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Knot concordance and higher-order Blanchfield duality
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In 1997, T Cochran, K Orr, and P Teichner [12] defined a filtration of the classical
knot concordance group C ,

� � � � Fn � � � � � F1 � F0:5 � F0 � C:

The filtration is important because of its strong connection to the classification of
topological 4–manifolds. Here we introduce new techniques for studying C and
use them to prove that, for each n 2 N0 , the group Fn=Fn:5 has infinite rank. We
establish the same result for the corresponding filtration of the smooth concordance
group. We also resolve a long-standing question as to whether certain natural families
of knots, first considered by Casson–Gordon and Gilmer, contain slice knots.

57M25; 57M10

1 Introduction

A (classical) knot J is the image of a tame embedding of an oriented circle in S3 .
A slice knot is a knot that bounds an embedding of a 2–disk in B4 . We wish to
consider both the smooth category and the topological category (in the latter case all
embeddings are required to be flat). The question of which knots are slice knots was
first considered by Kervaire and Milnor in the early 60’s in their study of isolated
singularities of 2–spheres in 4–manifolds in the context of a surgery-theoretic scheme
for classifying 4–dimensional manifolds. Indeed, certain concordance problems are
known to be equivalent to whether the surgery techniques that were so successful in
higher-dimensions “work” for topological 4–manifolds; see Casson and Freedman [1].
Thus the question of which knots are slice knots lies at the heart of the topological
classification of 4–dimensional manifolds. Moreover the question of which knots are
topologically slice but not smoothly slice may be viewed as “atomic” for the question
of which topological 4–manifolds admit distinct smooth structures.

There is an equivalence relation on knots wherein slice knots are equivalent to the
trivial knot. Two knots, J0 ,! S3 � f0g and J1 ,! S3 � f1g, are concordant if there
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exists a proper embedding of an annulus into S3 � Œ0; 1� that restricts to the knots on
S3 � f0; 1g. A knot is concordant to a trivial knot if and only if it is a slice knot. The
connected sum operation endows the set of all concordance classes of knots with the
structure of an abelian group, called the topological knot concordance group, C , which
is a quotient of its smooth analogue Cs . For excellent surveys see Gordon [22] and
Livingston [38].

In this paper we introduce new techniques for showing knots are not topologically slice
(and hence also not smoothly slice). As one application we resolve a long-standing
question about whether certain natural families of knots contain nonslice knots (some
of these results were announced in our paper [9]). As another major application we
establish that each quotient, Fn=Fn:5 , in the Cochran–Orr–Teichner filtration fFng

of C has infinite rank (the same result is shown for the filtration of Cs ). This was
previously known only for nD 0; 1 and 2. Our proof of the latter avoids two ad hoc
technical tools employed by Cochran–Teichner, one of which was a deep analytical
bound of Cheeger–Gromov for their von Neumann � invariants.

In the late 60’s Levine [31] (see also Stolzfus [43]) defined an epimorphism from C
to Z1 ˚Z1

2
˚Z1

4
, given by the Arf invariant, certain discriminants and twisted

signatures associated to the infinite cyclic cover of the knot complement. A knot for
which these invariants vanish is called an algebraically slice knot. Thus the question at
that time was “Is every algebraically slice knot actually a slice knot?” A simple way
to create potential counterexamples is to begin with a known slice knot, R, such as
the 946 knot shown on the left-hand side of Figure 1, and “tie the bands into some
knot J0 ”, as shown schematically on the right-hand side of Figure 1. An example
of a band tied into a trefoil knot is shown in Figure 2. All of these genus one knots
are algebraically slice since they have the same Seifert matrix as the slice knot R.
Similar knots have appeared in the majority of papers on this subject (for example
Livingston [34; 35; 37; 38] and Gilmer and Livingston [21]).

In the early 70’s Casson and Gordon defined new knot concordance invariants via
dihedral covers [2; 3]. These “higher-order signature invariants” were used to show
that some of the knots J1 of Figure 1 are not slice knots. P Gilmer showed that these
higher-order signature invariants for J1 are equal to certain combinations of classical
signatures of J0 and thus the latter constituted higher-order obstructions to J1 being a
slice knot [18; 20] (see Livingston [36] for 2–torsion invariants). These invariants were
also used by Jiang [25] to show that the subgroup of algebraically slice knots has infinite
rank. Hence the question arose:“What if J0 itself were algebraically slice?” Thus
shortly after the work of Casson and Gordon the self-referencing family of knots shown
in Figure 3 was considered by Casson, Gordon, Gilmer and others; see Gilmer [19].
An example with nD 3 and J0 D U , the unknot, is shown in Figure 4.
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J0 J0J1 �R�

Figure 1: Algebraically slice knots J1 patterned on the slice knot R

Figure 2: Tying a band into a trefoil knot

All of the invariants above vanish for Jn if n� 2 and it is not difficult to see that if J0

is itself a slice knot then each Jn is a slice knot. It was asked whether or not Jn is
always a slice knot. In fact, Gilmer proved (unpublished) that J2 , for certain J0 , is not
a ribbon knot [19]. However the status of the knots Jn has remained open for 25 years.
Much more recently, Cochran, Orr and Teichner [12; 13], Friedl [15] and Kim [26] used
higher-order signatures associated to solvable covers of the knot complement to find
nonslice knots that could not be detected by the invariants of Levine or Casson–Gordon.
In fact the techniques of [11; 12; 13; 14] were limited to knots of genus at least 2 (note
each Jn has genus 1) because of their use of localization techniques.

Recall that to each knot K and each point on the unit circle in C , there is an associated
Levine–Tristram signature. This endows each knot with an integral-valued signature
function defined on the circle. Let �0.K/ denote the integral of this function over the
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JnC1 D

Jn Jn

Figure 3: The recursive family JnC1 , n� 0

Figure 4: The ribbon knot J3 for J0 D the unknot

unit circle, normalized to have length 1. This should be viewed as the average of the
Levine–Tristram signatures for K .

We prove:

Theorem 9.1 There is a constant C such that if j�0.J0/j>C , then for each n� 0, Jn

is of infinite order in the topological and smooth knot concordance groups. Furthermore,
there is constant D such that if J2 is a slice knot then �0.J0/ 2 f0;Dg (Theorem 4.1).
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This was classically known only for nD 0; 1, using the Levine–Tristram signatures
and Casson–Gordon invariants respectively. The constant D is a specific real number
associated to the 946 knot that may in fact be 0.

In 1997, T Cochran, K Orr and P Teichner [12] defined an important filtration of the
classical knot concordance group C ,

� � � � Fn � � � � � F1 � F0:5 � F0 � C:

The elements of Fn are called the .n/–solvable knots. This filtration is geometrically
significant because it measures the successive failure of the Whitney trick for 2–disks
in 4–manifolds and hence is closely related to Freedman’s topological classification
scheme for 4–dimensional manifolds. The filtration is also natural because it exhibits
all of the previously known concordance invariants in its associated graded quotients of
low degree: F0 is precisely the set of knots with Arf invariant zero, F0:5 is precisely
Levine’s subgroup of algebraically slice knots and F1:5 contains all knots with vanishing
Casson–Gordon invariants. The filtration was also shown to be nontrivial: Cochran,
Orr and Teichner [13] established that the abelian group F2=F2:5 has infinite rank;
Cochran and Teichner showed in [14] that each of the groups Fn=Fn:5 has rank at
least 1.

Our second major result (known previously for nD 0; 1; 2) is:

Theorem 8.1 For each n 2N0 , the group Fn=Fn:5 has infinite rank.

We note that the construction of our examples is done completely in the smooth category
so that we also establish the corresponding statements about the Cochran–Orr–Teichner
filtration of the smooth knot concordance group. (In fact it can be shown that the natural
map induces isomorphisms F smooth

n =F smooth
n:5

Š Fn=Fn:5!) Our technique also recovers
the result of Cochran–Teichner, while eliminating two highly technical steps from their
proof. In particular our proof does not rely on the analytical bound of Cheeger–Gromov.
Moreover we use the knots Jn (for suitably chosen J0 ) to prove this. This family is
simpler than the examples of Cochran–Teichner. In fact the families Jn are distinct
even up to concordance from the examples of Cochran–Teichner (this result will appear
in another paper). We employ the Cheeger–Gromov von Neumann �–invariants and
higher-order Alexander modules that were introduced in [12]. Our new technique is
to expand upon previous results of Leidy concerning higher-order Blanchfield linking
forms without localizing the coefficient system [28; 29]. This is used to show that
certain elements of �1 of a slice knot exterior cannot lie in the kernel of the map
into any slice disk(s) exterior. Another new feature is the essential use of equivalence
relations that are much weaker than concordance and .n/–solvability.
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These techniques provide other new information about the order of knots in the concor-
dance group. For example, consider the family of knots below where Jn�1 , n�2, is one
of the algebraically slice knots above. For any such Kn , Kn # Kn is algebraically slice
and has vanishing Casson–Gordon invariants. Therefore Kn cannot be distinguished
from an order 2 knot by these invariants.

However we show:

Corollary 9.7 For any n there is a constant D such that if j�0.J0/j>D then Kn is
of infinite order in the smooth and topological concordance groups.

Kn D
Jn�1 Jn�1

Figure 5: Knots potentially of order 2 in the concordance group

The specific families of knots of Figure 3 are important because of their simplicity and
their history. However, they are merely particular instances of a more general “doubling”
phenomenon to which our techniques may be applied. In order to state these results,
we review a method we will use to construct examples. Let R be a knot in S3 and
f�1; �2; : : : ; �mg be an oriented trivial link in S3 , that misses R, bounding a collection
of disks that meet R transversely as shown on the left-hand side of Figure 6. Suppose
fK1;K2; : : : ;Kmg is an m–tuple of auxiliary knots. Let R.�1; : : : ; �m;K1; : : : ;Km/

denote the result of the operation pictured in Figure 6, that is, for each �j , take the
embedded disk in S3 bounded by �j ; cut off R along the disk; grab the cut strands,
tie them into the knot Kj (with no twisting) and reglue as shown in Figure 6.

We will call this the result of infection performed on the knot R using the infection
knots Kj along the curves �j . This construction can also be described in the following
way. For each �j , remove a tubular neighborhood of �j in S3 and glue in the exterior
of a tubular neighborhood of Kj along their common boundary, which is a torus, in
such a way that the longitude of �j is identified with the meridian of Kj and the
meridian of �j with the reverse of the longitude of Kj . The resulting space can be
seen to be homeomorphic to S3 and the image of R is the new knot. In the case
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�1 �m
: : : : : :K1 Km

R.�1; : : : ; �m;K1; : : : ;Km/R R

Figure 6: R.�1; : : : ; �m;K1; : : : ;Km/: Infection of R by Kj along �j

that mD 1 this is the same as the classical satellite construction. In general it can be
considered to be a “generalized satellite construction”, widely utilized in the study of
knot concordance. In the case that mD 1 and lk.�;R/D 0, it is precisely the same as
forming a satellite of J with winding number zero. This yields an operator

R�W C! C:

that has been studied eg by Livingston and Melvin [39]). For general m with lk.�j ;R/D

0, it can be considered as a generalized doubling operator, R�j , parameterized by
.R; f�j g/

R�j W C � � � � � C! C:
If, for simplicity, we assume that all “input knots” are identical then such an operator
is a function

R�j W C! C:
A primary example is the “R–doubling” operation of going from the left-hand side of
Figure 1 to the right-hand side. Here R is the 946 knot and f�1; �2g D f˛; ˇg are as
shown on the left-hand side of Figure 7. The image of a knot K under the operator
R˛;ˇ is denoted by R.K/ and is shown on the right-hand side of Figure 7. Note
that our previously defined knot J1 is the same as R.J0/ and that Kn of Figure 5 is
xR.Jn�1/ where xR is the figure-eight knot.

Most of the results of this paper concern to what extent these functions are injective.
Because of the condition on “winding numbers”, lk.�j ;R/D 0, if R is a slice knot, the
images of such operators R contain only knots for which the classical invariants vanish.
Thus iterations of these operators, iterated generalized doubling, produce increasingly
subtle knots. This claim is quantified by the following.

Theorem 7.1 (See also [13, proof of Proposition 3.1].) If Ri , 1 � i � n, are slice
knots and �ij 2 �1.S

3�Ri/
.1/ then

Rn ı � � � ıR2 ıR1.F0/� Fn;

where we abbreviate .Ri/�ij
by Ri .

Geometry & Topology, Volume 13 (2009)
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˛ ˇ

K KR.K/�R˛;ˇ �

Figure 7: R–doubling

For example the knot Jn is the result of n iterations of the R˛;ˇ operator shown above

C R
�! C �! : : : �! C R

�! C

applied to some initial knot J0 DK . More generally let us define an n–times iterated
generalized doubling to be such a composition of operators using possibly different
slice knots Ri and different curves �i1; : : : ; �imi

.

Then our main proof establishes:

Theorem 9.5 Suppose Ri , 1� i � n, is a set of (not necessarily distinct) slice knots.
Suppose that, for each fixed i , f�i1; : : : ; �imi

g is a link in �1.S
3�Ri/

.1/ that forms
a trivial link in S3 such that for some ij and ik (possibly equal) B`i

0
.�ij ; �ik/¤ 0,

where B`i
0

is the classical Blanchfield form of Ri . Then there exists a constant C such
that if K is any knot with Arf.K/D0 and j�0.K/j>C , the result, Rnı� � �ıR1.K/, of
n–times iterated generalized doubling, is of infinite order in the smooth and topological
concordance groups, and moreover represents an element of infinite order in Fn=Fn:5 .

Note that any set f�i1; : : : ; �imi
g that generates a submodule of the Alexander module

of Ri of more than half rank necessarily satisfies the condition of Theorem 9.5, because
of the nonsingularity of the Blanchfield form.
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2 Higher-order signatures and how to calculate them

In this section we review the von Neumann �–invariants and explain to what extent
they are concordance invariants. We also show how to calculate them for knots or links
that are obtained from the infections defined in Section 1.

The use of variations of Hirzebruch–Atiyah–Singer signature defects associated to
covering spaces is a theme common to most of the work in the field of knot and link
concordance since the 1970’s. In particular, Casson and Gordon initiated their use in
cyclic covers [2; 3]; Farber, Levine [32] and Letsche [30] initiated the use of signature
defects associated to general (finite) unitary representations; and Cochran, Orr and
Teichner initiated the use of signatures associated to the left regular representations [12].
See Friedl [15] for a beautiful comparison of these approaches in the metabelian case.

Given a compact, oriented 3–manifold M , a discrete group � , and a representation
�W �1.M /!� , the von Neumann �–invariant was defined by Cheeger and Gromov by
choosing a Riemannian metric and using �–invariants associated to M and its covering
space induced by � . It can be thought of as an oriented homeomorphism invariant
associated to an arbitrary regular covering space of M [6]. If .M; �/ D @.W;  /

for some compact, oriented 4–manifold W and  W �1.W /! � , then it is known
that �.M; �/ D �

.2/
�
.W;  /� �.W / where � .2/

�
.W;  / is the L.2/–signature (von

Neumann signature) of the intersection form defined on H2.W IZ�/ twisted by  
and �.W / is the ordinary signature of W [40]. In the case that � is a poly-(torsion-
free-abelian) group (abbreviated PTFA group throughout), it follows that Z� is a right
Ore domain that embeds into its (skew) quotient field of fractions K� [41, pages
591–592, Lemma 3.6ii page 611]. In this case � .2/

�
is a function of the Witt class of the

equivariant intersection form on H2.W IK�/ [12, Section 5]. In the special case that
this form is nonsingular (such as ˇ1.M /D 1), it can be thought of as a homomorphism
from L0.K�/ to R.

All of the coefficient systems � in this paper will be of the form �=�
.n/
r where � is the

fundamental group of a space (usually a 4–manifold) and �.n/r is the n–th term of the
rational derived series. The latter was first considered systematically by Harvey [23].
It is defined by

�.0/r � �; �.nC1/
r � fx 2 �.n/r j 9 k ¤ 0;xk

2 Œ�.n/r ; �.n/r �g:

Note that n–th term of the usual derived series �.n/ is contained in the n–th term
of the rational derived series. For free groups and knot groups, they coincide. It was
shown in [23, Section 3] that �=�.n/r is a PTFA group.

The utility of the von Neumann signatures lies in the fact that they obstruct knots from
being slice knots. It was shown in [12, Theorem 4.2] that, under certain situations,
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higher-order von Neumann signatures vanish for slice knots, generalizing the classical
result of Murasugi and the results of Casson–Gordon. Here we state their result for
slice knots.

