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Abstract

Some spaces of linear mappings and matrices are discussed, as well as
some properties of functions defined by power series.
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Part I

Basic notions

1 Metrics and ultrametrics

Let X be a set, and let d(x, y) be a nonnegative real-valued function d(x, y)
defined for x, y ∈ X. As usual, d(·, ·) is said to be a metric on X if it satisfies
the following three conditions: first,

d(x, y) = 0 if and only if x = y;(1.1)

second,
d(x, y) = d(y, x)(1.2)

for every x, y ∈ X; and third,

d(x, z) ≤ d(x, y) + d(y, z)(1.3)

for every x, y, z ∈ X. If d(·, ·) satisfies (1.1), (1.2), and

d(x, z) ≤ max(d(x, y), d(y, z))(1.4)

for every x, y, z ∈ X, then d(·, ·) is said to be an ultrametric on X. Note that
(1.4) implies (1.3), so that ultrametrics are metrics.

The discrete metric can be defined on any set X by putting d(x, y) equal
to 1 when x ̸= y, and to 0 when x = y. It is easy to see that this defines an
ultrametric on X.
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If a is a positive real number with a ≤ 1, then it is well known that

(r + t)a ≤ ra + ta(1.5)

for all nonnegative real numbers r, t. To see this, observe first that

max(r, t)a = max(ra, ta) ≤ ra + ta(1.6)

for every a > 0, so that

max(r, t) ≤ (ra + ta)1/a.(1.7)

If a ≤ 1, then it follows that

r + t ≤ max(r, t)1−a (ra + ta)(1.8)

≤ (ra + ta)(1−a)/a (ra + ta)1/a = (ra + ta)1/a,

which implies (1.5).
Let d(x, y) be a metric on a set X, and let a be a positive real number. If

a ≤ 1, then it is easy to see that

d(x, y)a(1.9)

also defines a metric on X, using (1.5). If d(x, y) is an ultrametric on X, then
(1.9) is an ultrametric on X for every a > 0.

Let d(x, y) be a metric on a set X again. As usual, the open ball in X
centered at a point x ∈ X with radius r > 0 with respect to d(·, ·) is defined by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) < r}.(1.10)

Similarly,
B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) ≤ r}(1.11)

is the closed ball in X centered at x ∈ X with radius r ≥ 0 with respect to d(·, ·).
Remember that one can define a topology on X using d(·, ·) in a standard way.
It is well known that open balls in X with respect to d(·, ·) are open sets with
respect to this topology. More precisely, the collection of open balls in X with
respect to d(·, ·) forms a base for this topology on X. One can also verify
that closed balls in X with respect to d(·, ·) are closed sets with respect to this
topology.

If (1.9) is a metric on X as well for some a > 0, then the corresponding open
and closed balls in X are given by

Bda(x, ra) = Bd(x, r)(1.12)

for every x ∈ X and r > 0, and

Bda(x, ra) = Bd(x, r)(1.13)
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for every x ∈ X and r ≥ 0, respectively. It follows from (1.12) that the topologies
determined on X by d(·, ·) and (1.9) are the same.

Suppose for the moment that d(x, y) is an ultrametric on X. If x, y ∈ X
satisfy d(x, y) < r for some r > 0, then one can check that

B(x, r) ⊆ B(y, r),(1.14)

using the ultrametric version of the triangle inequality. This is symmetric in x
and y, so that

B(x, r) = B(y, r)(1.15)

when d(x, y) < r. Similarly, if d(x, y) ≤ r for some r ≥ 0, then

B(x, r) ⊆ B(y, r),(1.16)

and hence
B(x, r) = B(y, r).(1.17)

In particular, this implies that closed balls in X with positive radius are open
sets with respect to the topology determined by d(·, ·). One can verify that open
balls in X are closed sets too. Of course, the topology determined on X by the
discrete metric is the discrete topology.

2 Absolute value functions

Let k be a field. A nonnegative real-valued function |x| defined on k is said to
be an absolute value function on k if it satisfies the following three conditions:
first, for each x ∈ k,

|x| = 0 if and only if x = 0;(2.1)

second,
|x y| = |x| |y|(2.2)

for every x, y ∈ k; and third,

|x+ y| ≤ |x|+ |y|(2.3)

for every x, y ∈ k. Of course, the standard absolute value functions on the fields
R of real numbers and C of complex numbers are absolute value functions in
this sense.

Let k be a field, and let | · | be a nonnegative real-valued function on k
that satisfies (2.1) and (2.2). It is easy to see that |1| = 1, where the first 1 is
the multiplicative identity element in k, and the second 1 is the multiplicative
identity element in R. This uses the facts that |1| > 0 by (2.1), and |1| = |12| =
|1|2, by (2.2). Similarly, if x ∈ k satisfies xn = 1 for some positive integer n,
then |x| = 1. It follows that | − 1| = 1, where −1 is the additive inverse of 1 in
k, because (−1)2 = 1. If | · | is an absolute value function on k, then

d(x, y) = |x− y|(2.4)
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defines a metric on k. More precisely, (2.4) is symmetric in x and y, because
| − 1| = 1.

A nonnegative real-valued function |·| on a field k is said to be an ultrametric
absolute value function on k if it satisfies (2.1), (2.2), and

|x+ y| ≤ max(|x|, |y|)(2.5)

for every x, y ∈ k. Clearly (2.5) implies (2.3), so that an ultrametric absolute
value function is an ordinary absolute value function. If | · | is an ultrametric
absolute value function on k, then (2.4) is an ultrametric on k.

If k is any field, then the trivial absolute value function is defined on k by
putting |x| = 1 for every x ∈ k with x ̸= 0, and |0| = 0. It is easy to see that
this defines an ultrametric absolute value function on k. The ultrametric on k
associated to the trivial absolute value function as in (2.4) is the discrete metric
on k.

The p-adic absolute value function |x|p is defined on the field Q of rational
numbers for each prime number p as follows. Let x ∈ Q be given, and suppose
that x ̸= 0, since we should put |0|p = 0. We can express x as pj (a/b), where
a, b, and j are integers, a, b ̸= 0, and neither a nor b is a multiple of p. Note
that j is uniquely determined by x, and put

|x|p = p−j .(2.6)

It is not difficult to verify that this defines an ultrametric absolute value function
on Q.

Let k be any field again, and let | · | be an absolute value function on k. If
a is a positive real number less than or equal to 1, then

|x|a(2.7)

also defines an absolute value function on k. This uses (1.5) to get that (2.7)
satisfies the triangle inequality on k. If | · | is an ultrametric absolute value
function on k, then (2.7) is an ultrametric absolute value function on k for
every a > 0. If | · | is the standard Euclidean absolute value function on Q, then
(2.7) does not satisfy the triangle inequality on Q when a > 1.

Let | · |1, | · |2 be absolute value functions on a field k. If there is a positive
real number a such that

|x|2 = |x|a1(2.8)

for every x ∈ k, then | · |1 and | · |2 are said to be equivalent on k. This implies
that the topologies determined on k by the metrics associated to | · |1 and | · |2
are the same. Conversely, if the topologies determined on k by the metrics
associated to | · |1 and | · |2 are the same, then it is well known that | · |1 and
| · |2 are equivalent on k in the sense of (2.8). A famous theorem of Ostrowski
says that any absolute value function on Q is either trivial, or equivalent to the
standard Euclidean absolute value function, or equivalent to the p-adic absolute
value function for some prime number p.
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3 Uniform continuity and completeness

Let (X, d(x, y)) be a metric space, let a be a positive real number, and suppose
that d(x, y)a also defines a metric on X. As in Section 1, the topologies deter-
mined on X by d(x, y) and d(x, y)a are the same. More precisely, the identity
mapping on X is uniformly continuous as a mapping from X equipped with
d(x, y) into X equipped with d(x, y)a, and from X equipped with d(x, y)a into
X equipped with d(x, y). Note that a sequence of elements of X is a Cauchy
sequence with respect to d(x, y) if and only if it is a Cauchy sequence with re-
spect to d(x, y)a. It follows that X is complete as a metric space with respect
to d(x, y) if and only if X is complete with respect to d(x, y)a.

Let (X, dX) and (Y, dY ) be metric spaces, and suppose that daX , dbY are also
metrics on X, Y , respectively, for some positive real numbers a, b. If a mapping
f from X into Y is uniformly continuous with respect to dX , dY , respectively,
then f is uniformly continuous with respect to daX , dbY , respectively. This can be
verified directly, or using the remark about uniform continuity in the previous
paragraph, and the fact that compositions of uniformly continuous mappings
are uniformly continuous. Remember that uniformly continuous mappings send
Cauchy sequences in the domain to Cauchy sequences in the range, by a simple
argument.

Let (X, dX) and (Y, dY ) be metric spaces again, let E be a dense subset of
X, and suppose that f is a uniformly continuous mapping from E into Y . If Y
is complete, then it is well known that f has a unique extension of a uniformly
continuous mapping from X into Y . Of course, uniqueness of the extension only
requires ordinary continuity.

If a metric space (X, d) is not already complete, then it is well known that
X has a completion, which can be given as an isometric embedding of X onto
a dense subset of a complete metric space. The completion is unique up to iso-
metric equivalence, because of the extension theorem mentioned in the previous
paragraph. Note that a closed subset of a complete metric space is also com-
plete with respect to the restriction of the metric to the subset, by a standard
argument.

Let (X, d) be a metric space, and let E be a subset of X. Of course, the
restriction of d(x, y) to x, y ∈ E defines a metric on E. Similarly, if d(x, y) is
an ultrametric on X, then its restriction to E is an ultrametric on E. If d(x, y)
is any metric on X, E ⊆ X is dense in X with respect to d(x, y), and the
restriction of d(x, y) to x, y ∈ E is an ultrametric on E, then one can check that
d(x, y) is an ultrametric on X. In particular, if d(x, y) is an ultrametric on X,
then the corresponding metric on a completion of X is an ultrametric as well.

Let k be a field with an absolute value function | · |, and let k0 be a subfield of
k. As before, the restriction of |x| to x ∈ k0 defines an absolute value function
on k0. If |x| is an ultrametric absolute value function on k, then its restriction
to x ∈ k0 is an ultrametric absolute value function on k0. Let |·| be any absolute
value function on k again, let k0 be a subfield of k, and suppose that k0 is dense
in k with respect to the metric associated to | · |. If the restriction of |x| to
x ∈ k0 is an ultrametric absolute value function on k0, then one can verify that

7



| · | is an ultrametric absolute value function on k.
Let k be a field with an absolute value function | · | again, which leads to

a metric on k as in (2.4). If k is not already complete with respect to this
metric, then one can pass to a completion of k as a metric space, as before. One
can show that the field operations on k can be extended continuously to the
completion, so that the completion is also a field. Similarly, | · | can be extended
continuously to the completion, which corresponds to the distance to 0 in the
completion. This extension of | · | defines an absolute value on the completion,
and the metric on the completion corresponds to this extension of | · | in the
usual way. This completion of k with respect to | · | is unique up to isomorphic
isometric equivalence, as before. If | · | is an ultrametric absolute value function
on k, then the corresponding absolute value function on the completion is an
ultrametric absolute value function as well.

In particular, one can apply this to the p-adic absolute value function | · |p on
Q, for any prime number p. This leads to the field Qp of p-adic numbers. The
extension of |x|p to x ∈ Qp is denoted the same way, and defines an ultrametric
absolute value function on Qp.

4 The archimedean property and discreteness

Let k be a field, and let | · | be an absolute value function on k. Also let Z+ be
the set of positive integers, as usual. If x ∈ k and n ∈ Z+, then we let n · x be
the sum of n x’s in k. Suppose that there is an n ∈ Z+ such that |n · 1| > 1,
where the first 1 is the multiplicative identity element in k, and the second 1
is the multiplicative identity element in R. If j ∈ Z+, then one can check that
nj · 1 = (n · 1)j , so that

|nj · 1| = |(n · 1)j | = |n · 1|j → ∞ as j → ∞.(4.1)

In this case, | · | is said to be archimedean on k. Otherwise, if |n · 1| ≤ 1 for
every n ∈ Z+, then | · | is said to be non-archimedean on k. Equivalently, if
there is a finite upper bound for |n · 1|, n ∈ Z+, then | · | is non-archimedian on
k, by the previous remark. If | · | is an ultrametric absolute value function on k,
then it is easy to see that | · | is non-archimedean on k. Conversely, if | · | is a
non-archimedean absolute value function on k, then it is well known that | · | is
an ultrametric absolute value function on k.

Let | · | be an absolute value function on a field k again, and observe that

{|x| : x ∈ k, x ̸= 0}(4.2)

is a subgroup of the multiplicative group R+ of positive real numbers. If the
real number 1 is a limit point of (4.2) with respect to the standard topology on
R, then one can check that (4.2) is dense in R+ with respect to the topology
induced by the standard topology on R. Otherwise, | · | is said to be discrete on
k if 1 is not a limit point of (4.2) with respect to the standard topology on R.
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Let ρ1 be the nonnegative real number defined by

ρ1 = sup{|x| : x ∈ k, |x| < 1},(4.3)

and note that ρ1 ≤ 1. One can check that ρ1 = 0 if and only if | · | is the trivial
absolute value function on k, and that ρ1 < 1 if and only if | · | is discrete on
k. If | · | is nontrivial and discrete on k, so that 0 < ρ1 < 1, then one can verify
that the supremum in (4.3) is attained. More precisely, (4.2) consists of integer
powers of ρ1 in this case.

If k has positive characteristic, then there are only finitely many elements of
k of the form n · 1, with n ∈ Z+. This implies that any absolute value function
on k is non-archimedean. Suppose that k has characteristic 0, so that there is
a natural embedding of Q into k. Let | · | be an absolute value function on k,
which leads to an absolute value function on Q, using the natural embedding
of Q into k. If | · | is a archimedean on k, then it is easy to see that the
corresponding absolute value function on Q is archimedean. This implies that
the corresponding absolute value function on Q is equivalent to the standard
Euclidean absolute value function on Q, by Ostrowski’s theorem, as in Section
2. In particular, this means that the corresponding absolute value function on
Q is not discrete on Q. It follows that | · | is not discrete on k when | · | is
archimedean on k. If | · | is a discrete absolute value function on a field k, then
we get that | · | is non-archimedean on k.

Suppose that | · | is an archimedean absolute value function on a field k, and
that k is complete with respect to the metric associated to | · |. Under these
conditions, another famous theorem of Ostrowski states that k is isomorphic to
R of C, in such a way that | · | corresponds to an absolute value function on R
or C that is equivalent to the standard one.

5 Norms and ultranorms

Let k be a field, and let | · | be an absolute value function on k. Also let V be
a vector space over k. A nonnegative real-valued function N on V is said to
be a seminorm on V with respect to | · | on k if it satisfies the following two
conditions: first,

N(t v) = |t|N(v)(5.1)

for every t ∈ k and v ∈ V ; and second,

N(v + w) ≤ N(v) +N(w)(5.2)

for every v, w ∈ V . Note that (5.1) implies that N(0) = 0, by taking t = 0. If
N also satisfies N(v) > 0 for every v ∈ V with v ̸= 0, then N is said to be a
norm on V with respect to | · | on k.

Similarly, a nonnegative real-valued function N on V is said to be a semi-
ultranorm with respect to | · | if it satisfies (5.1) and

N(v + w) ≤ max(N(v), N(w))(5.3)
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for every v, w ∈ V . Clearly (5.3) implies (5.2), so that semi-ultranorms are
seminorms. A semi-ultranorm that is also a norm is called an ultranorm. If N
is a semi-ultranorm on V with respect to | · | on k, and if N(v) > 0 for some
v ∈ V , then it is easy to see that | · | is an ultrametric absolute value function on
k. More precisely, one can get the ultrametric version of the triangle inequality
(2.5) for | · | on k using (5.1) and (5.3) in this case.

If N is a norm on V with respect to | · | on k, then

d(v, w) = N(v − w)(5.4)

defines a metric on k. This uses the fact that | − 1| = 1, as in Section 2, to get
that (5.4) is symmetric in v and w. If N is an ultranorm on V , then (5.4) is an
ultrametric on V .

Of course, k may be considered as a one-dimensional vector space over itself.
Similarly, | · | may be considered as a norm on k, with respect to itself. If | · | is
an ultrametric absolute value function on k, then | · | may be considered as an
ultranorm on k.

Suppose for the moment that | · | is the trivial absolute value function on a
field k. If V is any vector space over k, then the trivial ultranorm is defined on
V by putting N(0) = 0, and N(v) = 1 for every v ∈ V with v ̸= 0. It is easy to
see that this defines an ultranorm on V . The ultrametric on V corresponding
to N as in (5.4) is the discrete metric.

Let | · | be any absolute value function on a field k again, and let n be a
positive integer. Consider the space kn of n-tuples of elements of k, which is
the Cartesian product of n copies of k. This is a vector space over k, with
respect to coordinatewise addition and scalar multiplication, as usual. If v =
(v1, . . . , vn) ∈ kn, then put

∥v∥1 =

n∑
j=1

|vj |(5.5)

and
∥v∥∞ = max

1≤j≤n
|vj |.(5.6)

One can check that (5.5) and (5.6) define norms on kn, with respect to | · | on k.
If | · | is an ultrametric absolute value function on k, then (5.6) is an ultranorm
on kn. Note that

∥v∥∞ ≤ ∥v∥1 ≤ n ∥v∥∞(5.7)

for every v ∈ kn.
Let v ∈ kn and a positive real number be given, and consider the open

ball in kn centered at v with radius r with respect to the metric associated to
(5.6). This is the same as the Cartesian product of the balls in k centered at
vj with radius r with respect to the metric associated to | · | for j = 1, . . . , n.
Using this, it is easy to see that the topology determined on kn by the metric
associated to (5.6) is the same as the product topology corresponding to the
topology determined on k by the metric associated to | · | on each factor. The
topology determined on kn by the metric associated to (5.5) is the same as the
topology determined by the metric associated to (5.6), because of (5.7).
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6 Comparing topologies

Let k be a field with an absolute value function | · |, and let V be a vector space
over k. If N is a norm on V , then put

BN (v, r) = {w ∈ V : N(v − w) < r}(6.1)

for each v ∈ V and positive real number r. This is the same as the open ball in
V centered at v with radius r with respect to the metric (5.4) associated to N ,
as in (1.10).

Let N1, N2 be norms on V with respect to | · | on k. Suppose for the moment
that there is a positive real number C such that

N1(v) ≤ C N2(v)(6.2)

for every v ∈ V . This implies that

BN2
(v, r) ⊆ BN1

(v, C r)(6.3)

for every v ∈ V and r > 0, using the notation (6.1) for open balls in V with
respect to N1 and N2. If U ⊆ V is an open set with respect to the topology de-
termined by the metric associated to N2, then it follows from (6.3) that U is also
an open set with respect to the topology determined by the metric associated
to N1.

Conversely, suppose that the topology determined on V by the metric asso-
ciated to N2 is at least as strong as the topology determined on V by the metric
associated to N1. Let r1 > 0 be given, and remember that BN1(0, r1) is an
open set in V with respect to the topology determined by the metric associated
to N1. Thus BN1

(0, r1) is also an open set in V with respect to the topology
determined by the metric associated to N2, by hypothesis. This implies that
there is an r2 > 0 such that

BN2
(0, r2) ⊆ BN1

(0, r1),(6.4)

because 0 is an element of BN1(0, r1). Of course, we could simply take r1 = 1
here.

Let v ∈ V be given, and suppose that t ∈ k satisfies

N2(v) < |t| r2.(6.5)

Equivalently, this means that t ̸= 0, and that N2(t
−1 v) = |t|−1 N2(v) < r2.

Thus (6.4) implies that

|t|−1 N1(v) = N1(t
−1 v) < r1,(6.6)

so that N1(v) < |t| r1.
Suppose that | · | is not trivial on k, which implies that there is a t0 ∈ k such

that |t0| > 1. If v ∈ V and v ̸= 0, then there is an integer j such that

|t0|j−1 r2 ≤ N2(v) < |t0|j r2.(6.7)
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Thus we can apply the remarks in the previous paragraph to t = tj0, to get that

N1(v) < |t0|j r1 ≤ |t0| (r1/r2)N2(v),(6.8)

using the first inequality in (6.7) in the second step. This shows that (6.2) holds
with C = |t0| (r1/r2) when v ̸= 0, and of course (6.2) is trivial when v = 0.

