A non discrete metric on the group of topologically slice knots.

Topology in dimensions 3, 3.5, and 4

Shelley Harvey
Rice University

w/ Tim Cochran, Mark Powell, & Arunima Ray.
Def: A **knot** is a smooth embedding
\[f : S^1 \hookrightarrow S^3. \]

Remark: A knot \(K \) is the unknot \(\iff \)
\(K \) bounds a disk in \(S^3 \).
Definition: A knot $K \subseteq S^3 = \partial B^4$ is slice if $K = \partial D$ is the boundary of a smoothly embedded disk D in B^4.

$S^3 = \text{boundary of } B^4$
Note: There is no known algorithm to determine if a knot is slice!!

Q. Is the Conway knot slice?

known to topologically slice but unknown if it is smoothly slice!
Ex: A knot is ribbon if it is the boundary of an immersed disk in S^3 with “ribbon singularities”:

Observation: Every ribbon knot is slice.
Pf: Take a small disk around singularity and push it into B^y.
push interior of B^4

← (what is left in S^3)
$K = 8q$

$8q$ is ribbon

Slice disk for $8q$

$\Rightarrow 8q$ is slice but does not bound an embedded disk in \mathbb{R}^3!
Slice-ribbon conjecture: Every (smoothly) slice knot is ribbon.

Note: This problem is extremely difficult since every ribbon knot has a slice disk that is not even isotopic to any ribbon disk!
Ex: Let S be a smoothly embedded non-trivial 2-knot, $S^2 \hookrightarrow S^4$. Let $U=\text{unknot}$, and $D=\text{standard disk with } \partial D=U$. Push U into B^4 and then take a connected sum with S. Then $U=\Sigma S$ (S punctured) and $\pi_1(B^4\setminus S^0)=\pi_1(S^4\setminus S)$ is non-abelian since S is non-trivial.
Fact: If D is a ribbon disk for K then

$$
\pi_1(S^3 \setminus K) \xrightarrow{i_*} \pi_1(B^n \setminus D)
$$

is surjective.

In example:

$$
\pi_1(S^3 \setminus \text{unknot}) \xrightarrow{=} \pi_1(B^n \setminus \hat{S})
$$

non-abelian

$\Rightarrow \hat{S}$ is a slice disk that is not isotopic to any ribbon disk.
Another example (using "movie moves")

We can look at level set of a disk in \mathbb{R}_+^n.

9.46 is slice
$t = 0$

$B^y = \mathbb{R}^y_+ (t \geq 0)$
$t = \frac{1}{8}$

Graph showing a time evolution process in a 4-dimensional spacetime (\mathbb{R}^4) for $t \geq 0$. The diagram illustrates a complex structure evolving over time, with different regions highlighted to indicate changes or states at various times.
\[t = \frac{3}{8} \]

- Diagram showing a time \(t = 0 \) and \(t = \text{time} \) in a 3-dimensional space \(\mathbb{R}^3 \).
\[t = \frac{1}{2} \]

Diagram of a 4-dimensional space-time with a 3-dimensional slice at \(t = 0 \) and a time axis labeled \(t = \) time.
purple disk is behind the blue
We can put an 4-dimensional equivalence relation on knots.

Def: Let K and J be knots in S^3. We say that K is concordant to J if $K \times \{0\}$ and $J \times \{1\}$ cobound a smoothly embedded annulus in $S^3 \times [0,1]$.

![Diagram of annulus](#)
Concordance group

Let $C = \{ \text{knots} \}/\sim$ if they are concordant.

Then C is a group under connected sum.

* need oriented knots.
\(O = \{ \text{slice knots}\} \)

Inverse of \(K \) is \(\overline{K} \).

For any \(K \), \(K \# \overline{K} \) is slice where

\[K \]

\[\overline{K} = \text{mirror image} \]
Pf that $K \# \overline{K}$ is slice (ribbon)

Make immersed disk by lines from K to \overline{K}. The only self-intersection are ribbon singularities.
C is a non-finitely generated abelian group. We don't know what C is.

- C contains elements that are 2-torsion.

\[
\begin{align*}
\mathcal{A}_1 & \cong \mathcal{B}_1 \\
\Rightarrow 2\mathcal{A}_1 & = 0 \quad \text{and} \quad \mathcal{A}_1 \text{ is not slice } (\mathcal{A}, \neq 0)
\end{align*}
\]
\(C \) contains elements of infinite order

\[\therefore \# \ldots \# \therefore \]

is never slice.

