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Abstract

Some basic topics related to Banach algebras over fields with abso-
lute value functions are discussed, in connection with Fourier series in
particular.
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Part I

Some basic notions

1 Some inequalities

Let X be a nonempty finite set, and let f be a nonnegative real-valued function
on X. Put

∥f∥r =
( ∑

x∈X

f(x)r
)1/r

(1.1)

for each positive real number r, and

∥f∥∞ = max
x∈X

f(x).(1.2)

Note that
∥t f∥r = t ∥f∥r(1.3)

for every nonnegative real number t and 0 < r ≤ ∞, by construction. We also
have that

∥f∥∞ ≤ ∥f∥r ≤ (#X)1/r ∥f∥∞(1.4)

for every 0 < r < ∞, where #X denotes the number of elements of X. In
particular,

lim
r→∞

∥f∥r = ∥f∥∞,(1.5)

because of the well-known fact that a1/r → 1 as r → ∞ for any positive real
number a. If 0 < r1 ≤ r2 < ∞, then

∥f∥r2r2 =
∑
x∈X

f(x)r2 ≤
∑
x∈X

∥f∥r2−r1
∞ f(x)r1 = ∥f∥r2−r1

∞ ∥f∥r1r1 .(1.6)
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This implies that

∥f∥r2 ≤ ∥f∥1−(r1/r2)
∞ ∥f∥r1/r2r1 ≤ ∥f∥r1 ,(1.7)

using the first inequality in (1.4) in the second step.
If a, b are nonnegative real numbers, then

max(a, b) ≤ (ar + br)1/r ≤ 21/r max(a, b)(1.8)

for every positive real number r. This corresponds to (1.4), where X is a set
with two elements. Using (1.5) or (1.8), we get that

lim
r→∞

(ar + br)1/r = max(a, b).(1.9)

Similarly, if 0 < r1 ≤ r2 < ∞, then

(ar2 + br2)1/r2 ≤ (ar1 + br1)1/r1 ,(1.10)

as in (1.7). If 0 < r ≤ 1, then it follows that

(a+ b)r ≤ ar + br,(1.11)

by taking r1 = r and r2 = 1 in (1.10), and taking the rth power of both sides
of the inequality.

If f , g are nonnegative real-valued functions on X and 1 ≤ r ≤ ∞, then

∥f + g∥r ≤ ∥f∥r + ∥g∥r.(1.12)

This is Minkowski’s inequality for finite sums. Of course, equality holds trivially
in (1.12) when r = 1, and the r = ∞ case can be verified directly. If 0 < r ≤ 1,
then

∥f + g∥rr =
∑
x∈X

(f(x) + g(x))r ≤
∑
x∈X

f(x)r +
∑
x∈X

g(x)r = ∥f∥rr + ∥g∥rr,(1.13)

using (1.11) in the second step.
If f is a nonnegative real-valued function on X and 1 ≤ r < ∞, then( 1

#X

∑
x∈X

f(x)
)r

≤ 1

#X

∑
x∈X

f(x)r.(1.14)

This follows from the convexity of the function tr on the set [0,∞) of nonnegative
real numbers. If 0 < r1 ≤ r2 < ∞, then we get that( 1

#X

∑
x∈X

f(x)r1
)r2/r1

≤ 1

#X

∑
x∈X

f(x)r2 ,(1.15)

by applying (1.14) with r = r2/r1 and f(x)r1 in place of f(x). Equivalently,
this means that

∥f∥r1 ≤ (#X)(1/r1)−(1/r2) ∥f∥r2 .(1.16)
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2 q-Metrics and q-semimetrics

Let X be a set, and let q be a positive real number. A nonnegative real-valued
function d(x, y) defined for x, y ∈ X is said to be a q-semimetric on X if it
satisfies the following three conditions. First,

d(x, x) = 0 for every x ∈ X.(2.1)

Second,
d(x, y) = d(y, x) for every x, y ∈ X.(2.2)

Third,
d(x, z)q ≤ d(x, y)q + d(y, z)q for every x, y, z ∈ X.(2.3)

If we also have that
d(x, y) > 0 when x ̸= y,(2.4)

then d(·, ·) is said to be a q-metric on X. A q-metric or q-semimetric with q = 1
is also simply known as a metric or semimetric, respectively. Note that d(x, y)
is a q-metric or q-semimetric on X if and only if

d(x, y)q(2.5)

is a metric or semimetric on X, respectively.
Equivalently, (2.3) says that

d(x, z) ≤ (d(x, y)q + d(y, z)q)1/q(2.6)

for every x, y, z ∈ X. A nonnegative real-valued function d(x, y) defined for
x, y ∈ X is said to be a semi-ultrametric on X if it satisfies (2.1), (2.2), and

d(x, z) ≤ max(d(x, y), d(y, z))(2.7)

for every x, y, z ∈ X. If d(·, ·) satisfies (2.4) as well, then d(·, ·) is said to be an
ultrametric on X. An ultrametric or semi-ultrametric on X may be considered
as a q-metric or q-semimetric on X, respectively, with q = ∞, because of (1.9).
If 0 < q1 ≤ q2 ≤ ∞ and d(·, ·) is a q2-metric or q2-semimetric on X, then
d(·, ·) is a q1-metric or q1-semimetric on X, as appropriate, because of the first
inequality in (1.8) and (1.10).

The discrete metric on X is defined as usual by putting d(x, y) equal to
1 when x ̸= y, and to 0 when x = y. It is easy to see that this defines an
ultrametric on X. Now let q > 0 be given, and let d(x, y) be any q-metric or
q-semimetric on X. If a is a positive real number, then one can check that

d(x, y)a(2.8)

defines a (q/a)-metric or (q/a)-semimetric on X, as appropriate. If q = ∞, then
q/a is interpreted as being ∞ too, as usual.
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Let d(·, ·) be a q-semimetric on X for some q > 0. If x ∈ X and r is a positive
real number, then the open ball centered at x with radius r with respect to d(·, ·)
in X is defined as usual by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) < r}.(2.9)

Similarly, the closed ball in X centered at x ∈ X with radius r ≥ 0 with respect
to d(·, ·) is defined by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) ≤ r}.(2.10)

If a is a positive real number, then (2.8) is a (q/a)-semimetric on X, as in the
preceding paragraph. It is easy to see that

Bda(x, ra) = Bd(x, r)(2.11)

for every x ∈ X and r > 0, and that

Bda(x, ra) = Bd(x, r)(2.12)

for every x ∈ X and r ≥ 0.

3 q-Absolute value functions

Let k be a field, and let q be a positive real number. A nonnegative real-valued
function | · | defined on k is said to be a q-absolute value function on k if it
satisfies the following three conditions. First, for each x ∈ k,

|x| = 0 if and only if x = 0.(3.1)

Second,
|x y| = |x| |y| for every x, y ∈ k.(3.2)

Third,
|x+ y|q ≤ |x|q + |y|q for every x, y ∈ k.(3.3)

A q-absolute value function with q = 1 is also known as an absolute value
function. Observe that |x| is a q-absolute value function on k if and only if |x|q
is an absolute value function on k. It is well known that the standard absolute
value functions on the real numbers R and complex numbers C are absolute
value functions in this sense.

Let |x| be a nonnegative real-valued function on k that satisfies (3.1) and
(3.2). One can check that

|1| = 1,(3.4)

where the first 1 is the multiplicative identity element in k, and the second 1
is the usual real number. If x ∈ k satisfies xn = 1 for some positive integer n,
then

|x| = 1,(3.5)
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because |x|n = |xn| = 1. If −y is the additive inverse of y ∈ k, then −y = (−1) y,
and in particular (−1)2 = 1. Hence | − 1| = 1, by (3.5).

As before, (3.3) is the same as saying that

|x+ y| ≤ (|x|q + |y|q)1/q(3.6)

for every x, y ∈ k. A nonnegative real-valued function | · | on k is said to be an
ultrametric absolute value function on k if it satisfies (3.1), (3.2), and

|x+ y| ≤ max(|x|, |y|)(3.7)

for every x, y ∈ k. An ultrametric absolute value function may be considered as
a q-absolute value function with q = ∞, because of (1.9). If 0 < q1 ≤ q2 ≤ ∞
and | · | is a q2-absolute value function on k, then | · | is a q1-absolute value
function on k, because of the first inequality in (1.8) and (1.10). If | · | is a
q-absolute value function on k for some q > 0 and a is a positive real number,
then it is easy to see that

|x|a(3.8)

defines a (q/a)-absolute value function on k, where q/a is interpreted as being
∞ when q = ∞, as before.

If | · | is a q-absolute value function on k for some q > 0, then

d(x, y) = |x− y|(3.9)

defines a q-metric on k. This uses the fact that | − 1| = 1 to get that (3.9)
satisfies the symmetry condition (2.2). The trivial absolute value function is
defined on k be putting |x| equal to 1 when x ̸= 0, and to 0 when x = 0.
This defines an ultrametric absolute value function on k. The ultrametric on k
corresponding to the trivial absolute value function as in (3.9) is the same as
the discrete metric on k.

If p is a prime number, then the p-adic absolute value |x|p of a rational
number x is defined as follows. Of course, |0|p = 0. If x ̸= 0, then x can be
expressed as pj (a/b) for some integers a, b, and j, where a, b ̸= 0 and neither a
nor b is a multiple of p. In this case, we put

|x|p = p−j .(3.10)

Note that j is uniquely determined by x here, so that |x|p is well defined. One
can check that this defines an ultrametric absolute value function on the field
Q of rational numbers. The corresponding ultrametric

dp(x, y) = |x− y|p(3.11)

is known as the p-adic metric on Q.
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4 Associated topologies

Let X be a set, and let d(·, ·) be a q-semimetric on X for some q > 0. As usual,
a subset U of X is said to be an open set with respect to d(·, ·) if for every x ∈ U
there is an r > 0 such that

B(x, r) ⊆ U,(4.1)

where B(x, r) is the open ball in X centered at x with radius r with respect
to d(·, ·), as in (2.9). It is easy to see that this defines a topology on X. If a
is a positive real number, then d(·, ·)a defines a (q/a)-semimetric on X, as in
Section 2. The topology determined on X by d(·, ·)a is the same as the topology
determined by d(·, ·), because of (2.11). In particular, this permits one to reduce
to the case of ordinary semimetrics, by replacing d(·, ·) with d(·, ·)q when q ≤ 1.
One can use this to get that open balls in X with respect to d(·, ·) are open sets,
for instance, by reducing to standard results for ordinary semimetrics, although
analogous arguments could be used for any q > 0. Similarly, closed balls in X
with respect to d(·, ·) are closed sets. If q = ∞, then one can check that open
balls in X with respect to d(·, ·) are closed sets, and that closed balls in X with
respect to d(·, ·) with positive radius are open sets. If d(·, ·) is a q-metric on X,
then X is Hausdorff with respect to the topology determined by d(·, ·).

Let Y be a subset of X, and observe that the restriction of d(x, y) to x, y ∈ Y
defines a q-semimetric on Y . The topology determined on Y by the restriction
of d(x, y) to x, y ∈ Y is the same as the topology induced on Y by the topology
determined on X by d(·, ·). More precisely, if U ⊆ X is an open set, then it
is easy to see that U ∩ Y is an open set in Y with respect to the topology
determined by the restriction of d(x, y) to x, y ∈ Y . In the other direction, an
open ball in Y with respect to the restriction of d(x, y) to x, y ∈ Y is the same as
the intersection of Y with the open ball in X with the same center and radius,
which implies that open balls in Y are open sets with respect to the induced
topology. Any open set in Y with respect to the topology determined by the
restriction of d(x, y) to x, y ∈ Y is a union of open balls, and hence is an open
set with respect to the induced topology.

Let k be a field, and let |·| be a q-absolute value function on k for some q > 0.
The associated q-metric (3.9) determines a topology on k, as before. One can
check that addition and multiplication on k define continuous mappings from
k × k into k, by standard arguments. This uses the product topology on k × k
corresponding to the topology just mentioned on k. Similarly, x 7→ 1/x is
continuous as a mapping from k \ {0} into itself, with respect to the topology
induced on k \ {0} by the topology on k just mentioned.

Now let | · |1, | · |2 be q1, q2-absolute value functions on k for some q1, q2 > 0.
If there is a positive real number a such that

|x|2 = |x|a1(4.2)

for every x ∈ k, then | · |1 and | · |2 are said to be equivalent on k. Of course,
this implies that

|x− y|2 = |x− y|a1(4.3)
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for every x, y ∈ k. This means that the q1, q2-metrics on k associated to | · |1,
| · |2 as in (3.9) correspond to each other in the same way. It follows that the
q1, q2-metrics on k associated to | · |1, | · |2 determine the same topology on k,
as before. Conversely, if the topologies determined on k by the q1, q2-metrics
associated to | · |1, | · |2 are the same, then it is well known that | · |1 and | · |2
are equivalent on k in this sense. Let us sketch some steps in the proof of this
statement. Observe that x ∈ k satisfies |x|1 < 1 if and only if xn → 0 as n → ∞
with respect to the topology determined on k by the q1-metric associated to |·|1,
and similarly for | · |2. If the topologies determined on k by the q1, q2-metrics
associated to | · |1, | · |2 are the same, then it follows that the corresponding
open unit balls in k are the same. We also have that x ∈ k satisfies |x|1 > 1 if
and only |x|2 > 1 when the topologies are the same, by applying the previous
statement to 1/x. Combining these two statements, we get that x ∈ k satisfies
|x|1 = 1 if and only if |x|2 = 1 when the topologies are the same. If y, z ∈ k,
z ̸= 0, and m,n ∈ Z+, then

|y|m1 /|z|n1 = |ym/zn|1 < 1 if and only if |y|m2 /|z|n2 = |ym/zn|2 < 1(4.4)

when the topologies are the same. Using this, one can show that | · |1 and | · |2
are equivalent on k.

Let |·| be a q-absolute value function onQ for some q > 0. A famous theorem
of Ostrowski implies that either | · | is the trivial absolute value function on Q,
or | · | is equivalent to the standard (Euclidean) absolute value function on Q,
or | · | is equivalent to the p-adic absolute value function on Q for some prime
p. Some aspects of the proof of this theorem will be mentioned later.

5 Bounded sets and product q-semimetrics

Let X be a set, and let d(·, ·) be a q-semimetric on X for some q > 0. A subset E
of X is said to be bounded with respect to d(·, ·) if there is a finite upper bound
for d(x, y) with x, y ∈ E. If x0 is any element of X, then E ⊆ X is bounded
with respect to d(·, ·) if and only if E is contained in a ball in X centered at x0

with finite radius with respect to d(·, ·). If E ⊆ X is bounded with respect to
d(·, ·), and if a is any positive real number, then E is also bounded with respect
to d(·, ·)a as a (q/a)-semimetric on X. If K ⊆ X is compact with respect to
the topology determined by d(·, ·), then K is bounded with respect to d(·, ·), by
standard arguments.

Let n be a positive integer, and suppose that for each j = 1, . . . , n, dj(·, ·) is
a qj-semimetric on X for some qj > 0. Put

q = min(q1, . . . , qn),(5.1)

so that dj is a q-semimetric on X for each j, as in Section 2. One can check
that

d(x, y) = max
1≤j≤n

dj(x, y)(5.2)
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defines a q-semimetric on X as well. If x ∈ X, then

Bd(x, r) =

n∩
j=1

Bdj
(x, r)(5.3)

for every r > 0, and

Bd(x, r) =

n∩
j=1

Bdj
(x, r)(5.4)

for every r ≥ 0, where these open and closed balls are defined as in (2.9) and
(2.10). Note that E ⊆ X is bounded with respect to d(·, ·) if and only if E is
bounded with respect to dj(·, ·) for each j = 1, . . . , n.

Let n be a positive integer again, let X1, . . . , Xn be sets, and let X =∏n
j=1 Xj be their Cartesian product. Thus X is the set of n-tuples x =

(x1, . . . , xn) such that xj ∈ Xj for each j = 1, . . . , n. Suppose that for each
j = 1, . . . , n, dj(xj , yj) is a qj-semimetric on Xj for some qj > 0. It is easy to
see that

d̃j(x, y) = dj(xj , yj)(5.5)

defines a qj-semimetric on X for each j = 1, . . . , n. Hence

d(x, y) = max
1≤j≤n

d̃j(x, y) = max
1≤j≤n

dj(xj , yj)(5.6)

defines a q-semimetric onX, where q is as in (5.1), as in the preceding paragraph.
If x ∈ X, then

BX,d(x, r) =

n∏
j=1

BXj ,dj
(xj , r)(5.7)

for every r > 0, where the additional subscripts of X and Xj indicate the spaces
in which the corresponding balls are defined. Similarly,

BX,d(x, r) =

n∏
j=1

BXj ,dj
(xj , r)(5.8)

for every x ∈ X and r > 0. It follows from (5.7) that the topology determined on
X by d(·, ·) is the same as the product topology corresponding to the topology
determined on Xj by dj(·, ·) for each j = 1, . . . , n. If Ej ⊆ Xj is a bounded set
with respect to dj(·, ·) for j = 1, . . . , n, then E =

∏n
j=1 Ej is a bounded subset

of X with respect to d(·, ·). If dj(·, ·) is a qj-metric on Xj for each j = 1, . . . , n,
then d(·, ·) is a q-metric on X.

Of course, one can also combine semimetrics using sums, or sums of powers.

6 Uniform continuity

Let X, Y be sets, and let dX , dY be qX , qY -semimetrics on X, Y , respectively,
for some qX , qY > 0. As usual, a mapping f from X into Y is said to be
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uniformly continuous if for every ϵ > 0 there is a δ > 0 such that

dY (f(x), f(x
′)) < ϵ(6.1)

for every x, x′ ∈ X with dX(x, x′) < δ. Of course, this implies that f is continu-
ous with respect to the topologies determined on X, Y by dX , dY , respectively,
as in Section 4. Let Z be another set with a qZ-semimetric dZ for some qZ > 0.
If f is a uniformly continuous mapping from X into Y , and g is a uniformly
continuous mapping from Y into Z, then their composition g ◦ f is uniformly
continuous as a mapping from X into Z.

Let a, b be positive real numbers, so that daX , dbY define (qX/a), (qY /b)-
semimetrics on X, Y , respectively, as in Section 2. It is easy to see that a
mapping f from X into Y is uniformly continuous with respect to dX , dY if
and only if f is uniformly continuous with respect to daX , dbY . As usual, this can
be used to reduce to the case of ordinary semimetrics, by taking a = qX when
qX ≤ 1, and b = qY when qY ≤ 1.

If f is any continuous mapping from X into Y with respect to the topologies
determined by dX , dY , and if X is compact with respect to the topology deter-
mined by dX , then one can show that f is uniformly continuous, using standard
arguments. In particular, one can reduce to the case of ordinary semimetrics,
as in the preceding paragraph.

Let q be a positive real number such that q ≤ qX , so that dX may be
considered as a q-semimetric on X, as in Section 2. Also let w ∈ X be given,
and put

fw,q(x) = dX(w, x)q(6.2)

for every x ∈ X. Observe that

fw,q(x) ≤ fw,q(x
′) + dX(x, x′)q(6.3)

and
fw,q(x

′) ≤ fw,q(x) + dX(x, x′)q(6.4)

for every x, x′ ∈ X, by the q-semimetric version of the triangle inequality. This
implies that

|fw,q(x)− fw,q(x
′)| ≤ dX(x, x′)q(6.5)

for every x, x′ ∈ X, where | · | is the standard absolute value function on R. It
follows that (6.2) is uniformly continuous as a real-valued function of x on X,
with respect to dX on X, and the standard Euclidean metric on R.

Let k be a field with a qk-absolute value function | · | for some qk > 0. Also
let q be a positive real number with q ≤ qk, so that | · | may be considered as a
q-absolute value function on k, as in Section 3. Put

fq(x) = |x|q(6.6)

for each x ∈ k, which defines a nonnegative real-valued function on k. This is
the same as (6.2), with X = k, dX equal to the qk-metric (3.9) associated to | · |
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on k, and w = 0. Thus (6.6) is uniformly continuous as a mapping from k into
R, with respect to (3.9) on k, and the standard Euclidean metric on R.

As in Section 4, x 7→ 1/x defines a continuous mapping from k \ {0} into
itself, with respect to the topology induced on k\{0} by the topology determined
on k by (3.9). If r is a positive real number, then one can check that x 7→ 1/x
is uniformly continuous as a mapping from

{x ∈ k : |x| ≥ r}(6.7)

into k, using (3.9) on k and its restriction to (6.7).
Similarly, addition on k defines a continuous mapping from k × k into k,

using the corresponding product topology on k × k. Using the qk-metric (3.9)
on k associated to | · |, we can get a qk-metric on k × k, as in (5.6). One can
verify that addition on k is uniformly continuous as a mapping from k × k into
k, with respect to this qk-metric on k × k.

Multiplication defines a continuous mapping from k × k into k as well. The
restriction of this mapping to bounded subsets of k× k is uniformly continuous
with respect to the qk-metric on k × k mentioned in the preceding paragraph,
by standard arguments.

7 Completeness

Let X be a set, and let d(·, ·) be a q-metric on X for some q > 0. As usual, a
sequence {xj}∞j=1 of elements of X is said to be a Cauchy sequence in X with
respect to d(·, ·) if

d(xj , xl) → 0 as j, l → ∞.(7.1)

If a is a positive real number, then d(·, ·)a is a (q/a)-metric on X, as in Section
2. It is easy to see that {xj}∞j=1 is a Cauchy sequence with respect to d(·, ·)a if
and only if {xj}∞j=1 is a Cauchy sequence with respect to d(·, ·). One can check
that convergent sequences in X are Cauchy sequences, as in the case of ordinary
metric spaces, and one can reduce to that case using d(·, ·)q when q ≤ 1. If every
Cauchy sequence of elements of X converges to an element of X, then X is said
to be complete with respect to d(·, ·). If 0 < a < ∞, then X is complete with
respect to d(·, ·) if and only if X is complete with respect to d(·, ·)a.

Let Y be a subset of X, so that the restriction of d(x, y) to x, y ∈ Y defines
a q-metric on Y . Note that a sequence of elements {yj}∞j=1 of Y is a Cauchy
sequence in Y with respect to the restriction of d(·, ·) to Y if and only if {yj}∞j=1

is a Cauchy sequence in X with respect to d(·, ·). If X is complete with respect
to d(·, ·), and Y is a closed set in X with respect to the topology determined by
d(·, ·), then it is easy to see that Y is complete with respect to the restriction
of d(·, ·) to Y . In the other direction, if Y is complete with respect to the
restriction of d(·, ·), then one can check that Y is a closed set in X with respect
to the topology determined by d(·, ·).

Let X, Y be sets, and let dX , dY be qX , qY -metrics on X, Y , respectively,
for some qX , qY > 0. Let E be a dense subset of X, and let f be a uniformly
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continuous mapping from E into Y , with respect to the restriction of dX to E.
If Y is complete with respect to dY , then there is a unique extension of f to a
uniformly continuous mapping from X into Y . This is well known for ordinary
metric spaces, and it can be shown in this situation in essentially the same way,
or by reducing to the case of ordinary metric spaces. Of course, the uniqueness
of the extension only requires ordinary continuity.

Let X be a set with a q-metric d(·, ·) for some q > 0 again. If X is not com-
plete with respect to d(·, ·), then one can pass to a completion. More precisely,
this means that there is an isometric embedding of X onto a dense subset of a
complete q-metric space. This is well known when q = 1, and one can reduce
to that case when q < ∞, using a completion of X with respect to the metric
d(·, ·)q. Alternatively, if 1 ≤ q ≤ ∞, then d(·, ·) is a metric on X, and one can
use a completion of X as a metric space with respect to d(·, ·). In this case, one
can check that the metric on the completion is a q-metric too. One can also
verify that the completion of X is unique up to isometric equivalence, using the
extension theorem mentioned in the previous paragraph.

Let k be a field, and let | · | be a q-absolute value function on k for some
q > 0. If k is not already complete with respect to the associated q-metric (3.9),
then one can pass to a completion of k. One can start with a completion of k
as a q-metric space, as before. One can check that the field operations on k can
be extended continuously to the completion, so that the completion is a field
as well. The extension of | · | to the completion corresponds to the distance to
0 in the completion, and defines a q-absolute value function on the completion.
One can also obtain the completion more directly in this situation, as a field
with a q-absolute value function. As before, the completion of k with respect
to | · | is unique up to isometric isomorphic equivalence. If p is a prime number,
then the field Qp of p-adic numbers is obtained by completing Q with respect
to the p-adic absolute value function | · |p. One also uses | · |p to denote the
corresponding extension of the p-adic absolute value function to Qp.

8 Separation conditions

A topological space X is said to be regular in the strict sense if for every x ∈ X
and closed set E ⊆ X with x ̸∈ E there are disjoint open sets U, V ⊆ X such
that x ∈ U and E ⊆ V . This is equivalent to asking that for every x ∈ X and
open set W ⊆ X with x ∈ W there be an open set U ⊆ X such that x ∈ U and
the closure U of U in X is contained in W . If X is regular in the strict sense
and X satisfies the first or even 0th separation condition, then we may simply
say that X is regular, or that X satisfies the third separation condition. In this
case, it is easy to see that X is Hausdorff. If the topology on X is determined
by a q-semimetric d(·, ·) for some q > 0, then X is regular in the strict sense.

Similarly, a topological space X is completely regular in the strict sense if for
every x ∈ X and closed set E ⊆ X with x ̸∈ E there is a continuous real-valued
function f onX such that f(y) = 0 for every y ∈ E and f(x) ̸= 0. Of course, this
uses the standard topology on R as the range of f . If X is completely regular

14



in the strict sense, then X is regular in the strict sense, because the real line is
Hausdorff with respect to the standard topology. If X is completely regular in
the strict sense and X satisfies the first or even 0th separation condition, then
we may simply say that X is completely regular, or that X satisfies separation
condition number three and a half. If the topology on X is determined by a
q-semimetric d(·, ·) for some q > 0, then X is completely regular in the strict
sense, because of the continuity of the functions defined in (6.2).

A topological space X is said to be normal in the strict sense if for every
pair A, B of disjoint closed subsets of X there are disjoint open sets U, V ⊆ X
such that A ⊆ U and B ⊆ V . If X is normal in the strict sense and X satisfies
the first separation condition, then we may simply say that X is normal in this
case, or that X satisfies the fourth separation condition. It is easy to see that
normal topological spaces are regular. If the topology on X is determined by a
q-semimetric d(·, ·) for some q > 0, then it is well known that X is normal in
the strict sense. It is also well known that compact Hausdorff topological spaces
are normal.

If a topological space X is normal in the strict sense, and if A, B are disjoint
closed subsets of X, then there is a continuous real-valued function f on X such
that f(x) = 0 for every x ∈ A and f(y) = 1 for every y ∈ B, by Urysohn’s
lemma. In particular, normal topological spaces are completely regular. It is
well known that a locally compact Hausdorff topological space X is completely
regular. This can be derived from the normality of the one-point compactifica-
tion of X, or using a suitable version of the proof of Urysohn’s lemma.

A topological space X is said to be completely Hausdorff if for every pair x,
y of distinct elements of X there are open sets U, V ⊆ X such that x ∈ U , y ∈ V ,
and the closures of U and V in X are disjoint. In this case, we also say that
X satisfies separation condition number two and a half. Of course, completely
Hausdorff spaces are Hausdorff. It is easy to see that regular topological spaces
are completely Hausdorff. A topological space X is said to be a Urysohn space
if continuous real-valued functions on X separate points in X. Thus completely
regular topological spaces are Urysohn spaces. Urysohn spaces are completely
Hausdorff, because the real line is completely Hausdorff with respect to the
standard topology.

Let X be a set, and let τ1, τ2 be topologies on X, with

τ1 ⊆ τ2.(8.1)

If (X, τ1) satisfies the 0th, first, or second separation condition, then it is easy to
see that (X, τ2) has the same property. This also works for the completely Haus-
dorff and Urysohn conditions mentioned in the previous paragraph. However,
this type of simple argument does not work for regularity, complete regularity,
or normality.

Let X be a topological space again, and let Y be a subset of X, equipped
with the induced topology. It is well known and not difficult to show that if
X satisfies the 0th, first, or second separation conditions, then Y has the same
property. There are analogous statements for regularity, complete regularity,
completely Hausdorff spaces, and Urysohn spaces, but not normality.
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9 Topological dimension 0

A topological space X has topological dimension 0 in the strict sense if for every
x ∈ X and open set W ⊆ X with x ∈ W there is an open set U ⊆ X such
that x ∈ U , U ⊆ W , and U is a closed set in X too. Sometimes one also asks
that X ̸= ∅, in connection with inductive notions of topological dimension. If
X has topological dimension 0 in the strict sense and X satisfies the first or
even 0th separation condition, then we may simply say that X has topological
dimension 0. If the topology on X is determined by a semi-ultrametric d(·, ·),
then X has topological dimension 0 in the strict sense. It is easy to see that
the set Q of rational numbers has topological dimension 0 with respect to the
topology induced by the standard topology on R.

A topological space X is said to be totally separated if for every pair x, y of
distinct elements of X there are disjoint open sets U , V such that x ∈ U , y ∈ V ,
and U ∪ V = X. If X has topological dimension 0, then X is totally separated.
Of course, totally separated spaces are completely Hausdorff. If τ1 and τ2 are
topologies on a set X such that τ1 ⊆ τ2 and (X, τ1) is totally separated, then it
is easy to see that (X, τ2) is totally separated. However, this type of argument
does not work for topological dimension 0.

Let X be a totally separated topological space. If x ∈ X, K ⊆ X is compact,
and x ̸∈ K, then one can check that there is an open set U ⊆ X such that x ∈ U ,
U ∩K = ∅, and U is a closed set in X. If X is also locally compact, then one
can use this to show that X has topological dimension 0.

Let X be a topological space, and let Y be a subset of X, equipped with
the induced topology. If X is totally separated or has topological dimension 0,
then one can verify that Y has the same property. Note that a totally separated
topological space with at least two elements is not connected. It follows that
a totally separated topological space is totally disconnected, in the sense that
every subset of the space with at least two elements is not connected.

Let X, Y be topological spaces, and let C(X,Y ) be the space of continuous
mappings from X into Y . If U ⊆ X is both open and closed, and if y1, y2 ∈ Y ,
then

f(x) = y1 when x ∈ U(9.1)

= y2 when x ∈ X \ U

defines a continuous mapping from X into Y . If X is totally separated and Y
has at least two elements, then it follows that C(X,Y ) separates points in X.
In particular, totally separated topological spaces are Urysohn spaces. In the
other direction, if Y is totally separated and C(X,Y ) separates points in X,
then it is easy to see that X is totally separated.

Suppose that X has topological dimension 0 in the strict sense. If x ∈ X,
E ⊆ X is a closed set, and x ̸∈ E, then there is an open set U ⊆ X such that
x ∈ U , U ∩ E = ∅, and U is a closed set in X. This is equivalent to the earlier
definition, with W = X \ E. If y1, y2 ∈ Y , then (9.1) defines a continuous
mapping from X into Y that is constant on E. In particular, this implies that
X is completely regular in the strict sense.
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Let X, Y be topological spaces again. Suppose that for every x ∈ X and
closed set E ⊆ X with x ̸∈ E there is a continuous mapping f from X into Y
such that f is constant on E and this constant value is different from f(x). If
Y is totally separated, then X has topological dimension 0 in the strict sense.