7 Finite support

Let k be a field, and let V be a vector space over k. Also let X be a nonempty
set, and let c(X,V ) be the space of V -valued functions on X. This is a vector
space over k with respect to pointwise addition and scalar multiplication. If
f ∈ c(X,V ), then the support of f is defined to be the set of x ∈ X such
that f(x) ̸= 0. Let c00(X,V ) be the subset of c(X,V ) consisting of V -valued
functions f on X whose supports have only finitely many elements. It is easy
to see that c00(X,V ) is a linear subspace of c(X,V ). Of course, if X has only
finitely many elements, then c00(X,V ) is equal to c(X,V ).

Let | · | be an absolute value function on k, and let N be a norm on V with
respect to | · | on k. If f ∈ c00(X,V ), then put

∥f∥1 =
∑
x∈X

N(f(x)),(7.1)

where the sum on the right reduces to a finite sum of nonnegative real numbers.
Similarly,

∥f∥∞ = max
x∈X

N(f(x))(7.2)

reduces to the maximum of finitely many nonnegative real numbers. One can
check that (7.1) and (7.2) define norms on c00(X,V ) with respect to | · | on k.
If N is an ultranorm on V , then (7.2) is an ultranorm on c00(X,V ).

Clearly
∥f∥∞ ≤ ∥f∥1(7.3)

for every f ∈ c00(X,V ). Thus the topology determined on c00(X,V ) by the
metric associated to ∥f∥1 is at least as strong as the topology determined on
c00(X,V ) by the metric associated to ∥f∥∞, as in the previous section. If X
has only finitely many elements, then

∥f∥1 ≤ (#X) ∥f∥∞(7.4)

for every f ∈ c00(X,V ), where #X denotes the number of elements in X. In
this case, the topologies determined on c00(X,V ) by the metrics associated to
∥f∥1 and ∥f∥∞ are the same.

Suppose for the moment that | · | is the trivial absolute value function on k,
and that N is the trivial ultranorm on V . Observe that ∥f∥∞ is the same as the
trivial ultranorm on c00(X,V ) in this situation. In particular, the ultrametric
on c00(X,V ) corresponding to ∥f∥∞ is the discrete metric, which determines
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the discrete topology on c00(X,V ). It follows that the topology determined on
c00(X,V ) by the metric associated to ∥f∥1 is at least as strong as the discrete
topology, as in the previous paragraph. Of course, this means that the topol-
ogy determined on c00(X,V ) by the metric associated to ∥f∥1 is the discrete
topology too.

Let | · | be any absolute value function on k again, and let N be any norm
with respect to | · | on k. If f ∈ c00(X,V ), then∑

x∈X

f(x)(7.5)

can be defined as an element of V , by reducing to a finite sum. It is easy to see
that this defines a linear mapping from c00(X,V ) into V . Observe that

N
( ∑

x∈X

f(x)
)
≤ ∥f∥1(7.6)

for every f ∈ c00(X,V ), because of the triangle inequality. Similarly, if N is an
ultranorm on V , then

N
( ∑

x∈X

f(x)
)
≤ ∥f∥∞(7.7)

for every f ∈ c00(X,V ).

8 Bounded functions

Let k be a field with an absolute value function | · |, and let V be a vector space
over k with a norm N with respect to | · | on k. Also let X be a nonempty set,
and let f be a V -valued function on X. As usual, f is said to be bounded on
X with respect to N on V if there is a finite upper bound for N(f(x)), x ∈ X.
Let ℓ∞(X,V ) = ℓ∞N (X,V ) be the space of bounded V -valued functions f on X,
and put

∥f∥∞ = ∥f∥ℓ∞(X,V ) = sup
x∈X

N(f(x))(8.1)

for each such function f . One can check that ℓ∞(X,V ) is a linear subspace of
the space c(X,V ) of all V -valued functions on X, and that (8.1) defines a norm
on ℓ∞(X,V ) with respect to | · | on k. If N is an ultranorm on V , then (8.1)
defines an ultranorm on ℓ∞(X,V ). If | · | is the trivial absolute value function
on k, and N is the trivial ultranorm on V , then (8.1) is the trivial ultranorm
on ℓ∞(X,V ).

A V -valued function f on X is said to vanish at infinity with respect to N
if for each ϵ > 0,

N(f(x)) < ϵ(8.2)

for all but finitely many x ∈ X. Let c0(X,V ) = c0,N (X,V ) be the space of
these functions on X. It is easy to see that

c0(X,V ) ⊆ ℓ∞(X,V ),(8.3)
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and that c0(X,V ) is a linear subspace of ℓ∞(X,V ). One can also check that
c0(X,V ) is a closed set in ℓ∞(X,V ), with respect to the metric associated to the
supremum norm. Of course, if X has only finitely many elements, then every
V -valued function on X vanishes at infinity.

Clearly
c00(X,V ) ⊆ c0(X,V ).(8.4)

If f ∈ c0(X,V ), then f can be approximated by V -valued functions on X with
finite support uniformly on X. Thus c0(X,V ) is the same as the closure of
c00(X,V ) in ℓ∞(X,V ) with respect to the supremum metric. If | · | is the trivial
absolute value function on k, N is the trivial ultranorm on V , and f ∈ c0(X,V ),
then f has finite support in X.

If N is any norm on V , and f ∈ c0(X,V ), then the support of f has at most
finitely or countably many elements. More precisely, for each n ∈ Z+, there are
at most finitely many x ∈ X such that N(f(x)) ≥ 1/n, and the support of f
is the union of this sequence of finite sets. Note that (8.1) is the same as (7.2)
when f ∈ c00(X,V ). If f ∈ c0(X,V ), then the supremum on the right side of
(8.1) is attained. This is trivial when f(x) = 0 for every x ∈ X, and otherwise
the supremum can be reduced to the maximum over a finite subset of X.

If V is complete with respect to the metric associated to N , then ℓ∞(X,V )
is complete with respect to the metric associated to (8.1), by standard argu-
ments. Indeed, if {fj}∞j=1 is a Cauchy sequence in ℓ∞(X,V ) with respect to the
supremum metric, then {fj(x)}∞j=1 is a Cauchy sequence in V for each x ∈ X,
with respect to the metric associated to N . If V is complete, then it follows
that {fj(x)}∞j=1 converges to an element f(x) of V for each x ∈ X. The Cauchy
condition for {fj}∞j=1 implies in particular that {fj}∞j=1 is bounded in ℓ∞(X,V ),
which can be used to show that f is bounded on X. One can use the Cauchy
condition for {fj}∞j=1 in ℓ∞(X,V ) again to get that {fj}∞j=1 converges to f with
respect to the supremum metric, as desired.

9 Summable functions

Let X be a nonempty set, and let f be a nonnegative real-valued function on
X. The sum ∑

x∈X

f(x)(9.1)

is defined as a nonnegative extended real number as the supremum of the sums∑
x∈A

f(x)(9.2)

over all nonempty finite subsets A of X. If (7.5) is finite, then f is said to
be summable on X. Of course, (9.1) reduces to a finite sum when X has only
finitely many elements, or when f has finite support in X. If f is summable
on X, then it is easy to see f vanishes at infinity on X, with respect to the
standard absolute value function on R.
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If f is summable on X, and t is a nonnegative real number, then one can
check that t f(x) is summable on X as well, with∑

x∈X

t f(x) = t
∑
x∈X

f(x).(9.3)

Similarly, if g is another nonnegative real-valued summable function on X, then
f + g is summable on X, with∑

x∈X

(f(x) + g(x)) =
∑
x∈X

f(x) +
∑
x∈X

g(x).(9.4)

Both statements can be obtained directly from the definitions, using the anal-
ogous properties of finite sums. There are also versions of (9.3) and (9.4) for
arbitrary nonnegative real-valued functions on X, with suitable interpretations
for extended real numbers. In particular, if f is not summable on X, then one
may apply (9.3) to positive real numbers t, or interpret the right side of (9.3)
as being equal to 0 when t = 0.

If {fj}∞j=1 is a sequence of nonnegative real-valued functions on X that
converges pointwise to a nonnegative real-valued function f on X, then∑

x∈X

f(x) ≤ sup
j≥1

( ∑
x∈X

fj(x)
)
.(9.5)

This is a simplified version of Fatou’s lemma for sums. More precisely, the
supremum on the right side of (9.5) is defined as a nonnegative extended real
number, and of course (9.5) is trivial when the supremum is +∞. To get (9.5),
let A be a nonempty finite subset of X, and observe that∑

x∈A

f(x) = lim
j→∞

(∑
x∈A

fj(x)
)
≤ sup

j≥1

(∑
x∈A

fj(x)
)
≤ sup

j≥1

( ∑
x∈X

fj(x)
)
.(9.6)

This implies (9.5), by the definition of the sum (9.1).
Let k be a field with an absolute value function | · |, let V be a vector space

over k, and let N be a norm on V with respect to | · | on k. A V -valued function
f on X is said to be summable on X with respect to N if N(f(x)) is summable
as a nonnegative real-valued function on X. Let ℓ1(X,V ) = ℓ1N (X,V ) be the
space of V -valued functions f on X that are summable with respect to N , and
put

∥f∥1 = ∥f∥ℓ1(X,V ) =
∑
x∈X

N(f(x))(9.7)

for all such functions f . One can verify that ℓ1(X,V ) is a linear subspace of the
space c(X,V ) of all V -valued functions on X, and that (9.7) defines a norm on
ℓ1(X,V ) with respect to | · | on k. Clearly

c00(X,V ) ⊆ ℓ1(X,V ),(9.8)
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and (9.7) is the same as (7.1) when f ∈ c00(X,V ). One can check that c00(X,V )
is dense in ℓ1(X,V ) with respect to the metric associated to the ℓ1 norm. This
uses nonempty finite subsets A of X such that∑

x∈A

N(f(x))(9.9)

approximates ∥f∥1. If f ∈ ℓ1(X,V ), thenN(f(x)) is summable as a nonnegative
real-valued function on X, and hence N(f(x)) vanishes at infinity on X, as
before. This is the same as saying that f vanishes at infinity as a V -valued
function on X, so that

ℓ1(X,V ) ⊆ c0(X,V ).(9.10)

Note that
∥f∥∞ ≤ ∥f∥1(9.11)

for every f ∈ ℓ1(X,V ).
If V is complete with respect to the metric associated to N , then ℓ1(X,V )

is complete with respect to the metric associated to (9.7). To see this, let
{fj}∞j=1 be a Cauchy sequence with respect to the ℓ1 metric. This implies that
{fj(x)}∞j=1 is a Cauchy sequence in V with respect to the metric associated to
N for each x ∈ X, so that {fj(x)}∞j=1 converges to an element f(x) of V for
each x ∈ X, because V is complete. It follows that {N(fj(x))}∞j=1 converges to
N(f(x)) in R for every x ∈ X, by standard arguments. Thus∑

x∈X

N(f(x)) ≤ sup
j≥1

( ∑
x∈X

N(fj(x))
)
,(9.12)

as in (9.5). The Cauchy condition for {fj}∞j=1 in ℓ1(X,V ) implies that the right

side of (9.12) is finite, so that f ∈ ℓ1(X,V ). Similarly, if l ∈ Z+, then

∥f − fl∥1 ≤ sup
j≥l

∥fj − fl∥1,(9.13)

because {fj − fl}∞j=l converges to f − fl pointwise on X. This implies that

{fl}∞l=1 converges to f with respect to the ℓ1 metric, using the Cauchy condition
for {fj}∞j=1 in ℓ1(X,V ) again, as desired.

10 Infinite series

Let k be a field with an absolute value function | · |, and let V be a vector space
over k with a norm N with respect to | · | on k. As usual, an infinite series

∞∑
j=1

vj(10.1)

with terms in V is said to converge in V with respect to N if the corresponding
sequence of partial sums

∑n
j=1 vj converges in V with respect to the metric
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associated to N . Of course, the value of the sum (10.1) is defined to be the
limit of the sequence of partial sums in this case. If (10.1) converges in V , then
the corresponding sequence of partial sums is bounded, and

N
( ∞∑

j=1

vj

)
≤ sup

n≥1
N
( n∑

j=1

vj

)
.(10.2)

This follows from the analogous statements for convergent sequences.
If

∑∞
j=1 aj is an infinite series of nonnegative real numbers, then the cor-

responding sequence of partial sums increases monotonically. It follows that∑∞
j=1 aj converges in R with respect to the standard absolute value function if

and only if the sequence of partial sums is bounded, in which case

∞∑
j=1

aj = sup
n≥1

( n∑
j=1

aj

)
,(10.3)

by the analogous statements for monotonically increasing sequences in R. Oth-
erwise, the right side of (10.3) may be interpreted as being +∞, and one may
take the left side of (10.3) to be +∞ as well. One can check that this is equiv-
alent to the sum

∑
j∈Z+

aj , as defined in the previous section.

Let k, V , and N be as before, and let (10.1) be an infinite series with terms
in V again. Note that the corresponding sequence of partial sums is a Cauchy
sequence in V with respect to the metric associated to N if and only if for every
ϵ > 0 there is a positive integer L such that

N
( n∑

j=l

vj

)
< ϵ(10.4)

for every n ≥ l ≥ 1. This implies that

lim
j→∞

N(vj) = 0,(10.5)

by taking l = n, as usual.
If

∑∞
j=1 N(vj) converges as an infinite series of nonnegative real numbers,

then (10.1) is said to converge absolutely with respect to N . Observe that

N
( n∑

j=l

vj

)
≤

n∑
j=l

N(vj)(10.6)

for every n ≥ l ≥ 1, by the triangle inequality. If (10.1) converges absolutely
with respect to N , then it follows that the corresponding sequence of partial
sums is a Cauchy sequence in V with respect to the metric associated to N ,
because of (10.4). If V is complete with respect to the metric associated to N ,
then we get that (10.1) converges in V . We also have that

N
( ∞∑

j=1

vj

)
≤

∞∑
j=1

N(vj)(10.7)
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under these conditions, by (10.2).
Suppose now that N is an ultranorm on V , so that

N
( n∑

j=l

vj

)
≤ max

l≤j≤n
N(vj)(10.8)

for every n ≥ l ≥ 1. If (10.5) holds, then the sequence of partial sums corre-
sponding to (10.1) is a Cauchy sequence in V with respect to N , by (10.4). This
implies that (10.1) converges in V with respect to N when V is complete with
respect to the ultrametric associated to N . In this situation, we also have that

N
( ∞∑

j=1

vj

)
≤ max

j≥1
N(vj),(10.9)

by (10.2). The maximum on the right side of (10.9) is attained when (10.5)
holds, as before.

11 Bounded linear mappings

Let k be a field with an absolute value function | · |, and let V , W be vector
spaces over k. Also let NV , NW be norms on V , W , respectively, with respect
to | · | on k. A linear mapping T from V into W is said to be bounded with
respect to NV , NW if there is a nonnegative real number C such that

NW (T (v)) ≤ C NV (v)(11.1)

for every v ∈ V . In this case, we have that

NW (T (u)− T (v)) = NW (T (u− v)) ≤ C NV (u− v)(11.2)

for every u, v ∈ V . This implies that T is uniformly continuous with respect to
the metrics on V , W associated to NV , NW , respectively.

Let T be a linear mapping from V into W again, and suppose that there are
positive real numbers rV , rW such that

NW (T (v)) < rW(11.3)

for every v ∈ V with NV (v) < rV . Of course, if T is continuous at 0 with
respect to the metrics on V , W associated to NV , NW , respectively, then for
each rW > 0 there is an rV > 0 with this property. Suppose that | · | is not
trivial on k, and let t0 be an element of k with |t0| > 1. If v ∈ V and v ̸= 0,
then there is an integer j such that

|t0|j−1 rV ≤ NV (v) < |t0|j rV .(11.4)

Thus NV (t
−j
0 v) = |t0|−j NV (v) < rV , so that

|t0|−j NW (T (v)) = NW (T (t−j
0 v)) < rW ,(11.5)
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by (11.3). This implies that

NW (T (v)) < |t0|j rW ≤ |t0| (rW /rV )NV (v),(11.6)

using the first inequality in (11.4) in the second step. Hence (11.1) holds with
C = |t0| (rW /rV ) when v ̸= 0, and (11.1) is trivial when v = 0.

If T is a bounded linear mapping from V into W with respect to NV , NW ,
respectively, then we put

∥T∥op = ∥T∥op,VW = inf{C ≥ 0 : (11.1) holds}.(11.7)

More precisely, the infimum is taken over all nonnegative real numbers C for
which (11.1) holds. One can check that the infimum is attained, so that (11.1)
holds with C = ∥T∥op. Let BL(V,W ) be the space of bounded linear mappings
from V into W with respect to NV , NW , respectively. It is easy to see that
BL(V,W ) is a vector space over k with respect to pointwise addition and scalar
multiplication. Similarly, (11.7) defines a norm on BL(V,W ), which is the
operator norm associated to NV , NW . If NW is an ultranorm on W , then
(11.7) is an ultranorm on BL(V,W ).

Let Z be another vector space over k, and let NZ be a norm on Z with
respect to | · | on k. Suppose that T1 is a bounded linear mapping from V into
W with respect to NV , NW , and that T2 is a bounded linear mapping from W
into Z with respect to NW , NZ . Observe that the composition T2 ◦T1 of T1 and
T2 is a bounded linear mapping from V into Z with respect to NV , NZ , with

∥T2 ◦ T1∥op,V Z ≤ ∥T1∥op,VW ∥T2∥op,WZ .(11.8)

Let V0 be a linear subspace of V , and suppose that V0 is dense in V with
respect to the metric associated to NV . Also let T0 be a bounded linear map-
ping from V0 into W , using the restriction of NV to V0. Thus T0 is uniformly
continuous with respect to the metrics associated to NV and NW , as before.
If W is complete with respect to the metric associated to NW , then there is a
unique extension of T0 to a uniformly continuous mapping from V into W , as
in Section 3. One can check that this extension is a bounded linear mapping
from V into W under these conditions, with the same operator norm as on V0.

12 Banach spaces

Let k be a field with an absolute value function | · |, let V be a vector space
over k, and let N be a norm on V with respect to | · | on k. If V is complete
with respect to the metric associated to N , then V is said to be a Banach space
with respect to N . Otherwise, one can pass to a completion of V , as usual. The
vector space operations on V can be extended continuously to the completion,
so that the completion is a vector space over k. Similarly, N can be extended
continuously to the completion of V , which corresponds to the distance to 0 in
the completion. This extension of N defines a norm on the completion, which
corresponds to the metric on the completion in the usual way. The completion
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of V with respect to N is unique up to isometric linear equivalence, because
of the existence of extensions of bounded linear mappings from dense linear
subspaces into Banach spaces mentioned in the previous section.

If V0 is a linear subspace of V , then the restriction of N to V0 defines a norm
on V0 with respect to | · | on k. If N is an ultranorm on V , then the restriction
of N to V0 is an ultranorm on V0. If N is any norm on V with respect to
| · | on k, V0 is a dense linear subspace of V , and the restriction of N to V0

is an ultranorm on V0, then one can check that N is an ultranorm on V . In
particular, if N is an ultranorm on V , then the extension of N to the completion
of V mentioned in the preceding paragraph is an ultranorm as well. Note that
closed linear subspaces of Banach spaces are Banach spaces too, with respect
to the restriction of the norm, because closed subsets of complete metric spaces
are complete with respect to the restriction of the metric to the subset.

Remember that k may be considered as a one-dimensional vector space over
itself, and that | · | may be considered as a norm on k with respect to itself, as
in Section 5. If v ∈ V , then

t 7→ t v(12.1)

defines a bounded linear mapping from k into V , with operator norm equal to
N(v). If V is complete with respect to the metric associated to N , but k is
not complete with respect to the metric associated to | · |, then (12.1) extends
to a bounded linear mapping from the completion of k into V , as before. One
can verify that V is a vector space over the completion of k with respect to this
extension of scalar multiplication on V to the completion of k, and that N is a
norm on V as a vector space over the completion of k. One could also include
completeness of k in the definition of a Banach space.

Suppose for the moment that k is complete with respect to the metric asso-
ciated to | · |, so that k may be considered as a one-dimensional Banach space
over itself. If n is a positive integer, then it is easy to see that kn is a Banach
space with respect to the norms ∥v∥1 and ∥v∥∞ defined in (5.5) and (5.6), re-
spectively. In both cases, a sequence of elements of kn is a Cauchy sequence
with respect to the metric associated to the norm if and only if the correspond-
ing n sequences of coordinates in k are Cauchy sequences with respect to the
metric associated to | · |. If X is a nonempty set, then the spaces ℓ∞(X, k)
and ℓ1(X, k) discussed in Sections 8 and 9, respectively, are Banach spaces with
respect to the corresponding norms defined earlier. It follows that c0(X, k) is a
Banach space with respect to the supremum norm as well, because it is a closed
subspace of ℓ∞(X, k).

