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Abstract For each sequence P = (p1(t), p2(t), . . . ) of polynomials we define a
characteristic series of groups, called the derived series localized at P . These group
series yield filtrations of the knot concordance group that refine the (n)-solvable fil-
tration. We show that the quotients of successive terms of these refined filtrations have
infinite rank. The new filtrations allow us to distinguish between knots whose classi-
cal Alexander polynomials are coprime and even to distinguish between knots with
coprime higher-order Alexander polynomials. This provides evidence of higher-order
analogues of the classical p(t)-primary decomposition of the algebraic concordance
group. We use these techniques to give evidence that the set of smooth concordance
classes of knots is a fractal set.
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444 T. D. Cochran et al.

1 Introduction

A (classical) knot K is the image of a tame embedding of an oriented circle in S3.
Two knots, K0 ↪→ S3 × {0} and K1 ↪→ S3 × {1}, are concordant if there exists a
proper smooth embedding of an annulus into S3 × [0, 1] that restricts to the knots on
S3 × {0, 1}. The equivalence relation of concordance first arose in the early 1960′s in
work of Fox, Kervaire and Milnor in their study of isolated singularities of 2-spheres
in 4-manifolds and indeed, certain concordance problems are known to be equivalent
to whether higher-dimensional surgery techniques “work” for topological 4-manifolds
[4,21,32]. Let K be the set of ambient isotopy classes of knots and let C denote the
set of (smooth) concordance classes of knots. Since isotopic knots are concordant,
there is a natural surjection K → C. Furthermore, it is known that the connected sum
operation endows C with the structure of an abelian group, called the smooth knot
concordance group. The identity element is the class of the trivial knot. Any knot in
this class is concordant to a trivial knot and is called a slice knot. Equivalently, a slice
knot is one that is the boundary of a smooth embedding of a 2-disk in B4. In the late
60’s Milnor and Tristram showed that this group has infinite rank. It is also known to
contain an infinite linearly independent set of elements of order two. Much work has
been done on the subject of knot concordance (for excellent surveys see [26,43]). In
particular, [18] introduced a natural filtration of C by subgroups

· · · ⊂ Fn+1 ⊂ Fn.5 ⊂ Fn ⊂ · · · ⊂ F1 ⊂ F0.5 ⊂ F0 ⊂ C.

called the (n)-solvable filtration of C and denoted {Fn} (defined in Sect. 2). The
filtration is significant due to its intimate connection to the work of A. Casson and
M. Freedman on the topological classification problem for 4-manifolds; but also
because the classical knot concordance invariants are neatly encapsulated in the low-
order terms. The non-triviality of C can be measured in terms of the associated graded
abelian groups {Gn = Fn/Fn.5 | n ∈ N}. We ignore the other “half” of the filtration,
Fn.5/Fn+1, where almost nothing is known!

The first term, G0, is essentially Levine’s algebraic knot concordance group. That
it has infinite rank is the aforementioned result of Milnor and Tristram. In fact the work
of Milnor, Levine, and Stolzfus in the 1960’s resulted in a complete classification:

G0/torsion ∼= Z
∞ ∼=

⊕

p(t)

Z
rp

where the sum is over all irreducible p(t) ∈ Z[t] with p(1) = ±1, p(t−1)
.= p(t),

and where rp is the number of distinct pairs (z, z) of unit norm complex roots of p(t)
[41, Section 11–20], [30, p. 120], [5, Proposition 3.2], [51]. Said differently, the alge-
braic knot concordance group decomposes into the direct sum of its p(t)-primary
parts, each of which, modulo torsion, is isomorphic to Z

rp , as detected by a Milnor
signature associated to the pair (z, z) [46]. Indeed, the first step in the classification of
G0 is to decompose the Alexander module of K (together with its Blanchfield form)
into its primary parts. In this decomposition, a given knot has a non-zero p(t)-com-
ponent only if p(t) is a factor of its Alexander polynomial. This relies heavily on the
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Primary decomposition and the fractal nature of knot concordance 445

fact that Z[t, t−1] is a unique factorization domain. The reader should be aware that
the Alexander polynomial of a knot is not itself invariant under concordance, but there
are signature invariants that are associated to its roots (as above).

The primary goal of the present paper is to suggest, and give evidence for, an anal-
ogous but much more intricate decomposition for each Gn . The full decomposition
will necessarily be much more complicated since certain so-called higher-order Alex-
ander modules are relevant, and these are modules over noncommutative rings that are
not unique factorization domains. We herein define, to each sequence of polynomials
P = (p1(t), . . . , pn(t)), a new filtration of C, denoted {FP

n }, such that Fn ⊂ FP
n

(Sect. 2). Then we consider the product of all quotient maps

Gn/torsion →
∏

Pn

Fn

FP
n.5 ∩ Fn

where the product is taken over the set Pn of all “distinct” sequences P . In this scheme,
p1(t) should be thought of as a prime factor of the classical Alexander polynomial
and the other pi are related to higher-order Alexander polynomials. The quotient cor-
responding to P should be thought of as localizing at P in the sense that, loosely
speaking, knots whose higher-order Alexander polynomials are coprime to P will
vanish in this quotient. We conjecture that the image of this map is the direct sum over
Pn . This then gives the broad outlines of our proposed “primary decomposition” of
Gn . As evidence for this we produce, for each P , an infinite rank summand Z

∞ ⊂ Gn

such that the composition

⊕

Pn

Z
∞ ⊂ Gn

ψP� Fn

FP
n.5 ∩ Fn

is injective on the Z
∞ ⊂ Gn summand corresponding to P and is zero on all other

summands. We note that, in a subsequent paper, we exhibit this same structure for
2-torsion elements of Gn [13].

Having outlined our primary goal, we will now review some further history related
to primary decomposition, and reformulate our results in a more concrete form.

In the 1970’s the introduction of Casson–Gordon invariants in [2,3] led to the
result [31]:

Z
∞ ⊂ G1.

A specific family of knots realizing such a Z
∞ is shown on the right-hand side of Fig. 1.

These knots result from starting with the 946 ribbon knot, denoted R1, shown on the
left-hand side of Fig. 1 (here −1 means one full negative twist); then modifying it by
tying its central bands into the shape of an auxiliary (Arf invariant zero) knot J . The
resulting knot is denoted R1(J ). If J varies over a set of knots whose Milnor signatures
are “independent” then {R1(J )} will be linearly independent in G1. But more recent
work of Se-Goo Kim (on the “p-primary splitting” of Casson–Gordon invariants) [33];
and by Se-Goo Kim and Taehee Kim (using metabelian L(2)-signatures) [34] leads to
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Fig. 1 Family of knots, R1(J ), in G1 distinguished by classical signatures of J

Fig. 2 A 2-parameter family in
G1, distinguished by the
signatures of J and the
Alexander polynomial of Rk

a refinement analogous to that of Levine:

⊕

p(t)

Z
∞ ⊂ G1.

A family of knots that realizes such a subgroup is shown in Fig. 2. Here the base ribbon
knot, denoted Rk , k > 0, is allowed to vary (−k denotes k full negative twists). The
Alexander polynomial of Rk is p1(t)p1(t−1), where p1(t) = kt − (k + 1), and these
are coprime for different values of k. The result is a two parameter family, Rk(J ), dis-
tinguished up to concordance not only by the signatures of J but also by the Alexander
polynomials of the Rk . This (and other results of [34]) gives strong evidence for the
existence of a primary decomposition of G1. These same authors have announced
some partial results about the polynomial splitting of certain higher-order L(2)-signa-
tures. However, in all these results the knots are once again distinguished only by their
classical Alexander polynomials.

Now we consider the possibility of a decomposition of Gn for n > 1. A number
of papers have addressed the non-triviality of {Gn}, [19,20,23–25,35], culminating
in [16] where it was shown that Gn has infinite rank for any integer n, that is, it was
shown that there exists

Z
∞ ⊂ Gn . (1.1)
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Fig. 3 A family, R1
α(R

1
α(J )), in G2 distinguished by the classical signatures of J

Fig. 4 Family of ribbon knots
with different Alexander
polynomials

Our present work enables us to prove a substantial generalization of this fact, along the
lines of the Levine–Milnor–Stoltzfus primary decomposition of G0 and in the spirit
of the Kim-Kim work on G1. We prove that, for each prime p1(t) (that can occur as a
divisor of the Alexander polynomial of a knot) there is a distinct infinite rank subgroup
of Gn all of whose classical Alexander modules are cyclic of order p1(t)p1(t−1). But
we go much farther. We show that each of these subgroups (consisting of knots with the
same Alexander polynomial) decomposes into (infinite rank) subgroups whose mem-
bers are distinguished by the orders of their second higher-order Alexander modules;
et cetera.

To see how this works in a specific case, fix n = 2. We first describe an infinite
family realizing (1.1) in the case n = 2. The left-hand side of Fig. 3 shows a ribbon
knot, R1 with the same Alexander polynomial as 946 (here T1 is a certain fixed knot
which is not relevant to this overview). Now, for any knot J we can form R1

α(J )
and then define the knot R1

α(R
1
α(J )) as shown on the right-hand side of Fig. 3. Then

varying J over any collection of Arf invariant zero knots with independent signatures
yields an infinite family generating Z

∞ ⊂ G2 [16]. All of these knots have the same
classical Alexander polynomial, that of R1. They are distinguished by the classical
signatures of J .

But now we can consider the family of ribbon knots Rk as shown in Fig. 4, which, for
varying k have coprime Alexander polynomials. Then by utilizing Rk and Rm we can
form a two parameter family of knots, Rk

α(R
m
α (J )), as shown in Fig. 5. Then, upon
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Fig. 5 Three parameter family
of knots Rk

α(R
m (J )) ∈ G2,

distinguished by torsion in first
and second Alexander modules,
and the signatures of J

choosing a set of J with independent signatures, we will show that this yields a
2-parameter collection of Z

∞ subgroups of G2. For fixed J and different values of k
these are distinguished by their classical Alexander polynomials. For J and k fixed,
these all have isomorphic classical Alexander modules but, we claim, are distinguished
by torsion in their second higher-order Alexander modules.

To be more specific, recall that the higher-order Alexander modules of a knot have
a purely group theoretic description as the quotient, G(i)/G(i+1), of successive terms
in the derived series of the fundamental group of the zero framed surgery on the
knot [10,18]. Each of these is known to be a torsion module over the ring Z[G/G(i)]
[18, Section 2]. Taking i = 1 gives the classical Alexander module. A Mayer–Vietoris
argument shows that the second order Alexander module (taking i = 2) of Rk

α(J
′), for

any J ′, contains a summand related to the classical Alexander module of J ′ [10, Thm
8.2], [13, Lemma 5.10]. Specifically in the case of the knots of Fig. 5, the Alexander
module of J ′ = Rm

α (J ) is cyclic of order

p2(t)p2(t
−1) = (mt − (m + 1))

(
mt−1 − (m + 1)

)
,

so the second order Alexander module of Rk
α(R

m
α (J )) contains a submodule of the

form

Z�

p2(x)p2(x−1)Z�

for � = G/G(2) and for some x ∈ G(1)/G(2). In summary, the examples of Fig. 5
give a 3-parameter family (varying k, m and signatures of J ) of 2-solvable knots that
are linearly independent modulo F2.5. But what the reader should focus on is that they
are distinguished by the orders of elements in their first and second order Alexander
modules. That these knots are distinct up to isotopy is obvious. What is difficult is to
show that this difference persists in C.

Moreover this pattern continues. Consider a set Pn = {P} of all “distinct” n-tuples
P = (p1(t), . . . , pn(t)) of polynomials with pi (1) = ±1 (for the definition of distinct
see Definitions 4.4 and 6.1). We then prove in Theorem 7.7 that for each P ∈ Pn
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there is a distinct Z
∞ ⊂ Fn , yielding a subgroup

⊕

Pn

Z
∞ ⊂ Gn . (1.2)

The polynomial p1 relates to the order of torsion in the classical, or first, Alexan-
der module, while the higher pi relate to the type of torsion in the i th higher-order
Alexander module, as in the examples above. Thus we show that one can distinguish
concordance classes of knots not only by their classical Alexander polynomials, but
also, loosely speaking, by their higher-order Alexander polynomials.

We briefly explain our strategy to distinguish knots with different torsion in their
higher-order Alexander modules, since it motivates several chapters of new mathemat-
ics we must create. The presence of a certain type of Z[G/G(n)]-torsion in the module
G(n)/G(n+1) can potentially be detected by localization. The process of localization of
modules, when such a process exists, serves to kill torsion, depending on what subset
of Z[G/G(n)] is inverted. Although, there is no good notion of localizing a ring or
module at a prime ideal in a general noncommutative ring, there is a classical theory
of localization over Ore domains. Therefore the project of distinguishing among knots
with different torsion in higher order Alexander modules hinges critically on our ability
to accurately specify new families of right divisor sets in the Ore domain Z[G/G(n)].
Moreover, taking advantage of a philosophy introduced by the second author, we show
that choosing different localizations for each n leads to different group series, each an
enlargement of the derived series (Sect. 3). Specifically, we distinguish among knots
with different torsion in their higher-order Alexander modules by defining, for each
sequence P , a characteristic series of groups, {G(n)

P }, that we call the derived series
localized at P (Sect. 4). Then to any knot we can associate a 3-manifold, MK , the zero
framed surgery on K and a coefficient system

φ : π1(MK ) ≡ G → G/G(n+1)
P .

To this we associate the real-valued von Neumann ρ-invariant, ρ(MK , φ) (Sect. 5).
This invariant is shown to vanish trivially on all knots except those whose higher-
order Alexander modules have the torsion characteristics to match P . Finally, the
higher-order signature invariants are shown to obstruct membership in {FP

n } (Sect. 5).
This paper has a secondary goal (but related to the primary goal). Recall that a

fractal set F is one that admits self-similarity structures, by which is meant merely
a system of injective maps φi : F ↪→ F [1, Def. 3.1]. Of course any infinite set has
many proper self-embeddings, so one normally expects self-similarities to be in some
sense natural with respect to other structure that may exist on the set. K itself has
many well-known self-similarity structures given by classical satellite constructions.
If R is a knot and α is a simple closed curve in S3 − R that bounds an embedded disk
in S3 as shown on the left-hand side of Fig. 6, then (R, α) parametrizes an operator
Rα : K → K wherein Rα(K ) is obtained from R by tying all the strands of R that
pass through α into parallel copies of the knot K as indicated schematically on the
right-hand of Fig. 6. As long as this operator is non-trivial (in the sense that α does
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R

α

Rα(K)

K

Fig. 6 Rα(K )

not bound an embedded disk in S3 − R) it is known to be injective (by the unique-
ness of the torus decomposition of 3-manifolds). Moreover, the number of distinct
such embeddings (varying R and α) is infinite, with the parameter space containing
many natural independent parameters. For example, the Alexander polynomial of R
is one such parameter, as is the integer n that represents the maximum depth of α in
the derived series of π1(S3 − R). Any two operators with differing values of these
parameters necessarily are different operators (again by the uniqueness of the torus
decomposition). Since isotopic knots are concordant, there is a natural surjective map
K → C. It is well known that each of these operators descends to give an operator
(not a homomorphism)

Rα : C → C.
We conjecture (and present evidence) that many of these self-similarity structures
on K descend to self-similarity structures on C, that is, we conjecture that many of
the operators Rα on C are injective. For example, if α is a meridional loop for R
then Rα([K ]) = [R#K ] = [R] + [K ], so Rα is injective. The classical operation
of “Whitehead doubling” is another particular example of such an operation that is
conjectured to be injective on C.

We do not know if fractal structures on a set (that happens to be an abelian group)
can be useful in understanding that set. But we profit from considering mathematical
structures on C other than its group structure. Certainly topologists are interested in
more than the group structure of C. In particular, they are interested in how knot con-
cordance behaves with respect to natural geometric operations such as satellite and
cabling operations that are known to not induce homomorphisms. Furthermore there
are many interesting questions such as: Is Rα continuous with respect to the topology
on C induced by the n-solvable filtration? Is there a good metric topology on C?

We remark that there is another interesting question (related to injectivity): Does
Rα send large linearly independent sets to linearly independent sets? Since these oper-
ators are not homomorphisms, this question is logically independent of the question
of injectivity! In the context of this paper we address both questions.

As evidence for the existence of self-similarities we show that certain of these oper-
ators, that we call robust doubling operators (see Definitions 2.6 and 7.2), are injective
on the subgroup consisting of essentially all known non-trivial examples (modulo tor-
sion). Moreover we conjecture that the number of distinct robust operators (varying R
and α) is infinite, with the parameter space containing natural independent parameters.
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This would mean that C embeds in itself in many distinct ways, all with disjoint images.
In particular the Alexander polynomial, p(t), of the knot R is a natural parameter.
We prove not only that each such robust Rα is injective on the subgroup consisting
of essentially all known examples, but that if Rα and R′

β are such that R and R′ have
Alexander polynomials that are coprime, then Rα and R′

β have disjoint images on this
subgroup!

Theorem 8.1 If Rα is a robust operator then Rα : C → C is injective on the subgroup

⊕

n

⊕

Pn

Z
∞ ⊂ C

from (1.2). Moreover, if Rα and R′
β are robust doubling operators for which the Alex-

ander polynomials of R and R′ are coprime, then Rα and R′
β have disjoint images

(i.e. intersecting only in {0}), when restricted to this subgroup. Furthermore, the com-

position C Rα−→ C → C/Fn.5 is injective on the subgroup

⊕

Pn

Z
∞ ⊂ Fn ⊂ C

from (1.2).

To view this evidence for the existence of many distinct self-similarities diagram-
matically, for each knot polynomial pk(t) = δ(t)δ(t−1) with δ prime, we define a
robust operator (abbreviated here as) pk : C → C with the property that pk(G j ) ⊂
G j+1 (Example 7.4). In fact the operators Rk

α in Fig. 4 are the examples where δk(t) is
linear, so the reader can focus on those. Since there are countably infinitely many such
polynomials pk , these maps and their compositions are parametrized by an infinite tree
with countably infinite valence at each vertex, as indicated in the following diagram.

C

... C

C

... C

C

... C

C

���
p1

�
�
�
��

p1
���pk

���
p1

�
�
�
�	

pk

���pk

The set Pn parametrizes compositions of n of these operators (terminating in the right-
most copy of C) as suggested by the diagram. Our conjectures would imply that each
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such composition of length n (that is, pin ◦ · · · ◦ pi1 ) that terminates at the right-most
copy of C is an embedding and moreover that these compositions have images that
intersect only in the class of the trivial knot. As evidence (re-wording Theorem 8.1) we
exhibit infinite linearly independent subsets of G0 the union of whose images under
these compositions are linearly independent in Gn , giving the very large subgroup of
(1.2), as suggested by the diagram below.

G0 → . . .Gn−2

G0 → ...
Gn−1

G0 → . . .Gn−2

...
Gn ⊃ ⊕Pn Z

∞

G0 → . . .Gn−2

G0 → ...
Gn−1

G0 → . . .Gn−2



�
p1

�
�

�
�

p1
���

pk



�
p1

�
�

�
��

pk

���
pk

To see an artistic suggestion of the self-similarity arising from iterated satellite
operations, consider the case that R is the 946 knot shown on the left-hand side
of Fig. 7 with two designated circles along which we will perform infection. Then
R (R(R, R), R(R, R)) is shown on the right-hand side of Fig. 7.

