
Some basic topics in analysis related to

shift operators

Stephen Semmes
Rice University

Abstract

Some topics related to shift operators are discussed, in connection with
absolute value functions on fields, and norms on vector spaces over such
fields.
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Part I

Basic notions

1 Vector spaces and linear mappings

Let k be a field, and let V , W be vector spaces over k. The space of linear
mappings from V into W will be denoted L(V,W ), and is a vector space over
k with respect to pointwise addition and scalar multiplication. If V = W , then
this space may be denoted L(V ). This is an associative algebra over k, with
composition of linear mappings as multiplication. The identity mapping from V
into itself may be denoted I or IV , which is the multiplicative identity element
in L(V ).

As usual, a linear functional on V is a linear mapping from V into k, where
k is considered as a one-dimensional vector space over itself. The space of linear
functionals on V is known as the algebraic dual of V , which may be denoted
V alg. This is the same as L(V, k), using the notation in the preceding paragraph,
and in particular this is a vector space over k. If V has finite dimension, then
it is well known that V alg has the same dimension. A version of this will be
discussed in the next section.

Let W be another vector space over k, and let T be a linear mapping from
V into W . If λ is a linear functional on W , then the composition λ ◦T of λ and
T defines a linear functional on V . Put

T alg(λ) = λ ◦ T,(1.1)

which defines a linear mapping from W alg into V alg, dual to T . Note that

T 7→ T alg(1.2)

defines a linear mapping from L(V,W ) into L(W alg, V alg). If V = W , then we
can apply this to T = IV , and it is easy to see that

(IV )
alg = IV alg ,(1.3)

the identity mapping on V alg.
Let V , W , and Z be vector spaces over k, let T1 be a linear mapping from V

into W , and let T2 be a linear mapping from W into Z, so that the composition
T2 ◦T1 is a linear mapping from V into W . If λ is a linear functional on Z, then

(T2◦T1)
alg(λ) = λ◦(T2◦T1) = (λ◦T2)◦T1 = (T alg

2 (λ))◦T1 = T alg
1 (T alg

2 (λ)).(1.4)

This implies that
(T2 ◦ T1)

alg = T alg
1 ◦ T alg

2(1.5)
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as linear mappings from V alg
3 into V alg

1 . Suppose now that T is a one-to-one lin-
ear mapping from V onto W , and let T−1 be the corresponding inverse mapping
from W onto V . Under these conditions, T alg is a one-to-one linear mapping
from W alg onto V alg, with

(T alg)−1 = (T−1)alg(1.6)

as linear mappings from V alg onto W alg.
Let V be a vector space over k again, and put

Lv(λ) = LV,v(λ) = λ(v)(1.7)

for each v ∈ V and λ ∈ V alg. This defines a linear functional on V alg for each
v ∈ V , which is to say an element of (V alg)alg. Moreover,

v 7→ Lv(1.8)

defines a linear mapping from V into (V alg)alg. Let W be another vector space
over k, and let T be a linear mapping from V into W , so that T alg is defined
as a linear mapping from W alg into V alg as before. If v ∈ V , then LV,v ◦ T alg is
defined as a linear functional on W alg, so that (LV,v ◦ T alg)(µ) is defined as an
element of k for each µ ∈ W alg. Observe that

(LV,v ◦ T alg)(µ) = LV,v(T
alg(µ)) = LV,v(µ ◦ T )(1.9)

= (µ ◦ T )(v) = µ(T (v)) = LW,T (v)(µ)

for every v ∈ V and µ ∈ W alg, where LW,w is defined as an element of (W alg)alg

for every w ∈ W as in (1.7). Thus

Lv ◦ T alg = LW,T (v)(1.10)

as linear functionals on W alg for every v ∈ V . Note that (T alg)alg can be defined
as a linear mapping from (V alg)alg into (W alg)alg as before. Using (1.10), we
get that

(T alg)alg(LV,v) = LV,v ◦ T alg = LW,T (v)(1.11)

for each v ∈ V .

2 k-Valued functions

Let k be a field, and let X be a nonempty set. The space of k-valued functions
on X will be denoted c(X, k), which is a vector space over k with respect to
pointwise addition and scalar multiplication. The support of a k-valued function
f on X is defined by

supp f = {x ∈ X : f(x) ̸= 0}.(2.1)
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The space of k-valued functions on X whose support have only finitely many
elements is denoted c00(X, k), and is a linear subspace of c(X, k). If y ∈ X,
then δy = δX,y is defined as a k-vaued function on X by

δy(x) = δX,y(x) = 1 when x = y(2.2)

= 0 when x ̸= y.

Thus δy ∈ c00(X, k) for each y ∈ X, and

{δy : y ∈ X}(2.3)

is a basis for c00(X, k) as a vector space over k. Of course, if X has only finitely
many elements, then c00(X, k) is the same as c(X, k).

If f ∈ c00(X, k), then ∑
x∈X

f(x)(2.4)

reduces to a finite sum in k, and thus defines an element of k. The mapping
from f ∈ c00(X, k) to the sum (2.4) defines a linear functional on c00(X, k).

Let g ∈ c(X, k) be given. If f ∈ c00(X, k), then the product f g of f and g
has finite support in X as well. Thus

λg(f) =
∑
x∈X

f(x) g(x)(2.5)

defines an element of k, as in the preceding paragraph. Hence (2.5) defines a
linear functional on c00(X, k). Note that

λg(δy) = g(y)(2.6)

for every y ∈ X. If λ is any linear functional on c00(X, k), then we can put

gλ(y) = λ(δy)(2.7)

for each y ∈ X. This defines a k-valued function on X, and one can check that

λ = λgλ(2.8)

as linear functionals on c00(X, k). It follows that g 7→ λg defines a one-to-one
linear mapping from c(X, k) onto c00(X, k)alg, with inverse given by λ 7→ gλ.

Similarly, if h ∈ c00(X, k), then

µh(g) =
∑
x∈X

g(x)h(x)(2.9)

defines a linear functional on c(X, k), where the sum on the right side of (2.9)
also reduces to a finite sum in k. The restriction of µh to c00(X, k) is the same
as λh as defined in the preceding paragraph. In particular,

µh(δy) = h(y)(2.10)
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for every y ∈ X, so that h 7→ µh defines a one-to-one linear mapping from
c00(X, k) into c(X, k)alg. If f ∈ c00(X, k), then we can define Lf as a linear
functional on c00(X, k)alg as in (1.7). This linear functional is given by

Lf (λg) = λg(f) = µf (g)(2.11)

for each g ∈ c(X, k), where λg is as in (2.5).

3 Bilateral shift operators

Let k be a field, and let c(Z, k) be the space of k-valued mappings from the set
Z of integers into k, as in the previous section. Consider the linear mapping T
from c(Z, k) into itself defined by

(T (f))(j) = f(j − 1)(3.1)

for every f ∈ c(Z, k) and j ∈ Z. This is the standard forward shift operator on
c(Z, k), which is a one-to-one linear mapping from c(Z, k) onto itself. Note that
T maps c00(Z, k) onto itself. The inverse of T is given by

(T−1(f))(j) = f(j + 1)(3.2)

for each f ∈ c(Z, k) and j ∈ Z, which is the standard backward shift operator
on c(Z, k).

Let T l be the lth power of T as a linear mapping from c(Z, k) into itself
with respect to composition for each positive integer l. If l = 0, then T l is
interpreted as being the identity mappping on c(Z, k). In this situation, we can
also define T l for negative integers l, by taking powers of T−1 on c(Z, k). Thus
T l is defined as a linear mapping on c(Z, k) for every integer l, and it is easy to
see that

(T l(f))(j) = f(j − l)(3.3)

for every f ∈ c(Z, k) and j, l ∈ Z.
Let δn = δZ,n be the k-valued function defined on Z as in (2.2) for each

n ∈ Z. Observe that

(T l(δn))(j) = δn(j − l) = δn+l(j)(3.4)

for every j, l, n ∈ Z. Thus
T l(δn) = δn+l(3.5)

for every l, n ∈ Z. If A ⊆ Z and l ∈ Z, then let A+ l be the subset of Z defined
by

A+ l = {a+ l : a ∈ A}.(3.6)

Using (3.3), we get that

suppT l(f) = (supp f) + l(3.7)
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for every f ∈ c(Z, k) and l ∈ Z.
If g ∈ c(Z, k), then

λg(f) =

∞∑
j=−∞

f(j) g(j)(3.8)

defines a linear functional on c00(Z, k), as in (2.5). Observe that

λg(T (f)) =

∞∑
j=−∞

f(j − 1) g(j) =

∞∑
j=−∞

f(j) g(j + 1) = λT−1(g)(f)(3.9)

for every f ∈ c00(Z, k) and g ∈ c(Z, k). This says that the algebraic dual of
T as a linear mapping from c00(Z, k) into itself corresponds to T−1 as a linear
mapping from c(Z, k) into itself. This uses the identification of c00(Z, k)

alg with
c(Z, k) given by (3.8), as in the previous section. Similarly, if h ∈ c00(Z, k),
then

µh(g) =

∞∑
j=−∞

g(j)h(j)(3.10)

defines a linear functional on c(Z, k), as in (2.9). As before, we have that

µh(T (g)) = µT−1(h)(g)(3.11)

for every g ∈ c(Z, k) and h ∈ c00(Z, k). In this situation, we can identify
c00(Z, k) with a linear subspace of c(Z, k)alg, using (3.10). With respect to
this identification, the restriction of the algebraic dual of T to this subspace of
c(Z, k)alg corresponds to the restriction of T−1 to c00(Z, k), by (3.11).

4 Nonnegative sums

Let f(x) be a nonnegative real-valued function on a nonempty set X. If X has
only finitely many elements, or if f has finite support in X, then the sum∑

x∈X

f(x)(4.1)

can be defined as a nonnegative real number in the usual way. Otherwise, (4.1)
can be defined as a nonnegative extended real number as the supremum of∑

x∈E

f(x)(4.2)

over all nonempty finite subsets E of X. If X is the set Z+ of positive integers,
then (4.1) is the same as

∞∑
j=1

f(j) = sup
n≥1

n∑
j=1

f(j),(4.3)
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where more precisely the supremum is taken over all positive integers n. Simi-
larly, if X = Z, then (4.1) is the same as

∞∑
j=−∞

f(j) = sup
l,n≥1

n∑
j=−l

f(j) = sup
n≥1

n∑
j=−n

f(j).(4.4)

Let X be any nonempty set again, and let f , g be nonnegative real-valued
functions on X. If X has only finitely many elements, or if f and g have finite
support in X, then∑

x∈X

(f(x) + g(x)) =
( ∑

x∈X

f(x)
)
+

( ∑
x∈X

g(x)
)
.(4.5)

One can check that (4.5) holds without these additional conditions, by approx-
imating these sums by finite subsums. This also uses standard conventions for
sums of nonnegative extended real numbers. Similarly,∑

x∈X

t f(x) = t
∑
x∈X

f(x)(4.6)

for every nonnegative real number t whenX has finitely many elements, or f has
finite support in X. This also holds without these additional conditions when
t > 0, where the right side is interpreted as being +∞ when (4.1) is infinite. If
t = 0, then it is customary to interpret the right side as being 0 even when (4.1)
is infinite.

If f is a nonnegative real-valued function on X and r is a positive real
number, then we put

∥f∥r =
( ∑

x∈X

f(x)r
)1/r

,(4.7)

which is interpreted as being +∞ when the sum is infinite. As usual, we can
extend this to r = ∞ by putting

∥f∥∞ = sup
x∈X

f(x),(4.8)

which is defined as a nonnegative extended real number. Observe that

∥f∥∞ ≤ ∥f∥r(4.9)

for every r > 0. If 0 < r1 ≤ r2 < ∞, then we have that

∥f∥r2r2 =
∑
x∈X

f(x)r2 ≤ ∥f∥r2−r1
∞

∑
x∈X

f(x)r1 = ∥f∥r2−r1
∞ ∥f∥r1r1 ≤ ∥f∥r2r1 ,(4.10)

using (4.9) in the last step. This implies that

∥f∥r2 ≤ ∥f∥r1(4.11)

when r1 ≤ r2, which also works when r2 = ∞, by (4.9).
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If f , g are nonnegative real-valued functions on X and 1 < r < ∞, then it
is well known that

∥f + g∥r ≤ ∥f∥r + ∥g∥r,(4.12)

by Minkowski’s inequality for sums.. Of course, equality holds trivially when
r = 1, and it is easy to check directly that this inequality also holds when r = ∞.
If 0 < r ≤ 1, then

(a+ b)r ≤ ar + br(4.13)

for all nonnegative real numbers a, b. This follows from (4.11), with r1 = r,
r2 = 1, and where X has exactly two elements. It follows that

∥f + g∥rr =
∑
x∈X

(f(x) + g(x))r(4.14)

≤
∑
x∈X

(f(x)r + g(x)r)

=
∑
x∈X

f(x)r +
∑
x∈X

g(x)r = ∥f∥rr + ∥g∥rr

for all nonnegative real-valued functions f , g on X when 0 < r ≤ 1, using (4.13)
in the second step, and (4.5) in the third step.

5 q-Semimetrics

Let X be a set, and let q be a positive real number. A nonnegative real-valued
function d(x, y) defined on X×X is said to be a q-semimetric on X if it satisfies
the following three conditions. First,

d(x, x) = 0 for every x ∈ X.(5.1)

Second,
d(x, y) = d(y, x) for every x, y ∈ X.(5.2)

Third,
d(x, z)q ≤ d(x, y)q + d(y, z)q for every x, y, z ∈ X.(5.3)

If we also have that
d(x, y) > 0(5.4)

for every x, y ∈ X with x ̸= y, then d(·, ·) is said to be a q-metric on X. A
q-semimetric or q-metric with q = 1 is also known as a semimetric or metric, as
appropriate. Note that (5.3) may be reformulated as saying that

d(x, z) ≤ (d(x, y)q + d(y, z)q)1/q(5.5)

for every x, y, z ∈ X. The right side of (5.5) decreases monotonically in q, by
(4.11). This means that the property of being a q-semimetric or a q-metric
becomes more restrictive as q increases.
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A nonnegative real-valued function d(x, y) defined on X ×X is said to be a
semi-ultrametric on X if it satisfies (5.1) and (5.2), and also

d(x, z) ≤ max(d(x, y), d(y, z))(5.6)

for every x, y, z ∈ X. If (5.4) holds as well, then d(·, ·) is said to be an ultrametric
on X. Observe that the right side of (5.6) is less than or equal to the right side
of (5.5), so that (5.6) implies (5.5). This means that a semi-ultrametric is a
q-semimetric for each q > 0, and similarly an ultrametric is a q-metric for every
q > 0. Semi-ultrametrics and ultrametrics will be considered as q-semimetrics
and q-metrics with q = ∞, respectively.

The discrete metric is defined on any set X by putting d(x, y) equal to 1
when x ̸= y, and equal to 0 when x = y. It is easy to see that this defines an
ultrametric on X. Let d(x, y) be any q-semimetric on a set X, 0 < q ≤ ∞, and
let a be a positive real number. Under these conditions, one can check that

d(x, , y)a(5.7)

defines a (q/a)-semimetric on X. Similarly, if d(x, y) is a q-metric on X, then
(5.7) is a (q/a)-metric on X.

Let d(·, ·) be a q-semimetric on a set X for some q > 0 again. The open ball
in X centered at x ∈ X with radius r > 0 with respect to d(·, ·) is defined as
usual by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) < r}.(5.8)

Similarly, the closed ball in X centered at x ∈ X with radius r ≥ 0 with respect
to d(·, ·) is defined by

B(x, r) = Bd(x, r) = {y ∈ M : d(x, y) ≤ r}.(5.9)

Let a be a positive real number, so that (5.7) is a (q/a)-semimetric on X, as
before. If x ∈ X, then

Bda(x, ra) = Bd(x, r)(5.10)

for every r > 0, and
Bda(x, r) = Bd(x, r)(5.11)

for every r ≥ 0.
A subset U of X is said to be an open set with respect to d(·, ·) if for every

x ∈ U there is an r > 0 such that

B(x, r) ⊆ U,(5.12)

which defines a topology onX. If a is a positive real number, then (5.7) defines a
(q/a)-metric onX, and the topology determined onX by (5.7) is the same as the
topology determined by d(·, ·), because of (5.10). One can verify directly that
the topology determined on X by d(·, ·) satisfies many of the same properties as
for ordinary semimetrics, but one can also use the preceding remark to reduce
to that case. In particular, open balls in X with respect to d(·, ·) are open sets,
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and closed balls are closed sets. If d(·, ·) is a q-metric on X, then it follows that
X is Hausdorff with respect to this topology.

Suppose for the moment that d(·, ·) is a semi-ultrametric on X. If x, y ∈ X
satisfy d(x, y) < r for some r > 0, then it is easy to see that

B(y, r) ⊆ B(x, r).(5.13)

It follows that
B(x, r) = B(y, r)(5.14)

under these conditions, since we can interchange the roles of x and y. Similarly,
if d(x, y) ≤ r for some r ≥ 0, then

B(y, r) ⊆ B(x, r),(5.15)

and hence
B(x, r) = B(y, r),(5.16)

by interchanging the roles of x and y again. Using (5.15), we get that B(x, r)
is an open set in X when r > 0, and one can check that open balls in X are
closed sets in this situation too.

Let dX be a qX -metric on X for some qX > 0. One can define the notions of
Cauchy sequences in X and completeness of X with respect to dX in the usual
way. If a is a positive real number, then dX(·, ·)a determines the same collection
of Cauchy sequences in X, and the same notion of completeness. Similarly, if Y
is another set, and dY is a qY -metric on Y for some qY > 0, then one can define
the notion of uniform continuity of mappings from X into Y with respect to dX
and dY in the usual way. If a, b are positive real numbers, then dX(·, ·)a and
dY (·, ·)b determine the same collection of uniformly continuous mappings from
X into Y .

6 q-Absolute value functions

Let k be a field, and let q be a positive real number. A nonnegative real-valued
function |x| defined on k is said to be a q-absolute value function on k if it
satisfies the following three conditions. First,

|x| = 0 if and only if x = 0.(6.1)

More precisely, this means that |x| = 0 as a real number if and only if x = 0 as
an element of k. Second,

|x y| = |x| |y| for every x, y ∈ k.(6.2)

Third,
|x+ y|q ≤ |x|q + |y|q for every x, y ∈ k.(6.3)

If these conditions hold with q = 1, then | · | is said to be an absolute value
function on k. It is well known that the standard absolute value functions on
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the fields R and C of real and complex numbers, respectively, are absolute value
functions in this sense.

Using (6.1) and (6.2), one can check that |1| = 1, where the first 1 is the
multiplicative identity element in k, and the second 1 is the multiplicative iden-
tity element in R. If x ∈ k satisfies xn = 1 for some positive integer n, then it
follows that |x| = 1, using (6.2) again. In particular, this holds when x = −1,
the additive inverse of 1 in k. This implies in turn that | − y| = |y| for every
y ∈ k, using (6.2). If | · | is a q-absolute value function on k, then we get that

d(x, y) = |x− y|(6.4)

defines a q-metric on k.
As in the previous section, (6.3) is equivalent to asking that

|x+ y| ≤ (|x|q + |y|q)1/q(6.5)

for every x, y ∈ k. The right side of (6.5) decreases monotonically in q, as in
(4.11), so that the property of being a q-absolute value function becomes more
restrictive as q increases. A nonnegative real-valued function | · | on k is said to
be an ultrametric absolute value function if it satisfies (6.1), (6.2), and

|x+ y| ≤ max(|x|, |y|)(6.6)

for every x, y ∈ k. This implies that | · | is a q-absolute value function on k for
every q > 0, because the right side of (6.6) is less than or equal to the right side
of (6.5). If | · | is an ultrametric absolute value function on k, then (6.4) is an
ultrametric on k. As before, an ultrametric absolute value function on k may be
considered as a q-absolute value function with q = ∞. The trivial absolute value
function is defined on any field k by putting |x| = 1 when x ̸= 0 and |0| = 0. It
is easy to see that this defines an ultrametric absolute value function on k, for
which the corresponding ultrametric is the discrete metric.

If | · | is not the trivial absolute value function on k, then there is an x ∈ k
such that x ̸= 0 and |x| ̸= 1. This implies that there are y, z ∈ k such that
0 < |y| < 1 and |z| > 1, using x and 1/x. It follows that |yj | = |y|j → 0 and
|zj | = |z|j → ∞ as j → ∞ under these conditions.

If | · | is a q-absolute value function on a field k for some q > 0 and a is a
positive real number, then one can verify that

|x|a(6.7)

defines a (q/a)-absolute value function on k. Of course, the (q/a)-metric on k
associated to (6.7) as in (6.4) is given by

|x− y|a.(6.8)

This corresponds to the q-metric (6.4) associated to | · | on k as in (5.7), so that
many of the remarks in the previous section are applicable in this situation. Let
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|·|1, |·|2 be q1, q2-absolute value functions on k, respectively, for some q1, q2 > 0.
If there is a positive real number a such that

|x|2 = |x|a1(6.9)

for every x ∈ k, then | · |1 and | · |2 are said to be equivalent on k.
If p is a prime number, then the p-adic absolute value |x|p is defined on the

field Q of rational numbers as follows. Of course, we put |0|p = 0. Otherwise,
if x is a nonzero rational number, then x can be expressed as pj (a/b), where
a, b, j ∈ Z, a, b ̸= 0, and a, b are not integer multiples of p. In this case, we put

|x|p = p−j ,(6.10)

and one can check that this defines an ultrametric absolute value function on
Q. A famous theorem of Ostrowski implies that every q-absolute value function
on Q is either trivial, or equivalent to the standard absolute value function on
R, or equivalent to the p-adic absolute value function for some prime p.

Let | · | be a q-absolute value function on a field k for some q > 0. If k is
not already complete with respect to the associated q-metric (6.4), then one can
pass to a completion. This leads to a field k1 with a q-absolute value function
| · |1, such that k1 is complete with respect to the associated q-metric, and an
isomorphism from k onto a subfield of k1. This isomorphism should be isometric
in the sense that | · | on k corresponds to | · |1 on the image, which implies that
the associated q-metrics correspond in the same way. The image of k should also
be dense in k1, with respect to the q-metric associated to | · |1. This completion
is unique up to isometric isomorphic equivalence. If p is a prime number, then
the completion Qp of Q with respect to the p-adic absolute value function is
known as the field of p-adic numbers.

Let k be a field with a q-absolute value function | · | for some q > 0 again. If
x ∈ k and n ∈ Z+, then we let n ·x be the sum of n x’s in k. If there are positive
integers n such that |n · 1| is arbitrarily large, then | · | is said to be archimedian
on k. Otherwise, if there is a finite upper bound for |n · 1| with n ∈ Z+, then
| · | is said to be non-archimedian on k. It is easy to see that (n · 1)j = nj · 1 in
k for every j, n ∈ Z+, so that

|nj · 1| = |(n · 1)j | = |n · 1|j .(6.11)

If |n · 1| > 1, then it follows that

|nj · 1| = |n · 1|j → ∞ as j → ∞,(6.12)

which means that | · | is archimedian on k. Equivalently, if | · | is non-archimedian
on k, then it follows that

|n · 1| ≤ 1(6.13)

for every n ∈ Z+. Ultrametric absolute value functions satisfy (6.13), and
hence are non-archimedian. Conversely, it is well known that non-archimedian
q-absolute value functions are ultrametric absolute value functions.
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Let | · | be a q-absolute value function on a field k for some q > 0 again.
Observe that

{|x| : x ∈ k, x ̸= 0}(6.14)

is a subgroup of the multiplicative group R+ of positive real numbers. If 1 is
not a limit point of (6.14) with respect to the standard topology on R, then | · |
is said to be discrete on k. In this case, one can check that (6.14) has no limit
points in R+ with respect to the standard topology on R. However, 0 is a limit
point of (6.14) in R when | · | is nontrivial on k.

In order to be more precise, put

ρ1 = sup{|x| : x ∈ k, |x| < 1}.(6.15)

Thus 0 ≤ ρ1 ≤ 1 automatically. It is easy to see that ρ1 < 1 if and only if | · |
is discrete on k, and that ρ1 > 0 if and only if | · | is nontrivial on k. If | · |
is discrete and nontrivial on k, then the supremum in (6.15) is attained, and
(6.14) consists of integer powers of ρ1. If | · | is not discrete on k, then one can
verify that (6.14) is dense in R+ with respect to the topology induced by the
standard topology on R.

One can also show that | · | is non-archimedian when | · | is discrete on k.
This is trivial when k has positive characteristic, and so it suffices to consider
the case where k has characteristic 0. In this case, there is a natural embedding
of Q into k, so that | · | induces a discrete q-absolute value function on Q. Using
discreteness, it is easy to see that this induced absolute value function on Q
cannot be equivalent to the standard absolute value function. Ostrowski’s theo-
rem implies that the induced absolute value function on Q is non-archimedian,
and hence that | · | is non-archimedian on k.

Let k be a field with a q-absolute value function | · | for some q > 0, and
suppose that | · | is archimedian on k, and that k is complete with respect to
the corresponding q-metric (6.4). Under these conditions, another theorem of
Ostrowski implies that k is isomorphic to R or C, where | · | corresponds to a
q-absolute value function on R or C that is equivalent to the standard one.

7 q-Seminorms

Let k be a field with a qk-absolute value function for some qk > 0, and let V be
a vector space over k. A nonnegative real-valued function N on V is said to be
a q-seminorm on V for some positive real number q and with respect to | · | on
k if it satisfies the following two conditions. First,

N(t v) = |t|N(v) for every t ∈ k and v ∈ V.(7.1)

Second,
N(v + w)q ≤ N(v)q +N(w)q for every v, w ∈ V.(7.2)

Note that the first condition implies that N(0) = 0, by taking t = 0. If we also
have that

N(v) > 0(7.3)
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for every v ∈ V with v ̸= 0, then N is said to be a q-norm on V . A q-seminorm
or q-norm with q = 1 is also known as a seminorm or norm, respectively. As
before, (7.2) is equivalent to asking that

N(v + w) ≤ (N(v)q +N(w)q)1/q(7.4)

for every v, w ∈ V . The right side of (7.4) decreases monotonically in q, by
(4.11), so that this condition becomes more restrictive as q increases.

Similarly, a nonnegative real-valued function N on V is said to be a semi-
ultranorm on V with respect to | · | on k if it satisfies (7.1) and

N(v + w) ≤ max(N(v), N(w))(7.5)

for every v, w ∈ V . If N also satisfies (7.3), then N is said to be an ultranorm
on V with respect to | · | on k. The right side of (7.5) is less than or equal
to the right side of (7.4), so that (7.5) implies (7.4). Thus semi-ultranorms
and ultranorms are automatically q-seminorms and q-norms for every q > 0,
respectively. As usual, semi-ultranorms and ultranorms will be considered as
q-seminorms and q-norms with q = ∞, respectively. If N is a q-seminorm or
q-norm on V for some q > 0, then it is easy to see that

d(v, w) = dN (v, w) = N(v − w)(7.6)

defines a q-semimetric or q-metric on V , as appropriate. Of course, | · | may be
considered as a qk-norm on k, where k is considered as a one-dimensional vector
space over itself.

If N is a q-seminorm on V with respect to | · | on k for some q > 0, and if
N(v0) > 0 for some v0 ∈ V , then one can check that | · | has to be a q-absolute
value function on k, using (7.1). More precisely, this is trivial when q ≤ qk, and
otherwise one can get the stronger version of the triangle inequality for | · | from
the one for N when q > qk. If | · | is the trivial absolute value function on k,
then the trivial ultranorm is defined on V by putting N(0) = 0 and N(v) = 1
for every v ∈ V with v ̸= 0. It is easy to see that this defines an ultranorm on
V , for which the corresponding ultrametric as in (7.6) is the discrete metric.

Let | · | be any qk-absolute value function on k for some qk > 0 again. If a is
a positive real number, then | · |a defines a (qk/a)-absolute value function on k,
as in the previous section. Similarly, if N is a q-seminorm or q-norm on V with
respect to | · | on k, then

N(v)a(7.7)

defines a (q/a)-seminorm or (q/a)-norm on V with respect to | · |a on k, as
appropriate. Of course, the (q/a)-semimetric or (q/a)-metric on V associated
to (7.7) as before is the same as the ath power of the q-semimetric or q-metric
on V associated to N , respectively.