First:

Theorem 2.1 [12, Theorem 4.2] If a knot K is topologically slice in a rational
homology 4–ball, MK is the zero surgery on K and �W �1.MK /! � is a PTFA
coefficient system that extends to the fundamental group of the exterior of the slicing
disk, then �.MK ; �/D 0.

Moreover, Cochran–Orr–Teichner showed that this same result holds if �.nC1/ D f1g

and K 2 F.n:5/ . The filtration Fn will be defined in Section 5 where we also greatly
generalize the signature theorem above.

Some other useful properties of von Neumann �–invariants are given below. One can
find detailed explanations of most of these in [12, Section 5].

Proposition 2.2 Let M be a closed, oriented 3–manifold and �W �1.M /! � be a
PTFA coefficient system.

(1) If .M; �/D@.W;  / for some compact oriented 4–manifold W and j W M!W

is the inclusion map such that the equivariant intersection form on the quotient
H2.W IK�/=j�.H2.@W IK�// admits a half-rank summand on which the form
vanishes, then � .2/

�
.W;  / D 0. (See [24, Lemma 3.1 and Remark 3.2] for a

proper explanation of this for manifolds with ˇ1 > 1.) Thus if �.W /D 0 then
�.M; �/D 0.

(2) If � factors through �0W �1.M / ! � 0 where � 0 is a subgroup of � , then
�.M; �0/D �.M; �/.

(3) If � is trivial (the zero map), then �.M; �/D 0.

(4) If MK is zero surgery on a knot K and �W �1.MK /! Z is the abelianization,
then �.M; �/ is equal to the integral over the circle of the Levine–Tristram
(classical) signature function of K , normalized so that the length of the circle
is 1 [13, Proposition 5.1]. Recall that we denote this real number by �0.K/.

We will establish an elementary lemma that reveals the additivity of the �–invariant
under infection. It is slightly more general than [13, Proposition 3.2]. The use of a
Mayer–Vietoris sequence to analyze the effect of a satellite construction on signature
defects is common to essentially all of the previous work in this field (see for example
Litherland [33]).
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Suppose L D R.�i ;Ki/ is obtained by infection as described in Section 1. Let the
zero surgeries on R, L, and Ki be denoted MR , ML , Mi respectively. Suppose
�W �1.ML/! � is a map to an arbitrary PTFA group � such that, for each i , `i ,
the longitude of Ki , lies in the kernel of � . Since S3 �Ki is a submanifold of
ML , � induces a map on �1.S

3 �Ki/. Since `i lies in the kernel of � this map
extends uniquely to a map that we call �i on �1.Mi/. Similarly, � induces a map on
�1.MR�

`
�i/. Since MR is obtained from .MR�

`
�i/ by adding m 2–cells along

the meridians of the �i , ��i
and m 3–cells, and since ��i

D `�1
i and �i.`i/ D 1,

� extends uniquely to �R . Thus � induces unique maps �i and �R on �1.Mi/

and �1.MR/ (characterized by the fact that they agree with � on �1.S
3�Ki/ and

�1.MR �
`
�i/ respectively).

There is a very important case when the hypothesis above that �.`i/ D 1 is always
satisfied. Namely suppose �.nC1/ D 1 and �i 2 �1.MR/

.n/ . Since a longitudinal
push-off of �i , called `�i

or �Ci , is isotopic to �i in the solid torus �i �D2 �MR ,
`�i
2�1.MR/

.n/ as well. By [7, Theorem 8.1] or [28] it follows that `�i
2�1.ML/

.n/ .
Since �i , the meridian of Ki , is identified to `�i

, �i 2 �1.ML/
.n/ so �.�i/ 2 �

.n/

for each i . Thus �i.�1.S
3�Ki/

.1//� �.nC1/ D 1 and in particular the longitude of
each Ki lies in the kernel of � .

Lemma 2.3 In the notation of the two previous paragraphs (assuming �.`i/D 1 for
all i ),

�.ML; �/� �.MR; �R/D

mX
iD1

�.Mi ; �i/:

Moreover if �1.S
3�Ki/

.1/�ker.�i/ then either �.Mi ; �i/D�0.Ki/, or �.Mi ; �i/D

0, according as �R.�i/ ¤ 1 or �R.�i/ D 1. Specifically, if �.nC1/ D 1 and �i 2

�1.MR/
.n/ then this is the case.

Proof Let E be the 4–manifold obtained from MR � Œ0; 1�
`
�Mi � Œ0; 1� by identi-

fying, for each i , the copy of �i �D2 in MR � f1g with the tubular neighborhood of
Ki in Mi � f0g as in Figure 8. The dashed arcs in the figure represent the solid tori
�i �D2 . Observe that the “outer” boundary component of E is ML . Note that E

deformation retracts to xE DML[ .
`

i.�i �D2//, where each solid torus is attached
to ML along its boundary. Hence xE is obtained from ML by adding m 2–cells along
the loops ��i

D `i , and m 3–cells. Thus, by our assumption, � extends uniquely to
x�W �1. xE/! � and hence x�W �1.E/! � . Clearly the restrictions of x� to �1.Mi/

and �1.MR � f0g/ agree with �i and �R respectively. It follows that

�.ML; �/� �.MR; �R/D

mX
iD1

�.Mi ; �i/C �
.2/
�
.E; x�/� �.E/:

Geometry & Topology, Volume 13 (2009)
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MR � Œ0; 1�

M1 � Œ0; 1� Mm � Œ0; 1�: : :

Figure 8: The cobordism E

Now we claim that both the ordinary signature of E , �.E/, as well as the L2 –signature
�
.2/
�
.E/, vanish. The first part of Lemma 2.3 will follow immediately.

Lemma 2.4 With respect to any coefficient system, �W �1.E/! � , the signature of
the equivariant intersection form on H2.EIZ�/ is zero.

Proof of Lemma 2.4 We show that all of the (twisted) second homology of E comes
from its boundary. This immediately implies the claimed result.

Consider the Mayer–Vietoris sequence with coefficients twisted by � :

H2.MR � I/˚
L

i H2.Mi � I/ �!H2.E/

�!H1.
`
�i �D2/ �!H1.MR � I/˚

L
i H1.Mi � I/:

We claim that each of the inclusion-induced maps

H1.�i �D2/ �!H1.Mi/

is injective. If �.�i/ D 1 then, since �i is equated to the meridian of Ki , �.�i/ D

1. Since �i normally generates �1.Mi/, it follows that the coefficient systems on
�i �D2 and Mi are trivial and hence the injectivity follows from the injectivity with
Z–coefficients, which is obvious since �Ki

generates H1.Mi/. Suppose now that
�.�i/¤ 1. Since �i �D2 is homotopy equivalent to a circle, it suffices to consider
the cell structure on S1 with one 1–cell. Then the boundary map in the ZŒ�1.S

1/�

cellular chain complex for S1 is multiplication by t � 1 so the boundary map in the
equivariant chain complex

C1˝Z�
@˝id
���! C0˝Z�

Geometry & Topology, Volume 13 (2009)
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is easily seen to be left multiplication by �.�i/� 1. Since �.�i/ ¤ 1 and Z� is a
domain, this map is injective. Thus H1.�i �D2IZ�/D 0 so injectivity holds.

Using the Mayer–Vietoris sequence, any element of H2.E/ comes from H2.MR � f0g/L
i H2.Mi � f0g/, in particular from H2.@E/. Thus the intersection form on H2.E/

is identically zero and any signature vanishes.

This completes the proof of the first part of Lemma 2.3.

If �1.S
3�Ki/

.1/� ker.�i/ then �i factors through the abelianization of H1.S
3�Ki/

and so by parts 2, 3 and 4 of Proposition 2.2, we are done. In particular if �.nC1/D 1

and �i 2�1.MR/
.n/ , then �i.�i/2�

.n/ for each i as we have shown in the paragraph
above the lemma, so �i.�1.S

3�Ki/
.1//� �.nC1/D 1. Thus each �i factors through

the abelianization.

We want to collect, in the form of a lemma, the technical properties of the cobordism E

that we have established in the proofs above. These will be used often in later sections.

Lemma 2.5 With regard to E as above, the inclusion maps induce

(1) an epimorphism �1.ML/! �1.E/ whose kernel is the normal closure of the
longitudes of the infecting knots Ki viewed as curves `i � S3�Ki �ML ;

(2) isomorphisms H1.ML/!H1.E/ and H1.MR/!H1.E/; and

(3) isomorphisms H2.E/ŠH2.ML/˚
L

i H2.MKi
/ŠH2.MR/˚

L
i H2.MKi

/.

(4) The longitudinal push-off of �i , `�i
�ML is isotopic in E to �i �MR and to

the meridian of Ki , �i �MKi
.

(5) The longitude of Ki , `i �MKi
is isotopic in E to the reverse of the meridian

of �i , .��i
/�1 �ML and to the longitude of Ki in S3�Ki �ML and to the

reverse of the meridian of �i , .��i
/�1 �MR (the latter bounds a disk in MR ).

Proof We saw above that E � xE is obtained from ML by adding m 2–cells along
the loops ��i

D `i , and then adding m 3–cells that go algebraically zero over these
2–cells. Property (1) and the first part of properties (2) and (3) follow. The second parts
of properties (2) and (3) follow from a Mayer–Vietoris argument as in the proof just
above. Properties (4) and (5) are obvious from the definitions of infection and of E .
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3 First-order L.2/–signatures

For a knot K the �–invariant, �0.K/, associated to the abelianization of �1.MK /, has
played a central role in knot concordance since it is the average of classical signatures.
Call this a zero-order signature. In this section we define first-order signatures for
a knot K and make some elementary observations. These signatures are essentially
the L.2/ analogues of Casson–Gordon invariants, though not necessarily associated to
characters corresponding to metabolizers. They will play a small but central role in our
proofs.

Suppose K is a knot in S3 , G D �1.MK / and A0 DA0.K/ is its classical rational
Alexander module. Note that since the longitudes of K lie in �1.S

3�K/.2/ ,

A0 �G.1/=G.2/
˝ZŒt;t�1�QŒt; t

�1�:

Each submodule P �A0 corresponds to a unique metabelian quotient of G ,

�P W G!G= zP ;

by setting
zP � fx j x 2 kernel.G.1/

!G.1/=G.2/
!A0=P /g:

Note that G.2/� zP so G= zP is metabelian. In summary, to any such submodule P there
corresponds a real number, the Cheeger–Gromov invariant, �.MK ; �P W G!G= zP /.

Definition 3.1 The first-order L.2/–signatures of a knot K are the real numbers
�.MK ; �P / where P �A0.K/ satisfies P �P? with respect to the classical Blanch-
field form B`0 on K (ie B`0.p;p

0/D 0 for all p;p0 2 P ). Slightly more generally,
in light of property (2) of Proposition 2.2, we say that �.MK ; �/ for �W �1.MK /! �

is a first-order signature of K if

1. � factors through G=G.2/ , where G D �1.MK /;

2. kernel.�/ D kernel.G.1/ ! G.1/=G.2/ ! A0=P / for some submodule P �

A0.K/ such that P � P? with respect to the classical Blanchfield form on K .

The first-order signatures that correspond to metabolizers, that is submodules P for
which PDP? , have been previously studied and are closely related to Casson–Gordon–
Gilmer invariants [15; 16; 26; 30]. Since P D 0 always satisfies P � P? , we give a
special name to the signature corresponding to this case.

Definition 3.2 �1.K/ of a knot K is the first-order L.2/–signature given by the
Cheeger–Gromov invariant �.MK ; �W G!G=G.2//.
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Similar to Casson–Gordon invariants, if K is topologically slice in a rational homology
4–ball, then one of the first-order signatures of K must be zero. We will prove a more
general statement in Proposition 5.8. However none of the first-order signatures is itself
a concordance invariant. In particular there exist ribbon knots with �1 ¤ 0 as we shall
see below.

A genus one algebraically slice knot has precisely two metabolizers, P1 , P2 for the
Seifert form and so has precisely 3 first-order signatures, two corresponding to P1 and
P2 and the third corresponding to P3 D 0.

Example 3.3 Consider the knot K in Figure 9. This knot is obtained from a ribbon
knot R by two infections on the band meridians ˛; ˇ (as in the left-hand side of
Figure 7). Thus f˛; ˇg is a basis of A0.K/DA0.R/. There are 3 submodules P for

K D

K˛ Kˇ

Figure 9: A genus 1 algebraically slice knot K

which P �P? , namely P0D 0, P˛ D h˛i and Pˇ D hˇi. We may apply Lemma 2.3
to show

�.MK ; �P /D �.MR; �P /C �
˛
P�0.K˛/C �

ˇ
P
�0.Kˇ/

where �˛
P

is 0 or 1 according as �P .˛/ D 1 or not (similarly for �ˇ
P

). For our
example �P˛ .˛/ D 1 and �P˛ .ˇ/ ¤ 1. Similarly �Pˇ .ˇ/ D 1 and �Pˇ .˛/ ¤ 1.
By contrast �P0

.˛/ ¤ 1 and �P0
.ˇ/ ¤ 1. Moreover P˛ corresponds to the kernel

zP˛ , of �1.S
3 �R/! �1.B

4 ��˛/=�1.B
4 ��˛/

.2/ for the ribbon disk �˛ for
R obtained by “cutting the ˛–band”. (Similarly for Pˇ .) Thus in both cases the
maps �P on MR1

extend over ribbon disk exteriors. Consequently �.MR; �P /D 0

for P D P˛ and P D Pˇ , by Theorem 2.1. Of course �.MR; �P0
/ D �1.R/ by

definition. Putting this all together we see that the first-order signatures of the knot K
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are f�0.K˛/; �0.Kˇ/; �
1.R/C �0.K˛/C �0.Kˇ/g. Note that if we choose K˛ to be

the unknot and choose Kˇ so that �0.Kˇ/¤��
1.R/ then K is a ribbon knot with

�1 ¤ 0.

We remark that �1 vanishes for a .˙/–amphichiral knot by Proposition 3.4 but it is
not true that all the first-order signatures vanish for an amphichiral knot.

Proposition 3.4 If a 3–manifold M admits an orientation-reversing homeomorphism,
then �.M; �/D 0 for any � whose kernel is a characteristic subgroup of �1.M /.

Proof of Proposition 3.4 Suppose hW �M !M is an orientation preserving homeo-
morphism. Then for any � ,

�.M; �/D �.�M; � ı h�/D��.M; � ı h�/:

Since the � invariant depends only on the kernel of � , which, being characteristic, is
the same as the kernel of � ıh� , the last term equals ��.M; �/. Since the � invariant
is real-valued, it is zero.

A genus one knot that is not zero in the rational algebraic concordance group (that is
there is no metabolizer for the rational Blanchfield form) has precisely one first-order
signature, namely �1.K/ since any proper submodule P of the rational Alexander
module satisfying P � P? would have to be a (rational) metabolizer.

Example 3.5 The knot K in Figure 10 is of order two in the rational algebraic
concordance group and therefore �1 is the only first-order signature. Using Lemma
2.3, we see that �1.K/D �1.figure-eight/C 2�0.K

0/D 2�0.K
0/. Therefore if K0 is

chosen so that �0.K
0/¤ 0 then K is not slice in a rational homology ball.

K0 K0

Figure 10
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The definition of the first-order signatures is not quite the same as that implicit in the
work of Casson–Gordon–Gilmer and in more generality in [12, Theorem 4.6]. One
would hope that one need only consider those P such that P D P? . However this is
false in the context of rational concordance. The knots in Figure 10 are in general not
slice in a rational homology ball, but this fact is not detected by signatures associated
to metabolizers of the classical rational Blanchfield form. But this is detected by �1 .
Note that the figure-eight knot is slice in a rational homology 4–ball in such a way
that the Alexander module of the figure-eight knot injects into �=�.2/r where � is the
fundamental group of the complement of the slicing disk!

4 J2.K /

Recall that, for J2.K/, as in Figure 3, all classical invariants as well as those of
Casson–Gordon vanish. In this section, as a warm-up for more general results, we
prove that higher-order signatures yield further obstructions to J2.K/ being a slice
knot. We set J0 DK and let J2 D J2.K/DR ıR.K/ where R is the 946 knot.

Theorem 4.1 If J2.K/ is a slice knot then �0.K/ 2 f0;�
1
2
�1.R/g where �1.R/ is

the real number from Definition 3.2.

We obtain this as a corollary of the following more general result. Consider a knot J

as shown in Figure 11. Note that if xJ is algebraically slice then J has vanishing
Casson–Gordon invariants, so is indistinguishable from a slice knot by all previously
known techniques.

Theorem 4.2 If the knot J of Figure 11 is a slice knot (or even .2:5/–solvable) then
one of the first-order signatures of xJ vanishes.