10 The archimedean property

Let k be a field, and let Z+ be the set of positive integers. If x ∈ k and n ∈ Z+,
then let n · x be the sum of n x’s in k. Observe that

m · (n · x) = (mn) · x(10.1)

for every m,n ∈ Z+ and x ∈ k, and that

n · (x y) = (n · x) y(10.2)

for every n · Z+ and x, y ∈ k. In particular,

n · y = (n · 1) y(10.3)

for every n ∈ Z+ and y ∈ k, where 1 is the multiplicative identity element in k.
Using this, one can check that

(n · 1)j = nj · 1(10.4)

for every j, n ∈ Z+.
Let | · | be a q-absolute value function on k for some q > 0. If there are

positive integers n such that |n · 1| is arbitrarily large, then | · | is said to be
archimedean on k. Otherwise, | · | is non-archimedean on k, which means that
there is a nonnegative real number C such that

|n · 1| ≤ C(10.5)

for every n ∈ Z+. If n ∈ Z+ and |n · 1| > 1, then

|(nj · 1)| = |(n · 1)j | = |n · 1|j → ∞ as j → ∞,(10.6)

so that | · | is archimedean on k. If | · | is non-archimedean on k, then it follows
that (10.5) holds with C = 1.

If | · | is an ultrametric absolute value function on k, then it is easy to see
that (10.5) holds with C = 1. Conversely, if | · | is non-archimedean on k, then
it is well known that | · | is an ultrametric absolute value function on k. To see
this, suppose that q < ∞, and that (10.5) holds for some C ≥ 1. If x, y ∈ k and
n ∈ Z+, then

(x+ y)n =

n∑
j=0

(
n

j

)
· xj yn−j ,(10.7)
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where
(
n
j

)
∈ Z+ are the usual binomial coefficients. It follows that

|x+ y|n q = |(x+ y)n|q ≤
n∑

j=0

∣∣∣∣(nj
)
· xj yn−j

∣∣∣∣q,(10.8)

using (3.3) in the second step. Thus

|x+ y|n q ≤
n∑

j=0

∣∣∣∣(nj
)
· 1

∣∣∣∣q |x|j q |y|(n−j) q(10.9)

≤ Cq (n+ 1) max(|x|, |y|)n q,

using (10.5) in the second step. This implies that

|x+ y| ≤ C1/n (n+ 1)1/(n q) max(|x|, |y|).(10.10)

To get the ultrametric version (3.7) of the triangle inequality, one can take the
limit as n → ∞ of the right side of (10.10).

Let | · | be a q-absolute value function on Q for some q > 0, and suppose
that

|n| ≤ 1(10.11)

for every n ∈ Z+. This implies that | · | is non-archimedean on Q, so that | · | is
an ultrametric absolute value function on Q. If |n| = 1 for every n ∈ Z+, then
it is easy to see that | · | is the trivial absolute value function on Q. Otherwise,
suppose that |n| < 1 for some n ∈ Z+. Let p be the smallest positive integer
with |p| < 1. Of course, p > 1, because |1| = 1, as in (3.4). On can check that
p has to be a prime number, using (3.2). Under these conditions, one can show
that | · | is equivalent to the p-adic absolute function on Q. This is part of the
theorem of Ostrowski mentioned in Section 4.

11 Some related conditions

Let k be a field, and let | · | be a q-absolute value function on k for some positive
real number q. One can check that

|n · 1|q ≤ n(11.1)

for every n ∈ Z+, using (3.3). Suppose that q ≤ 1, and

|n · 1| ≤ C n(11.2)

for some real number C ≥ 1 and every n ∈ Z+. If j, n ∈ Z+, then we get that

|n · 1|j = |(n · 1)j | = |nj · 1| ≤ C nj ,(11.3)

using (10.4) in the second step. This implies that

|n · 1| ≤ C1/j n(11.4)
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for every j, n ∈ Z+. It follows that

|n · 1| ≤ n(11.5)

for every n ∈ Z+, because C1/j → 1 as j → ∞. Let us show that (11.2) implies
that | · | is an ordinary absolute value function on k.

If x, y ∈ k and n ∈ Z+, then

|x+ y|n q ≤
n∑

j=0

∣∣∣∣(nj
)
· xj yn−j

∣∣∣∣q ≤ (n+ 1) max
0≤j≤n

∣∣∣∣(nj
)
· xj yn−j

∣∣∣∣q,(11.6)

using (10.8) in the first step. This implies that

|x+ y|n ≤ (n+ 1)1/q max
0≤j≤n

(∣∣∣∣(nj
)
· 1
∣∣∣∣ |x|j |y|n−j

)
,(11.7)

by taking the qth root of both sides of (11.6). It follows that

|x+ y|n ≤ (n+ 1)1/q
n∑

j=0

∣∣∣∣(nj
)
· 1

∣∣∣∣ |x|j |y|n−j

≤ C (n+ 1)1/q
n∑

j=0

(
n

j

)
|x|j |y|n−j = C (n+ 1)1/q (|x|+ |y|)n,(11.8)

using (11.2) in the second step, and the binomial theorem in the third step.
Thus

|x+ y| ≤ C1/n (n+ 1)1/(q n) (|x|+ |y|)(11.9)

by taking the nth roots of both sides of (11.8). This implies that | · | satisfies the
ordinary version of the triangle inequality on k, by taking the limit as n → ∞
on the right side of (11.9).

Let k be any field again, and let | · | be a q-absolute value function on k
for some q > 0. If k has positive characteristic, then there are only finitely
many elements of k of the form n · 1 with n ∈ Z+, so that | · | is automatically
non-archimedean on k. Suppose now that k has characteristic 0, so that there
is a natural embedding of Q into k. Thus | · | leads to a q-absolute value
function on Q. It is easy to see that | · | is archimedean on k exactly when
the induced q-absolute value function on Q is archimedean. In this case, the
theorem of Ostrowski mentioned in Section 4 implies that the induced absolute
value function on Q is equivalent to the standard Euclidean absolute value
function on Q. Let us suppose that the induced absolute value function on Q is
equal to the standard absolute value function on Q, which can be arranged by
replacing | · | on k with a suitable positive power of itself. In this situation, the
earlier discussion implies that | · | is an ordinary absolute value function on k.

Let |·| be an archimedean q-absolute value function on a field k for some q > 0
again, and suppose that k is complete with respect to the associated q-metric.
Under these conditions, another famous theorem of Ostrowski implies that k
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is isomorphic to R or C, where | · | corresponds to a q-absolute value function
on R or C, as appropriate, that is equivalent to the standard absolute value
function. As in the preceding paragraph, we can replace | · | on k with a positive
power of itself, if necessary, to get that induced absolute value function on Q is
equal to the standard absolute value function on Q. With this normalization,
| · | corresponds exactly to the standard absolute value function on R or C, as
appropriate, under the isomorphism just mentioned.

12 q-Norms and q-seminorms

Let k be a field, and let | · | be a qk-absolute value function on k for some qk > 0.
Also let V be a vector space over k, and let q be a positive real number. A
nonnegative real-valued function N on V is said to be a q-seminorm on V with
respect to | · | on k if it satisfies the following two conditions. First,

N(t v) = |t|N(v)(12.1)

for every v ∈ V and t ∈ k. Note that this implies that N(0) = 0, by taking
t = 0. Second,

N(v + w)q ≤ N(v)q +N(w)q(12.2)

for every v, w ∈ V . If we also have that

N(v) > 0 when v ̸= 0,(12.3)

then N is said to be a q-norm on V with respect to | · | on k. A q-norm or
q-seminorm with q = 1 is also known as a norm or seminorm, respectively.

As usual, (12.2) is the same as saying that

N(v + w) ≤ (N(v)q +N(w)q)1/q(12.4)

for every v, w ∈ V . A nonnegative real-valued function N on V is said to be a
semi-ultranorm on V with respect to | · | on k if it satisfies (12.1) and

N(v + w) ≤ max(N(v), N(w))(12.5)

for every v, w ∈ V . If N satisfies (12.3) too, then N is said to be an ultranorm on
V with respect to | · | on k. An ultranorm or semi-ultranorm may be considered
as a q-norm or q-seminorm with q = ∞, respectively, because of (1.9). If
0 < q1 ≤ q2 ≤ ∞ and N is a q2-norm or q2-seminorm on V with respect to | · |
on k, then N is a q1-norm or q1-seminorm on V with respect to | · | on k, as
appropriate, because of the first inequality in (1.8) and (1.10).

If N is a q-seminorm on V with respect to | · | on k for some q > 0, then

d(v, w) = dN (v, w) = N(v − w)(12.6)

defines a q-semimetric on V . This uses the fact that | − 1| = 1, as in Section 3,
to get that (12.6) satisfies the symmetry condition (2.2). If N is a q-norm on
V , then (12.6) defines a q-metric on V .
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The trivial ultranorm is defined on V by putting N(v) equal to 1 when v ̸= 0
and to 0 when v = 0. This is an ultranorm on V with respect to the trivial
absolute value function on k. The ultrametric on V corresponding to the trivial
ultranorm as in (12.6) is the same as the discrete metric on V .

Let N be a q-seminorm on V with respect to | · | on k for some q > 0, and
suppose that N(v) > 0 for some v ∈ V . Under these conditions, one can check
that | · | is a q-absolute value function on k.

Let N be a q-seminorm on V with respect to | · | on k for some q > 0 again,
and let a be a positive real number. Remember that | · |a is a (qk/a)-absolute
value function on k, as in Section 3. Similarly,

N(v)a(12.7)

is a (q/a)-seminorm on V with respect to | · |a on k. If N is a q-norm on V with
respect to | · | on k, then (12.7) is a (q/a)-norm on V with respect to | · |a on k.
Of course, the (q/a)-metric or semimetric on V associated to (12.7) is the ath
power of the q-metric or q-semimetric associated to N on V .

Let N be a q-seminorm on V with respect to | · | on k for some q > 0 again.
Thus the corresponding q-semimetric (12.6) determines a topology on V , as in
Section 4. It is easy to see that addition of vectors in V defines a continuous
mapping from V × V into V , using the product topology on V × V associated
to the topology on V just mentioned. Similarly, scalar multiplication on V
determines a continuous mapping from k × V into V . This uses the product
topology on k×V associated to the topology determined on k by the qk-metric
corresponding to | · | and the topology on V just mentioned.

Using (12.6), we can get a q-semimetric on V × V , as in (5.6). One can
check that addition of vectors in V defines a uniformly continuous mapping
from V × V into V with respect to this q-semimetric. Similarly, we can get a
min(qk, q)-semimetric on k × V using the qk-metric on k associated to | · | and
(12.6). One can verify that the mapping from k × V into V corresponding to
scalar multiplication is uniformly continuous on bounded subsets of k×V , with
respect to this min(qk, q)-semimetric on k × V .

If q0 is a positive real number with q0 ≤ q, then N may be considered as a
q0-seminorm on V with respect to | · | on k, as before. Put

fq0(v) = N(v)q0(12.8)

for each v ∈ V , which defines a nonnegative real-valued function on V . This is
the same as (6.2), with X = V , dX equal to (12.6), w = 0, and q replaced with
q0. Hence (12.8) is uniformly continuous as a mapping from V into R, with
respect to (12.6) on V , and the standard Euclidean metric on R.

Let N be a q-norm on V with respect to | · | on k for some q > 0. If V is not
already complete as a q-metric space with respect to (12.6), then one can pass
to a completion of V . One can start by completing V as a q-metric space, as in
Section 2. The vector space operations on V can be extended continuously to
the completion of V , so that the completion of V becomes a vector space over
k too. The extension of N to the completion corresponds to the distance to 0
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in the completion, and defines a q-norm on the completion with respect to | · |
on k. The completion of V as a vector space over k with a q-norm with respect
to | · | on k can be obtained more directly as well. If V is complete as a q-metric
space with respect to (12.6), and k is not complete as a qk-metric space with
respect to (3.9), then scalar multiplication on V can be extended continuously
to the completion of k. This makes V into a vector space over the completion
of k, and N becomes a q-norm on V as a vector space over the completion of k.

If V is complete with respect to the q-metric associated to N , then V is said
to be a q-Banach space with respect to N . In this case, if q = 1, then we may
simply say that V is a Banach space with respect to N . One may prefer to
include the completeness of k in the definition of a q-Banach space.

13 Supremum q-semimetrics and q-seminorms

LetX, Y be nonempty sets, and let dY be a qY -semimetric on Y for some qY > 0.
A mapping f from X into Y is said to be bounded if f(X) is bounded as a subset
of Y , with respect to dY . Let B(X,Y ) be the collection of bounded mappings
from X into Y . If f, g ∈ B(X,Y ), then it is easy to see that dY (f(x), g(x)) is
bounded as a nonnegative real-valued function on X. Thus means that

θ(f, g) = sup
x∈X

dY (f(x), g(x))(13.1)

is defined as a nonnegative real number. One can check that (13.1) defines a
qY -semimetric on B(X,Y ), which is the supremum q-semimetric associated to
dY . If dY is a qY -metric on Y , then (13.1) defines a qY -metric on B(X,Y ). In
this case, if Y is also complete with respect to dY , then B(X,Y ) is complete
with respect to (13.1), by standard arguments.

If X is a topological space, then we let C(X,Y ) denote the space of contin-
uous mappings from X into Y , as in Section 9, using the topology determined
on Y by dY . Let Cb(X,Y ) be the space of bounded continuous mappings from
X into Y , so that

Cb(X,Y ) = B(X,Y ) ∩ C(X,Y ).(13.2)

One can verify that Cb(X,Y ) is a closed set in B(X,Y ) with respect to (13.1),
using standard arguments. If X is equipped with the discrete topology, then
Cb(X,Y ) is the same as B(X,Y ). If X is a compact topological space, and f is a
continuous mapping from X into Y , then f(X) is a compact subset of Y , which
implies that f(X) is bounded in Y . Thus Cb(X,Y ) is the same as C(X,Y )
when X is compact. If dY is a qY -metric on Y , and Y is complete with respect
to dY , then Cb(X,Y ) is complete with respect to (13.1). This follows from the
completeness of B(X,Y ) with respect to (13.1), and the fact that Cb(X,Y ) is
a closed set in B(X,Y ) with respect to the topology determined by (13.1).

Let X be a nonempty set again, let k be a field, and let V be a vector space
over k. Observe that the space c(X,V ) of all V -valued functions on X is a
vector space over k with respect to pointwise addition and scalar multiplication
of functions.
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Let | · | be a qk-absolute value function on k for some qk > 0, and let N be
a q-seminorm on V with respect to | · | on k for some q > 0. Let ℓ∞(X,V ) =
ℓ∞N (X,V ) be the space of V -valued functions onX that are bounded with respect
toN , in the sense thatN(f(x)) is bounded as a nonnegative real-valued function
on X. This is the same as saying that f is bounded with respect to the q-
semimetric on V associated to N , so that ℓ∞(X,V ) is the same as B(X,V ) in
this situation. It is easy to see that ℓ∞(X,V ) is a linear subspace of c(X,V ).
Put

∥f∥∞ = ∥f∥ℓ∞(X,V ) = ∥f∥ℓ∞
N

(X,V ) = sup
x∈X

N(f(x))(13.3)

for every f ∈ ℓ∞(X,V ). One can check that this defines a q-seminorm on
ℓ∞(X,V ) with respect to | · | on k. This is known as the supremum q-seminorm
on ℓ∞(X,V ) associated to N . Note that the q-semimetric on ℓ∞(X,V ) associ-
ated to (13.3) is the same as the supremum q-semimetric corresponding to the
q-semimetric on V associated to N as in (13.1). If N is a q-norm on V , then
(13.3) is a q-norm on ℓ∞(X,V ).

Now let X be a nonempty topological space, and let C(X,V ) be the space of
all continuous V -valued functions on X, as in Section 9. This uses the topology
determined on V by the q-semimetric associated to N . It is easy to see that
C(X,V ) is a linear subspace of the space c(X,V ) of all V -valued functions on
X. Let E be a nonempty compact subset of X. If f ∈ C(X,V ), then f is
bounded on E with respect to N , by standard results. Thus

∥f∥sup,E = ∥f∥sup,E,N = sup
x∈E

N(f(x))(13.4)

is defined as a nonnegative real number, and in fact the supremum is attained.
One can check that (13.4) defines a q-seminorm on C(X,V ) with respect to | · |
on k. This is the supremum q-seminorm on C(X,V ) associated to E.

Let Cb(X,V ) be the space of V -valued functions on X that are bounded
and continuous with respect to N , as before. This is a linear subspace of both
C(X,V ) and ℓ∞(X,V ). The supremum q-seminorm (13.3) may also be denoted
∥f∥sup, which corresponds to (13.4) with E = X.

If X is a nonempty topological space and E ⊆ X is nonempty and compact,
then the q-semimetric on C(X,V ) corresponding to (13.4) is the supremum q-
semimetric associated to E. This q-semimetric determines a topology τE on
C(X,V ), as in Section 4. Let τ be the topology on C(X,V ) which is gener-
ated by the collection of topologies τE , where E is a nonempty compact subset
of X. Of course, finite subsets of X are compact, so that this collection is
nonempty. More precisely, the union of τE over all nonempty compact subsets
E of X is a sub-base for τ . In this situation, one can check that the union
of τE over all nonempty compact subsets E of X is a base for τ . This uses
the fact that if E1, . . . En are finitely many nonempty compact subsets of X,
then their union

∪n
j=1 Ej is compact as well. The supremum q-seminorm on

C(X,V ) associated to
∪n

j=1 Ej is the same as the maximum of the supremum
q-seminorms associated to E1, . . . , En. If E is any nonempty compact subset
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of X, then the collection of open balls in C(X,V ) corresponding to the supre-
mum q-semimetric associated to (13.4) is a base for τE . Thus the collection of
all open balls in C(X,V ) corresponding to supremum q-semimetrics associated
to nonempty compact subsets E of X is a base for τ . If X is compact, then
C(X,V ) = Cb(X,V ), and τ is the same as the topology τX determined by the
supremum q-semimetric associated to E = X.

14 Bounded linear mappings

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V , W be vector spaces over k. Also let NV , NW be qV , qW -seminorms on V ,
W , respectively, for some qV , qW > 0, and with respect to | · | on k. A linear
mapping T from V into W is said to be bounded with respect to NV , NW if
there is a nonnegative real number C such that

NW (T (v)) ≤ C NV (v)(14.1)

for every v ∈ V . This implies that

NW (T (u)− T (v)) = NW (T (u− v)) ≤ C NV (u− v)(14.2)

for every u, v ∈ V , and hence that T is uniformly continuous as a mapping from
V into W , with respect to the qV , qW -semimetrics associated to NV , NW on
V , W , respectively. In the other direction, let T be a linear mapping from V
into W , and suppose that | · | is nontrivial on k. If NW (T (v)) is bounded on
a ball in V centered at 0 with positive radius with respect to NV , then one
can check that T is bounded as a linear mapping with respect to NV , NW . In
particular, this condition holds when T is continuous at 0 with respect to the
topologies determined on V , W by the qV , qW -semimetrics associated to NV ,
NW , respectively.

If T is a bounded linear mapping from V into W with respect to NV , NW ,
then put

∥T∥op = ∥T∥op,VW = inf{C ≥ 0 : (14.1) holds},(14.3)

where more precisely the infimum is taken over all nonnegative real numbers
C such that (14.1) holds. It is easy to see that the infimum is automatically
attained, so that (14.1) holds with C = ∥T∥op. Let BL(V,W ) be the space of
all bounded linear mappings from V into W with respect to NV , NW . One
can verify that BL(V,W ) is a vector space over k with respect to pointwise
addition and scalar multiplication. Moreover, (14.3) defines a qW -seminorm
on BL(V,W ). If NW is a qW -norm on W , then (14.3) defines a qW -norm
on BL(V,W ). In this case, if W is complete with respect to the qW -metric
associated to NW , then BL(V,W ) is complete with respect to the qW -metric
associated to (14.3), by standard arguments.

Let Z be another vector space over k, and let NZ be a qZ-seminorm on Z
with respect to | · | on k, for some qZ > 0. If T1 is a bounded linear mapping
from V into W with respect to NV , NW , and T2 is a bounded linear mapping
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from W into Z with respect to NW , NZ , then their composition T2 ◦ T1 is a
bounded linear mapping from V into Z with respect to NV , NZ , with

∥T2 ◦ T1∥op,V Z ≤ ∥T1∥op,VW ∥T2∥op,WZ .(14.4)

Let BL(V ) be the space of bounded linear mappings from V into itself, using
NV on V as both the domain and range of the mapping. Note that the identity
mapping I = IV on V is a bounded linear mapping from V into itself. If
NV (v) > 0 for some v ∈ V , then ∥I∥op = 1.

Suppose now that NV , NW are qV , qW -norms on V , W , respectively, and let
V0 be a linear subspace of V that is dense in V with respect to the qV -metric
associated to NV . Let T0 be a bounded linear mapping from V0 into W , using
the restriction of NV to V0 as a qV -norm on V0. In particular, T0 is uniformly
continuous with respect to the qV , qW -metrics associated to NV , NW , respec-
tively, as before. If W is complete with respect to the qW -metric associated to
NW , then there is a unique extension of T0 to a uniformly continuous mapping
from V into W , as in Section 7. In this situation, one can check that this ex-
tension is a bounded linear mapping from V into W , with the same operator
qW -norm as on V0.

15 Bilinear mappings

Let k be a field, and let V , W , and Z be vector spaces over k. Also let b(v, w)
be a Z-valued function of v ∈ V and w ∈ W . As usual, b is said to be bilinear
if b(v, w) is linear in each variable. More precisely, this means that b(v, w) is
linear in v for each w ∈ W , and that b(v, w) is linear in w for each v ∈ V . Thus

b1,v(w) = b(v, w)(15.1)

may be considered as a linear mapping from W into Z for each v ∈ V , and

b2,w(v) = b(v, w)(15.2)

may be considered as a linear mapping from V into Z for each w ∈ W . Let
L(V, Z) be the space of linear mappings from V into Z, and similarly for
L(W,Z). These are vector spaces over k with respect to pointwise addition
and scalar multiplication. The bilinearity of b implies that

v 7→ b1,v(15.3)

defines a linear mapping from V into L(W,Z), and that

w 7→ b2,w(15.4)

defines a linear mapping from W into L(V, Z). Conversely, a linear mapping
from V into L(W,Z) or from W into L(V, Z) corresponds to a bilinear mapping
from V ×W into Z in this way.
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Let | · | be a qk-absolute value function on k for some qk > 0, and let NV ,
NW , and NZ be qV , qW , and qZ-seminorms on V , W , and Z, respectively, for
some qV , qW , qZ > 0, and with respect to | · | on k. A bilinear mapping b from
V ×W into Z is said to be bounded with respect to NV , NW , and NZ if there
is a nonnegative real number C such that

NZ(b(v, w)) ≤ C NV (v)NW (w)(15.5)

for every v ∈ V and w ∈ W . In this case, one can check that b is continuous
as a mapping from V × W into Z, with respect to the topologies determined
on V , W , and Z by the q-semimetrics associated to NV , NW , and NZ , and
the corresponding product topology on V ×W . More precisely, remember that
one can get a min(qV , qW )-semimetric on V ×W from the qV , qW -semimetrics
on V , W associated to NV , NW , respectively, as in (5.6). One can verify that
b is uniformly continuous on bounded subsets of V × W with respect to this
min(qV , qW )-semimetric, using standard arguments.

Suppose for the moment that |·| is nontrivial on k. If NZ(b(v, w)) is bounded
for v, w in balls in V , W centered at 0 with positive radius with respect to NV ,
NW , respectively, then it is easy to see that b is bounded as a bilinear mapping
from V × W into Z with respect to NV , NW , and NZ . In particular, this
condition holds when b is continuous as a mapping from V ×W into Z at (0, 0).

Suppose that b is a bounded bilinear mapping from V × W into Z with
respect to NV , NW , and NZ , so that (15.5) holds for some C ≥ 0. If v ∈ V and
b1,v is as in (15.1), then it follows that b1,v is a bounded linear mapping from
W into Z, with

∥b1,v∥op,WZ ≤ C NV (v).(15.6)

This implies that (15.3) is a bounded linear mapping from V into BL(W,Z),
with respect to the corresponding operator qZ-seminorm ∥·∥op,WZ on BL(W,Z).
Similarly, if w ∈ W and b2,w is as in (15.2), then b2,w is a bounded linear mapping
from V into Z, with

∥b2,w∥op,V Z ≤ C NW (w).(15.7)

This means that (15.4) is a bounded linear mapping from W into BL(V, Z),
with respect to the corresponding operator qZ-seminorm ∥ · ∥op,V Z .

Suppose now that NV , NW , and NZ are qV , qW , and qZ-norms on V , W , and
Z, respectively. Let V0, W0 be dense linear subspaces of V , W , respectively, with
respect to the topologies determined by the qV , qW -metrics associated to NV ,
NW . Also let b0 be a bilinear mapping from V0×W0 into Z that is bounded with
respect to the restrictions of NV , NW to V0, W0, respectively. If Z is complete
with respect to the qZ-metric associated to NZ , then there is a unique extension
of b0 to a bounded bilinear mapping from V ×W into Z. To get the existence
of this extension, one can use the uniform continuity of b0 on bounded subsets
of V0×W0, as before. Alternatively, the extension can be obtained one variable
at a time, using the analogous statement for bounded linear mappings in the
previous section. Note that the constant for the boundedness of the extension
of b0 to V ×W is the same as for b0 on V0 ×W0.

26



16 Associative algebras

Let k be a field, and let A be a vector space over k. Suppose that for each
x, y ∈ A, the product x y is defined as an element of A. More precisely, this
corresponds to a mapping from A×A into A. As usual, this operation is said
to be associative on A if

(x y) z = z (y z)(16.1)

for every x, y, z ∈ A. If multiplication on A is both associative and bilinear,
then A is said to be an (associative) algebra over k. If

x y = y x(16.2)

for every x, y ∈ A, then multiplication on A is said to be commutative. If A is
an algebra over k and multiplication on A is commutative, then A is said to be
a commutative algebra over k.

Let A be an algebra over k. An element e of A is said to be the multiplicative
identity element in A if

e x = x e = x(16.3)

for every x ∈ A. If there is a multiplicative identity element in A, then it is
easy to see that it is unique.

If V is a vector space over k, then the space L(V ) of linear mappings from
V into itself is a vector space with respect to pointwise addition and scalar
multiplication. In fact, L(V ) is an algebra over k with respect to composition
of linear mappings. The identity mapping I = IV on V is the multiplicative
identity element in L(V ).

If X is a nonempty set, then the space c(X, k) of all k-valued functions on
X is a commutative algebra over k with respect to pointwise multiplication of
functions. Let 1X be the k-valued function on X whose value at every point
in X is the multiplicative identity element 1 in k. This is the multiplicative
identity element in c(X, k).

Let A, B be algebras over k. A linear mapping ϕ from A into B is said to
be an (algebra) homomorphism if

ϕ(x y) = ϕ(x)ϕ(y)(16.4)

for every x, y ∈ A. Of course, this uses multiplication on A on the left side, and
multiplication on B on the right side.

Let A be an algebra over k again, and let a be an element of A. Put

Ma(x) = a x(16.5)

for each x ∈ A, so that Ma defines a linear mapping from A into itself. This is
the (left) multiplication operator on A associated to a. If b is another element
of A, then

Ma(Mb(x)) = Ma(b x) = a (b x) = (a b)x = Ma b(x)(16.6)
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for every x ∈ A. Thus
Ma ◦Mb = Ma b(16.7)

as linear mappings from A into itself.
It is easy to see that

a 7→ Ma(16.8)

defines a linear mapping from A into the space L(A) of linear mappings from A
into itself. More precisely, this is an algebra homomorphism from A into L(A),
because of (16.7). If A has a multiplicative identity element e, then Me is the
identity mapping on A. In this case, we also have that

Ma(e) = a e = a(16.9)

for every a ∈ A, which implies that (16.8) is injective.

17 Submultiplicative q-seminorms

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let A
be an algebra over k. Also let N be a q-seminorm on A as a vector space over
k for some q > 0, with respect to | · | on k. If

N(x y) ≤ N(x)N(y)(17.1)

for every x, y ∈ A, then N is said to be submultiplicative on A. If A has a
multiplicative identity element e, then we get that

N(x) = N(e x) ≤ N(e)N(x)(17.2)

for every x ∈ A. This implies that N(e) ≥ 1 when N(x) > 0 for some x ∈ A.
Let X be a nonempty topological space, and let C(X, k) be the space of

continuous k-valued functions on X, as in Section 9. This uses the topology
determined on k by the qk-metric associated to | · |. As in Section 13, C(X, k) is
a vector space over k with respect to pointwise addition and scalar multipliction
of functions, and in fact C(X, k) is a commutative algebra with respect to
pointwise multiplication of functions. More precisely, C(X, k) is a subalgebra of
the algebra c(X, k) of all k-valued functions on X. If E is a nonempty compact
subset of X, then

∥f∥sup,E = sup
x∈E

|f(x)|(17.3)

defines a qk-seminorm on C(X, k) with respect to | · | on k, as in Section 13. It
is easy to see that

∥f g∥sup,E ≤ ∥f∥sup,E ∥g∥sup,E(17.4)

for every f, g ∈ C(X, k), so that (17.3) is submultiplicative on C(X, k). Of
course, constant functions onX are continuous, including the function 1X whose
value at every point in X is the multiplicative identity element 1 in k. Note
that

∥1X∥sup,E = |1| = 1(17.5)
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for every nonempty compact set E ⊆ X, using (3.4) in the second step.
Let X be a nonempty set, and let ℓ∞(X, k) be the space of bounded k-valued

functions on X, as in Section 13. This is a vector space over k with respect to
pointwise addition and scalar multiplication of functions, and in fact ℓ∞(X, k)
is a subalgebra of c(X, k). Remember that

∥f∥∞ = ∥f∥ℓ∞(X,k) = sup
x∈X

|f(x)|(17.6)

defines a qk-norm on ℓ∞(X, k), as in (13.3). If f, g ∈ ℓ∞(X, k), then

∥f g∥∞ ≤ ∥f∥∞ ∥g∥∞,(17.7)

so that (17.6) is submultiplicative on ℓ∞(X, k). Constant k-valued functions on
X are bounded, and

∥1X∥∞ = |1| = 1,(17.8)

using (3.4) again.
Let X be a nonempty topological space again, and let Cb(X, k) be the space

of bounded continuous k-valued functions on X, as in Section 13. This is the
same as the intersection of C(X, k) and ℓ∞(X, k), and in particular Cb(X, k) is
a subalgebra of both C(X, k) and ℓ∞(X, k). As in Section 13, (17.6) may also
be denoted ∥f∥sup, which corresponds to (17.3) with E = X. Remember that
Cb(X, k) is the same as C(X, k) when X is compact, and that Cb(X, k) is the
same as ℓ∞(X, k) when X is equipped with the discrete topology.

Let V be a vector space over k, and let NV be a qV -seminorm on V with
respect to | · | on k for some qV > 0. As in Section 14, the space BL(V )
of bounded linear mappings on V with respect to NV is a vector space with
respect to pointwise addition and scalar multiplication. More precisely, BL(V )
is a subalgebra of the algebra L(V ) of all linear mappings from V into itself, with
composition of linear mappings as multiplication. Let ∥·∥op be the corresponding
operator qV -seminorm on BL(V ), as in (14.3). We have seen that ∥ · ∥op is
submultiplicative on BL(V ), as in (14.4).

