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Abstract

We investigate the behavior of the higher-order degrees, δ̄n , of a finitely presented
group G. These δ̄n are functions from H1(G;Z) to Z whose values are the degrees
certain higher-order Alexander polynomials. We show that if def(G) � 1 or G is the
fundamental group of a compact, orientable 3-manifold then δ̄n is a monotonically
increasing function of n for n � 1. This is false for general groups. As a consequence,
we show that if a 4-manifold of the form X × S1 admits a symplectic structure then
X “looks algebraically like” a 3-manifold that fibers over S1, supporting a positive
answer to a question of Taubes. This generalizes a theorem of S. Vidussi and is an
improvement on previous results of the author. We also find new conditions on a
3-manifoldX that will guarantee that the Thurston norm of f �(ψ), for ψ ∈ H1(X;Z)
and f :Y → X a surjective map on π1, will be at least as large the Thurston norm of
ψ. When X and Y are knot complements, this gives a partial answer to a question
of J. Simon.
More generally, we define Γ-degrees, δ̄Γ, corresponding to a surjective map G � Γ

for which Γ is poly-torsion-free-abelian. Under certain conditions, we show they
satisfy a monotonicity condition if one varies the group Γ. As a result, we show
that these generalized degrees give obstructions to the deficiency of a group being
positive and obstructions to a finitely presented group being the fundamental group
of a compact, orientable 3-manifold.

0. Introduction

In [Ha1], we defined some new invariants δ̄n for a finite CW-complex X. These
invariants depend only on the fundamental group ofX and measure the “size” of the
successive quotients of the rational derived series of π1(X). Given X and a cohomo-
logy class ψ ∈H1(X), δ̄n (ψ) is defined to be the degree of a “higher-order Alexander
polynomial”. Although defined algebraically, these degrees have many topological
applications in the case that X is a 3-manifold. In this case, we showed that the δ̄n

give new estimates for the Thurston norm of a 3-manifold generalizing a theorem
of C. McMullen [McM]. Recall that the Thurston norm of a class ψ ∈ H1(X;Z),
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432 Shelly L. Harvey

||ψ||T , is defined to be the minimum negative euler characteristic of all (possibly
disconnected) surfaces F whose homology class [F ]∈H2(X, ∂X;Z) is Poincaré dual
to ψ and such that each component of F is non-positively curved. The δ̄n also give
new algebraic obstructions to a 3-manifold fibering over S1, to a 4-manifold of the
form X × S1 admitting a symplectic structure, and to a 3-manifold being Seifert
fibered. They were also shown to have applications to minimal ropelength and gen-
era of knots and links in S3. Related work has been done by T. Cochran, K. Orr, P.
Teichner, for knots and knot concordance in [Co] and [COT]. Recently, V. Turaev
[T] has generalized some of the results in [Ha1].
Since δ̄n only depends on the fundamental group, we can consider δ̄n as an invariant

of a general group G, δ̄n :H1(G;Z) → Z. In this paper, we continue to investigate
the special behavior of the δ̄n when G is the fundamental group of a 3-manifold
(with empty or toroidal boundary) or a group with deficiency at least 1. The results
give new algebraic information about the topology of a symplectic 4-manifold of the
form X × S1. They give obstructions to a finitely presented group having positive
deficiency or being the fundamental group of a compact, orientable 3-manifold (with
or without boundary). They also give new information about the behavior of the
Thurston norm under a map between 3-manifolds which is surjective on π1. We state
some of our main theorems and their applications below.
In [Ha1], we constructed examples of 3-manifolds for which δ̄n is a strictly in-

creasing function of n for n � 0. Moreover, it was conjectured that the δ̄n are always
a monotonically increasing function of n for n � 1. We show that this conjecture is
true. This implies that the δ̄n always give estimates for the Thurston norm that are
at least as good as (and sometimes better than) McMullen’s estimate given by the
Alexander norm. By δ̄n � δ̄n+1 (respectively δ̄n = 0) we mean that δ̄n (ψ) � δ̄n+1(ψ)
(respectively δ̄n (ψ) = 0) for all ψ ∈ H1(X).

Corollary 2·10. Let X be a closed, orientable, connected 3-manifold. If β1(X) � 2
then

δ̄0 � δ̄1 � · · · � δ̄n � · · · .

If β1(X) = 1 and ψ is a generator of H1(X) then

δ̄0(ψ)− 2 � δ̄1(ψ) � · · · � δ̄n (ψ) � · · · .

As a consequence of Corollary 2·10, we show (in Theorem 3·8) that if 4-manifold
of the form X × S1 admits a symplectic structure then X “looks algebraically like”
a 3-manifold which fibers over S1, thus further supporting a conjecture of Taubes.
The proof of Theorem 3·8 uses a theorem of Vidussi [Vi], who proves this theorem in
the case n = 0.

Theorem 3·8. Let X be an closed, irreducible 3-manifold such that X × S1 admits a
symplectic structure. If β1(X) � 2 there exists a ψ ∈ H1(X;Z) such that

δ̄0(ψ) = δ̄1(ψ) = · · · = δ̄n (ψ) = · · · = ‖ψ‖T .

If β1(X) = 1 then for any generator ψ of H1(X;Z),

δ̄0(ψ)− 2 = δ̄1(ψ) = · · · = δ̄n (ψ) = · · · = ‖ψ‖T .

More generally, we define δ̄Γ(ψ) for any groupG and any “admissible pair” (φΓ:G �
Γ, ψ: G � Z) of G. When G is a finitely presented group with def(G) � 1, we show
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Monotonicity of the degrees 433

that the δ̄n satisfy a monotonicity condition. We also prove a similar theorem when
G is the fundamental group of a closed, orientable 3-manifold (see Theorem 2·9).

Theorem 2·2. Let G be a finitely presented group with def(G) � 1 and (φΛ , φΓ , ψ) be
an admissible triple for G. If (φΛ , φΓ , ψ) is not initial then

δ̄Λ(ψ) � δ̄Γ(ψ) (1)

otherwise

δ̄Λ(ψ) � δ̄Γ(ψ)− 1. (2)

As a consequence of the monotonicity theorems, we see that the δ̄Γ give obstruc-
tions to the deficiency of a group being positive or being the fundamental group of
a compact, orientable 3-manifold. These obstructions are non-trivial even when the
groups Γ and Λ are abelian. For example, we can easily recover the (known) result
that Z

m cannot be the fundamental group of a compact 3-manifold whenm � 4 (see
below, or Example 3·2 for more details).

Proposition 3·1. Let G be a finitely presented group and (φΛ , φΓ , ψ) be an admissible
triple for G.
(i) Suppose (φΛ , φΓ , ψ) is not initial. If δ̄Λ(ψ) < δ̄Γ(ψ) then def(G) � 0 and G cannot
be the fundamental group of a compact, orientable 3-manifold (with or without
boundary).

(ii) Suppose (φΛ , φΓ , ψ) is initial. If δ̄Λ(ψ) < δ̄Γ(ψ)−1 then def(G) � 0 and G cannot
be the fundamental group of a compact, orientable 3-manifold with at least one
boundary component which is not a 2-sphere. In addition, if δ̄Λ(ψ) < δ̄Γ(ψ) − 2
then G cannot be the fundamental group of a compact, orientable 3-manifold (with
or without boundary).

Let us consider the simplest case when Λ is the abelianization (modulo torsion) of
G and Γ = Z. In this case, δ̄Z(ψ) is equal to the rank of H1((XG )ψ ;Z) as an abelian
group where (XG )ψ is the infinite cyclic cover of XG , a finite CW-complex with
π1(XG ) = G, corresponding to ψ (as long as this number is finite). Moreover, δ̄Λ(ψ)
is equal the Alexander norm of ψ which depends only on ψ and the multivariable
Alexander polynomial of G. For example, the Alexander polynomial of Z

m is 1 so
δ̄Zm (ψ) = 0 for any ψ. Moreover, the first homology of any infinite cyclic cover of the
m-torus is Z

m−1 so δ̄Z(ψ) = m− 1. Thus, as mentioned above, we see that Z
m cannot

be the fundamental group of a compact 3-manifold.
Recall that the ith-order degree of a group δ̄i(ψ) is a specific example of one

of the δ̄Γ(ψ). We give examples of finite 2-complexes Xn,g with β1(Xn,g ) = 1 for
n, g � 1 such that the ith-order degrees for 0 � i � n − 1 of Xn,g are “large” but
the nth-order degree is 0. Thus the fundamental group of these spaces cannot have
positive deficiency nor can they be the fundamental group of a compact, orientable
3-manifold (see Proposition 2·5 and Example 3·4).
Theorem 2·9 also has applications to the study of the behavior of the genus of a

knot under a surjective map on π1. The following question was asked by J. Simon
(see R. Kirby’s Problem List [Ki, question 1·12(b)]).

