Algebraic Geometry Graphic
Rice University Math
     
Department of Mathematics
Sunday, August 20

Events

No Events or Seminars scheduled today.

Special Events

Rice University Math Circle has concluded for the Spring semester. Please check the website for updates about the Fall program.

Department News

104nd Commencement May 12-13

Congratulations to our 2017 graduates!

2017 Bray Prize in Mathematics

Congratulations! to the 2017 Bray Prize in Mathematics recipients: Patrick Girardet, Ridge Liu, Tony Mirasola, and Tiffany Tang! The Hubert E. Bray Prize in Mathematics is awarded each spring to the outstanding junior mathematics major. Started in 1990, the recipient is chosen by the faculty of the Department of Mathematics.

Bray Prize in Mathematics Winner photo

Kiselev and Reid to give invited addresses at ICM 2018

Alexander Kiselev, Edgar Odell Lovett Professor of Mathematics, and Alan Reid, the incoming Milton B. Porter Chair of Mathematics, have been invited to give 45 minute invited addresses at the International Congress of Mathematicians, which will take place in August 2018 in Rio de Janeiro, Brazil. Kiselev will speak in the Partial Differential Equations section and Reid will speak in the Topology section. Invitations to speak at an ICM are among the highest honors in mathematics. Congratulations to both!

Professor Veech passed away
August 30

Professor William Austin Veech from Rice University passed away unexpectedly on Tuesday, August 30, 2016, at age 77 in Houston, Texas.

Professor Veech was born on Christmas Eve in 1938 in Detroit, Michigan, and obtained his BA from Dartmouth College in 1960 and earned his Ph.D. in 1963 under the supervision of Salomon Bochner at Princeton University. He joined the faculty of Rice University in 1969. He served as department chair for three years between 1982 and 1986 and held an endowed chair since 1988, Milton Brockett Porter Chair, 1988-2003; Edgar Odell Lovett Chair, since 2003.

Professor Veech believed in the importance of developing one's own unique perspective: all of his more than 60 papers were single-authored, and with a characteristic blend of dynamics, geometry and deep analytic technique, they often transformed whole subjects. Much of his earlier work is related to topological dynamics. Two central subjects of his research are interval exchange transformations and geodesic flows on translation surfaces.

In 1982 Professor Veech had solved (coincidentally with H. Masur) the Keane’s conjecture, which stated that typical minimal interval exchange maps are uniquely ergodic. In an earlier work, Veech constructed natural examples of minimal but not necessarily uniquely ergodic dynamical systems; in particular, he showed that certain delicate Diophantine conditions are intimately connected to ergodic properties of these systems.

Veech’s zippered rectangle construction for interval exchange transformations and Rauzy-Veech induction, used in his argument, became a cornerstone of study in the case of translation surfaces and the Teichmuller geodesic flows.

Perhaps Veech’s most influential contribution in mathematics (1989) concerned what is now called "Veech surfaces”, whose dynamical properties induce subsets of the heavily-studied Riemann’s moduli space of curves with astonishing properties. The study of such surfaces (and their generalizations) has become one of the most active topics in mathematics today.

One remarkable property of Veech surfaces is what is now called “Veech’s dichotomy”: every infinite (geodesic) orbit is either periodic or it is uniformly distributed in the surface. In particular, “Veech’s dichotomy” applies for billiard dynamical systems in some plane polygons, including all regular polygons.

Most recently, Veech made contributions related to Sarnak's conjecture concerning Mobius orthogonality.

Professor Veech was an Inaugural Fellow of the American Mathematics Society. He worked at the Institute for Advanced Study during his numerous visits there during the 1960s, 1970s and 1980s. His publications spanned more than 50 years. He was an excellent and generous mentor and a great friend to his students, colleagues and anyone else who had the honor of meeting him. He will be fondly remembered by all people who knew him.