Finally, recall that Cochran–Orr–Teichner exhibited the first knots with vanishing
Casson–Gordon invariants that are not slice in the topological category and showed
that Gn has infinite rank for n = 0, 1, 2 [18,19]. In [20] it was shown that each Gn

has positive rank and this was extended in [17,36]. As a further example of the utility
of different filtrations and commutator series, we show that if n ≥ 2 then none of the
knots that appeared in these papers (henceforth called COT knots- see Sect. 9 for
precise definitions), is concordant to any of the knots that appeared in the more recent
papers of the authors [14–16], henceforth called CHL knots. Recall that it was shown
in the latter papers (using CHL knots) that each Gn has infinite rank. In particular this
implies that the subgroup of focus in the present paper

⊕

Pn

Z
∞ ⊂ Fn ⊂ C

is not all of C if n ≥ 2.
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Fig. 7 R (R(R, R), R(R, R))

2 Commutator series and filtrations of the knot concordance groups

Definition 2.1 A commutator series is a function, ∗, that assigns to each group G a
nested sequence of normal subgroups

· · · � G(n+1)∗ � G(n)∗ � · · · � G(0)∗ ≡ G,

such that G(n)∗ /G(n+1)∗ is a torsion-free abelian group. (We restrict to torsion-free in
order to avoid zero divisors in Z[G/G(n)∗ ]). A functorial commutator series is one
that is a functor from the category of groups to the category of series of groups,
that is, a commutator series such that, for any group homomorphism f : G → P ,
f (G(n)∗ ) ⊂ P(n)∗ for each n. If G(i)∗ is defined only for i ≤ n, then this will be called a
partially defined commutator series.

The model example is the rational derived series, {G(n)
r }, given by G(0)

r ≡ G and

G(n+1)
r ≡ {x ∈ G(n)

r | ∃k > 0, xk ∈ [G(n)
r ,G(n)

r ]},

first used systematically in [27]. There is also the rational lower central series [49],
and mixtures of these two. These (mixtures of) derived and lower central series sub-
groups are verbal subgroups [45, Section 2.2] and hence fully invariant. It follows
readily that these model series are functorial. Other examples will be given in Sect. 3.

Proposition 2.2 For any commutator series {G(n)∗ },
1. {x ∈ G(n)∗ | ∃k > 0, xk ∈ [G(n)∗ ,G(n)∗ ]} ⊂ G(n+1)∗ (and in particular [G(n)∗ ,G(n)∗ ] ⊂

G(n+1)∗ , whence the name commutator series);
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454 T. D. Cochran et al.

2. G(n)
r ⊂ G(n)∗ , that is, every commutator series contains the rational derived series;

3. G/G(n)∗ is a poly-(torsion-free abelian) group (abbreviated PTFA);
4. Z[G/G(n)∗ ] and Q[G/G(n)∗ ] are right (and left) Ore domains.

Proof Recall that a group is poly-(torsion-free abelian) (abbreviated PTFA) if it
admits a finite subnormal series for which the successive quotients are torsion-free
abelian groups. Properties 1 and 3 follow from the definitions. Property 2 then follows
inductively from 1. Property 4 is verified in [18, Proposition 2.5]. ��

We will now show that any commutator series that satisfies a weak functoriality
induces a filtration, {F∗

n }, of C. These filtrations generalize and refine the (n)-solv-
able filtration {Fn} of [18]. Let MK denote the closed 3-manifold obtained by zero
framed surgery on S3 along K . Recall that the motivation for the following filtra-
tions is the following well-known fact: If a knot K admits a slice disk � ↪→ B4

then MK is the boundary of the 4-manifold W = B4\� for which H2(W ) = 0 and
H1(MK ) ∼= H1(W ).

Definition 2.3 A knot K is an element of F∗
n if the zero-framed surgery MK bounds

a compact smooth 4-manifold W such that

1. H1(MK ; Z) → H1(W ; Z) is an isomorphism;
2. H2(W ; Z) has a basis consisting of connected compact oriented surfaces, {Li , Di |

1 ≤ i ≤ r}, embedded in W with trivial normal bundles, wherein the surfaces are
pairwise disjoint except that, for each i , Li intersects Di transversely once with
positive sign.

3. for each i , π1(Li ) ⊂ π1(W )
(n)∗ and π1(Di ) ⊂ π1(W )

(n)∗ .

A knot K ∈ F∗
n.5 if in addition,

4. for each i , π1(Li ) ⊂ π1(W )
(n+1)∗

Such a 4-manifold is called an (n, ∗)-solution (respectively an (n.5, ∗)-solution) for
K and it is said that K and MK are (n, ∗)-solvable (respectively (n.5, ∗)-solvable)
via W . The case where the commutator series is the derived series (without the tor-
sion-free abelian restriction) is denoted Fn and we speak of W being an (n)-solution,
and K or MK being (n)-solvable via W [18, Section 8]. If a 4 manifold W is a subman-
ifold of another 4-manifold V then we say that W is effectively an (n, ∗)-solution
(respectively an (n.5, ∗)-solution) with respect to V if H1(∂W ) ∼= H1(W ) and W
satisfies a modified version of conditions [2] and [3] above:

3′. H2(W ) has a basis as in condition 2. such that for each i , π1(Li ) ⊂ π1(V )
(n)∗ and

π1(Di ) ⊂ π1(V )
(n)∗ .

Similarly we say that W is effectively an (n.5, ∗)-solution with respect to V if in
addition it satisfies a similarly modified version of condition 4. above.

It follows from the definition that any such W is spin and that the intersection form
on H2(W ) is a direct sum of hyperbolic pairs, hence has zero signature. Dropping the
hypothesis that W be smooth, one can also define F∗,T O P

n . But work of Freedman-
Quinn implies that this hypothesis is redundant, so that in fact K ∈ F∗,T O P

n if and
only if K ∈ F∗

n [22, Proposition 8.8A].
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Some of the most important group series are not fully functorial, including the one
of most interest in this paper (see Theorem 4.16), but usually a much weaker notion
is required for applications. For example, in discussing knots, usually all the spaces
one deals with have H1 either infinite cyclic or trivial.

Definition 2.4 A commutator series {G(n)∗ } is weakly functorial if, for any homomor-
phism f : G → π that induces an isomorphism G/G(1)

r
∼= π/π

(1)
r , f (G(n)∗ ) ⊂ π

(n)∗
for each n.

Proposition 2.5 Suppose ∗ is a weakly functorial commutator series defined on the
class of groups with β1 = 1. Then {F∗

n }n≥0 is a filtration by subgroups of the classical
(smooth) knot concordance group C:

· · · ⊂ F∗
n+1 ⊂ F∗

n.5 ⊂ F∗
n ⊂ · · · ⊂ F∗

1 ⊂ F∗
0.5 ⊂ F∗

0 ⊂ C.

The case where the commutator series is the derived series (without the torsion-free
abelian restriction) is the (n)-solvable filtration [18], denoted {Fn}, and, for any n,
Fn ⊂ F∗

n .

Proof We sketch the proof. If K0 and K1 are concordant then it is well known that
their exteriors, and hence their zero-framed surgeries, MK0 and MK1 , are homology
cobordant via a 4-manifold C (obtained by performing zero framed surgery on the
annulus). Suppose K0 ∈ F∗

n via W0. Let W1 = W0 ∪C so that ∂W1 = MK1 . Note that
the inclusion W0 ↪→ W1 induces isomorphisms on homology. By weak functoriality,
π1(W0)

(k)∗ ⊂ π1(W1)
(k)∗ for every k. Then it is easy to see that K1 ∈ F∗

n via W1 using
the surfaces from W0. Therefore F∗

n descends to define a filtration of C.
We claim that F∗

n is a subgroup. If K is a slice knot then MK = ∂(B4 −�) where
H2(B4 − �) = 0. Thus K ∈ F∗

n via B4 − � for any n and any ∗. It follows that
[0] ∈ F∗

n . Since −MK = M−K , F∗
n is closed under taking inverses in C. There is a

standard cobordism E whose boundary consists of MK , MJ and −MK #J . If MJ is
(n, ∗)-solvable via WJ and MK is (n, ∗)-solvable via WK , then let W = WJ ∪WK ∪ E
so that ∂W = MK #J . Note that the inclusion WK ↪→ W induces an isomorphism on
H1 (in fact π1(W0) is a retract of π1(W )). Using weak functorality, one then easily
shows that K #J is (n, ∗)-solvable via W (using the union of the surfaces from WK

and WJ . Thus F∗
n is closed under connected sum of knots.

Since G(n) ⊂ G(n)∗ it is obvious from the definitions that Fn ⊂ F∗
n . ��

Examples of knots in these filtration levels can be provided by generalizations of
satellite constructions.

2.1 Doubling operators

Let R be a knot in S3 and �α = {α1, α2, . . . , αm} be an ordered oriented trivial link in
S3, that misses R, bounding a collection of oriented disks that meet R transversely as
shown on the left-hand side of Fig. 8. Suppose (K1, K2, . . . , Km) is an m-tuple of aux-
iliary knots. Let R�α(K1, . . . , Km) denote the result of the operation pictured in Fig. 8,
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Fig. 8 R�α(K1, . . . , Km ): Infection of R by K j along α j

that is, for each α j , take the embedded disk in S3 bounded by α j ; cut off R along the
disk; grab the cut strands, tie them into the knot K j (with no twisting) and reglue as
shown in Fig. 8.

We will call this the result of infection performed on the knot R using the
infection knots K j along the curves αj. This construction can also be described in
the following way. For each α j , remove a tubular neighborhood of α j in S3 and glue
in the exterior of a tubular neighborhood of K j along their common boundary, which
is a torus, in such a way that the longitude of α j is identified with the meridian of
K j and the meridian of α j is identified with the reverse of the longitude of K j . The
resulting space can be seen to be homeomorphic to S3 and the image of R is the new
knot. In the case that m = 1 this is the same as the classical satellite construction.
In general it can be considered to be a generalized satellite construction [19].

For simplicity, in this paper we focus on the following special case.

Definition 2.6 A doubling operator, Rα : C → C is one that arises from infection
on a ribbon knot R along a single curve α where lk(R, α) = 0.

Proposition 2.7 For any weakly functorial commutator series ∗, if Rα is a doubling
operator with α ∈ π1(MR)

(k)∗ then

Rα(Fn−k) ⊂ F∗
n .

Specifically, if α ∈ π1(MR)
(n)∗ and K is an Arf invariant zero knot, then

Rα(K ) ∈ F∗
n .

The same holds for the more general operators R�α if, for each i , αi ∈ π1(MR)
(k)∗ and

Ki ∈ Fn−k .

Proof Consider the last (strongest) claim of the Proposition. Let us use L to abbreviate
R�α(K1, . . . , Kr ). Recall from [16, Lemma 2.3, Figure 2.1] that there is a cobordism
E (as shown on the left-hand side of Fig. 9 with r = 2) whose boundary is the disjoint
union of the zero-framed surgeries on L , K1, . . . , Kr and R. Recall that E is obtained
from the union of MR × [0, 1] and the various MKi × [0, 1] by identifying the solid
tori αi × D2 ⊂ MR × {1} with the solid tori MKi − (S3 − Ki ). Suppose Ki ∈ Fn−k

via Vi and suppose S = B4 −� where � is a slice disk for the slice knot R. Gluing
these to E we obtain the 4-manifold W , as shown on the right-hand side of Fig. 9,
whose boundary is the zero framed surgery on L .
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Fig. 9 The cobordism

We claim that L ∈ F∗
n via W . For this we must analyze the homology of W using

the following result.

Lemma 2.8 ([16, Lemma 2.5]) With regard to E above, the inclusion maps induce

(1) an epimorphism π1(ML) → π1(E) whose kernel is the normal closure of the
longitudes of the infecting knots Ki viewed as curves i ⊂ S3 − Ki ⊂ ML;

(2) isomorphisms H1(ML) → H1(E) and H1(MR) → H1(E);
(3) and isomorphisms H2(E) ∼= H2(ML)⊕i H2(MKi )

∼= H2(MR)⊕i H2(MKi ).
(4) The meridian of Ki , μi ⊂ MKi is isotopic in E to both αi ⊂ MR and to the

longitudinal push-off of αi , αi ⊂ ML.
(5) The longitude of Ki , i ⊂ MKi is isotopic in E to the reverse of the meridian of

αi , (μαi )
−1 ⊂ ML and to the longitude of Ki in S3 − Ki ⊂ ML and to the reverse

of the meridian of αi , (μαi )
−1 ⊂ MR (the latter bounds a disk in MR).

The inclusion maps MR → S, MKi → Vi induce isomorphisms on H1 and zero
maps on H2. From this and (2) of Lemma 2.8, it follows that H1(ML) → H1(W ) is
an isomorphism. A Mayer–Vietoris sequence then implies that

H2(W ) ∼= ⊕r
i=1 H2(Vi )

since H2(S) = 0. For each fixed i , H2(Vi ; Z) has a basis consisting of connected
compact oriented surfaces, {L j , D j |1 ≤ j ≤ ri }, satisfying the conditions of Defini-
tion 2.3. In particular π1(L j ) ⊂ π1(Vi )

(n−k) and π1(D j ) ⊂ π1(Vi )
(n−k). We claim

that

π1(Vi ) ⊂ π1(W )(k)∗ . (2.1)

Assuming this for the moment it then would follow that

π1(L j ) ⊂ π1(Vi )
(n−k) ⊂ (π1(W )(k)∗ )(n−k) ⊂ π1(W )(n)∗ ,
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where for the last inclusion we use iterated applications of part 1 of Proposition 2.2;
and similarly for π1(D j ). This would then complete the verification that L ∈ F∗

n
via W .

To establish our claim (2.1), consider the inclusion φ : π1(MKi ) → π1(Vi ). Since
the meridian μi normally generates π1(MKi ), it normally generates π1(Vi ) modulo
π1(Vi )

(k) by the following elementary result.

Lemma 2.9 ([9, Lemma 6.5]) Suppose φ : A → B is a group homomorphism
that is surjective on abelianizations. Then, for any positive integer k, φ(A) normally
generates B/B(k).

Continuing with our proof of Proposition 2.7, since

π1(Vi )
(k) ⊂ π1(W )(k) ⊂ π1(W )(k)∗ ,

to establish (2.1) we need only show thatμi ∈ π1(W )
(k)∗ . By property (4) of Lemma 2.8,

μi is isotopic in W to αi ⊂ MR . By hypothesis αi ∈ π1(MR)
(k)∗ and combined with

the weak functoriality of the commutator series we conclude

αi ∈ π1(MR)
(k)∗ ⊂ π1(W )(k)∗ ,

as required. ��

3 Commutator series from localization

It is a consequence of Proposition 2.2 that, in any commutator series, the canonical
epimorphism G(n)∗ → G(n)∗ /G(n+1)∗ factors as follows

G(n)∗ → G(n)∗ /[G(n)∗ ,G(n)∗ ]
Z − torsion

πn→ G(n)∗ /G(n+1)∗ ,

Hence each commutator series is uniquely determined by recursively specifying the
normal subgroups that will be the kernels of the maps πn .

In this section we generalize a philosophy introduced by the second author [29] to
define various commutator series by killing (via the πn) selected torsion elements of
G(n)∗ /[G(n)∗ ,G(n)∗ ], where the latter is viewed as a module (see below). This is accom-
plished by noncommutative localization. We first review (classical) noncommutative
localization of rings and modules.

3.1 Review of classical localization for domains

Let R be a non-trivial domain with unity and S be a multiplicatively closed set of
non-zero elements of R with 1 ∈ S. Then the right quotient ring, RS−1, is a ring
containing R with the property that
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i. every element of S has an inverse in RS−1, and
ii. every element of RS−1 is of the form rs−1 with r ∈ R, s ∈ S.

Such quotient rings exist if R is commutative, but in general one needs extra conditions
on S to guarantee their existence.

A subset S ⊂ R is called a right divisor set of R if

1. 1 ∈ S, 0 /∈ S;
2. S is multiplicatively closed and
3. given r ∈ R, s ∈ S, there exist r ′ ∈ R, s′ ∈ S such that rs′ = sr ′.

If S is a right divisor set of R then the right quotient ring RS−1 exists [47, Theorem
2.12, page 427]. Note that the third condition is always satisfied if R is commutative.
A domain R for which R\{0} is a right divisor set is called a right Ore domain. In this
case the right quotient field R(R\{0})−1 is a division ring called the (right classical)
quotient field of R and will be denoted KR. The ring RS−1 is naturally an R − RS−1

bimodule and is flat as a left R-module [50, Prop. II.3.5].
If R is a domain and M is a right R-module then an element x ∈ M is torsion if

there is some non-zero s ∈ R such that xs = 0. Then we say that x is s-torsion. If S
is a right divisor set of R then the set of elements of M that are s-torsion for some
s ∈ S is a submodule called the S-torsion submodule of M. The connection between
localization and torsion is given by the fact that

ker
(
M → M ⊗R RS−1

)

is precisely the S-torsion submodule of M [50, Cor.II.3.3]. We will often abbreviate
M ⊗ RS−1 by MS−1, a right RS−1-module that is called the localization of the
module M corresponding to S.

3.2 Commutator series arising from localizations

We follow and generalize [29, Section 2]. Given any group G, set G(0)
S ≡ G and sup-

pose inductively that G(k)
S has been defined for k ≤ n in such a way that G(k)

S /G(k+1)
S

is a torsion-free abelian group for each k < n. This is a partially defined commutator
series. Then G/G(n)

S is a poly-(torsion-free-abelian) group (henceforth called PTFA)
and consequently Q[G/G(n)

S ] is a domain (Bovdi, see [47, p. 592]), and in fact is a
right Ore domain [47, Lemma 3.6 iii, p. 611]. Recall that that

G(n)

S
[G(n)

S ,G(n)

S ]

is not only an abelian group but also a right Z[G/G(n)

S ]-module where the action is
induced by conjugation (x ∗ g = g−1xg for any g ∈ G and x ∈ G(n)

S ). Henceforth the
action of g on x will be denoted by xg. Suppose Sn ⊂ Q[G/G(n)

S ] is a right divisor set.
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Then define

G(n+1)
S ≡ ker

(
G(n)

S → G(n)

S
[G(n)

S ,G(n)

S ] → G(n)

S
[G(n)

S ,G(n)

S ] ⊗
Z[G/G(n)

S ] Q[G/G(n)

S ]S−1
n

)

(3.1)

where we use the fact that Q[G/G(n)

S ]S−1
n is a left Z[G/G(n)

S ]-module. The second
map in this composition should really be viewed as first tensoring with Q, which kills
the Z-torsion, and then inverting Sn , which kills the Sn-torsion. It follows easily that
G(n)

S /G(n+1)
S is a torsion-free abelian group (since Q[G/G(n)

S ]S−1
n is a rational vector

space). Hence this procedure recursively defines a commutator series (or a partial
commutator series up to G(n+1)

S ), that depends only on S, a sequence, S1, . . . , Sn of
right divisor sets. Note that since S0 ⊂ Q, the choice of S0 is irrelevant and we ignore
it. For the same reason, for any commutator series so defined,

G(1)
S = G(1)

r , (3.2)

the first term of the rational derived series (the radical of the commutator subgroup).
Elements of G(n+1)

S have a simple characterization. Associated to Sn ⊂ Q[G/G(n)

S ]
is a “lifting” S̃n ⊂ Z[G/G(n)

S ] consisting of those elements s̃ of Z[G/G(n)

S ] for which

s̃r ∈ Sn for some non-zero r ∈ Q. Note that if Q − {0} ⊂ Sn then S̃n ⊂ Sn since Sn

is multiplicatively closed.

