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2-torsion in the n-solvable filtration of the knot concordance group

Tim D. Cochran, Shelly Harvey and Constance Leidy

Abstract

Cochran–Orr–Teichner introduced in [‘Knot concordance, Whitney towers and L2-signatures’,
Ann. of Math. (2) 157 (2003) 433–519] a natural filtration of the smooth knot concordance
group C

. . . ⊂ Fn+1 ⊂ Fn.5 ⊂ Fn ⊂ . . . ⊂ F1 ⊂ F0.5 ⊂ F0 ⊂ C,

called the (n)-solvable filtration. We show that each associated graded abelian group {Gn =
Fn/Fn.5 | n ∈ N}, n � 2, contains infinite linearly independent sets of elements of order 2 (this
was known previously for n = 0, 1). Each of the representative knots is negative amphichiral,
with vanishing s-invariant, τ -invariant, δ-invariants and Casson–Gordon invariants. Moreover,
each is slice in a rational homology 4-ball. In fact we show that there are many distinct such
classes in Gn, distinguished by their Alexander polynomials and, more generally, by the torsion
in their higher-order Alexander modules.

1. Introduction

A (classical) knot K is the image of a smooth embedding of an oriented circle in S3. Two knots,
K0 ↪→ S3 × {0} and K1 ↪→ S3 × {1}, are concordant if there exists a proper smooth embedding
of an annulus into S3 × [0, 1] that restricts to the knots on S3 × {0, 1}. Let C denote the set of
(smooth) concordance classes of knots. The equivalence relation of concordance first arose in the
early 1960s in the work of Fox, Kervaire and Milnor in their study of isolated singularities of 2-
spheres in 4-manifolds and, indeed, certain concordance problems are known to be equivalent to
whether higher-dimensional surgery techniques ‘work’ for topological 4-manifolds [1, 15, 28].
It is well known that C can be endowed with the structure of an abelian group (under the
operation of connected sum) called the smooth knot concordance group. The identity element
is the class of the trivial knot. Any knot in this class is concordant to a trivial knot and is called
a slice knot. Equivalently, a slice knot is one that is the boundary of a smooth embedding of a
2-disk in B4. In general, the abelian group structure of C is still poorly understood; but much
work has been done on the subject of knot concordance (for excellent surveys, see [19, 37]).
In particular, [11] introduced a natural filtration of C by the subgroups

. . . ⊂ Fn+1 ⊂ Fn.5 ⊂ Fn ⊂ . . . ⊂ F1 ⊂ F0.5 ⊂ F0 ⊂ C.
called the (n)-solvable filtration of C and denoted by {Fn} (defined in Section 3). The non-
triviality of C can be measured in terms of the associated graded abelian groups {Gn =
Fn/Fn.5 | n ∈ N} (here we ignore the other ‘half’ of the filtration, Fn.5/Fn+1, where almost
nothing is known). This paper is concerned with elements of order 2 in C and, more generally,
with elements of order 2 in Gn.

We review some of the history of 2-torsion phenomena in C in the context of the n-solvable
filtration. One of the earliest results concerning C was the following epimorphism constructed
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by Fox and Milnor [15]:

FM : C � Z∞
2 .

Soon thereafter, Levine constructed an epimorphism

C � AC ∼= Z∞ ⊕ Z∞
2 ⊕ Z∞

4 , (1.1)

to a group, AC, that became known as the algebraic knot concordance group. Any knot in
the kernel of (1.1) is called an algebraically slice knot. In terms of the n-solvable filtration,
Levine’s result is [11, Remark 1.3.2, Theorem 1.1]:

G0
∼= Z∞ ⊕ Z∞

2 ⊕ Z∞
4 .

It is known that there exist elements of order 2 in C that realize some of the above 2-torsion
invariants. Let K denote the mirror image of the oriented knot K, obtained as the image
of K under an orientation-reversing homeomorphism of S3; and let r(K) denote the reverse
of K, which is obtained by merely changing the orientation of the circle. Then it is known
that K#r(K) is a slice knot, so the inverse of [K] in C, denoted by −[K], is represented by
r(K), denoted by −K. A knot K is called negative amphichiral if K is isotopic to r(K). It
follows that, for any negative amphichiral knot K, K#K is a slice knot, since it is isotopic
to K# −K. Hence negative amphichiral knots represent elements of order either 1 or 2 in C.
It is a conjecture of Gordon that every class of order 2 in C can be represented by a negative
amphichiral knot [19].

In fact the work of Milnor and Levine in the 1960s resulted in a more precise statement:

G0
∼=
⊕
p(t)

(Zrp ⊕ Z
mp

2 ⊕ Z
np

4 )

where the sum is over all primes p(t) ∈ Z[t], where p(t) .= p(t−1) and p(1) = ±1 (see [24, p. 131;
34, Sections 10, 11 and 24; 48]); that is, the algebraic concordance group (and G0) admits a
certain p(t)-primary decomposition, wherein a knot has a non-trivial p(t)-primary part only
if p(t) is a factor of its Alexander polynomial. (Indeed, Levine and Stoltzfus classified G0

by first splitting the Witt class of the Alexander module (with its Blanchfield form) into its
p(t)-primary parts).

In the 1970s the introduction of Casson–Gordon invariants in [2, 3] led to the discovery that
the subgroup of algebraically slice knots was of infinite rank and contained infinite linearly
independent sets of elements of order 2 (see [27, 36]). In terms of the n-solvable filtration this
implies the existence of

Z∞ ⊕ Z∞
2 ⊂ G1.

Different Z∞-summands were exhibited in [16, 31]. More the recent work of Kim [29] on the
‘polynomial splitting’ properties of Casson–Gordon invariants led to a generalization analogous
to the result of Milnor–Levine: ⊕

p(t)

Z∞ ⊂ G1.

Thus there is evidence that G1 also exhibits a p(t)-primary decomposition. Further strong
evidence is given in [30]. Although a similar statement for the 2-torsion in G1 has not appeared,
it is expected from combining the work of [29] and [36]. Several authors have shown that certain
knots that projected to classes of order 2 and 4 in AC are in fact of infinite order in C (see [20,
26, 35, 38, 39]). A number of papers have addressed the non-triviality of {Gn} (see [11–13,
16–18, 31]) culminating in [9], where it was shown that, for any integer n, there exists

Z∞ ⊂ Gn.
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Moreover, the recent work [10] of the authors resulted in a generalization of the latter fact,
along the lines of the Levine–Milnor primary decomposition and [30]: for each ‘distinct’ n-
tuple P = (p1(t), . . . , pn(t)) of prime polynomials with pi(1) = ±1, there is a distinct subgroup
Z∞ ∼= I(P) ⊂ Gn, yielding a subgroup

⊕
Pn

Z∞ ∼=
⊕
P∈Pn

I(P) ⊂ Gn. (1.2)

Given a knot K, such an n-tuple encodes the orders of certain submodules of the sequence of
higher-order Alexander modules of K. Thus one can distinguish concordance classes of knots
not only by their classical Alexander polynomials, but also, loosely speaking, by their higher-
order Alexander polynomials. This result indicates that Gn decomposes not just according to
the prime factors of the classical Alexander polynomial, but also according to types of torsion
in the higher-order Alexander polynomials.

Here we show corresponding results for 2-torsion; that is, for any n � 2, not only do we
exhibit

Z∞
2 ⊂ Gn, (1.3)

but we also many distinct such subgroups

⊕
Pn−1

Z∞
2 ⊂ Gn, (1.4)

parameterized by their Alexander polynomials and the types of torsion in the higher-
order Alexander polynomials. The representative knots are distinguished by families of von
Neumann signature defects associated to their classical Alexander polynomials and ‘higher-
order Alexander polynomials’. The precise statement is given in Theorem 5.8. Each of these
concordance classes has a negative amphichiral representative that is smoothly slice in a
rational homology 4-ball. Thus the classical signatures and the Casson–Gordon signature-defect
obstructions [2] (indeed all metabelian obstructions) vanish for these knots [11, Theorem 9.11].
In addition, the s-invariant of Rasmussen [45], the τ -invariant of Ozsváth and Szabó [43],
and the δpn -invariants of Manolescu–Owens and Jabuka (see [25, 41, 42]) vanish on these
concordance classes, since each of these invariants induces a homomorphism C → Z and so
must have value zero on classes representing torsion in C. Our examples are inspired by those
of Livingston, who provided examples that can be used to establish (1.3) in the case n = 1
[36]. His examples are distinguished by their Casson–Gordon signature defects. Our examples
are distinguished by higher-order L(2)-signature defects. It is striking that elements of finite
order can sometimes be detected by signatures. The key observation is that, unlike invariants
such as the classical knot signatures, the s-invariant, the τ -invariant or the δ-invariants, the
invariants arising from higher-order signature defects (including Casson–Gordon invariants)
are not additive under connected sum. Therefore there is no reason to expect that they would
vanish on elements of finite order.

Our work is further evidence that Gn exhibits some sort of primary decomposition, but
wherein not only the classical Alexander polynomial, but also some higher-order Alexander
polynomials are involved.

We remark that [11] also defined a filtration {F top
n } of the topological concordance group

Ctop. Since it is known, by the work of Freedman and Quinn, that a knot lies in F top
n if and

only if it lies in Fn, all of the results of this paper apply equally well, without change, to
the filtration {F top

n }. Therefore, for simplicity, in this paper we always work in the smooth
category.
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2. The examples

Our examples are inspired by those of Livingston [36], who exhibited an infinite ‘linearly
independent’ set of negative amphichiral algebraically slice knots. His examples can be used to
establish the existence of the aforementioned

Z∞
2 ⊂ G1.

2.1. The building blocks

Consider the knot shown on the left-hand side of Figure 2.1. Here J is an arbitrary pure
2-component string link [21, 32]. The disk containing the letter J symbolizes replacing the
trivial 2-string link by the 2-string link J . Viewing the knot diagram as being in the xy-
plane (y being vertical), the mirror image can be defined as the image under the reflection
(x, y, z) �→ (x, y,−z), which alters a knot diagram by replacing all positive crossings by negative
crossings and vice versa. Recall that the image of J under this reflection is denoted by J . We
also consider a ‘flip’ homeomorphism of S3 that flips over a diagram, given by a rotation of
180◦ about the y-axis or f(x, y, z) = (−x, y,−z). Note that these homeomorphisms commute.
Special cases of the following elementary observation appeared in [4, p. 60; 36, Lemma 2.1;
37, p. 326].

Lemma 2.1. Suppose that J is an arbitrary pure 2-component string link. Then the knot
K on the left-hand side of Figure 2.1 is negative amphichiral.

Proof. The knot on the right-hand side of Figure 2.1 is a diagram for r(K), since it is
obtained by a reflection, in the plane of the paper, of the diagram for K, followed by a reversal
of the string orientation. Here we use that f commutes with the reflection. We claim that
the result is isotopic to K. Flipping the diagram (rotating by 180◦ about the vertical axis in
the plane of the paper), we arrive at the diagram shown on the left-hand side of Figure 2.2.
This is identical to the original diagram of K except that the left-hand band passes under the
right-hand band instead of over; but the left-hand band can be ‘swung’ around by an isotopy
as suggested in the right-hand side of Figure 2.2, bringing it on top of the other band, at which
point one arrives at the original diagram of K.

The following result was shown for the figure-eight knot (the case where the string link J
is a single twist) by the first author (inspired by [14]). It was extended, by Cha, to the case
where J is an arbitrary number of twists in [4, p. 63]. Our contribution here is just to note
that Cha’s proof suffices to prove this more general result.