Proof of Theorem 4.1 Suppose J2.K/ is slice. Since J1.K/ is algebraically slice,
applying Theorem 4.2 with J D J2.K/ and xJ D J1.K/ shows that one of the first
order signatures of J1.K/ vanishes. In Example 3.3 we saw that these signatures are
f�0.K/; �0.K/; �

1.R/C2�0.K/g. Thus either �0.K/D 0 or �0.K/D�
1
2
�1.R/.

Proof of Theorem 4.2 Suppose J is slice and let V denote the exterior of a slice
disk. Thus @V DMJ . Let � D �1.V /. Then H1.MJ / Š H1.V / Š �=�

.1/ Š Z.
Consider the coefficient system �! �=�.1/ Š Z and the inclusion-induced map

(4-1) j�W H1.MJ IQŒt; t
�1�/!H1.V IQŒt; t

�1�/
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J D

xJ xJ

Figure 11

which is merely the map on the classical rational Alexander modules. If V is a slice
disk exterior it is well known that the kernel P0 of j� is self-annihilating with respect to
the classical Blanchfield form on J , ie P0DP?

0
. The knot J has the same Blanchfield

form as the ribbon knot R D 946 so P0 is either the submodule generated by ˛ or
the submodule generated by ˇ . Because J is symmetric, without loss of generality
we assume P0 D h˛i. Furthermore, it is known, by work of D Cooper (unpublished)
and [13, Theorem 5.2] that the 0–th order signature of xJ vanishes, ie �0. xJ /D 0. By
definition

�.1/=�.2/r D .�.1/=Œ�.1/; �.1/�/=.Z–torsion/:

(Note that since �=�.1/ Š Z, �.1/r D �.1/ .) Thus there is a monomorphism

i W �.1/=�.2/r ,! .�.1/=Œ�.1/; �.1/�/˝Z Q:

The latter has a strictly homological interpretation as the first homology with Q
coefficients of the covering space of V whose fundamental group is �.1/ . In other
words

.�.1/=Œ�.1/; �.1/�/˝Z QŠH1.V IQŒ�=�
.1/�/:

Therefore we have the following commutative diagram where i is injective.

�1.MJ /
.1/ �1.MJ /

.1/
�.1/ �.1/=�.2/r

A0.J / H1.MJ IQŒt; t
�1�/ H1.V IQŒt; t

�1�/
�
.1/
r

Œ�
.1/
r ; �

.1/
r �
˝Z Q

-�

? ?

-
j� -

?
?
i

-Š -
j� -Š
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Since the kernel of the bottom horizontal composition is h˛i, the kernel of the top
horizontal composition is h˛i, and therefore it follows that

(4-2) j�.˛/ 2 �
.2/
r and j�.ˇ/¤ 1 2 �.1/=�.2/r :

Since J is obtained from R by two infections along ˛ and ˇ , from Lemma 2.5 there
is a corresponding cobordism E with 4 boundary components MJ , MR and two
copies of M xJ . R has an obvious ribbon disk that corresponds to “cutting the ˛ band”.
Let R denote the exterior in B4 of this ribbon disk. Then @RDMR .

Remark 4.3 The salient features of R are

1. �1.MR/! �1.R/ is an epimorphism whose kernel is generated by the normal
closure of ˛ ;

2. H1.MR/!H1.R/ is an isomorphism;

3. H2.R/D 0.

Construct a 4–manifold called W by first identifying �E with V along MJ and
then capping off the boundary component MR using �R, as shown in Figure 12.
The boundary components of W will be called M ˛

xJ
and M

ˇ
xJ

. Let z� D �1.W / and

M ˛
xJ

M
ˇ
xJ

R

MR

MJ

V

E

Figure 12: The cobordism W

� D z�=z�
.3/
r . Denote the projection z�! � by � and its restriction to the boundary

components by �˛ and �ˇ . We have

�.M ˛
xJ
; �˛/C �.M

ˇ
xJ
; �ˇ/D �

.2/
�
.W /� �.W /:
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By the additivity of both types of signature, the signature defect on the right-hand side
is a sum of the signature defects of V , R, and E . But these vanish; the first two by
Theorem 2.1 and the last by Lemma 2.4. Thus

(4-3) �.M ˛
xJ
; �˛/C �.M

ˇ
xJ
; �ˇ/D 0:

It follows from (4-2) that j�.˛/ 2 z�
.2/
r : Note that �1.M

˛
xJ
/ is normally generated by

the meridian which is isotopic in E to a push-off of the curve ˛�MJ (see property (4)
of Lemma 2.5). Therefore, j�.�1.M

˛
xJ
//� z�

.2/
r , and hence, j�.�1.M

˛
xJ
/.1//� z�

.3/
r .

Thus �˛ factors through the abelianization of �1.M
˛
xJ
/. Hence by properties (2)–(4)

of Proposition 2.2, �.M ˛
xJ
; �˛/ is either zero or �0. xJ /. However, as remarked earlier,

�0. xJ /D 0. Thus �.M ˛
xJ
; �˛/D 0.

From (4-3), we now have �.M ˇ
xJ
; �ˇ/ D 0: This finishes the proof of Theorem 4.2

once we establish that this is indeed a first order signature of xJ . Specifically, from
Definition 3.1 we must show that

1. �ˇ factors through G=G.2/ , where G D �1.M
ˇ
xJ
/;

2. ker�ˇ D ker .G.1/!G.1/=G.2/!A0=P / for some submodule P of the
Alexander module A0. xJ / such that P � P? with respect to the classical
Blanchfield form on xJ .

Since j�.ˇ/ 2 �
.1/ , it follows that j�.ˇ/ 2 z�

.1/ . Also �1.M
ˇ
xJ
/ is normally generated

by the meridian which is isotopic in E to a push-off of the ˇ �MJ (see property (4)
of Lemma 2.5). Therefore,

(4-4) j�.�1.M
ˇ
xJ
//� z�.1/:

Hence, j�.�1.M
ˇ
xJ
/.2//� z�

.3/
r . This establishes property 1 above.

To show property 2, we begin by showing that the inclusion V ! W induces an
isomorphism

(4-5) �=�.2/r ! z�=z�.2/r :

The map �1.V /! �1.V [E/ is a surjection whose kernel is the normal closure
of the set of longitudes f`˛; `ˇg of the copies of S3 � xJ � MJ (property (1) of
Lemma 2.5). These longitudes lie in the second derived subgroups of their respective
knot groups. The groups �1.S

3� xJ / are normally generated by the meridians of the
respective copy of S3� xJ . These meridians are identified to push-offs of the curves ˛
and ˇ respectively in MJ and we saw in (4-2) that j�.˛/ 2 �

.2/
r and j�.ˇ/ 2 �

.1/ .
Thus j�.`˛/ and j�.`ˇ/ lie in �.3/r and so the inclusion map V ! V [E induces an
isomorphism on �1 modulo �1.�/

.3/
r . Similarly the map �1.V [E/!�1.V [E[R/
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is a surjection whose kernel is the normal closure of the curve ˛�MR (by property (1)
of Remark 4.3). But this curve ˛ is isotopic in E to a push-off of the curve ˛ �MJ

and j�.˛/ 2 �
.2/
r . Thus the inclusion V [E!W induces an isomorphism on �1

modulo �1.�/
.2/
r . Combining these two isomorphisms yields (4-5).

Combining (4-2) and (4-5), we have that j�.ˇ/ ¤ 1 2 z�.1/=z�
.2/
r . Since this group

is torsion-free abelian, j�.ˇ/ generates an infinite cyclic subgroup of z�.1/=z�.2/r .
Therefore the inclusion of the meridian of M

ˇ
xJ

into W is an element of infinite order
in z�.1/=z�.2/r . We claim that the kernel of �ˇW G! � D z�=z�

.3/
r is contained in G.1/ .

For suppose x 2 ker�ˇ and x D �my where � is a meridian of M
ˇ
xJ

and y 2 G.1/ .
Since x 2 ker�ˇ , clearly x is in the kernel of the composition

 ˇW G
�ˇ
��! z�=z�.3/r ! z�=z�.2/r :

Moreover, by (4-4), �ˇ.G.1//� z�
.2/
r . Therefore �m is in the kernel of  ˇ , but this

contradicts the fact that � is an element of infinite order in z�.1/=z�.2/r . Thus the kernel
of �ˇW G!� is contained in G.1/ . It remains to describe P and to show that P �P?

with respect to the Blanchfield form on xJ .

We consider the coefficient system  W z� ! z�=z�
.2/
r � ƒ. By (4-4),  restricted to

�1.M
ˇ
xJ
/ factors through the abelianization. Thus (as we shall discuss in more detail in

Section 6)

H1.M
ˇ
xJ
IQƒ/ŠH1.M

ˇ
xJ
IQŒt; t�1�/˝QŒt;t�1�Qƒ:

Consider the composition

(4-6) A0. xJ /
i
,!A0. xJ /˝QŒt;t�1�Qƒ

Š
!H1.M

ˇ
xJ
IQƒ/

j�
!H1.W IQƒ/:

We claim i D id˝1 is a map of QŒt; t�1�–modules. Recall that A0. xJ /˝QŒt;t�1�Qƒ
is a right Qƒ–module and hence can be considered as a right QŒt; t�1�–module using
the embedding Z ,!ƒ where, let’s say, t ! �. If x 2A0. xJ / and p.t/ 2QŒt; t�1�

then

id˝1.xp.t//D xp.t/˝ 1D x˝ .p.�/ � 1/

D x˝ .1 �p.�///D .x˝ 1/�p.t/D .id˝1.x//�p.t/:

Thus id˝1 is a right QŒt; t�1�–module map. Define P1 to be the kernel of the
composition in (4-6). We claim that P1 is the submodule P of the Alexander module
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referred to above. Consider the following commutative diagram where i is injective.

�1.M
ˇ
xJ
/.1/

�
��! �1.M

ˇ
xJ
/.1/

j�
��! z�

.2/
r ��! z�

.2/
r =z�

.3/
r??y ??y ??y ??yi

A0. xJ / ��! H1.M
ˇ
xJ
IQƒ/

j�
��! H1.W IQƒ/

Š
��! .z�

.2/
r =Œz�

.2/
r ; z�

.2/
r �/˝Z Q

Given an element in P1 , choose a representative of this element in G.1/D �1.M
ˇ
xJ
/.1/ .

By the diagram above, since i is injective, it follows that the representative of this
element must map into z�.3/r . In other words, the representative is in the kernel of �ˇ .
This establishes that ker�ˇ D ker .G.1/!G.1/=G.2/!A0=P1/. Thus P1 D P .

Recall the classical fact (used above) that if V is the slice disk complement for a
slice knot J , then the kernel P0 of j�W H1.MJ IQŒt; t

�1�/ ! H1.V IQŒt; t
�1�/ is

self-annihilating with respect to the classical Blanchfield form on J , ie P0 D P?
0

. We
would like to extend this to show that the kernel P1 satisfies P1 � P?

1
with respect to

the classical Blanchfield form on xJ .

But M
ˇ
xJ
!W is quite different than the classical situation. First, M

ˇ
xJ

is not the only
boundary component of W . Secondly, the map M

ˇ
xJ
!W is the zero map on H1.�/!

Thirdly, Qƒ is not a PID. Nonetheless, after defining a new category of cobordisms in
Section 5 we are able to prove the required facts using higher-order Blanchfield linking
forms.

The desired result to finish the proof at hand is Theorem 6.6 with kD2. The verification
that W is a .2/–bordism is straight-forward. We have not included all the details in this
proof because we have not yet covered all the results necessary to prove the theorem,
but thought it valuable to see the ideas and to provide motivation for the new category
of cobordisms we define in the next section.

5 n–Bordisms and rational n–bordisms

Our proof makes essential use of a much weaker notion than the .n/–solvability of
Cochran–Orr–Teichner. In this section we define this notion and establish its key
properties.

Recall that [12, Section 8] introduced a filtration of the concordance classes of knots C

� � � � Fn � � � � � F1 � F0:5 � F0 � C;

where the elements of Fn and Fn:5 are called .n/–solvable knots and .n:5/–solvable
knots respectively. This is a filtration by subgroups of the knot concordance group.
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A slice knot K has the property that its zero surgery MK bounds a 4–manifold W

(namely the exterior of the slicing disk) such that H1.MK /!H1.W / is an isomor-
phism and H2.W /D 0. An .n/–solvable knot is, loosely speaking, one such that MK

bounds a 4–manifold W such that H1.MK /!H1.W / is an isomorphism and the
intersection form on H2.W / “looks” hyperbolic modulo the n–th term of the derived
series of �1.W /. The manifold W is called an .n/–solution for @W . These notions
are defined below in the context of our new notion.

We will define a weaker notion where the condition that H1.@W /!H1.W / be an
isomorphism is dropped. Somewhat surprisingly the key results still hold for this much
weaker notion. Of lesser importance, we also drop the condition on the connectivity of
@W , which had already been done in [11] in restricted cases.

For a compact connected oriented topological 4–manifold W , let W .n/ denote the
covering space of W corresponding to the n–th derived subgroup of �1.W /. The
deck translation group of this cover is the solvable group �1.W /=�1.W /.n/ . Then
H2.W

.n/IQ/ can be endowed with the structure of a right QŒ�1.W /=�1.W /.n/�–
module. This agrees with the homology group H2.W IQŒ�1.W /=�1.W /.n/�/ with
twisted coefficients. There is an equivariant intersection form

�nW H2.W
.n/
IQ/�H2.W

.n/
IQ/ �!QŒ�1.W /=�1.W /.n/�

by [44, Chapter 5; 12, Section 7]. The usual intersection form is the case nD 0. In
general, these intersection forms are singular. Let In � image(j�W H2.@W

.n/IQ/!
H2.W

.n/IQ/). Then this intersection form factors through

�nW H2.W
.n/
IQ/=In �H2.W

.n/
IQ/=In �!QŒ�1.W /=�1.W /.n/�:

A rational .n/–Lagrangian, L, of W is a submodule of H2.W IQŒ�1.W /=�1.W /.n/�/

on which �n vanishes identically and which maps onto a 1
2

–rank subspace of the quo-
tient H2.W IQ/=I0 under the covering map. An .n/–surface is a based and immersed
surface in W that can be lifted to W .n/ . Observe that any class in H2.W

.n// can be
represented by (the lift of) an .n/–surface and that �n can be calculated by counting
intersection points in W among representative .n/–surfaces weighted appropriately by
signs and by elements of �1.W /=�1.W /.n/ (see [12, Section 7]). We say a rational
.n/–Lagrangian L admits rational .m/–duals (for m� n) if L is generated by (lifts
of) .n/–surfaces `1; `2; : : : ; `g and there exist .m/–surfaces d1; d2; : : : ; dg such that
H2.W IQ/=I0 has rank 2g and �m.`i ; dj /D ıi;j .

If W is a spin manifold then we can replace all the occurrences of Q above by Z and
consider the equivariant intersection form �Z

n on H2.W
.n/IZ/ as well as the equivariant

self-intersection form �n . This leads to the definitions of an .n/–Lagrangian and .m/–
duals for W , where �n is required to vanish identically on an .n/–Lagrangian and we
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also require that the .n/–Lagrangian maps onto a 1
2

–rank summand of H2.W IZ/=I0 .
In the presence of .n/–duals, this forces the usual intersection form on H2.W IZ/=I0

to be hyperbolic [12, Remark 7.6]. All of the above notions were first defined in [12].
In [11] this was extended to the case that @W is disconnected but required each
boundary component Mi to satisfy H1.Mi/ŠH1.W /Š Z.

A crucial part of the definition is the “size” (cardinality) of a rational .n/–Lagrangian,
which is dictated by the rank of H2.W IQ/=I0 . Under the assumption that

H1.@W IQ/!H1.W IQ/

is an isomorphism, it follows that the dual map

H3.W;M IQ/!H2.@W IQ/

is an isomorphism and hence that I0 D 0. Thus in this special case (which was the
case treated in [11; 12; 24]), the size of rational .n/–solutions is dictated merely by
the rank of H2.W IQ/. This assumption will not hold in our applications. We need
the more general situation.

Definition 5.1 Let n be a nonnegative integer. A compact, connected oriented topo-
logical 4–manifold W with @W DM is a rational .n/–bordism for M if W admits
a rational .n/–Lagrangian with rational .n/–duals. Then we say that M is rationally
.n/–bordant via W and that W is a rational .n/–bordism for M . If W is spin then we
say that W is an .n/–bordism for M if W admits an .n/–Lagrangian with .n/–duals.
Then we say that M is .n/–bordant via W and that W is an .n/–bordism for M .

