj = max(u0,j , u1,j)(11.10.3)

for each j. Observe that
uj ∈ Pf(11.10.4)

for each j, with
uj(x0) ≥ u0,j(x0) > hf (x0)− 1/j(11.10.5)

and
uj(x1) ≥ u1,j(x1) > hf (x1)− 1/j.(11.10.6)

Put
ũj = max(u1, . . . , uj)(11.10.7)

for each j. Note that
ũj ∈ Pf(11.10.8)
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for each j, as before. Of course,

ũj(x0) ≥ uj(x0) > hf (x0)− 1/j(11.10.9)

and
ũj(x1) ≥ uj(x1) > hf (x1)− 1/j(11.10.10)

for each j. By construction,
uj ≤ uj+1(11.10.11)

on U for each j.

11.10.1 Using Poisson modifications again

Let w1,j be the Poisson modification of uj associated to B(a,R), so that

w1,j ∈ Pf(11.10.12)

for each j, as before. We also have that

w1,j(x0) ≥ uj(x0) > hf (x0)− 1/j(11.10.13)

and
w1,j(x1) ≥ uj(x1) > hf (x1)− 1/j(11.10.14)

for each j. In addition,
w1,j ≤ w1,j+1(11.10.15)

on U for each j, because of (11.10.11). Note that

w1,j ≤ hf on U(11.10.16)

for each j, by construction.
As before, {w1,j}∞j=1 converges pointwise on U , and we put

w1(x) = lim
j→∞

w1,j(x)(11.10.17)

for every x ∈ U . This is a real-valued function on U , with

w1(x) ≤ hf (x)(11.10.18)

for every x ∈ U , because of (11.10.16). Using (11.10.13) and (11.10.14), we get
that

w1(x0) = hf (x0)(11.10.19)

and
w1(x1) = hf (x1),(11.10.20)

respectively.
Harnack’s principle implies that {w1,j}∞j=1 converges to w1 uniformly on

compact subsets of B(a,R), and that

w1 is harmonic on B(a,R),(11.10.21)

as before.
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11.10.2 Comparing w0 and w1

Of course,

u0,j ≤ uj(11.10.22)

on U for each j, by construction. This implies that

ũ0,j ≤ ũj(11.10.23)

on U for each j. It follows that

w0,j ≤ w1,j(11.10.24)

on U for each j, as in (11.8.9). This means that

w0 ≤ w1(11.10.25)

on U .

Note that

w0(x0) = w1(x0),(11.10.26)

by (11.9.24) and (11.10.19). It follows that w1 −w0 attains its maximum at x0,
because of (11.10.25). Using the strong maximum principle, as in Subsection
6.7.1, we obtain that

w0 ≡ w1 on B(a,R).(11.10.27)

This implies (11.10.1), by (11.10.20).

11.11 The second argument

We continue with the same notation and hypotheses from Section 11.9. We
would like to show (11.9.27), using the argument from [18], as before. In this
argument, we take

x0 = a,(11.11.1)

as mentioned in Subsection 11.9.1.

Let v be any element of Pf . We would like to show that

v ≤ w0(11.11.2)

on B(a,R). This will imply that

hf ≤ w0(11.11.3)

on B(a,R). Using this, (11.9.27) will follow from (11.9.23).
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11.11.1 Using some more Poisson modifications

Observe that
max(w0,j , v)(11.11.4)

is an element of Pf for each j, because of (11.9.18). Let vj be the Poisson
modification of (11.11.4) associated to B(a,R) for each j.

It is easy to see that
vj ∈ Pf(11.11.5)

for each j, as before. This implies that

vj(a) ≤ w0(a)(11.11.6)

for each j, because of (11.9.24) and (11.11.1).
Of course, vj is harmonic on B(a,R) for each j, by construction, and

max(w0,j , v) ≤ vj(11.11.7)

on U for each j, as in Section 11.8. If r is a positive real number strictly less
than R, then

w0(a) ≥ vj(a) =
1

|∂B(a, r)|

∫
∂B(a,r)

vj(y
′) dy′(11.11.8)

for each j, using the mean-value property in the second step. This implies that

w0(a) ≥
1

|∂B(a, r)|

∫
∂B(a,r)

max(w0,j(y
′), v(y′)) dy′(11.11.9)

for each j.
One can check that

{max(w0,j , v)}∞j=1 converges to max(w0, v)(11.11.10)

uniformly on compact subsets of B(a,R),

using (11.9.25). One can use this and (11.11.9) to get that

w0(a) ≥
1

|∂B(a, r)|

∫
∂B(a,r)

max(w0(y
′), v(y′)) dy′.(11.11.11)

This means that

1

|∂B(a, r)|

∫
∂B(a,r)

w0(y
′) dy′(11.11.12)

≥ 1

|∂B(a, r)|

∫
∂B(a,r)

max(w0(y
′), v(y′)) dy′,

because of (11.9.26). It follows that (11.11.2) holds on ∂B(a, r). This implies
that (11.11.2) holds on B(a,R), because 0 < r < R is arbitrary.
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11.12 More on the Dirichlet problem

Let us continue with the same notation and hypotheses as in Section 11.9 again.
Suppose for the moment that there is a continuous real-valued function h on U
such that

h is harmonic on U(11.12.1)

and
h = f on ∂U.(11.12.2)

Let us check that
h = hf on U.(11.12.3)

This corresponds to a remark on p249 of [7].
Clearly

h ∈ Pf ,(11.12.4)

so that
h ≤ hf on U,(11.12.5)

by the definition of hf . If u ∈ Pf , then

u ≤ h(11.12.6)

on U , as in Subsection 11.4.1. This implies that

hf ≤ h on U,(11.12.7)

by the definition of hf .
We would like to have conditions under which

hf is continuous on U(11.12.8)

and
hf = f on ∂U.(11.12.9)

More precisely, we already know that hf is continuous on U , because of (11.9.10).
In order to get (11.12.8), it suffices to show that hf is continuous at every point
in ∂U , as a function on U . This will be discussed further in the next subsection.

11.12.1 Barriers

Let ζ0 ∈ ∂U be given. A continuous real-valued function u0 on U is said to be
a barrier for U at ζ0 if it satisfies the following three conditions. First,

u0 is subharmonic on U.(11.12.10)

Second,
u0 < 0 on U \ {ζ0}.(11.12.11)

Third,
u0(ζ0) = 0.(11.12.12)
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This is mentioned on p227 of [18]. A variant of this is mentioned on p250 of [7],
with u0 asked to be harmonic on U , and we shall see a bit more about that in
the next section.

If there is a barrier u0 for U at ζ0, then

hf (ζ0) = f(ζ0)(11.12.13)

and
hf is continuous at ζ0, as a function on U.(11.12.14)

This corresponds to Lemma 2 on p250 of [7] and Theorem 11.7 on p228 of [18],
although the former is stated somewhat more broadly, as before.

To see this, let ϵ > 0 be given, and let δ be a positive real number such that

f(ζ0)− ϵ < f < f(ζ0) + ϵ(11.12.15)

on ∂U ∩ B(ζ0, δ). This uses the continuity of f at ζ0, as a function on ∂U , by
hypothesis.

Note that
U \B(ζ0, δ) is compact,(11.12.16)

because it is closed and bounded. Put

c0 = min{−u0(x) : x ∈ U \B(ζ0, δ)}(11.12.17)

= −max{u0(x) : x ∈ U \B(ζ0, δ)},

where the minimum or maximum is attained, by the extreme value theorem.
We also have that

c0 > 0,(11.12.18)

by (11.12.11).
Because f is bounded on ∂U , one can use (11.12.18) to get that there is a

positive real number C such that

f(ζ0)− ϵ+ C u0 < f < f(ζ0) + ϵ− C u0(11.12.19)

on U \B(ζ0, δ). More precisely, it suffices to choose C so that

|f − f(ζ0)| ≤ C c0(11.12.20)

on U \ B(ζo, δ). Observe that (11.12.19) holds on B(ζ0, δ) as well, because of
(11.12.15), and because u0 ≤ 0 on U , as in (11.12.11) and (11.12.12). This
means that (11.12.19) holds on U .

11.12.2 Estimating hf near ζ0

We would like to check that

f(ζ0)− ϵ+ C u0 ≤ hf ≤ f(ζ0) + ϵ− C u0(11.12.21)
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on U . Observe that
f(ζ0)− ϵ+ C u0 ∈ Pf ,(11.12.22)

because of (11.12.10), (11.12.19), and the definition of Pf . This implies the first
inequality in (11.12.21), because of the way that hf is defined.

To get the second inequality in (11.12.21), let v ∈ Pf be given. Thus v ≤ f
on ∂U , by definition of Pf , so that

v + C u0 ≤ f(ζ0) + ϵ(11.12.23)

on ∂U , by (11.12.19). It follows that (11.12.23) holds on U , by the maximum
principle, as in Subsection 11.4.1, because

v + C u0(11.12.24)

is continuous on U and subharmonic on U . In fact, the inequality in (11.12.23)
is strict, although we do not need that here. This implies the second inequality
in (11.12.21).

In particular, we can use (11.12.21) to get that

f(ζ0)− ϵ ≤ hf (ζ0) ≤ f(ζ0) + ϵ,(11.12.25)

because of (11.12.12). This implies (11.12.13), because ϵ > 0 is arbitrary. One
can use this and (11.12.21) to get (11.12.14), because u0 is continuous at ζ0, by
hypothesis.

11.13 More on barriers

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If

there is a barrier for U at every ζ0 ∈ ∂U,(11.13.1)

then it follows that (11.12.8) and (11.12.9) hold. This corresponds to a remark
on p250 of [7], and to the “if” part of Theorem 11.1 on p228 of [18].

Conversely, suppose that the Dirichlet problem for U is solvable, in the sense
that for every continuous real-valued function f on ∂U there is a continuous real-
valued function on U that is harmonic on U and equal to f on ∂U . If ζ0 ∈ ∂U ,
then

f0(x) = −|x− ζ0|(11.13.2)

is a continuous real-valued function on ∂U . If u0 is the corresponding solution
to the Dirichlet problem on U , then one can check that

u0 is a barrier for U at ζ0.(11.13.3)

More precisely, the maximum principle implies that

u0 ≤ 0 on U.(11.13.4)
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One can use the strong maximum principle to get that

u0 < 0(11.13.5)

on U . It follows that this holds on U \ {ζ0}, by (11.13.2). This corresponds to
the “only if” part of Theorem 11.10 on p228 of [18].

11.13.1 Some simple barriers

Let ζ0 ∈ ∂U be given again. Suppose for the moment that there is a linear
functional λ0 on Rn such that

λ0(x) < λ0(ζ0)(11.13.6)

for every x ∈ U with x 6= ζ0. We may say that U satisfies the exterior half-space
condition at ζ0 in this case. It is easy to see that this implies that

λ0(ζ0)− λ0 is a barrier for U at ζ0.(11.13.7)

This corresponds to a remark at the top of p251 of [7].
Let us say that U satisfies the exterior ball condition at ζ0 if there is a point

a0 ∈ Rn and a radius r0 > 0 such that

|ζ0 − a0| = r0(11.13.8)

and

B(a0, r0) ∩ U = {ζ0}.(11.13.9)

Let ua0,r0 be the real-valued function defined on Rn \ {a0} by

ua0,r0(x) = log r0 − log |x− a0| when n = 2(11.13.10)

= |x− a0|2−n − r2−n
0 when n ≥ 3.

Note that u0 is harmonic on Rn \ {a0}, as in Section 6.1. It is easy to see that

the restriction of ua0,r0 to U is a barrier for U at ζ0(11.13.11)

under these conditions, as in Theorem 11.11 on p229 of [18].

11.13.2 Some related geometric conditions

Let us say that U satisfies the weak exterior ball condition at ζ0 if there is a
point a1 ∈ Rn and a radius r1 > 0 such that

|ζ0 − a1| = r1(11.13.12)

and

U ∩B(a1, r1) = ∅.(11.13.13)
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Let t0 be a real number with
0 < t0 < 1,(11.13.14)

and put
a0 = (1− t0) ζ0 + t0 a1, r0 = t0 r1.(11.13.15)

Observe that
|ζ0 − a0| = t0 |ζ0 − a1| = r0(11.13.16)

and
|a0 − a1| = (1− t0) |ζ0 − a1| = r1 − r0.(11.13.17)

One can check that
B(a0, r0) ⊆ B(a1, r1),(11.13.18)

with
∂B(a0, r0) ∩ ∂B(a1, r1) = {ζ0}.(11.13.19)

This implies that

U satisfies the exterior ball condition at ζ0.(11.13.20)

Suppose that v0 ∈ Rn satisfies |v0| = 1, and that

x · v0 ≤ ζ0 · v0(11.13.21)

for every x ∈ U . We may say that U satisfies the weak exterior half-space
condition in this case. Let r0 > 0 be given, and put

a0 = ζ0 + r0 v0.(11.13.22)

Note that
|ζ0 − a0| = r0 |v0| = r0.(11.13.23)

If x ∈ Rn, then

|x− a0|2 = (x− a0) · (x− a0)

= (x− ζ0) · (x− ζ0)− 2 (x− ζ0) · v0 + r20 v0 · v0(11.13.24)

= |x− ζ0|2 − 2 (x− ζ0) · v0 + r20.

If (11.13.21) holds, so that (x− ζ0) · v0 ≤ 0, then it follows that

|x− a0|2 ≥ |x− ζ0|2 + r20.(11.13.25)

This implies that (11.13.9) holds, so that (11.13.20) holds.
If U is convex, then it is well known that for each ζ0 ∈ ∂U there is a v0 ∈ Rn

such that |v0| = 1 and (11.13.21) holds. A proof of this may be found in Section
A.13. This is related to a remark on p229 of [18], and to Corollary 11.12 on
p230 of [18]. If the boundary of U is twice continuously differentiable or C2 in
a suitable sense near ζ0 ∈ ∂U , then it is well known that U satisfies the exterior
ball condition at ζ0. This is also discussed on p230 of [18].
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11.14 Some more barriers using cones

We would like to discuss some more examples of barriers, as in Lemma 11.15 on
p231 of [18]. Before getting to that, we consider a refinement of the maximum
principle, which is related to Lemma 11.14 on p230 of [18].

Let n ≥ 2 be an integer, let V be a nonempty bounded open subset of
Rn, and let a ∈ ∂V be given. Also let u be a bounded continuous real-valued
function on

V \ {a}(11.14.1)

that is subharmonic on V . Suppose that there is a real number A such that

u ≤ A(11.14.2)

on ∂V \{a}. Under these conditions, we would like to show that (11.14.2) holds
on V as well.

Lemma 11.14 on p230 of [18] deals with a particular point in the boundary
of a particular family of bounded open subsets of Rn, and the same argument
works here. The same type of argument was used in Section 10.1.

If t is a positive real number, then put

Vt = V \B(a, t),(11.14.3)

which is a bounded open set in Rn contained in V . We shall be interested in
taking t small here, and in particular we may as well suppose that t is small
enough so that Vt 6= ∅. Observe that

(V \B(a, t)) ∪ (V ∩ ∂B(a, t)) ⊆ Vt ⊆ V \B(a, t)

= (V \B(a, t)) ∪ (∂V \B(a, t)).(11.14.4)

This implies that

∂Vt = Vt \ Vt ⊆ ((V \B(a, t)) \ Vt) ∪ ((∂V \B(a, t)) \ Vt)
= (V ∩ ∂B(a, t)) ∪ (∂V \B(a, t)).(11.14.5)

There is a positive real number R such that

V ⊆ B(a,R),(11.14.6)

because V is bounded, by hypothesis. Let ϵ > 0 be given, and consider the
real-valued function vϵ defined on (11.14.1) by

vϵ(x) = u(x)− ϵ |x− a|2−n when n ≥ 3(11.14.7)

= u(x) + ϵ log(|x− a|/R) when n = 2.

It is easy to see that vϵ is continuous on (11.14.1), with

vϵ ≤ u(11.14.8)
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on (11.14.1). We also have that vϵ is subharmonic on V , because u is subhar-
monic on V , and using the remarks in Section 6.1.

If t is small enough, then one can verify that

vϵ ≤ A(11.14.9)

on ∂Vt, using (11.14.5), and the hypotheses that u be bounded on (11.14.1),
and that (11.14.2) hold on ∂V \{a}. This implies that (11.14.9) holds on Vt, by
the maximum principle, as in Subsection 11.4.1. It follows that (11.14.9) holds
on (11.14.1), because we can take t to be arbitrarily small.

One can use this to get that (11.14.2) holds on (11.14.1), because ϵ > 0 is
arbitrary.

11.14.1 Some cones

It is convenient here to identify Rn with Rn−1 × R again, so that x ∈ Rn is
identified with (x′, xn), where

x′ = (x1, . . . , xn−1).(11.14.10)

We shall also use

|x′| =
( n−1∑

j=1

x2j

)1/2

(11.14.11)

for the standard Euclidean norm of x′, as an element of Rn−1. Thus

|x| = (|x′|2 + x2n)
1/2(11.14.12)

is the same as the standard Euclidean norm of x, as an element of Rn.
Let a positive real number α be given, and consider

Cα = {y ∈ Rn : |y′| < αyn}.(11.14.13)

One can check that this is an open set in Rn, with closure

Cα = {y ∈ Rn : |y′| ≤ α yn}.(11.14.14)

Thus
∂Cα = Cα \ Cα = {y ∈ Rn : |y′| = α yn}.(11.14.15)

Note that
yn > 0(11.14.16)

when y ∈ Cα, and
yn ≥ 0(11.14.17)

when y ∈ Cα.
Let z ∈ Rn be given, with zj = 0 for j = 1, . . . , n− 1, and

zn > 0.(11.14.18)
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Suppose that y ∈ Rn satisfies

yn = (1 + α2)−1 zn,(11.14.19)

so that (11.14.16) holds in particular. Equivalently, this means that

zn = yn + α2 yn.(11.14.20)

In this case, it is easy to see that y ∈ ∂Cα if and only if

(z − y) · y = −
n−1∑
j=1

y2j + (zn − yn) yn = 0.(11.14.21)

Similarly, if y ∈ ∂Cα, then (11.14.21) implies

zn = yn + y−1
n

n−1∑
j=1

y2j = yn + α2 yn.(11.14.22)

If y ∈ ∂Cα, then

|z − y|2 =

n−1∑
j=1

y2j + (zn − yn)
2 = α2 y2n + α4 y2n(11.14.23)

= α2 (1 + α2) y2n = α2 (1 + α2)−1 z2n.

We would like to have that

B(z, α (1 + α2)−1/2 zn) ⊆ Cα.(11.14.24)

Suppose that w ∈ Rn satisfies

|z − w| ≤ α (1 + α2)−1/2 zn < zn.(11.14.25)

In particular, this implies that |zn − wn| < zn, so that

wn > 0.(11.14.26)

Of course, if w′ = 0, then w ∈ Cα, and so we may as well suppose that w′ 6= 0.
Let P be the two-dimensional linear subspace of Rn spanned by w and z.

Equivalently, x ∈ P if and only if

x′ = t w′(11.14.27)

for some t ∈ R. There are exactly two elements y of ∂Cα ∩ P that satisfy
(11.14.19), with y′ a positive and negative multiple of w′. In fact, ∂Cα ∩ P
consists of the two rays going through these two particular elements. Using
some of the previous remarks, we have that the disk

B(z, α (1 + α2)−1/2 zn) ∩ P(11.14.28)

is tangent to these two rays at these two particular points.
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11.14.2 Some related open sets

If r is a positive real number, then put

Wα,r = B(0, r) \ Cα.(11.14.29)

This is a bounded open set in Rn, with

Wα,r = B(0, r) \ Cα.(11.14.30)

We also have that

∂Wα,r = (∂B(0, r) \ Cα) ∪ (B(0, r) ∩ ∂Cα).(11.14.31)

In particular,
0 ∈ ∂Wα,r.(11.14.32)

This corresponds to a domain in Rn mentioned on p230 of [18] when r = 1.
If ζ0 ∈ ∂Wα,r and ζ0 6= 0, then

Wα,r satisfies the exterior ball condition at ζ0,(11.14.33)

as mentioned in the proof of Lemma 11.15 on p231 of [18]. More precisely,
if ζ0 ∈ ∂B(0, r), then B(0, r) satifies the exterior half-space condition at ζ0,
as in Subsection 11.13.1. This implies in particular that Wα,r satisfies the
exterior half-space condition at ζ0, and thus the exterior ball condition at ζ0. If
ζ0 ∈ ∂Cα, then Wα,r satisfies the weak exterior ball condition at ζ0, as in the
previous subsection. This implies that Wα,r satisfies the exterior ball condition
at ζ0, as in Subsection 11.13.2.

If x ∈ ∂Wα,r, then put
fα,r(x) = |x|.(11.14.34)

This is a continuous real-valued function on ∂Wα,r, with

0 ≤ fα,r ≤ r on ∂Wα,r.(11.14.35)

Let
uα,r = hfα,r

(11.14.36)

be the Perron function on Wα,r associated to fα,r, as in Section 11.9. Note that

0 ≤ uα,r ≤ r on Wα,r,(11.14.37)

because of (11.14.35), as before. We also have that

uα,r is harmonic on Wα,r,(11.14.38)

as before.
If ζ0 ∈ ∂Wα,r and ζ0 6= 0, then

uα,r(ζ0) = fα,r(ζ0) = |ζ0|(11.14.39)
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and
uα,r is continuous at ζ0, as a function on Wα,r,(11.14.40)

as in Subsection 11.12.1. This uses (11.14.33) to get a barrier for Wα,r at ζ0, as
in Subsection 11.13.1. It is easy to see that (11.14.39) holds when ζ0 = 0 too,
using the first inequality in (11.14.37), and the fact that uα,r ≤ fα,r on ∂Wα,r,
by construction. We would like to show that (11.14.40) holds when ζ0 = 0 as
well, as in the proof of Lemma 11.15 on p231 of [18].