Let V , W be vector spaces over k, with norms NV , NW with respect to | · |
on k, respectively. If W is complete with respect to the metric associated to
NW , then BL(V,W ) is complete with respect to the metric associated to the
corresponding operator norm. More precisely, let {Tj}∞j=1 be a Cauchy sequence
in BL(V,W ) with respect to the operator norm. If v ∈ V , then it is easy to see
that {Tj(v)}∞j=1 is a Cauchy sequence in W with respect to the metric associated
to NW . It follows that {Tj(v)}∞j=1 converges to an element T (v) of W for every
v ∈ V , because W is complete. One can check that T is a linear mapping from
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V into W , because the Tj ’s are linear. The Cauchy condition for {Tj}∞j=1 with
respect to the operator norm implies that the operator norms of the Tj ’s are
bounded, which can be used to show that T is bounded as a linear mapping
from V into W . One can use the Cauchy condition for {Tj}∞j=1 with respect to
the operator norm again to get that {Tj}∞j=1 converges to T with respect to the
operator norm, as desired.

13 Sums of vectors

Let k be a field, let V be a vector space over k, and let X be a nonempty set.
As in Section 7,

f 7→
∑
x∈X

f(x)(13.1)

defines a linear mapping from c00(X,V ) into V . Let | · | be an absolute value
function on k, and let N be a norm on V . Using (7.6), we get that (13.1) is
a bounded linear mapping from c00(X,V ) into V , with respect to the ℓ1 norm
on c00(X,V ) as in (9.7), and N on V . Similarly, if N is an ultranorm on V ,
then (7.7) implies that (13.1) is a bounded linear mapping from c00(X,V ) into
V , with respect to the supremum ultranorm on c00(X,V ) as in (8.1), and N on
V . More precisely, (7.6) and (7.7) say that the corresponding operator norms
of (13.1) are less than or equal to 1. In both cases, it is easy to see that the
operator norm is equal to 1, unless V = {0}.

Suppose now that V is complete with respect to the metric associated to N ,
so that V is a Banach space. As in the Section 11, there is a unique extension
of (13.1) to a bounded linear mapping from ℓ1(X,V ) into V . This uses the
fact that c00(X,V ) is dense in ℓ1(X,V ), as in Section 9. If N is an ultranorm
on V , then there is a unique extension of (13.1) to a bounded linear mapping
from c0(X,V ) into V , using the supremum ultranorm (8.1) on c0(X,V ). This
uses the fact that c00(X,V ) is dense in c0(X,V ) with respect to the supremum
metric, as in Section 8. These extensions can be used to define (13.1) in these
situations. In both cases, the operator norm of the extension of (13.1) is equal
to 1 when V ̸= {0}.

Of course, if X has only finitely many elements, then c00(X,V ) is the same
as ℓ1(X,V ) and c0(X,V ). Suppose that X has infinitely many elements, and let
{xj}∞j=1 be a sequence of distinct elements in X. If f is a V -valued function on
X whose support is contained in the set of xj ’s, then

∑
x∈X f(x) corresponds

formally to the infinite series
∞∑
j=1

f(xj).(13.2)

If f ∈ ℓ1(X,V ), then one can check that (13.2) converges absolutely with respect
to N . This implies that (13.2) converges in V when V is complete with respect
to the metric associated to N , as in Section 10. One can verify that the value
of (13.2) is the same as what one gets by extending (13.1) to a bounded linear
mapping from ℓ1(X,V ) into V . If f is any element of ℓ1(X,V ), then f vanishes
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at infinity on X with respect to N on V , and hence the support of f has only
finitely or countably many elements.

Let f be a V -valued function on X whose support is contained in the set
of xj ’s again. If f ∈ c0(X,V ), then it is easy to see that N(f(xj)) → 0 as
j → ∞. This implies that (13.2) converges in V with respect to N when N
is an ultranorm on V and V is complete with respect to the corresponding
ultrametric, as in Section 10. In this case, one can check that the value of
(13.2) is the same as what one gets by extending (13.1) to a bounded linear
mapping from c0(X,V ) into V , as before. If f is any element of c0(X,V ), then
the support of f has only finitely or countable many elements, and hence can
be enumerated by a finite or infinite sequence.

If f is a summable real-valued function on X, then f can be expressed as a
difference of nonnegative real-valued summable functions on X. This permits
one to define

∑
x∈X f(x) using the definition of the sum for nonnegative real-

valued functions in Section 9. Similarly, if f is a summable complex-valued
function onX, then one can apply the previous remark to the real and imaginary
parts of f . This approach to the sum is also compatible with the ones just
mentioned in this situation.

14 Banach algebras

Let k be a field, and let A be an (associative) algebra over k. This means that
A is a vector space over k equipped with a binary operation of multiplication.
Multiplication on A should be bilinear as a mapping from A × A into A, and
satisfy the associative law. Let | · | be an absolute value function on k, and let N
be a seminorm on A with respect to | · | on k. We say that N is submultiplicative
on A if

N(x y) ≤ N(x)N(y)(14.1)

for every x, y ∈ A, and that N is multiplicative on A if

N(x y) = N(x)N(y)(14.2)

for every x, y ∈ A.
Let ∥ · ∥ be a submultiplicative norm on A with respect to | · | on k. One can

check that multiplication on A is continuous as a mapping from A×A into A,
using the topology determined on A by the metric associated to ∥ · ∥, and that
corresponding product topology on A×A. If A is complete with respect to the
metric associated to ∥ · ∥, then A is said to be a Banach algebra with respect
to ∥ · ∥ over k. Otherwise, one can pass to a completion of A, as in Section 12.
One can verify that multiplication extends continuously to the completion of A,
so that the completion of A is an algebra over k, and so that the extension of
the norm to the completion is submultiplicative on the completion.

Similarly, if A is complete with respect to the metric associated to the norm
∥ · ∥, but k is not complete with respect to the metric associated to | · |, then
scalar multiplication on A can be extended to the completion of k, as in Section
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12. It is easy to see that multiplication on A is also bilinear with respect to this
extension of scalar multiplication on A to the completion of k. One can include
completeness of k in the definition of a Banach algebra, as in the case of Banach
spaces. One may also ask that A have a multiplicative identity element e with
∥e∥ = 1, and we shall normally do that here.

Let X be a nonempty set, and observe that the space c(X, k) is a commuta-
tive algebra over k with respect to pointwise multiplication of functions. Also
let 1X be the function on X whose value at every point is the multiplicative
identity element 1 in k, which is the multiplicative identity element in c(X, k).
Remember that ℓ∞(X, k) denotes the space of bounded k-valued functions on
X, as in Section 8, and let ∥f∥∞ be the supremum norm on ℓ∞(X, k) corre-
sponding to | · | on k. If f, g ∈ ℓ∞(X, k), then their product f g is bounded on
X too, with

∥f g∥∞ ≤ ∥f∥∞ ∥g∥∞.(14.3)

Thus ℓ∞(X, k) is a subalgebra of c(X, k), and ∥ · ∥∞ is submultiplicative on
ℓ∞(X, k). Of course, constant functions on X are bounded, and

∥1X∥∞ = |1| = 1.(14.4)

If k is complete with respect to the metric associated to | · |, then ℓ∞(X, k) is
complete with respect to the corresponding supremum metric, as in Section 8.

Let V be a vector space over k, and let NV be a norm on V with respect to
| · | on V . Also let BL(V ) = BL(V, V ) be the space of bounded linear mappings
from V into itself, with respect to NV on the domain and range. This is an
algebra over k, with composition of linear mappings as multiplication. The
corresponding operator norm ∥T∥op = ∥T∥op,V V is submultiplicative on BL(V ),
as in (11.8). The identity mapping I = IV on V is the multiplicative identity
element in BL(V ). If V ̸= {0}, then it is easy to see that ∥I∥op = 1. If V is
complete with respect to the metric associated to NV , then BL(V ) is complete
with respect to the metric associated to the operator norm, as in Section 12.

15 Cauchy products

Let k be a field, and let A be an algebra over k. Also let
∑∞

j=0 aj and
∑∞

l=0 bl
be infinite series with terms in A, considered formally for the moment. Thus

cn =

n∑
j=0

aj bn−j(15.1)

is defined as an element of A for every nonnegative integer n, and the corre-
sponding series

∑∞
n=0 cn is called the Cauchy product of

∑∞
j=0 aj and

∑∞
l=0 bl.

It is easy to see that
∞∑

n=0

cn =
( ∞∑

j=0

aj

)( ∞∑
l=0

bl

)
(15.2)
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formally. More precisely, both sides of (15.2) correspond formally to the sum of
aj bl over all nonnegative integers j, l.

Let us look at the partial sums corresponding to these infinite series. If N1,
N2 are nonnegative integers, then( N1∑

j=0

aj

)( N2∑
l=0

bl

)
=

∑
{aj bl : j = 0, . . . , N1, l = 0, . . . , N2}.(15.3)

Similarly, if N is a nonnegative integer, then

N∑
n=0

cn =

N∑
n=0

( n∑
j=0

aj bn−j

)
=

∑
{aj bl : j, l ∈ Z, j, l ≥ 0, j + l ≤ N}.(15.4)

If N1 +N2 ≤ N , then each of the terms in the right side of (15.3) occur in the
right side of (15.4). If N ≤ N1, N2, then each of the terms on right side of (15.4)
also occurs in the right side of (15.3).

Suppose for the moment that there are nonnegative integers J , L such that
aj = 0 when j ≥ J and bl = 0 when l ≥ L. In this case, one can check that
cn = 0 when n ≥ J + L − 1. Thus the infinite series

∑∞
j=0 aj ,

∑∞
l=0 bl, and∑∞

n=0 cn reduce to finite sums in A, and one can check that (15.2) holds in this
situation. More precisely, (15.3) is equal to (15.4) when J−1 ≤ N1, L−1 ≤ N2,
and J + L− 2 ≤ N . This is because the terms aj bl that occur in one of (15.3)
or (15.4) and not the other are equal to 0.

Suppose now that aj , bl are nonnegative real numbers for every j, l ≥ 0, so
that cn is a nonnegative real number for every n ≥ 0. Using the earlier remarks
about (15.3) and (15.4), we get that

( N1∑
j=0

aj

)( N2∑
l=0

bl

)
≤

N∑
n=0

cn(15.5)

when N1 +N2 ≤ N . Similarly,

N∑
n=0

cn ≤
( N1∑

j=0

aj

)( N2∑
l=0

bl

)
(15.6)

when N ≤ N1, N2. In this case,
∑∞

j=0 aj ,
∑∞

l=0 bl, and
∑∞

n=0 cn can be defined
as nonnegative extended real numbers. The product of the first two series can
also be defined as a nonnegative extended real number when both sums are finite
or both sums are positive. One can use (15.5) and (15.6) to get that (15.2) holds
as an equality between nonnegative extended real numbers when the right side
of (15.2) is defined. Otherwise, if aj = 0 for every j ≥ 0, or if bl = 0 for every
l ≥ 0, then cn = 0 for every n ≥ 0.

Let k be a field with an absolute value function | · |, and let A be an algebra
over k with a submultiplicative norm ∥ · ∥ with respect to | · | on k. Thus

∥aj bl∥ ≤ ∥aj∥ ∥bl∥(15.7)
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for every j, l ≥ 0, so that

∥cn∥ ≤
n∑

j=0

∥aj bn−j∥ ≤
n∑

j=0

∥aj∥ ∥bn−j∥(15.8)

for every n ≥ 0. Suppose that
∑∞

j=0 aj and
∑∞

l=0 bl converge absolutely with

respect to ∥·∥ on A, so that
∑∞

j=0 ∥aj∥ and
∑∞

l=0 ∥bl∥ converge as infinite series
of nonnegative real numbers. Observe that

∞∑
n=0

∥cn∥ ≤
∞∑

n=0

( n∑
j=0

∥aj∥ ∥bn−j∥
)
=

( ∞∑
j=0

∥aj∥
)( ∞∑

l=0

∥bl∥
)
,(15.9)

using (15.8) in the first step. The second step in (15.9) uses the fact that
the right side of (15.8) is the same as the nth term of the Cauchy product of∑∞

j=0 ∥aj∥ and
∑∞

l=0 ∥bl∥, as infinite series of nonnegative real numbers. Hence
the sum over n is equal to the product of the two sums, as in the preceding
paragraph. In particular,

∑∞
n=0 cn converges absolutely with respect to ∥ · ∥

under these conditions.
If A is complete with respect to the metric associated to ∥ · ∥, then absolute

convergence of these series implies convergence in A, as in Section 10. One can
check that (15.2) also holds in this situation. Basically, one can compare (15.3)
and (15.4) as before, and verify that the norms of the errors are small when N ,
N1, N2 are sufficiently large.

Suppose now that ∥ · ∥ is an ultranorm on A, so that

∥cn∥ ≤ max
0≤j≤n

∥aj bn−j∥ ≤ max
0≤j≤n

(∥aj∥ ∥bn−j∥)(15.10)

for every n ≥ 0. If
lim
j→∞

∥aj∥ = lim
l→∞

∥bl∥ = 0,(15.11)

then one can check that
lim

n→∞
∥cn∥ = 0,(15.12)

using (15.10). If A is also complete with respect to the ultrametric associated
to ∥ · ∥, then it follows that

∑∞
j=0 aj ,

∑∞
l=0 bl, and

∑∞
n=0 cn converge in A

with respect to ∥ · ∥, as in Section 10. Under these conditions, one can verify
that (15.2) holds again. This is analogous to the previous case, but using the
ultranorm version of the triangle inequality to estimate the errors.
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Part II

Linear mappings, matrices, and
involutions

16 Some linear mappings

Let k be a field, and let X be a nonempty set. If x, y ∈ X, then put

δx(y) = 1 when x = y(16.1)

= 0 when x ̸= y.

This defines δx(y) as a k-valued function of y on X for each x ∈ X. Of course,
δx is in the space c00(X, k) of k-valued functions on X with finite support for
every x ∈ X. It is easy to see that the collection of δx, x ∈ X, is a basis for
c00(X, k) as a vector space over k.

Let V be a vector space over k, and let a be a V -valued function on X, so
that a ∈ c(X,V ). If f ∈ c00(X, k), then

Ta(f) =
∑
x∈X

a(x) f(x)(16.2)

is defined as an element of V , because a(x) f(x) is a V -valued function on X
with finite support. Clearly Ta defines a linear mapping from c00(X, k) into V .
Note that

Ta(δx) = a(x)(16.3)

for every x ∈ X. One can check that every linear mapping from c00(X, k) into
V is of this form, because the δx’s form a basis for c00(X, k).

Let | · | be an absolute value function on k, and remember that k may be
considered as a one-dimensional vector space over itself, with | · | as a norm on
k. Thus ℓ∞(X, k) and c0(X, k) may be defined as in Section 8, and ℓ1(X, k)
may be defined as in Section 9. Of course,

∥δx∥ℓ1(X,k) = ∥δx∥ℓ∞(X,k) = 1(16.4)

for each x ∈ X.
Let N be a norm on V with respect to | · | on k, and suppose that a is

bounded on X with respect to N . If f ∈ ℓ1(X, k), then it is easy to see that
a f ∈ ℓ1(X,V ), with

∥a f∥ℓ1(X,V ) ≤ ∥a∥ℓ∞(X,V ) ∥f∥ℓ1(X,k).(16.5)

Similarly, if f ∈ ℓ∞(X, k), then a f ∈ ℓ∞(X,V ), with

∥a f∥ℓ∞(X,V ) ≤ ∥a∥ℓ∞(X,V ) ∥f∥ℓ∞(X,k).(16.6)
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If f ∈ c0(X, k), then a f ∈ c0(X,V ).
If f ∈ c00(X, k), then a f ∈ c00(X,V ), and Ta(f) ∈ V is defined as in (16.2).

We also have that

N(Ta(f)) ≤ ∥a f∥ℓ1(X,V ) ≤ ∥a∥ℓ∞(X,V ) ∥f∥ℓ1(X,k),(16.7)

using (7.6) in the first step, and (16.5) in the second step. If N is an ultranorm
on V , then

N(Ta(f)) ≤ ∥a f∥ℓ∞(X,V ) ≤ ∥a∥ℓ∞(X,V ) ∥f∥ℓ∞(X,k),(16.8)

using (7.7) in the first step, and (16.6) in the second step.
Of course, (16.7) says that Ta is bounded as a linear mapping from c00(X, k)

into V , with respect to the ℓ1 norm on c00(X, k). If N is an ultranorm on V ,
then (16.8) says that Ta is bounded as a linear mapping from c00(X, k) into
V , with respect to the supremum norm on c00(X, k). These inequalities also
imply that the corresponding operator norms of Ta are less than or equal to
∥a∥ℓ∞(X,V ). The operator norm of Ta is equal to ∥a∥ℓ∞(X,V ) in both cases,
because of (16.3) and (16.4).

Suppose now that V is complete with respect to the metric associated to
N . If f ∈ ℓ1(X, k), then a f ∈ ℓ1(X,V ), and the sum on the right side of
(16.2) can be defined as an element of V as in Section 13. This defines Ta as
a bounded linear mapping from ℓ1(X, k) into V , with operator norm equal to
∥a∥ℓ∞(X,V ), as before. If N is an ultranorm on V , and f ∈ c0(X, k), then the
sum on the right side of (16.2) can be defined as an element of V again, as in
Section 13. This defines Ta as a bounded linear mapping from c0(X, k) into V
in this situation, with operator norm equal to ∥a∥ℓ∞(X,V ).

Every linear mapping from c00(X, k) into V is of the form Ta for some
a ∈ c(X,V ), as mentioned earlier. If Ta is bounded with respect to the ℓ1 or
supremum norm on c00(X,V ), then it is easy to see that a ∈ ℓ∞(X,V ), using
(16.3) and (16.4). If T is a bounded linear mapping from ℓ1(X, k), then T is
determined by its restriction to c00(X, k), because c00(X, k) is dense in ℓ1(X, k),
as in Section 9. It follows that every bounded linear mapping from ℓ1(X, k) into
V is of the form Ta for some a ∈ ℓ∞(X,V ) when V is complete. Similarly, if N
is an ultranorm on V , and T is a bounded linear mapping from c0(X, k) into V
with respect to the supremum norm on c0(X, k), then T is of the form Ta for
some a ∈ ℓ∞(X,V ).

17 Bounded linear functionals

Let k be a field, and let V be a vector space over k. As usual, a linear func-
tional on V is a linear mapping from V into k, where k is considered as a
one-dimensional vector space over itself. Let | · | be an absolute value function
on k, and let N be a norm on V with respect to | · | on k. A bounded linear
functional is a linear functional on V that is bounded as a linear mapping from
V into k, using | · | as a norm on k. The space of bounded linear functionals
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on V is denoted V ′, which is the same as BL(V, k) in the notation of Section
11. This is the dual space associated to V , and it is a vector space over k with
respect to pointwise addition and scalar multiplication. The dual norm N ′ on
V ′ associated to N on V is the same as the operator norm in this situation.
Thus if λ ∈ V ′, then

|λ(v)| ≤ N ′(λ)N(v)(17.1)

for every v ∈ V , and N ′ is the smallest nonnegative real number with this
property. If | · | is an ultrametric absolute value function on k, then N ′ is an
ultranorm on V ′, as in Section 11. If k is complete with respect to the metric
associated to | · |, then V ′ is complete with respect to the metric associated to
the dual norm, as in Section 12.

Let us continue to ask that k be complete with respect to the metric associ-
ated to | · |. Let X be a nonempty set, and let a be a bounded k-valued function
on X. If f ∈ ℓ1(X, k), then put

λa(f) =
∑
x∈X

a(x) f(x),(17.2)

where the sum on the right side of (17.2) can be defined as in Section 13. This is
the same as in the previous section, with V = k. This defines a bounded linear
functional on ℓ1(X, k), with dual norm equal to ∥a∥ℓ∞(X,k). Every bounded
linear functional on ℓ1(X, k) is of this form, so that the dual of ℓ1(X, k) can
be identified with ℓ∞(X, k). The cases where k = R or C with the standard
absolute value functions are of particular concern here.

Suppose that | · | is an ultrametric absolute value function on a field k, and
that k is complete with respect to the corresponding ultrametric, as before. If
a ∈ ℓ∞(X, k), then (17.2) defines a bounded linear functional on c0(X, k), with
respect to the supremum norm on c0(X, k). This follows from the remarks in
the previous section again, with V = k. As before, the dual norm of (17.2) on
c0(X, k) is equal to ∥a∥ℓ∞(X,k), and every bounded linear functional on c0(X, k)
is of this form. Thus the dual of c0(X, k) can be identified with ℓ∞(X, k) in this
situation.