Thm (Levine '60's) \exists surjective homomorphism

\[C \xrightarrow{\pi} A \cong \mathbb{Z}^\infty \oplus \mathbb{Z}_2^\infty \oplus \mathbb{Z}_4^\infty \]

algebraic concordance group

(Witt group of Seifert matrices)
Q. Are all torsion elements, 2-torsion?

- \(\ker(\pi) \) is non-trivial (in higher-dimension, \(\pi \) is an \(\cong \))

Thm (Casson-Gordon, Gilmer): \(\ker \pi \neq 0 \).

\[K = \text{trefoil} \]
Tie strand into K

$K = \quad \quad = \quad \quad$
n-solvable filtration

Cochran-Orr-Teichner defined filtration

$s_0^* \subseteq \ldots \subseteq s_1^* \subseteq s_{0.5}^* \subseteq s_0 \subseteq \mathbf{C}$

$K \in s_0^* \iff \text{Arf}(K) = 0$ \hspace{1cm} \text{Arf invariant}

$K \in s_{0.5}^* \iff K \in \ker(\Pi)$ \hspace{1cm} \text{Algebraically slice}

$K \in s_{1.5}^* \Rightarrow \text{Casson-Gordon invariants vanish}$
Def. If \(G \) is a group, define

\[
G^{(\ell)} := G \quad \text{and} \\
G^{(n)} := [G^{(n)}, G^{(n)}],
\]

\(\{G^{(n)}\} \) is the derived series of \(G \).
Def: A knot K is *(n)-solvable* (in \mathfrak{y}_n) if there is a smooth 4-mfld W with $\partial W = S^3$ and smoothly embedded disk $\Delta \subseteq W$ with $\partial \Delta = K$ s.t.

1. $H_1(S^3, K) \cong \tilde{H}_1(W, \Delta)$
2. $[\Delta] = 0$ in $H_2(W, S^3)$
3. $H_2(W) \cong \mathbb{Z}^{2g}$ has a basis represented by surfaces Σ_i, $d_i \subseteq W \setminus \Delta$ s.t. $\Sigma_i \cdot c_j = \delta_{ij}$, $d_i \cdot d_j = 0 = \Sigma_i \cdot \Sigma_j$.
4. $\pi_1(\Sigma_i)$, $\pi_1(d_i) \subseteq \pi_1(W \setminus \Delta)^{(n)}$
Thm (Cochran-H-Heidy): For each \(n \geq 0 \), \(J_n / J_{n,s} \) contains \(\bigoplus_{p(t)} (\mathbb{Z}^t \oplus \mathbb{Z}_2^s) \) symmetric irreducible.

- \(n = 0 \): Milnor-Tristram, Levine (60's)
- \(n = 1 \): Jiang, Livingston (80's)
- \(n = 2 \): Cochran-Teichner ('02)
Operators on C

Def: A pattern P is a slice knot R and unknot η disjoint from R, such that η bounds a surface disjoint from R.
\[p : C \rightarrow C \quad \text{(not a homomorphism)} \]

\[p(K) = \]

satellite operator.

tie strands going through \(\eta \) into \(K \)
\[P : \mathcal{F}_n \rightarrow \mathcal{F}_{n+1}. \]

Hence \(P^n(k) = P(P(\ldots P(k))) \in \mathcal{F}_n \) for any \(k \) with Art invariant zero. Exs of \(\mathbb{F}_\infty \) and \(\mathbb{Z}_\infty \in \mathcal{F}_n/\mathcal{F}_{n+1} \) are constructed this way!
Q. When is P injective?

Conjecture: Q is injective

$Q(K) = \text{slice} \iff K$ is slice

Known: There is a subgroup of C on which Q^n is injective for $\forall n$.
Ex: Whitehead double

\[\text{Wh} = \includegraphics{diagram.png} \]

\[\text{Wh: } K \rightarrow \text{Wh}(K) \]
Conjecture: \(\text{Wh}(K) \) is smoothly slice \(\iff K \) is smoothly slice (i.e. \(\text{Wh} \) is weakly injective).