Question 1·12(b) of [Ki] (J. Simon). If J and K are knots in S3 and f : S3 \ L →
S3 \ K is surjective on π1, is g(L) � g(K)?
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434 Shelly L. Harvey

The answer to the above question is known to be “yes” when δ̄0(K) = 2g(K). We
strengthen this result to the case when δ̄n (K) = 2g(K)− 1.

Corollary 3·12. Suppose J and K are knots in S3 such that there exists a surjective
homomorphism ρ:π1(S3 \L) � π1(S3 \K). If δ̄0(K) = 2g(K) or δ̄n (K) = 2g(K)− 1 for
some n � 1 then g(L) � g(K).

We also prove this is the case if we replace the genus of a knot by the Thurston
norm. The following corollary is a generalization of the result due to Gabai [Ga]
that a degree one map f :X → Y between three manifolds gives the inequality
||f �(ψ)||T � ||ψ||T for all ψ ∈ H1(Y ;Z). For simplicity, we state only the case when
β1(Y ) � 2.

Corollary 3·11. Suppose there exists an epimorphism ρ:π1(X) � π1(Y ), where X
and Y are compact, orientable 3-manifolds, with toroidal or empty boundaries, such that
β1(X) = β1(Y ) � 2 and r0(X) = 0. Let ψ ∈ H1(π1(Y );Z). If δ̄n (ψ) = ||ψ||T for some
n � 0 then

||ρ�(ψ)||T � ||ψ||T .

1. Definitions

We will define the higher-order degrees δ̄Γ and ranks rΓ of a group G and surjective
homomorphism φΓ : G � Γ. This definition will agree with the definition of δ̄n given
for a CW-complexX (as defined in section 3 of [Ha1]) whenG = π1(X), Γ = G/G(n+1)

r

and φΓ = φn :G � G/G(n+1)
r is the quotientmap. Formore details see [Ha1, sections 3,

4, 5] and [Co, sections 2, 3, 5].
We recall the definition of a poly-torsion-free-abelian group.

Definition 1·1. A group Γ is poly-torsion-free-abelian (PTFA) if it admits a normal
series {1} = G0 � G1 � · · · � Gn = Γ such that each of the factorsGi+1/Gi is torsion-
free abelian.

Remark 1·2. Recall that if A � G is torsion-free-abelian and G/A is PTFA then
G is PTFA. Any PTFA group is torsion-free and solvable (the converse is not true).
Also, any subgroup of a PTFA group is a PTFA group [Pa, lemma 2·4, p. 421].

Some examples of interesting series associated to a group G are the rational lower
central series ofG (see Stallings [Sta]), the rational lower central series of the rational
commutator subgroup of G, the rational derived series G(n )

r of G (defined below), and
the torsion-free derived series G(n )

H of G (see [CH]). In this paper, our examples
and applications will use the rational derived series of a group (defined below). We
point out that the torsion-free derived series is very interesting since it gives new
concordance invariants of links in S3 (see [CH] or [Ha3]). For any of the subgroups
N in the above mentioned series,G/N is a PTFA group. In particular, for each n � 0,
G/G(n+1)

r is PTFA by Corollary 3·6 of [Ha1]. We recall the definition of G(n )
r .

Definition 1·3. Let G be a group and G(0)
r = G. For n � 1 define

G(n )
r =

{
g ∈ G(n−1)

r | gk ∈
[
G(n−1)

r , G(n−1)
r

]
for some k ∈ Z − {0}

}
to be the nth term of the rational derived series of G.
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R. Strebel showed that if G is the fundamental group of a (classical) knot exterior

then the quotients of successive terms of the derived series are torsion-free abelian
[Str]. Hence for knot exteriors we have G(i)

r = G(i). This is also well known to be true
for free groups. Since any non-compact surface has free fundamental group, this also
holds for all orientable surface groups.
We make some remarks about PTFA groups. Recall that if Γ is PTFA then ZΓ is

an Ore domain and hence ZΓ embeds in it right ring of quotients KΓ�ZΓ(ZΓ−{0})−1
which is a skew field. More generally, if S ⊆ R is a right divisor set of a ring R then
the right quotient ring RS−1 exists ([Pa, p. 146] or [Ste, p. 52]). By RS−1 we mean a
ring containing R with the property that:

(1) every element of S has an inverse in RS−1;
(2) every element of RS−1 is of the form rs−1 with r ∈ R, s ∈ S.

If R is an Ore domain and S is a right divisor set then RS−1 is flat as a left R-module
[Ste, proposition II·3·5]. In particular, KΓ is a flat left ZΓ-module. Moreover, every
finitely generated right module over a skew field is free and such modules have a well
defined rank, rankKΓ , which is additive on short exact sequences [Co1, p. 48]. Thus, if
C is a non-negative finite chain complex of finitely generated free right ZΓ-modules
then the Euler characteristic χ(C) =

∑∞
i=0(−1)i rankCi is defined and is equal to∑∞

i=0(−1)i rankKΓ Hi(C;KΓ). In this paper, we will repeatedly use this fact about the
Euler characteristic.
Let ψ : G � Z be a surjective homomorphism. Note that we will always be consid-

ering Z as the multiplicative group Z = 〈t〉 generated by t. We wish to define δ̄Γ(ψ)
as an non-negative integer. However, in order to do this, we need some compatibility
conditions on Γ and ψ.

Definition 1·4. Let G be a group, φΓ : G � Γ, and ψ : G � Z where Γ is a PTFA
group. We say that (φΓ , ψ) is an admissible pair for G if there exists a surjection
αΓ, Z

: Γ � Z such that ψ = αΓ, Z
◦φΓ . If αΓ, Z

is an isomorphism then we say that (φΓ , ψ)
is initial.

Let (φΓ , ψ) be an admissible pair for G. We define Γ′� ker(αΓ, Z
). It is clear that

(φΓ , ψ) is initial if and only if Γ
′ = 1. Since Γ is PTFA by Remark 1·2, Γ′ is PTFA.

Hence Γ′ embeds in its right ring of quotients which we call KΓ. Moreover, ZΓ′ −{0}
is known to be a right divisor set of ZΓ [Pa, p. 609] hence we can define the right
quotient ring RΓ�ZΓ(ZΓ′−{0})−1. After choosing a splitting ξ : Z → Γ, we see that
any element of RΓ can be written uniquely as

∑
tni ki where t = ξ(1) and ki ∈ KΓ.

In this way, one sees that RΓ is isomorphic to the skew polynomial ring KΓ[t±1] (see
the proof of proposition 4·5 of [Ha1] for more details). Moreover, the embedding
gψ : ZΓ′ → KΓ extends to this isomorphism RΓ → KΓ[t±1] (here we are identifying
KΓ and t0KΓ).
The abelian group (GΓ)ab �kerφΓ /[kerφΓ ,kerφΓ] is a right ZΓ-module via conjug-

ation,

[g]γ = [γ−1gγ]

for γ ∈ Γ and g ∈ kerφΓ . Moreover, (GΓ)ab is a ZΓ′-module via the inclusion ZΓ′ ↪→
ZΓ. Thus, (GΓ)ab⊗ZΓKΓ and (GΓ)ab⊗ZΓ′ KΓ are rightKΓ andKΓ-modules respectively.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004105009035
Downloaded from https://www.cambridge.org/core. Rice University, on 03 Jan 2018 at 00:25:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004105009035
https://www.cambridge.org/core


436 Shelly L. Harvey

Definition 1·5. Let G be a group and φΓ : G � Γ a coefficient system with Γ a
PTFA group . We define the Γ-rank of G to be

rΓ(G) = rankKΓ

(
kerφΓ

[kerφΓ ,kerφΓ]
⊗ZΓ KΓ

)
.

For a general groupG and coefficient system φΓ , this rankmay be infinite. However,
if G is finitely generated and φΓ is non-zero then by Proposition 2·11 of [COT],
rΓ(G)�β1(G)−1 and hence is finite. In the case that φΓ is the zero map, rΓ(G) = β1(G).

Definition 1·6. Let G be a finitely generated group and (φΓ , ψ) an admissible pair
for G. We define the Γ-degree of ψ to be

δ̄Γ(ψ) = rankKΓ

(
kerφΓ

[kerφΓ ,kerφΓ]
⊗ZΓ′ KΓ

)

if rΓ(G) = 0 and δ̄Γ(ψ) = 0 otherwise.