8 r-Summable functions

Let k be a field with a q-absolute value function | · | for some q > 0, let X be
a nonempty set, and let r be a positive real number. A k-valued function f on
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X is said to be r-summable with respect to | · | on k if |f |r is summable as a
nonnegative real-valued function on X, in the sense that∑

x∈X

|f(x)|r < ∞.(8.1)

We may also simply say that f is summable on X when this holds with r = 1,
especially for k = R or C with the standard absolute value function. Let
ℓr(X, k) be the space of r-summable k-valued functions on X. If f is any k-
valued function on X, then

∥f∥r = ∥f∥ℓr(X,k) =
( ∑

x∈X

|f(x)|r
)1/r

(8.2)

is defined as a nonnegative extended real number, which is finite exactly when f
is r-summable on X. Similarly, let ℓ∞(X, k) be the space of k-valued functions
f on X that are bounded, which means that |f | is bounded as a nonnegative
real-valued function on X. As before,

∥f∥∞ = ∥f∥ℓ∞(X,k) = sup
x∈X

|f(x)|(8.3)

is defined as a nonnegative extended real-number for any k-valued function f
on X, and is finite exactly when f is bounded on X. If 0 < r1 ≤ r2 ≤ ∞, then
we have that

∥f∥r2 ≤ ∥f∥r1(8.4)

for every k-valued function f on X, as in (4.11). It follows that

ℓr1(X, k) ⊆ ℓr2(X, k)(8.5)

under these conditions, by the definition of ℓr(X, k).
If f is a k-valued function on X, t ∈ k, and t ̸= 0, then it is easy to see that

∥t f∥r = |t| ∥f∥r(8.6)

for every r > 0. This also holds trivially when t = 0 and f ∈ ℓr(X, k), so that
the right side is defined. If g is another k-valued function on X, then we have
that

∥f + g∥rr ≤ ∥f∥rr + ∥g∥rr(8.7)

when r ≤ q and r < ∞,

∥f + g∥qr ≤ ∥f∥qr + ∥g∥qr(8.8)

when q ≤ r and q < ∞, and

∥f + g∥∞ ≤ max(∥f∥∞, ∥g∥∞)(8.9)

when q = ∞. More precisely, (8.7) and (8.8) are the same when r = q < ∞,
in which case they can be verified directly from the definitions. Similarly, (8.9)

17



corresponds to r = q = ∞, and it is easy to check directly. If r ≤ q, then
| · | is also an r-absolute value function on k, as in Section 6. This permits
one to obtain (8.7) as in the r = q case. One can get (8.8) using Minkowski’s
inequality for sums, applied to the exponent q/r ≥ 1. It follows that ℓr(X, k) is a
vector space over k with respect to pointwise addition and scalar multiplication
for every r > 0, and more precisely ℓr(X, k) is a linear subspace of the space
c(X, k) of all k-valued functions on X. We also get that ∥f∥r is an r-norm
on ℓ∞(X, k) when r ≤ q, and that ∥f∥r is a q-norm on ℓr(X, k) when r ≥ q.
Of course, the space c00(X, k) of k-valued functions with finite support on X
is contained in ℓr(X, k) for every r > 0. If r < ∞, then one can check that
c00(X, k) is dense in ℓr(X, k) with respect to the r or q-metric associated to
∥f∥r, as appropriate. If | · | is the trivial absolute value function on k, then
ℓr(X, k) is equal to c00(X, k) when r < ∞, and ℓ∞(X, k) is the same as c(X, k).

A k-valued function f on X is said to vanish at infinity if for each ϵ > 0 we
have that

|f(x)| < ϵ(8.10)

for all but finitely many x ∈ X. The space of k-valued functions on X that
vanish at infinity is denoted c0(X, k). This is a linear subspace of ℓ∞(X, k),
which is a closed set with respect to the q-metric associated to ∥f∥∞. It is easy
to see that

ℓr(X, k) ⊆ c0(X, k)(8.11)

when 0 < r < ∞, and in particular c00(X, k) is contained in c0(X, k). We also
have that c00(X, k) is dense in c0(X, k) with respect to the q-metric associated
to ∥f∥∞, and the two spaces are the same when | · | is the trivial absolute value
function on k.

Suppose now that k is complete with respect to the q-metric associated
to | · |. Using standard arguments, one can check that ℓr(X, k) is complete for
every r > 0, with respect to the r or q-metric associated to ∥f∥r, as appropriate.
More precisely, if {fj}∞j=1 is a Cauchy sequence in ℓr(X, k) for some r > 0, then
{fj(x)}∞j=1 is a Cauchy sequence in k for every x ∈ X. If k is complete, then it
follows that {fj(x)}∞j=1 converges to an element f(x) of k for each x ∈ X. One
can verify that f ∈ ℓr(X, k) under these conditions, and that {fj}∞j=1 converges
to f with respect to ∥ · ∥r.

9 Bounded linear mappings

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
let V , W be vector spaces over k. Also let NV , NW be qV , qW -norms on V ,
W , respectively, for some qV , qW > 0, and with respect to | · | on k. A linear
mapping T from V into W is said to be bounded with respect to NV and NW

if there is a nonnegative real number C such that

NW (T (v)) ≤ C NV (v)(9.1)
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for every v ∈ V . This implies that

NW (T (v)− T (v′)) = NW (T (v − v′)) ≤ C NV (v − v′)(9.2)

for every v, v′ ∈ V . In particular, it follows that T is uniformly continuous with
respect to the qV , qW -metrics on V , W associated to NV , NW , respectively.

Suppose for the moment that | · | is not the trivial absolute value function on
k. If a linear mapping T from V into W is continuous at 0, then one can check
that T is bounded in the sense of (9.1). More precisely, it suffices to ask that
NW (T (v)) be bounded on a ball in V with respect to NV centered at 0 with
positive radius. This uses the fact that there are t ∈ k such that |t| is within
a bounded factor of any positive real number, and the homogeneity property
(7.1) of q-norms.

The space of bounded linear mappings from V into W is denoted BL(V,W ),
or simply BL(V ) when V = W and NV = NW . If T is a bounded linear mapping
from V into W , then we put

∥T∥op = ∥T∥op,VW = inf{C ≥ 0 : (9.1) holds},(9.3)

where more precisely the infimum is taken over all nonnegative real numbers C
for which (9.1) holds. It is easy to see that the infimum is always attained, so
that (9.1) holds with C = ∥T∥op. If t ∈ k, then t T is a bounded linear mapping
from V into W too, and

∥t T∥op = |t| ∥T∥op.(9.4)

This uses the analogous homogeneity properties of NV and NW .
Suppose that T1, T2 are bounded linear mappings from V into W , and let

C1, C2 be nonnegative real numbers such that

NW (Tj(v)) ≤ Cj NV (v)(9.5)

for every v ∈ V and j = 1, 2. This implies that

NW (T1(v) + T2(v))
qW ≤ (CqW

1 + CqW
2 )NV (v)

qW(9.6)

for every v ∈ V when qW < ∞, and that

NW (T1(v) + T2(v)) ≤ max(C1, C2)NV (v)(9.7)

for every v ∈ V when qW = ∞. In both cases, it follows that T1+T2 is bounded
as a linear mapping from V into W . Thus BL(V,W ) is a vector space over k
with respect to pointwise addition and scalar multiplication, which is a linear
subspace of the space L(V,W ) of all linear mappings from V into W . It also
follows easily from this that (9.3) defines a qW -norm on BL(V,W ).

Let T be a linear mapping from V into W , and consider the following con-
dition on T :

NW (T (v)) is bounded for v ∈ V with NV (v) ≤ 1.(9.8)
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This means that
sup{NW (T (v)) : v ∈ V, NV (v) ≤ 1}(9.9)

is defined as a nonnegative real number. If T is a bounded linear mapping from
V into W , then (9.8) holds, and (9.9) is less than or equal to ∥T∥op. If | · | is
nontrivial on k, then (9.8) implies that T is bounded as a linear mapping from
V into W , as before. In this case, one can verify that (9.1) holds with C equal
to a constant multiple of (9.9), where the extra constant factor depends on | · |.
It follows that ∥T∥op is less than or equal to a constant multiple of (9.9) in this
situation. If k = R or C with the standard absolute value function, then this
constant multiple is equal to 1, so that ∥T∥op is equal to (9.9). This also works
when | · | is not discrete on k, for any field k.

Let Z be another vector space over k, and let NZ be a qZ-norm on Z with
respect to | · | on k, for some qZ > 0. Suppose that T1 is a bounded linear
mapping from V into W , and that T2 is a bounded linear mapping from W into
Z. Thus there are nonnegative real numbers C1, C2 such that

NW (T1(v)) ≤ C1 NV (v)(9.10)

for every v ∈ V , and
NZ(T2(w)) ≤ C2 NW (w)(9.11)

for every w ∈ W . Combining these two statements, we get that

NZ(T2(T1(v))) ≤ C2 NW (T1(v)) ≤ C1 C2 NV (v)(9.12)

for every v ∈ V . Hence the composition T2 ◦ T1 of T1 and T2 is bounded as a
linear mapping from V into W , with

∥T2 ◦ T1∥op,V Z ≤ ∥T1∥op,VW ∥T2∥op,WZ .(9.13)

In particular, BL(V ) is closed under composition of mappings. Note that the
identity mapping IV on V is bounded as a linear mapping from V into itself,
with ∥IV ∥op = 1 when V ̸= {0}.

If T is a one-to-one linear mapping from V onto W , then the inverse T−1 of
T is a linear mapping from W onto V . A one-to-one bounded linear mapping T
from V ontoW is considered to be invertible as a bounded linear mapping if T−1

is bounded as a linear mapping from W onto V . As before, the boundedness of
the inverse means that

NV (T
−1(w)) ≤ C ′ NW (w)(9.14)

for some C ′ ≥ 0 and every w ∈ W . In this situation, this is the same as saying
that

NV (v) ≤ C ′ NW (T (v))(9.15)

for every v ∈ V . Note that (9.15) implies that the kernel of T is trivial, so that
T is injective.
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A linear mapping T from V into W is said to be an isometry if

NW (T (v)) = NV (v)(9.16)

for every v ∈ V . This is the same as saying that (9.1) and (9.15) hold with
C,C ′ = 1. If T is an isometric linear mapping from V onto W , then the inverse
mapping T−1 is an isometry from W onto V . Of course, the identity mapping
IV is an isometric linear mapping from V onto itself. The shift operator T
discussed in Section 3 defines an isometry from ℓr(Z, k) onto itself for every
r > 0, and T maps c0(Z, k) onto itself as well.

Remember that k may be considered as a one-dimensional vector space over
itself, and that | · | may be considered as a qk-norm on k as a vector space over
itself. A bounded linear functional on V is a linear functional λ on V that is
bounded as a linear mapping from V into k, with respect to | · | as a norm on k.
The corresponding qk-operator norm of λ is known as the dual qk-norm of λ.

If W is complete with respect to the qW -metric associated to NW , then
BL(V,W ) is complete with respect to the qW -metric associated to (9.3), by stan-
dard arguments. More precisely, if {Tj}∞j=1 is a Cauchy sequence in BL(V,W )
with respect to this qW -metric, then {Tj(v)}∞j=1 is a Cauchy sequence in W for
every v ∈ V , with respect to the qW -metric associated to NW . Hence this se-
quence converges in W for every v ∈ V , because W is complete, by hypothesis.
It is easy to see that the limit defines a linear mapping T from V into W . One
can verify that T is bounded, and that {Tj}∞j=1 converges to T with respect to
the operator qW -norm, as desired.

10 Summable functions

In this section, we take k = R or C, with the standard absolute value function.
Let X be a nonempty set, and let f be a real or complex-valued summable
function on X, so that

∑
x∈X |f(x)| < ∞. It is well known that one can define

the sum ∑
x∈X

f(x)(10.1)

as a real or complex number, as appropriate, in a natural way under these
conditions. More precisely, if f is a nonnegative real-valued function on X, then
this sum can be defined as in Section 4. Otherwise, if f is a real or complex-
valued summable function onX, then f can be expressed as a linear combination
of nonnegative real-valued summable functions on X, which permits one to
reduce to the previous case. This is a bit simpler in the real case, where f can
be expressed as a difference of nonnegative real-valued summable functions on
X. The complex case can be reduced to the real case, because the real and
imaginary parts of a complex-valued function on X are summable as well. Of
course, one should also verify that the value of the sum (10.1) does not depend on
the particular representation of f in terms of nonnegative real-valued summable
functions on X. This uses the linearity properties of the sum for nonnegative
real-valued functions on X mentioned in Section 4.
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Remember that the spaces ℓ1(X,R), ℓ1(X,C) of real and complex-valued
summable functions onX, respectively, are vector spaces overR, C with respect
to pointwise addition and scalar multiplication, as in Section 8. One can check
that

f 7→
∑
x∈X

f(x)(10.2)

defines a linear functional on these spaces, using the linearity properties for
sums of nonnegative real-valued functions as in Section 4 again, or the remarks
in the preceding paragraph about how the sum (10.1) is well defined when f is
summable on X. Moreover, we have that∣∣∣∣∑

x∈X

f(x)

∣∣∣∣ ≤ ∑
x∈X

|f(x)|(10.3)

for every real or complex-valued summable function f on X. In the real case,
this can be obtained by decomposing f into its positive and negative parts. In
the complex case, one can get a slightly weaker estimate with an extra factor
of 2 on the right side using the real case applied to the real and imaginary
parts of a complex-valued summable function on X. Of course, if a complex-
valued function f on X has finite support, then (10.3) reduces to the triangle
inequality for the standard absolute value function on R or C. One can use
this and an approximation argument to get that (10.3) holds for every complex-
valued summable function on X.

It is easy to see that (10.2) is a bounded linear functional on ℓ1(X,R) and
ℓ1(X,C), with dual norm equal to 1, using (10.3). Remember that c00(X,R)
and c00(X,C) are dense linear subspaces of ℓ1(X,R) and ℓ1(X,C), respectively,
as in Section 8. It follows that (10.2) is uniquely determined as a bounded linear
functional on ℓ1(X,R) or ℓ1(X,C) by its restriction to c00(X,R) or c00(X,C),
respectively, because bounded linear mappings are continuous. Of course, if a
real or complex-valued function f on X has finite support, then (10.1) reduces
to a finite sum in R or C, as appropriate.

If X = Z+, then the sum (10.1) may be treated as an infinite series. In this
case, the hypothesis that f be summable on Z+ says exactly that this infinite
series is absolutely convergent. Similarly, ifX = Z, then the sum may be treated
as a doubly-infinite series, which reduces to a sum of two ordinary infinite series.

11 Hilbert spaces

In this section, we take k = R or C again, equipped with the standard absolute
value function. Let V be a vector space over R or C, and let ⟨v, w⟩ be an
inner product on V , which is Hermitian in the complex case. Thus ⟨v, v⟩ is a
nonnegative real number for every v ∈ V , and we put

∥v∥ = ⟨v, v⟩1/2(11.1)
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for each v ∈ V , using the nonnegative square root of ⟨v, v⟩ on the right side. It
is well known that

|⟨v, w⟩| ≤ ∥v∥ ∥w∥(11.2)

for every v, w ∈ V , which is the Cauchy–Schwarz inequality in this context,
and that ∥v∥ defines a norm on V . If V is complete with respect to the metric
associated to this norm, then V is said to be a Hilbert space.

Let X be a nonempty set, and let ℓ2(X,R) and ℓ2(X,C) be as in Section
8. If f and g are elements of either of these spaces, then it is well known that
|f(x)| |g(x)| is summable on X. This can be obtained from the Cauchy–Schwarz
inequality, or by comparing this function more directly with |f(x)|2 + |g(x)|2.
The standard inner product on ℓ2(X,R) is defined as usual by

⟨f, g⟩ =
∑
x∈X

f(x) g(x),(11.3)

and similarly the standard inner product on ℓ2(X,C) is defined by

⟨f, g⟩ =
∑
x∈X

f(x) g(x),(11.4)

where a denotes the complex conjugate of a complex number a. The sums on
the right sides of (11.3) and (11.4) are defined as in the previous section, and
it is easy to see that the norms corresponding to these inner products are the
same as the ℓ2 norms defined in Section 8.

Now let (X,A, µ) be a measure space, and let L2(X) be the corresponding
space of real or complex-valued square-integrable functions on X. If f , g are
square integrable functions on X, then it is well known that |f(x)| |g(x)| is also
integrable on X, as before. This permits us to define

⟨f, g⟩ =
∫
X

f(x) g(x) dµ(x)(11.5)

in the real case, and

⟨f, g⟩ =
∫
X

f(x) g(x) dµ(x)(11.6)

in the complex case. These determine inner products on the real and complex
versions of L2(X), for which the corresponding norm is the usual L2 norm(∫

X

|f(x)|2 dµ(x)
)1/2

.(11.7)

Remember that square-integrable functions on X are considered the same in
L2(X) when they are equal almost everywhere on X with respect to µ.

Let (V, ⟨·, ·⟩V ) and (W, ⟨·, ·⟩W ) be inner product spaces, both real or both
complex. A linear mapping T from V onto W is said to be unitary if

⟨T (v), T (v′)⟩W = ⟨v, v′⟩V(11.8)
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for every v, v′ ∈ V . This implies that T is an isometry with respect to the
corresponding norms, by taking v = v′. Conversely, if T is an isometric linear
mapping from V into W , then it is well known that T satisfies (11.8), because
of polarization identities. It is easy to see directly that the shift operator T in
Section 3 defines a unitary transformation from ℓ2(Z,R) onto itself, and from
ℓ2(Z,C) onto itself.

12 Infinite series

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let V
be a vector space over k with a q-norm N for some q > 0, with respect to | · | on
k. As usual, an infinite series

∑∞
j=1 vj with terms in V is said to converge in V

if the corresponding sequence of partial sums
∑n

j=1 vj converges in V , in which
case the value of the infinite series is defined to be the limit of the sequence of
partial sums. Note that the sequence of partial sums is a Cauchy sequence in
V if and only if for each ϵ > 0 there is a positive integer L such that

N
( n∑

j=l

vj

)
< ϵ(12.1)

for every n ≥ l ≥ L. In particular, this implies that {vj}∞j=1 converges to 0 in
V , by taking l = n. Another necessary condition for the sequence of partial
sums to be a Cauchy sequence in V is that the partial sums be bounded in V .

Suppose for the moment that q < ∞, so that

N
( n∑

j=l

vj

)q

≤
n∑

j=l

N(vj)
q(12.2)

for every n ≥ l ≥ 1. Let us say that
∑∞

j=1 vj converges q-absolutely in V if∑∞
j=1 N(vj)

q converges as an infinite series of nonnegative real numbers. This

implies that the sequence of partial sums
∑n

j=1 vj is a Cauchy sequence in
V , using the reformulation of the Cauchy condition mentioned in the previous
paragraph. If V is complete with respect to the q-metric associated to N , then
it follows that

∑∞
j=1 vj converges in V . Under these conditions, one can also

check that

N
( ∞∑

j=1

vj

)q

≤
∞∑
j=1

N(vj)
q,(12.3)

using (12.2) with l = 1.
Suppose now that q = ∞, so that

N
( n∑

j=l

vj

)
≤ max

l≤j≤n
N(vj)(12.4)

for every n ≥ l ≥ 1. If {vj}∞j=1 converges to 0 in V , then it is easy to see that

the sequence of partial sums
∑n

j=1 vj forms a Cauchy sequence, using the earlier
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reformulation of the Cauchy condition again. If V is also complete with respect
to the ultrametric associated to N , then

∑∞
j=1 vj converges in V , and we get

that

N
( ∞∑

j=1

vj

)
≤ sup

j≥1
N(vj),(12.5)

using (12.4) with l = 1. Note that the supremum on the right side of (12.5) is
attained in this situation, because N(vj) → 0 as j → ∞, by hypothesis.

Let us now take k = R or C, with the standard absolute value function, and
let (V, ⟨v, w⟩) be a real or complex inner product space, with the corresponding
norm ∥v∥. Suppose that

∑∞
j=1 vj is an infinite series of pairwise-orthogonal

vectors in V , so that
⟨vj , vl⟩ = 0(12.6)

when j ̸= l. This implies that∥∥∥∥ n∑
j=l

vj

∥∥∥∥2 =

n∑
j=l

∥vj∥2(12.7)

for each n ≥ l ≥ 1. If
∑∞

j=1 ∥vj∥2 converges as an infinite series of nonnegative

real numbers, then it follows that the sequence of partial sums
∑n

j=1 vj is a

Cauchy sequence in V . If V is a Hilbert space, then
∑∞

j=1 vj converges in V ,
and ∥∥∥∥ ∞∑

j=1

vj

∥∥∥∥2 =

∞∑
j=1

∥vj∥2.(12.8)

Of course,
∑∞

j=1 ∥vj∥2 converges if and only if the partial sums
∑n

j=1 ∥vj∥2 are

bounded. In this situation, this happens exactly when the partial sums
∑n

j=1 vj
are bounded in V .

13 Completeness

Let (X, dX) and (Y, dY ) be qX , qY -metric spaces for some qX , qY > 0, and
let E be a dense subset of X. Also let f be a uniformly continuous mapping
from E into Y , with respect to the restriction of dX to elements of E. If Y is
complete with respect to dY , then there is a unique extension of f to a uniformly
continuous mapping from X into Y . This is well known for ordinary metric
spaces, and essentially the same argument works for q-metric spaces. One can
also reduce to the case of ordinary metric spaces, by replacing dX or dY with dqXX
or dqYY when qX ≤ 1 or qY ≤ 1, respectively. More precisely, uniform continuity
of f is needed for the existence of such an extension, but ordinary continuity
of the extension is sufficient for its uniqueness. Similarly, completeness of Y is
only used for the existence of the extension, and not uniqueness.

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
let V , W be vector spaces over k with qV , qW -norms NV , NW , respectively, for
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some qV , qW > 0, and with respect to | · | on k. Also let V0 be a dense linear
subspace of V , and let T be a bounded linear mapping from V0 into W , with
respect to the restriction of NV to V0. Thus T is uniformly continuous with
respect to the qV , qW -metrics associated to NV , NW , respectively, as in Section
9. If W is complete with respect to the qW -metric associated to NW , then T
has a unique extension to a uniformly continuous mapping from V into W , as
in the preceding paragraph. In this context, one can check that this extension
is a bounded linear mapping from V into W , with the same operator norm as
T has on V0.

Let X be a nonempty set, and let us take k = R or C with the standard
absolute value function for the moment. If f is a real or complex-valued function
on X with finite support, then one can define

∑
x∈X f(x) as a real or complex

number by reducing to a finite sum. It is easy to see that∣∣∣∣∑
x∈X

f(x)

∣∣∣∣ ≤ ∑
x∈X

|f(x)|(13.1)

under these conditions, using the ordinary triangle inequality on R or C. Of
course,

f 7→
∑
x∈X

f(x)(13.2)

defines linear functionals on c00(X,R) and c00(X,C). More precisely, these
are bounded linear functionals on c00(X,R) and c00(X,C) with respect to the
restrictions of the corresponding ℓ1 norms to these spaces, with dual norms
equal to 1, because of (13.1). Remember that c00(X,R) and c00(X,C) are
dense in ℓ1(X,R) and ℓ1(X,C), with respect to the metrics corresponding to
the ℓ1 norms, as in Section 8. It follows that there are unique extensions of
(13.2) to bounded linear functionals on ℓ1(X,R) and ℓ1(X,C) with dual norms
equal to 1, as in the preceding paragraph, and because R and C are complete
with respect to their standard metrics. These extensions can also be obtained
as in Section 10.

Now let k be any field with an ultrametric absolute value function | · |. If f
is a k-valued function on X with finite support, then

∑
x∈X f(x) can be defined

as an element of k, by reducing to a finite sum, as before. In this case, we have
that ∣∣∣∣∑

x∈X

f(x)

∣∣∣∣ ≤ max
x∈X

|f(x)|,(13.3)

by the ultrametric version of the triangle inequality. This implies that (13.2)
defines a bounded linear functional on c00(X, k) with respect to the supremum
ultranorm, with dual norm equal to 1. As in Section 8, c00(X, k) is dense in
c0(X, k) with respect to the ultrametric associated to the supremum ultranorm.
If k is complete with respect to the ultrametric associated to | · |, then there
is a unique extension of (13.2) to a bounded linear functional on c0(X, k) with
respect to the supremum ultranorm, and with dual norm equal to 1. This
extension may be used as the definition of

∑
x∈X f(x) when f is a k-valued
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function on X that vanishes at infinity and k is complete. If X = Z+, then this
sum can be treated as an infinite series, as in the previous section. Similarly, if
X = Z, then the sum can be reduced to a sum of two infinite series.

14 Orthonormal systems

In this section, we take k = R or C again, with the standard absolute value
function. Let (V, ⟨v, w⟩V ) be a real or complex inner product space, and let ∥v∥V
be the corresponding norm on V . Suppose for the moment that v1, . . . , vn are
finitely many orthonormal vectors in V , so that ∥vj∥V = 1 for each j = 1, . . . , n,
and

⟨vj , vl⟩V = 0(14.1)

when j ̸= l. Let v ∈ V be given, and put

w =

n∑
j=1

⟨v, vj⟩V vj .(14.2)

By construction, ⟨v, vj⟩V = ⟨w, vj⟩V for each j = 1, . . . , n, so that v − w is
orthogonal to vj . This implies that v − w is orthogonal to w, and hence

∥v∥2V = ∥(v − w) + w∥2V = ∥v − w∥2V + ∥w∥2V(14.3)

= ∥v − w∥2V +

n∑
j=1

|⟨v, vj⟩V |2.

In particular, we have that

n∑
j=1

|⟨v, vj⟩V |2 ≤ ∥v∥2V .(14.4)

If v is in the linear span of v1, . . . , vn in V , then w = v, and equality holds in
(14.4). If u is any element of the linear span of v1, . . . , vn in V , then w − u is
also in the linear span of v1, . . . , vn, so that v −w is orthogonal to w − u. This
implies that

∥v − u∥2V = ∥(v − w) + (w − u)∥2V = ∥v − w∥2V + ∥w − u∥2V(14.5)

≥ ∥v − w∥2V ,

and hence that w minimizes the distance to v in V among elements of the linear
span of v1, . . . , vn.

Now let A be a nonempty set, and let {va}a∈A be an orthonormal family
of vectors in V indexed by A. As before, this means that ∥va∥V = 1 for every
a ∈ A, and that ⟨va, vb⟩V = 0 when a ̸= b. If v ∈ V , then∑

a∈A

|⟨v, va⟩V |2 ≤ ∥v∥2V .(14.6)
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More precisely, the sum on the left is defined as in Section 4, as the supremum
of the corresponding sums over all finite subsets of A. These finite subsums can
be estimated as in (14.4), to get (14.6). If v is an element of the linear span of
the va’s, a ∈ A, in V , then equality holds in (14.6), as before. Similarly, if v is
an element of the closure of the linear span of the va’s, a ∈ A, in V , then one
can check that equality holds in (14.6).

Let c00(A) and ℓ2(A) denote c00(A, k) and ℓ2(A, k) with k = R or C, as
appropriate. If f ∈ c00(A), then

T (f) =
∑
a∈A

f(a) va(14.7)

reduces to a finite sum in V , so that T defines a linear mapping from c00(A)
into V . It is easy to see that

⟨T (f), T (g)⟩V = ⟨f, g⟩ℓ2(A)(14.8)

for every f, g ∈ c00(A), where the right side of (14.8) is given by (11.3) or (11.4),
as appropriate, with X = A. In particular, we have that

∥T (f)∥V = ∥f∥ℓ2(A)(14.9)

for every f ∈ c00(A), by taking f = g in (14.8). Note that T maps c00(A) onto
the linear span of the va’s, a ∈ A, in V .

If V is a Hilbert space, then T has a unique extension to a bounded linear
mapping from ℓ2(A) into V , as in the previous section. This extension satisfies
(14.8) for every f, g ∈ ℓ2(A), and hence (14.9) for every f ∈ ℓ2(A). One can
check that this extension maps ℓ2(A) onto the closure of the linear span of the
va’s, a ∈ A, in V . If A = Z+, then the right side of (14.7) can be treated as
an infinite series in V , as in Section 12. Similarly, if A = Z, then (14.7) can be
reduced to a sum of two infinite series in V .