Observe that
0 < uα,r < r on Wα,r,(11.14.41)

because of the strong maximum principle, as in Subsection 6.7.1. If r0 is a
positive real number with r0 < r, then put

c0 = c0(r0) = max{u(x) : x ∈ ∂B(0, r0) \ Cα},(11.14.42)

where the maximum is attained, by the extreme value theorem. Clearly

c0(r0) < r,(11.14.43)

because of (11.14.39) and (11.14.41). We also have that

r0 ≤ c0(r0),(11.14.44)

because of (11.14.39).
Note that

Wα,r0 = (r0/r)Wα,r = {(r0/r)x : x ∈Wα,r}(11.14.45)

using the same notation as in Section A.11. Of course, we can define fα,r0 , uα,r0
in the same way as before. It is easy to see that

fα,r0(x) = (r0/r) fα,r((r/r0)x)(11.14.46)

on ∂Wα,r0 , by construction. This implies that

uα,r0(x) = (r0/r)uα,r((r/r0)x)(11.14.47)

on Wα,r0 .
If x ∈Wα,r0 , then put

vα,r0,r(x) = uα,r(x)− (c0(r0)/r0)uα,r0(x)(11.14.48)

= uα,r(x)− (c0(r0)/r)uα,r((r/r0)x).

This function is bounded on Wα,r0 , continuous on Wα,r0 \ {0}, and harmonic
on Wα,r0 . Observe that

vα,r0,r(x) ≤ 0(11.14.49)

when |x| = r0, by (11.14.39) and the definition of c0(r0). This also holds when
x ∈ ∂Cα, because of (11.14.39) and (11.14.44). It follows that this holds on
Wα,r0 , by the remarks at the beginning of the section.
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This means that

uα,r(x) ≤ (c0(r0)/r)uα,r((r/r0)x)(11.14.50)

for all x ∈Wα,r0 . If x ∈Wα,r and

|x| ≤ (r0/r)
l r(11.14.51)

for some nonnegative integer l, then we can repeat the precess to get that

uα,r(x) ≤ (c(r0)/r)
l uα,r((r/r0)

l x).(11.14.52)

This implies that uα,r is continuous at 0 as a function on Wα,r, because of
(11.14.43).

It follows that
uα,r is a barrier for Wα,r at 0,(11.14.53)

as in Lemma 11.15 on p231 of [18]. This also uses (11.14.39) and (11.14.41), to
get that −uα,r < 0 on Wα,r \ {0}.

11.15 Some additional geometric conditions

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Put

Vα,r =Wα,r ∪ (Rn \B(0, r)) = Rn \ (B(0, r) ∩ Cα).(11.15.1)

This is an open set in R, with

Vα,r =Wα,r ∪ (Rn \B(0, r)) = Rn \ (B(0, r) ∩ Cα).(11.15.2)

Similarly,
∂Vα,r = (∂B(0, r) ∩ Cα) ∪ (B(0, r) ∩ ∂Cα).(11.15.3)

Note that
0 ∈ ∂Vα,r.(11.15.4)

Let us extend uα,r to a real-valued function on Vα,r by putting

uα,r = r on Rn \B(0, r).(11.15.5)

This is consistent with the previous definition of uα,r onWα,r∩∂B(0, r), because
of (11.14.39). It follows that

this extension is continuous on Vα,r.(11.15.6)

Using this extension, we also have that

−uα,r is subharmonic on Vα,r.(11.15.7)

This uses (11.14.38), and the remarks in Section 11.5.
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11.15.1 Using these barriers

Let U be a nonempty bounded open subset of Rn again, and let ζ0 ∈ ∂U be
given. We say that U satisifes the exterior cone condition at ζ0 if there are
positive real numbers α, r and an orthogonal transformation T on Rn such that

U ∩ (ζ0 + T (B(0, r) ∩ Cα)) = ∅.(11.15.8)

This is the same as saying that

U ∩ (ζ0 + T (B(0, r) ∩ Cα)) = ∅.(11.15.9)

Similarly, (11.15.8) is equivalent to asking that

U ∩ (ζ0 + T (B(0, r) ∩ Cα)) = ∅.(11.15.10)

In this case,
U has a barrier at ζ0,(11.15.11)

as in 11.16 on p232 of [18]. To see this, one may as well suppose that ζ0 = 0, and
that T is the identity mapping on Rn. Thus (11.15.10) is the same as saying
that

U ⊆ Vα,r.(11.15.12)

Under these conditions, the restriction of −uα,r to U is a barrier for U at 0. If
n = 2, then barriers for broader classes of open sets are discussed on p251 of [7].



Chapter 12

Some distribution theory

12.1 Fundamental solutions

Let n be a positive integer, and let u, v be complex-valued functions on Rn, at
least one of which has compact support in Rn. If α is a multi-index, and if u,
v are |α|-times continuously differentiable on Rn, then∫

Rn

(∂αu)(x) v(x) dx = (−1)|α|
∫
Rn

u(x) (∂αv)(x) dx,(12.1.1)

by integration by parts.

Let N be a nonnegative integer, and let

p(w) =
∑

|α|≤N

aα w
α(12.1.2)

be a polynomial in the n variables w1, . . . , wn of degree less than or equal to N ,
and with complex coefficients aα. Put

p̃(w) = p(−w) =
∑

|α|≤N

(−1)|α| aα w
α,(12.1.3)

which is another polynomial in w1, . . . , wn of degree less than or equal to n
with complex coefficients, as appropriate. Using these polynomials, we get cor-
responding differential operators p(∂) and p̃(∂), as in Section 1.7. If u, v are
N -times continuously differentiable on Rn, then∫

Rn

(p(∂)u)(x) v(x) dx =

∫
Rn

u(x) (p̃(∂)v)(x) dx,(12.1.4)

because of (12.1.1).

280
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12.1.1 Fundamental solutions of p(∂)

A complex-valued function E on Rn is said to be a fundamental solution of p(∂)
if ∫

Rn

E(x) (p̃(∂)v)(x) dx = v(0)(12.1.5)

for every smooth function v on Rn with compact support. This is interpreted
as meaning that (p(∂))(E) is the Dirac delta function δ0 associated to 0, in the
sense of distributions. More precisely, this can be extended to distributions E
on Rn. If p 6= 0, then a famous theorem of Ehrenpreis and Malgrange states
that p(∂) has a fundamental solution on Rn, which may be a distribution. See
[64, 75, 82, 217, 243, 250, 287] for more information.

A fundamental solution for the Laplacian is given by the function N defined
in Section 6.8. A fundamental solution for the heat operator

∂

∂t
−∆(12.1.6)

is given by the heat kernel. Once one has a fundamental solution E for p(∂),
one can solve

(p(∂))(u) = f(12.1.7)

by convolving E with f under suitable conditions, in the sense of distributions.
If f is a smooth function with compact support on Rn, then this gives a smooth
solution u of (12.1.7).

Some basic aspects of distribution theory will be discussed in the next sec-
tions, and some additional references about this include [23, 78, 79, 81, 102, 132,
152, 181, 200, 267, 272, 280, 313].

12.2 Spaces of test functions

Let n be a positive integer, and let U be a nonempty open subset of Rn. Re-
member that a real or complex-valued function f on U is said to have compact
support in U if there is a compact set E ⊆ Rn such that E ⊆ U and f = 0
on U \ E, as in Subsection 1.9.2. Note that the union of two compact subsets
of Rn is compact too. Using this, it is easy to see that the sum of two real or
complex-valued functions on U with compact support in U has compact support
in U as well.

Let Ccom(U,R), Ccom(U,C) be the spaces of continuous real and complex-
valued functions on U with compact support, respectively. These are linear
subspaces of the spaces C(U,R), C(U,C) of all continuous real or complex-
valued functions on U , as vector spaces over the real and complex numbers,
respectively. Similarly, if k is a positive integer, then let Ck

com(U,R), Ck
com(U,C)

be the spaces of k-times continuously-differentiable real and complex-valued
functions on U with compact support. It is sometimes convenient to use the
same notation with k = 0 for the analogous spaces of continuous functions,
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as before. The spaces of smooth real or complex-valued functions on U with
compact support are denoted C∞

com(U,R), C∞
com(U,C).

Equivalently,

Ck
com(U,R) = Ck(U,R) ∩ Ccom(U,R),(12.2.1)

Ck
com(U,C) = Ck(U,C) ∩ Ccom(U,C)(12.2.2)

for every k ≥ 1. These are linear subspaces of Ck(U,R) and Ck(U,C), respec-
tively. Similarly,

C∞
com(U,R) = C∞(U,R) ∩ Ccom(U,R),(12.2.3)

C∞
com(U,C) = C∞(U,C) ∩ Ccom(U,C),(12.2.4)

which are linear subspaces of C∞(U,R) and C∞(U,C), respectively.
If f is a real or complex-valued function on U , then we can extend f to a

function on Rn, simply by putting f = 0 on Rn\U . If f is a continuous function
on U with compact support in U , then this extension of f to Rn is continuous
too. Similarly, if f is k-times continuously differentiable on U for some k ≥ 1,
or if f is smooth on U , and f has compact support in U , then this extension
has the analogous property on Rn.

If f is a continuously-differentiable real or complex-valued function on U with
compact support in U , then it is easy to see that the partial derivatives of f have
compact support in U as well. If α is a multi-index and |α| ≤ k, then ∂α defines

linear mappings from Ck
com(U,R), Ck

com(U,C) into C
k−|α|
com (U,R), C

k−|α|
com (U,C),

respectively. Similarly, ∂α defines linear mappings from C∞
com(U,R), C∞

com(U,C)
into themselves.

If f , g are continuous real or complex-valued functions on U , then it is well
known that their product f g is continuous on U . If f and g are both k-times
continuously differentiable on U , or both smooth on U , then f g has the same
property. If either f or g has compact support in U , then f g has compact
support in U .

Smooth functions on U with compact support in U are also known as test
functions on U .

12.3 Distributions

A linear functional on a vector space V over the real or complex numbers is a
linear mapping from V into R or C, as appropriate. Let n be a positive integer,
and let U be a nonempty open subset of Rn. A distribution on U is a linear
functional on the space C∞

com(U,C) of complex-valued test functions on U that
is continuous in a certain sense. Before describing the continuity condition, let
us mention some basic examples.

Let f be a continuous complex-valued function on U . If ϕ is a test function
on U , then put

λf (ϕ) =

∫
U

f(x)ϕ(x) dx.(12.3.1)
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The right side may be interpreted as a Riemann integral over any suitable region
that contains the support of ϕ. This defines a linear functional on C∞

com(U,C).
One can check that λf (ϕ) = 0 for every test function ϕ on U only when f ≡ 0
on U . This implies that f is uniquely determined by λf on C∞

com(U,C).
Similarly, if f is a complex-valued function on U that is locally integrable

on U with respect to Lebesgue measure, then the right side of (12.3.1) may
be interpreted as a Lebesgue integral. In this case, one can show that f is
determined almost everywhere on U with respect to Lebesgue measure by λf
on C∞

com(U,C).
If x ∈ U , then

δx(ϕ) = ϕ(x)(12.3.2)

defines a linear functional on C∞
com(U,C). This is the Dirac distribution on U

associated to x.

12.3.1 Convergent sequences of test functions

The continuity condition used to define distributions can be described in terms
of a suitable notion of convergent sequences of test functions. Let {ϕj}∞j=1 be a
sequence of test functions on U , and let ϕ be another test function on U . We
say that

{ϕj}∞j=1converges to ϕ in C∞
com(U,C)(12.3.3)

if the following two conditions hold. First, there is a compact set E ⊆ Rn such
that E ⊆ U and

ϕj = 0 on U \ E(12.3.4)

for every j ≥ 1. Second, for every multi-index α, we have that

{∂αϕj}∞j=1 converges to ∂αϕ uniformly on U.(12.3.5)

In particular, we can take α = 0, to get that {ϕj}∞j=1 converges to ϕ uniformly
on U . It follows that

ϕ = 0 on U \ E,(12.3.6)

because of (12.3.4).

12.3.2 The continuity condition

A linear functional λ on C∞
com(U,C) is said to be a distribution on U if for every

sequence {ϕj}∞j=1 of test functions on U that converges to a test function ϕ on
U , in the sense described in the preceding paragraph, we have that

lim
j→∞

λ(ϕj) = λ(ϕ).(12.3.7)

Alternatively, there is a standard topology defined on C∞
com(U,C), and it is

well known that a linear functional on C∞
com(U,C) is continuous with respect

to this topology if and only if it satisfies this continuity condition in terms
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of convergent sequences. More precisely, one can show that convergence of
sequences in C∞

com(U,C) with respect to this topology is equivalent to the notion
of convergence mentioned in the preceding paragraph. In particular, this implies
that continuity with respect to this topology on C∞

com(Rn,C) automatically
implies the sequential continuity condition (12.3.7). It is well known that the
converse holds for linear functionals, but this is more complicated in this case
than for metric spaces, for instance.

The space of distributions on U may be denoted

C∞
com(U,C)′.(12.3.8)

This is a vector space over the complex numbers, with respect to pointwise
addition and scalar multiplication of linear functionals on C∞

com(U,C).
If f is a continuous complex-valued function on U , or a locally integrable

function on U with respect to Lebesgue measure, then it is easy to see that
(12.3.1) defines a distribution on U . In this case, it is enough to take α = 0 in
(12.3.5). We also have that

f 7→ λf(12.3.9)

is a linear mapping from C(U,C) into C∞
com(U,C)′, or from the space of locally

integrable functions f on U into C∞
com(U,C)′. It is very easy to see that the

Dirac distribution associated to x ∈ U is indeed a distribution on U .

12.4 Some basic properties of distributions

Let n be a positive integer, and let U be a nonempty open subset of Rn. Suppose
that {ϕj}∞j=1 is a sequence of test functions on U that converges to a test function
ϕ on U , in the sense described in the previous section. This implies that

{∂lϕj}∞j=1 converges to ∂lϕ(12.4.1)

in the same sense for each l = 1, . . . , n. Similarly, if a is a smooth complex-
valued function on U , then one can check that

{aϕj}∞j=1 converges to aϕ(12.4.2)

in this sense as well. This uses the fact that a and its derivatives of any order
are bounded on any compact subset of Rn that is contained in U .

12.4.1 Differentiating distributions

Let λ be a distribution on U , and for each l = 1, . . . , n, put

(∂lλ)(ϕ) = −λ(∂lϕ)(12.4.3)

for every test function ϕ on U . It is easy to see that this defines a distribution
on U , which is considered as the partial derivative of λ in the lth variable. If
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f is a continuously-differentiable complex-valued function on U , and λf is the
distribution associated to f as in (12.3.1), then

∂lλf = λ∂lf(12.4.4)

is the distribution associated to ∂lf on U . This basically corresponds to inte-
gration by parts. More precisely, this works when f is a continuous function
on U such that the partial derivative ∂f/∂xl in the lth variable exists at every
point in U , and is continuous on U .

It is easy to see that

∂j(∂lλ) = ∂l(∂jλ)(12.4.5)

for each j, l = 1, . . . , n, using the analogous statement for smooth functions. If
α is any multi-index, then one can differentiate λ repeatedly, to get that

(∂αλ)(ϕ) = (−1)|α| λ(∂αϕ)(12.4.6)

for all test functions ϕ on U . If f is an |α|-times continuously-differentiable
complex-valued function on U , and λf is the distribution on U associated to f
as before, then

∂αλf = λ∂αf(12.4.7)

is the distribution associated to ∂αf on U .

12.4.2 Multiplying distributions by smooth functions

If a is a smooth complex-valued function on U , then put

(aλ)(ϕ) = λ(aϕ)(12.4.8)

for every test function ϕ on U . This defines a distribution on U , which is
considered as the product of a and λ. If f is a continuous or simply locally-
integrable complex-valued function on U , then

aλf = λa f(12.4.9)

is the distribution on U associated to the usual product a f of a and f on U .
One can check that

∂l(aλ) = (∂la)λ+ a (∂lλ),(12.4.10)

as distributions on U , using the usual product rule for partial derivatives of
smooth functions on U .

12.4.3 Real-valued distributions

One may consider λ to be real-valued as a distribution on U if

λ(ϕ) ∈ R(12.4.11)
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for every real-valued test function ϕ on U . In this case, one may say that λ is
nonnegative as a distribution on U , or

λ ≥ 0,(12.4.12)

if

λ(ϕ) ≥ 0(12.4.13)

for every nonnegative real-valued test function ϕ on U . If λ is the distribution
associated to a continuous function f on U , then these conditions correspond
to their usual versions for f . If f is locally integrable with respect to Lebesgue
measure, and not necessarily continuous, then the analogous conditions on f
should be interpreted as holding almost everywhere with respect to Lebesgue
measure, as usual.

12.5 Using a fixed compact set

Let n be a positive integer, and let K be a nonempty compact subset of Rn.
Consider the space C∞

K (Rn,C) of smooth complex-valued functions ϕ on Rn

such that

suppϕ ⊆ K.(12.5.1)

Equivalently, this means that

ϕ = 0 on Rn \K.(12.5.2)

Note that C∞
K (Rn,C) is a linear subspace of the space C∞

com(Rn,C) of all
smooth complex-valued functions on Rn with compact support, as a vector
space over the complex numbers.

Let {ϕj}∞j=1 be a sequence of elements of C∞
K (Rn,C), and let ϕ be another

element of C∞
K (Rn,C). Let us say that {ϕj}∞j=1 converges to ϕ in C∞

K (Rn,C)
if for every multi-index α,

{∂αϕj}∞j=1 converges to ∂αϕ uniformly on K.(12.5.3)

Let λ be a linear functional on C∞
K (Rn,C). We can use the notion of

convergent sequences in C∞
K (Rn,C) described in the preceding paragraph to

define a natural continuity condition for λ. This condition asks that

lim
j→∞

λ(ϕj) = λ(ϕ)(12.5.4)

for every sequence {ϕj}∞j=1 of elements of C∞
K (Rn,C) that converges to an

element ϕ of C∞
K (Rn,C) in this sense.
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12.5.1 Another characterization of continuity

Alternatively, there is a standard topology defined on C∞
K (Rn,C), for which

convergence of sequences is equivalent to the notion of convergence mentioned
before. In this case, one can get the equivalence between continuity and sequen-
tial continuity more directly. In particular, the continuity condition for a linear
functional mentioned in the preceding paragraph is equivalent to continuity with
respect to this topology.

One can show that λ is continuous on C∞
K (Rn,C) with respect to this topol-

ogy if and only if there are a nonnegative real number C and a nonnegative
integer N such that

|λ(ϕ)| ≤ C
∑

|α|≤N

(
max
x∈K

|(∂αϕ)(x)|
)

(12.5.5)

for every ϕ ∈ C∞
K (Rn,C). The sum on the right is taken over all multi-indices

α with |α| ≤ N , as usual. This condition implies that (12.5.4) holds whenever
(12.5.3) holds for all such multi-indices.

12.6 Compact sets in open sets

Let n be a positive integer, and let U be a nonempty open subset of Rn. Every
element of C∞

com(U,C) can be extended to an element of C∞(Rn,C), by putting
it equal to 0 onRn\U , as in Section 12.2. Using this, we can identify C∞

com(U,C)
with a linear subspace of C∞

com(Rn,C). With this identification, C∞
com(U,C)

corresponds to the union of C∞
K (Rn,C) over all nonempty compact subsets K

of Rn such that K ⊆ U .

If K is a nonempty compact subset of Rn that is contained in U , then
a convergent sequence in C∞

K (Rn,C), in the sense described in the previous
section, may be considered as a convergent sequence in C∞

com(U,C), in the sense
of Subsection 12.3.1. Conversely, any convergent sequence in C∞

com(U,C), in the
sense of Subsection 12.3.1, corresponds to a convergent sequence in C∞

K (Rn,C)
for some nonempty compact subset K of Rn that is contained in U .

Let λ be a linear functional on C∞
com(U,C). If K is a nonempty compact

subset of Rn that is contained in U , then the restriction of λ to C∞
K (Rn,C)

defines a linear functional on that vector space. Observe that λ satisfies the
continuity condition on C∞

com(U,C) described in Subsection 12.3.2 if and only
if the restriction of λ to C∞

K (Rn,C) satisfies the continuity condition described
in the previous section for every nonempty compact subset K of Rn that is
contained in U . This follows from the remarks about convergent sequences in
the preceding paragraph.
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12.6.1 Some sequences of compact sets

It is not too difficult to show that there are sequences {Kj}∞j=1 of nonempty
compact subsets of Rn such that

∞⋃
j=1

Kj = U(12.6.1)

and Kj is contained in the interior of Kj+1 for each j. If K is any compact
subset of Rn that is contained in U , then it follows that

K ⊆ Kj(12.6.2)

for some j. This implies that C∞
com(U,C) corresponds to

∞⋃
j=1

C∞
Kj

(Rn,C),(12.6.3)

as a linear subspace of C∞
com(Rn,C).

12.7 The Schwartz class

Let n be a positive integer. The Schwartz class S(Rn) is the space of smooth
complex-valued functions f on Rn such that

xα (∂βf)(x)(12.7.1)

is bounded on Rn for all multi-indices α, β. Equivalently, this means that

(1 + |x|2)k |(∂βf)(x)|(12.7.2)

is bounded on Rn for every nonnegative integer k and multi-index β. It is easy
to see that S(Rn) is a linear subspace of the space C∞(Rn,C) of all complex-
valued smooth functions on Rn, as a vector space over the complex numbers.