Let us now take k = R or C, with the standard absolute value function. If
a ∈ ℓ1(X, k) and f ∈ ℓ∞(X, k), then a f ∈ ℓ1(X, k), with

∥a f∥ℓ1(X,k) ≤ ∥a∥ℓ1(X,k) ∥f∥ℓ∞(X,k),(17.3)

as in (16.5). This implies that λa(f) can be defined as an element of k as in
(17.2), as discussed in Section 13, with

|λa(f)| ≤ ∥a f∥ℓ1(X,k) ≤ ∥a∥ℓ1(X,k) ∥f∥ℓ∞(X,k).(17.4)

Thus λa defines a bounded linear functional on ℓ∞(X, k), with dual norm less
than or equal to ∥a∥ℓ1(X,k). The dual norm of λa on ℓ∞(X, k) is equal to
∥a∥ℓ1(X,k) in this case, because there is an f ∈ ℓ∞(X, k) such that ∥f∥ℓ∞(X,k) =
1,

a(x) f(x) = |a(x)|(17.5)
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for every x ∈ X, and hence

λa(f) =
∑
x∈X

|a(x)| = ∥a∥ℓ1(X,k).(17.6)

The restriction of λa to c0(X, k) defines a bounded linear functional on
c0(X, k), with respect to the restriction of the supremum norm to c0(X, k). The
dual norm of the restriction of λa to c0(X, k) is clearly less than or equal to
∥a∥ℓ1(X,k), and we would like to verify that they are equal. To do this, let E
be a nonempty finite subset of X, and let f be a k-valued function on X with
support contained in E such that ∥f∥ℓ∞(X,k) = 1 and (17.5) holds for every
x ∈ E. Observe that

λa(f) =
∑
x∈E

|a(x)|,(17.7)

and that this is less than or equal to the dual norm of the restriction of λa to
c0(X, k). This implies that the dual norm of the restriction of λa to c0(X, k) is
equal to ∥a∥ℓ1(X,k), by taking the supremum over all nonempty finite subsets E
of X.

Let λ be any bounded linear functional on c0(X, k), with respect to the
restriction of the supremum norm to c0(X, k). Put

a(x) = λ(δx)(17.8)

for each x ∈ X, where δx is as in (16.1). This defines a k-valued function
on X, which determines a linear functional λa on c00(X, k) as in (17.2). If
f ∈ c00(X, k), then it is easy to see that

λa(f) = λ(f),(17.9)

by expressing f as a linear combination of the δx’s. Using this, one can check
that a ∈ ℓ1(X, k), with ∥a∥ℓ1(X,k) less than or equal to the dual norm of λ
on c0(X, k), by the same type of argument as in the preceding paragraph. In
particular, λa also defines a bounded linear functional on c0(X, k), as before.
It follows that (17.9) holds for every f ∈ c0(X, k), because c00(X, k) is dense
in c0(X, k) with respect to the supremum metric. This shows that the dual of
c0(X, k) can be identified with ℓ1(X, k) when k = R or C, with the standard
absolute value function.

Let k be a field with an ultrametric absolute value function | · | again, and
suppose that k is complete with respect to the ultrametric associated to | · |. If
a ∈ c0(X, k) and f ∈ ℓ∞(X, k), then a f ∈ c0(X, k), as in the previous section.
This implies that the sum on the right side of (17.2) can be defined as an element
of k, as in Section 13. Thus λa defines a linear functional on ℓ∞(X, k), with

|λa(f)| ≤ ∥a f∥ℓ∞(X,k) ≤ ∥a∥ℓ∞(X,k) ∥f∥ℓ∞(X,k)(17.10)

for every f ∈ ℓ∞(X, k). This means that λa is a bounded linear functional
on ℓ∞(X, k), with dual ultranorm less than or equal to ∥a∥ℓ∞(X,k). The dual
ultranorm of λa on ℓ∞(X, k) is equal to ∥a∥ℓ∞(X,k), because

λa(δx) = a(x)(17.11)
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for every x ∈ X. More precisely, the dual ultranorm of the restriction of λa to
c0(X, k) is equal to ∥a∥ℓ∞(X,k) too, using the restriction of the supremum norm
to c0(X, k).

18 Inner product spaces

Suppose for the moment that V and W are vector spaces over the complex
numbers, and remember that V , W can also be considered as vector spaces over
the real numbers. A mapping T from V into W is said to be real or complex
linear if T is linear when V , W are considered to be vector spaces over the real
or complex numbers, respectively. Note that a real-linear mapping T from V
into W is complex linear exactly when

T (i v) = i T (v)(18.1)

for every v ∈ V . A real-linear mapping T from V into V is said to be conjugate
linear if

T (i v) = −i T (v)(18.2)

for every v ∈ V . This implies that

T (a v) = aT (v)(18.3)

for every a ∈ C and v ∈ V , where a is the complex-conjugate of a.
Now let V be a vector space over the real or complex numbers, and let ⟨v, w⟩

be a real or complex-valued function, as appropriate, defined for v, w ∈ V . As
usual, ⟨v, w⟩ is said to be an inner product on V if it satisfies the following three
conditions. The first condition asks that

λw(v) = ⟨v, w⟩(18.4)

be a linear functional on V , as a function of v, for every w ∈ V . The second
condition asks that

⟨v, w⟩ = ⟨w, v⟩(18.5)

for every v, w ∈ V in the real case, and that

⟨v, w⟩ = ⟨v, w⟩(18.6)

for every v, w ∈ V in the complex case. It follows that ⟨v, w⟩ is linear as a
function of w for every v ∈ V in the real case, and conjugate-linear in the
complex case. Note that

⟨v, v⟩ ∈ R(18.7)

for every v ∈ V in the complex case, by (18.6). The third condition asks that

⟨v, v⟩ > 0(18.8)

for every v ∈ V with v ̸= 0.
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Suppose that ⟨v, w⟩ is an inner product on V , and put

∥v∥ = ⟨v, v⟩1/2(18.9)

for every v ∈ V . The Cauchy–Schwarz inequality states that

|⟨v, w⟩| ≤ ∥v∥ ∥w∥(18.10)

for every v, w ∈ V . One can use this to show that (18.9) defines a norm on
V with respect to the standard Euclidean absolute value function on R or C,
as appropriate. The standard inner product on Rn is defined for each positive
integer n by

⟨v, w⟩ =
n∑

j=1

vj wj(18.11)

for every v, w ∈ Rn. Similarly, the standard inner product is defined on Cn by

⟨v, w⟩ =
n∑

j=1

vj wj(18.12)

for every v, w ∈ Cn.
Let ⟨v, w⟩ be an inner product on a vector space V over the real or complex

numbers again. Also let w ∈ V be given, so that (18.4) defines a linear functional
λw on V . The Cauchy–Schwarz inequality implies that λw is a bounded linear
functional on V with respect to the norm (18.9), with dual norm less than or
equal to ∥w∥. It is easy to see that the dual norm of λw is equal to ∥w∥, because

λw(w) = ⟨w,w⟩ = ∥w∥2.(18.13)

Similarly, one can check that

∥v∥ = sup{|⟨v, w⟩| : w ∈ V, ∥w∥ ≤ 1}(18.14)

for every v ∈ V .

19 Hilbert spaces

Let (V, ⟨·, ·⟩V ) be a real or complex inner product space, and let ∥ · ∥V be
the corresponding norm, as in (18.9). If V is complete with respect to the
metric associated to this norm, then V is said to be a Hilbert space. Otherwise,
one can pass to a completion, as in Section 12. More precisely, ⟨·, ·⟩V can be
extended continuously to the completion of V , and this extension defines an
inner product on the completion of V . The norm associated to the extension of
⟨·, ·⟩V to the completion of V is the same as the continuous extension of ∥ · ∥V
to the completion of V , so that the completion of V is a Hilbert space too.

Remember that (18.4) defines a bounded linear functional on V for every
w ∈ V . If V is a Hilbert space, then it is well known that every bounded linear
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functional on V is of this form for some w ∈ V . It is easy to see that this
representation is unique.

Suppose that (V, ⟨·, ·⟩V ) and (W, ⟨·, ·⟩W ) are Hilbert spaces, both real or both
complex, and with the corresponding norms ∥ · ∥V and ∥ · ∥W , respectively. If T
is a bounded linear mapping from V into W , and if w ∈ W , then

v 7→ ⟨T (v), w⟩W(19.1)

defines a bounded linear functional on V . Indeed,

|⟨T (v), w⟩W | ≤ ∥T (v)∥V ∥w∥W ≤ ∥T∥op,VW ∥v∥V ∥w∥W(19.2)

for every v ∈ V , where ∥T∥op,VW is the operator norm of T with respect to
∥ · ∥V and ∥ · ∥W . This implies that (19.1) is a bounded linear functional on V
with respect to ∥ · ∥V , with dual norm less than or equal to ∥T∥op,VW ∥w∥W . It
follows that there is a unique element T ∗(w) of V such that

⟨T (v), w⟩W = ⟨v, T ∗(w)⟩V(19.3)

for every v ∈ V , because V is a Hilbert space. We also have that

∥T ∗(w)∥V ≤ ∥T∥op,VW ∥w∥W ,(19.4)

because the dual norm of (19.1) is equal to ∥T ∗(w)∥V , and less than or equal to
the right side of (19.4). One can check that T ∗ defines a linear mapping from
W into V , which is known as the adjoint of T . More precisely, T ∗ is a bounded
linear mapping from W into V , with

∥T ∗∥op,WV ≤ ∥T∥op,VW ,(19.5)

by (19.4). Similarly,

|⟨T (v), w⟩W | = |⟨v, T ∗(w)⟩V | ≤ ∥v∥ ∥T ∗(w)∥V ≤ ∥v∥ ∥T ∗∥op,WV ∥w∥(19.6)

for every v ∈ V and w ∈ W , which implies that

∥T (v)∥W ≤ ∥v∥ ∥T ∗∥op,WV(19.7)

for every v ∈ V . This shows that ∥T∥op,VW ≤ ∥T ∗∥op,WV , so that

∥T ∗∥op,WV = ∥T∥op,VW .(19.8)

The adjoint (T ∗)∗ of T ∗ is defined as a bounded linear mapping from V into
W in the same way, and one can verify that

(T ∗)∗ = T.(19.9)

The mapping T 7→ T ∗ is linear as a mapping from BL(V,W ) into BL(W,V ) in
the real case, and conjugate-linear in the complex case. The identity mapping
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IV on V defines a bounded linear mapping from V into itself, and it is easy to
see that

I∗V = IV(19.10)

as bounded linear mappings from V into itself.
Let (Z, ⟨·, ·⟩Z) be another Hilbert space, which is real or complex depending

on whether V and W are real or complex. If T1 is a bounded linear mapping
from V into W , and T2 is a bounded linear mapping from W into Z, then T2◦T1

is a bounded linear mapping from V into Z, as in Section 11. One can check
that

(T2 ◦ T1)
∗ = T ∗

1 ◦ T ∗
2(19.11)

as bounded linear mappings from Z into V .

20 Isometric linear mappings

Let k be a field with an absolute value function | · |, and let V , W be vector
spaces over k with norms NV , NW , respectively. A linear mapping T from V
into W is said to be an isometry with respect to NV , NW if

NW (T (v)) = NV (v)(20.1)

for every v ∈ V . In particular, this implies that the kernel of T is trivial, so
that T is injective. Of course, (20.1) implies that T is a bounded linear mapping
from V into W , with operator norm equal to 1 when V ̸= {0}.

Suppose that T is a one-to-one linear mapping from V onto W , so that the
inverse mapping T−1 is defined as a linear mapping from W onto V . In this
case, T is an isometry from V onto W if and only if T−1 is an isometry from W
onto V . If T is a bounded linear mapping from V onto W , T−1 is a bounded
linear mapping from W onto V , and

∥T∥op,VW , ∥T−1∥op,WV ≤ 1,(20.2)

then one can check that T is an isometry.
Let us now take k = R or C with the standard absolute value function for

the rest of the section. Let (V, ⟨·, ·⟩V ) and (W, ⟨·, ·⟩W ) be Hilbert spaces again,
both real or both complex, and with corresponding norms ∥ · ∥V and ∥ · ∥W ,
respectively. Suppose that a linear mapping T from V into W satisfies

⟨T (u), T (v)⟩W = ⟨u, v⟩V(20.3)

for every u, v ∈ V . This implies that T is an isometry with respect to ∥ · ∥V and
∥ · ∥W , by taking u = v. It is well known that the converse holds, because of
polarization identities. If T also maps V onto W , then T is said to be unitary.
In the real case, T may be called an orthogonal linear transformation.

Now let T be any bounded linear mapping from V into itself, so that the
adjoint T ∗ of T is defined as a bounded linear mapping from W into V , as in
the previous section. If u, v ∈ V , then

⟨T ∗(T (u)), v⟩V = ⟨T (u), T (v)⟩W .(20.4)
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Using this, one can check that (20.3) holds if and only if

T ∗ ◦ T = IV ,(20.5)

where IV denotes the identity mapping on V , as before. If T maps V onto W ,
then (20.5) implies that T is invertible as a linear mapping from V onto W ,
with T−1 = T ∗.

If T is any bounded linear mapping from V into W and v ∈ V , then

⟨T ∗(T (v)), v⟩V = ∥T (v)∥2W ,(20.6)

by taking u = v in (20.4). This implies that

∥T (v)∥2W ≤ ∥T ∗(T (v))∥V ∥v∥V ≤ ∥T ∗ ◦ T∥op,V V ∥v∥2V(20.7)

for every v ∈ V , using the Cauchy–Schwarz inequality in the first step, and the
definition of the operator norm in the second step. It follows that

∥T∥2op,VW ≤ ∥T ∗ ◦ T∥op,V V .(20.8)

We also have that

∥T ∗ ◦ T∥op,V V ≤ ∥T∥op,VW ∥T ∗∥op,WV = ∥T∥2op,VW ,(20.9)

using (11.8) in the first step, and (19.8) in the second step. Thus

∥T ∗ ◦ T∥op,V V = ∥T∥2op,VW ,(20.10)

by combining (20.8) and (20.9).

21 n× n Matrices

Let R be a ring, and let n be a positive integer. The space of n×n matrices with
entries in R is denoted Mn(R). Of course, Mn(R) is a commutative group with
respect to addition of matrices, which is defined using addition on R in each
entry. If A = [aj,l] and B = [bj,l] are elements of Mn(R), then their product is
defined to be the element C = [cj,l] of Mn(R) given by

cj,l =

n∑
r=1

aj,r br,l(21.1)

for every j, l = 1, . . . , n, as usual. It is well known and easy to see that Mn(R) is
a ring with respect to matrix multiplication. If R has a multiplicative identity
element e, then the identity matrix I in Mn(R) is defined to be the matrix
with diagonal entries equal to e, and off-diagonal entries equal to 0. This is the
multiplicative identity element in Mn(R) in this case.

Let k be a field, and let A be an algebra over k. Note that Mn(A) is a
vector space over k, where addition and scalar multiplication of matrices is
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defined entry-wise. More precisely, Mn(A) is an algebra over k with respect to
matrix multiplication. Let | · | be an absolute value function on k, and let N be
a seminorm on A with respect to | · | on k. If A = [aj,l] ∈ Mn(A), then put

N∞(A) = max
1≤j,l≤n

N(aj,l).(21.2)

It is easy to see that this defines a seminorm on Mn(A) with respect to | · |
on k, which is a norm when N is a norm on A. If N is a semi-ultranorm on
A, then N∞ is a semi-ultranorm on Mn(A) with respect to | · | on k. If N
is a submultiplicative semi-ultranorm on A, then one can check that N∞ is
submultiplicative on Mn(A).

Similarly, if A = [aj,l] ∈ Mn(A), then put

N1,∞(A) = max
1≤l≤n

( n∑
j=1

N(aj,l)
)
.(21.3)

One can verify that this also defines a seminorm on Mn(A) with respect to | · |
on k, which is a norm when N is a norm on A. Observe that

N∞(A) ≤ N1,∞(A) ≤ nN∞(A)(21.4)

for every A ∈ Mn(A). Suppose that N is submultiplicative on A, and let us
check that N1,∞ is submultiplicative on Mn(A). Let A = [aj,l] and B = [bj,l]
be elements of Mn(A), and let C = [cj,l] be as in (21.1). Thus

N(cj,l) ≤
n∑

r=1

N(aj,r br,l) ≤
n∑

r=1

N(aj,r)N(br,l)(21.5)

for each j, l = 1, . . . , n. Summing over j, we get that

n∑
j=1

N(cj,l) ≤
n∑

j=1

( n∑
r=1

N(aj,r)N(br,l)
)

(21.6)

=

n∑
r=1

( n∑
j=1

N(aj,r)N(br,l)
)

≤ N1,∞(A)
( n∑

r=1

N(br,l)
)
≤ N1,∞(A)N1,∞(B)

for each l = 1, . . . , n. This implies that

N1,∞(C) ≤ N1,∞(A)N1,∞(B),(21.7)

as desired, by taking the maximum over l = 1, . . . , n.
If A = [aj,l] ∈ Mn(A) again, then put

N∞,1(A) = max
1≤j≤n

( n∑
l=1

N(aj,l)
)
.(21.8)
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As before, this is a seminorm on Mn(A) with respect to | · | on k, and a norm
when N is a norm on A. We also have that

N∞(A) ≤ N∞,1(A) ≤ nN∞(A)(21.9)

for every A ∈ Mn(A), as in (21.4). Let us verify that N∞,1 is submultiplicative
on Mn(A) when N is submultiplicative on A. Let A = [aj,l], B = [bj,l] ∈ Mn(A)
be given, let C = [cj,l] be as in (21.1), and remember that (21.5) holds for every
j, l = 1, . . . , n under these conditions. In this case, we can sum over l to get
that

n∑
l=1

N(cj,l) ≤
n∑

l=1

( n∑
r=1

N(aj,r)N(br,l)
)

(21.10)

=

n∑
r=1

( n∑
l=1

N(aj,r)N(br,l)
)

≤
( n∑

r=1

N(aj,r)
)
N∞,1(B) ≤ N∞,1(A)N∞,1(B)

for every j = 1, . . . , n. Hence

N∞,1(C) ≤ N∞,1(A)N∞,1(B),(21.11)

as desired, by taking the maximum over j = 1, . . . , n.

22 Involutions

Let R be a ring, so that R is a commutative group with respect to addition in
particular. Also let

x 7→ x∗(22.1)

be a mapping from R into itself that is a group homomorphism with respect to
addition. If

(x y)∗ = y∗ x∗(22.2)

for every x, y ∈ R, and
(x∗)∗ = x(22.3)

for every x ∈ R, then (22.1) is said to be an (ring) involution on R. Note that
the identity mapping on R is a ring involution when R is commutative.

Let n be a positive integer, and let Mn(R) be the ring of n × n matrices
with entries in R, as in the previous section. If A = [aj,l] ∈ Mn(R), then the
transpose of A is the matrix At = [atj,l] ∈ Mn(R) defined by

atj,l = al,j(22.4)

for j, l = 1, . . . , n, as usual. Observe that

A 7→ At(22.5)
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is a group isomorphism from Mn(R) into itself with respect to addition, and
that

(At)t = A(22.6)

for every A ∈ Mn(R).
Let (22.1) be an involution on R. If A = [aj,l] ∈ Mn(R), then let At∗ =

[at∗j,l] ∈ Mn(R) be defined by

at∗j,l = (atj,l)
∗ = (al,j)

∗(22.7)

for j, l = 1, . . . , n. It is well known and easy to see that

A 7→ At∗(22.8)

defines an involution on Mn(R). If R is commutative, then we can take (22.1)
to be the identity mapping on R, so that (22.5) is an involution on Mn(R).

Let k be a field, and let A be an algebra over k. A linear mapping from A
into itself is said to be an (algebra) involution onA if it is an involution onA as a
ring. If k = C, then a conjugate-linear mapping on A is said to be a conjugate-
linear involution on A if it is an involution on A as a ring. In particular,
complex-conjugation may be considered as a conjugate-linear involution on C.

