Knotting and linking in 4-dimensions.

Prof. Shelly Harvey
(Low dimensional) Topology

Study spaces that locally look like

\[\mathbb{R}^n = \{(x_1, ..., x_n) | x_i \in \mathbb{R}\} \]

called n-dimensional manifolds

Ex. n=2 (surfaces)
Looks flat to me
In topology, we are allowed to bend, twist, stretch spaces and we think of them as the same.

i.e. distances and angles are not preserved.

same in topology (not in geometry)
Pop quiz:
Which spaces are the same?
How to distinguish them?
Consider "knots" inside of them.

6 "essential" curves

↑2 "essential" curves
What about higher dimensions?

$n = 3$ 3-dimensions

locally looks like $\mathbb{R}^3 = \{(x,y,z) \mid x,y,z \in \mathbb{R}\}$

can't "draw" in the usual sense

What types of objects live in 3D?

- knotted circles
- knotted surfaces
Def: A **knot** in \mathbb{R}^3 is a "smooth" simple closed curve in \mathbb{R}^3.

Exs:

- unknot
- left-handed trefoil
- figure eight

Not allowed:
We say two knots are the same (isotopic) if we can continuously deform one to the other through knots (i.e. never cut or pass the knot through itself).
Quiz: Do you recognize this knot?
The diagram/picture of a knot can be complicated!
Remark: Any (compact, without boundary) 3-dimensional manifold can be “drawn” (not unique) as a weighted link (knot with multiple components).
How can we distinguish knots?

A: Knot invariants.

Important: if two knots are the same, they should have the same output!
Two types of invariants

1. Defined using diagram ← related to algebra.

Let $cr(K) = \# \text{ of crossing in a diagram}$.

Q. Is this a knot invariant?
$c(K) = \min \{ \# \text{ of crossing in a diagram for } K \}$.

* $c(K) = 0 \iff K = \text{unknot}$.

* Only knots with $c(K) = 3$ is trefoil

* $c(K) = 4 \implies K = \text{figure-eight}$

* $c(K) = 5 \implies \text{more than one!}$

(need to use other invariants to distinguish)
2. Define using the 3-dimensional manifold
\[\mathbb{R}^3 \setminus N(K) \]
thickened neighborhood of \(K \)

\(N(K) \)

can fly around in space but must avoid the knot.
Ex: Fundamental group of K.

$$\pi_1(K) := \left\{ \text{loops in } \mathbb{R}^3 \right\} / \text{"homotopy"}$$

Very powerful group but is difficult to use. (see MATH 444).
Easier example:

Let K be a knot. The K bounds a smoothly embedded "oriented" surface S, called a Seifert surface.
push up on surface
linking # is -1

lk # is 0

\[V(K) = \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix} \]

\[\pm 1 \]

input knot

seifert matrix (output)
Q. Is the Seifert matrix an invariant?

No, depends on Seifert surface chosen.

\[\phi \text{ matrix} \]

both unknots!
Can use Seifert matrix to get a knot invariant — the Alexander polynomial.

Define:

\[\Delta(K) = \det (V(K) - tV(K)^T) \]

Ex: \[V = V(K) = \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix} \]

\[V - tV^T = \begin{pmatrix} -1 + t & -1 \\ t & -1 + t \end{pmatrix} \]

\[\Delta(K) = \det (V - tV^T) = (t - 1)^2 + t \]

\[= t^2 - t + 1 \]

[Note: \(K = \text{trefoil} \) in this example]
This gives more info than $C(k)$ and can be extracted in many ways, including from $\pi_1(K)$, the fundamental group.

\[\Delta = 1 \]
\[\Delta = t^2 - t + 1 \]
\[\Delta = t^2 - 3t + 1 \]

\rightarrow all different knots
Can also compute via diagrams

\[\Delta(0) = 1 \]

\[\Delta(L_+) - \Delta(L_-) = (t + t') \Delta(L_0) \]

due to J. Conway
What about 4-dimensions?

4-dimensions in the most difficult and most interesting dimension!

• try to push low-dimensional techniques up (e.g. cut and paste, Heegaard diagrams, trisections, Kirby diagrams)

• try to push high dimensional surgery techniques.
For 4D, we are interested in knots up to "Concordance" instead of isotopy.

3D: unknot in the only knot that bounds a Seifert surface that is a disk (no "holes")
Start with a knot in \(\mathbb{R}^3 \subseteq \mathbb{R}^4 \)
\[(x, y, z) \rightarrow (x, y, z, 0)\]
the \(t=0 \) plane
(time)

\(K = \text{knot in } \mathbb{R}^3 \)
What kind of surface can it bounds in \(\mathbb{R}^4_+ \)
- Take Seifert surface in \mathbb{R}^3 in push interior into \mathbb{R}^4
- can get simpler surfaces in theory.