15 Fourier series

In this section, we take k = C, with the standard absolute value function. Let

T = {z ∈ C : |z| = 1}(15.1)

be the unit circle in C, and let µ be a complex Borel measure on T. If j ∈ Z,
then the jth Fourier coefficient of µ is defined by

µ̂(j) =

∫
T

zj dµ(z).(15.2)

Observe that
|µ̂(j)| ≤ |µ|(T)(15.3)
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for each j ∈ Z, where |µ| denotes the total variation measure on T associated
to µ. It is well known that µ is uniquely determined by its Fourier coefficients,
in the following way.

Let C(T) be the space of complex-valued continuous functions on T, which
is a vector space over C with respect to pointwise addition and scalar multipli-
cation. Observe that

λµ(ϕ) =

∫
T

ϕdµ(15.4)

defines a linear functional on C(T), and that

|λµ(ϕ)| ≤
(
sup
z∈T

|ϕ(z)|
)
|µ|(T)(15.5)

for every ϕ ∈ C(T). Thus λµ is a bounded linear functional on C(T) with
respect to the supremum norm on C(T), and the corresponding dual norm
of λµ is less than or equal to |µ|(T). It is well known that µ automatically
satisfies certain regularity properties in this situation, which implies that µ is
uniquely determined by λµ on C(T). In fact, |µ|(T) is equal to the dual norm
of λµ with respect to the supremum norm on C(T). It is also well known that
every bounded linear functional on C(T) with respect to the supremum norm
corresponds to a complex Borel measure on T in this way. In order to show that
µ is uniquely determined by its Fourier coefficients, it suffices to show that λµ is
uniquely determined as a linear functional on C(T) by the Fourier coefficients
of µ.

Note that (15.2) is the same as λµ applied to zj as a complex-valued con-
tinuous function on T for each j ∈ Z. If µ̂(j) = 0 for each j ∈ Z, then it follows
that

λµ(ϕ) = 0(15.6)

when ϕ is of the form zj for some j ∈ Z. This implies that (15.6) also holds
when ϕ is a linear combination of finitely many such functions, by linearity. It
is well known that these linear combinations are dense in C(T) with respect to
the supremum norm. Under these conditions, we get that (15.6) holds for every
ϕ ∈ C(T), because λµ is bounded on C(T) with respect to the supremum norm,
as desired.

Let ν be the complex Borel measure on T defined by putting

ν(E) =

∫
E

z dµ(z)(15.7)

for every Borel set E ⊆ T. It is well known that∫
T

ϕ(z) dν(z) =

∫
T

ϕ(z) z dµ(z)(15.8)

for every bounded complex-valued Borel measurable function ϕ on T. In par-
ticular, for each j ∈ Z, we have that

ν̂(j) =

∫
T

zj dν(z) =

∫
T

zj−1 dµ(z) = µ̂(j − 1).(15.9)

Note that |ν| = |µ| as nonnegative Borel measures on T.
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16 Fourier series, continued

Let us continue to take k = C with the standard absolute value function. Of
course, there is an analogue of Lebesgue measure on the unit circle T, which cor-
responds to ordinary Lebesgue measure on [0, 2π) with respect to an arclength
parameterization of T. If f is a complex-valued integrable function on T with
respect to this measure, then the jth Fourier coefficient of f is defined for each
j ∈ Z by

f̂(j) =
1

2π

∫
T

f(z) zj |dz|,(16.1)

where |dz| denotes the arclength measure on T just mentioned. In this case, we
have that

|f̂(j)| ≤ 1

2π

∫
T

|f(z)| |dz|(16.2)

for every j ∈ Z, and
lim

|j|→∞
f̂(j) = 0,(16.3)

by the Riemann–Lebesgue lemma. If we put

f1(z) = z f(z)(16.4)

for each z ∈ T, then f1 is integrable on T too, and

f̂1(j) =
1

2π

∫
T

f(z) zj−1 = f̂(j − 1)(16.5)

for every j ∈ Z.
In this situation,

µf (E) =
1

2π

∫
E

f(z) |dz|(16.6)

defines a complex Borel measure on T, with

|µf |(E) =
1

2π

∫
E

|f(z)| |dz|(16.7)

for every Borel set E ⊆ T. If ϕ is a bounded complex-valued Borel measurable
function on T, then ∫

T

ϕdµf =

∫
T

ϕ(z) f(z) |dz|.(16.8)

In particular,
µ̂f (j) = f̂(j)(16.9)

for each j ∈ Z, where µ̂f is as defined in (15.2). Similarly, (16.2) corresponds to
(15.3) with µ = µf , µf1 corresponds to (15.7), and (16.5) corresponds to (15.9).
Note that f is uniquely determined by its Fourier coefficients, as in the previous
section.
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Let L2(T) be the space of complex-valued square-integrable functions on T
with respect to arclength measure. This is a Hilbert space with respect to the
inner product

⟨f, g⟩ = ⟨f, g⟩L2(T) =
1

2π

∫
T

f(z) g(z) |dz|,(16.10)

and the corresponding norm

∥f∥2 = ∥f∥L2(T) =
( 1

2π

∫
T

|f(z)|2 |dz|
)1/2

.(16.11)

It is well known that ∫
T

zj |dz| = 0(16.12)

for every j ∈ Z with j ̸= 0, which implies that the functions zj on T with j ∈ Z
are orthonormal with respect to (16.10). If f ∈ L2(T), then f̂(j) is the same
as the inner product of f with zj with respect to (16.10) for each j ∈ Z. This
implies that

∞∑
j=−∞

|f̂(j)|2 ≤ 1

2π

∫
T

|f(z)|2 |dz|,(16.13)

as in (14.6). It is well known that the linear span of the functions zj with j ∈ Z
is dense in L2(T), since it is dense in C(T) with respect to the supremum norm.
Thus we actually have that

∞∑
j=−∞

|f̂(j)|2 =
1

2π

∫
T

|f(z)|2(16.14)

for every f ∈ L2(T), as in Section 14.
Let {aj}∞j=−∞ be a doubly-infinite sequence of complex numbers that is

square-summable, in the sense that

∞∑
j=−∞

|aj |2 < ∞.(16.15)

Thus {aj}∞j=−∞ corresponds to an element of ℓ2(Z,C), and

f(z) =

∞∑
j=−∞

aj z
j(16.16)

determines an element of L2(T), because of the orthonormality of the functions
zj in L2(T), as in Sections 12 and 14. By construction,

f̂(j) = aj(16.17)

for each j ∈ Z, and

∞∑
j=−∞

aj−1 z
j =

∞∑
j=−∞

aj z
j+1 = z f(z).(16.18)
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If {aj}∞j=−∞ is summable, in the sense that

∞∑
j=−∞

|aj | < ∞,(16.19)

then the right side of (16.16) can be treated as the sum of a summable complex-
valued function on Z for each z ∈ T, as in Section 10. In this case, the right
side of (16.16) can also be considered as the sum of two absolute convergent
series in C(T) with respect to the supremum norm, as in Section 12.

17 Some bounded linear functionals

Let us begin with the case where k = R or C, with the standard absolute value
function. Let (V, ⟨v, w⟩) be a real or complex inner product space. If w ∈ V ,
then

λw(v) = ⟨v, w⟩(17.1)

defines a linear functional on V . This linear functional is bounded on V with
respect to the norm ∥v∥ corresponding to the inner product, because

|λw(v)| ≤ ∥v∥ ∥w∥(17.2)

for every v ∈ V , by the Cauchy–Schwarz inequality. More precisely, this implies
that the corresponding dual norm of λw is less than or equal to ∥w∥. It is easy
to see that the dual norm of λw is equal to ∥w∥, since

λw(w) = ⟨w,w⟩ = ∥w∥2.(17.3)

If V is a Hilbert space, then it is well known that every bounded linear functional
on V is of this form. Note that this representation is unique, because λw ̸= 0
when w ̸= 0.

Let X be a nonempty set, and let us use the notation c00(X), c0(X), and
ℓr(X) for the usual spaces of real or complex-valued functions on X, as ap-
propriate. Suppose that 1 ≤ r, r′ ≤ ∞ are conjugate exponents, in the sense
that

1/r + 1/r′ = 1.(17.4)

If f ∈ ℓr(X) and g ∈ ℓr
′
(X), then Hölder’s inequality implies that their product

f(x) g(x) is summable on X, with∑
x∈X

|f(x)| |g(x)| ≤ ∥f∥r ∥g∥r′ .(17.5)

Thus
λg(f) =

∑
x∈X

f(x) g(x)(17.6)
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can be defined as a real or complex number, as appropriate, as in Section 10.
We also have that

|λg(f)| ≤ ∥f∥r ∥g∥r′ ,(17.7)

by (17.5). This implies that λg defines a bounded linear functional on ℓr(X) for

each g in ℓr
′
(X), with dual norm less than or equal to ∥g∥r′ . One can check that

the dual norm of λg on ℓr(X) is equal to g, by considering suitable f ∈ ℓr(X).
If 1 ≤ r < ∞, then it is well known that every bounded linear functional

on ℓr(X) is of this form. Remember that any linear functional on c00(X) can
be expressed as (17.6) for some real or complex-valued function g on X, as
apprpriate, and as in Section 2. If this linear functional is bounded on c00(X)
with respect to ∥f∥r, then one can verify that g ∈ ℓr

′
(X). More precisely, one

can show that ∥g∥r′ is less than the corresponding dual norm of λg on c00(X)
with respect to ∥f∥r on c00(X), by considering suitable f ∈ c00(X), as in the
preceding paragraph. It follows that λg defines a bounded linear functional on
ℓr(X), as in the previous paragraph again. If 1 ≤ r < ∞, then c00(X) is dense
in ℓr(X), and the original bounded linear functional on ℓr(X) is equal to λg

on all of ℓr(X). Essentially the same argument shows that a bounded linear
functional on c0(X) with respect to the supremum norm can be expressed as
(17.6) for some g ∈ ℓ1(X). Note that the case where r = r′ = 2 also corresponds
to the earlier discussion of Hilbert spaces.

Suppose now that g ∈ ℓ∞(X), so that λg as in (17.6) defines a bounded
linear functional on ℓ1(X). In this case, (17.5) is very simple, and one can get
that the dual norm of λg on ℓ1(X) is equal to ∥g∥∞ using (2.6). If 0 < r ≤ 1,
then ℓr(X) is contained in ℓ1(X), and

∥f∥1 ≤ ∥f∥r(17.8)

for every f ∈ ℓr(X), as in (8.4) and (8.5). This implies that the restriction of
λg to ℓr(X) defines a bounded linear functional on ℓr(X), with dual norm less
than or equal to ∥g∥∞. One can check that the dual norm of λg on ℓr(X) is
equal to ∥g∥∞ when 0 < r ≤ 1, using (2.6) again.

It is well known that every bounded linear functional on ℓr(X) is of this form
when 0 < r ≤ 1. As before, the restriction of a bounded linear functional on
ℓr(X) to c00(X) can be expressed as in (17.6) for some real or complex-valued
function g on X. The boundedness of this linear functional on c00(X) with
respect to ∥f∥r implies that g ∈ ℓ∞(X), because of (2.6). This implies that
λg extends to a bounded linear functional on ℓr(X) when 0 < r ≤ 1, as in the
preceding paragraph. The original bounded linear functional on ℓr(X) is equal
to λg on ℓr(X), because c00(X) is dense in ℓr(X) when r < ∞.

Now let k be a field with an ultrametric absolute value function | · |, and
suppose that k is complete with respect to the associated ultrametric. If f , g are
bounded k-valued functions on X and at least one of f , g vanishes at infinity on
X, then it is easy to see that their product f(x) g(x) vanishes at infinity on X
too. This permits us to define λg(f) as an element of k as in (17.6), as discussed
in Section 13. We also get that

|λg(f)| ≤ max
x∈X

(|f(x)| |g(x)|) ≤ ∥f∥∞ ∥g∥∞(17.9)
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where the first step is as in Section 13. This implies that λg defines a bounded
linear functional on c0(X, k) with respect to the supremum ultranorm when
g is in ℓ∞(X, k), and similarly that λg defines a bounded linear functional on
ℓ∞(X, k) when g ∈ c0(X, k). In both cases, (17.9) implies that the corresponding
dual norm of λg is less than or equal to ∥g∥∞, and one can check that the dual
norm of λg is equal to ∥g∥∞, using (2.6). Of course, if X has only finitely many
elements, then the completeness of k is not needed, and vanishing at infinity on
X is trivial.

It is easy to see that every bounded linear functional on c0(X, k) is of this
form, using the same type of argument as in the archimedian case. More pre-
cisely, every linear functional on c00(X, k) can be expressed as in (17.6) for some
k-valued function g on X, as in Section 2. If this linear functional on c00(X, k)
is bounded with respect to the supremum ultranorm, then one can verify that
g is bounded on X, using (2.6) again. This implies that λg defines a bounded
linear functional on c0(X, k) with respect to the supremum ultranorm, as in
the preceding paragraph. The original bounded linear functional on c0(X, k) is
equal to λg on all of c0(X, k), because c00(X, k) is dense in c0(X, k) with respect
to the supremum norm.

Let g be any bounded k-valued function on X again, so that (17.6) defines
a bounded linear functional λg on c0(X, k), as before. If r is a positive real
number, then ℓr(X, k) is contained in c0(X, k), as in (8.11). We also have that

∥f∥∞ ≤ ∥f∥r(17.10)

for every f ∈ ℓr(X, k), as in (8.4). Hence the restriction of λg to ℓr(X, k) defines
a bounded linear functional on ℓr(X, k), with dual norm less than or equal to
∥g∥∞. As before, one can verify that the dual norm of λg on ℓr(X, k) is equal
to ∥g∥∞, using (2.6).

Every bounded linear functional on ℓr(X, k) is of this form when 0 < r < ∞,
by an argument like the one in the archimedian case. More precisely, any linear
functional on c00(X, k) can be expressed as in (17.6) for some k-valued function
g on X, as before. If this linear functional on c00(X, k) is bounded with respect
to ∥f∥r, then g is bounded onX, because of (2.6). Thus λg extends to a bounded
linear functional on ℓr(X, k) when 0 < r < ∞, as in the preceding paragraph.
It follows that the original linear functional on ℓr(X, k) is equal to λg on all of
ℓr(X, k), because c00(X, k) is dense in ℓr(X, k) when r < ∞.

18 Some bounded linear mappings

Let k be a field, let X be a nonempty set, and let V be a vector space over k.
Also let a(x) be a V -valued function on X, and put

Ta(f) =
∑
x∈X

f(x) a(x)(18.1)

for every f ∈ c00(X, k). More precisely, the right side reduces to a finite sum
in V , and so defines an element of V . Thus Ta defines a linear mapping from
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c00(X, k) into V . Note that
Ta(δy) = a(y)(18.2)

for every y ∈ X, where δy ∈ c00(X, k) is as in (2.2). It is easy to see that
every linear mapping from c00(X, k) into V is of this form, since the δy’s with
y ∈ X form a basis of c00(X, k) as a vector space over k. More precisely, a linear
mapping T from c00(X, k) into V can be expressed as Ta, where a(y) = T (δy)
for each y ∈ X.

Let | · | be a qk-absolute value function on k for some qk > 0, and let NV

be a qV -norm on V with respect to | · | on k for some qV > 0. Also let a be
a V -valued function on X again, so that (18.1) defines a linear mapping from
c00(X, k) into V , and let 0 < r ≤ ∞ be given. If Ta is bounded with respect to
∥f∥r on c00(X, k) and NV on V , then it is easy to see that NV (a(y)) is less than
or equal to the corresponding operator q-norm of V for every y ∈ X, because
of (18.2). In the other direction, if NV (a(x)) is bounded on X, and if r ≤ qV ,
then we have that

NV (Ta(f)) ≤
(
sup
x∈X

NV (a(x))
)
∥f∥r(18.3)

for every f ∈ c00(X, k). To see this, remember that NV is an r-norm on V when
r ≤ qV , as in Section 7. Using this, (18.3) follows easily from the definition of Ta

and the r-norm version of the triangle inequality. Of course, (18.3) says that Ta

is bounded with respect to ∥f∥r on c00(X, k) and NV on V , with operator norm
less than or equal to supx∈X NV (a(x)). In this situation, the operator norm of
Ta is equal to this supremum, since the reverse inequality holds for every r > 0,
as before.

Suppose for the moment that V is complete with respect to the qV -metric
associated to NV . Let us continue to ask that NV (a(x)) be bounded on X, and
that 0 < r ≤ qV . If r < ∞, then c00(X, k) is dense in ℓr(X, k), and it follows
that Ta extends to a bounded linear mapping from ℓr(X, k) into V , as in Section
13. Similarly, if r = ∞, then c00(X, k) is dense in c0(X, k) with respect to ∥f∥∞,
and Ta extends to a bounded linear mapping from c0(X, k) into V , using ∥f∥∞
on c0(X, k). In these cases, the sum on the right side of (18.1) can be treated
as an infinite series when X = Z+, or reduced to a sum of two infinite series
when X = Z.

If λx is a linear functional on V for each x ∈ X, then

v 7→ λx(v)(18.4)

defines a linear mapping from V into the space c(X, k) of all k-valued functions
on X. Clearly every linear mapping from V into c(X, k) corresponds to a family
of linear functionals on V indexed by X in this way. If λx is a bounded linear
functional on V with respect to NV for each x ∈ X, and if the corresponding
dual norm of λx is uniformly bounded as a function of x ∈ X, then (18.4)
defines a bounded linear mapping from V into ℓ∞(X, k). More precisely, the
operator qk-norm of this linear mapping from V into ℓ∞(X, k) is equal to the
supremum of the dual norm of λx on V with respect to NV over x ∈ X. As
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before, every bounded linear mapping from V into ℓ∞(X, k) corresponds to a
family of bounded linear functionals on V indexed byX with uniformly bounded
dual norms.

19 Multiplication operators

Let k be a field, and let X be a nonempty set. The space c(X, k) of k-valued
functions on X is a commutative algebra over k, with respect to pointwise
multiplication of functions. The constant function 1X = 1X,k on X equal to the
multiplicative identity element 1 = 1k in k at every point is the multiplicative
identity element in c(X, k). A k-valued function a has a multiplicative inverse in
c(X, k) if and only if a(x) ̸= 0 for every x ∈ X, in which case the multiplicative
inverse is given by 1/a(x). The space c00(X, k) of k-valued functions on X with
finite support is an ideal in c(X, k).

Put
Ma(f) = a f(19.1)

for all k-valued functions a, f on X. This defines a linear mapping Ma from
c(X, k) into itself, which is the multiplication operator associated to a. Note
that Ma sends c00(X, k) into itself. Clearly

Ma(1X) = a(19.2)

for every a ∈ c(X, k). If y ∈ X and δy ∈ c00(X, k) is as in (2.2), then

Ma(δy) = a(y) δy(19.3)

for every a ∈ c(X, k). The mapping

a 7→ Ma(19.4)

is an algebra homomorphism from c(X, k) into the algebra of linear mappings
from c(X, k) into itself. In particular, this mapping sends a = 1X to the identity
operator on c(X, k).

Let | · | be a q-absolute value function on k for some q > 0, so that ℓr(X, k)
can be defined for each r > 0 as in Section 8. If a is a bounded k-valued function
on X, then Ma maps ℓr(X, k) into itself for every r > 0. More precisely, the
restriction of Ma to ℓr(X, k) is a bounded linear mapping with respect to the
usual ℓr norm, and the corresponding operator norm of Ma is equal to the
supremum norm ∥a∥∞ of a. Similarly, Ma maps the space c0(X, k) of k-valued
functions on X that vanish at infinity into itself when a is bounded on X. In this
case, the operator norm of Ma with respect to the restriction of the supremum
norm to c0(X, k) is equal to ∥a∥∞ too.

Let us now take k = R or C, with the standard absolute value function. Let
(X,A, µ) be a measure space, so that X is a set, A is a σ-algebra of measurable
subsets of X, and µ is a nonnegative measure defined on A. The corresponding
Lebesgue spaces Lr(X) can be defined in the usual way for each r > 0. Re-
member that the Lr norm defines a norm on Lr(X) in the usual sense when
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r ≥ 1, and it defines an r-norm on Lr(X) when 0 < r ≤ 1. If a is an essentially
bounded measurable real or complex-valued function on X, as appropriate, then
the corresponding multiplication operator Ma defines a bounded linear mapping
from Lr(X) into itself for each r > 0. The operator norm of Ma on Lr(X) is
less than or equal to the essential supremum norm ∥a∥∞ = ∥a∥L∞(X) of a on
X for each r > 0. It is easy to see that the operator norm of Ma on L∞(X)
is equal to ∥a∥∞. In order to get that the operator norm of Ma on Lr(X) is
equal to ∥a∥∞ when r < ∞, an additional condition on X is needed. Namely,
this works when every measurable set A ⊆ X with µ(A) > 0 has a measurable
subset B such that 0 < µ(B) < ∞.

20 Dual linear mappings

Let k be a field with a qk-absolute value function for some qk > 0, let V be a
vector space over k, and let NV be a qV -norm NV on V with respect to | · | on
k for some qV > 0. The dual space V ′ associated to V is the space of bounded
linear functionals on V , as in Section 9. This is the same as BL(V, k), where k
is considered as a one-dimensional vector space over itself, and | · | is considered
as a qk-norm on k as a vector space. In particular, V ′ is a vector space over k,
which may be considered as a linear subspace of the algebraic dual V alg. The
corresponding operator qk-norm on V ′ is known as the dual qk-norm, as before,
and is denoted NV ′ .

Let W be another vector space over k, and let NW be a qW -norm on W with
respect to | · | on k for some qW > 0. Also let T be a bounded linear mapping
from V into W with respect to NV and NW , respectively. If λ is a bounded
linear functional on W , then

T ′(λ) = λ ◦ T(20.1)

defines a bounded linear functional on V . More precisely,

NV ′(T ′(λ)) ≤ ∥T∥op,VW NW ′(λ),(20.2)

as in (9.13), where ∥T∥op,VW is the corresponding operator qW -norm of T , as in
(9.3). It is easy to see that T ′ defines a linear mapping from W ′ into V ′, which
is the same as the restriction of the algebraic dual linear mapping T alg to V ′.
Using (20.2), we get that T ′ is bounded with respect to the corresponding dual
norms, with

∥T ′∥op,W ′V ′ ≤ ∥T∥op,VW .(20.3)

Observe that
T 7→ T ′(20.4)

is a linear mapping from BL(V,W ) into BL(W ′, V ′), as in (1.2). This lin-
ear mapping is bounded with respect to the corresponding operator norms, by
(20.3).
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Suppose for the moment that V = W , and that NV = NW . As in Section 9,
the identity mapping IV is a bounded linear mapping from V into itself. The
corresponding dual mapping is the identity mapping IV ′ on V ′, so that

(IV )
′ = IV ′ ,(20.5)

as in (1.3).
Let Z be a third vector space over k, with a qZ-norm NZ with respect to | · |

on k for some qZ > 0. Suppose that T1 and T2 are bounded linear mappings
from V into W and from W into Z, respectively, so that T2 ◦ T1 is a bounded
linear mapping from V into Z. Under these conditions, we have that

(T2 ◦ T1)
′ = T ′

1 ◦ T ′
2(20.6)

as linear mappings from Z ′ into V ′, as in (1.5). Suppose now that T is a one-
to-one bounded linear mapping from V onto W whose inverse T−1 is bounded
as a linear mapping from W onto V . In this case, one can check that T ′ is a
one-to-one linear mapping from W ′ onto V ′. The inverse of T ′ is given by

(T ′)−1 = (T−1)′,(20.7)

as linear mappings from V ′ intoW ′, as in (1.3). In particular, the inverse of T ′ is
bounded as a linear mapping from V ′ intoW ′, with respect to the corresponding
dual norms.

21 Hilbert space adjoints

In this section, k = R or C, with the standard absolute value function. Let
(V, ⟨·, ·⟩V ) and (W, ⟨·, ·⟩W ) be inner product spaces, both real or both complex,
with corresponding norms ∥ · ∥V and ∥ · ∥W , respectively. If u ∈ W , then

∥u∥W = sup{|⟨u,w⟩W | : w ∈ W, ∥w∥W ≤ 1}.(21.1)

More precisely, the right side of (21.1) is less than or equal to ∥u∥W , by the
Cauchy–Schwarz inequality. The opposite inequality is trivial when u = 0, and
otherwise can be obtained by taking w = u/∥u∥W .

Let T be a linear mapping from V into W , and consider the following con-
dition on T :

|⟨T (v), w⟩W | is bounded for v ∈ V and w ∈ W with ∥v∥V , ∥w∥W ≤ 1.(21.2)

Of course, this means that

sup{|⟨T (v), w⟩W | : v ∈ V, w ∈ W, ∥v∥V , ∥w∥W ≤ 1}(21.3)

is defined as a nonnegative real number. Observe that

∥T (v)∥W = sup{|⟨T (v), w⟩W | : w ∈ W, ∥w∥W ≤ 1}(21.4)
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for every v ∈ V , by applying (21.1) to u = T (v). Thus (21.2) is equivalent to
following condition on T :

∥T (v)∥W is bounded for v ∈ V with ∥v∥V ≤ 1.(21.5)

In this case, (21.3) is equal to

sup{∥T (v)∥W : v ∈ V, ∥v∥V ≤ 1},(21.6)

because of (21.4). Note that (21.5) corresponds to (9.8) in this situation, and
that (21.6) corresponds to (9.9). Thus T is bounded as a linear mapping from
V into W if and only if (21.5) holds, as in Section 9, in which case the operator
norm ∥T∥op,VW of T is equal to (21.6). It follows that (21.2) holds if and only
if T is bounded as a linear mapping from V into W , in which case ∥T∥op,VW is
equal to (21.3).

Let T be a bounded linear mapping from V into W , and observe that

|⟨T (v), w⟩W | ≤ ∥T (v)∥W ∥w∥W ≤ ∥T∥op,VW ∥v∥V ∥w∥W(21.7)

for every v ∈ V and w ∈ W , using the Cauchy–Schwarz inequality in the first
step. This implies that

v 7→ ⟨T (v), w⟩W(21.8)

is a bounded linear functional on V for each w ∈ W , with dual norm less than
or equal to ∥T∥op,VW ∥w∥W . If V is a Hilbert space, then for each w ∈ W there
is a unique element T ∗(w) of V such that

⟨T (v), w⟩W = ⟨v, T ∗(w)⟩V(21.9)

for every v ∈ V , as in Section 17. One can check that T ∗ is a linear mapping
from W into V , because T ∗(w) is uniquely determined by (21.9). We also have
that

∥T ∗(w)∥V ≤ ∥T∥op,VW ∥w∥W(21.10)

for every w ∈ W , because of the corresponding bound for the dual norm of
(21.8). This implies that T ∗ is bounded as a linear mapping from W into V ,
with operator norm less than or equal to ∥T∥op,VW . In fact,

∥T ∗∥op,WV = ∥T∥op,VW ,(21.11)

because of (21.9) and the characterization of ∥T∥op,VW as (21.3).
Let us continue to ask that V be a Hilbert space, so that

T 7→ T ∗(21.12)

defines a mapping from BL(V,W ) into BL(W,V ). This mapping is linear in the
real case, and conjugate-linear in the complex case. Of course, if W is a Hilbert
space, then the adjoint of a bounded linear mapping from W into V is defined
as a bounded linear mapping from V into W in the same way. If V and W are

39



Hilbert spaces, and T is a bounded linear mapping from V into W , then T ∗ is
defined as a bounded linear mapping from W into V , and the adjoint (T ∗)∗ of
T ∗ is defined as a bounded linear mapping from V into W . It is easy to see that

(T ∗)∗ = T,(21.13)

directly from the definitions.
Let us suppose that V and W are Hilbert spaces for the rest of the section.