We remark that (GΓ)ab ⊗ZΓ′ KΓ is merely (GΓ)ab ⊗ZΓ KΓ[t±1] viewed as a KΓ-
module. Since G is a finitely generated group, (GΓ)ab ⊗ZΓ KΓ[t±1] is a finitely gener-
ated KΓ[t±1]-module. Moreover, since KΓ[t±1] is a (noncommutative left and right)
principal ideal domain, [Co2, 2·1·1, p. 49], the latter is isomorphic to

⊕l
i=1KΓ[t±1]/〈pi(t)〉 ⊕ (KΓ[t±1])rΓ (G )

[Ja, theorem 16, p. 43]. Thus, (GΓ)ab ⊗ZΓ′ KΓ is a finitely generated KΓ-module if and
only if rΓ(G) = 0. In particular, if rΓ(G) = 0 then δ̄Γ(ψ) is the sum of the degrees of
the pi(t). Therefore, δ̄Γ(ψ) as defined above is always finite.
Let us consider the case when Γ = Z

m . Let X be a CW-complex with π1(X) = G
and XφΓ be the regular Z

m -cover of X corresponding to φΓ . Consider an admissible
pair (φZm, ψ) for G. This is one such that ψ = ψ′ ◦ φΓ where ψ′ : Z

m � Z. In this
case, H1(XφΓ ;Z) = kerφΓ/ [kerφΓ ,kerφΓ] is a module over the Laurent polynomial
ring with m variables, Z[Zm ]. Moreover, H1(XφΓ ;Z) can be considered as a module
over the Laurent polynomial ring with m − 1 variables ZΓ′ = Z[Zm−1]. Note that
the m − 1 variables in Z[Zm−1] correspond to a choice of basis elements of Γ′ =
ker(αZm ,Z : Z

m � Z). Therefore, as long as the rank ofH1(XφΓ ;Z) as a Z[Zm ]-module
is 0, δ̄Zm (ψ) is equal to the rank of H1(XφΓ ;Z) as a Z[Zm−1]-module. In particular,
whenm = 1, δ̄Z(ψ) is equal the rank ofH1(Xψ ;Z) as an abelian group whereXψ is the
infinite cover corresponding to ψ as long as this rank is finite (otherwise δ̄Z(ψ) = 0).
When Z

m is the abelianization of G, δ̄Zm (ψ) = δ̄0(ψ) (see below for the definition of
δ̄0) is equal to the Alexander norm (see [McM] for the definition of the Alexander
norm) of ψ by [Ha1, proposition 5·12].
We now define the higher-order degrees and ranks associated to a groupG. For each

n � 0, let Γn = G/G(n+1)
r where G(n+1)

r is the (n + 1)st-term of the rational derived
series of G as defined in Definition 1·3. We define the nth-order rank of X to be

rn (X) = rΓn
(X).

Next, we remark that if ψ ∈ H1(G;Z) � Hom(G;Z), then ψ(G(n+1)
r ) = 1. Hence

for each primitive ψ ∈ H1(G;Z) the pair (φΓn
, ψ) is an admissible pair for G. For

primitive ψ, we define the nth-order degree of ψ to be

δ̄n (ψ) = δ̄Γn
(ψ).
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For non-primitive ψ, there is a primitive cohomology class ψ′ ∈ H1(X;Z) such that
ψ = mψ′. Define δ̄n (ψ) = mδ̄n (ψ′).
Thus, for each group G and n � 0 we have defined a function δ̄n : H1(G;Z) → Z

which is “linear on rays through the origin”. We put a partial ordering on these
functions by δ̄i � δ̄j if δ̄i(ψ) � δ̄j (ψ) for all ψ ∈ H1(G;Z). Also, we say that δ̄i = 0
provided δ̄i(ψ) = 0 for all ψ ∈ H1(G;Z).
Suppose f : E � G is a surjective homomorphism and (φΓ , ψ) is an admissible pair

for G. Then there is an induced admissible pair (φΓ ◦ f, ψ ◦ f ) for E. In particular, we
can speak δ̄Y

Γ E(ψ ◦ f ). When we have this situation, unless otherwise noted, we will
use this admissible pair induced by G. When there is no confusion, we will suppress
the f and just write (φΓ , ψ) when we mean (φΓ ◦ f, ψ ◦ f ) or ψ when we mean ψ ◦ f .
In this paper, we will often use the notation rΓ(X) and δ̄X

Γ (ψ) for X a CW-complex
and ψ an element of H1(X;Z) � H1(π1(X);Z). By this, we mean rΓ(π1(X)) and
δ̄π1(X )
Γ (ψ) for an admissible pair (φΓ , ψ) for π1(X). These are equivalent to the homo-
logical definitions given in [Ha1]. That is, if (φΓ , ψ) is an admissible pair for π1(X)
then H1(X;KΓ[t±1]) and H1(X;KΓ) are right KΓ and KΓ-modules respectively and
since KΓ and KΓ[t±1] are flat left ZΓ-modules [Ste, proposition II·3·5], we see that

rΓ(X) = rankKΓ H1(X;KΓ)

and

δ̄Γ(ψ) = rankKΓ H1(X;KΓ[t±1])

if rΓ(X) = 0 and δ̄Γ(ψ) = 0 otherwise.

2. Main results

We seek to study the behavior of δ̄n (ψ) as n increases. More generally, we would like
to compare δ̄Γ as we vary the group Γ. We show that the δ̄Γ satisfy a monotonicity
condition provided the groups satisfy a compatibility condition. We describe this
condition below.

Definition 2·1. Let G be a group, φΛ :G � Λ, φΓ :G � Γ, and ψ:G � Z where Λ
and Γ are PTFA groups. We say that (φΛ , φΓ , ψ) is an admissible triple for G if there
exist surjections αΛ,Γ : Λ � Γ and αΓ, Z

: Γ � Z such that φΓ = αΛ,Γ ◦ φΛ , ψ = αΓ, Z
◦ φΓ ,

and αΛ,Γ is not an isomorphism. If αΓ, Z
is an isomorphism then we say that (φΛ , φΓ , ψ)

is initial.

Note that if (φΛ , φΓ , ψ) an admissible triple then (φΛ , ψ) and (φΓ , ψ) are both admiss-
ible pairs. Hence, in this case, we can define both δ̄Λ(ψ) and δ̄Γ(ψ). We also remark
that (φΛ , φΓ , ψ) is initial if and only if (φΓ , ψ) is initial. Moreover, (φΛ , ψ) is never initial
since Λ � Γ is not an isomorphism. We will show that δ̄Λ(ψ) � δ̄Γ(ψ) as long as the
triple is not initial. We point out that even if αΛ,Γ is an isomorphism, we can define
both the Λ- and Γ-degrees and in this case δΓ(ψ) = δΛ(ψ)!
We now proceed to state and prove the main theorems.

Theorem 2·2. Let G be a finitely presented group with def(G) � 1 and (φΛ , φΓ , ψ) be
an admissible triple for G. If (φΛ , φΓ , ψ) is not initial then

δ̄Λ(ψ) � δ̄Γ(ψ) (3)
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438 Shelly L. Harvey

otherwise

δ̄Λ(ψ) � δ̄Γ(ψ)− 1. (4)

Before proving Theorem 2·2, we will state a Corollary of the theorem and make
some remarks about the deficiency hypothesis in the theorem. First, let Γn be the
quotient of G by the (n + 1)st term of the rational derived series as in Defini-
tion 1·3. Recall that for any ψ ∈ H1(G;Z), (φΓn

, ψ) is an admissible pair. Moreover,
(φΓn +1

, φΓn
, ψ) is an admissible triple unless G(n+1)

r = G(n+2)
r which is initial if and only

if β1(G) = 1 and n = 0. Hence by Theorem 2·2 we see that the δ̄n are a nondecreasing
function of n (for n � 1). This behavior was first established for the fundamental
groups of knot complements in S3 by T. Cochran in [Co, theorem 5·4]. Recall that
δ̄n+1 � δ̄n (respectively δ̄n = 0) means that δ̄n+1(ψ) � δ̄n (ψ) (respectively δ̄n (ψ) = 0)
for all ψ ∈ H1(G;Z).

Corollary 2·3. Let G be a finitely presented group with def(G) � 1. If β1(G) � 2
then

δ̄0 � δ̄1 � · · · � δ̄n � · · · .

If β1(G) = 1 andψ is a generator ofH1(G;Z) then δ̄0(ψ)− 1� δ̄1(ψ)� · · · � δ̄n (ψ)� · · · .

Proof. Let ψ be a primitive class in H1(G;Z). We can assume that G(n+1)
r � G(n+2)

r

since if G(n+1)
r = G(n+2)

r then δ̄n+1(ψ) = δ̄n (ψ) (note that in the case β1(G) = 1 and
n = 0, δ̄1(ψ) = δ̄0(ψ) � δ̄0(ψ) − 1 is also satisfied). Therefore T = (φΓn +1

, φΓn
, ψ) is an

admissible triple. As mentioned above, T is initial if and only if β1(G) = 1 and n = 0.
Hence if β1(G) = 1 and n = 0 then by Theorem 2·2, δ̄1(ψ) � δ̄0(ψ) − 1. Otherwise,
δ̄n+1(ψ) � δ̄n (ψ).
If β1(G) � 2 and ψ is not primitive then ψ = mψ′ for some primitive ψ′ andm � 2.