18 Continuity of multiplication

Let k be a field with a qk-absolute value function | · | for some qk > 0, let A be
an algebra over k, and let N be a q-seminorm on A as a vector space over k for
some q > 0, with respect to | · | on k. Suppose that there is a nonnegative real
number C such that

N(x y) ≤ C N(x)N(y)(18.1)

for every x, y ∈ A. This is the same as saying that multiplication is bounded
as a bilinear mapping from A×A into A, as in Section 15. In particular, this
implies that multiplication on A is continuous as a mapping from A×A into A,
with respect to the topology determined on A by the q-metric associated to N ,
and the corresponding product topology on A. Using this q-semimetric on A,
we can get a q-semimetric on A×A, as in (5.6). The restriction of the mapping
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from A×A into A corresponding to multiplication on A to bounded subsets of
A×A is uniformly continuous with respect to the q-semimetrics just mentioned,
as in Section 15. Of course, (18.1) is the same as (17.1) when C = 1.

Let a ∈ A be given, and let Ma be the corresponding left multiplication
operator on A, as in (16.5). Using (18.1), we get that Ma is a bounded linear
mapping from A into itself with respect to N , with

∥Ma∥op ≤ C N(a).(18.2)

Here ∥ · ∥op is the operator q-seminorm on BL(A) corresponding to N , as in
(14.3). Thus a 7→ Ma defines a bounded linear mapping from A into BL(A),
with respect to ∥ · ∥op on BL(A).

Suppose that A has a multiplicative identity element e. Using (18.1), we get
that

N(x) = N(e x) ≤ C N(e)N(x)(18.3)

for every x ∈ A, which implies that C N(e) ≥ 1 when N(x) > 0 for some x ∈ A.
If a ∈ A, and Ma is the corresponding left multiplication operator on A again,
then

N(a) = N(a e) = N(Ma(e)) ≤ ∥Ma∥op N(e).(18.4)

In particular, if C = 1 and N(e) = 1, then it follows that ∥Ma∥op = N(a) for
every a ∈ A.

Let X be a nonempty topological space, and remember that the space
C(X, k) of continuous k-valued functions on X is a commutative algebra over
k. If E is a nonempty compact subset of X, then the corresponding supremum
qk-seminorm ∥f∥sup,E on C(X, k) is defined as in (17.3), and ∥f∥sup,E is sub-
multiplicative on C(X, k), as in (17.4). Let τE be the topology determined on
C(X, k) by the qk-semimetric on C(X, k) associated to ∥f∥sup,E , as in Section
13. As before, multiplication on C(X, k) defines a continuous mapping from
C(X, k) × C(X, k) into C(X, k) with respect to τE on C(X, k) and the corre-
sponding product topology on C(X, k) × C(X, k). Let τ be the topology on
C(X, k) generated by the collection of topologies τE , where E is a nonempty
compact subset of X, as in Section 13 again. One can check that multipli-
cation on C(X, k) defines a continuous mapping from C(X, k) × C(X, k) into
C(X, k) with respect to τ on C(X, k) and the corresponding product topology
on C(X, k)×C(X, k). Of course, there are analogous statements for continuity
of addition and scalar multiplication on C(X, k) with respect to τ .

19 Multiplicativity conditions

Let k be a field with a qk-absolute value function | · | for some qk > 0 again, let
A be an algebra over k, and let N be a q-seminorm on A as a vector space over
k for some q > 0, with respect to | · | on k. If

N(x y) = N(x)N(y)(19.1)
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for every x, y ∈ A, then N is said to be multiplicative on A.
Now let N be a submultiplicative q-seminorm on A for some q > 0, with

respect to | · | on k. If x ∈ A, then

N(xn) ≤ N(x)n(19.2)

for every n ∈ Z+. If N is multiplicative on A, then

N(xn) = N(x)n(19.3)

for every x ∈ A and n ∈ Z+.
Suppose for the moment that A has a multiplicative identity element e. If

we take x = e in (19.3), then we get that

N(e) = N(en) = N(e)n.(19.4)

This implies that N(e) = 1 when N(e) > 0 and n ≥ 2.
If X is a nonempty set, then it is easy to see that the supremum qk-norm

∥f∥∞ satisfies (19.3) on the algebra ℓ∞(X, k) of bounded k-valued functions
on X. Similarly, if X is a nonempty topological space, and E is a nonempty
compact subset of X, then the corresponding supremum qk-seminorm ∥f∥sup,E
satisfies (19.3) on C(X, k).

Let A be an algebra over k again, and let N be a submultiplicative q-
seminorm on A for some q > 0. Suppose that (19.3) holds for some x ∈ A
and n ∈ Z+. If j ∈ Z+ and j < n, then

N(x)n = N(xn) = N(xj xn−j) ≤ N(xj)N(xn−j) ≤ N(xj)N(x)n−j .(19.5)

It follows that
N(xj) = N(x)j(19.6)

when N(x) > 0, and this can be verified more directly when N(x) = 0. If (19.3)
holds for some arbitrarily large positive integers n, then this implies that (19.3)
holds for every n ∈ Z+.

Suppose that for each x ∈ A there is an n ∈ Z+ such that n ≥ 2 and (19.3)
holds. If x ∈ A, then one can apply the hypothesis repeatedly to powers of x, to
get that (19.3) holds for some arbitrarily large positive integers n. This implies
that (19.3) holds for every n ∈ Z+, as in the preceding paragraph.

If a is a positive real number, then | · |a defines a (qk/a)-absolute value
function on k, as in Section 3. If N is a q-seminorm on A with respect to | · |
on k, then

N(x)a(19.7)

defines a (q/a)-seminorm on A with respect to | · |a on k, as in (12.7). If N
is submultiplicative on A, then (19.7) is clearly submultiplicative on A too.
Similarly, if N is multiplicative on A, then (19.7) is multiplicative on A as well.
If N satisfies (19.3) for every x ∈ A and n ∈ Z+, then (19.7) satisfies the
analogous condition on A for each n ∈ Z+.
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20 Consequences for q

Let k be a field, and let A be an algebra over k. If n ∈ Z+ and t ∈ k, then we
let n · t be the sum of n t’s in k, as in Section 10. Similarly, if x ∈ A, then let
n · x be the sum of n x’s in A. As before, we have that

m · (n · x) = (mn) · x(20.1)

for every m,n ∈ Z+ and x ∈ A, and

n · (x y) = (n · x) y(20.2)

for every n ∈ Z+ and x, y ∈ A. If n ∈ Z+, t ∈ k, and x ∈ A, then

n · (t x) = (n · t)x,(20.3)

using scalar multiplication on A.
Let us suppose from now on in this section that A is a commutative algebra

over k. If x, y ∈ A and n ∈ Z+, then

(x+ y)n =

n∑
j=0

(
n

j

)
· xj yn−j ,(20.4)

where
(
n
j

)
are the usual binomial coefficients. Here xj yn−j is interpreted as

being xn when j = n, and as being yn when j = 0. Equivalently,

(x+ y)n =

n∑
j=0

((n
j

)
· 1
)
xj yn−j ,(20.5)

where
(
n
j

)
· 1 is the sum of

(
n
j

)
1’s in k, as before.

Let | · | be a qk-absolute value function on k for some qk > 0, and let N be a
submultiplicative q-seminorm on A for some q > 0 with respect to | · | on k. If
q < ∞, then we get that

N((x+ y)n)q = N
( n∑

j=0

(
n

j

)
· xj yn−j

)q

≤
n∑

j=0

N
((n

j

)
· xj yn−j

)q

,(20.6)

using the q-seminorm version (12.2) of the triangle inequality in the second step.
We also have that

N
((n

j

)
· xj yn−j

)
= N

(((n
j

)
· 1
)
xj yn−j

)
(20.7)

=

∣∣∣∣(nj
)
· 1
∣∣∣∣N(xj yn−j)

≤
∣∣∣∣(nj

)
· 1
∣∣∣∣N(x)j N(y)n−j
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for each j = 0, 1, . . . , n, using the submultiplicativity of N in the third step.
Thus

N((x+ y)n)q ≤
n∑

j=0

∣∣∣∣(nj
)
· 1

∣∣∣∣q N(x)j q N(y)(n−j) q.(20.8)

Suppose that for the moment that qk = ∞, so that | · | is an ultrametric
absolute value function on k. In this case, (20.8) implies that

N((x+ y)n)q ≤
n∑

j=0

N(x)j q N(y)(n−j) q(20.9)

≤ (n+ 1) max(N(x), N(y))n q.

Suppose that N satisfies (19.3) on A for all n ∈ Z+, so that

N((x+ y)n) = N(x+ y)n(20.10)

for every n ∈ Z+. Combining this with (20.9), we get that

N(x+ y) = N((x+ y)n)1/n ≤ (n+ 1)1/(n q) max(N(x), N(y))(20.11)

for every n ∈ Z+. It follows that

N(x+ y) ≤ max(N(x), N(y))(20.12)

for every x, y ∈ A, by taking the limit as n → ∞ on the right side of (20.11).
Thus N is a semi-ultranorm on A under these conditions. Of course, this is
very similar to the argument for non-archimedean absolute value functions in
Section 10.

Suppose now that k = R, C, or simply Q with the standard absolute value
function. Using (20.8), we get that

N((x+ y)n)q ≤
n∑

j=0

(
n

j

)q

N(x)j q N(y)(n−j) q(20.13)

≤ (n+ 1) max
0≤j≤n

((n
j

)q

N(x)j q N(y)(n−j) q
)
.

Hence

N((x+ y)n) ≤ (n+ 1)1/q max
0≤j≤n

((n
j

)
N(x)j N(y)n−j

)
(20.14)

≤ (n+ 1)1/q
n∑

j=0

(
n

j

)
N(x)j N(y)n−j

≤ (n+ 1)1/q (N(x) +N(y))n,

by taking the qth root of both sides of (20.13) in the first step, and using the
binomial theorem in the third step. Suppose again that N satisfies (19.3) on A
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for each n ∈ Z+, so that (20.10) holds for every n ∈ Z+. Using this and (20.14),
we get that

N(x+ y) = N((x+ y)n)1/n ≤ (n+ 1)1/(n q) (N(x) +N(y))(20.15)

for each n ∈ Z+. This implies that

N(x+ y) ≤ N(x) +N(y)(20.16)

for every x, y ∈ A, by taking the limit as n → ∞ on the right side of (20.15).
This shows that N is an ordinary seminorm on A under these conditions, so
that we can take q = 1. This is analogous to some of the remarks in Section 11.

Part II

Some more basic notions

21 Nonnegative sums

Let X be a nonempty set, and let f be a nonnegative real-valued function on
X. The sum ∑

x∈X

f(x)(21.1)

is defined as a nonnegative extended real number to be the supremum of the
sums ∑

x∈A

f(x)(21.2)

over all nonempty finite subsets A of X. Thus (21.1) is finite if and only if there
is a finite upper bound for the finite subsums (21.2), in which case f is said to
be summable on X. Of course, if X has only finitely many elements, then (21.1)
can be defined as a finite sum directly. It is sometimes convenient to allow f
to take values in the set of nonnegative extended real numbers, where (21.1) is
automatically interpreted as being +∞ when f(x) = +∞ for any x ∈ X.

If f is a nonnegative extended real-valued function on X and t is a positive
real number, then ∑

x∈X

t f(x) = t
∑
x∈X

f(x),(21.3)

where t times +∞ is interpreted as being +∞. Similarly, if g is another non-
negative extended real-valued function on X, then∑

x∈X

(f(x) + g(x)) =
∑
x∈X

f(x) +
∑
x∈X

g(x),(21.4)

where the sum of any nonnegative extended real number and +∞ is interpreted
as being +∞. Both statements can be verified directly from the definitions, by
approximating the various sums by the corresponding finite subsums.
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Let f be a nonnegative real-valued function on X, and let r be a positive
real number. If f(x)r is summable on X, then f is said to be r-summable on
X. In this case,

∥f∥r =
( ∑

x∈X

f(x)r
)1/r

(21.5)

is defined as a nonnegative real number, and otherwise (21.5) may be interpreted
as being +∞. Similarly,

∥f∥∞ = sup
x∈X

f(x)(21.6)

is defined as a nonnegative extended real number, which is finite exactly when
f has a finite upper bound on X. Observe that

∥t f∥r = t ∥f∥r(21.7)

for every positive real number t and 0 < r ≤ ∞. If 0 < r1 ≤ r2 ≤ ∞, then

∥f∥r2 ≤ ∥f∥r1 ,(21.8)

as in (1.4) and (1.7). More precisely, this can be verified in the same way as in
Section 1, or by reducing to that situation.

Let g be another nonnegative real-valued function on X. If 1 ≤ r ≤ ∞, then

∥f + g∥r ≤ ∥f∥r + ∥g∥r.(21.9)

This is Minkowski’s inequality for arbitrary sums. This can be shown in essen-
tially the same way as for finite sums, or by reducing to that case. If 0 < r ≤ 1,
then

∥f + g∥rr ≤ ∥f∥rr + ∥g∥rr,(21.10)

as in (1.13).
Let r0 be a positive real number, and let f be a nonnegative real-valued

r0-summable function on X. If r0 ≤ r < ∞, then

∥f∥∞ ≤ ∥f∥r ≤ ∥f∥1−(r0/r)
∞ ∥f∥r0/rr0 ,(21.11)

where the first step is the same as the first inequality in (1.4), and the second
step is the same as the first inequality in (1.7). As usual, these inequalities can
be obtained in the same way as for finite sums, or by reducing to that case. In
particular, f is r-summable on X when r0 ≤ r < ∞. Using (21.11), one can
check that

lim
r→∞

∥f∥r = ∥f∥∞,(21.12)

as in (1.5).
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22 r-Summable functions

Let k be a field with a qk-absolute value function | · | for some qk > 0, let V be
a vector space over k, and let N be a q-seminorm on V with respect to | · | on
k for some q > 0. Also let X be a nonempty set, and let r be a positive real
number. A V -valued function f on X is said to be r-summable with respect
to N if N(f(x)) is r-summable as a nonnegative real-valued function on X,
which means that N(f(x))r is summable on X, as in the previous section.
Let ℓr(X,V ) = ℓrN (X,V ) be the space of V -valued functions on X that are
r-summable with respect to N . If f ∈ ℓr(X,V ), then we put

∥f∥r = ∥f∥ℓr(X,V ) = ∥f∥ℓr
N
(X,V ) =

( ∑
x∈X

N(f(x))r
)1/r

,(22.1)

where the sum is defined as in the previous section. If f is not r-summable on
X, then one may consider (22.1) as being equal to +∞. If f is r-summable on
X and t ∈ k, then it is easy to see that t f(x) is r-summable on X with respect
to N , with

∥t f∥r = |t| ∥f∥r.(22.2)

Let f , g be V -valued functions on X. If r ≤ q, then one can check that

∥f + g∥rr ≤ ∥f∥rr + ∥g∥rr.(22.3)

More precisely, if r ≤ q, then N may be considered as an r-seminorm on V , as
in Section 12. Using this, (22.3) can be verified directly from the definitions, as
in (1.13) and (21.10). If q ≤ r, then

∥f + g∥qr ≤ ∥f∥qr + ∥g∥qr.(22.4)

This can be obtained from Minkowski’s inequality for sums, with exponent
r/q ≥ 1. In particular, if f and g are r-summable on X for any positive real
number r, then f + g is r-summable on X too. It follows that ℓr(X,V ) is a
vector space with respect to pointwise addition and scalar multiplication for
every positive real number r. If r ≤ q, then ∥f∥r defines an r-seminorm on
ℓr(X,V ), by (22.2) and (22.3). Similarly, if q ≤ r, then ∥f∥r is a q-seminorm
on ℓr(X,V ), by (22.2) and (22.4).

As in Section 13, ℓ∞(X,V ) is the space of V -valued functions f on X such
that N(f(x)) is bounded on X. In this case, ∥f∥∞ is defined as in (13.3), and
determines a q-seminorm on ℓ∞(X,V ). If N(f(x)) does not have a finite upper
bound on X, then one can take ∥f∥∞ to be +∞, as usual. If f is any V -valued
function on X and 0 < r1 ≤ r2 ≤ ∞, then

∥f∥r2 ≤ ∥f∥r1 ,(22.5)

as in (21.8). In particular, ℓr1(X,V ) ⊆ ℓr2(X,V ) when r1 ≤ r2.
If N is a q-norm on V , then ∥f∥r is an r-norm on ℓr(X,V ) when r ≤ q, and

∥f∥r is a q-norm on ℓr(X,V ) when q ≤ r. If V is also complete with respect to
the q-metric associated to N , then ℓr(X,V ) is complete with respect to the q
or r-metric associated to ∥f∥r, as appropriate, by standard arguments.
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23 Vanishing at infinity

Let k be a field, let V be a vector space over k, and let X be a nonempty set.
The support of a V -valued function f on X is defined to be the set

supp f = {x ∈ X : f(x) ̸= 0}.(23.1)

Let c00(X,V ) be the space of V -valued functions f on X such that the support
of f has only finitely many elements. This is a linear subspace of the space
c(X,V ) of all V -valued functions on X. Of course, if X has only finitely many
elements, then c00(X,V ) is the same as c(X,V ).

Let | · | be a qk-absolute value function on k for some qk > 0, and let N
be a q-seminorm on V with respect to | · | on k for some q > 0. If f is a V -
valued function on X, then the support of N(f(x)), as a real-valued function
on X, is contained in the support of f . Let c00,N (X,V ) be the space of V -
valued functions f on X such that N(f(x)) has finite support in X. This is a
linear subspace of c(X,V ) that contains c00(X,V ). If N is a q-norm on V and
f ∈ c(X,V ), then the supports of f and N(f(x)) in X are the same, so that
c00(X,V ) is equal to c00,N (X,V ).

A V -valued function f on X is said to vanish at infinity on X with respect
to N if for every ϵ > 0 we have that

N(f(x)) < ϵ(23.2)

for all but finitely many x ∈ X. Let c0(X,V ) = c0,N (X,V ) be the space of
V -valued functions on X that vanish at infinity with respect to N . If f vanishes
at infinity on X with respect to N , then it is easy to see that f is bounded on
X with respect to N , so that

c0(X,V ) ⊆ ℓ∞(X,V ).(23.3)

More precisely, c0(X,V ) is a linear subspace of ℓ∞(X,V ). One can check that
c0(X,V ) is also a closed set in ℓ∞(X,V ), with respect to the supremum q-
semimetric associated to N .

If N(f(x)) has finite support in X as a real-valued function on X, then f
vanishes at infinity on X with respect to N . Thus

c00,N (X,V ) ⊆ c0(X,V ).(23.4)

In particular, c00(X,V ) is contained in c0(X,V ). One can verify that c0(X,V ) is
the same as the closure of c00(X,V ) in ℓ∞(X,V ), with respect to the supremum
q-semimetric associated to N .

If r is a positive real number, then

ℓr(X,V ) ⊆ c0(X,V ).(23.5)

Equivalently, if f is a V -valued function on X that does not vanish at infinity
with respect to N , then f is not r-summable with respect to N .
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Clearly
c00,N (X,V ) ⊆ ℓr(X,V )(23.6)

for every r > 0, so that c00(X,V ) is contained in ℓr(X,V ) in particular. If
r < ∞, then c00(X,V ) is dense in ℓr(X,V ) with respect to the q or r-semimetric
associated to ∥f∥r. This can be seen by approximating ∥f∥rr by finite subsums.

Let f be a V -valued function on X that vanishes at infinity. Thus

{x ∈ X : N(f(x)) ≥ ϵ}(23.7)

has only finitely many elements for each ϵ > 0. It follows that the support of
N(f(x)) has only finitely or countably many elements, by applying the previous
statement to ϵ = 1/j, with j ∈ Z+.

24 Infinite series

Let k be a field with a qk-absolute value function | · | for some qk > 0, let V be
a vector space over k, and let N be a q-norm on V with respect to | · | on k for
some q > 0. As usual, an infinite series

∞∑
j=1

vj(24.1)

with terms in V is said to converge in V if the corresponding sequence

n∑
j=1

vj(24.2)

of partial sums converges to an element of V with respect to the q-metric as-
sociated to N . In this case, the value of the sum (24.1) is defined to be the
limit of the sequence of partial sums (24.2). It is easy to see that the sequence
of partial sums (24.2) is a Cauchy sequence in V with respect to the q-metric
associated to N if and only if for every ϵ > 0 there is a positive integer L such
that

N
( n∑

j=l

vj

)
< ϵ(24.3)

when n ≥ l ≥ L. In particular, this implies that

lim
j→∞

N(vj) = 0,(24.4)

by taking l = n.
Let

∑∞
j=1 aj be an infinite series of nonnegative real numbers, so that the

corresponding sequence
∑n

j=1 aj of partial sums is monotonically increasing.
It is well known that the series converges in R with respect to the standard
absolute value function on R if and only if the sequence of partial sums has a
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finite upper bound, in which case the sequence of partial sums converges to its
supremum in R. One can also define∑

j∈Z+

aj(24.5)

as a nonnegative extended real number as in Section 21. If
∑∞

j=1 aj converges
in R, then one can check that (24.5) is finite, and that the two sums are the
same. Otherwise, if the partial sums

∑n
j=1 aj do not have a finite upper bound

in R, then (24.5) is equal to +∞.
Suppose for the moment that q < ∞, so that

N
( n∑

j=l

vj

)q

≤
n∑

j=l

N(vj)
q(24.6)

for every n ≥ l ≥ 1. Let us say that (24.1) converges q-absolutely if

∞∑
j=1

N(vj)
q(24.7)

converges as an infinite series of nonnegative real numbers. This implies that
the sequence (24.2) of partial sums is a Cauchy sequence in V with respect to
the q-metric on V associated to N , because of (24.6). If V is complete with
respect to the q-metric associated to N , then it follows that (24.1) converges in
V . Under these conditions, one can also use (24.6) to get that

N
( ∞∑

j=1

vj

)q

≤
∞∑
j=1

N(vj)
q.(24.8)

Suppose now that q = ∞, so that

N
( n∑

j=l

vj

)
≤ max

l≤j≤n
N(vj)(24.9)

for every n ≥ l ≥ 1. In this situation, (24.4) implies that the sequence (24.2) of
partial sums is a Cauchy sequence in V with respect to the ultrametric associated
to N . If V is complete with respect to the ultrametric associated to N , then
it follows that (24.1) converges in V . As before, one can also use (24.9) to get
that

N
( ∞∑

j=1

vj

)
≤ max

j≥1
N(vj)(24.10)

under these conditions. More precisely, the maximum on the right side of (24.10)
is attained, because of (24.4).

If {wj}∞j=1 is any sequence of vectors in V , then

n∑
j=l

(wj+1 − wj) = wn+1 − wl(24.11)
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for every n ≥ l ≥ 1. This implies that {wj}∞j=1 converges as a sequence of

vectors in V if and only if
∑∞

j=1(wj+1 − wj) converges as an infinite series in
V , in which case

∞∑
j=1

(wj+1 − wj) = lim
j→∞

wj − w1.(24.12)

Of course, if {wj}∞j=1 is a Cauchy sequence in V , then we have that

lim
j→∞

N(wj+1 − wj) = 0(24.13)

in particular. If V has the property that an infinite series (24.1) converges in V
when (24.4) holds, then it follows that V is complete with respect to the q-metric
associated to N . Similarly, suppose that q < ∞, and that V has the property
that every q-absolutely convergent series in V converges in V . If {wj}∞j=1 is a
Cauchy sequence in V , thenit is easy to see that there is a subsequence {wjr}∞r=1

of {wj}∞j=1 such that
∑∞

r=1(wjr+1
− wjr ) converges q-absolutely. This implies

that this series converges in V , by hypothesis, so that {wjr}∞r=1 converges as a
sequence in V , as before. Because {wj}∞j=1 is a Cauchy sequence in V , we get
that {wj}∞j=1 converges to the same limit in V , by standard arguments. This
shows that V is complete with respect to the q-metric associated to N under
these conditions.

25 Sums of vectors

Let k be a field, let V be a vector space over k, and let X be a nonempty set.
If f is a V -valued function on X with finite support, then∑

x∈X

f(x)(25.1)

can be defined as an element of V , by reducing to a finite sum. Moreover,

f 7→
∑
x∈X

f(x)(25.2)

defines a linear mapping from c00(X,V ) into V .
Let | · | be a qk-absolute value function on k for some qk > 0, and let N be

a q-seminorm on V with respect to | · | on k for some q > 0. If f ∈ c00(X,V ),
then it is easy to see that

N
( ∑

x∈X

f(x)
)
≤ ∥f∥q,(25.3)

using the q-seminorm version of the triangle inequality. Here ∥f∥q is as in (13.3)
when q = ∞, and as in (22.1) when q < ∞. This implies that (25.2) is a bounded
linear mapping from c00(X,V ) into V , with respect to ∥f∥q on c00(X,V ) and
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N on V . The corresponding operator q-seminorm of (25.2) is equal to 1 when
N(v) > 0 for some v ∈ V .

Suppose now that N is a q-norm on V , and that V is complete with respect
to the corresponding q-metric. If q < ∞, then there is a unique extension of
(25.2) to a bounded linear mapping from ℓq(X,V ) into V , as in Section 14. This
uses the fact that c00(X,V ) is dense in ℓq(X,V ) with respect to the q-metric
associated to ∥f∥q when q < ∞, as in Section 23. Similarly, if q = ∞, then
there is a unique extension of (25.2) to a bounded linear mapping from c0(X,V )
into V , using the restriction of the supremum ultranorm ∥f∥∞ associated to N
to c0(X,V ). This uses the fact that c00(X,V ) is dense in c0(X,V ) with respect
to the supremum ultrametric, as before. These extensions can be used to define
(25.1) as an element of V when q < ∞ and f ∈ ℓq(X,V ), and when q = ∞ and
f ∈ c0(X,V ). More precisely, these extensions also satisfy (25.3), as in Section
14.

Let {xj}∞j=1 be a sequence of distinct elements of X, and let f be a V -valued
function on X whose support is contained in the set of xj ’s. In this situation,
the sum (25.1) basically corresponds to the infinite series

∞∑
j=1

f(xj).(25.4)

In particular, if f has finite support in X, then all but finitely many terms
in (25.4) are equal to 0. If q < ∞ and f ∈ ℓq(X,V ), then it is easy to see
that (25.4) converges q-absolutely with respect to N . Similarly, if q = ∞ and
f ∈ c0(X,V ), then one can check that N(f(xj)) → 0 as j → ∞. In both cases,
if V is complete with respect to the q-metric associated to N , then it follows
that (25.4) converges in V , as in the previous section. One can verify that
this approach to the sum is equivalent to the one mentioned in the preceding
paragraph.

Suppose for the moment that k = R or C, with the standard absolute value
function. If f is a nonnegative real-valued function on X, then the sum (25.1)
can be defined as in Section 21. One can also use this to define (25.1) as a real or
complex number when f is a summable real or complex-valued function on X,
by expressing f as a linear combination of summable nonnegative real-valued
functions on X. One can check that this approach to the sum is equivalent to
the previous ones in this situation.

26 Sums of sums

Let I, X be nonempty sets, and let {Ej}j∈I be a family of pairwise-disjoint
nonempty subsets of X indexed by I. If f is a nonnegative extended real-valued
function on X, then ∑

x∈Ej

f(x)(26.1)
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can be defined as a nonnegative extended real number for every j ∈ I, as in
Section 21. This defines a nonnegative extended real-valued function of j on I,
so that ∑

j∈I

( ∑
x∈Ej

f(x)
)

(26.2)

can be defined as a nonnegative extended real number as well. Put

E =
∪
j∈I

Ej ,(26.3)

so that ∑
x∈E

f(x)(26.4)

can be defined as a nonnegative extended real number too. One can check
that (26.2) is equal to (26.4), directly from the definitions, by comparing the
corresponding finite subsums.

Let k be a field, and let V be a vector space over k. If f is a V -valued
function on X with finite support, then the restriction of f to any nonempty
subset of X has finite support in that subset. Thus the sum of f(x) over any
nonempty subset of X is defined as an element of V . In particular, (26.1) can
be defined as an element of V for each j ∈ I, which defines a V -valued function
of j on I. It is easy to see that this function has finite support in I, because the
Ej ’s are pairwise disjoint. This implies that (26.2) is defined as an element of
V , and (26.4) is defined as an element of V as well. As before, (26.2) is equal
to (26.4) in this situation.

Let | · | be a qk-absolute value function on k for some qk > 0, let N be a
q-norm on V with respect to | · | on k for some q > 0, and suppose that V is
complete with respect to the q-metric associated to N . Suppose for the moment
that q < ∞, and let f ∈ ℓq(X,V ) be given. Observe that the restriction of f to
any nonempty subset of X is q-summable on that set. Hence the sum of f(x)
over any nonempty subset of X can be defined as an element of V , as in the
previous section. Let us apply this to Ej for each j ∈ I, and observe that

N
( ∑

x∈Ej

f(x)
)q

≤
∑
x∈Ej

N(f(x))q(26.5)

for every j ∈ I, as in (25.3). It follows that∑
j∈I

N
( ∑

x∈Ej

f(x)
)q

≤
∑
j∈I

( ∑
x∈Ej

N(f(x))q
)
=

∑
x∈E

N(f(x))q,(26.6)

using the earlier remarks for nonnegative real-valued functions in the second
step. Thus (26.1) is q-summable as a V -valued function of j on I, so that (26.2)
can be defined as an element of V , as in the previous section. As usual, one can
check that (26.2) is equal to (26.4) under these conditions.

Suppose now that q = ∞, and let f ∈ c0(X,V ) be given. It is easy to see
that the restriction of f to any nonempty subset of X vanishes at infinity on
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that set. This implies that the sum of f(x) over any nonempty subset of X can
be defined as an element of V , as in the previous section. If we apply this to Ej

for each j ∈ I, then we get that

N
( ∑

x∈Ej

f(x)
)
≤ max

x∈Ej

N(f(x))(26.7)

for every j ∈ I, as in (25.3). Note that the maximum on the right side of (26.7)
is attained, because N(f(x)) vanishes at infinity as a nonnegative real-valued
function on Ej . Using (26.7), one can verify that (26.1) vanishes at infinity as
a V -valued function on I, because the Ej ’s are pairwise disjoint. This implies
that (26.2) can be defined as an element of V , as in the previous section. One
can check that (26.2) is equal to (26.4) in this situation too, as before.

Let Y , Z be nonempty sets, and let X = Y ×Z be their Cartesian product.
Thus X is partitioned by the family of subsets of the form {y}×Z with y ∈ Y ,
and by the family of subsets of the form Y × {z} with z ∈ Z. In this situation,
one can use the previous remarks to show that sums over X are the same as
iterated sums over Y and Z under suitable conditions. More precisely, one can
sum over Y and then Z, or over Z and then Y . In particular, the equality of
these iterated sums with the corresponding sum over X implies that these two
iterated sums are the same.

27 Some linear mappings

Let k be a field, and let X be a nonempty set. If x ∈ X, then let δx be the
k-valued function defined on X by

δx(y) = 1 when x = y(27.1)

= 0 when x ̸= y.

Remember that c00(X, k) denotes the space of k-valued functions on X with
finite support, as in Section 23. Observe that δx ∈ c00(X, k) for each x ∈ X,
and that the collection of δx, x ∈ X, is a basis for c00(X, k) as a vector space
over k.