Definition 5.2 Let n be a nonnegative integer. A compact, connected oriented 4–
manifold W with @W DM is a rational .n:5/–bordism for M if W admits a rational
.nC1/–Lagrangian with rational .n/–duals. Then we say that M is rationally .n:5/–
bordant via W . If W is spin then we say that W is an .n:5/–bordism for M if W

admits an .nC1/–Lagrangian with .n/–duals. Then we say that M is .n:5/–bordant
via W and that W is an .n:5/–bordism for M .

We recover Cochran–Orr–Teichner’s notion of solvability by imposing the following
additional restrictions.

Definition 5.3 [12, Section 8] A 4–manifold W is an .n/–solution (respectively
an .n:5/–solution) for @W DM and M is called .n/–solvable (respectively .n:5/–
solvable) if

1. W is an .n/–bordism (respectively an .n:5/–bordism);
2. @W is connected and nonempty;
3. H1.@W IZ/!H1.W IZ/ is an isomorphism.
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There is an analogous definition for rationally .n/–solvable (respectively rationally
.n:5/–solvable).

Definition 5.4 For h a nonnegative integer or half-integer, a knot or link is called .h/–
bordant (respectively rationally .h/–bordant, .h/–solvable, rationally .h/–solvable)
if its zero surgery manifold MK admits an .h/–bordism (respectively a rational .h/–
bordism, an .h/–solution, a rational .h/–solution).

Remark 5.5 (1) Any .h/–bordism is a rational .h/–bordism.

(2) Any .h/–solution is a rational .h/–solution.

(3) Any .h/–solution is an .h/–bordism.

(4) Any rational .h/–solution is a rational .h/–bordism.

(5) Any .n/–bordism (respectively rational .n/–bordism) is an .m/–bordism (re-
spectively rational .m/–bordism) for any m< n.

(6) If L is slice in a topological (rational) homology 4–ball then the complement of
a set of slice disks is a (rational) .n/–solution for any integer or half-integer n.
This follows since H2.W IZ/D 0, and therefore the Lagrangian may be taken
to be the zero submodule.

Remark 5.6 One can see that any knot is rationally 0–solvable as follows. Since
�3.S

1/D 0, MK is the boundary of some smooth 4–manifold W with �1.W /Š Z
generated by the meridian (after surgery). The signature of W can be assumed to be
zero by connect-summing with copies of ˙CP .2/. One can see that any Arf invariant
zero knot is 0–solvable in the topological category by the same argument, using the
fact that �Spin

3
.S1/Š Z2 as detected by the Arf invariant and connect-summing with

copies of Freedman’s ˙E8 manifold. For the argument in the smooth category see the
explicit construction in [13, Section 5].

Certain �–invariants obstruct solvability.

Theorem 5.7 [12, Theorem 4.2] If a knot K is rationally .n:5/–solvable via W and
�W �1.MK /! � is a PTFA coefficient system that extends to �1.W / and such that
�.nC1/ D 1, then �.MK ; �/D 0.

Proposition 5.8 If K is topologically slice in a rational homology 4–ball (or more
generally if K is rationally .1:5/–solvable) then one of the first-order signatures of K

is zero.
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Proof Let V be a rational .1:5/–solution for MK , G D �1.MK /, � D �1.V / and
�W �! �=�

.2/
r . By [12, Theorem 4.2] �.MK ; �/D 0. Clearly the restriction of � to

G factors through G=G.2/ . Now, by [12, Theorem 4.4] (see also our Theorem 6.6), if
P denotes the kernel of the map

A0.K/
i�
!H1.MK IQŒ�=�

.1/
r �/

j�
!H1.V IQŒ�=�

.1/
r �/;

then P � P? with respect to the classical Blanchfield form of K . If V is the exterior
of a slice disk in a homology 4–ball, this is merely the classical result that P D P? .
It follows that �.MK ; �/ is one of the first-order signatures of K . The details in
verifying this final claim are entirely similar to those in the proof of Theorem 4.2.

There is an extension of Theorem 5.7 to the much broader category of .n:5/–null
bordisms, but we shall not need it in this paper. However, a slightly weaker result will
follow readily from results that we will need.

Theorem 5.9 Suppose W is a rational .nC1/–bordism and �W �1.W / �! � is a
nontrivial coefficient system where � is a PTFA group with �.nC1/ D 1. Suppose
for each component Mi of @W for which � restricted to �1.Mi/ is nontrivial, that
rankZƒH1.Mi IZ�/D ˇ1.Mi/� 1. Then

�.@W; �/D 0:

For the proof we need the following technical result that will also be crucial in Section 6.
Recall our notation Kƒ for the (skew) quotient field of fractions of Zƒ. An Ore
localization of an Ore domain Zƒ is RD ZƒŒS�1� for some right-Ore set S [42].

Lemma 5.10 Suppose W is a rational .k/–bordism and �W �1.W / �!ƒ is a non-
trivial coefficient system where ƒ is a PTFA group with ƒ.k/ D 1. Let R be an Ore
localization of Zƒ so Zƒ�R�Kƒ. Suppose for each component Mi of @W for
which � restricted to �1.Mi/ is nontrivial, that rankZƒH1.Mi IZƒ/D ˇ1.Mi/� 1.
Then:

1. The Q–rank of H2.W /=j�.H2.@W // is equal to the Kƒ–rank of H2.W IR/=I
where

I D image.j�.H2.@W IR/!H2.W IR///:
2. The sequence

TH2.W; @W IR/ @�! TH1.@W IR/
j�
�! TH1.W IR/

is exact, where TM denotes the R–torsion submodule of the R–module M.
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We should point out that the rank hypothesis on H1.Mi IZƒ/ is always satisfied if
ˇ1.M /D 1 (by [12, Proposition 2.11]), which will always be the case in this paper.
The more general result is needed to study links.

Proof of Lemma 5.10 First we establish the rank claim. We can assume that @W is
not empty. Let ˇi denote the i –th Betti number. By duality

ˇ3.W /D ˇ1.W; @W / and ˇ2.W /D ˇ2.W; @W /:

Using these facts, by examining the long exact sequence of the pair for reduced
homology with Q–coefficients

H2.@W /
j2
�
!H2.W /!H2.W; @W /

@�
!H1.@W /

j�
!H1.W /!H1.W; @W /! fH0.@W /

and setting alternating sums of ranks equal to zero, we see that

� rankQ imj 2
� D�ˇ1.@W /Cˇ1.W /�ˇ3.W /Cˇ0.@W /� 1:

Now let 2mD rankQ.H2.W /=j 2
� .H2.@W //. Then from the above we have

2mD ˇ2.W /� rankQ imj 2
� D ˇ2.W /�ˇ1.@W /Cˇ1.W /�ˇ3.W /Cˇ0.@W /�1;

or 2mD �.W /C 2ˇ1.W /� 2�ˇ1.@W /Cˇ0.@W /

where � is the Euler characteristic.

We claim that 2m is also the Kƒ–rank of H2.W IR/=I . First we show that this rank
is at most 2m. To see this let

bi.W /D rankKƒHi.W IKƒ/� rankZƒHi.W IZƒ/:

Again, by duality

b3.W /D b1.W; @W / and b2.W /D b2.W; @W /:

Since W is connected and the coefficient system on W is nontrivial, b0.W / D

b4.W /D 0 by [12, Proposition 2.9]. Using these facts, by examining the long exact
sequence of the pair for homology with Kƒ–coefficients

H2.@W /
j2
�
!H2.W /!H2.W; @W /

@�
�!H1.@W /

j�
!H1.W /!H1.W; @W /!H0.@W /;

we see as above that

� rankKƒ imj 2
� D�b1.@W /C b1.W /� b3.W /C b0.@W /:
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so the rank of H2.W IR/=I is

b2.W /� rankKƒ imj 2
� D b2.W /� b1.@W /C b1.W /� b3.W /C b0.@W /:

Since the Euler characteristic can be calculated with Kƒ–coefficients this can be
written

rankKƒ

�
H2.W IR/

I

�
D �.W /C 2b1.W /� b1.@W /C b0.@W /:

Combining this with our previous computation

rank
�

H2.W IR/
I

�
� 2m

D 2.b1.W /�ˇ1.W /C 1/Cˇ1.@W /� b1.@W /�ˇ0.@W /C b0.@W /:

We claim that the quantity on the right-hand side of this equality is at most zero. By [12,
Proposition 2.11]

b1.W /� ˇ1.W /� 1

so the quantity in parentheses is nonpositive. Thus it will suffice to show that

.ˇ1.Mi/� b1.Mi//� .ˇ0.Mi/� b0.Mi//D 0

for each component Mi of @W . If Mi is a boundary component on which � restricts
to be trivial, then this is clear since then the Q–ranks agree with the Kƒ–ranks.
Otherwise ˇ0.Mi/D 1, b0.Mi/D 0 by [12, Proposition 2.9] and

b1.Mi/D ˇ1.Mi/� 1

by our hypothesis. Thus we have established that

rankKƒ.H2.W IR/=I/� 2m:

We shall soon see that this rank is at least 2m, hence equals 2m.

Remark 5.11 Note that we have actually shown more. Even with no rank assumptions
on the boundary, we have shown that

rankKƒ.H2.W IR/=I/� 2mC
X
�i¤0

.ˇ1.Mi/� 1� b1.Mi//:

This remark will be used in a later paper.

Recall that the cardinality of a rational .k/–Lagrangian for W is, by definition, m.
Let f`1; `2; : : : ; `mg generate a rational .k/–Lagrangian for W and fd1; d2; : : : ; dmg

its .k/–duals in H2.W IQŒ�1.W /=�1.W /.k/�/. Since ƒ.k/ D 1, � factors through
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�0W �1.W /=�1.W /.k/ �! ƒ. We denote by `0i and d 0i the images of `i and di in
H2.W IR/. By naturality of intersection forms, the intersection form � defined on
H2.W IR/ vanishes on the module generated by f`0

1
; `0

2
; : : : ; `0mg and the d 0i are still

duals. Recall that the intersection form factors through

x�W H2.W IR/=I �H2.W IR/=I �!R:

Let Rm˚Rm be the free module on f`0i ; d
0
ig and let .�/� denote HomR.�;R/. The

following composition

Rm
˚Rm j�

�! .H2.W IR/=I/
x�
�! .H2.W IR/=I/�

j�

�! .Rm
˚Rm/�

is then the definition of x� (restricted to this free module) and so is represented by a
block matrix �

0 I

I X

�
;

for some X . This matrix has an inverse which is�
�X I

I 0

�
:

Thus the composition is an isomorphism. This implies that both j � and j � ı x� are
epimorphisms. It follows immediately that

rankKƒ.H2.W IR/=I/� 2m

and hence equality must hold. This concludes the proof of the first claim of the lemma.

Continuing, the rank of .H2.W IR/=I/� must also be 2m, and hence the kernel of
the epimorphism j � is the torsion submodule of .H2.W IR/=I/� . But the latter is
torsion-free since R is a domain. Hence j � is an isomorphism and .H2.W IR/=I/�
is free of rank 2m. It follows that x� is surjective. Now consider the commutative
diagram below with R–coefficients.

H2.W /=I H2.W; @W / H1.@W / H1.W /

H 2.W / H 2.@W /

.H2.W /=I/� .H2.W //� .H2.@W //�

-��

@
@
@
@
@
@R

�

?

x�

-@�

?
PD

-
j�

?
PD

?
�

?
�

-
q� -

j �

Given p 2 TH1.@W IR/ such that j�.p/D 0, choose x such that @�x D p . Since p

is torsion, � ıPD.p/D 0 and so � ıPD.x/D q�.z/ for some z 2 .H2.W /=I/� . Since
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x� is surjective, we can choose y such that element x�.y/D z . Then @�.x���.y//Dp

and x � ��.y/ lies in the kernel of � ı PD, hence is torsion. Thus we have shown
that every torsion element of kerj� is in the image of an element of TH2.W; @W IR/.
This concludes the proof of the Lemma 5.10.

Proof of Theorem 5.9 Note that the ordinary signature of any .nC1/–bordism van-
ishes since the .nC1/–Lagrangian projects to a Lagrangian of the ordinary intersection
form. Let zI denote the image of the map

H2.@W IK�/
j�
�!H2.W IK�/:

By property (1) of Proposition 2.2, it suffices to show that there is a one-half rank
submodule, L of H2.W IK�/=zI on which z� vanishes. By the first part of Lemma
5.10, applied with ƒD � , k D nC 1 and RDK� , we see that we need to find an L
whose rank is one half of

rankQ.H2.W IQ/=I0/

where I0 is the image of H2.@W IQ/. Let f`1; `2; : : : ; `mg generate a rational .nC1/–
Lagrangian for W and fd1; d2; : : : ; dmg its duals in H2.W IQŒ�1.W /=�1.W /.nC1/�/.
Recall that the cardinality of m of a generating set for a Lagrangian is such that

mD 1=2 rankQ.H2.W IQ/=I0/:

Since �.nC1/ D 1, � factors through �0W �1.W /=�1.W /.nC1/ �! � . We denote by
z̀
i and zdi the images of `i and di in H2.W IK�/=zI . By naturality of intersection

forms, the (nonsingular) intersection form z� induced on H2.W IK�/=zI vanishes on
the submodule, L, generated by fz̀1; z̀2; : : : ; z̀mg. Moreover the zdi are still duals.
Since duals exist,

rankK� LDm

as required.

6 Higher-order Blanchfield forms and n–bordisms

We have seen in Lemma 2.3 that an infection will have an effect on a �–invariant only
if the infection circle � survives under the map defining the coefficient system. For
example if one creates a knot J by infecting a slice knot R along a curve � that dies in
�1.B

4��/ for some slice disk � for R, then this infection will have no effect on the
�–invariants associated to any coefficient system that extends over B4��. Indeed the
resulting knot is known to be topologically slice [8]. Therefore it is important to prove
injectivity theorems concerning �1.S

3�R/! �1.B
4��/, that is to locate elements
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of �1.S
3�R/ that survive under such inclusions. Moreover the curve � must usually

lie in �1.S
3 �R/.n/ . For then it is known that J will be rationally n–solvable and

we seek to show that it is not .n:5/–solvable. Therefore, loosely speaking, we need to
be able to prove that � survives under the map

j�W �1.S
3
�R/.n/=�1.S

3
�R/.nC1/

! �1.B
4
��/.n/=�1.B

4
��/.nC1/:

For n D 1 this is a question about ordinary Alexander modules and was solved by
Casson–Gordon and Gilmer using linking forms on finite branched covers. In general
this seems a daunting task. (Note that this is impossible if �1.B

4��/ is solvable, which
occurs, for example, for the standard slice disk for the ribbon knot R of Figure 1 (eg see
Friedl and Teichner [17])). To see that higher-order Alexander modules are relevant to
this task, observe that the latter quotient is the abelianization of �1.B

4��/.n/ and thus
can be interpreted as H1.Wn/ where Wn is the (solvable) covering space of B4��

corresponding to the subgroup �1.B
4��/.n/ . Such modules were named higher-order

Alexander modules in [7; 12; 23]. We will employ higher-order Blanchfield linking
forms on higher-order Alexander modules to find restrictions on the kernels of such
maps. The logic of the technique is entirely analogous to the classical case (nD 1):
Any two curves �0; �1 , say, that lie in the kernel of j� must satisfy B`.�0; �0/ D

B`.�0; �1/D B`.�1; �1/D 0 with respect to a higher order linking form B`. Our new
insight is that, if the curves lie in a submanifold S3�K ,! S3�J , a situation that
arises whenever J is formed from R by infection using a knot K , then the values
(above) of the higher-order Blanchfield form of J can be expressed in terms of the
values of the classical Blanchfield form of K !

Higher-order Alexander modules and higher-order linking forms for classical knot
exteriors and for closed 3–manifolds with ˇ1.M /D1 were introduced in [12, Theorem
2.13] and further developed in [7; 29]. These were defined on the so called higher-
order Alexander modules TH1.M IR/, where TH1.M IR/ denotes the R–torsion
submodule.

Theorem 6.1 [12, Theorem 2.13] Suppose M is a closed, connected, oriented 3–
manifold with ˇ1.M /D 1 and �W �1.M /!ƒ is a PTFA coefficient system. Suppose
R is a classical Ore localization of the Ore domain Zƒ (so Zƒ �R � Kƒ). Then
there is a linking form

BlM
R W TH1.M IR/! .TH1.M IR//# � HomR.TH1.M IR/;Kƒ=R/:

Remark 6.2 It is crucial to our techniques that we work with such Blanchfield forms
without localizing the coefficient systems. When we speak of the unlocalized Blanch-
field form we mean that R D Zƒ or R D Qƒ. It is in this aspect that our work
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deviates from that of [11; 12; 13]. This was investigated in [28; 29]. In this generality,
TH1.M IR/ need not have homological dimension one nor even be finitely-generated,
and these linking forms are singular. A nonlocalized Blanchfield form for knots also
played the crucial role in [17].