Hence, δ̄n+1(ψ) = mδ̄n+1(ψ′) � mδ̄n (ψ′) = δ̄n (ψ).
We now make some remarks about the condition def(G) � 1. First, if G has

deficiency at least 2 then the results of Theorem 2·2 and Corollary 2·3 hold simply
because all of the degrees are zero.

Remark 2·4. If G is a finitely presented group with def(G) � 2 and (φΓ , ψ) is an
admissible pair for G then rΓ(G) � 1 and hence δ̄Γ(ψ) = 0.

To see this, let XG be a finite, connected 2-complex with one 0-cell x0, m 1-
cells, r 2-cells where m − r � 2 and G = π1(XG, x0). Then H1(XG, x0;KΓ) has a
presentation with m generators and r relations so rankKΓ H1(XG, x0;KΓ) � 2 and
hence rΓ(G) = rΓ(XG ) = rankKΓ H1(XG, x0;KΓ) − 1 � 1 [Ha1, sections 4 and 5].
Therefore, δ̄Γ(ψ) = 0 for all ψ ∈ H1(G;Z).
However, if the deficiency of G is not positive, we can create an infinite number

of examples where the theorem is false! We construct finitely presented groups for
which the degrees are “large” up to (but not including) the nth stage but the degree
at the nth stage is zero! For simplicity, we only describe examples when β1(G) = 1.
However, the reader should notice that the same type of behavior can be seen for
groups with β1(G) � 2 using the same techniques.

Proposition 2·5. For each g � 1 and n � 1 there exist examples of finitely presented
groups Gn,g with def(Gn,g ) � 0 and β1(Gn,g ) = 1 such that δ̄0(ψ) = 2g, δ̄i(ψ) = 2g − 1
for 1 � i � n − 1 and δ̄n (ψ) = 0 whenever ψ is a generator of H1(Gn,g ;Z).
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Monotonicity of the degrees 439
Proof. We will construct these examples by adding relations to the fundamental

group of a fibered knot complement G that kill the generators the G(n+1)/G(n+2) ⊗
Kn . Let G be the fundamental group of a fibered knot K in S3 of genus g � 1
and n � 1. Since K is fibered, G(1) is free, so G(n+1)

r /G(n+2)
r = G(n+1)/G(n+2) and

An = G(n+1)
/

G(n+2) ⊗ZΓ′
n

Kn is a finitely generated free right Kn -module of rank
2g − 1. [Co, proposition 9·1]. Let a1, . . . , a2g−1 be the generators of An . Since Kn

is an Ore domain, we can find kj ∈ Kn such that ajkj ∈ G(n+1)/G(n+2) ⊗ 1. Pick
γ1, . . . , γ2g−1 ∈ G(n+1) such that [γj ] = ajkj and let H = G/〈γ1, . . . , γ2g−1〉 and
η : G � H. Note that since any knot group has deficiency 1, H has a presentation
with m generators and m + 2g − 2 relations. Since γ1, . . . , γ2g−1 ∈ G(n+1), we have an
isomorphism G/G(n+1) � H/H (n+1) � H/H (n+1)

r . Therefore, δ̄H
0 (ψ) = δ̄G

0 (ψ) = 2g and
δ̄H

i (ψ) = δ̄G
i (ψ) = 2g − 1 for 1 � i � n − 1.

SinceG′ � H ′, we haveH ′/H (n+1)�G′/G(n+1) for 0 � i � n henceKn = K
G
n �K

H
n .

Moreover, since G(n+1) � H (n+1), the map G(n+1)/G(n+2)⊗Kn → H (n+1)/H (n+2)⊗Kn is
surjective. But the generators ofAn are sent to zero under thismap, soH (n+1)/H (n+2)⊗
Kn = 0. Finally, H (n+1)

r = H (n+1) so

H (n+1)
r

H (n+2)
r

⊗ Kn �
H (n+1)

H (n+2)
r

⊗ Kn �
(

H (n+1)

H (n+2)

/
{Z-torsion}

)
⊗ Kn = 0

(see lemma 3·5 of [Ha1] for the second isomorphism) hence δ̄n (ψ) = 0.
We will now prove Theorem 2·2.
Proof of Theorem 2·2. If the deficiency of G is at least 2 then by Remark 2·4,

all of the degrees are zero hence the conclusions of the theorem are true. Now we
prove the case when def(G) = 1. We can assume that rΓ(G) = 0, otherwise δ̄Γ(ψ) = 0
and hence the statement of the theorem is true since δ̄Λ(ψ) is always non-negative.
Since G is finitely presented, there is a finite 2-complex X such that G = π1(X) and
χ(X) = 1 − def(G) = 0. Recall that X is obtained from the presentation of G with
deficiency 1 by starting with one 0-cell, attaching a 1-cell for each generator and a
2-cell for each relation in the presentation of G. Since Γ � Z and φΓ is surjective,
Hi(X;KΓ) = 0 for i � 1, 2 [COT, proposition 2·9]. Moreover, χ(X) = 0 implies that
rankKΓ H2(X;KΓ) = rankKΓ H1(X;KΓ) = rΓ(G) = 0 since the Euler characteristic can
be computed using KΓ-coefficients as mentioned in Section 1. Since rΓ(X) = 0, it
follows that rΛ(X) = 0 [Ha2]. Replacing Γ by Λ in the above argument, it follows
that rankKΛ H2(X;KΛ) = 0.
Let Xψ be the infinite cyclic cover of X corresponding to ψ. There is a coefficient

system for Xψ , φ′
Γ
:π1(Xψ ) � Γ′, given by restricting φΓ to π1(Xψ ). Moreover, as

KΓ-modules H1(X;KΓ)� H1(Xψ ;KΓ) so H1(Xψ ;KΓ) is a finitely generated free KΓ-
module of rank δ̄Γ(ψ) (similarly for Λ). Since Γ′ is PTFA (and hence ZΓ′ is an Ore
domain), there exists a wedge of e circles W and a map f :W → Xψ such that

f∗: H1(W ;KΓ) −→ H1(Xψ ;KΓ)

is an isomorphism. Here, the coefficient system on W is given by φ′
Γ
◦ f�. By the

proof of lemma 2·1 in [COT], kerφΓ � kerψ if and only if φ′
Γ
◦ f� is non-trivial.

Moreover, since W is a finite connected 2-complex with H2(W ) = 0, if kerφΓ �kerψ
then H1(W ;KΓ)�K

e−1
Γ [COT, lemma 2·12]; otherwise H1(W ;KΓ)�K

e
Γ.

Up to homotopy we can assume that W is a subcomplex of Xψ by replacing Xψ

with the mapping cylinder of f . Consider the long exact sequence of the pair (Xψ , W )
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440 Shelly L. Harvey

with coefficients in KΓ:

H2(Xψ ;KΓ) −→ H2(Xψ , W ;KΓ) −→ H1(W ;KΓ) −→ H1(Xψ ;KΓ).

Since X has no 3-cells, there is a cell complex, Ci(X;ZΓ), which has no 3-cells.
Therefore, TH2(X;ZΓ), the ZΓ-torsion submodule of H2(X;ZΓ), is zero. Now, the
kernel of the map H2(X;ZΓ)→ H2(X;KΓ) is TH2(X;ZΓ). Moreover, we have shown
that H2(X;KΓ) = 0 hence H2(X;ZΓ) = 0. Thus, H2(Xψ ;KΓ) � H2(X;KΓ[t±1]) �
H2(X;ZΓ) ⊗ZΓ K[t±1] = 0. Since the last arrow in the sequence is an isomorphism,
H2(Xψ , W ;KΓ) = 0. Our goal is to show that H2(Xψ , W ;KΛ) = 0. Then by analyzing
the long exact sequence of the pair (Xψ , W ) with coefficients in KΛ, it will follow that
H1(W ;KΛ)→ H1(Xψ ;KΛ) is a monomorphism. We note that kerφΛ �kerφΓ implies
that rankKΛ H1(W ;KΛ) = e − 1 as above. Thus, if kerφΓ � kerψ then (assuming the
monomorphism above) δ̄Λ(ψ) � e − 1 = δ̄Γ(ψ); otherwise δ̄Λ(ψ) � e − 1 = δ̄Γ(ψ)− 1.
Consider the relative chain complex of (Xψ , W ) with coefficients in ZΓ′:

0 −→ C2(Xψ , W ;ZΓ′)
∂Γ

′
2−−→ C1(Xψ , W ;ZΓ′) −→ .