Figure 2.1. Families of negative amphichiral knots K.
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Figure 2.2. An isotopy.

Lemma 2.2. Each knot K in the family shown in Figure 2.1 is slice in a rational homology
4-ball.

Proof. We follow the argument of [4], only indicating where our more general argument
deviates. It suffices to show that the zero-framed surgery MK , as shown on the left-hand
side of Figure 2.3, is rational homology cobordant to S1 × S2. After adding, to MK × [0, 1],
a four-dimensional 1-handle and 2-handle (going algebraically twice over the 1-handle) and
performing certain handle slides (see [4, pp. 62–64]), one arrives at a 3-manifold M ′ given by
surgery on the 3-component link drawn as the solid lines on the right-hand side of Figure 2.3.
Therefore MK is rationally homology cobordant to M ′.

Next one shows, as follows, that this underlying 3-component link L1 is concordant to the
simple 3-component link L4 shown on the right-hand side of Figure 2.4. Ignoring the framings
on L1, add a band as shown by the dashed lines on the right-hand side of Figure 2.3, resulting
in the 4-component link L2 shown on the left-hand side of Figure 2.4. Here −J is the image
of the (unoriented) string link under the map (x, y, z) �→ (x,−y, z). One must be careful here
since J , which is reflection in the plane of the paper, is not the correct notion of the mirror
image for a string link. Since our y-axis is the true axis of the string link (the [0, 1] factor in
D2 × [0, 1]), −J is the concordance inverse of J in the string link concordance group [22, 32],
so J + (−J) is concordant to the trivial 2-string link. Hence the link L2 is concordant to the
4-component link L3, which would result from taking J to be trivial. Capping off the right-most

Figure 2.3. Adding a band.
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Figure 2.4. L2 and L4.

unknotted component of L3, we arrive at the 3-component link L4 shown on the right-hand
side of Figure 2.4. This describes the desired concordance from L1 to L4. Consequently, M ′ is
homology cobordant to the 3-manifold described by the framed link on the right-hand side of
Figure 2.4, which is known to be homeomorphic to S1 × S2.

In this paper we will only need the special case of these lemmas wherein the string link
J consists of two twisted parallels of a single knotted arc as indicated by the examples in
Figures 2.5 and 2.6. Here an m inside the rectangle indicates m full positive twists between
the two strands, and the J inside the rectangle indicates that the trivial 2-component string

Figure 2.5. Negative amphichiral knots Em.

Figure 2.6. Families of negative amphichiral knots Em(J).
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link has been replaced by two parallel zero-twisted copies of a single knotted arc J . This is
explained more fully in Subsection 2.2.

Proposition 2.3. Ifm and n are distinct positive integers, then the Alexander polynomials
Δm(t) of Em and Δn(t) of En are distinct and irreducible, hence coprime.

Proof. A Seifert matrix for Em with respect to the obvious basis is(
m 0
−1 −m

)
.

Thus the Alexander polynomial of Em is Δm(t) = m2t2 − (2m2 + 1)t+m2. The discriminant
4m2 + 1 is easily seen, for m �= 0, to never be the square of an integer, so the roots of Δm(t) are
real and irrational. Hence Δm(t) is irreducible over Q[t, t−1]. It follows that if Δm(t) and Δn(t)
had a common factor, then they would be identical up to a unit; but the equations m2 = qn2

and 2m2 + 1 = q(2n2 + 1) imply q = 1, so m = ±n.

2.2. Doubling operators

To construct knots that lie deep in the n-solvable filtration, we use iterated generalized satellite
operations.

Suppose that R is a knot in S3 and �α = (α1, α2, . . . , αm) is an ordered oriented trivial link
in S3, that misses R, bounding a collection of oriented disks that meet R transversely as shown
on the left-hand side of Figure 2.7. Suppose that (K1,K2, . . . ,Km) is an m-tuple of auxiliary
knots. Let R�α(K1, . . . ,Km) denote the result of the operation pictured in Figure 2.7, that is,
for each αj take the embedded disk in S3 bounded by αj , cut off R along the disk, grab the cut
strands, tie them into the knot Kj (such that the strands have linking number zero pairwise)
and reglue as shown schematically on the right-hand side of Figure 2.7.

We call this the result of infection performed on the knot R using the infection knots Kj

along the curves αj (see [12]). In the case where m = 1, this is the same as the classical satellite
construction. This construction has an alternative description. For each αj , remove a tubular
neighborhood of αj in S3 and glue in the exterior of a tubular neighborhood of Kj along their
common boundary, which is a torus, in such a way that (the longitude of) αj is identified with
the meridian μj of Kj , and the meridian of αj is identified with the reverse of the longitude �j
of Kj as suggested by Figure 2.8. The resulting space can be seen to be homeomorphic to S3

and the image of R is the new knot.
It is well known that if the input knots K1 and K2 are concordant, then the output knots

Rα(K1) and Rα(K2) are concordant. Thus the functions R�α descend to C.

Definition 2.4 [8, 10]. A doubling operator, R�α : C × . . .× C → C is a function, as in
Figure 2.7, that is given by infection on a ribbon knot R wherein, for each i, lk(R,αi) = 0.
Often we suppress αi from the notation.

Figure 2.7. R�α(K1, . . . , Km): infection of R by Kj along αj .
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Figure 2.8. Infection as replacing a solid torus by a knot exterior.

Figure 2.9. Negative amphichiral doubling operators Rm ≡ Em#Em.

These are called doubling operators because they generalize untwisted Whitehead doubling.
In particular we consider the family of doubling operators Rm

η1,η2
(−,−) shown in Figure 2.9.

Note that, since Em is negative amphichiral by Lemma 2.1,

Rm ≡ Em#Em ∼= Em# − Em,

which is well known to be a ribbon knot [46, Exercise 8E.30]. Thus Rm is a negative amphichiral
ribbon knot. For the case m = 1, this was already noted in [36].

We also consider the family of doubling operators Rm
α shown in Figure 2.10 (where the −m

inside a box symbolizes m full negative twists between the bands but where the individual
bands remain untwisted), equipped with a specified circle α that can be shown to generate its
Alexander module.

Figure 2.10. Doubling operators Rm
α .
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Figure 2.11. The examples Kn.

2.3. Elements of order 2 in Fn

Now we describe large families of examples of negative amphichiral knots that lie in Fn. Let
K0 be any knot with Arf(K0)= 0. Let Kn−1 be the image of K0 under the composition of any
n− 1 doubling operators (each requiring a single input), that is,

Kn−1 ≡ Rn−1 ◦ . . . ◦R1(K0). (2.1)

Then, for any integer m, we define Kn as in Figure 2.11, that is, Kn ≡ Rm
η1,η2

(Kn−1,Kn−1).

Proposition 2.5. For any n � 1, any m, any composition of n− 1 doubling operators and
any Arf invariant zero input knot K0, the knot Kn of Figure 2.11 satisfies the following:

(1) Kn is negative amphichiral;
(2) Kn ∈ Fn;
(3) Kn is (smoothly) slice in a smooth rational homology 4-ball;
(4) Kn# Kn is a slice knot.

Proof. It was shown in [9, Theorem 7.1] that, for any any doubling operator R,

R(Fi, . . . ,Fi) ⊂ Fi+1.

Since any knot of Arf invariant zero is known to lie in F0 (see [11, Remark 8.14, Theorem
8.11]), and since Kn is the image of K0 under a composition of n doubling operators, it follows
that Kn ∈ Fn.

Note that Kn is the connected sum of two knots each of which is of the form shown in
Figure 2.6 (hence of the form of Figure 2.1). Thus, by Lemma 2.2, each such Kn is slice in a
rational homology 4-ball. Moreover, by Lemma 2.1, Kn is negative amphichiral, so Kn#Kn is
isotopic to Kn#r(Kn); but the latter is a ribbon knot and hence a slice knot.

For specificity we define the following infinite families.

Definition 2.6. Given an n-tuple (m1, . . . ,mn) of integers and an Arf invariant zero knot
K0, we define Kn(m1, . . . ,mn,K

0) to be the image of K0 under the following composition of
n doubling operators. Specifically let

Kn ≡ Kn(m1, . . . ,mn,K
0) ≡ Rmn

η1,η2
(Kn−1,Kn−1),

as shown in Figure 2.11, where Kn−1 is

Rmn−1 ◦ . . . ◦ Rm1(K0),
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where the Rmi are the operators of Figure 2.10. In other words, we recursively set

K1 = Rm1
α (K0);

K2 = Rm2
α ◦ Rm1

α (K0);
...

Kn−1 = Rmn−1
α ◦ . . . ◦ Rm1

α (K0);

Kn = Rmn
η1,η2

(Kn−1,Kn−1).

Even though Kn depends on (m1, . . . ,mn,K
0), we often suppress the latter from the notation.

3. Commutator series and filtrations of the knot concordance groups

To accomplish our goals, we must establish that many of the knots in the families given by
Figure 2.11, and specifically those in Definition 2.6, are not in Fn.5 and, indeed, are distinct
from each other in Fn/Fn.5. To this end we review recent work of the authors that introduced
refinements of the n-solvable filtration parameterized by certain classes of group series that
generalized the derived series. In particular the authors defined specific filtrations of C that
depend on a sequence of polynomials. These filtrations can then be used to distinguish between
knots with different Alexander modules or different higher-order Alexander modules. All of the
material in this section is a review of the relevant terminology of [10, Sections 2 and 3].

Recall that the derived series {G(n) | n � 0} of a group G is defined recursively by G(0) ≡ G

and G(n+1) ≡ [G(n), G(n)]. The rational derived series (see [23]) {G(n)
r | n � 0} is defined by

G
(0)
r ≡ G and

G(n+1)
r = ker

(
G(n)

r −→ G
(n)
r

[G(n)
r , G

(n)
r ]

−→ G
(n)
r

[G(n)
r , G

(n)
r ]

⊗Z Q

)
.

More generally, we have the following definition.

Definition 3.1 [10, Definition 2.1]. A commutator series defined on a class of groups is a
function ∗ that assigns to each group G in the class a nested sequence of normal subgroups

. . . � G
(n+1)
∗ � G

(n)
∗ � . . . � G

(0)
∗ ≡ G,

such that G(n)
∗ /G

(n+1)
∗ is a torsion-free abelian group.

Proposition 3.2 [10, Proposition 2.2]. For any commutator series {G(n)
∗ }, we have the

following:
(1) {x ∈ G

(n)
∗ | ∃k > 0, xk ∈ [G(n)

∗ , G
(n)
∗ ]} ⊂ G

(n+1)
∗ (and in particular [G(n)

∗ , G
(n)
∗ ] ⊂ G

(n+1)
∗ ,

whence the name commutator series);
(2) G(n)

r ⊂ G
(n)
∗ , that is, every commutator series contains the rational derived series;

(3) G/G(n)
∗ is a poly-(torsion-free abelian) group (abbreviated PTFA);

(4) Z[G/G(n)
∗ ] and Q[G/G(n)

∗ ] are right (and left) Ore domains.