12.7.1 Some basic properties of S(Rn)

Clearly
C∞

com(Rn,C) ⊆ S(Rn).(12.7.3)

If a is a positive real number and b ∈ Cn, then one can check that

exp(−a |x|2 + b · x) ∈ S(Rn).(12.7.4)

If f ∈ S(Rn) and c ∈ Rn, then one can verify that

f(x+ c) ∈ S(Rn).(12.7.5)

It is easy to see that
∂γf ∈ S(Rn)(12.7.6)

for every multi-index γ in this case too.
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12.7.2 Multilication by polynomials

If f ∈ S(Rn) and p is a polynomial on Rn with complex coefficients, then one
can check that

p f ∈ S(Rn).(12.7.7)

More precisely, this holds for smooth complex-valued functions p on Rn with
the following property. If γ is any multi-index, then we ask that ∂γp has at
most polynomial growth at infinity on Rn. This means that for every such γ,
there are a nonnegative real number C(γ) and a nonnegative integer N(γ) such
that

|(∂γp)(x)| ≤ C(γ) (1 + |x|2)N(γ)(12.7.8)

for every x ∈ Rn. Of course, polynomials on Rn satisfy these conditions.

12.7.3 Convergence of sequences in S(Rn)

Let {fj}∞j=1 be a sequence of elements of S(Rn), and let f be another element
of S(Rn). We say that {fj}∞j=1 converges to f in S(Rn) if for every pair of
multi-indices α, β,

xα (∂βfj)(x) → xα (∂βf)(x) as j → ∞,(12.7.9)

uniformly on Rn. This is the same as saying that for every nonnegative integer
N and multi-index β,

(1 + |x|2)N |(∂βfj)(x)− (∂βf)(x)| → 0 as j → ∞,(12.7.10)

uniformly on Rn. This is also equivalent to the convergence of {fj}∞j=1 to f with
respect to a standard topology on S(Rn). Note that a convergent sequence
in C∞

com(Rn,C), in the sense described in Subsection 12.3.1, converges as a
sequence in S(Rn).

If {fj}∞j=1 converges to f in S(Rn), then it is easy to see that {∂γfj}∞j=1

converges to ∂γf in S(Rn) for every multi-index γ. If p is a smooth complex-
valued function on Rn whose derivatives of all orders grow at most polynomially
on Rn, as before, then one can check that {p fj}∞j=1 converges to p f in S(Rn).
In particular, this holds when p is a polynomial on Rn.

12.8 Tempered distributions

Let n be a positive integer, and let λ be a linear functional on S(Rn). Let us
say that λ is continuous on S(Rn) if for every sequence {ϕj}∞j=1 of elements of
S(Rn) that converges to an element ϕ of S(Rn), in the sense described in the
previous section, we have that

lim
j→∞

λ(ϕj) = λ(ϕ).(12.8.1)
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This is equivalent to the continuity of ϕ with respect to the standard topology on
S(Rn), which was mentioned in the previous section. Under these conditions,
λ is said to be a tempered distribution on Rn. The space

S(Rn)′(12.8.2)

of tempered distributions on Rn is a vector space over the complex numbers,
with respect to pointwise addition and scalar multiplication of linear functionals
on S(Rn).

12.8.1 Some examples of tempered distributions

Let f be a continuous complex-valued function on Rn, and suppose that f grows
at most polynomially on Rn, so that

|f(x)| ≤ C (1 + |x|2)k(12.8.3)

for some nonnegative real number C, nonnegative integer k, and every x ∈ Rn.
If ϕ ∈ S(Rn), then put

λf (ϕ) =

∫
Rn

f(x)ϕ(x) dx,(12.8.4)

where the right side may be defined as in Subsection 7.2.3. One can check that
this defines a tempered distribution on Rn. More precisely, this works when

f(x) (1 + |x|2)−l(12.8.5)

is integrable on Rn for some nonnegative integer l. This also works when f is a
locally integrable function on Rn with respect to Lebesgue measure such that
(12.8.5) is integrable, in which case (12.8.4) should be interpreted as a Lebesgue
integral.

12.8.2 Derivatives and some products

One can define derivatives of tempered distributions in the same way as in Sec-
tion 12.4. Let p be a smooth complex-valued function on Rn whose derivatives
of all orders grow at most polynomially, as in the previous section. If λ is any
tempered distribution on Rn, then

(p λ)(ϕ) = λ(p ϕ)(12.8.6)

defines another tempered distribution on Rn. If f is as in the preceding para-
graph, then p f satisfies an analogous condition, so that λp f is defined as a
tempered distribution on Rn too. Of course,

p λf = λp f ,(12.8.7)

as tempered distributions on Rn.
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12.8.3 Comparison with ordinary distributions

If λ is a tempered distribution on Rn, then it is easy to see that

the restriction of λ to C∞
com(Rn,C) defines a distribution on Rn.(12.8.8)

It is well known that

λ is uniquely determined by its restriction to C∞
com(Rn,C).(12.8.9)

More precisely,

C∞
com(Rn,C) is dense in S(Rn),(12.8.10)

with respect to the standard topology on S(Rn). Equivalently, this means that
if ϕ ∈ S(Rn), then there is a sequence {ϕj}∞j=1 of elements of C∞

com(Rn) that
converges to ϕ in S(Rn). The ϕj ’s can be obtained by multiplying ϕ by suitable
smooth functions on Rn with compact support, which are equal to 1 on large
bounded subsets of Rn.

Of course, if x ∈ Rn, then δx(ϕ) = ϕ(x) defines a tempered distribution
on Rn, which is another version of the Dirac distribution associated to x. See
[175, 264, 268] for more information about the Schwartz class and tempered
distributions, in addition to the references about distributions mentioned in
Section 12.1.

12.9 More on S(Rn), S(Rn)′

Let n be a positive integer, let f be an element of the Schwartz class S(Rn),
and let c ∈ Rn be given. One can check that f(x + c) ∈ S(Rn), as a function
of x ∈ Rn, as mentioned in Subsection 12.7.1. More precisely, if α and β are
multi-indices, then the boundedness of

xα (∂βf)(x+ c)(12.9.1)

on Rn is equivalent to the boundedness of

(x− c)α (∂βf)(x)(12.9.2)

on Rn. This can be obtained from the boundedness of

xγ (∂βf)(x)(12.9.3)

on Rn, for multi-indices γ with γj ≤ αj for each j = 1, . . . , n. This argument
also shows that one can get a bound for the absolute value of (12.9.1) on Rn

that grows at most polynomially in |c|.
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12.9.1 A boundedness condition

Let λ be a linear functional on S(Rn). Suppose that there are a nonnegative
real number C and nonnegative integers N1, N2 such that

|λ(ϕ)| ≤ C
∑

|α|≤N1

∑
|β|≤N2

(
sup
x∈Rn

|xα (∂βϕ)(x)|
)

(12.9.4)

for every ϕ ∈ S(Rn). Here the first sum is taken over all multi-indices α with
|α| ≤ N1, and the second sum is taken over all multi-indices β with |β| ≤ N2, as
usual. Under these conditions, one can check that λ is a tempered distribution
on Rn.

In fact, let {ϕj}∞j=1 be a sequence of elements of S(Rn), and let ϕ be another
element of S(Rn). Suppose that

xα (∂βϕ)(x) → xα (∂βϕ)(x) as j → ∞,(12.9.5)

uniformly on Rn, for all multi-indices α, β with |α| ≤ N1 and |β| ≤ N2. If
(12.9.4) holds, then it is easy to see that λ(ϕj) → ϕ as j → ∞.

Conversely, if λ is a tempered distribution on Rn, then it is well known that
(12.9.4) holds for some C,N1, N2 ≥ 0. This can be obtained from the continuity
of λ at 0, with respect to the standard topology on S(Rn).

12.9.2 Covergence of sequences of translates

Let f be a continuous complex-valued function on Rn, and let {cj}∞j=1 be a
sequence of elements of Rn that converges to 0. Put

fj(x) = f(x+ cj)(12.9.6)

for each x ∈ Rn and j ≥ 1. Note that

fj → f as j → ∞(12.9.7)

pointwise on Rn, because f is continuous on Rn. More precisely, one can check
that (12.9.7) holds uniformly on compact subsets of Rn, because continuous
functions are uniformly continuous on compact sets. If f is uniformly continuous
on Rn, then (12.9.7) holds uniformly on Rn.

If f is smooth on Rn, then for each multi-index α,

∂αfj → ∂αf as j → ∞,(12.9.8)

uniformly on compact subsets of Rn. If f has compact support in Rn, then one
can verify that there is a compact subset of Rn that contains the supports of f
and fj for each j.

If f ∈ S(Rn), then fj ∈ S(Rn) for each j, as before. In this case, it is
not too difficult to show that (12.9.7) holds in S(Rn), in the sense defined in
Subsection 12.7.3.
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12.10 Some convolutions

Let n be a positive integer, and let U be a nonempty open subset of Rn. If
a ∈ Rn and E ⊆ Rn, then put

a+ E = {a+ x : x ∈ E}(12.10.1)

and

−E = {−x : x ∈ E}.(12.10.2)

Similarly, we put a− E = a+ (−E).
Let K be a nonempty compact subset of Rn, and put

V = {a ∈ Rn : a−K ⊆ U}.(12.10.3)

One can check that this is an open subset of Rn, because U is an open set.
If ϕ is a complex-valued function on Rn, then put

ϕ̃(y) = ϕ(−y)(12.10.4)

for every y ∈ Rn. Also let τa(ϕ) be the complex-valued function on Rn defined
by

(τa(ϕ))(y) = ϕ(y − a)(12.10.5)

for every y ∈ Rn. Thus

(τa(ϕ̃))(y) = ϕ(a− y)(12.10.6)

for every y ∈ Rn.
Suppose now that ϕ is smooth on Rn, with

suppϕ ⊆ K,(12.10.7)

and let λ be a distribution on U . Observe that

supp τa(ϕ̃) = a− suppϕ(12.10.8)

for every a ∈ Rn. In particular, if a ∈ V , then

supp τa(ϕ̃) ⊆ U.(12.10.9)

Under these conditions, the convolution of λ and ϕ is the complex-valued
function λ ∗ ϕ defined on V by

(λ ∗ ϕ)(a) = λ(τa(ϕ̃)).(12.10.10)

If b ∈ Rn, then

(δb ∗ ϕ)(a) = ϕ(a− b)(12.10.11)

for every a ∈ Rn, by (12.10.6).



294 CHAPTER 12. SOME DISTRIBUTION THEORY

12.10.1 Some properties of these convolutions

If {aj}∞j=1 is a sequence of elements of V that converges to a ∈ V , then one can
check that

lim
j→∞

(λ ∗ ϕ)(aj) = (λ ∗ ϕ)(a).(12.10.12)

Equivalently, this means that

lim
j→∞

λ(τaj
(ϕ̃)) = λ(τa(ϕ̃)).(12.10.13)

This implies that λ ∗ ϕ is continuous on V .
It is well known and not too difficult to show that the first partial derivatives

of λ ∗ ϕ exist on V , with

∂l(λ ∗ ϕ) = λ ∗ (∂lϕ)(12.10.14)

for each l = 1, . . . , n. One can use this repeatedly, to get that λ ∗ ϕ is smooth
on V , with

∂α(λ ∗ ϕ) = λ ∗ (∂αϕ)(12.10.15)

on V for each multi-index α.
One can verify that

λ ∗ (∂αϕ) = (∂αλ) ∗ ϕ(12.10.16)

on V for every multi-index α. It follows that

∂α(λ ∗ ϕ) = (∂αλ) ∗ ϕ(12.10.17)

on V , by (12.10.15).

12.10.2 Some convolutions with tempered distributions

If ϕ ∈ S(Rn) and λ ∈ S(Rn)′, then λ ∗ϕ can be defined on Rn as in (12.10.10).
It is well known that this satisfies the same type of properties as before.

In this case, one can also show that

λ ∗ ϕ grows at most polynomially on Rn,(12.10.18)

using the remarks in the previous section. More precisely,

the derivatives of λ ∗ ϕ of all orders grow at most polynomially(12.10.19)

too.

12.11 Local solvability

Let n be a positive integer, and let p(w) be a nonzero polynomial on Rn with
complex coefficients. As in Subsection 12.1.1, a theorem of Ehrenpreis and
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Malgrange states that there is a distribution E on Rn that is a fundamental
solution of p(∂), in the sense that

p(∂)(E) = δ0.(12.11.1)

Let f ∈ C∞
com(Rn,C) be given, and put

u = E ∗ f,(12.11.2)

which is a smooth complex-valued function on Rn, as in the previous section.
Under these conditions, we have that

(p(∂))(u) = (p(∂))(E) ∗ f = δ0 ∗ f = f(12.11.3)

on Rn, as mentioned earlier.
Let

L =
∑

|α|≤N

aα(x) ∂
α(12.11.4)

be a differential operator whose coefficients aα(x) are smooth complex-valued
functions on Rn. Here N is a nonnegative integer, and the sum is taken over
all multi-indices α with |α| ≤ N , as usual. We say that L is locally solvable at
a point x0 ∈ Rn if for any smooth complex-valued function f on Rn there is a
function (or distribution) u on a neighborhood of x0 in Rn that satisfies

L(u) = f(12.11.5)

on that neighborhood, as in Section F of Chapter 1 of [75]. We may as well take
f to have compact support in Rn, as in [75], since otherwise we can multiply
f by a smooth function on Rn with compact support that is equal to 1 on a
neighborhood of x0. Similarly, we could start with any smooth complex-valued
function f0 defined on a neighborhood of x0 in Rn, and get a smooth function
on Rn with compact support that is equal to f0 on neighborhood of x0.

If the coefficients of L are constants, not all equal to 0, then the theorem of
Ehrenpreis and Malgrange implies that L is locally solvable at every point in
Rn. If

f and the coefficients aα are real-analytic near x0,(12.11.6)

and if
aα(x0) 6= 0(12.11.7)

for some multi-index α with |α| = N , then one can get real-analytic solutions
to (12.11.5) near x0 using a famous theorem of Cauchy and Kovalevskaya, as
mentioned near the beginning of Section E of Chapter 1 of [75]. This theorem
is discussed in Section 4.6.3 of [70], Section D of Chapter 1 of [75], and Section
2.8 of [169].

There is a famous example of H. Lewy of a first-order differential operator
on R3 whose coefficients are constants or linear functions, and for which local
solvability does not hold. See Section E of Chapter 1 of [75] for more information.
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12.12 Sequences of distributions

Let n be a positive integer, and let U be a nonempty open subset of Rn. A
sequence {λj}∞j=1 of distributions on U is said to converge to a distribution λ
on U if

lim
j→∞

λj(ϕ) = λ(ϕ)(12.12.1)

for every ϕ ∈ C∞
com(U,C). More precisely, this is the same as convergence with

respect to the “weak∗ topology” on C∞
com(Rn,C)′.

12.12.1 Convergence of derivatives and products

In this case, it is easy to see that

{∂αλj}∞j=1 converges to ∂αλ(12.12.2)

in the same sense for every multi-index α. Similarly, if a is a smooth complex-
valued function on U , then

{aλj}∞j=1 converges to aλ(12.12.3)

in this sense.

12.12.2 Some examples of convergent sequences

Let {fj}∞j=1 be a sequence of continuous complex-valued functions on U that
converges to a complex-valued function f uniformly on compact sets contained
in U . Under these conditions, it is easy to see that the corresponding sequence
of distributions {λfj}∞j=1, as in Section 12.3, converges to the distribution λf
corresponding to f , in the sense considered here. This also works when {fj}∞j=1

is a sequence of locally-integrable functions on U that converges to a locally-
integrable function f on U with respect to the L1 metric on any compact set
contained in U .

12.12.3 A boundedness condition for sequences

Let {λj}∞j=1 be a sequence of distributions on U again, and suppose for the
moment that for each ϕ ∈ C∞

com(U,C),

{λj(ϕ)}∞j=1 is a bounded sequence in C.(12.12.4)

Let K be a nonempty compact subset of Rn that is contained in U . A famous
theorem of Banach and Steinhaus implies that there are a nonnegative real
number C(K) and a nonnegative integer N(K) such that

|λj(ϕ)| ≤ C(K)
∑

|α|≤N(K)

(
max
x∈K

|(∂αϕ)(x)|
)

(12.12.5)

for each j ≥ 1 and ϕ ∈ C∞
K (Rn,C). This uses the well-known fact that

C∞
K (Rn,C) is a “Fréchet space”.
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12.12.4 Limits of sequences of distributions

Suppose now that for each ϕ ∈ C∞
com(U,C),

{λj(ϕ)}∞j=1 converges in C.(12.12.6)

This implies (12.12.4), because convergent sequences are bounded. If λ is defined
on C∞

com(U,C) as in (12.12.1), then it is easy to see that λ is a linear functional
on C∞

com(U,C). We also have that

|λ(ϕ)| ≤ C(K)
∑

|α|≤N(K)

(
max
x∈K

|(∂αϕ)(x)|
)

(12.12.7)

for every nonempty compact set K contained in U and ϕ ∈ C∞
K (Rn,C), where

C(K) and N(K) are as in the preceding paragraph. This implies that

λ is a distribution on U,(12.12.8)

as in Section 12.6. Thus {λj}∞j=1 converges to λ in the sense described at the
beginning of the section. This corresponds to Theorem 6.17 on p146 of [250].

12.12.5 Convergent sequences of tempered distributions

Similarly, a sequence {λj}∞j=1 of tempered distributions onRn is said to converge
to a tempered distribution λ on Rn if (12.12.1) holds for every ϕ in S(Rn). This
is the same as convergence with respect to the weak∗ topology on S(Rn)′, as
before.

If α is a multi-index, then it follows that {∂αλj}nj=1 converges to ∂αλ in the
same sense. If a is a smooth complex-valued function on Rn such that a and all
of its derivatives grow at most polynomially on Rn, then {aλj}∞j=1 converges
to aλ in this sense too.

12.12.6 Some sequences of tempered distributions

Let {fj}∞j=1 be a sequence of complex-valued functions on Rn, let f be another
complex-valued function on Rn, and let l be a nonnegative integer. Suppose
that the fj ’s and f are continuous on Rn, or at least locally integrable, and
that the products fj(x) (1 + |x|2)−l and f(x) (1 + |x|2)−l are integrable on Rn.
Thus we get tempered distributions λfj , λf on Rn, as in Subsection 12.8.1. If

lim
j→∞

∫
Rn

|fj(x)− f(x)| (1 + |x|2)−l dx = 0,(12.12.9)

then it is easy to see that {λfj}∞j=1 converges to λf , as tempered distributions
on Rn.
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12.12.7 Bounded sequences of tempered distributions

Suppose that {λj}∞j=1 is a sequence of tempered distributions on Rn that satis-
fies (12.12.4) for every ϕ ∈ S(Rn). One can use the Banach–Steinhaus theorem
to get that there are a nonnegative real number C and nonnegative integers N1,
N2 such that

|λj(ϕ)| ≤ C
∑

|α|≤N1

∑
|β|≤N2

(
sup
x∈Rn

|xα (∂βϕ)(x)|
)

(12.12.10)

for each j ≥ 1 and ϕ ∈ S(Rn). This uses the fact that S(Rn) is a Fréchet space
too.

Suppose that (12.12.6) holds for every ϕ ∈ S(Rn), so that (12.12.4) holds
in particular, as before. This permits us to define λ as a linear functional on
S(Rn) by (12.12.1). Note that

|λ(ϕ)| ≤ C
∑

|α|≤N1

∑
|β|≤N2

(
sup
x∈Rn

|xα (∂βϕ)(x)|
)

(12.12.11)

for every ϕ ∈ S(Rn), by (12.12.10). This implies that λ is a tempered distribu-
tion on Rn, as in Subsection 12.9.1.



Chapter 13

Vector-valued functions and
systems

13.1 Vector-valued functions

Let n and l be positive integers, and let U be a nonempty open subset of Rn.
If f1, . . . , fl are real or complex-valued functions on U , then

f(x) = (f1(x), . . . , fl(x))(13.1.1)

defines a mapping from U into Rl or Cl, as appropriate. The continuity of f
on U can be defined in the usual way, using the standard Euclidean metrics on
Rn and on Rl or Cl, as appropriate. It is well known and not difficult to show
that this is equivalent to the continuity of f1, . . . , fl as real or complex-valued
functions on U , as appropriate.

The spaces of continuous functions on U with values in Rl and Cl may be
denoted

C(U,Rl) and C(U,Cl),(13.1.2)

respectively. These are vector spaces over the real and complex numbers, respec-
tively, with respect to pointwise addition and scalar multiplication of functions.
These spaces may be identified with the spaces

C(U,R)l and C(U,C)l(13.1.3)

of l-tuples of elements of C(U,R) and C(U,C), respectively.

13.1.1 Differentiability of vector-valued functions

One can define partial derivatives of f , when they exist, in the usual way, using
the standard Euclidean metric on Rl or Cl, as appropriate. This is equivalent to
the existence of the corresponding partial derivative of fj for each j = 1, . . . , l,
in which case the jth component of the partial derivative of f is equal to the

299
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corresponding partial derivative of fj . Similarly, the continuous differentiability
of f on U can be defined directly, and is equivalent to the continuous differen-
tiability of fj on U for each j = 1, . . . , l. If k is any positive integer, then the
k-times continuous differentiability of f on U can be defined directly as well,
and is equivalent to the k-times continuous differentiability of fj on U for each
j = 1, . . . , l. If f is k-times continuously differentiable on U for every k ≥ 1,
then f is said to be infinitely differentiable or smooth on U , as before.