Since W has no 2-cells, Xψ has no 3-cells. Therefore H2(Xψ , W ;ZΓ′) is ZΓ′-torsion
free, soH2(Xψ , W ;KΓ) = 0 implies thatH2(Xψ , W ;ZΓ′) = 0 and hence ∂Γ

′

2 is injective.
Let A = ker(αΛ,Γ|Λ′ : Λ

′ � Γ′). Since A is a subgroup of a PTFA group, A is PTFA
by Remark 1·2. If M is any right ZΛ′-module then M ⊗ZA Z has the structure of a
right ZΓ′-module given by (∑

σ ⊗ n
)

γ =
∑

σγ ⊗ n

for any γ ∈ Γ′. Moreover, one can check that C�(Xψ , W ;ZΛ′) ⊗ZA Z is isomorphic
to C�(Xψ , W ;ZΓ′) as right ZΓ′-modules. Thus, after making this identification,
∂Λ

′

2 :C2(Xψ , W ;ZΛ′)→ C1(Xψ , W ;ZΛ′) is injective by the following result of Strebel.

Proposition 2·6. ( [Str, p. 305]). SupposeΓ is a PTFA group andR is a commutative
ring. Any map between projective rightRΓ-modules whose image under the functor−⊗RΓ

is injective, is itself injective.

Since KΛ is flat as a ZΛ′-module, H2(Xψ , W ;KΛ) = 0 as desired.

Suppose Λ and Γ are abelian groups and G is the fundamental group of a compact
orientable manifold with toroidal (or empty) boundary. In this case, it can easily be
shown, using the results in [McM] and [Ha1], that the inequalities in Theorem 2·2
(and Theorem 2·9 below) are in fact equalities for all ψ which lie in the cone of an
open face of the Alexander norm ball. We show below that even in this case, there
are ψ for which the inequality in Theorem 2·2 is necessary.

Example 2·7. Let X be the exterior of the Borromean rings in S3 and let G
be the fundamental group of the X. A Wirtinger presentation of G is given by
〈x, y, z | [z, [x, y−1]], [y, [z, x−1]]〉 (see [F, p.10] for a similar presentation). Thus,
there is an epimorphism f :G � 〈y, z〉 by sending x to 1. Let ψ(0,m ,n ):G � Z be
the homomorphism defined by ψ(x) = 1, ψ(y) = tm, ψ(z) = tn where gcd(m, n) = 1.
Since f factors through ψ(0,m ,n ), the rank of H1 of the infinite cyclic cover of X
corresponding to ψ(0,m ,n ) is non-zero (see, for example, [Ha, proposition 2.2]). It
follows that δ̄Z(ψ(0,m ,n )) = 0. However, one can compute the Alexander polynomial

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004105009035
Downloaded from https://www.cambridge.org/core. Rice University, on 03 Jan 2018 at 00:25:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004105009035
https://www.cambridge.org/core


Monotonicity of the degrees 441
of X (from the presentation of G) to be ∆X = (x − 1)(y − 1)(z − 1). Therefore,
δ̄Z3 (ψ(0,m ,n )) = |m| + |n| > 0.

Now we consider the case when G is the fundamental group of a closed 3-manifold.
In this case, the deficiency of G is 0 so Theorem 2·2 does not suffice to prove a
monotonicity result forG. The proof that the degrees satisfy a monotonicity relation
will use Theorem 2·2 for 2-complexes but will also use some additional topology of
the 3-manifold. Before stating the corresponding theorem for closed 3-manifolds, we
introduce an important lemma which will be used in the proof of Theorem 2·9.

Lemma 2·8. Let K be a nullhomologous knot in a 3-manifold X,MK be the 0-surgery
on K, ψ : π1(MK ) � Z be a homomorphism that maps the meridian of K to a nonzero
element of Z, and (φΓ , ψ) be an admissible pair for π1(MK ). If rΓ(MK ) = 0 and (φΓ , ψ)
is not initial then the longitude of K is not 0 in H1(X \ K;KΓ[t±1]).

Proof. Let l ⊂ N (K) be the longitude of K. Here, N (K) is an open neighbourhood
of K in X. Note thatMK = (X \N (K))� e2 � e3 where the attaching circle of e2 is l.
Since X \ N (K) is homotopy equivalent to X \ K we use the latter. Consider the
diagram below.

KΓ[t±1]

H2(X \ K � e2;KΓ[t±1])

∂3

�
π� KΓ[t±1]

∂2� H1(X \ K;KΓ[t±1])

H2(MK ;KΓ[t±1]).

i�

�

The horizontal (respectively vertical) sequence is the long exact sequence of the pair
(X \ K � e2, X \ K) (respectively (MK , X \ K � e2)) and the KΓ[t±1] term in the
sequence is generated by the relative class coming from e2 (respectively e3). We note
that the boundary of the class represented by e2 is the class represented by the long-
itude ofK inH1(X \K;KΓ[t±1]). By analyzing the attaching map of ∂e3, we see that
π ◦ ∂3 is the map which sends 1 to tr − 1 where tr is the image of the meridian of K
under φ. Since r � 0 we see that this map is never surjective since tr − 1 is not a unit
in KΓ[t±1].
Since rΓ(MK ) = 0, by remark 2·8 of [COT] we have H2(MK ;KΓ[t±1])�H1(MK ;

KΓ[t±1])�Ext1
KΓ[t±1](H0(MK ;KΓ[t±1]), KΓ[t±1]). By the proof of proposition 2·9 in

[COT],H0(MK ;KΓ[t±1]) = KΓ[t±1]/(KΓ[t±1] ·I) where I is the augmentation ideal of
Zπ1(MK ) acting via Zπ1(MK ) → ZΓ → KΓ[t±1]. Thus, H0(MK ;KΓ[t±1])� 0 if and
only if (φΓ , ψ) is initial. Thus, if (φΓ , ψ) is not initial, ∂3 is surjective. Suppose [l] = 0
in H1(X \ K;KΓ[t±1]), then π would be surjective, making π ◦ ∂3 surjective which is
a contradiction.
Consider the situation when X = S3 \ K, G = π1(S3 \ K), ψ is the abelianization

map of G, and φΓ : G � Γ = G/G(2) be the quotient map where G(n ) is the nth term
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of the derived series of G. It is known that Γ is a PTFA group [Str]. Let l be the
longitude of K. Since l ∈ G(2), φΓ extends to a map π1(MK ) � G/G(2). We note
that in this case, the pair (φΓ , ψ) is initial if and only if the Alexander polynomial
is 1. The longitude being nonzero in H1(S3 \ K;KΓ[t±1]) implies that l is nonzero in
H1(S3 \ K;ZΓ) = G(2)/G(3). Hence, if the Alexander polynomial of K is not 1 then
l � G(3). This was first proved by Cochran in proposition 12·5 of [Co].
We now state our main monotonicity theorem for closed 3-manifolds.

Theorem 2·9. Let G be the fundamental group of a closed, orientable, connected 3-
manifold and (φΛ , φΓ , ψ) be an admissible triple for G. If (φΛ , φΓ , ψ) is not initial then

δ̄Λ(ψ) � δ̄Γ(ψ) (5)

otherwise

δ̄Λ(ψ) � δ̄Γ(ψ)− 2. (6)

As we saw for finitely presented groups with deficiency 1 (Corollary 2·3), for groups
of closed 3-manifolds, when n � 1, the δ̄n are a nondecreasing function of n.

Corollary 2·10. Let G be the fundamental group of a closed, orientable, connected
3-manifold. If β1(G) � 2 then

δ̄0 � δ̄1 � · · · � δ̄n � · · · .

If β1(G) = 1 andψ is a generator ofH1(G;Z) then δ̄0(ψ)−2 � δ̄1(ψ) � · · · � δ̄n (ψ) � · · · .

Proof of Theorem 2·9. Let X be a closed, orientable, connected 3-manifold with
G = π1(X). We will need the following lemma which is an extension of a lemma of
Lescop [L].

Lemma 2·11. LetX be a closed, connected, orientable 3-manifold and ψ:π1(X) � Z =
〈t〉 be a surjective map. X can be presented as surgery on an framed link, L = �β1(x)

i=1 Li ,
in a rational homology sphere R such that:
(i) the components of L are null-homologous in R;
(ii) the surgery coefficients on Li are all 0;
(iii) lk(Li, Lj ) = 0 for i� j and;
(iv) ψ(µi) = tδ1i when µi is a meridian of Li and δij is the Kronecker delta.