Any commutator series that satisfies a weak functoriality condition induces a filtration {F∗
n}

of C by subgroups. These filtrations generalize and refine the (n)-solvable filtration {Fn} of
[11]. Let MK denote the closed 3-manifold obtained by zero-framed surgery on S3 along K.
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Definition 3.3 [10, Definition 2.3]. A knot K is an element of F∗
n if the zero-framed

surgery MK bounds a compact, connected, oriented, smooth 4-manifold W such that:
(1) H1(MK ; Z) → H1(W ; Z) is an isomorphism;
(2) H2(W ; Z) has a basis consisting of connected, compact, oriented surfaces {Li,Di | 1 �

i � r} embedded in W with trivial normal bundles, wherein the surfaces are pairwise
disjoint except that, for each i, Li intersects Di transversely once with positive sign;

(3) for each i, π1(Li) ⊂ π1(W )(n)
∗ and π1(Di) ⊂ π1(W )(n)

∗ .
A knot K ∈ F∗

n.5 if, in addition,
(4) for each i, π1(Li) ⊂ π1(W )(n+1)

∗ .
Such a 4-manifold is called an (n, ∗)-solution or an (n.5, ∗)-solution, respectively, for K and it
is said that K is (n, ∗)-solvable or (n.5, ∗)-solvable, respectively, via W . The case where the
commutator series is the derived series (without the torsion-free abelian restriction) is denoted
by Fn and we speak of W being an (n)-solution, and K or MK being (n)-solvable via W (see
[11, Section 8]).

Definition 3.4. A commutator series {G(n)
∗ } is weakly functorial (on a class of {groups,

maps}) if f(G(n)
∗ ) ⊂ π

(n)
∗ for each n and for any homomorphism f : G→ π (in the class) that

induces an isomorphism G/G
(1)
r

∼= π/π
(1)
r (that is, induces an isomorphism on H1(−; Q)).

Proposition 3.5 [10, Proposition 2.5]. Suppose that ∗ is a weakly functorial commutator
series defined on the class of groups with β1 = 1. Then {F∗

n}n�0 is a filtration by subgroups of
the classical (smooth) knot concordance group C :

. . . ⊂ F∗
n+1 ⊂ F∗

n.5 ⊂ F∗
n ⊂ . . . ⊂ F∗

1 ⊂ F∗
0.5 ⊂ F∗

0 ⊂ C.
Moreover, for any n ∈ 1

2Z,

Fn ⊂ F∗
n.

The case where the commutator series is the derived series (without the torsion-free abelian
restriction) is the (n)-solvable filtration [11], denoted by {Fn}.

3.1. The derived series localized at P
Fix an n-tuple P = (p1(t), . . . , pn(t)) of non-zero elements of Q[t, t−1], such that p1(t)

.=
p1(t−1). For each such P we now recall from [10] the definition of a partial commutator series
that we call the (polarized) derived series localized at P, that is defined on the class of groups
with β1 = 1.

Suppose that G is a group such that G/G(1)
r

∼= Z = 〈μ〉. Then we define the derived series
localized at P recursively in terms of certain right divisor sets Spn

⊂ Q[G/G(n)
P ].

Definition 3.6. For n � 0, let

G
(0)
P ≡ G;

G
(1)
P ≡ G(1)

r ;

and for n � 1,

G
(n+1)
P ≡ ker

(
G

(n)
P −→ G

(n)
P

[G(n)
P , G

(n)
P ]

⊗
Z[G/G

(n)
P ]

Q[G/G(n)
P ]S−1

pn

)
. (3.1)
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To make sense of (3.1), one must realize that, for any H � G, H/[H,H] is a right Z[G/H]-
module, where g acts on h by h �→ g−1hg. One must also verify, at each stage, that G(n)

P has
been defined in such a way that G(k)

P /G
(k+1)
P is a torsion-free abelian group for each k < n, so

G/G
(n)
P is a PTFA, from which it follows that Q[G/G(n)

P ] is a right Ore domain. Therefore, for
any right divisor set Spn

⊂ Q[G/G(n)
P ] we may define the Ore localization Q[G/G(n)

P ]S−1
pn

as in
(3.1) (see [10, Sections 3 and 4]).

For the (polarized) derived series localized at P we use the following right divisor sets.

Definition 3.7. The (polarized) derived series localized at P is defined as in Definition 3.6
by setting

Sp1 = Sp1(G) = {q1(μ) . . . qr(μ) | (p1(t), qj(t)) = 1; G/G(1)
r

∼= 〈μ〉} ⊂ Q[G/G(1)
r ]; (3.2)

and for n � 2,

Spn
= Spn

(G) = {q1(a1) . . . qr(ar) | ˜(pn, qj) = 1; qj(1) �= 0; aj ∈ G
(n−1)
P /G

(n)
P }, (3.3)

so Spn
⊂ Q[G(n−1)

P /G
(n)
P ].

Here pi(t) and qj(t) are in Q[t, t−1]. By (p1, qj) = 1 we mean that p1 is coprime to qj in
Q[t, t−1], as usual; but by ˜(pn, qj) = 1 we mean something slightly stronger.

Definition 3.8 [10, Definition 4.4]. Two non-zero polynomials p(t), q(t) ∈ Q[t, t−1] are
said to be strongly coprime, denoted by (̃p, q) = 1 if, for every pair of non-zero integers, n, k,
p(tn) is relatively prime to q(tk). Alternatively, (̃p, q) �= 1 if and only if there exist non-zero
roots, rp, rq ∈ C*, of p(t) and q(t), respectively, and non-zero integers k, n, such that rk

p = rn
q .

Clearly, (̃p, q) = 1 if and only if, for each prime factor pi(t) of p(t) and qj(t) of q(t), (̃pi, qj) = 1.

Note that Q − {0} ⊂ Spn
(take qj to be a non-zero constant). It is easy to see (and was

proved in [10, Section 4]) that Spn
is closed (up to units) under the involution on Q[G/G(n)

P ].
Here we need p1(t)

.= p1(t−1).

Example 3.9. Consider the family of quadratic polynomials

{qm(t) = (mt− (m+ 1))((m+ 1)t−m) | m ∈ Z+},
whose roots are {m/(m+ 1), (m+ 1)/m}. The polynomial qm is the Alexander polynomial
of the ribbon knot Rm shown in Figure 2.10. It can easily be seen (and was proved in [10,
Example 4.10]) that ˜(qm, qn) = 1 if m �= n.

Theorem 3.10 [10, Theorem 4.16]. The (polarized) derived series localized at P is a
weakly functorial commutator series on the class of groups with β1 = 1.

4. von Neumann signature defects as obstructions to (n.5, ∗)-solvability

To each commutator series there exist signature defects that offer obstructions to a given
knot lying in a term of F∗. Given a closed oriented 3-manifold M , a discrete group Γ and
a representation φ : π1(M) → Γ, the von Neumann ρ-invariant ρ(M,φ) ∈ R was defined by
Cheeger and Gromov [5]. If (M,φ) = ∂(W,ψ) for some compact, oriented 4-manifold W and
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ψ : π1(W ) → Γ, then it is known that ρ(M,φ) = σ
(2)
Γ (W,ψ) − σ(W ), where σ

(2)
Γ (W,ψ) is

the L(2)-signature (von Neumann signature) of the equivariant intersection form defined on
H2(W ; ZΓ) twisted by ψ, and σ(W ) is the ordinary signature of W (see [13, Section 2; 40]).
Thus the ρ-invariants should be thought of as signature defects. They were first used to detect
non-slice knots in [11]. For a more thorough discussion, see [11, Section 5; 12, Section 2; 13,
Section 2]. All of the coefficient systems Γ in this paper will be of the form π/π

(n)
∗ , where π is

the fundamental group of a space. Hence all such Γ will be PTFA. Aside from the definition,
the properties that we use in this paper are the following.

Proposition 4.1. (1) If φ factors through φ′ : π1(M) → Γ′, where Γ′ is a subgroup of Γ,
then ρ(M,φ′) = ρ(M,φ).[3]

(2) If φ is trivial (the zero map), then ρ(M,φ) = 0.
(3) If M = MK is the zero-surgery on a knot K and φ : π1(M) → Z is the abelianization,

then ρ(M,φ) is denoted by ρ0(K) and is equal to the integral over the circle of the Levine–
Tristram signature function of K (see [12, Proposition 5.1]). Thus ρ0(K) is the average of the
classical signatures of K.

(4) If K is a slice knot or link and φ : MK → Γ (Γ PTFA) extends over π1 of a slice disk
exterior, then ρ(MK , φ) = 0 by [11, Theorem 4.2].

(5) The von Neumann signature satisfies Novikov additivity, that is, if W1 and W2 intersect

along a common boundary component then σ
(2)
Γ (W1 ∪W2) = σ

(2)
Γ (W1) + σ

(2)
Γ (W2) (see [11,

Lemma 5.9]).
(6) For any 3-manifold M, there is a positive real number CM , called the Cheeger–Gromov

constant [5, 13, Section 2] of M such that, for any φ,

|ρ(M,φ)| < CM .

We also need the following generalization of property (4).

Theorem 4.2 [10, Theorem 5.2]. Suppose that ∗ is a commutator series (no functoriality
is required). Suppose K ∈ F∗

n.5, so the zero-framed surgery MK is (n.5, ∗)-solvable via W as
in Definition 3.3. Let G = π1(W ) and consider

φ : π1(MK) −→ G −→ G/G
(n+1)
∗ −→ Γ,

where Γ is an arbitrary PTFA group. Then

σ
(2)
Γ (W,φ) − σ(W ) = 0 = ρ(MK , φ).

5. Statements of main results and the outline of the proof

We will show that, for any n � 2, not only does there exist

Z∞
2 ⊂ Gn ≡ Fn/Fn.5,

but there are also many distinct such classes⊕
Pn−1

Z∞
2 ⊂ Gn,

distinguished by the sequence of orders of certain higher-order Alexander modules of the knots.
Given the sequence P = (p1(t), . . . , pn(t)), we have defined (in Definitions 3.6 and 3.7) an

associated commutator series called the derived series localized at P.
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Definition 5.1. Let {FP
n } denote the filtration of C associated, by Definition 3.3, to the

derived series localized at P.

Since, for any group G and integer n (or half-integer), G(n) ⊂ G
(n)
P , one sees that Fn ⊂ FP

n .
In particular Fn.5 ⊂ FP

n.5, so there is a surjection

Fn

Fn.5

π� Fn

FP
n.5

.

The point of the filtration {FP
n } is that any knotK ∈ Fn, whose classical Alexander polynomial

is coprime to p1(t), will lie in the kernel of π. Moreover, the idea of Theorem 5.3 below is that a
knot will of necessity lie in the kernel of π, unless p1(t) divides its classical Alexander polynomial
and, loosely speaking, the higher pi(t) are related to torsion in its ith higher-order Alexander
module.

Definition 5.2. Given P = (p1(t), . . . , pn(t)) and Q = (q1(t), . . . , qn(t)), we say that P is
strongly coprime to Q if either (p1, q1) = 1, or ˜(pk, qk) = 1 for some k > 1.

Theorem 5.3 [10, Theorem 6.5]. For any n � 1, let Rn−1
αn−1

, . . . , R1
α1

be any dou-
bling operators and K0 be any Arf invariant zero input knot. Consider the knot Kn ≡
Rm

η1,η2
(Kn−1,Kn−1), where Kn−1 = Rn−1

αn−1
◦ . . . ◦R1

α1
(K0). Then

Kn ∈ FP
n+1

for each P = (p1(t), p2(t), . . . , pn(t)), with p1(t)
.= p1(t−1), that is strongly coprime to

(Δm(t), qn−1(t), . . . , q1(t)), where Δm is the Alexander polynomial of Em and qi is the
Alexander polynomial of Ri.

This applies, in particular, to the families of Definition 2.6, constructed using the ribbon
knots of Figures 2.9 and 2.10.