Let V be a vector space over k, and let a be a V -valued function on X.
If f ∈ c00(X, k), then a(x) f(x) defines a V -valued function of x with finite
support in X, so that

Ta(f) =
∑
x∈X

a(x) f(x)(27.2)

is defined as an element of V . Observe that Ta defines a linear mapping from
c00(X, k) into V , and that

Ta(δx) = a(x)(27.3)

for every x ∈ X. If T is any linear mapping from c00(X, k) into V , then

a(x) = T (δx)(27.4)
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defines a V -valued function on X. It is easy to see that T = Ta in this case,
because the δx’s form a basis for c00(X, k).

If a is any V -valued function on X again, then

f 7→ a f(27.5)

defines a linear mapping from c00(X, k) into c00(X,V ). Note that (27.2) is the
same as the composition of (27.5) with the mapping from c00(X,V ) into V
defined by summing over X, as in Section 25. Of course, (27.5) also defines a
linear mapping from c(X, k) into c(X,V ), where c(X,V ) is as in Section 13.

Let | · | be a qk-absolute value function on k for some qk > 0. We may
consider k as a one-dimensional vector space over itself, and | · | as a qk-norm
on k. Thus ℓr(X, k) may be defined for r > 0 as in Sections 13 and 22, and
c0(X, k) may be defined as in Section 23. Observe that

∥δx∥ℓr(X,k) = 1(27.6)

for every x ∈ X and r > 0.
Let N be a q-seminorm on V with respect to | · | on k for some q > 0,

and let a be a V -valued function on X that is bounded with respect to N . If
f ∈ ℓr(X, k) for some r > 0, then it is easy to see that a f ∈ ℓr(X,V ), with

∥a f∥ℓr(X,V ) ≤ ∥a∥ℓ∞(X,V ) ∥f∥ℓr(X,k).(27.7)

Thus (27.5) defines a bounded linear mapping from ℓr(X, k) into ℓr(X,V ), with
the corresponding operator q or r-seminorm less than or equal to ∥a∥ℓ∞(X,V ).
If x ∈ X, then

∥a δx∥ℓr(X,V ) = N(a(x))(27.8)

for every r > 0. This implies that for each r > 0, the operator q or r-seminorm
of (27.5) as a bounded linear mapping from ℓr(X, k) into ℓr(X,V ) is equal to
∥a∥ℓ∞(X,V ). Similarly, if f ∈ c0(X, k), then a f ∈ c0(X,V ), so that (27.5)
defines a linear mapping from c0(X, k) into c0(X,V ). This is a bounded linear
mapping with respect to the corresponding supremum qk-norm and q-seminorm,
with operator q-seminorm equal to ∥a∥ℓ∞(X,V ).

If f ∈ c00(X, k), then a f ∈ c00(X,V ), Ta(f) is defined as an element of V
as in (27.2), and

N(Ta(f)) ≤ ∥a f∥ℓq(X,V ) ≤ ∥a∥ℓ∞(X,V ) ∥f∥ℓq(X,k).(27.9)

This uses (25.3) in the first step, and (27.7) in the second step. Thus Ta defines
a bounded linear mapping from c00(X, k) equipped with the ℓq(X, k) q or qk-
norm into V , with operator q-seminorm less than or equal to ∥a∥ℓ∞(X,V ). It is
easy to see that the operator q-seminorm of Ta is equal to ∥a∥ℓ∞(X,V ), using
(27.3) and (27.6).

Suppose now that N is a q-norm on V , and that V is complete with respect
to the associated q-metric. If q < ∞ and f ∈ ℓq(X, k), then a f ∈ ℓq(X,V ),
and Ta(f) can be defined as an element of V as in (27.2), using the remarks
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in Section 25. We also have (27.9) in this situation, so that Ta is a bounded
linear mapping from ℓq(X, k) into V . The corresponding operator q-norm of Ta

is equal to ∥a∥ℓ∞(X,V ), as before. Similarly, if q = ∞ and f ∈ c0(X, k), then
a f ∈ c0(X,V ), and Ta(f) can be defined as an element of V as in (27.2), using
the remarks in Section 25 again. We have (27.9) in this situation too, so that
Ta defines a bounded linear mapping from c0(X, k) into V , with respect to the
supremum qk-norm on c0(X, k). The corresponding operator ultranorm of Ta is
equal to ∥a∥ℓ∞(X,V ), as in the previous cases.

28 Holomorphic functions

In this section, we take k = C, with the standard absolute value function. Let U
be a nonempty open subset of C, and let H(U) be the space of complex-valued
functions on U that are holomorphic on U . Remember that the space C(U) =
C(U,C) of complex-valued continuous functions on U is a commutative algebra
over C with respect to pointwise addition and multiplication of functions. Of
course, H(U) ⊆ C(U), because holomorphic functions are continuous. It is
well known that H(U) is a subalgebra of C(U), because sums and products of
holomorphic functions are holomorphic too.

The collection of supremum seminorms on C(U) associated to nonempty
compact subsets of U determines a natural topology on C(U), as in Section 13.
It is well known that H(U) is a closed set in C(U) with respect to this topology.
Basically, this means that if f ∈ C(U) can be approximated uniformly on com-
pact subsets of U by holomorphic functions, then f is holomorphic on U . This
uses the fact that a continuous complex-valued function on U is holomorphic
if and only if it can be expressed locally as in the Cauchy integral formula. If
f ∈ C(U) can be approximated by holomorphic functions on U uniformly on
compact subsets of U , then it is easy to see that f can be expressed locally as
in the Cauchy integral formula, so that f is holomorphic on U .

Let H∞(U) be the space of bounded holomorphic functions on U . This is
a subalgebra of the algebra Cb(U) = Cb(U,C) of bounded continuous complex-
valued functions on U . Equivalently,

H∞(U) = H(U) ∩ Cb(U).(28.1)

As before, H∞(U) is a closed set in Cb(U) with respect to the topology deter-
mined on Cb(U) by the supremum metric. Of course, this topology is stronger
than the one determined by the collection of supremum semimetrics associated
to nonempty compact subsets of U . Remember that Cb(U) is complete with
respect to the supremum metric, as in Section 13. This implies that H∞(U)
is complete with respect to the supremum metric as well, because H∞(U) is a
closed set in Cb(U).

Suppose now that U is also a bounded set in C, so that the closure U
of U in C is compact. Let A(U) be the collection of continuous complex-
valued functions on U that are holomorphic on U . This is a subalgebra of
the algebra C(U) of continuous complex-valued functions on U . Of course,
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continuous complex-valued functions on U are automatically bounded on U ,
because U is compact. As in the previous situations, A(U) is a closed set in
C(U) with respect to the topology determined on C(U) by the supremummetric.
We also have that C(U) is complete with respect to the supremum metric, as in
Section 13. This implies that A(U) is complete with respect to the supremum
metric too, because A(U) is a closed set in C(U).

Let R be the mapping that sends f ∈ C(U) to its restriction to ∂U , so that R
is an algebra homomorphism from C(U) into the algebra C(∂U) of continuous
complex-valued functions on ∂U . Note that R maps C(U) onto C(∂U), by
well-known results. Of course,

sup
z∈∂U

|f(z)| ≤ sup
z∈U

|f(z)|(28.2)

for every f ∈ C(U), because ∂U ⊆ U . This implies that R is bounded as a linear
mapping from C(U) into C(∂U) with respect to the corresponding supremum
norms. It is easy to see that the operator norm of R is equal to 1, by considering
constant functions on U . If f ∈ A(U), then it is well known that

sup
z∈∂U

|f(z)| = sup
z∈U

|f(z)|,(28.3)

by the maximum principle. Thus R embeds A(U) isometrically into C(∂U).
In particular, R is injective on A(U). Observe that R(A(U)) is complete with
respect to the restriction of the supremummetric on C(∂U) to R(A(U)), because
A(U) is complete with respect to the restriction of the supremummetric on C(U)
to A(U). It follows that R(A(U)) is a closed set in C(∂U) with respect to the
topology determined on C(∂U) by the supremum metric.

29 Cauchy products

Let k be a field, and let A be an (associative) algebra over k. Also let
∑∞

j=0 aj
and

∑∞
l=0 bl be infinite series with terms in A, considered formally for the mo-

ment. Put

cn =

n∑
j=0

aj bn−j(29.1)

for each nonnegative integer n, which is an element of A too. The series
∑∞

n=0 cn
is called the Cauchy product of

∑∞
j=0 aj and

∑∞
l=0 bl, as formal series with terms

in A. It is well known that

∞∑
n=0

cn =
( ∞∑

j=0

aj

)( ∞∑
l=0

bl

)
(29.2)

formally, and that this can be made precise in some situations. To see this, put

X = (Z+ ∪ {0})× (Z+ ∪ {0}),(29.3)
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and
f(j, l) = aj bl(29.4)

for each (j, l) ∈ X, which defines an A-valued function on X. If we put

En = {(j, l) ∈ X : j + l = n}(29.5)

for each nonnegative integer n, then the En’s are pairwise-disjoint nonempty
subsets of X such that

∞∪
n=0

En = X.(29.6)

By construction,

cn =
∑

(j,l)∈En

f(j, l)(29.7)

for every n ≥ 0, so that
∞∑

n=0

cn =
∑

(j,l)∈X

f(j, l)(29.8)

formally again. We also have that∑
(j,l)∈X

f(j, l) =
( ∞∑

j=0

aj

)( ∞∑
l=0

bl

)
(29.9)

formally, by identifying the sum over X with iterated sums over j and l.
Suppose for the moment that aj = 0 for all but finitely many j ≥ 0, and

that bl = 0 for all but finitely many l ≥ 0. This implies that (29.4) is equal
to 0 for all but finitely many (j, l) ∈ X. Similarly, (29.1) is equal to 0 for all
but finitely many n ≥ 0, which can be verified directly, or obtained from the
previous statement using (29.7). Thus

∞∑
j=0

aj ,

∞∑
l=0

bl,

∞∑
n=0

cn, and
∑

(j,l)∈X

f(j, l)(29.10)

reduce to finite sums in this situation. In particular, (29.8) and (29.9) hold, as
in Section 26, which implies that (29.2) holds as well.

Suppose now that A = k = R, and that aj and bl are nonnegative real
numbers for every j, l ≥ 0. In this case, each of the sums in (29.10) is defined as
a nonnegative extended real number, as in Section 21. We also have (29.8) in
this situation, as in Section 26. Similarly, the left side of (29.9) can be expressed
in terms of iterated sums over j and l. These iterated sums reduce to the right
side of (29.9) when both sums on the right side of (29.9) are finite, and when
both sums are positive. Otherwise, if either aj = 0 for every j ≥ 0, or bl = 0
for every l ≥ 0, then (29.4) is equal to 0 for every (j, l) ∈ X. This implies that
the left side of (29.9) is equal to 0 too.

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
let A be an algebra over k with a q-norm N with respect to | · | on k for some
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q > 0. Suppose that A is complete with respect to the q-metric associated to
N , and that N satisfies the weaker submultiplicativity condition (18.1) for some
C ≥ 0. This implies that

N(f(j, l)) = N(aj bl) ≤ C N(aj)N(bl)(29.11)

for every j, l ≥ 0. Suppose for the moment that q < ∞, and that

∞∑
j=0

N(aj)
q,

∞∑
l=0

N(bl)
q(29.12)

converge as infinite series of nonnegative real numbers. Observe that∑
(j,l)∈X

N(f(j, l))q ≤ Cq
∑

(j,l)∈X

N(aj)
q N(bl)

q(29.13)

= Cq
( ∞∑

j=0

N(aj)
q
)( ∞∑

l=0

N(bl)
q
)
,

using (29.11) in the first step, and the remarks in the previous paragraph in the
second step. Thus f(j, l) is q-summable as an A-valued function on X, with
respect to N . We also have that

N(cn)
q ≤

n∑
j=0

N(aj bn−j)
q =

∑
(j,l)∈En

N(f(j, l))q(29.14)

for every n ≥ 0, using the definition (29.1) of cn and the q-norm version of the
triangle inequality (12.2) in the first step, and the definition (29.5) of En in the
second step. It follows that

∞∑
n=0

N(cn)
q ≤

∞∑
n=0

( ∑
(j,l)∈En

N(f(j, l))q
)
=

∑
(j,l)∈X

N(f(j, l))q,(29.15)

using (29.6) in the second step. Hence each of the sums in (29.10) can be defined
as an element of V in this situation, as in Sections 24 and 25. These sums also
satisfy (29.8) and (29.9), as in Section 26.

Suppose instead that q = ∞, and that

lim
j→∞

N(aj) = lim
l→∞

N(bl) = 0.(29.16)

Using this and (29.11), one can check that

f(j, l) ∈ c0(X,A).(29.17)

Observe that

N(cn) ≤ max
0≤j≤n

N(aj bn−j) = max
(j,l)∈En

N(f(j, l))(29.18)
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for every n ≥ 0, because of the ultranorm version of the triangle inequality. One
can use this to verify that

lim
n→∞

N(cn) = 0,(29.19)

using also (29.11) and (29.16), or (29.17). Thus each of the sums in (29.10) is
defined as an element of V , as in Sections 24 and 25, and they satisfy (29.8)
and (29.9), as in Section 26.

30 q-Banach algebras

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
A be an algebra over k with a submultiplicative q-norm ∥ · ∥ with respect to | · |
on k for some q > 0. If A is complete with respect to the q-metric associated to
∥ · ∥, then A is said to be q-Banach algebra with respect to ∥ · ∥. If q = 1, then
we may simply say that A is a Banach algebra with respect to ∥ · ∥. If A is not
complete with respect to the q-metric associated to ∥ · ∥, then one can pass to
a completion, as in Sections 7 and 12. Multiplication on A can be extended to
a bounded bilinear mapping on the completion as in Section 15. It is easy to
see that this extension of multiplication to the completion of A is associative.
Thus the completion of A is a q-Banach algebra.

If k is not already complete with respect to the qk-metric associated to | · |,
then we can pass to a completion, as in Section 7. If A is complete, then
scalar multiplication on A can be extended continuously to the completion of
k, as mentioned in Section 12. In this way, A becomes a vector space over the
completion of k, and N is a q-norm on A as a vector space over the completion
of k. It is easy to see that multiplication on A is also bilinear with respect
to the completion of k, so that A is also a Banach algebra with respect to
the completion of k. One may prefer to include the completeness of k in the
definition of a q-Banach algebra.

Sometimes one includes the condition that A have a multiplicative identity
element e with ∥e∥ = 1 in the definition of a q-Banach algebra, and we shall do
that here. As usual, an element a of A is said to be invertible in A if there is
an element b of A such that

a b = b a = e.(30.1)

If such an element b of A exists, then it is unique, and it is denoted a−1. In this
case, a−1 is invertible in A, with (a−1)−1 = a. If x, y are invertible elements of
A, then x y is invertible in A, and

(x y)−1 = y−1 x−1.(30.2)

If x ∈ A and n is a nonnegative integer, then

(e− x)

n∑
j=0

xj =
( n∑

j=0

xj
)
(e− x) = e− xn+1,(30.3)
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by a standard argument. Here xj is interpreted as being equal to e when j = 0,
as usual. Suppose for the moment that

∞∑
j=0

xj(30.4)

converges as an infinite series in A, which implies in particular that

lim
j→∞

∥xj∥ = 0.(30.5)

In this case, we can take the limit as n → ∞ in (30.3), to get that

(e− x)

∞∑
j=0

xj =
( ∞∑

j=0

xj
)
(e− x) = e.(30.6)

This implies that e− x is invertible in A, with

(e− x)−1 =

∞∑
j=0

xj .(30.7)

Of course,
∥xj∥ ≤ ∥x∥j(30.8)

for each j, by the submultiplicativity of ∥ · ∥ on A. Suppose that ∥x∥ < 1, so
that (30.5) follows from (30.8). If q < ∞, then

∞∑
j=0

∥xj∥q ≤
∞∑
j=0

∥x∥q j = (1− ∥x∥q)−1,(30.9)

by summing the geometric series in the second step. Thus (30.4) converges q-
absolutely with respect to ∥ · ∥. If A is complete with respect to the q-metric
associated to ∥ · ∥, then it follows that (30.4) converges in A, as in Section 24.
Similarly, if q = ∞, and A is complete with respect to the ultrametric associated
to ∥ · ∥, then the convergence of (30.4) in A follows from (30.5), as in Section 24
again. In both cases, the remarks in the previous paragraph imply that e− x is
invertible in A.

31 Submultiplicative sequences

Let {aj}∞j=1 be a sequence of nonnegative real numbers that is submultiplicative,
in the sense that

aj+l ≤ aj al(31.1)

for every j, l ∈ Z+. Put

α = inf
j≥1

a
1/j
j ,(31.2)
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so that α is a nonnegative real number too. Under these conditions, it is well
known that

lim
j→∞

a
1/j
j = α.(31.3)

Of course,

α ≤ lim inf
j→∞

a
1/j
j ,(31.4)

by construction. Thus it suffices to show that

lim sup
j→∞

a
1/j
j ≤ α.(31.5)

Let j0, j ∈ Z+ be given, and observe that j can be expressed as

j = j0 l0 + r0,(31.6)

where l0, r0 are nonnegative integers, at least one of l0 and r0 is positive, and
r0 < j0. Using (31.1), we get that

aj = aj0 l0+r0 ≤ al0j0 a
r0
1 ,(31.7)

and hence
a
1/j
j ≤ (a

1/j0
j0

)j0 l0/j a
r0/j
1 = (a

1/j0
j0

)1−(r0/j) a
r0/j
1 .(31.8)

It follows that
lim sup
j→∞

a
1/j
j ≤ a

1/j0
j0

(31.9)

for every j0 ∈ Z+, because b1/j → 1 as j → ∞ for every positive real number b.
This implies (31.5), by taking the infimum over j0 ∈ Z+.

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
let A be an algebra over k with a submultiplicative q-seminorm N with respect
to | · | on k for some q > 0. If x ∈ A, then

N(xj+l) = N(xj xl) ≤ N(xj)N(xl)(31.10)

for every j, l ∈ Z+, so that aj = N(xj) defines a submultiplicative sequence of
nonnegative real numbers. Put

Nρ(x) = inf
j≥1

N(xj)1/j ,(31.11)

which corresponds to (31.2) in this situation. Thus

lim
j→∞

N(xj)1/j = Nρ(x)(31.12)

for every x ∈ A, as in (31.3). Note that

Nρ(x) ≤ N(x)(31.13)

for every x ∈ A, by taking j = 1 in the right side of (31.11).
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If x ∈ A and t ∈ k, then it is easy to see that

Nρ(t x) = |t|Nρ(x),(31.14)

using the analogous property of N . If x ∈ A and n ∈ Z+, then

lim
l→∞

N(xl n)1/(l n) = lim
j→∞

N(xj)1/j = Nρ(x),(31.15)

because {N(xl n)1/(l n)}∞l=1 is a subsequence of {N(xj)1/j}∞j=1. Hence

N((xn)l)1/l = N(xl n)1/l → Nρ(x)
n(31.16)

as l → ∞, so that
Nρ(x

n) = Nρ(x)
n.(31.17)

Of course, if N(xj) = N(x)j for each j ≥ 1, then

Nρ(x) = N(x).(31.18)

Let Ñ be a submultiplicative q̃-seminorm on A with respect to | · | on k for

some q̃ > 0, and let Ñρ be as in (31.11). Suppose that there is a positive real
number C such that

N(x) ≤ C Ñ(x)(31.19)

for every x ∈ A. This implies that

N(xj) ≤ C Ñ(xj)(31.20)

for every x ∈ A and j ∈ Z+, and hence

N(xj)1/j ≤ C1/j Ñ(xj)1/j(31.21)

for every x ∈ A and j ∈ Z+. It follows that

Nρ(x) ≤ Ñρ(x)(31.22)

for every x ∈ A, by taking the limit as j → ∞ on both sides of (31.21), and
using (31.12).

32 Multiplicative inverses

Let k be a field, and let A be an algebra over k with a nonzero multiplicative
identity element e. Also let w, z be commuting elements of A, so that w z = z w.
If w is invertible in A, then it is easy to see that w−1 commutes with z as well.

Let b be an element of A. An element a of A is said to be a left inverse of
b if

a b = e.(32.1)
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Similarly, c ∈ A is a right inverse of b if

b c = e.(32.2)

If a is a left inverse of b, and c is a right inverse of b, then one can check that
a = c, so that b is invertible in A.

Let x, y be elements of A. If x y is invertible in A, then

x (y (x y)−1) = (x y) (x y)−1 = e, ((x y)−1 x) y = (x y)−1 (x y) = e,(32.3)

so that x has a right inverse in A, and y has a left inverse in A. Similarly, if y x
is invertible in A, then

y (x (y x)−1) = (y x) (y x)−1 = e, ((y x)−1 y)x = (y x)−1 (y x) = e,(32.4)

so that y has a right inverse in A, and x has a left inverse in A. If x y and y x
are both invertible in A, then it follows that x and y are invertible in A.

Let | · | be a qk-absolute value function on k for some qk > 0, and let N be
a submultiplicative q-seminorm on A with respect to | · | on k for some q > 0.
Also let Nρ be as in (31.11), and let x ∈ A be given. Suppose that

Nρ(x) < 1,(32.5)

and let r be a real number such that

Nρ(x) < r < 1.(32.6)

Using (31.12), we get that there is a positive integer L such that

N(xj)1/j < r(32.7)

for every j ≥ L. Equivalently, this means that

N(xj) < rj(32.8)

for every j ≥ L. In particular, this implies that

lim
j→∞

N(xj) = 0.(32.9)

Note that (32.5) holds when N(xj) < 1 for some j ∈ Z+, by (31.11).
Suppose now that N is a q-norm on A, and that A is a q-Banach algebra

with respect to N . If x ∈ A satisfies (32.5), then

∞∑
j=0

xj(32.10)

converges in A. More precisely, if q < ∞, then (32.10) converges q-absolutely,
by comparison with a convergent geometric series, because of (32.8). If q = ∞,
then the convergence of (32.10) follows from (32.9), as in Section 24. In both
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cases, the convergence of (32.10) implies that e − x is invertible in A, as in
Section 30. Alternatively, one can use (32.5) to get that

N(xn+1) < 1(32.11)

for some nonnegative integer n, because of (31.11). This implies that e− xn+1

is invertible in A, as in Section 30. Using this and (30.3), it follows that x− e
is invertible in A, by the remarks at the beginning of the section.

33 Some additional properties

Let k be a field with a qk-absolute value function | · | for some qk > 0 again,
and let A be an algebra over k with a submultiplicative q-seminorm N with
respect to | · | on k for some q > 0. Also let Nρ be as in (31.11), so that Nρ is
a nonnegative real-valued function on A. Let x, y ∈ A be given, and suppose
that x and y commute in A, so that

x y = y x.(33.1)

If j ∈ Z+, then (x y)j = xj yj , and hence

N((x y)j)1/j = N(xj yj)1/j ≤ N(xj)1/j N(yj)1/j ,(33.2)

using the submultiplicativity of N in the second step. This implies that

Nρ(x y) ≤ Nρ(x)Nρ(y),(33.3)

by taking the limit as j → ∞, as in (31.12).
We would like to estimate Nρ(x+y) in terms of Nρ(x) and Nρ(y). Of course,

if N ≡ 0 on A, then Nρ ≡ 0 on A, and there is nothing to do. Otherwise, if
N ̸≡ 0 on A, then we have seen that | · | is a q-absolute value function on k, as
in Section 12. Thus we may as well suppose that

q ≤ qk.(33.4)

We may also restrict our attention to the case where

x, y ̸= 0,(33.5)

since otherwise x+y is equal to x or y. Let rx, ry be positive real numbers such
that

Nρ(x) < rx, Nρ(y) < ry.(33.6)

Using (31.12) for both x and y, we get that there is an L ∈ Z+ such that

N(xl)1/l < rx, N(yl)1/l < ry(33.7)

for every l ≥ L. Equivalently, this means that

N(xl) < rlx, N(yl) < rly(33.8)
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for every l ≥ L.
Suppose for the moment that q = ∞, and let n ∈ Z+ be given. Observe that

N((x+ y)n) ≤ max
0≤j≤n

N(xj yn−j),(33.9)

where j = 0, 1, . . . , n is an integer, because (x+ y)n can be expressed as a sum
of the monomials xj yn−j . Thus

N((x+ y)n)1/n ≤ max
0≤j≤n

N(xj yn−j)1/n ≤ max
0≤j≤n

(N(xj)N(yn−j))1/n,(33.10)

using the submultiplicativity of N in the second step. If j ≥ L and n− j ≥ L,
then we have that

(N(xj)N(yn−j))1/n < (rjx r
n−j
y )1/n ≤ max(rx, ry),(33.11)

by (33.8). If j ≥ L and n− j < L, then we shall use the estimate

(N(xj) N(yn−j))1/n ≤ (rjx N(yn−j))1/n = (rnx rj−n
x N(yn−j))1/n

= rx (r
j−n
x N(yn−j))1/n,(33.12)

where the first step follows from the first part of (33.8). Similarly, if j < L and
n− j ≥ L, then we shall use the estimate

(N(xj)N(yn−j))1/n ≤ (N(xj) rn−j
y )1/n = (N(xj) r−j

y )1/n ry,(33.13)

where the first step follows from the second part of (33.8). Of course, if n ≥ 2L,
then either j ≥ L or n− j ≥ L for any j.

Put
C = max

(
1, max

0≤l<L
(r−l

x N(yl)), max
0≤j<L

(N(xj) r−j
y )

)
,(33.14)

and note that this does not depend on n. Combining the estimates in the
previous paragraph, we get that

N((x+ y)n)1/n ≤ C1/n max(rx, ry)(33.15)

for every n ≥ 2L. This implies that

Nρ(x+ y) ≤ max(rx, ry),(33.16)

because C1/n → 1 as n → ∞. It follows that

Nρ(x+ y) ≤ max(Nρ(x), Nρ(y))(33.17)

when q = ∞, by taking rx, ry arbitrarily close to Nρ(x), Nρ(y), respectively.
Suppose from now in this section that q < ∞, and let n ∈ Z+ be given again.

Remember that

(x+ y)n =

n∑
j=0

(
n

j

)
· xj yn−j ,(33.18)
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as in the binomial theorem. Thus

N((x+ y)n)q ≤
n∑

j=0

N
((n

j

)
· xj yn−j

)q

,(33.19)

by the q-seminorm version (12.2) of the triangle inequality. Observe that

N
((n

j

)
· xj yn−j

)
= N

(((n
j

)
· 1
)
xj yn−j

)
(33.20)

=

∣∣∣∣(nj
)
· 1
∣∣∣∣N(xj yn−j)

≤
∣∣∣∣(nj

)
· 1
∣∣∣∣N(xj)N(yn−j)

for each j = 0, 1, . . . , n, using (20.3) in the first step, and the submultiplicativity
of N in the third step. Hence

N((x+ y)n)q ≤
n∑

j=0

∣∣∣∣(nj
)
· 1

∣∣∣∣q N(xj)q N(yn−j)q.(33.21)

Suppose for the moment that qk = ∞, so that

N((x+ y)n)q ≤
n∑

j=0

N(xj)q N(yn−j)q(33.22)

≤ (n+ 1) max
0≤j≤n

(N(xj)q N(yn−j)q),

using (33.21) in the first step. This implies that

N((x+ y)n)1/n ≤ (n+ 1)1/(n q) max
0≤j≤n

(N(xj)N(yn−j))1/n,(33.23)

which is analogous to (33.10). Remember that (33.8) holds when j ≥ L, and let
C be as in (33.14). In this situation, we have that

N((x+ y)n)1/n ≤ (n+ 1)1/(n q) C1/n max(rx, ry)(33.24)

for every n ≥ 2L, for essentially the same reasons as in (33.15). More precisely,
this uses (33.11), (33.12), (33.13), (33.23), and the definition of C. As before,
one can use (33.24) to get (33.16), by taking the limit as n → ∞. Using (33.16),
one gets (33.17) by taking rx, ry arbitrarily close to Nρ(x), Nρ(y) again.

Suppose now that k = R, C, or Q with the standard absolute value function,
so that qk = 1. As in (33.4), we may as well suppose that q ≤ 1. Let n ∈ Z+

be given again, and observe that

N((x+ y)n)q ≤ (n+ 1) max
0≤j≤n

((n
j

)q

N(xj)q N(yn−j)q
)
,(33.25)
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by (33.21). This implies that

N((x+ y)n) ≤ (n+ 1)1/q max
0≤j≤n

((n
j

)
N(xj)N(yn−j)

)
,(33.26)

by taking the qth root of both sides of (33.25).
Remember that (33.8) holds when l ≥ L, and that(

n

j

)
=

(
n

n− j

)
(33.27)

for each j = 0, 1, . . . , n. If L ≤ j ≤ n and n− j ≥ L, then(
n

j

)
N(xj)N(yn−j) <

(
n

j

)
rjx r

n−j
y ≤

n∑
l=0

(
n

l

)
rlx r

n−l
y = (rx + ry)

n,(33.28)

by (33.8). If L ≤ j ≤ n and n− j < L, then we shall use the estimate(
n

j

)
N(xj)N(yn−j) ≤

(
n

j

)
rjx N(yn−j) =

(
n

n− j

)
rnx rj−n

x N(yn−j),(33.29)

where the first step follows from the first part of (33.8), and the second step
follows from (33.27). Similarly, if 0 ≤ j ≤ n, j < L, and n − j ≥ L, then we
shall use the estimate(

n

j

)
N(xj)N(yn−j) ≤

(
n

j

)
N(xj) rn−j

y =

(
n

j

)
N(xj) r−j

y rny ,(33.30)

where the first step follows from the second part of (33.8). As before, if n ≥ L,
then either j ≥ L or n− j ≥ L for any j.

Put

C(n) = max
(
1, max

0≤l<L

((n
l

)
rlx N(yl)

)
, max
0≤j<L

((n
j

)
N(xj) r−j

y

))
(33.31)

for each n ≥ L. Using (33.26) and the estimates in the previous paragraph, one
can check that

N((x+ y)n) ≤ (n+ 1)1/q C(n) (rx + ry)
n(33.32)

for every n ≥ 2L. Equivalently, this means that

N(x+ y)1/n ≤ (n+ 1)1/(n q) C(n)1/n (rx + ry)(33.33)

when n ≥ 2L. Because C(n) = O(nL−1), one can use this to get that

Nρ(x+ y) ≤ rx + ry.(33.34)

It follows that
Nρ(x+ y) ≤ Nρ(x) +Nρ(y)(33.35)

in this situation, by taking rx, ry arbitrarily close to Nρ(x), Nρ(y), respectively.
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34 Hölder’s inequality

Let X be a nonempty set, and let f , g be nonnegative real-valued functions
on X. Remember that ∥f∥r is defined as a nonnegative extended real number
when 0 < r ≤ ∞, as in Section 21. Suppose that 0 < r1, r2, r3 ≤ ∞ satisfy

1/r3 = 1/r1 + 1/r2,(34.1)

where 1/∞ is interpreted as being 0, as usual. Under these conditions, Hölder’s
inequality for sums implies that

∥f g∥r3 ≤ ∥f∥r1 ∥g∥r2 .(34.2)

More precisely, if either of the factors on the right side of (34.2) is equal to 0,
then the corresponding function is equal to 0 on X, so that f(x) g(x) = 0 for
every x ∈ X. This implies that the left side of (34.2) is equal to 0. Thus one
may interpret the left side of (34.2) as being equal to 0 when either of the factors
is equal to 0, even if the other factor is +∞. Otherwise, the right side of (34.2)
is defined as a nonnegative extended real number in the usual way. If r1 = ∞
or r2 = ∞, then (34.2) can be verified directly. Hölder’s inequality is often
stated for r3 = 1, and it is not difficult to reduce to that case when r3 < ∞.
If r1 = r2 = 2, so that r3 = 1, then (34.2) is a version of the Cauchy–Schwarz
inequality.