13.1.2 Spaces of vector-valued functions

Let
Ck(U,Rl) and Ck(U,Cl)(13.1.4)

be the spaces of k-times continuously differentiable functions on U with values
in Rl and Cl, respectively, for each k ≥ 1. We may use the same notation with
k = 0 for the corresponding spaces of continuous functions, as before. Note
that these are linear subspaces of C(U,Rl) and C(U,Cl), respectively, as vector
spaces over the real and complex numbers, as appropriate, for each k. We may
identify these space with the spaces

Ck(U,R)l and Ck(U,C)l(13.1.5)

of l-tuples of elements of Ck(U,R) and Ck(U,C), respectively, as usual.
Similarly,

C∞(U,Rl) and C∞(U,Cl)(13.1.6)

denote the spaces of smooth functions on U with values in Rl and Cl, respec-
tively. These are linear subspaces of Ck(U,Rl) and Ck(U,Cl), respectively, for
each k. We may identify these spaces with the spaces

C∞(U,R)l and C∞(U,C)l(13.1.7)

of l-tuples of elements of C∞(U,R) and C∞(U,C), respectively, as before.

13.2 Matrix-valued functions

Let l1, l2 be positive integers, and let

L(Rl1 ,Rl2), L(Cl1 ,Cl2)(13.2.1)

be the spaces of linear mappings from Rl1 , Cl1 into Rl2 , Cl2 , respectively, as
vector spaces over the real and complex numbers. Note that these are vector
spaces over the real and complex numbers, respectively, with respect to point-
wise addition and scalar multiplication of linear mappings. Of course, these
linear mappings can be represented in terms of matrices of real or complex
numbers, as appropriate, in the usual way. One can use this to identify these
spaces with

Rl1 l2 , Cl1 l2 ,(13.2.2)

respectively.
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13.2.1 Continuity and differentiability properties

Let n be a positive integer, and let U be a nonempty open subset of Rn. Suppose
that a(x) is a function of x ∈ U with values in L(Rl1 ,Rl2) or L(Cl1 ,Cl2). This
can be identified with a function on U with values in Rl1 l2 or Cl1 l2 , as appropri-
ate, as before. In particular, this can be used to define the usual continuity and
differentiability properties of a(x) on U , using the standard Euclidean metric on
Rl1 l2 or Cl1 l2 , as appropriate. This is equivalent to the analogous continuity
or differentiability properties of the l1 · l2 real or complex-valued functions on
U corresponding to the matrix entries of a(x).

A version of this was mentioned in Section 5.15, for functions defined on an
interval in the real line. Similarly, if v ∈ Rl1 or Cl1 , as appropriate, then

(a(x))(v)(13.2.3)

defines a function of x ∈ U with values in Rl2 or Cl2 , as appropriate. Continuity
or differentiability properties of a(x) on U are also equivalent to the analogous
properties of (13.2.3) holding for every v ∈ Rl1 or Cl1 , as appropriate, as a
function of x ∈ U with values in Rl2 or Cl2 , as appropriate.

13.2.2 Using vector-valued functions v(x) on U

Suppose that v(x) is a function on U with values in Rl1 or Cl1 , as appropriate,
so that

(a(x))(v(x))(13.2.4)

is a function on U with values in Rl2 or Cl2 , as appropriate. If a(x) and
v(x) satisfy suitable continuity or differentiability properties on U , then (13.2.4)
satisfies the same property on U , as in Section 5.15. In particular,

∂

∂xj
((a(x))(v(x))) =

( ∂a

∂xj
(x)

)
(v(x)) + (a(x))

( ∂v

∂xj
(x)

)
(13.2.5)

when the partial derivatives of a(x) and v(x) exist, as before.

13.2.3 Products of matrix-valued functions

Let l0 be another positive integer, and let b(x) be a function of x ∈ U with
values in L(Rl0 ,Rl1) or L(Cl0 ,Cl1), as appropriate. If x ∈ U , then let

a(x) b(x)(13.2.6)

be the composition of b(x) with a(x) as linear mappings, which defines an ele-
ment of L(Rl0 ,Rl2) or L(Cl0 ,Cl2), as appropriate. Of course, this corresponds
to multiplication of the matrices associated to b(x) and a(x). If a(x) and b(x)
satisfy suitable continuity or differentiability properties on U , then (13.2.6) sat-
isfies the same property on U , as before. In particular,

∂

∂xj
(a(x) b(x)) =

( ∂a

∂xj
(x)

)
b(x) + a(x)

( ∂b

∂xj
(x)

)
,(13.2.7)

when the partial derivatives of a(x) and b(x) in xj exist.
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13.3 Matrix-valued coefficients

Let l1, l2, and n be a positive integer, and let U be a nonempty open subset of
Rn. Also let N be a nonnegative integer, and for each multi-index α with order
|α| ≤ N , let aα be a function on U with values in L(Rl1 ,Rl2) or L(Cl1 ,Cl2). If
u is an N -times continuously-differentiable function on U with values in Rl1 or
Cl1 , as appropriate, then let L(u) be the function on U with values in Rl2 or
Cl2 , as appropriate, defined by

(L(u))(x) =
∑

|α|≤N

(aα(x))((∂
αu)(x))(13.3.1)

for every x ∈ U . More precisely, if x ∈ U and α is a multi-index with |α| ≤ N ,
then

(∂αu)(x)(13.3.2)

is an element of Rl1 or Cl1 ,
aα(x)(13.3.3)

is an element of L(Rl1 ,Rl2) or L(Cl1 ,Cl2), and

(aα(x))((∂
αu)(x))(13.3.4)

is an element of Rl2 or Cl2 , as appropriate.
Suppose that

aα is r-times continuously differentiable on U(13.3.5)

for some nonnegative integer r, and each multi-index α with |α| ≤ N . If

u is (N + r)-times continuously differentiable on U,(13.3.6)

then
L(u) is r-times continuously differentiable on U,(13.3.7)

as in Section 2.4. Under these conditions, L defines a linear mapping from
CN+r(U,Rl1) into Cr(U,Rl2), or from CN+r(U,Cl1) into Cr(U,Cl2), as ap-
prorpiate.

Similarly, if
aα is smooth on U(13.3.8)

for every multi-index α with |α| ≤ N , and

u is smooth on U,(13.3.9)

then
L(u) is smooth on U(13.3.10)

as well. Under these conditions, L defines a linear mapping from C∞(U,Rl1)
into C∞(U,Rl2), or from C∞(U,Cl1) into C∞(U,Cl2), as appropriate.

Polynomials on Rn with values in Rl or Cl for some positive integer l will
be discussed in the next section. One can check that the aα’s are uniquely
determined by L(u) for polynomials u with values in Rl1 of degree less than or
equal to N , as in Section 2.4.
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13.3.1 Compositions of differential operators

Let l0 be another positive integer, and let Ñ be another nonnegative integer.
Suppose that for each multi-index β with |β| ≤ Ñ , bβ is a function on U with val-

ues in L(Rl0 ,Rl1) or L(Cl0 ,Cl1). If u is an Ñ -times continuously-differentiable
function on U with values in Rl0 or Cl0 , as appropriate, then

(L̃(u))(x) =
∑

|β|≤Ñ

(bβ(x))((∂
βu)(x))(13.3.11)

defines a function on U with values in Rl1 or Cl1 , as appropriate. If bβ is N -

times continuously-differentiable on U for every multi-index β with |β| ≤ Ñ ,

and u is (N + Ñ)-times continuously differentiable on U , then L̃(u) is N -times
continuously differentiable on U . This implies that

L(L̃(u))(13.3.12)

is defined as a function on U with values in Rl2 or Cl2 , as appropriate.
As in Subsection 2.4.1, (13.3.12) may be expressed as

(L̂(u))(x) =
∑

|γ|≤N+Ñ

(cγ(x))((∂
γu)(x)).(13.3.13)

Here cγ is a function on U with values in L(Rl0 ,Rl2) or L(Cl0 ,Cl2) for each

multi-index γ with |γ| ≤ N + Ñ . These functions can be expressed as sums of
products of the aα’s with the bβ ’s and their derivatives of order less than or equal
to N , as before. More precisely, these products correspond to compositions of
linear mappings from Rl0 or Cl0 into Rl1 or Cl1 with linear mappings from Rl1

or Cl1 into Rl2 or Cl2 to get linear mappings from Rl0 or Cl0 into Rl2 or Cl2 ,
as appropriate.

If aα is r-times continuously differentiable on U for some r ≥ 0 and every
α with |α| ≤ N , and if bβ is (N + r)-times continuously differentiable on U

for every β with |β| ≤ Ñ , then cγ is r-times continuously differentiable on U

for every γ with |γ| ≤ N + Ñ . If u is also (N + Ñ + r)-times continuously

differentiable on U , then L̃(u) is (N +r)-times continuously differentiable on U ,

and L̂(u) is r-times continuously differentiable on U , as before. In particular, if
the aα’s and bβ ’s are smooth on U , then the cγ ’s are smooth on U . In this case,

if u is smooth on U , then L̃(u) and L̂(u) are smooth on U as well.

13.4 Vector-valued polynomials

Let n and l be positive integers again, and let

P(Rn,Rl) and P(Rn,Cl)(13.4.1)
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be the spaces of polynomials on Rn with coefficients in Rl and Cl, respectively.
These spaces can be identified with the spaces

P(Rn,R)l and P(Rn,C)l(13.4.2)

of l-tuples of polynomials on Rn with real or complex coefficients, as appropri-
ate. These are also linear subspaces of C∞(Rn,Rl) and C∞(Rn,Cl), respec-
tively, as vector spaces over the real or complex numbers, as appropriate.

If k is a nonnegative integer, then let

Pk(Rn,Rl) and Pk(Rn,Cl)(13.4.3)

be the spaces of polynomials on Rn with coefficients in Rl and Cl, respectively,
and degree less than or equal to k. These are linear subspaces of P(Rn,Rl) and
P(Rn,Cl), as vector spaces over the real or complex numbers, as appropriate.
We can identify these spaces with the spaces

Pk(Rn,R)l and Pk(Rn,C)l(13.4.4)

of l-tuples of polynomials on Rn with real and complex coefficients, respectively,
of degree less than or equal to k.

Note that Pk(Rn,Rl) and Pk(Rn,Cl) have the same finite dimension, as
vector spaces over R and C, respectively. This is equal to l times the dimension
of Pk(Rn,R) and Pk(Rn,C), which is the same as the number of multi-indices
β with order |β| ≤ k, as in Section 5.11.

Let l1, l2 be positive integers, and let

P(Rn,L(Rl1 ,Rl2)), P(Rn,L(Cl1 ,Cl2))(13.4.5)

be the spaces of polynomials on Rn with coefficients in L(Rl1 ,Rl2), L(Cl1 ,Cl2),
respectively. These spaces may be identified with

P(Rn,Rl1 l2), P(Rn,Cl1 l2),(13.4.6)

respectively, as in Section 13.2.

If k is a nonnegative integer, then let

Pk(Rn,L(Rl1 ,Rl2)), Pk(Rn,L(Cl1 ,Cl2))(13.4.7)

be the spaces of polynomials on Rn with coefficients in L(Rl1 ,Rl2), L(Cl1 ,Cl2),
respectively, and degree less than or equal to k. These may be identified with
the spaces

Pk(Rn,Rl1 l2), Pk(Rn,Cl1 l2),(13.4.8)

respectively, as before.
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13.4.1 Some remarks about degrees

Suppose that a(x) be a polynomial on Rn with coefficients in L(Rl1 ,Rl2) or
L(Cl1 ,Cl2), and let v(x) be a polynomial on Rn with coefficients in Rl1 or Cl1 ,
as appropriate. Observe that

a(x)(v(x)) is a polynomial on Rn with coefficients in Rl2 or Cl2 ,(13.4.9)

as appropriate, and that

deg(a(x)(v(x))) ≤ deg a(x) + deg v(x).(13.4.10)

Let l0 be another positive integer, and let b(x) be a polynomial on Rn with
coefficients in L(Rl0 ,Rl1) or L(Cl0 ,Cl1), as appropriate. The product

a(x) b(x)(13.4.11)

may be defined as in Subsection 13.2.3, and is a polynomial on Rn with coeffi-
cients in L(Rl0 ,Rl2) or L(Cl0 .Cl2), as appropriate. We also have that

deg(a(x) b(x)) ≤ deg a(x) + deg b(x).(13.4.12)

Let
L(Rl) = L(Rl,Rl) and L(Cl) = L(Cl,Cl)(13.4.13)

be the spaces of linear mappings from Rl and Cl into themselves, respectively,
as in Section 5.15. The spaces of polynomials on Rn with coefficients in L(Rl)
and L(Cl) may be denoted

P(Rn,L(Rl)) and P(Rn,L(Cl)),(13.4.14)

respectively. Similarly, the spaces of polynomials on Rn with coefficients in
L(Rl) and L(Cl) and degree less than or equal to k may be denoted

Pk(Rn,L(Rl)) and Pk(Rn,L(Cl)),(13.4.15)

respectively.

13.5 Matrix-valued polynomials

Let n, l1, and l2 be positive integers, and let N be a nonnegative integer. Also
let

p(w) =
∑

|α|≤N

aα w
α(13.5.1)

be a polynomial in the n variables w1, . . . , wn with coefficients in L(Rl1 ,Rl2)
or L(Cl1 ,Cl2) of degree less than or equal to N . Thus, for each multi-index α
with order |α| ≤ N , aα is a linear mapping from Rl1 or Cl1 into Rl2 or Cl2 , as
appropriate.
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Using p, we get a differential operator

p(∂) =
∑

|α|≤N

aα ∂
α,(13.5.2)

as in Section 1.7. More precisely, this is a differential operator with coefficients
in L(Rl1 ,Rl2) or L(Cl1 ,Cl2), as appropriate, as in Section 13.3.

Let b be an element of Rn or Cn, as appropriate, so that exp(b · x) defines
a smooth real or complex-valued function of x ∈ Rn. If v ∈ Rl1 or Cl1 , as
appropriate, then

(exp(b · x)) v(13.5.3)

defines a smooth function of x ∈ Rn with values in Rl1 or Cl1 , as appropriate.
It is easy to see that

(p(∂))((exp(b · x)) v) = (exp(b · x)) (p(b))(v),(13.5.4)

which is a function of x ∈ Rn with values in Rl2 or Cl2 , as appropriate. More
precisely,

p(b)(13.5.5)

is defined as a linear mapping from Rl1 or Cl1 into Rl2 or Cl2 , as appropriate,
which sends v to an element of Rl2 or Cl2 , as appropriate. In particular,

(p(∂))((exp(b · x)) v) = 0(13.5.6)

if and only if
(p(b))(v) = 0.(13.5.7)

13.5.1 Products and compositions

Let l0 be another positive integer, let N0 be another nonnegative integer, and
let p0(w) be a polynomial in w1, . . . , wn with coefficients in L(Rl0 ,Rl1) or
L(Cl0 ,Cl1), as appropriate. Thus

p0(∂)(13.5.8)

is a differential operator with coefficients in L(Rl0 ,Rl1) or L(Cl0 ,Cl1), as ap-
propriate. The product

p(w) p0(w)(13.5.9)

is a polynomial in w1, . . . , wn with coefficients in L(Rl0 ,Rl2) or L(Cl0 ,Cl2), as
appropriate, of degree less than or equal to N0 +N , as in the previous section.
This leads to a differential operator

(p p0)(∂)(13.5.10)

with coefficients in L(Rl0 ,Rl2) or L(Cl0 ,Cl2), as appropriate. One can check
that

(p p0)(∂) = p(∂) p0(∂),(13.5.11)
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as in Subsection 1.7.1.
Let U be a nonempty open subset of Rn, and let u be a function on U

with values in Rl0 or Cl0 , as appropriate, that is (N0 +N)-times continuously
differentiable on U . Thus

(p0(∂))(u)(13.5.12)

is a function on U with values in Rl1 or Cl1 , as appropriate, that is N -times
continuously differentiable on U . Under these conditions, we have that

((p p0)(∂))(u) = (p(∂))((p0(∂))(u))(13.5.13)

on U , as in (13.5.11).
Let l be a positive integer, and let us now take l1 = l2 = l. Let b be an

element of Rn or Cn again, as appropriate, so that p(b) is a linear mapping
from Rl or Cl into itself, as appropriate. Suppose that v is an element of Rl or
Cl, as appropriate, that is an eigenvector of p(b) with eigenvalue λ in R or C,
as appropriate. This implies that

(p(∂))((exp(b · x)) v) = λ (exp(b · x)) v,(13.5.14)

as in (13.5.4).
Note that

det p(w)(13.5.15)

is a polynomial in w1, . . . , wn of degree less than or equal to N · l with real or
complex coefficients, as appropriate.

13.6 Polynomials, vectors, and operators

Let n, l1, and l2 be positive integers, and let N be a nonnegative integer.
Suppose that for each multi-index α with |α| ≤ N , aα is a polynomial on Rn

with coefficients in L(Rl1 ,Rl2) or L(Cl1 ,Cl2). This can be identified with a
polynomial with coefficients in Rl1 l2 or Cl1 l2 , as in Section 13.2.

Using the aα’s, we can define a differential operator L acting on N -times
continuously differentiable functions u on Rn with values in Rl1 or Cl1 , as
appropriate, as in (13.3.1). In this case, L maps polynomials on Rn with coef-
ficients in Rl1 or Cl1 to polynomials on Rn with coefficients in Rl2 or Cl2 , as
appropriate.

Let c be an integer, and suppose that

deg aα ≤ |α| − c(13.6.1)

for each α, |α| ≤ N , which is interpreted as meaning that aα = 0 when |α| < c, as
usual. If p is a polynomial on Rn with coefficients in Rl1 or Cl1 , as appropriate,
then

degL(p) ≤ deg p− c,(13.6.2)

which means that L(p) = 0 when deg p < c, as before.
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13.6.1 The case where l1 = l2 = l

Suppose now that l1 = l2 = l, so that L maps P(Rn,Rl) or P(Rn,Cl) into
itself, as appropriate. If p is a polynomial on Rn with coefficients in Rl or Cl,
as appropriate, then

degLj(p) ≤ deg p− c j(13.6.3)

for each j ≥ 1, by (13.6.2). This means that Lj(p) = 0 when deg p < c j, as
before.

Suppose that c ≥ 0, and let k be a nonnegative integer. Thus L maps
Pk(Rn,Rl) or Pk(Rn,Cl) into itself, as appropriate. Let Lk be the restriction
of L to Pk(Rn,Rl) or Pk(Rn,Cl), as appropriate. If c ≥ 1 and

k < c j,(13.6.4)

then
Lj
k = 0,(13.6.5)

by (13.6.3). In particular, this means that Lk is nilpotent when c ≥ 1.

13.6.2 The exponential of t Lk

Let m(k) be the number of multi-indices β with order |β| ≤ k, so that

Pk(Rn,Rl) and Pk(Rn,Cl) have dimension l ·m(k)(13.6.6)

as vector spaces over R and C, respectively, as in Section 13.4. This permits
us to identify Lk with a linear mapping from Rlm(k) or Clm(k) into itself, as
appropriate. If t ∈ R, then we can define the exponential of t Lk as a linear
mapping on Pk(Rn,Rl) or Pk(Rn,Cl), as appropriate, as in Sections 5.4 and
5.8.

Let q be a polynomial on Rn with coefficients in Rl or Cl, as appropriate,
and of degree less than or equal to k. Note that

(exp(t Lk))(q)(13.6.7)

is another polynomial on Rn with coefficients in Rl or Cl, as appropriate, and
degree less than or equal to k. The coefficients of this polynomial depend on t,
and are smooth functions of t. This implies that

u(x, t) = ((exp(t Lk))(q))(x)(13.6.8)

is smooth as a function of (x, t) ∈ Rn×R with values inRl orCl, as appropriate.
If c ≥ 1, then

exp(t Lk) is a polynomial in t(13.6.9)

whose coefficients are linear mappings on Pk(Rn,Rl) or Pk(Rn,Cl), as appro-
priate, as in Subsection 5.10.1. It follows that

u(x, t) is a polynomial in x and t(13.6.10)
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with coefficients in Rl or Cl, as appropriate, in this case.
Of course,

u(x, 0) = q(x)(13.6.11)

for every x ∈ Rn, and

∂

∂t
((exp(t Lk))(q)) = Lk((exp(t Lk))(q)),(13.6.12)

as in Sections 5.6 and 5.10. This implies that

∂u

∂t
= L(u)(13.6.13)

on Rn ×R, as in Section 5.12.
A standard approach to dealing with equations with higher-order derivatives

in t is to reduce to the case of systems of equations with only first-order deriva-
tives in t. A basic version of this was discussed in Section 5.13. That is much
easier to do here, since we are already working with systems of equations.

13.7 Some more products with exp(b · x)
Let n and l be positive integers, also let N be a nonnegative integer. Also let
p(w) be a polynomial in the n variables w1, . . . , wn with coefficients in L(Rl)
or L(Cl) of degree less than or equal to N , as in Section 13.5. This leads to a
differential operator p(∂), as before.

Let b ∈ Rn or Cn be given, as appropriate. Observe that

pb(w) = p(w + b)(13.7.1)

can be expressed as a polynomial in w1, . . . , wn with coefficients in L(Rl) or
L(Cl), as appropriate, of degree less than or equal to N , as in Section 2.5.

Let pb(∂) be the differential operator associated to pb(w), and let f be an
N -times continuously-differentiable function on Rn with values in Rl or Cl, as
appropriate. Under these conditions,

p(∂)((exp(b · x)) f(x)) = (exp(b · x)) (pb(∂)(f))(x),(13.7.2)

as in Section 5.14.

13.7.1 Exponentials and vector-valued polynomials

If b ∈ Rn, then let

(exp(b · x))P(Rn,Rl)(13.7.3)

be the space of functions on Rn with values in Rl of the form

(exp(b · x)) q(x),(13.7.4)



310 CHAPTER 13. VECTOR-VALUED FUNCTIONS AND SYSTEMS

where q ∈ P(Rn,Rl). This is a linear subspace of C∞(Rn,Rl), as a vector
space over the real numbers. Similarly, if k is a nonnegative integer, then let

(exp(b · x))Pk(Rn,Rl)(13.7.5)

be the space of functions on Rn with values in Rl of the form (13.7.4), with
q ∈ Pk(Rn,Rl). This is a linear subspace of (13.7.3), as a vector space over
R. If p(w) has coefficients in L(Rl), then p(∂) maps (13.7.3) and (13.7.5) into
themselves, because of (13.7.2), as in Section 5.14.