Let | · | be an absolute value function on k, and let N be a seminorm on A
with respect to | · | on k. Also let (22.1) be an algebra involution on A, which
may be conjugate-linear when k = C. A basic compatibility condition between
(22.1) and N is that (22.1) be bounded with respect to N , so that

N(x∗) ≤ C N(x)(22.9)

for some C ≥ 0 and every x ∈ A. This implies that

N(x) = N((x∗)∗) ≤ C N(x∗)(22.10)

for every x ∈ A, because of (22.3). In particular, if (22.9) holds with C = 1,
then

N(x∗) = N(x)(22.11)

for every x ∈ A.
Let (V, ⟨v, w⟩V ) be a real or complex Hilbert space, and consider the al-

gebra BL(V ) of bounded linear mappings from V into itself. The mapping
from T ∈ BL(V ) to its adjoint T ∗ defines an involution on BL(V ), which is
conjugate-linear in the complex case, as in Section 19. We have also seen that
this involution preserves the operator norm, as in (19.8).

Let A be an algebra over a field k again, let n be a positive integer, and let
Mn(A) be the algebra of n × n matrices with entries in A, as in the previous
section. Also let |·| be an absolute value function on k, and let N be a seminorm
on A with respect to | · | on k. Note that (22.5) defines a linear mapping from
Mn(A) into itself. If A ∈ Mn(A), then

N∞(At) = N∞(A),(22.12)

37



where N∞ is as defined in (21.2). Similarly,

N1,∞(At) = N∞,1(A),(22.13)

where N1,∞, N∞,1 are as defined in (21.3), (21.8), respectively.
Let (22.1) be an algebra involution on A, which may be conjugate-linear

when k = C, and suppose that (22.9) holds for some C ≥ 0. If A ∈ Mn(A),
and At∗ is as in (22.7), then

N∞(At∗) ≤ C N∞(A),(22.14)

N1,∞(At∗) ≤ C N∞,1(A),(22.15)

and
N∞,1(A

t∗) ≤ C N1,∞(A).(22.16)

If C = 1, so that (22.11) holds, then equality holds in (22.14), (22.15), and
(22.16) as well.

23 Infinite matrices

Let R be a ring, let X be a nonempty set, and let c(X,R) be the space of R-
valued functions on X. This is a commutative group with respect to pointwise
addition of functions, and a ring with respect to pointwise multiplication. As
before, the support of f ∈ c(X,R) is the set of x ∈ X such that f(x) ̸= 0,
and we let c00(X,R) be the set of f ∈ c(X,R) whose support has only finitely
many elements. In particular, c00(X,R) is a subgroup of c(X,R) with respect
to addition.

An element a of c(X ×X,R) may be considered as a matrix with entries in
R, using the elements of X as indices. Let a, b ∈ c00(X ×X,R) be given, and
put

c(x, y) =
∑
w∈X

a(x,w) b(w, y)(23.1)

for every x, y ∈ X. More precisely, for each x, y ∈ X, all but finitely many terms
in the sum on the right side of (23.1) are equal to 0, so that the sum defines
an element of R. Thus (23.1) defines an R-valued function on X ×X, and one
can check that this function has finite support too. The product of a and b
in c00(X × X,R) is defined to be c in this discussion, in analogy with matrix
multiplication. In particular, if n is a positive integer and X = {1, . . . , n},
then c00(X × X,R) = c(X × X,R) corresponds to the space Mn(R) of n × n
matrices with entries in R, and (23.1) corresponds to (21.1). One can check
that c00(X × X,R) is a ring with respect to this definition of multiplication,
and pointwise addition of functions.

Put

c00,1(X ×X,R) = {a ∈ c(X ×X,R) : for each y ∈ X, a(x, y) = 0

for all but finitely many x ∈ X}.(23.2)
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Equivalently, c00,1(X × X,R) consists of a ∈ c(X × X,R) such that for each
y ∈ X, a(x, y) has finite support as an R-valued function of x ∈ X. Note that
c00,1(X×X,R) is a subgroup of c(X×X,R) with respect to pointwise addition
of functions, and that

c00(X ×X,R) ⊆ c00,1(X ×X,R).(23.3)

Let a, b ∈ c00,1(X × X,R) be given, and let us check that (23.1) defines an
element of c00,1(X ×X,R) as well. To do this, let y ∈ X be given, and put

By = {w ∈ X : b(w, y) ̸= 0},(23.4)

so that By has only finitely many elements, because b ∈ c00,1(X ×X,R). Thus
(23.1) reduces to

c(x, y) =
∑

w∈By

a(x,w) b(w, y),(23.5)

which defines an element of R for every x ∈ X, and is interpreted as being equal
to 0 when By = ∅. We also have that (23.5) is equal to 0 for all but finitely
many x ∈ X, because a ∈ c00,1(X × X,R). This shows that (23.1) defines an
element of c00,1(X×X,R), and we take c to be the product of a and b, as before.
One can verify that c00,1(X ×X,R) is a ring with respect to pointwise addition
of functions and this definition of multiplication.

Similarly, put

c00,2(X ×X,R) = {a ∈ c(X ×X,R) : for each x ∈ X, a(x, y) = 0

for all but finitely many y ∈ X}.(23.6)

This is a subgroup of c(X×X,R) with respect to pointwise addition of functions,
and

c00(X ×X,R) ⊆ c00,2(X ×X,R),(23.7)

as before. If a, b ∈ c00,2(X × X,R), then one can check that (23.1) defines an
element of c00,2(X×X,R), using the same type of argument as in the preceding
paragraph. This makes c00,2(X × X,R) into a ring, with respect to pointwise
addition of functions, and this definition of multiplication.

If a ∈ c(X ×X,R), then let at ∈ c(X ×X,R) be defined by

at(x, y) = a(y, x)(23.8)

for every x, y ∈ X. Clearly
a 7→ at(23.9)

is a group isomorphism from c(X ×X,R) onto itself with respect to addition,
with

(at)t = a(23.10)

for every a ∈ c(X ×X,R). Of course, (23.9) corresponds to the transpose of a
matrix in this situation. Note that (23.9) maps c00(X ×X,R) onto itself, and
maps c00,1(X ×X,R) onto c00,2(X ×X,R).
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Put
c00,12(X ×X,R) = c00,1(X ×X,R) ∩ c00,2(X ×X,R),(23.11)

which is a subring of c00,1(X × X,R) and c00,2(X × X,R). Using (23.3) and
(23.7), we get that

c00(X ×X,R) ⊆ c00,12(X ×X,R).(23.12)

We also have that (23.9) maps c00,12(X × X,R) onto itself, because it maps
c00,1(X×X,R) onto c00,2(X×X,R). If R has a multiplicative identity element
e, then let δ ∈ c(X ×X,R) be defined by

δ(x, y) = e when x = y(23.13)

= 0 when x ̸= y.

This is an element of c00,12(X ×X,R), and the multiplicative identity element
in c00,1(X ×X,R) and c00,2(X ×X,R).

Let r 7→ r∗ be an involution on R. If a ∈ c(X × X,R), then let at∗ in
c(X ×X,R) be defined by

at∗(x, y) = (at(x, y))∗ = a(y, x)∗(23.14)

for every x, y ∈ X. Observe that

a 7→ at∗(23.15)

is a group isomorphism from c(X ×X,R) onto itself with respect to addition,
with

(at∗)t∗ = a(23.16)

for every a ∈ c(X ×X,R). As before, (23.15) maps c00(X ×X,R) onto itself,
c00,1(X ×X,R) onto c00,2(X ×X,R), and c00,12(X ×X,R) onto itself. If a, b
are elements of c00,1(X ×X,R), then it is easy to see that

(a b)t∗ = bt∗ at∗,(23.17)

where multiplication is defined as in (23.1). Of course, this also works when
a, b ∈ c00,2(X×X,R). In particular, (23.15) is an involution on c00,12(X×X,R),
and hence on c00(X ×X,R).

24 Double sums

Let X be a nonempty set, and let A be a commutative group, with the group
operations expressed additively. The space c(X,A) of A-valued functions on
X is also a commutative group with respect to pointwise addition of functions.
As usual, the support of f ∈ c(X,A) is defined to be the set of x ∈ X such
that f(x) ̸= 0. Let c00(X,A) be the set of f ∈ c(X,A) with finite support
in X, which is a subgroup of c(X,A). If f ∈ c00(X,A), then

∑
x∈X f(x) can
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be defined as an element of A, and this defines a group homomorphism from
c00(X,A) into A.

Let X, Y be nonempty sets, so that their Cartesian product X × Y is a
nonempty set as well. If f ∈ c00(X × Y,A), then

fX(x) =
∑
y∈Y

f(x, y)(24.1)

is defined as an element of A for each x ∈ X, and

fY (y) =
∑
x∈X

f(x, y)(24.2)

is defined as an element of A for each y ∈ Y . It is easy to see that fX and fY
have finite support as A-valued functions on X and Y , respectively, so that∑

x∈X

fX(x)(24.3)

and ∑
y∈Y

fY (y)(24.4)

are defined as elements of A too. The double sum∑
(x,y)∈X×Y

f(x, y)(24.5)

can also be defined as an element of A. Of course, the iterated sums (24.3) and
(24.4) are equal to (24.5).

Now let f be a nonnegative real-valued function on X×Y . The sums (24.1),
(24.2), and (24.5) can be defined as nonnegative extended real numbers, as in
Section 9. The iterated sums (24.3) and (24.4) can also be defined as nonnegative
extended real numbers, with the convention that the sum is automatically +∞
when any of the terms is +∞. One can check that (24.3), (24.4), and (24.5)
are the same in this situation too, by approximating all of these sums by finite
subsums.

Let k be a field with an absolute value function | · |, let V be a vector space
over k, and let N be a norm on V with respect to | · | on k. Suppose that V
is complete with respect to the metric associated to N . Let f be a V -valued
function on X × Y that is summable with respect to N . Thus the double sum
(24.5) can be defined as an element of V , as in Section 13. Observe that f(x, y)
is summable as a V -valued function on x ∈ X for each y ∈ Y , and similarly
that f(x, y) is summable as a V -valued function of y ∈ Y for each x ∈ X.
This permits us to define fX(x) and fY (y) as V -valued functions on X and Y ,
respectively, as in (24.1) and (24.2), and using the remarks in Section 13 again.
We also have that

N(fX(x)) ≤
∑
y∈Y

N(f(x, y))(24.6)
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for every x ∈ X, and

N(fY (y)) ≤
∑
x∈X

N(f(x, y))(24.7)

for every y ∈ Y . It follows that∑
x∈X

N(fX(x)) ≤
∑
x∈X

( ∑
y∈Y

N(f(x, y))
)
=

∑
(x,y)∈X×Y

N(f(x, y))(24.8)

and ∑
y∈Y

N(fY (y)) ≤
∑
y∈Y

( ∑
x∈X

N(f(x, y))
)
=

∑
(x,y)∈X×Y

N(f(x, y)),(24.9)

using the previous remarks about double sums of nonnegative real numbers. In
particular, fX is summable as a V -valued function on X, and fY is summable
as a V -valued function on Y . This means that the sums (24.3) and (24.4) can
also be defined as elements of V , as in Section 13. Under these conditions, one
can check that the iterated sums (24.3) and (24.4) are equal to the double sum
(24.5). More precisely, this was mentioned earlier when f has finite support in
X × Y , and otherwise one can approximate f by V -valued functions with finite
support in X × Y with respect to the ℓ1 norm.

Suppose now that N is an ultranorm on V , and that V is still complete with
respect to the ultrametric associated to N . Let f be a V -valued function on
X × Y that vanishes at infinity with respect to N . In this case, the double sum
(24.5) can be defined as an element of V , as in Section 13 again. It is easy to
see that f(x, y) vanishes at infinity as a V -valued function of x ∈ X for every
y ∈ Y , and as a function of y ∈ Y for every x ∈ X. Hence fX(x) and fY (y)
may be defined as V -valued functions on X and Y , respectively, as in (24.1)
and (24.2), using the remarks in Section 13. In this situation,

N(fX(x)) ≤ max
y∈Y

N(f(x, y))(24.10)

for every x ∈ X, and
N(fY (y)) ≤ max

x∈X
N(f(x, y))(24.11)

for every y ∈ Y . One can verify that the right side of (24.10) vanishes at infinity
as a nonnegative real-valued function of x ∈ X, because f(x, y) vanishes at
infinity on X×Y , by hypothesis. Similarly, the right side of (24.11) vanishes at
infinity as a nonnegative real-valued function of y ∈ Y . This implies that the
iterated sums (24.3) and (24.4) can be defined as elements of V , as in Section 13.
One can check that the iterated sums (24.3) and (24.4) are equal to the double
sum (24.5), by approximating f by V -valued functions with finite support in
X × Y with respect to the supremum norm.

25 A summability condition

Let k be a field with an absolute value function | · |, let A be an algebra over
k with a submultiplicative norm N with respect to | · | on k, and suppose that
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A is complete with respect to the metric associated to N . Also let X be a
nonempty set, and remember that the space c(X ×X,A) of A-valued functions
on X ×X is a vector space over k with respect topointwise addition and scalar
multiplication. If a is an element of c(X ×X,A), then

N∞(a) = sup
x,y∈X

N(a(x, y))(25.1)

and
N1,∞(a) = sup

y∈X

( ∑
x∈X

N(a(x, y))
)

(25.2)

are defined as nonnegative extended real numbers. Note that (25.1) and (25.2)
correspond to (21.2) and (21.3) when X = {1, . . . , n} for some positive integer
n. Of course, (25.1) is finite exactly when a is bounded on X × X, in which
case (25.1) is the same as the supremum norm of a. Put

M1,∞
X (A) = {a ∈ c(X ×X,A) : N1,∞(a) < ∞}.(25.3)

One can check that (25.3) is a linear subspace of c(X ×X,A), and that (25.2)
defines a norm on (25.3) with respect to | · | on k. Clearly

N∞(a) ≤ N1,∞(a)(25.4)

for every a ∈ c(X × X,A), so that (25.3) is contained in ℓ∞(X × X,A). One
can also verify that (25.3) is complete with respect to the metric associated to
(25.2), because A is complete by hypothesis.

Let a, b ∈ M1,∞
X (A) be given. We would like to put

c(x, y) =
∑
w∈X

a(x,w) b(w, y)(25.5)

for every x, y ∈ X, as in Section 23. Of course,∑
w∈X

N(a(x,w) b(w, y)) ≤
∑
w∈X

N(a(x,w))N(b(w, y))(25.6)

for every x, y ∈ X, because N is submultiplicative on A. The right side of
(25.6) is finite for every x, y ∈ X, because b ∈ M1,∞

X (A), and N(a(x,w)) is
bounded. Thus the right side of (25.5) may be defined as an element of A for
every x, y ∈ X, as in Section 13. Note that the norm of (25.5) with respect to
N is less than or equal to the left side of (25.6) for every x, y ∈ X. This implies
that ∑

x∈X

N(c(x, y)) ≤
∑
x∈X

( ∑
w∈X

N(a(x,w))N(b(w, y))
)

(25.7)

for every y ∈ X. It follows that∑
x∈X

N(c(x, y)) ≤
∑
w∈X

( ∑
x∈X

N(a(x,w))N(b(w, y))
)

(25.8)
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for every y ∈ X, by interchanging the order of summation on the right side of
(25.7), as in the previous section. Hence∑

x∈X

N(c(x, y)) ≤ N1,∞(a)
∑
w∈X

N(b(w, y)) ≤ N1,∞(a)N1,∞(b)(25.9)

for every y ∈ X, by the definition (25.2) of N1,∞. This shows that c ∈ M1,∞
X (A),

with
N1,∞(c) ≤ N1,∞(a)N1,∞(b).(25.10)

As before, we take c to be the product of a and b, which may be expressed as

c = a b.(25.11)

It is easy to see that this operation of multiplication is bilinear on M1,∞
X (A).

Now let a, b, c be any elements of M1,∞
X (A). In order to show that multi-

plication is associative on M1,∞
X (A), one would like to verify that∑

z∈X

( ∑
w∈X

a(x,w) b(w, z)
)
c(z, y) =

∑
w∈X

a(x,w)
( ∑

z∈X

b(w, z) c(z, y)
)

(25.12)

for every x, y ∈ X. More precisely, the left side of (25.12) is (a b) c evaluated
at x, y, and the right side is a (b c) evaluated at x, y. Equivalently, this means
that ∑

z∈X

( ∑
w∈X

a(x,w) b(w, z) c(z, y)
)
=

∑
w∈X

( ∑
z∈X

a(x,w) b(w, z) c(z, y)
)

(25.13)

for every x, y ∈ X, so that one would like to interchange the order of summation.
If x, y ∈ X, then∑

z∈X

( ∑
w∈X

N(a(x,w) b(w, z) c(z, y))
)

(25.14)

≤
∑
z∈X

( ∑
w∈X

N(a(x,w))N(b(w, z))N(c(z, y))
)

≤ N∞(a)
∑
z∈X

( ∑
w∈X

N(b(w, z))N(c(z, y))
)

≤ N∞(a)N1,∞(b)
∑
z∈X

N(c(z, y)) ≤ N∞(a)N1,∞(b)N1,∞(c).

This implies that for each x, y ∈ X,

a(x,w) b(w, z) c(z, y)(25.15)

is summable with respect to N as an A-valued function of w and z on X ×X.
This permits one to interchange the order of summation in (25.13), by the
remarks in the previous section.
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Suppose that A has a multiplicative identity element e, and let δ be the
A-valued function on X ×X defined by

δ(x, y) = e when x = y(25.16)

= 0 when x ̸= y.

Observe that
N1,∞(δ) = N(e).(25.17)

In particular, δ ∈ M1,∞
X (A), and it is easy to see that δ is the multiplicative

identity element in M1,∞
X (A), as in Section 23.

26 Another summability condition

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If a ∈ c(X ×X,A), then

N∞,1(a) = sup
x∈X

( ∑
y∈X

N(a(x, y))
)

(26.1)

is defined as a nonnegative extended real number, which corresponds to (21.8)
when X = {1, . . . , n} for some positive integer n. As before, one can verify that

M∞,1
X (A) = {a ∈ c(X ×X,A) : N∞,1(a) < ∞}(26.2)

is a linear subspace of c(X × X,A), and that (26.1) defines a norm on (26.2)
with respect to | · | on k. Note that

N∞(a) ≤ N∞,1(a)(26.3)

for every a ∈ c(X×X,A), whereN∞(a) is as in (25.1), so that (26.2) is contained
in ℓ∞(X × X,A). One can check that (26.2) is complete with respect to the
metric associated to (26.1), because A is supposed to be complete, as in the
preceding section.

If a, b ∈ M∞,1
X (A), then we would like to define c(x, y) as an element of A for

every x, y ∈ X as in (25.5). In this situation, the right side of (25.6) is finite for
every x, y ∈ X, because a ∈ M∞,1

X (A) and N(b(w, y)) is bounded. This permits
us to define c(x, y) as an element of A as in (25.5) for every x, y ∈ X, using the
remarks in Section 13 again. As before, the norm of c(x, y) with respect to N
is less than or equal to the left side of (25.6) for every x, y ∈ X. Thus∑

y∈X

N(c(x, y)) ≤
∑
y∈X

( ∑
w∈X

N(a(x,w))N(b(w, y))
)

(26.4)

for every x ∈ X. We can interchange the order of summation on the right side,
as in Section 24, to get that∑

y∈Y

N(c(x, y)) ≤
∑
w∈Y

( ∑
y∈X

N(a(x,w))N(b(w, y))
)

(26.5)
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for every x ∈ X. It follows that∑
y∈Y

N(c(x, y)) ≤ N∞,1(b)
∑
w∈X

N(a(x,w)) ≤ N∞,1(a)N∞,1(b)(26.6)

for every x ∈ X, by the definition (26.1) of N∞,1. Hence c ∈ M∞,1
X (A), with

N∞,1(c) ≤ N∞,1(a)N∞,1(b).(26.7)

We take c to be the product of a and b again, which may be expressed as a b.
This operation of multiplication is clearly bilinear on M∞,1

X (A).

In order to show that multiplication is associative on M∞,1
X (A), one should

check that (25.12) holds for every a, b, c ∈ M∞,1
X (A) and x, y ∈ X. This is the

same as (25.13), as before. In this situation, we observe that∑
w∈X

( ∑
z∈X

N(a(x,w) b(w, z) c(z, y))
)

(26.8)

≤
∑
w∈X

( ∑
z∈X

N(a(x,w))N(b(w, z))N(c(z, y))
)

≤ N∞(c)
∑
w∈X

( ∑
z∈X

N(a(x,w))N(b(w, z))
)

≤ N∞,1(b)N∞(c)
∑
w∈X

N(a(x,w)) ≤ N∞,1(a)N∞,1(b)N∞(c)

for every x, y ∈ X. It follows that (25.15) is summable with respect to N as an
A-valued function of w, z ∈ X for every x, y ∈ X. Thus one can interchange
the order of summation in (25.13), as in Section 24.