Proposition 3.1 If x ∈ G(n)

S , then x ∈ G(n+1)
S if and only if x represents S̃n-torsion in

the module
G(n)

S
[G(n)

S ,G(n)
S ] .

Proof Supposex ∈ G(n+1)
S . Letxbe the class represented byx in the module G(n)

S /[G(n)

S ,
G(n)

S ]. Then there exists some s ∈ Sn such that x ⊗ 1 is s-torsion in the module

G(n)

S
[G(n)

S ,G(n)

S ] ⊗
Z[G/G(n)

S ] Q[G/G(n)

S ] ∼= G(n)

S
[G(n)

S ,G(n)

S ] ⊗Z Q.

Let k be a non-zero integer such that sk ∈ Z[G/G(n)

S ]. Then x ⊗ 1 is also sk-torsion.
Thus

0 = x ⊗ sk = x(sk)⊗ 1.

Since tensoring an abelian group with Q kills only Z-torsion, this implies that x(sk)
is Z-torsion in G(n)

S /[G(n)

S ,G(n)

S ]. Hence x is annihilated by s̃ = skt for some non-zero

integer t . Since (1/kt)s̃ = s ∈ Sn , s̃ ∈ S̃n . Thus x is S̃n-torsion.
The converse follows similarly. ��
Whether or not such commutator series are functorial depends on whether or not

the right divisor sets S1, . . . , Sn are defined in a “functorial” manner.
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Proposition 3.2 Suppose sequences of right divisor sets S A and S B are chosen for
the groups A and B respectively yielding partial commutator series. If ψ : A → B
is a group homomorphism such that ψ(S A

i ) ⊂ SB
i for 0 ≤ i ≤ n then ψ(A(n+1)

S ) ⊂
B(n+1)

S .

Proof The proposition is true for n = 0 since A(1)S = A(1)r and the rational derived series
is functorial. Now assume it is true for n − 1. Assume ψ(S A

i )⊂ SB
i for 0 ≤ i ≤ n.

Then, by the induction hypothesis, ψ(A(i)S ) ⊂ B(i)S for 0 ≤ i ≤ n. In particular ψ
induces a ring homomorphism

ψ : Z[A/A(n)

S ] → Z[B/B(n)

S ],

(and similarly for the rational group rings) such that, by hypothesis, ψ(S A
n ) ⊂ SB

n .
Thus we have the following commutative diagram,

A(n)

S
A(n)

S
[A(n)

S , A(n)

S ]
A(n)

S
[A(n)

S , A(n)

S ] ⊗
Z[A/A(n)S ] Q[A/A(n)

S ](S A
n )

−1

B(n)

S
B(n)

S
[B(n)

S , B(n)

S ]
B(n)

S
[B(n)

S , B(n)

S ] ⊗
Z[B/B(n)S ] Q[B/B(n)

S ](SB
n )

−1
�

ψ

�

�
ψ∗

�

�
ψ∗

� �

from which it follows immediately that ψ(A(n+1)
S ) ⊂ B(n+1)

S . ��

3.3 Examples from the previous literature

The series that have appeared in the previous literature may be seen in this context.

Example 3.3 (The Rational Derived Series) If we choose each Sn minimally, that is
Sn = {1}, then the resulting commutator series is the rational derived series G(n)

r [27].
This series is functorial.

Example 3.4 (The Torsion-Free Derived Series) If we choose each Sn maximally, that
is Sn = Q[G/G(n)

S ]−{0} then the resulting commutator series is Harvey’s torsion-free

derived series, G(n)
H , [8,29]. This series has a remarkable monotonicity property under

concordance and hence leads to invariants of links and 3-manifolds [12,28] (see also
[6]). This series is not useful for knots since if G is a group with β1(G) = 1 then
G/G(n)

H
∼= Z for n > 0 [8, Example 2.9]. This series is not functorial, although it is

functorial for maps that induce 2-connected maps on rational homology.

We are interested in series that interpolate between these extremes.
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Example 3.5 (The COT Series) The following partial commutator series was sug-
gested by the work of [18] and [20]. We call it the COT series (at level n + 1).
Fix n > 0. For each 0 ≤ k ≤ n let G(k)

cot = G(k)
r . Let Sn,cot = Q[G(1)/G(n)

r ] − {0} and
set

G(n+1)
cot ≡ ker

(
G(n)

r → G(n)
r

[G(n)
r ,G(n)

r ] → G(n)
r

[G(n)
r ,G(n)

r ] S−1
n,cot

)
(3.3)

as in Eq. (3.1). This partial commutator series agrees with the rational derived series
until the (n + 1)-st term. This series is not functorial. There is an alternative series
suggested by their work wherein one performs the analogous localization at each stage.

Example 3.6 Another example defined and subsequently used extensively by Harvey
and others, depends only on an initial choice of an element ψ ∈ H1(G; Z) =
Hom(G,Z) [27,37,39,40]. Given ψ , let Sn = Q[kerψ/G(n)

S ] − {0}. Then Q[G/G(n)

S ]
(Sn)

−1 can be identified with a twisted polynomial ring Kn[t, t−1] with coefficients
in Kn , the (skew) field of quotients of Q[kerψ/G(n)

S ], which is itself a principal ideal
domain [27, Section 4]. Thus G(n)

S /G(n+1)
S is a module over this principal ideal domain.

The torsion submodule of this module is called the (n − 1)st-higher-order Alexander
module of G. This series is not functorial.

4 Localization at polynomials

Our goal in this section is, loosely speaking, to define, using Sect. 3, a commutator
series in which, at each stage, Sn consists of certain torsion “coprime” to pn for some
chosen pn ∈ Q[G/G(n)

S ]. This statement does not really make sense over a noncommu-
tative ring. The purpose of this section is to make sense of it. This will entail some new
results. By the end of this section we will have defined a new functorial commutator
series, called the derived series localized at P , where P = (p1(t), . . . , pn(t), . . .) is
any sequence of non-zero elements of Q[t, t−1] (not necessarily prime).

Suppose p(t) is a non-zero element of the Laurent polynomial ring Q[t±1] and
a ∈ A, where A is a torsion-free abelian group. Then the group homomorphism
〈t〉 = Z → A given by t → a induces a ring homomorphism Q[t±1] → QA. Thus
p(a) ∈ QA has an obvious meaning, as the image of p under this map. Note that if
p(1) �= 0 then p(a) is non-zero for any a.

Over a commutative UFD, in order to “localize at p(a)”, we would seek to invert all
q “coprime to p(a)”. In our more general situation, this begs the question: What is the
smallest localization of Q� in which q(a) has an inverse?” (One could also ask about
the maximal divisor sets that do not contain the fixed p(a), but we do not address this
here.) To address this question we must investigate the right divisors sets that contain
q(a). First we have a very general result, presumably known to the experts. This result
is central to all of our efforts.

Proposition 4.1 Suppose A � � where QA is a domain. Suppose S is a right divisor
set of QA that is �-invariant (g−1Sg = S for all g ∈ �). Then S is a right divisor set
of Q�.
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Proof Since S is a right divisor set of QA, S is multiplicatively closed, contains 1 and
does not contain 0. Suppose s ∈ S and β ∈ Q� where β = ∑k

i=1 rigi for some ri ∈ Q

and gi ∈ �. Since S is a right divisor set of QA and sgi = g−1
i sgi is an element of S,

the set {(sgi )−1 | i = 1, . . . , n} has a common denominator s̃ ∈ S [47, Lemma 2.13,
p. 428], that is to say there exist β ′

i ∈ QA and s̃ ∈ S such that, for each i ,

(sgi )−1 = β ′
i (s̃)

−1,

implying that

s̃ = (sgi )β ′
i .

(But we remark that, for applications in this paper, we will always take A to be abe-
lian, in which case QA is commutative, and the common denominator is merely the
product!) Set β ′ = ∑k

i=1 rigiβ
′
i . Then

β s̃ =
∑

rigi s̃ =
∑

rigi (s
gi )β ′

i = s
∑

rigiβ
′
i = sβ ′.

Therefore S is a right divisor set of Q�. ��
Definition 4.2 Suppose Q is a set of polynomials qi (t) ∈ Q[t±1] with qi (1) �= 0. For
any Ã ⊂ A � � where A is a torsion-free abelian group, Ã is a �-invariant subset,
and Q� is a domain we define

S = S(Q) = {q1(a1) . . . qr (ar ) | qi ∈ Q, ai ∈ Ã, r ≥ 0} ⊂ QA ⊂ Q�,

the set of all finite products of evaluations of the elements of Q. If Q is empty, we
understand that S(Q) = {1}. Note that S does not depend on �, only on Ã.

Corollary 4.3 S = S(Q), as above, is a right divisor set of Q�. Moreover this cor-
respondence is functorial in the sense that for any homomorphism of such triples,

ψ : (�, A, Ã) → (�′, A′, Ã′), we have ψ(S�, Ã(Q)) ⊂ S�
′, Ã′
(Q). If ψ : Ã → Ã′ is

surjective then ψ(S�, Ã(Q)) = S�
′, Ã′
(Q).

Proof By construction S is a multiplicatively closed subset of QA that contains 1 (the
empty product). Certainly qi (ai ) �= 0 since its augmentation, qi (1), is non-zero. Since
A is torsion-free abelian, QA is a commutative domain. Thus 0 �= S. Hence S is a
right divisor set of QA. For any g ∈ � and a ∈ Ã,

g−1q(a)g = q(g−1ag) = q(a′)

where a′ ∈ Ã since Ã is �-invariant. It follows that S is �-invariant. Proposition 4.1
then implies that S is a right divisor set of Q�.

If ψ : (�, A) → (�′, A′) then ψ induces a ring homomorphism ψ : QA → QA′
with respect to which ψ(q(a)) = q(ψ(a)). Hence ψ(S�, Ã(Q)) ⊂ S�, Ã

′
(Q). If, in

addition, ψ( Ã) = Ã′, then, given q(a′), where a′ ∈ Ã′ there is an a ∈ Ã such that
ψ(a) = a′ so ψ(q(a)) = q(a′). Hence S�

′, Ã′
(Q) ⊂ ψ(S�, Ã(Q)). ��
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In our applications we will focus on inverting only one-variable polynomials.
Corollary 4.3 provides us with right divisor sets that contain a fixed element q(a),
by, for example, taking Q = {q(t)}. But how do we characterize the set S(Q)? Spe-
cifically, if p(t) is relatively prime to q(t) then is p(a) ∈ S({q(t)})?
Definition 4.4 Two non-zero polynomials p(t), q(t)∈ Q[t, t−1] are said to be

strongly coprime, denoted (̃p, q)= 1 if, for every pair of non-zero integers, n, k,
p(tn) is relatively prime to q(tk). Otherwise they are said to be isogenous, denoted

(̃p, q) �= 1. Alternatively, (̃p, q) �= 1 if and only if there exist non-zero roots,
rp, rq ∈ C*, of p(t) and q(t) respectively, and non-zero integers k, n, such that

rk
p = rn

q . Clearly, (̃p, q)= 1 if and only if for each prime factor pi (t) of p(t) and q j (t)

of q(t), ˜(pi , q j )= 1.

The following is another useful characterization of being strongly coprime.

Proposition 4.5 Suppose p(t), q(t) ∈ Q[t, t−1] are non-zero. Then p and q are
strongly coprime if and only if, for any finitely-generated free abelian group F and
any nontrivial a, b ∈ F, p(a) is relatively prime to q(b) in QF (a unique factorization
domain).

Proof (⇒) We show the contrapositive. Suppose that for some F, a and b, p(a) and
q(b) do have a common factor over QF that is not a unit. It follows immediately
that neither p(a) nor q(b) is a unit. Thus they have a common factor over CF that
is not a unit since CF has only the trivial units (z f , z ∈ C f ∈ F). Since a and b
are non-trivial, we can choose a basis {x, y,x3 . . .x} for F such that a = xn and
b = xkym for some positive integer n and integers k and m. Then we can identify CF
with C[x±1, y±1, . . . ,x±1

 ]. Observe p(xn) factors in C[x±1, y±1, . . . ,x±1
 ] into a

unit times a product of monomials x−αi where αi runs over the set of all the nth roots
of the non-zero roots of p(t) (with multiplicity). This set is non-empty since p(a) is
not a unit. Thus x − αi divides q(xkym) for some αi �= 0 where αn

i = r , where r is a
non-zero root of p(t). On the other hand q(xkym) factors as a unit times

∏
(xkym − s j )

where {s j } are the non-zero roots of q(t). This set is non-empty since q(t) is not a unit.
Therefore x = αi is a zero of some xkym − s j for every y. This implies that m = 0,

k �= 0 and that αk
i = s j so (αn

i )
k = sn

j . Hence rk = sn
j . Thus (̃p, q) �= 1, as claimed.

(⇐): Take F = Z = 〈t〉. Then for any non-zero k and n, a = tn and b = tk are
non-trivial in F . By hypothesis (p(tn), q(tk)) = 1 in QF = Q[t, t−1]. Thus p and q
are strongly coprime. ��
Example 4.6 Consider p(t) = t − 4 and q(t) = t2 − 4. Then (p, q) = 1 since they
have no common roots. But p(t) and q are not strongly coprime since p(t2) = q(t).

Example 4.7 p(t) is isogenous to p(t−1) for any non-zero, non-unit polynomial.
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Fig. 10 The ribbon knots R pk

Example 4.8 If p is cyclotomic and q is prime then p is isogenous to q if and only if
q is cyclotomic.

Example 4.9 Given p(t) and q(t), if the sets {log(r) | r ∈ C
∗, p(r) = 0} and

{log(r) | r ∈ C
∗, q(r) = 0} are linearly independent in the rational vector space

C/〈2π i〉, then (̃p, q) = 1.

Example 4.10 Consider the family of quadratic polynomials

{pk(t) = (kt − (k + 1))((k + 1)t − k) | k ∈ Z
+},

whose roots are positive rational integers

Rk =
{

k

k + 1
,

k + 1

k

}
.

These are the Alexander polynomials of the family of ribbon knots in Fig. 10 where
the −k inside a box symbolizes k full negative twists between the bands.

We claim that ˜(pk, p) = 1 if k �= . For suppose that pk and p were isogenous
where k > . It then follows that for some positive integers n,m we have

(
k

k + 1

)n

=
(



+ 1

)m

.

It follows that n > m and that

kn (+ 1)m = m(k + 1)n . (4.1)

Since k �=  there is some prime integer q and positive integer w such that qw divides
k but does not divide . Then (k +1, q) = 1. Now qwn divides the left-hand side of 4.1

but not the right-hand side, a contradiction. Hence ˜(pk, p) = 1.

We are finally prepared to define our notion of localization at p(t).
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Definition 4.11 Suppose A � � where A is a torsion-free abelian group and Q� is a
right Ore domain. If p(t) ∈ Q[t, t−1] is non-zero then set

Sp = S({q(t) ∈ Q[t, t−1] | q(1) �= 0; (̃p, q) = 1})
= {q1(a1) . . . qr (ar ) | (̃p, q j ) = 1; q j (1) �= 0; a j ∈ A}.

In the special case that A = � ∼= Z = 〈μ〉 we can alternatively set

S∗
p = {q1(μ

±1) . . . qr (μ
±1) | (p, q j ) = 1, q j (1) �= 0}.

By Corollary 4.3, Sp is a right divisor set of Q�, and S∗
p is a right divisor set of

Q[μ,μ−1]. We say that Q�S−1
p is Q� localized at p(t). If M is a right Q�-module

then we say that MS−1
p is M localized at p(t).

We have inverted q(μ−1) as well as q(μ) because we want to force our localized
rings to inherit the natural involution. Thus if p(t) �= p(t−1), our notion will differ
from the classical localization at p(t). Secondly, we are only inverting polynomials
whose augmentations are non-zero (for simplicity since it helps establish functoriality).

Over a commutative domain, localizing a module M at a prime ideal 〈p〉 kills all
torsion in M except 〈p〉-torsion. A version of this remains true in our broader con-
text. This result is the lynchpin of this paper. We focus on right modules over the Ore
domain Q� of the form

Q�

q(a)Q�
.

Theorem 4.12 Suppose A � � where A is a torsion-free abelian group and Q� is a
right Ore domain. Suppose p(t) ∈ Q[t, t−1] is non-zero. Then for any ai ∈ A.

Q�

p(a1) . . . p(ak)Q�
is Sp-torsion-free,

that is,

Q�

p(a1) . . . p(ak)Q�
→ Q�

p(a1) . . . p(ak)Q�
S−1

p

is a monomorphism; whereas for any q(t) ∈ Q[t, t−1] with q(1) �= 0 and
˜(p(t), q(t)) = 1

Q�

q(a)Q�
is Sp-torsion,

that is,

Q�

q(a)Q�
S−1

p = 0.
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Proof For the first claim, fix p and the ai , suppose that some x ∈ Q�, represents an
element

[x] ∈ Q�/p(a1) . . . p(ak)Q�

that is Sp-torsion. We will show that [x] = 0, implying that Q�/p(a1) . . . p(ak)Q�

is Sp-torsion-free. We have xs = p(a1) . . . p(ak)y for some s ∈ Sp and for some
y ∈ Q�. We examine this equation in Q�.

Recall that, since A ⊂ �, Q�, viewed as a left QA-module, is free on the right cosets
of A in� [47, Chapter 1, Lemma 1.3]. Thus, upon fixing a set of coset representatives,
any x ∈ Q� has a unique decomposition

x = �γxγ γ,

where sum is over a set of coset representatives {γ ∈ �} and xγ ∈ QA. Therefore we
have

(�γxγ γ )s = p(a1) . . . p(ak)�γ yγ γ,

and thus

�γ (xγ sγ
−1
)γ = �γ (p(a1) . . . p(ak)yγ )γ,

where sγ
−1 = γ sγ−1 lies in Sp (since Sp is closed under the action of �). It follows

that for each coset representative γ we have

xγ sγ
−1 = p(a1) . . . p(ak)yγ

which is an equation in QA. Recall that, for each γ , sγ
−1 = q1(b1) . . . qk(br ) for some

b j ∈ A and q j (t) in Q[t, t−1] (all depending on γ ), where (̃p, q j ) = 1 and q j (1) �= 0.
Thus we have

xγ q1(b1) . . . qk(bk) = p(a1) . . . p(ak)yγ .

This may be viewed as an equation in QFγ for some free abelian group Fγ ⊂ A of

finite rank. Since (̃p, q j ) = 1, the greatest common divisor, in QFγ , of p(ai ) and
q j (b j ) is a unit. Thus, for each γ and each i , p(ai ) divides xγ in QFγ . Thus p(ai )

divides each xγ in QA so

x = �γxγ γ = p(a1) . . . p(ak)�γx′
γ γ ∈ p(a1) . . . p(ak)Q�

implying [x] = 0. This finishes the proof of the first claim of Theorem 4.12.
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For the second claim of Theorem 4.12, note that the hypotheses ensure that q(a) ∈
Sp. Now recall that the kernel, K , of the canonical map

M ≡ Q�

q(a)Q�
→ Q�

q(a)Q�
S−1

p ≡ MS−1
p

is a precisely the Sp-torsion submodule of M. Note that M is a cyclic right Q�-mod-
ule generated by [1] ∈ M where 1 ∈ Q�. Clearly [1]q(a) = [q(a)] = 0 in M. Since
the generator of M is Sp-torsion, [1] ∈ K , implying that K = M. This establishes
the second claim of Theorem 4.12. ��

There is a well-known companion result in the classical case when A = � ∼= Z =
〈μ〉. The proof is the same as above.