Let k be a field, and let | · | be a q-absolute value function on k for some
q > 0. Of course, k may be considered as a one-dimensional vector space over
itself, and | · | may be considered as a q-norm on k. Thus ℓr(X, k) may be
defined as in Section 13 when r = ∞, and as in Section 22 when 0 < r < ∞. If
f ∈ ℓr(X, k) for some r > 0, then ∥f∥r is defined as a nonnegative real number,
as in the sections just mentioned. If r1, r2, r3 > 0 satisfy (34.1), f ∈ ℓr1(X, k),
and g ∈ ℓr2(X, k), then

f g ∈ ℓr3(X, k),(34.3)

and (34.2) holds. This follows from the remarks in the preceding paragraph,
applied to |f(x)|, |g(x)| as nonnegative real-valued functions on X. Of course,
the case where r1 = r2 = r3 = ∞ has been discussed previously.

Let r > 0 be given, and suppose that r1, r2, r3 > 0 satisfy (34.1) and

r3 ≤ r ≤ r1, r2.(34.4)

One can take r1 = r2 = r, for instance, in which case r3 = r/2 ≤ r. Alterna-
tively, if r3 = r, then (34.1) implies that r ≤ r1, r2. If f, g ∈ ℓr(X, k), then it
follows that f ∈ ℓr1(X, k) and g ∈ ℓr2(X, k), as in Section 22. Similarly, (34.3)
implies that

f g ∈ ℓr(X, k),(34.5)

and (34.2) implies that

∥f g∥r ≤ ∥f g∥r3 ≤ ∥f∥r1 ∥g∥r2 ≤ ∥f∥r ∥g∥r(34.6)
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in this situation. It follows that ℓr(X, k) is a commutative algebra over k with
respect to pointwise multiplication of functions, and that ∥ · ∥r is submultiplica-
tive on ℓr(X, k). As before, this has been discussed previously when r = ∞.

If f ∈ ℓr(X,Z) and n ∈ Z+, then it is easy to see that f(x)n ∈ ℓr/n(X, k),
with

∥fn∥r/n = ∥f∥nr ,(34.7)

directly from the definitions. In particular, this implies that f(x)n ∈ ℓr(X, k),
as in Section 22 again, and in fact

∥fn∥1/nr = ∥f∥n r.(34.8)

Note that
lim
n→∞

∥f∥n r = ∥f∥∞,(34.9)

using (21.12) when r < ∞.

Part III

Some additional basic notions

35 Inner product spaces

Let V , W be vector spaces over the complex numbers. Of course, V and W
can also be considered as vector spaces over the real numbers. If T is a linear
mapping from V into W as complex vector spaces, then T may be considered
as a linear mapping from V into W as real vector spaces as well. We may refer
to real and complex-linear mappings to be precise. A mapping T from V into
W is said to be conjugate-linear if

T (v + v′) = T (v) + T (v′)(35.1)

for every v, v′ ∈ V , and
T (a v) = aT (v)(35.2)

for every a ∈ C and v ∈ C, where a is the complex-conjugate of a. Conjugate-
linear mappings are real-linear too. A real-linear mapping T from V into W is
complex-linear when

T (i v) = i T (v)(35.3)

for every v ∈ V , and T is conjugate-linear when

T (i v) = −i T (v)(35.4)

for every v ∈ V .
Now let V be a vector space over the real or complex numbers. An inner

product on V is a real or complex-valued function ⟨v, w⟩, as appropriate, defined
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for v, w ∈ V , and satisfying the following three properties. First, for each
w ∈ W ,

v 7→ ⟨v, w⟩(35.5)

should be a linear mapping from V into R or C, as appropriate. More precisely,
this means that (35.5) should be real-linear in the real case, and complex-linear
in the complex case. Second,

⟨v, w⟩ = ⟨w, v⟩(35.6)

for every v, w ∈ V in the real case, and

⟨v, w⟩ = ⟨w, v⟩(35.7)

for every v, w ∈ V in the complex case. This implies that for each v ∈ V ,

w 7→ ⟨v, w⟩(35.8)

is linear in the real case, and conjugate-linear in the complex case. We also get
that

⟨v, v⟩ ∈ R(35.9)

for every v ∈ V in the complex case, which is trivial in the real case. The third
condition is that

⟨v, v⟩ > 0(35.10)

for every v ∈ V with v ̸= 0. Of course, ⟨v, w⟩ = 0 when either v = 0 or w = 0,
by the previous conditions.

Let ⟨v, w⟩ be an inner product on V , and put

∥v∥ = ⟨v, v⟩1/2(35.11)

for each v ∈ V . Observe that

∥t v∥ = |t| ∥v∥(35.12)

for every v ∈ V and t ∈ R or C, as appropriate, where | · | is the standard
absolute value function on R or C. It is well known that

|⟨v, w⟩| ≤ ∥v∥ ∥w∥(35.13)

for every v, w ∈ V , which is the Cauchy–Schwarz inequality. Using this, one can
check that

∥v + w∥ ≤ ∥v∥+ ∥w∥(35.14)

for every v, w ∈ V . Thus ∥ · ∥ defines a norm on V , with respect to the standard
absolute value function on R or C, as appropriate.

Let v ∈ V be given, and let us check that

∥v∥ = sup{|⟨v, w⟩| : w ∈ V, ∥w∥ ≤ 1}.(35.15)

The Cauchy–Schwarz inequality implies that the right side of (35.15) is less than
or equal to the left side. If v = 0, then both sides of (35.15) are equal to 0. If
v ̸= 0 and w0 = v/∥v∥, then ∥w0∥ = 1 and

⟨v, w0⟩ = ⟨v, v⟩/∥v∥ = ∥v∥.(35.16)

This implies that the left side of (35.15) is less than or equal to the right side.
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36 Hilbert spaces

Let (V, ⟨v, w⟩) be a real or complex inner product space, and let ∥v∥ be the
corresponding norm, as in (35.11). Thus

d(v, w) = ∥v − w∥(36.1)

defines a metric on V , as in Section 12. If V is also complete with respect to
this metric, then V is said to be a Hilbert space. As usual, if V is not already
complete with respect to (36.1), then one can pass to a completion of V . The
inner product on V has a unique continuous extension to the completion, which
makes the completion of V a Hilbert space.

Let X be a nonempty set, and let f , g be real or complex-valued functions on
X. Suppose that f and g are 2-summable, as in Section 22, wth respect to the
standard absolute value function on R or C, as appropriate. This implies that
f g is summable on X, as in Section 34. Alternatively, if a and b are nonnegative
real numbers, then

2 a b ≤ a2 + b2,(36.2)

because (a− b)2 ≥ 0. It follows that

2 |f(x)| |g(x)| ≤ |f(x)|2 + |g(x)|2(36.3)

for every x ∈ X, so that

2
∑
x∈X

|f(x)| |g(x)| ≤
∑
x∈X

|f(x)|2 +
∑
x∈X

|g(x)|2.(36.4)

Put
⟨f, g⟩ = ⟨f, g⟩ℓ2(X,R) =

∑
x∈X

f(x) g(x)(36.5)

in the real case, and

⟨f, g⟩ = ⟨f, g⟩ℓ2(X,C) =
∑
x∈X

f(x) g(x)(36.6)

in the complex case. It is easy to see that (36.5) defines an inner product on
ℓ2(X,R) as a real vector space, and that (36.6) defines an inner product on
ℓ2(X,C) as a complex vector space.

In both cases, we have that

⟨f, f⟩ =
∑
x∈X

|f(x)|2 = ∥f∥22,(36.7)

where ∥f∥2 is as in Section 22. This means that the norms on ℓ2(X,R) and
ℓ2(X,C) associated to the inner products (36.5) and (36.6), respectively, are the
same as the corresponding ℓ2 norms defined previously. Of course, R and C are
complete with respect to the metrics associated to their standard absolute value
functions. It follows that ℓ2(X,R) and ℓ2(X,C) are complete with respect to
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the metrics associated to their ℓ2 norms, as in Section 22. Thus ℓ2(X,R) and
ℓ2(X,C) are Hilbert spaces with respect to the inner products (36.5) and (36.6),
respectively.

Let (V, ⟨v, w⟩) be a real or complex inner product space again, with corre-
sponding norm ∥v∥. If w ∈ V , then

λw(v) = ⟨v, w⟩(36.8)

defines a linear functional on V , which is to say a linear mapping from V into
R or C, as appropriate. Of course, the Cauchy–Schwarz inequality implies that

|λw(v)| ≤ ∥v∥ ∥w∥(36.9)

for every v ∈ V . This means that λw is bounded as a linear functional on V ,
using the standard absolute value function on R or C, as appropriate, as the
norm on the range of λw. More precisely, (36.9) implies that the corresponding
operator norm of λw, which is also known as the dual norm of λw, is less than
or equal to ∥w∥. It is easy to see that the dual norm of λw is equal to ∥w∥,
because

λw(w) = ⟨w,w⟩ = ∥w∥2.(36.10)

If V is a Hilbert space, then it is well known that every bounded linear functional
on V is of the form λw for some w ∈ V . This representation is unique, basically
because λw ̸= 0 when w ̸= 0, as in (36.10).

37 Adjoint mappings

Let (V, ⟨·, ·⟩V ) and (W, ⟨·, ·⟩W ) be inner product spaces, both real or both com-
plex, and let ∥ · ∥V and ∥ · ∥W be the corresponding norms on V and W , respec-
tively. Also let T be a bounded linear mapping from V into W , and let w ∈ W
be given. Observe that

µT,w(v) = ⟨T (v), w⟩W(37.1)

defines a linear functional on V . We also have that

|µT,w(v)| ≤ ∥T (v)∥W ∥w∥W ≤ ∥T∥op,VW ∥v∥V ∥w∥W(37.2)

for every v ∈ V , using the Cauchy–Schwarz inequality in the first step, and the
definition of the operator norm ∥T∥op,VW of T with respect to ∥ · ∥V , ∥ · ∥W in
the second step. Thus µT,w is a bounded linear functional on V . Suppose that
V is a Hilbert space, so that there is a unique element T ∗(w) of V such that

µT,w(v) = ⟨v, T ∗(w)⟩V(37.3)

for every v ∈ V , as in the previous section. This defines a mapping T ∗ from W
into V , which is characterized by the property that

⟨T (v), w⟩W = ⟨v, T ∗(w)⟩V(37.4)
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for every v ∈ V and w ∈ W . It is easy to see that T ∗ is linear as a mapping
from W into V , using uniqueness of T ∗(w). This is known as the adjoint of T .

As in (37.2), we have that

|⟨v, T ∗(w)⟩V | = |⟨T (v), w⟩W | ≤ ∥T∥op,VW ∥v∥V ∥w∥W(37.5)

for every v ∈ V and w ∈ W . Using (35.15), we get that

∥T ∗(w)∥V = sup{|⟨v, T ∗(w)⟩V | : v ∈ V, ∥v∥ ≤ 1} ≤ ∥T∥op ∥w∥W(37.6)

for every w ∈ W . This implies that T ∗ is a bounded linear mapping from W
into V , with

∥T ∗∥op,WV ≤ ∥T∥op,VW .(37.7)

Similarly,

|⟨T (v), w⟩W | = |⟨v, T ∗(w)⟩V | ≤ ∥T ∗∥op,WV ∥v∥V ∥w∥W(37.8)

for every v ∈ V and w ∈ W . One can use this in the same way as before to get
that ∥T∥op,VW ≤ ∥T ∗∥op,WV , so that

∥T ∗∥op,WV = ∥T∥op,VW .(37.9)

We may consider
T 7→ T ∗(37.10)

as a mapping from the space BL(V,W ) of bounded linear mappings from V
into W into the analogous space BL(W,V ). One can check that this mapping is
linear in the real case, and conjugate-linear in the complex case. Suppose that
W is a Hilbert space too, so that there is an analogous mapping from BL(W,V )
into BL(V,W ). If T is a bounded linear mapping from V into W , as before,
then T ∗ is defined as a bounded linear mapping from W into V , and the adjoint
(T ∗)∗ of T ∗ is defined as a bounded linear mapping from V into W . One can
verify that T satisfies the requirements of (T ∗)∗, so that

(T ∗)∗ = T.(37.11)

Let (Z, ⟨·, ·⟩Z) be another inner product space, which is real if V , W are real,
and complex if V , W are complex. Also let T1 be a bounded linear mapping
from V into W , and let T2 be a bounded linear mapping from W into Z, so that
their composition T2 ◦ T1 is a bounded linear mapping from V into Z. Thus
T ∗
1 is defined as a bounded linear mapping from W into V , T ∗

2 is defined as a
bounded linear mapping from Z into W , and (T2 ◦T1)

∗ is defined as a bounded
linear mapping from Z into V . If v ∈ V and z ∈ Z, then

⟨T2(T1(v)), z⟩Z = ⟨T1(v), T
∗
2 (z)⟩W = ⟨v, T ∗

1 (T
∗
2 (z))⟩V ,(37.12)

by definition of T ∗
1 and T ∗

2 . This implies that

(T2 ◦ T1)
∗ = T ∗

1 ◦ T ∗
2(37.13)
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as bounded linear mappings from Z into V . Of course, the identity mapping IV
on V is a bounded linear mapping from V into itself. Hence the adjoint I∗V of
IV is defined as a bounded linear mapping from V into itself, and it is easy to
see that

I∗V = IV .(37.14)

Let T be a bounded linear mapping from V into W again, so that T ∗ is
a bounded linear mapping from W into V , and their composition T ∗ ◦ T is a
bounded linear mapping from V into itself. Observe that

∥T ∗ ◦ T∥op,V V ≤ ∥T∥op,VW ∥T ∗∥op,WV = ∥T∥2op,VW ,(37.15)

using (37.9) in the second step. If v ∈ V , then

⟨T ∗(T (v)), v⟩V = ⟨T (v), T (v)⟩W = ∥T (v)∥2W(37.16)

and
|⟨T ∗(T (v)), v⟩V | ≤ ∥T ∗(T (v))∥V ∥v∥V ≤ ∥T ∗ ◦ T∥op,V V ∥v∥2V .(37.17)

Using (37.16) and (37.17), we get that

∥T∥2op,VW ≤ ∥T ∗ ◦ T∥op,V V .(37.18)

It follows that
∥T ∗ ◦ T∥op,V V = ∥T∥2op,VW .(37.19)

38 Involutions

Let k be a field, and let A be an algebra over k. A linear mapping

x 7→ x∗(38.1)

from A into itself is said to be an (algebra) involution on A if

(x y)∗ = y∗ x∗(38.2)

for every x, y ∈ A, and
(x∗)∗ = x(38.3)

for every x ∈ A. If multiplication on A is commutative, then the identity map-
ping on A satisfies these conditions. If k = C, then we may also be interested
in conjugate-linear mappings (38.1) that satisfy (38.2) and (38.3).

Let X be a nonempty set, and consider the commutative algebra c(X,C)
of complex-valued functions on X. If f ∈ c(X,C), then the complex-conjugate
f(x) is an element of c(X,C) too, and

f 7→ f(38.4)

defines a conjugate-linear involution on c(X,C).
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Let (V, ⟨v, w⟩) be a real or complex Hilbert space. If T is a bounded linear
mapping from V into itself, then its adjoint T ∗ can be defined as a bounded
linear mapping from V into itself as well, as in the previous section. Remember
that

T 7→ T ∗(38.5)

is a linear mapping from the algebra BL(V ) of bounded linear mappings from
V into itself in the real case, and that (38.5) is conjugate-linear in the complex
case. In both cases, we have seen that (38.5) satisfies (38.2) and (38.3).

Let A be any algebra over a field k again, let | · | be a qk-absolute value
function on k for some qk > 0, and let N be a submultiplicative q-seminorm on
A with respect to | · | on k for some q > 0. An involution (38.1) on A is said to
be compatible with N if

N(x∗) = N(x)(38.6)

for every x ∈ A. Of course, if A is a commutative algebra and (38.1) is the
identity mapping on A, then (38.6) holds trivially.

Let X be a nonempty set, and remember that ℓr(X,C) may be considered
as a commutative algebra over C with respect to pointwise multiplication of
functions, as in Section 34. As before, (38.4) defines a conjugate-linear invo-
lution on ℓr(X,C) for each r > 0. It is easy to see that (38.4) is compatible
with ∥f∥r for every r > 0, as in the preceding paragraph. Similarly, if X is
a nonempty topological space, then (38.4) defines a conjugate-linear involution
on the algebra C(X,C) of continuous complex-valued functions on X. If E is a
nonempty compact subset of X, then (38.4) is compatible with the supremum
seminorm on C(X,C) associated to E.

Let (V, ⟨v, w⟩) be a real or complex Hilbert space again. We have seen that
(38.5) is compatible with the operator norm on BL(V ), as in (37.9).

Let k, A, and N be as before, and let (38.1) be an involution on A again.
Another interesting condition on (38.1) and N asks that

N(x∗ x) = N(x)2(38.7)

for every x ∈ A. If A is a commutative algebra and (38.1) is the identity
mapping on A, then (38.7) is the same as saying that

N(x2) = N(x)2(38.8)

for every x ∈ A. If X is a nonempty set, then the supremum norm on ℓ∞(X,C)
satisfies (38.7) with respect to (38.4). Similarly, if X is a nonempty topological
space, and E is a nonempty compact subset of X, then the supremum seminorm
on C(X,C) associated to E satisfies (38.7) with respect to (38.4). If (V, ⟨v, w⟩)
is a real or complex inner product space, then the operator norm on BL(V )
satisfies (38.7) with respect to (38.5), as in (37.19). Note that (38.8) does not
always hold in this situation.

Let k, A, and N be as before, let (38.1) be an involution on A, and suppose
that (38.7) holds for every x ∈ A. Using submultiplicativity, we get that

N(x)2 = N(x∗ x) ≤ N(x∗)N(x)(38.9)
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for every x ∈ A. This implies that

N(x) ≤ N(x∗)(38.10)

when N(x) > 0, and (38.10) holds trivially when N(x) = 0. Applying (38.10)
to x∗, we get that

N(x∗) ≤ N((x∗)∗) = N(x)(38.11)

for every x ∈ A. Thus (38.6) holds for every x ∈ A under these conditions.
Suppose for the moment that x ∈ A is self-adjoint with respect to (38.1), in

the sense that
x∗ = x.(38.12)

Of course, (38.7) is the same as (38.8) in this case. It is easy to see that xj is
self-adjoint for every positive integer j, so that

N(x2 j) = N(xj)2(38.13)

for every j ∈ Z+. This implies that

N(xn) = N(x)n(38.14)

when n = 2l for some l ∈ Z+. Using this, we get that (19.3, 2) holds for every
n ∈ Z+, as in Section 19.

If x is any element of A, then it is easy to see that x + x∗ and x∗ x are
self-adjoint with respect to (38.1). It follows that

N((x∗ x)n) = N(x∗ x)n = N(x)2n(38.15)

for every x ∈ A and n ∈ Z+, by applying (38.14) to x∗ x.
Suppose now that x ∈ A is normal with respect to (38.1), in the sense that

xx∗ = x∗ x.(38.16)

This implies that
(x∗ x)n = (x∗)n xn(38.17)

for every n ∈ Z+. Combining this with (38.15), we get that

N(x)2n = N((x∗ x)n) = N((x∗)n xn) ≤ N((x∗)n)N(xn)(38.18)

for every n ∈ Z+. It is easy to see that (x∗)n = (xn)∗ for each n ∈ Z+, so that

N(x)2n ≤ N((xn)∗)N(xn) = N(xn)2(38.19)

for every n ≥ 1. It follows that (38.14) holds for every n ∈ Z+ in this case too,
because N(xn) ≤ N(x)n for each n ≥ 1, by submultiplicativity.
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39 Orthogonal vectors

Let (V, ⟨v, w⟩) be a real or complex inner product space, and let ∥v∥ be the
corresponding norm on V . As usual, two elements v, w of V are said to be
orthogonal in V if ⟨v, w⟩ = 0. In this case,

∥v + w∥2 = ∥v∥2 + ∥w∥2.(39.1)

Let
∑∞

j=1 vj be an infinite series of pairwise-orthogonal elements of V , so
that vj is orthogonal to vl when j ̸= l. If n ≥ l ≥ 1, then∥∥∥∥ n∑

j=l

vj

∥∥∥∥2 =

n∑
j=l

∥vj∥2,(39.2)

as in (39.1). In particular, the partial sums

n∑
j=1

vj(39.3)

are bounded in V if and only if the sums
∑n

j=1 ∥vj∥2 have a finite upper bound.
Of course, this happens if and only if

∞∑
j=1

∥vj∥2(39.4)

converges as an infinite series of nonnegative real numbers. If (39.4) converges,
then it is easy to see that the sequence of partial sums (39.3) is a Cauchy
sequence in V with respect to the metric associated to the norm, using (39.2).
If V is a Hilbert space, then it follows that (39.2) converges in V . In this case,
one can check that ∥∥∥∥ ∞∑

j=1

vj

∥∥∥∥2 =

∞∑
j=1

∥vj∥2,(39.5)

using (39.2).
Now let v1, . . . , vn be finitely many orthonormal vectors in V , so that vj is

orthogonal to vl when j ̸= l, and ∥vj∥ = 1 for each j = 1, . . . , n. Also let v ∈ V
be given, and put

w =

n∑
j=1

⟨v, vj⟩ vj .(39.6)

By construction,
⟨w, vl⟩ = ⟨v, vl⟩(39.7)

for each l = 1, . . . , n, which means that v − w is orthogonal to vl for each
l = 1, . . . , n. It follows that v − w is orthogonal to w, so that

∥v∥2 = ∥v − w∥2 + ∥w∥2,(39.8)
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as in (39.1). We also have that

∥w∥2 =

n∑
j=1

|⟨v, vj⟩|2,(39.9)

using (39.1) again, so that

∥v∥2 = ∥v − w∥2 +
n∑

j=1

|⟨v, vj⟩|2.(39.10)

Suppose that u ∈ V is in the linear span of v1, . . . , vn. If v, w are as in the
previous paragraph, then w − u is in the linear span of v1, . . . , vn as well, and
hence v − w is orthogonal to w − u. This implies that

∥v − u∥2 = ∥v − w∥2 + ∥w − u∥2,(39.11)

using (39.1) again. In particular,

∥v − u∥ ≥ ∥v − w∥(39.12)

under these conditions.

40 Lipschitz mappings

Let X, Y be sets, and let dX , dY be qX , qY -semimetrics on X, Y , respectively,
for some qX , qY > 0. Also let f be a mapping from X into Y , and let α be a
positive real number. If there is a nonnegative real number C such that

dY (f(x), f(x
′)) ≤ C dX(x, x′)α(40.1)

for every x, x′ ∈ X, then f is said to be Lipschitz of order α with constant
C. Of course, constant mappings are Lipschitz of any order α, with constant
C = 0. If f satisfies (40.1) with C = 0 for some α, and if dY is a qY -metric on
Y , then f is a constant mapping.

Let a, b be positive real numbers, and remember that daX , dbY define (qX/a),
(qY /b)-semimetrics on X, Y , respectively, as in Section 2. Observe that (40.1)
holds if and only if

dY (f(x), f(x
′))b ≤ Cb (dX(x, x′)a)α b/a(40.2)

for every x, x′ ∈ X. Thus f is Lipschitz of order α with constant C with respect
to dX , dY if and only if f is Lipschitz of order α b/a with constant Cb with
respect to daX , dbY .

Note that Lipschitz mappings of any order are uniformly continuous. Let
UC(X,Y ) be the space of uniformly continuous mappings from X into Y , which
is a subset of the space C(X,Y ) of continuous mappings from X into Y . Also
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let Lipα(X,Y ) be the space of Lipschitz mappings of order α from X into Y ,
which is contained in UC(X,Y ).

Suppose again that f is Lipschitz of order α with constant C = Cf . Let Z
be another set, and let dZ be a qZ-semimetric on Z for some qZ > 0. Suppose
that g is a mapping from Y into Z that is Lipschitz of order β > 0 with constant
Cg ≥ 0 with respect to dY , dZ . If x, x

′ ∈ X, then

dZ(g(f(x)), g(f(x
′))) ≤ Cg dY (f(x), f(x

′))β ≤ Cg C
β
f dX(x, x′)αβ .(40.3)

This means that the composition g ◦ f is Lipschitz of order αβ with constant
Cg C

β
f as a mapping from X into Z.

Let q be a positive real number with q ≤ qX , and let w ∈ X be given. Put

fw,q(x) = dX(w, x)q(40.4)

for each x ∈ X, which defines a nonnegative real-valued function on X. The
inequality (6.5) says exactly that fw,q is Lipschitz of order q with constant 1
with respect to dX on X and the standard Euclidean metric on R.

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
let q be a positive real number such that q ≤ qk. As before, |x|q defines a
nonnegative real-valued function on k, which is the same as (40.4) with X = k,
dX equal to the qk-metric associated to | · | on k, and w = 0. It follows that |x|q
is Lipschitz of order q with constant 1 with respect to the qk-metric associated
to | · | on k and the standard Euclidean metric on R.

Similarly, let V be a vector space over k, and let NV be a qV -seminorm
on V with respect to | · | on k for some qV > 0. Also let q be a positive real
number with q ≤ qV , so that NV (v)

q defines a nonnegative real-valued function
on V . This is the same as (40.4), with X = V , dX equal to the qV -semimetric
associated to NV on V , and w = 0. Hence NV (v)

q is Lipschitz of order q with
respect to the qV -semimetric associated to NV on V and the standard Euclidean
on R.

41 Lipschitz q-seminorms

Let X be a nonempty set with a qX -semimetric dX for some qX > 0, let k be a
field with a qk-absolute value function | · | for some qk > 0, and let W be a vector
space over k with a qW -seminorm NW with respect to | · | on k for some qW > 0.
As in the previous section, UC(X,W ) denotes the space of uniformly continuous
mappings from X into W , with respect to the qW -semimetric associated to NW

on W . It is easy to see that UC(X,W ) is a linear subspace of the vector space
C(X,W ) of continuous mappings from X into W . Similarly, for each positive
real number α, Lipα(X,W ) denotes the space of Lipschitz mappings from X
into W of order α, with respect to the qW -semimetric associated to NW on
W . One can check that Lipα(X,W ) is a linear subspace of UC(X,W ) for each
α > 0.
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Let a positive real number α and f ∈ Lipα(X,W ) be given. If x, y ∈ X
satisfy dX(x, y) = 0, then we have that

NW (f(x)− f(y)) = 0,(41.1)

which is trivial when dX is a qX -metric on X. If dX(x, y) > 0 for some x, y ∈ X,
then put

∥f∥Lipα
= ∥f∥Lipα(X,W )(41.2)

= sup

{
NW (f(x)− f(y))

d(x, y)α
: x, y ∈ X, dX(x, y) > 0

}
.

More precisely, the hypothesis on X implies that the supremum is taken over
a nonempty set, and the Lipschitz condition on f implies that the nonnegative
real numbers whose supremum is being taken have a finite upper bound, so that
the supremum is defined as a nonnegative real number. If dX(x, y) = 0 for every
x, y ∈ X, then we take ∥f∥Lipα

to be 0.
By construction, f is Lipschitz of order α with constant C ≥ 0 if and only if

∥f∥Lipα
≤ C.(41.3)

In particular, f is Lipschitz of order α with constant C = ∥f∥Lipα
. Equivalently,

∥f∥Lipα
is the same as the infimum of the set of nonnegative real numbers C

such that f is Lipschitz of order α with constant C. One can check that ∥f∥Lipα

defines a qW -seminorm on Lipα(X,W ) with respect to | · | on k. Of course, this
uses the analogous properties of NW on W .

Let V be another vector space over k, and let NV be a qV -seminorm on V
with respect to | · | on k for some qV > 0. If T is a bounded linear mapping from
V intoW with respect toNV andNW , then T is Lipschitz of order 1 with respect
to the qV , qW -semimetrics on V , W associated to NV , NW , respectively, as in
(14.2). Thus BL(V,W ) may be considered as a linear subspace of Lip1(V,W ).
If T ∈ BL(V,W ), then the corresponding operator qW -seminorm ∥T∥op,VW of
T is the same as the Lipschitz qW -seminorm ∥T∥Lip1(V,W ).

42 Bounded Lipschitz functions

Let X be a nonempty set with a qX -semimetric dX for some qX > 0, and let k
be a field with a qk-absolute value function | · | for some qk > 0. It is easy to see
that the space UCb(X, k) of bounded uniformly continuous k-valued functions
on X is a linear subspace of UC(X, k). If f , g are bounded uniformly continuous
k-valued functions on X, then one can check that their product f g is uniformly
continuous as well. This uses the fact that

f(x) g(x)− f(y) g(y) = (f(x)− f(y)) g(x) + f(y) (g(x)− g(y))(42.1)

for every x, y ∈ X. Of course, f g is bounded on X too, so that UCb(X, k) is a
subalgebra of the algebra Cb(X, k) of bounded continuous k-valued functions on
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X. One can also verify that UCb(X, k) is a closed set in Cb(X, k) with respect
to the supremum metric. This is because uniform limits of uniformly continuous
functions are uniformly continuous, by standard arguments.

Let α be a positive real number, and let Lipα,b(X, k) be the space of bounded
k-valued functions on X that are Lipschitz of order α. This is a linear subspace
of Lipα(X, k), and one can check that it is a subalgebra of UCb(X, k), using
(42.1). To make this more precise, it is helpful to consider the following two
cases.

Suppose first that k = R or C, with the standard absolute value function.
Remember that ∥f∥Lipα

defines a seminorm on Lipα(X, k), as in the previous
section. If f, g ∈ Lipα,b(X, k), then it is easy to see that

∥f g∥Lipα
≤ ∥f∥Lipα

∥g∥sup + ∥f∥sup ∥g∥Lipα
,(42.2)

using (42.1). Here ∥f∥sup is the supremum norm on Cb(X, k), as in Section 13.
Using (42.2), one can check that

∥f∥sup + ∥f∥Lipα
(42.3)

is a submultiplicative norm on Lipα,b(X, k). If f ∈ Lipα,b(X, k), then f(x)n is
an element of Lipα,b(X, k) for each positive integer n, and one can verify that

∥fn∥Lipα
≤ n ∥f∥n−1

sup ∥f∥Lipα
,(42.4)

using (42.2). One can use this to check that

lim
n→∞

(∥fn∥sup + ∥fn∥Lipα
)1/n = ∥f∥sup.(42.5)

This also uses the fact that

∥fn∥sup = ∥f∥nsup(42.6)

for every n ≥ 1.
Suppose now that k is any field with an ultrametric absolute value function

| · |, so that ∥f∥sup is an ultranorm on Cb(X, k), and ∥f∥Lipα
defines a semi-

ultranorm on Lipα(X, k). In this case, we get that

∥f g∥Lipα
≤ max(∥f∥Lipα

∥g∥sup, ∥f∥sup ∥g∥Lipα
),(42.7)

using (42.1) again. This implies that

max(∥f∥sup, ∥f∥Lipα
)(42.8)

is a submultiplicative ultranorm on Lipα,b(X, k). If f ∈ Lipα,b, then fn is an
element of Lipα,b(X, k) for each n ∈ Z+, and

∥fn∥Lipα
≤ ∥f∥n−1

sup ∥f∥Lipα
.(42.9)

As before, it follows that

lim
n→∞

(max(∥fn∥sup, ∥fn∥Lipα
))1/n = ∥f∥sup.(42.10)
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43 C1 Functions on R

Let I be an interval of positive length in the real line, which may be open, closed,
or half-open and half-closed. We also allow I to be unbounded, so that I may
be the real line, or an open or closed half-line. Let f be a real or complex-valued
function on I. If x is an element of the interior of I, then the derivative f ′(x)
of f at x can be defined in the usual way, when it exists. If x is an endpoint
of I, if there is one, then one can take f ′(x) to be the appropriate one-sided
derivative of f at x, when it exists. Let us say that f is differentiable on I when
f ′(x) exists for every x ∈ I. Of course, this implies that f is continuous on I, by
standard arguments. If f is differentiable on I, and if f ′(x) is continuous on I,
then f is said to be continuously differentiable on I. Let C1(I,R) and C1(I,C)
be the spaces of continuously differentiable real and complex-valued functions
on I, respectively. If f and g are differentiable real or complex-valued functions
on I, then it is well known that their product f g is differentiable on I as well,
with

(f g)′ = f ′ g + f g′.(43.1)

In particular, if f and g are continuously differentiable on I, then f g is con-
tinuously differentiable as well. Thus C1(I,R) and C1(I,C) are subalgebras of
C(I,R) and C(I,C), respectively.