Remark: For any \(K \), the Alexander polynomial of \(\text{Wh}(K) \) is \(1 \) \(\implies \) by Freedman, \(\text{Wh}(k) \) is always topologically slice (bounds a topologically locally flat disk in \(B^4 \)).
Satellite operators give a way to construct elements in \mathfrak{g}_n. The difficult part is to show $P^n(K)$ is not slice (or even in \mathfrak{g}_ns)!

- Use invariants of knots such as L^2-signatures, d-invariants and \mathcal{I} invariants from Heegaard Floer homology, etc.
We conjecture that \(C \) has the structure of a "fractal set".

Would like some notion of distance where image \((P^n)\) is getting smaller as \(n \to \infty \).
Symmetric gropes

Def: A *grope* of height 1 is a compact oriented surface G_1 with $|\omega| = 1$.

Let $\{\alpha_1, ..., \alpha_{2g}\}$ be a standard symplectic basis of curves for $H_1(G_1)$ on G_1, $g = \text{genus}(G_1)$.
A grope of height $n+1$ is obtained by attaching gropes of height n to $\alpha_1, \ldots, \alpha_9, \beta_1, \ldots, \beta_9$.

height 2 grope
Def: A branched symmetric groove is defined as follows:

Let Σ_1 be a compact connected orientable surface of genus g, with a standard symplectic basis of curves $\{\alpha_1, \ldots, \alpha_{2g}\}$ with α_{2i-1} dual to α_{2i}. Attach to each α_i, a groove of height m_i s.t. $m_{2i-1} = m_{2i}$, no subsurface of which is a disk.

Let $n_i = m_{2i}$.
$n_1 = m_1 = m_2 = 0 \quad n_2 = m_3 = m_4 = 2 \quad n_3 = m_5 = m_6 = 1$
Let Σ be a branched symmetric grope.

Define

$$g_1 = \text{genus}(\Sigma)$$

$$g_2 = \text{sum of genera of first stage surfaces attached to } \alpha_{2i-1}, \alpha_{2i}.$$

$$\vdots$$

$$g_{n+1} = \text{sum of genera of } n_{i+1} \text{ stage surfaces attached to } \alpha_{2i-1}, \alpha_{2i}.$$
No g_2^1 since $n_1 = m_1 = m_2$.

$g_2^2 = 1 + 2 = 3$

$g_2^3 = 2 + 2 = 4$
\[g_3^2 = 2 + 1 + 3 + 1 + 1 + 1 = 9 \]
Note: For each $1 \leq i \leq g_i$ and $2 \leq k \leq n_i + 1$, \(g_k \geq 2 g_{k-1} \)
Let $q \geq 1$ be a real number and Σ a branched symmetric grope. Define

$$
\| \Sigma \|_{q} = \sum_{i=1}^{g} \frac{1}{q^{n_{i}}} \left(1 - \sum_{k=2}^{n_{i}+1} \frac{1}{q^{k}} \right)
$$

Def: If K, J are knots, define

$$
d^{q}(K, J) := \inf \left\{ \| \Sigma \|_{q} \mid \Sigma \text{ is a branched symmetric grope embedded in } S^{3} \times I \text{ with boundary } K \times \{0\} \text{ and } J \times \{1\} \right\}
$$

Note: Any two knot cobound a surface.
\[\sum = \]

\[\| \Sigma \|_{q_i} = \left(\frac{1}{q_0^i} \right) + \frac{1}{q_2^i} \left(1 - \frac{1}{3} - \frac{1}{q} \right) + \frac{1}{q_4^i} \left(1 - \frac{1}{4} \right) = 1 + \frac{5}{q^2} + \frac{3}{4q} \]

for \(i = 1, 2, 3 \).
Ex: If K has bounds a genus 1 surface Σ and $\text{Arf}(K) \neq 0$ then K cannot bound a (symmetric) height 2 grope, so

$$d^9(k, \text{unknot}) = g(\Sigma) = 1.$$

Ex: $\frac{1}{2q} \leq d^9(\xi, \xi) \leq \frac{27}{16q}$.
Prop (Cochran-H-Powell): For \(q \geq 1 \), the function \(d^q \) determines a pseudo-metric on \(C \).

Need to show \(\| \Xi \|_q \geq 0 \) for any \(\Xi \).