Remember that the identity mapping IV on V is bounded as a linear mapping
from V into itself. Observe that

I∗V = IV(21.14)

as a bounded linear mapping from V into itself.
Let (Z, ⟨·, ·⟩Z) be another Hilbert space, which is real or complex depending

on whether V and W are real or complex. Also let T1 be a bounded linear
mapping from V into W , and let T2 be a bounded linear mapping from W into
Z. Thus the adjoint T ∗

1 of T1 is defined as a bounded linear mapping from W
into V , and the adjoint T ∗

2 of T2 is defined as a bounded linear mapping from
Z into W . If v ∈ V and z ∈ Z, then we have that

⟨T2(T1(v)), z⟩Z = ⟨T1(v), T
∗
2 (z)⟩W = ⟨v, T ∗

1 (T
∗
2 (z))⟩V ,(21.15)

using the definition of T ∗
2 in the first step, and the definition of T ∗

1 in the second
step. This implies that

(T2 ◦ T1)
∗ = T ∗

1 ◦ T ∗
2(21.16)

as bounded linear mappings from Z into V .
Suppose that T is a one-to-one bounded linear mapping from V onto W

whose inverse is bounded as a linear mapping from W onto V . Thus T ∗ is
defined as a bounded linear mapping from W into V , and (T−1)∗ is defined as
a bounded linear mapping from V into W . Observe that

T ∗ ◦ (T−1)∗ = (T−1 ◦ T )∗ = I∗V = IV ,(21.17)

using (21.16) in the first step, and (21.14) in the third step. Similarly,

(T−1)∗ ◦ T ∗ = (T ◦ T−1)∗ = I∗W = IW .(21.18)

This implies that T ∗ is invertible as a bounded linear mapping from W into V ,
with

(T ∗)−1 = (T−1)∗.(21.19)

Let T be any bounded linear mapping from V into W again. Remember
that T is an isometry if and only if

⟨T (v), T (v′)⟩W = ⟨v, v′⟩V(21.20)

for every v, v′ ∈ V , as in (11.8). This condition is equivalent to asking that

⟨v, T ∗(T (v′))⟩V = ⟨v, v′⟩(21.21)
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for every v, v′ ∈ V , by definition of the adjoint. It is easy to see that (21.21)
holds if and only if

T ∗ ◦ T = IV(21.22)

as linear mappings from V into itself. Thus T is an isometry from V into W if
and only if (21.22) holds.

Suppose now that T is a one-to-one bounded linear mapping from V onto
W . In this case, (21.22) is the same as saying that

T−1 = T ∗.(21.23)

Thus T is a unitary mapping from V onto W if and only if (21.23) holds.

Part II

Invertibility and related topics

22 Invertibility of multiplication operators

Let k be a field, let X be a nonempty set, and let a be a k-valued function on
X. Thus

Ma(f) = a f(22.1)

defines a linear mapping from the space c(X, k) of k-valued functions on X into
itself, as in Section 19. If a(x) ̸= 0 for every x ∈ X, then Ma is invertible
on c(X, k), with inverse equal to the multiplication operator M1/a associated
to 1/a. If a is any k-valued function on X, then the kernel of Ma on c(X, k)
consists of the k-valued functions f on X such that

supp f ⊆ {x ∈ X : a(x) = 0}.(22.2)

We also have that

suppMa(f) = supp(a f) = (supp a) ∩ (supp f) ⊆ supp a(22.3)

for every f ∈ c(X, k). More precisely, Ma maps c(X, k) onto the space of k-
valued functions on X whose support is contained in the support of a. There
are analogous statements for Ma as a linear mapping from c00(X, k) into itself.

Let | · | be a q-absolute value function on k for some q > 0, and let a be a
bounded k-valued function on X. Thus Ma defines a bounded linear mapping
from ℓr(X, k) into itself for each r > 0, as in Section 19. As before, the kernel
of Ma on ℓr(X, k) consists of the f ∈ ℓr(X, k) that satisfy (22.2). Using (22.3),
we get that Ma maps ℓr(X, k) into the subspace of functions whose support is
contained in the support of a. Remember that Ma maps c0(X, k) into itself as
well under these conditions, for which there are analogous statements.

If a(x) ̸= 0 for each x ∈ X, and if 1/a is bounded on X, then Ma has
a bounded inverse on ℓr(X, k) for every r > 0, which is given by M1/a. In
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this case, M1/a maps c0(X, k) into itself too, as before. In the other direction,
suppose that for some r > 0 there is a positive real number c such that

∥Ma(f)∥r ≥ c ∥f∥r(22.4)

for every f ∈ ℓr(X, k). This implies that

|a(y)| ≥ c(22.5)

for every y ∈ X, by taking f to be the function δy on X that is equal to 1 at
y and to 0 on X \ {y}. In particular, this works as well when (22.4) holds for
every f ∈ c0(X, k) and r = ∞.

Let us now take k = R or C, with the standard absolute value function,
and let (X,A, µ) be a measure space. Also let a be an essentially bounded
measurable real or complex-valued function on X, so that the corresponding
multiplication operator Ma defines a bounded linear mapping from Lr(X) into
itself for every r > 0, as in Section 19. The kernel of Ma on Lr(X) consists of
the f ∈ Lr(X) such that f(x) = 0 for µ-almost every x ∈ X such that a(x) ̸= 0.
Similarly, Ma maps Lr(X) into the subspace of functions that are equal to 0
for µ-almost every x ∈ X such that a(x) = 0. If a(x) ̸= 0 for µ-almost every
x ∈ X, and if 1/a is essentially bounded on X, then Ma has a bounded inverse
on Lr(X), which is given by M1/a. In the other direction, suppose that (22.4)
holds for some r > 0, c ∈ R+, and every f ∈ Lr(X). If r = ∞, then one can
check that (22.5) holds for µ-almost every y ∈ X. If every measurable subset of
X of positive measure contains a measurable subset of positive finite measure,
then the analogous argument works when r < ∞ too.

23 The usual series

Let k be a field, and let V be a vector space over k. Remember that the
space L(V ) of linear mappings from V into itself is an associative algebra with
respect to composition of operators, which may also be expressed using the
usual notation for multiplication. Let T be a linear mapping from V into itself,
and let T j be the jth power of T with respect to composition for each positive
integer j. This is interpreted as being the identity operator I = IV on V when
j = 0. It is well known and easy to see that

(I − T )

l∑
j=0

T j =
( l∑

j=0

T j
)
(I − T ) = I − T l+1(23.1)

for each nonnegative integer l.
Suppose now that | · | is a qk-absolute value function on k for some qk > 0,

and that NV is a qV -norm on V with respect to | · | on k for some qV > 0.
As in Section 9, BL(V ) is the algebra of bounded linear mappings on V with
respect to NV , and ∥T∥op denotes the corresponding operator qV -norm. If T is
a bounded linear mapping from V into itself, then

∥T j∥op ≤ ∥T∥jop(23.2)
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for every j ≥ 1, by (9.13). This also works when j = 0, with the right side
interpreted as being equal to 1. Suppose from now on in this section that

∥T∥op < 1,(23.3)

so that
lim
j→∞

∥T j∥op = 0,(23.4)

by (23.2). If q is any positive real number, then ∥T∥qop < 1, and

∞∑
j=0

∥T j∥qop ≤
∞∑
j=0

∥T∥q j
op = (1− ∥T∥qop)−1,(23.5)

by summing the geometric series in the second step. In particular, the sum on
the left converges as an infinite series of nonnegative real numbers under these
conditions.

Suppose for the rest of the section that V is complete with respect to the
qV -metric associated to NV . This implies that BL(V ) is complete with respect
to the qV -metric associated to ∥ · ∥op, as in Section 9. Suppose for the moment
that qV < ∞, so that

∑∞
j=0 T

j converges qV -absolutely with respect to ∥ · ∥op,
as in the previous paragraph. This implies that

∑∞
j=0 T

j converges in BL(V )
with respect to ∥ · ∥op, as in Section 12, because of completeness. We also get
that

(I − T )

∞∑
j=0

T j =
( ∞∑

j=0

T j
)
(I − T ) = I,(23.6)

by taking the limit as l → ∞ in (23.1). It follows that I − T is invertible on V ,
with

(I − T )−1 =

∞∑
j=0

T j .(23.7)

Note that

∥(I − T )−1∥qVop =

∥∥∥∥ ∞∑
j=0

T j

∥∥∥∥qV
op

≤
∞∑
j=0

∥T j∥qVop ≤ (1− ∥T∥qVop )−1,(23.8)

using (12.3) in the second step, and (23.5) in the third step.
If qV = ∞, then (23.4) implies that

∑∞
j=0 T

j converges in BL(V ) with
respect to ∥ · ∥op, as in Section 12 again. It follows that I − T is invertible on
V , with inverse given as in (23.7), as before. In this case, we have that

∥(I − T )−1∥op =

∥∥∥∥ ∞∑
j=0

T j

∥∥∥∥
op

≤ sup
j≥0

∥T j∥op ≤ 1,(23.9)

using (12.5) in the second step. We also have that

∥I − T∥op ≤ max(∥I∥op, ∥T∥op) ≤ 1,(23.10)

because ∥ · ∥op is an ultranorm on BL(V ). Thus I − T is an isometry from V
onto itself in this situation, as in Section 9.
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24 Some consequences

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let V
be a vector space over k with a qV -norm NV with respect to | · | on k for some
qV > 0. Thus ∥ · ∥op defines a qV -norm on BL(V ), as in Section 9. Suppose that
V is complete with respect to the qV -metric associated to NV , so that BL(V )
is complete with respect to the qV -metric associated to ∥ · ∥op, as before.

Let T1, T2 be bounded linear mappings from V into itself, and suppose that
T1 has a bounded inverse on V . Observe that

T1 − T2 = T1 ◦ (I − T−1
1 ◦ T2).(24.1)

If
∥T−1

1 ◦ T2∥op < 1,(24.2)

then I − T2 ◦ T−1
1 has a bounded inverse on V , as in the previous section. This

implies that T1 − T2 has a bounded inverse on V , with

(T1 − T2)
−1 = (I − T−1

1 ◦ T2)
−1 ◦ T−1

1 ,(24.3)

by (24.1).
Under these conditions, we have that

∥(T1 − T2)
−1∥op ≤ ∥(I − T−1

1 ◦ T2)
−1∥op ∥T−1

1 ∥op,(24.4)

as in (9.13). If qV < ∞, then it follows that

∥(T1 − T2)
−1∥op ≤ (1− ∥T−1

1 ◦ T2∥qVop )−1/qV ∥T−1
1 ∥op,(24.5)

because of (23.8). If qV = ∞, then I − T−1
1 ◦ T2 is an isometry from V onto

itself, as in the previous section. This means that (I−T−1
1 ◦T2)

−1 is an isometry
from V onto itself too. In particular, this implies that

∥(T1 − T2)
−1∥op = ∥T−1

1 ∥op,(24.6)

using (24.3) again.
Note that

∥T−1
1 ◦ T2∥op ≤ ∥T−1

1 ∥op ∥T2∥op,(24.7)

as in (9.13). Thus (24.2) holds when the right side of (24.7) is strictly less than
1. In this case, (24.5) implies that

∥(T1 − T2)
−1∥op ≤ (1− ∥T−1

1 ∥qVop ∥T2∥qVop )−1/qV ∥T−1
1 ∥op(24.8)

when qV < ∞.
Suppose now that T1 is an isometry from V onto itself, so that T−1

1 is an
isometry on V as well. This implies that

∥T−1
1 ◦ T2∥op = ∥T2∥op.(24.9)
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If ∥T2∥op < 1 and qV = ∞, then

T1 − T2 is an isometry from V onto itself,(24.10)

because of (24.1) and the fact that I − T−1
1 ◦ T2 is an isometry on V , as before.

Let T be a bounded linear mapping on V , and let a ∈ k be given. Suppose
for the moment that a ̸= 0, so that

a I − T = a (I − a−1 T ).(24.11)

If
∥T∥op < |a|,(24.12)

then
∥a−1 T∥op = |a|−1 ∥T∥op < 1,(24.13)

and I − a−1 T has a bounded inverse on V , as in the previous section. This
implies that a I − T has a bounded inverse on V , with

(a I − T )−1 = a−1 (I − a−1 T )−1,(24.14)

by (24.11). If qV < ∞, then it follows that

∥(a I − T )−1∥op = |a|−1 ∥(I − a−1 T )−1∥op(24.15)

≤ |a|−1 (1− |a|−qV ∥T∥qVop )−1/qV ,

because of (23.8). If qV = ∞, then I − a−1 T is an isometry from V onto itself,
as before. Of course, this implies that (I − a−1 T )−1 is an isometry on V too.

Suppose that T has a bounded inverse on V , and let a ∈ k be given again.
Observe that

(a I − T ) = −T ◦ (I − aT−1).(24.16)

If
∥aT−1∥op = |a| ∥T−1∥op < 1,(24.17)

then I − aT−1 has a bounded inverse on V , as in the previous section. This
implies that a I − T has a bounded inverse on V , with

(a I − T )−1 = −(I − aT−1)−1 ◦ T−1,(24.18)

because of (24.16). If qV < ∞, then

∥(a I − T )−1∥op ≤ ∥(I − aT−1)−1∥op ∥T−1∥op(24.19)

≤ (1− |a|qV ∥T−1∥qVop )−1/qV ∥T−1∥op,

by (9.13) and (23.8). If qV = ∞, then I − aT−1 is an isometry on V , as before,
so that (I − aT−1)−1 is an isometry on V as well. This implies that

∥(a I − T )−1∥op = ∥T−1∥op,(24.20)

using (24.18).
Suppose now that T is an isometry from V onto itself, so that T−1 is an

isometry on V too. In this case, the remarks in the previous two paragraphs
imply that a I − T has a bounded inverse on V when |a| ̸= 1. If |a| < 1 and
qV = ∞, then a I − T is an isometry on V , because of (24.16) and the fact that
I − aT−1 is an isometry on V , as before.
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25 Eigenvalues and eigenvectors

Let k be a field, let V be a vector space over k, and let T be a linear mapping
from V into itself. As usual, a ∈ k is said to be an eigenvalue of T on V if there
is a v ∈ V such that v ̸= 0 and

T (v) = a v.(25.1)

In this case, v is said to be an eigenvector of T on V with respect to the
eigenvalue a. Of course, v = 0 satisfies (25.1) trivially, and one may include
v = 0 as an eigenvector associated to an eigenvalue a.

The collection of v ∈ V that satisfy (25.1) for a given a ∈ k is the same as
the kernel of a I − T on V . Thus a ∈ k is an eigenvalue of T on V if and only
if the kernel of a I − T on V is not trivial, which means that a I − V is not
one-to-one on V . In particular, this implies that a I − V is not invertible as a
linear mapping on V . If V has finite dimension, then it is well known that a
one-to-one linear mapping from V into itself is surjective, and hence invertible.
In this case, a ∈ k is an eigenvalue of T if and only if a I − T is not invertible
on V .

Let V alg be the algebraic dual of V , and let T alg be the dual linear mapping
from V alg into itself corresponding to T , as in Section 1. If a ∈ k is an eigenvalue
of T alg on V alg, then there is a nonzero linear functional λ on V such that

λ ◦ T = T alg(λ) = aλ.(25.2)

Equivalently, this means that

λ ◦ (a I − T ) = 0(25.3)

as a linear functional on V , so that a I − T maps V into the kernel of λ. The
condition that λ ̸= 0 as a linear functional on V means that the kernel of λ is a
proper linear subspace of V . It follows that a I − T does not map V onto itself
when a is an eigenvalue of T alg.

Suppose for the moment that T is a one-to-one linear mapping from V onto
itself, so that T is invertible as a linear mapping on V . In particular, this
implies that 0 is not an eigenvalue of T on V . Let a ∈ k with a ̸= 0 be given,
and observe that (25.1) holds for some v ∈ V if and only if

T−1(v) = (1/a) v.(25.4)

Thus a is an eigenvalue for T on V if and only if 1/a is an eigenvalue for T−1

on V . In this case, the corresponding eigenspaces in V are the same.
Let | · | be a qk-absolute value function on k for some qk > 0, and let NV

be a qV -norm on V with respect to | · | on k for some qV > 0. This leads to
an operator qV -norm ∥ · ∥op on BL(V ), as in Section 9. Suppose now that T is
a bounded linear mapping from V into itself with respect to NV . If a ∈ k and
v ∈ V satisfy (25.1), then we get that

|a|NV (v) = NV (a v) = NV (T (v)) ≤ ∥T∥op NV (v).(25.5)
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This implies that
|a| ≤ ∥T∥op(25.6)

when v ̸= 0.
Similarly, suppose that

cNV (v) ≤ NV (T (v))(25.7)

for some positive real number c and every v ∈ V . If a ∈ k and v ∈ V satisfy
(25.1), then we have that

cNV (v) ≤ NV (T (v)) = NV (a v) = |a|NV (v).(25.8)

It follows that
c ≤ |a|(25.9)

when v ̸= 0. In particular, if T has a bounded inverse on V , then (25.7) holds
with c = 1/∥T−1∥op, as in Section 9.

Suppose now that T is an isometric linear mapping from V into itself. This
implies that T is a bounded linear mapping on V , with ∥T∥op = 1 when V ̸= {0}.
In this case, (25.7) holds with c = 1. If a ∈ k is an eigenvalue of T , then

|a| = 1,(25.10)

by (25.6) and (25.9).
Let V ′ be the dual space of bounded linear functionals on V , as in Section 20,

with the corresponding dual qk-norm NV ′ . If T is any bounded linear mapping
from V into itself, then the corresponding dual linear mapping T ′ is a bounded
linear mapping from V ′ into itself, as before. Of course, V ′ is a linear subspace
of V alg, and T ′ is the same as the restriction of T alg to V ′. If a ∈ k is an
eigenvalue of T ′, then there is a nonzero bounded linear functional λ on V that
satisfies (25.3). This is the same as saying that a I − T maps V into the kernel
of λ. Note that the kernel of λ is a closed linear subspace of V , because λ is
continuous, and the kernel of λ is a proper linear subspace of V when λ ̸= 0.
Thus a I − T maps V into a proper closed linear subspace of V when a is an
eigenvalue of T ′.

Now let (V, ⟨v, w⟩V ) be a real or complex Hilbert space, and let T be a
bounded linear mapping from V into itself. Thus the adjoint T ∗ of T is defined
as a bounded linear mapping on V too, as in Section 21. Suppose that a is
a real or complex number, as appropriate, which is an eigenvalue of T ∗. Let
w ∈ V be an eigenvector associated to T ∗, so that

T ∗(w) = aw.(25.11)

If v ∈ V , then
⟨T (v), w⟩V = ⟨v, T ∗(w)⟩V = a ⟨v, w⟩V ,(25.12)

using (21.9) in the first step. Of course, the complex-conjugate a of a is auto-
matically equal to a in the real case. Equivalently,

⟨(a I − T )(v), w⟩V = a⟨v, w⟩V − ⟨T (v), w⟩V = 0(25.13)

for every v ∈ V .

47



26 Eigenfunctions for bilateral shifts

Let k be a field, and let T be the forward shift operator on c(Z, k), as in Section
3. Thus

(T (f))(j) = f(j − 1)(26.1)

for every k-valued function f on Z and j ∈ Z, as before. Of course, T is one-
to-one on c(Z, k), so that 0 is not an eigenvalue of T . Let a ∈ k with a ̸= 0 be
given, and put

ea(j) = aj(26.2)

for each j ∈ Z. Observe that

(T (ea))(j) = ea(j − 1) = aj−1 = a−1 ea(j)(26.3)

for every j ∈ Z, so that
T (ea) = a−1 ea(26.4)

as elements of c(Z, k). This shows that ea is an eigenvector of T on c(Z, k) with
eigenvalue a−1, and it is easy to see that every eigenvector of T on c(Z, k) with
eigenvalue a−1 is a scalar multiple of ea. Remember that T maps c00(Z, k) into
itself. As a mapping on c00(Z, k), T has no eigenvalues.

Note that
T (f g) = T (f)T (g)(26.5)

for every f, g ∈ c(Z, k). If f ∈ c(Z, k), a ∈ k, and a ̸= 0, then it follows that

T (ea f) = T (ea)T (f) = a−1 ea T (f),(26.6)

by (26.4). This is the same as saying that

T ◦Mea = a−1 Mea ◦ T,(26.7)

where Mea is the multiplication operator on c(Z, k) corresponding to ea, as
before. Equivalently,

T ◦M−1
ea = aM−1

ea ◦ T,(26.8)

which can be obtained directly from (26.7), or using the facts that 1/ea = e1/a
and M−1

ea = M1/ea = Me1/a . This implies that

Mea ◦ T ◦M−1
ea = aT(26.9)

as linear mappings from c(Z, k) into itself.
Let | · | be a q-absolute value function on k for some q > 0. If a ∈ k and

|a| = 1, then
|ea(j)| = |aj | = |a|j = 1(26.10)

for every j ∈ Z+, so that ea ∈ ℓ∞(Z, k). However, if a ∈ k, a ̸= 0, and |a| ̸= 1,
then ea is not bounded on Z. It follows that ea is not an element of c0(Z, k) for
any a ∈ k \ {0}, and in particular that ea is not an element of ℓr(Z, k) when
0 < r < ∞. If a ∈ k and |a| = 1, then (26.10) implies that Mea is an isometric
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linear mapping from ℓr(Z, k) onto itself for every r > 0, and that Mea maps
c0(Z, k) onto itself.

Using (26.9), we get that

Mea ◦ (I − T ) ◦M−1
ea = I −Mea ◦ T ◦M−1

ea = I − aT(26.11)

for every a ∈ k with a ̸= 0, as linear mappings from c(Z, k) into itself. We
may also consider T and Mea as linear mappings from c00(Z, k) into itself. If
|a| = 1, then we can consider T and Mea as linear mappings on ℓr(Z, k) for any
r > 0, or on c0(Z, k), as in the previous paragraph. In these situations, (26.11)
permits us to reduce questions about I − aT to the case where a = 1. Thus we
shall often focus on I − T in the next sections.

27 Finite support in Z

Let k be a field. If f ∈ c00(Z, k), then

∞∑
j=−∞

f(j)(27.1)

can be defined as an element of k, by reducing to a finite sum. The mapping
from f ∈ c00(Z, k) to the sum (27.1) defines a linear functional on c00(Z, k). We
also have that

∞∑
j=−∞

(T (f))(j) =

∞∑
j=−∞

f(j − 1) =

∞∑
j=−∞

f(j),(27.2)

where T is as in (26.1). Thus

∞∑
j=−∞

(f(j)− (T (f))(j)) = 0(27.3)

for every f ∈ c00(Z, k), so that I−T maps c00(Z, k) into the kernel of the linear
functional on c00(Z, k) defined by (27.1).

If f ∈ c00(Z, k) and j ∈ Z, then put

(R(f))(j) =

∞∑
l=0

f(j − l),(27.4)

where the sum on the right reduces to a finite sum in k, and hence defines an
element of k. This defines R(f) as a k-valued function on Z, and R defines a
linear mapping from c00(Z, k) into c(Z, k). Observe that

(R(f))(j) =

∞∑
n=−∞

f(n)(27.5)
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when j ∈ Z is sufficiently large, depending on f ∈ c00(Z, k), because f(n) = 0
when n ∈ Z is sufficiently large. If

∞∑
n=−∞

f(n) = 0,(27.6)

then it follows that R(f)(j) = 0 when j is sufficiently large. This implies that

R(f) ∈ c00(Z, k)(27.7)

when f ∈ c00(Z, k) satisfies (27.6), because f(n) = 0 when −n is sufficiently
large, and hence (R(f))(j) = 0 when −j is sufficiently large.

Let f ∈ c00(Z, k) and j ∈ Z be given, and observe that

(R(T (f)))(j) =

∞∑
l=0

(T (f))(j − l) =

∞∑
l=0

f(j − l − 1)(27.8)

and

(T (R(f)))(j) = (R(f))(j − 1) =

∞∑
l=0

f(j − 1− l).(27.9)

The sums on the right sides of (27.8) and (27.9) are both equal to

∞∑
l=1

f(j − l) = (R(f))(j)− f(j).(27.10)

Thus
R(T (f)) = T (R(f)) = R(f)− f(27.11)

for every f ∈ c00(Z, k). This shows that

T ◦R = R ◦ T = R− I(27.12)

as linear mappings from c00(Z, k) into c(Z, k). More precisely, the first T in
(27.12) is considered as a mapping from c(Z, k) into itself, the second T is
considered as a mapping from c00(Z, k) into itself, and I is the identity mapping
on c00(Z, k). It follows that

(I − T ) ◦R = R ◦ (I − T ) = I(27.13)

as mappings from c00(Z, k) into c(Z, k), where the first I and T are considered
as mappings on c(Z, k), and the other I’s and T are considered as mappings on
c00(Z, k). Alternatively,

(R(f))(j) =

∞∑
l=0

(T l(f))(j)(27.14)

for every f ∈ c00(Z, k) and j ∈ Z, because the lth power T l of T with respect
to composition is as in (3.3). Basically, R corresponds to

∑∞
l=0 T

l as a linear
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mapping from c00(Z, k) into c(Z, k), where this sum is interpreted as in (27.4)
and (27.14).

One can check that I−T is injective on c00(Z, k). This is the same as saying
that 1 ∈ k is not an eigenvalue of T on c00(Z, k), and indeed T has no eigenvalues
on c00(Z, k), as mentioned in the previous section. The injectivity of I − T on
c00(Z, k) also follows from the second equality in (27.13). If f ∈ c00(Z, k), then

(I − T )(R(f)) = f,(27.15)

because the left side of (27.13) is equal to the identity as a mapping from
c00(Z, k) into c(Z, k). Remember that R(f) has finite support in Z when f
satisfies (27.6), as in (27.7). In this case, (27.15) implies that f is in the image
of I − T on c00(Z, k). Thus the image of I − T on c00(Z, k) is the same as the
kernel of (27.1) as a linear functional on c00(Z, k), because the other inclusion
follows from (27.3).

28 Arbitrary functions on Z

Let k be a field, and let f be a k-valued function on Z. If j ∈ Z, then put

(R0(f))(j) =

j∑
l=1

f(l) when j ≥ 0(28.1)

= −
0∑

l=j+1

f(l) when j ≤ 0,

where both sums are interpreted as being 0 when j = 0. This defines a k-valued
function on Z, and R0 defines a linear mapping from c(Z, k) into itself. If f has
finite support in Z, then (27.4) is the same as

(R(f))(j) =

j∑
l=−∞

f(l).(28.2)

In this case, we have that

(R0(f))(j) = (R(f))(j)−
0∑

l=−∞

f(l)(28.3)

for every j ∈ Z, where the sum on the right side of (28.3) reduces to a finite
sum in k.

Let T be the forward shift operator on c(Z, k) again, as in (26.1). Let us
check that

(R0(T (f)))(j) = (R0(f))(j)− f(j) + f(0)(28.4)
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for every f ∈ c(Z, k) and j ∈ Z. If j = 0, then both sides of (28.4) are equal to
0. If j ≥ 1, then

(R0(T (f))(j) =

j∑
l=1

(T (f))(l) =

j∑
l=1

f(l − 1) =

j−1∑
l=0

f(l)

= (R0(f))(j)− f(j) + f(0).(28.5)

If j ≤ −1, then

(R0(T (f))(j) = −
0∑

l=j+1

(T (f))(l)) = −
0∑

l=j+1

f(l − 1) = −
−1∑
l=j

f(l)

= (R0(f))(j)− f(j) + f(0).(28.6)

Similarly, let us check that

(T (R0(f)))(j) = (R0(f))(j − 1) = R0(f)(j)− f(j)(28.7)

for every f ∈ c(Z, k) and j ∈ Z. Of course, the first step in (28.7) follows from
the definition of T . If j ≥ 1, then

(R0(f))(j − 1) =

j−1∑
l=1

f(l) = (R0(f))(j)− f(j),(28.8)

where the sum in the middle is interpreted as being equal to 0 when j = 1. If
j ≤ 0, then

(R0(f))(j − 1) = −
0∑

l=j

f(l) = (R0(f))(j)− f(j).(28.9)

Equivalently, (28.7) says that

T (R0(f)) = R0(f)− f(28.10)

for every f ∈ c(Z, k). Thus

T ◦R0 = R0 − I(28.11)

as linear mappings on c(Z, k). This implies that

(I − T ) ◦R0 = R0 − T ◦R0 = I(28.12)

as linear mappings on c(Z, k). It follows that I − T maps c(Z, k) onto itself.
Let λ0 be the linear functional on c(Z, k) defined by

λ0(f) = f(0)(28.13)
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for every f ∈ c(Z, k). As in Section 19, we let 1Z = 1Z,k be the constant
function equal to 1 = 1k ∈ k on Z. Using (28.4), we get that

R0(T (f)) = R0(f)− f + f(0)1Z(28.14)

for every f ∈ c(Z, k). Hence

R0 ◦ T = R0 − I + λ0 1Z(28.15)

as linear mappings on c(Z, k). More precisely, f 7→ λ0(f)1Z defines a linear
mapping from c(Z, k) into itself, which sends f ∈ c(Z, k) to the constant function
on Z equal to (28.13). It follows that

R0 ◦ (I − T ) = R0 −R0 ◦ T = I − λ0 1Z(28.16)

as linear mappings on c(Z, k). Note that the kernel of I − T on c(Z, k) consists
of constant functions, which is the same as the kernel of the right side of (28.16).