Let f be a differentiable real or complex-valued function on I, such that f ′

is bounded on I. Under these conditions, f is Lipschitz of order 1 on I with
respect to the standard metrics on R or C, as appropriate, and the restriction
of the standard metric on R to I. More precisely, one can take the Lipschitz
constant of f to be the supremum norm ∥f ′∥sup of f ′ on I. This follows from
the mean value theorem when f is real-valued. If f is complex-valued, then one
can reduce to the real case, by considering the real part of a f(x) for a ∈ C
with |a| = 1. If f is continuously differentiable, then the same conclusion can
be obtained from the fundamental theorem of calculus, in both the real and
complex cases. It is easy to see directly that |f ′(x)| is less than or equal to the
corresponding Lipschitz seminorm ∥f∥Lip1

of f on I for each x ∈ I, so that

∥f∥Lip1
= ∥f ′∥sup.(43.2)

Let C1
b (I,R) and C1

b (I,C) be the spaces of continuously differentiable real
and complex-valued functions f on I, respectively, such that f and f ′ are both
bounded on I. It is easy to see that these are subalgebras of Cb(I,R) and
Cb(I,C), respectively, using (43.1). More precisely, f and g are elements of
C1

b (I,R) or C1
b (I,C), then

∥(f g)′∥sup = ∥f ′ g + f g′∥sup ≤ ∥f ′∥sup ∥g∥sup + ∥f∥sup ∥g′∥sup.(43.3)

Using this, one can check that

∥f∥sup + ∥f ′∥sup(43.4)

defines a submultiplicative norm on each of C1
b (I,R) and C1

b (I,C). Of course,
these statements correspond to ones in the previous section, because of (43.2).
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If f is a differentiable real or complex-valued function on I, then f(x)n is
differentiable on I for every positive ineteger n, with

(fn)′ = n fn−1 f ′.(43.5)

Thus
∥(fn)′∥sup = n ∥fn−1 f ′∥sup ≤ n ∥f∥n−1

sup ∥f ′∥sup.(43.6)

As before, one can use this to verify that

lim
n→∞

(∥fn∥sup + ∥(fn)′∥sup)1/n = ∥f∥sup.(43.7)

These statements correspond to ones in the previous section as well, by (43.2).

44 Formal power series

Let k be a field, and let T be an indeterminate. As in [4, 14], we use upper-case
letters like T for indeterminates, and lower-case letters like t for elements of k.
A formal power series in T with coefficients in k may be expressed as

f(T ) =

∞∑
j=0

fj T
j ,(44.1)

where fj ∈ k for each nonnegative integer j. The space of formal power series
in T with cefficients in k is denoted k[[T ]]. More precisely, k[[T ]] can be defined
as the space c(Z+ ∪ {0}, k) of k-valued functions on Z+ ∪ {0}, where f(T )
corresponds to fj as a k-valued function of j. As usual, c(Z+∪{0}, k) is a vector
space over k with respect to pointwise addition and scalar multiplication, which
corresponds to termwise addition and scalar multiplication of formal power series
expressed as in (44.1). If f(T ) ∈ k[[T ]] satisfies fj = 0 for all but finitely many
j ≥ 0, then f(T ) is considered to be a formal polynomial in T with coefficients
in k. The space of these formal polynomials is denoted k[T ], which may be
defined more precisely as the space c00(Z+ ∪ {0}, k) of k-valued functions on
Z+ ∪ {0} with finite support.

Let f(T ) and g(T ) =
∑∞

j=0 gj(T ) be elements of k[[T ]]. Their product is
defined to be the formal power series

f(T ) g(T ) = h(T ) =

∞∑
n=0

hn T
n,(44.2)

where

hn =

n∑
j=0

fj gn−j(44.3)

for each nonnegative integer n. Thus h(T ) corresponds to the Cauchy product
of f(T ) and g(T ), as in Section 29. One can check that k[[T ]] is a commutative
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algebra over k with respect to this operation of multiplication. If f(T ), g(T )
are formal polynomials in T , then it is easy to see that their product is a formal
polynomial too, so that k[T ] is a subalgebra of k[[T ]]. We can identify elements
of k with formal polynomials for which all but the first coefficient is equal to 0,
so that k corresponds to a subalgebra of k[T ]. In particular, the multiplicative
identity element 1 in k corresponds to the multiplicative identity element in
k[[T ]].

Let a(T ) ∈ k[[T ]] be given. If l ∈ Z+, then the lth power a(T )l of a(T )
can be defined as an element of k[[T ]] as in the preceding paragraph. As usual,
a(T )l is interpreted as being equal to 1 when l = 0. If j is a nonnegative integer,
then the coefficient of T j in a(T )l T l is equal to 0 when j < l. This implies that
the coefficient of T j in

n∑
l=0

a(T )l T l(44.4)

does not depend on n when n ≥ j. The infinite series

∞∑
l=0

a(T )l T l(44.5)

can be defined as a formal power series in T , by taking the coefficient of T j

in (44.5) to be the same as the coefficient of (44.4) when n ≥ j. If n is any
nonnegative integer, then

(1− a(T )T )

n∑
l=0

a(T )l T l = 1− a(T )n+1 T l+1(44.6)

by a standard argument. Using this, it is easy to see that

(1− a(T )T )

∞∑
l=0

a(T )l T l = 1.(44.7)

Thus (44.5) is the multiplicative inverse of 1− a(T )T in k[[T ]].
If f(T ), g(T ) ∈ k[[T ]] satisfy f(T ) g(T ) = 1, then f0 g0 = 1, and hence

f0, g0 ̸= 0. In the other direction, let f(T ) be any element of k[[T ]] such that
f0 ̸= 0. This permits us to express f(T ) as f0 (1−a(T )T ) for some a(T ) ∈ k[[T ]].
It follows that f(T ) has a multiplicative inverse in k[[T ]], because 1 − a(T )T
has a multiplicative inverse in k[[T ]], as in the previous paragraph.

45 Formal Laurent series

Let k be a field, and let T be an indeterminate. A formal Laurent series in T
with coefficients in k may be expressed as

f(T ) =

∞∑
j=−∞

fj T
j ,(45.1)
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where fj ∈ k for each j ∈ Z. Thus fj defines a k-valued function on Z, so
that the space of formal Laurent series in T with coefficients in k can be defined
precisely as c(Z, k). Remember that c(Z, k) is a vector space over k with respect
to pointwise addition and scalar multiplication, which corresponds to termwise
addition and scalar multiplication of formal Laurent series expressed as in (45.1).
A formal power series in T with coefficients in k may be considered as a formal
Laurent series f(T ) with fj = 0 when j < 0, which corresponds to identifying
c(Z+ ∪ {0}, k) with the subspace of c(Z, k) consisting of functions on Z that
vanish on negative integers.

Let k((T )) be the space of formal Laurent series f(T ) in T with coefficients
in k such that fj = 0 for all but finitely many j < 0. In this case, f(T ) may be
expressed as

f(T ) =
∑

j>>−∞
fj T

j(45.2)

to indicate that fj = 0 for all but finitely many j < 0, as in [4]. More precisely,
k((T )) can be defined as the linear subspace of c(Z, k) consisting of functions
on Z that are equal to 0 at all but finitely many negative integers. As before,
k[[T ]] may be considered as a linear subspace of k((T )).

If f(T ) and g(T ) =
∑

j>>−∞ gj T
j are elements of k((T )), then their product

is defined by

f(T ) g(T ) = h(T ) =

∞∑
n=−∞

hn T
n,(45.3)

where

hn =

∞∑
j=−∞

fj gn−j(45.4)

for each n ∈ Z. More precisely, all but finitely many terms in the sum on the
right side of (45.4) are equal to 0, because fj = gj = 0 for all but finitely many
j < 0. Thus hn is defined as an element of k for every n ∈ Z, and one can
check that hn = 0 for all but finitely many n < 0, so that h(T ) ∈ k((T )) too.
One can also verify that k((T )) is a commutative algebra over k with respect
to this operation of multiplication. This is compatible with the definition of
multiplication of formal power series in the previous section, so that k[[T ]] is a
subalgebra of k((T )).

Every nonzero element of k((T )) can be expressed as T l f(T ) for some f(T )
in k[[T ]] and l ∈ Z, where f0 ̸= 0. As in the previous section, f(T ) has a
multiplicative inverse in k[[T ]] under these conditions. This implies that T l f(T )
has a multiplicative inverse in k((T )), which is given by T−l f(T )−1. It follows
that k((T )) is a field with respect to this definition of multiplication.

Let r be a positive real number with r ≤ 1. If f(T ) ∈ k((T )) and f(T ) ̸= 0,
then there is a unique integer j0 = j0(f) such that fj0 ̸= 0 and fj = 0 when
j < j0. In this case, we put

|f(T )|r = rj0 ,(45.5)
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and we put |f(T )|r = 0 when f(T ) = 0. One can check that

|f(T ) + g(T )|r ≤ max(|f(T )|r, |g(T )|r)(45.6)

for every f(T ), g(T ) ∈ k((T )). This uses the fact that

j0(f(T ) + g(T )) ≥ min(j0(f(T )), j0(g(T ))(45.7)

when f(T ), g(T ), and f(T ) + g(T ) are nonzero. Similarly,

|f(T ) g(T )|r = |f(T )|r |g(T )|r(45.8)

for every f(T ), g(T ) ∈ k((T )), because

j0(f(T ) g(T )) = j0(f(T )) + j0(g(T ))(45.9)

when f(T ), g(T ) ̸= 0. Thus | · |r defines an ultrametric absolute value function
on k((T )).

If r = 1, then |·|r is the trivial absolute value function on k((T )). If 0 < r ≤ 1
and a is a positive real number, then

|f(T )|ar = |f(T )|ra(45.10)

for every f(T ) ∈ k((T )). This means that the absolute value functions | · |r are
all equivalent on k((T )) when 0 < r < 1, as in Section 4.

Suppose that 0 < r < 1, and let l ∈ Z be given. The closed ball B(0, rl) in
k((T )) centered at 0 with radius rl with respect to the ultrametric associated
to | · |r consists of f ∈ k((T )) such that fj = 0 when j < l. Thus B(0, rl)
can be identified with the Cartesian product of copies of k indexed by j ∈ Z
with j ≥ l. The discrete topology on k leads to a product topology on this
Cartesian product. One can check that the topology determined on B(0, rl) by
the ultrametric associated to | · |r corresponds exactly to the product topology
just mentioned.

One can also verify that k((T )) is complete with respect to the ultrametric
associated to | · |r for each 0 < r ≤ 1. Of course, this is trivial when r = 1. If
r < 1, then it is helpful to observe that a Cauchy sequence in k((T )) is contained
in B(0, rl) for some l ∈ Z. This uses the fact that a Cauchy sequence in any
q-metric space is bounded.

46 Discrete absolute value functions

Let k be a field, and let | · | be a q-absolute value function on k for some q > 0.
Observe that

{|x| : x ∈ k, x ̸= 0}(46.1)

is a subgroup of the multiplicative group R+ of positive real numbers. If the real
number 1 is not a limit point of (46.1) with respect to the standard topology on
R, then | · | is said to be discrete on k. If 1 is a limit point of (46.1) in R, then
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one can check that (46.1) is dense in R+ with respect to the topology induced
on R+ by the standard topology on R. Note that the real number 0 is a limit
point of (46.1) unless | · | is the trivial absolute value function on k, in which
case (46.1) is the trivial subgroup of R+.

Put
ρ1 = sup{|x| : x ∈ k, |x| < 1},(46.2)

so that 0 ≤ ρ1 ≤ 1. It is easy to see that ρ1 = 0 if and only if | · | is the trivial
absolute value function on k. Similarly, ρ1 < 1 if and only if | · | is discrete on k.
Suppose for the moment that | · | is discrete on k, and not the trivial absolute
value function on k, so that 0 < ρ1 < 1. Under these conditions, one can verify
that the supremum in (46.2) is attained, so that there is an x ∈ k such that
|x| = ρ1. One can also check that (46.1) consists exactly of the integer powers
of ρ1. More precisely, if this were not the case, then there would be a y ∈ k
such that ρ1 < |y| < 1, contradicting the definition of ρ1.

Suppose now that | · | is an archimedean q-absolute value function on k, as
in Section 10. This implies that k has characteristic 0, so that there is a natural
embedding of Q into k. In this case, | · | induces an archimedean q-absolute
value function on Q. The theorem of Ostrowski mentioned in Section 4 implies
that the induced q-absolute value function on Q is equivalent to the standard
(Euclidean) absolute value function on Q in this situation. It is easy to see that
any q-absolute value function on Q that is equivalent to the standard absolute
value function is not discrete, because the standard absolute value function on
Q is not discrete. It follows that | · | is not discrete on k. This shows that if | · |
is a discrete q-absolute value function on a field k, then | · | is non-archimedian
on k. Of course, this means that | · | is an ultrametric absolute value function
on k, as in Section 10.

Let | · | be any ultrametric absolute value function on a field k. Suppose
that there are finitely many elements x1, . . . , xn of k and positive real numbers
r1, . . . rn such that rj < 1 for each j = 1, . . . , n and

B(0, 1) ⊆
n∪

j=1

B(xj , rj).(46.3)

The open an closed balls in k are defined as in Section 2, as usual, with respect
to the ultrametric associated to | · |. We may as well suppose that

B(0, 1) ∩B(xj , rj) ̸= ∅(46.4)

for each j = 1, . . . , n, since otherwise B(xj , rj) is not needed to cover B(0, 1).
This implies that |xj | < 1 for every j = 1, . . . , n, by the ultrametric version of
the triangle inequality. Thus

r = max(|x1|, . . . , |xn|, r1, . . . , rn) < 1,(46.5)

and
B(xj , rj) ⊆ B(0, r)(46.6)
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for each j = 1, . . . , n, using the ultrametric version of the triangle inequality
again. Combining this with (46.3), we get that

B(0, 1) ⊆ B(0, r),(46.7)

which means that | · | is discrete on k.

47 Weighted ℓr spaces

Let X be a nonempty set, and let w(x) be a positive real-valued function on
X. Also let k be a field, and let | · | be a qk-absolute value function on k for
some qk > 0. If r is a positive real number, then we let ℓrw(X, k) be the space
of k-valued functions f on X such that |f(x)|w(x) is r-summable on X as a
nonnegative real-valued function on X. In this case, we put

∥f∥ℓrw(X,k) =
( ∑

x∈X

|f(x)|r w(x)r
)1/r

.(47.1)

Similarly, let ℓ∞w (X, k) be the space of k-valued functions f on X such that
|f(x)|w(x) is bounded as a nonnegative real-valued function on X, in which
case we put

∥f∥ℓ∞w (X,k) = sup
x∈X

(|f(x)|w(x)).(47.2)

Equivalently, if f ∈ ℓrw(X, k) for some 0 < r ≤ ∞, then

∥f∥ℓrw(X,k) = ∥|f |w∥r,(47.3)

where ∥·∥r is defined for nonnegative real-valued functions onX as in Section 21.
One can check that ℓrw(X, k) is a vector space over k with respect to pointwise
addition and scalar multiplication for each 0 < r ≤ ∞, using the same type of
arguments as in the unweighted case. Similarly, ∥f∥ℓrw(X,k) defines an r-norm
on ℓrw(X, k) when r ≤ qk, and ∥f∥ℓrw(X,k) defines a qk-norm on ℓrw(X, k) when
r ≥ qk, as before. Of course, if w(x) = 1 for every x ∈ X, then ℓrw(X, k) is the
same as the space ℓr(X, k) defined previously for every r > 0, and ∥f∥ℓrw(X,k) is
the same as ∥f∥ℓr(X,k). If V is a vector space over k with a q-seminorm N with
respect to | · | on k for some q > 0, then one can deal with V -valued functions
on X in the same way, as before.

Let c0,w(X, k) be the space of k-valued functions such that |f(x)|w(x) van-
ishes at infinity on X, as a real-valued function on X. In particular, this implies
that |f(x)|w(x) is bounded on X, so that

c0,w(X, k) ⊆ ℓ∞w (X, k).(47.4)

As before, c0,w(X, k) is a linear subspace of ℓ∞w (X, k), and a closed set in
ℓ∞w (X, k) with respect to the qk-metric associated to the ℓ∞w (X, k) qk-norm.
We also have that

c00(X, k) ⊆ c0,w(X, k),(47.5)
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and that c0,w(X, k) is the closure of c00(X, k) in ℓ∞w (X, k).
If 0 < r1 ≤ r2 ≤ ∞, then

ℓr1w (X, k) ⊆ ℓr2w (X, k),(47.6)

and
∥f∥ℓr2w (X,k) ≤ ∥f∥ℓr1w (X,k)(47.7)

for every f ∈ ℓr1w (X, k), as in (21.8). If 0 < r < ∞, then it is easy to see that

ℓrw(X, k) ⊆ c0,w(X, k).(47.8)

Of course,
c00(X, k) ⊆ ℓrw(X, k)(47.9)

for every r > 0. If 0 < r < ∞, then one can check that c00(X, k) is dense
in ℓrw(X, k), with respect to the qk or r-metric associated to ∥f∥ℓrw(X,k), as
appropriate. If k is complete with respect to the qk-metric associated to | · |,
then one can verify that ℓrw(X, k) is complete with respect to the qk or r-metric
associated to ∥f∥ℓrw(X,k), by standard arguments.

Let a(x), f(x) be k-valued functions on X, and put

(Ma(f))(x) = a(x) f(x)(47.10)

for every x ∈ X. This defines Ma(f) as a k-valued function on X, and Ma

defines a linear mapping from the space c(X, k) of k-valued functions on X into
itself. This is the multiplication operator on c(X, k) associated to a. If a(x) ̸= 0
for every x ∈ X, then 1/a is also a k-valued function on X, so that M1/a defines
a linear mapping from c(X, k) into itself too. In this case, Ma is a one-to-one
linear mapping from c(X, k) onto itself, with inverse equal to M1/a.

Let w1(x), w2(x) be positive real-valued functions on X, so that w1/w2 and
w2/w1 are positive real-valued functions on X as well. If a ∈ ℓ∞w1/w2

(X, k), then

|a(x)| (w1(x)/w2(x)) ≤ ∥a∥ℓ∞
w1/w2

(X,k)(47.11)

for each x ∈ X, which means that

|a(x)|w1(x) ≤ ∥a∥ℓ∞
w1/w2

(X,k) w2(x)(47.12)

for every x ∈ X. Let f ∈ c(X, k) be given, and observe that

|(Ma(f))(x)|w1(x) = |a(x)| |f(x)|w1(x)(47.13)

≤ ∥a∥ℓ∞
w1/w2

(X,k) |f(x)|w2(x)

for every x ∈ X. This implies that Ma defines a bounded linear mapping
from ℓrw2

(X, k) into ℓrw1
(X, k) for every r > 0, and one can check that the

corresponding operator qk or r-norm of Ma is equal to ∥a∥ℓ∞
w1/w2

(X,k). Similarly,

Ma maps c0,w2
(X, k) into c0,w1

(X, k) under these conditions.
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Let w(x) be a positive real-valued function on X again, and let a be an
element of ℓ∞1/w(X, k). ThusMa defines a bounded linear mapping from ℓrw(X, k)

into ℓr(X, k) for every r > 0, as in the preceding paragraph. Similarly, if
a(x) ̸= 0 for every x ∈ X, and 1/a ∈ ℓ∞w (X, k), then M1/a defines a bounded
linear mapping from ℓr(X, k) into ℓrw(X, k) for every r > 0. Suppose now that
a ∈ ℓ∞1/w(X, k), a(x) ̸= 0 for every x ∈ X, and 1/a ∈ ℓ∞w (X, k), and let r > 0
be given. Under these conditions, Ma is a one-to-one bounded linear mapping
from ℓrw(X, k) onto ℓr(X, k), with bounded inverse equal to M1/a.

In particular, if |a(x)| = w(x) for every x ∈ X, then a ∈ ℓ∞1/w(X, k) with

∥a∥ℓ∞
1/w

(X,k) = 1, and 1/a ∈ ℓ∞w (X, k) with ∥1/a∥ℓ∞w (X,k) = 1. In this case, Ma

defines an isometric linear mapping from ℓrw(X, k) onto ℓr(X, k) for every r > 0.
Of course, if k = R or C with the standard absolute value function, then one
can simply take a(x) = w(x) for each x ∈ X. Suppose now that k is any field
with a nontrivial qk-absolute value function | · |. In this situation, every positive
real number is within a bounded factor of a positive value of | · | on k. This
implies that there is k-valued functions a(x) on X such that |a(x)| and w(x)
are each bounded by constant multiples of the other. This is the same as saying
that a ∈ ℓ∞1/w(x, k), a(x) ̸= 0 for every x ∈ X, and 1/a ∈ ℓ∞w (X, k).

Part IV

Fourier series

48 The unit circle

Let T be the unit circle in the complex plane, so that

T = {z ∈ C : |z| = 1},(48.1)

where | · | is the standard absolute value function on C. It is well known that∫
T

zj |dz| = 0(48.2)

for every nonzero integer j, where |dz| indicates the element of arclength on T.
We can also define arclength measure on T, using an arclength parameterization
of T to reduce to ordinary Lebesgue measure on the interval [0, 2π) in the real
line. Of course, the arclength of T is equal to 2π, and arclength measure on
T is invariant under rotations and reflections. Let Lr(T) be the corresponding
Lebesgue space of complex-valued functions on T for each r > 0. If 0 < r < ∞,
then we put

∥f∥r = ∥f∥Lr(T) =
( 1

2π

∫
T

|f(z)|r |dz|
)1/r

(48.3)

for each f ∈ Lr(T), where now |dz| refers to arclength measure on T. This
defines a norm on Lr(T) when 1 ≤ r < ∞, by the integral version of Minkowski’s
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inequality. If 0 < r ≤ 1, then ∥f∥r defines an r-norm on Lr(T), by (1.11). The
essential supremum norm ∥f∥∞ = ∥f∥L∞(T) can be defined on L∞(T) can also
be defined in the usual way.

Suppose that 0 < r1, r2, r3 ≤ ∞ satisfy

1/r3 = 1/r1 + 1/r2,(48.4)

and let f ∈ Lr1(T), g ∈ Lr2(T) be given. Hölder’s inequality implies that
f g ∈ Lr3(T), with

∥f g∥r3 ≤ ∥f∥r1 ∥g∥r2 .(48.5)

As before, this is often stated in the case where r3 = 1, and one can reduce
to this case when r3 < ∞. It is easy to verify (48.5) directly when r1 = ∞
or r2 = ∞, and the case where r1 = r2 = 2 is another version of the Cauchy–
Schwarz inequality.

If f, g ∈ L2(T), then f g ∈ L1(T), as before, and we put

⟨f, g⟩ = ⟨f, g⟩L2(T) =
1

2π

∫
T

f(z) g(z) |dz|.(48.6)

This defines an inner product on L2(T), with

⟨f, f⟩ = 1

2π

∫
T

|f(z)|2 |dz| = ∥f∥22(48.7)

for each f ∈ L2(T). Of course, L2(T) is complete with respect to the metric
associated to the L2 metric, so that L2(T) is a Hilbert space. It is easy to see
that the functions on T of the form zj with j ∈ Z are orthogonal with respect
to this inner product, because of (48.2). More precisely, these functions are
orthonormal with respect to this inner product.

If 0 < r1 ≤ r2 ≤ ∞, then it is well known that

Lr2(T) ⊆ Lr1(T),(48.8)

with
∥f∥r1 ≤ ∥f∥r2(48.9)

for every f ∈ Lr2(T). This can be verified directly when r2 = ∞. If r2 < ∞,
then (48.9) can be obtained from Jensen’s inequality, using the convexity of the
function tr on [0,∞) when 1 ≤ r < ∞. One can also get (48.9) using Hölder’s
inequality.

Let C(T) = C(T,C) be the space of continuous complex-valued functions
on T, using the standard metric on C and its restriction to T. Remember that
elements of C(T) are automatically bounded and uniformly continuous on T,
because T is compact. It is well known that C(T) is dense in Lr(T) when
0 < r < ∞.
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49 Fourier coefficients

Let f ∈ L1(T) be given. If j ∈ Z, then the jth Fourier coefficient of f is defined
by

f̂(j) =
1

2π

∫
T

f(z) z−j |dz|.(49.1)

Observe that
|f̂(j)| ≤ ∥f∥1(49.2)

for every j ∈ Z. Of course, f̂(j) is linear in f , so that f 7→ f̂ defines a bounded
linear mapping from L1(T) into ℓ∞(Z,C).

Suppose now that f ∈ L2(T), and observe that f̂(j) can be interpreted as
the inner product of f with zj with respect to (48.6). Put

fn(z) =

n∑
j=−n

f̂(j) zj(49.3)

for each nonnegative integer n and z ∈ T. Because of the orthonormality of the
zj ’s with respect to (48.6), we have that

∥f∥22 = ∥f − fn∥22 +
n∑

j=−n

|f̂(j)|2(49.4)

for every n ≥ 0, as in (39.8). In particular,

n∑
j=−n

|f̂(j)|2 ≤ ∥f∥22(49.5)

for each n ≥ 0. This implies that

∞∑
j=−∞

|f̂(j)|2 ≤ ∥f∥22(49.6)

where the sum on the left may be considered as a sum of two infinite series, or
as a sum over j ∈ Z, as in Section 21.

Thus f̂ ∈ ℓ2(Z,C) when f ∈ L2(T). It follows that f̂ ∈ c0(Z,C) when
f ∈ L2(T), by (23.5). Equivalently, this means that

lim
|j|→∞

f̂(j) = 0(49.7)

when f ∈ L2(T). Remember that L2(T) is dense in L1(T) with respect to the
metric associated to the L1 norm. Using this and (49.2), one can show that
(49.7) holds for every f ∈ L1(T).

Let f ∈ L2(T) and a nonnegative integer n be given again, and let fn(z) be
as in (49.3). Also let a−n, . . . , an ∈ C be given, and put

gn(z) =

n∑
j=−n

aj z
j(49.8)
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for every z ∈ T. Under these conditions, we have that

∥f − fn∥2 ≤ ∥f − gn∥2,(49.9)

as in (39.12).
It is well known that the linear span of the zj ’s with j ∈ Z is dense in C(T)

with respect to the supremum metric. This can be obtained from the theorem
of Lebesgue, Stone, and Weierstrass, and another argument will be mentioned
later. It follows that the linear span of the zj ’s with j ∈ Z is dense in L2(T),
because C(T) is dense in L2(T). If f ∈ L2(T) and fn(z) is as in (49.3), then
one can check that

lim
n→∞

∥f − fn∥2 = 0,(49.10)

using the previous statement and (49.9). Combining this with (49.4), we get
that

∞∑
j=−∞

|f̂(j)|2 = ∥f∥22(49.11)

for every f ∈ L2(T).

50 Convolutions on T

Let f , g be nonnegative measurable functions on T. If z ∈ T, then the con-
volutions of f and g at z is defined as a nonnegative extended real number
by

(f ∗ g)(z) = 1

2π

∫
T

f(w) g(z w−1) |dw|.(50.1)

As in the theorems of Fubini and Tonelli, f ∗ g is measurable on T, and

1

2π

∫
T

(f ∗ g)(z) |dz| =
1

2π

∫
T

( 1

2π

∫
T

f(w) g(z w−1) |dw|
)
|dz|(50.2)

=
1

2π

∫
T

( 1

2π

∫
T

f(w) g(z w−1) |dz|
)
|dw|

=
( 1

2π

∫
T

f(w) |dw|
)( 1

2π

∫
T

g(z) |dz|
)
.

Here we use the standard convention in integration theory of interpreting 0
times +∞ as being 0. If f and g are integrable on T with respect to arclength
measure, then it follows that f ∗ g is integrable on T with respect to arclength
measure as well, and in particular (f ∗ g)(z) < ∞ for almost every z ∈ T with
respect to arclength measure.

Now let f , g be complex-valued measurable functions on T. Suppose that
z ∈ T has the property that

(|f | ∗ |g|)(z) = 1

2π

∫
T

|f(w)| |g(z w−1)| |dw| < ∞.(50.3)
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This implies that the integral on the right side of (50.1) is defined as the inte-
grable function on T, so that (f ∗ g)(z) is defined as a complex number. We
also have that

|(f ∗ g)(z)| ≤ 1

2π

∫
T

|f(w)| |g(z w−1)| |dw| = (|f | ∗ |g|)(z).(50.4)

If f, g ∈ L1(T), then (50.3) holds for almost every z ∈ T with respect to
arclength measure, as in the previous paragraph. Thus (f ∗ g)(z) is defined for
almost every z ∈ T, and in fact f ∗ g ∈ L1(T), with

∥f ∗ g∥1 ≤ ∥f∥1 ∥g∥1.(50.5)

This follows from (50.4), using (50.2) applied to |f | and |g|. One can check that
L1(T) is a commutative algebra with respect to convolution as multiplication.

Let f, g ∈ L1(T) and j ∈ Z be given. The jth Fourier coefficient of f ∗ g is
given by

̂(f ∗ g)(j) =
1

2π

∫
T

(f ∗ g)(z) z−j |dz|(50.6)

=
1

2π

∫
T

( 1

2π

∫
T

f(w) g(z w−1) |dw|
)
z−j |dz|

Using Fubini’s theorem, we get that

̂(f ∗ g)(j) =
1

2π

∫
T

( 1

2π

∫
T

f(w) g(z w−1) (z w−1)−j |dz|
)
w−j |dw|

= f̂(j) ĝ(j).(50.7)

This also uses the integrability of |f(w)| |g(z w−1)| on T×T with respect to the
product measure corresponding to arclength measure on each of the factors, as
in (50.2) applied to |f | and |g|.

If f ∈ L1(T) and g ∈ C(T), then (f ∗ g)(z) is defined for every z ∈ T. One
can check that f ∗ g is uniformly continuous on T, using the uniform continuity
of g on T. Similarly, if f ∈ C(T) and g ∈ L1(T), then f ∗ g is continuous on T,
because convolution is commutative.