Proposition 4.13 Suppose p(t) ∈ Q[t, t−1] is non-zero and p(t−1)
.= p(t). Then

Q[μ±1]
〈p(μ)〉 is S∗

p-torsion-free;

whereas for any q(t) ∈ Q[t, t−1] with q(1) �= 0 and (p(t), q(t)) = 1

Q[μ±1]
〈q(μ±1)〉 is S∗

p-torsion.

4.1 The derived series localized at P

Finally we define the specific families of commutator series that we will use in our
primary applications, using the method of Sect. 3 and Definition 4.11.

Fix an n-tuple P = (p1(t), . . . , pn(t)) of non-zero elements of Q[t, t−1]. For each
such P we now recursively define a functorial partial commutator series that we call
the (unrestricted) derived series localized at P . We also define, on the category of
groups {G| G/G(1)

r
∼= Z}, the (polarized) derived series localized at P .

Given any group G, set G(0)
P ≡ G and suppose inductively that G(n)

P has been

defined in such a way that G(k)
P /G(k+1)

P is a torsion-free abelian group for each k < n.
Then G/G(n)

P is a PTFA group, so Q[G/G(n)

P ] is a right Ore domain. Now consider

� = G/G(n)

P and A = G(n−1)
P /G(n)

P ��. Note that A is torsion-free abelian. Thus we
may apply Definition 4.11, to conclude that Spn is a right divisor set of Q[G/G(n)

P ],
where:

Definition 4.14 If n ≥ 1,

Spn = Spn (G) = {q1(a1) . . . qr (ar )| ˜(pn, q j ) = 1; q j (1) �= 0; a j ∈ G(n−1)
P /G(n)

P }.

It follows that Q − {0} ⊂ Spn (take q j a non-zero constant). If n = 0 we understand
that Spn = {1}.
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We claim that Spn is closed under the natural involution on Q[G/G(n)

P ]. For if

˜(pn, q j ) = 1, then we claim that ˜(pn, q j (t−1)) = 1. For if not then rk
p = (r−1

q )n for
some non-zero roots of pn and q j and non-zero k, n. Thus rk

p = (rq)
−n which is a

contradiction.
By Sect. 3.2 the sequence of right divisor sets Spn defines a commutator series.

Definition 4.15 The (unrestricted) derived series localized at P is given by G(0)
P ≡

G and for n ≥ 0,

G(n+1)
P ≡ ker

(
G(n)

P → G(n)

P
[G(n)

P ,G(n)

P ] ⊗
Z[G/G(n)

P ] Q[G/G(n)

P ]S−1
pn

)
.

For a group G withβ1(G) = 1, we also define the (polarized) derived series localized
at P exactly as above, except that for n = 1 we use S∗

p1
(see Definition 4.11) instead

of Sp1 .

We remark that, for either series, G(0)
P = G and G(1)

P = G(1)
r . This concludes the

definition of our partially defined (up to G(n+1)
P ) commutator series dependent on P .

By choosing an (infinite) sequence of polynomials, one may define an entire series.

Theorem 4.16 The (unrestricted) derived series localized at P is a functorial com-
mutator series. The polarized derived series localized at P is functorial with respect
to homomorphisms f : G → π for which f∗ : Z ∼= G/G(1)

r → π/π
(1)
r

∼= Z is either
an isomorphism or the zero map. In particular it is weakly functorial.

Proof We are given P = (p1(t), . . . , pn(t), . . .), a sequence of non-zero elements of
Q[t, t−1]. First we consider the (unrestricted) derived series localized at P . Suppose
ψ : G → B is a homomorphism. We show, by induction on n, that ψ(G(n)

P ) ⊂ B(n)

P .
This holds for n = 0 so suppose it holds for n. We will show that ψ(G(n+1)

P ) ⊂ B(n+1)
P .

By Proposition 3.2, it suffices to verify that, for each 0 ≤ i ≤ n, ψ(SG
pi
) ⊂ SB

pi
. Since

i ≤ n, the induction hypothesis guarantees that ψ induces a homomorphism of pairs

ψ : (G/G(i)
P ,G(i−1)

P /G(i)
P ) → (B/B(i)P , B(i−1)

P /B(i)P )

It then follows from the second part of Corollary 4.3 that ψ(SG
pi
) ⊂ SB

pi
.

Now consider the (polarized) derived series localized at P . Suppose ψ : G → B
is a homomorphism that induces either an isomorphism ψ : G/G(1)

r → B/B(1)r
∼=

Z = 〈μ〉 or induces the zero map. Then ψ(μ) = ±μ or ψ(μ) = 1. The proof is the
same as above, except that we must verify (for the case n = 1) that ψ(S∗,G

p1 ) ⊂ S∗,B
p1 .

Recall that

S∗,G
p1

= {q1(μ
±1) . . . qr (μ

±1)|(p1, q j ) = 1, q j (1) �= 0}.

So, for any such q, either

ψ(q(μ±1)) = q(ψ(μ±1)) = q(μ±1) ∈ S∗,B
p1
,
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or

ψ(q(μ±1)) = q(ψ(μ±1)) = q(1) = k ∈ S∗,B
p1
, (4.2)

since the constant polynomial k lies in S∗
p1

if k �= 0. Thus ψ(S∗,G
p1 ) ⊂ S∗,B

p1 . ��

Note that the step 4.2 fails if, say, ψ(μ) = μ2.
The following basic result is useful.

Proposition 4.17 If φ : A → B is surjective and ker φ ⊂ A(m)P then φ induces iso-
morphisms A/A(n)P ∼= B/B(n)P for all n ≤ m. In particular, (A/A(n)P )

(n)
P = 0. For

the polarized derived series localized at P we must also assume that φ induces an
isomorphism A/A(1)r

∼= B/B(1)r
∼= Z.

Proof of Proposition 4.17 By induction we assumeφ induces isomorphisms A/A(i)P ∼=
B/B(i)P for each i ≤ n for some n such that 0 ≤ n < m. By functoriality (Theo-

rem 4.16), φ
(

A(i)P

)
⊂ B(i)P for any i so φ induces an epimorphism A/A(n+1)

P →
B/B(n+1)

P . We need to show this is injective to complete the proof. We claim that

φ
(

A(i)P

)
= B(i)P for any i ≤ n, because for any b ∈ B(i)P , since φ is surjective, there

is some a ∈ A such that φ(a) = b and, by the inductive hypothesis, it follows that

a ∈ A(i)P . Therefore φ
(
[A(n)P , A(n)P ]

)
= [B(n)P , B(n)P ], a fact we use below. Suppose

a ∈ A such that φ(a) = b ∈ B(n+1)
P . By the inductive hypothesis, a ∈ A(n)P . Thus we

have the following commutative diagram,

A(n)
P

A(n)
P

[A(n)
P , A(n)

P ]
A(n)

P

[A(n)
P , A(n)

P ] ⊗
Z[A/A(n)P ] Q[A/A(n)

P ](Spn (A))
−1

B(n)
P

B(n)
P

[B(n)
P , B(n)

P ]
B(n)

P

[B(n)
P , B(n)

P ] ⊗
Z[B/B(n)P ] Q[B/B(n)

P ](Spn (B))
−1

�

φ

�πA

�
φ∗

�

�
φ∗

�πB �

where b is in the kernel of the bottom composition and we need to show that a is
in the kernel of the top composition. By Proposition 3.1, πB(b) is t̃-torsion where
t̃ ∈ S̃pn (B). Thus there is a non-zero rational r such that t̃r ∈ Spn (B). Since φ is
surjective, φ(Spn (A)) = Spn (B), by the last part of Corollary 4.3. Hence t̃r = φ(s)
for some s ∈ Spn (A). Then

φ∗(πA(a)s) = φ∗(πA(a)(φ(s)) = πB(b)t̃r = 0.

Since πA is surjective there is some x ∈ A(n)
P such that πA(x) = πA(a)s. Therefore

πB(φ(x)) = φ∗(πA(x)) = φ∗(πA(a)s) = 0.
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This implies that

φ(x) ∈ [B(n)P , B(n)P ] = φ
(
[A(n)P , A(n)P ]

)
.

Therefore x = zc where z ∈ ker(φ) and c ∈ [A(n)P , A(n)P ]. Thus

πA(a)s = πA(x) = πA(zc) = πA(z).

Since ker φ ⊂ A(m)P and n + 1 ≤ m, ker φ ⊂ A(n+1)
P . Thus z ∈ A(n+1)

P . Hence, Propo-
sition 3.1, πA(z) is s̃-torsion where s̃ ∈ S̃pn (A). Let r ′ be a non-zero integer such that
sr ′ ∈ S̃pn (A). Then

πA(a)(sr ′s̃) = (πA(a)s)s̃r ′ = (πA(z)s̃)r
′ = 0.

Since sr ′s̃ ∈ S̃pn (A), we have shown that πA(a) is S̃pn (A)-torsion. Hence by Propo-

sition 3.1, a ∈ A(n+1)
P . This completes the proof of the first claim of Proposition 4.17.

To prove that (A/A(n)P )
(n)
P = 0, apply the above to the φ : A → A/A(n)P . ��

5 von Neumann signature defects as obstructions

To each commutator series there exist obstructions, that arise as signature-defects,
that can assist in determining whether or not a given knot lies in a particular term of
F∗. Given a closed, oriented 3-manifold M , a discrete group �, and a representation
φ : π1(M) → �, the von Neumann ρ-invariant, ρ(M, φ), was defined by Chee-
ger and Gromov by choosing a Riemannian metric and defining ρ as the difference
between the η-invariants of M and its covering space induced by φ. It can be thought
of as an oriented homeomorphism invariant associated to an arbitrary regular cover-
ing space of M [7]. If (M, φ) = ∂(W, ψ) for some compact, oriented 4-manifold W
and ψ : π1(W ) → �, then it is known that ρ(M, φ) = σ

(2)
� (W, ψ) − σ(W ) where

σ
(2)
� (W, ψ) is the L(2)-signature (von Neumann signature) of the equivariant intersec-

tion form defined on H2(W ; Z�) twisted by ψ and σ(W ) is the ordinary signature of
W [44]. Thus the ρ-invariants should be thought of as signature defects. They were
first used to detect non-slice knots in [18]. For a more thorough discussion see [20,
Section 2], [19, Section 2]. All of the coefficient systems � in this paper will be of
the form π/π

(n)∗ where π is the fundamental group of a space. Hence all such � will
be PTFA. Aside from the definition, a few crucial properties that we use in this paper
are:

Proposition 5.1 1. If φ factors through φ′ : π1(M) → �′ where �′ is a subgroup
of �, then ρ(M, φ′) = ρ(M, φ).

2. If φ is trivial (the zero map), then ρ(M, φ) = 0.
3. If M = MK is zero surgery on a knot K and φ : π1(M) → Z is the abelianiza-

tion, then ρ(M, φ) is denoted ρ0(K ) and is equal to the integral over the circle
of the Levine–Tristram signature function of K [19, Prop. 5.1]. Thus ρ0(K ) is
the average of the classical signatures of K .

123



472 T. D. Cochran et al.

4. If K is a slice knot or link and φ : π1(MK ) → � (� PTFA) extends over π1 of a
slice disk exterior then ρ(MK , φ) = 0 by [18, Theorem 4.2].

5. The von Neumann signature satisfies Novikov additivity, i.e., if W1 and W2 intersect
along a common boundary component thenσ (2)� (W1∪W2) = σ

(2)
� (W1)+σ (2)� (W2)

[18, Lemma 5.9].

Generalizing the last property, we have:

Theorem 5.2 Suppose ∗ is a commutator series (no functoriality is required). Sup-
pose K ∈ F∗

n.5, so the zero-framed surgery MK is (n.5, ∗)-solvable via W as in
Definition 2.3. Let G = π1(W ) and consider

φ : π1(MK ) → G → G/G(n+1)∗ → �,

where � is an arbitrary PTFA group. Then

σ (2)(W, φ)− σ(W ) = 0 = ρ(MK , φ).

More generally, if W ⊂ V is an effective (n.5, ∗)-solution with respect to V and

φ : π1(V ) → π1(V )/π1(V )
(n+1)∗ → �,

then

σ (2)(W, φ)− σ(W ) = 0.

Proof The proof is identical, verbatim, to the proof of [18, Theorem 4.2] which was
done only for the derived series. We sketch the key points. It follows immediately
from Definition 2.3 that σ(W ) = 0. Since � is a poly-(torsion-free-abelian) group,
Q� is a right Ore domain and hence admits a classical ring of quotients which is a
skew field, K� (See Sect. 3.1 and [18, Proposition 2.5]). Thus the rank of a Q�-mod-
ule can be defined. Moreover, in this case, σ (2)(W, φ) is the von-Neumann signature
of the (non-singular) equivariant intersection form on the free module H2(W ;K�)
[18, Section 5]. Therefore it suffices to exhibit a half-rank submodule of H2(W ; Q�)

on which this intersection form vanishes. The next key point is that half of the basis
{Li , Di |1 ≤ i ≤ r for H2(W ; Z), namely the surfaces {Li }, lifts to the covering
space determined by the kernel of φ. Hence these surfaces generate a submodule of
H2(W ; Q�). Since these surfaces and their translates are disjointly embedded sur-
faces with product neighborhoods the equivariant intersection form on H2(W ; Q�)

vanishes on the submodule generated by them. The remainder of the proof consists of
showing that this submodule is indeed of half-rank (see [18, Theorem 4.2]). ��

6 Distinguishing concordance classes using the polarized derived series
localized at P: triviality

Let P = (p1(t), . . . , pn(t), . . .) be a sequence of non-zero elements of Q[t, t−1].
By Sect. 4.1 and Theorem 4.16 the polarized derived series localized at P , denoted
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{G(n)

P } is a commutator series that is weakly functorial on the class of groups with
β1 = 1. Thus by Proposition 2.5 there is a corresponding filtration, {FP

n }, of the knot
concordance group. In the remainder of this paper we will use the polarized derived
series localized at P , since it allows for slightly sharper results.

Definition 6.1 Given P = (p1(t), . . . , pn(t)) and Q = (q1(t), . . . , qn(t)),
we say that P is strongly coprime to Q if either (q1, p1) = 1, or, for some k > 1,
˜(qk, pk) = 1; and otherwise we say that P is isogenous to Q.

We now consider knots of the form K = Rn
αn

◦ · · · ◦ R1
α1
(K0) with K0 ∈ F0 where

each Ri
αi

is a doubling operator as in Definition 2.6. Every such knot lies in Fn and

hence in FP
n by repeated applications of Proposition 2.7. Let Q = (qn(t), . . . , q1(t))

where qi (t) is the order of αi in A(Ri ), the classical rational Alexander module of Ri

(note the descending index). Our next result shows that if Q is strongly coprime to P
then K ∈ FP

n+1. Thus the only knots of this form that (possibly) survive in

Fn

FP
n.5

are those wherein Q is isogenous to P . This justifies thinking of Fn/FP
n.5 as localizing

Fn/Fn.5 at P .

Theorem 6.2 Suppose K = Rn
αn

◦ · · · ◦ R1
α1
(K0) with Arf(K0) = 0. Let Q =

(qn(t), . . . , q1(t))be the sequence of orders of the classes (αn, . . . , α1) in (A(Rn), . . . ,

A(R1)). If Q is strongly coprime to P then K ∈ FP
n+1. Thus K = 0 in Fn/FP

n.5.

Proof For simplicity of notation we recursively define K1 = R1
α1
(K0), . . . , Ki =

Ri
αi
(Ki−1) for i = 1, . . . , n and abbreviate K = Kn = Rn

αn
(Kn−1). Recall from

Fig. 9 that, since Ki = Ri
αi
(Ki−1), there is a cobordism Ei whose boundary is the

disjoint union of MKi , −MKi−1 and −MRi . Consider X = En ∪ En−1 ∪ · · ·∪ E1, glu-
ing Ei to Ei−1 along their the common boundary component MKi−1 (refer to Fig. 11).
The boundary of X is a disjoint union of MK , −MK0 and −MRn , . . . ,−MR1 . For
1 ≤ i ≤ n, let Si denote the exterior of any ribbon disk in B4 for the ribbon knot Ri .
Since Arf(K0)= 0, K0 ∈ F0 via some V . In fact, it is known that we can choose V
such that π1(V ) ∼= Z so that the meridian μ0 of K0 generates π1(V ) [19, Section 5].
Gluing V and all the the Si to X , we obtain a 4-manifold, Z as shown in Fig. 11. Note
∂Z = MK .

We claim that, for any Q,

K ∈ Fn via Z , (6.1)

while, if Q is strongly coprime to P , then

K ∈ FP
n+1 via Z . (6.2)

First, as in the proof of Proposition 2.7, a Mayer–Vietoris sequence implies that
H2(Z) ∼= H2(V ) since H2(Si ) = 0 (this analysis is carried out in detail in the proof
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Fig. 11 Z

of [16, Proof of Theorem 7.1]). Since K0 ∈ F0 via V , H2(V ) has a basis of con-
nected compact oriented surfaces, {L j , D j |1 ≤ j ≤ ri }, satisfying the conditions of
Definition 2.3. We claim that, with no hypothesis on Q,

μ0 ∈ π1(Z)
(n) (6.3)

while if Q is strongly coprime to P then

μ0 ∈ π1(Z)
(n+1)
P . (6.4)

Then, since μ0 generates π1(V ), for any Q,

π1(L j ) ⊂ π1(V ) ⊂ π1(Z)
(n),

while if Q is strongly coprime to P ,

π1(L j ) ⊂ π1(V ) ⊂ π1(Z)
(n+1)
P ,

and similarly for π1(D j ). This would complete the verification of claims (6.1) and
(6.2) since {L j , D j } would then satisfy the criteria of Definition 2.3. In the rest of the
proof we will establish claims (6.3) and (6.4).

Let G = π1(Z). Let μi denote both the meridian of Ki in MKi ⊂ Z and its ho-
motopy class in G. Let αi denote the circle in MRi ⊂ Z and, by abuse of notation, a
push-off of this circle in MKi ⊂ Z (the abuse is slight since these are isotopic in Ei

by Lemma 2.8). To complete the proof of claims (6.3) and (6.4) and hence the proof
of Theorem 6.5, we need the following lemma.
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Lemma 6.3 For 0 ≤ i ≤ n,

μi ∈ G(n−i) and αi ∈ G(n−i+1);

and if, for some k, αk ∈ G(n−k+2)
P then for each i , 0 ≤ i < k,

μi ∈ G(n−i+1)
P and αi ∈ G(n−i+2)

P .

Proof We will establish the first clause of the lemma by reverse induction on i .
For i = n, clearly μn ∈ G(0) ≡ G and since, by definition of a doubling opera-
tor, αn lies in π1(MRn )

(1), αn ∈ G(1). This is the base of the induction. Now assume
that μi ∈ G(n−i) and αi ∈ G(n−i+1). By property (4) of Lemma 2.8, μi−1 is isotopic
in Ei to a push-off of αi ⊂ MKi . It follows that

μi−1 ∈ G(n−i+1).