Corollary 5.4. For any (m1, . . . ,mn) and any input knot K0 with Arf invariant zero,

Kn(m1, . . . ,mn,K
0) ∈ FP

n+1

for each P = (p1(t), p2(t), . . . , pn(t)) that is strongly coprime to (Δmn
(t), qn−1(t) . . . , q1(t)),

where Δmn
is the Alexander polynomial of Emn and qi is the Alexander polynomial of Rmi .

Now we need a non-triviality theorem to complement Theorem 5.3.

Theorem 5.5. Suppose

Kn ≡ Rm
η1,η2

(Kn−1,Kn−1),

whereKn−1 is the result of applying any sequence of n− 1 doubling operators Rn−1
αn−1

◦ . . . ◦R1
α1

to an Arf invariant zero ‘input’ knot K0. Suppose additionally that n � 2 and that:
(1) m �= 0;
(2) for each i, αi generates the rational Alexander module of Ri, and this module is non-

trivial;
(3) |ρ0(K0)|, the average Levine–Tristram signature of K0, is greater than twice the sum of

the Cheeger–Gromov constants of the ribbon knots Rm, R1, . . . , Rn−1 (see Section 4).
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If P is the sequence of classical Alexander polynomials of the knots (Em, Rn−1, . . . , R1), then

Kn /∈ FP
n.5.

This can be applied to the specific families of Definition 2.6.

Corollary 5.6. Fix n � 2 and an n-tuple of positive integers (m1, . . . ,mn). Suppose that
K0 is chosen so that |ρ0(K0)| is greater than twice the sum of the Cheeger–Gromov constants
of the ribbon knots Rmn , Rmn−1 , . . . ,Rm1 . If P is the n-tuple of Alexander polynomials of the
knots (Emn ,Rmn−1 , . . . ,Rm1), then

Kn /∈ FP
n.5.

The proofs of Theorems 5.3 and 5.5 will constitute Sections 6 and 7. Assuming these
theorems, we now derive our main results.

Theorem 5.7. Fix n � 2. For any n-tuple of positive integers (m1, . . . ,mn) choose an Arf
invariant zero knot K0(m1, . . . ,mn) such that |ρ0(K0)| is greater than twice the sum of the
Cheeger–Gromov constants of Rmn , Rmn−1 , . . . ,Rm1 . Then the resulting set of knots

{Kn(m1, . . . ,mn,K
0) |mi ∈ Z+},

as in Definition 2.6, represent linearly independent, order 2 elements of Fn/Fn.5. They also
represent linearly independent order 2 elements in C. In particular this gives

Z∞
2 ⊂ Gn ≡ Fn

Fn.5
,

where each class is represented by a negative amphichiral knot that is slice in a rational
homology 4-ball.

Proof (assuming Theorems 5.3 and 5.5). By Proposition 2.5, Kn is negative amphichiral,
Kn ∈ Fn, and Kn#Kn is a slice knot. Thus 2[Kn] = 0 in Fn/Fn.5. By Corollary 5.6, for a
certain P, Kn /∈ FP

n.5, so in particular Kn /∈ Fn.5 by Proposition 3.5. Therefore each [Kn] has
order precisely 2 in Gn.

Suppose that there exists a non-trivial relation

J = Kn(m11, . . . ,m1n,K
0
1 )# . . .#Kn(mk1, . . . ,mkn,K

0
k) ∈ Fn.5.

Set P = (p1, . . . , pn) = (Δ1n, q1n−1, . . . , q11), the reverse of the sequence of Alexander polyno-
mials of the operators corresponding to the first summand of J . For each of the other summands
of J , the corresponding n-tuple (mi1, . . . ,min) is assumed distinct from (m11, . . . ,m1n).
Therefore, the (reversed) sequence of Alexander polynomials of the operators corresponding to
this other summand is strongly coprime to P by Proposition 2.3 and Example 3.9. Thus, by
Theorem 5.3, each summand of J , aside from the first, lies in FP

n+1 and hence in FP
n.5. Since

J ∈ Fn.5, it follows that J ∈ FP
n.5, by Proposition 3.5. Since FP

n.5 is a subgroup, it would follow
that the first summand of J also lay in FP

n.5, contradicting Corollary 5.6.

More generally, we have the following theorem.

Theorem 5.8. Suppose n � 2. Let Pn be any set of n-tuples P = (δ1(t), δ2(t), . . . , δn(t))
of prime polynomials δi(t) ∈ Z[t, t−1] such that δi(1) = ±1, δ1(t) = Δm = m2t2 − (2m2 + 1)t+
m2 and with the property that, for any distinct P, P ′ ∈ Pn, P and P ′ are strongly coprime.
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Then there exists a set of negative amphichiral n-solvable knots indexed by Pn that is linearly
independent modulo Fn.5, that is, that spans⊕

Pn

Z2 ⊂ Gn,

where the knot corresponding to the sequence (δ1(t), δ2(t), . . . , δn(t)) admits a sequence of
higher-order Alexander modules containing submodules whose orders are determined by
the sequence (δ1(t)δ1(t−1), . . . , δn(t)δn(t−1)) with the classical Alexander polynomial being
δ1(t)δ1(t−1). Moreover each class is represented by a negative amphichiral knot that is slice in
a rational homology 4-ball.

Proof (assuming Theorems 5.3 and 5.5). By [49], for any prime δ(t) with δ(1) = ±1 there
exists a ribbon knot whose Alexander module is cyclic of order δ(t)δ(t−1). Hence, given P =
(δ1(t), δ2(t), . . . , δn(t)), choose such ribbon knots Rn−1, . . . , R1 whose Alexander polynomials
are δ2(t)δ2(t−1), . . . , δn(t)δn(t−1), respectively, and choose curves αi (unknotted in S3) that
generate the Alexander modules of the Ri. Thus doubling operators Ri

αi
, 1 � i � n− 1, are

defined. Since δ1(t) = Δm = m2t2 − (2m2 + 1)t+m2, there is a ribbon knot, namely Rm =
Em#Em of Figure 2.9, whose Alexander polynomial is δ1(t)δ1(t−1). The hypotheses imply
m �= 0. Choose any Arf invariant zero knot K0 such that |ρ0(K0)| is greater than twice the
sum of the Cheeger–Gromov constants of Rm, Rn−1, . . . , R1. Then set

Kn
P ≡ Rm

η1,η2
(Kn−1,Kn−1), (5.1)

where Kn−1 ≡ Rn−1
αn−1

◦ . . . ◦R1
α1

(K0). To each P there is an associated n-tuple P∗ =
(δ1, δ2(t)δ2(t−1), . . . , δn(t)δn(t−1)), which gives the sequence of Alexander polynomials of the
knots Em, Rn−1, . . . , R1 that define Kn

P .
By Lemma 2.1 and Proposition 2.5, each Kn

P is negative amphichiral and n-solvable. By
Theorem 5.5,

Kn
P /∈ FP∗

n.5, (5.2)

so Kn
P /∈ Fn.5. Thus [Kn

P ] has order precisely 2 in Gn. Suppose that there were a non-trivial
relation

J =
k∑

i=1

Kn
Pi

∈ Fn.5.

By hypothesis, if i �= 1, then Pi is strongly coprime to P1. It follows that P∗
i is strongly coprime

to P∗
1 . Thus, by Theorem 5.3, if i �= 1 then

Kn
Pi

∈ FP∗
1

n+1 ⊂ FP∗
1

n.5.

Since J ∈ Fn.5, it follows that J ∈ FP∗
1

n.5. Since the latter is a subgroup, it follows that

Kn
P1

∈ FP∗
1

n.5,

contradicting (5.2).
It remains only to relate the sequence P to the higher-order Alexander modules of the knots

Kn
P . Since this is not central to our results, we sketch the proof. We recall the following.

Definition 5.9 [6, Definition 2.8; 23, Definition 5.3]. The ith, i � 1, higher-order
(integral) Alexander module of a knot K is

AZ
i (K) ≡ H1(MK ; Z[G/G(i+1)

r ]) ∼= G
(i+1)
r

[G(i+1)
r , G

(i+1)
r ]

,

where G ≡ π1(MK). Note that the case i = 0 would give the classical Alexander module.
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Thus AZ
i (Kn

P) is a module over Γi ≡ G/G
(i+1)
r , where G ≡ π1(MKn

P ). The following lemma
shows that the (two) images of the classical Alexander polynomial δi+1(t)δi+1(t−1) of the
constituent operator Rn−i under certain maps

Z[t, t−1] −→ Z[G(i)/G(i+1)
r ] ⊂ ZΓi,

wherein t �→ x1 and t �→ x2, appear as the orders of cyclic submodules of AZ
i (Kn

P).

Lemma 5.10. Fixing P = (δ1(t), δ2(t), . . . , δn(t)) for each 1 � i � n− 1, the ith higher-
order Alexander module of Kn

P (the knot defined in (5.1)) contains two non-trivial summands

ZΓi

δi+1(x1)δi+1(x−1
1 )ZΓi

⊕ ZΓi

δi+1(x2)δi+1(x−1
2 )ZΓi

for certain x1, x2 ∈ G(i)/G
(i+1)
r .

Proof. Recall that Kn
P is defined as the image of K0 under a composition of n doubling

operators. In particular Kn−1 ≡ Rn−1
αn−1

◦ . . . ◦R1
α1

(K0). Sequences of satellite operations have
a certain associativity property yielding, for each i � 2, an alternative description of Kn−1 as
a single infection on a single ribbon knot R̃i along a curve lying in π1(S3 − R̃i)(i−1), using the
knot Kn−i (see [7, Proposition 4.7; 8, Proposition 5.10]). Specifically,

Kn−1 = Rn−1
αn−1

◦ . . . ◦Rn−i+1
αn−i+1

(Rn−i
αn−i

. . . ◦R1
α1

(K0))

Kn−1 = Rn−1
αn−1

◦ . . . ◦Rn−i+1
αn−i+1

(Kn−i)

Kn−1 = Rn−1
αn−1

◦ . . . ◦Rn−i+2
αn−i+2

(Rn−i+1
αn−i+1

))βi

(
Kn−i

)
Kn−1 = R̃i

βi
(Kn−i),

where
R̃i

βi
≡ Rn−1

αn−1
◦ . . . ◦Rn−i+2

αn−i+2
(Rn−i+1

αn−i+1
)

and βi is the image of αn−i+1. The specific nature of R̃i is not important to our present
considerations. If i = 1, let R̃i

βi
be the identity operator. Then, for any i � 1, it follows that

Kn = Rm
η1,η2

(R̃i
βi

(Kn−i), R̃i
βi

(Kn−i)).

This can be reformulated, by the same considerations as above, to yield

Kn = R̃γ1,γ2(K
n−i,Kn−i)

where R̃ = Rm
η1,η2

(R̃i, R̃i) and {γ1, γ2} are the images of the two copies of βi. These curves can
inductively be shown to lie in π1(S3 − R̃)(i) (see [7, Proposition 4.7; 8, Proposition 5.10]. The
latter computation is very similar to the computation we perform in (7.15).

Now we can apply known results about the effect of single infection on the higher-order
Alexander modules [6, Theorem 8.2; 33, Theorem 3.5]:

AZ
i (Kn) = AZ

i (R̃) ⊕ (AZ
0 (Kn−i) ⊗Z[t,t−1] ZΓi) ⊕ (AZ

0 (K
n−i

) ⊗Z[t,t−1] ZΓi).

where AZ
0 denotes the classical Alexander module, and the first tensor product is given by

t �→ x1 = γ1 and the second by t �→ x2 = γ2; but

AZ
0 (Kn−i) ∼= AZ

0 (Rn−i) ∼= Z[t, t−1]
δi+1(t)δ−1

i+1(t)Z[t, t−1]
.

where t �→ x1. The Alexander modules ofRn−i andRn−i are isomorphic. Thus AZ
i (Kn) contains

two cyclic summands as claimed. By [6, Theorem 8.2; 33, Theorem 3.5] these summands are



274 TIM D. COCHRAN, SHELLY HARVEY AND CONSTANCE LEIDY

non-zero precisely when x1 and x2 are not zero in Γi. The verification of the latter requires
further computation as in [7, Theorem 4.11; 8, Proposition 5.14]. These calculations are entirely
similar to and easier than the ones we do to verify our Proposition 7.4. They are not included.