29 Summable functions on Z

In this section, we take k = R or C, with the standard absolute value function.
It will be convenient to let ℓr(Z) refer to either ℓr(Z,R) or ℓr(Z,C) for each
r > 0, and similarly for c00(Z), c0(Z), and c(Z).

If f is a summable real or complex-valued function on Z, then

∞∑
j=−∞

f(j)(29.1)

can be defined as a real or complex number. This may be treated as a sum over
Z, as in Section 10, or as a sum of two absolutely convergent infinite series. Of
course, the mapping from f ∈ ℓ1(X) to the sum (29.1) defines a bounded linear
functional on ℓ1(X) with respect to the ℓ1 norm. It is easy to see that (27.2)
and (27.3) still hold in this situation, where T is as in (26.1) again. Thus I − T
maps ℓ1(X) into the kernel of the linear functional defined by (29.1), as before.

Let f be a summable real or complex-valued function on Z again, and observe
that

∞∑
l=0

f(j − l)(29.2)

converges absolutely for each j ∈ Z. This is the same as the right side of
(27.4), so that (R(f))(j) can be defined as before. Equivalently, this sum can
be expressed as the right side of (28.2). This implies that

|(R(f))(j)| ≤
j∑

l=−∞

|f(l)| ≤ ∥f∥1(29.3)

53



for every j ∈ Z. Thus R(f) is a bounded real or complex-valued function on Z,
as appropriate, with

∥R(f)∥∞ ≤ ∥f∥1.(29.4)

Note that
lim

j→−∞
(R(f))(j) = 0(29.5)

for every f ∈ ℓ1(Z), by the first inequality in (29.3). If (29.1) is equal to 0, then
we have that

(R(f))(j) = −
∞∑

l=j+1

f(l)(29.6)

for each j ∈ Z. This implies that

|(R(f))(j)| ≤
∞∑

l=j+1

|f(l)|(29.7)

for each j ∈ Z. It follows that

lim
j→∞

(R(f))(j) = 0(29.8)

under these conditions. Combining (29.5) and (29.8), we get that

R(f) ∈ c0(Z)(29.9)

for every f ∈ ℓ1(Z) such that (29.1) is equal to 0.
If f ∈ ℓ1(Z), then (27.8) and (27.9) hold for every j ∈ Z, for the same

reasons as before. This implies that (27.11) holds for every f ∈ ℓ1(Z), so that

T ◦R = R ◦ T = R− I(29.10)

as linear mappings from ℓ1(Z) into ℓ∞(Z), as in (27.12). More precisely, the
first T in (29.10) is considered as a mapping from ℓ∞(Z) into itself, the second
T is considered as a mapping from ℓ1(Z) into itself, I is the identity mapping
on ℓ1(Z), and R is considered as a mapping from ℓ1(X) into ℓ∞(X). Hence

(I − T ) ◦R = R ◦ (I − T ) = I(29.11)

as linear mappings from ℓ1(Z) into ℓ∞(Z), as in (27.13), where the first I and
T in (29.11) are considered as mappings on ℓ∞(Z), and the other I’s and T are
considered as mappings on ℓ1(Z).

Remember that T has no eigenvalues on ℓ1(Z), as in Section 26. In partic-
ular, 1 is not an eigenvalue of T on ℓ1(Z), which means that I − T is injective
on ℓ1(Z). This can also be obtained from the second equality in (29.11), as in
Section 27. More precisely, if f ∈ ℓ1(Z), then

R(f − T (f)) = f,(29.12)
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by the second equality in (29.11). This implies that

∥f∥∞ = ∥R(f − T (f))∥∞ ≤ ∥f − T (f)∥1,(29.13)

using (29.4) in the second step.
Remember too that I − T maps ℓ1(Z) into{

g ∈ ℓ1(Z) :

∞∑
j=−∞

g(j) = 0

}
,(29.14)

as mentioned earlier. Note that (29.14) is a closed linear subspace of ℓ1(X) with
respect to the metric associated to the ℓ1 norm, because it is the kernel of the
bounded linear functional defined by (29.1). Of course,{

g ∈ c00(Z) :

∞∑
j=−∞

g(j) = 0

}
(29.15)

is a linear subspace of (29.14). One can check that (29.15) is dense in (29.14)
with respect to the metric associated to the ℓ1 norm. More precisely, c00(Z) is
dense in ℓ1(Z), as in Section 8. An additional adjustment is needed to show
that (29.15) is dense in (29.14), to get the condition on the sum. We have seen
that I − T maps c00(Z) onto (29.15), as in Section 27. It follows that I − T
maps ℓ1(Z) onto a dense linear subspace of (29.14).

30 Approximate eigenvalues

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V , W be vector spaces over k with qV , qW -norms NV , NW with respect to | · |
on k for some qV , qW > 0, respectively. Also let T be a linear mapping from V
into W , and consider the condition that there be a positive real number c such
that

cNV (v) ≤ NW (T (v))(30.1)

for every v ∈ V . This implies that the kernel of T is trivial, so that T is injective.
If T is a one-to-one linear mapping from V onto W , then this condition is
equivalent to the boundedness of the inverse T−1 as a linear mapping from W
onto V . In this case, (30.1) is the same as saying that

∥T−1∥op,WV ≤ 1/c,(30.2)

where ∥T−1∥op,WV is the operator qV -norm of T−1 associated to NV and NW ,
as in Section 9.

Let us now consider the condition that there is no c > 0 such that (30.1)
holds for every v ∈ V . In particular, this implies that T does not have a bounded
inverse mapping. This condition is the same as saying that for each ϵ > 0 there
is a vϵ ∈ V such that

NW (T (vϵ)) < ϵNV (vϵ).(30.3)

55



Equivalently, this means that there is a sequence {vj}∞j=1 of nonzero vectors in
V such that

lim
j→∞

NW (T (vj))NV (vj)
−1 = 0.(30.4)

If the kernel of T is nontrivial, then we can take {vj}∞j=1 to be a constant
sequence in V .

Let us take V = W for the rest of the section. Let T be a linear mapping
from V into itself, and let a ∈ k be given. Consider the condition that

cNV (v) ≤ NV ((a I − T )(v)) = NV (a v − T (v))(30.5)

for some c > 0 and every v ∈ V . This condition holds when a I − T has a
bounded inverse on V , as before. If this condition does not hold, then there is
a sequence {vj}∞j=1 of nonzero vectors in V such that

lim
j→∞

NV (a vj − T (vj))NV (vj)
−1 = 0,(30.6)

as in the preceding paragraph. In this case, one may say that a is an approximate
eigenvalue of T on V . If a is an eigenvalue of T , then a is an approximate
eigenvalue in this sense. If a is an approximate eigenvalue of T , then a I − T
does not have a bounded inverse on V .

Let a ∈ k and a sequence {vj}∞j=1 of nonzero vectors in V be given. If
qV < ∞, then one can check that

|NV (a vj)
qV −NV (T (vj))

qV | ≤ NV (a vj − T (vj))
qV(30.7)

for each j, using the qV -norm version of the triangle inequality. Thus (30.6)
implies that

lim
j→∞

|NV (a vj)
qV −NV (T (vj))

qV |NV (vj)
−qV = 0.(30.8)

Equivalently, this means that

lim
j→∞

∣∣|a|qV NV (vj)
qV −NV (T (vj))

qV
∣∣NV (vj)

−qV = 0.(30.9)

If qV = ∞, then one can use the ultranorm version of the triangle inequality
to get that

NV (a vj) = NV (T (vj))(30.10)

for every j ≥ 1 such that

NV (a vj − T (vj)) < max(NV (a vj), NV (T (vj))).(30.11)

This is the same as saying that

|a|NV (vj) = NV (T (vj))(30.12)

when
NV (a vj − T (vj)) < max(|a|NV (vj), NV (T (vj))).(30.13)
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If a ̸= 0, then (30.6) implies that (30.13) holds for all sufficiently large j. Thus
(30.12) holds for all sufficiently large j when a ̸= 0 and (30.9) holds.

Suppose that T is a bounded linear mapping from V into itself, and let ∥T∥op
be the corresponding operator qV -norm of T , as in Section 9. If a ∈ k is an
approximate eigenvalue of T on V , then

|a| ≤ ∥T∥op.(30.14)

To see this, let {vj}∞j=1 be a sequence of nonzero vectors in V that satisfies
(30.6). Note that

NV (T (vj)) ≤ ∥T∥op NV (vj)(30.15)

for each j, by definition of ∥T∥op. If |a| > ∥T∥op and qV < ∞, then one can get
a contradiction using (30.9) and (30.15). If qV = ∞ and a ̸= 0, then (30.12)
holds for all sufficiently large j, as in the preceding paragraph. This implies
that (30.14) holds when qV = ∞ and a ̸= 0, and of course (30.14) is trivial
when a = 0.

Suppose now that
cNV (v) ≤ NV (T (v))(30.16)

for some c > 0 and every v ∈ V . Let a ∈ k be an approximate eigenvalue of T
on V , and let us check that

c ≤ |a|.(30.17)

Let {vj}∞j=1 be a sequence of nonzero vectors in V that satisfies (30.6) again. It
is easy to see directly that a ̸= 0 in this case, which corresponds to the remarks
at the beginning of the section. If qV < ∞ and |a| < c, then one can get a
contradiction using (30.9) and (30.16). If qV = ∞ and a ̸= 0, then (30.12)
holds for all sufficiently large j, as before. Combining this with (30.16), we get
(30.17), as desired.

If T is an isometric linear mapping from V into itself, then T is bounded in
particular, with ∥T∥op = 1, unless V = {0}. In this case, (30.16) holds with
c = 1 as well. If a ∈ k is an approximate eigenvalue of T on V , then it follows
that |a| = 1, by (30.14) and (30.17).

Let T be a one-to-one linear mapping from V onto itself, and suppose that
T−1 is bounded as a linear mapping on V . This implies that (30.16) holds, with

c = 1/∥T−1∥op,(30.18)

at least if V ̸= {0}, so that ∥T−1∥op > 0. Alternatively, if a ∈ k is an approxi-
mate eigenvalue of T , then one can check that a ̸= 0 and 1/a is an approximate
eigenvalue of T−1. More precisely, if {vj}∞j=1 is a sequence of nonzero vectors in

V that satisfies (30.6), then {vj}j=1 satisfies the analogous condition for T−1

and 1/a. This uses the fact that

NV (aT
−1(vj)− vj) = NV (T

−1(a vj − T (vj)))(30.19)

≤ ∥T−1∥op NV (a vj − T (vj))
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for each j. It follows that

1/|a| = |1/a| ≤ ∥T−1∥op,(30.20)

as in (30.14). This is the same as (30.17), with c as in (30.18).

31 Eigenvalues of multiplication operators

Let k be a field, and let X be a nonempty set. Also let b be a k-valued function
on X, and let

Mb(f) = b f(31.1)

be the corresponding multiplication operator on c(X, k), as in Section 19. If
a ∈ k is an eigenvalue of Mb on c(X, k), then there is a nonzero k-valued
function f on X such that

b(x) f(x) = a f(x)(31.2)

for every x ∈ X. This implies that

b(x) = a(31.3)

for every x ∈ X such that f(x) ̸= 0. In particular, (31.3) holds for some x ∈ X,
because f is not identically zero on X. In the other direction, (31.2) holds for
every f ∈ c(X, k) whose support is contained in the set of x ∈ X such that
(31.3) holds. If (31.3) holds for some x ∈ X, then a is an eigenvalue of Mb on
c(X, k). In this case, a is an eigenvalue for the restriction of Ma to c00(X, k) as
well.

Let | · | be a q-absolute value function on k for some q > 0, and suppose
that b is a bounded k-valued function on X. Thus Mb defines a bounded linear
mapping from ℓr(X, k) into itself for every r > 0, and Mb maps c0(X, k) into
itself, as in Section 19. As in the previous paragraph, a ∈ k is an eigenvalue
of Mb on any of these spaces if and only if (31.3) holds for some x ∈ X. In
this case, the corresponding eigenfunctions are the functions in the appropriate
space that are supported in the set of x ∈ X such that (31.3) holds, as before.

Suppose that a ∈ k is an element of the closure of b(X) in k, with respect to
the q-metric associated to | · |. This means that there is a sequence {xj}∞j=1 of
elements of X such that {b(xj)}∞j=1 converges to a in k. Let δxj

be the k-valued
function on X equal to 1 at xj and 0 everywhere else, as in (2.2). Thus

Mb(δxj
) = b(xj) δxj

(31.4)

for each j, as in (19.3), and
∥δxj

∥r = 1(31.5)

for every j and r > 0. This implies that a is an approximate eigenvalue of Mb on
ℓr(X, k) for each r > 0, and also on c0(X, k), using the ℓ∞ q-norm on c0(X, k).
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Note that
Ma 1X−b = a I −Mb(31.6)

as linear mappings from c(X, k) into itself. If a ̸∈ b(X), then a1X −b is nonzero
on X, so that

1/(a1X − b)(31.7)

is defined as a k-valued function on X. The multiplication operator on c(X, k)
associated to (31.7) is the inverse of (31.6), as in Section 22. Suppose that a is
not in the closure of b(X) in k, so that there is a positive real number c such
that

|a− b(x)| ≥ c(31.8)

for every x ∈ X. This implies that (31.7) is bounded on X, so that the multi-
plication operator associated to (31.7) is bounded on ℓr(X, k) for each r > 0.
This means that (31.6) has a bounded inverse on ℓr(X, k) for each r > 0, and on
c0(X, k). It follows that a is not an approximate eigenvalue of Mb on ℓr(X, k) for
any r > 0. In particular, a is not an approximate eigenvalue of Mb on c0(X, k)
with respect to the ℓ∞ q-norm.

Let us take k = R or C with the standard absolute value function for
the rest of the section, and let (X,A, µ) be a measure space. Let b be an
essentially bounded measurable real or complex-valued function on X, so that
the corresponding multiplication operator Mb defines a bounded linear mapping
from Lr(X) into itself for each r > 0. If a is a real or complex number, as
appropriate, and f ∈ Lr(X) for some r > 0, then

Mb(f) = a f(31.9)

in Lr(X) means that b f = a f almost everywhere on X with respect to µ. If
this holds for some f that is not equal to 0 almost everywhere on X, then

µ({x ∈ X : b(x) = a}) > 0.(31.10)

If E ⊆ X is a measurable set such that b = a almost everywhere on E with
respect to µ, then (31.9) holds with f = 1E . Here 1E denotes the indicator
function on X associated to E, which is equal to 1 on E and to 0 on X \ E.
Of course, 1E is not equal to 0 almost everywhere on X with respect to µ
when µ(E) > 0. In this case, 1E is a nonzero eigenvector of Mb on L∞(X)
corresponding to the eigenvalue a. If µ(E) < ∞ too, then 1E is a nonzero
eigenvector of Mb on Lr(X) for every r > 0, corresponding to the eigenvalue a.

A real or complex number a is said to be an element of the essential range
of b if

µ({x ∈ X : |b(x)− a| < ϵ}) > 0(31.11)

for every ϵ > 0. Equivalently, this means that for each ϵ > 0 there is a measur-
able set Eϵ ⊆ X such that µ(Eϵ) > 0 and

µ({x ∈ Eϵ : |b(x)− a| ≥ ϵ}) = 0.(31.12)
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Thus
|Mb(1Eϵ)− a1Eϵ | ≤ ϵ1Eϵ(31.13)

almost everywhere onX with respect to µ. This implies that a is an approximate
eigenvalue of Mb on L∞(X). If we can also choose Eϵ so that µ(Eϵ) < ∞ for
each ϵ > 0, then it is easy to see that a is an approximate eigenvalue of Mb on
Lr(X) for every r > 0.

If a real or complex number a, as appropriate, is not in the essential range
of b on X, then a1X − b is nonzero almost everywhere on X with respect to
µ, and 1/(a1X − b) is essentially bounded on X. This implies that a I − Mb

has a bounded inverse on Lr(X) for every r > 0. It follows that a is not an
approximate eigenvalue of Mb on Lr(X) for any r > 0.

32 Eigenvalues of bilateral shifts

Let k be a field, and let | · | be a q-absolute value function on k for some q > 0.
Also let T be the forward shift operator on c(Z, k), as in Section 3 and (26.1).
The eigenvalues of T on various subspaces of c(Z, k) were discussed in Section
26, and we would like to consider approximate eigenvalues of T on some of these
spaces in this section. If a ∈ k and |a| ̸= 1, then a cannot be an approximate
eigenvalue of T on ℓr(Z, k) for any r > 0. This follows from the remarks in
Section 30, and the fact that T is an isometry on ℓr(Z, k) for each r > 0. If
|a| = 1, then we have seen that a is an eigenvalue of T on ℓ∞(Z, k). We have
also seen that a is not an eigenvalue of T on ℓr(Z, k) when 0 < r < ∞.

Let a ∈ k with |a| = 1 and a positive real number r be given, and let j1, j2
be integers with j1 ≤ j2. Let f be the k-valued function defined on Z by

f(j) = a−j when j1 ≤ j ≤ j2(32.1)

= 0 otherwise.

Thus

(T (f))(j) = f(j − 1) = a1−j when j1 + 1 ≤ j ≤ j2 + 1(32.2)

= 0 otherwise.

It follows that

a f(j)− (T (f))(j) = a1−j1 when j = j1(32.3)

= −a1−j2 when j = j2

= 0 otherwise.

This implies that
∥a f − T (f)∥r = 21/r.(32.4)

Similarly,
∥f∥r = (j2 − j1 + 1)1/r.(32.5)
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This shows that a is an approximate eigenvalue of T on ℓr(Z, k), because we
can choose j1, j2 so that (32.5) is arbitrarily large.

Let us now take k = R or C with the standard absolute value function
for the rest of the section. Let a ∈ R or C be given, as appropriate, with
|a| = 1, and let a nonnegative integer n be given as well. Consider the real or
complex-valued function fn, as appropriate, defined on Z by

fn(j) = a−j (n− |j|) when |j| ≤ n(32.6)

= 0 when |j| > n.

Note that fn(j) = 0 when |j| = n. Using (32.6), we get that

(T (fn))(j) = fn(j − 1) = a1−j (n− |j − 1|) when |j − 1| ≤ n(32.7)

= 0 when |j − 1| > n,

which is equal to 0 when |j − 1| = n. If −n + 1 ≤ j ≤ n, so that |j| ≤ n and
|j − 1| ≤ n, then

a fn(j)− (T (fn))(j) = a1−j (n− |j|)− aj−1 (n− |j − 1|)(32.8)

= aj−1 (|j − 1| − |j|).

This implies that
|a fn(j)− (T (fn))(j)| = 1(32.9)

when −n + 1 ≤ j ≤ n. Otherwise, if j ≥ n + 1 or j ≤ −n, then fn(j) =
fn(j − 1) = 0, which implies that

a fn(j)− (T (fn))(j) = 0.(32.10)

It follows that
∥a fn − T (fn)∥r = (2n)1/r(32.11)

for every r > 0, where the right side of (32.11) is interpreted as being equal to
1 when r = ∞, as usual. Observe that

∥fn∥∞ = |fn(0)| = n,(32.12)

and that
|fn(j)| = n− |j| ≥ n/2(32.13)

when |j| ≤ n/2. There are always at least n integers j with |j| ≤ n/2, so that

∥fn∥r ≥ (n/2)n1/r(32.14)

when 0 < r < ∞. Using (32.11) and (32.14), we get that a is an approximate
eigenvalue of T on ℓr(Z,R) and ℓr(Z,C) when 0 < r < ∞. Similarly, (32.11)
and (32.12) imply that a is an approximate eigenvalue of T on c0(Z,R) and
c0(Z,C) with respect to the supremum norm.
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33 The ultrametric case

Let k be a field, and suppose that | · | is an ultrametric absolute value function
on k. Also let f be a k-valued function on Z, and let a ∈ k be given, with
|a| = 1. If j1, j2 are integers with j1 < j2, then

aj2 f(j2)− aj1 f(j1) =

j2∑
j=j1+1

(aj f(j)− aj−1 f(j − 1))(33.1)

=

j2∑
j=j1+1

aj−1 (a f(j)− f(j − 1)).

This implies that

|aj2 f(j2)− aj1 f(j1)| ≤ max
j1+1≤j≤j2

|a f(j)− f(j − 1)|,(33.2)

by the ultrametric version of the triangle inequality. Equivalently,

|aj2 f(j2)− aj1 f(j1)| ≤ max
j1+1≤j≤j2

|a f(j)− (T (f))(j)|,(33.3)

where T is the forward shift operator on c(Z, k), as in Section 3 and (26.1).
If a f − T (f) is bounded on Z, then

|aj2 f(j2)− aj1 f(j1)| ≤ ∥a f − T (f)∥∞(33.4)

for every j1, j2 ∈ Z, by (33.3). Using the ultrametric version of the triangle
inequality again, we get that f is bounded on Z, with

∥f∥∞ ≤ max
(
∥a f − T (f)∥∞, inf

j∈Z
|f(j)|

)
.(33.5)

In particular, if f vanishes at infinity on Z, then

∥f∥∞ ≤ ∥a f − T (f)∥∞.(33.6)

This shows that a is not an approximate eigenvalue of T on c0(Z, k) with respect
to the supremum ultranorm when |a| = 1. The analogous statement for |a| ̸= 1
follows from the remarks in Section 30, as mentioned in the previous section.

More precisely, if a f − T (f) is bounded on Z, then

sup
j1,j2∈Z

|aj2 f(j2)− aj1 f(j1)| = ∥a f − T (f)∥∞.(33.7)

This uses (33.4) to get that the left side of (33.7) is less than or equal to the
right side. The opposite inequality follows directly from the definitions, with
j2 = j1 + 1. Of course,

∥a f − T (f)∥∞ ≤ max(∥a f∥∞, ∥T (f)∥∞) = ∥f∥∞(33.8)
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for every f ∈ ℓ∞(Z, k), by the ultrametric version of the triangle inequality.
Combining this with (33.6), we get that

∥a f − T (f)∥∞ = ∥f∥∞(33.9)

when f ∈ c0(Z, k).
Let f ∈ ℓ∞(Z, k) be given, and let R0(f) be defined on Z as in (28.1). Using

the ultrametric version of the triangle inequality, we get that R0(f) is bounded
on Z too, with

∥R0(f)∥∞ ≤ ∥f∥∞.(33.10)

In particular, it follows that I − T maps ℓ∞(Z, k) onto itself, by (28.12). We
also have that

∥f∥∞ = ∥(I − T )(R0(f))∥∞ ≤ ∥R0(f)∥∞,(33.11)

using (28.12) in the first step, and (33.8) in the second step, with a = 1. Thus

∥R0(f)∥∞ = ∥f∥∞,(33.12)

by (33.10) and (33.12). Remember that

(R0(f))(0) = 0(33.13)

automatically, by the definition (28.1) of R0(f). In fact, R0 maps ℓ∞(Z, k)
onto the subspace of bounded k-valued functions on Z that are equal to 0 at 0,
because of (28.16).

34 k Complete

Let k be a field with an ultrametric absolute value function | · | again, and
suppose that k is complete with respect to the ultrametric associated to | · |. If
f ∈ c0(Z, k), then the infinite series

∞∑
j=1

f(j),

∞∑
j=0

f(−j)(34.1)

converge in k, as in Section 12. This permits us to define

∞∑
j=−∞

f(j)(34.2)

as an element of k, by combining the sums in (34.1). We also have that∣∣∣∣ ∞∑
j=−∞

f(j)

∣∣∣∣ ≤ sup
j∈Z

|f(j)|,(34.3)
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because of the analogous statement for the sums in (34.1), as in (12.5). The
sum (34.2) can be treated as a sum over Z as in Section 13 as well. Note that
the mapping from f ∈ c0(Z, k) to the sum (34.2) is linear in f . This mapping
defines a bounded linear functional on c0(Z, k) with respect to the supremum
norm, with dual norm equal to 1.

If f ∈ c0(Z, k), then one can check that

∞∑
j=−∞

(T (f))(j) =

∞∑
j=−∞

f(j − 1) =

∞∑
j=−∞

f(j),(34.4)

as in (27.2), where T is the usual forward shift operator. This implies that

∞∑
j=−∞

(f(j)− (T (f))(j)) = 0,(34.5)

as in (27.3). It follows that I − T maps c0(Z, k) into{
g ∈ c0(Z, k) :

∞∑
j=−∞

g(j) = 0

}
.(34.6)

Of course, this is the kernel of the linear functional defined on c0(Z, k) by (34.2),
as in the preceding paragraph. Thus (34.6) is a closed linear subspace of c0(Z, k)
with respect to the topology determined by the supremummetric, because (34.2)
defines a bounded linear functional on c0(Z, k) with respect to the supremum
norm, as before.

If f ∈ c0(Z, k) and j ∈ Z, then

∞∑
l=0

f(j − l)(34.7)

converges in k, as in Section 12 again. Let (R(f))(j) denote the value of this
sum for each j ∈ Z, as in (27.4). Equivalently, this sum can be expressed as

j∑
l=−∞

f(l)(34.8)

for every j ∈ Z, as in (28.2). It follows that

|(R(f))(j)| ≤ sup
l≤j

|f(l)| ≤ ∥f∥∞(34.9)

for every j ∈ Z, using (12.5) in the first step. Thus R(f) defines a bounded
k-valued function on Z, with

∥R(f)∥∞ ≤ ∥f∥∞.(34.10)
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The first inequality in (34.9) implies that

lim
j→−∞

|(R(f))(j)| = 0(34.11)

for every f ∈ c0(Z, k). If (34.2) is equal to 0, then

(R(f))(j) = −
∞∑

l=j+1

f(l)(34.12)

for each j ∈ Z. This implies that

|(R(f))(j)| ≤ sup
l≥j+1

|f(l)|(34.13)

for each j ∈ Z, as in (12.5). Hence

lim
j→∞

|(R(f))(j)| = 0,(34.14)

because f vanishes at infinity on Z. This shows that

R(f) ∈ c0(Z, k)(34.15)

when f ∈ c0(Z, k) and (34.2) is equal to 0, by combining (34.11) and (34.14).
If f ∈ c0(Z, k), then (27.8) and (27.9) hold for every j ∈ Z, which implies

that (27.11) holds in this situation as well. This means that

T ◦R = R ◦ T = R− I(34.16)

as linear mappings from c0(Z, k) into ℓ∞(Z, k), as in (27.12). More precisely, the
first T in (34.16) is considered as a mapping from ℓ∞(Z, k) into itself, the second
T is considered as a mapping from c0(Z, k) into itself, I is the identity mapping
on c0(Z, k), and R is considered as a mapping from c0(Z, k) into ℓ∞(Z, k). It
follows that

(I − T ) ◦R = R ◦ (I − T ) = I(34.17)

as linear mappings from c0(Z, k) into ℓ∞(Z, k), as in (27.13), where the first I
and T are considered as mappings on ℓ∞(Z, k), and the other I’s and T are
considered as mappings on c0(Z, k).