Proof. By lemma 5·1·1 in [L], X can be obtained by surgery on a framed link
L with β1(X) components such that (ii), (iii), and (i) are satisfied. Now we note
that any automorphism of H1(X)/{Z-torsion}�Z

β1(X ) corresponds to a sequence of
handleslides and reordering or reorienting of the components of L. Moreover, since
ψ is a surjective map to Z, there exists an automorphism of H1(X)/{Z-torsion} that
sends the first basis element to t (a generator of Z) and the other basis elements to
t0 = 1. That is, we can do a sequence of handleslides (along with possible reorienting
or reordering) to get a new link L′ for which the meridian of the first component
maps to t and the other meridians map to 1. Since the original surgery coefficients
and linking numbers of L were 0, the same is true for L′. We also note that the
components of L′ are null-homologous in R.
By Lemma 2·11 above,X can be presented as surgery on a framed linkL = �β1(x)

i=1 Li ,
in a rational homology sphere R such that the first component, L1, has surgery
coefficient 0, lk(L1, Li) = 0 for i � 1 and ψ(µ1) = t when µ1 is a meridian of L1. Let l
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be the longitude of L1 and Y ′ be the space obtained by performing 0-surgery in R on
the components L2, . . . , Lk . Let Y = Y ′−N (L1) where N (L1) is a open neighborhood
of L1 in Y ′. Finally, X ′ = Y �l D2 be the space obtained by adding a 2-disk to Y
which identifies ∂D2 with l.
After picking a basepoint in Y (hence in X and X ′), we note that the inclusion

map induces an isomorphism i�: π1(X ′) �−→ π1(X). Thus any coefficient system φΓ

for X induces a coefficient system for X ′. Moreover, if M is any ZΓ-module then
H1(X;M ) � H1(X ′;M ). In particular, rΓ(X) = rΓ(X

′) and δ̄X
Γ (ψ) = δ̄X ′

Γ (ψ) for all
ψ ∈ H1(X) � H1(X ′). Since l is null-homologous in Y , we can identify H1(X ′)
and H1(Y ). We define the coefficient systems and admissible pairs for π1(Y ) by pre-
composing the coefficient systems and admissible pairs for π1(X) with π1(Y )→ π1(X)
induced by the inclusion Y ⊂ X.
We pick the splitting s : Z → Γ which sends t to φΓ(µ1). Now we consider the long

exact sequence of the pair (X ′, Y ):

−→ H2(X ′, Y ;KΓ[t±1])
∂2−→ H1(Y ;KΓ[t±1]) −→ H1(X ′;KΓ[t±1]) −→ 0. (7)

As a KΓ[t±1]-module H2(X ′, Y ;KΓ[t±1])� KΓ[t±1] generated by the relative 2-cell
α. Hence as a KΓ-module, H2(X ′, Y ;KΓ[t±1]) is an infinitely generated free module,
generated by αtk for k ∈ Z. Since the 2-cell is attached along l, we have ∂α = [l]. We
note that l and µ1 live on ∂N (L1), hence [l, µ1] = 1 ∈ π1(Y ). Thus, [l](t − 1) = 0 in
H1(Y ;KΓ[t±1]). Equivalently, [l] = [l]tk for all k hence the image of ∂2 as aKΓ-module
has at most one dimension and is generated by [l].
Using the same argument as in the first paragraph of Theorem 2·2, we can assume

that rΓ(X) = 0 and rankΓ H2(X;KΓ) = 0. Since [l] is t − 1 torsion, the ∂2 map
in the long exact sequence of the pair (X ′, Y ) with coefficients in KΓ is 0. Since
rΓ(X

′) = rΓ(X) = 0, we see that rΓ(Y ) = 0. By the theorem in [Ha2], rΛ(Y ) = 0.
Thus, H1(Y ;KΓ[t±1]) and H1(X ′;KΓ[t±1]) are finitely generated right KΓ-modules of
dimensions δ̄Y

Γ (ψ) and δ̄X ′

Γ (ψ) = δ̄X
Γ (ψ) respectively.

Since rΓ(X) = 0, if (φΓ , ψ) is not initial then [l]� 0 inH1(Y ;KΓ[t±1]) by Lemma 2·8.
Also, we note that if (φΓ , ψ) is initial, then Γ = Z so all of the meridians except ψ1 lift
to the Γ-cover. Moreover, since l is nullhomologous in Y , it bounds a surface F in Y .
F will lift to the Γ-cover which implies that l = 0 in H1(Y ;KΓ[t±1]). Thus, (φΓ , ψ) is
initial if and only if [l] = 0 in H1(Y ;KΓ[t±1]). Recall that (φΛ , ψ) is never initial.
Suppose (φΛ , φΓ , ψ) is not initial. Then (φΓ , ψ) is not initial hence δ̄Y

Γ (ψ) = δ̄X ′

Γ (ψ)+1
(similarly for Γ). Since Y is homotopy equivalent to a 2-complex with χ(Y ) = 0,
δ̄Y
Λ (ψ) � δ̄Y

Γ (ψ) by Theorem 2·2. Therefore

δ̄
X

Λ (ψ) = δ̄
X ′

Λ (ψ) = δ̄
Y

Λ (ψ)− 1 � δ̄
Y

Γ (ψ)− 1 = δ̄
X ′

Γ (ψ) = δ̄
X

Γ (ψ).

Now suppose (φΛ , φΓ , ψ) is initial. Then (φΓ , ψ) is initial so δ̄Y
Γ (ψ) = δ̄X ′

Γ (ψ) but δ̄Y
Λ (ψ) =

δ̄X ′

Λ (ψ) + 1. Since Y is homotopy equivalent to a 2-complex with χ(Y ) = 0, δ̄Y
Λ (ψ) �

δ̄Y
Γ (ψ)− 1 by Theorem 2·2. Therefore

δ̄
X

Λ (ψ) = δ̄
X ′

Λ (ψ) = δ̄
Y

Λ (ψ)− 1 �
(
δ̄

Y

Γ (ψ)− 1
)
− 1 = δ̄

X ′

Γ (ψ)− 2 = δ̄
X

Γ (ψ)− 2.

We point out that there are other higher-order degrees, δn (ψ), for a CW-complex
X defined in terms of the Kn [t±1]-torsion submodule of H1(X;Kn [t±1]) (see [Ha1]).
These are equal to δ̄n (ψ) when rn (X) = 0. It would be very interesting to understand
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444 Shelly L. Harvey

the monotonicity behavior of these δn (ψ). In particular, for n � 1 are the δn (ψ) a
nondecreasing function of n?

3. Applications

3·1. Deficiency of a group and obstructions to a group being the fundamental group of a
3-manifold

One consequence of the theorems in the previous section is that the higher-order
degrees give obstructions to a finitely presented group having positive deficiency or
being the fundamental group of a 3-manifold.

Proposition 3·1. Let G be a finitely presented group and (φΛ , φΓ , ψ) be an admissible
triple for G.
(1) Suppose (φΛ , φΓ , ψ) is not initial. If δ̄Λ(ψ) < δ̄Γ(ψ) then def(G) � 0 and G cannot

be the fundamental group of a compact, orientable 3-manifold (with or without
boundary).

(2) Suppose (φΛ , φΓ , ψ) is initial. If δ̄Λ(ψ) < δ̄Γ(ψ)−1 then def(G) � 0 and G cannot
be the fundamental group of a compact, orientable 3-manifold with at least one
boundary component which is not a 2-sphere. In addition, if δ̄Λ(ψ) < δ̄Γ(ψ) − 2
then G cannot be the fundamental group of a compact, orientable 3-manifold (with
or without boundary).

Proof. First, suppose that def(G) � 1. Then, by Theorem 2·2, δ̄Λ(ψ) � δ̄Γ(ψ) when
(φΛ , φΓ , ψ) is not initial and δ̄Λ(ψ) � δ̄Γ(ψ)− 1 when (φΛ , φΓ , ψ) is initial.
Now, suppose that G is the fundamental group of a closed, orientable, 3-manifold

X. Then, by Theorem 2·9, δ̄Λ(ψ) � δ̄Γ(ψ) when (φΛ , φΓ , ψ) is not initial and δ̄Λ(ψ) �
δ̄Γ(ψ)− 2 when (φΛ , φΓ , ψ) is initial. Finally, suppose G is the fundamental group of a
connected, orientable 3-manifold with boundary. If at least 1 boundary component is
not a 2-sphere then def(G) � 1 in which case the paragraph above applies. Moreover,
if all the boundary components X are 2-spheres then G is the fundamental group of
a closed 3-manifold.

We point out that Proposition 3·1 is sometimes very easy to use computationally
since the groups Λ and Γ can be taken to be finitely generated free abelian groups.
Using Proposition 3·1, one can easily prove the well-known fact that Z

m cannot be
the group of a compact 3-manifold when n � 4.