If A has a multiplicative identity element e, then we define δ ∈ c(X ×X,A)
as in (25.16). Clearly

N∞,1(δ) = N(e),(26.9)

so that δ ∈ M∞,1
X (A). It is easy to see that δ is the multiplicative identity

element in M∞,1
X (A), as before.

If a ∈ c(X ×X,A), then at ∈ c(X ×X,A) is defined by

at(x, y) = a(y, x)(26.10)

for every x, y ∈ X, as in Section 23. Of course,

a 7→ at(26.11)

is a linear mapping from c(X ×X,A) onto itself, and

(at)t = a(26.12)

for every a ∈ c(X ×X,A), as before. Observe that (26.11) maps ℓ∞(X ×X,A)
onto itself, with

N∞(at) = N∞(a)(26.13)

46



for every a ∈ c(X × X,A). Similarly, (26.11) maps M1,∞
X (A) onto M∞,1

X (A),
with

N∞,1(a
t) = N1,∞(a)(26.14)

for every a ∈ c(X ×X,A).
Let x 7→ x∗ be an involution on A, which may be conjugate-linear when

k = C. If a ∈ c(X ×X,A), then at∗ ∈ c(X ×X,A) is defined by

at∗(x, y) = (at(x, y))∗ = a(y, x)∗(26.15)

for every x, y ∈ X, as in Section 23 again. Clearly

a 7→ at∗(26.16)

is a linear mapping from c(X × X,A) onto itself when x 7→ x∗ is linear, and
otherwise (26.16) is conjugate-linear when k = C and x 7→ x∗ is conjugate-
linear. We also have that

(at∗)t∗ = a(26.17)

for every a ∈ c(X ×X,A), as before.
Suppose that there is a positive real number C such that

N(x∗) ≤ C N(x)(26.18)

for every x ∈ A. In this case, we have that

N∞(at∗) ≤ C N∞(a),(26.19)

N∞,1(a
t∗) ≤ C N1,∞(a),(26.20)

and
N1,∞(at∗) ≤ C N∞,1(a)(26.21)

for every a ∈ c(X×X,A). In particular, (26.16) maps ℓ∞(X×X,A) onto itself,
and M1,∞

X (A) onto M∞,1
X (A). If C = 1, then equality holds in (26.18), as in

Section 22. This implies that equality holds in (26.19), (26.20), and (26.21) as
well.

If a, b ∈ M1,∞
X (A), then

(a b)t∗ = bt∗ at∗,(26.22)

where mutliplication is defined as in (25.5), as before. This also works when
a, b ∈ M∞,1

X (A). Note that

M1,∞
X (A) ∩M∞,1

X (A)(26.23)

is a subalgebra of M1,∞
X (A) and M∞,1

X (A), and that (26.16) maps (26.23) onto
itself, by the remarks in the preceding paragraph. It follows that (26.16) defines
an algebra involution on (26.23), which is conjugate-linear when k = C and
x 7→ x∗ is conjugate-linear on A.
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27 A c0 condition

Let k be a field with an absolute value function | · | again, let A be an algebra
over k with a submultiplicative norm N with respect to | · | on k, and let X be
a nonempty set. Put

c0,1(X ×X,A) = {a ∈ ℓ∞(X ×X,A) : for each y ∈ X, a(x, y) vanishes

at infinity as a function of x ∈ X}.(27.1)

More precisely, this means that a(x, y) vanishes at infinity with respect to N
as an A-valued function of x ∈ X for each y ∈ X, so that a(·, y) ∈ c0(X,A)
for every y ∈ X. It is easy to see that (27.1) is a closed linear subspace of
ℓ∞(X × X,A) with respect to the supremum metric, because c0(X,A) is a
closed linear subspace of ℓ∞(X,A). If a is an element of the space M1,∞

X (A)
defined in (25.3), then a ∈ ℓ∞(X×X,A), and a(·, y) ∈ ℓ1(X,A) for every y ∈ X.
This implies that a(·, y) ∈ c0(X,A) for every y ∈ X, so that a ∈ c0,1(X×X,A).
Of course, if X has only finitely many elements, then (27.1) is the same as the
space c(X ×X,A) of all A-valued functions on X ×X.

Let us suppose from now on in this section that N is an ultranorm on
A, and that A is complete with respect to the corresponding ultrametric. If
a, b ∈ c0,1(X ×X,A), then we would like to put

c(x, y) =
∑
w∈X

a(x,w) b(w, y)(27.2)

for every x, y ∈ X, as before. Observe that a(x,w) b(w, y) vanishes at infinity
as a function of w ∈ X for every x, y ∈ X, because a(x,w) is bounded, and
b(w, y) vanishes at infinity as a function of w ∈ X, by hypothesis. This implies
that the sum on the right side of (27.2) may be defined as an element of A for
every x, y ∈ X, as in Section 13. We also have that

N(c(x, y)) ≤ max
w∈X

N(a(x,w) b(w, y)) ≤ max
w∈X

(N(a(x,w))N(b(w, y)))(27.3)

for every x, y ∈ X in this situation. In particular, it follows that c(x, y) is
bounded on X ×X, with

N∞(c) ≤ N∞(a)N∞(b),(27.4)

where N∞ is the supremum ultranorm, as in (25.1). We would like to check
that c ∈ c0,1(X ×X,A). To do this, let y ∈ X be given, and let us verify that
c(x, y) vanishes at infinity as a function of x ∈ X.

If E is a nonempty finite subset of X, then

cE(x, y) =
∑
w∈E

a(x,w) b(w, y)(27.5)

vanishes at infinity as a function of x ∈ X, because a(x,w) vanishes at infinity
as a function of x ∈ X for every w ∈ X, by hypothesis. Of course,

c(x, y)− cE(x, y) =
∑

w∈X\E

a(x,w) b(w, y),(27.6)

48



where the sum on the right is defined as an element of A for the same reasons
as before. It follows that

N(c(x, y)− cE(x, y)) ≤ max
w∈X\E

N(a(x,w) b(w, y))(27.7)

≤ max
w∈X\E

(N(a(x,w))N(b(w, y)))

≤ N∞(a)
(

max
w∈X\E

N(b(w, y))
)

for every x ∈ X. We can choose E so that the right side of (27.7) is as small
as we want, because b(w, y) vanishes at infinity as a function of w ∈ X. This
implies that c(x, y) vanishes at infinity as a function of x ∈ X, because it can
be approximated uniformly by functions that vanish at infinity on X.

As in the earlier situations, we take (27.2) to be the product of a and b in
c0,1(X×X,A), which may be expressed as a b. This defines a bilinear operation
of multiplication on c0,1(X ×X,A), which we would like to show is associative.
Let a, b, c ∈ c0,1(X ×X,A) be given, and let us verify that∑

z∈X

( ∑
w∈X

a(x,w) b(w, z)
)
c(z, y) =

∑
w∈X

( ∑
z∈X

b(w, z) c(z, y)
)
c(z, y)(27.8)

for every x, y ∈ X. As before, this is the same as saying that∑
z∈X

( ∑
w∈X

a(x,w) b(w, z) c(z, y)
)
=

∑
w∈X

( ∑
z∈X

a(x,w) b(w, z) c(z, y)
)

(27.9)

for every x, y ∈ X, so that we want to interchange the order of summation. Let
x, y ∈ X be given, and let us check that

a(x,w) b(w, z) c(z, y)(27.10)

vanishes at infinity with respect to N as an A-valued function of w and z on
X ×X. Observe that

N(a(w, x) b(w, z) c(z, y)) ≤ N(a(x,w))N(b(w, z))N(c(z, y))(27.11)

≤ N∞(a)N(b(w, z))N(c(z, y))

for every w, z ∈ X. Because c(z, y) vanishes at infinity as a function of z ∈ X,
there are finite subsets E of X such that N(c(z, y)) is as small as we want when
z ∈ X \E. This implies that the right side of (27.11) is as small as we want for
every w ∈ X and z ∈ X \ E, because b(w, z) is bounded on X ×X. If z ∈ E,
then the right side of (27.11) is as small as we want for all but finitely many
w ∈ X, because b(w, z) vanishes at infinity as a function of w ∈ X. It follows
that (27.10) vanishes at infinity as a function of w and z on X ×X, as desired.
This permits us to interchange the order of summation in (27.9), as in Section
24.
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If A has a multiplicative identity element e, then we let δ(x, y) be the A-
valued function on X × X equal to e when x = y, and to 0 when x ̸= y, as
before. Note that δ ∈ c0,1(X ×X,A), with

N∞(δ) = N(e).(27.12)

In fact, δ is the multiplicative identity element in c0,1(X ×X,A).

28 Another c0 condition

Let k be a field with an absolute value function | · |, let A be an algebra over
k with a submultiplicative norm N with respect to | · | on k, and let X be a
nonempty set, as in the preceding section. Put

c0,2(X ×X,A) = {a ∈ ℓ∞(X ×X,A) : for each x ∈ X, a(x, y) vanishes

at infinity as a function of y ∈ X}.(28.1)

As before, this means that a(x, y) vanishes at infinity with respect to N as
an A-valued function of y for each x ∈ X, so that a(x, ·) ∈ c0(X,A) for every
x ∈ X. This also defines a closed linear subapce of ℓ∞(X×X,A) with respect to
the supremum metric, because c0(X,A) is a closed linear subspace of ℓ∞(X,A).
The space M∞,1

X (A) defined in (26.2) is contained in (28.1), because ℓ1(X,A)
is contained in c0(X,A).

As in the previous section, we suppose from now on in this section that N is
an ultranorm on A, and that A is complete with respect to the corresponding
ultrametric. Let a, b ∈ c0,2(X ×X,A) be given, and let us define c(x, y) as an
element of A for every x, y ∈ X as in (27.2) again. More precisely, for each
x, y ∈ X, a(x,w) b(w, y) vanishes at infinity as a function of w ∈ X, because
a(x,w) vanishes at infinity as a function of w ∈ X, and b(w, y) is bounded, by
hypothesis. Hence the sum on the right side of (27.2) may be defined as an
element of A, as in Section 13. The simple estimates (27.3) and (27.4) also hold
in this situation, for the same reasons as before.

In order to check that c ∈ c0,2(X × X,A), let x ∈ X be given, and let us
verify that c(x, y) vanishes at infinity as a function of y ∈ X. If E is a nonempty
finite subset of X and cE(x, y) is defined as in (27.5), then cE(x, y) vanishes at
infinity as a function of y ∈ X, because b(w, y) vanishes at infinity as a function
of y ∈ X for every w ∈ X, by hypothesis. Observe that

N(c(x, y)− cE(x, y)) ≤
(

max
w∈X\E

N(a(x,w))
)
N∞(b)(28.2)

for every y ∈ X, for essentially the same reasons as for (27.7). As before, we
can choose E so that the right side of (28.2) is as small as we want, because
a(x,w) vanishes at infinity as a function of w ∈ X, by hypothesis. It follows
that c(x, y) vanishes at infinity as a function of y ∈ X, because it can be
approximated uniformly by functions that vanish at infinity on X.
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As usual, we take (27.2) to be the product of a and b in c0,2(X×X,A), which
may be expressed as a b. To show that this bilinear operation of multiplication
is associative, we should check that (27.8) holds for every a, b, c ∈ c0,2(X×X,A)
and x, y ∈ X. It suffices to verify that

a(x,w) b(w, z) c(z, y)(28.3)

vanishes at infinity with respect to N as an A-valued function of w, z ∈ X, as
before. In this case, we use the fact that

N(a(x,w) b(w, z) c(z, y)) ≤ N(a(x,w))N(b(w, z))N(c(z, y))(28.4)

≤ N(a(x,w))N(b(w, z))N∞(c)

for every w, z ∈ X. Because a(x,w) vanishes at infinity as a function of w ∈ X,
there are finite sets E ⊆ X such that N(a(x,w)) is as small as we want when
w ∈ X \ E, which implies that the right side of (28.4) is as small as we want
when w ∈ X \E and z ∈ X, because b(w, z) is bounded. If w ∈ E, then the right
side of (28.4) is as small as we want for all but finitely many z ∈ X, because
b(w, z) vanishes at infinity as a function of z ∈ X. Hence (28.3) vanishes at
infinity as a function of w, z ∈ X, which permits us to interchange the order of
summation in (27.9), as in Section 24.

If A has a multiplicative identity element e, then we define δ ∈ c(X ×X,A)
as in the previous section. It is easy to see that δ ∈ c0,2(X ×X,A), and that δ
is the multiplicative identity element in c0,2(X ×X,A).

As before, if a ∈ c(X ×X,A), then at ∈ c(X ×X,A) is defined by

at(x, y) = a(y, x)(28.5)

for every x, y ∈ X. Remember that

a 7→ at(28.6)

is a linear mapping from c(X ×X,A) onto itself, and that

(at)t = a(28.7)

for every a ∈ c(X ×X,A). We have also seen that (28.6) maps ℓ∞(X ×X,A)
isometrically onto itself. Observe that (28.6) maps c0,1(X ×X,A) as defined in
(27.1) onto c0,2(X ×X,A).

Let x 7→ x∗ be an involution onA. If a ∈ c(X×X,A), then at∗ ∈ c(X×X,A)
is defined by

at∗(x, y) = (at(x, y))∗ = a(y, x)∗(28.8)

for every x, y ∈ X, as before. Remember that

a 7→ at∗(28.9)

is a linear mapping from c(X ×X,A) onto itself, and that

(at∗)t∗ = a(28.10)
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for every a ∈ c(X ×X,A).
Suppose that there is a positive real number C such that

N(x∗) ≤ C N(x)(28.11)

for every x ∈ A, so that
N∞(at∗) ≤ C N∞(a)(28.12)

for every a ∈ c(X ×X,A), as in (26.19). Thus (28.9) maps ℓ∞(X ×X,A) onto
itself, and it is easy to see that (28.9) maps c0,1(X×X,A) onto c0,2(X×X,A).
If a, b ∈ c0,1(X ×X,A), then

(a b)t∗ = bt∗ at∗,(28.13)

where multiplication is defined as in (27.2), and this also works when a and b
are elements of c0,2(X ×X,A). Put

c0,12(X ×X,A) = c0,1(X ×X,A) ∩ c0,2(X ×X,A),(28.14)

which is a subalgebra of c0,1(X ×X,A) and c0,2(X ×X,A). Under these con-
ditions, (28.10) maps (28.14) onto itself, and defines an algebra involution on
(28.14).

Part III

Lipschitz mappings and power
series

29 Lipschitz mappings

Let (X, dX) and (Y, dY ) be metric spaces. A mapping f from X into Y is said
to be Lipschitz if there is a nonnegative real number C such that

dY (f(x), f(x
′)) ≤ C dX(x, x′)(29.1)

for every x, x′ ∈ X. In this case, we may also say that f is Lipschitz with
constant C. Note that Lipschitz mappings are uniformly continuous. A mapping
f from X to Y is Lipschitz with constant C = 0 if and only if f is constant as
a mapping on X.

Let x0 ∈ X be given, and put

f0(x) = dX(x, x0)(29.2)

for every x ∈ X. Observe that

f0(x) ≤ f0(x
′) + dX(x, x′)(29.3)
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for every x, x′ ∈ X, by the triangle inequality. Equivalently,

f0(x)− f0(x
′) ≤ dX(x, x′)(29.4)

for every x, x′ ∈ X, and the same inequality holds with the roles of x and x′

interchanged. This implies that

|f0(x)− f0(x
′)| ≤ dX(x, x′)(29.5)

for every x, x′ ∈ X, using the standard absolute value function on R on the left
side of the inequality. Thus f0 is Lipschitz with constant C = 1 as a mapping
from X into R, using the standard Euclidean metric on R.

Let (Z, dZ) be another metric space, and suppose that f1 is a Lipschitz
mapping from X into Y with constant C1 ≥ 0, and that f2 is a Lipschitz
mapping from Y into Z with constant C2 ≥ 0. If x, x′ ∈ X, then

dZ(f2(f1(x)), f2(f1(x
′))) ≤ C2 dY (f1(x), f1(x

′)) ≤ C1 C2 dX(x, x′).(29.6)

Thus the composition f2 ◦f1 of f1 and f2 is Lipschitz as a mapping from X into
Z, with constant C1 C2.

Let f be a Lipschitz mapping from X into Y , and consider

inf{C ≥ 0 : (29.1) holds},(29.7)

where more precisely the infimum is taken over all nonnegative real numbers C
for which (29.1) holds. This is the infimum of a nonempty set of nonnegative
real numbers, by hypothesis, so that the infimum exists and is nonnegative too.
One can check that f is Lipschitz with constant equal to (29.7), so that the
infimum is automatically attained. Equivalently, if X has at least two elements,
then (29.7) is equal to

sup

{
dY (f(x), f(x

′))

dX(x, x′)
: x, x′ ∈ X, x ̸= x′

}
.(29.8)

If X has only one element, then (29.7) is always equal to 0.
Let k be a field with an absolute value function | · |. Note that |x| is Lipschitz

with constant C = 1 as a real-valued function on k, with respect to the metric
on k associated to | · |, and the standard Euclidean metric on R. This follows
from the earlier remarks about (29.2), with X = k and x0 = 0. Similarly, if V is
a vector space over k with norm N with respect to | · | on k, then N is Lipschitz
with constant C = 1 as a real-valued function on V with respect to the metric
associated to N .

30 Lipschitz seminorms

Let (X, dX) be a nonempty metric space, let k be a field with an absolute value
function | · |, and let W be a vector space over k with a seminorm NW with
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respect to |·| on k. As before, a mapping f from X intoW is said to be Lipschitz
if there is a nonnegative real number C such that

NW (f(x)− f(x′)) ≤ C dX(x, x′)(30.1)

for every x, x′ ∈ X. If NW is a norm on W , then this corresponds exactly to
(29.1), with Y = W , and dY taken to be the metric associated to NW . We may
also say that f is Lipschitz with constant C when (30.1) holds. In particular,
if f is a constant mapping from X into W , then f is Lipschitz with constant
C = 0.

Let Lip(X,W ) be the space of Lipschitz mappings from X into W . If f is
an element of Lip(X,W ), then put

∥f∥Lip = ∥f∥Lip(X,W ) = inf{C ≥ 0 : (30.1) holds},(30.2)

where more precisely the infimum is taken over all nonnegative real numbers C
for which (30.1) holds. One can check that f is Lipschitz with constant equal to
(30.2), as in the previous section. Equivalently, if X has at least two elements,
then

∥f∥Lip = sup

{
NW (f(x)− f(y))

dX(x, x′)
: x, x′ ∈ X,x ̸= x′

}
,(30.3)

as before. If X has only one element, then (30.2) is automatically equal to 0.
One can verify that Lip(X,W ) is a vector space over k, with respect to

pointwise addition and scalar multiplication. Moreover, (30.2) defines a semi-
norm on Lip(X,W ) with respect to | · | on k. If NW is a semi-ultranorm on W ,
then (30.2) is a semi-ultranorm on Lip(X,W ). If NW is a norm on W , then
∥f∥Lip = 0 if and only if f is a constant mapping from X into W .

Let V be another vector space over k, and let NV be a norm on V with
respect to | · | on k. If NW is a norm on W and T is a bounded linear mapping
from V into W , then T is Lipschitz with respect to the metrics on V and W
associated to NV and NW , respectively. More precisely, if (11.1) holds for some
C ≥ 0, then (11.2) says exactly that T is Lipschitz with constant C. In this
situation, the operator norm ∥T∥op,VW of T corresponds exactly to the Lipschitz
seminorm of T , as in (30.2).

If X and Y are topological spaces, then the space of continuous mappings
from X into Y may be denoted C(X,Y ), as usual. Suppose that NW is a norm
on W , so that W may be considered as a topological space with respect to
the topology determined by the metric associated to NW . If X is a nonempty
topological space, then the space C(X,W ) of continuous mappings from X into
W is a vector space over k with respect to pointwise addition and scalar mul-
tiplication. Similarly, if (X, dX) and (Y, dY ) are metric spaces, then the space
of uniformly continuous mappings from X into Y may be denoted UC(X,Y ),
and the space of Lipschitz mappings from X into Y may be denoted Lip(X,Y ).
Thus

Lip(X,Y ) ⊆ UC(X,Y ) ⊆ C(X,Y ).(30.4)

If X is a nonempty metric space, then it is easy to see that UC(X,W ) is a
linear subspace of C(X,W ). In this case, Lip(X,W ) may be considered as a
linear subspace of UC(X,W ).
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31 Bounded continuous functions

Let (Y, dY ) be a metric space, and let E be a subset of Y . As usual, E is said
to be bounded in Y if there is a finite upper bound for d(y, z) with y, z ∈ E. If
y0 is any element of Y , then E is bounded in Y if and only if E is contained
in a ball in Y centered at y0 with finite radius. If E is compact with respect to
the topology determined on Y by dY , then E is bounded in Y .