Prop: If \(K \) does not bound a grope of height \(n \) then

\[
d(K, \text{unknot}) \geq \frac{1}{(2q)^{n-2}}.
\]
Thm (Cochran-Orr-Teichner): If \(K \) bounds a height \(h \) grope then \(KE \in \mathcal{F}_{n-2} \).

Prop (Cochran-H-Powell): If \(P \) is a pattern then \(P : C \to C \) is a contraction w.r.t. \(d^q \) for \(q > gw(P) \), i.e. # of times \(R \) goes through \(P \).
Thm (Cochran-H-Powell): For any $q > 1$ there exists uncountably many sequences of knots $\{K_i\}$ s.t.

\[d^q(K_i, \text{unknot}) > 0 \quad \forall \ i \quad \text{but} \quad d^q(K_i, \text{unknot}) \to 0 \quad \text{as} \quad i \to \infty. \]

Hence the topology on (\mathbb{C}, d^q) is not discrete for $q > 1$.
Topologically slice knots

Let \(T = \{ \text{topologically slice knots} \} \subseteq C \).

This is an interesting and subtle subgp of \(C \).

Thm (Hom): \(T \) has a \(\mathbb{Z}^\infty \) summand.

(Endo showed that \(\mathbb{Z}^\infty \subseteq C \).)
Remark 1: If \(K \in T \), then \(K \notin \mathcal{E}_n \) for \(n \).

Remark 2: If \(K \in T \), then \(K \) bounds an arbitrarily long symmetric grope all of whose first stage genus is fixed.

Hence for \(q > 1 \),

\[
cl_q^g(k, \text{unknot}) = 0.
\]
Remark 3: For \(q = 1 \), the only way to get \(d'(k, \text{unknot}) = 0 \) would be for \(K \) to bound a arbitrarily long grope with each stage having genus 1.

\[
\|\Sigma\|_1 = 1 - \frac{1}{2} - \frac{1}{4} - \cdots - \frac{1}{2^n} \rightarrow 0 \quad \text{as} \ n \rightarrow \infty
\]

It is unknown if there is a non-slice knot that bounds such a rose!

Conj: \(\exists \ K \in \mathcal{T} \text{ s.t. } d'(k, \text{unknot}) > 0. \)
More generally

Conjecture: $d'(k, J) > 0 \ \forall \ k \neq J$.
Bipolar Filtration

Cochran, Horn and I defined a filtration

\[\ldots \leq B_1 \leq B_0 \leq \mathcal{C} \]

that is a refinement of \(\{ \mathcal{F}_{\mathfrak{t}} \} \) and Gompf and Cochran’s notion of positivity of knots.

Thm (Cochran-H-A-Horns): \(\mathbb{Z}^\omega \leq B_n / B_{n+1} \) \(\forall n \).

Unlike \(\{ \mathcal{F}_{\mathfrak{t}} \} \) this is an interesting filtration for topologically slice knots.
Def: A knot $K \in P_n$ (is n-positive) if $K = \partial \Delta$, Δ is a smoothly embedded disk in a smooth mfld W s.t.
- $\partial W = S^3$, $\Pi_1(W) = 1$
- $[\Delta] = 0$ in $H_2(W, S^3)$.
- The int. form on $H_2(W)$ is pos. def.
- $H_2(W)$ has a basis repr. by surfaces $\{S_i\}$, disjointly embedded in $W \setminus \Delta$ s.t.
 $\Pi_1(S_i) \leq \Pi_1(W - \Delta)^{(n)}$.
*Can also define when $K \in N_n$ (n-negative).

$B_n := N_n \cap P_n \forall n$. (n bipolar knots)

Prop(CHH): $B_n \subseteq \alpha_n$.

Prop (CHH): If $K \in B_0 \Rightarrow$

$\tau(k) = \pi(k) = \delta(k) = d(+1 \text{ surj. on } K) = 3(k) = 0$

Prop (CHH): If $K \in B_1$ and $Y = p^s$-fold branched cyclic cover of K, $s_0 \in \text{spin}^c(Y)$ corresponding to a spin structure on $Y \Rightarrow$

$d(Y, s_0) = 0$.

Def: $T_n := T_n B_n$.

Thm (Cochran-Horn): $T_0 / T_1 \neq 0$

Thm (Cochran-Horn): $T_1 / T_2 \neq 0$.

Thm (Cha-Kim): $T_n / T_{n+1} \neq 0 \quad \forall \ n$.