If b ∈ Cn, then let
(exp(b · x))P(Rn,Cl)(13.7.6)

be the space of functions on Rn with values in Cl of the form (13.7.4), with
q ∈ P(Rn,Cl). Similarly, if k is a nonnegative integer, then let

(exp(b · x))Pk(Rn,Cl)(13.7.7)

be the space of functions on Rn with values in Cl of the form (13.7.4), with
q ∈ Pk(Rn,Cl). These are linear subspaces of C∞(Rn,Cl), as a vector space
over the complex numbers. If p(w) has coefficients in L(Cl), then p(∂) maps
(13.7.6) and (13.7.7) into themselves, because of (13.7.2), as before.

13.8 Some remarks about nilpotency

Let n, l, N , and p(w) be as at the beginning of the previous section. Suppose
for the moment that p(0) is nilpotent, so that

p(0)r+1 = 0(13.8.1)

onRl orCl, as appropriate, for some nonnegative integer r. If k is a nonnegative
integer, then it follows that

p(∂)r+1 is nilpotent on Pk(Rn,Rl) or Pk(Rn,Cl),(13.8.2)

as appropriate, as in Subsection 13.6.1. Of course, this means that

p(∂) is nilpotent on Pk(Rn,Rl) or Pk(Rn,Cl),(13.8.3)

as appropriate.
Put

L = p(∂),(13.8.4)

and let Lk be the restriction of L to Pk(Rn,Rl) or Pk(Rn,Cl), as appropriate,
for each nonnegative integer k. If t ∈ R, then we can define

exp(t Lk)(13.8.5)

as a linear mapping on Pk(Rn,Rl) or Pk(Rn,Cl), as appropriate, as in Sections
5.4 and 5.8. If p(0) is nilpotent, so that Lk is nilpotent, then

exp(t Lk) is a polynomial in t(13.8.6)
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whose coefficients are linear mappings on Pk(Rn,Rl) or Pk(Rn,Cl), as appro-
priate, as in Subsection 5.10.1.

Let q be an element of Pk(Rn,Rl) or Pk(Rn,Cl), as appropriate. If p(0) is
nilpotent, then

(exp(t Lk))(q)(13.8.7)

may be considered as a polynomial in t with coefficients in Pk(Rn,Rl) or
Pk(Rn,Cl), as appropriate. In particular,

((exp(t Lk))(q))(x)(13.8.8)

is a polynomial in x and t with coefficients in Rl or Cl, as appropriate.

13.8.1 Nilpotency of p(b)

Let b ∈ Rn or Cn be given, as appropriate, and let pb(w) be as in (13.7.1).
Suppose now that

pb(0) = p(b) is nilpotent(13.8.9)

on Rl or Cl, as appropriate. If k is a nonnegative integer, then

the restriction of pb(∂) to Pk(Rn,Rl) or Pk(Rn,Cl),(13.8.10)

as appropriate, is nilpotent,

by the remarks at the beginning of the section. This implies that

the restriction of p(∂) to (13.7.5) or (13.7.7),(13.8.11)

as appropriate, is nilpotent,

because of (13.7.2).

13.9 The characteristic polynomial

Let l be a positive integer, and let A be a linear mapping from Rl or Cl into
itself. If t is a real or complex number, then A− t I is another linear mapping
from Rl or Cl into itself, as appropriate, where I is the identity mapping on Rl

or Cl. Thus

chA(t) = det(A− t I)(13.9.1)

defines a real or complex-valued function on R or C, as appropriate. More
precisely, chA(t) is a polynomial of degree l in t, with real or complex coefficients,
as appropriate. This is known as the characteristic polynomial of A.

The characteristic polynomial may be expressed as

chA(t) =

l∑
j=0

cj t
j ,(13.9.2)
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with cj ∈ R or C for each j, as appropriate. Remember that the determinant
of an l × l matrix is given by a homogeneous polynomial of degree l in the l2

entries of the matrix. This means that cj is given by a homogeneous polynomial
of degree l − j in the l2 entries of the l × l matrix corresponding to A. In
particular,

cl = (−1)l,(13.9.3)

and c0 = detA. The zeros of chA(t) in R or C are the same as the eigenvalues
of A as a linear mapping on Rl or Cl, as appropriate, by standard arguments.

A polynomial of degree l in t with complex coefficients is equal to the prod-
uct of the coefficient of tl and l linear factors, corresponding to the l zeros of
the polynomial in C, with their appropriate multiplicities, by the fundamen-
tal theorem of algebra. It follows that chA(t) is uniquely determined by the
eigenvalues of A in the complex case, because of (13.9.3).

If A is nilpotent, then it is easy to see that 0 is the only eigenvalue of A.
This implies that

chA(t) = (−1)l tl(13.9.4)

in the complex case, by the remarks in the preceding paragraph. Equivalently,
this means that

cj = 0, 0 ≤ j ≤ l − 1.(13.9.5)

One can get the same conclusion in the real case using the unique extension of
a linear mapping from Rl into itself to a linear mapping from Cl into itself, as a
vector space over the complex numbers. Another proof of this will be mentioned
in the next section.

13.9.1 The Cayley–Hamilton theorem

If A is any linear mapping from Rl or Cl into itself, then the Cayley–Hamilton
theorem states that

chA(A) =

l∑
j=0

cj A
j = 0,(13.9.6)

where A0 is interpreted as being equal to I. If (13.9.4) holds, then it follows
that

Al = 0.(13.9.7)

13.10 More on nilpotent linear mappings

Let l be a positive integer again, and let A be a linear mapping from Rl or Cl

into itself. If τ is a real or complex number, then I−τ A defines a linear mapping
from Rl or Cl into itself, as appropriate. Let r be a nonnegative integer, and
observe that

(I − τ A)

r∑
j=0

τ j Aj =

r∑
j=0

τ j Aj −
r+1∑
j=1

τ j Aj = I − τ r+1Ar+1.(13.10.1)
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Similarly, ( r∑
j=0

τ j Aj
)
(I − τ A) = I − τ r+1Ar+1.(13.10.2)

If

Ar+1 = 0,(13.10.3)

then it follows that I − τ A is invertible, with

(I − τ A)−1 =

r∑
j=0

τ j Aj .(13.10.4)

Note that

det(I − τ A)(13.10.5)

and

det
( r∑

j=0

τ j Aj
)

(13.10.6)

are polynomials in τ with real or complex coefficients, as appropriate. Both of
these polynomials are equal to 1 at τ = 0. If (13.10.3) holds, then

det(I − τ A) det
( r∑

j=0

τ j Aj
)
= 1(13.10.7)

for all τ in R or C, as appropriate. One can use this to get that

det(I − τ A) = 1(13.10.8)

and

det
( r∑

j=0

τ j Aj
)
= 1(13.10.9)

for each τ .

If t is a nonzero real or complex number, as appropriate, then it is easy to
see that (13.9.4) is equivalent to (13.10.8), with τ = 1/t. Of course, if (13.9.4)
holds for all t 6= 0, then it holds when t = 0 too. One could also obtain (13.9.4)
with t = 0 more directly from (13.10.3). This is another way to obtain (13.9.4)
from (13.10.3), as mentioned in the previous section.

13.10.1 Polynomials of linear mappings

If

f(t) =

m∑
j=0

bj t
j(13.10.10)
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is any polynomial with real or complex coefficients, then

f(A) =

m∑
j=0

bj A
j(13.10.11)

defines a linear mapping from Rl or Cl into itself, as appropriate. If A is any
linear mapping from Rl or Cl into itself, then it is well known that one can find
a nonzero polynomial f(t) of degree at most l2 such that

f(A) = 0.(13.10.12)

Of course, this follows from the Cayley–Hamilton theorem, and it can also be
obtained more directly from the fact that L(Rl), L(Cl) have dimension l2, as
vector spaces over the real and complex numbers, respectively.

If A is a linear mapping from Cl into itself, and A − t I is invertible for
every t ∈ C with t 6= 0, then (13.10.12) implies that A is nilpotent, because f
can be expressed as the product of a nonzero constant and finitely many linear
factors. This invertibility condition holds when (13.9.2) holds for every t ∈ C,
or equivalently (13.10.8) holds for every τ ∈ C. If A is a linear mapping from
Rl into itself, then A has a unique extension to a linear mapping from Cl into
itself, as a vector space over the complex numbers, that we may denote by A as
well. If (13.9.4) holds for every t ∈ R, or equivalently (13.10.8) holds for every
τ ∈ R, then these conditions hold for all t, τ ∈ C, because the left sides of these
equations are polynomials in t, τ , respectively. The argument in the complex
case implies that A is nilpotent on Cl, and thus on Rl.



Chapter 14

Power series in several
variables

14.1 Sums over multi-indices

Let n be a positive integer, and consider the set

(Z+ ∪ {0})n(14.1.1)

of all n tuples of elements of the set Z+ ∪ {0} of nonnegative integers. Equiva-
lently, this is the set of all multi-indices. If f is a real or complex-valued function
on (Z+ ∪ {0})n, then we may be interested in a sum of the form∑

α∈(Z+∪{0})n
f(α).(14.1.2)

Of course, this can be reduced to a finite sum when f(α) = 0 for all but finitely
many multi-indices α. If n = 1, then this may be interpreted as an infinite
series.

One can try to define (14.1.2) for any n by reducing to an infinite series.
One way to do this is to use the fact that (Z+ ∪ {0})n is countably infinite, so
that one can find a sequence

{α(l)}∞l=0(14.1.3)

of multi-indices in which every multi-index occurs exactly once. Thus one may
try to interpret the sum (14.1.2) as being equal to the infinite series

∞∑
l=0

f(α(l)).(14.1.4)

315
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14.1.1 Some limits of finite sums

Alternatively, let E0, E1, E2, E3, . . . be an infinite sequence of nonempty finite
subsets of (Z+ ∪ {0})n such that

EN ⊆ EN+1(14.1.5)

for every nonnegative integer N , and

∞⋃
N=0

EN = (Z+ ∪ {0})n.(14.1.6)

One may wish to interpret the sum (14.1.2) as being equal to

lim
N→∞

∑
α∈EN

f(α),(14.1.7)

if the limit exists.
Let {α(l)}∞l=0 be an enumeration of (Z+ ∪ {0})n, as before. If we put

EN = {α(0), α(1), . . . , α(N)}(14.1.8)

for each nonnegative integer N , then we get a sequence of nonempty finite
subsets of (Z+ ∪ {0})n that satisfies (14.1.5) and (14.1.6). In this case,

∑
α∈EN

f(α) =

N∑
l=0

f(α(l))(14.1.9)

for each N ≥ 0, so that (14.1.4) is the same as (14.1.7).
As another basic example, one can take EN to be

{α ∈ (Z+ ∪ {0})n : |α| ≤ N}(14.1.10)

for each N ≥ 0, where |α| is the order of α, as usual. Another possibility is to
take EN to be

{α ∈ (Z+ ∪ {0})n : αj ≤ N for each j = 1, . . . , N}(14.1.11)

for every N ≥ 0. These are the same when n = 1, in which case (14.1.7) is the
same as the usual interpretation of (14.1.2) as an infinite series.

14.1.2 Sums with nonnegative terms

Let f be a nonnegative real-valued function on (Z+∪{0})n. If A is a nonempty
finite subset of (Z+ ∪ {0})n, then ∑

α∈A

f(α)(14.1.12)
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is a nonnegative real number. Let us say that f is summable on (Z+ ∪ {0})n
if the collection of these finite sums has an upper bound in R. Under these
conditions, the sum (14.1.2) may be defined as the supremum or least upper
bound of the set of these finite sums. Otherwise, it is sometimes convenient to
interpret (14.1.2) as being equal to +∞.

If n = 1, then the summability of f is equivalent to the convergence of the
corresponding infinite series of nonnegative real numbers, with the same value of
the sum. If {α(l)}∞l=0 is any enumeration of (Z+ ∪ {0})n, then the summability
of f is equivalent to the convergence of (14.1.4), with the same value of the sum.

Let E0, E1, E2, E3, . . . be an infinite sequence of nonempty finite subsets of
(Z+ ∪ {0})n that satisfies (14.1.5) and (14.1.6) again. It is easy to see that f is
summable on (Z+ ∪ {0})n if and only if the sums∑

α∈EN

f(α)(14.1.13)

are bounded. In this case, the supremum of these sums is the same as the
supremum of the set of sums of the form (14.1.12). We also get that the limit
in (14.1.7) exists and is equal to this supremum, because the sums (14.1.13) are
monotonically increasing in N .

14.1.3 A nice family of functions

Suppose that f can be expressed as

f(α) =

n∏
j=1

fj(αj),(14.1.14)

where fj is a nonnegative real-valued function on the set Z+∪{0} of nonnegative
integers for each j = 1, . . . , n. If EN is as in (14.1.11), then

∑
α∈EN

f(α) =

n∏
j=1

( N∑
αj=0

fj(αj)
)

(14.1.15)

for each N ≥ 0. If fj is summable on Z+ ∪ {0} for each j = 1, . . . , n, then it
follows that f is summable on (Z+ ∪ {0})n, with∑

α∈(Z+∪{0})n
f(α) =

n∏
j=1

( ∞∑
αj=0

fj(αj)
)
.(14.1.16)

Conversely, if f is summable on (Z+∪{0})n, and if none of the fj ’s is identically
zero on Z+ ∪ {0}, then fj is summable on Z+ ∪ {0} for each j.

14.1.4 Some examples

As a basic family of examples, let r be an element of the set

(R+ ∪ {0})n(14.1.17)
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of n-tuples of nonnegative real numbers, and put

f(α) = rα(14.1.18)

for each multi-index α. This is of the form (14.1.14), with

fj(αj) = rαj(14.1.19)

for each j = 1, . . . , n. It follows that f is summable on (Z+ ∪ {0})n if and only
if rj < 1 for each j = 1, . . . , n, in which case

∑
α∈(Z+∪{0})n

rα =

n∏
j=1

(1− rj)
−1.(14.1.20)

14.2 Real and complex-valued functions

Let n be a positive integer, and let f be a real or complex-valued function
on (Z+ ∪ {0})n. Let us say that f is summable on (Z+ ∪ {0})n if |f(α)| is
summable as a nonnegative real-valued function on (Z+ ∪ {0})n. If f is real
valued, then this is equivalent to the summability of f+(α) = max(f(α), 0)
and f−(α) = max(−f(α), 0) on (Z+ ∪ {0})n. If f is complex valued, then
summability of f is equivalent to the summability of the real and imaginary
parts of f .

If f is a summable real or complex-valued function on (Z+ ∪ {0})n, then
the sum (14.1.2) may be defined as a real or complex number, as appropriate,
by reducing to the case of nonnegative real-valued summable functions. More
precisely, if f is real valued, then the sum may be defined as the difference of
the analogous sums for f+ and f−. If f is complex valued, then the real and
imaginary parts of the sum may be defined as the corresponding sums of the
real and imaginary parts of f . In both cases, the sum (14.1.2) may be described
equivalently as in (14.1.4) or (14.1.7), because of the analogous statements for
nonnegative real-valued summable functions.

14.2.1 A basic inequality

We also have that ∣∣∣∣ ∑
α∈(Z+∪{0})n

f(α)

∣∣∣∣ ≤ ∑
α∈(Z+∪{0})n

|f(α)|(14.2.1)

in both cases. If f is real valued, then this follows directly from the definition of
the sum (14.1.2) mentioned in the preceding paragraph. If f is complex valued,
and one tries to consider the real and imaginary parts of the sum directly, then
one gets an extra factor of 2 on the right side, or

√
2 with a bit more effort.

Of course, if f(α) = 0 for all but finitely many α ∈ (Z+ ∪ {0})n, then (14.2.1)
follows from the triangle inequality for the absolute value of a complex number.
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One can use this to get (14.2.1), by expressing the sum (14.1.2) as in (14.1.4)
or (14.1.7).

One can also reduce the complex case to the real case, by considering Re(a f)
with a ∈ C and |a| = 1. More precisely, one can choose a so that

∑
α∈(Z+∪{0})n

Re(a f(α)) = Re
(
a

∑
α∈(Z+∪{0})n

f(α)
)

(14.2.2)

=

∣∣∣∣ ∑
α∈(Z+∪{0})n

f(α)

∣∣∣∣.

14.2.2 More on summable functions

It is easy to see that the spaces of real and complex-valued summable functions
on (Z+∪{0})n are linear subspaces of the spaces of all real and complex-valued
functions on (Z+ ∪ {0})n, as vector spaces over R and C, respectively. The
linearity of the sum (14.1.2) in f can be obtained from the descriptions of the
sum as in (14.1.4) or (14.1.7).

If n = 1, then the summability of f is equivalent to the absolute convergence
of the corresponding infinite series. Similarly, if {α(l)}∞l=0 is any enumeration of
(Z+∪{0})n, then the summablility of f is equivalent to the absolute convergence
of (14.1.4).

14.2.3 More on examples

Suppose that f is as in (14.1.14), where fj is a real or complex-valued summable
function on Z+ ∪ {0} for each j = 1, . . . , n. This implies that f is summable on
(Z+∪{0})n, as in the previous section. One can check that (14.1.16) holds under
these conditions, using the same type of argument as before, or by reducing to
the previous case.

Let z ∈ Cn be given, and put

f(α) = zα(14.2.3)

for each multi-index α. If |zj | < 1 for each j = 1, . . . , n, then f is summable on
(Z+ ∪ {0})n, as in the previous section. In this case,

∑
α∈(Z+∪{0})n

zα =

n∏
j=1

(1− zj)
−1,(14.2.4)

by (14.1.16).
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14.3 Cauchy products

Let n be a positive integer, and let f , g be real or complex-valued functions on
(Z+ ∪ {0})n. If γ is a multi-index, then put

h(γ) =
∑

α+β=γ

f(α) g(β).(14.3.1)

More precisely, the sum on the right is taken over all multi-indices α, β such
that α+ β = γ. Note that there are only finitely many such multi-indices α, β.

Suppose for the moment that f(α) = 0 for all but finitely many multi-indices
α, and that g(β) = 0 for all but finitely many multi-indices β. This implies that
h(γ) = 0 for all but finitely many multi-indices γ. Under these conditions, one
can verify that∑

γ∈(Z+∪{0})n
h(γ) =

( ∑
α∈(Z+∪{0})n

f(α)
)( ∑

β∈(Z+∪{0})n
g(β)

)
.(14.3.2)

In fact, both sides of the equation are the same as the sum of f(α) g(β) over
all multi-indices α, β. The sum on the left may be desacribed as the Cauchy
product of the two sums on the right.

14.3.1 Nonnegative real-valued functions

Suppose now that f , g are nonnegative real-valued functions on (Z+ ∪ {0})n,
so that h is nonnegative as well. If N is a nonnegative integer, then let EN be
the set of multi-indices α with order |α| ≤ N , as in (14.1.10). Observe that∑

γ∈EN

h(γ) ≤
( ∑

α∈EN

f(α)
)( ∑

β∈EN

g(β)
)

(14.3.3)

and ( ∑
α∈EN

f(α)
)( ∑

β∈EN

g(β)
)
≤

∑
γ∈E2N

h(γ)(14.3.4)

for each N ≥ 0. If f and g are summable on (Z+ ∪ {0})n, then it follows that
h is summable too, and that (14.3.2) holds.

14.3.2 Arbitrary functions

If f and g are any real or complex-valued functions on (Z+ ∪ {0})n, then

|h(γ)| ≤
∑

α+β=γ

|f(α)| |g(β)|(14.3.5)

for every multi-index γ. Suppose that f and g are summable on (Z+ ∪ {0})n,
which implies that the right side of (14.3.5) is summable as a function of γ, as
in the preceding paragraph. It follows that h is summable as well, with∑

γ∈(Z+∪{0})n
|h(γ)| ≤

( ∑
α∈(Z+∪{0})n

|f(α)|
)( ∑

β∈(Z+∪{0})n
|g(β)|

)
.(14.3.6)
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One can check that (14.3.2) holds too, by reducing to the case of nonnegative
real-valued summable functions.

14.3.3 A family of examples

Let z ∈ Cn be given, and suppose that

f(α) = aα z
α, g(β) = bβ z

β(14.3.7)

for all multi-indices α, β, where aα, bβ are complex numbers. If we put

cγ =
∑

α+β=γ

aα bβ(14.3.8)

for each multi-index γ, then we get that

h(γ) = cγ z
γ .(14.3.9)

14.4 Power series on closed polydisks

Let n be a positive integer, and let z0 = (z0,1, . . . , z0,n) ∈ Cn be given. Also let
aα be a complex number for each multi-index α, and consider the power series

f(z) =
∑

α∈(Z+∪{0})n
aα (z − z0)

α(14.4.1)

in z1, . . . , zn, centered at z0. More precisely, the sum on the right is defined as
a complex number for each z ∈ Cn such that

aα (z − z0)
α(14.4.2)

is summable as a function of α on (Z+ ∪ {0})n.