There is another key result of [12] concerning solvability whose generalization to
null-bordism will be a crucial new ingredient in our proofs. Once again, the rank
hypothesis is automatically satisfied if ˇ1.Mi/D 1.

Theorem 6.3 Suppose W is a rational .k/–null-bordism and �W �1.W / �!ƒ is a
nontrivial coefficient system where ƒ is a PTFA group with ƒ.k/D 1. Let R be an Ore
localization of Zƒ so Zƒ�R�Kƒ. Suppose that, for each component Mi of @W
for which � restricted to �1.Mi/ is nontrivial, that rankZƒH1.Mi IZƒ/Dˇ1.Mi/�1.
Then if P is the kernel of the inclusion-induced map

TH1.@W IR/
j�

�! TH1.W IR/;

then P � P? with respect to the Blanchfield form on TH1.@W IR/.

Proof of Theorem 6.3 We need the following which was asserted in the proof of [12,
Theorem 4.4]. A careful proof in more generality is given in [10] (See also [5, Lemmas
3.2, 3.3]).

Lemma 6.4 There is a Blanchfield form, Bl rel ,

Bl rel
R W TH2.W; @W IR/! TH1.W /#

such that the following diagram, with coefficients in R unless specified otherwise, is
commutative up to sign:

(6-1)

TH2.W; @W IR/ TH1.@W IR/

TH1.W IR/# TH1.@W IR/#

-@�

?
Bl rel
R

?
Bl@WR

-
zj�

Now suppose P D kernelj��TH1.@W IR/. Suppose x 2P and y 2P . According to
Lemma 5.10, we have xD @�.zx/ for some zx 2TH2.W; @W /. Thus by Diagram (6-1),

Bl@WR .x/.y/D Bl@WR .@�zx/.y/D zj�.Bl rel
R .zx/.y//D Bl rel

R .@�zx/.j�.y//D 0

since j�.y/D0. Hence P �P? with respect to the Blanchfield form on TH1.@W IR/.

This concludes the proof of Theorem 6.3.
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In many important situations the induced coefficient system �W �1.MK /!ƒ factors
through, Z, the abelianization. In this case the higher-order Alexander module of
MK and the higher-order Blanchfield form BlK

ƒ
are merely the classical Blanchfield

form on the classical Alexander module, “tensored up”. What is meant by this is the
following. Supposing that � is both nontrivial and factors through the abelianization,
the induced map image.�/� Z ,!ƒ is an embedding so it induces embeddings

�W QŒt; t�1� ,!Qƒ; and �W Q.t/ ,!Kƒ:

Moreover there is an isomorphism

H1.MK IQƒ/ŠH1.MK IQŒt; t
�1�/˝QŒt;t�1�QƒŠA0.K/˝QŒt;t�1�Qƒ;

where A0.K/ is the classical (rational) Alexander module of K and where Qƒ is a
QŒt; t�1�–module via the map t ! �.˛/ [7, Theorem 8.2]. We further claim:

Lemma 6.5 � induces an embedding

x�W Q.t/=QŒt; t�1� ,!Kƒ=Qƒ:

Proof Consider the monomorphism of groups Z
�
,!ƒ, where we will abuse notation

by setting t � �.t/. In other words we will consider that Z�ƒ. Then the Lemma is
equivalent to

Q.t/\Qƒ�QŒt; t�1�:

Suppose p.t/=r.t/D x 2Qƒ;

where r.t/¤ 0. We seek to show that x 2QŒt; t�1�. Consider the equation

(6-2) p.t/D xr.t/

in Qƒ. The key point is that since Z�ƒ, Qƒ is free as a right QŒt; t�1�–module
on the left cosets of Z in ƒ, ie

QƒŠ
M
cosets

QŒt; t�1�:

Thus for each coset representative  we can speak of the  coordinate of x , x , which
is the polynomial in QŒt; t�1� occurring in the above decomposition of x . We can
decompose x as

x D†x ) xr.t/D† .x r.t//:

Equation (6-2) is equivalent to a system of equations, one for each coset representative.
For each  ¤ e this equation is

0D x .t/r.t/;

implying that x .t/D 0. Thus x 2QŒt; t�1�.
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Continuing, then we also have

(6-3) BlK
ƒ .x˝ 1;y˝ 1/D x�.BlK

0 .x;y//

for any x;y 2 A0.K/, where BlK
0

is the classical Blanchfield form on the rational
Alexander module of K [28, Proposition 3.6; 29, Theorem 4.7] (see also [4, Section
5.2.2]).

The following is perhaps the key technical tool of the paper, that we use to establish
certain “injectivity” as discussed in the first paragraph of this section. For the reader
who is just concerned with proving that knots and links are not slice, replace the
hypothesis below that “W is a rational .k/–solution for ML ” with the hypothesis that
“L is a slice link and W is the exterior in B4 of a set of slice disks for L”. Such an
exterior is a rational .k/–solution for any k .

Theorem 6.6 Suppose W is a rational .k/–bordism one of whose boundary com-
ponents is MK , ƒ is a PTFA group such that ƒ.k/ D 1, and  W �1.W /! ƒ is a
coefficient system whose restriction to �1.MK / is denoted � . Suppose that � factors
nontrivially through Z. Let P be the kernel of the composition

A0.K/
id˝1
���!A0.K/˝QŒt;t�1�Qƒ

i�
�!H1.MK IQƒ/

j�
�!H1.W IQƒ/:

Then P �P? with respect to Bl0 , the classical Blanchfield linking form on the rational
Alexander module, A0.K/, of K .

Proof Suppose x;y 2 P as in the statement. Let R D Qƒ, M D MK and let
P be the submodule of H1.M IQƒ/ generated by fi�.x ˝ 1/; i�.y ˝ 1/g. Then
P � kernel j� . Apply Theorem 6.3 to conclude that

BlK
ƒ .i�.x˝ 1//; .i�.y˝ 1//D 0:

By (6-3), x�.BlK
0 .x;y//D 0:

Since x� is a monomorphism by Lemma 6.5 it follows that BlK
0
.x;y/ D 0. Thus

P �P? with respect to the classical Blanchfield form on K . This concludes the proof
of Theorem 6.6.

7 Constructions of .n/–solvable knots

In preparation for our proof that Fn=Fn:5 has infinite rank, we will exhibit large classes
of knots that are .n/–solvable, including the knots Jn.K/, for any J0DK of Figure 3.
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Specifically we show that any knot obtained by starting with an Arf invariant zero knot
and applying n successive operators R

�ij

i , where R is a slice knot and the �ij are in
the commutator subgroup, is .n/–solvable. In the proof of our main theorem we will
need an .n/–solution with some special features, which we produce here.

Theorem 7.1 If Ri , 1 � i � n, are slice knots and �ij 2 �1.S
3 �Ri/

.1/ (where
f�i1; : : : ; �imi

g is a trivial link in S3 ) then, abbreviating the operator R
�ij

i by Ri ,

Rn ı � � � ıR2 ıR1.F0/� Fn:

More precisely, for any Arf invariant zero knot K , if we abbreviate Rnı� � �ıR2ıR1.K/

by Jn then the zero surgery on Jn , denoted Mn , bounds an .n/–solution Zn with the
following additional properties:

1. �1.@Zn/! �1.Zn/ is surjective.

2. For any PTFA coefficient system �W �1.Zn/! � where �.nC1/ D 1

�.Mn; �/D �
.2/
�
.Zn/� �.Zn/D c��0.K/

where c� is a nonnegative integer bounded above by the product m1m2 � � �mn .

Corollary 7.2 For any Arf invariant zero knot K D J0 , each Jn as in Figure 3 is
.n/–solvable. Moreover the zero surgery on Jn bounds an .n/–solution Zn with the
following additional properties:

1. �1.@Zn/! �1.Zn/ is surjective.

2. For any PTFA coefficient system �W �1.Zn/! � where �.nC1/ D 1

�.Mn.K/; �/D �
.2/
�
.Zn/� �.Zn/D c��0.K/

where c� is an integer such that 0� c� � 2n .

Proof of Theorem 7.1 The proof is by induction on n. Suppose nD 0 so Jn DK

and Mn DMK . Any Arf invariant zero knot K admits a .0/–solution Z0 such that
�1 Š Z so property 1 holds (see Remark 5.6 or [13, Section 5]). Then, since � is
abelian if n D 0, � factors through Z and so �.MK ; �/ is either zero or equal to
�0.K/ (see part 4 of Proposition 2.2). Thus the theorem holds for nD 0.

Now suppose that Zn�1 exists satisfying the properties (1) and (2). We construct Zn

as follows. Recall that, by definition, Jn D Rn.Jn�1/ is obtained from Rn by mn

infections along the circles f�n1; : : : ; �nmn
g using the knot Jn�1 as the infecting knot

in each case. Recall also from Lemma 2.5 that there was a corresponding cobordism
E with mnC 2 boundary components: Mn , MRn

and mn copies of Mn�1 as shown
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in Figure 8. Beginning with E , cap off the mn boundary components with mn copies
of Zn�1 and cap off MRn

with RD B4��, the exterior of any ribbon disk � for
Rn as shown schematically in Figure 13. The resulting manifold has a single copy of
Mn as boundary and is denoted Zn .

Zn�1 Zn�1

R

Mn�1

: : : : : :

� -

Mn
�

Figure 13: Zn

Property 1 of Theorem 7.1 follows from property 1 for Zn�1.K/ together with property
(1) of Lemma 2.5.

Zn.K/ is an .n/–solution This will follow from a simple analysis of H2.ZnIZ/.
We will drop the Z from the notation here for simplicity.

Recall from Lemma 2.5 that

H2.E/ŠH2.MR/˚

mnM
jD1

H2.Mn�1/:

Since Zn�1 is an .n�1/–solution, H1.Mn�1/! H1.Zn�1/ is an isomorphism. It
follows from duality that H2.Mn�1/ ! H2.Zn�1/ is the zero map (a capped-off
Seifert surface for Jn�1 is a generator of the former and arises as the inverse image of
a regular value under a map to a circle. Extend this map to Zn�1 and pull back to get
a bounding 3–manifold). Therefore the Mayer–Vietoris sequence implies that

H2

�
E [

mn[
jD1

Zn�1

�
ŠH2.MR/˚

mnM
jD1

H2.Zn�1/:
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The same facts apply to MR D @R by Remark 4.3 so

H2.Zn/DH2

�
E [

� mn[
jD1

Zn�1

�
[R

�
Š

mnM
jD1

H2.Zn�1/;

since H2.R/D 0.

Let f`j
1
; : : : ; `

j
gg be a collection of .n�1/–surfaces generating an .n�1/–Lagrangian

for the j –th copy, Z
j
n�1

, of the .n�1/–solution Zn�1 and fdj
1
; : : : ; d

j
g g a collection

of .n�1/–surfaces that are .n�1/–duals. By our analysis of H2 , these collections,
taken together for 1� j �mn , represent a basis for H2.Zn/ and so have the required
cardinality to generate an n–Lagrangian with .n/–duals for Zn . By property (1) of
Theorem 7.1 �1.Z

j
n�1

/ is normally generated by the meridian of the j –th copy of
Jn�1 . By definition of infection this meridian is equated to �nj in E . Since the �nj lie
in the commutator subgroup of �1.Mn�1/ we see that �1.Z

j
n�1

/ maps into �1.Zn/
.1/ .

Thus �1.Z
j
n�1

/.n�1/ maps into �1.Zn/
.n/ . Therefore the above .n�1/–surfaces for

Z
j
n�1

are actually .n/–surfaces for Zn . By functoriality of the intersection form
with twisted coefficients the union of these surfaces, over all j , also has the required
intersection properties to generate an .n/–Lagrangian with .n/–duals for Zn . Hence
Zn is in fact an .n/–solution as was claimed.

Property 2 of Theorem 7.1 for Zn Assume that �W �1.Zn/!� where �.nC1/D 1.
Recall that both � and � .2/

�
are additive. By Lemma 2.4, both signatures vanish for

E . By Theorem 2.1 both signatures vanish for R. Therefore

�
.2/
�
.Zn/� �.Zn/D

mnX
jD1

.�
.2/
�
.Zn�1; �j /� �.Zn�1//

where �j is the induced coefficient system on the j –th copy of Zn�1 . Let �j be
the image of �j . By property (2) of Proposition 2.2 to compute � .2/

�
.Zn�1; �j / we

may consider �j as a map into �j . We observed above that each �1.Z
j
n�1

/ maps into
�1.Zn/

.1/ . These �j are subgroups of a PTFA group and hence are PTFA, and since
�j � �

.1/ , �.n/j D 1. Thus property 2 of Theorem 7.1 for Zn�1 may be applied to
Zn�1 and �j W �1.Z

j
n�1

/! �j . Thus

�
.2/
�
.Zn/� �.Zn/D

mnX
jD1

c�j �0.K/D �0.K/

mnX
jD1

c�j

where 0� c�j �m1m2 � � �mn�1 . Property 2 for Zn is thus established.

This concludes the proof of Theorem 7.1.
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8 Fn=Fn:5 has infinite rank

In this section we prove one of our main theorems.

Theorem 8.1 For any n� 0, Fn=Fn:5 has infinite rank.

Proof We give a procedure to construct an infinite set of knots in Fn that is linearly
independent in Fn=Fn:5 .

Step 1 Find a genus one ribbon knot, R, such that �1.R/¤ 0.

Let R be the genus one ribbon knot shown in Figure 14. There are two cases:

T �

˛ ˇ

Figure 14: The ribbon knot R

Case I �1.946/¤ 0.

In this case we define T � to be the unknot, so R D RI D 946 . Thus in this case
�1.R/D �1.946/¤ 0 and Step 1 is complete.

Case II �1.946/D 0.

In this case we define T � to be the right-handed trefoil knot, T . In this case we
sometimes refer to R as RII , to distinguish the case. As in Example 3.3, we may
apply Lemma 2.3 to calculate

�1.RII /D �
1.946/C �0.T /D �0.T /:

It is an easy calculation that �0.T / is nonzero. Thus �1.R/¤ 0 and so Step 1 holds
in each case.
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For the rest of the proof, we refer to the ribbon knot R whenever the argument applies
to both cases. We split the argument into the two cases only when necessary.

Step 2 Find an infinite set K of Arf invariant zero knots Kj such that no nontrivial
rational linear combination of f�0.K

j /g is a rational multiple of �1.R/.

This requirement is stronger than linear independence but is easily accomplished by the
following elementary linear algebra. It was shown in [13, Proposition 2.6] that there
exists an infinite set, xK D fKj g, of Arf invariant zero knots such that f�0.K

j /g is
Q–linearly independent. Let V be the Q–vector subspace of R with fvj D �0.K

j /g

as basis. If �1.R/ is not in V then set KD xK and we are done. If �1.R/ 2 V then
�1.R/ has a unique expression as a nontrivial linear combination of the vj . Let K
be the subset of xK obtained by omitting one of the knots Kj for which vj occurs
nontrivially in this expression. Then d is not in the span of K and we are done.

Step 3 For each fixed n define a family of knots fJ j
n j 1� j <1g� Fn .

The families are defined recursively. Fix j and set J
j
0
� Kj and let J

j
nC1

be the
knot obtained from the ribbon knot R of Figure 14 by infection along the two band
meridians f˛; ˇg using the knot J

j
n in each case, as shown in Figure 15.

T �

J
j
n J

j
n

J
j
nC1
D

Figure 15: The family of .nC1/–solvable knots J
j
nC1

For any n and j , J
j
n is .n/–solvable by Theorem 7.1, so J

j
n 2 Fn . This completes

Step 3.

Step 4 No nontrivial linear combination of the knots fJ j
n j 1� j <1g is rationally

.n:5/–solvable.
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The proof occupies the remainder of this section. Here n is fixed. We proceed by
contradiction. Suppose that zJ � #1

jD1
mj J

j
n (a finite sum) were rationally .n:5/–

solvable. By re-indexing, without loss of generality we may assume that m1 > 0.
Under this assumption we shall construct a family of 4–manifolds Wi and reach a
quick contradiction. Throughout we abbreviate the zero-framed surgery MJ

j
n

by M
j
n .

Proposition 8.2 Under the assumption that zJ is rationally .n:5/–solvable, for each
0 � i � n there exists a 4–manifold Wi with the following properties. Letting � D
�1.Wi/, we have the following:

(1) Wi is a rational .n/–bordism where, for i < n, @Wi D M 1
n�i and @Wn D

M 1
0

`
M 1

0

`
MR .