This concludes what we say about the connections between P and the orders of the higher-
order Alexander modules of Kn

P .

This concludes the proof of Theorem 5.8.

6. Sketch of proof of Theorem 5.3

Theorem 5.3 is a consequence of [10, Theorem 6.5]. However, we shall sketch the proof since
the basic idea is elementary and it also shows that Kn ∈ Fn.

Proof of Theorem 5.3. We set K1 = R1(K0), . . . ,Ki = Ri(Ki−1) for i = 1, . . . , n− 1 and
Kn = Rm(Kn−1,Kn−1). Recall from [9, Lemma 2.3, Figure 2.1] that, whenever a knot L is
obtained from a knot R by infection using knots K1,K2, . . . there is a cobordism E whose
boundary is the disjoint union of the zero surgeries ML, −MR and −MK1 , −MK2 and so on,
as shown on the left-hand side of Figure 6.1. Therefore, since Kn = Rm(Kn−1,Kn−1), there
is a cobordism En whose boundary is the disjoint union of the zero surgeries on Kn, Kn−1,
Kn−1 and Rm as shown on the right-hand side of Figure 6.1 and schematically in Figure 6.2.
Similarly there is a cobordism Ei, for 1 � i < n, whose boundary is the disjoint union of the
zero surgeries on Ki, Ki−1 and Ri. Consider X = En ∪ En−1 ∪ En−1 ∪ . . . ∪ E1 ∪ E1, gluing
Ei to Ei−1 along their common boundary component MKi−1 , and gluing Ei to Ei−1 along their
common boundary componentMKi−1 , as shown schematically in Figure 6.2. The boundary ofX
is a disjoint union of MKn , −MRm , −MK0 , −MK0 and two copies each of ±MRn−1 , . . . ,±MR1 .
For 1 � i < n, let Si denote the exterior of any ribbon disk in B4 for the ribbon knot Ri. Let
Sn denote the exterior of any ribbon disk in B4 for the ribbon knot Rm. Since Arf(K0)= 0,
K0 ∈ F0 via some V (see [12, Section 5]). Gluing V , V = −V and all the Si and Si to X, we
obtain a 4-manifold, Z as shown in Figure 6.2. Note ∂Z = MKn .

We claim that

Kn ∈ Fn via Z, (6.1)

and if P is strongly coprime to (Δm(t), qn−1(t), . . . , q1(t)), then

Kn ∈ FP
n+1 via Z. (6.2)

Figure 6.1. The cobordism.
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Figure 6.2. Z.

First, simple Mayer–Vietoris sequences together with an analysis of the homology of the Ei

(as given by Lemma 6.1 below) imply that H2(Z) ∼= H2(V ) ⊕H2(V ) since H2(Si) = 0. Since V
is a 0-solution, H2(V ) has a basis of connected compact oriented surfaces, {Lj ,Dj |1 � j � r},
satisfying the conditions of Definition 3.3; similarly for H2(V ). We claim that

π1(V ) ⊂ π1(Z)(n) (6.3)

and if P is strongly coprime to (Δm(t), qn−1(t), . . . , q1(t)) then

π1(V ) ⊂ π1(Z)(n+1)
P . (6.4)

Indeed equations (6.3) and (6.4) were shown inductively in the proof of [10, Theorems 6.2 and
6.5] using the fact that, for each i, the doubling operator Ri

αi
satisfies �k(αi, R

i) = 0 leading
to the fact that

π1(MKi−1) ⊂ π1(Ei)(1).

Then
π1(Lj) ⊂ π1(V ) ⊂ π1(Z)(n),

and if P is strongly coprime to (Δm(t), qn−1(t), . . . , q1(t)), then

π1(Lj) ⊂ π1(V ) ⊂ π1(Z)(n+1)
P ,

and similarly for π1(Dj). The same holds for V . This would complete the verification of claims
(6.1) and (6.2) since {Lj ,Dj} (together with their counterparts in V would then satisfy the
criteria of Definition 3.3.

This concludes our sketch of the proof as given in [10, Theorem 6.5]. We include the
relevant result about the elementary topology of the cobordism E. We will need several of
these properties in later proofs.

Lemma 6.1 [9, Lemma 2.5]. With regard to E on the left-hand side of Figure 6.1, the
inclusion maps induce the following:

(1) an epimorphism π1(ML) → π1(E) whose kernel is the normal closure of the longitudes
of the infecting knots Ki viewed as curves �i ⊂ S3 −Ki ⊂ML;
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(2) isomorphisms H1(ML) → H1(E) and H1(MR) → H1(E);
(3) isomorphisms H2(E) ∼= H2(ML) ⊕i H2(MKi

) ∼= H2(MR) ⊕i H2(MKi
);

(4) the meridian of K, μK ⊂MK is isotopic in E to both α ⊂MR and to the longitudinal
push-off of α, often called α ⊂ML by abuse of notation;

(5) the longitude of K, �K ⊂MK is isotopic in E to the reverse of the meridian of α,
(μα)−1 ⊂ML and to the longitude of K in S3 −K ⊂ML and to the reverse of the
meridian of α, (μα)−1 ⊂MR (the latter bounds a disk in MR).

7. Proof of Theorem 5.5

The proof of Theorem 5.5 will occupy the remainder of the paper.

Proof of Theorem 5.5. We assume that

P = (p1(t), . . . , pn(t)) = (Δm, qn−1(t), . . . , q1(t))

is the n-tuple of Alexander polynomials of the knots (Em, Rn−1, . . . , R1). Suppose that Kn ∈
FP

n.5. Let V be the putative (n.5,P)-solution. We derive a contradiction.
Let W0 be the 4-manifold (refer to Figure 7.1) obtained from V by adjoining the cobordisms

En, En−1, En−1, . . . E1, E1 as defined in the proof of Theorem 5.3. For specificity, set

Wn = V,

Wn−1 = Wn ∪ En,

Wn−2 = Wn−1 ∪ En−1 ∪ En−1,

...

W0 = W1 ∪ E1 ∪ E1.

Figure 7.1. W0.
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Note that, unlike in the manifold Z of Figure 6.2, we do not cap off the zero surgeries on the
various ribbon knots. Thus the boundary of W0 is the disjoint union of the zero surgeries on
the ribbon knots Rm, Rn−1, . . . , R1, R

n−1
, . . . , R

1
, together with the zero surgeries on K0, K

0
.

Below we define a commutator series {π(n)
S } that is slightly larger than the derived series

localized at P. In particular,

π1(W0)
(n+1)
P ⊂ π1(W0)

(n+1)
S . (7.1)

Then we consider the coefficient system on W0 given by the projection

φ : π1(W0) −→ π1(W0)/π1(W0)
(n+1)
P −→ π1(W0)/π1(W0)

(n+1)
S .

The bulk of the work of the proof will be to show that:

the restriction of φ to π1(MK0 ⊂ ∂W0) factors non-trivially through Z; and (7.2)

the restriction of φ to π1(MK
0 ⊂ ∂W0) is zero. (7.3)

We now show that (7.1)–(7.3) imply Theorem 5.5. Consider the von Neumann signature
defect of (W0, φ):

σ(2)(W0, φ) − σ(W0).

By the additivity of these signatures (property (5) of Proposition 4.1), this quantity is the sum
of the signature defects for V and those of the Ei and Ei. Note that the coefficient system on
π1(V ) factors

π1(V ) −→ π1(V )

π1(V )(n+1)
P

−→ π1(W0)

π1(W0)
(n+1)
P

−→ π1(W0)

π1(W0)
(n+1)
S

,

where we use Theorem 3.10 to establish the second map and we use (7.1) for the third map.
Thus, since V is an (n.5,P)-solution, the signature defect of V vanishes by Theorem 4.2. All of
the signature defects of the Ei vanish by [9, Lemma 2.4] (essentially because H2(E) comes from
H2(∂E)). Therefore the signature defect vanishes for W0. On the other hand, by Section 4,

σ(2)(W0, φ) − σ(W0) = ρ(∂W0, φ).

Hence

0 = ρ(MRm , φ) + . . .+ ρ(MR1 , φ) + ρ(MR1 , φ) + ρ(MK0 , φ) + ρ(MK0 , φ).

By (7.2) and properties (1) and (3) of Proposition 4.1,

ρ(MK0 , φ) = ρ0(K0);

while by (7.3) and properties (1) and (2) of Proposition 4.1

ρ(MK
0 , φ) = 0.

However, by choice, |ρ0(K0)| is greater than twice the sum of the Cheeger–Gromov constants of
the 3-manifolds MRm , . . . ,MR1 , which is a contradiction (see property (6) of Proposition 4.1).

Therefore the proof of Theorem 5.5 is reduced to defining a commutator series {π(n)
S } such

that (7.1)–(7.3) hold.
The commutator series π(j)

S will be defined only for the groups π = π1(Wi), because we
need not be concerned with any other groups. It will be defined exactly as in Definition 3.6
except that the sequence of right divisor sets S1, . . . , Sn will be slightly different from those
of Definition 3.7. We now define S1, . . . , Sn. In these definitions π is the fundamental group of
one of the Wi.

We define

S1 = S1(π) = Sp1 = Sp1(π) = {q1(μ) . . . qr(μ) | (p1(t), qj(t)) = 1; π/π(1) ∼= 〈μ〉}.
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(Note that π(1) = π
(1)
r = π

(1)
P = π

(1)
S .) Before defining the other Si we make a few remarks.

Since p1(t) is a knot polynomial p1(t)
.= p1(t−1), so S1 is closed (up to units) under the natural

involution. In fact, since p1(t) = Δm(t) is the Alexander polynomial of Em, p1(t) is prime.
Hence one sees that

S1 = Q[μ, μ−1] − 〈Δm(μ)〉.
Therefore, for any Q[μ±1]-module M , MS−1

1 = M〈Δm〉, the classical localization of M at the
prime ideal 〈Δm〉.

Therefore, by (3.1),

π
(2)
S = π

(2)
P ≡ ker

(
π(1) −→ π(1)

[π(1), π(1)]
⊗ Q[μ, μ−1]S−1

1 ≡ A(W )S−1
1 ≡ A(W )(Δ)

)
, (7.4)

where A(W )(Δ) is the classical localization of A(W ) at the prime 〈Δm〉. (If W is any space
with π1(W ) = π and H1(W ) ∼= Z, then by its integral Alexander module, denoted by AZ(W ),
we mean H1(W ; Z[μ, μ−1]) ∼= π(1)/π(2). By its rational Alexander module, denoted by A(W ),
we mean H1(W ; Q[μ, μ−1]).)