14.4.1 A basic criterion for summability

Let r ∈ (R+ ∪ {0})n be given, and suppose for the moment that

|aα| rα(14.4.3)

is summable as a function of α on (Z+ ∪ {0})n. This implies that (14.4.2) is
summable as a function of α on (Z+ ∪ {0})n when

|zj − z0,j | ≤ rj , 1 ≤ j ≤ n.(14.4.4)

This means that (14.4.1) defines a complex-valued function on the closed poly-
disk

{z ∈ Cn : |zj − z0,j | ≤ rj , 1 ≤ j ≤ n},(14.4.5)

which is a closed set in Cn, with respect to the standard Euclidean metric.
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14.4.2 Approximation by finite sums

Let ϵ > 0 be given, and let A(ϵ) be a nonempty finite subset of (Z+ ∪ {0})n
such that ∑

α∈(Z+∪{0})n
|aα| rα <

( ∑
α∈A(ϵ)

|aα| rα
)
+ ϵ.(14.4.6)

The existence of such a set follows from the definition of the sum on the left,
as the supremum of the corresponding sums over nonempty finite subsets of
(Z+ ∪ {0})n, as in Subsection 14.1.2. Using this, we get that∑

α∈(Z+∪{0})n\A(ϵ)

|aα| rα < ϵ,(14.4.7)

because of the linearity of the sum.
Let A be a nonempty finite subset of (Z+ ∪ {0})n such that

A(ϵ) ⊆ A.(14.4.8)

If z ∈ Cn satisfies (14.4.4), then∣∣∣∣f(z)− ∑
α∈A

aα (z − z0)
α

∣∣∣∣ =

∣∣∣∣ ∑
α∈(Z+∪{0})n\A

aα (z − z0)
α

∣∣∣∣(14.4.9)

≤
∑

α∈(Z+∪{0})n\A

|aα| rα

≤
∑

α∈(Z+∪{0})n\A(ϵ)

|aα| rα < ϵ.

14.4.3 A uniform convergence property

Let E0, E1, E2, E3, . . . be an infinite sequence of nonempty finite subsets of (Z+∪
{0})n that satisfy (14.1.5) and (14.1.6). If z ∈ Cn satisfies (14.4.4), then

lim
N→∞

∑
α∈EN

aα (z − z0)
α = f(z),(14.4.10)

as in Sections 14.1 and 14.2. In fact, the convergence is uniform over (14.4.5),
as in (14.4.9). This corresponds to a classical criterion for uniform convergence
of Weierstrass. It follows that f is continuous on (14.4.5), because polynomials
are continuous on Cn.

14.5 Power series on open polydisks

Let n be a positive integer, let z0 ∈ Cn be given, and let aα be a complex number
for each multi-index α. Also let t be an element of the set (R+ ∪ {+∞})n of
positive extended real numbers. Suppose that if r ∈ (R+ ∪ {0})n satisfies

rj < tj , 1 ≤ j ≤ n,(14.5.1)
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then (14.4.3) is summable as a function of α on (Z+ ∪{0})n. If z ∈ Cn satisfies

|zj − z0,j | < tj , 1 ≤ j ≤ n,(14.5.2)

then it follows that (14.4.2) is summable as a function of α on (Z+ ∪ {0})n.
This implies that (14.4.1) defines a complex-valued function on

{z ∈ Cn : |zj − z0,j | < tj , 1 ≤ j ≤ n},(14.5.3)

which is an open set in Cn, with respect to the standard Euclidean metric. This
set may be described as an open polydisk inCn, at least when t1, . . . , tn are finite.
One can check that f is continuous on (14.5.3), because its restriction to any
closed polydisk (14.4.5) is continuous when (14.5.1) holds, as in the previous
section.

14.5.1 Another criterion for summability

Suppose for the moment that t1, . . . , tn are finite, and that

|aα| tα(14.5.4)

is bounded as a function of α on (Z+ ∪ {0})n. If r ∈ (R+ ∪ {0})n satisfies
(14.5.1), then

rα t−α(14.5.5)

is summable as a function of α on (Z+ ∪ {0})n, as in Subsection 14.1.4. This
implies that (14.4.3) is summable as a function of α on (Z+ ∪ {0})n.

14.5.2 Some related summability properties

Let β be a multi-index. If α is another multi-index, then αβ can be defined as a
nonnegative integer in the usual way. If r ∈ (R+ ∪ {0})n satisfies (14.5.1), then

αβ |aα| rα(14.5.6)

is summable as a function of α on (Z+ ∪ {0})n. To see this, one can use an
n-tuple r0 = (r0,1, . . . , r0,n) of positive real numbers such that

rj < r0,j < tj , 1 ≤ j ≤ n.(14.5.7)

Under these conditions,

|aα| rα0(14.5.8)

is summable as a function of α on (Z+ ∪ {0})n, by hypothesis, and

αβ rα r−α
0(14.5.9)

is bounded as a function of α on (Z+ ∪ {0})n, by well-known results.
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14.5.3 Differentiating power series

If one differentiates the right side of (14.4.1) term-by-term, then one gets a power
series of the same type, with suitable coefficients. The remarks in the preceding
paragraph imply that this power series has the same summability properties as
those considered for f(z) in this section. It is well known that f(z) is smooth
on (14.5.3), with derivatives given by differentiating the power series termwise.

More precisely, f(z) is holomorphic on (14.5.3), because polynomials in
z1, . . . , zn are holomorphic on Cn. If β is any multi-index, then

∂|β|f

∂zβ
(z0) = β! aβ .(14.5.10)

Conversely, it is well known that any holomorphic function on (14.5.3) can
be expressed as a power series with these summability properties.

14.6 Double sums

Let m and n be positive integers, and let us refer to multi-indices associated to
n as n-multi-indices, so that we may also consider m-multi-indices and (m+n)-
multi-indices. Let us identify the set (Z+∪{0})m+n of all (m+n)-multi-indices
with the set

(Z+ ∪ {0})m × (Z+ ∪ {0})n(14.6.1)

of ordered pairs (α, β), where α is an m-multi-index, and β is an n-multi-index.

14.6.1 Summable double sum

Let f(α, β) be a nonnegative real-valued function on (Z+ ∪ {0})m+n, identified
with (14.6.1). If

f(α, β) is summable on (Z+ ∪ {0})m+n,(14.6.2)

then it is easy to see that for each α ∈ (Z+ ∪ {0})m,

f(α, β) is summable as a function of β on (Z+ ∪ {0})n.(14.6.3)

If A is a nonempty finite subset of (Z+ ∪ {0})m, then one can check that∑
α∈A

( ∑
β∈(Z+∪{0})n

f(α, β)
)
≤

∑
(α,β)∈(Z+∪{0})m+n

f(α, β).(14.6.4)

This implies that ∑
β∈(Z+∪{0})n

f(α, β)(14.6.5)

is summable as a nonnegative real-valued function of α on (Z+ ∪ {0})m, with∑
α∈(Z+∪{0})m

( ∑
β∈Z+∪{0})n

f(α, β)
)
≤

∑
(α,β)∈(Z+∪{0})m+n

f(α, β).(14.6.6)
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14.6.2 Summable iterated sum

Conversely, suppose that (14.6.3) holds for each α ∈ (Z+ ∪ {0})m, and that

(14.6.5) is summable as a nonnegative real-valued function(14.6.7)

of α on (Z+ ∪ {0})m.
One can check that (14.6.2) holds under these conditions, with∑

(α,β)∈(Z+∪{0})m+n

f(α, β) ≤
∑

α∈(Z+∪{0})m

( ∑
β∈(Z+∪{0})n

f(α, β)
)
.(14.6.8)

This means that∑
(α,β)∈(Z+∪{0})m+n

f(α, β) =
∑

α∈(Z+∪{0})n

( ∑
β∈(Z+∪{0})n

f(α, β)
)

(14.6.9)

in both cases. Of course, there are analogous statements for summing over α
first.

14.6.3 More on double sums

Suppose now that f(α, β) is a summable real or complex-valued function on
(Z+∪{0})m+n. This implies that for each α ∈ (Z+∪{0})m, f(α, β) is summable
as a function of β on (Z+ ∪ {0})n, as before. We also have that∣∣∣∣ ∑

β∈(Z+∪{0})n
f(α, β)

∣∣∣∣ ≤ ∑
β∈(Z+∪{0})n

|f(α, β)|(14.6.10)

for every α ∈ (Z+∪{0})m, as in Subsection 14.2.1. The right side is summable as
a function of α on (Z+ ∪ {0})m, as before. It follows that (14.6.5) is summable
as a function of α on (Z+ ∪ {0})m. One can check that (14.6.9) holds here
too, by reducing to the case of summable nonnegative real-valued functions on
(Z+ ∪ {0})m+n. There are analogous statements for summing over α first, as
before.

14.6.4 A particular case

Now let f(α), g(β) be summable real or complex-valued functions of α, β on
(Z+ ∪ {0})m, (Z+ ∪ {0})n, respectively. One can check that

ϕ(α, β) = f(α) g(β)(14.6.11)

is summable on (Z+ ∪ {0})m+n, by summing

|ϕ(α, β)| = |f(α)| |g(β)|(14.6.12)

one variable at a time. Similarly,∑
(α,β)∈(Z+∪{0})m+n

f(α) g(β)(14.6.13)

=
( ∑

α∈Z+∪{0})m
f(α)

)( ∑
β∈(Z+∪{0})n

g(β)
)
.
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14.7 Some more rearrangements

Let m and n be positive integers, and let A(γ) be a finite set of n-multi-indices
for each m-multi-index γ. Suppose that the A(γ)’s are pairwise disjoint, so that

A(γ) ∩A(γ′) = ∅(14.7.1)

for all m-multi-indices γ, γ′ with γ 6= γ′, and that⋃
γ∈(Z+∪{0})m

A(γ) = (Z+ ∪ {0})n.(14.7.2)

Let ϕ be a real or complex-valued function on (Z+ ∪ {0})n, and put

ψ(γ) =
∑

α∈A(γ)

ϕ(α)(14.7.3)

for every m-multi-index γ. This is interpreted as being equal to 0 when A(γ) =
∅. Note that

|ψ(γ)| ≤
∑

α∈A(γ)

|ϕ(α)|(14.7.4)

for every n-multi-index γ.

14.7.1 Nonnegative ϕ

Suppose for the moment that ϕ is a nonnegative real-valued function on (Z+ ∪
{0})n, so that ψ is a nonnegative real-valued function on (Z+ ∪ {0})m. If ϕ is
summable on (Z+∪{0})n then one can check that ψ is summable on (Z+∪{0})m,
with ∑

γ∈(Z+∪{0})m
ψ(γ) ≤

∑
α∈(Z+∪{0})n

ϕ(α).(14.7.5)

Similarly, if ψ is summable on (Z+ ∪ {0})m, then one can verify that ϕ is
summable on (Z+ ∪ {0})n, with∑

α∈(Z+∪{0})n
ϕ(α) ≤

∑
γ∈(Z+∪{0})m

ψ(γ).(14.7.6)

It follows that ∑
γ∈(Z+∪{0})m

ψ(γ) =
∑

α∈(Z+∪{0})n
ϕ(α)(14.7.7)

in both cases.

14.7.2 Arbitrary summable ϕ

If ϕ is a summable real or complex-valued function on (Z+ ∪ {0})n, then one
can use (14.7.4) and the remarks in the preceding paragraph to get that ψ
is summable on (Z+ ∪ {0})m. One can also check that (14.7.7) holds under
these conditions, by reducing to the case of summable nonnegative real-valued
functions on (Z+ ∪ {0})n.
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14.7.3 Examples related to Cauchy products

As a basic class of examples, let us take n = 2m, and identify the set (Z+ ∪
{0})2m of all (2m)-multi-indices with the set

(Z+ ∪ {0})m × (Z+ ∪ {0})m(14.7.8)

of all ordered pairs (α, β) of m-multi-indices, as in the previous section. If γ is
an m-multi-index, then put

A(γ) = {(α, β) ∈ (Z+ ∪ {0})2m : α+ β = γ}.(14.7.9)

These are pairwise-disjoint nonempty finite subsets of (Z+∪{0})2m, whose union
is all of (Z+ ∪ {0})2m.

Let f , g be real or complex-valued functions on (Z+∪{0})m, and let ϕ(α, β)
be defined on (Z+ ∪ {0})2m as in (14.6.11). In this case,

ψ(γ) =
∑

α+β=γ

f(α) g(β)(14.7.10)

is the same as h(γ) in Section 14.3, and the earlier properties of h(γ) could also
be obtained from the remarks in this and the previous section.



Appendix A

Linear mappings, norms,
and differentials

A.1 Invertible linear mappings

Let V be a vector space over the real or complex numbers. A one-to-one linear
mapping T from V onto itself is said to be invertible, and the corresponding
inverse mapping is denoted T−1, as usual. In this case, T−1 is invertible on V
as well, with

(T−1)−1 = T.(A.1.1)

If T1 and T2 are invertible linear mappings on V , then it is easy to see that their
composition T2 ◦ T1 is invertible on V , with

(T2 ◦ T1)−1 = T−1
1 ◦ T−1

2 .(A.1.2)

The set of invertible linear mappings on V is denoted GL(V ). This is called
the general linear group associated to V . This is a group with respect to com-
position of mappings on V .

A.1.1 Invertibility and determinants

Suppose now that V has positive finite dimension n, as a vector space over the
real or complex numbers, as appropriate. If one chooses a basis for V , then
every linear mapping T from V into itself corresponds to an n × n matrix of
real or complex numbers, as appropriate, in a standard way. The determinant
detT of T is defined as the determinant of the corresponding matrix. It is well
known that this does not depend on the particular choice of basis for V . The
identity mapping I = IV on V corresponds to the usual identity matrix in this
way, which has determinant equal to 1, so that

det I = 1.(A.1.3)

328
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If T1, T2 are linear mappings from V into itself, then

det(T2 ◦ T1) = (detT2) (detT1),(A.1.4)

because of the corresponding property of determinants of products of n × n
matrices. A linear mapping T from V into itself is invertible if and only if

detT 6= 0(A.1.5)

because of the analogous characterization of invertibility of n × n matrices. In
this case, we have that

det(T−1) = (detT )−1,(A.1.6)

because of (A.1.4).
The special linear group of V is defined to be the collection SL(V ) of linear

mappings T from V into itself such that

detT = 1.(A.1.7)

This is a subgroup of GL(V ), because of (A.1.4).

A.1.2 Invertible matrices

Let GL(n,R) be the set of n×nmatrices of real numbers that are invertible with
respect to matrix multiplication, or equivalently that have nonzero determinant.
This is called the general linear group of these n× n matrices of real numbers,
and it is a group with respect to matrix multiplication. The set of all n × n
matrices of real numbers can be identified with Rn2

, by listing the entries of
an n × n matrix in a sequence with n2 terms. It is well known that GL(n,R)

corresponds to an open set in Rn2

in this way. This follows from the fact that
the determinant of an n×n matrix is a polynomial in the entries of the matrix,
which defines a continuous function on Rn2

.
Similarly, let SL(n,R) be the set of n × n matrices of real numbers with

determinant equal to 1. This is called the special linear group of these n × n
matrices of real numbers, and it is a subgroup of GL(n,R). It is easy to see that

SL(n,R) corresponds to a closed set in Rn2

, because the determinant of an n×n
matrix of real numbers corresponds to a continuous function on Rn2

, as in the
preceding paragraph. It is well known that SL(n,R) is a smooth submanifold
of GL(n,R) of dimension n2 − 1, in the sense that it corresponds to a smooth

submanifold of this dimension of the open subset of Rn2

that corresponds to
GL(n,R).

A.2 Eigenvalues and eigenvectors

Let V be a vector space over the real or complex numbers, and let T be a
linear mapping from V into itself. Also let λ be a real or complex number, as



330APPENDIX A. LINEAR MAPPINGS, NORMS, AND DIFFERENTIALS

appropriate. An element v of V is said to be an eigenvector of T with eigenvalue
λ if

T (v) = λ v.(A.2.1)

The set ET (λ) of these v ∈ V is called the eigenspace of T in V associated to
λ. It is easy to see that

ET (λ) is a linear subspace of V.(A.2.2)

More precisely, λ is normally considered to be an eigenvalue of T if there is
a nonzero v ∈ V that is an eigenvector of T with eigenvalue λ, so that

ET (λ) 6= {0}.(A.2.3)

However, v = 0 is considered to be an element of ET (λ) for every λ. Note that
(A.2.1) is the same as saying that

(T − λ I)(v) = 0,(A.2.4)

where I = IV is the identity mapping on V . It follows that λ is an eigenvalue
of T if and only if

T − λ I is not one-to-one on V.(A.2.5)

A.2.1 Commuting linear mappings

Let R be another linear mapping from V into itself. Suppose that R and T
commute with each other on V , which is to say that

R ◦ T = T ◦R.(A.2.6)

If v ∈ V is an eigenvector of T with eigenvalue λ, then

T (R(v)) = R(T (v)) = R(λ v) = λR(v).(A.2.7)

This means that R(v) is also an eigenvector of T with eigenvalue λ, so that

R(v) ∈ ET (λ).(A.2.8)

Equivalently, we have that

R(ET (λ)) ⊆ ET (λ).(A.2.9)

A.2.2 Finite-dimensional vector spaces

Suppose now that V has finite dimension, as a vector space over R or C. It is
well known that a linear mapping from V into itself is one-to-one if and only if
it maps V onto itself. In this case, (A.2.5) is the same as saying that

T − λ I is not invertible on V.(A.2.10)



A.3. LINEAR MAPPINGS ON RN 331

This means that λ is an eigenvalue of T if and only if

det(T − λ I) = 0.(A.2.11)

The left side is a polynomial in λ, with coefficients in R or C, as appropriate,
of degree equal to the dimension of V .

If V is a vector space over the complex numbers of positive finite dimension,
then it follows that every linear mapping from V into itself has an eigenvalue,
because every polynomial of positive degree with complex coefficients has a root
in C.

A.3 Linear mappings on Rn

Let n be a positive integer, and remember that the dot product on Rn is defined
as in Section 1.15, and is also known as the standard inner product on Rn. If T
is a linear mapping from Rn into itself, then there is a unique linear mapping
T ′ from Rn into itself such that

T (x) · y = x · T ′(y)(A.3.1)

for every x, y ∈ Rn, as in Subsection 1.15.2. This may be called the adjoint of
T . It is easy to see that

(T ′)′ = T,(A.3.2)

using (A.3.1), or the fact that the matrix associated to T ′ in the usual way is
the same as the transpose of the matrix associated to T , as before. Note that

I ′ = I,(A.3.3)

where I = IRn is the identity mapping on Rn.
The space L(Rn) of linear mappings from Rn into itself may be considered

as a vector space over the real numbers with respect to pointwise addition and
scalar multiplication of linear mappings. This corresponds to the space of n×n
matrices of real numbers, as a vector space over R with respect to entrywise
addition and scalar multiplication of matrices, using the matrices associated to
linear mappings in the usual way. Note that

T 7→ T ′(A.3.4)

is linear, as a mapping from L(Rn) into itself. This can be verified using the
characterization of T ′ in (A.3.1), or the fact that the matrix associated to T ′ is
the same as the transpose of the matrix associated to T .

If
T ′ = T,(A.3.5)

then we may say that T is self-adjoint or symmetric with respect to the standard
inner product on Rn. Equivalently, this means that

T (x) · y = x · T (y)(A.3.6)
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for all x, y ∈ Rn. An n × n matrix of real numbers is said to be symmetric if
it is equal to its transpose. Thus T is symmetric if and only if the associated
matrix is symmetric. If T is symmetric, then it is well known that there is an
orthonormal basis for Rn, with respect to the standard inner product, consisting
of eigenvectors of T .

Similarly, if
T ′ = −T,(A.3.7)

then T is said to be anti-self-adjoint or antisymmetric with respect to the stan-
dard inner product on Rn. This is the same as saying that

T (x) · y = −x · T (y)(A.3.8)

for all x, y ∈ Rn. An n× n matrix of real numbers is said to be antisymmetric
if it is equal to −1 times its transpose. It follows that T is antisymmetric if and
only if the associated matrix is antisymmetric.

A.3.1 More on adjoints

If T1, T2 are any linear mappings from Rn into itself, then

(T1 ◦ T2)′ = T ′
2 ◦ T ′

1,(A.3.9)

as in Subsection 5.5.2. This corresponds to a well-known fact about the trans-
pose of a product of matrices. If T is antisymmetric, then one can use this to
get that

(T ◦ T )′ = T ◦ T,(A.3.10)

so that T 2 = T ◦ T is self-adjoint.
If T is any linear mapping from Rn into itself, then

(1/2) (T + T ′)(A.3.11)

is symmetric,
(1/2)(T − T ′)(A.3.12)

is antisymmetric, and T is equal to the sum of (A.3.11) and (A.3.12). One
can check that this is the only way in which T can be expressed as a sum of
symmetric and antisymmetric linear mappings on Rn.

If
T ◦ T ′ = T ′ ◦ T,(A.3.13)

then one may say that T is normal, although this term is perhaps more com-
monly used for an analogous property in the complex case. It is easy to see that
T is normal if and only if (A.3.11) and (A.3.12) commute with each other.

If T is any linear mapping from Rn into itself, then

detT ′ = detT.(A.3.14)

This follows from the fact that the determinant of an n × n matrix is equal to
the determinant of its transpose.
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A.4 More on L(Rn)

Let n be a positive integer, and note that the sets of linear mappings from
Rn into itself that are self-adjoint or anti-self-adjoint are linear subspaces of
L(Rn). Of course, if a linear mapping T from Rn into itself is both self-adjoint
and anti-self-adjoint, then T = 0. Clearly

dimL(Rn) = n2,(A.4.1)

because the dimension of the space of n × n matrices of real numbers is equal
to n2, as a vector space over R. The dimension of the space of self-adjoint
linear mappings from Rn into itself is the same as the dimension of the space
of symmetric n× n matrices of real numbers, which is

n2 + n

2
.(A.4.2)

Similarly, the dimension of the space of anti-self-adjoint linear mappings from
Rn into itself is the same as the dimension of the space of antisymmetric n× n
matrices of real numbers, namely,

n2 − n

2
.(A.4.3)

A.4.1 Some properties of T ′ ◦ T
If T is any linear mapping from Rn into itself, then

(T ′ ◦ T )′ = T ′ ◦ (T ′)′ = T ′ ◦ T,(A.4.4)

so that T ′ ◦ T is self-adjoint. Observe that

(T ′ ◦ T )(x) · y = T ′(T (x)) · y = T (x) · T (y)(A.4.5)

for every x, y ∈ Rn. This implies that

(T ′ ◦ T )(x) · x = |T (x)|2 ≥ 0(A.4.6)

for every x ∈ Rn. It follows that the eigenvalues of T ′ ◦ T are nonnegative.
Of course, if

T (x) = 0(A.4.7)

for some x ∈ Rn, then

(T ′ ◦ T )(x) = 0.(A.4.8)

Conversely, (A.4.8) implies (A.4.7), because of (A.4.6). This means that

ker(T ′ ◦ T ) = kerT.(A.4.9)
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A.4.2 Invertibility and adjoints

If T is a one-to-one linear mapping from Rn onto itself, then one can check that
T ′ is invertible on Rn as well, with

(T ′)−1 = (T−1)′,(A.4.10)

using (A.3.9). In particular, this implies that T ′ ◦ T is invertible on Rn.
Remember that a one-to-one linear mapping T from Rn onto itself is said

to be an orthogonal transformation if it preserves the standard inner product,
as in Subsection 1.15.1. This is equivalent to preserving the standard Euclidean
norm on Rn, as before.