Let 1 ≤ r, r′ ≤ ∞ be conjugate exponents, so that

1/r + 1/r′ = 1.(50.8)

If f ∈ Lr(T) and g ∈ Lr′(T), then (f ∗ g)(z) is defined for every z ∈ T, and

|(f ∗ g)(z)| ≤ ∥f∥r ∥g∥r′ ,(50.9)

by Hölder’s inequality. One can also verify that f ∗ g is continuous on T in this
case, by approximating f by continuous functions with respect to the Lr norm
when r < ∞, or approximating g by continuous functions when r′ < ∞.
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Let f ∈ L1(T) and g ∈ Lr(T) be given, where 1 ≤ r < ∞. Suppose for the
moment that ∥f∥1 = 1. If z ∈ T, then

((|f | ∗ |g|)(z))r =
( 1

2π

∫
T

|f(w)| |g(z w−1)| |dw|
)r

≤ 1

2π

∫
T

|f(w)| |g(z w−1)|r |dw| = (|f | ∗ |g|r)(z),(50.10)

using Jensen’s inequality or Hölder’s inequality in the second step. Integrating
over z, we get that

∥f ∗ g∥rr ≤ ∥|f | ∗ (|g|r)∥1 ≤ ∥f∥1 ∥|g|r∥1 = ∥g∥rr.(50.11)

If we drop the condition that ∥f∥1 = 1, then we have that

∥f ∗ g∥r ≤ ∥f∥1 ∥g∥r.(50.12)

More precisely, this reduces to (50.11) when ∥f∥1 = 1. Otherwise, one can
reduce to the case where ∥f∥1 = 1, by considering f/∥f∥1 when f is not equal
to 0 almost everywhere on T. Note that (50.12) also holds when r = ∞, as in
(50.9). In particular, we get that f ∗g ∈ Lr(T) when f ∈ L1(T) and g ∈ Lr(T).

51 The Poisson kernel

Let f ∈ L1(T) be given, and let

U = {z ∈ C : |z| < 1}(51.1)

be the open unit disk in the complex plane. If z ∈ U , then put

h+(z) =

∞∑
j=0

f̂(j) zj(51.2)

and

h−(z) =

∞∑
j=1

f̂(−j) zj .(51.3)

These series converge absolutely when |z| < 1, because of the boundedness of

the Fourier coefficients f̂(j), as in (49.2). Of course, h+(z) is a holomorphic
function on U , and that h−(z) is conjugate-holomorphic function on U . This
implies that

h(z) = h+(z) + h−(z)(51.4)

is a harmonic function on U .
If z ∈ U and w ∈ T, then put

p+(z, w) =

∞∑
j=0

zj w−j(51.5)

85



and

p−(z, w) =

∞∑
j=1

zj wj .(51.6)

As before, these series converge absolutely under these conditions, and indeed
their sums can be evaluated explicitly. If 0 ≤ r < 1, then the partial sums of
these series converge uniformly for |z| ≤ r and w ∈ T. This follows from a well-
known criterion of Weierstrass, and it can also be seen by direct computation
in this case. In particular, p+(z, w) and p−(z, w) are continuous in z and w,
which can be seen by summing the series too. Observe that

h+(z) =
1

2π

∫
T

f(w) p+(z, w) |dw|(51.7)

and

h−(z) =
1

2π

∫
T

f(w) p−(z, w) |dw|(51.8)

for every z ∈ U . This follows from the definitions (51.2) and (51.3) of h+(z)

and h−(z) and the definition (49.1) of the Fourier coefficients f̂(j) of f , by
interchanging the order of summation and integration. The latter step uses the
uniform convergence of the partial sums of the series on the right sides of (51.5)
and (51.6) in w ∈ T. The Poisson kernel is defined for z ∈ U and w ∈ T by

p(z, w) = p+(z, w) + p−(z, w).(51.9)

Combining (51.7) and (51.8), we get that

h(z) =
1

2π

∫
T

f(w) p(z, w) |dw|(51.10)

for every z ∈ U .
Summing the geometric series on the right side of (51.5), we get that

p+(z, w) = (1− z w−1)−1(51.11)

for every z ∈ U and w ∈ T. Observe that

p−(z, w) = p+(z, w)− 1(51.12)

for every z ∈ U and w ∈ T. Thus

p(z, w) = 2 Re p+(z, w)− 1(51.13)

for every z ∈ U and w ∈ T, where Re a is the real part of a complex number a.
We also have that

p+(z, w) =
1

1− z w−1

1− z w

1− z w−1 =
1− z w

|1− z w−1|2
(51.14)
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for every z ∈ U and w ∈ T. If z ∈ C and w ∈ T, then

|1− z w−1|2 = |1− z w|2 = (1− z w) (1− z w)(51.15)

= 1− z w − z w + |z|2 |w|2

= 1− 2 Re(z w) + |z|2.

Combining this with (51.13) and (51.14), we get that

p(z, w) =
1− |z|2

|1− z w−1|2
(51.16)

for every z ∈ U and w ∈ T. In particular,

p(z, w) ≥ 0(51.17)

for every z ∈ U and w ∈ T.
Using the definition (51.5) of p+(z, w), we get that

1

2π

∫
T

p+(z, w) |dw| =
∞∑
j=0

1

2π

∫
T

zj w−j |dw| = 1(51.18)

for every z ∈ U . More precisely, we can interchange the order of summation
and integration in the first step because the partial sums of (51.11) converge
uniformly in w ∈ T, as before. In the second step, the j = 0 term is equal to 1,
and all of the other terms are equal to 0, by (48.2). It follows that

1

2π

∫
T

p(z, w) |dw| = 1(51.19)

for every z ∈ U , because of (51.13). Alternatively, one can check that the
integral of p−(z, w) over w ∈ T is equal to 0 for every z ∈ U , by interchanging
the order of summation and integration again.

52 Abel sums

Let f ∈ L1(T) be given, and consider the corresponding Fourier series

∞∑
j=−∞

f̂(j) zj ,(52.1)

at least formally, for the moment. Let r be a real number with 0 ≤ r < 1, and
put

Ar(f)(z) =

∞∑
j=−∞

f̂(j) r|j| zj(52.2)

for each z ∈ T. More precisely, this doubly-infinite series may be treated as a
sum of two ordinary infinite series. In this situation, each of these two series

87



converges absolutely, because the Fourier coefficients f̂(j) are bounded, as in
(49.1). The partial sums of these series converge uniformly in z ∈ T, by the
criterion of Weierstrass. The sum (52.2) is the Abel sum of the Fourier series
(52.1) associated to r. Convergence of Ar(f)(z) as r → 1 is known as Abel
summability of the Fourier series (52.1).

Observe that
Ar(f)(z) = h(r z)(52.3)

for every z ∈ T and r ∈ [0, 1), where h is as in (51.4). Combining this with
(51.10), we get that

Ar(f)(z) =
1

2π

∫
T

f(w) p(r z, w) |dw|(52.4)

for every z ∈ T and 0 ≤ r < 1, where p(·, ·) is as in (51.9). Put

pr(z) =
1− r2

|1− r z|2
(52.5)

for every z ∈ T and 0 ≤ r < 1, which is another version of the Poisson kernel.
Using (51.16), we have that

p(r z, w) = pr(z w
−1)(52.6)

for every z, w ∈ T and 0 ≤ r < 1. Thus (52.4) implies that

Ar(f)(z) = (f ∗ pr)(z)(52.7)

for every z ∈ T and 0 ≤ r < 1, where f ∗ pr is the convolution of f and pr, as
in (50.1).

Of course,
pr(z) = pr(z) ≥ 0(52.8)

for every z ∈ T and 0 ≤ r < 1. We also have that

1

2π

∫
T

pr(w) |dw| = 1(52.9)

for every 0 ≤ r < 1, by (51.19). If f ∈ Lr0(T) for some r0 ≥ 1, then

∥Ar(f)∥r0 = ∥f ∗ pr∥r0 ≤ ∥f∥r0(52.10)

for every 0 ≤ r < 1. This follows from (50.12) and commutativity of convolution.
If f ∈ C(T ), then it is well known that

lim
r→1−

Ar(f)(z) = f(z)(52.11)

for every z ∈ T. This uses the fact that pr(z) → 0 as r → 1− when z is not too
close to 1, in addition to the other properties of pr(z) mentioned before. More
precisely, the convergence in (52.11) is uniform in z ∈ T, because f is uniformly
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continuous on T. Remember that for each 0 ≤ r < 1, the partial sums in the
definition (52.2) of Ar(f)(z) converge uniformly to Ar(f)(z). It follows that the
linear span of the zj ’s, j ∈ Z, is dense in C(T) with respect to the supremum
metric.

If 1 ≤ r0 < ∞ and f ∈ Lr0(T), then it is well known that Ar(f) → f as
r → 1− with respect to the Lr0 norm. This follows from the uniform convergence
mentioned in the previous paragraph when f ∈ C(T), and otherwise one can
approximate f ∈ Lr0(T) by continuous functions with respect to the Lr0 norm.
This approximation argument uses (52.10) as well. It is also well known that for
every f ∈ L1(T), (52.11) holds for almost every z ∈ T with respect to arclength
measure. This is closely related to Lebesgue’s differentiation theorem.

53 Square-integrable functions

Let f ∈ L2(T) be given, so that f̂ ∈ ℓ2(Z,C), as in Section 49. Using the
orthonormality of the zj ’s in L2(T), we get that the infinite series

∞∑
j=0

f̂(j) zj ,

∞∑
j=1

f̂(−j) z−j(53.1)

converge in L2(T), as in Section 39. The Fourier series (52.1) may be considered
as the sum of these two series, and thus defines an element of L2(T). Similarly,
if 0 ≤ r < 1, then

∞∑
j=0

f̂(j) rj zj ,

∞∑
j=1

f̂(−j) rj z−j(53.2)

converge in L2(T). More precisely, these two series converge absolutely, and
their partial sums converge uniformly, as in the previous section. Of course,
uniform convergence of the partial sums implies convergence of the partial sums
with respect to the L2 norm. Note that the sum of the two series in (53.2) is
the same as the Abel sum Ar(f)(z) in (52.2).

The series
∞∑
j=0

f̂(j) (1− rj) zj ,

∞∑
j=1

f̂(−j) (1− rj) z−j(53.3)

also converge in L2(T) for each 0 ≤ r < 1, and their sums are equal to the
differences of the sums of the series in (53.1) and (53.2), respectively. Observe
that ∥∥∥∥ ∞∑

j=0

f̂(j) (1− rj) zj
∥∥∥∥2
L2(T)

=

∞∑
j=0

|f̂(j)|2 (1− rj)2(53.4)

for each 0 ≤ r < 1, because of the orthogonality of the zj ’s in L2(T). We also
have that

lim
r→1−

∞∑
j=0

|f̂(j)|2 (1− rj)2 = 0.(53.5)
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This can be verified directly, or using the version of Lebesgue’s dominated con-
vergence theorem for sums. The L2 norm of the second series in (53.3) converges
to 0 as r → 1− as well, by the same argument.

The sum of the two series in (53.3) is equal to

∞∑
j=−∞

f̂(j) zj −Ar(f)(z)(53.6)

for each 0 ≤ r < 1. Hence∥∥∥∥ ∞∑
j=−∞

f̂(j) zj −Ar(f)(z)

∥∥∥∥2
L2(T)

=

∞∑
j=−∞

|f̂(j)|2 (1− r|j|)2 → 0(53.7)

as r → 1−, as in the preceding paragraph. We also saw in the previous section
that Ar(f) → f in L2(T) as r → 1−. It follows that the Fourier series (52.1) is
equal to f as an element of L2(T). This could also be obtained as in Section 49,
using the fact that f can be approximated by linear combinations of the zj ’s
with respect to the L2 norm.

Suppose now that f ∈ L1(T), and that f̂ ∈ ℓ2(Z,C). This condition on f̂
implies that the Fourier series (52.1) defines an element of L2(T), as before. We
also have (53.7) in this situation, for the same reasons as before. The discussion
in the previous section implies that Ar(f) → f in L1(T) as r → 1−. Of course,
the convergence of Ar(f)(z) to the Fourier series (52.1) as r → 1− with respect
to the L2 norm implies convergence with respect to the L1 norm as well. This
implies that f is the same as the Fourier series (52.1) as an element of L1(T). It
follows that f ∈ L2(T) under these conditions, because the Fourier series (52.1)
is an element of L2(T).

54 Convolution powers

If f ∈ L1(T) and n ∈ Z+, then we let f∗n be the nth convolution power of f .
This is equal to f when n = 1, to f∗f when n = 2, and to f∗(n−1)∗f = f∗f∗(n−1)

for every n ≥ 2. If 1 ≤ r ≤ ∞, then Lr(T) is a commutative algebra with
respect to convolution, as in Section 50. In this case, the Lr norm is also
submultiplicative with respect to convolution, by (50.12). It follows that

lim
n→∞

∥f∗n∥1/nr(54.1)

exists in R for every f ∈ Lr(T), as in Section 31. Note that (54.1) increases
monotonically in r, because ∥ · ∥r increases monotonically in r. In particular,

lim
n→∞

∥f∗n∥1/n1 ≤ lim
n→∞

∥f∗n∥1/nr(54.2)

for every f ∈ Lr(T).
Let r ≥ 1 and f ∈ Lr(T) be given, and observe that

∥f∗n∥r = ∥f∗(n−1) ∗ f∥r ≤ ∥f∗(n−1)∥1 ∥f∥r ≤ ∥f∥n−1
1 ∥f∥r(54.3)
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for every n ≥ 2. This uses (50.12) in the second step, and (50.5) in the third
step. It follows that

∥f∗n∥1/nr ≤ ∥f∥1−(1/n)
1 ∥f∥1/nr(54.4)

for every n ≥ 2. Using this, one can check that

lim
n→∞

∥f∗n∥1/nr ≤ lim
n→∞

∥f∗n∥1/n1 .(54.5)

Combining this with (54.2), we get that

lim
n→∞

∥f∗n∥1/nr = lim
n→∞

∥f∗n∥1/n1 .(54.6)

Let f ∈ L1(T) be given, and observe that

̂(f∗n)(j) = f̂(j)n(54.7)

for every j ∈ Z and n ∈ Z+, by (50.7). This implies that

∥f̂∥nℓ∞(Z,C) = ∥(f̂)n∥ℓ∞(Z,C) ≤ ∥f∗n∥L1(T)(54.8)

for every n ∈ Z+, using (49.2) in the second step. Thus

∥f̂∥ℓ∞(Z,C) ≤ ∥f∗n∥1/nL1(T)(54.9)

for every n ∈ Z+, and hence

∥f̂∥ℓ∞(Z,C) ≤ lim
n→∞

∥f∗n∥1/nL1(T).(54.10)

Suppose for the moment that f ∈ L2(T), so that f∗n ∈ L2(T) for each
n ∈ Z+. As in (49.11),

∥f∗n∥L2(T) = ∥ ̂(f∗n)∥ℓ2(Z,C)(54.11)

for every n ∈ Z+, which can also be obtained from the discussion in the previous
section. Using (54.7), we get that

∥ ̂(f∗n)∥ℓ2(Z,C) ≤ ∥f̂∥n−1
ℓ∞(Z,C) ∥f̂∥ℓ2(Z,C)(54.12)

when n ≥ 2. Thus

∥f∗n∥L2(T) ≤ ∥f̂∥n−1
ℓ∞(Z,C) ∥f∥L2(T)(54.13)

for each n ≥ 2, so that

∥f∗n∥1/nL2(T) ≤ ∥f̂∥1−(1/n)
ℓ∞(Z,C) ∥f∥

1/n
L2(T).(54.14)

This implies that

lim
n→∞

∥f∗n∥1/nL2(T) ≤ ∥f̂∥ℓ∞(Z,C).(54.15)
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It follows that
lim

n→∞
∥f∗n∥1/nL1(T) ≤ ∥f̂∥ℓ∞(Z,C)(54.16)

when f ∈ L2(T), by (54.2). Remember that

lim
n→∞

∥f∗n∥1/nL1(T)(54.17)

defines a seminorm on L1(T) that is less than or equal to the L1 norm, as
in Sections 31 and 33. Using this, one can check that (54.16) holds for every
f ∈ L1(T), because L2(T) is dense in L1(T). Combining this with (54.10), we
get that

lim
n→∞

∥f∗n∥1/nL1(T) = ∥f∥ℓ∞(Z,C)(54.18)

for every f ∈ L1(T). Similarly,

lim
n→∞

∥f∗n∥1/nLr(T) = ∥f∥ℓ∞(Z,C)(54.19)

for every r ≥ 1 and f ∈ Lr(T), by (54.6).

55 Analytic type

Let f ∈ L1(T) be given. If

f̂(j) = 0 for every j ∈ Z with j < 0,(55.1)

then f is said to be of analytic type. This implies that the corresponding function
h− defined on the open unit disk U as in (51.3) is equal to 0 everywhere on U .
This means that the function h defined on U as in (51.4) is equal to the function
h+ defined in (51.2), so that h is holomorphic on U .

Let f ∈ C(T) be given, and let h be defined on U as in (51.4) again.
Consider the function on the closed unit disk U that is equal to h on U and to
f on ∂U = T. It is well known that this function is continuous on U , for the
same type of reasons as in Section 52. If f is of analytic type, then this function
on U is an element of the algebra A(U) defined in Section 28.

Let ϕ be a holomorphic function on U , and put

ϕr(z) = ϕ(r z)(55.2)

for each 0 ≤ r < 1 and z ∈ T. Thus ϕr ∈ C(T) for each 0 ≤ r < 1, and one can
check that ϕr is of analytic type for every 0 ≤ r < 1, using Cauchy’s theorem. If
ϕ ∈ A(U), then ϕr can be defined as in (55.2) when r = 1. In this case, ϕr → ϕ1

as r → 1− uniformly on T, because continuous functions on U are uniformly
continuous. Using this, one can verify that ϕ1 is of analtyic type too.

Let f, g ∈ L2(T) be given, so that f g ∈ L1(T). We would like to check that

(̂f g)(n) =

∞∑
j=−∞

f̂(j) ĝ(n− j)(55.3)
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for each n ∈ Z. Remember that f̂ .ĝ ∈ ℓ2(Z,C), as in Section 49. It follows
that ĝ(n − j) is square-summable as a function of j ∈ Z for each n ∈ Z, with

ℓ2 norm equal to the ℓ2 norm of ĝ. This implies that f̂(j) ĝ(n− j) is summable
as a function of j ∈ Z for each n ∈ Z. The ℓ1 norm of this function of j is less
than or equal to the product of the ℓ2 norms of f̂ and ĝ, by the Cauchy–Schwarz
inequality. Thus the right side of (55.3) is defined as a complex number, and
its absolute value is less than or equal to the product of the L2 norms of f and
g. One can first verify that (55.3) holds when g(z) is of the form zl for some
l ∈ Z, directly from the definitions. This implies that (55.3) holds when g(z)
is a linear combination of zl’s, by linearity. To deal with any g ∈ L2(T), one
can approximate g(z) by linear combinations of the zl’s with respect to the L2

norm.
Suppose now that f , g are of analytic type. In this case, (55.3) reduces to

(̂f g)(n) =

n∑
j=0

f̂(j) ĝ(n− j)(55.4)

when n ≥ 0. If n < 0, then the right side of (55.3) is equal to 0, so that f g is
of analytic type.

Suppose that f ∈ L1(T) is of analytic type, and let 0 ≤ r < 1 be given. In
this situation, the Abel sum Ar(f)(z) defined in (52.2) reduces to

Ar(f)(z) =

∞∑
j=0

f̂(j) rj zj(55.5)

for each z ∈ T. As before, the partial sums of (55.5) converge uniformly on
T, by the well-known criterion of Weierstrass. Thus Ar(f)(z) can be uniformly
approximated on T by linear combinations of the zj ’s with j ≥ 0. If f ∈ C(T),
then Ar(f) → f uniformly on T as r → 1−, as in Section 52. If f ∈ C(T) is of
analytic type, then it follows that f(z) can be uniformly approximated by linear
combinations of zj ’z with j ≥ 0. Similarly, if 1 ≤ r0 < ∞ and f ∈ Lr0(T), then
Ar(f) → f as r → 1− with respect to the Lr0 norm, as in Section 52. If f is
of analytic type, then f(z) can be approximated by linear combinations of zj ’s
with j ≥ 0 with respect to the Lr0 norm.

Of course, zj is of analytic type for each j ≥ 0, so that linear combinations
of the zj ’s with j ≥ 0 are of analytic type. If 1 ≤ r0 ≤ ∞, then the collection
of f ∈ Lr0(T) of analytic type is a linear subspace of Lr0(T) and a closed
set with respect to the metric associated to the Lr0 norm. The collection of
f ∈ C(T) of analytic type is a closed subalgebra of C(T) with respect to the
supremum metric. It is well known that L∞(T) can be identified with the dual
space of bounded linear functionals on L1(T), which leads to a corresponding
weak∗ topology on L∞(T). It is easy to see that the collection of f ∈ L∞(T)
of analytic type is a closed set with respect to this weak∗ topology.

Let 1 ≤ r0, r
′
0 ≤ ∞ be conjugate exponents, so that

1/r0 + 1/r′0 = 1.(55.6)
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Also let f ∈ Lr0(T) and g ∈ Lr′0(T) be given, so that f g ∈ L1(T). If f , g are of
analytic type, then f g is of analytic type as well, and the nth Fourier coefficient
of f g is given as in (55.4) when n ≥ 0. To see this, we may as well suppose that
r′0 < ∞, since otherwise we can interchange the roles of r0 and r′0. If g(z) = zl

for some l ∈ Z with l ≥ 0, then one can verify the previous statements directly
from the definitions. This implies that these statements also hold when g is a
linear combination of zl’s with l ≥ 0. If g is any element of Lr′0 of analytic
type, then one can approximate g by linear combinations of zl’s with l ≥ 0 with
respect to the Lr′0 norm, as before, because r′0 < ∞.

Let f , g be as in the preceding paragraph, and let hf , hg, and hf g be the
holomorphic functions on the open unit disk U corresponding to f , g, and f g,
respectively, as in (51.4). These are the same as the corresponding functions of
the form (51.2) in this situation, as before. It is easy to see that

hf g(z) = hf (z)hg(z)(55.7)

for every z ∈ U . Equivalently,

Ar(f g)(z) = Ar(f)(z)Ar(g)(z)(55.8)

for every 0 ≤ r < 1 and z ∈ T. This uses (55.4) to identify the left sides of
(55.7) and (55.8) with the Cauchy products of the series on the right sides of
these equations.

Note that L∞(T) is a commutative Banach algebra with respect to pointwise
multiplication of functions and the L∞ norm. The collection of f ∈ L∞(T) of
analytic type is a subalgebra of L∞(T), by the earlier remarks about products
of two elements of L2(T) of analytic type.

If f ∈ L∞(T) and h is as in (51.4), then h is a bounded harmonic complex-
valued function on U . More precisely, the supremum norm of h on U is bounded
by ∥f∥L∞(T), as in (52.10). In fact, one can check that the supremum norm of
h on U is equal to ∥f∥L∞(T). Conversely, it is well known that every bounded
harmonic complex-valued function on U corresponds to some f ∈ L∞(T) in this
way. Similarly, bounded holomorphic functions on U correspond to f ∈ L∞(T)
of analytic type.

Part V

Some analysis on Z

56 Another Fourier transform

Let f(j) be a complex-valued summable function on Z. The Fourier transform
of f is the complex-valued function defined on the unit circle by

f̂(z) =

∞∑
j=−∞

f(j) zj(56.1)
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for each z ∈ T. More precisely, the sum on the right side of (56.1) is defined
as a complex number, because f(j) zj is summable as a function of j ∈ Z when
z ∈ T. Alternatively, if z ∈ T, then the series

∞∑
j=0

f(j) zj ,

∞∑
j=1

f(−j) z−j(56.2)

converge absolutely, and the sum on the right side of (56.1) is the same as the
sum of the two series in (56.2). We also have that

|f̂(z)| ≤
∞∑

j=−∞
|f(j)|(56.3)

for each z ∈ T.
The partial sums of the series in (56.2) converge uniformly on T, by the well-

known criterion of Weierstrass. In particular, this implies that f̂ is continuous
on T. Of course, (56.3) is the same as saying that

∥f̂∥sup,T ≤ ∥f∥ℓ1(Z,C).(56.4)

where ∥f̂∥sup,T is the supremum norm of f̂ on T. One can also consider the
sum on the right side of (56.1) as a sum over j ∈ Z of elements of the space
C(T) = C(T,C) of continuous complex-valued functions on T equipped with

the supremum norm, as in Section 25. Note that f 7→ f̂ defines a bounded
linear mapping from ℓ1(Z,C) into C(T), by (56.4).

Remember that the functions onT of the form zj with j ∈ Z are orthonormal
with respect to the usual integral inner product on L2(T), as in Section 48. If
f ∈ ℓ2(Z,C), then the series in (56.2) converge in L2(T), as in Section 39. Thus

f̂ may be defined as an element of L2(T) as in (56.1). We also get that

∥f̂∥L2(T) = ∥f∥ℓ2(Z,C)(56.5)

for every f ∈ ℓ2(Z,C), because of the orthonormality of the zj ’s in L2(T). If f
is an element of ℓ1(Z,C), and hence of ℓ2(Z,C), then it is easy to see that this

definition of f̂ as an element of L2(T) is compatible with the previous definition.

Let f ∈ ℓ2(Z,C) be given, so that f̂ is defined as an element of L2(T), as

in the previous paragraph. If l ∈ Z, then the lth Fourier coefficient (̂f̂)(l) of f̂

can be defined as in Section 49, and is the same as the inner product of f̂ and
zl with respect to the usual inner product on L2(T). Observe that

(̂f̂)(l) = f(l)(56.6)

for every l ∈ Z, because of the orthonormality of the zj ’s in L2(T). Similarly,

if f ∈ L2(T), then f̂ ∈ ℓ2(Z,C), as in Section 49, so that (̂f̂) can be defined as
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an element of L2(T), as in the preceding paragraph. The discussion in Section
53 implies that

(̂f̂) = f(56.7)

as elements of L2(T).
Suppose that f ∈ ℓ2(Z,C) has the property that

f(j) = 0 for every j ∈ Z with j < 0.(56.8)

This implies that

f̂(z) =

∞∑
j=0

f(j) zj(56.9)

is of analytic type, as in the previous section. In this case, the series on the right
side of (56.9) converges absolutely when z ∈ C satisfies |z| < 1, and defines a
holomorphic function on the open unit disk U . If f ∈ ℓ1(Z,C) satisfies (56.8),
then the series on the right side of (56.9) converges absolutely for every z ∈ C
with |z| ≤ 1, and the partial sums of this series converge uniformly on the closed
unit disk U , by the usual criterion of Weierstrass. Hence this series defines an
element of the space A(U) defined in Section 28 in this situation.

57 Convolution of summable functions

Let f , g be complex-valued summable functions on Z. The convolution of f
and g is the complex-valued function defined on Z by

(f ∗ g)(j) =
∞∑

l=−∞

f(l) g(j − l)(57.1)

for every j ∈ Z. More precisely, for each j ∈ Z, the right side of (57.1) is the
sum of a summable function of l, because summable functions are bounded.
Thus the sum is defined as a complex number for each j ∈ Z, and satisfies

|(f ∗ g)(j)| ≤
∞∑

l=−∞

|f(l)| |g(j − l)| = (|f | ∗ |g|)(j)(57.2)

for every j ∈ Z. Let us check that f ∗g is summable on Z under these conditions.
Using (57.2), we get that

∞∑
j=−∞

|(f ∗ g)(j)| ≤
∞∑

j=−∞

( ∞∑
l=−∞

|f(l)| |g(j − l)|
)
.(57.3)

As in Section 26, we can interchange the order of summation, to obtain that

∞∑
j=−∞

|(f ∗ g)(j)| ≤
∞∑

l=−∞

( ∞∑
j=−∞

|f(l)| |g(j − l)|
)

(57.4)
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=

∞∑
l=−∞

( ∞∑
j=−∞

|f(l)| |g(j)|
)

=
( ∞∑

l=−∞

|f(l)|
)( ∞∑

j=−∞
|g(j)|

)
.

This implies that f ∗ g is summable on Z, with

∥f ∗ g∥ℓ1(Z,C) ≤ ∥f∥ℓ1(Z,C) ∥g∥ℓ1(Z,C).(57.5)

Note that |f(l)| |g(j − l)| is summable as a nonnegative real-valued function of
(j, l) on Z× Z, as in (57.4).

One can check that ℓ1(Z,C) is a commutative algebra over C with respect
to convolution. Let δ0(j) be the complex-valued function on Z equal to 1 when
j = 0 and to 0 when j ̸= 0. It is easy to see that

f ∗ δ0 = δ0 ∗ f = f(57.6)

for every f ∈ ℓ1(Z,C). Thus δ0 is the multiplicative identity element in ℓ1(Z,C)
with respect to convolution.

Let f, g ∈ ℓ1(Z,C) and z ∈ T be given, so that

̂(f ∗ g)(z) =
∞∑

j=−∞
(f ∗ g)(j) zj =

∞∑
j=−∞

( ∞∑
l=−∞

f(l) g(j − l)
)
zj .(57.7)

Interchanging the order of summation, as in Section 26, we get that

̂(f ∗ g)(z) =

∞∑
l=−∞

( ∞∑
j=−∞

f(l) g(j − l) zj
)

(57.8)

=

∞∑
l=−∞

( ∞∑
j=−∞

f(l) g(j) zj+l
)

=
( ∞∑

l=−∞

f(l) zl
)( ∞∑

j=−∞
g(j) zj

)
= f̂(z) ĝ(z).

Suppose for the moment that f , g also satisfy

f(j) = g(j) = 0 for every j ∈ Z with j < 0.(57.9)

In this case, (57.1) reduces to

(f ∗ g)(j) =
j∑

l=0

f(l) g(j − l)(57.10)

when j ≥ 0, and (f ∗ g)(j) = 0 when j < 0. Remember that f̂(z) and ĝ(z) can
be defined for every z in the closed unit disk U as in (56.9) in this situation.

If z ∈ U , then f̂(z) ĝ(z) can be treated as a Cauchy product, as in Section 29.