Def: A knot is slice* if it bounds a smooth disk in \mathbb{R}^4.

*= two different categories \leftrightarrow smooth locally flat
Ex 1: (A ribbon knot)

Stevedore knot is slice (does not bound disk in \mathbb{R}^3)
Lemma: A ribbon knot is always slice.

Slice-Ribbon Conjecture: Is every slice knot ribbon

Open conjecture - if you solve, you will be famous.
Recall level sets of surfaces from calculus as:

\[f_{-E_0} \]

Can combine the level sets to produce a surface.
Ex 2: 9_{46} knot is slice (also ribbon)
How to show a particular knot is not slice?

☆ It's HARD ☆

-no algorithm to determine if a given knot is slice (or even ribbon)

open problem!
Thm (Piccirillo, 2018): The Conway knot is not slice. Annals of Math

\(µ \) slice and is a mutant of a slice knot

Conway knot

\(\uparrow \) smoothly

known to (topologically) slice and is a mutant of a slice knot
How to show a knot or not slice.

Start with Seifert surface and create Seifert matrix V

$$ V = \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix} $$
Want to get special invariant that is "trivial" for slice knots.

Prop: If a knot is slice then its signature is 0.
signature of K, $\sigma(K)$

$K \rightarrow V \rightarrow V + V^T$

knot \rightarrow seifert matrix \rightarrow symmetric matrix

Linear Algebra: $V + V^T$ has real eigenvalues

Define

$$\sigma(K) := \left(\# \text{pos eigenvalues of } V + V^T \right) - \left(\# \text{neg eigenvalues of } V + V^T \right)$$
Ex: \[V + V^T = \begin{pmatrix} -2 & -1 \\ -1 & -2 \end{pmatrix} \]

char poly = \[\text{det}(V + V^T - \lambda I) \]

= \[\begin{pmatrix} -2 - \lambda & -1 \\ -1 & -2 - \lambda \end{pmatrix} \]

= \[(2 + \lambda)^2 - 1 \]

= \[\lambda^2 + 4\lambda + 3 \]

roots are eigenvalues:

\(-2 \pm 1\) or \(-3, -1\)

\[\Rightarrow 2 \text{ neg. eigenvals} \]

signature of K is

\[\# \text{pos eigenvals} - \# \text{neg eigenvals} = -2 \]
Alexander polynomial of unknot

\[\Delta(K) = t^2 - t + 1 = 1 \implies K \text{ is not the unknot.} \]

\[\sigma(K) = -2 \implies K \text{ is not slice.} \]
What about Alexander polynomial?

\[\Delta = 1 \quad \Delta = 2t^2 - 5t + 2 = (t-2)(2t-1) \]

- Both slice cannot obstruct.
- Sliceness with full poly.
Prop: If K is slice then $|\Delta|_{t=-1}$ is a square.

Ex: 9_{46}, $\Delta = 2t^2 - 5t + 2 = (t-2)(2t-1)$

$$\Delta \bigg|_{t=-1} = (-3)(-3) = 3^2$$

Ex: Trefoil, $\Delta = t^2 - t + 1$

$$\Delta \bigg|_{t=-1} = 1 + 1 + 1 = 3$$
Concordance

Def: Two knot K,J are concordant if there exists a smooth annulus in $\mathbb{R}^3 \times I$ cobounding K and J.

Note: slice means concordant to unknot.
Concordance group (abelian)

Def: $G := \{\text{equivalence classes of knots with equivalence relation concordance}\}$

Addition: $G + G := \text{connected sum}$

Zero: unknot
Inverse?

\[K \rightarrow -K = \text{mirror image} \]

Lemma. For any knot \(K \neq -K \) is ribbon \[\Rightarrow \text{equal to 0 in } \mathcal{C}. \]
Non-zero elements ↔ non slice knots

\[\text{Ex: } \begin{array}{c}
\text{ } \\
\text{ } \
\end{array} \]

3 elements of \(\infty \)-order \(T = \text{trefoil} \)

Consider \(nT = T \# T \# \cdots \# T \)

\(\sigma(nT) = -2n \)
Ex: Figure eight = F has order two since $F = -F \sim 2F = 0$

HW: Show $F = -F$

Open Q: Is there any torsion besides 2-torsion? i.e. $K \# K \# K$ slice but K not slice.
Open question (related to Freedman’s surgery conjecture

Is this link (topologically) slice. It’s known to not be smoothly slice (A. Levine ’14).

Whitehead double of Borromean rings?
Thank you!