Since μi−1 normally generates π1(MKi−1) it follows that π1(MKi−1) ⊂ G(n−i+1).
Thus,

αi−1 ∈ [π1(MKi−1), π1(MKi−1)] ⊂ G(n−i+2).

This completes the inductive step and establishes the first clause of the lemma.
Now suppose that αk ∈ G(n−k+2)

P . By property (4) of Lemma 2.8, μk−1 is isotopic
in Z to a push-off of αk . Thus

μk−1 ∈ G(n−k+2)
P .

Then, as above, it follows that π1(MKk−1) ⊂ G(n−k+2)
P and so

αk−1 ∈ [π1(MKk−1), π1(MKk−1)] ⊂ [G(n−k+2)
P ,G(n−k+2)

P ] ⊂ G(n−k+3)
P ,

where for the last inclusion we use Proposition 2.2. This establishes the second clause
of the lemma in the case that i = k − 1. But now μk−2 is isotopic to a push-off of
αk−1 and the argument iterates. This establishes the second clause of the lemma. ��

Claim (6.3) and (6.1) follow immediately.
Returning to the proof of Theorem 6.2, we are now reduced to verifying claim (6.4).

Recall that by hypothesis Q = (qn(t), . . . , q1(t)) is strongly coprime to P = (p1(t),
. . . , pn(t)). Hence there is some k, 1 ≤ k ≤ n, such that qk is strongly coprime to
pn−k+1 (or, in the case n−k +1 = 1, qk = qn is coprime to pn−k+1 = p1). Recall that
αk is qk(t) torsion in A(Rk). Thus the push-off of αk is qk(t) torsion in the Alexander
module of Kk . This can be interpreted in terms of the fundamental group of MKk as
follows [48, p. 174]. Suppose qk(t) = ∑

m j t j . Then the fact that αk is qk(t) torsion
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translates to the fact that

∏

j

μ
− j
k α

m j
k μ

j
k ∈

[
π1(MKk )

(1), π1(MKk )
(1)

]

since t acts by conjugation by the meridian μk . Thus

∏

j

μ
− j
k α

m j
k μ

j
k ∈

[
G(n−k+1),G(n−k+1)

]
⊂

[
G(n−k+1)

P ,G(n−k+1)
P

]

since we have shown in the proof of Lemma 6.3 that π1(MKk ) ∈ G(n−k). We also

know from Lemma 6.3 that αk ∈ G(n−k+1) ⊂ G(n−k+1)
P . Therefore αk represents an

element in the module

G(n−k+1)
P[

G(n−k+1)
P ,G(n−k+1)

P
] ,

that is annihilated by qk(μk) ∈ Z[G/G(n−k+1)
P ]. By Lemma 6.3, μk ∈ G(n−k)

P so

qk(μk) ∈ Z

[
G(n−k)

P /G(n−k+1)
P

]
.

If n −k +1 �= 1, since qk is strongly coprime to pn−k+1, by Definition 4.14, qk(μk) ∈
Spn−k+1 . In the case n − k + 1 = 1, qn is coprime to p1 and μn is the generator of

G/G(1)
P = G/G(1)

r . Thus, by Definition 4.14, qn(μn) ∈ S∗
p1

. Therefore, in any case,

by Definition 4.15, αk ∈ G(n−k+2)
P . Therefore, by the second clause of Lemma 6.3

(applied with i = 0), μ0 ∈ G(n+1)
P . This finishes the verification of claim (6.4), and

hence the proof of Theorem 6.2. ��
In the process we have recovered part of [16, Theorem 7.1], a slight strengthening

of claim (6.1).

Corollary 6.4 Suppose K = Rn
αn

◦ · · · ◦ R1
α1
(K0) with K0 ∈ F0. Then K ∈ Fn via Z

(see Fig. 11) which has the additional property that, for any for any PTFA coefficient
system φ : π1(Z) → � such that φ(π1(Z)(n+1)) = 1

ρ(MK , φ) = σ
(2)
� (Z)− σ(Z) = cφρ0(K )

where cφ = 0 if φ(μ0) = 1 and cφ = 1 if φ(μ0) �= 1. We may also assume that
π1(MK ) → π1(Z) is surjective.

Proof of Corollary 6.4 We have seen in claim (6.1) that K ∈ Fn via Z where Z
consists of a union of Ei ’s, ribbon disk exteriors Si and the zero solution V for K0.
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It is known that any Arf invariant knot admits a 0-solution V with π1(V ) ∼= Z [19,
Lemma 5.4]. By property 4 of Proposition 5.1 (or Theorem 5.2)

σ
(2)
� (Si )− σ(Si ) = 0.

By [16, Lemma 2.4],

σ
(2)
� (Ei )− σ(Ei ) = 0.

By the additivity of the signatures (property [5] of Proposition 5.1) this means

σ
(2)
� (Z)− σ(Z) = σ

(2)
� (V )− σ(V ) = ρ(∂V, φ) = ρ(MK0 , φ).

But from claim (6.3) we know that μ0 ∈ π1(Z)(n) implying that φ([π1(MK0),

π1(MK0 ]) = 1. Hence φ restricted to π1(MK0) factors through Z so, by proper-
ties 1, 2 and 3 of Proposition 5.1 ρ(MK0 , φ) is equal to ρ0(K0) (if φ(μ0) �= 1) or zero
(if φ(μ0) = 1).

The surjectivity of the inclusion map on π1 follows from the fact that π1(V ) ∼= Z,
from known facts about ribbon disks and from property 1 of Lemma 2.8. ��

6.1 Compositions of more general operators

Theorem 6.2 and Corollary 6.4 hold for compositions of more general operators
R�α(−, . . . ,−) since the proof makes no use of the fact that �α is a single circle. It
is awkward to state the most general theorem without introducing a lot of burdensome
notation, since a general operator requires a varying number of inputs. The hypotheses
of the general result may be most easily understood in terms of the cobordism Z con-
structed in Fig. 11. With regard to such a figure, let us say that MRn occurs at height
n in the cobordism and MRn−1 occurs at height n − 1, et cetera. Now consider K a
general composition of operators. Suppose K = Rn(−, . . . ,−) with In inputs where
each input is itself an iterated operator Ri

n−1(−, . . . ,−). The proof of Theorem 6.2 for
this general operator would start with the construction of a manifold Z . In the version
of Z for such a K there would be a single copy of MRn at height n and then manifolds
MRi

n−1
, 1 ≤ i ≤ In , would occur at level n−1, et cetera. Consider all possible n-tuples

Q = (qn(t), qn−1(t), . . . , q1(t)) where qn(t) is the order in A(Rn) of one of the cir-
cles �α parametrizing the inputs of Rn , and qn−1(t) is the order of one of the circles �α
parametrizing the inputs of one of the ribbon knots at level n − 1, et cetera. These are
in 1 − 1 correspondence with paths in Z going from MK to a copy of a 0-solution V
that pass through a sequence of MKi . They are also in 1 − 1 correspondence with the
number of 0-solutions V that will arise in the Z corresponding to our given knot K .
Then the proof of Theorem 6.2 adapts verbatim to show:

Theorem 6.5 If every such n-tuple Q is strongly coprime to P then K ∈ FP
n+1.
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7 Distinguishing concordance classes using the polarized derived series
localized at P: nontriviality

In this section we seek a non-triviality result to complement Theorem 6.2. We want
to show that many knots survive in Fn/FP

n.5 if their associated sequence of Alexander
polynomials is isogenous to P .

Implicitly this will establish certain injectivity results for these operators, which
we will detail in Sect. 8. But of course it is certainly not true that any doubling
operator Rα : C → C is injective. For example if α bounds a disk in S3 − R then
Rα(K ) = R = [0] for any K , that is the “infection” has no effect. More generally, if
the link R ∪α is concordant to a trivial link wherein the restriction of the concordance
to α is isotopic to the standard unknotted annulus (recall α is unknotted) then Rα(K )
is smoothly concordant to Rtrivial(K ) = R = [0]. Even more generally, if the slice
knot R admits a slice disk � for which α is merely null-homotopic in B4 − � then
Rα(K ) is topologically slice for any K [11, Corollary 1.6]. Therefore, in order for Rα
to a non-zero operator, it is necessary (in the topological category) that, for no slice
disk for R, does α lie in the kernel of π1(S3 − R) → π1(B4 − �). One of the only
known ways to ensure this is to demand that BK

Z
(α, α) �= 0. So we shall define a

robust operator Rα and require that it has this property. This condition is close to being
necessary. However we will also impose some other conditions that are not necessary,
partly out of simplicity but partly due to limitations in our current technology,

7.1 Definition and examples of robust operators

We first recall the definition of the first-order L2-signatures of a knot (from [9]).
Suppose K is a knot and let G = π1(MK ). Then

A(K ) ≡ G(1)/G(2) ⊗Z[t,t−1] Q[t, t−1]

Each submodule P ⊂ A(K ) corresponds to a unique metabelian quotient of G,

φP : G → G/P̃,

by setting

P̃ ≡ kernel(G(1) → G(1)/G(2) → A(K ) → A(K )/P).

Therefore to any such submodule P there corresponds a real number, the Cheeger–
Gromov von Neumann ρ-invariant, ρ(MK , φP : G → G/P̃).

Definition 7.1 [9, Section 4], [16, Section 3] The first-order L(2)-signatures of a knot
K are the real numbers ρ(MK , φP ) where P is an isotropic submodule (P ⊂ P⊥)
of A(K ) with respect to the classical Blanchfield form BK

Z
. The first-order signature

corresponding to P = 0 is denoted ρ1(K ). For any knot K , the set of all first-order
signatures of K will be denoted FOS(K ).
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For example if R is an algebraically slice knot and

A(R) ∼= Q[t, t−1]
〈δ(t)δ(t−1)〉

where δ(t) is prime, then A(R) has 3 isotropic submodules (in fact has just 3 proper
submodules) P0 = 0, P = 〈δ(t)〉 and P = 〈δ(t−1)〉 (the last two coincide if δ(t)

.=
δ(t−1). Thus such an R has 3 first-order L(2)-signatures.

Suppose R is a slice knot,� is a slice disk for R and V = B4 −�. Then ∂V = MR .
Set

P� = ker
(

H1(MR; Q[t, t−1]) → H1(V ; Q[t, t−1])
)
. (7.1)

Then it is well-known that P� is a Lagrangian for BR
Z

(P = P⊥). In this case we say
that the Lagrangian P� corresponds to the slice disk, �.

Definition 7.2 A doubling operator Rα : C → C is robust if R is a ribbon knot such
that

1. The rational Alexander module of R is generated by α and

A(R) ∼= Q[t, t−1]
〈δ(t)δ(t−1)〉

where δ(t) is prime (in particular δ(t) �= 1).
2. For each isotropic submodule P ⊂A(R), either the first-order signatureρ(MR, φP )

is non-zero, or P corresponds to a ribbon disk for R.

The Alexander polynomial of an operator Rα is the Alexander polynomial of the
ribbon knot R.

Example 7.3 We will construct examples of robust operators {R pk
α | k ≥ 1} wherein

δ(t) = kt − (k + 1), that is, whose Alexander polynomials are precisely the family
discussed in detail in Example 4.10

{pk(t) = (kt − (k + 1))((k + 1)t − k)|k ≥ 1}.

Consider the knot given by the solid lines on the left-hand side of Fig. 12. Here −k
symbolizes k full negative twists between the two bands (below the circle labeled α
one sees what we mean by a one-half negative twist between the bands). The Tk means
that an infection by a knot Tk has been performed, that is, that the left-hand band has
been tied into the shape of the knot Tk . The knot Tk will be either the right-handed
trefoil or the unknot, a choice we will specify below. The image of a knot K under
this operator is shown on the right-hand side of Fig. 12. Note that R pk

α is a ribbon knot
since, upon cutting open the left-hand band, it collapses into a 2-component trivial
link. One easily checks that the Alexander polynomial of R pk is pk(t). Since δ(t) is
coprime to δ(t−1), the rational Alexander module is necessarily cyclic, and it can be
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Fig. 12 Robust operators R
pk
α

shown that α represents a generator. This verifies condition 1 of Definition 7.2. Now
we examine condition 2 of Definition 7.2. There are 3 first-order signatures: corre-
sponding to P0 = 0 and P± = 〈η±〉. The circle η+ normally generates the kernel of
the inclusion mapπ1(S3−R pk ) → π1(B4−�) for the ribbon disk obtained by cutting
the η+ band. Thus P+ corresponds to a ribbon disk. Hence P+ satisfies condition (2)
of Definition 7.2. Let Rk denote the ribbon knot obtained from R pk by setting Tk = U ,
the unknot. By the additivity results for the metabelian ρ invariants [16, Lemma 2.3,
Example 3.3]:

ρ(R pk , φP0) = ρ(Rk, φP0)+ ρ0(Tk), (7.2)

ρ(R pk , φP−) = ρ(Rk, φP−)+ ρ0(Tk). (7.3)

The term ρ(Rk, φP0) is what we have called ρ1(Rk). Note that a ribbon disk, �−, in
B4 can be obtained for Rk by cutting the right-hand band wherein, under the inclusion
map on π1, the circle η− goes to zero. Thus ρ(Rk, φP−) = 0 since φP− extends over
the exterior of this ribbon disk. Hence we have

ρ1(R pk ) ≡ ρ(R pk , φP0) = ρ1(Rk)+ ρ0(Tk), (7.4)

ρ(R pk , φP−) = ρ0(Tk). (7.5)

Then there are two cases. In the first case, ρ1(Rk) �= 0. In this case we take Tk = U
so Rk = R pk . Then ρ1(R pk ) = ρ1(Rk) �= 0 and P− corresponds to the ribbon disk
�−. Thus in this case R pk

α = Rk
α is robust. In the second case, ρ1(Rk) = 0. In this

case we take Tk to be the right-handed trefoil and we have, from (7.4) and (7.5) that

ρ1(R pk ) = ρ0(Tk) = ρ(R pk , φP−) �= 0.

Thus R pk
α is also robust in this case.

Example 7.4 More generally, we will show that, for any prime δ(t) with δ(1) = ±1,
there is a robust operator Rα whose Alexander polynomial is p(t)

.= δ(t)δ(t−1).
By [52], given such a δ(t), there exists a ribbon knot J , obtained from fusing together
a 2-component trivial link with a single ribbon band, whose Alexander polynomial
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is p(t). It follows that A(J ) is cyclic and has either 2 or 3 proper submodules P0 =
0, P+ = 〈δ(t)〉 and P− = 〈δ(t−1)〉 (in some cases P+ = P−). Cutting the single band
leads to a slice disk � to which, say, P+ corresponds. Let R be the knot obtained
from J by infection on a linking circle η+ to the band using an auxiliary knot K .
Then A(R) ∼= A(J ) and R is again a ribbon knot since cutting the band still yields
a 2-component trivial link. Hence P+ = 〈δ(t)〉 = 〈η+〉 corresponds to a ribbon disk.
Moreover

ρ(R, φP0) = ρ(J, φP0)+ ρ0(K ),

and if P+ �= P− then

ρ(R, φP−) = ρ(J, φP−)+ ρ0(K ).

Therefore, by choosing K so thatρ0(K ) is greater in absolute value than bothρ(J, φP0)

and ρ(J, φP−) we can ensure that the first order signatures of R corresponding to P0
and P− are non-zero. Thus Rα is the desired robust operator, where α generates A(R).

7.2 The main theorems

Now we can show that a composition of n robust operators is a non-trivial operator,
and in fact an injection when applied to certain collections of knots with independent
classical signatures, even modulo FP

n.5 as long as P corresponds to (the reverse of)
the sequence of orders of the Alexander polynomials of the operators.

The following theorem also holds for the filtration induced by the unrestricted
derived series localized at P .

Theorem 7.5 Suppose Ri
αi

, 1 ≤ i ≤ n, are robust doubling operators and P =
(p1(t), . . . , pn(t)) is the sequence of orders of the classes (αn, . . . , α1) in (A(Rn), . . . ,

A(R1)) (note the order of αi is pn−i+1). Suppose {K j
0 | j ≥ 1} is an infinite set of Arf

invariant zero knots such that the rational vector subspace of R spanned by {ρ0(K
j

0 )}
has trivial intersection with the rational span of FOS(R1) (see Definition 7.1). Then
{K j = K j

n = Rn
αn

◦ · · · ◦ R1
α1
(K j

0 )| j ≥ 1} is linearly independent in Fn/FP
n.5.

We postpone the proof of Theorem 7.5 until after deriving from it some important
applications.

Corollary 7.6 Collections {K j
n } satisfying the hypotheses of Theorem 7.5 exist; and

any such collection is the basis of a Z
∞ subgroup of Fn/FP

n.5 ⊂ FP
n /FP

n.5.

Proof of Corollary 7.6 Clearly any such collection has the claimed property, so we
need only establish that such collections exist. We saw in Examples 7.3 and 7.4 that
collections of robust doubling operators Ri

αi
exist. It was shown in [19, Proposition

2.6] that there exists a set of Arf invariant zero knots {K j
0 |1 ≤ j < ∞} such that

{ρ0(K
j

0 )} is Q-linearly independent in R. Since FOS(R1) is a finite set when R1 is a
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robust operator, the intersection of the subspaces spanned by FOS(R1) and {ρ0(K
j

0 )}
is finite-dimensional. It follows easily that, after deleting a finite number of elements
of {K j

0 }, we arrive at a collection that satisfies the hypotheses of Theorem 7.5. ��
In the following Pn is an arbitrary index set.

Theorem 7.7 Suppose {Qi |i ∈ Pn} is any collection of (pairwise) strongly coprime
n-tuples Qi = (qin (t), . . . , qi1(t)) of non-zero, non-unit polynomials; {Ri |i ∈ Pn} is
a collection of iterated robust doubling operators Ri ≡ Rin

αi
n
◦ · · · ◦ Ri1

αi
1

such that the

sequence of orders of (αi
n, . . . , α

i
1) is Qi , and {Ki |i ∈ Pn} is a collection of sequences

Ki = {K i, j |1 ≤ j < ∞} of Arf invariant knots such that, for each fixed i , the rational
vector subspace of R spanned by {ρ0(K i, j )} has trivial intersection with the rational
span of FOS(Ri1). Then the set

J = {Ri (K
i, j )|i ∈ Pn, 1 ≤ j < ∞}

is linearly independent in Fn/Fn.5 and hence a fortiori linearly independent in Fn ⊂C.
Therefore Fn/Fn.5 has distinct Z

∞ subgroups, indexed by the collection Pn.

Corollary 7.8 Infinite collections {Qi } and {Ki | i ∈ Pn} exist that satisfy the hypoth-
eses of Theorem 7.7. Therefore we have exhibited

⊕

Pn

Z
∞ ⊂ Fn

Fn.5
, (7.6)

as claimed in (1.2).