(2) Under the inclusion(s) j W M 1
n�i � @Wi!Wi ,

j�.�1.M
1
n�i//� �

.i/;

and for each i (at least one of the copies of) M 1
n�i � @Wi

j�.�1.M
1
n�i//Š Z� �.i/=�.iC1/

r

and under the inclusion j W MR � @Wn!Wn

j�.�1.MR//Š Z� �.n�1/=�.n/r :

(3) For any PTFA coefficient system �W �1.Wi/! � with �.nC1/
r D 1

�.@Wi ; �/� �
.2/
�
.Wi ; �/� �.Wi/D�

X
j

C j�0.K
j /

for some integers C j (depending on � ) where C 1 � 0.

Before proving Proposition 8.2, we use it to finish the proof of Step 4 and com-
plete the proof of Theorem 8.1. Consider Wn from Proposition 8.2 with boundary
M 1

0

`
M 1

0

`
MR . Recall that M 1

0
DMJ 1

0
DMK 1 . Let � D �1.Wn/ and consider

�W �! �=�
.nC1/
r . Then by property (3) of Proposition 8.2 for i D n

(8-1) �.MK 1 ; �˛/C �.MK 1 ; �ˇ/C �.MR; �R/D �.@Wn; �/D�
X

j

C j�0.K
j /

where C 1 � 0. By property (2) of Proposition 8.2

j�.�1.MK 1//� �.n/;
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implying that the restrictions �˛ and �ˇ factor through the respective abelianizations.
Additionally by property (2), at least one of these coefficient systems is nontrivial.
Hence by (2)–(4) of Proposition 2.2

�.MK 1 ; �˛/C �.MK 1 ; �ˇ/D ��0.K
1/

where � equals either 1 or 2. Thus we can simplify (8-1) to yield

(8-2) .�CC 1/�0.K
1/C

X
j>1

C j�0.K
j /D��.MR; �R/

where �CC 1 � 1. Also by property (2) of Proposition 8.2,

(8-3) j�.�1.MR//� �
.n�1/;

so �R factors through G=G.2/ where G D �1.MR/. We claim that ker.�R/�G.1/ .
For suppose that x 2 kernel.�R/ and x D �my where � is a meridian of R and
y 2G.1/ . Then certainly x is in the kernel of the composition

 W G
�R
�! �.n�1/=�.nC1/

r ! �.n�1/=�.n/r :

Moreover, by (8-3), �R.G
.1// � �

.n/
r so G.1/ is in the kernel of  . Therefore

�m 2 ker and the image of  has order at most m. If m¤ 0 this contradicts the last
clause of property (2) of Proposition 8.2. Thus mD 0 and ker.�R/�G.1/ . Therefore
 is determined by the kernel, P , of

x�RW G
.1/=G.2/

ŠA0.R/! image.�R/:

Since P is normal in G=G.2/ , it is preserved under conjugation by a meridional
element, implying that P is a submodule of A0.R/. Since the Alexander polynomial
of R is .2t � 1/.t � 2/, the product of two irreducible coprime factors, A0.R/ admits
precisely 4 submodules: P1 D A0.R/, P0 D 0, P˛ D h˛i and Pˇ D hˇi. In the
first case x�R is the zero map so �R factors through Z and �.MR; �/D �0.R/D 0.
Otherwise �.MR; �R/ is what we have called a first order signature of R. To analyze
the remaining 3 possibilities for �.MR; �R/ it is simplest to take the viewpoint that
R is obtained from 946 by one infection along ˛ using the knot T � . We can then
analyze the 3 possible first-order signatures as in Example 3.3,

�.MR;P˛/D �.946;P˛/D 0;

�.MR;Pˇ/D �.946;Pˇ/C �0.T
�/D �0.T

�/;

�.MR;P0/D �
1.R/:
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In Case I, �0.T
�/D 0. Thus in Case I

�.MR; �R/ 2 f0; 0; 0; �
1.R/g

according to the 4 possibilities for P . In the Case II, �1.946/D 0 so

�1.R/D �1.RII /D �
1.946/C �0.T

�/:

Thus in all cases we can say that

�.MR; �R/ 2 f0; �
1.R/g:

Combining this with (8-2) we have

.�CC 1/�0.K
1/C

X
j>1

C j�0.K
j /D C0�

1.R/

where C0 2 f0; 1g. Since �CC 1> 0 we have expressed a nontrivial linear combination
of f�0.K

j /g as a multiple of �1.R/ contradicting our choice of fKj g.

This contradiction finishes the proof of Theorem 8.1 modulo the proof of Proposition
8.2.

Proof of Proposition 8.2 We give a recursive definition of Wi .

First we define W0 . Let V be a rational .n:5/–solution for zJ . Let C be the standard
cobordism from M zJ

to the disjoint union of mj copies of M
j
n . Specifically

@C D�M zJ
t

a
j

mj M j
n ;

where if mj < 0 we mean jmj j copies of �M
j
n . This cobordism is discussed in detail

in [13, pages 113–116]. Alternatively, note that zJ may be constructed by starting from
J 1

n and infecting along different meridians a total of ..m1 � 1/C
P

jD2jmj j/ times
using the knot sign.mj /J

j
n a total of jmj j times (m1�1 times if j D 1). Thus C can

be viewed as an example of the cobordism E defined in Figure 8. Identify C with V

along M zJ
. Then cap off all of its boundary components except one copy of M 1

n using
copies of the special .n/–solutions ˙Z

j
n as provided by Theorem 7.1. The latter shall

be called Z –caps. Here there is a technical point concerning orientations: if mj > 0

then to the boundary component M
j
n we must glue a copy of �Z

j
n (and vice-versa).

It was important in the proof that we remember that since m1 > 0, all the occurrences
of j D 1 Z –caps are copies of �Z1

n rather than Z1
n . Let the result be denoted W0 as

shown schematically in Figure 16.
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...

...

C

V

Z
jk
nZ

j1
n

M zJ
-

M 1
n
-

Figure 16: W0

We will now show that W0 is a rational .n/–solution for M 1
n (hence a rational .n/–

bordism). Since V is a rational .n:5/–solution for M zJ
, the inclusion-induced map

j�W H1.M zJ
IQ/!H1.V IQ/

is an isomorphism. It follows from duality that

j�W H2.M zJ
IQ/!H2.V IQ/

is the zero map. Therefore if we examine the Mayer–Vietoris sequence with Q–
coefficients,

H2.M zJ
/

i�
�!H2.C /˚H2.V /

��
�!H2.C [V /!H1.M zJ

/
.i�;j�/
����!H1.C /˚H1.V /;

we see that �� induces an isomorphism

.H2.C /= i�.H2.M zJ
///˚H2.V /ŠH2.C [V /:

The integral homology of C was analyzed in [13, pages 113–114] and also in Lemma
2.5. From the latter we know that H1.C IQ/ Š Q, generated by any one of the
meridians of any of the knots, and that H2.C IQ/ is

L
j H2.M

j
n IQ/

jmj j . In particular
H2.C / arises from its “top” boundary. Also the generator of i�.H2.M zJ

// is merely
the sum of the generators of the H2.M

j
n IQ/ summands. Thus

H2.C [V IQ/Š .Qm= h1; : : : ; 1i/˚H2.V IQ/

where m D
P

j jmj j and the generators of the Qm come from the “top” boundary
components of C . Moreover H1.C[V IQ/ŠQ generated by any one of the meridians.
Since the Z

j
n are .n/–solutions, H1.M

j
n /!H1.Z

j
n / is an isomorphism and by duality

H2.M
j
n /!H2.Z

j
n / is the zero map. Thus adding a Z –cap to C [V has no effect

on H1 ; while the effect on H2 of adding a Z –cap to C [V is to kill the class carried
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by @Zj
n DM

j
n and to add H2.Z

j
n /. Thus combining these facts we have that

H2.W0IQ/=j�.H2.@W0IQ//ŠH2.W0IQ/ŠH2.V IQ/˚
L
Z–caps H2.Z

j
n /:

H1.W0IQ/ŠH1.M
1
n IQ/ŠQ:and

Now, continuing with the verification that W0 is a rational .n/–solution, recall that
V is a rational .n:5/–solution hence a rational .n/–solution. Let f`1; : : : ; `gg be a
collection of n–surfaces generating a rational n–Lagrangian for V and fd1; : : : ; dgg

be a collection of .n/–surfaces that are the rational .nC1/–duals. Since �1.V /
.n/

maps into �1.W0/
.n/ , these surfaces are also .n/–surfaces for W0 . Each Z –cap Z

j
n

is a rational .n/–solution, so let f`0
1
; : : : ; `0g0g and fd 0

1
; : : : ; d 0g0g denote collections

of .n/–surfaces generating a rational .n/–Lagrangian and rational .n/–duals for Z
j
n .

These surfaces are also .n/–surfaces for W0 . By our analysis of H2.W0/ above, the
unions of these collections, for V and for each Z –cap, have the required cardinality
to generate a rational .n/–Lagrangian with rational .n/–duals for W0 . By naturality
of the intersection form with twisted coefficients these surfaces also have the required
intersection properties to generate a rational .n/–Lagrangian with rational .n/–duals
for W0 . Hence W0 is in fact a rational .n/–solution for M 1

n as was claimed. This
establishes property (1) of Proposition 8.2 for W0 .

In the case i D 0, property (2) is merely the statement that the inclusion H1.M
1
n IQ/!

H1.W0IQ/ is injective, which we have already observed is true.

The proof of Proposition 8.2 is easier if we inductively prove a more robust version of
property (3).

Property (3 0 ) W0 �Wi and for any PTFA coefficient system �W �1.Wi/! � with
�.nC1/ D 1

�.@Wi ; �/D�
X
Z–caps

sign.mj /.�
.2/.Zj

n ; �j /� �.Z
j
n //D�

X
j

C j�0.K
j /

for some integers C j (depending on � ) where C 1 � 0.

Theorem 7.1 establishes the last equality in property (3 0 ) since m1 > 0. Since W0 D

V [C [Z–caps, by additivity of signatures, property (3 0 ) will hold for W0 if the
difference of signatures vanishes for V and for C . Since V is an .n:5/–solution, the
vanishing for V follows directly from Theorem 5.7. The vanishing of the signatures
for C follows from Lemma 2.4 (see also [13, Lemma 4.2]). Thus we have constructed
W0 and Proposition 8.2 holds for i D 0.

Now assume that Wi , i � n� 1, has been constructed satisfying the properties above.
Before defining WiC1 we derive some important facts about Wi . By property (1),
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@Wi DM 1
n�i and Wi is a rational .n/–bordism and hence a rational .iC1/–bordism

since iC1� n. Let � D �1.Wi/, ƒD �=�
.iC1/
r and let �W �!ƒ be the canonical

surjection. We will apply Theorem 6.3 to Wi with k D i C 1. Property (2) for Wi

ensures that � restricted to M 1
n�i is nontrivial. We conclude that the kernel xP of the

composition

H1.M
1
n�i IQƒ/

j�
!H1.Wi IQƒ/

satisfies xP � xP? with respect to the Blanchfield form B`ƒ on M 1
n�i . But property (2)

also ensures that � restricted to �1.M
1
n�i/ factors through the abelianization. Hence

by Theorem 6.6 the kernel P of the composition

A0.J
1
n�i/

i
,!A0.J

1
n�i/˝Qƒ

Š
!H1.M

1
n�i IQƒ/

j�
!H1.Wi IQƒ/

satisfies P � P? with respect to the classical Blanchfield form on J 1
n�i . Recall that,

by definition, J 1
n�i is obtained from R by two infections along the circles labelled ˛

and ˇ as in Figure 14. These two circles form a generating set fŒ˛�; Œˇ�g for A0.J
j
n�i/

(which is isomorphic to A0.R/ and hence nontrivial). From this we can conclude that
at least one of these generators is not in P since the classical Blanchfield form of
any knot is nonsingular. Now consider the commutative diagram below. Recall that
H1.Wi IQƒ/ is identifiable as the ordinary rational homology of the covering space of
Wi whose fundamental group is the kernel of �W �!ƒ. Since this kernel is precisely
�
.iC1/
r , we have that

H1.Wi IQƒ/Š .�
.iC1/
r =Œ�.iC1/

r ; �.iC1/
r �/˝Z Q

as indicated in the diagram below. The vertical map j is injective as shown in Section 4.
Furthermore, since f˛; ˇg � �1.M

1
n�i/

.1/ , by property (2)

�1.M
1
n�i/

.1/
� �.iC1/:

Since the composition in the bottom row sends one of fŒ˛�; Œˇ�g to nonzero, the compo-
sition in the top row sends at least one of f˛; ˇg to nonzero.

�1.M
1
n�i/

.1/ �1.M
1
n�i/

.1/
�.iC1/

�
.iC1/
r

�
.iC2/
r

A0.J
1
n�i/ H1.M

1
n�i IQƒ/ H1.Wi IQƒ/

�
.iC1/
r

Œ�
.iC1/
r ; �

.iC1/
r �

˝Z Q

-Š

?

-
j�

?

-

?
?
j

-i -
j� -Š
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Therefore we have established these crucial facts about Wi :

� Fact 1: Each of f˛; ˇg maps into �1.Wi/
.iC1/ .

� Fact 2: The kernel, zP , of the composition (top row of the diagram above)

�1.M
1
n�i/

.1/
! �1.Wi/

.iC1/
r =�1.Wi/

.iC2/
r

is of the form ��1.P / for some submodule P �A0.J
1
n�i/ such that P � P?

with respect to the classical Blanchfield form and at least one of f˛; ˇg maps
nontrivially under this map.

Now we claim further:

� Fact 3: If i � n� 2, precisely one of f˛; ˇg maps nontrivially under the map in
Fact 2.

� Fact 4: If i � n� 2, without loss of generality we may assume that ˇ maps
nontrivially and ˛ maps trivially under the above map.

To establish Facts 3 and 4 assume i � n� 2 and consider the coefficient system

�W �1.M
1
n�i/! � D �1.Wi/=�1.Wi/

.iC2/
r :

Note that �.nC1/ D 1 since i C 2� nC 1. By property (3 0 ) for Wi ,

�.M 1
n�i ; �/D �

.2/.Wi ; �/� �.Wi/D
X
Z–caps

˙.� .2/.Zj
n ; �j /� �.Z

j
n //:

But the Z
j
n are .n/–solutions and thus are .iC1:5/–solutions since iC1:5�n. Hence,

by Theorem 5.7, all these signature defects are zero. Thus

�.M 1
n�i ; �/D 0:

Moreover by property (2) for Wi , �.�1.M
1
n�i//� �1.Wi/

.i/ . Therefore � restricted
to �1.M

1
n�i/ factors through �1.M

1
n�1

/=�1.M
1
n�1

/.2/ . In other words (using Fact 2
above) one of the first-order signatures of J 1

n�i is zero. Assume that both ˛ and ˇ
mapped nontrivially. Since the Alexander module of J 1

n�i is isomorphic to that of the
946 knot, by Example 3.3, this first-order signature would necessarily be what we have
called �1.J 1

n�i/. Since J 1
n�i is obtained from R by two infections using J 1

n�i�1
as

the infecting knot, as in Example 3.3,

0D �.M 1
n�i ; �/D �

1.J 1
n�i/D �

1.R/C �0.J
1
n�i�1/C �0.J

1
n�i�1/:

However, by choice �1.R/ ¤ 0 and, since n� i � 1 � 1, J 1
n�i�1

is .0:5/–solvable
by Theorem 7.1 and so �0.J

1
n�i�1

/D 0 by Theorem 5.7. This contradiction implies
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Fact 3. To show Fact 4, suppose RDRII , ˛ maps nontrivially and ˇ maps trivially.
Viewing J 1

n�i as obtained from 946 by two infections using J 1
n�i�1

as one infecting
knot and T # J 1

n�i�1
as the other, then by Example 3.3

0D �.M 1
n�i ; �/D �0.J

1
n�i�1/C �0.T # J 1

n�i�1/D �0.T /¤ 0:

This contradiction implies Fact 4 in this case. In the case that R D RI then J 1
n�i

is symmetric with respect to ˛ and ˇ so we may assume Fact 4 by relabelling if
necessary.

Finally we can give the construction of WiC1 . Refer to Figure 17. Since J 1
n�i is

obtained from R by two infections using J 1
n�i�1

as the infecting knot, there is a
corresponding cobordism E with 4 boundary components Mn�i , MR and two copies
of M 1

n�i�1
. Glue this to Wi along M 1

n�i , as in the top-most portion of Figure 17. If
i D n� 1 then we set Wn DWn�1[E and we are done. Note that @Wn consists of
two copies of M 1

0
and one copy of MR as required by property (1). Now consider

the case that i � n � 2 (in which case Fact 4 holds). Notice that R is a ribbon
knot and admits a ribbon disk � that is obtained by “cutting the ˛ band”. Let R
denote the exterior in B4 of this ribbon disk. Cap off the MR boundary component of

...