Now let Γ ≡ π/π
(2)
S ≡ π/π

(2)
P and A = π(1)/π

(2)
S ≡ π(1)/π

(2)
P ⊂ Γ. Thus Γ is the semidirect

product of the abelian group A with π/π(1) ∼= Z. Note that the circle η2 (see Figure 2.9)
represents an element of π1(MKn)(1) and hence, under inclusion, an element of π(1) for each
of the groups π = π1(Wi) under consideration. Hence, for any π, η2 has an unambiguous
interpretation as an element of A. By abuse of notation we allow η2 to stand for its image
in any of the appropriate groups. Recall that a set S ⊂ Γ is Γ-invariant if gsg−1 ∈ S for all
s ∈ S and g ∈ Γ. Note that the set {μiη2μ

−i | i ∈ Z} is Γ-invariant, where μ ∈ Γ generates
π/π(1). Then we define the other Sn as follows.

Definition 7.1. Let S2 = S2(π) ⊂ Q[π(1)/π
(2)
S ] ⊂ Q[π/π(2)

S ] be the multiplicative set
generated by

{q(a) | (̃q, p2) = 1, q(1) �= 0, a ∈ A} ∪ {p2(μiη2μ
−i) | i ∈ Z};

and for 2 < i � n let

Sn = Sn(π) = {q1(a1) . . . qr(ar) | ˜(pn, qj) = 1; qj(1) �= 0; aj ∈ π
(n−1)
S /π

(n)
S }. (7.5)

Since S2 is a multiplicative subset of QA that is Γ-invariant, it is a right divisor set of QΓ by
[10, Proposition 4.1]. Therefore Definition 3.6 applies to give a partially defined commutator
series {π(i)

S }. Since p2(t) = qn−1(t) is a knot polynomial, p2(t)
.= p2(t−1). Thus S2 is closed (up

to units) under the natural involution.

Lemma 7.2. For each π and each 0 � i � n+ 1

π
(i)
P ⊂ π

(i)
S . (7.6)

Proof. The proof is by induction on i. By Definition 3.6, π(1)
P = π

(1)
r = π

(1)
S , so the lemma

is true for i = 0, 1. Suppose it is true for all values up to some fixed i � 1. Let j : π → π be the
identity map. By [10, Proposition 3.2], it suffices to show that the induced ring map

j∗ : Z[π/π(i)
P ] −→ Z[π/π(i)

S ]

has the property that j∗(Spi
(π)) ⊂ Si(π). For i = 1, j∗ is the identity map and S1(π) is, by

definition, identical to Sp1(π). It follows that π(2)
P = π

(2)
S as already observed in (7.4). Thus,



2-TORSION IN THE n-SOLVABLE FILTRATION 279

for i = 2, j∗ is again the identity map and, by Definitions 7.1 and 3.7, S2(π) strictly contains
Sp2(π). For i > 2, the map j∗, although induced by the identity, will be a surjection with
non-zero kernel. Nonetheless, by the inductive hypothesis, j induces a homomorphism

j∗ : π(i−1)
P /π

(i)
P −→ π

(i−1)
S /π

(i)
S .

Recall from Definition 3.7 that

Spi
(π) = {q1(a1) . . . qr(ar) | (̃pi, qj) = 1; qj(1) �= 0; aj ∈ π

(i−1)
P /π

(i)
P },

which is the multiplicative set generated by the described set of polynomials q(a). If q(a) is
any such polynomial, then j∗(q(a)) = q(j∗(a)) and since

a ∈ π
(i−1)
P
π

(i)
P

, then j∗(a) ∈ π
(i−1)
S
π

(i)
S

.

Thus, upon examining (7.5), we see that q(j∗(a)) ∈ Si(π). Hence j∗(Spi
(π)) ⊂ Si(π) as desired.

In particular this establishes (7.1).

Lemma 7.3. The commutator series {π(i)
S } is functorial with respect to any inclusion,

Wi →Wj , where i > j.

Proof. Note that any such inclusion induces an isomorphism H1(Wi) ∼= H1(Wj) ∼= Z = 〈μ〉.
If π(i)

S were actually the polarized derived series localized at P, then the functoriality would
follow directly from our Theorem 3.10 [10, Theorem 4.16]. But since π(i)

S is slightly different, we
must actually repeat some of the proof of [10, Theorem 4.16]. Suppose A = π1(Wi), B = π1(Wj)
and ψ : A→ B is induced by inclusion. We show, by induction on i, that ψ(A(i)

S ) ⊂ B
(i)
S . This

holds for i = 0, so suppose that it holds for i = n. We will show that ψ(A(n+1)
S ) ⊂ B

(n+1)
S . The

induction hypothesis guarantees that, for each 1 � k � n, ψ induces a homomorphism of pairs

ψ : (A/A(k)
S , A

(k−1)
S /A

(k)
S ) −→ (B/B(k)

S , B
(k−1)
S /B

(k)
S ).

By [10, Proposition 3.2] (or by examining (3.1)) it suffices to show that this map satisfies

ψ(Sk(A)) ⊂ Sk(B) (7.7)

for each 1 � k � n. First consider k = 1. Recall that

S1(A) = {q1(μ) . . . qr(μ) | (p1(t), qj(t)) = 1; A/A(1) ∼= 〈μ〉} ⊂ Q[A/A(1)].

Since ψ induces an isomorphism ψ : A/A(1) → B/B(1), ψ(μ) = ±μ. By choosing generators
once and for all, we may assume that ψ(μ) = μ. So, for any such qj(t),

ψ(q1(μ) . . . qr(μ)) = q1(ψ(μ)) . . . qr(ψ(μ)) = q1(μ) . . . qr(μ) ∈ S1(B).

This verifies (7.7) for k = 1.
Now suppose k > 1. Recall that

Sk(A) = {q1(a1) . . . qr(ar) | ˜(pn, qj) = 1; qj(1) �= 0; aj ∈ A
(k−1)
S /A

(k)
S }.

Thus, for any such qj(t),

ψ(q1(a1) . . . qr(ar)) = q1(ψ(a1)) . . . qr(ψ(ar)) ∈ Sk(B),

since ψ(aj) ∈ B
(k−1)
S /B

(k)
S .

Thus ψ(Sk(A)) ⊂ Sk(B).
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7.1. Establishing (7.2) and (7.3)

Since π1(MK0) ⊂ π1(W0) is normally generated by its meridian μ0, and π1(MK
0) is normally

generated by its meridian (that we denote) μ0, the case i = 0 of the following Proposition
will establish (7.2) and (7.3). Therefore the rest of the paper will be spent establishing
Proposition 7.4.

Proposition 7.4. For any i, 0 � i � n− 2, μi = αi+1 is non-trivial, while μi = αi+1 is
trivial in

π1(Wi)(n−i)

π1(Wi)
(n−i+1)
S

.

To clarify the notation of this proposition, recall that, for 0 � i � n− 1, ∂Wi contains the
disjoint union of the zero surgeries on the knots Ki (refer to the schematic Figure 7.2), and K

i
.

Let μi and μi denote the meridians of Ki and K
i
in these copies of MKi and M

K
i , respectively.

Also recall that Ki+1 = Ri+1
αi+1

(Ki) for some circle αi+1 that generates the Alexander module

of Ri+1; and K
i+1

= R
i+1

αi+1
(K

i
). Let αi+1 denote (a push-off of) this circle in MKi+1 ⊂ ∂Wi+1

(referring to Figure 7.2); and let αi+1 denote (a push-off of) the other copy of αi+1 in M
K

i+1 ⊂
∂Wi+1. Note that, by property (4) of Lemma 6.1, μi is isotopic to αi+1 in Ei+1 and μi is
isotopic to αi+1 in Ei+1. Hence μi = αi+1 and μi = αi+1 as elements of π1(Wi).

Proof of Proposition 7.4. The proof is by reverse induction on i, starting with i = n− 2.
Before proving the base case i = n− 2, we need to work out the ‘pre-base-case’, i = n− 1,

where the situation is slightly different. Note that αn and αn are what we have previously
called η1 and η2, respectively.

Lemma 7.5. Both μn−1 = η1 and μn−1 = η2 are non-trivial in

π1(Wn−1)(1)

π1(Wn−1)
(2)
S
.

Figure 7.2. Wi.
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Proof. Throughout the proof of this lemma we abbreviate W = Wn−1, π = π1(Wn−1) and
Δ = Δn. We make use of the fact that the integral and rational Alexander modules of a knot
agree with those of its zero-framed surgery. Specifically we use A(K) to denote both the rational
Alexander module of K and that of MK . The inclusion maps induce a commutative diagram
of maps between integral and rational Alexander modules as shown below:

AZ(Em) AZ(Rm) AZ(V ) AZ(W )
π(1)

π
(2)
S

A(Em)

A(Em)(Δ) A(Rm)(Δ) A(V )(Δ) A(W )(Δ)

�i

�

i′1

�j∗

�

i2

�k∗

�

i3

�

�

i4

�
�

�
�

�
�

�
��

i5

�

i′′1

�i �j∗ �k∗

Note that AZ(Rm) ∼= AZ(Kn) ∼= AZ(MKn) ∼= AZ(∂V ). The maps j∗ and k∗ are induced by
inclusion. The map i is induced by the connected sum decomposition, where Em denotes the
‘left-hand’ copy in Rm ≡ Em # Em. The existence and injectivity of i5 is given by (7.4).
Since the ηi represent elements in the Alexander module of Em, it suffices to show that the
composition in the top row is injective. For this it suffices to show that the composition k∗ ◦
j∗ ◦ i ◦ i′′1 ◦ i′1 is a monomorphism. Since it is well known that the integral Alexander modules
AZ(Em) ∼= AZ(S3 − Em) are Z-torsion-free, i′1 is injective. Since A(Em) is a Δ-torsion module,
i′′1 is injective. Under the connected sum decomposition the localized Alexander module of Rm

decomposes as the direct sum of the localized Alexander modules of its summands Em. The
Blanchfield form decomposes similarly. Hence i is injective. Now consider the map j∗ induced
by the inclusion ∂V ↪→ V :

j∗ : A(∂V )(Δ)
∼= A(Rm)(Δ) ≡ H1(MRm ; Q[t, t−1]S−1

p1
) −→ H1(V ; Q[t, t−1]S−1

p1
) ≡ A(V )(Δ).

Since V is an (n.5,P)-solution for ∂V , and π
(i)
P ⊂ π

(i)
S , V is an (n.5,S) solution, so it is

certainly a (1,S)-solution. Consider the coefficient system ψ : π1(V ) → π1(V )/π1(V )(1)S ∼= Z
(recall G(1)

S = G
(1)
r for any group G). Then [9, Theorem 7.15] applies to say that the kernel of

j∗ is isotropic with respect to the classical Blanchfield form on A(Rm)(Δ). Hence the kernel P ,
of i ◦ j∗ is isotropic with respect to the classical Blanchfield form on A(Em)(Δ); but, since the
Alexander polynomial of Em is irreducible by Proposition 2.3, the rational Alexander module
of Em has no proper submodules. The case P = A(Em)(Δ) is not possible since the localized
classical Blanchfield form is non-singular and A(Em)(Δ) �= 0. Thus P = 0, so i ◦ j∗ is injective.

It only remains to show that the lower map k∗ is injective (actually an isomorphism). Since
localization is an exact functor, this is equivalent to showing that the inclusion map induces
an isomorphism between the rational Alexander modules of V and W . Recall that W = Wn =
V ∪ En. Recall from property (1) of Lemma 6.1, applied to En, that the kernel on π1 of the
inclusionMKn = ∂V → En is normally generated by the longitudes of the infecting knotsKn−1

and K
n−1

as curves in π1(MKn). These lie in the second derived subgroups of π1(S3 −Kn−1)
and π1(S3 −K

n−1
), respectively, and so lie in the third derived subgroup of π1(MKn) (refer

to Figure 2.8). Since the rational Alexander module of any space X with H1(X) ∼= Z may be
described as G(1)/G(2) ⊗ Q, where G = π1(X), this shows that the rational Alexander modules
of V and W are isomorphic.
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The crucial base case, i = n− 2, in the (reverse) inductive proof of Proposition 7.4 is the
following.