Proof of Corollary 7.8 As an example, take {Qi } to be the set of all n-tuples of poly-
nomials {pk} of Example 7.3. As explained there, these polynomials are realized by
robust doubling operators. The sets {Ki |i ∈ Pn} can be chosen just as in the proof
of Corollary 7.6. Even more generally, one can take any maximal collection of pair-
wise strongly coprime n-tuples of polynomials. Unlike the set of all primes, such a
set is not unique, since “being strongly coprime” (or even “being coprime”) is not an
equivalence relation. ��
Proof that Theorem 7.5 implies Theorem 7.7 Assume that J satisfies some non-triv-
ial equation in the abelian group Fn/Fn.5. Then there is some value, say i0 ∈ Pn , that
occurs non-trivially in this equation. Collecting, on one side of the equation, all the
terms that correspond to i0 (for varying j) we have an equation of the form K̃ = J̃ in
Fn/Fn.5 where

K̃ ≡ #∞
j=1m jRi0(K

i0, j )

is a non-trivial finite sum and J̃ is a connected sum of knots (or their mirror images)
each of which has the form Ri (K i, j ) where i �= i0. The distinguished value i0 cor-
responds to a distinguished n-tuple Qi0 that we denote by P . Since Fn.5 ⊂ FP

n.5 we
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may consider our equation in the quotient

Fn/FP
n.5.

The other values of i correspond to n-tuples Qi each of which is strongly coprime
to P . Therefore, by Theorem 6.2, each of the summands of J̃ lies in FP

n+1 and so in

FP
n.5. Hence J̃ ∈ FP

n.5. Thus our projected equation reduces to K̃ = 0. This contradicts
Theorem 7.5. This contradiction finishes the proof of Theorem 7.7, modulo the proof
of Theorem 7.5. ��
Proof of Theorem 7.5 The proof is entirely analogous to the proof of [16, Section
8,Step 4], but here we must use our new results on the (polarized) derived series
localized at P . Here n is fixed. We proceed by contradiction. Suppose that

K̃ ≡ # j=1m j K j ∈ FP
n.5.

By re-indexing and taking a mirror image if necessary, without loss of generality we
may assume that m1 > 0. As in the proof of Theorem 6.2, we let K j

1 = R1
α1
(K j

0 ),

…, K j
i = Ri

αi
(K j

i−1) and K j
n = K j = Rn

αn
(K j

n−1). Throughout we abbreviate the

zero-framed surgery M
K j

n
by M j

n .

First we will define a 4-manifold such that ∂Wn = M1
n . Suppose K̃ ∈ FP

n.5 via V
so ∂V = MK̃ . Let C be the standard cobordism from MK̃ to the disjoint union of m j

copies of M j
n for all j . Specifically

∂C = −MK̃

∐

j

m j M j
n ,

where if m j < 0 we mean |m j | copies of −M j
n . This cobordism is discussed in detail

in [19, pp. 113–116]. Alternatively, note that any connected sum of knots A#B arises
from an infection of A along a meridian using the auxiliary knot B. From this point
of view, the standard cobordism C may be viewed as an instance of the cobordisms
E whose properties were detailed in Lemma 2.8. Now identify C with V along MK̃ .
Then cap off all of its boundary components except one copy of M1

n using copies of
the (n)-solutions ±Z j as provided by Corollary 6.4. The latter shall be called Z-caps.
Here there is a technical point concerning orientations: if m j > 0 then to the boundary

component M j
n we must glue a copy of −Z j (and vice-versa). It is important in the

proof that, since m1 > 0, all the copies of ±Z1 occur as −Z1 rather than Z1. Let the
result be denoted Wn as shown schematically in Fig. 13. Note that ∂Wn = M1

n .
Now we construct a 4-manifold Wn−1 such that ∂Wn−1 = M1

n−1. Since K 1
n =

Rn
αn
(K 1

n−1), there is a cobordism En (as in Fig. 9) whose boundary is the disjoint
union of −M1

n , M1
n−1 and MRn . Consider X = En ∪ Wn , gluing En to Wn along their

the common boundary component M1
n (see Fig. 14 with i = n). The boundary of X is

the disjoint union of M1
n−1 and MRn . Let Sn denote the exterior of a ribbon disk in B4

for the ribbon knot Rn . In fact Rn may have more than one ribbon disk and in this case
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Fig. 13 Wn

Fig. 14 Wi−1 = Wi ∪ Ei ∪ Si
for i �= 1

we must choose carefully which one to employ. This choice will be made inductively
in the midst of the proof (Remark 7.17). Let Wn−1 be obtained from X by capping off
off the MRn boundary component of X using Sn . Thus ∂Wn−1 = M1

n−1.
Continuing in this way (refer to Fig. 14), adjoining Ei , for i = n, . . . , 1, and Si

for i = n, . . . , 2 we obtain 4-manifolds Wi such that ∂Wi = M1
i for 1 ≤ i ≤ n and

∂W0 = M1
0 ∪ MR1 since we will not cap off MR1 at the very last step. Recall that M1

0
is zero surgery on K 1

0 .
The crucial result is that, with careful choices of the ribbon disk exteriors Si , we

can achieve certain subtle non-triviality results.

Proposition 7.9 With regard to the 4-manifold W0 constructed above (but see
Remark 7.17 of the proof for proper choice of the slice disk exteriors Si ) and let-
ting π = π1(W0)

(1) Under the inclusion j : M1
0 ⊂ ∂W0 → W0,

j∗(π1(M
1
0 ))

∼= Z ⊂ π(n)/π
(n+1)
P ;

(2) Under the inclusion j : MR1 ⊂ ∂W0 → W0,

j∗(π1(MR1)) ∼= Z ⊂ π(n−1)/π
(n)
P ;

Before proving Proposition 7.9, we use it to finish the proof of Theorem 7.5. Let φ
denote π → π/π

(n+1)
P ≡ �. We will compute

σ (2)(W0, φ)− σ(W0).

Recall that W0 is a union of V , C , En through E1, Sn through S2 and the various
Z-caps. It follows from property 4 of Proposition 5.1 and Theorem 5.2 respectively
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that

σ (2)(Si , φ)− σ(Si ) = 0 = σ (2)(V, φ)− σ(V ).

By [16, Lemma 2.4],

σ (2)(Ei , φ)− σ(Ei ) = 0,

and

σ (2)(C, φ)− σ(C) = 0

(the latter was also shown in [19, Lemma 4.2]). For each Z-cap, ±Z j ,

σ (2)(±Z j , φ)− σ(±Z j ) = ±ρ(Z j , φ),

which, by Corollary 6.4, is either zero or equal to ±ρ0(K
j

0 ). Therefore

ρ(∂W0, φ) = σ (2)(W0, φ)− σ(W0) = −
∑

j

C jρ0(K
j

0 ) (7.7)

where C1 ≥ 0 (since m1 − 1 ≥ 0), from which we have

ρ(M1
0 , φ)+ ρ(MR1, φ) = ρ(∂W0, φ) = −

∑

j

C jρ0(K
j

0 ). (7.8)

Then, by property (1) of Proposition 7.9, the restriction of φ to π1(M1
0 ) factors non-

trivially through Z. Hence, by properties 2 and 3 of Proposition 5.1, ρ(M1
0 , φ) =

ρ0(K 1
0 ). Consequently

(1 + C1)ρ0(K
1
0 )+

∑

j>1

C jρ0(K
j

0 ) = −ρ(MR1, φR1). (7.9)

We claim that

ρ(MR1, φR1) ∈ FOS(R1). (7.10)

Granting this for the moment, we would then have

− (1 + C1)ρ0(K
1
0 )+

∑

j>1

C jρ0(K
j

0 ) ∈ FOS(R1). (7.11)

Since 1+C1 > 0 we would have expressed a non-zero linear combination of {ρ0(K
j

0 )}
as an element of FOS(R1) contradicting our choice of {K j

0 }.
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To justify (7.10), note that by property (2) of Proposition 7.9,

j∗(π1(MR1)) ⊂ π(n−1). (7.12)

Let G = π1(MR1) and let φR denote the restriction of φ to G. Then (7.12) implies
that φR factors through G/G(2). We claim that kernel(φR) ⊂ G(1). For suppose that
x ∈ kernel(φR) and x = μmy whereμ is a meridian of R and y ∈ G(1). Then certainly
x is in the kernel of the composition

ψ : G
φR−→ π(n−1)/π

(n+1)
P → π(n−1)/π

(n)
P .

Moreover, by (7.12), φR(G(1)) ⊂ π
(n)
P so G(1) is in the kernel of ψ . Therefore μm ∈

kerψ and the image of ψ has order at most m. If m �= 0 this contradicts property (2)
of Proposition 7.9. Thus m = 0 and kernel(φR) ⊂ G(1). Therefore φR is determined
by the kernel, called P̃ , of

φ̄R : G(1)/G(2) ∼= A0(R
1) → image(φR).

Moreover, by property 1 of Proposition 5.1,

ρ(MR1, φR1) = ρ(MR1, φ̄R).

Since P̃ is normal in G/G(2), it is preserved under conjugation by a meridional ele-
ment, implying that P̃ represents a submodule P ⊂ A0(R1). Since R1 is a robust
operator, the Alexander polynomial of R1 is the product, δ(t)δ(t−1), of two irre-
ducible factors. Thus A0(R1) admits precisely 4 submodules: P1 = A0(R1), P0 =
0, P+ = 〈δ(t)〉 and P− = 〈δ(t−1〉. The first case is when φR factors through Z. In
this case ρ(MR1, φR) = ρ0(R1), by property 3 of Proposition 5.1, and hence van-
ishes since since R1 is an algebraically slice knot. But, since R1 is a ribbon knot,
0 ∈ FOS(R1). The other cases are isotropic submodules so in all cases we have
ρ(MR1, φR) ∈ FOS(R1), verifying (7.10).

Therefore we have established (7.11) and this contradiction finishes the proof of
Theorem 7.5, modulo the proof of Proposition 7.9. ��

The proof of Proposition 7.9 is accomplished inductively using the following.
Clearly, the case i = 0 of Proposition 7.10 gives Proposition 7.9.

Proposition 7.10 With regard to the 4-manifold Wi constructed above (fixing i and
n) and letting π = π1(Wi ),

(1) Under the inclusion j : M1
i ⊂ ∂Wi → Wi ,

j∗(π1(M
1
i ))

∼= Z ⊂ π(n−i)/π
(n−i+1)
P ;

(2) in the case i = 0, under the inclusion j : MR1 ⊂ ∂W0 → W0,

j∗(π1(MR1)) ∼= Z ⊂ π(n−1)/π
(n)
P ;
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(3) Wi is an (n,P)-bordism for ∂Wi .

An (n,P)-bordism will be defined below.

Proof of Proposition 7.10 We proceed by reverse induction on i . Consider the case
i = n (refer to Fig. 13). By (3.2), π(1)P = π

(1)
r . Thus property (1) of Proposition 7.10

is merely the statement that the inclusion H1(M1
n ; Q) → H1(Wn; Q) is injective. But

this is easy to verify. Since K̃ ∈ FP
n.5 via V , by Definition 2.3 (part 1), the inclusion-

induced map

j∗ : H1(MK̃ ; Z) → H1(V ; Z)

is an isomorphism. It follows from duality that

j∗ : H2(MK̃ ; Z) → H2(V ; Z)

is the zero map. Similarly, each H1(M
j

n ) → H1(±Z j ) is an isomorphism and by dual-
ity H2(M

j
n ) → H2(Z j ) is the zero map. The integral homology of C was analyzed in

[19, pp. 113–114]. From the latter we know that H1(C; Z) ∼= Z, generated by any one
of the meridians of any of the knots, and that H2(C; Z) is ⊕ j H2(M

j
n ; Z)|m j |. In partic-

ular H2(C) arises from its “top” boundary. Also the generator of i∗(H2(MK̃ )) is merely

the sum of the generators of the H2(M
j

n ; Z) summands. Combining this information
with several Mayer–Vietoris sequences, we deduce that H1(M1

n ; Z) ∼= H1(Wn; Z) as
desired. The details of these elementary deductions were given in the proof of [16,
Proposition 8.2] so we will not repeat them here. This finishes the case i = n of part
(1) of Proposition 7.10, which is the base of our induction. By the same token we also
conclude that

H2(Wn; Z)/j∗(H2(∂Wn; Z)) ∼= H2(Wn; Z) ∼= H2(V ; Z)⊕Z−caps H2(Z
j
n ; Z).

To establish part (3) (for i = n) we need more properties of Wn . Since K̃ ∈ FP
n.5 ⊂ FP

n

via V , H2(V ) admits a basis given by {LV
i , DV

i }, a collection of surfaces satisfying
Definition 2.3 for n. That is V is an (n,P)-solution. Similarly each Z-cap Z j is an
(n)-solution, so each H2(Z j ) admits such a basis {L j

i , D j
i } (using Fn ⊂ FP

n ). The
union of these bases is a basis for H2(Wn). Since the polarized derived series localized
at P is weakly functorial, and by the naturality of the intersection form with twisted
coefficients, the union of these surfaces exhibits Wn as an (n,P)-solution for M1

n .
As we shall see below, an (n,P)-solution is an (n,P)-bordism, so we are done.

This finishes the case i = n of Proposition 7.10, which is the base of our induction.
To proceed to analyze the other Wi we need a generalization of an (n,P)-solution.
We also need to establish strong properties for such 4-manifolds. So we take a not-so-
brief break from the proof of Proposition 7.10.

123



488 T. D. Cochran et al.

7.3 (n,P)-bordisms

For the purposes of this subsection, P will denote an arbitrary commutator series
(that need not be functorial). We retain the P notation in order to emphasize the current
application.

The following simultaneously generalizes the notion of an (n,P)-solution (Defi-
nition 2.3) and the notion of an n-bordism [16, Section 5].

Definition 7.11 A compact spin smooth 4-manifold W is an (n,P)-bordism for ∂W if

2. H2(W ; Z)/H2(∂W ; Z) has a basis consisting of connected compact oriented sur-
faces, {Li , Di |1 ≤ i ≤ r , embedded in W with trivial normal bundles, that are
pairwise disjoint except that, for each i , Li intersects Di once transversely with
positive sign.

3. for each i, π1(Li ) ⊂ π1(W )
(n)
P and π1(Di ) ⊂ π1(W )

(n)
P .

We call it an (n.5,P)-bordism for ∂W if in addition,

4. for each i, π1(Li ) ⊂ π1(W )
(n+1)
P .

An (n,P)-solution is a fortiori an (n,P)-bordism. But an (n,P)-bordism need not
have connected boundary and the inclusion map from the boundary does not neces-
sarily induce an isomorphism on H1.

We now state the crucial homological properties of (n,P)-bordisms that were pre-
viously established for n-bordisms in [16, Section 5]. When the proofs are identical
to those of [16, Section 5], they are not repeated here. We should point out that the
rank hypothesis below on H1(Mi ; Z�) is always satisfied if β1(Mi ) = 1 (by [18,
Proposition 2.11]), which will always be the case in this paper.

Lemma 7.12 Suppose P is an arbitrary commutator series, W is a (k,P)-bordism
and φ : π1(W ) → � is a non-trivial coefficient system where� is a PTFA group with
φ(π1(W )

(k)
P ) = 1. Let R be an Ore localization of Z� so Z� ⊂ R ⊂ K�. Suppose,

for each component Mi of ∂W for which φ restricted to π1(Mi ) is nontrivial, that
rankZ�H1(Mi ; Z�) = β1(Mi )− 1. Then

1. The Q-rank of (H2(W )/j∗(H2(∂W )) is equal to the K�-rank of H2(W ;R)/I
where

I = image( j∗(H2(∂W ;R) → H2(W ;R))).

and
2.

T H2(W, ∂W ;R) ∂−→ T H1(∂W ;R) j∗−→ T H1(W ;R)

is exact, where T M denotes the R-torsion submodule of the R-module M.

Proof The proof is (verbatim) identical to that of the corresponding result for
n-bordisms [16, Lemma 5.10], with the rational derived series being replaced by
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the arbitrary functorial commutator series. The key point is that if L is, say, a surface
that is part of a Lagrangian from Definition 2.3 for which π1(L) ⊂ π1(W

(k)
P ) then

φ(π1(L)) = 0 so L can be part of a Lagrangian with Q� or R coefficients. ��
We also have a partial generalization of our Theorem 5.2 and a generalization of

[16, Theorem 5.9]. Once again the rank hypothesis is always satisfied if β1(Mi ) = 1,
which will always be the case in the present paper. Once again the proof is identical
to the one for [16, Theorem 5.9].

Theorem 7.13 Suppose P is an arbitrary commutator series, W is an (n + 1,P)-
bordism and φ : π1(W ) → � is a non-trivial coefficient system where � is a PTFA
group and φ(π1(W

(n+1)
P )) = 1. Suppose for each component Mi of ∂W for which φ

restricted to π1(Mi ) is nontrivial, that rankZ�H1(Mi ; Z�) = β1(Mi )− 1. Then

ρ(∂W, φ) = 0.

Higher-order Alexander modules and higher-order linking forms for classical knot
exteriors and for closed 3-manifolds withβ1(M) = 1 were introduced in [18, Theorem
2.13] and further developed in [10] and [38]. These were defined on the so called
higher-order Alexander modules T H1(M;R). These modules are not necessarily of
homological dimension one.

Theorem 7.14 ([18, Theorem 2.13]) Suppose M is a closed, connected, oriented
3-manifold with β1(M) = 1 and φ : π1(M) → � is a PTFA coefficient system.
Suppose R = (Z�)S−1 is an Ore localization where S is closed under the natural
involution on Z�. Then there is a (possibly singular) linking form:

Bl M
R : T H1(M;R) → (T H1(M;R))# ≡ HomR(T H1(M;R),K�/R).

One needs S closed under the involution in order that Q� ↪→ R be a map of rings
with involution. When β1(M) = 1, as long as the coefficient system is non-trivial,
H1(M;R) is a torsion module and hence T H1(M;R) = H1(M;R) [18, Proposition
2.11].

From the above follows another generalization of key results of [18, Theorem
4.4], [16, Theorem 6.3] concerning solvability and null-bordism whose generaliza-
tion to null-P-bordism will be a crucial new ingredient in our proofs. Again, the rank
hypothesis is automatically satisfied if β1(Mi ) = 1. The proof is identical to that of
[16, Theorem 6.3].

Theorem 7.15 Suppose P is an arbitrary commutator series, W is a (k,P)-bordism
and ψ : π1(W ) → � is a non-trivial coefficient system where � is a PTFA group
and ψ(π1(W )

(k)
P ) = 1. Let R = (Q�)S−1 be an Ore localization where S is closed

under involution. Suppose that, for each component Mi of ∂W for which ψ restricted
to π1(Mi ) is nontrivial, that rankZ�H1(Mi ; Z�) is β1(Mi )− 1. If P is the kernel of
the inclusion-induced map

T H1(∂W ;R) j∗−→ T H1(W ;R),

then P ⊂ P⊥ with respect to the Blanchfield form on T H1(∂W ;R).
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In many important situations (including the ones with which we will be here con-
cerned), we will be considering MK , the zero surgery on a knot K , endowed with a
coefficient system φ : π1(MK ) → � that factors non-trivially through Z, the abeli-
anization. In this special case the higher-order Alexander module of MK and the
higher-order Blanchfield form Bl K

R are merely the classical Blanchfield form on the
classical Alexander module, “tensored up”. What is meant by this is the following.
Since φ is both nontrivial and factors through the abelianization, the induced map
image(φ) ≡ Z ↪→ � is an embedding so it induces embeddings

φ : Q[t, t−1] ↪→ Q� ↪→ (Q�)S−1, and φ : Q(t) ↪→ K�.