...

.
.
.

V

C

E Z
j1
n Z

jk
n

N0 R

RNi

M zJ
-

M 1
n
-

M 1
n�1
-

M 1
n�i�1
-

M 1
n�i
-

E

Figure 17: WiC1

Wi [E using R. This will be called an R–cap. Recall that M 1
n�i�1

is the boundary
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of a special .n�i�1/–solution Z1
n�i�1

as in Theorem 7.1. Use this to cap off the
M 1

n�i�1
boundary component of Wi [E [R that corresponds to the infection along

˛ . Call this a null-cap and denote it by Ni . The resulting manifold is WiC1 . Note that
@WiC1 DM 1

n�i�1
as required by property (1) of Proposition 8.2. This completes the

definition of WiC1 .

Now we set about verifying the properties (1)–(3 0 ) for WiC1 .

Property (1) WiC1 is a rational .n/–bordism.

This will follow from an inductive analysis of H2.WiC1IQ/. For the following argu-
ment we assume Q coefficients unless specified. We establish that H2.WiC1IQ/=I0

comes from the second homology of V , the Z –caps and the null caps.

Lemma 8.3 For each i � n� 1

H2.WiC1/ŠH2.V /˚
M
Z–caps

H2.Z
j
n /˚

iM
jD0

H2.Nj /˚H2.@WiC1/:

(Note that Nn�1 D∅.)

Proof The proof is by induction. Recall that we have already established this for W0 .
Assume it is true for Wi :

H2.Wi/ŠH2.V /˚
M
Z–caps

H2.Z
j
n /˚

i�1M
jD0

H2.Nj /˚H2.M
1
n�i/:

In the passage from Wi to WiC1 the first step was to adjoin E along M 1
n�i . Consider

the sequence

H2.M
1
n�i/!H2.E/˚H2.Wi/

��
!H2.E[Wi/!H1.M

1
n�i/

.i�;j�/
���!H1.E/˚H1.Wi/:

Recall that we have analyzed the homology of E in Lemma 2.5 and found that i� is an
isomorphism on H1 (so �� above is onto); and that H2.E/ŠQ3 , with basis consisting
of generators for the two copies of H2.M

1
n�i�1

/ and one from either H2.MR/ or
H2.M

1
n�i/ (suitable generators for the latter become equated in H2.E/). Thus

(8-4) H2.Wi [E/ŠH2.V /˚

� M
Z–caps

H2.Z
j
n /

�
˚

� i�1M
jD0

H2.Nj /

�
˚H2.MR/˚H2.M

1
n�i�1/˚H2.M

1
n�i�1/:
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If i D n�1, then Wi[EŠWiC1 so (8-4) implies Lemma 8.3. Thus we may suppose
that i � n� 2. Recalling Remark 4.3, note that both R and the null-cap Ni have the
property that the inclusion map from their boundary induces an isomorphism on H1

and induces the zero map on H2 . Thus, as we saw in the analysis of the homology of
W0 , the effect on H2 of adding these is to kill the generators corresponding to their
boundaries and to add H2.Ni/ and H2.R/. Combining these facts we have established
the lemma for i C 1, finishing the inductive proof of Lemma 8.3.

We continue with the verification that WiC1 is a rational .n/–bordism. Recall that V

and the Z–caps Z
j
n are rational .n/–solutions and that the null caps fN0; ::;Nig

are copies of fZ1
n�1

; : : : ;Z1
n�i�1

g which are, respectively, .n�1/; : : : ; .n�i�1/–
solutions. Taking the union of their respective Lagrangians and duals gives collections
that have the required cardinality, by Lemma 8.3 above, to generate a rational n–
Lagrangian with rational .n/–duals for WiC1 . We must first verify that all these
surfaces are indeed n–surfaces for WiC1 . This is immediate for those arising from
the rational .n/–solutions but we must check the case of the null caps. By induction
the null caps at level less than i C 1 were already part of Wi and their Lagrangians
and duals were already checked to be .n/–surfaces for Wi and hence they will be
for WiC1 . Thus we need only consider the .n� i � 1/ Lagrangian and duals for the
.n�i�1/–solution Ni . A null-cap Ni exists only in case i � n� 2 (by construction).
Recall that

�1.M
1
n�i�1/! �1.Ni/

is surjective, by Theorem 7.1, and �1.M
1
n�i�1

/ is normally generated by its meridian.
This meridian is isotopic in E to a push-off of ˛ in M 1

n�i (by property (4) of Lemma
2.5). But by Fact 1 above, ˛ maps into �1.Wi/

.iC1/ . Thus any element of �1.Ni/

lies in �1.WiC1/
.iC1/ so

�1.Ni/
.n�i�1/

� �1.WiC1/
.n/:

Therefore the .n� i � 1/ Lagrangian and duals for Ni are actually .n/–surfaces for
WiC1 . Moreover by Fact 4 above, ˛ maps into �1.Wi/

.iC2/
r . Thus

� Fact 5: �1.Ni/
.n�i�1/ � �1.WiC1/

.nC1/
r ,

a fact that we record for later use. Again, by naturality of the intersection form, the
union of the surfaces generating the Lagrangians and duals for V and all the caps have
the required intersection properties to generate a rational n–Lagrangian with rational
.n/–duals for WiC1 . Thus WiC1 is a rational .n/–bordism as claimed.

This completes the verification of the property (1) of Proposition 8.2 for WiC1 .
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Property (2) for WiC1 Consider a component M 1
n�i�1

of @WiC1 . Recall that
�1.M

1
n�i�1

/ is normally generated by the meridian and this meridian is isotopic in E

to a push-off ˇ (if i D n�1 it could be either ˇ or ˛ ) in M 1
n�i D @Wi . Since ˇ (and

˛ ) lies in the commutator subgroup of �1.M
1
n�i/,

j�.ˇ/ 2 �1.Wi/
.iC1/

by property (2) for Wi (similarly for ˛ ). Thus

j�.�1.M
1
n�i�1//� �1.WiC1/

.iC1/

establishing the first part of property (2) for WiC1 . To prove the second part we
need to show that j�.ˇ/ (for i D n � 1 one of j�.ˇ/ or j�.˛/) is nonzero in
�1.WiC1/

.iC1/=�1.WiC1/
.iC2/
r . Fact 4 (if i D n� 1 use Fact 2) provides precisely

this except for �1.Wi/ instead of �1.WiC1/. Thus it suffices to show that inclusion
induces an isomorphism

(8-5) �1.Wi/=�1.Wi/
.iC2/
r Š �1.WiC1/=�1.WiC1/

.iC2/
r :

The map �1.Wi/! �1.Wi [E/ is a surjection whose kernel is the normal closure
of the longitude ` of the copy of S3�J 1

n�i�1
�M 1

n�i (property (1) of Lemma 2.5).
The group �1.S

3 � J 1
n�i�1

/ is normally generated by the meridian of this copy of
S3 � J 1

n�i�1
. This meridian is identified to a push-off of the curve ˛ and we have

seen that j�.˛/ 2 �1.Wi/
.iC2/ . Thus j�.`/ 2 �1.Wi/

.iC2/
r and so the inclusion map

Wi!Wi [E induces an isomorphism on �1 modulo �1.�/
.iC2/
r . If i D n� 1 this

establishes (8-5). Moreover, in this case, the third part of Property (2) follows easily
since the meridian in MR is isotopic to the meridian in the relevant copy of M 1

1
. Now

suppose i � n� 2. Similarly the map �1.Wi/! �1.Wi [E [R/ is a surjection
whose kernel is the normal closure of the curve ˛ �MR (by property (1) above for
R). But this curve ˛ is isotopic in E to the curve ˛ �M 1

n�i (by Lemma 2.5) and
j�.˛/ 2 �1.Wi/

.iC2/ . Thus inclusion Wi ! Wi [E [R induces an isomorphism
on �1 modulo �1.�/

.iC2/
r . Finally, the same type of argument applies to Ni using

property (1) of Theorem 7.1, that �1.M
1
n�i�1

/ is normally generated by its meridian
and that his meridian is isotopic in E to a push-off of ˛ in M 1

n�i . This completes the
verification of property (2) for WiC1 .

Property (3 0 ) for Wi C1 Since, for i ¤ n � 1, WiC1 D Wi [ E [R [Ni , and
Wn D Wn�1 [ E , and property (3 0 ) holds for Wi (using the induced coefficient
system), it will suffice to prove that the signature defect is zero on E , R and Ni . The
first is given by Lemma 2.4 and the second holds since R is a slice disk complement
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hence an .n:5/–solution. Finally, we established above in Fact 5 that

j�.�1.Ni//� �1.WiC1/
.iC2/
r

so the coefficient system induced on Ni by �W �1.WiC1/!� is trivial since �.nC2/
r D

1. This concludes the verification of property (30 ) for WiC1 .

This concludes the inductive proof of Proposition 8.2.

Example 8.4 The families of Figure 15 have the disadvantage that we are unable
to specify T � due to our inability to calculate �1.946/. The family of knots, J

j
n of

Figure 18 (ignore the dotted arc) overcomes this problem, giving a specific infinite
family of .n/–solvable knots that is linearly independent modulo Fn:5 . Here T is the
right-hand trefoil knot and J

j
0
DKj is the family of knots used in Step 2 of the above

proof. Each J
j
n (n> 0) is obtained by two infections on the 89 knot, which is itself a

ribbon knot (a ribbon move is shown by the dotted arc) [27].

:::::

T

J
j
n�1

J
j
n D

Figure 18: A family of .n/–solvable knots J
j
n

The proof that no linear combination is rationally .n:5/–solvable is the same as that
above, but for this family there are several major simplifications. Let R be the knot
obtained in Figure 18 by setting J

j
n�1
D U . Then R is a ribbon knot (a ribbon move

is again shown by the dotted arc). For any j , J
j
n obtained from R by an infection

using J
j
n�1

so inductively is .n/–solvable by Theorem 7.1. Hence J
j
n 2Fn . Moreover

�1.R/D �0.T /¤ 0 by the calculations of [10, Examples 4.4, 4.6], and so R satisfies
Step 1 of the above proof. Moreover J

j
n is obtained from R by a single infection on a

curve, ˛ , that generates the cyclic module A0.R/, so ˛ does not lie in any submodule
P where P �P? . This eliminates the various dichotomies between ˛ and ˇ in Step 4

of the above proof. These observations simplify the flow of Step 4 of the above proof.
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9 The family Jn

In this section we prove our second main theorem which shows that the family of knots
Jn of Figure 3 contains many nonslice knots, even though, for each n> 1, all classical
invariants as well as those of Casson–Gordon vanish for Jn . Recall that JnD Jn.K/ is
obtained from J0 DK by applying the “R–operator” n times in succession, yielding
the inductive definition of Figure 3. The proof that we give actually applies to large
classes of knots obtained by n–times iterated generalized doubling, which we record
in the form of a more general theorem at the end of the section.

The main theorem of this section is:

Theorem 9.1
1. There is a constant C such that, if j�0.K/j> C , then for each n� 0, Jn.K/ is

of infinite order in the topological concordance group. Moreover if, additionally,
Arf(K/D 0, then Jn.K/ is of infinite order in Fn=Fn:5 .

2. If �1.946/¤0 and some Jn.K/ is a slice knot (or even rationally .n:5/–solvable)
then �0.K/ 2 f0;�

1
2
�1.946/g.

Remark 9.2 We would conjecture that: If Jn.K/ is a slice knot then K is algebraically
slice. This is unknown even for n D 1. Part 2 of the theorem is evidence for this
conjecture. We have not been able to calculate the real number �1.946/. Recall that
for J2 we were able to prove a much stronger theorem, Theorem 4.1.

Corollary 9.3 For any n� 1 there exist knots J 2 F.n�1/ for which the knot R.J /,
shown in Figure 19, is not a slice knot nor even in Fn:5 .

Proof Let J D Jn�1.K/ for some K with j�0.K/j > C , where C is the constant
in Theorem 9.1 (for example a connected sum of a suitably large even number of
trefoil knots). Then the knot on the right-hand side of Figure 1 is merely Jn.K/ which,
by Theorem 9.1, is .n/–solvable hence in F.n/ , but is not slice nor even rationally
.n:5/–solvable; hence not in F.n:5/ .

Since J 2 F.n�1/ , if n � 2 then J is algebraically slice and if n � 3 then J has
vanishing Casson–Gordon invariants [12, Theorem 9.11].

Proof of Theorem 9.1 The proof follows closely the lines of the proof of Theorem 8.1.
Let R be the ribbon knot 946 and recall that J0D J0.K/DK and that JnD Jn.K/ is
obtained from R by infecting twice, along the curves ˛ and ˇ (as shown in Figure 7),
using the knot Jn�1 as the infecting knot in each case, as shown in Figure 3. By
Theorem 7.1, Jn.K/ is .n/–solvable for any Arf invariant zero knot K . Let C be the
Cheeger–Gromov constant for MR . We shall show that if a nonzero multiple of Jn is
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R.J / D

J J

Figure 19

rationally .n:5/–solvable then j�0.K/j � C . In particular this will demonstrate that
if K is chosen so that j�0.K/j > C then Jn.K/ is of infinite order in Fn=Fn:5 and
consequently of infinite order in the smooth and topological concordance groups. We
will also show that if �1.946/¤ 0 and Jn is rationally .n:5/–solvable then �0.K/ 2

f0;�1
2
�1.946/g (a much stronger result).

Suppose that, for some positive integer m, zJ � #m
iD1

Jn is rationally .n:5/–solvable.
Under this assumption we shall construct a family of 4–manifolds Wi , as in the proof
of Theorem 8.1, and reach the desired results. Again, let Mi abbreviate MJi

.

Proposition 9.4 Under the assumption that zJ is rationally .n:5/–solvable, for each
0 � i � n there exists a 4–manifold Wi with the following properties. Letting � D
�1.Wi/, we have the following:

(1) Wi is a rational .n/–bordism whose boundary is a disjoint union of r.i/ copies
of MR and r.i/C 1 copies of Mn�i .

(2) Each inclusion j W Mn�i � @Wi!Wi satisfies

j�.�1.Mn�i//� �
.i/;

j�.�1.Mn�i//Š Z� �.i/=�.iC1/
r :

(3) For any PTFA coefficient system �W �1.Wi/! � with �.nC1/
r D 1

�.@Wi ; �/� �
.2/
�
.Wi ; �/� �.Wi/D�D�0.K/

for some nonnegative integer D (depending on � ). If mD 1 then D D 0.

(4) If �1.946/¤ 0 then, for i < n, r.i/D 0 whereas r.n/D 0 or 1, and if r.n/D 1

then �.MR; �1.MR/! �1.Wn/! �1.Wn/=�1.Wn/
.nC1/
r /D �1.946/.
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Before proving Proposition 9.4, we assume it and finish the proof of Theorem 9.1.
Consider Wn from Proposition 9.4 with boundary .r.n/C 1/M0

`
r.n/MR . Recall

that M0 DMJ0
DMK . Let � D �1.Wn/ and consider �W �! �=�

.nC1/
r . Let �R

j ,
1 � j � r.n/, and �K

j , 1 � j � r.n/C 1 denote the restrictions of � to the various
boundary components of Wn . Then by property (3) of Proposition 9.4 for i D n

(9-1)
r.n/C1X

jD1

�.MK ; �
K
j /C

r.n/X
jD1

�.MR; �
R
j /D�D�0.K/

where D � 0. By property (2) of Proposition 9.4, for each boundary component MK ,

j�.�1.MK //� �
.n/;

implying that each �K
j factors through the abelianization. Additionally by property (2),

each of these coefficient systems is nontrivial. Hence by (2)–(4) of Proposition 2.2

�.MK ; �
K
j /D �0.K/

for each j . Thus we can simplify (9-1) yielding

(9-2) .r.n/C 1CD/�0.K/D�

r.n/X
jD1

�0.MR; �
R
j /:

Since C is the Cheeger–Gromov constant of MR , for each j

j�0.MR; �
R
j /j � C:

Hence

(9-3) j�0.K/j �
r.n/

r.n/C 1CD
C � C:

Hence if j�0.K/j > C then zJ is not is rationally .n:5/–solvable, thereby completing
the proof of Part 1 of Theorem 9.1, modulo the proof of Proposition 9.4.