Lemma 7.6. While μn−2 = αn−1 is non-trivial, μn−2 = αn−1 is trivial in

π1(Wn−2)(2)

π1(Wn−2)
(3)
S
.

Proof. It might be helpful to refer to Figure 7.2 with i = n− 2. By property (1) of
Lemma 6.1, the kernel of the map

π1(Wn−1) −→ π1(Wn−1 ∪ En−1 ∪ En−1) = π1(Wn−2)

is normally generated by the longitudes, �n−2, �n−2, of the infecting knots Kn−2 and K
n−2

viewed as curves in S3 \Kn−2 ⊂MKn−1 ⊂ ∂Wn−1 and S3 \Kn−2 ⊂M
K

n−1 ⊂ ∂Wn−1. But
of course these lie in the second derived subgroups of π1(S3 \Kn−2) and π1(S3 \Kn−2

),
respectively, and so lie in the second derived subgroups of π1(MKn−1) and π1(MK

n−1),
respectively. But, as observed in Lemma 7.5

π1(MKn−1) = 〈μn−1〉 ⊂ π1(Wn−1)(1), (7.8)

and similarly for π1(MK
n−1). It follows that both �n−2 and �n−2 lie the third derived

subgroup of π1(Wn−1) and hence lie in π1(Wn−1)
(3)
S . Thus the inclusion Wn−1 →Wn−2 induces

an isomorphism
π1(Wn−1)

π1(Wn−1)
(3)
S

∼= π1(Wn−2)

π1(Wn−2)
(3)
S
,

by weak functoriality and by [10, Proposition 4.7].
Therefore, to prove Lemma 7.6, it suffices to let π = π1(Wn−1), and show that αn−1 is

non-trivial in π(2)/π
(3)
S and that αn−1 is trivial in π(2)/π

(3)
S . Throughout the rest of the proof

of Lemma 7.6, we abbreviate W = Wn−1, π = π1(Wn−1), J = Kn−1 and J = K
n−1

. Thus
∂W = MRm ∪MJ ∪MJ .

Consider the following commutative diagram (which we justify below), where Γ = π/π
(2)
S and

R = QΓS−1
2 . Since we may view αn−1 ∈ π1(MJ)(1) and αn−1 ∈ π1(MJ )(1), we have reduced

Lemma 7.6 to showing that αn−1 is not in the kernel of the top row of the diagram while αn−1

does lie in this kernel.

π1(MJ)(1) ⊕ π1(MJ )(1) π(2)
π

(2)
S
π

(3)
S

(A(J) ⊕A(J)) ⊗R H1(MJ ∪MJ ;R) H1(W ;R)
π

(2)
S

[π(2)
S , π

(2)
S ]

⊗R

�j∗

�
π

�φ

�
�j

�∼= �j∗ �∼=

The j∗ in the upper row of the diagram is justified by our observation (7.8), which says that
π1(MJ ) ⊂ π(1) and π1(MJ ) ⊂ π(1). Now we consider the first map in the bottom row. By
Lemma 7.5 the coefficient system π → Γ, when restricted to π1(MJ ), is non-trivial:

π1(MJ) = 〈μn−1〉 ↪→ π(1)

π
(2)
S

↪→ π

π
(2)
S

≡ Γ,
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but also factors through π1(MJ )/π1(MJ)(1) ∼= Z using (7.8). It follows that

H1(MJ ; QΓ) ∼= H1(MJ ; Q[t, t−1]) ⊗ QΓ ≡ A(J) ⊗Q[t,t−1] QΓ,

where Q[t, t−1] acts on QΓ by t→ μn−1 (equivalently t→ η1). Hence

H1(MJ ;R) ∼= A(J) ⊗R;

and similarly for J , where t acts by μn−1 = η2. This explains the first map in the lower row of the
diagram. To justify the last map in the lower row, recall that H1(W ; ZΓ) has an interpretation
as the first homology module of the Γ-covering space of W . The fundamental group of this
covering space is the kernel of π → Γ. Hence

H1(W ; ZΓ) ∼= π
(2)
S

[π(2)
S , π

(2)
S ]

.

Since the Ore localization R is a flat ZΓ-module, the ∼= is justified. This completes the
explanation of the diagram. Since, by Definitions 3.7 and 7.1,

π
(3)
S = ker

(
π

(2)
S −→ π

(2)
S

[π(2)
S , π

(2)
S ]

−→ π
(2)
S

[π(2)
S , π

(2)
S ]

⊗ QΓS−1
2

)
,

it follows that the vertical map j (in the diagram) is injective. Hence, to establish Lemma 7.6,
it suffices to show that the class represented by αn−1 ⊗ 1 is not in the kernel of the bottom
row of the diagram while that represented by αn−1 ⊗ 1 does lie in this kernel.

Recall that J ≡ K
n−1 ≡ R

n−1

αn−1
(K

n−2
), where αn−1 generates A(R

n−1
) (note that this

implies that the latter module is cyclic). Therefore A(J) ∼= A(R
n−1

). By hypothesis, the
Alexander polynomial of Rn−1 is qn−1(t) = p2(t). Thus

〈αn−1〉 ∼= A(J) ∼= Q[t, t−1]
p2(t)Q[t, t−1]

and

〈αn−1 ⊗ 1〉 ∼= A(J) ⊗R ∼=
(

QΓ
p2(η2)QΓ

)
S−1

2
∼= 0,

where the last equality holds since p2(η2) ∈ S2, by Definition 7.1 (see [10, Theorem 4.12] for
more detail). Therefore αn−1 ⊗ 1 lies in the kernel of the bottom row of the diagram.

Suppose that αn−1 ⊗ 1 were in the kernel of the bottom row of the diagram. We shall reach a
contradiction. Recall that Wn−1 ≡ V ∪ En. Recall that V is an (n.5,P)-solution. Since n � 2,
V is a (2,P)-solution. One easily checks that

H2(Wn−1)
i∗(H2(∂Wn−1)

∼= H2(V ).

Hence this group has a basis consisting of surfaces that satisfy parts (2) and (3) of Definition 3.3
(with n = 2); but Wn−1 fails to satisfy part (1) of that definition and ∂Wn−1 is disconnected.
Such a manifold was named a (2,P)-bordism in [10, Definition 7.11]. By [10, Theorems 7.14
and 7.15], if P is the kernel of the map

j∗ : H1(MJ ;R) −→ H1(W ;R),

as in the bottom row of the diagram, then P is an isotropic submodule for the Blanchfield
linking form on H1(MJ ;R). Since we have supposed that αn−1 ⊗ 1 ∈ P and since this element
is a generator of H1(MJ ;R), it would follow that this Blanchfield form was identically zero
on H1(MJ ;R); but by [10, Lemma 7.16] this form is non-singular. This would imply that
H1(MJ ;R) was the zero module. This is a contradiction once we show that

A(J) ⊗R ∼=
(

QΓ
p2(η1)QΓ

)
S−1

2 �= 0. (7.9)
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This is a non-trivial result since we are dealing with a non-commutative localization.
Note that, by the hypotheses of Theorem 5.5, p2(t) = qn−1(t) is not a unit in Q[t, t−1].

The map Z → Γ given by t→ η1 is not zero by Lemma 7.5. Since Γ is PTFA, it is torsion-
free, so 〈η1〉 ⊂ Γ. Hence QΓ is a free left Q[η1, η−1

1 ]-module on the right cosets of 〈η1〉 ∈ Γ
[44, Chapter 1, Lemma 1.3]. Thus, upon fixing a set of coset representatives, any x ∈ QΓ has
a unique decomposition

x = Σγxγγ,

where xγ ∈ Q[η1, η−1
1 ] and the sum is over a set of coset representatives {γ ∈ Γ}. It follows

that p2(η1) has no right inverse in QΓ since if p2(η1)x = 1, then

p2(η1)x = p2(η1)Σγxγγ = Σγp2(η1)xγγ = 1.

Looking at the coset γ = e , we have p2(η1)xe = 1 in Q[η1, η−1
1 ], contradicting the fact that

p2(t) is not a unit in Q[t, t−1]. Therefore, since QΓ is a domain,

QΓ
p2(η1)QΓ

� 0.

Continuing, by [47, Corollary 3.3, p. 57], the kernel of

QΓ
p2(η1)QΓ

−→
(

QΓ
p2(η1)QΓ

)
S−1

2

is precisely the S2-torsion submodule. Hence to establish (7.9), it suffices to show that the
generator of QΓ/p2(η1)QΓ is not S2-torsion. Suppose [1] was S2-torsion. We will show that
[1] = 0, implying that QΓ/p2(η1)QΓ is S2-torsion-free. If [1] were S2-torsion, then 1s = p2(η1)y
for some s ∈ S2 and for some y ∈ QΓ. We examine this equation in QΓ.

Recall that Γ = π/π
(2)
S . Let A = π(1)/π

(2)
S � Γ. Since A ⊂ Γ, QΓ, viewed as a left QA-module,

is free on the right cosets of A in Γ. Thus any y ∈ QΓ has a unique decomposition

y = Σγyγγ,

where the sum is over a set of coset representatives {γ ∈ Γ} and yγ ∈ QA. Therefore we have

s = p2(η1)Σγyγγ.

Recall from Definition 7.1 that s ∈ S2 ⊂ QA. It follows that, for each coset representative γ �= e,
we have 0 = p2(η1)yγ , so yγ = 0 (note that p2(η1) �= 0 since Q[η±1

1 ] ⊂ QΓ). Hence y ∈ QA and
we have

s = p2(η1)y (7.10)

as an equation in QA. Recall from Definition 7.1 that an arbitrary element of S2 is a product
of terms of the form q(a) and terms of the form p2(μiη2μ

−i) for some a ∈ A, q(t) in Q[t, t−1],
where (̃p2, q) = 1, q(1) �= 0 and μ generates π/π(1). Since A is a torsion-free abelian group,
(7.10) may be viewed as an equation in QF for some free abelian group F ⊂ A of finite rank
r. Since QF is a UFD and since (̃p2, q) = 1, we can apply the following.

Proposition 7.7 [10, Proposition 4.5]. Suppose p(t), q(t) ∈ Q[t, t−1] are non-zero. Then
p and q are strongly coprime if and only if, for any finitely-generated free abelian group F and
any non-trivial a, b ∈ F, p(a) is relatively prime to q(b) in QF (a unique factorization domain).

Thus the greatest common divisor, in QF , of p2(η1) and q(a) is a unit (note that if a is
trivial in F , then q(a) = q(1) �= 0 is itself a unit). Thus p2(η1) divides the product of the terms
of the form p2(μiη2μ

−i). Choose a basis {x, x2, . . . , xr} for F in which η1 = xr for some r > 0
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(since η1 �= 0 by Lemma 7.5) and μiη2μ
−i = xnix

ni,2
2 . . . x

ni,r
r . Then we may regard QF as a

Laurent polynomial ring in the variables {x, x2, . . . , xr}. Since p2 is not zero and not a unit,
there exists a non-zero complex root x = τ of p2(xr). Suppose that p̃(x) is an irreducible factor
(in QF ) of p2(xr) of which τ is a root. Then, for some i, p̃(x) divides p2(xnix

ni,2
2 . . . x

ni,r
r ).