The condition that T preserve the standard inner product on Rn is the same
as saying that

(T ′ ◦ T )(x) · y = x · y(A.4.11)

for all x, y ∈ Rn, because of (A.4.5). Clearly this holds when

T ′ ◦ T = I.(A.4.12)

Conversely, if (A.4.11) holds for every x, y ∈ Rn, then one can check that
(A.4.12) holds.

Note that (A.4.12) implies that T is one-to-one on Rn, and thus that T maps
Rn onto itself. This means that T is invertible on Rn, so that (A.4.12) is the
same as saying that

T ′ = T−1.(A.4.13)

Of course, (A.4.13) implies that T and T ′ commute with each other. This
means that (A.3.11) and (A.3.12) commute with each other, as before.

A.5 More on orthogonal transformations

Let n be a positive integer, and let O(n) be the set of all orthogonal transforma-
tions on Rn. If T is an orthogonal transformation on Rn, then it is easy to see
that T−1 is an orthogonal transformation on Rn as well. One can also verify
that the composition of two orthogonal transformations on Rn is an orthogo-
nal transformation on Rn. This means that O(n) is a subgroup of the group
GL(Rn) of all invertible linear mappings on Rn. This is called the orthogonal
group associated to Rn, and its standard inner product.

If T ∈ O(n), then one can check that

detT = ±1,(A.5.1)

using (A.3.14). Put

SO(n) = {T ∈ O(n) : detT = 1} = O(n) ∩ SL(Rn).(A.5.2)

This is a subgroup of O(n) and of SL(Rn), called the special orthogonal group.
The elements of SO(n) are known as rotations on Rn.
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An n × n matrix of real numbers is said to be an orthogonal matrix if it
is invertible, with inverse equal to its transpose. These are the same as the
matrices that correspond to elements of O(n). The set of these orthogonal
matrices is denoted O(n,R). This is a subgroup of the group GL(n,R) of all
invertible n × n matrices of real numbers. This is called the orthogonal group
of these n× n matrices of real numbers.

The elements of O(n,R) have determinant ±1, as before. The set of matrices
in O(n,R) with determinant equal to 1 is denoted SO(n,R), so that

SO(n,R) = O(n,R) ∩ SL(n,R).(A.5.3)

These are the matrices that correspond to elements of SO(n), and SO(n,R) is
a subgroup of O(n,R) and SL(n,R). This is the special orthogonal group of
these n× n matrices of real numbers.

A.5.1 More on O(n)

Note that

O(n) = {T ∈ L(Rn) : T ′ ◦ T = I},(A.5.4)

as in the previous section. Of course, there is an analogous description of
O(n,R). Let us identify the space of n × n matrices of real numbers with

Rn2

, by listing the entries of such a matrix in a sequence with n2 terms, as
in Subsection A.1.2. It is well known that O(n,R) corresponds to a compact

smooth submanifold of Rn2

, with dimension equal to (A.4.3). This can be
obtained using the implicit function theorem.

More precisely, O(1) consists of ±1 times the identity mapping on R, and
SO(1) contains only the identity mapping on R. Similarly, O(1,R) corresponds
to {1,−1}, considered as a 0-dimensional submanifold of R. If n ≥ 2, then
n2 > n, and (A.4.3) is positive.

Because O(n,R) corresponds to a compact smooth submanifold of Rn2

, we
can define integrals over it in a standard way, with respect to the element of
volume of dimension (A.4.3). If n = 1, then this can be interpreted as a sum
with two terms in a simple way. We can also take averages over O(n,R), by
dividing the integral by the volume of O(n,R) of dimension (A.4.3). We can
use this to define integrals and averages over O(n).

A.6 Norms on Rn

Let n be a positive real number, and let N be a nonnegative real-valued function
on Rn. We say that N is a norm on Rn if it satisfies the following three
conditions. First,

N(x) = 0 if and only if x = 0.(A.6.1)

Second,

N(t x) = |t|N(x)(A.6.2)
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for every x ∈ Rn and t ∈ R. Third,

N(x+ y) ≤ N(x) +N(y)(A.6.3)

for every x, y ∈ Rn, which is the triangle inequality for N .
It is easy to see that the standard Euclidean norm on Rn is a norm in this

sense, using the properties mentioned in Subsection 1.1.1. If N is any norm on
Rn, then

N is convex as a real-valued function on Rn,(A.6.4)

as mentioned in Section 9.12.

A.6.1 Some basic examples of norms

One can check that

‖x‖1 =

n∑
j=1

|xj |(A.6.5)

defines a norm on Rn as well. One can also verify that

‖x‖∞ = max
1≤j≤n

|xj |(A.6.6)

defines a norm on Rn. The standard Euclidean norm on Rn is sometimes
denoted

‖x‖2.(A.6.7)

Note that all of these norms are the same as the usual absolute value function
on R when n = 1.

A.6.2 Metrics associated to norms

If N is a norm on Rn, then put

dN (x, y) = N(x− y)(A.6.8)

for every x, y ∈ Rn. This is the metric on Rn associated to N . The standard
Euclidean metric on Rn is the same as the metric associated to the standard
Euclidean norm, as in Subsection 1.1.2.

Observe that
dN (x, y) = 0 if and only if x = y,(A.6.9)

because of (A.6.1). It is easy to see that

dN (x, y) = dN (y, x)(A.6.10)

for all x, y ∈ Rn, using (A.6.2), with t = −1. We also have that

dN (x, z) ≤ dN (x, y) + dN (y, z)(A.6.11)

for all x, y, z ∈ Rn, because of (A.6.3). This implies that Rn is a metric space
with respect to the metric dN (·, ·). Note that (A.6.11) is called the triangle
inequality for dN (·, ·), as a metric on Rn.
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A.6.3 Open and closed balls

If x ∈ Rn and r is a positive real number, then the open ball in Rn centered at
x with radius r with respect to N is defined by

BN (x, r) = {y ∈ Rn : N(x− y) < r}.(A.6.12)

The closed ball in Rn centered at x with radius r with respect to N is defined
by

BN (x, r) = {y ∈ Rn : N(x− y) ≤ r}.(A.6.13)

These are the same as in Subsection 1.1.3 when N is the standard Euclidean
norm on Rn.

One can check that

BN (x, r) and BN (x, r) are convex sets in Rn,(A.6.14)

as mentioned in Section 1.8. This is related to the remark in Subsection A.7.3.

A.6.4 Norms on Cn

One can define the notion of a norm on Cn in essentially the same way as
before. In this case, (A.6.2) should hold for all x ∈ Cn and t ∈ C, where |t| is
the absolute value or modulus of t, as in Section 1.4. The standard Euclidean
norm on Cn is a norm in this sense, as in Section 2.6, which may be denoted as
in (A.6.7). We get norms on Cn as in (A.6.5) and (A.6.6) too.

One can identify Cn with R2n, as in Section 2.6. Using this, every norm on
Cn may be considered as a norm on R2n. However, not every norm on R2n

corresponds to a norm on Cn in this way, because norms on Cn are supposed
to satisfy (A.6.2) for all t ∈ C.

Similarly, one can define the notion of a norm on any vector space over the
real or complex numbers.

A.7 Seminorms

Let n be a positive integer, and let N be a nonnegative real-valued function on
Rn again. We say that N defines a seminorm on Rn if it satisfies the second
and third conditions in the definition of a norm, which is to say (A.6.2) and
(A.6.3). More precisely, N satisfies the “if” part of the first condition (A.6.1),
because of (A.6.2), with t = 0. In this case, one can check that the set of x ∈ Rn

such that

N(x) = 0(A.7.1)

is a linear subspace of Rn. Note that seminorms are also sometimes called
pseudonorms.

If N is a seminorm on Rn, then one can check that N is convex as a real-
valued function on Rn. One can also define open and closed balls in Rn with
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respect to N as in (A.6.12) and (A.6.13), respectively, and verify that they are
convex sets in Rn. This is related to the remark in Subsection A.7.3, as before.

One can define dN (x, y) for x, y ∈ Rn as in (A.6.8), and it satisfies (A.6.10),
(A.6.11), and the “if” part of (A.6.9). This may be described as the semimetric
or pseudometric on Rn associated to N .

If x, y ∈ Rn, then
N(x) ≤ N(y) +N(x− y)(A.7.2)

and
N(y) ≤ N(x) +N(x− y).(A.7.3)

This implies that

|N(x)−N(y)| = max(N(x)−N(y), N(y)−N(x)) ≤ N(x− y).(A.7.4)

A.7.1 A simple estimate for N

Let e1, . . . , en be the standard basis vectors in Rn, so that the lth coordinate of
ej is equal to one when j = l, and to zero otherwise. If x ∈ Rn, then it follows
that

x =

n∑
j=1

xj ej .(A.7.5)

One can use this to get that

N(x) ≤
n∑

j=1

|xj |N(ej).(A.7.6)

This implies that there is a nonnegative real number C(N) such that

N(x) ≤ C(N) ‖x‖2(A.7.7)

for every x ∈ Rn, where ‖x‖2 is the standard Euclidean norm of x, as before.
In fact, one can take

C(N) =
( n∑

j=1

N(ej)
2
)1/2

,(A.7.8)

using the Cauchy–Schwarz inequality.
Combining this with (A.7.4), we get that

|N(x)−N(y)| ≤ C(N) ‖x− y‖2(A.7.9)

for all x, y ∈ Rn. This means that N is Lipschitz of order one with constant
C(N) with respect to the standard Euclidean metric on Rn, as in Section 9.3.

A.7.2 Seminorms on other vector spaces

One can define the notion of a seminorm on Cn in essentially the same way
as before, as in Subsection A.6.4. A seminorm on Cn may be considered as a
seminorm on R2n, as before.

In fact, one can define the notion of a seminorm on any vector space over
the real or complex numbers, as before.



A.8. SUBLINEAR FUNCTIONS 339

A.7.3 A remark about convex functions

Let U be a nonempty convex open set in Rn, and let f be a convex function on
U , as in Section 9.12. If b is a real number, then it is easy to see that

{y ∈ U : f(y) < b}(A.7.10)

and

{y ∈ U : f(y) ≤ b}(A.7.11)

are convex sets.

A.8 Sublinear functions

Let n be a positive integer, and let p be a real-valued function on Rn. We say
that p is sublinear on Rn if it satisfies the following two conditions. First,

p(t x) = t p(x)(A.8.1)

for every positive real number t and x ∈ Rn. Second,

p(x+ y) ≤ p(x) + p(y)(A.8.2)

for every x, y ∈ Rn. The same definition can also be used on any vector space
over the real numbers, as before.

It is easy to see that (A.8.1) implies that

p(0) = 0.(A.8.3)

Of course, for x 6= 0, (A.8.1) is the same as saying that p is homogeneous of
degree one on Rn \ {0}, as in Subsection 2.8.1.

Let us say that p is symmetric about 0 on Rn if

p(−x) = p(x)(A.8.4)

for every x ∈ Rn. If p is sublinear and symmetric about 0 on Rn, then it is
easy to see that

p(x) ≥ 0(A.8.5)

for every x ∈ Rn. This means that p is a seminorm on Rn under these condi-
tions.

Note that p is a linear functional on Rn if and only if p satisfies (A.8.1), and
equality holds in (A.8.2) for every x, y ∈ Rn. This is the same as saying that p
and −p are both sublinear on Rn.
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A.8.1 Some properties of sublinear functions

If p is sublinear on Rn, then it is easy to see that

p is convex as a real-valued function on Rn,(A.8.6)

as in Section 9.12. If x ∈ Rn and b ∈ R, then it follows that

{y ∈ Rn : p(y − x) < b}(A.8.7)

and
{y ∈ Rn : p(y − x) ≤ b}(A.8.8)

are convex sets, as in Subsection A.7.3.
If a is a nonnegative real number, then

a p is sublinear on Rn(A.8.9)

too. If p1, p2 are sublinear on Rn, then

p1 + p2 is sublinear on Rn.(A.8.10)

One can also check that

max(p1, p2) is sublinear on Rn(A.8.11)

in this case.
Observe that

p(−x) is sublinear on Rn.(A.8.12)

This implies that
p(x) + p(−x)(A.8.13)

and
Np(x) = max(p(x), p(−x))(A.8.14)

are sublinear on Rn, as in the preceding paragraph. Clearly (A.8.13) and
(A.8.14) are symmetric about 0 on Rn, by construction. It follows that (A.8.13)
and (A.8.14) are seminorms on Rn, as before.

A.8.2 Lipschitz conditions for sublinear functions

If p is sublinear on Rn, then

p(x) ≤ p(y) + p(x− y)(A.8.15)

and
p(y) ≤ p(x) + p(y − x)(A.8.16)

for every x, y ∈ Rn. This implies that

|p(x)− p(y)| = max(p(x)− p(y), p(y)− p(x))(A.8.17)

≤ max(p(x− y), p(y − x)) = Np(x− y)
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for every x, y ∈ Rn, where Np is as in (A.8.14).

Let C(Np) be a nonnegative real number such that

Np(x) ≤ C(Np) ‖x‖2(A.8.18)

for every x ∈ Rn, as in (A.7.7). Using this, we get that

|p(x)− p(y)| ≤ C(Np) ‖x− y‖2(A.8.19)

for every x, y ∈ Rn.

A.9 Some remarks about directional derivatives

Let n be a positive integer, let U be a nonempty open subset of Rn, and let f
be a real-valued function on U . If x ∈ U and v ∈ Rn, then put

Ux,v = {t ∈ R : x+ t v ∈ U}.(A.9.1)

It is easy to see that this is an open set in the real line that contains 0.

Put

Fx,v(t) = f(x+ t v)(A.9.2)

for each t ∈ Ux,v. If Fx,v is differentiable at 0, then put

(Dvf)(x) = F ′
x,v(0).(A.9.3)

This is the usual directional derivative of f at x in the direction v, as mentioned
in Subsection 1.3.2. Note that

(Dvf)(x) = 0(A.9.4)

automatically when v = 0.

If a is a real number, then

Ux,a v = {t ∈ R : a t ∈ Ux,v}(A.9.5)

and

Fx,a v(t) = Fx,v(a t)(A.9.6)

for every t ∈ Ux,v. If the directional derivative of f at x in the direction v exists,
then the directional derivative in the direction a v exists, and is equal to

(Da vf)(x) = F ′
x,a v(0) = aF ′

x,v(0) = a (Dvf)(x).(A.9.7)



342APPENDIX A. LINEAR MAPPINGS, NORMS, AND DIFFERENTIALS

A.9.1 One-sided directional derivatives

Remember that the one-sided derivatives of a real-valued function on an open
set in the real line are defined as in Section 9.7, when they exist. If the one-
sided derivative of Fx,v at 0 from the right exists, then the one-sided directional
derivative at x in the direction v may be defined by

(D+
v f)(x) = (Fx,v)

′
+(0).(A.9.8)

Similarly, if the one-sided derivative of Fx,v at 0 from the left exists, then we
put

(D−
v f)(x) = (Fx,v)

′
−(0).(A.9.9)

The directional derivative of f at x in the direction v exists if and only if these
two one-sided directional derivatives exist and are equal, in which case

(Dvf)(x) = (D+
v f)(x) = (D−

v f)(x),(A.9.10)

as before.
If a is a positive real number, then

(D+
a vf)(x) = a (D+

v f)(x)(A.9.11)

when (D+
v f)(x) exists, and

(D−
a vf)(x) = a (D−

v f)(x)(A.9.12)

when (D−
v f)(x) exists. If a < 0, then

(D−
a,vf)(x) = a (D+

v f)(x)(A.9.13)

when (Dvf)(x) exists, and

(D+
a vf)(x) = a (D−

v f)(x)(A.9.14)

when (D−
v f)(x) exists.

A.9.2 Directional derivatives of convex functions

Suppose now that U is a convex open set in Rn, and that f is convex on U , as
in Section 9.12. This implies that Ux,v is an open interval in the real line, which
may be unbounded, and that Fx,v is convex on Ux,v, as before. It follows that
(A.9.8) and (A.9.9) exist, as in Subsection 9.7.2. More precisely,

(D+
v f)(x) = inf{t−1 (Fx,v(t)− Fx,v(0)) : t ∈ Ux,v, t > 0}(A.9.15)

= inf{t−1 (f(x+ t v)− f(x)) : t ∈ Ux,v, t > 0}

and

(D−
v f)(x) = sup{t−1 (Fx,v(0)− Fx,v(−t)) : −t ∈ Ux,v, t > 0}

= sup{t−1 (f(0)− f(x− t v)) : −t ∈ Ux,v, t > 0},(A.9.16)
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as before.
Let w be another element of Rn, and suppose that t > 0 is small enough so

that
x+ 2 t v, x+ 2 t w ∈ U.(A.9.17)

This implies that

x+ t v + t w = (1/2) (x+ 2 t v) + (1/2) (x+ 2 t w) ∈ U,(A.9.18)

which holds for sufficiently small t anyway. It follows that

f(x+ t v + t w) ≤ (1/2) f(x+ 2 t v) + (1/2) f(x+ 2 t w),(A.9.19)

because f is convex on U . Equivalently, this means that

t−1 (f(x+ t (v + w))− f(x)) ≤ (2 t)−1 (f(x+ 2 t v)− f(x))

+(2 t)−1 (f(x+ 2 t w)− f(x)).(A.9.20)

Taking the limit as t→ 0+, we get that

(D+
v+wf)(x) ≤ (D+

v f)(x) + (D+
wf)(w).(A.9.21)

This shows that
px(v) = (D+

v f)(x)(A.9.22)

is a sublinear function of v ∈ Rn, as in the previous section, using also (A.9.11).
This corresponds to part of Theorem 23.1 on p213 of [242].

A.10 Linear functionals on Rn

A linear functional on a vector space V over the real numbers is a linear mapping
from V into R. Let n be a positive integer, and note that

λu(v) = u · v =

n∑
j=1

uj vj(A.10.1)

is a linear functional on Rn for each u ∈ Rn. It is easy to see that every linear
functional on Rn is of this form, for a unique u ∈ Rn.

A.10.1 The Hahn–Banach theorem

Let p be a sublinear function on Rn, as in Section A.8, and let L be a linear
subspace of Rn. Also let λ be a linear functional on L, and suppose that

λ(v) ≤ p(v)(A.10.2)

for every v ∈ L. Under these conditions, then Hahn–Banach theorem implies
that there is an extension of λ to a linear functional on Rn that satisfies (A.10.2)
for every v ∈ Rn.
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It follows in particular that there is a linear function λ on Rn that satisfies
(A.10.2) for every v ∈ Rn, by taking L = {0}. As a more precise version of this,
let w ∈ Rn with w 6= 0 be given, and let

L(w) = {t w : t ∈ R}(A.10.3)

be the linear subspace of Rn spanned by w. Consider the linear functional λ on
L(w) defined by

λ(t w) = t p(w)(A.10.4)

for each t ∈ R. Let us check that λ satisfies (A.10.2) on L(w).
If t ≥ 0, then

λ(t w) = t p(w) = p(t w).(A.10.5)

If t < 0, then
λ(t w) = t p(w) = −p(−t w).(A.10.6)

Observe that
0 = p(0) ≤ p(t w) + p(−t w),(A.10.7)

so that
−p(−t w) ≤ p(t w).(A.10.8)

Combining this with (A.10.6), we get that

λ(t w) = −p(−t w) ≤ p(t w)(A.10.9)

when t < 0.
If p is a linear functional on R, and λ is a linear functional on Rn that

satisfies (A.10.2) for every v ∈ Rn, then

λ = p(A.10.10)

on Rn. Indeed, if v ∈ Rn, then we get that

λ(−v) ≤ p(−v),(A.10.11)

which implies that
p(v) ≤ λ(v)(A.10.12)

in this case.

A.10.2 Convex functions and linear functionals

Let U be a nonempty convex open set in Rn, and let f be a convex real-valued
function on U , as in Section 9.12. Also let x ∈ U be given, and let px be the
sublinear function on Rn in (A.9.22). If v ∈ Rn and

x+ v ∈ U,(A.10.13)

then
f(x+ v)− f(x) ≥ (D+

v f)(x) = px(v).(A.10.14)
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More precisely, (A.10.13) is the same as saying that

1 ∈ Ux,v,(A.10.15)

where Ux,v is as in (A.9.1). Using this, the first step in (A.10.14) follows from
(A.9.15).

Suppose that λ is a linear functional on Rn such that

λ(v) ≤ px(v)(A.10.16)

for every v ∈ Rn. In this case, we get that

f(x) + λ(v) ≤ f(x+ v)(A.10.17)

for every v ∈ Rn such that (A.10.13) holds.
The existence of a linear functional λ on Rn such that (A.10.17) holds corre-

sponds to part of Theorem 23.4 on p217 of [242]. Of course, if f is differentiable
in an appropriate sense at x, then px is a linear functional on Rn, so that one
can simply take λ = px. Another approach to the existence of such a linear
functional will be mentioned in Subsection A.14.1.