For Part 2, specialize to the case that m D 1 and assume that �1.946/ ¤ 0. Then,
by property (4), either r.n/ D 0 or r.n/ D 1. In the first case, by Equation (9-3),
�0.K/ D 0. If r.n/ D 1 then, using the last clause of property (4), equation (9-2)
becomes

�0.K/D�
1

2CD
�.MR; �

R/D�
1

2CD
�1.R/:

Moreover, since mD 1, D D 0 by property (3). This completes the proof of Part 2 of
Theorem 9.1, modulo the proof of Proposition 9.4.

Geometry & Topology, Volume 13 (2009)



Knot concordance and higher-order Blanchfield duality 1473

Proof of Proposition 9.4 We give a recursive definition of Wi . First we define W0 .
This will be identical to a special case of the W0 (where all mj D 0 except m1 )
constructed in the proof of Theorem 8.1. Let V be a rational .n:5/–solution for zJ .
Let C be the standard cobordism from M zJ

to the disjoint union of m copies of Mn .
Consider C [V and cap off m� 1 of its boundary components using copies of the
special .n/–solutions �Zn as provided by Theorem 7.1. These are called Z–caps.
Let the result be denoted W0 as shown schematically in Figure 20. Note that if mD 1

no Z –caps occur.

...

...

C

V

�Zn�Zn

M zJ
-

Mn
-

Figure 20: W0

Properties (1) and (4) are satisfied with r.0/ D 0. Property (2) was verified in the
proof of Proposition 8.2. Once again, the proof is easier if we inductively prove a more
robust version of property (3).

Property .30/ W0 �Wi and for any PTFA coefficient system �W �1.Wi/! � with
�.nC1/ D 1,

�.@Wi ; �/D �
.2/.Wi ; �/� �.Wi/D�

X
Z–caps

.� .2/.Zn; �/� �.Zn//D�D�0.K/

for some nonnegative integer D .

The last equality in property (3 0 ) is a consequence of Theorem 7.1. If mD 1, it will
be clear from the construction that D D 0 simply because there will be no Z–caps.
Property (3 0 ) for W0 was verified in the proof of Proposition 8.2. Thus we have
constructed W0 such that Proposition 9.4 holds for i D 0.

Now assume that Wi , i � n� 1, has been constructed satisfying the properties above.
Before defining WiC1 , we collect some crucial facts about Wi . Consider any boundary
component Mn�i of Wi . Recall that, by definition, Jn�i is obtained from R by two
infections along the circles labelled ˛ and ˇ . These two circles form a generating set
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for A0.Jn�i/. Even though the boundary of Wi consists of more than just this one copy
of Mn�i , the exact same proof as in Proposition 8.2 establishes the following (because
Theorem 6.6 applies to any boundary component for which the relevant coefficient
system is nontrivial).

� Fact 1: Each of f˛; ˇg maps into �1.Wi/
.iC1/

� Fact 2: The kernel, zP , of the map

�1.Mn�i/
.1/
! �1.Wi/

.iC1/
r =�1.Wi/

.iC2/
r

is of the form ��1.P / for some submodule P such that P � P? with respect
to the classical Blanchfield form and at least one of f˛; ˇg maps nontrivially
under this map.

Moreover if i � n� 2 we claim:

� Fact 3: If �1.R/¤ 0 then precisely one of f˛; ˇg maps nontrivially under the
above map.

Under the assumptions that �1.946/¤ 0 and i � n�2, the verification Fact 3 is almost
the same as the verification of Fact 3 from the proof of Proposition 8.2. Specifically,
to establish Fact 3 consider the coefficient system

�W �1.Mn�i/! � D �1.Wi/=�1.Wi/
.iC2/
r :

Note that �.nC1/ D 1 since i C 2� nC 1. By property (3 0 ) for Wi ,

�.Mn�i ; �/D �
.2/.Wi ; �/� �.Wi/D

X
Z–caps

.� .2/.Zn; �j /� �.Zn//:

But the Zn are .n/–solutions and so are .iC1:5/–solutions since i C 1:5� n. Hence,
by Theorem 5.7, all these signature defects are zero. Thus

�.Mn�i ; �/D 0:

Moreover, by property (2) for Wi , �.�1.Mn�i//� �1.Wi/
.i/ . Therefore � restricted

to �1.Mn�i/ factors through �1.Mn�i/=�1.Mn�i/
.2/ . Just as we argued in the proof

of Fact 3 in the previous section, this implies that one of the first-order signatures
of Jn�i is zero. Now argue by contradiction. Assuming that both ˛ and ˇ mapped
nontrivially, this first-order signature would be �1.Jn�i/. Since Jn�i is obtained from
R by two infections using Jn�i�1 as the infecting knot, as in Example 3.3,

0D �.Mn�i ; �/D �
1.Jn�i/D �

1.R/C �0.Jn�i�1/C �0.Jn�i�1/:
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However, by assumption, �1.R/ D �1.946/ ¤ 0 and, since n� i � 1 � 1, Jn�i�1

is .0:5/–solvable by Theorem 7.1 and so �0.Jn�i�1/ D 0 by Theorem 5.7. This
contradiction implies Fact 3.

We now give the construction of WiC1 . Recall that @Wi consists of copies of Mn�i

and (possibly) copies of MR . These old copies of MR will not be capped off. However,
for each copy of Mn�i there are two cases:

Case I For the specified copy of Mn�i in @Wi , ˛ maps to zero and ˇ maps to
nonzero under the map

�1.Mn�i/
j�
�! �1.Wi/ �! �=�.iC2/

r :

By symmetry this will also cover the case when the roles of ˛ and ˇ are reversed.

Case II For the specified copy of Mn�i in @Wi , both of f˛; ˇg map to nonzero under
the map above.

Since Jn�i is obtained from R by two infections using Jn�i�1 as the infecting knot,
there is a corresponding cobordism E with 4 boundary components: Mn�i , MR and
two copies of Mn�i�1 . WiC1 is obtained from Wi by first adjoining, along each copy
of Mn�i , a copy of E . The newly created copy of MR � @E will be called a new copy
of MR . Such copies of E lie in either Case I or Case II according to the boundary
component Mn�i to which they are glued. To an E of Case II nothing more will be
added. To an E of Case I further adjoin, to the copy of Mn�i�1 � @E whose meridian
is equated to ˛ , a copy of the special .n�i�1/–solution Zn�i�1 as constructed in
Theorem 7.1. The latter will again be called a null-cap and the collection of all such be
denoted by Ni . Also, for an E of Case I, cap off the new copy of MR with the ribbon
disk exterior R that corresponds to ˛ . Such is called an R–cap. This completes the
definition of WiC1 in all cases. This differs from the proof of Proposition 8.2 in only
two ways. First, if Case II ever occurs then there will be exposed copies of MR that
will never be capped off, whereas in the proof of Proposition 8.2, Case II only occurred
for i D n� 1, so only Wn had an MR boundary component (this is because, in the
proof of Proposition 8.2, R was chosen specifically so that �1.R/¤ 0.) Thirdly, here
we cap off the final new copies of MR (created in going from Wn�1 to Wn ) if they
arise from a Case I E , whereas in the proof of Proposition 8.2 we did not (although
we could have).

Now we set out to verify properties (1)–(4) for WiC1 . Certainly @WiC1 is a disjoint
union of some number, say j .i C 1/, of copies of Mn�i�1 and some number of
copies, say r.i C 1/, of MR . We seek to show that j .i C 1/ D r.i C 1/C 1. In
this notation, by induction j .i/D r.i/C 1. When we formed WiC1 , for each of the
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boundary components Mn�i we adjoined a copy of E . This eliminated one boundary
component but created 3 new boundary components. In net, before possibly capping
off, j .i C 1/D j .i/C 1 and r.i C 1/D r.i/C 1. In Case II, nothing more was done.
In Case I, one copy of MR and one copy of Mn�i�1 was capped off. Thus in any
case the difference j .i C 1/� r.i C 1/ is preserved by the addition of new R–caps
and null caps. Thus j .i C 1/D r.i C 1/C 1 as required by property (1).

Property (2) for WiC1 The proof is essentially identical to that in the proof of
Proposition 8.2. Consider a component Mn�i�1 � @WiC1 . Note that �1.Mn�i�1/ is
normally generated by the meridian and this meridian is isotopic in E to a push-off of
either ˛ or ˇ in Mn�i D @Wi . Since both ˛ and ˇ lie in the commutator subgroup of
�1.Mn�i/,

j�.˛/; j�.ˇ/ 2 �1.Wi/
.iC1/

by property (2) for Wi . Thus

j�.�1.Mn�i�1//� �1.WiC1/
.iC1/

establishing the first part of property (2) for WiC1 . To prove the second part we need
to show that j�.ˇ/ (in Case I) or both j�.˛/ and j�.ˇ/ (in Case II) are nonzero in
�1.WiC1/

.iC1/=�1.WiC1/
.iC2/
r . Fact 2 together with the definitions of Case I and

II ensure precisely this except for the group �1.Wi/ instead of the group �1.WiC1/.
Thus it suffices to show that inclusion induces an isomorphism

(9-4) �1.Wi/=�1.Wi/
.iC2/
r Š �1.WiC1/=�1.WiC1/

.iC2/
r :

This was already shown in the proof of Proposition 8.2. This completes the verification
of property (2) for WiC1 .

Property (3 0 ) for WiC1 Since property (3 0 ) holds for Wi and since WiC1 is obtained
from Wi by adjoining copies of E and possibly some R–caps and null-caps, it suffices
to prove that the signature defect is zero on the extra pieces E , R and Ni . But this
was established already in Proposition 8.2. This concludes the verification of property
(3 0 ) for WiC1 .

Property (4) for WiC1 Suppose �1.946/ ¤ 0 and i C 1 < n. Inductively we may
suppose that r.i/D 0, that is @Wi DMn�i . Then i � n� 2 so Fact 3 holds. Conse-
quently in the passage from Wi to WiC1 the Case II never occurs. Thus the new copy
of MR and one of the copies of Mn�i�1 are capped off, so that @WiC1 DMn�i�1 .
Hence r.iC1/D 0. If iC1D n then we still may assume inductively that r.n�1/D 0

and @Wn�1 DM1 , but now Fact 3 may not hold. Nonetheless, since then only one
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copy of E is adjoined in going from Wn�1 to Wn , r.n/ is either 0 or 1. In the latter
case MR � @Wn and Case II must have occurred. Then the induced coefficient system

�RW �1.MR/! �1.Wn/! �1.Wn/=�1.Wn/
.nC1/
r

factors through �1.MR/=�1.MR/
.2/ since �1.MR/ is normally generated by the

meridian of R, which is isotopic in its copy of E to the meridian of a copy of
M1 � @Wn�1 and by property (2) this meridian lies in �1.Wn�1/

.n�1/ and hence
in �1.Wn/

.n�1/ . We now just need to establish that �R induces an embedding of
�1.MR/=�1.MR/

.2/ since this will identify �.MR; �R/ as �1.R/. Combining Fact
2 in the case i D n� 1 and the fact that MR arose from an E of Case II, the kernel,
zP , of the map

�1.M1/
.1/
! �1.Wn�1/

.n/
r =�1.Wn�1/

.nC1/
r

is zero. Thus �1.M1/=�1.M1/
.2/ embeds in �1.Wn�1/=�1.Wn�1/

.nC1/
r . By Equa-

tion (9-4) with i D n�1, �1.M1/=�1.M1/
.2/ embeds in �1.Wn/=�1.Wn/

.nC1/
r . But

the Alexander modules of M1 and MR are isomorphic, with the meridian and the
curves ˛ and ˇ being identified in E . This shows that �R induces an embedding of
�1.MR/=�1.MR/

.2/ .

This concludes the proof of Proposition 9.4.

More generally, the proof above proves this more general result about iterated general-
ized doublings of knots.

Theorem 9.5 Suppose Ri , 1� i � n, is a set of (not necessarily distinct) slice knots.
Suppose that, for each fixed i , f�i1; : : : ; �imi

g is a link in �1.S
3�Ri/

.1/ that forms
a trivial link in S3 such that for some ij and ik (possibly equal) B`i

0
.�ij ; �ik/¤ 0,

where B`i
0

is the classical Blanchfield form of Ri . Then there exists a constant C such
that if K is any knot with Arf.K/D0 and j�0.K/j>C , the result, Rnı� � �ıR1.K/, of
n–times iterated generalized doubling, is of infinite order in the smooth and topological
concordance groups, and moreover represents an element of infinite order in Fn=Fn:5 .

There are situations where the constant can be taken independent of n (as in Theorem
9.1) but we shall not state it in generality.

Proof of Theorem 9.5 Recall that Arf.K/ D 0 if and only K is .0/–solvable by
Remark 5.6. Since the infections are being done along curves that lie in the commutator
subgroup, any n–times iterated operator applied to such a knot K results in an .n/–
solvable knot by Theorem 7.1. Let Jn denote the result of such an operator. Choose
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C 0 to be the maximum of the Cheeger–Gromov constants for the fMRi
g. Let m be

the maximum of the mj . Choose C such that�
mn� 1

m� 1

�
C 0 � C:

The proof then proceeds exactly like that of part 1 of Theorem 9.1 above. Suppose
that a nontrivial multiple, zJ , of Jn were rationally .n:5/–solvable. We show that
j�0.K/j � C . We recursively construct 4–manifolds Wi as in Proposition 9.4. The
primary difference in the argument is that the various cobordisms, Ei , that arise have
2Cmi boundary components. Letting Ji D Ri ı � � � ıR1.K/ and Mi DMJi

one
establishes recursively:

Proposition 9.6 Under the assumption that zJ is rationally .n:5/–solvable, for each
0 � j � n there exists a 4–manifold Wj with the following properties. Letting
� D �1.Wj /, we have the following:

(1) Wj is a rational .n/–bordism whose boundary is a disjoint union of copies of
MRi

(the total number of copies being at most .mi �1/=.m�1/), together with
a positive number of copies of Mn�j .

(2) Each inclusion j W Mn�j � @Wj !Wj satisfies

j�.�1.Mn�j //� �
.j/;

j�.�1.Mn�j //Š Z� �.j/=�.jC1/
r :

(3) For any PTFA coefficient system �W �1.Wj /! � with �.nC1/
r D 1

�.@Wj ; �/� �
.2/
�
.Wj ; �/� �.Wj /D�D�0.K/

for some nonnegative integer D (depending on � ).

Assuming this and applying it in the case j D n one deduces

(9-5) .kCD/�0.K/D�

nX
iD1

r.i/X
jD1

�0.MRi
; �R

ij /:

where k is the number of boundary components of Wn that are copies of MK and
r.i/ is the number of boundary components of Wn that are copies of MRi

. Thus

(9-6) j�0.K/j �
r.1/C � � �C r.n/

kCD
C 0 �

�
mn� 1

m� 1

�
C 0 � C:
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The crucial point is that k � 1. Hence if j�0.K/j > C then zJ is not is rationally
.n:5/–solvable, thereby completing the proof.

In the construction of the Wj , in this general case, there will be no R–caps. The MRi

boundary components that appear at each level are allowed to persist. The key point is
that the analogue of Fact 2 (proof of Proposition 9.4) applies. This fact, together with
our hypothesis on the �ij , ensures that the kernel P of Fact 2 cannot contain every
�ij , so that there is always at least one �ij that maps nontrivially (as in Fact 2). This
translates into the fact that Wj always has at least one boundary component of the form
Mn�j . Then it is an easy combinatorial exercise to see that if one never has any null
caps that the total number of copies of the various MRi

in @Wn (ie r.1/C � � �C r.n/)
is precisely 0C1CmnCmnmn�1Cmnmn�1mn�2C� � �Cmnmn�1 � � �m2 which is
at most 1CmCm2C � � �Cmn�1 . This is the maximum number of copies possible.
The number is not very important—just the fact that there is a bound independent of
K . The proof is completed just as in the proof of Proposition 9.4.

A nice application of the more general theorem is the following which gives new infor-
mation about the concordance order of knots that previously could not be distinguished
from an order two knot.

Corollary 9.7 For any n > 0 there is a constant D such that if j�0.J0/j > D then
the knot Kn of Figure 5 is of infinite order in the topological and smooth concordance
groups.

Proof Any odd multiple of Kn has Arf invariant one and hence is not a slice knot,
nor even .0/–solvable. Let J D #2kKn . Let zR denote the ribbon knot obtained as a
connected sum of 2k copies of the figure eight knot. Then J is obtained from zR by
4k infections along a generating set for the Alexander module of zR, using the knot
Jn�1 in each case. Recall that Jn�1DRı � � � ıR.J0/ (n�1 times) using the operator
Rf˛;ˇg of Figure 7. Thus

J D zR ıR ı � � � ıR.J0/

and Theorem 9.5 applies to show that J is not slice.
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