The second equality in (34.17) implies that

R(f − T (f)) = f(34.18)

for every f ∈ c0(Z, k). Thus

∥f∥∞ = ∥R(f − T (f))∥∞ ≤ ∥f − T (f)∥∞(34.19)

for every f ∈ c0(Z, k), using (34.10) in the second step. This gives another way
to look at (33.6), with a = 1.
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If f ∈ c0(Z, k), then
(I − T )(R(f)) = f,(34.20)

because the left side of (34.17) is equal to the identity as a mapping from
c0(Z, k) into ℓ∞(Z, k). If we also have that the sum in (34.2) is equal to 0, then
R(f) ∈ c0(Z, k), as in (34.15). This shows that f ∈ c0(Z, k) lies in the image of
I − T on c0(Z, k) when the sum in (34.2) is equal to 0. We have already seen
that I−T maps c0(Z, k) into (34.6), and the previous remarks imply that I−T
maps c0(Z, k) onto (34.6).

35 The domain of R

Let k be a field, and let T be the usual forward shift operator on c(Z, k), as in
Section 3 and (26.1). If f ∈ c(Z, k), j1, j2 ∈ Z, and j1 ≤ j2, then

j2∑
j=j1

(f(j)− (T (f))(j)) =

j2∑
j=j1

f(j)−
j2∑

j=j1

f(j − 1)

=

j2∑
j=j1

f(j)−
j2−1∑

j=j1−1

f(j) = f(j2)− f(j1 − 1).(35.1)

Let | · | be a q-absolute value function on k for some q > 0. Consider the
space cR(Z, k) of k-valued functions f on Z such that

∞∑
j=0

f(−j)(35.2)

converges in k. This is a linear subspace of c(Z, k), because linear combinations
of convergent series converge as well. If f ∈ cR(Z, k), then

lim
j→−∞

|f(j)| = 0,(35.3)

as in Section 12. If q = ∞, and if k is complete with respect to the ultrametric
associated to | · |, then (35.3) implies the convergence of (35.2) in k, as in Section
12 again. Note that T maps cR(Z, k) onto itself.

If f ∈ cR(Z, k), then
∞∑
l=0

f(j − l)(35.4)

converges in k for every j ∈ Z, and we let (R(f))(j) be the value of this sum,
as in (27.4). This defines R as a linear mapping from cR(Z, k) into c(Z, k).
Equivalently,

(R(f))(j) =

j∑
l=−∞

f(l)(35.5)
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for every f ∈ cR(Z, k) and j ∈ Z, as in (28.2) and (34.8). It is easy to see that

lim
j→−∞

(R(f))(j) = 0(35.6)

in k for every f ∈ cR(Z, k), because of the convergence of the series (35.2).
If f ∈ cR(Z, k), then it is easy to see that (27.8) and (27.9) hold for every

j ∈ Z. This implies (27.11), as before, so that

T ◦R = R ◦ T = R− I(35.7)

as linear mappings from cR(Z, k) into c(Z, k), as in (27.12). As in previous
situations, the first T in (35.7) is considered as a mapping from c(Z, k) into
itself, the second T is considered as a mapping from cR(Z, k) into itself, I is the
identity mapping on cR(Z, k), and R is considered as a mapping from cR(Z, k)
into c(Z, k). Thus

(I − T ) ◦R = R ◦ (I − T ) = I(35.8)

as linear mappings from cR(Z, k) into c(Z, k), as in (27.13), where the first I and
T are considered as mappings on c(Z, k), and the other I’s and T are considered
as mappings on cR(Z, k).

Let f be a k-valued function on Z that satisfies (35.3). Using (35.1), we get
that

j∑
l=j1

(f(l)− (T (f))(l)) = f(j)− f(j1 − 1) → f(j) as j1 → −∞(35.9)

for each j ∈ Z. This implies that

f − T (f) ∈ cR(Z, k),(35.10)

by taking j = 0 in (35.9). We also get that

(R(f − T (f)))(j) =

j∑
l=−∞

(f(l)− (T (f))(l)) = f(j)(35.11)

for each j ∈ Z, by (35.5). This corresponds to the second equality in (35.8)
when f ∈ cR(Z, k).

36 Doubly-infinite sums

Let k be a field with a q-absolute value function | · | for some q > 0 again. If
f ∈ c(Z, k) and

∞∑
j=1

f(j)(36.1)

converges in k, then
lim
j→∞

|f(j)| = 0,(36.2)
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as in Section 12. As before, (36.2) implies that (36.1) converges in k when
q = ∞ and k is complete with respect to the ultrametric associated to | · |.

Let cS(Z, k) be the space of k-valued functions f on Z such that (35.2) and
(36.1) both converge in k. In this case,

∞∑
j=−∞

f(j)(36.3)

can be defined as the sum of (35.2) and (36.1). Of course, cS(Z, k) is a linear
subspace of the subspace cR(Z, k) of c(Z, k) defined in the previous section. It
is easy to see that the usual forward shift operator T maps cS(Z, k) onto itself.
If f ∈ cS(Z, k), then one can check that

∞∑
j=−∞

(T (f))(j) =

∞∑
j=−∞

f(j),(36.4)

as in (27.2).
Suppose that f ∈ cS(Z, k), so that f ∈ cR(Z, k) in particular, and R(f) can

be defined as in the previous section. If (36.3) is equal to 0, then we have that

(R(f))(j) = −
∞∑

l=j+1

f(l)(36.5)

for each j ∈ Z, because of (35.5). Note that the convergence of the sum on the
right side of (36.5) follows from the convergence of (36.1). This implies that

lim
j→∞

(R(f))(j) = 0(36.6)

in k under these conditions. Combining (35.6) and (36.6), we get that

R(f) ∈ c0(Z, k).(36.7)

Let f be a k-valued function on Z that satisfies (36.2). Observe that

j2∑
l=j

(f(j)− (T (f))(j)) = f(j2)− f(j − 1) → −f(j − 1) as j2 → ∞(36.8)

for each j ∈ Z, using (35.1) in the first step. If we take j = 1, then we get that

∞∑
l=1

(f(l)− (T (f))(l)) = −f(0),(36.9)

and in particular the series on the left converges in k. If f ∈ c0(Z, k), then it
follows that

f − T (f) ∈ cS(Z, k),(36.10)
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by combining the previous statement with (35.10). In this case, we also have
that

0∑
l=−∞

(f(l)− (T (f))(l)) = f(0),(36.11)

by (35.9). Combining (36.9) and (36.11), we obtain that

∞∑
l=−∞

(f(l)− (T (f))(l)) = 0(36.12)

under these conditions. This could be derived from (36.4) as well when f is an
element of cS(Z, k).

37 Bounded partial sums

Let k be a field with a q-absolute value function |·| for some q > 0. If f ∈ c(Z, k),
then

∥f∥BPS = ∥f∥BPS(Z,k) = sup

{∣∣∣∣ j2∑
j=j1

f(j)

∣∣∣∣ : j1, j2 ∈ Z, j1 ≤ j2

}
(37.1)

is defined as a nonnegative extended real number. Let us say that f has bounded
partial sums on Z when (37.1) is finite. Observe that

∥f∥∞ ≤ ∥f∥BPS(37.2)

for every f ∈ c(Z, k), by taking j1 = j2 in (37.1). Let BPS(Z, k) be the space
of f ∈ c(Z, k) with bounded partial sums, so that

BPS(Z, k) ⊆ ℓ∞(Z, k),(37.3)

by (37.2). One can check that BPS(Z, k) is a linear subspace of ℓ∞(Z, k), and
that (37.1) defines a q-norm on BPS(Z, k). In particular, (37.2) implies that
∥f∥BPS > 0 when f(j) ̸= 0 for some j ∈ Z.

Suppose for the moment that q = ∞. In this case, it is easy to see that

∥f∥BPS ≤ ∥f∥∞(37.4)

for every f ∈ c(Z, k), by the ultrametric version of the triangle inequality. Of
course, (37.2) and (37.4) imply that

∥f∥BPS = ∥f∥∞(37.5)

for every f ∈ c(Z, k). Thus

BPS(Z, k) = ℓ∞(Z, k)(37.6)

in this situation.
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Suppose now that q < ∞, and let f ∈ c(Z, k) be given. Observe that∣∣∣∣ j2∑
j=j1

f(j)

∣∣∣∣ ≤ ( j2∑
j=j1

|f(j)|q
)1/q

(37.7)

for every j1, j2 ∈ Z with j1 ≤ j2. This implies that

∥f∥BPS ≤ ∥f∥q,(37.8)

and hence
ℓq(Z, k) ⊆ BPS(Z, k).(37.9)

If k = R with the standard absolute value function, and f is a nonnegative
real-valued function on Z, then

∥f∥BPS =

∞∑
j=−∞

f(j) = ∥f∥1.(37.10)

In this case, f has bounded partial sums if and only if f is summable on Z.
Let T be the usual forward shift operator on c(Z, k), as in Section 3 and

(26.1). If f ∈ c(Z, k), j1, j2 ∈ Z, and j1 ≤ j2, then

j2∑
j=j1

(T (f))(j) =

j2∑
j=j1

f(j − 1) =

j2−1∑
j=j1−1

f(j).(37.11)

It follows that
∥T (f)∥BPS = ∥f∥BPS ,(37.12)

and that T maps BPS(Z, k) onto itself.

38 Normalized partial sums

Let k be a field with a q-absolute value function | · | for some q > 0, and let
f ∈ c(Z, k) be given. As before,

∥f∥BPS+
= sup

{∣∣∣∣ j2∑
j=1

f(j)

∣∣∣∣ : j2 ∈ Z+

}
(38.1)

and

∥f∥BPS− = sup

{∣∣∣∣ 0∑
j=j1

f(j)

∣∣∣∣ : j1 ∈ Z, j1 ≤ 0

}
(38.2)

are defined as nonnegative extended real numbers. Put

∥f∥BPS± = max(∥f∥BPS+ , ∥f∥BPS−),(38.3)
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which is also defined as a nonnegative extended real number. Clearly

∥f∥BPS± ≤ ∥f∥BPS ,(38.4)

because the partial sums in (38.1) and (38.2) are particular cases of the par-
tial sums in (37.1). Similarly, we would like to estimate ∥f∥BPS in terms of
∥f∥BPS± .

Let j1, j2 ∈ Z be given, with j1 ≤ j2. If j1 ≤ 0 and 1 ≤ j2, then

j2∑
j=j1

f(j) =

0∑
j=j1

f(j) +

j2∑
j=1

f(j).(38.5)

If 1 ≤ j1, then
j2∑

j=j1

f(j) =

j2∑
j=1

f(j)−
j1−1∑
j=1

f(j),(38.6)

where the second sum on the right side is interpreted as being equal to 0 when
j1 = 1. If j2 ≤ 0, then

j2∑
j=j1

f(j) =

0∑
j=j1

f(j)−
0∑

j=j2+1

f(j),(38.7)

where the second sum on the right side is interpreted as being equal to 0 when
j2 = 0. In each of these three cases, one can check that∣∣∣∣ j2∑

j=j1

f(j)

∣∣∣∣ ≤ 21/q ∥f∥BPS± ,(38.8)

using the q-absolute value function version of the triangle inequality. Here 21/q

is interpreted as being equal to 1 when q = ∞. This implies that

∥f∥BPS ≤ 21/q ∥f∥BPS± .(38.9)

Thus f has bounded partial sums on Z if and only if ∥f∥BPS± is finite. It is
easy to see that ∥f∥BPS+ , ∥f∥BPS− are q-seminorms on BPS(Z, k), and that
∥f∥BPS± is a q-norm on BPS(Z, k). If q = ∞, then

∥f∥BPS± = ∥f∥BPS = ∥f∥∞(38.10)

for every f ∈ c(Z, k), by (37.5), (38.4), and (38.9).
Let f ∈ c(Z, k) be given again, and let R0(f) be the k-valued function

defined on Z as in (28.1). By construction,

∥R0(f)∥∞ = ∥f∥BPS± .(38.11)

In particular, R0(f) is bounded on Z if and only if f has bounded partial sums
on Z. If q = ∞, then (33.12) follows from (38.10) and (38.11).
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Suppose that f is an element of the space cR(Z, k) defined in Section 35.
This means that the infinite series (35.2) converges in k, which implies that the
corresponding sequence of partial sums is bounded. Thus

∥f∥BPS− < ∞.(38.12)

If R(f) is defined on Z as in Section 35, then

|(R(f))(j)| ≤ ∥f∥BPS(38.13)

for every j ∈ Z, by (35.5) and the definition (37.1) of ∥f∥BPS . It follows that

∥R(f)∥∞ ≤ ∥f∥BPS .(38.14)

If j1, j2 ∈ Z and j1 ≤ j2, then

j2∑
j=j1

f(j) = (R(f))(j2)− (R(f))(j1 − 1),(38.15)

by (35.5). This implies that∣∣∣∣ j2∑
j=j1

f(j)

∣∣∣∣ ≤ 21/q ∥R(f)∥∞,(38.16)

and hence
∥f∥BPS ≤ 21/q ∥R(f)∥∞.(38.17)

If q = ∞, then we get that

∥R(f)∥∞ = ∥f∥BPS = ∥f∥∞,(38.18)

using (38.14) and (38.17) in the first step, and (37.5) in the second step.
If f is an element of the space cS(Z, k) defined in Section 36, then f is an

element of cR(Z, k), and the infinite series (36.1) converges in k. It follows that
the sequence of partial sums corresponding to (36.1) is bounded, so that

∥f∥BPS+ < ∞.(38.19)

Combining this with (38.12), we get that

cS(Z, k) ⊆ BPS(Z, k),(38.20)

using also (38.3) and (38.9).
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39 Connections with I − T

Let k be a field with a q-absolute value function | · | for some q > 0, and let
T be the usual forward shift operator on c(Z, k), as in Section 3 and (26.1). If
f ∈ c(Z, k), j1, j2 ∈ Z, and j1 ≤ j2, then∣∣∣∣ j2∑

j=j1

(f(j)− (T (f))(j))

∣∣∣∣ ≤ |f(j2)− f(j1 − 1)|,(39.1)

by (35.1). This implies that

∥f − T (f)∥BPS = sup
l1,l2∈Z

|f(l2)− f(l1)|,(39.2)

where ∥ ·∥BPS is as in (37.1). It follows that f−T (f) has bounded partial sums
on Z if and only if f is bounded on Z. Note that

sup
l1,l2∈Z

|f(l2)− f(l1)| ≤ 21/q ∥f∥∞,(39.3)

and that
∥f∥∞ ≤ sup

l1,l2∈Z
|f(l2)− f(l1)|(39.4)

when inf l∈Z |f(l)| = 0.
Suppose now that f has bounded partial sums on Z. If R0(f) is defined on

Z as in (28.1), then R0(f) is bounded on Z, as in the previous section. We also
have that

R0(f)− T (R0(f)) = f,(39.5)

by (28.10). This implies that I − T maps ℓ∞(Z, k) onto BPS(Z, k). If q = ∞,
then BPS(Z, k) is the same as ℓ∞(Z, k), as in Section 37. In this case, the
previous statement is the same as saying that I − T maps ℓ∞(Z, k) onto itself.
This was mentioned more directly in Section 33.

Let us take k = R or C with the standard absolute value function, for the
rest of the section. Let f be a real or complex-valued function on Z, and let
j1, j2 ∈ Z be given, with j1 ≤ j2. Observe that

1

j2 − j1 + 1

∣∣∣∣ j2∑
j=j1

f(j)

∣∣∣∣ ≤ 1

j2 − j1 + 1

j2∑
j=j1

|f(j)| ≤ ∥f∥∞.(39.6)

Consider the collection of bounded functions f on Z such that

1

j2 − j1 + 1

j2∑
j=j1

f(j) → 0(39.7)

uniformly as j2 − j1 → ∞. More precisely, this means that for each ϵ > 0 there
should be a nonnegative integer L such that

1

j2 − j1 + 1

∣∣∣∣ j2∑
j=j1

f(j)

∣∣∣∣ < ϵ(39.8)

73



for every j1, j2 ∈ Z such that j1 ≤ j2 and j2 − j1 ≥ L. It is easy to see that
this is a linear subspace of the space ℓ∞(Z) of bounded real or complex-valued
functions on Z, as appropriate. One can also check that this is a closed set
in ℓ∞(Z) with respect to the supremum metric. Of course, nonzero constant
functions on Z do not have this property.

Note that

1

j2 − j1 + 1

∣∣∣∣ j2∑
j=j1

f(j)

∣∣∣∣ ≤ 1

j2 − j1 + 1
∥f∥BPS(39.9)

for every real or complex-valued function f on Z and j1, j2 ∈ Z with j1 ≤ j2.
This implies that (39.7) holds when f has bounded partial sums on Z. It follows
that the space of real or complex-valued functions on Z with bounded partial
sums is not dense in ℓ∞(Z) with respect to the supremum metric, by the remarks
in the preceding paragraph.

40 Some density conditions

Let k be a field, and let T be the usual forward shift operator on c(Z, k), as in
Section 3 and (26.1). Remember that I − T maps c00(Z, k) onto{

f ∈ c00(Z, k) :

∞∑
j=−∞

f(j) = 0

}
,(40.1)

as in Section 27. More precisely, I − T maps c00(Z, k) into (40.1), because of
(27.3). The fact that I−T maps c00(Z, k) onto (40.1) was obtained from (27.15).
In this section, we would like to use this to look at the image of I − T on some
other spaces of functions on Z.

Let | · | be a q-absolute value function on k for some q > 0. Remember
that c00(Z, k) is dense in ℓr(Z, k) when 0 < r < ∞, as in Section 8. Similarly,
c00(Z, k) is dense in c0(Z, k) with respect to the supremum q-metric.

Suppose first that k = R or C, with the standard absolute value function.
If 1 < r ≤ ∞, then there are real or complex-valued functions f on Z, as
appropriate, such that f has finite support in Z,

∞∑
j=−∞

f(j)(40.2)

is any given real or complex number, and ∥f∥r is arbitrarily small. More pre-
cisely, if a is any real or complex number, n ∈ Z+, f(j) = a/n for n integers j,
and f(j) = 0 otherwise, then (40.2) is equal to a, and

∥f∥r = |a|n(1/r)−1(40.3)

for every r > 0. If r > 1, then (40.3) tends to 0 as n → ∞, as desired. Using
this, one can check that (40.1) is dense in c00(Z, k) with respect to the ℓr norm
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when r > 1. This implies that (40.1) is dense in ℓr(Z, k) when 1 < r < ∞,
because c00(Z, k) is dense in ℓr(Z, k), as in the previous paragraph. It follows
that I−T maps ℓr(Z, k) onto a dense linear subspace of itself when 1 < r < ∞,
because I − T maps c00(Z, k) onto (40.1). Similarly, (40.1) is dense in c0(Z, k)
with respect to the supremum metric, because c00(Z, k) is dense in c0(Z, k) with
respect to the supremum metric, as before. Hence I − T maps c0(Z, k) onto a
dense linear subspace of itself with respect to the supremum metric.

If 0 < r ≤ 1, then r-summable functions on Z are summable on Z, as in
Section 8. If f is a summable real or complex-valued function on Z, then the
sum (40.2) can be defined as a real or complex-number, as appropriate. Thus
the sum (40.2) can be defined as a real or complex number when f is a real or
complex-valued r-summable function on Z and 0 < r ≤ 1. In this case, we have
that ∣∣∣∣ ∞∑

j=−∞
f(j)

∣∣∣∣ ≤ ∥f∥1 ≤ ∥f∥r,(40.4)

using (8.4) in the second step. This implies that (40.2) defines a bounded linear
functional on ℓr(Z, k) when 0 < r ≤ 1, so that{

f ∈ ℓr(Z, k) :

∞∑
j=−∞

f(j) = 0

}
(40.5)

is a closed linear subspace of ℓr(Z, k) when 0 < r ≤ 1.
Observe that I − T maps ℓr(Z, k) into (40.5) when 0 < r ≤ 1. This was

mentioned in Section 29 when r = 1, which implies the analogous statement for
0 < r ≤ 1. In fact, I − T maps ℓr(Z, k) onto a dense linear subspace of (40.5)
when 0 < r ≤ 1. This was also mentioned in Section 29 when r = 1, and the
analogous statement for 0 < r ≤ 1 can be shown in essentially the same way.
The main point is that (40.1) is dense in (40.5) with respect to the ℓr r-norm
when 0 < r ≤ 1, as before.

Now let k be a field with an ultrametric absolute value function | · |, and
suppose that k is complete with respect to the associated ultrametric. If f is
an element of c0(Z, k), then the sum (40.2) can be defined as an element of k,
as in Section 34. More precisely, this sum defines a bounded linear functional
on c0(Z, k) with respect to the corresponding supremum norm, as before. Thus{

f ∈ c0(Z, k) :

∞∑
j=−∞

f(j) = 0

}
(40.6)

is a closed linear subspace of c0(Z, k), with respect to the supremum metric.
Remember that I − T maps c0(Z, k) onto (40.6) under these conditions, as in
Section 34. One can check directly that (40.1) is dense in (40.6) with respect to
the supremum metric.

Let r be a positive real number, and remember that ℓr(Z, k) is contained in
c0(Z, k), as in Section 8. If f ∈ ℓr(Z, k), then it follows that the sum (40.2) can
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be defined as an element of k, as before. We also have that∣∣∣∣ ∞∑
j=−∞

f(j)

∣∣∣∣ ≤ ∥f∥∞ ≤ ∥f∥r,(40.7)

using (34.3) in the first step, and (8.4) in the second step. Thus the sum (40.2)
defines a bounded linear functional on ℓr(Z, k) as well, which implies that (40.5)
is a closed linear subspace of ℓr(Z, k). Of course, I−T maps ℓr(Z, k) into (40.5),
because I − T maps c0(Z, k) into (40.6), as before.

One can check directly that (40.1) is dense in (40.5) with respect to the ℓr

r-norm in this situation. This is analogous to the corresponding statements
for real and complex-valued functions on Z, mentioned earlier. As before, this
basically uses the density of c00(Z, k) in ℓr(Z, k), with an additional adjustment
to deal with the condition on the sum. It follows that I − T maps ℓr(Z, k) onto
a dense linear subspace of (40.5) with respect to the ℓr r-norm, because I − T
maps c00(Z, k) onto (40.1).

41 Limits of partial sums

Let k be a field with a q-absolute value function | · | for some q > 0, and let f
be a k-valued function on Z. To say that the limit

lim
j1→−∞
j2→∞

j2∑
j=j1

f(j)(41.1)

exists and is equal to a ∈ k means that for each ϵ > 0 there is a nonnegative
integer L such that ∣∣∣∣ j2∑

j=j1

f(j)− a

∣∣∣∣ < ϵ(41.2)

for every j1 ≤ −L and j2 ≥ L. It is easy to see that the limit a is unique when
it exists, by standard arguments. In this case, (41.1) can be used as another
way to define the sum of f(j) over j ∈ Z. If f is in the space cS(Z, k) defined
in Section 36, then this limit exists and is equal to the value of the sum defined
there. Let cS,2(Z, k) be the space of k-valued functions f on Z such that the
limit (41.1) exists. This is a linear subspace of c(Z, k), and the value of the limit
(41.1) defines a linear functional on cS,2(Z, k).

Let BPS0(Z, k) be the space of k-valued functions on Z with the following
property: for each ϵ > 0 there is a nonnegative integer L such that∣∣∣∣ j2∑

j=j1

f(j)−
j′2∑

j=j′1

f(j)

∣∣∣∣ < ϵ(41.3)

for every j1, j2, j
′
1, j

′
2 ∈ Z such that j1, j

′
1 ≤ −L and j2, j

′
2 ≥ L. This may be

considered as the Cauchy condition corresponding to the existence of the limit
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(41.1). In particular, if the limit (41.1) exists, then this Cauchy condition holds,
by standard arguments. If we restrict our attention to j1 = j′1 in this Cauchy
condition, then we get that ∣∣∣∣ j′2∑

j=j2+1

f(j)

∣∣∣∣ < ϵ(41.4)

when j′2 > j2 ≥ L. Similarly, if we restrict our attention to j2 = j′2, then we get
that ∣∣∣∣j1−1∑

j=j′1

f(j)

∣∣∣∣ < ϵ(41.5)

when j′1 < j1 ≤ −L. Conversely, if these two conditions are satisfied, then one
can check that the earlier Cauchy condition holds too. More precisely, one can
use (41.4) and (41.5) to get a condition like (41.3), with an extra factor of 21/q

on the right side.
The condition (41.4) is equivalent to saying that the sequence of partial

sums corresponding to the infinite series
∑∞

j=1 f(j) is a Cauchy sequence in k.
Similarly, the condition (41.5) is equivalent to saying that the sequence of partial
sums corresponding to

∑∞
j=0 f(−j) is a Cauchy sequence. If k is complete with

respect to the q-metric associated to | · |, then these Cauchy conditions imply
that the two series converge in k. This means that f is in the space cS(Z, k)
defined in Section 36. In particular, this implies that the limit (41.1) exists in
k, as before.

If f ∈ BPS0(Z, k), then one can check that f has bounded partial sums on
Z, as in Section 37. More precisely, BPS0(Z, k) is a closed linear subspace of
BPS(Z, k), with respect to the BPS q-norm. In fact, BPS0(Z, k) is the closure
of c00(Z, k) in BPS(Z, k). In particular, BPS0(Z, k) is contained in c0(Z, k).
If q = ∞, then BPS0(Z, k) is the same as c0(Z, k).

If f ∈ cS,2(Z, k), then∣∣∣∣ lim
j1→−∞
j2→∞

j2∑
j=j1

f(j)

∣∣∣∣ ≤ ∥f∥BPS ,(41.6)

where ∥f∥BPS is the BPS q-norm of f , as in (37.1). Thus the mapping from f
to the value of the limit (41.1) defines a bounded linear functional on cS,2(Z, k)
with respect to the BPS q-norm. The kernel of this linear functional is the
collection of k-valued functions f on Z such that

lim
j1→−∞
j2→∞

j2∑
j=j1

f(j) = 0.(41.7)

The boundedness of this linear functional implies that its kernel is relatively
closed in cS,2(Z, k), with respect to the topology determined by the BPS q-
norm. In fact, one can check that the collection of k-valued functions f on Z
for which (41.7) holds is a closed linear subspace of BPS(Z, k), with respect to
the topology determined by the BPS q-norm.
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42 The inverse of I − a T

Let k be a field with a q-absolute value function | · | for some q > 0, and suppose
that k is complete with respect to the associated q-metric. Also let T be the
usual forward shift operator on c(Z, k), as in Section 3 and (26.1). Of course, T
maps ℓr(Z, k) isometrically onto itself for each r > 0. If a ∈ k and |a| < 1, then
I − aT has a bounded inverse on ℓr(Z, k) for every r > 0, as in Section 23. The
inverse is given by

(I − aT )−1 =

∞∑
l=0

al T l,(42.1)

where the series converges in BL(ℓr(Z, k)), as before.
In particular, if f ∈ ℓr(Z, k) for some r > 0, then

((I − aT )−1)(f) =

∞∑
l=0

al T l(f),(42.2)

where the series converges in ℓr(Z, k). It follows that

(((I − aT )−1)(f))(j) =

∞∑
l=0

al (T l(f))(j)(42.3)

for each j ∈ Z, where the series converges in k. Equivalently,

(((I − aT )−1)(f))(j) =

∞∑
l=0

al f(j − l)(42.4)

for each j ∈ Z, using (3.3) on the right side. The convergence of the series on
the right side of (42.4) in k for each j ∈ Z can be obtained directly from the
remarks in Section 12 when |a| < 1 and f is bounded on Z. Similarly, let us
look more directly at some of the properties of the linear mapping defined by
this series.