A mapping f from a set X into Y is said to be bounded if f(X) is a bounded
set in Y . Let B(X,Y ) be the set of bounded mappings from X into Y . If
f, g ∈ B(X,Y ), then dY (f(x), g(x)) is bounded as a nonnegative real-valued
function on X. If X ̸= ∅, then it follows that

θ(f, g) = sup
x∈X

dY (f(x), g(x))(31.1)

is defined as a nonnegative real number. One can check that (31.1) defines a
metric on B(X,Y ), which is the supremum metric.

If {fj}∞j=1 is a sequence of elements of B(X,Y ), and f ∈ B(X,Y ), then
{fj}∞j=1 converges to f with respect to the supremum metric if and only if
{fj}∞j=1 converges to f uniformly on X with respect to dY on Y . Let {fj}∞j=1

be any sequence of mappings from X into Y that converges to a mapping f
from X into Y uniformly on X. If fj is bounded for each j, then it is easy to
see that f is bounded as well.

If Y is complete with respect to dY , then it is well known that B(X,Y )
is complete with respect to the supremum metric. More precisely, if {fj}∞j=1

is a Cauchy sequence in B(X,Y ) with respect to the supremum metric, then
{fj(x)}∞j=1 is a Cauchy sequence in Y for each x ∈ X. This implies that
{fj(x)}∞j=1 converges to an element f(x) in Y for each x ∈ X, because Y is
complete. One can verify that {fj}∞j=1 converges to f uniformly on X, using
the fact that {fj}∞j=1 is a Cauchy sequence with respect to the supremum metric.
It follows that f is bounded too, as in the preceding paragraph.

Let X be a nonempty topological space, and let

Cb(X,Y ) = C(X,Y ) ∩B(X,Y )(31.2)

be the space of bounded continuous mappings from X into Y . It is well known
that Cb(X,Y ) is a closed set in B(X,Y ) with respect to the supremum metric.
If X is compact, then Cb(X,Y ) is the same as C(X,Y ), because continuous
mappings send compact sets to compact sets.

Similarly, if (X, dX) is a nonempty metric space, then let

UCb(X,Y ) = UC(X,Y ) ∩B(X,Y )(31.3)

be the space of bounded uniformly continuous mappings from X into Y . It is
also well known that UCb(X,Y ) is a closed set in B(X,Y ) with respect to the
supremum metric. If X is compact, then another well-known theorem states
that continuous mappings from X into Y are uniformly continuous.
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Let k be a field with an absolute value function | · |, and let W be a vector
space over k with a norm NW with respect to | · | on k. If X is a nonempty
set, then B(X,W ) is the same as the space ℓ∞(X,W ) discussed in Section 8.
This is a vector space over k with respect to pointwise addition and scalar mul-
tiplication, and the supremum metric on this space is the same as the metric
associated to the supremum norm discussed earlier. If X is a nonempty topo-
logical space, then Cb(X,W ) is a linear subspace of ℓ∞(X,W ). Similarly, if
(X, dX) is a nonempty metric space, then UCb(X,W ) is a linear subspace of
Cb(X,W ).

Let A be an algebra over k. If X is a nonempty set, then the space c(X,A)
of A-valued functions on X is an algebra over k with respect to pointwise mul-
tiplication of functions. If A has a multiplicative identity element e, then the
constant function on X equal to e at every point in X is the multiplicative
identity element in c(X,A).

Let N be a a submultiplicative norm on A with respect to | · | on k. It is easy
to see that ℓ∞(X,A) is a subalgebra of c(X,A). Let ∥ · ∥∞ be the supremum
norm on ℓ∞(X,A) corresponding to N on A, as in Section 8. If f, g ∈ ℓ∞(X,A),
then

∥f g∥∞ = sup
x∈X

N(f(x) g(x)) ≤ sup
x∈X

(N(f(x))N(g(x))) ≤ ∥f∥∞ ∥g∥∞,(31.4)

so that ∥ · ∥∞ is submultiplicative on ℓ∞(X,A).
If X is a nonempty topological space, then the space C(X,A) of continuous

mappings from X into A is subalgebra of c(X,A). Similarly,

Cb(X,A) = C(X,A) ∩ ℓ∞(X,A)(31.5)

is a subalgebra of ℓ∞(X,A). The supremum norm of f ∈ Cb(X,A) may also be
denoted ∥f∥sup.

Let (X, dX) be a nonempty metric space, and let f, g ∈ UCb(X,A) be given.
Observe that

f(x) g(x)− f(y) g(y) = (f(x)− f(y)) g(x) + f(y) (g(x)− g(y))(31.6)

for every x, y ∈ X, so that

N(f(x) g(x)− f(y) g(y))(31.7)

≤ N(f(x)− f(y))N(g(x)) +N(f(y))N(g(x)− g(y))

≤ N(f(x)− f(y)) ∥g∥sup + ∥f∥sup N(g(x)− g(y))

for every x, y ∈ X. Using this, it is easy to see that f g is uniformly continuous
on X, so that UCb(X,A) is a subalgebra of Cb(X,A). Similarly, if N is an
ultranorm on A, then

N(f(x) g(x)− f(y) g(y))(31.8)

≤ max(N(f(x)− f(y))N(g(x)), N(f(y))N(g(x)− g(y)))

≤ max(N(f(x)− f(y)) ∥g∥sup, ∥f∥sup N(g(x)− g(y)))

for every x, y ∈ X.
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32 Bounded Lipschitz functions

Let k be a field with an absolute value function | · |, and let A be an algebra over
k with a submultiplicative norm N with respect to | · | on k. Also let (X, dX)
be a nonempty metric space, and let

Lipb(X,A) = Lip(X,A) ∩ ℓ∞(X,A)(32.1)

be the space of A-valued functions on X that are bounded and Lipschitz. If
f, g ∈ Lipb(X,A), then one can check that f g is Lipschitz on X as well, using
(31.7). To make this more precise, let ∥ · ∥Lip be the seminorm on Lip(X,A)
defined in Section 30, and let ∥ · ∥sup be the supremum norm on Cb(X,A), as
in the previous section. If f, g ∈ Lipb(X,A), then it is easy to see that

∥f g∥Lip ≤ ∥f∥Lip ∥g∥sup + ∥f∥sup ∥g∥Lip,(32.2)

using (31.7). If N is an ultranorm on A, then one can verify that

∥f g∥Lip ≤ max(∥f∥Lip ∥g∥sup, ∥f∥sup ∥g∥Lip),(32.3)

using (31.8). Thus Lipb(X,A) is a subalgebra of UCb(X,A).
If r is a nonnegative real number, then

∥f∥sup + r ∥f∥Lip(32.4)

and
max(∥f∥sup, r ∥f∥Lip)(32.5)

define norms on Lipb(X,A) with respect to | · | on k. One can check that (32.4)
is submultiplicative on Lipb(X,A) for every r ≥ 0, using (32.2). If N is an
ultranorm on A, then (32.5) is submultiplicative on Lipb(X,A) too, because of
(32.3). In this case, (32.5) is an ultranorm on Lipb(X,A), because ∥f∥sup is an
ultranorm on Lipb(X,A), and ∥f∥Lip is a semi-ultranorm on Lip(X,A), as in
Section 30.

Note that (32.5) is less than or equal to (32.4) for every r ≥ 0, and that
(32.4) is less than or equal to two times (32.5). Of course, (32.4) and (32.5)
both increase monotonically in r. If 0 < r ≤ r′ < ∞, then the analogue of
(32.4) with r replaced by r′ is bounded by r′/r times (32.4), and similarly for
(32.5).

If A is complete with respect to the metric associated to N , and r > 0, then
Lipb(X,A) is complete with respect to the metric associated to (32.4) or (32.5).
To see this, let {fj}∞j=1 be a Cauchy sequence in Lipb(X,A) with respect to
the metric associated to (32.4) or (32.5). In particular, {fj}∞j=1 is a Cauchy
sequence with respect to the supremum metric, and hence converges uniformly
to a bounded A-valued function f on X, as in the previous section. One can
check that f is Lipschitz on X, because Cauchy sequences are bounded, so that
∥fj∥Lip is bounded. One can use the Cauchy condition in Lipb(X,A) again to
get that {fj}∞j=1 converges to f with respect to the Lipschitz seminorm under
these conditions.
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Let f ∈ Lipb(X,A) be given, so that f(x)j is an element of Lipb(X,A) for
each j ∈ Z+. One can check that

∥f j∥Lip ≤ j ∥f∥j−1
sup ∥f∥Lip(32.6)

for every j ≥ 1, using (32.2) and induction. If N is an ultranorm on A, then

∥f j∥Lip ≤ ∥f∥j−1
sup ∥f∥Lip(32.7)

for every j ≥ 1, because of (32.3).

33 Polynomials

Let k be a field, and let a0, . . . , an be n+ 1 elements of k for some nonnegative
integer n. Also let T be an indeterminate, so that

f(T ) =

n∑
j=0

aj T
j(33.1)

is a formal polynomial in T with coefficients in k. As in [1, 5], we use upper-
case letters like T for indeterminates, and lower-case letters for elements of k,
or elements of algebras over k. Let A be an algebra over k, and suppose that A
has a multiplicative identity element e. If x ∈ A, then

f(x) =

n∑
j=0

aj x
j(33.2)

defines an element of A, where xj is interpreted as being equal to e when j = 0.
Let | · | be an absolute value function on k, and let N be a submultiplicative

norm on A such that N(e) = 1. Observe that

N(f(x)) ≤
n∑

j=0

|aj |N(xj) ≤
n∑

j=0

|aj |N(x)j(33.3)

for every x ∈ A. If N is an ultranorm on A, then

N(f(x)) ≤ max
0≤j≤n

(|aj |N(xj)) ≤ max
0≤j≤n

(|aj |N(x)j)(33.4)

for every x ∈ A. Of course, (33.2) defines a continuous mapping from A into
itself, with respect to the topology determined on A by the metric associated
to N .

Let r be a positive real number, and let

Br = B(0, r) = {x ∈ A : N(x) ≤ r}(33.5)

be the closed ball in A centered at 0 with radius r with respect to the metric
associated to N . We may consider Br as a metric space, using the restriction
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of the metric on A associated to N to Br. Let ∥ · ∥Lip(Br,A) be the seminorm

defined on Lip(Br,A) as in Section 30. If j is a nonnegative integer, then the
restriction of xj to Br defines a Lipschitz function on Br with values in A, with

∥xj∥Lip(Br,A) ≤ j rj−1.(33.6)

More precisely, if j = 0, then xj is the constant function equal to e, which is
Lipschitz with constant 0. If j = 1, then xj is the identity mapping, which is
Lipschitz with constant 1. If j ≥ 2, then (33.6) follows from (32.6), because the
supremum norm of x on Br is less than or equal to r. If N is an ultranorm on
A, then we get that

∥xj∥Lip(Br,A) ≤ rj−1(33.7)

for every j ≥ 1, using (32.7).
Similarly, the restriction of (33.2) to x ∈ Br defines a Lipschitz function on

Br with values in A. Using (33.6), we get that

∥f∥Lip(Br,A) ≤
n∑

j=0

|aj | ∥xj∥Lip(Br,A) ≤
n∑

j=1

j |aj | rj−1.(33.8)

If N is an ultranorm on A, then ∥·∥Lip(Br,A) is a semi-ultranorm on Lip(Br,A),

as in Section 30. In this case, we have that

∥f∥Lip(Br,A) ≤ max
0≤j≤n

(|aj | ∥xj∥Lip(Br,A)) ≤ max
1≤j≤n

(|aj | rj−1),(33.9)

using (33.7) in the second step. Of course, the right sides of (33.8) and (33.9)
should be interpreted as being equal to 0 when n = 0.

34 Power series

Let k be a field, and let a0, a1, a2, a3, . . . be a sequence of elements of k. If T is
an indeterminate, then

f(T ) =

∞∑
j=0

aj T
j(34.1)

is a formal power series in T with coefficients in k. We would like to consider
associated functions on algebras over k, under suitable convegence conditions.
Let | · | be an absolute value function on k, and let A be an algebra over k with
a submultiplicative norm N with respect to | · | on k. Suppose that A has a
multiplicative identity element e, with N(e) = 1, and that A is complete with
respect to the metric associated to N .

Let r be a positive real number, and suppose for the moment that

∞∑
j=0

|aj | rj(34.2)
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converges. If x ∈ A and N(x) ≤ r, then

∞∑
j=0

N(aj x
j) ≤

∞∑
j=0

|aj |N(x)j ≤
∞∑
j=0

|aj | rj .(34.3)

Under these conditions, we put

f(x) =

∞∑
j=0

aj x
j ,(34.4)

where the convergence of the series on the right follows from the remarks in
Section 10. We also have that

N(f(x)) ≤
∞∑
j=0

N(aj x
j) ≤

∞∑
j=0

|aj | rj(34.5)

when N(x) ≤ r. Let Br be the closed ball in A centered at 0 with radius r, as
in (33.5). In this situation, the partial sums of the series on the right side of
(34.4) converge uniformly on Br, by the well-known criterion of Weierstrass. It
follows that (34.4) is uniformly continuous on Br, because the partial sums are
uniformly continuous on Br.

Let us suppose for the rest of the section that N is an ultranorm on A. Let
r be a positive real number again, and suppose for the moment that

lim
j→∞

|aj | rj = 0.(34.6)

If x ∈ A and N(x) ≤ r, then

N(aj x
j) = |aj |N(xj) ≤ |aj |N(x)j ≤ |aj | rj(34.7)

for each j, so that
lim
j→∞

N(aj x
j) = 0.(34.8)

This implies that the series on the right side of (34.4) converges in A, as in
Section 10. If f(x) is the value of the sum, as before, then

N(f(x)) ≤ max
j≥0

N(aj x
j) ≤ max

j≥0
(|aj | rj).(34.9)

Suppose now that |aj | rj has a finite upper bound, instead of (34.6). If
x ∈ A, then

N(aj x
j) ≤ |aj |N(x)j = (|aj | rj) (N(x)/r)j(34.10)

≤
(
sup
l≥0

(|al| rl)
)
(N(x)/r)j

for each j. This implies that (34.8) holds when N(x) < r, so that the series on
the right side of (34.4) converges in A, as in Section 10. If f(x) is the value of
the sum again, then

N(f(x)) ≤ max
j≥0

N(aj x
j) ≤ sup

j≥0
(|aj | rj).(34.11)
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35 Lipschitz conditions

Let k be a field with an absolute value function | · |, and let A be an algebra
over k with a submultiplicative norm N with respect to | · | on k. Suppose that
A has a multiplicative identity element e, and that A is complete with respect
to the metric associated to N . To be consistent with the previous sections, one
might ask that N(e) = 1, but this will not really be needed in this section.
This was also not needed for the Lipschitz conditions mentioned in Section 33.
Let f(T ) =

∑∞
j=0 aj T

j be a formal power series in an indeterminate T with
coefficients in k, and let a positive real number r be given. As in (33.5), we
let Br be the closed ball in A centered at 0 with radius r with respect to N .
Similarly, let

Br = B(0, 1) = {x ∈ A : N(x) < r}(35.1)

be the open ball in A centered at 0 with radius r with respect to N .
Suppose for the moment that

∞∑
j=1

j |aj | rj(35.2)

converges, which implies that (34.2) converges. Thus the series on the right side
of (34.4) converges absolutely for every x ∈ A with N(x) ≤ r, as before, so that
(34.4) defines an A-valued function f on Br. In this case, one can check that f
is Lipschitz on Br, with respect to the restriction of the metric on A associated
to N to Br. More precisely, we have that

∥f∥Lip(Br,A) ≤
∞∑
j=1

j |aj | rj−1,(35.3)

as in (33.8).
Let us now consider the case where N is an ultranorm on A. If (34.6) holds,

then (34.8) holds for every x ∈ A such that N(x) ≤ r, which implies that
the series on the right side of (34.4) converges in A, as before. It follows that
(34.4) defines an A-valued function f on Br again, and one can verify that f is
Lipschitz on Br. More precisely,

∥f∥Lip(Br,A) ≤ max
j≥1

(|aj | rj−1),(35.4)

as in (33.9).
If |aj | rj has a finite upper bound, then (34.8) holds for every x ∈ A with

N(x) < r, as in the previous section. Hence the series on the right side of
(34.4) converges in A for every x ∈ A with N(x) < r, so that (34.4) defines an
A-valued function f on Br. As usual, one can check that f is Lipschitz on Br,
with respect to the restriction of the metric on A associated to N to Br. We
also have that

∥f∥Lip(Br,A) ≤ sup
j≥1

(|aj | rj−1),(35.5)
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as in (33.9) again.
Let r0 be a positive real number strictly less than r, so that

Br0 ⊆ Br.(35.6)

If |aj | rj has a finite upper bound, then

lim
j→∞

|aj | rj0 = 0,(35.7)

because |aj | rj0 = |aj | rj (r0/r)j is bounded by a constant times (r0/r)
j . If f is

defined on Br as in the preceding paragraph, then the restriction of f to Br0

can be treated as in the paragraph before that.

36 Some isometric mappings

Let k be a field with an ultrametric absolute value function | · |, and let A be
an algebra over k with a submultiplicative ultranorm N with respect to | · |
on k. To be consistent with the previous sections, one might ask A to have a
multiplicative identity element, but this is not really needed here, because we
shall consider power series with constant term equal to 0. Let g(T ) be a formal
power series in an indeterminate T with coefficients in k of the form

g(T ) =

∞∑
j=2

aj T
j ,(36.1)

and put

f(T ) = T + g(T ) = T +

∞∑
j=2

aj T
j .(36.2)

Suppose that A is complete with respect to the ultrametric associated to N ,
and let a positive real number r be given. Also let Br and Br be the open and
closed balls in A centered at 0 with radius r with respect to N , as in (35.1) and
(33.5), respectively.

Suppose that
lim
j→∞

|aj | rj = 0,(36.3)

and put

g(x) =

∞∑
j=2

aj x
j(36.4)

for every x ∈ A with N(x) ≤ r, as in Section 34. This defines a Lipschitz
mapping from Br into A, with

∥g∥Lip(Br,A) ≤ max
j≥2

(|aj | rj−1),(36.5)
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as in (35.4). In particular, if
|aj | rj−1 ≤ 1(36.6)

for each j ≥ 2, then g is Lipschitz with constant 1 on Br with respect to the
ultrametric associated to N on A. Similarly, put

f(x) = x+ g(x) = x+

∞∑
j=2

aj x
j(36.7)

for each x ∈ A with N(x) ≤ r. This defines a Lipschitz mapping from Br into
A with constant 1 when (36.6) holds. This can be derived from (35.4), or from
the analogous statements for g and the identity mapping on Br, using the fact
that the Lipschitz seminorm is a semi-ultranorm in this case, as in Section 30.
Note that

N(f(x)) ≤ N(x)(36.8)

for every x ∈ A with N(x) ≤ r when (36.6) holds. This can be obtained from
the fact that f is Lipschitz with constant 1 and f(0) = 0, or by estimating
N(f(x)) as in the first step in (34.9). It follows that

f(Br) ⊆ Br(36.9)

when (36.6) holds.
Suppose that

max
j≥2

(|aj | rj−1) < 1,(36.10)

in addition to (36.3), which also ensures that the maximum on the right side
of (36.10) is attained. Let x, y ∈ A with N(x), N(y) ≤ r be given, and let us
check that

N(f(x)− f(y)) = N(x− y).(36.11)

The left side of (36.11) is less than or equal to the right side, because f is
Lipschitz with constant 1 on Br, as in the preceding paragraph. Thus it suffices
to verify that the right side of (36.11) is less than or equal to the left side. Of
course, this is trivial when x = y, and so we may suppose that x ̸= y. Observe
that

x− y = f(x)− f(y)− (g(x)− g(y)),(36.12)

so that
N(x− y) ≤ max(N(f(x)− f(y)), N(g(x)− g(y))),(36.13)

by the ultranorm version of the triangle inequality. We also have that

N(g(x)− g(y)) ≤
(
max
j≥2

(|aj | rj−1)
)
N(x− y),(36.14)

by (36.5). If x ̸= y, then (36.10) implies that the right side of (36.14) is strictly
less that N(x− y). This means that

N(g(x)− g(y)) < N(x− y),(36.15)
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by (36.14). It follows that

N(x− y) ≤ N(f(x)− f(y)),(36.16)

by (36.13).
Suppose now that (36.6) holds for each j ≥ 2, but not necessarily (36.3) or

(36.10). If x ∈ A and N(x) < r, then we can define g(x) and f(x) as elements
of A as in (36.4) and (36.7), as mentioned in Section 34. In this situation, g is
Lipschitz as a mapping from Br into A, with

∥g∥Lip(Br,A) ≤ sup
j≥2

(|aj | rj−1) ≤ 1,(36.17)

as in (35.5). Similarly, f is Lipschitz as a mapping from Br intoA, with constant
1. This can be obtained from (35.5), or using (36.17) and the fact the identity
mapping on Br is Lipschitz with constant 1, as before. We also have that (36.8)
holds for every x ∈ A with N(x) < r, for essentially the same reasons as before.
This implies that

f(Br) ⊆ Br.(36.18)

Let r0 be a positive real number with r0 < r, so that (35.7) holds. Observe
that

max
j≥2

(|aj | rj−1
0 ) ≤ (r0/r)

(
sup
j≥2

(|aj | rj−1|)
)
≤ r0/r < 1,(36.19)

using (36.6) in the second step. Thus the earlier remarks can be applied to the
restrictions of f and g to Br0 . In particular, (36.11) holds for every x, y ∈ A
with N(x), N(y) ≤ r0, as before. It follows that (36.11) holds for every x, y ∈ A
with N(x), N(y) < 1, by choosing r0 so that N(x), N(y) ≤ r0.