Then τ must be a zero of p2(xnix
ni,2
2 . . . x

ni,r
r ) for every complex value of x2, . . . , xr. This is

impossible unless each ni,j = 0. Thus, for this value of i, μiη2μ
−i = xn, in F , for some n. Note

n �= 0 since η2 is non-trivial by Lemma 7.5. Thus

μiηr
2μ

−i = (μiη2μ
−i)r = xnr = ηn

1 , (7.11)

for some i and some non-zero integers n and r. This equation holds in A. However, the circles
μ, η2 and η1 all live in MRm and in fact can be interpreted in AZ(Em) (the left-hand copy of
Em); but recall that in the proof of Lemma 7.5 we showed that the map

AZ(Em) −→ AZ(W ) −→ π(1)

π
(2)
S

≡ A

is injective. Hence if (7.11) holds in A, then it holds as an equation in AZ(Em), and hence also
in A(Em), where, in module notation, it has the form

(t∗)i(rη2) = nη1.

However, the simple computation in the following lemma proves that this is impossible.

Lemma 7.8. Let m be a non-zero integer, let Em be the knot of Figure 2.5 and let 〈ηi〉, i =
1, 2 be the subspace of A(Em) generated by the circle ηi shown in Figure 2.9. Then, under the
automorphism

t∗ : A(Em) −→ A(Em),

for every integer k, (t∗)k(〈η2〉) ∩ 〈η1〉 = �0.

Proof. We may assume that m > 0. If V is the Seifert matrix for Em as in the proof of
Proposition 2.3, with respect to the basis {ai} consisting of the cores of the obvious bands,
where �k(ai, ηi) = 1, then the rational Alexander module is presented by V − tV T with respect
to the basis {η1, η2}, where the relations are given by the columns, that is, (V − tV T)�v = �0 for
all �v. Since V has non-zero determinant, upon left multiplying the latter equation by V −1, one
recovers the fact that the automorphism t∗ is given by left multiplication by (V −1)TV . Hence

t∗ =
1
m2

(
m2 + 1 m
m m2

)
=

1
m2

M,

for M as indicated, with respect to the basis {η1, η2}. It then suffices to prove that, for any k,
there is no non-zero solution (x0, y0) to the equation

Mk

(
0
y0

)
=
(
x0

0

)
.

If there were such a solution (x0, y0), then there would be one with y0 > 0. Let B = {(x, y) | x �
0, y > 0}. Since (

m2 + 1 m
m m2

)(
x
y

)
=
(

(m2 + 1)x+my
mx+m2y

)
,

we observe that M(B) ⊂ B; but if k � 0, then Mk(B) ⊂ B. This is a contradiction since
(0, y0) ∈ B but (x0, 0) /∈ B. Therefore there is no non-zero solution if k � 0. If k < 0, then we
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have (
0
y0

)
= M−k

(
x0

0

)
,

where −k = s > 0. As above if there were a non-zero solution, then there would be one with
x0 > 0. Letting A = {(x, y) | x > 0, y � 0}, we observe that Ms(A) ⊂ A, (x0, 0) ∈ A and
(0, y0) /∈ A, which is a contradiction.

This contradiction establishes (7.9), finally completing the proof of Lemma 7.6.

We now complete the induction step in the proof of Proposition 7.4.
Suppose, for some i, 1 � i � n− 2, that Proposition 7.4 holds, that is, μi = αi+1 is non-

trivial, while μi = αi+1 is trivial in

π1(Wi)(n−i)

π1(Wi)
(n−i+1)
S

. (7.12)

To complete the inductive step, we need to show that

μi−1 = αi = 0 ∈ π1(Wi−1)(n−i+1)

π1(Wi−1)
(n−i+2)
S

, (7.13)

and show that

μi−1 = αi �= 0 ∈ π1(Wi−1)(n−i+1)

π1(Wi−1)
(n−i+2)
S

. (7.14)

By the inductive hypothesis and weak functoriality,

μi ∈ π1(Wi)
(n−i+1)
S ⊂ π1(Wi−1)

(n−i+1)
S .

However, by property (1) of Lemma 6.1, μi ∈ π1(MK
i) normally generates π1(Ei), so

π1(Ei) ⊂ π1(Wi−1)
(n−i+1)
S ,

and so by property (1) of Proposition 3.2,

[π1(Ei), π1(Ei)] ⊂ [π1(Wi−1)
(n−i+1)
S , π1(Wi−1)

(n−i+1)
S ] ⊂ π1(Wi−1)

(n−i+2)
S .

Since �k(αi, R
i
) = 0, we have

αi ∈ [π1(MK
i), π1(MK

i)] ⊂ [π1(Ei), π1(Ei)] ⊂ π1(Wi−1)
(n−i+2)
S .

This proves (7.13).
Now we need to prove (7.14). By property (1) of Lemma 6.1, the kernel of the map

π1(Wi) −→ π1(Wi ∪ Ei ∪ Ei) = π1(Wi−1)

is normally generated by the longitudes �i−1 and �i−1 of the infecting knots Ki−1 and K
i−1

viewed as curves in S3 \Ki−1 ⊂MKi ⊂ ∂Wi and S3 \Ki−1 ⊂M
K

i ⊂ ∂Wi, respectively. But
of course these lie in the second derived subgroups of π1(S3 \Ki−1) and π1(S3 \Ki−1

),
respectively, and so lie in the second derived subgroups of π1(MKi) and π1(MK

i), respectively.
However, by the induction hypothesis (7.12),

π1(MKi) = 〈μi〉 ⊂ π1(Wi)(n−i), (7.15)

and similarly for π1(MK
i). It follows that both �i−1 and �i−1 lie in

π1(Wi)(n−i+2) ⊂ π1(Wi)
(n−i+2)
S .
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Thus the inclusion Wi →Wi−1 induces an isomorphism

π1(Wi)(n−i+1)

π1(Wi)
(n−i+2)
S

∼= π1(Wi−1)(n−i+1)

π1(Wi−1)
(n−i+2)
S

,

by weak functoriality and by [10, Proposition 4.7].
Consequently, to establish (7.14), it suffices to let π = π1(Wi), and show that αi is non-trivial

in π(n−i+1)/π
(n−i+2)
S . Throughout the rest of the proof, we abbreviate W = Wi, π = π1(Wi),

J = Ki and J = K
i
. Thus MJ ⊂ ∂W .

Consider the following commutative diagram (which we justify below), where Γ = π/π
(n−i+1)
S

and R = QΓS−1
n−i+1. Since αi ∈ π1(MJ )(1), we have reduced (7.14) to showing that αi is not

in the kernel of the top row of the diagram.

π1(MJ )(1) π(n−i+1)
π

(n−i+1)
S
π

(n−i+2)
S

A(J) ⊗R H1(MJ ;R) H1(W ;R)
π

(n−i+1)
S

[π(n−i+1)
S , π

(n−i+1)
S ]

⊗R

�j∗

�
π

�φ

�
�j

�∼= �j∗ �∼=

The j∗ in the upper row of the diagram is justified by (7.15). Now we consider the first map
in the bottom row. By the inductive hypothesis (7.14) the coefficient system π → Γ, when
restricted to π1(MJ ), is non-trivial:

π1(MJ ) = 〈μi〉 ↪→ π(n−i)

π
(n−i+1)
S

↪→ π

π
(n−i+1)
S

≡ Γ,

but also factors through π1(MJ )/π1(MJ)(1) ∼= Z because of (7.15). It follows that

H1(MJ ; QΓ) ∼= H1(MJ ; Q[t, t−1]) ⊗ QΓ ≡ A(J) ⊗Q[t,t−1] QΓ,

where Q[t, t−1] acts on QΓ by t→ μi. Hence

H1(MJ ;R) ∼= A(J) ⊗R.
To justify the last map in the lower row, recall that H1(W ; ZΓ) has an interpretation as the
first homology module of the Γ-covering space of W corresponding to the kernel of π → Γ.
Hence

H1(W ; ZΓ) ∼= π
(n−i+1)
S

[π(n−i+1)
S , π

(n−i+1)
S ]

.

This completes the explanation of the diagram. Since, by Definitions 3.7 and 7.1,

π
(n−i+2)
S = ker

(
π

(n−i+1)
S −→ π

(n−i+1)
S

[π(n−i+1)
S , π

(n−i+1)
S ]

−→ π
(n−i+1)
S

[π(n−i+1)
S , π

(n−i+1)
S ]

⊗ QΓS−1
n−i+1

)
,

it follows that the vertical map j (in the diagram) is injective. Hence, to establish (7.14), it
suffices to show that the class represented by αi ⊗ 1 is not in the kernel of the bottom row of
the diagram.

Recall that J ≡ Ki ≡ Ri
αi

(Ki−1), where αi generates A(Ri). Therefore A(J) ∼= A(Ri). By
the hypotheses of Theorem 5.5, the Alexander polynomial of Ri is qi(t) = pn−i+1(t). Thus

〈αi ⊗ 1〉 ∼= A(J) ⊗R ∼=
(

QΓ
pn−i+1(μi)QΓ

)
S−1

pn−i+1
, (7.16)

where the last equality holds because, since 1 � i � n− 2, it follows that 3 � n− i+ 1 � n, so
Sn−i+1 = Spn−i+1 , by Definition 7.1.
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Suppose that αi ⊗ 1 were in the kernel of the bottom row of the diagram. We shall reach a
contradiction. Recall that

W = Wi ≡ V ∪ En ∪ En−1 ∪ En−1 ∪ . . . ∪ Ei+1 ∪ Ei+1.

Recall also that V is an (n.5,P)-solution. Thus, by (7.6), V is an (n.5,S)-solution and, since
n− i+ 1 � n, V is also an (n− i+ 1,S)-solution. One easily checks that

H2(Wi)
i∗(H2(∂Wi))

∼= H2(V ).

Hence this group has a basis consisting of surfaces that satisfy parts (2) and (3) of Definition 3.3
(with n− i+ 1). Thus Wi is an (n− i+ 1,S)-bordism (see [10, Definition 7.11]). By [10,
Theorems 7.14 and 7.15], if P is the kernel of the map

j∗ : H1(MJ ;R) −→ H1(W ;R),

then P is isotropic for the Blanchfield linking form on H1(MJ ;R). Therefore if the generator
αi ⊗ 1 were in P , it would follow that this Blanchfield form was identically zero on H1(MJ ;R);
but by [10, Lemma 7.16] this form is non-singular. This would imply that H1(MJ ;R) = 0.
This is a contradiction once we show that (7.16) is in fact a non-trivial module. It is shown in
[10, Theorem 4.12] that

QΓ
pn−i+1(μi)QΓ

↪→
(

QΓ
pn−i+1(μi)QΓ

)
S−1

pn−i+1
, (7.17)

is a monomorphism (using that pn−i+1(t) �= 0 and that μi lies in the abelian normal subgroup
A = π(n−i)/π

(n−i+1)
S ⊂ Γ). This reduces us to showing that

QΓ
pn−i+1(μi)QΓ

�= 0. (7.18)

By the hypotheses of Theorem 5.5, pn−i+1(t) = qi(t) is not a unit. The map Z → Γ given by
t �→ μi is not zero by the inductive hypothesis (7.12). Thus 〈μi〉 ⊂ Γ and QΓ is a free Q[μi, μ

−1
i ]-

module on the cosets of 〈μi〉 ∈ Γ. In the same manner as we showed earlier in the proof, it
follows that pn−i+1(μi) is not a unit in the domain QΓ. Therefore (7.18) holds.

This completes, finally, the inductive step and hence the entire proof of Proposition 7.4,
which in turn completes the proofs of (7.2) and (7.3).

Having established (7.1)–(7.3), the proof of Theorem 5.5 is complete.
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