Suppose for the moment that r ∈ R+, r ≤ q, and f ∈ ℓr(Z, k). Remember
that | · | can also be considered as an r-absolute value function on k, because
r ≤ q. Thus ∣∣∣∣ ∞∑

l=0

al f(j − l)

∣∣∣∣r ≤
∞∑
l=0

|a|l r |f(j − l)|r(42.5)

for every j ∈ Z, as in (12.3). This implies that

∞∑
j=−∞

∣∣∣∣ ∞∑
l=0

al f(j − l)

∣∣∣∣r ≤
∞∑

j=−∞

∞∑
l=0

|a|l r |f(j − l)|l.(42.6)

Interchanging the order of summation, we get that this double sum is equal to

∞∑
l=0

∞∑
j=−∞

|a|l r |f(j − l)|r =

∞∑
l=0

∞∑
j=−∞

|a|l r|f(j)|r = (1− |a|r)−1 ∥f∥rr.(42.7)
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This corresponds to (23.8), with V = ℓr(Z, k) and qV = r. Note that the
previous inequalities are equalities when f(j) = 0 for all but one j ∈ Z. This
implies that the operator r-norm of (42.1) on ℓr(Z, k) is equal to

(1− |a|r)−1/r(42.8)

for every a ∈ k with |a| < 1 when r ≤ q.
Suppose now that k = R or C, with the standard absolute value function,

and that 1 ≤ r ≤ ∞. In this case, the operator norm of (42.1) on ℓr(Z, k) is
equal to

(1− |a|)−1(42.9)

when |a| < 1. The fact that the operator norm is less than or equal to (42.9)
corresponds to (23.8) again, with V = ℓr(Z, k) and qV = 1. Of course, if a = 0,
then (42.1) is the identity operator, which has operator norm 1. Otherwise,
suppose that a ̸= 0, and let b be the real or complex number, as appropriate,
such that a b = |a|. Thus |b| = 1, so that b is an approximate eigenvalue of T
on ℓr(Z, k), as in Section 32. This implies that a b is an approximate eigenvalue
of aT on ℓr(Z, k), so that 1 − a b is an approximate eigenvalue of I − aT on
ℓr(Z, k). It follows that

(1− |a|)−1 = |1− a b|−1(42.10)

is less than or equal to the operator norm of (42.1) on ℓr(Z, k), as in (30.20).
Thus the operator norm of (42.1) on ℓr(Z, k) is equal to (42.9), as desired. Note
that b is an eigenvalue of T on ℓ∞(Z, k), as in Section 26, so that 1 − a b is an
eigenvalue of I−aT on ℓ∞(Z, k). This does not work for the restriction of T to
c0(Z, k), but b is an approximate eigenvalue for the restriction of T to c0(Z, k)
with respect to the supremum norm, as in Section 32 again. Hence the operator
norm of (42.1) on c0(Z, k) with respect to the supremum norm is equal to (42.9)
when |a| < 1, by the same type of argument as before.

Part III

Unilateral shift operators

43 Forward and backward shifts

Let k be a field, and let Z0+ = Z+ ∪ {0} be the set of nonnegative integers. If
f is a k-valued function on Z0+, then let A(f) be the k-valued function defined
on Z0+ by

(A(f))(j) = f(j − 1) when j ≥ 1(43.1)

= 0 when j = 0.

This defines a linear mapping A from c(Z0+, k) into itself, which is the forward
shift operator on c(Z0+, k). Similarly, let B(f) be the k-valued function defined
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on Z0+ by
(B(f))(j) = f(j + 1)(43.2)

for every j ≥ 0. This defines a linear mapping B from c(Z0+, k) into itself,
which is the backward shift operator on c(Z0+, k).

More precisely, A is a one-to-one linear mapping from c(Z0+, k) into itself,
and B maps c(Z0+, k) onto itself. If f is any k-valued function on Z0+, then

(B(A(f)))(j) = f(j)(43.3)

for every j ∈ Z0+. Thus
B ◦A = I(43.4)

as linear mappings from c(Z0+, k) into itself. Similarly,

(A(B(f)))(j) = f(j) when j ≥ 1(43.5)

= 0 when j = 0

for every f ∈ c(Z0+, k). Note that A maps c(Z0+, k) onto the space of k-valued
functions f on Z0+ such that f(0) = 0, and the kernel of B consists of the
k-valued functions f on Z0+ whose support is contained in {0}.

Let l be a positive integer, and let Al, Bl be the lth powers of A, B as linear
mappings from c(Z0+, k) into itself with respect to composition, as usual. If
f ∈ c(Z0+, k), then

(Al(f))(j) = f(j − l) when j ≥ l(43.6)

= 0 when 0 ≤ j ≤ l − 1.

Similarly,
(Bl(f))(j) = f(j + l)(43.7)

for every j ≥ 0. In particular,

Bl ◦Al = I(43.8)

as linear mappings from c(Z0+, k) into itself, which can also be obtained from
(43.4). If f ∈ c(Z0+, k) again, then

(Al(Bl(f)))(j) = f(j) when j ≥ l(43.9)

= 0 when 0 ≤ j ≤ l − 1.

Let n ∈ Z0+ be given, and let δn(j) = δZ0+,n(j) be the k-valued function
defined on Z0+ as in (2.2), which is equal to 1 when j = n and to 0 otherwise.
Also let l ∈ Z+ be given, and observe that

(Al(δn))(j) = δn(j − l) = δn+l(j) when j ≥ l(43.10)

= 0 = δn+l(j) when 0 ≤ j ≤ l − 1.

This implies that
Al(δn) = δn+l.(43.11)
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If j ∈ Z0+, then

(Bl(δn))(j) = δn(j + l) = δn−l(j) when l ≤ n(43.12)

= 0 when l > n.

It follows that

Bl(δn) = δn−l when l ≤ n(43.13)

= 0 when l > n.

Let T be the usual forward shift operator on c(Z, k), as in Section 3. Also
let f be a k-valued function on Z such that

f(j) = 0(43.14)

when j < 0, and let f0 be the restriction of f to Z0+. If l ∈ Z+, then

(T l(f))(j) = (Al(f0))(j)(43.15)

for every j ≥ 0. Thus Al(f0) is the same as the restriction of T l(f) to Z0+.
Note that (T l(f))(j) = f(j − l) = 0 when j < 0, l ≥ 1, and f satisfies (43.14).
Similarly,

(T−l(f))(j) = f(j + l) = (Bl(f0))(j)(43.16)

for every j ≥ 0 and l ≥ 1, so that Bl(f0) is the same as the restriction of T−l(f)
to Z0+. More precisely, (43.16) holds for every f ∈ c(Z, k), j ≥ 0, and l ≥ 1,
without the additional condition (43.14).

44 Polynomials and power series

Let k be a field, and let X be an indeterminate. As in [4, 7], we use upper-case
letters like X for indeterminates, and lower-case letters like x for elements of k.
If f ∈ c(Z0+, k), then

F (X) =
∞∑
j=0

f(j)Xj(44.1)

is a formal power series in X with coefficients in k. The space of formal power
series in X with coefficients in k is typically denoted k[[X]]. Of course, a formal
power series is characterized by its coefficients, so that the mapping from a
k-valued function f on Z0+ to F (X) is a one-to-one correspondence between
c(Z0+, k) and k[[X]]. Thus one may use c(Z0+, k) as a precise definition of
k[[X]], and use (44.1) as notation for elements of k[[X]]. Note that k[[X]] is a
vector space over k with respect to termwise addition and scalar multiplication
of formal power series, which correspond exactly to pointwise addition and scalar
multiplication of k-valued functions on Z0+.

There is a natural way to multiply formal power series, where

Xj X l = Xj+l(44.2)
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for all nonnegative integers j, l. It is well known and easy to see that k[[X]] is
a commutative algebra over k with respect to multiplication. Let f ∈ c(Z0+, k)
be given, and let A(f) be as defined in (43.1). Thus f and g = A(f) determine
formal power series F (X) and G(X), as in (44.1). Observe that

G(X) =

∞∑
j=0

(A(f))(j)Xj =

∞∑
j=1

f(j − 1)Xj(44.3)

=

∞∑
j=0

f(j)Xj+1 = F (X)X.

A formal polynomial in X with coefficients in k may be considered as a
formal power series in which all but finitely many coefficients are equal to 0. If
f ∈ c00(Z0+, k), then the corresponding formal power series (44.1) is a formal
polynomial. The space of formal polynomials in X with coefficients in k is
typically denoted k[X], and is a subalgebra of k[[X]]. As before, one can use
c00(Z0+, k) as a precise definition of k[X]. Note that the shift operators A, B
map c00(Z0+, k) into itself.

If f ∈ c(Z, k), then

F (X) =

∞∑
j=−∞

f(j)Xj(44.4)

may be considered as a formal Laurent series in X with coefficients in k. As
usual, one can use c(Z, k) as a precise definition of the space of formal Laurent
series in X with coefficients in k. Pointwise addition and scalar multiplication
of k-valued functions on Z corresponds to termwise addition and scalar mul-
tiplication of formal Laurent series, by construction. Although the product of
two formal Laurent series is not always defined, it can be defined in some situ-
ations. In particular, it is easy to multiply a formal Laurent series F (X) with
a monomial X l for any l ∈ Z. Let f ∈ c(Z, k) be given, and let g = T (f) be as
in (3.1). If F (X) and G(X) are the corresponding Laurent series, as in (44.4),
then

G(X) =

∞∑
j=−∞

(T (f))(j)Xj =

∞∑
j=−∞

f(j − 1)Xj(44.5)

=

∞∑
j=−∞

f(j)Xj+1 = F (X)X.

Of course, one can identify formal power series in X with formal Laurent series
in X such that the coefficient of Xj is equal to 0 when j < 0.

45 Extension and restriction mappings

Let k be a field, let X be a nonempty set, and let Y be a nonempty subset of
X. If f is a k-valued function on X, then let RY (f) be the restriction of f to
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Y . Thus RY defines a linear mapping from c(X, k) onto c(Y, k). Note that RY

maps c00(X, k) onto c00(Y, k).
If f0 is a k-valued function on Y , then let EY (f0) be the k-valued function

on X defined by

(EY (f0))(x) = f0(x) when x ∈ Y(45.1)

= 0 when x ∈ X \ Y.

This defines a one-to-one linear mapping from c(Y, k) into c(X, k). More pre-
cisely, EY maps c(Y, k) onto the linear subspace

cY (X, k) = {f ∈ c(X, k) : supp f ⊆ Y }(45.2)

of c(X, k), and
EY (c00(Y, k)) = cY (X, k) ∩ c00(X, k).(45.3)

Of course,
RY (EY (f0)) = f0(45.4)

for every f0 ∈ c(Y, k), so that RY ◦ EY is the identity mapping on c(Y, k).
If f ∈ c(X, k), then let PY (f) be the k-valued function defined on X by

(PY (f))(x) = f(x) when x ∈ Y(45.5)

= 0 when x ∈ X \ Y.

This defines a linear mapping from c(X, k) onto cY (X, k), which maps c00(X, k)
onto (45.3). Observe that

PY ◦ PY = PY ,(45.6)

so that PY defines a projection on c(X, k). We also have that

EY (RY (f)) = PY (f)(45.7)

for every f ∈ c(X, k), so that EY ◦RY = PY as linear mappings on c(X, k). Note
that PY is the same as the multiplication operator on c(X, k) corresponding to
the k-valued function on X that is equal to 1 on Y and to 0 on X \ Y , as in
Section 19.

Let us now take X = Z and Y = Z0+, so that the restriction operator RZ0+ ,
the extension operator EZ0+ , and the projection PZ0+ can be defined as before.
Also let A, B be the forward and backward shift operators on c(Z0+, k), as in
Section 43, and let T be the forward shift operator on c(Z, k), as in Section 3.
The condition (43.14) means that f ∈ cZ0+

(Z, k), using the notation in (45.2).
Thus (43.15) says that

RZ0+
(T l(f)) = Al(RZ0+

(f))(45.8)

for every f ∈ cZ0+(Z, k) and l ≥ 1. Similarly,

RZ0+
(T−l(f)) = Bl(RZ0+

(f))(45.9)
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for every f ∈ c(Z, k) and l ≥ 1, as in (43.16).
Observe that

T (cZ0+
(Z, k)) ⊆ cZ0+

(Z, k).(45.10)

If f0 ∈ c(Z0+, k), then f = EZ0+
(f0) ∈ cZ0+

(Z, k), and

T l(EZ0+
(f0)) = EZ0+

(Al(f0))(45.11)

for every l ≥ 1. This is a more precise version of (43.15) and (45.8). If we identify
c(Z0+, k) with cZ0+(Z, k) using EZ0+ , then Al corresponds to the restriction of
T l to cZ0+

(Z, k) for each l ≥ 1. We also have that

PZ0+(T
−l(EZ0+(f0))) = EZ0+(B

l(f0))(45.12)

for every f0 ∈ c(Z0+, k) and l ≥ 1, as in (43.16) and (45.9).

46 Dual mappings

Let k be a field. If f ∈ c00(Z0+, k) and g ∈ c(Z0+, k), then

λg(f) =

∞∑
j=0

f(j) g(j)(46.1)

reduces to a finite sum in k. This defines a linear functional on c00(Z0+, k) for
each g ∈ c(Z0+, k), and every linear functional on c00(Z0+, k) is of this form, as
in Section 2. Thus

g 7→ λg(46.2)

defines an isomorphism between c(Z0+, k) and the algebraic dual c00(Z0+, k)
alg

of c00(Z0+, k) as vector spaces over k, as before.
Let A, B be the forward and backward shift operators on c(Z0+, k), as in

Section 43. Remember that A, B map c00(Z0+, k) into itself. If f ∈ c00(Z0+, k)
and g ∈ c(Z0+, k), then

λg(A(f)) =

∞∑
j=1

f(j − 1) g(j),(46.3)

by the definition (43.1) of A(f). It follows that

λg(A(f)) =

∞∑
j=0

f(j) g(j + 1) =

∞∑
j=0

f(j) (B(g))(j) = λB(g)(f)(46.4)

using the definition (43.2) of B in the second step. This shows that the algebraic
dual Aalg of A on c00(Z0+, k) corresponds to B on c(Z0+, k), with respect to
the isomorphism between c00(Z0+, k)

alg and c(Z0+, k) mentioned in the previous
paragraph. Similarly,

λg(B(f)) =

∞∑
j=0

f(j + 1) g(j)(46.5)
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for every f ∈ c00(Z0+, k) and g ∈ c(Z0+, k), by the definition (43.2) of B(f).
Hence

λg(B(f)) =

∞∑
j=1

f(j) g(j − 1) =

∞∑
j=0

f(j) (A(g))(j) = λA(g)(f),(46.6)

using the definition (43.1) of A in the second step. Thus the algebraic dual Balg

of B on c00(Z0+, k) corresponds to A on c(Z0+, k), in the same way as before.
Let X be a nonempty set, and let Y be a nonempty subset of X. The

corresponding projection operator PY defined in (45.5) maps c(X, k) into itself,
and c00(X, k) into itself. If f ∈ c00(X, k) and g ∈ c(X, k), then∑

x∈X

(PX(f))(x) g(x) =
∑
x∈Y

f(x) g(x) =
∑
x∈X

f(x) (PY (g))(x).(46.7)

This implies that the algebraic dual (PY )
alg of PY on c00(X, k) corresponds to

PY on c(X, k), with respect to the usual identification between the algebraic
dual c00(X, k)alg of c00(X, k) and c(X, k), as in Section 2.

The restriction operator RY defined in the previous section maps c(X, k)
into c(Y, k), and c00(X, k) into c00(Y, k). The extension operator EY defined in
(45.1) maps c(Y, k) into c(X, k), and c00(Y, k) into c00(X, k). If f ∈ c00(X, k)
and g0 ∈ c(Y, k), then∑

x∈Y

(RY (f))(x) g0(x) =
∑
x∈Y

f(x) g0(x) =
∑
x∈X

f(x) (EY (g0))(x).(46.8)

This means that the algebraic dual (RY )
alg or RY as a linear mapping from

c00(X, k) into c00(Y, k) corresponds to EY as a linear mapping from c(Y, k)
into c(X, k). This uses the identification of the algebraic dual c00(X, k)alg of
c00(X, k) with c(X, k) discussed in Section 2, and the analogous identification
of the algebraic dual c00(Y, k)

alg or c00(Y, k) with c(Y, k). If f0 ∈ c00(Y, k) and
g ∈ c(X, k), then∑

x∈X

(EY (f0))(x) g(x) =
∑
x∈Y

f0(x) g(x) =
∑
x∈Y

f0(x) (RY (g))(x).(46.9)

This implies that the algebraic dual (EY )
alg of EY as a linear mapping from

c00(Y, k) into c00(X, k) corresponds to RY as a linear mapping from c(X, k) into
c(Y, k), using the same identifications of the algebraic dual spaces as before.

47 Boundedness on ℓr spaces

Let k be a field with a q-absolute value function | · | for some q > 0, and let
r > 0 be given. If f ∈ ℓr(Z0+, k), then it is easy to see that

A(f), B(f) ∈ ℓr(Z0+, k),(47.1)
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where A(f) is as in (43.1), and B(f) is as in (43.2). More precisely,

∥A(f)∥r = ∥f∥r(47.2)

for every f ∈ ℓr(Z0+, k), so that A defines an isometric linear mapping from
ℓr(Z0+, k) into itself. We also have that

∥B(f)∥r ≤ ∥f∥r(47.3)

for every f ∈ ℓr(Z0+, k), so that B defines a bounded linear mapping from
ℓr(Z0+, k) into itself, with operator q or r-norm less than or equal to 1. If
l ∈ Z+ and f ∈ ℓr(Z0+, k) satisfies f(j) = 0 when 0 ≤ j < l, then one can check
that

∥Bl(f)∥r = ∥f∥r,(47.4)

using (43.7). In particular, this implies that the operator q or r-norm of Bl on
ℓr(Z0+, k) is equal to 1 for every l ≥ 1. Note that B maps ℓr(Z0+, k) onto itself.

Similarly, A maps c0(Z0+, k) into itself, and B maps c0(Z0+, k) onto itself.
If l ∈ Z+, then the restriction of Bl to c0(Z0+, k) has operator q-norm equal
to 1 with respect to the supremum q-norm on c0(Z0+, k). This uses (47.3) and
(47.4), with r = ∞.

Let X be a nonempty set, let Y be a nonempty subset of X, and let PY be
the projection operator defined in (45.5). If f ∈ ℓr(X, k) for some r > 0, then
PY (f) ∈ ℓr(X, k), and

∥PY (f)∥r ≤ ∥f∥r,(47.5)

with equality when f is supported in Y . Thus PY defines a bounded linear
mapping from ℓr(X, k) into itself, with operator q or r-norm equal to 1. Simi-
larly, PY maps c0(X, k) into itself, with operator q-norm equal to 1 with respect
to the supremum q-norm on c0(X, k). These statements about operator norms
can also be obtained from the remarks in Section 19, because PY corresponds
to multiplication by a k-valued function on X with supremum q-norm equal to
1, as in Section 45.

Let RY be the restriction mapping from c(X, k) onto c(Y, k), as in Section
45. If f ∈ ℓr(X, k) for some r > 0, then RY (f) ∈ ℓr(Y, k), and

∥RY (f)∥ℓr(Y,k) ≤ ∥f∥ℓr(X,k),(47.6)

with equality when f is supported in Y . Hence RY defines a bounded linear
mapping from ℓr(X, k) into ℓr(Y, k), with operator q or r-norm equal to 1.
Similarly, RY maps c0(X, k) into c0(Y, k), with operator q-norm equal to 1
with respect to the corresponding supremum q-norms. Let EY be the extension
mapping from c(Y, k) into c(X, k), as in (45.1). If f0 ∈ ℓr(Y, k) for some r > 0,
then EY (f0) ∈ ℓr(X, k), and

∥EY (f0)∥ℓr(X,k) = ∥f0∥ℓr(Y,k),(47.7)

so that EY defines an isometric linear mapping from ℓr(Y, k) into ℓr(X, k). Note
that EY maps c0(Y, k) into c0(X, k) too. It is easy to see that RY maps ℓr(X, k)
onto ℓr(Y, k) for every r > 0, and that RY maps c0(X, k) onto c0(Y, k), using
(45.4).
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48 Adjoint mappings

In this section, we take k = R or C, with the standard absolute value function.
Remember that the standard inner products on ℓ2(Z0+,R) and ℓ2(Z0+,C) are
given by

⟨f, g⟩ =
∞∑
j=0

f(j) g(j)(48.1)

and

⟨f, g⟩ =
∞∑
j=0

f(j) g(j),(48.2)

as in (11.3) and (11.4), respectively. The forward and backward shift oper-
ators A, B from Section 43 define bounded linear mappings from ℓ2(Z0+,R)
and ℓ2(Z0+,C) into themselves, as in the previous section. If f , g are square-
summable real or complex-valued functions on Z0+, then one can check that

⟨A(f), g⟩ = ⟨f,B(g)⟩.(48.3)

This is analogous to (46.4). It follows that

A∗ = B(48.4)

as bounded linear mappings on ℓ2(Z0+,R) or ℓ2(Z0+,C), where A∗ is the adjoint
of A, as in Section 21. Of course,

B∗ = A,(48.5)

for essentially the same reasons, or by taking the adjoints of both sides of (48.4).
Let X be a nonempty set, and let Y be a nonempty subset of X. As before,

the standard inner products on ℓ2(X,R) and ℓ2(X,C) are given by

⟨f, g⟩X =
∑
x∈X

f(x) g(x)(48.6)

and
⟨f, g⟩X =

∑
x∈X

f(x) g(x),(48.7)

respectively. The projection mapping PY in (45.5) determines a bounded linear
mapping from each of ℓ2(X,R) and ℓ2(X,C) into itself, as in the previous
section. If f , g are square-summable real or complex-valued functions on X,
then

⟨PY (f), g⟩X = ⟨f, PY (g)⟩X ,(48.8)

as in (46.7). This means that
P ∗
Y = PY(48.9)

as bounded linear mappings on ℓ2(X,R) or ℓ2(X,C).
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The standard inner products on ℓ2(Y,R) and ℓ2(Y,C) are given by

⟨f0, g0⟩Y =
∑
x∈X

f0(x) g0(x)(48.10)

and
⟨f0, g0⟩Y =

∑
x∈X

f0(x) g0(x),(48.11)

respectively. As in the previous section, the restriction mapping RY from Sec-
tion 45 defines a bounded linear mapping from ℓ2(X, k) into ℓ2(Y, k) for k = R,
C. Similarly, the extension mapping EY in (45.1) defines a bounded linear
mapping from ℓ2(Y, k) into ℓ2(X, k) for k = R, C. If f is a square-summable
real or complex-valued function on X, and g0 is a square-summable real or
complex-valued function on Y , then

⟨RY (f), g0⟩Y = ⟨f,EY (g0)⟩X ,(48.12)

as in (46.8). This implies that

R∗
Y = EY(48.13)

as bounded linear mappings from ℓ2(Y, k) into ℓ2(X, k), for k = R, C. We also
have that

E∗
Y = RY(48.14)

as bounded linear mappings from ℓ2(X, k) into ℓ2(Y, k), for k = R, C. This can
be obtained in essentially the same way, or by taking adjoints of both sides of
(48.13).

49 Eigenfunctions for unilateral shifts

Let k be a field, and let A and B be the forward and backward shift operators on
c(Z0+, k), as in Section 43. One can check that A has no nontrivial eigenvectors
in c(Z0+, k), so that A has no eigenvalues in k as a linear mapping from c(Z0+, k)
into itself. More precisely, 0 is not an eigenvalue of A, because A is injective
on c(Z0+, k). If a ∈ k, a ̸= 0, f ∈ c(Z0+, k), and A(f) = a f , then one can
verify that f ≡ 0 on Z0+, using the definition of A. This corresponds to the fact
that the bilateral shift operator T on c(Z, k) has no nontrivial eigenfunctions
supported in Z0+, as in Section 26.

Let a ∈ k be given, and let ea,0 be the k-valued function defined on Z0+ by

ea,0(j) = aj(49.1)

for every j ≥ 0. This is interpreted as being equal to 1 when j = 0, as usual,
even when a = 0. If a ̸= 0, then ea,0 is the same as the restriction to Z0+ of the
function ea defined on Z in (26.2). Observe that

(B(ea,0))(j) = ea,0(j + 1) = aj+1 = a ea,0(j)(49.2)
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for every a ∈ k and j ≥ 0, so that

B(ea,0) = a ea,0(49.3)

as elements of c(Z0+, k). Thus ea,0 is an eigenvector for B on c(Z0+, k) with
eigenvalue a for each a ∈ k. It is easy to see that every eigenvector of B on
c(Z0+) with eigenvalue a is a multiple of ea,0. Note that ea,0 has finite support
in Z0+ only when a = 0, so that 0 is the only eigenvalue of B on c00(Z0+, k).

If a ∈ k, a ̸= 0, and f ∈ c(Z0+, k), then

(A(ea,0 f))(j) = aj−1 (A(f))(j) = a−1 ea,0(j) (A(f))(j)(49.4)

for every j ≥ 0. Of course, each of these three expressions is equal to 0 when
j = 0, by the definition (43.1) of A. Thus

A(ea,0 f) = a−1 ea,0 A(f)(49.5)

as k-valued functions on Z0+. Let Mea,0
be the multiplication operator on

c(Z0+, k) corresponding to ea,0, as in (19.1). Using this, (49.5) can be reformu-
lated as saying that

A ◦Mea,0
= a−1 Mea,0

◦A(49.6)

as linear mappings from c(Z0+, k) into itself. Note that (49.1) is nonzero for
every j ∈ Z when a ̸= 0, in which case 1/ea,0 = e1/a,0 and M−1

ea,0
= M1/ea,0

=
Me1/a,0

. It is easy to see that

A ◦M−1
ea,0

= aM−1
ea,0

◦A(49.7)

for every a ∈ k \ {0}, by rearranging the operators in (49.6), or by applying
(49.6) to 1/a. It follows that

Mea,0 ◦A ◦M−1
ea,0

= aA(49.8)

for every a ∈ k \ {0}, as linear mappings from c(Z0+, k) into itself.
If f, g ∈ c(Z0+, k), then

B(f g) = B(f)B(g)(49.9)

as k-valued functions on Z0+, by the definition (43.2) of B. In particular,

B(ea,0 f) = B(ea,0)B(f) = a ea,0 B(f)(49.10)

for every a ∈ k and f ∈ c(Z0+, k), using (49.3) in the second step. This implies
that

B ◦Mea,0 = aMea,0 ◦B(49.11)

for every a ∈ k, as linear mappings from c(Z0+, k) into itself. If a ̸= 0, then we
have that

B ◦M−1
ea,0

= a−1 M−1
ea,0

◦B,(49.12)

by rearranging the operators in (49.11), or applying the previous statement to
1/a. Thus

Mea,0
◦B ◦M−1

ea,0
= a−1 B(49.13)

as linear mappings on c(Z0+, k) when a ̸= 0.
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50 Eigenvalues of unilateral shifts

Let k be a field, and let | · | be a q-absolute value function on k for some q > 0.
Also let a ∈ k be given, and let ea,0 be defined on Z0+ as in (49.1). Observe
that

ea,0 ∈ ℓ∞(Z0+, k) if and only if |a| ≤ 1.(50.1)

Similarly,
ea,0 ∈ c0(Z0+, k) if and only if |a| < 1.(50.2)

If 0 < r < ∞, then

ea,0 ∈ ℓr(Z0+, k) if and only if |a| < 1.(50.3)

Let A, B be the usual forward and backward shift operators on c(Z0+, k),
as in Section 43. Remember that the restrictions of A and B to ℓr(Z0+, k)
define bounded linear mappings from ℓr(Z0+, k) into itself for every r > 0, as in
Section 47. It follows from (50.1) and the remarks about eigenfunctions of B on
c(Z0+, k) in the previous section that a ∈ k is an eigenvalue of B on ℓ∞(Z0+, k)
if and only if |a| ≤ 1. Using (50.2), we get that a ∈ k is an eigenvalue of B on
c0(Z0+, k) if and only if |a| < 1. If 0 < r < ∞, then a ∈ k is an eigenvalue of B
on ℓr(Z0+, k) if and only if |a| < 1, by (50.3).

Let us now consider approximate eigenvalues of A and B on ℓr(Z0+, k) and
c0(Z0+, k). Of course, if a ∈ k is an approximate eigenvalue of A or B on
c0(Z+, k) with respect to the supremum norm, then a is an approximate eigen-
value of A or B, respectively, on ℓ∞(Z0+, k). Remember that A defines an
isometric linear mapping from ℓr(Z0+, k) into itself for every r > 0, as in Sec-
tion 47. If a ∈ k is an approximate eigenvalue of A on ℓr(Z0+, k) for some r > 0,
then it follows that |a| = 1, as in Section 30. Similarly, the restriction of B to
ℓr(Z0+, k) has operator q or r-norm equal to 1, as appropriate, as in Section
47. If a ∈ k is an approximate eigenvalue of B on ℓr(Z0+, k) for some r > 0,
then |a| ≤ 1, as in (30.14). We shall restrict our attention to |a| = 1 for B as
well, since the case where |a| < 1 is covered by the remarks in the preceding
paragraph.