37 Some contractions

Let k be a field with an ultrametric absolute value function | · | again, and let
A be an algebra over k with a submultiplicative ultranorm N with respect to
| · | on k. Also let g(T ) be a formal power series in an indeterminate T with
coefficients in k of the form

g(T ) =

∞∑
j=2

aj T
j ,(37.1)

and suppose that A is complete with respect to the ultrametric associated to
N . Let r be a positive real number, and suppose that

lim
j→∞

|aj | rj = 0.(37.2)

If x ∈ A and N(x) ≤ r, then put

g(x) =

∞∑
j=2

aj x
j ,(37.3)
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as in Section 34. Note that A does not need to have a multiplicative identity
element here, as in the previous section. Let Br be the closed ball in A centered
at 0 with radius r, as in (33.5), so that g defines an A-valued function on Br.
More precisely, g is Lipschitz with respect to the ultrametric associated to N
on A and its restriction to Br, with

∥g∥Lip(Br,A) ≤ max
j≥2

(|aj | rj−1),(37.4)

as in (35.4).
Let z0 be an element of A, and put

h0(x) = z0 − g(x)(37.5)

for every x ∈ Br. This defines a Lipschitz mapping from Br into A, with

∥h0∥Lip(Br,A) = ∥g∥Lip(Br,A).(37.6)

If the right side of (37.4) is less than or equal to 1, and

N(z0) ≤ r,(37.7)

then
h0(Br) ⊆ Br.(37.8)

More precisely, N(h0(x)) ≤ r for every x ∈ Br, because h0(0) = z0, h0 is
Lipschitz with constant 1 on Br, and N is an ultranorm on A. One can also
verify this more directly from the definitions of g and h0.

Suppose that (37.7) holds and

max
j≥2

(|aj | rj−1) < 1,(37.9)

so that h0 is a Lipschitz mapping from Br into itself with constant strictly less
than 1, by (37.4) and (37.6). In this case, the contraction mapping principle
implies that there is an x0 ∈ Br such that

h0(x0) = x0.(37.10)

This uses the fact that Br is complete as a metric space with respect to the
restriction of the ultrametric on A associated to N , because A is complete, by
hypothesis, and Br is a closed set in A. If f is the A-valued function defined
on Br as in (36.7), then we get that

f(x0) = x0 + g(x0) = z0,(37.11)

because of (37.5) and (37.10). It follows that

f(Br) = Br(37.12)

under these conditions, because we can take z0 to be any element of Br.
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Suppose now that
|aj | rj−1 ≤ 1(37.13)

for every j ≥ 2, without asking that (37.2) or (37.9) hold. If x ∈ A and
N(x) < 1, then g(x) can be defined as an element of A as in (37.3), as mentioned
in Section 34. Let Br be the open ball in A centered at 0 with radius r, as in
(35.1), so that g defines an A-valued function on Br. In fact, g is Lipschitz with
respect to the ultrametric associated to N on A and its restriction to Br, with

∥g∥Lip(Br,A) ≤ sup
j≥2

(|aj | rj−1),(37.14)

as in (35.5). Let z0 ∈ A be given again, and let h0(x) be defined for x ∈ Br as
in (37.5). Note that h0 is Lipschitz as a mapping from Br into A, with

∥h0∥Lip(Br,A) = ∥g∥Lip(Br,A).(37.15)

If
N(z0) < 1,(37.16)

then
h0(Br) ⊆ Br.(37.17)

More precisely, one can check that N(h0(x)) < r for every x ∈ Br, because
h0(0) = z0, h0 is Lipschitz with constant 1 on Br, and N is an ultranorm on A.
One can also get this more directly from the definitions of g and h0, as before.

Remember that Br is a closed set in A, because N is an ultranorm on A, as
in Section 1. This implies that Br is complete as a metric space with respect to
the restriction of the ultrametric on A associated to N , because A is complete.
If (37.16) holds, and the right side of (37.14) is strictly less than 1, then one
can apply the contraction mapping principle to h0 on Br, to get that there is
an x0 ∈ Br that satisfies (37.10). However, we can also get this using (37.13),
without asking that the right side of (37.14) be less than 1, as follows. Let r0
be a positive real number such that r0 < r and

N(z0) ≤ r0.(37.18)

Note that (35.7) and (36.19) hold, because r0 < r, as before. Thus we can apply
the earlier remarks to the restrictions of g and h0 to Br0 , to get that there is
an x0 ∈ Br0 that satisfies (37.10). If f is the A-valued function defined on Br

as in (36.7), then (37.11) holds, as before, so that

f(Br) = Br.(37.19)
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Part IV

The exponential function

38 The real and complex cases

Let k be a field of characteristic 0, so that there is a natural embedding of Q
into k, and we shall simply think of Q as being a subfield of k. If T is an
indeterminate, then

exp(T ) =

∞∑
j=0

(1/j!)T j(38.1)

may be considered as a formal power series in T with coefficients in k, which is
the formal power series corresponding to the exponential function. Of course,
j! is “j factorial”, the product of the positive integers from 1 to j, which is
interpreted as being equal to 1 when j = 0. We shall consider the convergence
of the corresponding power series in algebras over k in various situations.

Suppose first that r is a nonnegative real number, and put

exp(r) =

∞∑
j=0

rj/j!,(38.2)

where the sum on the right is considered as an infinite series of nonnegative real
numbers. It is well known and not difficult to show that this series converges, so
that (38.2) is defined as a nonnegative real number. Note that exp(0) = 1, and
that exp(r) increases monotonically in r, because rj increases monotonically in
r ≥ 0 for each j ≥ 0. We also have that exp(r) → +∞ as r → +∞, because of
the analogous property of rj when j ≥ 1.

Suppose now that k = R or C, equipped with the standard absolute value
function. Let A be an algebra over k with a multiplicative identity element e
and a submultiplicative norm N with respect to | · |, and suppose that A is
complete with respect to the metric associated to N . It is also convenient to
ask that N(e) = 1. If x ∈ A, then we would like to define

exp(x) =

∞∑
j=0

(1/j!)xj(38.3)

as an element of A. Observe that

∞∑
j=0

N((1/j!)xj) ≤
∞∑
j=0

(1/j!)N(x)j = exp(N(x)),(38.4)

so that the series on the right side of (38.3) converges absolutely. Hence this se-
ries converges in A, because A is complete with respect to the metric associated
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to N , as in Section 10. We also get that

N(exp(x)) ≤
∞∑
j=0

N((1/j!)xj) ≤ exp(N(x)).(38.5)

Let x, y be commuting elements of A, so that x y = y x. It is well known
that

(x+ y)l =

l∑
j=0

(
l

j

)
xj yl−j(38.6)

for each nonnegative integer j, where(
l

j

)
=

l!

j! (l − j)!
(38.7)

is the usual binomial coefficient. Thus

exp(x+ y) =

∞∑
l=0

(1/l!) (x+ y)l =

∞∑
l=0

( l∑
j=0

1

j! (l − j)!
xj yl−j

)
.(38.8)

The sum on the right corresponds exactly to the Cauchy product of the series
used to define exp(x) and exp(y). It follows that

exp(x+ y) = exp(x) exp(y)(38.9)

under these conditions, as in Section 15.
Note that

exp(0) = e(38.10)

in A. If x is any element of A, then x commutes with −x, so that

exp(x) exp(−x) = exp(x− x) = e,(38.11)

as in (38.9). Similarly,
exp(−x) exp(x) = e.(38.12)

Thus exp(−x) is the multiplicative inverse of exp(x) in A.

39 Trivial absolute values on Q

Let k be a field of characteristic 0 again, so that Q may be considered as a
subfield of k. Also let | · | be an absolute value function on k, and suppose
that the restriction of | · | to Q is the trivial absolute value function on Q.
In particular, this implies that | · | is non-archimedean on k, so that | · | is an
ultrametric absolute value function on k, as in Section 4. Let A be an algebra
over k with a multiplicative identity element e and a submultiplicative ultranorm
N , and suppose that A is complete with respect to the ultrametric associated
to N . As before, it is convenient to ask that N(e) = 1 too.
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If x ∈ A and N(x) < 1, then we can define

exp(x) =

∞∑
j=0

(1/j!)xj(39.1)

as an element of A, as in Section 34. More precisely,

N((1/j!)xj) = |1/j!|N(xj) ≤ N(x)j(39.2)

for every nonnegative integer j, using the hypothesis that | · | is trivial on Q in
the second step. This implies that

lim
j→∞

N((1/j!)xj) = 0(39.3)

when N(x) < 1. Using (39.3), we get that the series on the right side of (39.1)
converges in A, because N is an ultranorm on A, and A is complete with respect
to the ultrametric associated to N , as in Section 10. We also have that

N(exp(x)) ≤ max
j≥0

N((1/j!)xj) = 1,(39.4)

using (39.2) and N(e) = 1 in the second step. Similarly,

N(exp(x)− e) = N
( ∞∑

j=1

(1/j!)xj
)
≤ max

j≥1
N((1/j!)xj) ≤ N(x),(39.5)

using (39.2) in the second step again. The ultranorm version of the triangle
inequality implies that

1 = N(e) ≤ max(N(e− exp(x)), N(exp(x))).(39.6)

It follows that N(exp(x)) ≥ 1, because the right side of (39.5) is strictly less
than 1, by hypothesis. Combining this with (39.4), we obtain that

N(exp(x)) = 1(39.7)

for every x ∈ A with N(x) < 1.
Let x, y be commuting elements of A with N(x), N(y) < 1. Thus

N(x+ y) ≤ max(N(x), N(y)) < 1,(39.8)

by the ultranorm version of the triangle inequality. Under these conditions, we
have that

exp(x+ y) = exp(x) exp(y),(39.9)

where each of the exponentials is defined as an element of A as in the preceding
paragraph. More precisely, the series defining exp(x + y) corresponds to the
Cauchy product of the series defining exp(x) and exp(y), as in (38.8). This

69



implies (39.9), as in Section 15 again. In particular, x automatically commutes
with −x, so that

exp(x) exp(−x) = exp(−x) exp(x) = e,(39.10)

as in the previous section. Thus exp(−x) is the multiplicative inverse of exp(x)
in A for every x ∈ A with N(x) < 1.

If x, y ∈ A and N(x), N(y) < 1, then

N(exp(x)− exp(y)) = N(x− y).(39.11)

This basically corresponds to (36.11), in the situation described in the para-
graphs after the one containing (36.11) in Section 36, with r = 1. More pre-
cisely, the exponential function is Lipschitz with constant 1 as a mapping from
the open unit ball in A into A, with respect to the ultrametric associated to
N and its restriction to the open unit ball, as in (35.5). This implies that the
left side of (39.11) is less than or equal to the right side of (39.11), and the
opposite inequality is discussed in Section 36. Of course, the constant terms in
the definitions of exp(x) and exp(y) cancel each other in the left side of (39.11),
and they were not included in Section 36.

Observe that the exponential function maps

B1 = B(0, 1) = {x ∈ A : N(x) < 1}(39.12)

into
B(e, 1) = {z ∈ A : N(z − e) < 1},(39.13)

by (39.5). In fact,
exp(B(0, 1)) = B(e, 1),(39.14)

essentially by (37.19), with r = 1. This takes the constant term into account
for the exponential function, which was taken to be 0 in Section 37.

40 Some preliminary facts

Let p be a prime number, and let | · |p be the p-adic absolute value function
on Q, as in Section 2. In order to deal with the exponential function in p-adic
situations, we need to estimate

|1/l!|p = 1/|l!|p(40.1)

for nonnegative integers l, as in [1, 5]. Equivalently, we want to estimate the
total number of factors of p in l!. This is the same as the sum of the factors
of p in the positive integers less than or equal to l. In particular, there are no
factors of p in l! when l < p, so that (40.1) is equal to 1.

Let [r] denote the integer part of a nonnegative real number r, which is the
largest integer less than or equal to r. If l is a nonnegative integer, then the
total number of factors of p in l! can be given by

∞∑
j=1

[
l

pj

]
.(40.2)
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Of course, [l/pj ] = 0 when l < pj , so that all but finitely many terms in the sum
are equal to 0. The first term [l/p] is the same as the number of positive integers
less than or equal to l that are multiples of p. These are the positive integers
less than or equal to l that lead to factors of p in l!. However, these positive
integers less than or equal to l may have more than one factor of p, which lead
to additional factors of p in l!. The second term [l/p2] in (40.2) is the number of
positive integers less than or equal to l that are multiples of p2. Each of these
positive integers less than or equal to l lead to at least one additional factor of
p in l!. If j is any positive integer, then [l/pj ] is the number of positive integers
less than or equal to l that are multiples of pj , each of which leads to at least
j factors of p in l!. In this way, the sum over j is the total number number of
factors of p in l!.

Observe that
∞∑
j=1

[
l

pj

]
<

∞∑
j=1

l

pj
(40.3)

for each positive integer l, because l/pj > 0 for every j, but [l/pj ] = 0 when
l < pj . Of course, we can sum the geometric series, to get that

∞∑
j=1

l

pj
= (l/p)

∞∑
j=0

p−j = (l/p) (1− (1/p))−1 =
l

p− 1
.(40.4)

It follows that
|l!|p > p−l/(p−1)(40.5)

for every l ≥ 1, so that
1/|l!|p < pl/(p−1).(40.6)

If n is a positive integer, then we have that

∞∑
j=1

[
pn

pj

]
=

n∑
j=1

pn−j =

n−1∑
j=0

pj =
pn − 1

p− 1
.(40.7)

This also works when n = 0, with the two sums in the middle interpreted as
being equal to 0.

Using (40.3) and (40.4), we get that

(p− 1)

∞∑
j=1

[
l

pj

]
< l(40.8)

for every l ≥ 1. This implies that

(p− 1)

∞∑
j=1

[
l

pj

]
≤ l − 1,(40.9)

because the left side is an integer. Thus

∞∑
j=1

[
l

pj

]
≤ l − 1

p− 1
(40.10)
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for every l ≥ 1, so that
|l!|p ≥ p−(l−1)/(p−1),(40.11)

and hence
1/|l!|p ≤ p(l−1)/(p−1).(40.12)

41 The p-adic case

Let k be a field of characteristic 0 again, and let |·| be an absolute value function
on k. As before, we can think ofQ as being a subfield of k, so that the restriction
of | · | to Q defines an absolute value function on Q. Let p be a prime number,
and suppose that the restriction of | · | to Q is the same as the p-adic absolute
value function | · |p on Q. This implies that | · | is non-archimedean on k, so that
| · | is an ultrametric absolute value function on k, as in Section 4. Let A be an
algebra over k with a multiplicative identity element e and a submultiplicative
ultranorm N , and suppose that A is complete with respect to the ultrametric
associated to N . As usual, it is convenient to also ask that N(e) = 1. If k is
not already complete with respect to the metric associated to | · |, then one can
pass to a completion, which contains Qp as a subfield in this situation. One can
consider A as an algebra over the completion of k, because A is complete, and
in particular one can consider A as an algebra over Qp.

If x ∈ A, then we would like to put

exp(x) =

∞∑
j=0

(1/j!)xj(41.1)

under suitable conditions on N(x). Observe that

N((1/j!)xj) = |1/j!|p N(xj) ≤ (1/|j!|p)N(x)j

≤ pj/(p−1) N(x)j = (p1/(p−1) N(x))j(41.2)

for every nonnegative integer j, using (40.6) in the first step on the second line.
If

N(x) < p−1/(p−1),(41.3)

then the right side of (41.2) tends to 0 as j → ∞. This implies that the series
on the right side of (41.1) converges in A, as in Section 10. Thus exp(x) may
be defined as an element of A when (41.3) holds, in which case we have that

N(exp(x)) ≤ max
j≥0

N((1/j!)xj) = 1,(41.4)

using (41.2) and N(e) = 1 in the second step.
Similarly, if x ∈ A satisfies (41.3), then

N(exp(x)− e) ≤ max
j≥1

N((1/j!)xj) ≤ max
j≥1

((1/|j!|p)N(x)j),(41.5)
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using the first line in (41.2) in the second step. If j is a positive integer, then

(1/|j!|p)N(x)j−1 ≤ p(j−1)/(p−1) N(x)j−1 = (p1/(p−1) N(x))j−1,(41.6)

using (40.12) in the first step. Combining this with (41.5), we get that

N(exp(x)− e) ≤ N(x),(41.7)

because of (41.3). It follows that

1 = N(e) ≤ max(N(exp(x)− e), N(exp(x)))(41.8)

≤ max(N(x), N(exp(x))),

using the ultranorm version of the triangle inequality in the first step. Note
that N(x) < 1, by (41.3). Thus (41.8) implies that N(exp(x)) ≥ 1. Hence

N(exp(x)) = 1(41.9)

when x ∈ A satisfies (41.3), by (41.4).
Let x, y be commuting elements of A satisfying (41.3) and

N(y) < p−1/(p−1).(41.10)

Note that
N(x+ y) ≤ max(N(x), N(y)) < p−1/(p−1)(41.11)

too, by the ultranorm version of the triangle inequality. Under these conditions,
we have that

exp(x+ y) = exp(x) exp(y),(41.12)

where each of the exponentials is defined as an element of A, as before. Indeed,
the series defining exp(x+ y) corresponds to the Cauchy products of the series
defining exp(x) and exp(y), as in (38.8). This implies (41.12), as in Section 10.
In particular, x automatically commutes with −x, so that

exp(x) exp(−x) = exp(−x) exp(x) = e,(41.13)

as before. This implies that exp(−x) is the multiplicative inverse of exp(x) in
A when x ∈ A satisfies (41.3).

As usual, B(x, r) denotes the open ball in A centered at x ∈ A with radius
r > 0 with respect to the ultrametric associated to N . Thus the exponential
function defines an A-valued function on B(0, p−1/(p−1)). If j is a positive
integer, then

|1/j!|p (p−1/(p−1))j−1 ≤ 1,(41.14)

as in (40.12). This implies that the exponential function is Lipschitz with con-
stant 1 on B(0, p−1/(p−1)), as in (35.5). More precisely, the exponential function
corresponds to taking aj = 1/j! in (35.5), and we take r = p−1/(p−1).

If x, y ∈ B(0, p−1/(p−1)), then

N(exp(x)− exp(y)) = N(x− y).(41.15)
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Of course, the left side of (41.15) is less than or equal to the right side, because
the exponential function is Lipschitz with constant 1 on B(0, p−1/(p−1)), as
in the previous paragraph. The fact that equality holds in (41.15) basically
corresponds to (36.11), in the situation described in the paragraphs after the
one containing (36.11) in Section 36, with r = p−1/(p−1). Note that (36.6)
corresponds to (41.14) here. As before, the constant terms in the definitions
of exp(x) and exp(y) cancel out in the left side of (41.15), and they were not
included in Section 36.

The exponential function maps B(0, p−1/(p−1)) into B(e, p−1/(p−1)), because
of (41.7). We actually have that

exp(B(0, p−1/(p−1))) = B(e, p−1/(p−1)),(41.16)

as in (37.19), with r = p−1/(p−1). This takes the constant term into account
for the exponential function, as before, while the constant term was taken to
be 0 in Section 37. The condition (37.13) corresponds to (41.14) here, as in the
preceding paragraph.
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