Since Z ⊂ �, Q� is a free and hence flat left Q[t, t−1]-module. Any Ore localization,
(Q�)S−1, is a flat left Q�-module [50, Proposition II.3.5]. Consequently, the homol-
ogy modules of MK are simply the classical homology modules of MK , “tensored
up”:

H∗(MK ;R) ∼= H1(MK ; Q�)⊗Q� R ∼= H∗(MK ; Q[t, t−1])⊗Q[t,t−1] R.

Since Q[t, t−1] is a PID, each of the classical modules H∗(MK ; Q[t, t−1]) is finitely
generated and has homological dimension 1. Moreover each such module has a finite
presentation. Since tensor product with a flat module is an exact functor, the above
remarks (on flatness) imply that each of the modules H∗(MK ;R) has a finite presen-
tation and hence is finitely generated and has homological dimension 1. In particular
the higher-order Alexander module, H1(MK ;R), decomposes as

H1(MK ;R) ∼= A(K )⊗Q[t,t−1] (Q�)S−1, (7.13)

where (Q�)S−1 is a Q[t, t−1]-module via the map t → φ(μK ) [10, Theorem 8.2].
Moreover the higher-order Blanchfield form on H1(MK ;R) (see Theorem 7.14)

has a corresponding decomposition:

Bl K
R(x ⊗ 1, y ⊗ 1) = φ(Bl K

0 (x, y)) (7.14)

for any x, y ∈ A(K ), where Bl K
0 is the localized classical Blanchfield form on the

Alexander module of K [37, Proposition 3.6], [38, Theorem 4.7] (see also [5, Section
5.2.2]), where

φ : Q(t)/Q[t, t−1] −→ K�/Q�S−1,

is induced by φ (beware: φ is not, in general, injective).
We will need the following, which relies crucially on the coefficient system factor-

ing through Z. Both parts of its conclusion are false without this assumption.
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Lemma 7.16 Suppose K is a knot and φ : π1(MK ) → � is a PTFA coefficient system
that factors nontrivially through Z. Suppose R = (Z�)S−1 is an Ore localization
where S is closed under the natural involution on Z�. Then the linking form BK

R
of Theorem 7.14 is a non-singular linking form on a finitely generated module of
homological dimension one (indeed the module has a square presentation matrix).

Proof The existence is guaranteed by Theorem 7.14. We have shown in the preceding
paragraphs that the module is finitely generated and has homological dimension 1. The
definition of the linking form is the composition of 3 maps: Poincaré duality with R
coefficients, the inverse of a Bockstein homomorphism, and the Kronecker evaluation
map

H1(MK ;K/R) κ→ HomR(H1(MK ;R),K/R).

It was shown in [18, Theorem 2.13] that the first two are isomorphisms. Thus we need
only show that κ is an isomorphism. There is a universal coefficient spectral sequence
[42, Theorem 2.3]

E p,q
2

∼= Extq
R(Hp(MK ;R),K/R) ⇒ H∗(MK ;K/R),

with differential dr of degree (1 − r, r). Since we have shown that the modules
Hp(MK ;R) have homological dimension one, the Ext terms vanish for q > 1. It fol-
lows that the spectral sequence collapses and the usual universal coefficient sequence
holds:

0→ Ext1
R(H0(MK ;R),K/R)→ H1(MK ;K/R) κ→ HomR(H1(MK ;R),K/R)→0.

Associated to the short exact sequence of R-modules

0 → R → K → K/R → 0

is a long exact sequence of Ext∗R(H1(MK ;R),−), yielding

→ Ext1
R(H0(MK ;R),K)→ Ext1

R(H0(MK ;R),K/R)→ Ext2
R(H0(MK ;R),R)→

where the last term is zero as observed previously. But K is a torsion-free, divisible
module over the Ore domain R and hence is an injective R-module [50, Propositions
3.8, 7.8]. Thus Ext1

R(H0(MK ;R),K) = 0 and so κ is an isomorphism.
H1(MK ;R) has a square presentation matrix simply because H1(MK ; Q[t, t−1])

does. ��

7.4 Return to inductive step in proof of Proposition 7.10

Recall that we have already established Proposition 7.10 in the base case, i = n, of
a (downward) induction on i . Now assume that Wi , for some i , 1 ≤ i ≤ n, has been
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shown to satisfy properties (1) and (3) of Proposition 7.10. We will derive some further
important properties of Wi that will enable us to analyze Wi−1.

By construction ∂Wi = M1
i and by property (3), Wi is an (n,P)-bordism and hence

an (n − i + 1,P)-bordism since n − i + 1 ≤ n. Let π = π1(Wi ), � = π/π
(n−i+1)
P

and let ψ : π → � be the canonical surjection. Apply Theorem 7.15 to (Wi , ψ) with
k = n − i + 1. Property (1) for Wi ensures that ψ restricted to π1(M1

i ) is non-trivial

and factors through the abelianization. Let S = Spk (π) ⊂ Q[π(k−1)
P /π

(k)
P ] as in

Definition 4.15, unless k = 1 in which case let S = S∗
p1

as in Definition 4.11; and let
R = (Q�)S−1. Hence by Theorem 7.15 and (7.13), the kernel P ′ of the composition

A(K 1
i )⊗Q[t,t−1] R ∼=→ H1(M

1
i ;R) j∗→ H1(Wi ;R).

satisfies P ′ ⊂ (P ′)⊥ with respect to the Blanchfield form BK 1
i

R . Recall that K 1
i =

Ri
αi
(K 1

i−1) is obtained from Ri
αi

by an infection along a circle αi . By hypothesis this
circle is a generator of A(R1

αi
). We will show that

αi ⊗ 1 /∈ P ′. (7.15)

To see this recall that

A(K 1
i )

∼= A(Ri
αi
) ∼= Q[t, t−1]

〈pk(t)〉 ,

since k = n − i +1 (see hypotheses of Theorem 7.5). This cyclic module is non-trivial
since pk is not a unit, Thus

A(K 1
i )⊗Q[t,t−1] Q� ∼= Q�

pk(μ)Q�
,

is a non-trivial cyclic module generated by the image of αi ⊗ 1, where here μ = μK 1
i
,

or more properly φ(μK 1
i
), the class in� represented by the meridian of K 1

i in M1
i . By

property (1) of the inductive assumption, μ is an element of infinite order in �. Then

H1(M
1
i ;R) ∼= A(K 1

i )⊗Q[t,t−1] R = Q�

pk(μ)Q�
S−1

pk
∼= R

pk(μ)R ,

a cyclic R-module generated by the image of αi ⊗ 1. If the generator αi ⊗ 1 were

to lie in P ′ then, since P ′ ⊂ (P ′)⊥, it would follow that BK 1
i

R were identically zero.
But by Lemma 7.16, this linking form is nonsingular. This could only happen if
H1(M1

i ;R) were the zero module. However, by the first part of Theorem 4.12,
if k �= 1 then

Q�

pk(μ)Q�
↪→ Q�

pk(μ)Q�
S−1

pk
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is a monomorphism. If k = 1 then � ∼= Z and, by Proposition 4.13,

Q�

p1(μ)Q�
↪→ Q�

p1(μ)Q�
(S∗

p1
)−1

is a monomorphism (here we need that p1(t)
.= p(t−1), which holds since p1 is, by

hypothesis, the order of the generator of the classical Alexander module of a knot).
In particular, in either case, if H1(M1

i ;R) were the zero module, then it would follow
that

Q�

pk(μ)Q�
= 0.

This would force pk(μ) to be a unit in Q�. If there werex ∈ Q� such that pk(μ)x = 1,
then, using the fact that Q� is a free Q[Z] = Q[μ,μ−1]-module (here we use that μ
is of infinite order in�), we could decompose over the cosets of Z to get pk(μ)xe = 1
for some xe ∈ Q[μ,μ−1]. This is not possible since pk is the Alexander polynomial
of a robust knot so in particular pk(t) is not a unit. Hence

H1(M
1
i ;R) �= 0. (7.16)

This contradiction establishes (7.15).
Now we translate the homological data of (7.15) into a statement in π1, namely

we claim:

αi ∈ π(k) but αi /∈ π(k+1)
P . (7.17)

To establish this claim, first note that, by property (1) of Proposition 7.10 for Wi , we
have

π1(M
1
i )
(1) ⊂ π(n−i+1) = π(k).

Since αi ∈ π1(M1
i )
(1), αi ∈ π(k), which establishes the first part of claim (7.17).

Recall that H1(Wi ; Q�) is identifiable as the ordinary rational homology of the cov-
ering space of W whose fundamental group is the kernel of φ : π → �. Since this
kernel is precisely π(k)P where k = n − i + 1, we have that

H1(Wi ; Q�) ∼= (π
(k)
P /[π(k)P , π

(k)
P ])⊗Z Q,

and so

H1(Wi ;R) ∼= (π
(k)
P /[π(k), π(k)P ])⊗Z� R
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Now consider the commutative diagram below. The vertical map j is injective by
the definition of the commutator series given in (3.1).

π1(M
1
i )
(1)

π(k) π
(k)
P /π

(k+1)
P

A(K 1
i ) H1(M

1
i ; R) H1(Wi ; R) (π

(k)
P /[π(k)P , π

(k)
P ])⊗ (Q�)S−1

pk

�j∗

�
π

�φ

� �
j

�id⊗1 �j∗ �∼=

Since, by (7.15), αi is not in the kernel of the composition in the bottom row, αi is not
in the kernel of the composition in the top row. Hence αi /∈ π(k+1)

P . This establishes
the second part of claim (7.17).

Now let P be the kernel of the bottom composition of the diagram above. This com-
position is a map of Q[t, t−1]-modules so certainly P is a submodule. It is a proper
submodule by (7.15). Since A(Ri

αi
) is, by choice, a cyclic module whose order is a

product of two primes δ(t)δ(t−1), it has (at most) three proper submodules, P0 = 0,
P+ = 〈δ〉 and P− = 〈δ(t−1)〉. As previously observed, each of these submodules is
isotropic for the Blanchfield form.

This establishes:

Fact 1: The kernel, P̃ , of the composition in the top row of the diagram above is
of the form π−1(P) for some proper submodule P ⊂ A(K 1

i ) that satisfies
P ⊂ P⊥ with respect to the classical Blanchfield form. Note that

j∗(P̃) ⊂ π
(k+1)
P .

Note that the inclusions M1
i ↪→ Ei , and MRi ↪→ Ei induce an isomorphism A(K 1

i )
∼=

A(Ri
αi
). With respect to this identification we can view P ⊂ A(Ri

αi
), and we claim

further that

Fact 2: If i ≥ 2, then the P ⊂ A(Ri
αi
) that occurs in Fact 1 corresponds to a ribbon

disk for Ri
αi

, and hence may be assumed to be P+ = 〈δ(t)〉 for specificity
(see Definition 7.2).

Remark 7.17 In deciding which ribbon disk exterior Si to attach to MRi to form Wi−1
from Wi , we must use one guaranteed by Fact 2.

We now establish Fact 2. By property (3) of Proposition 7.10 for Wi , Wi is a
(k +1,P)-bordism for M1

i since k +1 = n − i +2 ≤ n. Now consider the coefficient
system

ψ : π → � = π/π
(k+1)
P .

and its restriction to π1(M1
i ) that we call φ. Noting that ψ(π(k+1)

P ) = 1, apply
Theorem 7.13 to (Wi , ψ) to get that

ρ(M1
i , φ) = 0.
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Moreover by property (1) for Wi , j∗(π1(M1
i )
(2)) ⊂ π1(Wi )

(k+1). Therefore φ factors
nontrivially through π1(M1

i )/π1(M1
i )
(2). Moreover the map φ is determined by the

composition in the top row of the above diagram, whose kernel is precisely P̃ . So in
fact by property 1 of Proposition 5.1,

0 = ρ(M1
i , φ) = ρ

(
M1

i , π1(M
1
i ) → π1(M1

i )

π1(M1
i )
(2) P̃

)
,

Recall that M1
i is the zero surgery on the knot K 1

i . The previous equation implies that
the first-order signature of K 1

i corresponding to P , ρ(K 1
i , φP ), is zero (see Defini-

tion 7.1). But K 1
i is obtained from the ribbon knot Ri

αi
by an infection along αi using

the knot K 1
i−1. Therefore (since φ(αi ) �= 1 by (7.15)), using elementary additivity

results for ρ invariants [16, Lemma 2.3] (more details on this computation are given
in [9, Example 4.3]),

0 = ρ(K 1
i , φP ) = ρ(Ri

αi
, φP )+ ερ0(K

1
i−1).

where ε ∈ {0, 1}. Since i − 1 ≥ 1, K 1
i−1 = Ri−1

αi−1
(K 1

i−2), which lies in F1 by Prop-

osition 2.7. Therefore K 1
i−1 is algebraically slice and so ρ0(K 1

i−1) = 0. Hence the
first-order signature

ρ(Ri
αi
, φP ) = 0.

By definition of a robust operator this implies that P corresponds to a ribbon disk for
Ri . This finishes the verification of Fact 2.

Finally we can recall the construction of Wi−1 and set about to establish the prop-
erties of Proposition 7.10 for Wi−1. Refer to Fig. 14. Recall that if i = 1 then Wi−1 =
Wi ∪ E whereas if i > 1 then Wi−1 = Wi ∪ Ei ∪ Si , where Si is the exterior of a
ribbon disk for Ri

αi
. Here we specify that we shall choose Si to be B4 −�i where�i

satisfies Fact 2.

Property (3) of Proposition 7.10: Wi−1 is an (n,P)-bordism.

We have already verified this for Wi . Since Wi−1 is created from Wi by adding
pieces with H2 = 0 (in the case of Si ) or with H2(Ei )/H2(∂Ei ) = 0, a short Mayer
Vietoris argument shows that

H2(Wi−1; Z)/j∗(H2(∂Wi−1; Z)) ∼= H2(Wi ; Z)/j∗(H2(∂Wi ; Z)).

It follows that the same surfaces can be used to show that Wi−1 is an (n,P)-bordism
as were used to show Wi is an (n,P)-bordism. If, for example, L is such a surface and
π1(L) ⊂ π1(Wi )

(n)
P then certainly π1(L) ⊂ π1(Wi−1)

(n)
P by the weak functoriality of

the series.
This completes the verification of the property (3) of Proposition 7.10 for Wi−1.
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Property (1) of Proposition 7.10 holds for Wi−1:

Consider M1
i−1 ⊂ ∂Wi−1. Recall thatπ1(M1

i−1) is normally generated by the merid-
ian,μi−1, and, by Lemma 2.8, this is isotopic in Ei−1 to a push-off of αi in M1

i = ∂Wi .
By (7.17)

αi ∈ π1(Wi )
(k) ⊂ π1(Wi−1)

(k)

Thus

π1(M
1
i−1) ⊂ π1(Wi−1)

(k)

where k = n − i + 1. Thus establishes the first part of property (1) for Wi−1. To prove
the second part it would suffice to show that j∗(αi ) is non-zero in π1(Wi−1)

(k)/π1

(Wi−1)
(k+1)
P . Equation (7.17) provides precisely this, except with π1(Wi ) instead of

π1(Wi−1). Therefore it suffices to show that inclusion induces an isomorphism

π1(Wi )/π1(Wi )
(k+1)
P ∼= π1(Wi−1)/π1(Wi−1)

(k+1)
P . (7.18)

By Proposition 4.17, it now suffices to show that

ker (π1(Wi ) → π1(Wi−1) ⊂ π1(Wi )
(k+1)
P . (7.19)

The map π1(Wi ) → π1(Wi ∪ Ei ) is a surjection whose kernel is the normal closure
of the longitude  of the copy of S3 − K 1

i−1 ⊂ M1
i (by property (1) of Lemma 2.8).

The group π1(S3 − K 1
i−1) is normally generated by the meridian of this copy of K 1

i−1.
By the definition of infection, this meridian is identified to a push-off of the curve αi

and we have seen that αi ∈ π1(Wi )
(k). Thus  ∈ π1(Wi )

(k+1)
P as required. If i = 1,

Wi−1 = Wi ∪ Ei so this establishes 7.18.
Now suppose i > 1. Then the kernel of π1(Wi ∪ Ei ) → π1(Wi ∪ Ei ∪ Si ) =

π1(Wi−1) is the normal closure of the kernel of π1(MRi ) → π1(Si ). The latter is of
course contained in the commutator subgroup of π1(MRi ). Any element of π1(MRi )

is homotopic in Ei to an element of π1(M1
i ). Thus any element of π1(MRi )(2) is equal

to an element of π1(M1
i )
(2). But by property (1) of Proposition 7.10 for Wi (or see our

big diagram above)

π1(M
1
i )
(2) ⊂ π1(Wi )

(k+1) ⊂ π1(Wi )
(k+1)
P .

Therefore we may ignore elements in π1(MRi )(2) and so it suffices to consider a
generator of the kernel of

A(Ri ) ∼= π1(MRi )(1)

π1(MRi )(2)
→ π1(Si )

(1)

π1(Si )(2)
∼= A(Si ),
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which, by Fact 2 and Remark 7.17, is the cyclic module denoted P . But by Fact 1,
under the identification A(Ri ) ∼= A(M1

i ) we see that a representative of P lies in P̃
and

P̃ ⊂ π1(Wi )
(k+1)
P

as required. This completes the verification of 7.19 and hence that of property (1) for
Wi−1.

Property (2) of Proposition 7.10 holds for W0:

The group j∗(π1(MR1
α1
)) is normally generated by a meridian of R1

αi
which is iso-

topic in E1 to the meridian of K 1
1 in π1(M1

1 ). By property 1 of Proposition 7.10 for
i = 1,

j∗(π1(M
1
1 ))

∼= Z ⊂ π1(W1)
(n−1)/π1(W1)

(n)
P .

By (7.18) with i = 1 (so k = n)

π1(W1)/π1(W1)
(n+1)
P ∼= π1(W0)/π1(W0)

(n+1)
P , (7.20)

so certainly

π1(W1)
(n−1)/π1(W1)

(n)
P ∼= π1(W0)

(n−1)/π1(W0)
(n)
P .

Therefore

j∗(π1(MR1
α1
)) ∼= j∗(π1(M

1
1 ))

∼= Z ⊂ π1(W0)
(n−1)/π1(W0)

(n)
P .

This completes the verification of property (1) for W0.
This concludes the inductive proof of Proposition 7.10. The proof of Theorem 7.5

is now complete. ��
In fact, note that the proof of Theorem 7.5 transitioned quite quickly (and neces-

sarily) into the category of (n,P)-bordisms. Thus we see that we can prove a stronger
version of Theorem 7.5 and Corollary 7.6. The point is that in our construction of the
manifold W0 of Proposition 7.10, we made very little use of the fact that the subman-
ifold V was an (n.5,P)-solution as opposed to an (n.5,P)-null-bordism. Certainly
what we needed primarily was that

σ (2)(V, φ)− σ(V ) = 0,

for any φ : π1(V ) → π1(V )/π1(V )
(n+1)
P → � (� PTFA). But Theorem 7.13 can

(almost) be used to establish this, in place of Theorem 5.2. We also needed some non-
triviality for the map π1(∂V ) → π1(V ) to establish property (1) of Proposition 7.10
in the base case of the induction where i = n (the first paragraph of the proof). Since,
in a null-bordism, ∂V → V does not necessarily induce a monomorphism on H1,
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we must add some additional weak non-triviality condition. This results in a shift of
the “exponents” in all the arguments in the proof.