Let a ∈ k with |a| = 1 be given, and let r be a positive real number. Also let
T be the forward shift operator on c(Z, k), as in Section 3, and remember that
A basically corresponds to the restriction of T to k-valued functions on Z that
are supported in Z0+. We have seen that a is an approximate eigenvalue for
T on ℓr(Z, k), as in Section 32. The same type of construction can be used to
show that a is an approximate eigenvalue for A on ℓr(Z0+, k). More precisely,
one can use functions defined as in (32.1), with j1 ≥ 0, restricted to Z0+.

There are a few minor differences between the analogous argument for B
and the previous situation. Let j0 be a nonnegative integer, and let f0 be the
k-valued function defined on Z0+ by

f0(j) = aj when 0 ≤ j ≤ j0(50.4)

= 0 when j ≥ j0 + 1.
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This corresponds to (32.1), restricted to Z0+, with j1 = 0, j2 = j0, and a
replaced with 1/a. Using the definition (43.2) of B, we get that

(B(f0))(j) = f0(j + 1) = aj+1 when j ≤ j0 − 1(50.5)

= 0 when j ≥ j0.

Thus

a f0(j)− (B(f0))(j) = aj0+1 when j = j0(50.6)

= 0 otherwise,

so that
∥a f0 −B(f0)∥r = 1.(50.7)

We also have that
∥f0∥r = (j0 + 1)1/r,(50.8)

which implies that a is an approximate eigenvalue forB on ℓr(Z0+, k). Of course,
B basically corresponds to T−1 in the earlier discussion, and the restriction to
Z0+ permits us to avoid an extra term in (50.6).

Suppose for the rest of the section that k = R or C, with the standard
absolute value function. Let a be a real or complex number with |a| = 1, and
let fn be the real or complex-valued function defined on Z for each nonnegative
integer n as in (32.6). In order to get functions that are supported in Z0+, one
can take

f̃n(j) = fn(j − n),(50.9)

for instance. Using the restrictions of these functions to Z0+, one can show
that a is an approximate eigenvalue for A on ℓr(Z0+, k) when 0 < r < ∞,
and on c0(Z0+, k) with the supremum norm. This is basically the same as in
Section 32, with additional translations as in (50.9), because A corresponds to
the restriction of T to functions supported in Z0+.

As before, there are analogous arguments for B, with some minor differences.
In order to use the same type of functions for B, one should replace a with
1/a, because B corresponds to T−1. It is not necessary to use translations as
in (50.9), and instead one can simply restrict the functions to Z0+. However,
instead of using the same type of functions as in (32.6), one can do the following.
Let {an}∞n=1 be a sequence of real or complex numbers, as appropriate, that
converges to a, and satisfies |an| < 1 for each n. If ean,0 is defined on Z0+ as
in (49.1), then ean,0 is an eigenfunction for B with eigenvalue an for each n, as
in (49.3). We also have that ean,0 ∈ c0(Z0+, k) for each n, by (50.2), and that
ean,0 ∈ ℓr(Z0+, k) for every positive real number r and n ≥ 1, by (50.3). Using
this, one can check that a is an approximate eigenvalue of B on ℓr(Z0+, k) when
0 < r < ∞, and on c0(Z0+, k) with respect to the supremum norm.
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51 The case where q = r = ∞
Let k be a field with an ultrametric absolute value function | · |, and let a ∈ k
be given, with |a| = 1. If f ∈ c(Z0+, k) and A(f) is as in (43.1), then

a f(j)− (A(f))(j) = a f(j)− f(j − 1) when j ≥ 1(51.1)

= a f(0) when j = 0.

Let l be a nonnegative integer, and observe that

al f(l) =

l∑
j=1

(aj f(j)− aj−1 f(j − 1)) + f(0),(51.2)

where the summation on the right side is interpreted as being equal to 0 when
l = 0. Equivalently,

al f(l) =

l∑
j=0

aj−1 (a f(j)− (A(f))(j)),(51.3)

where the f(0) term on the right side of (51.2) corresponds to the j = 0 in the
sum on the right side of (51.3). Thus

|f(l)| ≤ max
0≤j≤l

|a f(j)− (A(f))(j)|,(51.4)

by the ultrametric version of the triangle inequality.
If a f −A(f) is bounded on Z0+, then it follows that f is bounded on Z0+,

with
∥f∥∞ ≤ ∥a f −A(f)∥∞.(51.5)

This could also be obtained from (33.5), applied to k-valued functions on Z
supported in Z0+. It follows that a is not an approximate eigenvalue of A on
ℓ∞(Z0+, k). Note that

∥a f −A(f)∥∞ ≤ max(∥a f∥∞, ∥A(f)∥∞) ≤ ∥f∥∞(51.6)

for every f ∈ ℓ∞(Z0+, k), by the ultrametric version of the triangle inequality.
Hence

∥a f −A(f)∥∞ = ∥f∥∞(51.7)

for every f ∈ ℓ∞(Z0+, k), by (51.5) and (51.6).
Let f ∈ c(Z0+, k) and nonnegative integers j1, j2 be given, with j1 < j2.

Observe that

a−j1 f(j1)− a−j2 f(j2) =

j2−1∑
j=j1

(a−j f(j)− a−j−1 f(j + 1))(51.8)

=

j2−1∑
j=j1

a−j−1 (a f(j)− (B(f))(j)),
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where B(f) is as in (43.2). This implies that

|a−j1 f(j1)− a−j2 f(j2)| ≤ max
j1≤j≤j2−1

|a f(j)− (B(f))(j)|,(51.9)

by the ultrametric version of the triangle inequality. If a f − B(f) is bounded
on Z0+, then we have that

|a−j1 f(j1)− a−j2 f(j2)| ≤ ∥a f −B(f)∥∞(51.10)

for every j1, j2 ≥ 0. It follows that f is bounded on Z0+, with

∥f∥∞ ≤ max
(
∥a f −B(f)∥∞, inf

j≥0
|f(j)|

)
,(51.11)

by the ultrametric version of the triangle inequality.
If f vanishes at infinity on Z0+, then

∥f∥∞ ≤ ∥a f −B(f)∥∞,(51.12)

by (51.11). This means that a is not an approximate eigenvalue of B on
c0(Z0+, k) with respect to the supremum ultranorm. As before,

∥a f −B(f)∥∞ ≤ max(∥a f∥∞, ∥B(f)∥∞) ≤ ∥f∥∞(51.13)

for every f ∈ ℓ∞(Z0+, k), by the ultrametric version of the triangle inequality.
Thus

∥a f −B(f)∥∞ = ∥f∥∞(51.14)

for every f ∈ c0(Z0+, k). Note that

sup
j1,j2≥0

|a−j1 f(j1)− a−j2 f(j2)| = ∥a f −B(f)∥∞(51.15)

for every f ∈ ℓ∞(Z0+, k), because of (51.10) and the definition of B.

52 Multiplicative inverses in k[[X]]

Let k be a field, and let X be an indeterminate. Of course, elements of k can
be identified with formal polynomials in X of degree 0. More precisely, such a
constant polynomial is a scalar multiple of X0, which is typically omitted from
the notation. This defines a natural embedding of k into k[X]. In particular, the
multiplicative identity element 1 in k corresponds to a constant polynomial in
X, which may be denoted 1 as well. This is the multiplicative identity element
in k[[X]]. Thus F (X) ∈ k[[X]] has a multiplicative inverse in k[[X]] when there
is a G(X) ∈ k[[X]] such that

F (X)G(X) = 1.(52.1)
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Let a ∈ k and a nonnegative integer n be given, so that
∑n

j=0 a
j Xj defines

an element of k[X]. As usual,

(1− aX)

n∑
j=0

aj Xj = 1− an+1 Xn+1.(52.2)

Similarly,
∑∞

j=0 a
j Xj defines an element of k[[X]], and

(1− aX)

∞∑
j=0

aj Xj = 1.(52.3)

Thus 1− aX is invertible in k[[X]], with

(1− aX)−1 =

∞∑
j=0

aj Xj .(52.4)

Now let a(X) ∈ k[[X]] be given, so that (a(X)X)l = a(X)l X l is defined as
a formal power series in X for every nonnegative integer l. If n is a nonnegative
integer, then

(1− a(X)X)

n∑
l=0

a(X)l X l = 1− a(x)n+1 Xn+1,(52.5)

as in (52.2). The sum
∞∑
l=0

a(X)l X l(52.6)

can be defined as a formal power series in X as well, because the coefficient of
Xj reduces to a finite sum for each j ≥ 0. One can also check that

(1− a(X)X)

∞∑
l=0

a(X)l X l = 1,(52.7)

as in (52.3). This implies that 1 − a(X)X is invertible in k[[X]], with inverse
equal to (52.6).

Let F (X) ∈ k[[X]] be given. If F (X) has a multiplicative inverse in k[[X]],
then it is easy to see that the constant term in F (X) is not equal to 0. Con-
versely, if the constant term in F (X) is not equal to 0, then F (X) can be
expressed as

F (X) = b (1− a(X)X),(52.8)

where b ∈ k, b ̸= 0, and a(X) ∈ k[[X]]. This implies that F (X) has a multi-
plicative inverse in k[[X]], by the remarks in the preceding paragraph.
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53 Inverting I − aA on c(Z0+, k)

Let k be a field, and let a ∈ k be given. If n is a nonnegative integer, then put

Ca,n =

n∑
l=0

al Al,(53.1)

where A is as in (43.1). This defines a linear mapping from c(Z0+, k) into itself.
Equivalently,

(Ca,n(f))(j) =

n∑
l=0

al (Al(f))(j) =

min(j,n)∑
l=0

al f(j − l)(53.2)

for every f ∈ c(Z0+, k) and j ≥ 0, using (43.6) in the second step. Note that

(I − aA) ◦ Ca,n = Ca,n ◦ (I − aA) = I − an+1 An+1(53.3)

as linear mappings on c(Z0+, k) for each n ≥ 0, as in (23.1).
If f ∈ c(Z0+, k) and j ∈ Z0+, then put

(Ca(f))(j) =

j∑
l=0

alf(j − l).(53.4)

This defines a k-valued function on Z0+, and Ca defines a linear mapping from
c(Z0+, k) into itself. Comparing (53.4) with (53.2), we get that

(Ca(f))(j) = (Ca,n(f))(j)(53.5)

when j ≤ n. Equivalently,

(Ca(f))(j) =

∞∑
l=0

al (Al(f))(j)(53.6)

for every j ≥ 0, where the right side of (53.6) reduces to the finite sum in (53.4),
because of (43.6). Basically, Ca corresponds to

∑∞
l=0 a

l Al, which is made precise
by (53.4) and (53.6).

Let f ∈ c(Z0+, k) be given, and observe that

(Ca(aA(f)))(j) =

∞∑
l=0

al+1 (Al+1(f))(j)(53.7)

for each j ≥ 0, by applying (53.6) to A(f) in place of f . Similarly,

a (A(Ca(f)))(j) =

∞∑
l=0

al+1 (Al+1(f))(j)(53.8)
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for each j ≥ 0, by applying A to both sides of (53.6). We also have that

∞∑
l=0

al+1 (Al+1(f))(j) =

∞∑
l=1

al (Al(f))(j) = (Ca(f))(j)− f(j)(53.9)

for each j ≥ 0, using (53.6) in the second step. Combining this with (53.7) and
(53.8), we get that

aA(Ca(f)) = Ca(aA(f)) = Ca(f)− f.(53.10)

Thus
aA ◦ Ca = aCa ◦A = Ca − I(53.11)

as linear mappings from c(Z0+, k) into itself, so that

(I − aA) ◦ Ca = Ca ◦ (I − aA) = I.(53.12)

Of course, this means that I−aA is invertible as a linear mapping from c(Z0+, k)
into itself, with

(I − aA)−1 = Ca.(53.13)

If | · | is an ultrametric absolute value function on k and |a| ≤ 1, then it is easy
to see that Ca maps ℓ∞(Z0+, k) into itself.

If b ∈ k and b ̸= 0, then it follows that b I − A = b (I − b−1 A) is invertible
as a linear mapping from c(Z0+, k) into itself, with

(b I −A)−1 = b−1 (I − b−1 A)−1 = b−1 C1/b.(53.14)

We have already seen in Section 49 that A has no eigenvalues in k as a linear
mapping from c(Z0+, k) into itself, which is the same as saying that b I − A is
injective on c(Z0+, k) for every b ∈ k. If b = 0, then b I−A = −A does not map
c(Z0+, k) onto itself, and hence is not invertible on c(Z0+, k).

54 ℓr Estimates, r ≤ q, r < ∞
Let k be a field with a q-absolute value function | · | for some q > 0, and let r be
a positive real number with r ≤ q. Remember that the forward shift operator
A in (43.1) defines an isometric linear mapping from ℓr(Z0+, k) into itself, as in
Section 47. Let a ∈ k and n ∈ Z0+ be given, and let Ca,n be as in (53.1). If
f ∈ ℓr(Z0+, k), then

∥Ca,n(f)∥rr =

∥∥∥∥ n∑
l=0

al Al(f)

∥∥∥∥r
r

≤
n∑

l=0

|al|r ∥Al(f)∥rr =
( n∑

l=0

|a|l r
)
∥f∥rr.(54.1)

This uses the fact that ∥ · ∥r defines an r-norm on ℓr(Z0+, k) when r ≤ q, as
in Section 8, in the second step. Thus Ca,n defines a bounded linear mapping
from ℓr(Z0+, k) into itself, with operator r-norm less than or equal to( n∑

l=0

|a|l r
)1/r

.(54.2)
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If f(j) = 0 for every j ≥ 1, then (Al(f))(j) = 0 when j ̸= l, as in (43.6). In
this case, one can check that equality holds in the second step in (54.1). This
implies that the operator r-norm of Ca,n on ℓr(Z0+, k) is equal to (54.2).

Let Ca be as in (53.4), and let f ∈ c(Z0+, k) be given. Observe that

n∑
j=0

|(Ca(f))(j)|r =

n∑
j=0

|(Ca,n(f))(j)|r(54.3)

for each n ≥ 0, by (53.5). Of course,

n∑
j=0

|(Ca,n(f))(j)|r ≤
∞∑
j=0

|(Ca,n(f))(j)|r = ∥Ca,n(f)∥rr(54.4)

for every n ≥ 0. If f(j) = 0 when j ≥ 1, then (Ca,n(f))(j) = 0 when j > n,
by (53.2). This implies that equality holds in the first step in (54.4) for every
n ≥ 0 in this situation.

Suppose that |a| < 1, so that (54.2) is less than or equal to( ∞∑
l=0

|a|l r
)1/r

= (1− |a|r)−1/r(54.5)

for each n ≥ 0. If f ∈ ℓr(Z0+, k), then it follows that

n∑
j=0

|(Ca(f))(j)|r ≤ (1− |a|r)−1 ∥f∥rr(54.6)

for every n ≥ 0, by (54.1), (54.3), and (54.4). This implies that

∥Ca(f)∥rr =

∞∑
j=0

|(Ca(f))(j)|r ≤ (1− |a|r)−1 ∥f∥rr,(54.7)

and in particular that Ca(f) ∈ ℓr(Z0+, k). Thus Ca defines a bounded linear
mapping from ℓr(Z0+, k) into itself when |a| < 1, with operator r-norm less
than or equal to (54.5). If f(0) = 1 and f(j) = 0 when j ≥ 1, then

(Ca(f))(j) = aj(54.8)

for every j ≥ 0, by (53.4). In this case, ∥Ca(f)∥r is equal to (54.5), so that
equality holds in the second step in (54.7). Hence the operator r-norm of Ca on
ℓr(Z0+, k) is equal to (54.5).

By construction, Ca,n is the same as the n partial sum of the infinite series

∞∑
l=0

al Al(54.9)

of linear mappings on c(Z0+, k). Of course, the operator r-norm of al Al on
ℓr(Z0+, k) is equal to |a|l for every l ≥ 0, because Al is an isometry on ℓr(Z0+, k).
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If |a| < 1, then it follows that (54.9) converges r-absolutely as an infinite series
of bounded linear mappings on ℓr(Z0+, k), with respect to the operator r-norm.
One can check that Ca,n converges to Ca as n → ∞ as a sequence of bounded
linear mappings on ℓr(Z0+, k) with respect to the operator r-norm when |a| < 1,
using the same type of simple estimates as before. This means that (54.9)
converges to Ca as an infinite series of bounded linear mappings on ℓr(Z0+, k).
Note that k is not required to be complete with respect to the q-metric associated
to | · | here. In this situation, we were able to define Ca directly, in terms of
finite sums.

55 Estimates for k = R,C

Let us take k = R orC with the standard absolute value function in this section,
so that q = 1. We shall also restrict our attention to r ≥ 1, since the case where
r ≤ 1 is covered by the discussion in the previous section. As before, the forward
shift operator A in (43.1) defines an isometric linear mapping from ℓr(Z0+, k)
into itself for each r. Let a ∈ k and n ∈ Z0+ be given again, and let Ca,n be as
in (53.1). If r ≥ 1 and f ∈ ℓr(Z0+, k), then

∥Ca,n(f)∥r =

∥∥∥∥ n∑
l=0

al Al(f)

∥∥∥∥
r

≤
n∑

l=0

|a|l ∥Al(f)∥r =
( n∑

l=0

|a|l
)
∥f∥r.(55.1)

This uses the fact that ∥ · ∥r defines a norm on ℓr(Z0+, k) when r ≥ 1, as in
Section 8. Thus Ca,n defines a bounded linear mapping from ℓr(Z0+, k) into
itself when r ≥ 1, with operator norm less than or equal to

n∑
l=0

|a|l.(55.2)

Let Ca be as in (53.4) again, and let f ∈ c(Z0+, k) be given. As in (54.3)
and (54.4), we have that( n∑

j=0

|(Ca(f))(j))|r
)1/r

=
( n∑

j=0

|(Ca,n(f))(j)|r
)1/r

≤ ∥Ca,n(f)∥r(55.3)

when r < ∞, and

max
0≤j≤n

|(Ca(f))(j)| = max
0≤j≤n

|(Ca,n(f))(j)| ≤ ∥Ca,n(f)∥∞,(55.4)

using (53.5) in the first step of each. Suppose that |a| < 1, so that (55.2) is less
than or equal to

∞∑
l=0

|a|l = (1− |a|)−1(55.5)

for each n ≥ 0. If r ≥ 1 and f ∈ ℓr(Z0+, k), then we get that

∥Ca(f)∥r ≤ (1− |a|)−1 ∥f∥r,(55.6)
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using (55.1), (55.3), and (55.4). This shows that Ca defines a bounded linear
mapping from ℓr(Z0+, k) into itself when |a| < 1 and r ≥ 1, with operator norm
less than or equal to (55.5).

As before, Ca basically corresponds to the infinite series

∞∑
l=0

al Al.(55.7)

If |a| < 1, then this series converges absolutely as an infinite series of bounded
linear mappings on ℓr(Z0+, k) with respect to the corresponding operator norm,
as in Section 23. One can also check that Ca maps c0(Z0+, k) into itself when
|a| < 1. This can be verified directly from the original definition of Ca, or by
considering (55.7) as an absolutely convergent series of bounded linear mappings
on c0(Z0+, k) with respect to the supremum norm. This is basically the same
as approximating Ca by Ca,n, and using the fact that Ca,n maps c0(Z0+, k) into
itself for every n ≥ 0.

As in Section 42, one can show that the operator norm of Ca on ℓr(Z0+, k)
is equal to (55.5) for every r ≥ 1 when |a| < 1. Similarly, the operator norm of
Ca on c0(Z0+, k) with respect to the supremum norm is equal to (55.5) when
|a| < 1. Of course, Ca is the same as the inverse of I−aA on these spaces when
|a| < 1. If b ∈ k and |b| = 1, then b is an approximate eigenvalue of A on these
spaces, as in Section 50. This permits one to show that the operator norm of
Ca on these spaces is greater than or equal to (55.5), in the same way as before.

56 Convergent power series

Let k be a field with a q-absolute value function | · | for some q > 0, and suppose
that k is complete with respect to the associated q-metric. Let f ∈ ℓ∞(Z0+, k)
and x ∈ k be given, with |x| < 1. Under these conditions,

∞∑
j=0

f(j)xj(56.1)

converges in k, by the remarks in Section 12. More precisely, if q < ∞, then
(56.1) converges q-absolutely, by comparison with the convergent geometric se-
ries

∑∞
j=0 |x|q j . If q = ∞, then it suffices to observe that the terms of the series

converge to 0.
Let F (x) denote the value of the sum (56.1). Put g = A(f), where A is the

forward shift operator defined in Section 43, as usual. Thus g ∈ ℓ∞(Z0+, k),
as in Section 47, so that G(x) can be defined as the sum of the corresponding
series. In fact,

G(x) =

∞∑
j=0

(A(f))(j)xj =

∞∑
j=1

f(j − 1)xj =

∞∑
j=0

f(j)xj+1 = xF (x),(56.2)

as in (44.3).
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Put λx(f) = F (x), considered now as a linear functional on ℓ∞(Z0+, k).
Using (56.2), we get that

λx(A(f)) = xλx(f)(56.3)

for every f ∈ ℓ∞(Z0+, k). It is easy to see that λx defines a bounded linear
functional on ℓ∞(Z0+, k). This implies that the restriction of λx to c0(Z0+, k) is
a bounded linear functional with respect to the supremum q-norm. Similarly, the
restriction of λx to ℓr(Z0+, k) is a bounded linear functional for every positive
real number r. Note that λx is not identically 0 on ℓr(Z0+, k) for any r > 0,
or on c0(Z0+, k). It follows from (56.3) that x I − A maps ℓr(Z0+, k) into the
kernel of the restriction of λx to ℓr(Z0+, k) for each r > 0, and that x I−A maps
c0(Z0+, k) into the kernel of the restriction of λx to c0(Z0+, k). In particular,
x I −A is not surjective on these spaces, and hence not invertible.

Of course, if f ∈ c00(Z0+, k), then (56.1) reduces to a finite sum in k for
every x ∈ k, and the value of the sum can be defined without asking k to be
complete. If g = A(f), then g ∈ c00(Z0+, k) too, and (56.2) holds for every
x ∈ k. Thus λx(f) = F (x) defines a linear functional on c00(Z0+, k) for every
x ∈ k, and satisfies (56.3) for every f ∈ c00(Z0+, k) and x ∈ k. This means that
x I − A maps c00(Z0+, k) into the kernel of λx on c00(Z0+, k) for every x ∈ k.
As before, λx is not identically 0 on c00(Z0+, k) for any x ∈ k, and so x I −A is
not surjective on c00(Z0+, k) for any x ∈ k.

57 Hardy spaces

In this section, we take k = C, with the standard absolute value function. Let
f be a complex-valued function on Z0+ such that

∞∑
j=0

|f(j)| ρj(57.1)

converges for every nonnegative real number ρ < 1. The convergence of (57.1)
implies that |f(j)| ρj → 0 as j → ∞, and hence that |f(j)| ρj is bounded on
Z0+. If

|f(j)| ρj1(57.2)

is bounded on Z0+ for some ρ1 > 0, then (57.1) converges when 0 ≤ ρ < ρ1, by
comparison with a convergent geometric series. Thus (57.1) converges for every
0 ≤ ρ < 1 if and only if (57.2) is bounded on Z0+ for every 0 ≤ ρ1 < 1.

Under these conditions,

F (z) =

∞∑
j=0

f(j) zj(57.3)

defines a holomorphic function on the open unit disk

U = {z ∈ C : |z| < 1}(57.4)
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in the complex plane. It is well known that every holomorphic function on U
can be expressed in this way. If A(f) is the complex-valued function defined on
Z0+ as in (43.1), then it is easy to see that A(f) satisfies the same type of condi-
tions as in the preceding paragraph. Thus A(f) also determines a holomorphic
function on U , which is the same as z F (z), as in (56.2).

Let 0 ≤ ρ < 1 be given, so that F (ρ z) defines a continuous complex-valued
function on the unit circle T. If r is a positive real number, then( 1

2π

∫
T

|F (ρ z)|r |dz|
)1/r

(57.5)

can be defined using a Riemann integral with respect to the element |dz| of
arclength on T. The analogue of this for r = ∞ is

sup
z∈T

|F (ρ z)|,(57.6)

where the supremum is attained because T is compact. This is the same as

sup{|F (w)| : w ∈ U, |w| ≤ ρ},(57.7)

by the maximum principle. Clearly (57.7) increases monotonically in ρ, which
means that (57.6) increases monotonically in ρ. It is well known that (57.5)
aldo increases monotonically as a function of ρ for each r ∈ R+, because F
is holomorphic on U . There are analogous statements for harmonic functions
when r ≥ 1.

If 0 < r < ∞, then we put

∥F∥Hr = sup
0≤ρ<1

( 1

2π

∫
T

|F (ρ z)|r |dz|
)1/r

,(57.8)

where the supremum is defined as a nonnegative extended real number. The
Hardy space Hr is defined to be the space of holomorphic functions F on U
such that (57.8) is finite, which means that (57.5) is bounded. This is a linear
subspace of the space of all holomorphic functions on U . If r ≥ 1, then (57.8)
defines a norm on Hr, and (57.8) defines an r-norm on Hr when 0 < r ≤ 1.
Equivalently,

∥F∥Hr = lim
ρ→1−

( 1

2π

∫
T

|F (ρ z)|r |dz|
)1/r

,(57.9)

because (57.5) increases monotonically in ρ.
Similarly, H∞ is defined to be the space of bounded holomorphic functions

on U . This is a subalgebra of the algebra of all holomorphic functions on U .
The H∞ norm

∥F∥H∞ = sup
z∈U

|F (z)|(57.10)

is the same as the supremum norm on U , which can also be expressed as

∥F∥H∞ = lim
ρ→1−

(
sup
z∈T

|F (ρ z)|
)
,(57.11)
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because of the monotonicity of (57.6).
It is well known that (57.5) increases monotonically as a function of r for

each ρ ∈ [0, 1), by the inequalities of Jensen or Hölder. It is easy to see directly
that (57.5) is less than or equal to (57.6) for every r ∈ R+ and ρ ∈ [0, 1). If
0 < r1 ≤ r2 ≤ ∞, then it follows that

Hr2 ⊆ Hr1 ,(57.12)

with
∥F∥Hr1 ≤ ∥F∥Hr2(57.13)

for every F ∈ Hr2 . If F ∈ Hr for some r > 0, then one can check that
G(z) = z F (z) defines an element of Hr as well, with

∥G∥Hr = ∥F∥Hr .(57.14)

This uses (57.9) when r < ∞, and (57.11) when r = ∞.
If F is given as in (57.3), then

1

2π

∫
T

|F (ρ z)|2 |dz| =
∞∑
j=0

|f(j)|2 ρ2j(57.15)

for every 0 ≤ ρ < 1. This follows from the orthonormality of the zj ’s with
respect to the usual integral inner product (16.10) for L2(T). Using this, we
get that F ∈ H2 if and only if f ∈ ℓ2(Z0+,C), with

∥F∥H2 =
( ∞∑

j=0

|f(j)|2
)1/2

= ∥f∥ℓ2(Z0+,C).(57.16)

Note that a complex-valued function f on Z0+ satisfies the conditions mentioned
at the beginning of the section when f is bounded on Z0+, and in particular
when f ∈ ℓ2(Z0+, k).

If F ∈ Hr for some r > 0, then it is well known that the limit of F (ρ z) as
ρ → 1− exists for almost every z ∈ T with respect to Lebesgue measure. More
precisely, nontangential versions of this limit exist almost everywhere on T. If
r < ∞, then F (ρ z) converges to the pointwise limit as ρ → 1− with respect
to the Lr norm on T. In particular, this implies that ∥F∥Hr is equal to the
Lr norm of the boundary value function with respect to normalized arclength
measure on T. If r = ∞, then ∥F∥H∞ is equal to the L∞ norm of the boundary
value function.

If F ∈ Hr for some r > 0, then the product of F with a bounded holomorphic
function on U is in Hr too. This defines another type of multiplication operator
in this situation.
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unitary linear mappings, 23

V ′, 37
V alg, 4
vanishing at infinity, 18

Z, 7
Z+, 8
Z0+, 79

106