This Cauchy product corresponds exactly to ̂(f ∗ g)(z), because of (57.10).
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58 Some related estimates

Let 0 < r ≤ 1 and f, g ∈ ℓr(Z,C) be given. In particular, f and g are summable
on Z, as in Section 22. If j ∈ Z, then

(|f | ∗ |g|)(j) =
∞∑

l=−∞

|f(l)| |g(j − l)| ≤
( ∞∑

l=−∞

|f(l)|r |g(j − l)|r
)1/r

,(58.1)

using (21.8) in the second step. This implies that

|(f ∗ g)(j)|r ≤ (|f | ∗ |g|)(j)r ≤ (|f |r ∗ |g|r)(j)(58.2)

for every j ∈ Z, using (57.2) in the first step. Note that |f |r and |g|r are
summable on Z, so that |f |r ∗ |g|r is summable on Z, as in the previous section.
It follows that |f ∗ g|r is summable on Z, by (58.2). More precisely,

∥|f ∗ g|r∥ℓ1(Z,C) ≤ ∥|f |r ∗ |g|r∥ℓ1(Z,C) ≤ ∥|f |r∥ℓ1(Z,C) ∥|g|r∥ℓ1(Z,C),(58.3)

using (57.5) in the second step. Equivalently, f ∗ g is r-summable on Z, with

∥f ∗ g∥ℓr(Z,C) ≤ ∥f∥ℓr(Z,C) ∥g∥ℓr(Z,C).(58.4)

Thus ℓr(Z,C) is a subalgebra of ℓ1(Z,C) with respect to convolution.
Let f∗n be the nth power of f ∈ ℓr(Z,C) with respect to convolution for each

n ∈ Z+. As before, f
∗n is equal to f when n = 1, and to f∗(n−1)∗f = f ∗f∗(n−1)

when n ≥ 2. As in Section 31,

lim
n→∞

∥f∗n∥1/nℓr(Z,C)(58.5)

exists in R for every f ∈ ℓr(Z,C). We also have that (58.5) decreases mono-
tonically as r increases, because of the corresponding property of ∥ · ∥ℓr(Z,C), as
in (22.5). In particular,

lim
n→∞

∥f∗n∥1/nℓ1(Z,C) ≤ lim
n→∞

∥f∗n∥1/nℓr(Z,C)(58.6)

for every f ∈ ℓr(Z,C).
If f ∈ ℓ1(Z,C), n ∈ Z+, and z ∈ T, then

̂(f∗n)(z) = f̂(z)n,(58.7)

by (57.8). Hence

∥f̂∥nsup,T = ∥(f̂)n∥sup,T ≤ ∥f∗n∥ℓ1(Z,C)(58.8)

for every f ∈ ℓ1(Z,C) and n ∈ Z+, using (56.4) in the second step. This implies
that

∥f̂∥sup,T ≤ ∥f∗n∥1/nℓ1(Z,C)(58.9)
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for every f ∈ ℓ1(Z,C) and n ∈ Z+, so that

∥f̂∥sup,T ≤ lim
n→∞

∥f∗n∥1/nℓ1(Z,C).(58.10)

Let f ∈ ℓ1(Z,C), n ∈ Z+, and j ∈ Z be given. As in (56.6),

f∗n(j) =
̂

( ̂(f∗n))(j)(58.11)

for every n ∈ Z+ and j ∈ Z. It follows that

|f∗n(j)| = | ̂
( ̂(f∗n))(j)| ≤ ∥ ̂(f∗n)∥L1(T),(58.12)

using (49.2) in the second step. Combining this with (58.7), we get that

|f∗n(j)| ≤ ∥(f̂)n∥L1(Z,C) ≤ ∥f̂∥nsup,T.(58.13)

Let L be a nonnegative integer, and let f be a complex-valued function on
Z such that

f(j) = 0 for every j ∈ Z with |j| > L.(58.14)

If n ∈ Z+, then one can check that

f∗n(j) = 0 for every j ∈ Z with |j| > nL.(58.15)

Let r be a positive real number, and observe that

∥f∗n∥ℓr(Z,C) ≤ (2nL+ 1)1/r ∥f∗n∥ℓ∞(Z,C)(58.16)

for each n ∈ Z+. This implies that

∥f∗n∥ℓr(Z,C) ≤ (2nL+ 1)1/r ∥f̂∥nsup,T(58.17)

for every n ∈ Z+, because of (58.13). Equivalently,

∥f∗n∥1/nℓr(Z,C) ≤ (2nL+ 1)1/(n r) ∥f̂∥sup,T(58.18)

for every n ∈ Z+. Using this, we get that

lim
n→∞

∥f∗n∥1/nℓr(Z,C) ≤ ∥f̂∥sup,T(58.19)

for every 0 < r ≤ 1 when f satisfies (58.14). As in Sections 31 and 33, (58.5)
defines a seminorm on ℓr(Z,C) when 0 < r ≤ 1, and this seminorm is less than
or equal to the ℓr r-norm. Of course, every f ∈ ℓr(Z,C) can be approximated
by functions on Z with finite support. One can use this to check that (58.19)
holds for every f ∈ ℓr(Z,C) when 0 < r ≤ 1. It follows that

lim
n→∞

∥f∗n∥1/nℓr(Z,C) = ∥f̂∥sup,T(58.20)

for every f ∈ ℓr(Z,C) when 0 < r ≤ 1, by combining (58.6), (58.10), and
(58.19).
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59 The ultrametric case

Let k be a field with an ultrametric absolute value function | · |, and suppose
that k is complete with respect to the associated ultrametric. If f, g ∈ c0(Z, k),
then their convolution is defined as a k-valued function on Z by

(f ∗ g)(j) =
∞∑

l=−∞

f(l) g(j − l)(59.1)

for each j ∈ Z. More precisely, if j ∈ Z, then f(l) g(j − l) vanishes at infinity
as a k-valued function of l on Z. Thus the sum (59.1) may be treated as a sum
over Z, as in Section 25. Alternatively, (59.1) may be considered as a sum of
two infinite series, for which the convergence in k can be obtained as in Section
24.

In particular, we have that

|(f ∗ g)(j)| ≤ max
l∈Z

(|f(l)| |g(j − l)|)(59.2)

for every j ∈ Z, as in Sections 24 and 25. As usual, the maximum on the right
side of (59.2) is attained, because f(l) g(j − l) vanishes at infinity as a function
of l for each j. It follows that f ∗ g is bounded on Z, with

∥f ∗ g∥ℓ∞(Z,k) ≤ ∥f∥ℓ∞(Z,k) ∥g∥ℓ∞(Z,k)(59.3)

for every f, g ∈ c0(Z, k).
If f , g have finite support in Z, then it is easy to see that f ∗ g has finite

support in Z. Similarly, if f, g ∈ c0(Z,C), then one can check that f ∗g vanishes
at infinity on Z. Remember that f and g can be approximated uniformly by k-
valued functions on Z with finite support in this case, as in Section 23. One can
use this and (59.3) to show that f ∗g can be approximated uniformly by k-valued
functions on Z with finite support as well, which implies that f ∗ g vanishes at
infinity on Z. The same conclusion can also be obtained more directly from
(59.2).

As usual, one can verify that c0(Z, k) is a commutative algebra over k with
respect to convolution. Let δ0(j) be the k-valued function on Z that is equal to
1 when j = 0 and to 0 when j ̸= 0. It is easy to see that δ0 is the multiplicative
identity element in c0(Z, k) with respect to convolution, as before.

Let f, g ∈ c0(Z, k) be given, and let us check that

∥f ∗ g∥ℓ∞(Z,k) = ∥f∥ℓ∞(Z,k) ∥g∥ℓ∞(Z,k),(59.4)

using a well-known type of argument. Of course, this is trivial when f = 0 or
g = 0, and so we may suppose that f, g ̸= 0. Remember that

∥f∥ℓ∞(Z,k) = max
j∈Z

|f(j)|, ∥g∥ℓ∞(Z,k) = max
j∈Z

|g(j)|,(59.5)

where the maxima are attained, because f , g vanish at infinity on Z. Hence
there are integers j1(f), j1(g) such that

|f(j1(f))| = ∥f∥ℓ∞(Z,k), |g(j1(g))| = ∥g∥ℓ∞(Z,k).(59.6)
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We can also choose j1(f), j1(g) so that

|f(j)| < ∥f∥ℓ∞(Z,k) when j < j1(f),(59.7)

and
|g(j)| < ∥g∥ℓ∞(Z,k) when j < j1(g).(59.8)

We would like to verify that

∥f∥ℓ∞(Z,k) ∥g∥ℓ∞(Z,k) ≤ |(f ∗ g)(j1(f) + j1(g))|.(59.9)

By the definition (59.1) of f ∗ g, we have that

(f ∗ g)(j1(f) + j1(g)) =

∞∑
l=−∞

f(l) g(j1(f) + j1(g)− l).(59.10)

The l = j1(f) term in the sum on the right side of (59.10) is equal to

f(j1(f)) g(j1(g)).(59.11)

The sum of the terms with l > j1(f) is equal to

∞∑
l=j1(f)+1

f(l) g(j1(f) + j1(g)− l) =

∞∑
l=1

f(j1(f) + l) g(j1(g)− l).(59.12)

The sum of the terms with l < j1(f) is equal to

j1(f)−1∑
l=−∞

f(l) g(j1(f) + j2(g)− l) =

∞∑
l=1

f(j1(f)− l) g(j1(g) + l).(59.13)

Using (59.10), we get that

f(j1(f)) g(j1(g)) = (f ∗ g)(j1(f) + j1(g))−
∞∑
l=1

f(j1(f) + l) g(j1(g)− l)

−
∞∑
l=1

f(j1(f)− l) g(j1(g) + l).(59.14)

Of course,
|f(j1(f))| |g(j1(g))| = ∥f∥ℓ∞(Z,k) ∥g∥ℓ∞(Z,k),(59.15)

by (59.6). Observe that∣∣∣∣ ∞∑
l=1

f(j1(f) + l) g(j1(g)− l)

∣∣∣∣ ≤ max
l≥1

(|f(j1(f) + l)| |g(j1(g)− l)|)

< ∥f∥ℓ∞(Z,k) ∥g∥ℓ∞(Z,k).(59.16)
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This uses (24.10) in the first step, and (59.8) and the definition of ∥f∥ℓ∞(Z,k) in
the second step. Similarly,∣∣∣∣ ∞∑

l=1

f(j1(f)− l) g(j1(g) + l)

∣∣∣∣ ≤ max
l≥1

(|f(j1(f)− l)| |g(j1(g) + l)|)

< ∥f∥ℓ∞(Z,k) ∥g∥ℓ∞(Z,k),(59.17)

using (59.7) and the definition of ∥g∥ℓ∞(Z,k) in the second step.
It follows from (59.14) and the ultrametric version of the triangle inequality

that

|f(j1(f))| |g(j1(g))| ≤ max
(
|(f ∗ g)(j1(f) + j1(g))|,(59.18) ∣∣∣∣ ∞∑
l=1

f(j1(f) + l) g(j1(g)− l)

∣∣∣∣,∣∣∣∣ ∞∑
l=1

f(j1(f)− l) g(j1(g) + l)

∣∣∣∣).
One can get (59.9) from this, using (59.15), (59.16), and (59.17). Clearly (59.9)
implies that

∥f∥ℓ∞(Z,k) ∥g∥ℓ∞(Z,k) ≤ ∥f ∗ g∥ℓ∞(Z,k).(59.19)

Combining this with (59.3), we get that (59.4) holds, as desired.

60 r-Summability

Let k be a field with an ultrametric absolute value function | · | such that k is
complete with respect to the corresponding ultrametric again. Also let r be a
positive real number, and let f, g ∈ ℓr(Z, k) be given. As in Section 23, f and
g vanish at infinity on Z, so that f ∗ g can be defined on Z as in the previous
section. If j ∈ Z, then

|(f ∗ g)(j)|r ≤ max
l∈Z

(|f(l)|r |g(j − l)|r) ≤
∞∑

l=−∞

|f(l)|r |g(j − l)|r,(60.1)

using (59.2) in the first step. The right side of (60.1) is the same as the con-
volution (|f |r ∗ |g|r)(j) of |f |r and |g|r, as nonnegative real-valued summable
functions on Z.

As in Section 57,

∞∑
j=−∞

( ∞∑
l=−∞

|f(l)|r |g(j − l)|r
)
≤

( ∞∑
l=−∞

|f(l)|r
)( ∞∑

j=−∞
|g(j)|r

)
.(60.2)

Combining this with (60.1), we get that

∞∑
j=−∞

|(f ∗ g)(j)|r ≤
( ∞∑

l=−∞

|f(l)|r
)( ∞∑

j=−∞
|g(j)|r

)
.(60.3)
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This implies that f ∗ g is r-summable on Z, with

∥f ∗ g∥ℓr(Z,k) ≤ ∥f∥ℓr(Z,k) ∥g∥ℓr(Z,k).(60.4)

It follows that ℓr(Z, k) is a subalgebra of c0(Z, k) with respect to convolution.
If f ∈ c0(Z, k) and n ∈ Z+, then we let f∗n be the nth power of f with

respect to convolution, as before. Note that

∥f∗n∥ℓ∞(Z,k) = ∥f∥nℓ∞(Z,k)(60.5)

for every f ∈ c0(Z, k) and n ∈ Z+, because of (59.4). Let a positive real number
r and f ∈ ℓr(Z, k) be given again, and remember that

lim
n→∞

∥f∗n∥1/nℓr(Z,k)(60.6)

exists in R, as in Section 31. Of course,

∥f∥ℓ∞(Z,k) = ∥f∗n∥1/nℓ∞(Z,k) ≤ ∥f∗n∥1/nℓr(Z,k)(60.7)

for every n ∈ Z+, using (60.5) in the first step, and (22.5) in the second step.
Hence

∥f∥ℓ∞(Z,k) ≤ lim
n→∞

∥f∗n∥1/nℓr(Z,k).(60.8)

As in Sections 31 and 33, (60.6) defines a semi-ultranorm on ℓr(Z, k), and

lim
n→∞

∥f∗n∥1/nℓr(Z,k) ≤ ∥f∥ℓr(Z,k)(60.9)

for every f ∈ ℓr(Z, k). Using this, one can check that

lim
n→∞

∥f∗n∥1/nℓr(Z,k) ≤ ∥f∥ℓ∞(Z,k)(60.10)

for every f ∈ ℓr(Z, k). More precisely, if the support of f has at most one
element, then (60.10) follows from (60.9), and (60.10) can be verified directly in
this case anyway. If f has finite support in Z, then (60.10) can be derived from
the previous case, using the fact that (60.6) is a semi-ultranorm on ℓr(Z, k).
Alternatively, one can use an argument like the one in Section 58 when f has
finite support in Z. If f is any element of ℓr(Z, k), then one can get (60.10) by
approximating f by functions on Z with finite support. Combining (60.8) and
(60.10), we get that

lim
n→∞

∥f∗n∥1/nℓr(Z,k) = ∥f∥ℓ∞(Z,k)(60.11)

for every f ∈ ℓr(Z, k).
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61 Other radii

Let r be a positive real number, and put

wr(j) = rj(61.1)

for every j ∈ Z. This is a positive real-valued function on Z, which can be used
to define weighted ℓr0 and c0 spaces on Z, as in Section 47. Of course, if r = 1,
then wr(j) = 1 for every j ∈ Z.

In particular, let f(j) be a complex-valued function on Z such that f(j) rj is
summable on Z, which is to say that f ∈ ℓ1wr

(Z,C). If z ∈ C and |z| = r, then
it follows that f(j) zj is summable as a complex-valued function on Z. Put

f̂(z) =

∞∑
j=−∞

f(j) zj ,(61.2)

where the sum on the right side may be considered as a sum of a summable
function on Z, or as a sum of two absolutely convergent series of complex num-
bers. Thus f̂ is defined as a complex-valued function on the circle in C centered
at 0 with radius r. This may be considered as the Fourier transform of f in
this situation.

Let f(j) be any complex-valued function on Z, and put

(Mwr
(f))(j) = f(j)wr(j) = f(j) rj(61.3)

for each j ∈ Z. This defines Mwr (f) as a complex-valued function on Z. As in
Section 47, Mwr defines a one-to-one linear mapping from the space c(Z,C) of
complex-valued functions on Z onto itself, which is the multiplication operator
associated to wr. It is easy to see that Mwr

defines an isometric linear map-
ping from ℓ1wr

(Z,C) onto ℓ1(Z,C), as before. Let f ∈ ℓ1wr
(Z,C) be given, so

that Mwr
(f) ∈ ℓ1(Z,C). Thus the Fourier transform ̂(Mwr

(f)) is defined as a
complex-valued function on T, as in Section 56. If z ∈ T, then

̂(Mwr
(f))(z) =

∞∑
j=−∞

(Mwr
(f))(j) zj =

∞∑
j=−∞

f(j) rj zj = f̂(r z),(61.4)

where f̂(r z) is defined as in (61.2).
Let f, g ∈ ℓ1wr

(Z,C) be given, so thatMwr
(f),Mwr

(g) ∈ ℓ1(Z,C). If j, l ∈ Z,
then

f(l) g(j − l) = r−j (f(l) rl) (g(j − l) rj−l)(61.5)

= r−j (Mwr (f))(l) (Mwr (g))(j − l).

As in Section 57, (61.5) is summable as a function of l on Z for every j ∈ Z.
Thus

(f ∗ g)(j) =
∞∑

l=−∞

f(l) g(j − l)(61.6)
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can be defined as a complex number for each j ∈ Z. This defines the convolution
f ∗ g of f and g as a complex-valued function on Z. Using (61.5), we get that

(f ∗ g)(j) rj =

∞∑
l=−∞

(Mwr (f))(l) (Mwr (g))(j − l)(61.7)

= ((Mwr
(f)) ∗ (Mwr

(g)))(j)

for every j ∈ Z, where the convolution on the right side is defined as in Section
57. This implies that

Mwr (f ∗ g) = (Mwr (f)) ∗ (Mwr (g))(61.8)

as functions on Z. Note that the right side of (61.8) is summable on Z, as in
Section 57. It follows that f ∗ g ∈ ℓ1wr

(Z,C), with

∥f ∗ g∥ℓ1wr
(Z,C) = ∥Mwr (f ∗ g)∥ℓ1(Z,C)(61.9)

= ∥(Mwr
(f)) ∗ (Mwr

(g))∥ℓ1(Z,C)

≤ ∥Mwr
(f)∥ℓ1(Z,C) ∥Mwr

(g)∥ℓ1(Z,C)

= ∥f∥ℓ1wr
(Z,C) ∥g∥ℓ1wr

(Z,C),

using (61.8) in the second step, and (57.5) in the third step.
As in Section 47, Mwr is an isometric linear mapping from ℓr0wr

(Z,C) onto
ℓr0(Z,C) for every r0 > 0. One can use this and the previous remarks to extend
other properties of the Fourier transform and convolutions to this setting.

62 Ultrametric absolute values

Let r be a positive real number again, and let wr be defined on Z as in (61.1).
Also let k be a field with an ultrametric absolute value function | · |, and suppose
that k is complete with respect to the ultrametric associated to |·|. As in Section
47, c0,wr

(Z, k) denotes the space of k-valued functions f on Z such that

|f(j)|wr(j) = |f(j)| rj(62.1)

vanishes at infinity on Z, as a real-valued function on Z. Similarly, ℓ∞wr
(Z, k)

denotes the space of k-valued functions f on Z such that (62.1) is bounded on
Z. In this case, ∥f∥ℓ∞wr

(Z,k) is defined to be the supremum of (62.1) over j ∈ Z,

which defines an ultranorm on ℓ∞wr
(Z, k) as a vector space over k.

Let f, g ∈ c0,wr
(Z, k) be given, and observe that

|f(l)| |g(j − l)| = r−j (|f(l)| rl) (|g(j − l)| rj−l)(62.2)

for every j, l ∈ Z. Using this, it is easy to see that

f(l) g(j − l)(62.3)
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vanishes at infinity as a k-valued function of l on Z for each j ∈ Z. Put

(f ∗ g)(j) =
∞∑

l=−∞

f(l) g(j − l)(62.4)

for every j ∈ Z, as usual. The sum on the right may be treated as a sum over
Z, as in Section 25, or as a sum of two convergent infinite series, as in Section
24. This defines the convolution f ∗ g of f and g as a k-valued function on Z.

As in Sections 24 and 25,

|(f ∗ g)(j)| ≤ max
l∈Z

(|f(l)| |g(j − l)|)(62.5)

for every j ∈ Z. This implies that

|(f ∗ g)(j)| rj ≤ max
l∈Z

((|f(l)| rl) (|g(j − l)| rj−l))(62.6)

for each j ∈ Z, because of (62.2). In particular, it follows that f ∗ g ∈ ℓ∞wr
(Z, k),

with
∥f ∗ g∥ℓ∞wr

(Z,k) ≤ ∥f∥ℓ∞wr
(Z,k) ∥g∥ℓ∞wr

(Z,k).(62.7)

If f, g ∈ c00(Z, k), then f ∗g ∈ c00(Z, k), as before. If f, g ∈ c0,wr (Z, k), then
one can verify that f ∗g ∈ c0,wr (Z, k), by approximating f and g by elements of
c00(Z, k). This also uses (62.7) to get that f∗g can be approximated by functions
with finite support in Z with respect to the ℓ∞wr

ultranorm. Alternatively, the
same conclusion can be obtained from (62.6).

One can check that c0,wr
(Z, k) is a commutative algebra over k with respect

to convolution. The k-valued function δ0(j) on Z equal to 1 when j = 0 and to
0 when j ̸= 0 is the multiplicative identity element in c0,wr (Z, k) with respect
to convolution, as before.

Let f, g ∈ c0,wr
(Z, k) be given, and let us verify that

∥f ∗ g∥ℓ∞wr
(Z,k) = ∥f∥ℓ∞wr

(Z,k) ∥g∥ℓ∞wr
(Z,k),(62.8)

as in Section 59. We may suppose that f, g ̸= 0, since (62.8) is trivial otherwise.
Note that

∥f∥ℓ∞wr
(Z,k) = max

j∈Z
(|f(j)| rj), ∥g∥ℓ∞wr

(Z,k) = max
j∈Z

(|g(j)| rj),(62.9)

where the maxima are attained in this situation. Thus there are integers jr(f),
jr(g) such that

|f(jr(f))| rjr(f) = ∥f∥ℓ∞wr
(Z,k), |g(jr(g))| rjr(g) = ∥g∥ℓ∞wr

(Z,k).(62.10)

As before, we can also choose jr(f), jr(g) so that

|f(j)| rj < ∥f∥ℓ∞wr
(Z,k) when j < jr(f)(62.11)
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and
|g(j)| rj < ∥g∥ℓ∞wr

(Z,k) when j < jr(g).(62.12)

We would like to check that

∥f∥ℓ∞wr
(Z,k) ∥g∥ℓ∞wr

(Z,k) ≤ |(f ∗ g)(jr(f) + jr(f))| rjr(f)+jr(g).(62.13)

As in (59.14), we have that

f(jr(f)) g(jr(g)) = (f ∗ g)(jr(f) + jr(g))−
∞∑
l=1

f(jr(f) + l) g(jr(g)− l)

−
∞∑
l=1

f(jr(f)− l) g(jr(g) + l).(62.14)

Observe that

|f(jr(f))| |g(jr(g))| rjr(f)+jr(g) = ∥f∥ℓ∞wr
(Z,k) ∥g∥ℓ∞wr

(Z,k),(62.15)

by (62.10).
Using (24.10), we get that∣∣∣∣ ∞∑

l=1

f(jr(f) + l) g(jr(g)− l)

∣∣∣∣ rjr(f)+jr(g)(62.16)

≤
(
max
l≥1

(|f(jr(f) + l)| |g(jr(g)− l)|)
)
rjr(f)+jr(g)

= max
l≥1

((|f(jr(f) + l)| rjr(f)+l) (|g(jr(g)− l)| rjr(g)−l)).

Similarly, ∣∣∣∣ ∞∑
l=1

f(jr(f)− l) g(jr(g) + l)

∣∣∣∣ rjr(f)+jr(g)(62.17)

≤
(
max
l≥1

(|f(jr(f)− l)| |g(jr(g) + l)|)
)
rjr(f)+jr(g)

= max
l≥1

((|f(jr(f)− l)| rjr(f)−l) (|g(jr(g) + l)| rjr(g)+l)).

One can verify that the right sides of (62.16) and (62.17) are both strictly less
than

∥f∥ℓ∞wr
(Z,k) ∥g∥ℓ∞wr

(Z,k),(62.18)

using (62.11), (62.12), and the definition of the ℓ∞wr
ultranorm.

As before,

|f(jr(j))| |g(jr(g))| ≤ max
(
|(f ∗ g)(jr(f) + jr(g))|,(62.19) ∣∣∣∣ ∞∑
l=1

f(jr(f) + l) g(jr(g)− l)

∣∣∣∣,∣∣∣∣ ∞∑
l=1

f(jr(f)− l) g(jr(g) + l)

∣∣∣∣),
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by (62.14) and the ultrametric version of the triangle inequality. Multiplying
both sides by rjr(f)+jr(g), we get that

|f(jr(f))| |g(jr(g))| rjr(f)+jr(g)(62.20)

≤ max
(
|(f ∗ g)(jr(f) + jr(g))| rjr(f)+jr(g),∣∣∣∣ ∞∑
l=1

f(jr(f) + l) g(jr(g)− l)

∣∣∣∣ rjr(f)+jr(g),

∣∣∣∣ ∞∑
l=1

f(jr(f)− l) g(jr(g) + l)

∣∣∣∣ rjr(f)+jr(g)
)
.

The second and third expressions in the maximum on the right side of (62.20)
are the same as the left sides of (62.16) and (62.17), respectively. Hence the
second and third expressions in the maximum on the right side of (62.20) are
strictly less than (62.18), as in the preceding paragraph. One can use this to
get (62.13), because of (62.15).

Of course, (62.13) implies that

∥f∥ℓ∞wr
(Z,k) ∥g∥ℓ∞wr

(Z,k) ≤ ∥f ∗ g∥ℓ∞wr
(Z,k).(62.21)

This and (62.7) yield (62.8), as desired.

63 r0-Summability

As before, we let r be a positive real number, and wr be defined on Z as in
(61.1). We also let k be a field with an ultrametric absolute value function | · |
such that k is complete with respect to the associated ultrametric. Remember
that ℓr0wr

(Z, k) is defined as in Section 47 for every r0 > 0, as well as c0,wr
(Z, k).

Let r0 be a positive real number, and let f, g ∈ ℓr0wr
(Z, k) be given. In particular,

f, g ∈ c0,wr (Z, k), so that f ∗ g can be defined on Z as in the preceding section.
Using (62.6), we get that

(|(f ∗ g)(j)| rj)r0 ≤ max
l∈Z

((|f(l)| rl)r0 (|g(j − l)| rj−l)r0)(63.1)

for every j ∈ Z. It follows that

(|(f ∗ g)(j)| rj)r0 ≤
∞∑

l=−∞

(|f(l)| rl)r0 (|g(j − l)| rj−l)r0(63.2)

for every j ∈ Z.
Observe that (|f(j)| rj)r0 and (|g(j)| rj)r0 are summable as nonnegative real-

valued functions of j on Z, because f, g ∈ ℓr0wr
(Z, k). The right side of (63.2)

is the same as the convolution of these two functions, as summable real-valued
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functions on Z. Hence

∞∑
j=−∞

( ∞∑
l=−∞

(|f(l)| rl)r0 (|g(j − l)| rj−l)r0
)

(63.3)

≤
( ∞∑

l=−∞

(|f(l)| rl)r0
)( ∞∑

j=−∞
(|g(j)| rj)r0

)
,

as in Section 57. This implies that

∞∑
j=−∞

(|(f ∗ g)(j)| rj)r0 ≤
( ∞∑

l=−∞

(|f(l)| rl)r0
)( ∞∑

j=−∞
(|g(j)| rj)r0

)
,(63.4)

by (63.2). Thus f ∗ g ∈ ℓr0wr
(Z, k), with

∥f ∗ g∥ℓr0wr (Z,k) ≤ ∥f∥ℓr0wr (Z,k) ∥g∥ℓr0wr (Z,k).(63.5)

In particular, ℓr0wr
(Z, k) is a subalgebra of c0,wr

(Z, k) with respect to convo-
lution. As usual, if f ∈ c0,wr (Z, k) and n ∈ Z+, then f∗n denotes the nth power
of f with respect to convolution. Using (62.8), we have that

∥f∗n∥ℓ∞wr
(Z,k) = ∥f∥nℓ∞wr

(Z,k)(63.6)

for every f ∈ c0,wr
(Z, k) and n ∈ Z+. Let 0 < r0 < ∞ and f ∈ ℓr0wr

(Z, k) be
given again, and remember that

lim
n→∞

∥f∗n∥1/n
ℓ
r0
wr (Z,k)

(63.7)

exists, as in Section 31. We also have that

∥f∥ℓ∞wr
(Z,k) = ∥f∗n∥1/nℓ∞wr

(Z,k) ≤ ∥f∗n∥1/n
ℓ
r0
wr (Z,k)

(63.8)

for every n ∈ Z+, by (63.6) and (47.7), so that

∥f∥ℓ∞wr
(Z,k) ≤ lim

n→∞
∥f∗n∥1/n

ℓ
r0
wr (Z,k)

.(63.9)

Remember that (63.7) defines a semi-ultranorm on ℓr0wr
(Z, k), and

lim
n→∞

∥f∗n∥1/n
ℓ
r0
wr (Z,k)

≤ ∥f∥ℓr0wr (Z,k)(63.10)

for every f ∈ ℓr0wr
(Z, k), as in Sections 31 and 33. As before, one can use this to

check that
lim
n→∞

∥f∗n∥1/n
ℓ
r0
wr (Z,k)

≤ ∥f∥ℓ∞wr
(Z,k)(63.11)

for every f ∈ ℓr0wr
(Z, k). This is easy to see when the support of f has at most

one element. If f has finite support in Z, then one can get (63.11) from the
previous case and the semi-ultranorm property of (63.7). One can also use an
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argument like the one in Section 58 in this situation. If f is an arbitrary element
of ℓr0wr

(Z, k), then one can approximate f by functions on Z with finite support
to get (63.11). It follows that

lim
n→∞

∥f∗n∥1/n
ℓ
r0
wr (Z,k)

= ∥f∥ℓ∞wr
(Z,k)(63.12)

for every f ∈ ℓr0wr
(Z, k), by (63.9) and (63.11).

Let x ∈ k with x ̸= 0 be given, and put

a(x) = xj(63.13)

for each j ∈ Z. This defines a k-valued function on Z, with

|a(j)| = |x|j(63.14)

for each j ∈ Z. If f(j) is any k-valued function on Z, then we put

(Ma(f))(j) = a(j) f(j) = f(j)xj(63.15)

for every j ∈ Z. This defines a one-to-one linear mapping Ma from the space
c(Z, k) of k-valued functions on Z onto itself, as in Section 47. Let wr/|x| be
defined on Z as in (61.1), so that

wr/|x|(j) = (r/|x|)j = rj |x|−j(63.16)

for every j ∈ Z. As in Section 47, Ma defines an isometric linear mapping from
ℓr0wr

(Z, k) onto ℓr0wr/|x|
(Z, k) for every r0 > 0. Similarly, Ma maps c0,wr (Z, k)

onto c0,wr/|x|(Z, k). Let f, g ∈ c0,wr
(Z, k) be given, so that Ma(f), Ma(g) are

elements of c0,wr/|x|(Z, k). Observe that

f(l) g(j − l)xj = (f(l)xl) (g(j − l)xj−l)(63.17)

= (Ma(f))(l) (Ma(g))(j − l)

for every j, l ∈ Z. This implies that

(f ∗ g)(j)xj =

∞∑
l=−∞

(Ma(f))(l) (Ma(g))(j − l)(63.18)

= ((Ma(f)) ∗ (Ma(g)))(j)

for every j ∈ Z, so that

Ma(f ∗ g) = (Ma(f)) ∗ (Ma(g))(63.19)

as functions on Z.
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summable functions, 34
supports of functions, 37
supremum q-semimetrics, 22, 23
supremum q-seminorms, 23

topological dimension 0, 16
totally separated topological spaces, 16
trivial absolute value function, 8
trivial ultranorm, 21

ultrametric absolute value functions, 8
ultrametrics, 6
ultranorms, 20
uniform continuity, 12
Urysohn spaces, 15

vanishing at infinity, 37

Z+, 17
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