Example 3·2. Consider the initial triple (idZm , ψ, ψ) for Z
m where ψ : Z

m � Z is
any surjective map. Since ker(ψ) � Z

m−1, we see that δ̄Z(ψ) = m − 1. Moreover,
since ker(idZm ) = 0, we see that δ̄Zm (ψ) = 0. Therefore, if m � 4, 0 = δ̄Zm (ψ) <
δ̄Z(ψ)− 2 = m− 3. Thus, by Proposition 3·1, for m � 4, def(Zm ) � 0 and Z

m cannot
be the fundamental group of any compact, connected, orientable 3-manifold. If Z

m

were the fundamental group of a non-orientable 3-manifold X then the orientable
double cover of X would also have fundamental group Zm . Hence Z

m cannot be the
fundamental group of a compact, connected 3-manifold. Note that when m = 3 we
see that δ̄Zm (ψ) < δ̄Z(ψ) − 1 so Z

3 cannot be the fundamental group of a compact
3-manifold with at least one boundary component which is not a 2-sphere.

If we consider the case when the groups Γ and Λ are quotients of G by the
terms of its rational derived series we have the following immediate corollary to
Proposition 3·1.
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Corollary 3·3. Let G be a finitely presented group.
(1) Suppose β1(G) � 2. If there exists a ψ ∈ H1(G;Z), and m, n ∈ Z such that

n > m � 0 and δ̄n (ψ) < δ̄m (ψ) then def(G) � 0 and G cannot be the fundamental
group of a compact, orientable 3-manifold.

(2) Suppose β1(G) = 1 and ψ in a generator of H1(G;Z).
(a) If there exists m, n ∈ Z such that n > m � 1 and δ̄n (ψ) < δ̄m (ψ) then

def(G) � 0 and G cannot be the fundamental group of a compact, orientable
3-manifold.

(b) If there exists an n ∈ Z such that n � 1 and δ̄n (ψ) < δ̄0(ψ)−1 then def(G) � 0
and G cannot be the fundamental group of a compact, orientable 3-manifold
with at least one boundary component that is not a 2-sphere. In addition, if
δ̄n < δ̄0 − 2 then G cannot be the fundamental group of a compact, orientable
3-manifold.

Example 3·4. We saw that the examples Gn,g in Proposition 2·5 satisfy δ̄1(ψ) <
δ̄0(ψ) − 1 when n = 1 and g = 1, δ̄1(ψ) < δ̄0(ψ) − 2 when n = 1 and g � 2, and
δ̄n (ψ) < δ̄n−1(ψ) when n � 2. Thus, by Corollary 3·3, for each n � 1 and g � 1 the
groups Gn,g in Proposition 2·5 have def(Gn,g ) � 0. Moreover, except in the case that
g = 1 and n = 1, for each n � 1 and g � 1, the groupGn,g cannot be the fundamental
group of a compact, orientable 3-manifold (with or without boundary). The group
G1,1 cannot be the fundamental group of a compact, orientable 3-manifold with at
least one boundary component that is not a 2-sphere.

3·2. Obstructions to X × S1 admitting a symplectic structure

We will show that a consequence of Corollaries 2·3 and 2·10 is that the δ̄n (ψ) give
obstructions to a 4-manifold of the form X ×S1 admitting a symplectic structure. It
is well known that if X is a closed 3-manifold that fibers over S1 then X ×S1 admits
a symplectic structure. Taubes asks whether the converse is true.

Question 3·5 (Taubes). LetX be a 3-manifold such thatX ×S1 admits a symplectic
structure. Does X admit a fibration over S1?

In [Ha1], we showed that if X is a 3-manifold that fibers over S1 with β1(X) � 2
and ψ representing the fibration then δ̄n (ψ) is equal to Thurston norm ‖ψ‖T of ψ.
This generalized the work of McMullen who showed that the Alexander norm gives
a lower bound for the Thurston norm which is an equality when ψ represents a
fibration.

Theorem 3·6 ([Ha1]). Let X be a compact, orientable 3-manifold (possibly with
boundary). For all ψ ∈ H1(X;Z) and n � 0

δ̄n (ψ) � ‖ψ‖T

except for the case when β1(X) = 1, n = 0, X � S1 × S2, and X � S1 × D2. In this
case, δ̄0(ψ) � ‖ψ‖T + 1 + β3 (X) whenever ψ is a generator of H1 (X;Z)� Z. Moreover,
equality holds in all cases when ψ : π1(X) � Z can be represented by a fibrationX → S1.

Using the work of Meng–Taubes and Kronheimer–Mrowka, Vidussi [Vi] has re-
cently given a proof of McMullen’s inequality (that the Alexander norm gives a lower
bound for the Thurston norm of a 3-manifold) using Seiberg–Witten theory. This
generalizes the work of Kronheimer [K2] who dealt with the case that X is the
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0-surgery on a knot. Moreover, Vidussi shows that if X × S1 admits a symplectic
structure (and β1 (X) � 2) then the Alexander and Thurston norms of X coincide on
a cone over a face of the Thurston norm ball of X, supporting a positive answer to
question 3·5 asked by Taubes.

Theorem 3·7 (Kronheimer, Vidussi [K2, V, Vi]). Let X be a closed, irreducible
3-manifold such that X × S1 admits a symplectic structure. If β1(X) � 2 there ex-
ists a ψ ∈ H1(X;Z) such that ‖ψ‖A = ‖ψ‖T . If β1(X) = 1 then for any generator ψ of
H1(X;Z), ‖ψ‖A = ‖ψ‖T + 2.

In [Ha1, theorem 12·5], we used Vidussi’s result and our result that the δ̄n give
lower bounds for the Thurston norm [Ha1, theorem 10·1] to show that the higher-
order degrees of a 3-manifold X give algebraic obstructions to a 4-manifold of the
formX ×S1 admitting a symplectic structure. As a result, we were able to show that
the closed, irreducible 3-manifolds (with β1(X) � 2) in theorem 11·1 of [Ha1] have
δ̄0 < δ̄1 < · · · < δ̄n hence cannot admit a symplectic structure. However, it was still
unknown at this time whether Vidussi’s Theorem holds if one replaces the Alexander
norm with δ̄n . In [Ha1, conjecture 12·7], we conjectured this to be true. Since the
Alexander norm is equal to δ̄0, Vidussi’s theorem gives us the case when n = 0. We
will show that conjecture 12·7 of [Ha1] is true when n � 1. This is theoretically
important since it gives more evidence that the only symplectic 4-manifolds of the
form X × S1 are such that X fibers over S1, supporting a positive answer to the
question of Taubes.

Theorem 3·8. Let X be a closed, orientable, irreducible 3-manifold such that X × S1

admits a symplectic structure. If β1(X) � 2 there exists a ψ ∈ H1(X;Z) such that

δ̄0(ψ) = δ̄1(ψ) = · · · = δ̄n (ψ) = · · · = ‖ψ‖T .

If β1(X) = 1 then for any generator ψ of H1(X;Z),

δ̄0(ψ)− 2 = δ̄1(ψ) = · · · δ̄n (ψ) = · · · = ‖ψ‖T .

Proof. If X is a closed, orientable, irreducible, 3-manifold with β1(X) � 2 such
that X × S1 admits a symplectic structure then by Theorem 3·7 there exists a
ψ ∈ H1(X;Z) such that δ̄0(ψ) = ‖ψ‖A = ‖ψ‖T . By Corollary 2·10 and Theorem 3·6,
δ̄0(ψ) � δ̄n (ψ) � ‖ψ‖T hence for all n � 0, δ̄0(ψ) = δ̄n (ψ) = ‖ψ‖T . Similarly, if
β1(X) = 1 then for ψ a generator of H1(X;Z), δ̄0(ψ)− 2 = ‖ψ‖T . Since S1 × S2 is not
irreducible, for n � 1 we have δ̄0(ψ) − 2 � δ̄n (ψ) � ‖ψ‖T hence δ̄0(ψ) − 2 = δ̄n (ψ) =
‖ψ‖T .

3·3. Behavior of the Thurston norm under a continuous map that is surjective on π1

An important problem in 3-manifold topology is determine the behavior of the
Thurston norm under continuous maps f :X → Y between 3-manifolds. It was
shown by Gabai in [Ga] that if f is a p-fold covering map then ||f �(ψ)||T = p ||ψ||T .
Moreover, Gabai showed that if f is a degree dmap then ||f �(ψ)||T � |d| ||ψ||T . These
statements were first conjectured by Thurston his original paper on the Thurston
norm in [Th, conjecture 2(b)]. We sketch a proof of the latter, since it does not seem
to explicitly appear in [Ga].
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Theorem 3·9 (Gabai). Let f :X → Y be a degree d map between closed, orientable,

3-manifolds. Then for each ψ ∈ H1(Y ;Z), ||f �(ψ)||T � |d| ||ψ||T .