Theorem 7.18 Let P be the unrestricted derived series localized at P . No nontrivial
linear combination of the knots of Theorem 7.5 and Corollary 7.6 is (n + 1 + r,P)-
null-bordant via V where

j∗(π1(∂V )) ∼= Z ⊂ π1(V )
(r)/π1(V )

(r+1)
P ;

and no such is (n + .5 + r,P)-null-bordant via V if, in addition,

σ (2)(V, φ)− σ(V ) = 0

for any PTFA coefficient system factoring through π1(V )/π1(V )
(n+1+r)
P .

Note that an actual (n.5,P)-solution satisfies the hypotheses with k = 0. The
more general situation requires us to prove Proposition 7.10 with all occurrences of n
replaced by n + r . Otherwise the proof is identical. The additional signature condition
is necessary only because the precise generalization of Theorem 5.2 to (n.5,P)-
null-bordisms has not appeared in the literature; rather Theorem 7.13 requires an
(n + 1,P)-null-bordism.

8 Evidence for the injectivity of robust doubling operators

For the following theorem, suppose Pn−1 is the index set for a collection, {Qi | i ∈
Pn−1}, of n − 1-tuples Qi = (qin−1(t), . . . , qi1(t)) of non-zero, non-unit polynomials
such that, for any i �= j ∈ Pn−1, at least one coordinate of Qi is strongly coprime
to the corresponding coordinate of Q j . This is a slightly more stringent condition
than Definition 4.4. This is necessary since, in the following result, the Alexander
polynomial of the operator Rα will play the role of the “first” polynomial in P .

Theorem 8.1 Suppose Rα is a robust operator. Then, for any n ≥ 1, the composition

C Rα−→ C → C
Fn.5

is injective on any subgroup generated by

Jn−1 = {Ri (K
i, j ) |i ∈ Pn−1, 1 ≤ j < ∞}

where the Ri (K i, j ) are as in Theorem 7.7, so Rα is injective on subgroups

⊕

Pn−1

Z
∞ ⊂ Fn−1 ⊂ C
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as in (1.2) and Corollary 7.8. Thus, by letting n vary, it follows that Rα : C → C is
injective on the subgroup

⊕

n

⊕

Pn

Z
∞ ⊂ C (8.1)

as in (1.2). Moreover, if Rα and R′
β are robust operators for which the classical

Alexander polynomials of R and R′ are coprime, then Rα and R′
β have distinct images

(intersect only in {0}), when restricted to the subgroups (8.1).

Proof We abbreviate Rα by R. Suppose

R(J ) = R(J ′) in
Fn

Fn.5

where J = #mi jRi (K i, j ), J ′ = #ni jRi (K i, j ) are distinct, Ri (K i, j ) ∈ Jn−1 where
the sum runs over all 1 ≤ j < ∞, and all i ∈ Pn−1, but where all but finitely many
of the integers mi j and ni j are zero. If n = 1 then the index i takes on only one value
which we call i = 1. We shall derive a contradiction. The strategy of the proof is
identical to that of Theorem 7.5. Here is a sketch. Since

R(J ) # − (R(J ′)) ∈ Fn.5,

it follows that

R(J ) # − (R(J ′)) ∈ FP
n.5,

for any n-tuple P . We must choose P wisely so that this is false. Since J and J ′
are distinct, by relabeling both i and j , we may assume, without loss of general-
ity, that m11 > n11 ≥ 0. In particular we may assume that the knot R1(K 1,1) occurs
non-trivially as a summand of J . Recall that Ri = Ri,n−1

αi
n−1

◦· · ·◦ Ri,1
αi

1
, a composition of

n−1 robust doubling operators, so R1 = R1,n−1 · · ·◦· · ·◦ R1,1. Similar to the proof of
Theorem 7.5, we will construct a 4-manifold W0 whose boundary is m11 copies of the
zero surgery on R1,1 and m11 copies of the zero surgery on K 1,1. Let (p2(t), . . . , pn(t))
denote the sequence of orders of the Alexander modules of (R1,n−1, . . . , R1,1). Let
p1(t) be the Alexander polynomial of R. Let P = (p1(t), p2(t), . . . , pn(t)). Let V be
an (n.5,P)-solution for R(J ) # − R(J ′). Let C be the standard cobordism from ∂V to
the disjoint union of the zero surgeries on R(J ) and −R(J ′). Attach to V ∪ C , along
M−R(J ′), a manifold E ′ from Lemma 2.8 where ∂E ′ = MR(J ′)

∐
M−R

∐
M−J ′ . To

this attach along MR ⊂ ∂E ′, S′, the complement of a slice disk for R. Then attach the
standard cobordism C ′ from M−J ′ to the disjoint union of copies of the zero surgeries
on ±Ri (K i, j ) according to the decomposition −J ′ = #−ni jRi (K i, j ). For each such
new boundary component attach the (n − 1) solution ±Z(i, j) from Corollary 6.4.
The resulting manifold, denoted Wn and shown in Fig. 15, has boundary MR(J ).
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Fig. 15 Wn

Since π1(Z(i, j)) ⊂ π1(Wn)
(1), these (n − 1)-solutions are effective (n)-solutions.

In particular Wn is an (n,P)-null-bordism for MR(J ). Consider the coefficient system

ψ : π1(Wn) → π1(Wn)/π1(Wn)
(1)
P ∼= Z.

By Theorem 7.15, with k = 1 and R = Q[t, t−1](S∗
p1
)−1, the kernel of the inclusion

A(R)(S∗
p1
)−1 ∼= A(R(J ))(S∗

p1
)−1 → A(Wn)(S

∗
p1
)−1

is self-annihilating (in fact known to be a Lagrangian in this case). Therefore the curve
α, being a generator of A(R(J )) and being p1(t) torsion, cannot lie in π1(Wn)

(2)
P .

Therefore we have verified the analogue of the case i = n (the base case) of Proposi-
tion 7.10.

The rest of the proof is very similar to that of Proposition 7.10 and the proof of
Theorem 7.5, but not identical because in this case J , which is analogous to the knot
Kn−1 in that proof, is a connected sum of knots in the images of iterated operators
rather than being a single such knot. In this case to form Wn−1 first glue an E to Wn

so that the boundary is MR
∐

MJ . Consider the coefficient system

φ : π1(Wn ∪ E) → π1(Wn ∪ E)/π1(Wn ∪ E)(2).

Since n ≥ 1, one easily sees that ρ(∂(Wn ∪ E), φ) = 0. But ρ0(J ) = 0 if n − 1 �= 0.
Thus one shows that the first-order signature of R corresponding to P is zero, where
P is the kernel of the inclusion A(R) ∼= A(R(J )) → A(Wn). Since R is robust, P
corresponds to a ribbon disk. Add to E along MR , the corresponding ribbon disk exte-
rior S. Also add the standard cobordism C ′′, from MJ to the disjoint union of the zero
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Fig. 16 Wn−1

surgeries of copies of ±Ri (K i, j ) according to the decomposition J = #mi jRi (K i, j ).
Then to each zero surgery on Ri (K i, j for (i, j) �= (1, 1), adjoin a Z − cap Z(i, j)
from Corollary 6.4. The resulting manifold, denoted Wn−1 has boundary equal to m11
copies of the zero surgery on R1(K 1,1) (Fig. 16).

This is an (n,P)-null bordism for its boundary. Now we continue to construct
4-manifolds Wn−2, . . . ,W0 just as in Proposition 7.10, except that here we have m11
boundary components rather than 1. We arrive finally at W0 whose boundary is m11
copies of the zero surgery on R1,1 and m11 copies of the zero surgery on K 1,1. Then
we consider the coefficient system

φ : π1(W0) → π1(W0)/(π1(W0))
n+1
P .

One shows that on the one hand, ρ(∂W0, φ) is equal to the sum of m11ρ0(K 1,1) and
m11 (possibly different) first-order signatures of R1,1. Then we assert that

σ (2)(W0, φ)− σ(W0)

is equal to the sum of c jρ0(K 1, j ) where c1 is less in absolute value than m1,1. These
two assertions contradict the choice of the K i, j (see the hypotheses of Theorem 7.7).

Clearly only the Z-caps contribute to the signature of W0. Those that correspond
to values of i �= 1 can be ignored since they are effective (n + 1,P)-solutions, since
each i �= 1 corresponds to an n − 1-tuple of orders Qi that is strongly coprime to
(p2, . . . , pn). The Z-caps with i = 1 have signatures equal to zero or ρ0(K 1, j ) by
Corollary 6.4. Therefore |c1| is less than or equal to n11 which was less than m11.

This concludes the proof that Rα is injective on the claimed subgroup, which is the
first claim of the theorem.
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For the second claim of the theorem, merely note that Jn−1 is precisely the collec-
tion of (7.6) (for the case n − 1).

For the third statement, to prove that Rα is injective on the subgroup (8.1), suppose
not and let N be the minimum value of n that occurs in the putative counterexample.
Then look modulo FN .5. Since then all terms where n > N then can be ignored, this
contradicts the first part of the theorem.

For the final statement of the theorem, suppose Rα(J ) = R′
β(J

′′). Thus

Rα(J )# − R′
β(J

′′) ∈ Fn.5.

We may assume that J, J ′′ lie in the subgroup generated by Jn−1 for some n ≥ 1.
As in the proof of the first part of the theorem, we may assume that some knot
R1(K 1,1) occurs non-trivially as a summand of J . Recall that Ri = Ri,n−1

αn−1
1

◦· · ·◦ Ri,1
αi

1
,

a composition of n − 1 robust doubling operators, so R1 = R1,n−1 · · · ◦ · · · ◦ R1,1.
Let p1(t) be the Alexander polynomial of Rα (i.e. of R), and let (p2(t), . . . , pn(t))
denote the sequence of orders of the Alexander modules of (R1,n−1, . . . , R1,1). Let
P = (p1(t), p2(t), . . . , pn(t)). Let (q2, . . . , qn) be the sequence of Alexander poly-
nomials of the operators involved in some constituent knot of J ′′. Since the Alexander
polynomial, q1, of R′ is coprime to p1(t), the sequence (q1, . . . , qn) is strongly coprime
to P . Thus

−R′
β(J

′′) ∈ FP
n+1

by (a slight generalization of) Theorem 6.2, so we conclude

Rα(J ) ∈ FP
n.5.

This implies that J = 0 by the first part of the theorem. It follows also then that
J ′′ = 0. ��

9 Another application: Cochran–Orr–Teichner knots are distinct
from Cochran–Harvey–Leidy knots

In this section we show that the knots we have been discussing in this paper are not
sufficient to generate C. In fact, we show that almost none of the types of knots consid-
ered in the early papers of Cochran–Orr–Teichner, Cochran–Teichner, Kim and Friedl
[17–20,36] are even concordant to any of the knots we have considered in this paper
(the exceptions being the types of knots generating F1/F1.5 which are common to
both and were first considered by Casson–Gordon, Gilmer, Litherland and Living-
ston). On a related topic, we remark that S. Kim and T. Kim have announced a proof
that the COT knot given in from [18, Section 6]) is not concordant to any genus one
knot. The class of CHL knots is not restricted to genus one knots.

A COT knot (at level n) is one that is obtained from a fixed slice knot R (with the
degree of its Alexander polynomial at least 4) by infecting along a collection of circles
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{α1, . . . , αk} lying inπ1(S3− R)(n) using Arf invariant zero knots {K1, . . . , Kk}. Thus

J = R{α1,...,αk }(K1, . . . , Kk). (9.1)

An application of Proposition 2.7 recovers the (previously known) fact that each such
knot J is necessarily an element of Fn [19, Prop. 3.1], [17, Prop. 5.11]. In order to
prove non-triviality up to concordance one also assumes that each ρ0(Ki ), the aver-
age classical signature, is greater than a fixed positive constant (the Cheeger–Gromov
constant of MR) and that the {αi } are carefully chosen to satisfy [17, Theorem 5.13]
(see also [20, Theorem 4.3]). Under these conditions, it was shown in [17, Theorem
5.14] (improving on [20, Theorem 4.2]) that J /∈ Fn.5. These were the examples used
to prove that Fn/Fn.5 has positive rank for n > 2.

We claim that COT knots are even more robust than claimed by previous authors,
for in fact:

Proposition 9.1 If J ∈ Fn is a COT knot (at level n) then

J /∈ Fcot
n.5 .

where the latter is with respect to the COT series (at level n+1) as given in Example 3.5.

The proof is postponed. By contrast a CHL knot J (at level n) is defined to be one
obtained as the result of applying n iterated doubling operators to a knot K ∈ F0,

J = Rn
αn

◦ · · · ◦ R1
α1
(K ).

Here, as usual, the Ri are slice knots and the αi are unknotted circles in S3 − Ri that
have zero linking number with Ri . Such knots J are known to be (n)-solvable (for
example apply Proposition 2.7). As we have seen, certain conditions must be imposed
on {Ri , αi , K } to ensure that J /∈ Fn.5 (for example see Theorem 7.5), but these are
not relevant to our present discussion, for we assert that in any case:

Proposition 9.2 If J is concordant to a CHL knot at level n for some n > 1 then

J ∈ Fcot
n.5 .

Corollary 9.3 For n > 1 no COT knot is concordant to any CHL knot.

Corollary 9.4 For n ≥ 2 the cokernel of any embedding from Eq. (7.6)

⊕

Pn

Z
∞ ⊂ Fn

Fn.5

is infinite.
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Proof of Proposition 9.1 Suppose J is a COT knot and suppose J ∈ Fcot
n.5 . Then MJ

bounds a 4-manifold W as in Definition 2.3. We shall arrive at a contradiction. Letting
G = π1(W ) and

φ : π1(MJ )
j∗→ G → G/G(n+1)

cot ,

we can apply Theorem 5.2 to conclude that

ρ(MJ , φ) = 0.

But it follows from the additivity results of [19, Prop. 3.2], [17, Lemma 5.12] that

ρ(MJ , φ) = ρ(MR, φR)+
k∑

i=1

εiρ0(Ki )

where εi = 0 or 1 according as φ(αi ) = e or not. If any εi = 1, this is clearly a con-
tradiction since, by choice, every ρ0(Ki ) > |ρ(MR, φR)|. Since W is an (n)-solution,
by [17, Theorem 5.13], by choice, for at least one i , j∗(αi ) /∈ G(n+1)

r . But in fact, the
proof proves more. It shows the stronger fact that

j∗(αi ) /∈ G(n+1)
cot ,

which implies φ(αi ) �= e and so finishes our proof by contradiction. That the proof
shows the stronger fact is seen as follows. One first observes that

G(n)
r

[G(n)
r ,G(n)

r ]
∼= H1(W ; Z[G/G(n)

r ]),

so

G(n)
r

[G(n)
r ,G(n)

r ] S−1
n,cot

∼= H1(W ; Z[G/G(n)
r ]S−1

n,cot ).

Now observe that, by definition, G(n+1)
cot is the kernel of the map in Eq. (3.3), so

G(n)
r /G(n+1)

cot embeds in the codomain of the map in Eq. (3.3). Combining these two
facts we have that

G(n)
r /G(n+1)

cot ↪→ H1(W ; Z[G/G(n)
r ]S−1

n,cot ).

The ring Z[G/G(n)
r ]S−1

n,cot is the twisted Laurent polynomial ring and (noncommuta-
tive) PID Kn[t, t−1] that was used by Cochran–Orr–Teichner and others. Therefore
we see that to establish that j∗(αi ) /∈ G(n+1)

cot it is sufficient (and necessary) to show
that j∗(αi ) �= 0 in H1(W ; Kn[t, t−1]). But in fact this is precisely what was shown
by Cochran–Kim in the proof of their Theorem 5.13 (see [17, Theorems 3.8, 6.4 and
p. 1440]). Thus we have a contradiction. ��
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Proof of Proposition 9.2 Suppose J ∈ Fn is concordant to the CHL knot K = Rn
αn

◦ · · · ◦ R1
α1
(K0) for K0 ∈ F0 for some n > 1. Then MK bounds the special

4-manifold Z as constructed in the first paragraph of the proof of Theorem 6.2. Let
K1 = R1

α1
(K0), . . . , Ki = Ri

α1
(Ki−1) and Kn = K .

Since J is concordant to K , MJ is homology cobordant to MK via a 4-manifold
C . Let W = Z ∪ C so that ∂W = MJ . We claim that J ∈ Fcot

n+1 via W , and hence
J ∈ Fcot

n.5 . The proof of this fact is very similar to the proof of Proposition 2.7 and to
the proof of Theorem 6.2.

First, as in those proofs, a Mayer–Vietoris sequence implies that H2(W ) ∼= H2(V )
where K0 ∈ F0 via V and π1(V ) ∼= Z. Thus H2(V ) has a basis of connected compact
oriented surfaces, {L j , D j |1 ≤ j ≤ ri , satisfying the conditions of Definition 2.3. We
claim that

π1(V ) ⊂ π1(W )
(n+1)
cot . (9.2)

Assuming this for the moment it then would follow from Proposition 2.2 that

π1(L j ) ⊂ π1(V ) ⊂ π1(W )
(n+1)
cot ,

and similarly for π1(D j ). This would then complete the verification that J ∈ F (n+1)
cot

via W .
In the rest of the proof we establish claim (9.2). Since μ0 generates π1(V ), we

need only show that μ0 ∈ π1(W )
(n+1)
cot . Let G = π1(W ). First we show

μ0 ∈ G(n) ≡ G(n)
cot .

This was already established in Lemma 6.3. Let μ1 denote the meridian of K1 in
π1(MK1). Then Lemma 6.3 also shows that μ1 ∈ G(n−1). Now we seek to show
that μ0 ∈ G(n+1)

cot . From Eq. 3.3, we see that we need to establish that μ0 represents
Sn,cot -torsion in the module

G(n)
r

[G(n)
r ,G(n)

r ]

where Sn,cot = Z[G(1)/G(n)
r ] − {0}. Since μ0 is identified to α1 ⊂ MK1 , it suffices to

show that α1 represents Sn,cot -torsion. Let �(t) be the Alexander polynomial of K1
(which is the same as the Alexander polynomial of R1). Then �(t) annihilates α1 in
the Alexander module of K1. This can be interpreted in term of the fundamental group
of MK1 as follows [48, Section 7D]. If �(t) = ∑

mi ti then we have

∏
μ−i

1 α
mi
1 μi

1 ∈ π1(MK1)
(2) ⊂ [G(n)

r ,G(n)
r ]
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since we have shown above that π1(MK1) = 〈μ1〉 ⊂ G(n−1) ⊂ G(n−1)
r . Therefore

�(μ1) annihilates α1 in the module

G(n)
r

[G(n)
r ,G(n)

r ] .

But sinceμ1 ∈ G(n−1) and n ≥ 2,μ1 ∈ G(1). Thus�(μ1) ∈ Z[G(1)/G(n)
r ]. Moreover

�(μ1) �= 0 since�(1) = ±1 (� is the Alexander polynomial of a knot in S3). Hence
�(μ1) ∈ Sn,cot .

This concludes the verification of (9.2). ��
Acknowledgments We are grateful to Brendan Hassett for very enlightening conversations about some
of the algebra in Sect. 4.
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