A.11 Nonnegative sublinear functions

Let n be a positive integer, and let N be a nonnegative real-valued function on
Rn. Suppose that

N(t x) = tN(x)(A.11.1)

for every positive real number t and x ∈ Rn, so that N(0) = 0 in particular, as
in Section A.8. If r is a positive real number, then put

BN (r) = {y ∈ Rn : N(y) < r}.(A.11.2)

Similarly, if r is a nonnegative real number, then put

BN (r) = {y ∈ Rn : N(y) ≤ r}.(A.11.3)

If E is a subset of Rn and t ∈ R, then put

t E = {t y : y ∈ E}.(A.11.4)

Observe that
tBN (r) = BN (t r)(A.11.5)

for every r.t > 0, and that

tBN (r) = BN (t r)(A.11.6)

for every r ≥ 0 and t > 0.
Put

−E = (−1)E = {−y : y ∈ E}.(A.11.7)
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If
−E = E,(A.11.8)

then E is said to be symmetric about 0. If N is symmetric about 0, as in Section
A.8, then BN (r) is symmetric about 0 for every r > 0, and BN (r) is symmetric
about 0 for every r ≥ 0.

A.11.1 Sublinearity and convexity

Suppose for the moment that

N(x+ y) ≤ N(x) +N(y)(A.11.9)

for every x, y ∈ Rn, so that N is sublinear on Rn, as in Section A.8. This
implies that BN (r) is a convex set for every r > 0, and that BN (r) is convex
for every r ≥ 0, as in Subsection A.8.1.

Coversely, we would like to show that (A.11.9) holds if either BN (1) or BN (1)
is convex. More precisely, suppose that for every u, v ∈ Rn with

N(u), N(v) < 1(A.11.10)

and every τ ∈ R with 0 < τ < 1 we have that

N(τ u+ (1− τ) v) ≤ 1.(A.11.11)

Note that this condition holds when either BN (1) or BN (1) is convex. We would
like to show that (A.11.9) holds in this case.

To do this, let x, y ∈ Rn be given, and let tx, ty be real numbers with

N(x) < tx, N(y) < ty.(A.11.12)

Put
u = t−1

x x, v = t−1
y y,(A.11.13)

and observe that u, v satisfy (A.11.10), because of (A.11.1). Also put

τ =
tx

tx + ty
,(A.11.14)

so that 0 < τ < 1 and

1− τ =
ty

tx + ty
.(A.11.15)

Clearly
τ u+ (1− τ) v = (tx + ty)

−1 (x+ y).(A.11.16)

It follows that
N((tx + ty)

−1 (x+ y)) ≤ 1,(A.11.17)

because of (A.11.11). This means that

N(x+ y) < tx + ty,(A.11.18)

because of (A.11.1). One can use this to get (A.11.9), because tx and ty are
arbitrary real numbers that satisfy (A.11.12).
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A.11.2 An inequality of Minkoswki

Let p be a positive real number, and put

‖x‖p =
( n∑

j=1

|xj |p
)1/p

(A.11.19)

for every x ∈ Rn. This is the same as the standard Euclidean norm on Rn when
p = 2, and this was mentioned in Subsection A.6.1 when p = 1. Of course, this
is a nonnegative real-valued function on Rn for every p > 0, and

‖x‖p = 0 if and only if x = 0.(A.11.20)

It is easy to see that (A.11.19) satisfies (A.11.1) for every p > 0 as well.
If p ≥ 1, then it is well known that

‖x+ y‖p ≤ ‖x‖p + ‖y‖p(A.11.21)

for every x, y ∈ Rn. This is Minkowski’s inequality for finite sums. There are
analogous statements for inetgrals, which can be obtained by approximating
integrals by finite sums, or using arguments like those for finite sums. Of course,
this implies that (A.11.19) is a norm on Rn when p ≥ 1. One can use this to
get a norm on Cn as well, as in Subsection A.6.4.

The closed unit ball in Rn associatied to (A.11.19) is

{y ∈ Rn : ‖y‖p ≤ 1} =

{
y ∈ Rn :

n∑
j=1

|yj |p ≤ 1

}
.(A.11.22)

In order to get (A.11.19), it suffices to check that (A.11.22) is a convex set in
Rn, as in the previous subsection.

If p ≥ 1, then
fp(w) = |w|p(A.11.23)

is a convex function on the real line, as in Section 9.9. One can use this to verify
that (A.11.22) is a convex set in Rn when p ≥ 1.

If n = 1, then (A.11.19) is the same as the absolute value of a real number.
If n ≥ 2, then one can check that (A.11.19) does not necessarily hold when
p < 1. Equivalently, (A.11.22) is not convex when n ≥ 2 and p < 1.

If p ≤ 1, then one can check that

‖x+ y‖pp ≤ ‖x‖pp + ‖y‖pp(A.11.24)

for every x, y ∈ Rn, using an inequality mentioned in Subsection 9.10.2. One
can use this to get that

‖x− y‖pp(A.11.25)

defines a metric on Rn when p ≤ 1.
It is easy to see that

‖x‖∞ ≤ ‖x‖p(A.11.26)
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for every x ∈ Rn and p > 0, where ‖x‖∞ is as in Subsection A.6.1. We also
have that

‖x‖p ≤ n1/p ‖x‖∞(A.11.27)

for every x ∈ Rn and p > 0. One can use this to get that

‖x‖p → ‖x‖∞ as p→ ∞(A.11.28)

for every x ∈ Rn.

A.12 Differentiable mappings

Let m and n be positive integers, and let U be a nonempty open set in Rn.
Also let f be a mapping from U into Rm, which is the same as a function on U
with values in Rm. Equivalently, if x ∈ U , then

f(x) = (f1(x), . . . , fm(x)),(A.12.1)

where f1, . . . , fm are real-valued functions on U , as in Section 13.1.
We say that f is differentiable at a point x ∈ U if there is a linear mapping

A from Rn into Rm such that

lim
h→0

‖f(x+ h)− f(x)−A(h)‖2,Rm

‖h‖2,Rn

= 0.(A.12.2)

Here ‖ · ‖2,Rn and ‖ · ‖2,Rm are the standard Euclidean norms on Rn and Rm,
respectively.

One can check directly that A is unique when it exists, and another way to
see this will be mentioned soon. If f is differentiable at x, then we may put

f ′(x) = A.(A.12.3)

This may be called the differential of f at x.
If n = 1, then this reduces to the usual definition of the derivative of a

function of one variable, in the following way. Indeed, a linear mapping from R
into Rm corresponds exactly to multiplying a real number by a fixed element
of Rm. The differential of f at x is the linear mapping that corresponds to
multiplying a real number by the usual derivative of f at x, as an element of
Rm.

Of course, this is all somewhat simpler when m = 1, so that we are dealing
with real-valued functions. One can always reduce to that case, by consider-
ing the components f1, . . . , fm of f . In particular, one can check that f is
differentiable at x if and only if f1, . . . , fm are all differentiable at x, as real-
valued functions on U . In this case, the components of the differential of f at
x correspond to the differentials of f1, . . . , fm at x.

If f is differentiable at x, then one can check that f is continuous at x. One
can also verify that the directional derivative of f at x in any direction v ∈ Rn

exists in this case, with
Dvf(x) = (f ′(x))(v).(A.12.4)
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In particular, the partial derivative of f at x in the kth variable exists for each
k = 1, . . . , n, with

∂f

∂xk
(x) = (f ′(x))(ek),(A.12.5)

where e1, . . . , en are the standard basis vectors for Rn, as in Subsection A.7.1.
This can be used to get the uniqueness of the differential when it exists, as
mentioned earlier.

Suppose for the moment that f is continuously differentiable on U , in the
sense that each of its components is continuously differentiable as a real-valued
function on U , as in Subsection 13.1.1. Under these conditions, it is well known
that f is differentiable in the sense discussed here at every point in U . The
differential of f at x ∈ U is determined by the partial derivatives of f at x as in
(A.12.5). This corresponds to an m×n matrix in a standard way, whose entries
are given by the partial derivatives of the components of f at x.

A.12.1 The chain rule

Let V be a nonempty open set in Rm, and suppose that

f(U) = {f(x) : x ∈ U} ⊆ V.(A.12.6)

Also let p be another positive integer, and let g be a mapping from V into Rp.
Thus the composition g ◦f of f and g may be defined as a mapping from U into
Rp, with

(g ◦ f)(x) = g(f(x))(A.12.7)

for every x ∈ U . If f is continuous on U , and g is continuous on V , then it is
well known and not difficult to show that g ◦ f is continous on U as well.

If f is differentiable at x ∈ U , and g is differentiable at the point f(x) in V ,
then it is well known that

g ◦ f is differentiable at x.(A.12.8)

The differential of g ◦ f at x is given by

(g ◦ f)′(x) = g′(f(x)) ◦ f ′(x),(A.12.9)

as a linear mapping from Rn into Rp. Equivalently, this is the composition
of the differential of f at x, as a linear mapping from Rn into Rm, with the
differential of g at f(x), as a linear mapping from Rm into Rp. This is the
analogue of the chain rule here.

A.13 Some properties of convex sets

Let n be a positive integer, and let E be a nonempty closed set in Rn. If x ∈ Rn,
then there is a point y ∈ E such that

|x− y| ≤ |x− z|(A.13.1)
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for all z ∈ E. This follows from the extreme value theorem when E is also
bounded, and thus compact.

Otherwise, let R be a sufficiently large positive real number, so that

E ∩B(x,R)(A.13.2)

is nonempty. This set is closed and bounded, and thus compact, by construction.
It follows that there is an element y of this set such that (A.13.1) for all z in
this set, as before. It is easy to see that (A.13.1) holds for all z ∈ E under these
conditions.

Of course, (A.13.1) is the same as saying that

|x− y|2 ≤ |x− z|2(A.13.3)

for all z ∈ E. Note that

|x− z|2 = |(x− y) + (y − z)|2(A.13.4)

= |x− y|2 + 2 (x− y) (y − z) + |y − z|2

for all z ∈ Rn. If z ∈ E, then

0 ≤ 2 (x− y) · (y − z) + |y − z|2,(A.13.5)

by (A.13.3).

A.13.1 Closed convex sets

Suppose now that E is convex as well. If z ∈ E, t ∈ R, and 0 ≤ t ≤ 1, then

(1− t) y + t z(A.13.6)

is an element of E too. Note that

y − ((1− t) y + t z) = t (y − z).(A.13.7)

If we replace z with (A.13.6) in (A.13.5), then we get that

0 ≤ 2 t (z − y) · (y − z) + t2 |y − z|2.(A.13.8)

This implies that
0 ≤ 2 (x− y) · (y − z) + t |y − z|2(A.13.9)

when 0 < t ≤ 1.
It follows that

0 ≤ (x− y) · (y − z),(A.13.10)

by taking the limit as t→ 0+. Equivalently, this means that

(x− y) · z ≤ (x− y) · y.(A.13.11)
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Of course, this is trivial when x ∈ E, so that y = x.
If

|x− y| = |x− z|,(A.13.12)

then
0 = 2 (x− y) · (y − z) + |y − z|2,(A.13.13)

because of (A.13.4). This implies that

y = z,(A.13.14)

because of (A.13.10).

A.13.2 Points in ∂E

Suppose now that
w ∈ ∂E = E ∩ (Rn \ E).(A.13.15)

This implies that there is a sequence {xj}∞j=1 of elements of Rn \ E such that

{xj}∞j=1 converges to w.(A.13.16)

If j is a positive integer, then let yj be the element of E such that

|xj − yj | ≤ |xj − z|(A.13.17)

for every z ∈ E, as before. In particular, this means that

|xj − yj | ≤ |xj − w|(A.13.18)

for each j, because w ∈ E. It follows that

{yj}∞j=1 converges to w(A.13.19)

as well.
If z ∈ E, then

(xj − yj) · (yj − z) ≥ 0(A.13.20)

for each j, as in (A.13.10). Note that xj 6= yj for each j, and put

uj =
xj − yj
|xj − yj |

.(A.13.21)

Clearly
uj · (yj − z) ≥ 0(A.13.22)

for each j and z ∈ E, by (A.13.20).
The unit sphere in Rn is closed and bounded, and thus compact. This

implies that there is a subsequence {ujl}∞l=1 of {uj}∞j=1 that converges to a
point u ∈ Rn with

|u| = 1,(A.13.23)
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as in Subsection 1.9.3. Using the same sequence of indices {jl}∞l=1, we get
subsequences {xjl}∞l=1 and {yjl}∞l=1 of {xj}∞j=1 and {yj}∞j=1, respectively. These
two subsequences converge to w, because of (A.13.16) and (A.13.19).

If z ∈ E, then
ujl · (yjl − z) ≥ 0(A.13.24)

for each l, as in (A.13.22). Taking the limit as l → ∞, we get that

u · (w − z) ≥ 0.(A.13.25)

A.14 Some more remarks about convexity

Let n be a positive integer, and let E be a nonempty subset of Rn. If x ∈ Rn,
then we might like to find a point y ∈ E that minimizes this distahnce to E, as
in (A.13.1). If there is a positive real number such that (A.13.2) is nonempty
and a closed set, then we can use the same argument as before. If E is also
convex, then we get the same conclusions as in Subsection A.13.1.

Suppose now that
w ∈ E ∩ (Rn \ E) ⊆ ∂E.(A.14.1)

Suppose also that there is a positive real number r such that

B(w, r) ∩ E is a closed set.(A.14.2)

This condition holds automatically when E is a relatively closed set in an open
set in Rn.

As before, there is a sequence {xj}∞j=1 of elements of Rn \E that converges
to w. We may as well ask that

|xj − w| ≤ r/2(A.14.3)

for each j. This implies that

w ∈ B(xj , r/2) ⊆ B(w, r)(A.14.4)

for each j, using the triangle inequality in the second step. It follows that

B(xj , r/2) ∩ E = B(xj , r/2) ∩ (B(w, r) ∩ E)(A.14.5)

is a nonempty closed set for each j. Using this and the remark at the beginning
of the section, we can get the same conclusions as in Subsection A.13.2 when E
is convex.

If E is convex, then it is well known and not difficult to show that

E is convex.(A.14.6)

Of course,
B(w, r) ∩ E(A.14.7)
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is a closed set for every r > 0. If (A.14.1) holds, then it is not too difficult to
see that

w ∈ (Rn \ E),(A.14.8)

so that w is an element of the boundary of E. Otherwise, w would be an element
of the interior of E, and one could use this to get that w is an element of the
interior of E, because E is convex. A more precise version of this may be found
in Theorem 6.3 on p46 of [242]. This means that we can replace E with E in
Subsection A.13.2. This corresponds to Corollary 11.6.1 on p100 of [242].

A.14.1 Epigraphs of convex functions

Let U be a nonempty convex open subset of Rn, let f be a real-valued function
on U , and let us identify Rn+1 with Rn ×R in the usual way. The epigraph is
the set

E(f) = {(x, t) ∈ Rn+1 : x ∈ U, t ≥ f(x)},(A.14.9)

as on p23 of [242]. One can check that f is convex on U if and only if E(f)
is a convex set in Rn+1. In fact, convexity of a function is defined in terms of
convexity of the epigraph in [242].

If x ∈ U , then it is easy to see that

(x, f(x)) ∈ ∂E(f).(A.14.10)

Note that

{(x, t) ∈ Rn+1 : x ∈ U}(A.14.11)

is an open set in Rn+1, because U is an open set in Rn. If f is continuous on
U , then one can check that (A.14.10) is relatively closed in (A.14.11). More
precisely, this works when f is lower semicontinuous on U .

If f is convex on U and x ∈ U , then one can get another approach to the
existence of a linear functional onRn as in Subsection A.10.2 using the convexity
of E(f) and the remarks in Subsection A.13.2. This corresponds to a remark
on p217 of [242].

A.15 Conformal mappings

Let n be a positive integer, and remember that a linear mapping T from Rn

onto itself is said to be an orthogonal transformation if it preserves the standard
inner product on Rn, as mentioned in Subsection 1.15.1. This is equivalent to
asking that T preserve the standard Euclidean norm on Rn, as before.

If T is any linear mapping from Rn into itself, then the adjoint T ′ of T with
respect to the standard inner product on Rn may be defined as a linear mapping
from Rn into itself as in Subsection 1.15.2. Remember that the space L(Rn) of
linear mappings from Rn into itself may be considered as a vector space over
the real numbers, and that T 7→ T ′ is a linear mapping from L(Rn) into itself,
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as in Section A.3. We also have that T is an orthogonal transformation on Rn

if and only if
T ′ ◦ T = I,(A.15.1)

where I is the identity mapping on Rn, as in Subsection A.4.2.
Let us say that a linear mapping A from Rn into itself is conformal if

A = aT(A.15.2)

for some real number a 6= 0 and orthogonal transformation T . This implies that

A′ ◦A = a2 T ′ ◦ T = a2 I.(A.15.3)

Conversely, if
A′ ◦A = b I(A.15.4)

for some positive real number b and a2 = b, then

(a−1A)′ ◦ (a−1A) = b−1A′ ◦A = I.(A.15.5)

This means that a−1A is an orthogonal transformation on Rn, so that A is
conformal. If (A.15.4) holds for some real number b, then b ≥ 0, as in Subsection
A.4.1.

If A is any linear mapping from Rn into itself, then detA′ = detA, as
mentioned in Subsection A.3.1, so that

det(A′ ◦A) = (detA′) (detA) = (detA)2.(A.15.6)

It is well known that
det(c I) = cn(A.15.7)

for any real number c. If (A.15.4) holds, then we get that

(detA)2 = bn.(A.15.8)

One can use this to get that A is conformal if and only if A is invertible on Rn,
so that detA 6= 0, and

A′ ◦A = | detA|2/n I.(A.15.9)

If detA = 0, then (A.15.9) implies that A′ ◦ A = 0, so that A = 0, as in
Subsection A.4.1.

A.15.1 Conformal differentiable mappings

Let U be a nonempty open subset of Rn, and let f be a mapping from U into
Rn. Suppose that f is differentiable at each x ∈ U , as in Section A.12. It is
convenient here to use the notation dfx for the differential of f at x ∈ U , which
is a linear mapping from Rn into itself. We say that f is a conformal mapping
on U if for every x ∈ U ,

dfx is a conformal linear mapping from Rn onto itself.(A.15.10)
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If f is a linear mapping from Rn into itself, then dfx is the same as f for
each x. In this case, f is a conformal mapping if and only if f is a conformal
linear mapping. If f is defined by a translation on Rn, then dfx = I for each x,
so that f is conformal. It is well known and not too difficult to show that

x 7→ x/|x|2(A.15.11)

defines a conformal mapping from Rn \ {0} onto itself.
It is easy to see that the composition of two conformal linear mappings from

Rn onto itself is another conformal linear mapping. One can use this and the
chain rule to get that the composition of two conformal differentiable mappings
is conformal as well, on the appropriate domain of the composition.

In particular, we can get conformal mappings by composing conformal linear
mappings, translations, and the mapping (A.15.11). Conformal mappings of this
type are called Möbius transformations.

If n = 1, then any nonzero linear mapping is conformal, and differentiable
functions with nonzero derivative are conformal.

If n = 2, then holomorphic functions with nonzero derivative are conformal.
The complex-conjugate of such a mapping is conformal as well.

If n ≥ 3, then a famous theorem of Liouville says that a conformal map-
ping with sufficient smoothness on a nonempty connected open set is a Möbius
transformation. See [89, 174, 239] for more information.
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[229] T. Radó, What is the area of a surface?, American Mathematical Monthly
50 (1943), 139–141.
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path connected components, 51
path connected sets, 14
Perron families, 261
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Perron functions, 262
pointwise convergence, 123
Poisson integrals

associated to Rn
+, 246

associated to the unit ball, 136
Poisson kernel

associated to Rn
+, 245

associated to the unit ball, 132
Poisson modifications, 260
Poisson’s equation, 41
polarization identity, 24, 107
porous medium equation, 193
power series, 321
pseudonorms, 337

quasilinearity, 20

Rn, 1
Rn

+, 243
R+, 23
radial functions, 175
real parts, 8
reflection principle, 231
relative closures, 16
relatively closed sets, 16
relatively open sets, 197
rotations on Rn, 25, 334

S(Rn), 288
S(Rn)′, 290
scalar conservation law, 87
Schwartz class, 288
self-adjoint linear mappings, 108, 331
semilinearity, 20
seminorms, 337
sequential compactness, 17
SL(n,R), 329
SL(V ), 329
smooth functions, 5, 300
SO(n), 334
SO(n,R), 335
special linear groups, 329
special orthogonal groups, 334, 335
spherical Laplacian, 50
spherical means, 178
standard Euclidean metric, 2, 34

standard Euclidean norm, 1, 34
standard inner product, 24, 34
standard metric on C, 9
strong maximum principle, 127, 141
subharmonic functions, 140, 252
subharmonicity at a point, 259
sublinear functions, 339
subsequences, 17
subsolutions

of the heat equation, 157
of the Laplace equation, 140

summable functions, 317, 318
supports of functions, 16
symmetric functions about 0, 339
symmetric linear mappings, 331
symmetric matrices, 332
symmetric sets about 0, 346
systems of differential equations, 7

tempered distributions, 290
test functions, 282
trace

of a linear mapping, 103
of a matrix, 103

trace of a matrix, 106
triangle inequality, 1, 336

uniform continuity, 197
uniform convergence, 124

on compact sets, 124
unit sphere, 50
unitary transformations, 107
upper half-space, 243
upper semicontinuity, 196

vector spaces, 11

wave equation, 170
complex version, 189