Proof. Let ψ ∈ H1(Y ;Z) and F be an embedded (possibly disconnected) surface in
X such that [F ] is dual to f �(ψ) and χ−(F ) = ||f �(ψ)||T . Since the following diagram
commutes [Mu, theorem 67·2], [f (F )] = f�([F ]) = d(ψ � ΓY )

H1(X;Z)
�ΓX

�
� H2(X;Z)

H1(Y ;Z)

f �

�

�dΓY� H2(Y ;Z).

f�

�

By corollary 6·18 of [Ga], || − ||T = xs(−) where xs is the singular norm. Hence
|d| ||ψ||T � χ−(f (F )) � χ−(F ) = ||f �(ψ)||T .

Recall that a degree one map is surjective on π1. Hence one could ask if the
existence of a map f :X → Y between compact, orientable, 3-manifolds, that is
surjective on π1 suffices to guarantee that ||f �(ψ)||T � ||ψ||T for all ψ ∈ H1(Y ;Z).
We will give some (algebraic) conditions on X and Y (i.e. that do not depend on the
map f ) that will guarantee ||f �(ψ)||T � ||ψ||T .
This question was first asked by Simon (see Kirby’s Problem List [Ki, question

1·12(b)]) for knot complements. Recall that if K is a nontrivial knot in S3 then
H1(S3 \ K;Z)� Z generated by ψ and ||ψ||T = 2g(K) − 1 where g(K) is the genus
of K.

Question 1·12(b) of [Ki]. If J and K are knots in S3 and f :S3 \ L → S3 \ K is
surjective on π1, is g(L) � g(K)?

The answer to the above question is known to be yes when δ̄0(K) = 2g(K). We
strengthen this result to the case when δ̄n (K) = 2g(K)−1 in Corollary 3·13. By δ̄n (K)
we mean δ̄n (ψ) for a generator ψ of H1(S3 \ K;Z)� Z. Note that by Theorems 5·4
and 7·1 of [Co],

δ̄0(K)− 1 � δ̄1(K) � · · · � δ̄n (K) � · · · � 2g(K)− 1.

Moreover, by corollary 7·4 of [Co], there exist knots K for which δ̄0(K)− 1 < δ̄1(K)
< · · · < δ̄n (K). Therefore, the result in Corollary 3·13 is strict generalization of the
previously known result.
Before we state the results concerning the behavior of the Thurston norm under

a surjective map on π1, we state and prove the following theorem which describes
the behavior of δ̄n under a surjective map on π1. We only consider the case that
def(G) = 1 since if def(G) � 2 then by Remark 2·4, r0(G) � 1.

Theorem 3·10. Let G be either (1) a finitely presented group with def(G) = 1 or (2)
the fundamental group of closed, connected, orientable 3-manifold. If P is a group with
β1(P ) = β1(G), r0(G) = 0, and ρ : G � P is a surjective map then for each n � 0 and
ψ ∈ H1(P ;Z),

δ̄n (ρ�(ψ)) � δ̄n (ψ).
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Proof. Wewill first show that the theorem holds for primitive elements ofH1(P ;Z).
It will then follow for arbitrary elements of H1(P ;Z) since for any k ∈ Z, ρ�(kψ) =
kρ�(ψ), δ̄n (kρ�(ψ)) = |k|δ̄n (ρ�(ψ)) and δ̄n (kψ) = |k|δ̄n (ψ). Let ψ be a primitive element
of H1(P ;Z), Gn = G/G(n+1)

r , and Pn = P/P (n+1)
r . For each n � 0, we have two

coefficient systems for G:φ1n :G � Gn and φ2n :G � Pn , defined by φ1n (g) = [g]
and φ2n (g) = [ρ(g)]. Note that ρ induces a surjection ρ:Gn � Pn . Moreover, ρ has
non-trivial kernel if and only if (φ1n , φ2n , ρ�(ψ)) is an admissible triple.
If ρ is an isomorphism, then δ̄Gn

(ρ�(ψ)) = δ̄Pn
(ρ�(ψ)). Suppose ρ is an not an

isomorphism. We remark that (φ1n , φ2n , ρ�(ψ)) is initial if and only if β1(P ) = 1 and
n = 0. However, since ρ is surjective and β1(G) = β1(P ), we have ρ : G0

�−→ P0.
Thus (φ1n , φ2n , ρ�(ψ)) is never inital and hence, by Theorems 2·2 and 2·9, δ̄Gn

(ρ�(ψ)) �
δ̄Pn
(ρ�(ψ)).
To finish the proof, we will show that δ̄Pn

(ρ�(ψ)) � δ̄Pn
(ψ). First, since ρ is surject-

ive, we have a surjective map

ρ� : H1(G;ZPn ) =
ker

(
φ2n

)
[
ker

(
φ2n

)
,ker

(
φ2n

)] −� P (n+1)
r[

P (n+1)
r , P (n+1)

r

] = H1(P ;ZPn ).

SinceK
P
n [t

±1] is a flat (right) ZPn -module, the homomorphism ρ� : H1(G;KP
n [t

±1]) �
H1(P ;KP

n [t
±1]) is surjective. The condition r0(G) = 0 implies that both of these

modules are torsion [Ha2] hence rankKP
n

H1(G;KP
n [t

±1]) � rankKP
n

H1(P ;KP
n [t

±1])
which completes the proof.

Corollary 3·11. Suppose there exists an epimorphism ρ:π1(X) � π1(Y ), where X
and Y are compact, connected, orientable 3-manifolds, with toroidal or empty boundaries,
such that β1(X) = β1(Y ) and r0(X) = 0. Let ψ ∈ H1(π1(Y );Z). If any of the following
conditions is satisfied:
(a) β1(Y ) � 2 and δ̄n (ψ) = ||ψ||T for some n � 0;
(b) β1(Y ) = 1 and δ̄n (ψ) = ||ψ||T for some n � 1;
(c) β1(Y ) = 1, β3(X) � β3(Y ), ψ is primitive and δ̄0(ψ) = ||ψ||T + 1 + β3(Y );

then

||ρ�(ψ)||T � ||ψ||T .

Proof. LetG = π1(X) and P = π1(Y ). IfX is S1×D2 or S1×S2 then π1(X)�Z and
π1(Y )�Z hence δ̄n (ψ) = 0 for all n. Thus, we are in case (b) and have ||ψ||T = 0 which
trivially satisfies the conclusion of the corollary. Therefore, we can assume that X is
neither S1×D2 nor S1×S2. We also remark that since r0(X) = 0, def(π1(X)) � 1 by
Remark 2·4. Thus, if (a) or (b) is satisfied then by theorem 10·1 of [Ha1], δ̄n (ρ�(ψ)) �
||ρ�(ψ)||T . Hence by Theorem 3·10 we have ||ρ�(ψ)||T � δ̄n (ρ�(ψ)) � δ̄n (ψ) = ||ψ||T . If
c is satisfied then by theorem 10·1 of [Ha1] we have δ̄0(ρ�(ψ)) � ||ρ�(ψ)||T +1+β3(X).
Therefore, ||ρ�(ψ)||T � δ̄0(ρ�(ψ))− 1− β3(X) � δ̄0(ψ)− 1− β3(Y ) = ||ψ||T .

We will now discuss the case when G is the fundamental group of a knot comple-
ment.

Corollary 3·12. If J and K are knots in S3 such that there exists a surjective
homomorphism ρ : π1(S3 \ L) � π1(S3 \ K) then for each n � 0, δ̄n (L) � δ̄n (K).

Proof. Let G = π1(S3 \L), P = π1(S3 \K), ψP : P � P/P (1)�Z be the abelianiza-
tion map, and ψG = ψP ◦ρ. Since ρ is surjective and β1(S3−L) = 1, ψG is a generator
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of H1(S3 − L;Z). By [COT, proposition 2·11], r0(G) = 0 hence by Theorem 3·10,
δ̄n (L) = δ̄n (ψG ) � δ̄n (ψP ) = δ̄n (K).

Corollary 3·13. Suppose J and K are knots in S3 such that there exists a surjective
homomorphism ρ: π1(S3 \L) � π1(S3 \K). If δ̄0(K) = 2g(K) or δ̄n (K) = 2g(K)− 1 for
some n � 1 then g(L) � g(K).

This corollary follows immediately from Corollary 3·11. Instead of omitting any
proof, we will supply a proof which is a simplified version of the proof of Corol-
lary 3·11.

Proof. We can assume that L is not the unknot since φ is surjective. If n � 1 we
have δ̄n (L) � 2g(L)− 1 by theorem 7·1 of [Co] or theorem 10·1 of [Ha1]. Hence, by
Corollary 3·12, 2g(K) − 1 = δ̄n (K) � δ̄n (L) � 2g(L) − 1. In the other case, we have
δ̄0(L) � 2g(L) so 2g(K) = δ̄0(K) � δ̄0(L) � 2g(L).
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