Pf uses L^2-p invs. and d-invts. of p-fold branched covers for an infinite # of p.
Tower metrics (Cochran, H, Powell, Ray)

For $q \geq 1$, can define a metric $d_q^B : \mathcal{C} \times \mathcal{E} \to \mathbb{R}$ based on kinky disks and gropes.

"Def" A generalized positive plumbed handle (GPH):

- Attach gropes of height N_i to α_i:
 - $g_i^+ = \# +$
 - $g_i^- = \# -$

\[\alpha_1 \quad \alpha_2 \quad \text{at} \quad \begin{cases} \text{attaching curve} \end{cases} \]
Ex:

Attach grope to α \(g_1^+ = 1 \) \(g_1^- = 1 \) \(am_1 = gm_1 = 2 \) \(am_2 = gm_2 = 1 \)
Def: A positive tower for K is an embedding of a GPHT into B^q with $C \to K$. (C has 0-framing)

If K,J bound a positive tower, Σ,

$$d^+_\Sigma,q(K,J) = \sum_{i=1}^{g_i} \frac{m_i}{q_i^6} \left(1 - \frac{1}{2} \sum_{k=2}^{n_i+1} \frac{1}{q_k^i} \right)$$

$$g_i = g_i^+ + g_i^-$$

$$n_i = \frac{\text{alg mult}_i + \text{geom mult}_i}{2}$$
\[d_q^+(k, J) = \min \{ d_{\Sigma, q}(k, J) \mid \Sigma \} \]

can define \(d_q^-\) sim.

\[d_q^B(k, J) = \max \{ d_q^+(k, J), d_q^-(k, J) \} \]

\textbf{Prop(CHPR):} If \(\|K\|_q^+ < \left(\frac{1}{2q} \right)^n \Rightarrow K \in \mathcal{P}_n \)

\textbf{Cor:} \exists \text{ topologically slices knots } K_i \text{ with } d_q^B(K_i, \text{ unknot}) > 0.
Conjecture 1. (1) There are topologically slice knots K_i s.t. $d^B_q(K_i, \text{unknot}) \xrightarrow{i \to \infty} 0$ and $d^0_q(K_i, \text{unknot}) \neq 0$ for all $q \geq 1$.

2) d^B_q is a metric (not just pseudo-metric) for all $q \geq 1$.

\[(1) \] There are topologically slice knots K_i s.t. $d^B_q(K_i, \text{unknot}) \xrightarrow{i \to \infty} 0$ and $d^0_q(K_i, \text{unknot}) \neq 0$ for all $q \geq 1$.

(2) d^B_q is a metric (not just pseudo-metric) for all $q \geq 1$.

\[(1) \] There are topologically slice knots K_i s.t. $d^B_q(K_i, \text{unknot}) \xrightarrow{i \to \infty} 0$ and $d^0_q(K_i, \text{unknot}) \neq 0$ for all $q \geq 1$.

(2) d^B_q is a metric (not just pseudo-metric) for all $q \geq 1$.

\[(1) \] There are topologically slice knots K_i s.t. $d^B_q(K_i, \text{unknot}) \xrightarrow{i \to \infty} 0$ and $d^0_q(K_i, \text{unknot}) \neq 0$ for all $q \geq 1$.

(2) d^B_q is a metric (not just pseudo-metric) for all $q \geq 1$.

\[(1) \] There are topologically slice knots K_i s.t. $d^B_q(K_i, \text{unknot}) \xrightarrow{i \to \infty} 0$ and $d^0_q(K_i, \text{unknot}) \neq 0$ for all $q \geq 1$.

(2) d^B_q is a metric (not just pseudo-metric) for all $q \geq 1$.

\[(1) \] There are topologically slice knots K_i s.t. $d^B_q(K_i, \text{unknot}) \xrightarrow{i \to \infty} 0$ and $d^0_q(K_i, \text{unknot}) \neq 0$ for all $q \geq 1$.

(2) d^B_q is a metric (not just pseudo-metric) for all $q \geq 1$.

\[(1) \] There are topologically slice knots K_i s.t. $d^B_q(K_i, \text{unknot}) \xrightarrow{i \to \infty} 0$ and $d^0_q(K_i, \text{unknot}) \neq 0$ for all $q \geq 1$.

(2) d^B_q is a metric (not just pseudo-metric) for all $q \geq 1$.